1 //===- ARMParallelDSP.cpp - Parallel DSP Pass -----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// Armv6 introduced instructions to perform 32-bit SIMD operations. The 11 /// purpose of this pass is do some IR pattern matching to create ACLE 12 /// DSP intrinsics, which map on these 32-bit SIMD operations. 13 /// This pass runs only when unaligned accesses is supported/enabled. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "ARM.h" 18 #include "ARMSubtarget.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/LoopAccessAnalysis.h" 25 #include "llvm/Analysis/TargetLibraryInfo.h" 26 #include "llvm/CodeGen/TargetPassConfig.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/IntrinsicsARM.h" 29 #include "llvm/IR/NoFolder.h" 30 #include "llvm/IR/PatternMatch.h" 31 #include "llvm/Pass.h" 32 #include "llvm/PassRegistry.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Transforms/Scalar.h" 35 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 36 37 using namespace llvm; 38 using namespace PatternMatch; 39 40 #define DEBUG_TYPE "arm-parallel-dsp" 41 42 STATISTIC(NumSMLAD , "Number of smlad instructions generated"); 43 44 static cl::opt<bool> 45 DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false), 46 cl::desc("Disable the ARM Parallel DSP pass")); 47 48 static cl::opt<unsigned> 49 NumLoadLimit("arm-parallel-dsp-load-limit", cl::Hidden, cl::init(16), 50 cl::desc("Limit the number of loads analysed")); 51 52 namespace { 53 struct MulCandidate; 54 class Reduction; 55 56 using MulCandList = SmallVector<std::unique_ptr<MulCandidate>, 8>; 57 using MemInstList = SmallVectorImpl<LoadInst*>; 58 using MulPairList = SmallVector<std::pair<MulCandidate*, MulCandidate*>, 8>; 59 60 // 'MulCandidate' holds the multiplication instructions that are candidates 61 // for parallel execution. 62 struct MulCandidate { 63 Instruction *Root; 64 Value* LHS; 65 Value* RHS; 66 bool Exchange = false; 67 bool ReadOnly = true; 68 bool Paired = false; 69 SmallVector<LoadInst*, 2> VecLd; // Container for loads to widen. 70 71 MulCandidate(Instruction *I, Value *lhs, Value *rhs) : 72 Root(I), LHS(lhs), RHS(rhs) { } 73 74 bool HasTwoLoadInputs() const { 75 return isa<LoadInst>(LHS) && isa<LoadInst>(RHS); 76 } 77 78 LoadInst *getBaseLoad() const { 79 return VecLd.front(); 80 } 81 }; 82 83 /// Represent a sequence of multiply-accumulate operations with the aim to 84 /// perform the multiplications in parallel. 85 class Reduction { 86 Instruction *Root = nullptr; 87 Value *Acc = nullptr; 88 MulCandList Muls; 89 MulPairList MulPairs; 90 SetVector<Instruction*> Adds; 91 92 public: 93 Reduction() = delete; 94 95 Reduction (Instruction *Add) : Root(Add) { } 96 97 /// Record an Add instruction that is a part of the this reduction. 98 void InsertAdd(Instruction *I) { Adds.insert(I); } 99 100 /// Create MulCandidates, each rooted at a Mul instruction, that is a part 101 /// of this reduction. 102 void InsertMuls() { 103 auto GetMulOperand = [](Value *V) -> Instruction* { 104 if (auto *SExt = dyn_cast<SExtInst>(V)) { 105 if (auto *I = dyn_cast<Instruction>(SExt->getOperand(0))) 106 if (I->getOpcode() == Instruction::Mul) 107 return I; 108 } else if (auto *I = dyn_cast<Instruction>(V)) { 109 if (I->getOpcode() == Instruction::Mul) 110 return I; 111 } 112 return nullptr; 113 }; 114 115 auto InsertMul = [this](Instruction *I) { 116 Value *LHS = cast<Instruction>(I->getOperand(0))->getOperand(0); 117 Value *RHS = cast<Instruction>(I->getOperand(1))->getOperand(0); 118 Muls.push_back(std::make_unique<MulCandidate>(I, LHS, RHS)); 119 }; 120 121 for (auto *Add : Adds) { 122 if (Add == Acc) 123 continue; 124 if (auto *Mul = GetMulOperand(Add->getOperand(0))) 125 InsertMul(Mul); 126 if (auto *Mul = GetMulOperand(Add->getOperand(1))) 127 InsertMul(Mul); 128 } 129 } 130 131 /// Add the incoming accumulator value, returns true if a value had not 132 /// already been added. Returning false signals to the user that this 133 /// reduction already has a value to initialise the accumulator. 134 bool InsertAcc(Value *V) { 135 if (Acc) 136 return false; 137 Acc = V; 138 return true; 139 } 140 141 /// Set two MulCandidates, rooted at muls, that can be executed as a single 142 /// parallel operation. 143 void AddMulPair(MulCandidate *Mul0, MulCandidate *Mul1, 144 bool Exchange = false) { 145 LLVM_DEBUG(dbgs() << "Pairing:\n" 146 << *Mul0->Root << "\n" 147 << *Mul1->Root << "\n"); 148 Mul0->Paired = true; 149 Mul1->Paired = true; 150 if (Exchange) 151 Mul1->Exchange = true; 152 MulPairs.push_back(std::make_pair(Mul0, Mul1)); 153 } 154 155 /// Return true if enough mul operations are found that can be executed in 156 /// parallel. 157 bool CreateParallelPairs(); 158 159 /// Return the add instruction which is the root of the reduction. 160 Instruction *getRoot() { return Root; } 161 162 bool is64Bit() const { return Root->getType()->isIntegerTy(64); } 163 164 Type *getType() const { return Root->getType(); } 165 166 /// Return the incoming value to be accumulated. This maybe null. 167 Value *getAccumulator() { return Acc; } 168 169 /// Return the set of adds that comprise the reduction. 170 SetVector<Instruction*> &getAdds() { return Adds; } 171 172 /// Return the MulCandidate, rooted at mul instruction, that comprise the 173 /// the reduction. 174 MulCandList &getMuls() { return Muls; } 175 176 /// Return the MulCandidate, rooted at mul instructions, that have been 177 /// paired for parallel execution. 178 MulPairList &getMulPairs() { return MulPairs; } 179 180 /// To finalise, replace the uses of the root with the intrinsic call. 181 void UpdateRoot(Instruction *SMLAD) { 182 Root->replaceAllUsesWith(SMLAD); 183 } 184 185 void dump() { 186 LLVM_DEBUG(dbgs() << "Reduction:\n"; 187 for (auto *Add : Adds) 188 LLVM_DEBUG(dbgs() << *Add << "\n"); 189 for (auto &Mul : Muls) 190 LLVM_DEBUG(dbgs() << *Mul->Root << "\n" 191 << " " << *Mul->LHS << "\n" 192 << " " << *Mul->RHS << "\n"); 193 LLVM_DEBUG(if (Acc) dbgs() << "Acc in: " << *Acc << "\n") 194 ); 195 } 196 }; 197 198 class WidenedLoad { 199 LoadInst *NewLd = nullptr; 200 SmallVector<LoadInst*, 4> Loads; 201 202 public: 203 WidenedLoad(SmallVectorImpl<LoadInst*> &Lds, LoadInst *Wide) 204 : NewLd(Wide) { 205 append_range(Loads, Lds); 206 } 207 LoadInst *getLoad() { 208 return NewLd; 209 } 210 }; 211 212 class ARMParallelDSP : public FunctionPass { 213 ScalarEvolution *SE; 214 AliasAnalysis *AA; 215 TargetLibraryInfo *TLI; 216 DominatorTree *DT; 217 const DataLayout *DL; 218 Module *M; 219 std::map<LoadInst*, LoadInst*> LoadPairs; 220 SmallPtrSet<LoadInst*, 4> OffsetLoads; 221 std::map<LoadInst*, std::unique_ptr<WidenedLoad>> WideLoads; 222 223 template<unsigned> 224 bool IsNarrowSequence(Value *V); 225 bool Search(Value *V, BasicBlock *BB, Reduction &R); 226 bool RecordMemoryOps(BasicBlock *BB); 227 void InsertParallelMACs(Reduction &Reduction); 228 bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem); 229 LoadInst* CreateWideLoad(MemInstList &Loads, IntegerType *LoadTy); 230 bool CreateParallelPairs(Reduction &R); 231 232 /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate 233 /// Dual performs two signed 16x16-bit multiplications. It adds the 234 /// products to a 32-bit accumulate operand. Optionally, the instruction can 235 /// exchange the halfwords of the second operand before performing the 236 /// arithmetic. 237 bool MatchSMLAD(Function &F); 238 239 public: 240 static char ID; 241 242 ARMParallelDSP() : FunctionPass(ID) { } 243 244 void getAnalysisUsage(AnalysisUsage &AU) const override { 245 FunctionPass::getAnalysisUsage(AU); 246 AU.addRequired<AssumptionCacheTracker>(); 247 AU.addRequired<ScalarEvolutionWrapperPass>(); 248 AU.addRequired<AAResultsWrapperPass>(); 249 AU.addRequired<TargetLibraryInfoWrapperPass>(); 250 AU.addRequired<DominatorTreeWrapperPass>(); 251 AU.addRequired<TargetPassConfig>(); 252 AU.addPreserved<ScalarEvolutionWrapperPass>(); 253 AU.addPreserved<GlobalsAAWrapperPass>(); 254 AU.setPreservesCFG(); 255 } 256 257 bool runOnFunction(Function &F) override { 258 if (DisableParallelDSP) 259 return false; 260 if (skipFunction(F)) 261 return false; 262 263 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 264 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 265 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 266 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 267 auto &TPC = getAnalysis<TargetPassConfig>(); 268 269 M = F.getParent(); 270 DL = &M->getDataLayout(); 271 272 auto &TM = TPC.getTM<TargetMachine>(); 273 auto *ST = &TM.getSubtarget<ARMSubtarget>(F); 274 275 if (!ST->allowsUnalignedMem()) { 276 LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not " 277 "running pass ARMParallelDSP\n"); 278 return false; 279 } 280 281 if (!ST->hasDSP()) { 282 LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass " 283 "ARMParallelDSP\n"); 284 return false; 285 } 286 287 if (!ST->isLittle()) { 288 LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass " 289 << "ARMParallelDSP\n"); 290 return false; 291 } 292 293 LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n"); 294 LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n"); 295 296 bool Changes = MatchSMLAD(F); 297 return Changes; 298 } 299 }; 300 } 301 302 bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, 303 MemInstList &VecMem) { 304 if (!Ld0 || !Ld1) 305 return false; 306 307 if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1) 308 return false; 309 310 LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n"; 311 dbgs() << "Ld0:"; Ld0->dump(); 312 dbgs() << "Ld1:"; Ld1->dump(); 313 ); 314 315 VecMem.clear(); 316 VecMem.push_back(Ld0); 317 VecMem.push_back(Ld1); 318 return true; 319 } 320 321 // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP 322 // instructions, which is set to 16. So here we should collect all i8 and i16 323 // narrow operations. 324 // TODO: we currently only collect i16, and will support i8 later, so that's 325 // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth. 326 template<unsigned MaxBitWidth> 327 bool ARMParallelDSP::IsNarrowSequence(Value *V) { 328 if (auto *SExt = dyn_cast<SExtInst>(V)) { 329 if (SExt->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) 330 return false; 331 332 if (auto *Ld = dyn_cast<LoadInst>(SExt->getOperand(0))) { 333 // Check that this load could be paired. 334 return LoadPairs.count(Ld) || OffsetLoads.count(Ld); 335 } 336 } 337 return false; 338 } 339 340 /// Iterate through the block and record base, offset pairs of loads which can 341 /// be widened into a single load. 342 bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) { 343 SmallVector<LoadInst*, 8> Loads; 344 SmallVector<Instruction*, 8> Writes; 345 LoadPairs.clear(); 346 WideLoads.clear(); 347 348 // Collect loads and instruction that may write to memory. For now we only 349 // record loads which are simple, sign-extended and have a single user. 350 // TODO: Allow zero-extended loads. 351 for (auto &I : *BB) { 352 if (I.mayWriteToMemory()) 353 Writes.push_back(&I); 354 auto *Ld = dyn_cast<LoadInst>(&I); 355 if (!Ld || !Ld->isSimple() || 356 !Ld->hasOneUse() || !isa<SExtInst>(Ld->user_back())) 357 continue; 358 Loads.push_back(Ld); 359 } 360 361 if (Loads.empty() || Loads.size() > NumLoadLimit) 362 return false; 363 364 using InstSet = std::set<Instruction*>; 365 using DepMap = std::map<Instruction*, InstSet>; 366 DepMap RAWDeps; 367 368 // Record any writes that may alias a load. 369 const auto Size = LocationSize::beforeOrAfterPointer(); 370 for (auto Write : Writes) { 371 for (auto Read : Loads) { 372 MemoryLocation ReadLoc = 373 MemoryLocation(Read->getPointerOperand(), Size); 374 375 if (!isModOrRefSet(intersectModRef(AA->getModRefInfo(Write, ReadLoc), 376 ModRefInfo::ModRef))) 377 continue; 378 if (Write->comesBefore(Read)) 379 RAWDeps[Read].insert(Write); 380 } 381 } 382 383 // Check whether there's not a write between the two loads which would 384 // prevent them from being safely merged. 385 auto SafeToPair = [&](LoadInst *Base, LoadInst *Offset) { 386 bool BaseFirst = Base->comesBefore(Offset); 387 LoadInst *Dominator = BaseFirst ? Base : Offset; 388 LoadInst *Dominated = BaseFirst ? Offset : Base; 389 390 if (RAWDeps.count(Dominated)) { 391 InstSet &WritesBefore = RAWDeps[Dominated]; 392 393 for (auto Before : WritesBefore) { 394 // We can't move the second load backward, past a write, to merge 395 // with the first load. 396 if (Dominator->comesBefore(Before)) 397 return false; 398 } 399 } 400 return true; 401 }; 402 403 // Record base, offset load pairs. 404 for (auto *Base : Loads) { 405 for (auto *Offset : Loads) { 406 if (Base == Offset || OffsetLoads.count(Offset)) 407 continue; 408 409 if (isConsecutiveAccess(Base, Offset, *DL, *SE) && 410 SafeToPair(Base, Offset)) { 411 LoadPairs[Base] = Offset; 412 OffsetLoads.insert(Offset); 413 break; 414 } 415 } 416 } 417 418 LLVM_DEBUG(if (!LoadPairs.empty()) { 419 dbgs() << "Consecutive load pairs:\n"; 420 for (auto &MapIt : LoadPairs) { 421 LLVM_DEBUG(dbgs() << *MapIt.first << ", " 422 << *MapIt.second << "\n"); 423 } 424 }); 425 return LoadPairs.size() > 1; 426 } 427 428 // Search recursively back through the operands to find a tree of values that 429 // form a multiply-accumulate chain. The search records the Add and Mul 430 // instructions that form the reduction and allows us to find a single value 431 // to be used as the initial input to the accumlator. 432 bool ARMParallelDSP::Search(Value *V, BasicBlock *BB, Reduction &R) { 433 // If we find a non-instruction, try to use it as the initial accumulator 434 // value. This may have already been found during the search in which case 435 // this function will return false, signaling a search fail. 436 auto *I = dyn_cast<Instruction>(V); 437 if (!I) 438 return R.InsertAcc(V); 439 440 if (I->getParent() != BB) 441 return false; 442 443 switch (I->getOpcode()) { 444 default: 445 break; 446 case Instruction::PHI: 447 // Could be the accumulator value. 448 return R.InsertAcc(V); 449 case Instruction::Add: { 450 // Adds should be adding together two muls, or another add and a mul to 451 // be within the mac chain. One of the operands may also be the 452 // accumulator value at which point we should stop searching. 453 R.InsertAdd(I); 454 Value *LHS = I->getOperand(0); 455 Value *RHS = I->getOperand(1); 456 bool ValidLHS = Search(LHS, BB, R); 457 bool ValidRHS = Search(RHS, BB, R); 458 459 if (ValidLHS && ValidRHS) 460 return true; 461 462 return R.InsertAcc(I); 463 } 464 case Instruction::Mul: { 465 Value *MulOp0 = I->getOperand(0); 466 Value *MulOp1 = I->getOperand(1); 467 return IsNarrowSequence<16>(MulOp0) && IsNarrowSequence<16>(MulOp1); 468 } 469 case Instruction::SExt: 470 return Search(I->getOperand(0), BB, R); 471 } 472 return false; 473 } 474 475 // The pass needs to identify integer add/sub reductions of 16-bit vector 476 // multiplications. 477 // To use SMLAD: 478 // 1) we first need to find integer add then look for this pattern: 479 // 480 // acc0 = ... 481 // ld0 = load i16 482 // sext0 = sext i16 %ld0 to i32 483 // ld1 = load i16 484 // sext1 = sext i16 %ld1 to i32 485 // mul0 = mul %sext0, %sext1 486 // ld2 = load i16 487 // sext2 = sext i16 %ld2 to i32 488 // ld3 = load i16 489 // sext3 = sext i16 %ld3 to i32 490 // mul1 = mul i32 %sext2, %sext3 491 // add0 = add i32 %mul0, %acc0 492 // acc1 = add i32 %add0, %mul1 493 // 494 // Which can be selected to: 495 // 496 // ldr r0 497 // ldr r1 498 // smlad r2, r0, r1, r2 499 // 500 // If constants are used instead of loads, these will need to be hoisted 501 // out and into a register. 502 // 503 // If loop invariants are used instead of loads, these need to be packed 504 // before the loop begins. 505 // 506 bool ARMParallelDSP::MatchSMLAD(Function &F) { 507 bool Changed = false; 508 509 for (auto &BB : F) { 510 SmallPtrSet<Instruction*, 4> AllAdds; 511 if (!RecordMemoryOps(&BB)) 512 continue; 513 514 for (Instruction &I : reverse(BB)) { 515 if (I.getOpcode() != Instruction::Add) 516 continue; 517 518 if (AllAdds.count(&I)) 519 continue; 520 521 const auto *Ty = I.getType(); 522 if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64)) 523 continue; 524 525 Reduction R(&I); 526 if (!Search(&I, &BB, R)) 527 continue; 528 529 R.InsertMuls(); 530 LLVM_DEBUG(dbgs() << "After search, Reduction:\n"; R.dump()); 531 532 if (!CreateParallelPairs(R)) 533 continue; 534 535 InsertParallelMACs(R); 536 Changed = true; 537 AllAdds.insert(R.getAdds().begin(), R.getAdds().end()); 538 } 539 } 540 541 return Changed; 542 } 543 544 bool ARMParallelDSP::CreateParallelPairs(Reduction &R) { 545 546 // Not enough mul operations to make a pair. 547 if (R.getMuls().size() < 2) 548 return false; 549 550 // Check that the muls operate directly upon sign extended loads. 551 for (auto &MulCand : R.getMuls()) { 552 if (!MulCand->HasTwoLoadInputs()) 553 return false; 554 } 555 556 auto CanPair = [&](Reduction &R, MulCandidate *PMul0, MulCandidate *PMul1) { 557 // The first elements of each vector should be loads with sexts. If we 558 // find that its two pairs of consecutive loads, then these can be 559 // transformed into two wider loads and the users can be replaced with 560 // DSP intrinsics. 561 auto Ld0 = static_cast<LoadInst*>(PMul0->LHS); 562 auto Ld1 = static_cast<LoadInst*>(PMul1->LHS); 563 auto Ld2 = static_cast<LoadInst*>(PMul0->RHS); 564 auto Ld3 = static_cast<LoadInst*>(PMul1->RHS); 565 566 // Check that each mul is operating on two different loads. 567 if (Ld0 == Ld2 || Ld1 == Ld3) 568 return false; 569 570 if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) { 571 if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 572 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 573 R.AddMulPair(PMul0, PMul1); 574 return true; 575 } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) { 576 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 577 LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n"); 578 R.AddMulPair(PMul0, PMul1, true); 579 return true; 580 } 581 } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) && 582 AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) { 583 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n"); 584 LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n"); 585 LLVM_DEBUG(dbgs() << " and swapping muls\n"); 586 // Only the second operand can be exchanged, so swap the muls. 587 R.AddMulPair(PMul1, PMul0, true); 588 return true; 589 } 590 return false; 591 }; 592 593 MulCandList &Muls = R.getMuls(); 594 const unsigned Elems = Muls.size(); 595 for (unsigned i = 0; i < Elems; ++i) { 596 MulCandidate *PMul0 = static_cast<MulCandidate*>(Muls[i].get()); 597 if (PMul0->Paired) 598 continue; 599 600 for (unsigned j = 0; j < Elems; ++j) { 601 if (i == j) 602 continue; 603 604 MulCandidate *PMul1 = static_cast<MulCandidate*>(Muls[j].get()); 605 if (PMul1->Paired) 606 continue; 607 608 const Instruction *Mul0 = PMul0->Root; 609 const Instruction *Mul1 = PMul1->Root; 610 if (Mul0 == Mul1) 611 continue; 612 613 assert(PMul0 != PMul1 && "expected different chains"); 614 615 if (CanPair(R, PMul0, PMul1)) 616 break; 617 } 618 } 619 return !R.getMulPairs().empty(); 620 } 621 622 void ARMParallelDSP::InsertParallelMACs(Reduction &R) { 623 624 auto CreateSMLAD = [&](LoadInst* WideLd0, LoadInst *WideLd1, 625 Value *Acc, bool Exchange, 626 Instruction *InsertAfter) { 627 // Replace the reduction chain with an intrinsic call 628 629 Value* Args[] = { WideLd0, WideLd1, Acc }; 630 Function *SMLAD = nullptr; 631 if (Exchange) 632 SMLAD = Acc->getType()->isIntegerTy(32) ? 633 Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) : 634 Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx); 635 else 636 SMLAD = Acc->getType()->isIntegerTy(32) ? 637 Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) : 638 Intrinsic::getDeclaration(M, Intrinsic::arm_smlald); 639 640 IRBuilder<NoFolder> Builder(InsertAfter->getParent(), 641 BasicBlock::iterator(InsertAfter)); 642 Instruction *Call = Builder.CreateCall(SMLAD, Args); 643 NumSMLAD++; 644 return Call; 645 }; 646 647 // Return the instruction after the dominated instruction. 648 auto GetInsertPoint = [this](Value *A, Value *B) { 649 assert((isa<Instruction>(A) || isa<Instruction>(B)) && 650 "expected at least one instruction"); 651 652 Value *V = nullptr; 653 if (!isa<Instruction>(A)) 654 V = B; 655 else if (!isa<Instruction>(B)) 656 V = A; 657 else 658 V = DT->dominates(cast<Instruction>(A), cast<Instruction>(B)) ? B : A; 659 660 return &*++BasicBlock::iterator(cast<Instruction>(V)); 661 }; 662 663 Value *Acc = R.getAccumulator(); 664 665 // For any muls that were discovered but not paired, accumulate their values 666 // as before. 667 IRBuilder<NoFolder> Builder(R.getRoot()->getParent()); 668 MulCandList &MulCands = R.getMuls(); 669 for (auto &MulCand : MulCands) { 670 if (MulCand->Paired) 671 continue; 672 673 Instruction *Mul = cast<Instruction>(MulCand->Root); 674 LLVM_DEBUG(dbgs() << "Accumulating unpaired mul: " << *Mul << "\n"); 675 676 if (R.getType() != Mul->getType()) { 677 assert(R.is64Bit() && "expected 64-bit result"); 678 Builder.SetInsertPoint(&*++BasicBlock::iterator(Mul)); 679 Mul = cast<Instruction>(Builder.CreateSExt(Mul, R.getRoot()->getType())); 680 } 681 682 if (!Acc) { 683 Acc = Mul; 684 continue; 685 } 686 687 // If Acc is the original incoming value to the reduction, it could be a 688 // phi. But the phi will dominate Mul, meaning that Mul will be the 689 // insertion point. 690 Builder.SetInsertPoint(GetInsertPoint(Mul, Acc)); 691 Acc = Builder.CreateAdd(Mul, Acc); 692 } 693 694 if (!Acc) { 695 Acc = R.is64Bit() ? 696 ConstantInt::get(IntegerType::get(M->getContext(), 64), 0) : 697 ConstantInt::get(IntegerType::get(M->getContext(), 32), 0); 698 } else if (Acc->getType() != R.getType()) { 699 Builder.SetInsertPoint(R.getRoot()); 700 Acc = Builder.CreateSExt(Acc, R.getType()); 701 } 702 703 // Roughly sort the mul pairs in their program order. 704 llvm::sort(R.getMulPairs(), [](auto &PairA, auto &PairB) { 705 const Instruction *A = PairA.first->Root; 706 const Instruction *B = PairB.first->Root; 707 return A->comesBefore(B); 708 }); 709 710 IntegerType *Ty = IntegerType::get(M->getContext(), 32); 711 for (auto &Pair : R.getMulPairs()) { 712 MulCandidate *LHSMul = Pair.first; 713 MulCandidate *RHSMul = Pair.second; 714 LoadInst *BaseLHS = LHSMul->getBaseLoad(); 715 LoadInst *BaseRHS = RHSMul->getBaseLoad(); 716 LoadInst *WideLHS = WideLoads.count(BaseLHS) ? 717 WideLoads[BaseLHS]->getLoad() : CreateWideLoad(LHSMul->VecLd, Ty); 718 LoadInst *WideRHS = WideLoads.count(BaseRHS) ? 719 WideLoads[BaseRHS]->getLoad() : CreateWideLoad(RHSMul->VecLd, Ty); 720 721 Instruction *InsertAfter = GetInsertPoint(WideLHS, WideRHS); 722 InsertAfter = GetInsertPoint(InsertAfter, Acc); 723 Acc = CreateSMLAD(WideLHS, WideRHS, Acc, RHSMul->Exchange, InsertAfter); 724 } 725 R.UpdateRoot(cast<Instruction>(Acc)); 726 } 727 728 LoadInst* ARMParallelDSP::CreateWideLoad(MemInstList &Loads, 729 IntegerType *LoadTy) { 730 assert(Loads.size() == 2 && "currently only support widening two loads"); 731 732 LoadInst *Base = Loads[0]; 733 LoadInst *Offset = Loads[1]; 734 735 Instruction *BaseSExt = dyn_cast<SExtInst>(Base->user_back()); 736 Instruction *OffsetSExt = dyn_cast<SExtInst>(Offset->user_back()); 737 738 assert((BaseSExt && OffsetSExt) 739 && "Loads should have a single, extending, user"); 740 741 std::function<void(Value*, Value*)> MoveBefore = 742 [&](Value *A, Value *B) -> void { 743 if (!isa<Instruction>(A) || !isa<Instruction>(B)) 744 return; 745 746 auto *Source = cast<Instruction>(A); 747 auto *Sink = cast<Instruction>(B); 748 749 if (DT->dominates(Source, Sink) || 750 Source->getParent() != Sink->getParent() || 751 isa<PHINode>(Source) || isa<PHINode>(Sink)) 752 return; 753 754 Source->moveBefore(Sink); 755 for (auto &Op : Source->operands()) 756 MoveBefore(Op, Source); 757 }; 758 759 // Insert the load at the point of the original dominating load. 760 LoadInst *DomLoad = DT->dominates(Base, Offset) ? Base : Offset; 761 IRBuilder<NoFolder> IRB(DomLoad->getParent(), 762 ++BasicBlock::iterator(DomLoad)); 763 764 // Bitcast the pointer to a wider type and create the wide load, while making 765 // sure to maintain the original alignment as this prevents ldrd from being 766 // generated when it could be illegal due to memory alignment. 767 const unsigned AddrSpace = DomLoad->getPointerAddressSpace(); 768 Value *VecPtr = IRB.CreateBitCast(Base->getPointerOperand(), 769 LoadTy->getPointerTo(AddrSpace)); 770 LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr, Base->getAlign()); 771 772 // Make sure everything is in the correct order in the basic block. 773 MoveBefore(Base->getPointerOperand(), VecPtr); 774 MoveBefore(VecPtr, WideLoad); 775 776 // From the wide load, create two values that equal the original two loads. 777 // Loads[0] needs trunc while Loads[1] needs a lshr and trunc. 778 // TODO: Support big-endian as well. 779 Value *Bottom = IRB.CreateTrunc(WideLoad, Base->getType()); 780 Value *NewBaseSExt = IRB.CreateSExt(Bottom, BaseSExt->getType()); 781 BaseSExt->replaceAllUsesWith(NewBaseSExt); 782 783 IntegerType *OffsetTy = cast<IntegerType>(Offset->getType()); 784 Value *ShiftVal = ConstantInt::get(LoadTy, OffsetTy->getBitWidth()); 785 Value *Top = IRB.CreateLShr(WideLoad, ShiftVal); 786 Value *Trunc = IRB.CreateTrunc(Top, OffsetTy); 787 Value *NewOffsetSExt = IRB.CreateSExt(Trunc, OffsetSExt->getType()); 788 OffsetSExt->replaceAllUsesWith(NewOffsetSExt); 789 790 LLVM_DEBUG(dbgs() << "From Base and Offset:\n" 791 << *Base << "\n" << *Offset << "\n" 792 << "Created Wide Load:\n" 793 << *WideLoad << "\n" 794 << *Bottom << "\n" 795 << *NewBaseSExt << "\n" 796 << *Top << "\n" 797 << *Trunc << "\n" 798 << *NewOffsetSExt << "\n"); 799 WideLoads.emplace(std::make_pair(Base, 800 std::make_unique<WidenedLoad>(Loads, WideLoad))); 801 return WideLoad; 802 } 803 804 Pass *llvm::createARMParallelDSPPass() { 805 return new ARMParallelDSP(); 806 } 807 808 char ARMParallelDSP::ID = 0; 809 810 INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp", 811 "Transform functions to use DSP intrinsics", false, false) 812 INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp", 813 "Transform functions to use DSP intrinsics", false, false) 814