xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMParallelDSP.cpp (revision 59c8e88e72633afbc47a4ace0d2170d00d51f7dc)
1 //===- ARMParallelDSP.cpp - Parallel DSP Pass -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Armv6 introduced instructions to perform 32-bit SIMD operations. The
11 /// purpose of this pass is do some IR pattern matching to create ACLE
12 /// DSP intrinsics, which map on these 32-bit SIMD operations.
13 /// This pass runs only when unaligned accesses is supported/enabled.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "ARM.h"
18 #include "ARMSubtarget.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/LoopAccessAnalysis.h"
25 #include "llvm/Analysis/TargetLibraryInfo.h"
26 #include "llvm/CodeGen/TargetPassConfig.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicsARM.h"
29 #include "llvm/IR/NoFolder.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/Pass.h"
32 #include "llvm/PassRegistry.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Transforms/Scalar.h"
35 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
36 
37 using namespace llvm;
38 using namespace PatternMatch;
39 
40 #define DEBUG_TYPE "arm-parallel-dsp"
41 
42 STATISTIC(NumSMLAD , "Number of smlad instructions generated");
43 
44 static cl::opt<bool>
45 DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false),
46                    cl::desc("Disable the ARM Parallel DSP pass"));
47 
48 static cl::opt<unsigned>
49 NumLoadLimit("arm-parallel-dsp-load-limit", cl::Hidden, cl::init(16),
50              cl::desc("Limit the number of loads analysed"));
51 
52 namespace {
53   struct MulCandidate;
54   class Reduction;
55 
56   using MulCandList = SmallVector<std::unique_ptr<MulCandidate>, 8>;
57   using MemInstList = SmallVectorImpl<LoadInst*>;
58   using MulPairList = SmallVector<std::pair<MulCandidate*, MulCandidate*>, 8>;
59 
60   // 'MulCandidate' holds the multiplication instructions that are candidates
61   // for parallel execution.
62   struct MulCandidate {
63     Instruction   *Root;
64     Value*        LHS;
65     Value*        RHS;
66     bool          Exchange = false;
67     bool          Paired = false;
68     SmallVector<LoadInst*, 2> VecLd;    // Container for loads to widen.
69 
70     MulCandidate(Instruction *I, Value *lhs, Value *rhs) :
71       Root(I), LHS(lhs), RHS(rhs) { }
72 
73     bool HasTwoLoadInputs() const {
74       return isa<LoadInst>(LHS) && isa<LoadInst>(RHS);
75     }
76 
77     LoadInst *getBaseLoad() const {
78       return VecLd.front();
79     }
80   };
81 
82   /// Represent a sequence of multiply-accumulate operations with the aim to
83   /// perform the multiplications in parallel.
84   class Reduction {
85     Instruction     *Root = nullptr;
86     Value           *Acc = nullptr;
87     MulCandList     Muls;
88     MulPairList        MulPairs;
89     SetVector<Instruction*> Adds;
90 
91   public:
92     Reduction() = delete;
93 
94     Reduction (Instruction *Add) : Root(Add) { }
95 
96     /// Record an Add instruction that is a part of the this reduction.
97     void InsertAdd(Instruction *I) { Adds.insert(I); }
98 
99     /// Create MulCandidates, each rooted at a Mul instruction, that is a part
100     /// of this reduction.
101     void InsertMuls() {
102       auto GetMulOperand = [](Value *V) -> Instruction* {
103         if (auto *SExt = dyn_cast<SExtInst>(V)) {
104           if (auto *I = dyn_cast<Instruction>(SExt->getOperand(0)))
105             if (I->getOpcode() == Instruction::Mul)
106               return I;
107         } else if (auto *I = dyn_cast<Instruction>(V)) {
108           if (I->getOpcode() == Instruction::Mul)
109             return I;
110         }
111         return nullptr;
112       };
113 
114       auto InsertMul = [this](Instruction *I) {
115         Value *LHS = cast<Instruction>(I->getOperand(0))->getOperand(0);
116         Value *RHS = cast<Instruction>(I->getOperand(1))->getOperand(0);
117         Muls.push_back(std::make_unique<MulCandidate>(I, LHS, RHS));
118       };
119 
120       for (auto *Add : Adds) {
121         if (Add == Acc)
122           continue;
123         if (auto *Mul = GetMulOperand(Add->getOperand(0)))
124           InsertMul(Mul);
125         if (auto *Mul = GetMulOperand(Add->getOperand(1)))
126           InsertMul(Mul);
127       }
128     }
129 
130     /// Add the incoming accumulator value, returns true if a value had not
131     /// already been added. Returning false signals to the user that this
132     /// reduction already has a value to initialise the accumulator.
133     bool InsertAcc(Value *V) {
134       if (Acc)
135         return false;
136       Acc = V;
137       return true;
138     }
139 
140     /// Set two MulCandidates, rooted at muls, that can be executed as a single
141     /// parallel operation.
142     void AddMulPair(MulCandidate *Mul0, MulCandidate *Mul1,
143                     bool Exchange = false) {
144       LLVM_DEBUG(dbgs() << "Pairing:\n"
145                  << *Mul0->Root << "\n"
146                  << *Mul1->Root << "\n");
147       Mul0->Paired = true;
148       Mul1->Paired = true;
149       if (Exchange)
150         Mul1->Exchange = true;
151       MulPairs.push_back(std::make_pair(Mul0, Mul1));
152     }
153 
154     /// Return the add instruction which is the root of the reduction.
155     Instruction *getRoot() { return Root; }
156 
157     bool is64Bit() const { return Root->getType()->isIntegerTy(64); }
158 
159     Type *getType() const { return Root->getType(); }
160 
161     /// Return the incoming value to be accumulated. This maybe null.
162     Value *getAccumulator() { return Acc; }
163 
164     /// Return the set of adds that comprise the reduction.
165     SetVector<Instruction*> &getAdds() { return Adds; }
166 
167     /// Return the MulCandidate, rooted at mul instruction, that comprise the
168     /// the reduction.
169     MulCandList &getMuls() { return Muls; }
170 
171     /// Return the MulCandidate, rooted at mul instructions, that have been
172     /// paired for parallel execution.
173     MulPairList &getMulPairs() { return MulPairs; }
174 
175     /// To finalise, replace the uses of the root with the intrinsic call.
176     void UpdateRoot(Instruction *SMLAD) {
177       Root->replaceAllUsesWith(SMLAD);
178     }
179 
180     void dump() {
181       LLVM_DEBUG(dbgs() << "Reduction:\n";
182         for (auto *Add : Adds)
183           LLVM_DEBUG(dbgs() << *Add << "\n");
184         for (auto &Mul : Muls)
185           LLVM_DEBUG(dbgs() << *Mul->Root << "\n"
186                      << "  " << *Mul->LHS << "\n"
187                      << "  " << *Mul->RHS << "\n");
188         LLVM_DEBUG(if (Acc) dbgs() << "Acc in: " << *Acc << "\n")
189       );
190     }
191   };
192 
193   class WidenedLoad {
194     LoadInst *NewLd = nullptr;
195     SmallVector<LoadInst*, 4> Loads;
196 
197   public:
198     WidenedLoad(SmallVectorImpl<LoadInst*> &Lds, LoadInst *Wide)
199       : NewLd(Wide) {
200       append_range(Loads, Lds);
201     }
202     LoadInst *getLoad() {
203       return NewLd;
204     }
205   };
206 
207   class ARMParallelDSP : public FunctionPass {
208     ScalarEvolution   *SE;
209     AliasAnalysis     *AA;
210     TargetLibraryInfo *TLI;
211     DominatorTree     *DT;
212     const DataLayout  *DL;
213     Module            *M;
214     std::map<LoadInst*, LoadInst*> LoadPairs;
215     SmallPtrSet<LoadInst*, 4> OffsetLoads;
216     std::map<LoadInst*, std::unique_ptr<WidenedLoad>> WideLoads;
217 
218     template<unsigned>
219     bool IsNarrowSequence(Value *V);
220     bool Search(Value *V, BasicBlock *BB, Reduction &R);
221     bool RecordMemoryOps(BasicBlock *BB);
222     void InsertParallelMACs(Reduction &Reduction);
223     bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem);
224     LoadInst* CreateWideLoad(MemInstList &Loads, IntegerType *LoadTy);
225     bool CreateParallelPairs(Reduction &R);
226 
227     /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate
228     /// Dual performs two signed 16x16-bit multiplications. It adds the
229     /// products to a 32-bit accumulate operand. Optionally, the instruction can
230     /// exchange the halfwords of the second operand before performing the
231     /// arithmetic.
232     bool MatchSMLAD(Function &F);
233 
234   public:
235     static char ID;
236 
237     ARMParallelDSP() : FunctionPass(ID) { }
238 
239     void getAnalysisUsage(AnalysisUsage &AU) const override {
240       FunctionPass::getAnalysisUsage(AU);
241       AU.addRequired<AssumptionCacheTracker>();
242       AU.addRequired<ScalarEvolutionWrapperPass>();
243       AU.addRequired<AAResultsWrapperPass>();
244       AU.addRequired<TargetLibraryInfoWrapperPass>();
245       AU.addRequired<DominatorTreeWrapperPass>();
246       AU.addRequired<TargetPassConfig>();
247       AU.addPreserved<ScalarEvolutionWrapperPass>();
248       AU.addPreserved<GlobalsAAWrapperPass>();
249       AU.setPreservesCFG();
250     }
251 
252     bool runOnFunction(Function &F) override {
253       if (DisableParallelDSP)
254         return false;
255       if (skipFunction(F))
256         return false;
257 
258       SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
259       AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
260       TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
261       DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
262       auto &TPC = getAnalysis<TargetPassConfig>();
263 
264       M = F.getParent();
265       DL = &M->getDataLayout();
266 
267       auto &TM = TPC.getTM<TargetMachine>();
268       auto *ST = &TM.getSubtarget<ARMSubtarget>(F);
269 
270       if (!ST->allowsUnalignedMem()) {
271         LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not "
272                              "running pass ARMParallelDSP\n");
273         return false;
274       }
275 
276       if (!ST->hasDSP()) {
277         LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass "
278                              "ARMParallelDSP\n");
279         return false;
280       }
281 
282       if (!ST->isLittle()) {
283         LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass "
284                           << "ARMParallelDSP\n");
285         return false;
286       }
287 
288       LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n");
289       LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n");
290 
291       bool Changes = MatchSMLAD(F);
292       return Changes;
293     }
294   };
295 }
296 
297 bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1,
298                                         MemInstList &VecMem) {
299   if (!Ld0 || !Ld1)
300     return false;
301 
302   if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1)
303     return false;
304 
305   LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n";
306     dbgs() << "Ld0:"; Ld0->dump();
307     dbgs() << "Ld1:"; Ld1->dump();
308   );
309 
310   VecMem.clear();
311   VecMem.push_back(Ld0);
312   VecMem.push_back(Ld1);
313   return true;
314 }
315 
316 // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP
317 // instructions, which is set to 16. So here we should collect all i8 and i16
318 // narrow operations.
319 // TODO: we currently only collect i16, and will support i8 later, so that's
320 // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth.
321 template<unsigned MaxBitWidth>
322 bool ARMParallelDSP::IsNarrowSequence(Value *V) {
323   if (auto *SExt = dyn_cast<SExtInst>(V)) {
324     if (SExt->getSrcTy()->getIntegerBitWidth() != MaxBitWidth)
325       return false;
326 
327     if (auto *Ld = dyn_cast<LoadInst>(SExt->getOperand(0))) {
328       // Check that this load could be paired.
329       return LoadPairs.count(Ld) || OffsetLoads.count(Ld);
330     }
331   }
332   return false;
333 }
334 
335 /// Iterate through the block and record base, offset pairs of loads which can
336 /// be widened into a single load.
337 bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) {
338   SmallVector<LoadInst*, 8> Loads;
339   SmallVector<Instruction*, 8> Writes;
340   LoadPairs.clear();
341   WideLoads.clear();
342 
343   // Collect loads and instruction that may write to memory. For now we only
344   // record loads which are simple, sign-extended and have a single user.
345   // TODO: Allow zero-extended loads.
346   for (auto &I : *BB) {
347     if (I.mayWriteToMemory())
348       Writes.push_back(&I);
349     auto *Ld = dyn_cast<LoadInst>(&I);
350     if (!Ld || !Ld->isSimple() ||
351         !Ld->hasOneUse() || !isa<SExtInst>(Ld->user_back()))
352       continue;
353     Loads.push_back(Ld);
354   }
355 
356   if (Loads.empty() || Loads.size() > NumLoadLimit)
357     return false;
358 
359   using InstSet = std::set<Instruction*>;
360   using DepMap = std::map<Instruction*, InstSet>;
361   DepMap RAWDeps;
362 
363   // Record any writes that may alias a load.
364   const auto Size = LocationSize::beforeOrAfterPointer();
365   for (auto *Write : Writes) {
366     for (auto *Read : Loads) {
367       MemoryLocation ReadLoc =
368         MemoryLocation(Read->getPointerOperand(), Size);
369 
370       if (!isModOrRefSet(AA->getModRefInfo(Write, ReadLoc)))
371         continue;
372       if (Write->comesBefore(Read))
373         RAWDeps[Read].insert(Write);
374     }
375   }
376 
377   // Check whether there's not a write between the two loads which would
378   // prevent them from being safely merged.
379   auto SafeToPair = [&](LoadInst *Base, LoadInst *Offset) {
380     bool BaseFirst = Base->comesBefore(Offset);
381     LoadInst *Dominator = BaseFirst ? Base : Offset;
382     LoadInst *Dominated = BaseFirst ? Offset : Base;
383 
384     if (RAWDeps.count(Dominated)) {
385       InstSet &WritesBefore = RAWDeps[Dominated];
386 
387       for (auto *Before : WritesBefore) {
388         // We can't move the second load backward, past a write, to merge
389         // with the first load.
390         if (Dominator->comesBefore(Before))
391           return false;
392       }
393     }
394     return true;
395   };
396 
397   // Record base, offset load pairs.
398   for (auto *Base : Loads) {
399     for (auto *Offset : Loads) {
400       if (Base == Offset || OffsetLoads.count(Offset))
401         continue;
402 
403       if (isConsecutiveAccess(Base, Offset, *DL, *SE) &&
404           SafeToPair(Base, Offset)) {
405         LoadPairs[Base] = Offset;
406         OffsetLoads.insert(Offset);
407         break;
408       }
409     }
410   }
411 
412   LLVM_DEBUG(if (!LoadPairs.empty()) {
413                dbgs() << "Consecutive load pairs:\n";
414                for (auto &MapIt : LoadPairs) {
415                  LLVM_DEBUG(dbgs() << *MapIt.first << ", "
416                             << *MapIt.second << "\n");
417                }
418              });
419   return LoadPairs.size() > 1;
420 }
421 
422 // Search recursively back through the operands to find a tree of values that
423 // form a multiply-accumulate chain. The search records the Add and Mul
424 // instructions that form the reduction and allows us to find a single value
425 // to be used as the initial input to the accumlator.
426 bool ARMParallelDSP::Search(Value *V, BasicBlock *BB, Reduction &R) {
427   // If we find a non-instruction, try to use it as the initial accumulator
428   // value. This may have already been found during the search in which case
429   // this function will return false, signaling a search fail.
430   auto *I = dyn_cast<Instruction>(V);
431   if (!I)
432     return R.InsertAcc(V);
433 
434   if (I->getParent() != BB)
435     return false;
436 
437   switch (I->getOpcode()) {
438   default:
439     break;
440   case Instruction::PHI:
441     // Could be the accumulator value.
442     return R.InsertAcc(V);
443   case Instruction::Add: {
444     // Adds should be adding together two muls, or another add and a mul to
445     // be within the mac chain. One of the operands may also be the
446     // accumulator value at which point we should stop searching.
447     R.InsertAdd(I);
448     Value *LHS = I->getOperand(0);
449     Value *RHS = I->getOperand(1);
450     bool ValidLHS = Search(LHS, BB, R);
451     bool ValidRHS = Search(RHS, BB, R);
452 
453     if (ValidLHS && ValidRHS)
454       return true;
455 
456     // Ensure we don't add the root as the incoming accumulator.
457     if (R.getRoot() == I)
458       return false;
459 
460     return R.InsertAcc(I);
461   }
462   case Instruction::Mul: {
463     Value *MulOp0 = I->getOperand(0);
464     Value *MulOp1 = I->getOperand(1);
465     return IsNarrowSequence<16>(MulOp0) && IsNarrowSequence<16>(MulOp1);
466   }
467   case Instruction::SExt:
468     return Search(I->getOperand(0), BB, R);
469   }
470   return false;
471 }
472 
473 // The pass needs to identify integer add/sub reductions of 16-bit vector
474 // multiplications.
475 // To use SMLAD:
476 // 1) we first need to find integer add then look for this pattern:
477 //
478 // acc0 = ...
479 // ld0 = load i16
480 // sext0 = sext i16 %ld0 to i32
481 // ld1 = load i16
482 // sext1 = sext i16 %ld1 to i32
483 // mul0 = mul %sext0, %sext1
484 // ld2 = load i16
485 // sext2 = sext i16 %ld2 to i32
486 // ld3 = load i16
487 // sext3 = sext i16 %ld3 to i32
488 // mul1 = mul i32 %sext2, %sext3
489 // add0 = add i32 %mul0, %acc0
490 // acc1 = add i32 %add0, %mul1
491 //
492 // Which can be selected to:
493 //
494 // ldr r0
495 // ldr r1
496 // smlad r2, r0, r1, r2
497 //
498 // If constants are used instead of loads, these will need to be hoisted
499 // out and into a register.
500 //
501 // If loop invariants are used instead of loads, these need to be packed
502 // before the loop begins.
503 //
504 bool ARMParallelDSP::MatchSMLAD(Function &F) {
505   bool Changed = false;
506 
507   for (auto &BB : F) {
508     SmallPtrSet<Instruction*, 4> AllAdds;
509     if (!RecordMemoryOps(&BB))
510       continue;
511 
512     for (Instruction &I : reverse(BB)) {
513       if (I.getOpcode() != Instruction::Add)
514         continue;
515 
516       if (AllAdds.count(&I))
517         continue;
518 
519       const auto *Ty = I.getType();
520       if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64))
521         continue;
522 
523       Reduction R(&I);
524       if (!Search(&I, &BB, R))
525         continue;
526 
527       R.InsertMuls();
528       LLVM_DEBUG(dbgs() << "After search, Reduction:\n"; R.dump());
529 
530       if (!CreateParallelPairs(R))
531         continue;
532 
533       InsertParallelMACs(R);
534       Changed = true;
535       AllAdds.insert(R.getAdds().begin(), R.getAdds().end());
536       LLVM_DEBUG(dbgs() << "BB after inserting parallel MACs:\n" << BB);
537     }
538   }
539 
540   return Changed;
541 }
542 
543 bool ARMParallelDSP::CreateParallelPairs(Reduction &R) {
544 
545   // Not enough mul operations to make a pair.
546   if (R.getMuls().size() < 2)
547     return false;
548 
549   // Check that the muls operate directly upon sign extended loads.
550   for (auto &MulCand : R.getMuls()) {
551     if (!MulCand->HasTwoLoadInputs())
552       return false;
553   }
554 
555   auto CanPair = [&](Reduction &R, MulCandidate *PMul0, MulCandidate *PMul1) {
556     // The first elements of each vector should be loads with sexts. If we
557     // find that its two pairs of consecutive loads, then these can be
558     // transformed into two wider loads and the users can be replaced with
559     // DSP intrinsics.
560     auto Ld0 = static_cast<LoadInst*>(PMul0->LHS);
561     auto Ld1 = static_cast<LoadInst*>(PMul1->LHS);
562     auto Ld2 = static_cast<LoadInst*>(PMul0->RHS);
563     auto Ld3 = static_cast<LoadInst*>(PMul1->RHS);
564 
565     // Check that each mul is operating on two different loads.
566     if (Ld0 == Ld2 || Ld1 == Ld3)
567       return false;
568 
569     if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) {
570       if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
571         LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
572         R.AddMulPair(PMul0, PMul1);
573         return true;
574       } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) {
575         LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
576         LLVM_DEBUG(dbgs() << "    exchanging Ld2 and Ld3\n");
577         R.AddMulPair(PMul0, PMul1, true);
578         return true;
579       }
580     } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) &&
581                AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
582       LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
583       LLVM_DEBUG(dbgs() << "    exchanging Ld0 and Ld1\n");
584       LLVM_DEBUG(dbgs() << "    and swapping muls\n");
585       // Only the second operand can be exchanged, so swap the muls.
586       R.AddMulPair(PMul1, PMul0, true);
587       return true;
588     }
589     return false;
590   };
591 
592   MulCandList &Muls = R.getMuls();
593   const unsigned Elems = Muls.size();
594   for (unsigned i = 0; i < Elems; ++i) {
595     MulCandidate *PMul0 = static_cast<MulCandidate*>(Muls[i].get());
596     if (PMul0->Paired)
597       continue;
598 
599     for (unsigned j = 0; j < Elems; ++j) {
600       if (i == j)
601         continue;
602 
603       MulCandidate *PMul1 = static_cast<MulCandidate*>(Muls[j].get());
604       if (PMul1->Paired)
605         continue;
606 
607       const Instruction *Mul0 = PMul0->Root;
608       const Instruction *Mul1 = PMul1->Root;
609       if (Mul0 == Mul1)
610         continue;
611 
612       assert(PMul0 != PMul1 && "expected different chains");
613 
614       if (CanPair(R, PMul0, PMul1))
615         break;
616     }
617   }
618   return !R.getMulPairs().empty();
619 }
620 
621 void ARMParallelDSP::InsertParallelMACs(Reduction &R) {
622 
623   auto CreateSMLAD = [&](LoadInst* WideLd0, LoadInst *WideLd1,
624                          Value *Acc, bool Exchange,
625                          Instruction *InsertAfter) {
626     // Replace the reduction chain with an intrinsic call
627 
628     Value* Args[] = { WideLd0, WideLd1, Acc };
629     Function *SMLAD = nullptr;
630     if (Exchange)
631       SMLAD = Acc->getType()->isIntegerTy(32) ?
632         Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) :
633         Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx);
634     else
635       SMLAD = Acc->getType()->isIntegerTy(32) ?
636         Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) :
637         Intrinsic::getDeclaration(M, Intrinsic::arm_smlald);
638 
639     IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
640                                 BasicBlock::iterator(InsertAfter));
641     Instruction *Call = Builder.CreateCall(SMLAD, Args);
642     NumSMLAD++;
643     return Call;
644   };
645 
646   // Return the instruction after the dominated instruction.
647   auto GetInsertPoint = [this](Value *A, Value *B) {
648     assert((isa<Instruction>(A) || isa<Instruction>(B)) &&
649            "expected at least one instruction");
650 
651     Value *V = nullptr;
652     if (!isa<Instruction>(A))
653       V = B;
654     else if (!isa<Instruction>(B))
655       V = A;
656     else
657       V = DT->dominates(cast<Instruction>(A), cast<Instruction>(B)) ? B : A;
658 
659     return &*++BasicBlock::iterator(cast<Instruction>(V));
660   };
661 
662   Value *Acc = R.getAccumulator();
663 
664   // For any muls that were discovered but not paired, accumulate their values
665   // as before.
666   IRBuilder<NoFolder> Builder(R.getRoot()->getParent());
667   MulCandList &MulCands = R.getMuls();
668   for (auto &MulCand : MulCands) {
669     if (MulCand->Paired)
670       continue;
671 
672     Instruction *Mul = cast<Instruction>(MulCand->Root);
673     LLVM_DEBUG(dbgs() << "Accumulating unpaired mul: " << *Mul << "\n");
674 
675     if (R.getType() != Mul->getType()) {
676       assert(R.is64Bit() && "expected 64-bit result");
677       Builder.SetInsertPoint(&*++BasicBlock::iterator(Mul));
678       Mul = cast<Instruction>(Builder.CreateSExt(Mul, R.getRoot()->getType()));
679     }
680 
681     if (!Acc) {
682       Acc = Mul;
683       continue;
684     }
685 
686     // If Acc is the original incoming value to the reduction, it could be a
687     // phi. But the phi will dominate Mul, meaning that Mul will be the
688     // insertion point.
689     Builder.SetInsertPoint(GetInsertPoint(Mul, Acc));
690     Acc = Builder.CreateAdd(Mul, Acc);
691   }
692 
693   if (!Acc) {
694     Acc = R.is64Bit() ?
695       ConstantInt::get(IntegerType::get(M->getContext(), 64), 0) :
696       ConstantInt::get(IntegerType::get(M->getContext(), 32), 0);
697   } else if (Acc->getType() != R.getType()) {
698     Builder.SetInsertPoint(R.getRoot());
699     Acc = Builder.CreateSExt(Acc, R.getType());
700   }
701 
702   // Roughly sort the mul pairs in their program order.
703   llvm::sort(R.getMulPairs(), [](auto &PairA, auto &PairB) {
704     const Instruction *A = PairA.first->Root;
705     const Instruction *B = PairB.first->Root;
706     return A->comesBefore(B);
707   });
708 
709   IntegerType *Ty = IntegerType::get(M->getContext(), 32);
710   for (auto &Pair : R.getMulPairs()) {
711     MulCandidate *LHSMul = Pair.first;
712     MulCandidate *RHSMul = Pair.second;
713     LoadInst *BaseLHS = LHSMul->getBaseLoad();
714     LoadInst *BaseRHS = RHSMul->getBaseLoad();
715     LoadInst *WideLHS = WideLoads.count(BaseLHS) ?
716       WideLoads[BaseLHS]->getLoad() : CreateWideLoad(LHSMul->VecLd, Ty);
717     LoadInst *WideRHS = WideLoads.count(BaseRHS) ?
718       WideLoads[BaseRHS]->getLoad() : CreateWideLoad(RHSMul->VecLd, Ty);
719 
720     Instruction *InsertAfter = GetInsertPoint(WideLHS, WideRHS);
721     InsertAfter = GetInsertPoint(InsertAfter, Acc);
722     Acc = CreateSMLAD(WideLHS, WideRHS, Acc, RHSMul->Exchange, InsertAfter);
723   }
724   R.UpdateRoot(cast<Instruction>(Acc));
725 }
726 
727 LoadInst* ARMParallelDSP::CreateWideLoad(MemInstList &Loads,
728                                          IntegerType *LoadTy) {
729   assert(Loads.size() == 2 && "currently only support widening two loads");
730 
731   LoadInst *Base = Loads[0];
732   LoadInst *Offset = Loads[1];
733 
734   Instruction *BaseSExt = dyn_cast<SExtInst>(Base->user_back());
735   Instruction *OffsetSExt = dyn_cast<SExtInst>(Offset->user_back());
736 
737   assert((BaseSExt && OffsetSExt)
738          && "Loads should have a single, extending, user");
739 
740   std::function<void(Value*, Value*)> MoveBefore =
741     [&](Value *A, Value *B) -> void {
742       if (!isa<Instruction>(A) || !isa<Instruction>(B))
743         return;
744 
745       auto *Source = cast<Instruction>(A);
746       auto *Sink = cast<Instruction>(B);
747 
748       if (DT->dominates(Source, Sink) ||
749           Source->getParent() != Sink->getParent() ||
750           isa<PHINode>(Source) || isa<PHINode>(Sink))
751         return;
752 
753       Source->moveBefore(Sink);
754       for (auto &Op : Source->operands())
755         MoveBefore(Op, Source);
756     };
757 
758   // Insert the load at the point of the original dominating load.
759   LoadInst *DomLoad = DT->dominates(Base, Offset) ? Base : Offset;
760   IRBuilder<NoFolder> IRB(DomLoad->getParent(),
761                           ++BasicBlock::iterator(DomLoad));
762 
763   // Create the wide load, while making sure to maintain the original alignment
764   // as this prevents ldrd from being generated when it could be illegal due to
765   // memory alignment.
766   Value *VecPtr = Base->getPointerOperand();
767   LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr, Base->getAlign());
768 
769   // Make sure everything is in the correct order in the basic block.
770   MoveBefore(Base->getPointerOperand(), VecPtr);
771   MoveBefore(VecPtr, WideLoad);
772 
773   // From the wide load, create two values that equal the original two loads.
774   // Loads[0] needs trunc while Loads[1] needs a lshr and trunc.
775   // TODO: Support big-endian as well.
776   Value *Bottom = IRB.CreateTrunc(WideLoad, Base->getType());
777   Value *NewBaseSExt = IRB.CreateSExt(Bottom, BaseSExt->getType());
778   BaseSExt->replaceAllUsesWith(NewBaseSExt);
779 
780   IntegerType *OffsetTy = cast<IntegerType>(Offset->getType());
781   Value *ShiftVal = ConstantInt::get(LoadTy, OffsetTy->getBitWidth());
782   Value *Top = IRB.CreateLShr(WideLoad, ShiftVal);
783   Value *Trunc = IRB.CreateTrunc(Top, OffsetTy);
784   Value *NewOffsetSExt = IRB.CreateSExt(Trunc, OffsetSExt->getType());
785   OffsetSExt->replaceAllUsesWith(NewOffsetSExt);
786 
787   LLVM_DEBUG(dbgs() << "From Base and Offset:\n"
788              << *Base << "\n" << *Offset << "\n"
789              << "Created Wide Load:\n"
790              << *WideLoad << "\n"
791              << *Bottom << "\n"
792              << *NewBaseSExt << "\n"
793              << *Top << "\n"
794              << *Trunc << "\n"
795              << *NewOffsetSExt << "\n");
796   WideLoads.emplace(std::make_pair(Base,
797                                    std::make_unique<WidenedLoad>(Loads, WideLoad)));
798   return WideLoad;
799 }
800 
801 Pass *llvm::createARMParallelDSPPass() {
802   return new ARMParallelDSP();
803 }
804 
805 char ARMParallelDSP::ID = 0;
806 
807 INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp",
808                 "Transform functions to use DSP intrinsics", false, false)
809 INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp",
810                 "Transform functions to use DSP intrinsics", false, false)
811