1 //===- ARMParallelDSP.cpp - Parallel DSP Pass -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Armv6 introduced instructions to perform 32-bit SIMD operations. The 11 /// purpose of this pass is do some IR pattern matching to create ACLE 12 /// DSP intrinsics, which map on these 32-bit SIMD operations. 13 /// This pass runs only when unaligned accesses is supported/enabled. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "ARM.h" 18 #include "ARMSubtarget.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/LoopAccessAnalysis.h" 25 #include "llvm/Analysis/TargetLibraryInfo.h" 26 #include "llvm/CodeGen/TargetPassConfig.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/IntrinsicsARM.h" 30 #include "llvm/IR/Module.h" 31 #include "llvm/IR/NoFolder.h" 32 #include "llvm/IR/PatternMatch.h" 33 #include "llvm/Pass.h" 34 #include "llvm/PassRegistry.h" 35 #include "llvm/Support/Debug.h" 36 #include "llvm/Transforms/Scalar.h" 37 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 38 39 using namespace llvm; 40 using namespace PatternMatch; 41 42 #define DEBUG_TYPE "arm-parallel-dsp" 43 44 STATISTIC(NumSMLAD , "Number of smlad instructions generated"); 45 46 static cl::opt<bool> 47 DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false), 48 cl::desc("Disable the ARM Parallel DSP pass")); 49 50 static cl::opt<unsigned> 51 NumLoadLimit("arm-parallel-dsp-load-limit", cl::Hidden, cl::init(16), 52 cl::desc("Limit the number of loads analysed")); 53 54 namespace { 55 struct MulCandidate; 56 class Reduction; 57 58 using MulCandList = SmallVector<std::unique_ptr<MulCandidate>, 8>; 59 using MemInstList = SmallVectorImpl<LoadInst*>; 60 using MulPairList = SmallVector<std::pair<MulCandidate*, MulCandidate*>, 8>; 61 62 // 'MulCandidate' holds the multiplication instructions that are candidates 63 // for parallel execution. 64 struct MulCandidate { 65 Instruction *Root; 66 Value* LHS; 67 Value* RHS; 68 bool Exchange = false; 69 bool Paired = false; 70 SmallVector<LoadInst*, 2> VecLd; // Container for loads to widen. 71 72 MulCandidate(Instruction *I, Value *lhs, Value *rhs) : 73 Root(I), LHS(lhs), RHS(rhs) { } 74 75 bool HasTwoLoadInputs() const { 76 return isa<LoadInst>(LHS) && isa<LoadInst>(RHS); 77 } 78 79 LoadInst *getBaseLoad() const { 80 return VecLd.front(); 81 } 82 }; 83 84 /// Represent a sequence of multiply-accumulate operations with the aim to 85 /// perform the multiplications in parallel. 86 class Reduction { 87 Instruction *Root = nullptr; 88 Value *Acc = nullptr; 89 MulCandList Muls; 90 MulPairList MulPairs; 91 SetVector<Instruction*> Adds; 92 93 public: 94 Reduction() = delete; 95 96 Reduction (Instruction *Add) : Root(Add) { } 97 98 /// Record an Add instruction that is a part of the this reduction. 99 void InsertAdd(Instruction *I) { Adds.insert(I); } 100 101 /// Create MulCandidates, each rooted at a Mul instruction, that is a part 102 /// of this reduction. 103 void InsertMuls() { 104 auto GetMulOperand = [](Value *V) -> Instruction* { 105 if (auto *SExt = dyn_cast<SExtInst>(V)) { 106 if (auto *I = dyn_cast<Instruction>(SExt->getOperand(0))) 107 if (I->getOpcode() == Instruction::Mul) 108 return I; 109 } else if (auto *I = dyn_cast<Instruction>(V)) { 110 if (I->getOpcode() == Instruction::Mul) 111 return I; 112 } 113 return nullptr; 114 }; 115 116 auto InsertMul = [this](Instruction *I) { 117 Value *LHS = cast<Instruction>(I->getOperand(0))->getOperand(0); 118 Value *RHS = cast<Instruction>(I->getOperand(1))->getOperand(0); 119 Muls.push_back(std::make_unique<MulCandidate>(I, LHS, RHS)); 120 }; 121 122 for (auto *Add : Adds) { 123 if (Add == Acc) 124 continue; 125 if (auto *Mul = GetMulOperand(Add->getOperand(0))) 126 InsertMul(Mul); 127 if (auto *Mul = GetMulOperand(Add->getOperand(1))) 128 InsertMul(Mul); 129 } 130 } 131 132 /// Add the incoming accumulator value, returns true if a value had not 133 /// already been added. Returning false signals to the user that this 134 /// reduction already has a value to initialise the accumulator. 135 bool InsertAcc(Value *V) { 136 if (Acc) 137 return false; 138 Acc = V; 139 return true; 140 } 141 142 /// Set two MulCandidates, rooted at muls, that can be executed as a single 143 /// parallel operation. 144 void AddMulPair(MulCandidate *Mul0, MulCandidate *Mul1, 145 bool Exchange = false) { 146 LLVM_DEBUG(dbgs() << "Pairing:\n" 147 << *Mul0->Root << "\n" 148 << *Mul1->Root << "\n"); 149 Mul0->Paired = true; 150 Mul1->Paired = true; 151 if (Exchange) 152 Mul1->Exchange = true; 153 MulPairs.push_back(std::make_pair(Mul0, Mul1)); 154 } 155 156 /// Return the add instruction which is the root of the reduction. 157 Instruction *getRoot() { return Root; } 158 159 bool is64Bit() const { return Root->getType()->isIntegerTy(64); } 160 161 Type *getType() const { return Root->getType(); } 162 163 /// Return the incoming value to be accumulated. This maybe null. 164 Value *getAccumulator() { return Acc; } 165 166 /// Return the set of adds that comprise the reduction. 167 SetVector<Instruction*> &getAdds() { return Adds; } 168 169 /// Return the MulCandidate, rooted at mul instruction, that comprise the 170 /// the reduction. 171 MulCandList &getMuls() { return Muls; } 172 173 /// Return the MulCandidate, rooted at mul instructions, that have been 174 /// paired for parallel execution. 175 MulPairList &getMulPairs() { return MulPairs; } 176 177 /// To finalise, replace the uses of the root with the intrinsic call. 178 void UpdateRoot(Instruction *SMLAD) { 179 Root->replaceAllUsesWith(SMLAD); 180 } 181 182 void dump() { 183 LLVM_DEBUG(dbgs() << "Reduction:\n"; 184 for (auto *Add : Adds) 185 LLVM_DEBUG(dbgs() << *Add << "\n"); 186 for (auto &Mul : Muls) 187 LLVM_DEBUG(dbgs() << *Mul->Root << "\n" 188 << " " << *Mul->LHS << "\n" 189 << " " << *Mul->RHS << "\n"); 190 LLVM_DEBUG(if (Acc) dbgs() << "Acc in: " << *Acc << "\n") 191 ); 192 } 193 }; 194 195 class WidenedLoad { 196 LoadInst *NewLd = nullptr; 197 SmallVector<LoadInst*, 4> Loads; 198 199 public: 200 WidenedLoad(SmallVectorImpl<LoadInst*> &Lds, LoadInst *Wide) 201 : NewLd(Wide) { 202 append_range(Loads, Lds); 203 } 204 LoadInst *getLoad() { 205 return NewLd; 206 } 207 }; 208 209 class ARMParallelDSP : public FunctionPass { 210 ScalarEvolution *SE; 211 AliasAnalysis *AA; 212 TargetLibraryInfo *TLI; 213 DominatorTree *DT; 214 const DataLayout *DL; 215 Module *M; 216 std::map<LoadInst*, LoadInst*> LoadPairs; 217 SmallPtrSet<LoadInst*, 4> OffsetLoads; 218 std::map<LoadInst*, std::unique_ptr<WidenedLoad>> WideLoads; 219 220 template<unsigned> 221 bool IsNarrowSequence(Value *V); 222 bool Search(Value *V, BasicBlock *BB, Reduction &R); 223 bool RecordMemoryOps(BasicBlock *BB); 224 void InsertParallelMACs(Reduction &Reduction); 225 bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem); 226 LoadInst* CreateWideLoad(MemInstList &Loads, IntegerType *LoadTy); 227 bool CreateParallelPairs(Reduction &R); 228 229 /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate 230 /// Dual performs two signed 16x16-bit multiplications. It adds the 231 /// products to a 32-bit accumulate operand. Optionally, the instruction can 232 /// exchange the halfwords of the second operand before performing the 233 /// arithmetic. 234 bool MatchSMLAD(Function &F); 235 236 public: 237 static char ID; 238 239 ARMParallelDSP() : FunctionPass(ID) { } 240 241 void getAnalysisUsage(AnalysisUsage &AU) const override { 242 FunctionPass::getAnalysisUsage(AU); 243 AU.addRequired<AssumptionCacheTracker>(); 244 AU.addRequired<ScalarEvolutionWrapperPass>(); 245 AU.addRequired<AAResultsWrapperPass>(); 246 AU.addRequired<TargetLibraryInfoWrapperPass>(); 247 AU.addRequired<DominatorTreeWrapperPass>(); 248 AU.addRequired<TargetPassConfig>(); 249 AU.addPreserved<ScalarEvolutionWrapperPass>(); 250 AU.addPreserved<GlobalsAAWrapperPass>(); 251 AU.setPreservesCFG(); 252 } 253 254 bool runOnFunction(Function &F) override { 255 if (DisableParallelDSP) 256 return false; 257 if (skipFunction(F)) 258 return false; 259 260 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 261 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 262 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 263 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 264 auto &TPC = getAnalysis<TargetPassConfig>(); 265 266 M = F.getParent(); 267 DL = &M->getDataLayout(); 268 269 auto &TM = TPC.getTM<TargetMachine>(); 270 auto *ST = &TM.getSubtarget<ARMSubtarget>(F); 271 272 if (!ST->allowsUnalignedMem()) { 273 LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not " 274 "running pass ARMParallelDSP\n"); 275 return false; 276 } 277 278 if (!ST->hasDSP()) { 279 LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass " 280 "ARMParallelDSP\n"); 281 return false; 282 } 283 284 if (!ST->isLittle()) { 285 LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass " 286 << "ARMParallelDSP\n"); 287 return false; 288 } 289 290 LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n"); 291 LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n"); 292 293 bool Changes = MatchSMLAD(F); 294 return Changes; 295 } 296 }; 297 } 298 299 bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, 300 MemInstList &VecMem) { 301 if (!Ld0 || !Ld1) 302 return false; 303 304 if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1) 305 return false; 306 307 LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n"; 308 dbgs() << "Ld0:"; Ld0->dump(); 309 dbgs() << "Ld1:"; Ld1->dump(); 310 ); 311 312 VecMem.clear(); 313 VecMem.push_back(Ld0); 314 VecMem.push_back(Ld1); 315 return true; 316 } 317 318 // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP 319 // instructions, which is set to 16. So here we should collect all i8 and i16 320 // narrow operations. 321 // TODO: we currently only collect i16, and will support i8 later, so that's 322 // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth. 323 template<unsigned MaxBitWidth> 324 bool ARMParallelDSP::IsNarrowSequence(Value *V) { 325 if (auto *SExt = dyn_cast<SExtInst>(V)) { 326 if (SExt->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) 327 return false; 328 329 if (auto *Ld = dyn_cast<LoadInst>(SExt->getOperand(0))) { 330 // Check that this load could be paired. 331 return LoadPairs.count(Ld) || OffsetLoads.count(Ld); 332 } 333 } 334 return false; 335 } 336 337 /// Iterate through the block and record base, offset pairs of loads which can 338 /// be widened into a single load. 339 bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) { 340 SmallVector<LoadInst*, 8> Loads; 341 SmallVector<Instruction*, 8> Writes; 342 LoadPairs.clear(); 343 WideLoads.clear(); 344 345 // Collect loads and instruction that may write to memory. For now we only 346 // record loads which are simple, sign-extended and have a single user. 347 // TODO: Allow zero-extended loads. 348 for (auto &I : *BB) { 349 if (I.mayWriteToMemory()) 350 Writes.push_back(&I); 351 auto *Ld = dyn_cast<LoadInst>(&I); 352 if (!Ld || !Ld->isSimple() || 353 !Ld->hasOneUse() || !isa<SExtInst>(Ld->user_back())) 354 continue; 355 Loads.push_back(Ld); 356 } 357 358 if (Loads.empty() || Loads.size() > NumLoadLimit) 359 return false; 360 361 using InstSet = std::set<Instruction*>; 362 using DepMap = std::map<Instruction*, InstSet>; 363 DepMap RAWDeps; 364 365 // Record any writes that may alias a load. 366 const auto Size = LocationSize::beforeOrAfterPointer(); 367 for (auto *Write : Writes) { 368 for (auto *Read : Loads) { 369 MemoryLocation ReadLoc = 370 MemoryLocation(Read->getPointerOperand(), Size); 371 372 if (!isModOrRefSet(AA->getModRefInfo(Write, ReadLoc))) 373 continue; 374 if (Write->comesBefore(Read)) 375 RAWDeps[Read].insert(Write); 376 } 377 } 378 379 // Check whether there's not a write between the two loads which would 380 // prevent them from being safely merged. 381 auto SafeToPair = [&](LoadInst *Base, LoadInst *Offset) { 382 bool BaseFirst = Base->comesBefore(Offset); 383 LoadInst *Dominator = BaseFirst ? Base : Offset; 384 LoadInst *Dominated = BaseFirst ? Offset : Base; 385 386 if (RAWDeps.count(Dominated)) { 387 InstSet &WritesBefore = RAWDeps[Dominated]; 388 389 for (auto *Before : WritesBefore) { 390 // We can't move the second load backward, past a write, to merge 391 // with the first load. 392 if (Dominator->comesBefore(Before)) 393 return false; 394 } 395 } 396 return true; 397 }; 398 399 // Record base, offset load pairs. 400 for (auto *Base : Loads) { 401 for (auto *Offset : Loads) { 402 if (Base == Offset || OffsetLoads.count(Offset)) 403 continue; 404 405 if (isConsecutiveAccess(Base, Offset, *DL, *SE) && 406 SafeToPair(Base, Offset)) { 407 LoadPairs[Base] = Offset; 408 OffsetLoads.insert(Offset); 409 break; 410 } 411 } 412 } 413 414 LLVM_DEBUG(if (!LoadPairs.empty()) { 415 dbgs() << "Consecutive load pairs:\n"; 416 for (auto &MapIt : LoadPairs) { 417 LLVM_DEBUG(dbgs() << *MapIt.first << ", " 418 << *MapIt.second << "\n"); 419 } 420 }); 421 return LoadPairs.size() > 1; 422 } 423 424 // Search recursively back through the operands to find a tree of values that 425 // form a multiply-accumulate chain. The search records the Add and Mul 426 // instructions that form the reduction and allows us to find a single value 427 // to be used as the initial input to the accumlator. 428 bool ARMParallelDSP::Search(Value *V, BasicBlock *BB, Reduction &R) { 429 // If we find a non-instruction, try to use it as the initial accumulator 430 // value. This may have already been found during the search in which case 431 // this function will return false, signaling a search fail. 432 auto *I = dyn_cast<Instruction>(V); 433 if (!I) 434 return R.InsertAcc(V); 435 436 if (I->getParent() != BB) 437 return false; 438 439 switch (I->getOpcode()) { 440 default: 441 break; 442 case Instruction::PHI: 443 // Could be the accumulator value. 444 return R.InsertAcc(V); 445 case Instruction::Add: { 446 // Adds should be adding together two muls, or another add and a mul to 447 // be within the mac chain. One of the operands may also be the 448 // accumulator value at which point we should stop searching. 449 R.InsertAdd(I); 450 Value *LHS = I->getOperand(0); 451 Value *RHS = I->getOperand(1); 452 bool ValidLHS = Search(LHS, BB, R); 453 bool ValidRHS = Search(RHS, BB, R); 454 455 if (ValidLHS && ValidRHS) 456 return true; 457 458 // Ensure we don't add the root as the incoming accumulator. 459 if (R.getRoot() == I) 460 return false; 461 462 return R.InsertAcc(I); 463 } 464 case Instruction::Mul: { 465 Value *MulOp0 = I->getOperand(0); 466 Value *MulOp1 = I->getOperand(1); 467 return IsNarrowSequence<16>(MulOp0) && IsNarrowSequence<16>(MulOp1); 468 } 469 case Instruction::SExt: 470 return Search(I->getOperand(0), BB, R); 471 } 472 return false; 473 } 474 475 // The pass needs to identify integer add/sub reductions of 16-bit vector 476 // multiplications. 477 // To use SMLAD: 478 // 1) we first need to find integer add then look for this pattern: 479 // 480 // acc0 = ... 481 // ld0 = load i16 482 // sext0 = sext i16 %ld0 to i32 483 // ld1 = load i16 484 // sext1 = sext i16 %ld1 to i32 485 // mul0 = mul %sext0, %sext1 486 // ld2 = load i16 487 // sext2 = sext i16 %ld2 to i32 488 // ld3 = load i16 489 // sext3 = sext i16 %ld3 to i32 490 // mul1 = mul i32 %sext2, %sext3 491 // add0 = add i32 %mul0, %acc0 492 // acc1 = add i32 %add0, %mul1 493 // 494 // Which can be selected to: 495 // 496 // ldr r0 497 // ldr r1 498 // smlad r2, r0, r1, r2 499 // 500 // If constants are used instead of loads, these will need to be hoisted 501 // out and into a register. 502 // 503 // If loop invariants are used instead of loads, these need to be packed 504 // before the loop begins. 505 // 506 bool ARMParallelDSP::MatchSMLAD(Function &F) { 507 bool Changed = false; 508 509 for (auto &BB : F) { 510 SmallPtrSet<Instruction*, 4> AllAdds; 511 if (!RecordMemoryOps(&BB)) 512 continue; 513 514 for (Instruction &I : reverse(BB)) { 515 if (I.getOpcode() != Instruction::Add) 516 continue; 517 518 if (AllAdds.count(&I)) 519 continue; 520 521 const auto *Ty = I.getType(); 522 if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64)) 523 continue; 524 525 Reduction R(&I); 526 if (!Search(&I, &BB, R)) 527 continue; 528 529 R.InsertMuls(); 530 LLVM_DEBUG(dbgs() << "After search, Reduction:\n"; R.dump()); 531 532 if (!CreateParallelPairs(R)) 533 continue; 534 535 InsertParallelMACs(R); 536 Changed = true; 537 AllAdds.insert(R.getAdds().begin(), R.getAdds().end()); 538 LLVM_DEBUG(dbgs() << "BB after inserting parallel MACs:\n" << BB); 539 } 540 } 541 542 return Changed; 543 } 544 545 bool ARMParallelDSP::CreateParallelPairs(Reduction &R) { 546 547 // Not enough mul operations to make a pair. 548 if (R.getMuls().size() < 2) 549 return false; 550 551 // Check that the muls operate directly upon sign extended loads. 552 for (auto &MulCand : R.getMuls()) { 553 if (!MulCand->HasTwoLoadInputs()) 554 return false; 555 } 556 557 auto CanPair = [&](Reduction &R, MulCandidate *PMul0, MulCandidate *PMul1) { 558 // The first elements of each vector should be loads with sexts. If we 559 // find that its two pairs of consecutive loads, then these can be 560 // transformed into two wider loads and the users can be replaced with 561 // DSP intrinsics. 562 auto Ld0 = static_cast<LoadInst*>(PMul0->LHS); 563 auto Ld1 = static_cast<LoadInst*>(PMul1->LHS); 564 auto Ld2 = static_cast<LoadInst*>(PMul0->RHS); 565 auto Ld3 = static_cast<LoadInst*>(PMul1->RHS); 566 567 // Check that each mul is operating on two different loads. 568 if (Ld0 == Ld2 || Ld1 == Ld3) 569 return false; 570 571 if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) { 572 if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 573 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 574 R.AddMulPair(PMul0, PMul1); 575 return true; 576 } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) { 577 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 578 LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n"); 579 R.AddMulPair(PMul0, PMul1, true); 580 return true; 581 } 582 } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) && 583 AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 584 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 585 LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n"); 586 LLVM_DEBUG(dbgs() << " and swapping muls\n"); 587 // Only the second operand can be exchanged, so swap the muls. 588 R.AddMulPair(PMul1, PMul0, true); 589 return true; 590 } 591 return false; 592 }; 593 594 MulCandList &Muls = R.getMuls(); 595 const unsigned Elems = Muls.size(); 596 for (unsigned i = 0; i < Elems; ++i) { 597 MulCandidate *PMul0 = static_cast<MulCandidate*>(Muls[i].get()); 598 if (PMul0->Paired) 599 continue; 600 601 for (unsigned j = 0; j < Elems; ++j) { 602 if (i == j) 603 continue; 604 605 MulCandidate *PMul1 = static_cast<MulCandidate*>(Muls[j].get()); 606 if (PMul1->Paired) 607 continue; 608 609 const Instruction *Mul0 = PMul0->Root; 610 const Instruction *Mul1 = PMul1->Root; 611 if (Mul0 == Mul1) 612 continue; 613 614 assert(PMul0 != PMul1 && "expected different chains"); 615 616 if (CanPair(R, PMul0, PMul1)) 617 break; 618 } 619 } 620 return !R.getMulPairs().empty(); 621 } 622 623 void ARMParallelDSP::InsertParallelMACs(Reduction &R) { 624 625 auto CreateSMLAD = [&](LoadInst* WideLd0, LoadInst *WideLd1, 626 Value *Acc, bool Exchange, 627 Instruction *InsertAfter) { 628 // Replace the reduction chain with an intrinsic call 629 630 Value* Args[] = { WideLd0, WideLd1, Acc }; 631 Function *SMLAD = nullptr; 632 if (Exchange) 633 SMLAD = Acc->getType()->isIntegerTy(32) ? 634 Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) : 635 Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx); 636 else 637 SMLAD = Acc->getType()->isIntegerTy(32) ? 638 Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) : 639 Intrinsic::getDeclaration(M, Intrinsic::arm_smlald); 640 641 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 642 BasicBlock::iterator(InsertAfter)); 643 Instruction *Call = Builder.CreateCall(SMLAD, Args); 644 NumSMLAD++; 645 return Call; 646 }; 647 648 // Return the instruction after the dominated instruction. 649 auto GetInsertPoint = [this](Value *A, Value *B) { 650 assert((isa<Instruction>(A) || isa<Instruction>(B)) && 651 "expected at least one instruction"); 652 653 Value *V = nullptr; 654 if (!isa<Instruction>(A)) 655 V = B; 656 else if (!isa<Instruction>(B)) 657 V = A; 658 else 659 V = DT->dominates(cast<Instruction>(A), cast<Instruction>(B)) ? B : A; 660 661 return &*++BasicBlock::iterator(cast<Instruction>(V)); 662 }; 663 664 Value *Acc = R.getAccumulator(); 665 666 // For any muls that were discovered but not paired, accumulate their values 667 // as before. 668 IRBuilder<NoFolder> Builder(R.getRoot()->getParent()); 669 MulCandList &MulCands = R.getMuls(); 670 for (auto &MulCand : MulCands) { 671 if (MulCand->Paired) 672 continue; 673 674 Instruction *Mul = cast<Instruction>(MulCand->Root); 675 LLVM_DEBUG(dbgs() << "Accumulating unpaired mul: " << *Mul << "\n"); 676 677 if (R.getType() != Mul->getType()) { 678 assert(R.is64Bit() && "expected 64-bit result"); 679 Builder.SetInsertPoint(&*++BasicBlock::iterator(Mul)); 680 Mul = cast<Instruction>(Builder.CreateSExt(Mul, R.getRoot()->getType())); 681 } 682 683 if (!Acc) { 684 Acc = Mul; 685 continue; 686 } 687 688 // If Acc is the original incoming value to the reduction, it could be a 689 // phi. But the phi will dominate Mul, meaning that Mul will be the 690 // insertion point. 691 Builder.SetInsertPoint(GetInsertPoint(Mul, Acc)); 692 Acc = Builder.CreateAdd(Mul, Acc); 693 } 694 695 if (!Acc) { 696 Acc = R.is64Bit() ? 697 ConstantInt::get(IntegerType::get(M->getContext(), 64), 0) : 698 ConstantInt::get(IntegerType::get(M->getContext(), 32), 0); 699 } else if (Acc->getType() != R.getType()) { 700 Builder.SetInsertPoint(R.getRoot()); 701 Acc = Builder.CreateSExt(Acc, R.getType()); 702 } 703 704 // Roughly sort the mul pairs in their program order. 705 llvm::sort(R.getMulPairs(), [](auto &PairA, auto &PairB) { 706 const Instruction *A = PairA.first->Root; 707 const Instruction *B = PairB.first->Root; 708 return A->comesBefore(B); 709 }); 710 711 IntegerType *Ty = IntegerType::get(M->getContext(), 32); 712 for (auto &Pair : R.getMulPairs()) { 713 MulCandidate *LHSMul = Pair.first; 714 MulCandidate *RHSMul = Pair.second; 715 LoadInst *BaseLHS = LHSMul->getBaseLoad(); 716 LoadInst *BaseRHS = RHSMul->getBaseLoad(); 717 LoadInst *WideLHS = WideLoads.count(BaseLHS) ? 718 WideLoads[BaseLHS]->getLoad() : CreateWideLoad(LHSMul->VecLd, Ty); 719 LoadInst *WideRHS = WideLoads.count(BaseRHS) ? 720 WideLoads[BaseRHS]->getLoad() : CreateWideLoad(RHSMul->VecLd, Ty); 721 722 Instruction *InsertAfter = GetInsertPoint(WideLHS, WideRHS); 723 InsertAfter = GetInsertPoint(InsertAfter, Acc); 724 Acc = CreateSMLAD(WideLHS, WideRHS, Acc, RHSMul->Exchange, InsertAfter); 725 } 726 R.UpdateRoot(cast<Instruction>(Acc)); 727 } 728 729 LoadInst* ARMParallelDSP::CreateWideLoad(MemInstList &Loads, 730 IntegerType *LoadTy) { 731 assert(Loads.size() == 2 && "currently only support widening two loads"); 732 733 LoadInst *Base = Loads[0]; 734 LoadInst *Offset = Loads[1]; 735 736 Instruction *BaseSExt = dyn_cast<SExtInst>(Base->user_back()); 737 Instruction *OffsetSExt = dyn_cast<SExtInst>(Offset->user_back()); 738 739 assert((BaseSExt && OffsetSExt) 740 && "Loads should have a single, extending, user"); 741 742 std::function<void(Value*, Value*)> MoveBefore = 743 [&](Value *A, Value *B) -> void { 744 if (!isa<Instruction>(A) || !isa<Instruction>(B)) 745 return; 746 747 auto *Source = cast<Instruction>(A); 748 auto *Sink = cast<Instruction>(B); 749 750 if (DT->dominates(Source, Sink) || 751 Source->getParent() != Sink->getParent() || 752 isa<PHINode>(Source) || isa<PHINode>(Sink)) 753 return; 754 755 Source->moveBefore(Sink); 756 for (auto &Op : Source->operands()) 757 MoveBefore(Op, Source); 758 }; 759 760 // Insert the load at the point of the original dominating load. 761 LoadInst *DomLoad = DT->dominates(Base, Offset) ? Base : Offset; 762 IRBuilder<NoFolder> IRB(DomLoad->getParent(), 763 ++BasicBlock::iterator(DomLoad)); 764 765 // Create the wide load, while making sure to maintain the original alignment 766 // as this prevents ldrd from being generated when it could be illegal due to 767 // memory alignment. 768 Value *VecPtr = Base->getPointerOperand(); 769 LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr, Base->getAlign()); 770 771 // Make sure everything is in the correct order in the basic block. 772 MoveBefore(Base->getPointerOperand(), VecPtr); 773 MoveBefore(VecPtr, WideLoad); 774 775 // From the wide load, create two values that equal the original two loads. 776 // Loads[0] needs trunc while Loads[1] needs a lshr and trunc. 777 // TODO: Support big-endian as well. 778 Value *Bottom = IRB.CreateTrunc(WideLoad, Base->getType()); 779 Value *NewBaseSExt = IRB.CreateSExt(Bottom, BaseSExt->getType()); 780 BaseSExt->replaceAllUsesWith(NewBaseSExt); 781 782 IntegerType *OffsetTy = cast<IntegerType>(Offset->getType()); 783 Value *ShiftVal = ConstantInt::get(LoadTy, OffsetTy->getBitWidth()); 784 Value *Top = IRB.CreateLShr(WideLoad, ShiftVal); 785 Value *Trunc = IRB.CreateTrunc(Top, OffsetTy); 786 Value *NewOffsetSExt = IRB.CreateSExt(Trunc, OffsetSExt->getType()); 787 OffsetSExt->replaceAllUsesWith(NewOffsetSExt); 788 789 LLVM_DEBUG(dbgs() << "From Base and Offset:\n" 790 << *Base << "\n" << *Offset << "\n" 791 << "Created Wide Load:\n" 792 << *WideLoad << "\n" 793 << *Bottom << "\n" 794 << *NewBaseSExt << "\n" 795 << *Top << "\n" 796 << *Trunc << "\n" 797 << *NewOffsetSExt << "\n"); 798 WideLoads.emplace(std::make_pair(Base, 799 std::make_unique<WidenedLoad>(Loads, WideLoad))); 800 return WideLoad; 801 } 802 803 Pass *llvm::createARMParallelDSPPass() { 804 return new ARMParallelDSP(); 805 } 806 807 char ARMParallelDSP::ID = 0; 808 809 INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp", 810 "Transform functions to use DSP intrinsics", false, false) 811 INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp", 812 "Transform functions to use DSP intrinsics", false, false) 813