1 //===- ARMParallelDSP.cpp - Parallel DSP Pass -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Armv6 introduced instructions to perform 32-bit SIMD operations. The 11 /// purpose of this pass is do some IR pattern matching to create ACLE 12 /// DSP intrinsics, which map on these 32-bit SIMD operations. 13 /// This pass runs only when unaligned accesses is supported/enabled. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "ARM.h" 18 #include "ARMSubtarget.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/LoopAccessAnalysis.h" 23 #include "llvm/Analysis/OrderedBasicBlock.h" 24 #include "llvm/CodeGen/TargetPassConfig.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/IntrinsicsARM.h" 27 #include "llvm/IR/NoFolder.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/Pass.h" 30 #include "llvm/PassRegistry.h" 31 #include "llvm/PassSupport.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Transforms/Scalar.h" 34 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 #define DEBUG_TYPE "arm-parallel-dsp" 40 41 STATISTIC(NumSMLAD , "Number of smlad instructions generated"); 42 43 static cl::opt<bool> 44 DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false), 45 cl::desc("Disable the ARM Parallel DSP pass")); 46 47 static cl::opt<unsigned> 48 NumLoadLimit("arm-parallel-dsp-load-limit", cl::Hidden, cl::init(16), 49 cl::desc("Limit the number of loads analysed")); 50 51 namespace { 52 struct MulCandidate; 53 class Reduction; 54 55 using MulCandList = SmallVector<std::unique_ptr<MulCandidate>, 8>; 56 using MemInstList = SmallVectorImpl<LoadInst*>; 57 using MulPairList = SmallVector<std::pair<MulCandidate*, MulCandidate*>, 8>; 58 59 // 'MulCandidate' holds the multiplication instructions that are candidates 60 // for parallel execution. 61 struct MulCandidate { 62 Instruction *Root; 63 Value* LHS; 64 Value* RHS; 65 bool Exchange = false; 66 bool ReadOnly = true; 67 bool Paired = false; 68 SmallVector<LoadInst*, 2> VecLd; // Container for loads to widen. 69 70 MulCandidate(Instruction *I, Value *lhs, Value *rhs) : 71 Root(I), LHS(lhs), RHS(rhs) { } 72 73 bool HasTwoLoadInputs() const { 74 return isa<LoadInst>(LHS) && isa<LoadInst>(RHS); 75 } 76 77 LoadInst *getBaseLoad() const { 78 return VecLd.front(); 79 } 80 }; 81 82 /// Represent a sequence of multiply-accumulate operations with the aim to 83 /// perform the multiplications in parallel. 84 class Reduction { 85 Instruction *Root = nullptr; 86 Value *Acc = nullptr; 87 MulCandList Muls; 88 MulPairList MulPairs; 89 SetVector<Instruction*> Adds; 90 91 public: 92 Reduction() = delete; 93 94 Reduction (Instruction *Add) : Root(Add) { } 95 96 /// Record an Add instruction that is a part of the this reduction. 97 void InsertAdd(Instruction *I) { Adds.insert(I); } 98 99 /// Create MulCandidates, each rooted at a Mul instruction, that is a part 100 /// of this reduction. 101 void InsertMuls() { 102 auto GetMulOperand = [](Value *V) -> Instruction* { 103 if (auto *SExt = dyn_cast<SExtInst>(V)) { 104 if (auto *I = dyn_cast<Instruction>(SExt->getOperand(0))) 105 if (I->getOpcode() == Instruction::Mul) 106 return I; 107 } else if (auto *I = dyn_cast<Instruction>(V)) { 108 if (I->getOpcode() == Instruction::Mul) 109 return I; 110 } 111 return nullptr; 112 }; 113 114 auto InsertMul = [this](Instruction *I) { 115 Value *LHS = cast<Instruction>(I->getOperand(0))->getOperand(0); 116 Value *RHS = cast<Instruction>(I->getOperand(1))->getOperand(0); 117 Muls.push_back(std::make_unique<MulCandidate>(I, LHS, RHS)); 118 }; 119 120 for (auto *Add : Adds) { 121 if (Add == Acc) 122 continue; 123 if (auto *Mul = GetMulOperand(Add->getOperand(0))) 124 InsertMul(Mul); 125 if (auto *Mul = GetMulOperand(Add->getOperand(1))) 126 InsertMul(Mul); 127 } 128 } 129 130 /// Add the incoming accumulator value, returns true if a value had not 131 /// already been added. Returning false signals to the user that this 132 /// reduction already has a value to initialise the accumulator. 133 bool InsertAcc(Value *V) { 134 if (Acc) 135 return false; 136 Acc = V; 137 return true; 138 } 139 140 /// Set two MulCandidates, rooted at muls, that can be executed as a single 141 /// parallel operation. 142 void AddMulPair(MulCandidate *Mul0, MulCandidate *Mul1, 143 bool Exchange = false) { 144 LLVM_DEBUG(dbgs() << "Pairing:\n" 145 << *Mul0->Root << "\n" 146 << *Mul1->Root << "\n"); 147 Mul0->Paired = true; 148 Mul1->Paired = true; 149 if (Exchange) 150 Mul1->Exchange = true; 151 MulPairs.push_back(std::make_pair(Mul0, Mul1)); 152 } 153 154 /// Return true if enough mul operations are found that can be executed in 155 /// parallel. 156 bool CreateParallelPairs(); 157 158 /// Return the add instruction which is the root of the reduction. 159 Instruction *getRoot() { return Root; } 160 161 bool is64Bit() const { return Root->getType()->isIntegerTy(64); } 162 163 Type *getType() const { return Root->getType(); } 164 165 /// Return the incoming value to be accumulated. This maybe null. 166 Value *getAccumulator() { return Acc; } 167 168 /// Return the set of adds that comprise the reduction. 169 SetVector<Instruction*> &getAdds() { return Adds; } 170 171 /// Return the MulCandidate, rooted at mul instruction, that comprise the 172 /// the reduction. 173 MulCandList &getMuls() { return Muls; } 174 175 /// Return the MulCandidate, rooted at mul instructions, that have been 176 /// paired for parallel execution. 177 MulPairList &getMulPairs() { return MulPairs; } 178 179 /// To finalise, replace the uses of the root with the intrinsic call. 180 void UpdateRoot(Instruction *SMLAD) { 181 Root->replaceAllUsesWith(SMLAD); 182 } 183 184 void dump() { 185 LLVM_DEBUG(dbgs() << "Reduction:\n"; 186 for (auto *Add : Adds) 187 LLVM_DEBUG(dbgs() << *Add << "\n"); 188 for (auto &Mul : Muls) 189 LLVM_DEBUG(dbgs() << *Mul->Root << "\n" 190 << " " << *Mul->LHS << "\n" 191 << " " << *Mul->RHS << "\n"); 192 LLVM_DEBUG(if (Acc) dbgs() << "Acc in: " << *Acc << "\n") 193 ); 194 } 195 }; 196 197 class WidenedLoad { 198 LoadInst *NewLd = nullptr; 199 SmallVector<LoadInst*, 4> Loads; 200 201 public: 202 WidenedLoad(SmallVectorImpl<LoadInst*> &Lds, LoadInst *Wide) 203 : NewLd(Wide) { 204 for (auto *I : Lds) 205 Loads.push_back(I); 206 } 207 LoadInst *getLoad() { 208 return NewLd; 209 } 210 }; 211 212 class ARMParallelDSP : public FunctionPass { 213 ScalarEvolution *SE; 214 AliasAnalysis *AA; 215 TargetLibraryInfo *TLI; 216 DominatorTree *DT; 217 const DataLayout *DL; 218 Module *M; 219 std::map<LoadInst*, LoadInst*> LoadPairs; 220 SmallPtrSet<LoadInst*, 4> OffsetLoads; 221 std::map<LoadInst*, std::unique_ptr<WidenedLoad>> WideLoads; 222 223 template<unsigned> 224 bool IsNarrowSequence(Value *V); 225 bool Search(Value *V, BasicBlock *BB, Reduction &R); 226 bool RecordMemoryOps(BasicBlock *BB); 227 void InsertParallelMACs(Reduction &Reduction); 228 bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem); 229 LoadInst* CreateWideLoad(MemInstList &Loads, IntegerType *LoadTy); 230 bool CreateParallelPairs(Reduction &R); 231 232 /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate 233 /// Dual performs two signed 16x16-bit multiplications. It adds the 234 /// products to a 32-bit accumulate operand. Optionally, the instruction can 235 /// exchange the halfwords of the second operand before performing the 236 /// arithmetic. 237 bool MatchSMLAD(Function &F); 238 239 public: 240 static char ID; 241 242 ARMParallelDSP() : FunctionPass(ID) { } 243 244 void getAnalysisUsage(AnalysisUsage &AU) const override { 245 FunctionPass::getAnalysisUsage(AU); 246 AU.addRequired<AssumptionCacheTracker>(); 247 AU.addRequired<ScalarEvolutionWrapperPass>(); 248 AU.addRequired<AAResultsWrapperPass>(); 249 AU.addRequired<TargetLibraryInfoWrapperPass>(); 250 AU.addRequired<DominatorTreeWrapperPass>(); 251 AU.addRequired<TargetPassConfig>(); 252 AU.addPreserved<ScalarEvolutionWrapperPass>(); 253 AU.addPreserved<GlobalsAAWrapperPass>(); 254 AU.setPreservesCFG(); 255 } 256 257 bool runOnFunction(Function &F) override { 258 if (DisableParallelDSP) 259 return false; 260 if (skipFunction(F)) 261 return false; 262 263 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 264 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 265 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 266 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 267 auto &TPC = getAnalysis<TargetPassConfig>(); 268 269 M = F.getParent(); 270 DL = &M->getDataLayout(); 271 272 auto &TM = TPC.getTM<TargetMachine>(); 273 auto *ST = &TM.getSubtarget<ARMSubtarget>(F); 274 275 if (!ST->allowsUnalignedMem()) { 276 LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not " 277 "running pass ARMParallelDSP\n"); 278 return false; 279 } 280 281 if (!ST->hasDSP()) { 282 LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass " 283 "ARMParallelDSP\n"); 284 return false; 285 } 286 287 if (!ST->isLittle()) { 288 LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass " 289 << "ARMParallelDSP\n"); 290 return false; 291 } 292 293 LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n"); 294 LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n"); 295 296 bool Changes = MatchSMLAD(F); 297 return Changes; 298 } 299 }; 300 } 301 302 template<typename MemInst> 303 static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1, 304 const DataLayout &DL, ScalarEvolution &SE) { 305 if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) 306 return true; 307 return false; 308 } 309 310 bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, 311 MemInstList &VecMem) { 312 if (!Ld0 || !Ld1) 313 return false; 314 315 if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1) 316 return false; 317 318 LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n"; 319 dbgs() << "Ld0:"; Ld0->dump(); 320 dbgs() << "Ld1:"; Ld1->dump(); 321 ); 322 323 VecMem.clear(); 324 VecMem.push_back(Ld0); 325 VecMem.push_back(Ld1); 326 return true; 327 } 328 329 // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP 330 // instructions, which is set to 16. So here we should collect all i8 and i16 331 // narrow operations. 332 // TODO: we currently only collect i16, and will support i8 later, so that's 333 // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth. 334 template<unsigned MaxBitWidth> 335 bool ARMParallelDSP::IsNarrowSequence(Value *V) { 336 if (auto *SExt = dyn_cast<SExtInst>(V)) { 337 if (SExt->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) 338 return false; 339 340 if (auto *Ld = dyn_cast<LoadInst>(SExt->getOperand(0))) { 341 // Check that this load could be paired. 342 return LoadPairs.count(Ld) || OffsetLoads.count(Ld); 343 } 344 } 345 return false; 346 } 347 348 /// Iterate through the block and record base, offset pairs of loads which can 349 /// be widened into a single load. 350 bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) { 351 SmallVector<LoadInst*, 8> Loads; 352 SmallVector<Instruction*, 8> Writes; 353 LoadPairs.clear(); 354 WideLoads.clear(); 355 OrderedBasicBlock OrderedBB(BB); 356 357 // Collect loads and instruction that may write to memory. For now we only 358 // record loads which are simple, sign-extended and have a single user. 359 // TODO: Allow zero-extended loads. 360 for (auto &I : *BB) { 361 if (I.mayWriteToMemory()) 362 Writes.push_back(&I); 363 auto *Ld = dyn_cast<LoadInst>(&I); 364 if (!Ld || !Ld->isSimple() || 365 !Ld->hasOneUse() || !isa<SExtInst>(Ld->user_back())) 366 continue; 367 Loads.push_back(Ld); 368 } 369 370 if (Loads.empty() || Loads.size() > NumLoadLimit) 371 return false; 372 373 using InstSet = std::set<Instruction*>; 374 using DepMap = std::map<Instruction*, InstSet>; 375 DepMap RAWDeps; 376 377 // Record any writes that may alias a load. 378 const auto Size = LocationSize::unknown(); 379 for (auto Write : Writes) { 380 for (auto Read : Loads) { 381 MemoryLocation ReadLoc = 382 MemoryLocation(Read->getPointerOperand(), Size); 383 384 if (!isModOrRefSet(intersectModRef(AA->getModRefInfo(Write, ReadLoc), 385 ModRefInfo::ModRef))) 386 continue; 387 if (OrderedBB.dominates(Write, Read)) 388 RAWDeps[Read].insert(Write); 389 } 390 } 391 392 // Check whether there's not a write between the two loads which would 393 // prevent them from being safely merged. 394 auto SafeToPair = [&](LoadInst *Base, LoadInst *Offset) { 395 LoadInst *Dominator = OrderedBB.dominates(Base, Offset) ? Base : Offset; 396 LoadInst *Dominated = OrderedBB.dominates(Base, Offset) ? Offset : Base; 397 398 if (RAWDeps.count(Dominated)) { 399 InstSet &WritesBefore = RAWDeps[Dominated]; 400 401 for (auto Before : WritesBefore) { 402 // We can't move the second load backward, past a write, to merge 403 // with the first load. 404 if (OrderedBB.dominates(Dominator, Before)) 405 return false; 406 } 407 } 408 return true; 409 }; 410 411 // Record base, offset load pairs. 412 for (auto *Base : Loads) { 413 for (auto *Offset : Loads) { 414 if (Base == Offset || OffsetLoads.count(Offset)) 415 continue; 416 417 if (AreSequentialAccesses<LoadInst>(Base, Offset, *DL, *SE) && 418 SafeToPair(Base, Offset)) { 419 LoadPairs[Base] = Offset; 420 OffsetLoads.insert(Offset); 421 break; 422 } 423 } 424 } 425 426 LLVM_DEBUG(if (!LoadPairs.empty()) { 427 dbgs() << "Consecutive load pairs:\n"; 428 for (auto &MapIt : LoadPairs) { 429 LLVM_DEBUG(dbgs() << *MapIt.first << ", " 430 << *MapIt.second << "\n"); 431 } 432 }); 433 return LoadPairs.size() > 1; 434 } 435 436 // Search recursively back through the operands to find a tree of values that 437 // form a multiply-accumulate chain. The search records the Add and Mul 438 // instructions that form the reduction and allows us to find a single value 439 // to be used as the initial input to the accumlator. 440 bool ARMParallelDSP::Search(Value *V, BasicBlock *BB, Reduction &R) { 441 // If we find a non-instruction, try to use it as the initial accumulator 442 // value. This may have already been found during the search in which case 443 // this function will return false, signaling a search fail. 444 auto *I = dyn_cast<Instruction>(V); 445 if (!I) 446 return R.InsertAcc(V); 447 448 if (I->getParent() != BB) 449 return false; 450 451 switch (I->getOpcode()) { 452 default: 453 break; 454 case Instruction::PHI: 455 // Could be the accumulator value. 456 return R.InsertAcc(V); 457 case Instruction::Add: { 458 // Adds should be adding together two muls, or another add and a mul to 459 // be within the mac chain. One of the operands may also be the 460 // accumulator value at which point we should stop searching. 461 R.InsertAdd(I); 462 Value *LHS = I->getOperand(0); 463 Value *RHS = I->getOperand(1); 464 bool ValidLHS = Search(LHS, BB, R); 465 bool ValidRHS = Search(RHS, BB, R); 466 467 if (ValidLHS && ValidRHS) 468 return true; 469 470 return R.InsertAcc(I); 471 } 472 case Instruction::Mul: { 473 Value *MulOp0 = I->getOperand(0); 474 Value *MulOp1 = I->getOperand(1); 475 return IsNarrowSequence<16>(MulOp0) && IsNarrowSequence<16>(MulOp1); 476 } 477 case Instruction::SExt: 478 return Search(I->getOperand(0), BB, R); 479 } 480 return false; 481 } 482 483 // The pass needs to identify integer add/sub reductions of 16-bit vector 484 // multiplications. 485 // To use SMLAD: 486 // 1) we first need to find integer add then look for this pattern: 487 // 488 // acc0 = ... 489 // ld0 = load i16 490 // sext0 = sext i16 %ld0 to i32 491 // ld1 = load i16 492 // sext1 = sext i16 %ld1 to i32 493 // mul0 = mul %sext0, %sext1 494 // ld2 = load i16 495 // sext2 = sext i16 %ld2 to i32 496 // ld3 = load i16 497 // sext3 = sext i16 %ld3 to i32 498 // mul1 = mul i32 %sext2, %sext3 499 // add0 = add i32 %mul0, %acc0 500 // acc1 = add i32 %add0, %mul1 501 // 502 // Which can be selected to: 503 // 504 // ldr r0 505 // ldr r1 506 // smlad r2, r0, r1, r2 507 // 508 // If constants are used instead of loads, these will need to be hoisted 509 // out and into a register. 510 // 511 // If loop invariants are used instead of loads, these need to be packed 512 // before the loop begins. 513 // 514 bool ARMParallelDSP::MatchSMLAD(Function &F) { 515 bool Changed = false; 516 517 for (auto &BB : F) { 518 SmallPtrSet<Instruction*, 4> AllAdds; 519 if (!RecordMemoryOps(&BB)) 520 continue; 521 522 for (Instruction &I : reverse(BB)) { 523 if (I.getOpcode() != Instruction::Add) 524 continue; 525 526 if (AllAdds.count(&I)) 527 continue; 528 529 const auto *Ty = I.getType(); 530 if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64)) 531 continue; 532 533 Reduction R(&I); 534 if (!Search(&I, &BB, R)) 535 continue; 536 537 R.InsertMuls(); 538 LLVM_DEBUG(dbgs() << "After search, Reduction:\n"; R.dump()); 539 540 if (!CreateParallelPairs(R)) 541 continue; 542 543 InsertParallelMACs(R); 544 Changed = true; 545 AllAdds.insert(R.getAdds().begin(), R.getAdds().end()); 546 } 547 } 548 549 return Changed; 550 } 551 552 bool ARMParallelDSP::CreateParallelPairs(Reduction &R) { 553 554 // Not enough mul operations to make a pair. 555 if (R.getMuls().size() < 2) 556 return false; 557 558 // Check that the muls operate directly upon sign extended loads. 559 for (auto &MulCand : R.getMuls()) { 560 if (!MulCand->HasTwoLoadInputs()) 561 return false; 562 } 563 564 auto CanPair = [&](Reduction &R, MulCandidate *PMul0, MulCandidate *PMul1) { 565 // The first elements of each vector should be loads with sexts. If we 566 // find that its two pairs of consecutive loads, then these can be 567 // transformed into two wider loads and the users can be replaced with 568 // DSP intrinsics. 569 auto Ld0 = static_cast<LoadInst*>(PMul0->LHS); 570 auto Ld1 = static_cast<LoadInst*>(PMul1->LHS); 571 auto Ld2 = static_cast<LoadInst*>(PMul0->RHS); 572 auto Ld3 = static_cast<LoadInst*>(PMul1->RHS); 573 574 if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) { 575 if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 576 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 577 R.AddMulPair(PMul0, PMul1); 578 return true; 579 } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) { 580 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 581 LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n"); 582 R.AddMulPair(PMul0, PMul1, true); 583 return true; 584 } 585 } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) && 586 AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 587 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 588 LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n"); 589 LLVM_DEBUG(dbgs() << " and swapping muls\n"); 590 // Only the second operand can be exchanged, so swap the muls. 591 R.AddMulPair(PMul1, PMul0, true); 592 return true; 593 } 594 return false; 595 }; 596 597 MulCandList &Muls = R.getMuls(); 598 const unsigned Elems = Muls.size(); 599 for (unsigned i = 0; i < Elems; ++i) { 600 MulCandidate *PMul0 = static_cast<MulCandidate*>(Muls[i].get()); 601 if (PMul0->Paired) 602 continue; 603 604 for (unsigned j = 0; j < Elems; ++j) { 605 if (i == j) 606 continue; 607 608 MulCandidate *PMul1 = static_cast<MulCandidate*>(Muls[j].get()); 609 if (PMul1->Paired) 610 continue; 611 612 const Instruction *Mul0 = PMul0->Root; 613 const Instruction *Mul1 = PMul1->Root; 614 if (Mul0 == Mul1) 615 continue; 616 617 assert(PMul0 != PMul1 && "expected different chains"); 618 619 if (CanPair(R, PMul0, PMul1)) 620 break; 621 } 622 } 623 return !R.getMulPairs().empty(); 624 } 625 626 void ARMParallelDSP::InsertParallelMACs(Reduction &R) { 627 628 auto CreateSMLAD = [&](LoadInst* WideLd0, LoadInst *WideLd1, 629 Value *Acc, bool Exchange, 630 Instruction *InsertAfter) { 631 // Replace the reduction chain with an intrinsic call 632 633 Value* Args[] = { WideLd0, WideLd1, Acc }; 634 Function *SMLAD = nullptr; 635 if (Exchange) 636 SMLAD = Acc->getType()->isIntegerTy(32) ? 637 Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) : 638 Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx); 639 else 640 SMLAD = Acc->getType()->isIntegerTy(32) ? 641 Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) : 642 Intrinsic::getDeclaration(M, Intrinsic::arm_smlald); 643 644 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 645 BasicBlock::iterator(InsertAfter)); 646 Instruction *Call = Builder.CreateCall(SMLAD, Args); 647 NumSMLAD++; 648 return Call; 649 }; 650 651 // Return the instruction after the dominated instruction. 652 auto GetInsertPoint = [this](Value *A, Value *B) { 653 assert((isa<Instruction>(A) || isa<Instruction>(B)) && 654 "expected at least one instruction"); 655 656 Value *V = nullptr; 657 if (!isa<Instruction>(A)) 658 V = B; 659 else if (!isa<Instruction>(B)) 660 V = A; 661 else 662 V = DT->dominates(cast<Instruction>(A), cast<Instruction>(B)) ? B : A; 663 664 return &*++BasicBlock::iterator(cast<Instruction>(V)); 665 }; 666 667 Value *Acc = R.getAccumulator(); 668 669 // For any muls that were discovered but not paired, accumulate their values 670 // as before. 671 IRBuilder<NoFolder> Builder(R.getRoot()->getParent()); 672 MulCandList &MulCands = R.getMuls(); 673 for (auto &MulCand : MulCands) { 674 if (MulCand->Paired) 675 continue; 676 677 Instruction *Mul = cast<Instruction>(MulCand->Root); 678 LLVM_DEBUG(dbgs() << "Accumulating unpaired mul: " << *Mul << "\n"); 679 680 if (R.getType() != Mul->getType()) { 681 assert(R.is64Bit() && "expected 64-bit result"); 682 Builder.SetInsertPoint(&*++BasicBlock::iterator(Mul)); 683 Mul = cast<Instruction>(Builder.CreateSExt(Mul, R.getRoot()->getType())); 684 } 685 686 if (!Acc) { 687 Acc = Mul; 688 continue; 689 } 690 691 // If Acc is the original incoming value to the reduction, it could be a 692 // phi. But the phi will dominate Mul, meaning that Mul will be the 693 // insertion point. 694 Builder.SetInsertPoint(GetInsertPoint(Mul, Acc)); 695 Acc = Builder.CreateAdd(Mul, Acc); 696 } 697 698 if (!Acc) { 699 Acc = R.is64Bit() ? 700 ConstantInt::get(IntegerType::get(M->getContext(), 64), 0) : 701 ConstantInt::get(IntegerType::get(M->getContext(), 32), 0); 702 } else if (Acc->getType() != R.getType()) { 703 Builder.SetInsertPoint(R.getRoot()); 704 Acc = Builder.CreateSExt(Acc, R.getType()); 705 } 706 707 // Roughly sort the mul pairs in their program order. 708 OrderedBasicBlock OrderedBB(R.getRoot()->getParent()); 709 llvm::sort(R.getMulPairs(), [&OrderedBB](auto &PairA, auto &PairB) { 710 const Instruction *A = PairA.first->Root; 711 const Instruction *B = PairB.first->Root; 712 return OrderedBB.dominates(A, B); 713 }); 714 715 IntegerType *Ty = IntegerType::get(M->getContext(), 32); 716 for (auto &Pair : R.getMulPairs()) { 717 MulCandidate *LHSMul = Pair.first; 718 MulCandidate *RHSMul = Pair.second; 719 LoadInst *BaseLHS = LHSMul->getBaseLoad(); 720 LoadInst *BaseRHS = RHSMul->getBaseLoad(); 721 LoadInst *WideLHS = WideLoads.count(BaseLHS) ? 722 WideLoads[BaseLHS]->getLoad() : CreateWideLoad(LHSMul->VecLd, Ty); 723 LoadInst *WideRHS = WideLoads.count(BaseRHS) ? 724 WideLoads[BaseRHS]->getLoad() : CreateWideLoad(RHSMul->VecLd, Ty); 725 726 Instruction *InsertAfter = GetInsertPoint(WideLHS, WideRHS); 727 InsertAfter = GetInsertPoint(InsertAfter, Acc); 728 Acc = CreateSMLAD(WideLHS, WideRHS, Acc, RHSMul->Exchange, InsertAfter); 729 } 730 R.UpdateRoot(cast<Instruction>(Acc)); 731 } 732 733 LoadInst* ARMParallelDSP::CreateWideLoad(MemInstList &Loads, 734 IntegerType *LoadTy) { 735 assert(Loads.size() == 2 && "currently only support widening two loads"); 736 737 LoadInst *Base = Loads[0]; 738 LoadInst *Offset = Loads[1]; 739 740 Instruction *BaseSExt = dyn_cast<SExtInst>(Base->user_back()); 741 Instruction *OffsetSExt = dyn_cast<SExtInst>(Offset->user_back()); 742 743 assert((BaseSExt && OffsetSExt) 744 && "Loads should have a single, extending, user"); 745 746 std::function<void(Value*, Value*)> MoveBefore = 747 [&](Value *A, Value *B) -> void { 748 if (!isa<Instruction>(A) || !isa<Instruction>(B)) 749 return; 750 751 auto *Source = cast<Instruction>(A); 752 auto *Sink = cast<Instruction>(B); 753 754 if (DT->dominates(Source, Sink) || 755 Source->getParent() != Sink->getParent() || 756 isa<PHINode>(Source) || isa<PHINode>(Sink)) 757 return; 758 759 Source->moveBefore(Sink); 760 for (auto &Op : Source->operands()) 761 MoveBefore(Op, Source); 762 }; 763 764 // Insert the load at the point of the original dominating load. 765 LoadInst *DomLoad = DT->dominates(Base, Offset) ? Base : Offset; 766 IRBuilder<NoFolder> IRB(DomLoad->getParent(), 767 ++BasicBlock::iterator(DomLoad)); 768 769 // Bitcast the pointer to a wider type and create the wide load, while making 770 // sure to maintain the original alignment as this prevents ldrd from being 771 // generated when it could be illegal due to memory alignment. 772 const unsigned AddrSpace = DomLoad->getPointerAddressSpace(); 773 Value *VecPtr = IRB.CreateBitCast(Base->getPointerOperand(), 774 LoadTy->getPointerTo(AddrSpace)); 775 LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr, 776 Base->getAlignment()); 777 778 // Make sure everything is in the correct order in the basic block. 779 MoveBefore(Base->getPointerOperand(), VecPtr); 780 MoveBefore(VecPtr, WideLoad); 781 782 // From the wide load, create two values that equal the original two loads. 783 // Loads[0] needs trunc while Loads[1] needs a lshr and trunc. 784 // TODO: Support big-endian as well. 785 Value *Bottom = IRB.CreateTrunc(WideLoad, Base->getType()); 786 Value *NewBaseSExt = IRB.CreateSExt(Bottom, BaseSExt->getType()); 787 BaseSExt->replaceAllUsesWith(NewBaseSExt); 788 789 IntegerType *OffsetTy = cast<IntegerType>(Offset->getType()); 790 Value *ShiftVal = ConstantInt::get(LoadTy, OffsetTy->getBitWidth()); 791 Value *Top = IRB.CreateLShr(WideLoad, ShiftVal); 792 Value *Trunc = IRB.CreateTrunc(Top, OffsetTy); 793 Value *NewOffsetSExt = IRB.CreateSExt(Trunc, OffsetSExt->getType()); 794 OffsetSExt->replaceAllUsesWith(NewOffsetSExt); 795 796 LLVM_DEBUG(dbgs() << "From Base and Offset:\n" 797 << *Base << "\n" << *Offset << "\n" 798 << "Created Wide Load:\n" 799 << *WideLoad << "\n" 800 << *Bottom << "\n" 801 << *NewBaseSExt << "\n" 802 << *Top << "\n" 803 << *Trunc << "\n" 804 << *NewOffsetSExt << "\n"); 805 WideLoads.emplace(std::make_pair(Base, 806 std::make_unique<WidenedLoad>(Loads, WideLoad))); 807 return WideLoad; 808 } 809 810 Pass *llvm::createARMParallelDSPPass() { 811 return new ARMParallelDSP(); 812 } 813 814 char ARMParallelDSP::ID = 0; 815 816 INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp", 817 "Transform functions to use DSP intrinsics", false, false) 818 INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp", 819 "Transform functions to use DSP intrinsics", false, false) 820