xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMParallelDSP.cpp (revision 25ecdc7d52770caf1c9b44b5ec11f468f6b636f3)
1 //===- ARMParallelDSP.cpp - Parallel DSP Pass -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Armv6 introduced instructions to perform 32-bit SIMD operations. The
11 /// purpose of this pass is do some IR pattern matching to create ACLE
12 /// DSP intrinsics, which map on these 32-bit SIMD operations.
13 /// This pass runs only when unaligned accesses is supported/enabled.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "ARM.h"
18 #include "ARMSubtarget.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/LoopAccessAnalysis.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/IntrinsicsARM.h"
28 #include "llvm/IR/NoFolder.h"
29 #include "llvm/IR/PatternMatch.h"
30 #include "llvm/Pass.h"
31 #include "llvm/PassRegistry.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Transforms/Scalar.h"
34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35 
36 using namespace llvm;
37 using namespace PatternMatch;
38 
39 #define DEBUG_TYPE "arm-parallel-dsp"
40 
41 STATISTIC(NumSMLAD , "Number of smlad instructions generated");
42 
43 static cl::opt<bool>
44 DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false),
45                    cl::desc("Disable the ARM Parallel DSP pass"));
46 
47 static cl::opt<unsigned>
48 NumLoadLimit("arm-parallel-dsp-load-limit", cl::Hidden, cl::init(16),
49              cl::desc("Limit the number of loads analysed"));
50 
51 namespace {
52   struct MulCandidate;
53   class Reduction;
54 
55   using MulCandList = SmallVector<std::unique_ptr<MulCandidate>, 8>;
56   using MemInstList = SmallVectorImpl<LoadInst*>;
57   using MulPairList = SmallVector<std::pair<MulCandidate*, MulCandidate*>, 8>;
58 
59   // 'MulCandidate' holds the multiplication instructions that are candidates
60   // for parallel execution.
61   struct MulCandidate {
62     Instruction   *Root;
63     Value*        LHS;
64     Value*        RHS;
65     bool          Exchange = false;
66     bool          ReadOnly = true;
67     bool          Paired = false;
68     SmallVector<LoadInst*, 2> VecLd;    // Container for loads to widen.
69 
70     MulCandidate(Instruction *I, Value *lhs, Value *rhs) :
71       Root(I), LHS(lhs), RHS(rhs) { }
72 
73     bool HasTwoLoadInputs() const {
74       return isa<LoadInst>(LHS) && isa<LoadInst>(RHS);
75     }
76 
77     LoadInst *getBaseLoad() const {
78       return VecLd.front();
79     }
80   };
81 
82   /// Represent a sequence of multiply-accumulate operations with the aim to
83   /// perform the multiplications in parallel.
84   class Reduction {
85     Instruction     *Root = nullptr;
86     Value           *Acc = nullptr;
87     MulCandList     Muls;
88     MulPairList        MulPairs;
89     SetVector<Instruction*> Adds;
90 
91   public:
92     Reduction() = delete;
93 
94     Reduction (Instruction *Add) : Root(Add) { }
95 
96     /// Record an Add instruction that is a part of the this reduction.
97     void InsertAdd(Instruction *I) { Adds.insert(I); }
98 
99     /// Create MulCandidates, each rooted at a Mul instruction, that is a part
100     /// of this reduction.
101     void InsertMuls() {
102       auto GetMulOperand = [](Value *V) -> Instruction* {
103         if (auto *SExt = dyn_cast<SExtInst>(V)) {
104           if (auto *I = dyn_cast<Instruction>(SExt->getOperand(0)))
105             if (I->getOpcode() == Instruction::Mul)
106               return I;
107         } else if (auto *I = dyn_cast<Instruction>(V)) {
108           if (I->getOpcode() == Instruction::Mul)
109             return I;
110         }
111         return nullptr;
112       };
113 
114       auto InsertMul = [this](Instruction *I) {
115         Value *LHS = cast<Instruction>(I->getOperand(0))->getOperand(0);
116         Value *RHS = cast<Instruction>(I->getOperand(1))->getOperand(0);
117         Muls.push_back(std::make_unique<MulCandidate>(I, LHS, RHS));
118       };
119 
120       for (auto *Add : Adds) {
121         if (Add == Acc)
122           continue;
123         if (auto *Mul = GetMulOperand(Add->getOperand(0)))
124           InsertMul(Mul);
125         if (auto *Mul = GetMulOperand(Add->getOperand(1)))
126           InsertMul(Mul);
127       }
128     }
129 
130     /// Add the incoming accumulator value, returns true if a value had not
131     /// already been added. Returning false signals to the user that this
132     /// reduction already has a value to initialise the accumulator.
133     bool InsertAcc(Value *V) {
134       if (Acc)
135         return false;
136       Acc = V;
137       return true;
138     }
139 
140     /// Set two MulCandidates, rooted at muls, that can be executed as a single
141     /// parallel operation.
142     void AddMulPair(MulCandidate *Mul0, MulCandidate *Mul1,
143                     bool Exchange = false) {
144       LLVM_DEBUG(dbgs() << "Pairing:\n"
145                  << *Mul0->Root << "\n"
146                  << *Mul1->Root << "\n");
147       Mul0->Paired = true;
148       Mul1->Paired = true;
149       if (Exchange)
150         Mul1->Exchange = true;
151       MulPairs.push_back(std::make_pair(Mul0, Mul1));
152     }
153 
154     /// Return true if enough mul operations are found that can be executed in
155     /// parallel.
156     bool CreateParallelPairs();
157 
158     /// Return the add instruction which is the root of the reduction.
159     Instruction *getRoot() { return Root; }
160 
161     bool is64Bit() const { return Root->getType()->isIntegerTy(64); }
162 
163     Type *getType() const { return Root->getType(); }
164 
165     /// Return the incoming value to be accumulated. This maybe null.
166     Value *getAccumulator() { return Acc; }
167 
168     /// Return the set of adds that comprise the reduction.
169     SetVector<Instruction*> &getAdds() { return Adds; }
170 
171     /// Return the MulCandidate, rooted at mul instruction, that comprise the
172     /// the reduction.
173     MulCandList &getMuls() { return Muls; }
174 
175     /// Return the MulCandidate, rooted at mul instructions, that have been
176     /// paired for parallel execution.
177     MulPairList &getMulPairs() { return MulPairs; }
178 
179     /// To finalise, replace the uses of the root with the intrinsic call.
180     void UpdateRoot(Instruction *SMLAD) {
181       Root->replaceAllUsesWith(SMLAD);
182     }
183 
184     void dump() {
185       LLVM_DEBUG(dbgs() << "Reduction:\n";
186         for (auto *Add : Adds)
187           LLVM_DEBUG(dbgs() << *Add << "\n");
188         for (auto &Mul : Muls)
189           LLVM_DEBUG(dbgs() << *Mul->Root << "\n"
190                      << "  " << *Mul->LHS << "\n"
191                      << "  " << *Mul->RHS << "\n");
192         LLVM_DEBUG(if (Acc) dbgs() << "Acc in: " << *Acc << "\n")
193       );
194     }
195   };
196 
197   class WidenedLoad {
198     LoadInst *NewLd = nullptr;
199     SmallVector<LoadInst*, 4> Loads;
200 
201   public:
202     WidenedLoad(SmallVectorImpl<LoadInst*> &Lds, LoadInst *Wide)
203       : NewLd(Wide) {
204       for (auto *I : Lds)
205         Loads.push_back(I);
206     }
207     LoadInst *getLoad() {
208       return NewLd;
209     }
210   };
211 
212   class ARMParallelDSP : public FunctionPass {
213     ScalarEvolution   *SE;
214     AliasAnalysis     *AA;
215     TargetLibraryInfo *TLI;
216     DominatorTree     *DT;
217     const DataLayout  *DL;
218     Module            *M;
219     std::map<LoadInst*, LoadInst*> LoadPairs;
220     SmallPtrSet<LoadInst*, 4> OffsetLoads;
221     std::map<LoadInst*, std::unique_ptr<WidenedLoad>> WideLoads;
222 
223     template<unsigned>
224     bool IsNarrowSequence(Value *V);
225     bool Search(Value *V, BasicBlock *BB, Reduction &R);
226     bool RecordMemoryOps(BasicBlock *BB);
227     void InsertParallelMACs(Reduction &Reduction);
228     bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem);
229     LoadInst* CreateWideLoad(MemInstList &Loads, IntegerType *LoadTy);
230     bool CreateParallelPairs(Reduction &R);
231 
232     /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate
233     /// Dual performs two signed 16x16-bit multiplications. It adds the
234     /// products to a 32-bit accumulate operand. Optionally, the instruction can
235     /// exchange the halfwords of the second operand before performing the
236     /// arithmetic.
237     bool MatchSMLAD(Function &F);
238 
239   public:
240     static char ID;
241 
242     ARMParallelDSP() : FunctionPass(ID) { }
243 
244     void getAnalysisUsage(AnalysisUsage &AU) const override {
245       FunctionPass::getAnalysisUsage(AU);
246       AU.addRequired<AssumptionCacheTracker>();
247       AU.addRequired<ScalarEvolutionWrapperPass>();
248       AU.addRequired<AAResultsWrapperPass>();
249       AU.addRequired<TargetLibraryInfoWrapperPass>();
250       AU.addRequired<DominatorTreeWrapperPass>();
251       AU.addRequired<TargetPassConfig>();
252       AU.addPreserved<ScalarEvolutionWrapperPass>();
253       AU.addPreserved<GlobalsAAWrapperPass>();
254       AU.setPreservesCFG();
255     }
256 
257     bool runOnFunction(Function &F) override {
258       if (DisableParallelDSP)
259         return false;
260       if (skipFunction(F))
261         return false;
262 
263       SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
264       AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
265       TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
266       DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
267       auto &TPC = getAnalysis<TargetPassConfig>();
268 
269       M = F.getParent();
270       DL = &M->getDataLayout();
271 
272       auto &TM = TPC.getTM<TargetMachine>();
273       auto *ST = &TM.getSubtarget<ARMSubtarget>(F);
274 
275       if (!ST->allowsUnalignedMem()) {
276         LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not "
277                              "running pass ARMParallelDSP\n");
278         return false;
279       }
280 
281       if (!ST->hasDSP()) {
282         LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass "
283                              "ARMParallelDSP\n");
284         return false;
285       }
286 
287       if (!ST->isLittle()) {
288         LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass "
289                           << "ARMParallelDSP\n");
290         return false;
291       }
292 
293       LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n");
294       LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n");
295 
296       bool Changes = MatchSMLAD(F);
297       return Changes;
298     }
299   };
300 }
301 
302 template<typename MemInst>
303 static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1,
304                                   const DataLayout &DL, ScalarEvolution &SE) {
305   if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE))
306     return true;
307   return false;
308 }
309 
310 bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1,
311                                         MemInstList &VecMem) {
312   if (!Ld0 || !Ld1)
313     return false;
314 
315   if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1)
316     return false;
317 
318   LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n";
319     dbgs() << "Ld0:"; Ld0->dump();
320     dbgs() << "Ld1:"; Ld1->dump();
321   );
322 
323   VecMem.clear();
324   VecMem.push_back(Ld0);
325   VecMem.push_back(Ld1);
326   return true;
327 }
328 
329 // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP
330 // instructions, which is set to 16. So here we should collect all i8 and i16
331 // narrow operations.
332 // TODO: we currently only collect i16, and will support i8 later, so that's
333 // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth.
334 template<unsigned MaxBitWidth>
335 bool ARMParallelDSP::IsNarrowSequence(Value *V) {
336   if (auto *SExt = dyn_cast<SExtInst>(V)) {
337     if (SExt->getSrcTy()->getIntegerBitWidth() != MaxBitWidth)
338       return false;
339 
340     if (auto *Ld = dyn_cast<LoadInst>(SExt->getOperand(0))) {
341       // Check that this load could be paired.
342       return LoadPairs.count(Ld) || OffsetLoads.count(Ld);
343     }
344   }
345   return false;
346 }
347 
348 /// Iterate through the block and record base, offset pairs of loads which can
349 /// be widened into a single load.
350 bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) {
351   SmallVector<LoadInst*, 8> Loads;
352   SmallVector<Instruction*, 8> Writes;
353   LoadPairs.clear();
354   WideLoads.clear();
355 
356   // Collect loads and instruction that may write to memory. For now we only
357   // record loads which are simple, sign-extended and have a single user.
358   // TODO: Allow zero-extended loads.
359   for (auto &I : *BB) {
360     if (I.mayWriteToMemory())
361       Writes.push_back(&I);
362     auto *Ld = dyn_cast<LoadInst>(&I);
363     if (!Ld || !Ld->isSimple() ||
364         !Ld->hasOneUse() || !isa<SExtInst>(Ld->user_back()))
365       continue;
366     Loads.push_back(Ld);
367   }
368 
369   if (Loads.empty() || Loads.size() > NumLoadLimit)
370     return false;
371 
372   using InstSet = std::set<Instruction*>;
373   using DepMap = std::map<Instruction*, InstSet>;
374   DepMap RAWDeps;
375 
376   // Record any writes that may alias a load.
377   const auto Size = LocationSize::unknown();
378   for (auto Write : Writes) {
379     for (auto Read : Loads) {
380       MemoryLocation ReadLoc =
381         MemoryLocation(Read->getPointerOperand(), Size);
382 
383       if (!isModOrRefSet(intersectModRef(AA->getModRefInfo(Write, ReadLoc),
384           ModRefInfo::ModRef)))
385         continue;
386       if (Write->comesBefore(Read))
387         RAWDeps[Read].insert(Write);
388     }
389   }
390 
391   // Check whether there's not a write between the two loads which would
392   // prevent them from being safely merged.
393   auto SafeToPair = [&](LoadInst *Base, LoadInst *Offset) {
394     bool BaseFirst = Base->comesBefore(Offset);
395     LoadInst *Dominator = BaseFirst ? Base : Offset;
396     LoadInst *Dominated = BaseFirst ? Offset : Base;
397 
398     if (RAWDeps.count(Dominated)) {
399       InstSet &WritesBefore = RAWDeps[Dominated];
400 
401       for (auto Before : WritesBefore) {
402         // We can't move the second load backward, past a write, to merge
403         // with the first load.
404         if (Dominator->comesBefore(Before))
405           return false;
406       }
407     }
408     return true;
409   };
410 
411   // Record base, offset load pairs.
412   for (auto *Base : Loads) {
413     for (auto *Offset : Loads) {
414       if (Base == Offset || OffsetLoads.count(Offset))
415         continue;
416 
417       if (AreSequentialAccesses<LoadInst>(Base, Offset, *DL, *SE) &&
418           SafeToPair(Base, Offset)) {
419         LoadPairs[Base] = Offset;
420         OffsetLoads.insert(Offset);
421         break;
422       }
423     }
424   }
425 
426   LLVM_DEBUG(if (!LoadPairs.empty()) {
427                dbgs() << "Consecutive load pairs:\n";
428                for (auto &MapIt : LoadPairs) {
429                  LLVM_DEBUG(dbgs() << *MapIt.first << ", "
430                             << *MapIt.second << "\n");
431                }
432              });
433   return LoadPairs.size() > 1;
434 }
435 
436 // Search recursively back through the operands to find a tree of values that
437 // form a multiply-accumulate chain. The search records the Add and Mul
438 // instructions that form the reduction and allows us to find a single value
439 // to be used as the initial input to the accumlator.
440 bool ARMParallelDSP::Search(Value *V, BasicBlock *BB, Reduction &R) {
441   // If we find a non-instruction, try to use it as the initial accumulator
442   // value. This may have already been found during the search in which case
443   // this function will return false, signaling a search fail.
444   auto *I = dyn_cast<Instruction>(V);
445   if (!I)
446     return R.InsertAcc(V);
447 
448   if (I->getParent() != BB)
449     return false;
450 
451   switch (I->getOpcode()) {
452   default:
453     break;
454   case Instruction::PHI:
455     // Could be the accumulator value.
456     return R.InsertAcc(V);
457   case Instruction::Add: {
458     // Adds should be adding together two muls, or another add and a mul to
459     // be within the mac chain. One of the operands may also be the
460     // accumulator value at which point we should stop searching.
461     R.InsertAdd(I);
462     Value *LHS = I->getOperand(0);
463     Value *RHS = I->getOperand(1);
464     bool ValidLHS = Search(LHS, BB, R);
465     bool ValidRHS = Search(RHS, BB, R);
466 
467     if (ValidLHS && ValidRHS)
468       return true;
469 
470     return R.InsertAcc(I);
471   }
472   case Instruction::Mul: {
473     Value *MulOp0 = I->getOperand(0);
474     Value *MulOp1 = I->getOperand(1);
475     return IsNarrowSequence<16>(MulOp0) && IsNarrowSequence<16>(MulOp1);
476   }
477   case Instruction::SExt:
478     return Search(I->getOperand(0), BB, R);
479   }
480   return false;
481 }
482 
483 // The pass needs to identify integer add/sub reductions of 16-bit vector
484 // multiplications.
485 // To use SMLAD:
486 // 1) we first need to find integer add then look for this pattern:
487 //
488 // acc0 = ...
489 // ld0 = load i16
490 // sext0 = sext i16 %ld0 to i32
491 // ld1 = load i16
492 // sext1 = sext i16 %ld1 to i32
493 // mul0 = mul %sext0, %sext1
494 // ld2 = load i16
495 // sext2 = sext i16 %ld2 to i32
496 // ld3 = load i16
497 // sext3 = sext i16 %ld3 to i32
498 // mul1 = mul i32 %sext2, %sext3
499 // add0 = add i32 %mul0, %acc0
500 // acc1 = add i32 %add0, %mul1
501 //
502 // Which can be selected to:
503 //
504 // ldr r0
505 // ldr r1
506 // smlad r2, r0, r1, r2
507 //
508 // If constants are used instead of loads, these will need to be hoisted
509 // out and into a register.
510 //
511 // If loop invariants are used instead of loads, these need to be packed
512 // before the loop begins.
513 //
514 bool ARMParallelDSP::MatchSMLAD(Function &F) {
515   bool Changed = false;
516 
517   for (auto &BB : F) {
518     SmallPtrSet<Instruction*, 4> AllAdds;
519     if (!RecordMemoryOps(&BB))
520       continue;
521 
522     for (Instruction &I : reverse(BB)) {
523       if (I.getOpcode() != Instruction::Add)
524         continue;
525 
526       if (AllAdds.count(&I))
527         continue;
528 
529       const auto *Ty = I.getType();
530       if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64))
531         continue;
532 
533       Reduction R(&I);
534       if (!Search(&I, &BB, R))
535         continue;
536 
537       R.InsertMuls();
538       LLVM_DEBUG(dbgs() << "After search, Reduction:\n"; R.dump());
539 
540       if (!CreateParallelPairs(R))
541         continue;
542 
543       InsertParallelMACs(R);
544       Changed = true;
545       AllAdds.insert(R.getAdds().begin(), R.getAdds().end());
546     }
547   }
548 
549   return Changed;
550 }
551 
552 bool ARMParallelDSP::CreateParallelPairs(Reduction &R) {
553 
554   // Not enough mul operations to make a pair.
555   if (R.getMuls().size() < 2)
556     return false;
557 
558   // Check that the muls operate directly upon sign extended loads.
559   for (auto &MulCand : R.getMuls()) {
560     if (!MulCand->HasTwoLoadInputs())
561       return false;
562   }
563 
564   auto CanPair = [&](Reduction &R, MulCandidate *PMul0, MulCandidate *PMul1) {
565     // The first elements of each vector should be loads with sexts. If we
566     // find that its two pairs of consecutive loads, then these can be
567     // transformed into two wider loads and the users can be replaced with
568     // DSP intrinsics.
569     auto Ld0 = static_cast<LoadInst*>(PMul0->LHS);
570     auto Ld1 = static_cast<LoadInst*>(PMul1->LHS);
571     auto Ld2 = static_cast<LoadInst*>(PMul0->RHS);
572     auto Ld3 = static_cast<LoadInst*>(PMul1->RHS);
573 
574     // Check that each mul is operating on two different loads.
575     if (Ld0 == Ld2 || Ld1 == Ld3)
576       return false;
577 
578     if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) {
579       if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
580         LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
581         R.AddMulPair(PMul0, PMul1);
582         return true;
583       } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) {
584         LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
585         LLVM_DEBUG(dbgs() << "    exchanging Ld2 and Ld3\n");
586         R.AddMulPair(PMul0, PMul1, true);
587         return true;
588       }
589     } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) &&
590                AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
591       LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
592       LLVM_DEBUG(dbgs() << "    exchanging Ld0 and Ld1\n");
593       LLVM_DEBUG(dbgs() << "    and swapping muls\n");
594       // Only the second operand can be exchanged, so swap the muls.
595       R.AddMulPair(PMul1, PMul0, true);
596       return true;
597     }
598     return false;
599   };
600 
601   MulCandList &Muls = R.getMuls();
602   const unsigned Elems = Muls.size();
603   for (unsigned i = 0; i < Elems; ++i) {
604     MulCandidate *PMul0 = static_cast<MulCandidate*>(Muls[i].get());
605     if (PMul0->Paired)
606       continue;
607 
608     for (unsigned j = 0; j < Elems; ++j) {
609       if (i == j)
610         continue;
611 
612       MulCandidate *PMul1 = static_cast<MulCandidate*>(Muls[j].get());
613       if (PMul1->Paired)
614         continue;
615 
616       const Instruction *Mul0 = PMul0->Root;
617       const Instruction *Mul1 = PMul1->Root;
618       if (Mul0 == Mul1)
619         continue;
620 
621       assert(PMul0 != PMul1 && "expected different chains");
622 
623       if (CanPair(R, PMul0, PMul1))
624         break;
625     }
626   }
627   return !R.getMulPairs().empty();
628 }
629 
630 void ARMParallelDSP::InsertParallelMACs(Reduction &R) {
631 
632   auto CreateSMLAD = [&](LoadInst* WideLd0, LoadInst *WideLd1,
633                          Value *Acc, bool Exchange,
634                          Instruction *InsertAfter) {
635     // Replace the reduction chain with an intrinsic call
636 
637     Value* Args[] = { WideLd0, WideLd1, Acc };
638     Function *SMLAD = nullptr;
639     if (Exchange)
640       SMLAD = Acc->getType()->isIntegerTy(32) ?
641         Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) :
642         Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx);
643     else
644       SMLAD = Acc->getType()->isIntegerTy(32) ?
645         Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) :
646         Intrinsic::getDeclaration(M, Intrinsic::arm_smlald);
647 
648     IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
649                                 BasicBlock::iterator(InsertAfter));
650     Instruction *Call = Builder.CreateCall(SMLAD, Args);
651     NumSMLAD++;
652     return Call;
653   };
654 
655   // Return the instruction after the dominated instruction.
656   auto GetInsertPoint = [this](Value *A, Value *B) {
657     assert((isa<Instruction>(A) || isa<Instruction>(B)) &&
658            "expected at least one instruction");
659 
660     Value *V = nullptr;
661     if (!isa<Instruction>(A))
662       V = B;
663     else if (!isa<Instruction>(B))
664       V = A;
665     else
666       V = DT->dominates(cast<Instruction>(A), cast<Instruction>(B)) ? B : A;
667 
668     return &*++BasicBlock::iterator(cast<Instruction>(V));
669   };
670 
671   Value *Acc = R.getAccumulator();
672 
673   // For any muls that were discovered but not paired, accumulate their values
674   // as before.
675   IRBuilder<NoFolder> Builder(R.getRoot()->getParent());
676   MulCandList &MulCands = R.getMuls();
677   for (auto &MulCand : MulCands) {
678     if (MulCand->Paired)
679       continue;
680 
681     Instruction *Mul = cast<Instruction>(MulCand->Root);
682     LLVM_DEBUG(dbgs() << "Accumulating unpaired mul: " << *Mul << "\n");
683 
684     if (R.getType() != Mul->getType()) {
685       assert(R.is64Bit() && "expected 64-bit result");
686       Builder.SetInsertPoint(&*++BasicBlock::iterator(Mul));
687       Mul = cast<Instruction>(Builder.CreateSExt(Mul, R.getRoot()->getType()));
688     }
689 
690     if (!Acc) {
691       Acc = Mul;
692       continue;
693     }
694 
695     // If Acc is the original incoming value to the reduction, it could be a
696     // phi. But the phi will dominate Mul, meaning that Mul will be the
697     // insertion point.
698     Builder.SetInsertPoint(GetInsertPoint(Mul, Acc));
699     Acc = Builder.CreateAdd(Mul, Acc);
700   }
701 
702   if (!Acc) {
703     Acc = R.is64Bit() ?
704       ConstantInt::get(IntegerType::get(M->getContext(), 64), 0) :
705       ConstantInt::get(IntegerType::get(M->getContext(), 32), 0);
706   } else if (Acc->getType() != R.getType()) {
707     Builder.SetInsertPoint(R.getRoot());
708     Acc = Builder.CreateSExt(Acc, R.getType());
709   }
710 
711   // Roughly sort the mul pairs in their program order.
712   llvm::sort(R.getMulPairs(), [](auto &PairA, auto &PairB) {
713     const Instruction *A = PairA.first->Root;
714     const Instruction *B = PairB.first->Root;
715     return A->comesBefore(B);
716   });
717 
718   IntegerType *Ty = IntegerType::get(M->getContext(), 32);
719   for (auto &Pair : R.getMulPairs()) {
720     MulCandidate *LHSMul = Pair.first;
721     MulCandidate *RHSMul = Pair.second;
722     LoadInst *BaseLHS = LHSMul->getBaseLoad();
723     LoadInst *BaseRHS = RHSMul->getBaseLoad();
724     LoadInst *WideLHS = WideLoads.count(BaseLHS) ?
725       WideLoads[BaseLHS]->getLoad() : CreateWideLoad(LHSMul->VecLd, Ty);
726     LoadInst *WideRHS = WideLoads.count(BaseRHS) ?
727       WideLoads[BaseRHS]->getLoad() : CreateWideLoad(RHSMul->VecLd, Ty);
728 
729     Instruction *InsertAfter = GetInsertPoint(WideLHS, WideRHS);
730     InsertAfter = GetInsertPoint(InsertAfter, Acc);
731     Acc = CreateSMLAD(WideLHS, WideRHS, Acc, RHSMul->Exchange, InsertAfter);
732   }
733   R.UpdateRoot(cast<Instruction>(Acc));
734 }
735 
736 LoadInst* ARMParallelDSP::CreateWideLoad(MemInstList &Loads,
737                                          IntegerType *LoadTy) {
738   assert(Loads.size() == 2 && "currently only support widening two loads");
739 
740   LoadInst *Base = Loads[0];
741   LoadInst *Offset = Loads[1];
742 
743   Instruction *BaseSExt = dyn_cast<SExtInst>(Base->user_back());
744   Instruction *OffsetSExt = dyn_cast<SExtInst>(Offset->user_back());
745 
746   assert((BaseSExt && OffsetSExt)
747          && "Loads should have a single, extending, user");
748 
749   std::function<void(Value*, Value*)> MoveBefore =
750     [&](Value *A, Value *B) -> void {
751       if (!isa<Instruction>(A) || !isa<Instruction>(B))
752         return;
753 
754       auto *Source = cast<Instruction>(A);
755       auto *Sink = cast<Instruction>(B);
756 
757       if (DT->dominates(Source, Sink) ||
758           Source->getParent() != Sink->getParent() ||
759           isa<PHINode>(Source) || isa<PHINode>(Sink))
760         return;
761 
762       Source->moveBefore(Sink);
763       for (auto &Op : Source->operands())
764         MoveBefore(Op, Source);
765     };
766 
767   // Insert the load at the point of the original dominating load.
768   LoadInst *DomLoad = DT->dominates(Base, Offset) ? Base : Offset;
769   IRBuilder<NoFolder> IRB(DomLoad->getParent(),
770                           ++BasicBlock::iterator(DomLoad));
771 
772   // Bitcast the pointer to a wider type and create the wide load, while making
773   // sure to maintain the original alignment as this prevents ldrd from being
774   // generated when it could be illegal due to memory alignment.
775   const unsigned AddrSpace = DomLoad->getPointerAddressSpace();
776   Value *VecPtr = IRB.CreateBitCast(Base->getPointerOperand(),
777                                     LoadTy->getPointerTo(AddrSpace));
778   LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr, Base->getAlign());
779 
780   // Make sure everything is in the correct order in the basic block.
781   MoveBefore(Base->getPointerOperand(), VecPtr);
782   MoveBefore(VecPtr, WideLoad);
783 
784   // From the wide load, create two values that equal the original two loads.
785   // Loads[0] needs trunc while Loads[1] needs a lshr and trunc.
786   // TODO: Support big-endian as well.
787   Value *Bottom = IRB.CreateTrunc(WideLoad, Base->getType());
788   Value *NewBaseSExt = IRB.CreateSExt(Bottom, BaseSExt->getType());
789   BaseSExt->replaceAllUsesWith(NewBaseSExt);
790 
791   IntegerType *OffsetTy = cast<IntegerType>(Offset->getType());
792   Value *ShiftVal = ConstantInt::get(LoadTy, OffsetTy->getBitWidth());
793   Value *Top = IRB.CreateLShr(WideLoad, ShiftVal);
794   Value *Trunc = IRB.CreateTrunc(Top, OffsetTy);
795   Value *NewOffsetSExt = IRB.CreateSExt(Trunc, OffsetSExt->getType());
796   OffsetSExt->replaceAllUsesWith(NewOffsetSExt);
797 
798   LLVM_DEBUG(dbgs() << "From Base and Offset:\n"
799              << *Base << "\n" << *Offset << "\n"
800              << "Created Wide Load:\n"
801              << *WideLoad << "\n"
802              << *Bottom << "\n"
803              << *NewBaseSExt << "\n"
804              << *Top << "\n"
805              << *Trunc << "\n"
806              << *NewOffsetSExt << "\n");
807   WideLoads.emplace(std::make_pair(Base,
808                                    std::make_unique<WidenedLoad>(Loads, WideLoad)));
809   return WideLoad;
810 }
811 
812 Pass *llvm::createARMParallelDSPPass() {
813   return new ARMParallelDSP();
814 }
815 
816 char ARMParallelDSP::ID = 0;
817 
818 INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp",
819                 "Transform functions to use DSP intrinsics", false, false)
820 INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp",
821                 "Transform functions to use DSP intrinsics", false, false)
822