1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo 10 /// instructions into machine operations. 11 /// The expectation is that the loop contains three pseudo instructions: 12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop 13 /// form should be in the preheader, whereas the while form should be in the 14 /// preheaders only predecessor. 15 /// - t2LoopDec - placed within in the loop body. 16 /// - t2LoopEnd - the loop latch terminator. 17 /// 18 /// In addition to this, we also look for the presence of the VCTP instruction, 19 /// which determines whether we can generated the tail-predicated low-overhead 20 /// loop form. 21 /// 22 /// Assumptions and Dependencies: 23 /// Low-overhead loops are constructed and executed using a setup instruction: 24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. 25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range 26 /// but fixed polarity: WLS can only branch forwards and LE can only branch 27 /// backwards. These restrictions mean that this pass is dependent upon block 28 /// layout and block sizes, which is why it's the last pass to run. The same is 29 /// true for ConstantIslands, but this pass does not increase the size of the 30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed 31 /// during the transform and pseudo instructions are replaced by real ones. In 32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce 33 /// multiple instructions for a single pseudo (see RevertWhile and 34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStartLR and t2LoopEnd 35 /// are defined to be as large as this maximum sequence of replacement 36 /// instructions. 37 /// 38 /// A note on VPR.P0 (the lane mask): 39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a 40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks). 41 /// They will simply "and" the result of their calculation with the current 42 /// value of VPR.P0. You can think of it like this: 43 /// \verbatim 44 /// if VPT active: ; Between a DLSTP/LETP, or for predicated instrs 45 /// VPR.P0 &= Value 46 /// else 47 /// VPR.P0 = Value 48 /// \endverbatim 49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always 50 /// fall in the "VPT active" case, so we can consider that all VPR writes by 51 /// one of those instruction is actually a "and". 52 //===----------------------------------------------------------------------===// 53 54 #include "ARM.h" 55 #include "ARMBaseInstrInfo.h" 56 #include "ARMBaseRegisterInfo.h" 57 #include "ARMBasicBlockInfo.h" 58 #include "ARMSubtarget.h" 59 #include "MVETailPredUtils.h" 60 #include "Thumb2InstrInfo.h" 61 #include "llvm/ADT/SetOperations.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallSet.h" 64 #include "llvm/CodeGen/LivePhysRegs.h" 65 #include "llvm/CodeGen/MachineFrameInfo.h" 66 #include "llvm/CodeGen/MachineFunctionPass.h" 67 #include "llvm/CodeGen/MachineLoopInfo.h" 68 #include "llvm/CodeGen/MachineLoopUtils.h" 69 #include "llvm/CodeGen/MachineRegisterInfo.h" 70 #include "llvm/CodeGen/Passes.h" 71 #include "llvm/CodeGen/ReachingDefAnalysis.h" 72 #include "llvm/MC/MCInstrDesc.h" 73 74 using namespace llvm; 75 76 #define DEBUG_TYPE "arm-low-overhead-loops" 77 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" 78 79 static cl::opt<bool> 80 DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden, 81 cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"), 82 cl::init(false)); 83 84 static cl::opt<bool> 85 DisableOmitDLS("arm-disable-omit-dls", cl::Hidden, 86 cl::desc("Disable omitting 'dls lr, lr' instructions"), 87 cl::init(false)); 88 89 static bool isVectorPredicated(MachineInstr *MI) { 90 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 91 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR; 92 } 93 94 static bool isVectorPredicate(MachineInstr *MI) { 95 return MI->findRegisterDefOperandIdx(ARM::VPR) != -1; 96 } 97 98 static bool hasVPRUse(MachineInstr &MI) { 99 return MI.findRegisterUseOperandIdx(ARM::VPR) != -1; 100 } 101 102 static bool isDomainMVE(MachineInstr *MI) { 103 uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask; 104 return Domain == ARMII::DomainMVE; 105 } 106 107 static int getVecSize(const MachineInstr &MI) { 108 const MCInstrDesc &MCID = MI.getDesc(); 109 uint64_t Flags = MCID.TSFlags; 110 return (Flags & ARMII::VecSize) >> ARMII::VecSizeShift; 111 } 112 113 static bool shouldInspect(MachineInstr &MI) { 114 if (MI.isDebugInstr()) 115 return false; 116 return isDomainMVE(&MI) || isVectorPredicate(&MI) || hasVPRUse(MI); 117 } 118 119 namespace { 120 121 using InstSet = SmallPtrSetImpl<MachineInstr *>; 122 123 class PostOrderLoopTraversal { 124 MachineLoop &ML; 125 MachineLoopInfo &MLI; 126 SmallPtrSet<MachineBasicBlock*, 4> Visited; 127 SmallVector<MachineBasicBlock*, 4> Order; 128 129 public: 130 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI) 131 : ML(ML), MLI(MLI) { } 132 133 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const { 134 return Order; 135 } 136 137 // Visit all the blocks within the loop, as well as exit blocks and any 138 // blocks properly dominating the header. 139 void ProcessLoop() { 140 std::function<void(MachineBasicBlock*)> Search = [this, &Search] 141 (MachineBasicBlock *MBB) -> void { 142 if (Visited.count(MBB)) 143 return; 144 145 Visited.insert(MBB); 146 for (auto *Succ : MBB->successors()) { 147 if (!ML.contains(Succ)) 148 continue; 149 Search(Succ); 150 } 151 Order.push_back(MBB); 152 }; 153 154 // Insert exit blocks. 155 SmallVector<MachineBasicBlock*, 2> ExitBlocks; 156 ML.getExitBlocks(ExitBlocks); 157 append_range(Order, ExitBlocks); 158 159 // Then add the loop body. 160 Search(ML.getHeader()); 161 162 // Then try the preheader and its predecessors. 163 std::function<void(MachineBasicBlock*)> GetPredecessor = 164 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void { 165 Order.push_back(MBB); 166 if (MBB->pred_size() == 1) 167 GetPredecessor(*MBB->pred_begin()); 168 }; 169 170 if (auto *Preheader = ML.getLoopPreheader()) 171 GetPredecessor(Preheader); 172 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true, true)) 173 GetPredecessor(Preheader); 174 } 175 }; 176 177 struct PredicatedMI { 178 MachineInstr *MI = nullptr; 179 SetVector<MachineInstr*> Predicates; 180 181 public: 182 PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) { 183 assert(I && "Instruction must not be null!"); 184 Predicates.insert(Preds.begin(), Preds.end()); 185 } 186 }; 187 188 // Represent the current state of the VPR and hold all instances which 189 // represent a VPT block, which is a list of instructions that begins with a 190 // VPT/VPST and has a maximum of four proceeding instructions. All 191 // instructions within the block are predicated upon the vpr and we allow 192 // instructions to define the vpr within in the block too. 193 class VPTState { 194 friend struct LowOverheadLoop; 195 196 SmallVector<MachineInstr *, 4> Insts; 197 198 static SmallVector<VPTState, 4> Blocks; 199 static SetVector<MachineInstr *> CurrentPredicates; 200 static std::map<MachineInstr *, 201 std::unique_ptr<PredicatedMI>> PredicatedInsts; 202 203 static void CreateVPTBlock(MachineInstr *MI) { 204 assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR)) 205 && "Can't begin VPT without predicate"); 206 Blocks.emplace_back(MI); 207 // The execution of MI is predicated upon the current set of instructions 208 // that are AND'ed together to form the VPR predicate value. In the case 209 // that MI is a VPT, CurrentPredicates will also just be MI. 210 PredicatedInsts.emplace( 211 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates)); 212 } 213 214 static void reset() { 215 Blocks.clear(); 216 PredicatedInsts.clear(); 217 CurrentPredicates.clear(); 218 } 219 220 static void addInst(MachineInstr *MI) { 221 Blocks.back().insert(MI); 222 PredicatedInsts.emplace( 223 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates)); 224 } 225 226 static void addPredicate(MachineInstr *MI) { 227 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI); 228 CurrentPredicates.insert(MI); 229 } 230 231 static void resetPredicate(MachineInstr *MI) { 232 LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI); 233 CurrentPredicates.clear(); 234 CurrentPredicates.insert(MI); 235 } 236 237 public: 238 // Have we found an instruction within the block which defines the vpr? If 239 // so, not all the instructions in the block will have the same predicate. 240 static bool hasUniformPredicate(VPTState &Block) { 241 return getDivergent(Block) == nullptr; 242 } 243 244 // If it exists, return the first internal instruction which modifies the 245 // VPR. 246 static MachineInstr *getDivergent(VPTState &Block) { 247 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 248 for (unsigned i = 1; i < Insts.size(); ++i) { 249 MachineInstr *Next = Insts[i]; 250 if (isVectorPredicate(Next)) 251 return Next; // Found an instruction altering the vpr. 252 } 253 return nullptr; 254 } 255 256 // Return whether the given instruction is predicated upon a VCTP. 257 static bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) { 258 SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI]->Predicates; 259 if (Exclusive && Predicates.size() != 1) 260 return false; 261 return llvm::any_of(Predicates, isVCTP); 262 } 263 264 // Is the VPST, controlling the block entry, predicated upon a VCTP. 265 static bool isEntryPredicatedOnVCTP(VPTState &Block, 266 bool Exclusive = false) { 267 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 268 return isPredicatedOnVCTP(Insts.front(), Exclusive); 269 } 270 271 // If this block begins with a VPT, we can check whether it's using 272 // at least one predicated input(s), as well as possible loop invariant 273 // which would result in it being implicitly predicated. 274 static bool hasImplicitlyValidVPT(VPTState &Block, 275 ReachingDefAnalysis &RDA) { 276 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 277 MachineInstr *VPT = Insts.front(); 278 assert(isVPTOpcode(VPT->getOpcode()) && 279 "Expected VPT block to begin with VPT/VPST"); 280 281 if (VPT->getOpcode() == ARM::MVE_VPST) 282 return false; 283 284 auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) { 285 MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx)); 286 return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op); 287 }; 288 289 auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) { 290 MachineOperand &MO = MI->getOperand(Idx); 291 if (!MO.isReg() || !MO.getReg()) 292 return true; 293 294 SmallPtrSet<MachineInstr *, 2> Defs; 295 RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs); 296 if (Defs.empty()) 297 return true; 298 299 for (auto *Def : Defs) 300 if (Def->getParent() == VPT->getParent()) 301 return false; 302 return true; 303 }; 304 305 // Check that at least one of the operands is directly predicated on a 306 // vctp and allow an invariant value too. 307 return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) && 308 (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) && 309 (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2)); 310 } 311 312 static bool isValid(ReachingDefAnalysis &RDA) { 313 // All predication within the loop should be based on vctp. If the block 314 // isn't predicated on entry, check whether the vctp is within the block 315 // and that all other instructions are then predicated on it. 316 for (auto &Block : Blocks) { 317 if (isEntryPredicatedOnVCTP(Block, false) || 318 hasImplicitlyValidVPT(Block, RDA)) 319 continue; 320 321 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 322 // We don't know how to convert a block with just a VPT;VCTP into 323 // anything valid once we remove the VCTP. For now just bail out. 324 assert(isVPTOpcode(Insts.front()->getOpcode()) && 325 "Expected VPT block to start with a VPST or VPT!"); 326 if (Insts.size() == 2 && Insts.front()->getOpcode() != ARM::MVE_VPST && 327 isVCTP(Insts.back())) 328 return false; 329 330 for (auto *MI : Insts) { 331 // Check that any internal VCTPs are 'Then' predicated. 332 if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then) 333 return false; 334 // Skip other instructions that build up the predicate. 335 if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI)) 336 continue; 337 // Check that any other instructions are predicated upon a vctp. 338 // TODO: We could infer when VPTs are implicitly predicated on the 339 // vctp (when the operands are predicated). 340 if (!isPredicatedOnVCTP(MI)) { 341 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI); 342 return false; 343 } 344 } 345 } 346 return true; 347 } 348 349 VPTState(MachineInstr *MI) { Insts.push_back(MI); } 350 351 void insert(MachineInstr *MI) { 352 Insts.push_back(MI); 353 // VPT/VPST + 4 predicated instructions. 354 assert(Insts.size() <= 5 && "Too many instructions in VPT block!"); 355 } 356 357 bool containsVCTP() const { 358 return llvm::any_of(Insts, isVCTP); 359 } 360 361 unsigned size() const { return Insts.size(); } 362 SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; } 363 }; 364 365 struct LowOverheadLoop { 366 367 MachineLoop &ML; 368 MachineBasicBlock *Preheader = nullptr; 369 MachineLoopInfo &MLI; 370 ReachingDefAnalysis &RDA; 371 const TargetRegisterInfo &TRI; 372 const ARMBaseInstrInfo &TII; 373 MachineFunction *MF = nullptr; 374 MachineBasicBlock::iterator StartInsertPt; 375 MachineBasicBlock *StartInsertBB = nullptr; 376 MachineInstr *Start = nullptr; 377 MachineInstr *Dec = nullptr; 378 MachineInstr *End = nullptr; 379 MachineOperand TPNumElements; 380 SmallVector<MachineInstr *, 4> VCTPs; 381 SmallPtrSet<MachineInstr *, 4> ToRemove; 382 SmallPtrSet<MachineInstr *, 4> BlockMasksToRecompute; 383 SmallPtrSet<MachineInstr *, 4> DoubleWidthResultInstrs; 384 SmallPtrSet<MachineInstr *, 4> VMOVCopies; 385 bool Revert = false; 386 bool CannotTailPredicate = false; 387 388 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI, 389 ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI, 390 const ARMBaseInstrInfo &TII) 391 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII), 392 TPNumElements(MachineOperand::CreateImm(0)) { 393 MF = ML.getHeader()->getParent(); 394 if (auto *MBB = ML.getLoopPreheader()) 395 Preheader = MBB; 396 else if (auto *MBB = MLI.findLoopPreheader(&ML, true, true)) 397 Preheader = MBB; 398 VPTState::reset(); 399 } 400 401 // If this is an MVE instruction, check that we know how to use tail 402 // predication with it. Record VPT blocks and return whether the 403 // instruction is valid for tail predication. 404 bool ValidateMVEInst(MachineInstr *MI); 405 406 void AnalyseMVEInst(MachineInstr *MI) { 407 CannotTailPredicate = !ValidateMVEInst(MI); 408 } 409 410 bool IsTailPredicationLegal() const { 411 // For now, let's keep things really simple and only support a single 412 // block for tail predication. 413 return !Revert && FoundAllComponents() && !VCTPs.empty() && 414 !CannotTailPredicate && ML.getNumBlocks() == 1; 415 } 416 417 // Given that MI is a VCTP, check that is equivalent to any other VCTPs 418 // found. 419 bool AddVCTP(MachineInstr *MI); 420 421 // Check that the predication in the loop will be equivalent once we 422 // perform the conversion. Also ensure that we can provide the number 423 // of elements to the loop start instruction. 424 bool ValidateTailPredicate(); 425 426 // Check that any values available outside of the loop will be the same 427 // after tail predication conversion. 428 bool ValidateLiveOuts(); 429 430 // Is it safe to define LR with DLS/WLS? 431 // LR can be defined if it is the operand to start, because it's the same 432 // value, or if it's going to be equivalent to the operand to Start. 433 MachineInstr *isSafeToDefineLR(); 434 435 // Check the branch targets are within range and we satisfy our 436 // restrictions. 437 void Validate(ARMBasicBlockUtils *BBUtils); 438 439 bool FoundAllComponents() const { 440 return Start && Dec && End; 441 } 442 443 SmallVectorImpl<VPTState> &getVPTBlocks() { 444 return VPTState::Blocks; 445 } 446 447 // Return the operand for the loop start instruction. This will be the loop 448 // iteration count, or the number of elements if we're tail predicating. 449 MachineOperand &getLoopStartOperand() { 450 if (IsTailPredicationLegal()) 451 return TPNumElements; 452 return Start->getOperand(1); 453 } 454 455 unsigned getStartOpcode() const { 456 bool IsDo = isDoLoopStart(*Start); 457 if (!IsTailPredicationLegal()) 458 return IsDo ? ARM::t2DLS : ARM::t2WLS; 459 460 return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo); 461 } 462 463 void dump() const { 464 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; 465 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; 466 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; 467 if (!VCTPs.empty()) { 468 dbgs() << "ARM Loops: Found VCTP(s):\n"; 469 for (auto *MI : VCTPs) 470 dbgs() << " - " << *MI; 471 } 472 if (!FoundAllComponents()) 473 dbgs() << "ARM Loops: Not a low-overhead loop.\n"; 474 else if (!(Start && Dec && End)) 475 dbgs() << "ARM Loops: Failed to find all loop components.\n"; 476 } 477 }; 478 479 class ARMLowOverheadLoops : public MachineFunctionPass { 480 MachineFunction *MF = nullptr; 481 MachineLoopInfo *MLI = nullptr; 482 ReachingDefAnalysis *RDA = nullptr; 483 const ARMBaseInstrInfo *TII = nullptr; 484 MachineRegisterInfo *MRI = nullptr; 485 const TargetRegisterInfo *TRI = nullptr; 486 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 487 488 public: 489 static char ID; 490 491 ARMLowOverheadLoops() : MachineFunctionPass(ID) { } 492 493 void getAnalysisUsage(AnalysisUsage &AU) const override { 494 AU.setPreservesCFG(); 495 AU.addRequired<MachineLoopInfo>(); 496 AU.addRequired<ReachingDefAnalysis>(); 497 MachineFunctionPass::getAnalysisUsage(AU); 498 } 499 500 bool runOnMachineFunction(MachineFunction &MF) override; 501 502 MachineFunctionProperties getRequiredProperties() const override { 503 return MachineFunctionProperties().set( 504 MachineFunctionProperties::Property::NoVRegs).set( 505 MachineFunctionProperties::Property::TracksLiveness); 506 } 507 508 StringRef getPassName() const override { 509 return ARM_LOW_OVERHEAD_LOOPS_NAME; 510 } 511 512 private: 513 bool ProcessLoop(MachineLoop *ML); 514 515 bool RevertNonLoops(); 516 517 void RevertWhile(MachineInstr *MI) const; 518 void RevertDo(MachineInstr *MI) const; 519 520 bool RevertLoopDec(MachineInstr *MI) const; 521 522 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; 523 524 void RevertLoopEndDec(MachineInstr *MI) const; 525 526 void ConvertVPTBlocks(LowOverheadLoop &LoLoop); 527 528 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); 529 530 void Expand(LowOverheadLoop &LoLoop); 531 532 void IterationCountDCE(LowOverheadLoop &LoLoop); 533 }; 534 } 535 536 char ARMLowOverheadLoops::ID = 0; 537 538 SmallVector<VPTState, 4> VPTState::Blocks; 539 SetVector<MachineInstr *> VPTState::CurrentPredicates; 540 std::map<MachineInstr *, 541 std::unique_ptr<PredicatedMI>> VPTState::PredicatedInsts; 542 543 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, 544 false, false) 545 546 static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA, 547 InstSet &ToRemove, InstSet &Ignore) { 548 549 // Check that we can remove all of Killed without having to modify any IT 550 // blocks. 551 auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) { 552 // Collect the dead code and the MBBs in which they reside. 553 SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks; 554 for (auto *Dead : Killed) 555 BasicBlocks.insert(Dead->getParent()); 556 557 // Collect IT blocks in all affected basic blocks. 558 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks; 559 for (auto *MBB : BasicBlocks) { 560 for (auto &IT : *MBB) { 561 if (IT.getOpcode() != ARM::t2IT) 562 continue; 563 RDA.getReachingLocalUses(&IT, MCRegister::from(ARM::ITSTATE), 564 ITBlocks[&IT]); 565 } 566 } 567 568 // If we're removing all of the instructions within an IT block, then 569 // also remove the IT instruction. 570 SmallPtrSet<MachineInstr *, 2> ModifiedITs; 571 SmallPtrSet<MachineInstr *, 2> RemoveITs; 572 for (auto *Dead : Killed) { 573 if (MachineOperand *MO = Dead->findRegisterUseOperand(ARM::ITSTATE)) { 574 MachineInstr *IT = RDA.getMIOperand(Dead, *MO); 575 RemoveITs.insert(IT); 576 auto &CurrentBlock = ITBlocks[IT]; 577 CurrentBlock.erase(Dead); 578 if (CurrentBlock.empty()) 579 ModifiedITs.erase(IT); 580 else 581 ModifiedITs.insert(IT); 582 } 583 } 584 if (!ModifiedITs.empty()) 585 return false; 586 Killed.insert(RemoveITs.begin(), RemoveITs.end()); 587 return true; 588 }; 589 590 SmallPtrSet<MachineInstr *, 2> Uses; 591 if (!RDA.isSafeToRemove(MI, Uses, Ignore)) 592 return false; 593 594 if (WontCorruptITs(Uses, RDA)) { 595 ToRemove.insert(Uses.begin(), Uses.end()); 596 LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI 597 << " - can also remove:\n"; 598 for (auto *Use : Uses) 599 dbgs() << " - " << *Use); 600 601 SmallPtrSet<MachineInstr*, 4> Killed; 602 RDA.collectKilledOperands(MI, Killed); 603 if (WontCorruptITs(Killed, RDA)) { 604 ToRemove.insert(Killed.begin(), Killed.end()); 605 LLVM_DEBUG(for (auto *Dead : Killed) 606 dbgs() << " - " << *Dead); 607 } 608 return true; 609 } 610 return false; 611 } 612 613 bool LowOverheadLoop::ValidateTailPredicate() { 614 if (!IsTailPredicationLegal()) { 615 LLVM_DEBUG(if (VCTPs.empty()) 616 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; 617 dbgs() << "ARM Loops: Tail-predication is not valid.\n"); 618 return false; 619 } 620 621 assert(!VCTPs.empty() && "VCTP instruction expected but is not set"); 622 assert(ML.getBlocks().size() == 1 && 623 "Shouldn't be processing a loop with more than one block"); 624 625 if (DisableTailPredication) { 626 LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n"); 627 return false; 628 } 629 630 if (!VPTState::isValid(RDA)) { 631 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid VPT state.\n"); 632 return false; 633 } 634 635 if (!ValidateLiveOuts()) { 636 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n"); 637 return false; 638 } 639 640 // For tail predication, we need to provide the number of elements, instead 641 // of the iteration count, to the loop start instruction. The number of 642 // elements is provided to the vctp instruction, so we need to check that 643 // we can use this register at InsertPt. 644 MachineInstr *VCTP = VCTPs.back(); 645 if (Start->getOpcode() == ARM::t2DoLoopStartTP || 646 Start->getOpcode() == ARM::t2WhileLoopStartTP) { 647 TPNumElements = Start->getOperand(2); 648 StartInsertPt = Start; 649 StartInsertBB = Start->getParent(); 650 } else { 651 TPNumElements = VCTP->getOperand(1); 652 MCRegister NumElements = TPNumElements.getReg().asMCReg(); 653 654 // If the register is defined within loop, then we can't perform TP. 655 // TODO: Check whether this is just a mov of a register that would be 656 // available. 657 if (RDA.hasLocalDefBefore(VCTP, NumElements)) { 658 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); 659 return false; 660 } 661 662 // The element count register maybe defined after InsertPt, in which case we 663 // need to try to move either InsertPt or the def so that the [w|d]lstp can 664 // use the value. 665 666 if (StartInsertPt != StartInsertBB->end() && 667 !RDA.isReachingDefLiveOut(&*StartInsertPt, NumElements)) { 668 if (auto *ElemDef = 669 RDA.getLocalLiveOutMIDef(StartInsertBB, NumElements)) { 670 if (RDA.isSafeToMoveForwards(ElemDef, &*StartInsertPt)) { 671 ElemDef->removeFromParent(); 672 StartInsertBB->insert(StartInsertPt, ElemDef); 673 LLVM_DEBUG(dbgs() 674 << "ARM Loops: Moved element count def: " << *ElemDef); 675 } else if (RDA.isSafeToMoveBackwards(&*StartInsertPt, ElemDef)) { 676 StartInsertPt->removeFromParent(); 677 StartInsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), 678 &*StartInsertPt); 679 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); 680 } else { 681 // If we fail to move an instruction and the element count is provided 682 // by a mov, use the mov operand if it will have the same value at the 683 // insertion point 684 MachineOperand Operand = ElemDef->getOperand(1); 685 if (isMovRegOpcode(ElemDef->getOpcode()) && 686 RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg().asMCReg()) == 687 RDA.getUniqueReachingMIDef(&*StartInsertPt, 688 Operand.getReg().asMCReg())) { 689 TPNumElements = Operand; 690 NumElements = TPNumElements.getReg(); 691 } else { 692 LLVM_DEBUG(dbgs() 693 << "ARM Loops: Unable to move element count to loop " 694 << "start instruction.\n"); 695 return false; 696 } 697 } 698 } 699 } 700 701 // Especially in the case of while loops, InsertBB may not be the 702 // preheader, so we need to check that the register isn't redefined 703 // before entering the loop. 704 auto CannotProvideElements = [this](MachineBasicBlock *MBB, 705 MCRegister NumElements) { 706 if (MBB->empty()) 707 return false; 708 // NumElements is redefined in this block. 709 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements)) 710 return true; 711 712 // Don't continue searching up through multiple predecessors. 713 if (MBB->pred_size() > 1) 714 return true; 715 716 return false; 717 }; 718 719 // Search backwards for a def, until we get to InsertBB. 720 MachineBasicBlock *MBB = Preheader; 721 while (MBB && MBB != StartInsertBB) { 722 if (CannotProvideElements(MBB, NumElements)) { 723 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n"); 724 return false; 725 } 726 MBB = *MBB->pred_begin(); 727 } 728 } 729 730 // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect 731 // world the [w|d]lstp instruction would be last instruction in the preheader 732 // and so it would only affect instructions within the loop body. But due to 733 // scheduling, and/or the logic in this pass (above), the insertion point can 734 // be moved earlier. So if the Loop Start isn't the last instruction in the 735 // preheader, and if the initial element count is smaller than the vector 736 // width, the Loop Start instruction will immediately generate one or more 737 // false lane mask which can, incorrectly, affect the proceeding MVE 738 // instructions in the preheader. 739 if (std::any_of(StartInsertPt, StartInsertBB->end(), shouldInspect)) { 740 LLVM_DEBUG(dbgs() << "ARM Loops: Instruction blocks [W|D]LSTP\n"); 741 return false; 742 } 743 744 // For any DoubleWidthResultInstrs we found whilst scanning instructions, they 745 // need to compute an output size that is smaller than the VCTP mask operates 746 // on. The VecSize of the DoubleWidthResult is the larger vector size - the 747 // size it extends into, so any VCTP VecSize <= is valid. 748 unsigned VCTPVecSize = getVecSize(*VCTP); 749 for (MachineInstr *MI : DoubleWidthResultInstrs) { 750 unsigned InstrVecSize = getVecSize(*MI); 751 if (InstrVecSize > VCTPVecSize) { 752 LLVM_DEBUG(dbgs() << "ARM Loops: Double width result larger than VCTP " 753 << "VecSize:\n" << *MI); 754 return false; 755 } 756 } 757 758 // Check that the value change of the element count is what we expect and 759 // that the predication will be equivalent. For this we need: 760 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate 761 // and we can also allow register copies within the chain too. 762 auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) { 763 return -getAddSubImmediate(*MI) == ExpectedVecWidth; 764 }; 765 766 MachineBasicBlock *MBB = VCTP->getParent(); 767 // Remove modifications to the element count since they have no purpose in a 768 // tail predicated loop. Explicitly refer to the vctp operand no matter which 769 // register NumElements has been assigned to, since that is what the 770 // modifications will be using 771 if (auto *Def = RDA.getUniqueReachingMIDef( 772 &MBB->back(), VCTP->getOperand(1).getReg().asMCReg())) { 773 SmallPtrSet<MachineInstr*, 2> ElementChain; 774 SmallPtrSet<MachineInstr*, 2> Ignore; 775 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode()); 776 777 Ignore.insert(VCTPs.begin(), VCTPs.end()); 778 779 if (TryRemove(Def, RDA, ElementChain, Ignore)) { 780 bool FoundSub = false; 781 782 for (auto *MI : ElementChain) { 783 if (isMovRegOpcode(MI->getOpcode())) 784 continue; 785 786 if (isSubImmOpcode(MI->getOpcode())) { 787 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) { 788 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element" 789 " count: " << *MI); 790 return false; 791 } 792 FoundSub = true; 793 } else { 794 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element" 795 " count: " << *MI); 796 return false; 797 } 798 } 799 ToRemove.insert(ElementChain.begin(), ElementChain.end()); 800 } 801 } 802 803 // If we converted the LoopStart to a t2DoLoopStartTP/t2WhileLoopStartTP, we 804 // can also remove any extra instructions in the preheader, which often 805 // includes a now unused MOV. 806 if ((Start->getOpcode() == ARM::t2DoLoopStartTP || 807 Start->getOpcode() == ARM::t2WhileLoopStartTP) && 808 Preheader && !Preheader->empty() && 809 !RDA.hasLocalDefBefore(VCTP, VCTP->getOperand(1).getReg())) { 810 if (auto *Def = RDA.getUniqueReachingMIDef( 811 &Preheader->back(), VCTP->getOperand(1).getReg().asMCReg())) { 812 SmallPtrSet<MachineInstr*, 2> Ignore; 813 Ignore.insert(VCTPs.begin(), VCTPs.end()); 814 TryRemove(Def, RDA, ToRemove, Ignore); 815 } 816 } 817 818 return true; 819 } 820 821 static bool isRegInClass(const MachineOperand &MO, 822 const TargetRegisterClass *Class) { 823 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg()); 824 } 825 826 // MVE 'narrowing' operate on half a lane, reading from half and writing 827 // to half, which are referred to has the top and bottom half. The other 828 // half retains its previous value. 829 static bool retainsPreviousHalfElement(const MachineInstr &MI) { 830 const MCInstrDesc &MCID = MI.getDesc(); 831 uint64_t Flags = MCID.TSFlags; 832 return (Flags & ARMII::RetainsPreviousHalfElement) != 0; 833 } 834 835 // Some MVE instructions read from the top/bottom halves of their operand(s) 836 // and generate a vector result with result elements that are double the 837 // width of the input. 838 static bool producesDoubleWidthResult(const MachineInstr &MI) { 839 const MCInstrDesc &MCID = MI.getDesc(); 840 uint64_t Flags = MCID.TSFlags; 841 return (Flags & ARMII::DoubleWidthResult) != 0; 842 } 843 844 static bool isHorizontalReduction(const MachineInstr &MI) { 845 const MCInstrDesc &MCID = MI.getDesc(); 846 uint64_t Flags = MCID.TSFlags; 847 return (Flags & ARMII::HorizontalReduction) != 0; 848 } 849 850 // Can this instruction generate a non-zero result when given only zeroed 851 // operands? This allows us to know that, given operands with false bytes 852 // zeroed by masked loads, that the result will also contain zeros in those 853 // bytes. 854 static bool canGenerateNonZeros(const MachineInstr &MI) { 855 856 // Check for instructions which can write into a larger element size, 857 // possibly writing into a previous zero'd lane. 858 if (producesDoubleWidthResult(MI)) 859 return true; 860 861 switch (MI.getOpcode()) { 862 default: 863 break; 864 // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow 865 // fp16 -> fp32 vector conversions. 866 // Instructions that perform a NOT will generate 1s from 0s. 867 case ARM::MVE_VMVN: 868 case ARM::MVE_VORN: 869 // Count leading zeros will do just that! 870 case ARM::MVE_VCLZs8: 871 case ARM::MVE_VCLZs16: 872 case ARM::MVE_VCLZs32: 873 return true; 874 } 875 return false; 876 } 877 878 // Look at its register uses to see if it only can only receive zeros 879 // into its false lanes which would then produce zeros. Also check that 880 // the output register is also defined by an FalseLanesZero instruction 881 // so that if tail-predication happens, the lanes that aren't updated will 882 // still be zeros. 883 static bool producesFalseLanesZero(MachineInstr &MI, 884 const TargetRegisterClass *QPRs, 885 const ReachingDefAnalysis &RDA, 886 InstSet &FalseLanesZero) { 887 if (canGenerateNonZeros(MI)) 888 return false; 889 890 bool isPredicated = isVectorPredicated(&MI); 891 // Predicated loads will write zeros to the falsely predicated bytes of the 892 // destination register. 893 if (MI.mayLoad()) 894 return isPredicated; 895 896 auto IsZeroInit = [](MachineInstr *Def) { 897 return !isVectorPredicated(Def) && 898 Def->getOpcode() == ARM::MVE_VMOVimmi32 && 899 Def->getOperand(1).getImm() == 0; 900 }; 901 902 bool AllowScalars = isHorizontalReduction(MI); 903 for (auto &MO : MI.operands()) { 904 if (!MO.isReg() || !MO.getReg()) 905 continue; 906 if (!isRegInClass(MO, QPRs) && AllowScalars) 907 continue; 908 // Skip the lr predicate reg 909 int PIdx = llvm::findFirstVPTPredOperandIdx(MI); 910 if (PIdx != -1 && (int)MI.getOperandNo(&MO) == PIdx + 2) 911 continue; 912 913 // Check that this instruction will produce zeros in its false lanes: 914 // - If it only consumes false lanes zero or constant 0 (vmov #0) 915 // - If it's predicated, it only matters that it's def register already has 916 // false lane zeros, so we can ignore the uses. 917 SmallPtrSet<MachineInstr *, 2> Defs; 918 RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs); 919 if (Defs.empty()) 920 return false; 921 for (auto *Def : Defs) { 922 if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def)) 923 continue; 924 if (MO.isUse() && isPredicated) 925 continue; 926 return false; 927 } 928 } 929 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI); 930 return true; 931 } 932 933 bool LowOverheadLoop::ValidateLiveOuts() { 934 // We want to find out if the tail-predicated version of this loop will 935 // produce the same values as the loop in its original form. For this to 936 // be true, the newly inserted implicit predication must not change the 937 // the (observable) results. 938 // We're doing this because many instructions in the loop will not be 939 // predicated and so the conversion from VPT predication to tail-predication 940 // can result in different values being produced; due to the tail-predication 941 // preventing many instructions from updating their falsely predicated 942 // lanes. This analysis assumes that all the instructions perform lane-wise 943 // operations and don't perform any exchanges. 944 // A masked load, whether through VPT or tail predication, will write zeros 945 // to any of the falsely predicated bytes. So, from the loads, we know that 946 // the false lanes are zeroed and here we're trying to track that those false 947 // lanes remain zero, or where they change, the differences are masked away 948 // by their user(s). 949 // All MVE stores have to be predicated, so we know that any predicate load 950 // operands, or stored results are equivalent already. Other explicitly 951 // predicated instructions will perform the same operation in the original 952 // loop and the tail-predicated form too. Because of this, we can insert 953 // loads, stores and other predicated instructions into our Predicated 954 // set and build from there. 955 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID); 956 SetVector<MachineInstr *> FalseLanesUnknown; 957 SmallPtrSet<MachineInstr *, 4> FalseLanesZero; 958 SmallPtrSet<MachineInstr *, 4> Predicated; 959 MachineBasicBlock *Header = ML.getHeader(); 960 961 LLVM_DEBUG(dbgs() << "ARM Loops: Validating Live outs\n"); 962 963 for (auto &MI : *Header) { 964 if (!shouldInspect(MI)) 965 continue; 966 967 if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode())) 968 continue; 969 970 bool isPredicated = isVectorPredicated(&MI); 971 bool retainsOrReduces = 972 retainsPreviousHalfElement(MI) || isHorizontalReduction(MI); 973 974 if (isPredicated) 975 Predicated.insert(&MI); 976 if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero)) 977 FalseLanesZero.insert(&MI); 978 else if (MI.getNumDefs() == 0) 979 continue; 980 else if (!isPredicated && retainsOrReduces) { 981 LLVM_DEBUG(dbgs() << " Unpredicated instruction that retainsOrReduces: " << MI); 982 return false; 983 } else if (!isPredicated && MI.getOpcode() != ARM::MQPRCopy) 984 FalseLanesUnknown.insert(&MI); 985 } 986 987 LLVM_DEBUG({ 988 dbgs() << " Predicated:\n"; 989 for (auto *I : Predicated) 990 dbgs() << " " << *I; 991 dbgs() << " FalseLanesZero:\n"; 992 for (auto *I : FalseLanesZero) 993 dbgs() << " " << *I; 994 dbgs() << " FalseLanesUnknown:\n"; 995 for (auto *I : FalseLanesUnknown) 996 dbgs() << " " << *I; 997 }); 998 999 auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO, 1000 SmallPtrSetImpl<MachineInstr *> &Predicated) { 1001 SmallPtrSet<MachineInstr *, 2> Uses; 1002 RDA.getGlobalUses(MI, MO.getReg().asMCReg(), Uses); 1003 for (auto *Use : Uses) { 1004 if (Use != MI && !Predicated.count(Use)) 1005 return false; 1006 } 1007 return true; 1008 }; 1009 1010 // Visit the unknowns in reverse so that we can start at the values being 1011 // stored and then we can work towards the leaves, hopefully adding more 1012 // instructions to Predicated. Successfully terminating the loop means that 1013 // all the unknown values have to found to be masked by predicated user(s). 1014 // For any unpredicated values, we store them in NonPredicated so that we 1015 // can later check whether these form a reduction. 1016 SmallPtrSet<MachineInstr*, 2> NonPredicated; 1017 for (auto *MI : reverse(FalseLanesUnknown)) { 1018 for (auto &MO : MI->operands()) { 1019 if (!isRegInClass(MO, QPRs) || !MO.isDef()) 1020 continue; 1021 if (!HasPredicatedUsers(MI, MO, Predicated)) { 1022 LLVM_DEBUG(dbgs() << " Found an unknown def of : " 1023 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI); 1024 NonPredicated.insert(MI); 1025 break; 1026 } 1027 } 1028 // Any unknown false lanes have been masked away by the user(s). 1029 if (!NonPredicated.contains(MI)) 1030 Predicated.insert(MI); 1031 } 1032 1033 SmallPtrSet<MachineInstr *, 2> LiveOutMIs; 1034 SmallVector<MachineBasicBlock *, 2> ExitBlocks; 1035 ML.getExitBlocks(ExitBlocks); 1036 assert(ML.getNumBlocks() == 1 && "Expected single block loop!"); 1037 assert(ExitBlocks.size() == 1 && "Expected a single exit block"); 1038 MachineBasicBlock *ExitBB = ExitBlocks.front(); 1039 for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) { 1040 // TODO: Instead of blocking predication, we could move the vctp to the exit 1041 // block and calculate it's operand there in or the preheader. 1042 if (RegMask.PhysReg == ARM::VPR) { 1043 LLVM_DEBUG(dbgs() << " VPR is live in to the exit block."); 1044 return false; 1045 } 1046 // Check Q-regs that are live in the exit blocks. We don't collect scalars 1047 // because they won't be affected by lane predication. 1048 if (QPRs->contains(RegMask.PhysReg)) 1049 if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg)) 1050 LiveOutMIs.insert(MI); 1051 } 1052 1053 // We've already validated that any VPT predication within the loop will be 1054 // equivalent when we perform the predication transformation; so we know that 1055 // any VPT predicated instruction is predicated upon VCTP. Any live-out 1056 // instruction needs to be predicated, so check this here. The instructions 1057 // in NonPredicated have been found to be a reduction that we can ensure its 1058 // legality. Any MQPRCopy found will need to validate its input as if it was 1059 // live out. 1060 SmallVector<MachineInstr *> Worklist(LiveOutMIs.begin(), LiveOutMIs.end()); 1061 while (!Worklist.empty()) { 1062 MachineInstr *MI = Worklist.pop_back_val(); 1063 if (MI->getOpcode() == ARM::MQPRCopy) { 1064 VMOVCopies.insert(MI); 1065 MachineInstr *CopySrc = 1066 RDA.getUniqueReachingMIDef(MI, MI->getOperand(1).getReg()); 1067 if (CopySrc) 1068 Worklist.push_back(CopySrc); 1069 } else if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) { 1070 LLVM_DEBUG(dbgs() << " Unable to handle live out: " << *MI); 1071 VMOVCopies.clear(); 1072 return false; 1073 } 1074 } 1075 1076 return true; 1077 } 1078 1079 void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) { 1080 if (Revert) 1081 return; 1082 1083 // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP] 1084 // can only jump back. 1085 auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End, 1086 ARMBasicBlockUtils *BBUtils, MachineLoop &ML) { 1087 MachineBasicBlock *TgtBB = End->getOpcode() == ARM::t2LoopEnd 1088 ? End->getOperand(1).getMBB() 1089 : End->getOperand(2).getMBB(); 1090 // TODO Maybe there's cases where the target doesn't have to be the header, 1091 // but for now be safe and revert. 1092 if (TgtBB != ML.getHeader()) { 1093 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n"); 1094 return false; 1095 } 1096 1097 // The WLS and LE instructions have 12-bits for the label offset. WLS 1098 // requires a positive offset, while LE uses negative. 1099 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) || 1100 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) { 1101 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); 1102 return false; 1103 } 1104 1105 if (isWhileLoopStart(*Start)) { 1106 MachineBasicBlock *TargetBB = getWhileLoopStartTargetBB(*Start); 1107 if (BBUtils->getOffsetOf(Start) > BBUtils->getOffsetOf(TargetBB) || 1108 !BBUtils->isBBInRange(Start, TargetBB, 4094)) { 1109 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); 1110 return false; 1111 } 1112 } 1113 return true; 1114 }; 1115 1116 StartInsertPt = MachineBasicBlock::iterator(Start); 1117 StartInsertBB = Start->getParent(); 1118 LLVM_DEBUG(dbgs() << "ARM Loops: Will insert LoopStart at " 1119 << *StartInsertPt); 1120 1121 Revert = !ValidateRanges(Start, End, BBUtils, ML); 1122 CannotTailPredicate = !ValidateTailPredicate(); 1123 } 1124 1125 bool LowOverheadLoop::AddVCTP(MachineInstr *MI) { 1126 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI); 1127 if (VCTPs.empty()) { 1128 VCTPs.push_back(MI); 1129 return true; 1130 } 1131 1132 // If we find another VCTP, check whether it uses the same value as the main VCTP. 1133 // If it does, store it in the VCTPs set, else refuse it. 1134 MachineInstr *Prev = VCTPs.back(); 1135 if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) || 1136 !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg().asMCReg())) { 1137 LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching " 1138 "definition from the main VCTP"); 1139 return false; 1140 } 1141 VCTPs.push_back(MI); 1142 return true; 1143 } 1144 1145 static bool ValidateMVEStore(MachineInstr *MI, MachineLoop *ML) { 1146 1147 auto GetFrameIndex = [](MachineMemOperand *Operand) { 1148 const PseudoSourceValue *PseudoValue = Operand->getPseudoValue(); 1149 if (PseudoValue && PseudoValue->kind() == PseudoSourceValue::FixedStack) { 1150 if (const auto *FS = dyn_cast<FixedStackPseudoSourceValue>(PseudoValue)) { 1151 return FS->getFrameIndex(); 1152 } 1153 } 1154 return -1; 1155 }; 1156 1157 auto IsStackOp = [GetFrameIndex](MachineInstr *I) { 1158 switch (I->getOpcode()) { 1159 case ARM::MVE_VSTRWU32: 1160 case ARM::MVE_VLDRWU32: { 1161 return I->getOperand(1).getReg() == ARM::SP && 1162 I->memoperands().size() == 1 && 1163 GetFrameIndex(I->memoperands().front()) >= 0; 1164 } 1165 default: 1166 return false; 1167 } 1168 }; 1169 1170 // An unpredicated vector register spill is allowed if all of the uses of the 1171 // stack slot are within the loop 1172 if (MI->getOpcode() != ARM::MVE_VSTRWU32 || !IsStackOp(MI)) 1173 return false; 1174 1175 // Search all blocks after the loop for accesses to the same stack slot. 1176 // ReachingDefAnalysis doesn't work for sp as it relies on registers being 1177 // live-out (which sp never is) to know what blocks to look in 1178 if (MI->memoperands().size() == 0) 1179 return false; 1180 int FI = GetFrameIndex(MI->memoperands().front()); 1181 1182 auto &FrameInfo = MI->getParent()->getParent()->getFrameInfo(); 1183 if (FI == -1 || !FrameInfo.isSpillSlotObjectIndex(FI)) 1184 return false; 1185 1186 SmallVector<MachineBasicBlock *> Frontier; 1187 ML->getExitBlocks(Frontier); 1188 SmallPtrSet<MachineBasicBlock *, 4> Visited{MI->getParent()}; 1189 unsigned Idx = 0; 1190 while (Idx < Frontier.size()) { 1191 MachineBasicBlock *BB = Frontier[Idx]; 1192 bool LookAtSuccessors = true; 1193 for (auto &I : *BB) { 1194 if (!IsStackOp(&I) || I.memoperands().size() == 0) 1195 continue; 1196 if (GetFrameIndex(I.memoperands().front()) != FI) 1197 continue; 1198 // If this block has a store to the stack slot before any loads then we 1199 // can ignore the block 1200 if (I.getOpcode() == ARM::MVE_VSTRWU32) { 1201 LookAtSuccessors = false; 1202 break; 1203 } 1204 // If the store and the load are using the same stack slot then the 1205 // store isn't valid for tail predication 1206 if (I.getOpcode() == ARM::MVE_VLDRWU32) 1207 return false; 1208 } 1209 1210 if (LookAtSuccessors) { 1211 for (auto *Succ : BB->successors()) { 1212 if (!Visited.contains(Succ) && !is_contained(Frontier, Succ)) 1213 Frontier.push_back(Succ); 1214 } 1215 } 1216 Visited.insert(BB); 1217 Idx++; 1218 } 1219 1220 return true; 1221 } 1222 1223 bool LowOverheadLoop::ValidateMVEInst(MachineInstr *MI) { 1224 if (CannotTailPredicate) 1225 return false; 1226 1227 if (!shouldInspect(*MI)) 1228 return true; 1229 1230 if (MI->getOpcode() == ARM::MVE_VPSEL || 1231 MI->getOpcode() == ARM::MVE_VPNOT) { 1232 // TODO: Allow VPSEL and VPNOT, we currently cannot because: 1233 // 1) It will use the VPR as a predicate operand, but doesn't have to be 1234 // instead a VPT block, which means we can assert while building up 1235 // the VPT block because we don't find another VPT or VPST to being a new 1236 // one. 1237 // 2) VPSEL still requires a VPR operand even after tail predicating, 1238 // which means we can't remove it unless there is another 1239 // instruction, such as vcmp, that can provide the VPR def. 1240 return false; 1241 } 1242 1243 // Record all VCTPs and check that they're equivalent to one another. 1244 if (isVCTP(MI) && !AddVCTP(MI)) 1245 return false; 1246 1247 // Inspect uses first so that any instructions that alter the VPR don't 1248 // alter the predicate upon themselves. 1249 const MCInstrDesc &MCID = MI->getDesc(); 1250 bool IsUse = false; 1251 unsigned LastOpIdx = MI->getNumOperands() - 1; 1252 for (auto &Op : enumerate(reverse(MCID.operands()))) { 1253 const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index()); 1254 if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR) 1255 continue; 1256 1257 if (ARM::isVpred(Op.value().OperandType)) { 1258 VPTState::addInst(MI); 1259 IsUse = true; 1260 } else if (MI->getOpcode() != ARM::MVE_VPST) { 1261 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); 1262 return false; 1263 } 1264 } 1265 1266 // If we find an instruction that has been marked as not valid for tail 1267 // predication, only allow the instruction if it's contained within a valid 1268 // VPT block. 1269 bool RequiresExplicitPredication = 1270 (MCID.TSFlags & ARMII::ValidForTailPredication) == 0; 1271 if (isDomainMVE(MI) && RequiresExplicitPredication) { 1272 if (MI->getOpcode() == ARM::MQPRCopy) 1273 return true; 1274 if (!IsUse && producesDoubleWidthResult(*MI)) { 1275 DoubleWidthResultInstrs.insert(MI); 1276 return true; 1277 } 1278 1279 LLVM_DEBUG(if (!IsUse) dbgs() 1280 << "ARM Loops: Can't tail predicate: " << *MI); 1281 return IsUse; 1282 } 1283 1284 // If the instruction is already explicitly predicated, then the conversion 1285 // will be fine, but ensure that all store operations are predicated. 1286 if (MI->mayStore() && !ValidateMVEStore(MI, &ML)) 1287 return IsUse; 1288 1289 // If this instruction defines the VPR, update the predicate for the 1290 // proceeding instructions. 1291 if (isVectorPredicate(MI)) { 1292 // Clear the existing predicate when we're not in VPT Active state, 1293 // otherwise we add to it. 1294 if (!isVectorPredicated(MI)) 1295 VPTState::resetPredicate(MI); 1296 else 1297 VPTState::addPredicate(MI); 1298 } 1299 1300 // Finally once the predicate has been modified, we can start a new VPT 1301 // block if necessary. 1302 if (isVPTOpcode(MI->getOpcode())) 1303 VPTState::CreateVPTBlock(MI); 1304 1305 return true; 1306 } 1307 1308 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { 1309 const ARMSubtarget &ST = mf.getSubtarget<ARMSubtarget>(); 1310 if (!ST.hasLOB()) 1311 return false; 1312 1313 MF = &mf; 1314 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); 1315 1316 MLI = &getAnalysis<MachineLoopInfo>(); 1317 RDA = &getAnalysis<ReachingDefAnalysis>(); 1318 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); 1319 MRI = &MF->getRegInfo(); 1320 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo()); 1321 TRI = ST.getRegisterInfo(); 1322 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF)); 1323 BBUtils->computeAllBlockSizes(); 1324 BBUtils->adjustBBOffsetsAfter(&MF->front()); 1325 1326 bool Changed = false; 1327 for (auto *ML : *MLI) { 1328 if (ML->isOutermost()) 1329 Changed |= ProcessLoop(ML); 1330 } 1331 Changed |= RevertNonLoops(); 1332 return Changed; 1333 } 1334 1335 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { 1336 1337 bool Changed = false; 1338 1339 // Process inner loops first. 1340 for (MachineLoop *L : *ML) 1341 Changed |= ProcessLoop(L); 1342 1343 LLVM_DEBUG({ 1344 dbgs() << "ARM Loops: Processing loop containing:\n"; 1345 if (auto *Preheader = ML->getLoopPreheader()) 1346 dbgs() << " - Preheader: " << printMBBReference(*Preheader) << "\n"; 1347 else if (auto *Preheader = MLI->findLoopPreheader(ML, true, true)) 1348 dbgs() << " - Preheader: " << printMBBReference(*Preheader) << "\n"; 1349 for (auto *MBB : ML->getBlocks()) 1350 dbgs() << " - Block: " << printMBBReference(*MBB) << "\n"; 1351 }); 1352 1353 // Search the given block for a loop start instruction. If one isn't found, 1354 // and there's only one predecessor block, search that one too. 1355 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart = 1356 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { 1357 for (auto &MI : *MBB) { 1358 if (isLoopStart(MI)) 1359 return &MI; 1360 } 1361 if (MBB->pred_size() == 1) 1362 return SearchForStart(*MBB->pred_begin()); 1363 return nullptr; 1364 }; 1365 1366 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII); 1367 // Search the preheader for the start intrinsic. 1368 // FIXME: I don't see why we shouldn't be supporting multiple predecessors 1369 // with potentially multiple set.loop.iterations, so we need to enable this. 1370 if (LoLoop.Preheader) 1371 LoLoop.Start = SearchForStart(LoLoop.Preheader); 1372 else 1373 return Changed; 1374 1375 // Find the low-overhead loop components and decide whether or not to fall 1376 // back to a normal loop. Also look for a vctp instructions and decide 1377 // whether we can convert that predicate using tail predication. 1378 for (auto *MBB : reverse(ML->getBlocks())) { 1379 for (auto &MI : *MBB) { 1380 if (MI.isDebugValue()) 1381 continue; 1382 else if (MI.getOpcode() == ARM::t2LoopDec) 1383 LoLoop.Dec = &MI; 1384 else if (MI.getOpcode() == ARM::t2LoopEnd) 1385 LoLoop.End = &MI; 1386 else if (MI.getOpcode() == ARM::t2LoopEndDec) 1387 LoLoop.End = LoLoop.Dec = &MI; 1388 else if (isLoopStart(MI)) 1389 LoLoop.Start = &MI; 1390 else if (MI.getDesc().isCall()) { 1391 // TODO: Though the call will require LE to execute again, does this 1392 // mean we should revert? Always executing LE hopefully should be 1393 // faster than performing a sub,cmp,br or even subs,br. 1394 LoLoop.Revert = true; 1395 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); 1396 } else { 1397 // Record VPR defs and build up their corresponding vpt blocks. 1398 // Check we know how to tail predicate any mve instructions. 1399 LoLoop.AnalyseMVEInst(&MI); 1400 } 1401 } 1402 } 1403 1404 LLVM_DEBUG(LoLoop.dump()); 1405 if (!LoLoop.FoundAllComponents()) { 1406 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); 1407 return Changed; 1408 } 1409 1410 assert(LoLoop.Start->getOpcode() != ARM::t2WhileLoopStart && 1411 "Expected t2WhileLoopStart to be removed before regalloc!"); 1412 1413 // Check that the only instruction using LoopDec is LoopEnd. This can only 1414 // happen when the Dec and End are separate, not a single t2LoopEndDec. 1415 // TODO: Check for copy chains that really have no effect. 1416 if (LoLoop.Dec != LoLoop.End) { 1417 SmallPtrSet<MachineInstr *, 2> Uses; 1418 RDA->getReachingLocalUses(LoLoop.Dec, MCRegister::from(ARM::LR), Uses); 1419 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) { 1420 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n"); 1421 LoLoop.Revert = true; 1422 } 1423 } 1424 LoLoop.Validate(BBUtils.get()); 1425 Expand(LoLoop); 1426 return true; 1427 } 1428 1429 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a 1430 // beq that branches to the exit branch. 1431 // TODO: We could also try to generate a cbz if the value in LR is also in 1432 // another low register. 1433 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { 1434 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); 1435 MachineBasicBlock *DestBB = getWhileLoopStartTargetBB(*MI); 1436 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1437 ARM::tBcc : ARM::t2Bcc; 1438 1439 RevertWhileLoopStartLR(MI, TII, BrOpc); 1440 } 1441 1442 void ARMLowOverheadLoops::RevertDo(MachineInstr *MI) const { 1443 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to mov: " << *MI); 1444 RevertDoLoopStart(MI, TII); 1445 } 1446 1447 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const { 1448 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); 1449 MachineBasicBlock *MBB = MI->getParent(); 1450 SmallPtrSet<MachineInstr*, 1> Ignore; 1451 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) { 1452 if (I->getOpcode() == ARM::t2LoopEnd) { 1453 Ignore.insert(&*I); 1454 break; 1455 } 1456 } 1457 1458 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. 1459 bool SetFlags = 1460 RDA->isSafeToDefRegAt(MI, MCRegister::from(ARM::CPSR), Ignore); 1461 1462 llvm::RevertLoopDec(MI, TII, SetFlags); 1463 return SetFlags; 1464 } 1465 1466 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1467 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { 1468 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); 1469 1470 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1471 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1472 ARM::tBcc : ARM::t2Bcc; 1473 1474 llvm::RevertLoopEnd(MI, TII, BrOpc, SkipCmp); 1475 } 1476 1477 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1478 void ARMLowOverheadLoops::RevertLoopEndDec(MachineInstr *MI) const { 1479 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to subs, br: " << *MI); 1480 assert(MI->getOpcode() == ARM::t2LoopEndDec && "Expected a t2LoopEndDec!"); 1481 MachineBasicBlock *MBB = MI->getParent(); 1482 1483 MachineInstrBuilder MIB = 1484 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::t2SUBri)); 1485 MIB.addDef(ARM::LR); 1486 MIB.add(MI->getOperand(1)); 1487 MIB.addImm(1); 1488 MIB.addImm(ARMCC::AL); 1489 MIB.addReg(ARM::NoRegister); 1490 MIB.addReg(ARM::CPSR); 1491 MIB->getOperand(5).setIsDef(true); 1492 1493 MachineBasicBlock *DestBB = MI->getOperand(2).getMBB(); 1494 unsigned BrOpc = 1495 BBUtils->isBBInRange(MI, DestBB, 254) ? ARM::tBcc : ARM::t2Bcc; 1496 1497 // Create bne 1498 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1499 MIB.add(MI->getOperand(2)); // branch target 1500 MIB.addImm(ARMCC::NE); // condition code 1501 MIB.addReg(ARM::CPSR); 1502 1503 MI->eraseFromParent(); 1504 } 1505 1506 // Perform dead code elimation on the loop iteration count setup expression. 1507 // If we are tail-predicating, the number of elements to be processed is the 1508 // operand of the VCTP instruction in the vector body, see getCount(), which is 1509 // register $r3 in this example: 1510 // 1511 // $lr = big-itercount-expression 1512 // .. 1513 // $lr = t2DoLoopStart renamable $lr 1514 // vector.body: 1515 // .. 1516 // $vpr = MVE_VCTP32 renamable $r3 1517 // renamable $lr = t2LoopDec killed renamable $lr, 1 1518 // t2LoopEnd renamable $lr, %vector.body 1519 // tB %end 1520 // 1521 // What we would like achieve here is to replace the do-loop start pseudo 1522 // instruction t2DoLoopStart with: 1523 // 1524 // $lr = MVE_DLSTP_32 killed renamable $r3 1525 // 1526 // Thus, $r3 which defines the number of elements, is written to $lr, 1527 // and then we want to delete the whole chain that used to define $lr, 1528 // see the comment below how this chain could look like. 1529 // 1530 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) { 1531 if (!LoLoop.IsTailPredicationLegal()) 1532 return; 1533 1534 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n"); 1535 1536 MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 1); 1537 if (!Def) { 1538 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n"); 1539 return; 1540 } 1541 1542 // Collect and remove the users of iteration count. 1543 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec, 1544 LoLoop.End }; 1545 if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed)) 1546 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n"); 1547 } 1548 1549 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { 1550 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n"); 1551 // When using tail-predication, try to delete the dead code that was used to 1552 // calculate the number of loop iterations. 1553 IterationCountDCE(LoLoop); 1554 1555 MachineBasicBlock::iterator InsertPt = LoLoop.StartInsertPt; 1556 MachineInstr *Start = LoLoop.Start; 1557 MachineBasicBlock *MBB = LoLoop.StartInsertBB; 1558 unsigned Opc = LoLoop.getStartOpcode(); 1559 MachineOperand &Count = LoLoop.getLoopStartOperand(); 1560 1561 // A DLS lr, lr we needn't emit 1562 MachineInstr* NewStart; 1563 if (!DisableOmitDLS && Opc == ARM::t2DLS && Count.isReg() && 1564 Count.getReg() == ARM::LR) { 1565 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't insert start: DLS lr, lr"); 1566 NewStart = nullptr; 1567 } else { 1568 MachineInstrBuilder MIB = 1569 BuildMI(*MBB, InsertPt, Start->getDebugLoc(), TII->get(Opc)); 1570 1571 MIB.addDef(ARM::LR); 1572 MIB.add(Count); 1573 if (isWhileLoopStart(*Start)) 1574 MIB.addMBB(getWhileLoopStartTargetBB(*Start)); 1575 1576 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); 1577 NewStart = &*MIB; 1578 } 1579 1580 LoLoop.ToRemove.insert(Start); 1581 return NewStart; 1582 } 1583 1584 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { 1585 auto RemovePredicate = [](MachineInstr *MI) { 1586 if (MI->isDebugInstr()) 1587 return; 1588 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); 1589 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 1590 assert(PIdx >= 1 && "Trying to unpredicate a non-predicated instruction"); 1591 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then && 1592 "Expected Then predicate!"); 1593 MI->getOperand(PIdx).setImm(ARMVCC::None); 1594 MI->getOperand(PIdx + 1).setReg(0); 1595 }; 1596 1597 for (auto &Block : LoLoop.getVPTBlocks()) { 1598 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 1599 1600 auto ReplaceVCMPWithVPT = [&](MachineInstr *&TheVCMP, MachineInstr *At) { 1601 assert(TheVCMP && "Replacing a removed or non-existent VCMP"); 1602 // Replace the VCMP with a VPT 1603 MachineInstrBuilder MIB = 1604 BuildMI(*At->getParent(), At, At->getDebugLoc(), 1605 TII->get(VCMPOpcodeToVPT(TheVCMP->getOpcode()))); 1606 MIB.addImm(ARMVCC::Then); 1607 // Register one 1608 MIB.add(TheVCMP->getOperand(1)); 1609 // Register two 1610 MIB.add(TheVCMP->getOperand(2)); 1611 // The comparison code, e.g. ge, eq, lt 1612 MIB.add(TheVCMP->getOperand(3)); 1613 LLVM_DEBUG(dbgs() << "ARM Loops: Combining with VCMP to VPT: " << *MIB); 1614 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1615 LoLoop.ToRemove.insert(TheVCMP); 1616 TheVCMP = nullptr; 1617 }; 1618 1619 if (VPTState::isEntryPredicatedOnVCTP(Block, /*exclusive*/ true)) { 1620 MachineInstr *VPST = Insts.front(); 1621 if (VPTState::hasUniformPredicate(Block)) { 1622 // A vpt block starting with VPST, is only predicated upon vctp and has no 1623 // internal vpr defs: 1624 // - Remove vpst. 1625 // - Unpredicate the remaining instructions. 1626 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1627 for (unsigned i = 1; i < Insts.size(); ++i) 1628 RemovePredicate(Insts[i]); 1629 } else { 1630 // The VPT block has a non-uniform predicate but it uses a vpst and its 1631 // entry is guarded only by a vctp, which means we: 1632 // - Need to remove the original vpst. 1633 // - Then need to unpredicate any following instructions, until 1634 // we come across the divergent vpr def. 1635 // - Insert a new vpst to predicate the instruction(s) that following 1636 // the divergent vpr def. 1637 MachineInstr *Divergent = VPTState::getDivergent(Block); 1638 MachineBasicBlock *MBB = Divergent->getParent(); 1639 auto DivergentNext = ++MachineBasicBlock::iterator(Divergent); 1640 while (DivergentNext != MBB->end() && DivergentNext->isDebugInstr()) 1641 ++DivergentNext; 1642 1643 bool DivergentNextIsPredicated = 1644 DivergentNext != MBB->end() && 1645 getVPTInstrPredicate(*DivergentNext) != ARMVCC::None; 1646 1647 for (auto I = ++MachineBasicBlock::iterator(VPST), E = DivergentNext; 1648 I != E; ++I) 1649 RemovePredicate(&*I); 1650 1651 // Check if the instruction defining vpr is a vcmp so it can be combined 1652 // with the VPST This should be the divergent instruction 1653 MachineInstr *VCMP = 1654 VCMPOpcodeToVPT(Divergent->getOpcode()) != 0 ? Divergent : nullptr; 1655 1656 if (DivergentNextIsPredicated) { 1657 // Insert a VPST at the divergent only if the next instruction 1658 // would actually use it. A VCMP following a VPST can be 1659 // merged into a VPT so do that instead if the VCMP exists. 1660 if (!VCMP) { 1661 // Create a VPST (with a null mask for now, we'll recompute it 1662 // later) 1663 MachineInstrBuilder MIB = 1664 BuildMI(*Divergent->getParent(), Divergent, 1665 Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST)); 1666 MIB.addImm(0); 1667 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); 1668 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1669 } else { 1670 // No RDA checks are necessary here since the VPST would have been 1671 // directly after the VCMP 1672 ReplaceVCMPWithVPT(VCMP, VCMP); 1673 } 1674 } 1675 } 1676 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1677 LoLoop.ToRemove.insert(VPST); 1678 } else if (Block.containsVCTP()) { 1679 // The vctp will be removed, so either the entire block will be dead or 1680 // the block mask of the vp(s)t will need to be recomputed. 1681 MachineInstr *VPST = Insts.front(); 1682 if (Block.size() == 2) { 1683 assert(VPST->getOpcode() == ARM::MVE_VPST && 1684 "Found a VPST in an otherwise empty vpt block"); 1685 LoLoop.ToRemove.insert(VPST); 1686 } else 1687 LoLoop.BlockMasksToRecompute.insert(VPST); 1688 } else if (Insts.front()->getOpcode() == ARM::MVE_VPST) { 1689 // If this block starts with a VPST then attempt to merge it with the 1690 // preceeding un-merged VCMP into a VPT. This VCMP comes from a VPT 1691 // block that no longer exists 1692 MachineInstr *VPST = Insts.front(); 1693 auto Next = ++MachineBasicBlock::iterator(VPST); 1694 assert(getVPTInstrPredicate(*Next) != ARMVCC::None && 1695 "The instruction after a VPST must be predicated"); 1696 (void)Next; 1697 MachineInstr *VprDef = RDA->getUniqueReachingMIDef(VPST, ARM::VPR); 1698 if (VprDef && VCMPOpcodeToVPT(VprDef->getOpcode()) && 1699 !LoLoop.ToRemove.contains(VprDef)) { 1700 MachineInstr *VCMP = VprDef; 1701 // The VCMP and VPST can only be merged if the VCMP's operands will have 1702 // the same values at the VPST. 1703 // If any of the instructions between the VCMP and VPST are predicated 1704 // then a different code path is expected to have merged the VCMP and 1705 // VPST already. 1706 if (std::none_of(++MachineBasicBlock::iterator(VCMP), 1707 MachineBasicBlock::iterator(VPST), hasVPRUse) && 1708 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(1).getReg()) && 1709 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(2).getReg())) { 1710 ReplaceVCMPWithVPT(VCMP, VPST); 1711 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1712 LoLoop.ToRemove.insert(VPST); 1713 } 1714 } 1715 } 1716 } 1717 1718 LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end()); 1719 } 1720 1721 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { 1722 1723 // Combine the LoopDec and LoopEnd instructions into LE(TP). 1724 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { 1725 MachineInstr *End = LoLoop.End; 1726 MachineBasicBlock *MBB = End->getParent(); 1727 unsigned Opc = LoLoop.IsTailPredicationLegal() ? 1728 ARM::MVE_LETP : ARM::t2LEUpdate; 1729 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), 1730 TII->get(Opc)); 1731 MIB.addDef(ARM::LR); 1732 unsigned Off = LoLoop.Dec == LoLoop.End ? 1 : 0; 1733 MIB.add(End->getOperand(Off + 0)); 1734 MIB.add(End->getOperand(Off + 1)); 1735 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); 1736 LoLoop.ToRemove.insert(LoLoop.Dec); 1737 LoLoop.ToRemove.insert(End); 1738 return &*MIB; 1739 }; 1740 1741 // TODO: We should be able to automatically remove these branches before we 1742 // get here - probably by teaching analyzeBranch about the pseudo 1743 // instructions. 1744 // If there is an unconditional branch, after I, that just branches to the 1745 // next block, remove it. 1746 auto RemoveDeadBranch = [](MachineInstr *I) { 1747 MachineBasicBlock *BB = I->getParent(); 1748 MachineInstr *Terminator = &BB->instr_back(); 1749 if (Terminator->isUnconditionalBranch() && I != Terminator) { 1750 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); 1751 if (BB->isLayoutSuccessor(Succ)) { 1752 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); 1753 Terminator->eraseFromParent(); 1754 } 1755 } 1756 }; 1757 1758 // And VMOVCopies need to become 2xVMOVD for tail predication to be valid. 1759 // Anything other MQPRCopy can be converted to MVE_VORR later on. 1760 auto ExpandVMOVCopies = [this](SmallPtrSet<MachineInstr *, 4> &VMOVCopies) { 1761 for (auto *MI : VMOVCopies) { 1762 LLVM_DEBUG(dbgs() << "Converting copy to VMOVD: " << *MI); 1763 assert(MI->getOpcode() == ARM::MQPRCopy && "Only expected MQPRCOPY!"); 1764 MachineBasicBlock *MBB = MI->getParent(); 1765 Register Dst = MI->getOperand(0).getReg(); 1766 Register Src = MI->getOperand(1).getReg(); 1767 auto MIB1 = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::VMOVD), 1768 ARM::D0 + (Dst - ARM::Q0) * 2) 1769 .addReg(ARM::D0 + (Src - ARM::Q0) * 2) 1770 .add(predOps(ARMCC::AL)); 1771 (void)MIB1; 1772 LLVM_DEBUG(dbgs() << " into " << *MIB1); 1773 auto MIB2 = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::VMOVD), 1774 ARM::D0 + (Dst - ARM::Q0) * 2 + 1) 1775 .addReg(ARM::D0 + (Src - ARM::Q0) * 2 + 1) 1776 .add(predOps(ARMCC::AL)); 1777 LLVM_DEBUG(dbgs() << " and " << *MIB2); 1778 (void)MIB2; 1779 MI->eraseFromParent(); 1780 } 1781 }; 1782 1783 if (LoLoop.Revert) { 1784 if (isWhileLoopStart(*LoLoop.Start)) 1785 RevertWhile(LoLoop.Start); 1786 else 1787 RevertDo(LoLoop.Start); 1788 if (LoLoop.Dec == LoLoop.End) 1789 RevertLoopEndDec(LoLoop.End); 1790 else 1791 RevertLoopEnd(LoLoop.End, RevertLoopDec(LoLoop.Dec)); 1792 } else { 1793 ExpandVMOVCopies(LoLoop.VMOVCopies); 1794 LoLoop.Start = ExpandLoopStart(LoLoop); 1795 if (LoLoop.Start) 1796 RemoveDeadBranch(LoLoop.Start); 1797 LoLoop.End = ExpandLoopEnd(LoLoop); 1798 RemoveDeadBranch(LoLoop.End); 1799 if (LoLoop.IsTailPredicationLegal()) 1800 ConvertVPTBlocks(LoLoop); 1801 for (auto *I : LoLoop.ToRemove) { 1802 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I); 1803 I->eraseFromParent(); 1804 } 1805 for (auto *I : LoLoop.BlockMasksToRecompute) { 1806 LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I); 1807 recomputeVPTBlockMask(*I); 1808 LLVM_DEBUG(dbgs() << " ... done: " << *I); 1809 } 1810 } 1811 1812 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI); 1813 DFS.ProcessLoop(); 1814 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder(); 1815 for (auto *MBB : PostOrder) { 1816 recomputeLiveIns(*MBB); 1817 // FIXME: For some reason, the live-in print order is non-deterministic for 1818 // our tests and I can't out why... So just sort them. 1819 MBB->sortUniqueLiveIns(); 1820 } 1821 1822 for (auto *MBB : reverse(PostOrder)) 1823 recomputeLivenessFlags(*MBB); 1824 1825 // We've moved, removed and inserted new instructions, so update RDA. 1826 RDA->reset(); 1827 } 1828 1829 bool ARMLowOverheadLoops::RevertNonLoops() { 1830 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); 1831 bool Changed = false; 1832 1833 for (auto &MBB : *MF) { 1834 SmallVector<MachineInstr*, 4> Starts; 1835 SmallVector<MachineInstr*, 4> Decs; 1836 SmallVector<MachineInstr*, 4> Ends; 1837 SmallVector<MachineInstr *, 4> EndDecs; 1838 SmallVector<MachineInstr *, 4> MQPRCopies; 1839 1840 for (auto &I : MBB) { 1841 if (isLoopStart(I)) 1842 Starts.push_back(&I); 1843 else if (I.getOpcode() == ARM::t2LoopDec) 1844 Decs.push_back(&I); 1845 else if (I.getOpcode() == ARM::t2LoopEnd) 1846 Ends.push_back(&I); 1847 else if (I.getOpcode() == ARM::t2LoopEndDec) 1848 EndDecs.push_back(&I); 1849 else if (I.getOpcode() == ARM::MQPRCopy) 1850 MQPRCopies.push_back(&I); 1851 } 1852 1853 if (Starts.empty() && Decs.empty() && Ends.empty() && EndDecs.empty() && 1854 MQPRCopies.empty()) 1855 continue; 1856 1857 Changed = true; 1858 1859 for (auto *Start : Starts) { 1860 if (isWhileLoopStart(*Start)) 1861 RevertWhile(Start); 1862 else 1863 RevertDo(Start); 1864 } 1865 for (auto *Dec : Decs) 1866 RevertLoopDec(Dec); 1867 1868 for (auto *End : Ends) 1869 RevertLoopEnd(End); 1870 for (auto *End : EndDecs) 1871 RevertLoopEndDec(End); 1872 for (auto *MI : MQPRCopies) { 1873 LLVM_DEBUG(dbgs() << "Converting copy to VORR: " << *MI); 1874 assert(MI->getOpcode() == ARM::MQPRCopy && "Only expected MQPRCOPY!"); 1875 MachineBasicBlock *MBB = MI->getParent(); 1876 auto MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::MVE_VORR), 1877 MI->getOperand(0).getReg()) 1878 .add(MI->getOperand(1)) 1879 .add(MI->getOperand(1)); 1880 addUnpredicatedMveVpredROp(MIB, MI->getOperand(0).getReg()); 1881 MI->eraseFromParent(); 1882 } 1883 } 1884 return Changed; 1885 } 1886 1887 FunctionPass *llvm::createARMLowOverheadLoopsPass() { 1888 return new ARMLowOverheadLoops(); 1889 } 1890