xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMLowOverheadLoops.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo
10 /// instructions into machine operations.
11 /// The expectation is that the loop contains three pseudo instructions:
12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop
13 ///   form should be in the preheader, whereas the while form should be in the
14 ///   preheaders only predecessor.
15 /// - t2LoopDec - placed within in the loop body.
16 /// - t2LoopEnd - the loop latch terminator.
17 ///
18 /// In addition to this, we also look for the presence of the VCTP instruction,
19 /// which determines whether we can generated the tail-predicated low-overhead
20 /// loop form.
21 ///
22 /// Assumptions and Dependencies:
23 /// Low-overhead loops are constructed and executed using a setup instruction:
24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP.
25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range
26 /// but fixed polarity: WLS can only branch forwards and LE can only branch
27 /// backwards. These restrictions mean that this pass is dependent upon block
28 /// layout and block sizes, which is why it's the last pass to run. The same is
29 /// true for ConstantIslands, but this pass does not increase the size of the
30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed
31 /// during the transform and pseudo instructions are replaced by real ones. In
32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce
33 /// multiple instructions for a single pseudo (see RevertWhile and
34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStartLR and t2LoopEnd
35 /// are defined to be as large as this maximum sequence of replacement
36 /// instructions.
37 ///
38 /// A note on VPR.P0 (the lane mask):
39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a
40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks).
41 /// They will simply "and" the result of their calculation with the current
42 /// value of VPR.P0. You can think of it like this:
43 /// \verbatim
44 /// if VPT active:    ; Between a DLSTP/LETP, or for predicated instrs
45 ///   VPR.P0 &= Value
46 /// else
47 ///   VPR.P0 = Value
48 /// \endverbatim
49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always
50 /// fall in the "VPT active" case, so we can consider that all VPR writes by
51 /// one of those instruction is actually a "and".
52 //===----------------------------------------------------------------------===//
53 
54 #include "ARM.h"
55 #include "ARMBaseInstrInfo.h"
56 #include "ARMBaseRegisterInfo.h"
57 #include "ARMBasicBlockInfo.h"
58 #include "ARMSubtarget.h"
59 #include "MVETailPredUtils.h"
60 #include "Thumb2InstrInfo.h"
61 #include "llvm/ADT/SetOperations.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/CodeGen/LivePhysRegs.h"
64 #include "llvm/CodeGen/MachineFrameInfo.h"
65 #include "llvm/CodeGen/MachineFunctionPass.h"
66 #include "llvm/CodeGen/MachineLoopInfo.h"
67 #include "llvm/CodeGen/MachineLoopUtils.h"
68 #include "llvm/CodeGen/MachineRegisterInfo.h"
69 #include "llvm/CodeGen/Passes.h"
70 #include "llvm/CodeGen/ReachingDefAnalysis.h"
71 #include "llvm/MC/MCInstrDesc.h"
72 
73 using namespace llvm;
74 
75 #define DEBUG_TYPE "arm-low-overhead-loops"
76 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass"
77 
78 static cl::opt<bool>
79 DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden,
80     cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"),
81     cl::init(false));
82 
83 static cl::opt<bool>
84     DisableOmitDLS("arm-disable-omit-dls", cl::Hidden,
85                    cl::desc("Disable omitting 'dls lr, lr' instructions"),
86                    cl::init(false));
87 
88 static bool isVectorPredicated(MachineInstr *MI) {
89   int PIdx = llvm::findFirstVPTPredOperandIdx(*MI);
90   return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR;
91 }
92 
93 static bool isVectorPredicate(MachineInstr *MI) {
94   return MI->findRegisterDefOperandIdx(ARM::VPR, /*TRI=*/nullptr) != -1;
95 }
96 
97 static bool hasVPRUse(MachineInstr &MI) {
98   return MI.findRegisterUseOperandIdx(ARM::VPR, /*TRI=*/nullptr) != -1;
99 }
100 
101 static bool isDomainMVE(MachineInstr *MI) {
102   uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
103   return Domain == ARMII::DomainMVE;
104 }
105 
106 static int getVecSize(const MachineInstr &MI) {
107   const MCInstrDesc &MCID = MI.getDesc();
108   uint64_t Flags = MCID.TSFlags;
109   return (Flags & ARMII::VecSize) >> ARMII::VecSizeShift;
110 }
111 
112 static bool shouldInspect(MachineInstr &MI) {
113   if (MI.isDebugInstr())
114     return false;
115   return isDomainMVE(&MI) || isVectorPredicate(&MI) || hasVPRUse(MI);
116 }
117 
118 static bool isHorizontalReduction(const MachineInstr &MI) {
119   const MCInstrDesc &MCID = MI.getDesc();
120   uint64_t Flags = MCID.TSFlags;
121   return (Flags & ARMII::HorizontalReduction) != 0;
122 }
123 
124 namespace {
125 
126   using InstSet = SmallPtrSetImpl<MachineInstr *>;
127 
128   class PostOrderLoopTraversal {
129     MachineLoop &ML;
130     MachineLoopInfo &MLI;
131     SmallPtrSet<MachineBasicBlock*, 4> Visited;
132     SmallVector<MachineBasicBlock*, 4> Order;
133 
134   public:
135     PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI)
136       : ML(ML), MLI(MLI) { }
137 
138     const SmallVectorImpl<MachineBasicBlock*> &getOrder() const {
139       return Order;
140     }
141 
142     // Visit all the blocks within the loop, as well as exit blocks and any
143     // blocks properly dominating the header.
144     void ProcessLoop() {
145       std::function<void(MachineBasicBlock*)> Search = [this, &Search]
146         (MachineBasicBlock *MBB) -> void {
147         if (Visited.count(MBB))
148           return;
149 
150         Visited.insert(MBB);
151         for (auto *Succ : MBB->successors()) {
152           if (!ML.contains(Succ))
153             continue;
154           Search(Succ);
155         }
156         Order.push_back(MBB);
157       };
158 
159       // Insert exit blocks.
160       SmallVector<MachineBasicBlock*, 2> ExitBlocks;
161       ML.getExitBlocks(ExitBlocks);
162       append_range(Order, ExitBlocks);
163 
164       // Then add the loop body.
165       Search(ML.getHeader());
166 
167       // Then try the preheader and its predecessors.
168       std::function<void(MachineBasicBlock*)> GetPredecessor =
169         [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void {
170         Order.push_back(MBB);
171         if (MBB->pred_size() == 1)
172           GetPredecessor(*MBB->pred_begin());
173       };
174 
175       if (auto *Preheader = ML.getLoopPreheader())
176         GetPredecessor(Preheader);
177       else if (auto *Preheader = MLI.findLoopPreheader(&ML, true, true))
178         GetPredecessor(Preheader);
179     }
180   };
181 
182   class VPTBlock {
183     SmallVector<MachineInstr *, 4> Insts;
184 
185   public:
186     VPTBlock(MachineInstr *MI) { Insts.push_back(MI); }
187 
188     // Have we found an instruction within the block which defines the vpr? If
189     // so, not all the instructions in the block will have the same predicate.
190     bool hasUniformPredicate() { return getDivergent() == nullptr; }
191 
192     // If it exists, return the first internal instruction which modifies the
193     // VPR.
194     MachineInstr *getDivergent() {
195       SmallVectorImpl<MachineInstr *> &Insts = getInsts();
196       for (unsigned i = 1; i < Insts.size(); ++i) {
197         MachineInstr *Next = Insts[i];
198         if (isVectorPredicate(Next))
199           return Next; // Found an instruction altering the vpr.
200       }
201       return nullptr;
202     }
203 
204     void insert(MachineInstr *MI) {
205       Insts.push_back(MI);
206       // VPT/VPST + 4 predicated instructions.
207       assert(Insts.size() <= 5 && "Too many instructions in VPT block!");
208     }
209 
210     bool containsVCTP() const { return llvm::any_of(Insts, isVCTP); }
211 
212     unsigned size() const { return Insts.size(); }
213     SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; }
214   };
215 
216   // Represent the current state of the VPR and hold all instances which
217   // represent a VPT block, which is a list of instructions that begins with a
218   // VPT/VPST and has a maximum of four proceeding instructions. All
219   // instructions within the block are predicated upon the vpr and we allow
220   // instructions to define the vpr within in the block too.
221   class VPTState {
222     friend struct LowOverheadLoop;
223 
224     SmallVector<VPTBlock, 4> Blocks;
225     SetVector<MachineInstr *> CurrentPredicates;
226     std::map<MachineInstr *, SetVector<MachineInstr *>> PredicatedInsts;
227 
228     void CreateVPTBlock(MachineInstr *MI) {
229       assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR))
230              && "Can't begin VPT without predicate");
231       Blocks.emplace_back(MI);
232       // The execution of MI is predicated upon the current set of instructions
233       // that are AND'ed together to form the VPR predicate value. In the case
234       // that MI is a VPT, CurrentPredicates will also just be MI.
235       PredicatedInsts[MI] = CurrentPredicates;
236     }
237 
238     void addInst(MachineInstr *MI) {
239       Blocks.back().insert(MI);
240       PredicatedInsts[MI] = CurrentPredicates;
241     }
242 
243     void addPredicate(MachineInstr *MI) {
244       LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI);
245       CurrentPredicates.insert(MI);
246     }
247 
248     void resetPredicate(MachineInstr *MI) {
249       LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI);
250       CurrentPredicates.clear();
251       CurrentPredicates.insert(MI);
252     }
253 
254   public:
255     // Return whether the given instruction is predicated upon a VCTP.
256     bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) {
257       SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI];
258       if (Exclusive && Predicates.size() != 1)
259         return false;
260       // We do not know how to convert an else predicate of a VCTP.
261       if (getVPTInstrPredicate(*MI) == ARMVCC::Else)
262         return false;
263       return llvm::any_of(Predicates, isVCTP);
264     }
265 
266     // Is the VPST, controlling the block entry, predicated upon a VCTP.
267     bool isEntryPredicatedOnVCTP(VPTBlock &Block, bool Exclusive = false) {
268       SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
269       return isPredicatedOnVCTP(Insts.front(), Exclusive);
270     }
271 
272     // If this block begins with a VPT, we can check whether it's using
273     // at least one predicated input(s), as well as possible loop invariant
274     // which would result in it being implicitly predicated.
275     bool hasImplicitlyValidVPT(VPTBlock &Block, ReachingDefAnalysis &RDA) {
276       SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
277       MachineInstr *VPT = Insts.front();
278       assert(isVPTOpcode(VPT->getOpcode()) &&
279              "Expected VPT block to begin with VPT/VPST");
280 
281       if (VPT->getOpcode() == ARM::MVE_VPST)
282         return false;
283 
284       // If the VPT block does not define something that is an "output", then
285       // the tail-predicated version will just perform a subset of the original
286       // vpt block, where the last lanes should not be used.
287       if (isVPTOpcode(VPT->getOpcode()) &&
288           all_of(Block.getInsts(), [](const MachineInstr *MI) {
289             return !MI->mayStore() && !MI->mayLoad() &&
290                    !isHorizontalReduction(*MI) && !isVCTP(MI);
291           }))
292         return true;
293 
294       auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) {
295         MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx));
296         return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op);
297       };
298 
299       auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) {
300         MachineOperand &MO = MI->getOperand(Idx);
301         if (!MO.isReg() || !MO.getReg())
302           return true;
303 
304         SmallPtrSet<MachineInstr *, 2> Defs;
305         RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs);
306         if (Defs.empty())
307           return true;
308 
309         for (auto *Def : Defs)
310           if (Def->getParent() == VPT->getParent())
311             return false;
312         return true;
313       };
314 
315       // Check that at least one of the operands is directly predicated on a
316       // vctp and allow an invariant value too.
317       return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) &&
318              (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) &&
319              (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2));
320     }
321 
322     bool isValid(ReachingDefAnalysis &RDA) {
323       // All predication within the loop should be based on vctp. If the block
324       // isn't predicated on entry, check whether the vctp is within the block
325       // and that all other instructions are then predicated on it.
326       for (auto &Block : Blocks) {
327         if (isEntryPredicatedOnVCTP(Block, false) &&
328             !any_of(drop_begin(Block.getInsts()), [](const MachineInstr *MI) {
329               return getVPTInstrPredicate(*MI) == ARMVCC::Else;
330             }))
331           continue;
332         if (hasImplicitlyValidVPT(Block, RDA))
333           continue;
334 
335         SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
336         // We don't know how to convert a block with just a VPT;VCTP into
337         // anything valid once we remove the VCTP. For now just bail out.
338         assert(isVPTOpcode(Insts.front()->getOpcode()) &&
339                "Expected VPT block to start with a VPST or VPT!");
340         if (Insts.size() == 2 && Insts.front()->getOpcode() != ARM::MVE_VPST &&
341             isVCTP(Insts.back()))
342           return false;
343 
344         for (auto *MI : Insts) {
345           // Check that any internal VCTPs are 'Then' predicated.
346           if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then)
347             return false;
348           // Skip other instructions that build up the predicate.
349           if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI))
350             continue;
351           // Check that any other instructions are predicated upon a vctp.
352           // TODO: We could infer when VPTs are implicitly predicated on the
353           // vctp (when the operands are predicated).
354           if (!isPredicatedOnVCTP(MI)) {
355             LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI);
356             return false;
357           }
358         }
359       }
360       return true;
361     }
362   };
363 
364   struct LowOverheadLoop {
365 
366     MachineLoop &ML;
367     MachineBasicBlock *Preheader = nullptr;
368     MachineLoopInfo &MLI;
369     ReachingDefAnalysis &RDA;
370     const TargetRegisterInfo &TRI;
371     const ARMBaseInstrInfo &TII;
372     MachineFunction *MF = nullptr;
373     MachineBasicBlock::iterator StartInsertPt;
374     MachineBasicBlock *StartInsertBB = nullptr;
375     MachineInstr *Start = nullptr;
376     MachineInstr *Dec = nullptr;
377     MachineInstr *End = nullptr;
378     MachineOperand TPNumElements;
379     SmallVector<MachineInstr *, 4> VCTPs;
380     SmallPtrSet<MachineInstr *, 4> ToRemove;
381     SmallPtrSet<MachineInstr *, 4> BlockMasksToRecompute;
382     SmallPtrSet<MachineInstr *, 4> DoubleWidthResultInstrs;
383     SmallPtrSet<MachineInstr *, 4> VMOVCopies;
384     bool Revert = false;
385     bool CannotTailPredicate = false;
386     VPTState VPTstate;
387 
388     LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI,
389                     ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI,
390                     const ARMBaseInstrInfo &TII)
391         : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII),
392           TPNumElements(MachineOperand::CreateImm(0)) {
393       MF = ML.getHeader()->getParent();
394       if (auto *MBB = ML.getLoopPreheader())
395         Preheader = MBB;
396       else if (auto *MBB = MLI.findLoopPreheader(&ML, true, true))
397         Preheader = MBB;
398     }
399 
400     // If this is an MVE instruction, check that we know how to use tail
401     // predication with it. Record VPT blocks and return whether the
402     // instruction is valid for tail predication.
403     bool ValidateMVEInst(MachineInstr *MI);
404 
405     void AnalyseMVEInst(MachineInstr *MI) {
406       CannotTailPredicate = !ValidateMVEInst(MI);
407     }
408 
409     bool IsTailPredicationLegal() const {
410       // For now, let's keep things really simple and only support a single
411       // block for tail predication.
412       return !Revert && FoundAllComponents() && !VCTPs.empty() &&
413              !CannotTailPredicate && ML.getNumBlocks() == 1;
414     }
415 
416     // Given that MI is a VCTP, check that is equivalent to any other VCTPs
417     // found.
418     bool AddVCTP(MachineInstr *MI);
419 
420     // Check that the predication in the loop will be equivalent once we
421     // perform the conversion. Also ensure that we can provide the number
422     // of elements to the loop start instruction.
423     bool ValidateTailPredicate();
424 
425     // Check that any values available outside of the loop will be the same
426     // after tail predication conversion.
427     bool ValidateLiveOuts();
428 
429     // Check the branch targets are within range and we satisfy our
430     // restrictions.
431     void Validate(ARMBasicBlockUtils *BBUtils);
432 
433     bool FoundAllComponents() const {
434       return Start && Dec && End;
435     }
436 
437     SmallVectorImpl<VPTBlock> &getVPTBlocks() { return VPTstate.Blocks; }
438 
439     // Return the operand for the loop start instruction. This will be the loop
440     // iteration count, or the number of elements if we're tail predicating.
441     MachineOperand &getLoopStartOperand() {
442       if (IsTailPredicationLegal())
443         return TPNumElements;
444       return Start->getOperand(1);
445     }
446 
447     unsigned getStartOpcode() const {
448       bool IsDo = isDoLoopStart(*Start);
449       if (!IsTailPredicationLegal())
450         return IsDo ? ARM::t2DLS : ARM::t2WLS;
451 
452       return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo);
453     }
454 
455     void dump() const {
456       if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start;
457       if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec;
458       if (End) dbgs() << "ARM Loops: Found Loop End: " << *End;
459       if (!VCTPs.empty()) {
460         dbgs() << "ARM Loops: Found VCTP(s):\n";
461         for (auto *MI : VCTPs)
462           dbgs() << " - " << *MI;
463       }
464       if (!FoundAllComponents())
465         dbgs() << "ARM Loops: Not a low-overhead loop.\n";
466       else if (!(Start && Dec && End))
467         dbgs() << "ARM Loops: Failed to find all loop components.\n";
468     }
469   };
470 
471   class ARMLowOverheadLoops : public MachineFunctionPass {
472     MachineFunction           *MF = nullptr;
473     MachineLoopInfo           *MLI = nullptr;
474     ReachingDefAnalysis       *RDA = nullptr;
475     const ARMBaseInstrInfo    *TII = nullptr;
476     MachineRegisterInfo       *MRI = nullptr;
477     const TargetRegisterInfo  *TRI = nullptr;
478     std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr;
479 
480   public:
481     static char ID;
482 
483     ARMLowOverheadLoops() : MachineFunctionPass(ID) { }
484 
485     void getAnalysisUsage(AnalysisUsage &AU) const override {
486       AU.setPreservesCFG();
487       AU.addRequired<MachineLoopInfoWrapperPass>();
488       AU.addRequired<ReachingDefAnalysis>();
489       MachineFunctionPass::getAnalysisUsage(AU);
490     }
491 
492     bool runOnMachineFunction(MachineFunction &MF) override;
493 
494     MachineFunctionProperties getRequiredProperties() const override {
495       return MachineFunctionProperties().set(
496           MachineFunctionProperties::Property::NoVRegs).set(
497           MachineFunctionProperties::Property::TracksLiveness);
498     }
499 
500     StringRef getPassName() const override {
501       return ARM_LOW_OVERHEAD_LOOPS_NAME;
502     }
503 
504   private:
505     bool ProcessLoop(MachineLoop *ML);
506 
507     bool RevertNonLoops();
508 
509     void RevertWhile(MachineInstr *MI) const;
510     void RevertDo(MachineInstr *MI) const;
511 
512     bool RevertLoopDec(MachineInstr *MI) const;
513 
514     void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const;
515 
516     void RevertLoopEndDec(MachineInstr *MI) const;
517 
518     void ConvertVPTBlocks(LowOverheadLoop &LoLoop);
519 
520     MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop);
521 
522     void Expand(LowOverheadLoop &LoLoop);
523 
524     void IterationCountDCE(LowOverheadLoop &LoLoop);
525   };
526 }
527 
528 char ARMLowOverheadLoops::ID = 0;
529 
530 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME,
531                 false, false)
532 
533 static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA,
534                       InstSet &ToRemove, InstSet &Ignore) {
535 
536   // Check that we can remove all of Killed without having to modify any IT
537   // blocks.
538   auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) {
539     // Collect the dead code and the MBBs in which they reside.
540     SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks;
541     for (auto *Dead : Killed)
542       BasicBlocks.insert(Dead->getParent());
543 
544     // Collect IT blocks in all affected basic blocks.
545     std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks;
546     for (auto *MBB : BasicBlocks) {
547       for (auto &IT : *MBB) {
548         if (IT.getOpcode() != ARM::t2IT)
549           continue;
550         RDA.getReachingLocalUses(&IT, MCRegister::from(ARM::ITSTATE),
551                                  ITBlocks[&IT]);
552       }
553     }
554 
555     // If we're removing all of the instructions within an IT block, then
556     // also remove the IT instruction.
557     SmallPtrSet<MachineInstr *, 2> ModifiedITs;
558     SmallPtrSet<MachineInstr *, 2> RemoveITs;
559     for (auto *Dead : Killed) {
560       if (MachineOperand *MO =
561               Dead->findRegisterUseOperand(ARM::ITSTATE, /*TRI=*/nullptr)) {
562         MachineInstr *IT = RDA.getMIOperand(Dead, *MO);
563         RemoveITs.insert(IT);
564         auto &CurrentBlock = ITBlocks[IT];
565         CurrentBlock.erase(Dead);
566         if (CurrentBlock.empty())
567           ModifiedITs.erase(IT);
568         else
569           ModifiedITs.insert(IT);
570       }
571     }
572     if (!ModifiedITs.empty())
573       return false;
574     Killed.insert(RemoveITs.begin(), RemoveITs.end());
575     return true;
576   };
577 
578   SmallPtrSet<MachineInstr *, 2> Uses;
579   if (!RDA.isSafeToRemove(MI, Uses, Ignore))
580     return false;
581 
582   if (WontCorruptITs(Uses, RDA)) {
583     ToRemove.insert(Uses.begin(), Uses.end());
584     LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI
585                << " - can also remove:\n";
586                for (auto *Use : Uses)
587                  dbgs() << "   - " << *Use);
588 
589     SmallPtrSet<MachineInstr*, 4> Killed;
590     RDA.collectKilledOperands(MI, Killed);
591     if (WontCorruptITs(Killed, RDA)) {
592       ToRemove.insert(Killed.begin(), Killed.end());
593       LLVM_DEBUG(for (auto *Dead : Killed)
594                    dbgs() << "   - " << *Dead);
595     }
596     return true;
597   }
598   return false;
599 }
600 
601 bool LowOverheadLoop::ValidateTailPredicate() {
602   if (!IsTailPredicationLegal()) {
603     LLVM_DEBUG(if (VCTPs.empty())
604                  dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n";
605                dbgs() << "ARM Loops: Tail-predication is not valid.\n");
606     return false;
607   }
608 
609   assert(!VCTPs.empty() && "VCTP instruction expected but is not set");
610   assert(ML.getBlocks().size() == 1 &&
611          "Shouldn't be processing a loop with more than one block");
612 
613   if (DisableTailPredication) {
614     LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n");
615     return false;
616   }
617 
618   if (!VPTstate.isValid(RDA)) {
619     LLVM_DEBUG(dbgs() << "ARM Loops: Invalid VPT state.\n");
620     return false;
621   }
622 
623   if (!ValidateLiveOuts()) {
624     LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n");
625     return false;
626   }
627 
628   // For tail predication, we need to provide the number of elements, instead
629   // of the iteration count, to the loop start instruction. The number of
630   // elements is provided to the vctp instruction, so we need to check that
631   // we can use this register at InsertPt.
632   MachineInstr *VCTP = VCTPs.back();
633   if (Start->getOpcode() == ARM::t2DoLoopStartTP ||
634       Start->getOpcode() == ARM::t2WhileLoopStartTP) {
635     TPNumElements = Start->getOperand(2);
636     StartInsertPt = Start;
637     StartInsertBB = Start->getParent();
638   } else {
639     TPNumElements = VCTP->getOperand(1);
640     MCRegister NumElements = TPNumElements.getReg().asMCReg();
641 
642     // If the register is defined within loop, then we can't perform TP.
643     // TODO: Check whether this is just a mov of a register that would be
644     // available.
645     if (RDA.hasLocalDefBefore(VCTP, NumElements)) {
646       LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n");
647       return false;
648     }
649 
650     // The element count register maybe defined after InsertPt, in which case we
651     // need to try to move either InsertPt or the def so that the [w|d]lstp can
652     // use the value.
653 
654     if (StartInsertPt != StartInsertBB->end() &&
655         !RDA.isReachingDefLiveOut(&*StartInsertPt, NumElements)) {
656       if (auto *ElemDef =
657               RDA.getLocalLiveOutMIDef(StartInsertBB, NumElements)) {
658         if (RDA.isSafeToMoveForwards(ElemDef, &*StartInsertPt)) {
659           ElemDef->removeFromParent();
660           StartInsertBB->insert(StartInsertPt, ElemDef);
661           LLVM_DEBUG(dbgs()
662                      << "ARM Loops: Moved element count def: " << *ElemDef);
663         } else if (RDA.isSafeToMoveBackwards(&*StartInsertPt, ElemDef)) {
664           StartInsertPt->removeFromParent();
665           StartInsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef),
666                                      &*StartInsertPt);
667           LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef);
668         } else {
669           // If we fail to move an instruction and the element count is provided
670           // by a mov, use the mov operand if it will have the same value at the
671           // insertion point
672           MachineOperand Operand = ElemDef->getOperand(1);
673           if (isMovRegOpcode(ElemDef->getOpcode()) &&
674               RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg().asMCReg()) ==
675                   RDA.getUniqueReachingMIDef(&*StartInsertPt,
676                                              Operand.getReg().asMCReg())) {
677             TPNumElements = Operand;
678             NumElements = TPNumElements.getReg();
679           } else {
680             LLVM_DEBUG(dbgs()
681                        << "ARM Loops: Unable to move element count to loop "
682                        << "start instruction.\n");
683             return false;
684           }
685         }
686       }
687     }
688 
689     // Especially in the case of while loops, InsertBB may not be the
690     // preheader, so we need to check that the register isn't redefined
691     // before entering the loop.
692     auto CannotProvideElements = [this](MachineBasicBlock *MBB,
693                                         MCRegister NumElements) {
694       if (MBB->empty())
695         return false;
696       // NumElements is redefined in this block.
697       if (RDA.hasLocalDefBefore(&MBB->back(), NumElements))
698         return true;
699 
700       // Don't continue searching up through multiple predecessors.
701       if (MBB->pred_size() > 1)
702         return true;
703 
704       return false;
705     };
706 
707     // Search backwards for a def, until we get to InsertBB.
708     MachineBasicBlock *MBB = Preheader;
709     while (MBB && MBB != StartInsertBB) {
710       if (CannotProvideElements(MBB, NumElements)) {
711         LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n");
712         return false;
713       }
714       MBB = *MBB->pred_begin();
715     }
716   }
717 
718   // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect
719   // world the [w|d]lstp instruction would be last instruction in the preheader
720   // and so it would only affect instructions within the loop body. But due to
721   // scheduling, and/or the logic in this pass (above), the insertion point can
722   // be moved earlier. So if the Loop Start isn't the last instruction in the
723   // preheader, and if the initial element count is smaller than the vector
724   // width, the Loop Start instruction will immediately generate one or more
725   // false lane mask which can, incorrectly, affect the proceeding MVE
726   // instructions in the preheader.
727   if (std::any_of(StartInsertPt, StartInsertBB->end(), shouldInspect)) {
728     LLVM_DEBUG(dbgs() << "ARM Loops: Instruction blocks [W|D]LSTP\n");
729     return false;
730   }
731 
732   // For any DoubleWidthResultInstrs we found whilst scanning instructions, they
733   // need to compute an output size that is smaller than the VCTP mask operates
734   // on. The VecSize of the DoubleWidthResult is the larger vector size - the
735   // size it extends into, so any VCTP VecSize <= is valid.
736   unsigned VCTPVecSize = getVecSize(*VCTP);
737   for (MachineInstr *MI : DoubleWidthResultInstrs) {
738     unsigned InstrVecSize = getVecSize(*MI);
739     if (InstrVecSize > VCTPVecSize) {
740       LLVM_DEBUG(dbgs() << "ARM Loops: Double width result larger than VCTP "
741                         << "VecSize:\n" << *MI);
742       return false;
743     }
744   }
745 
746   // Check that the value change of the element count is what we expect and
747   // that the predication will be equivalent. For this we need:
748   // NumElements = NumElements - VectorWidth. The sub will be a sub immediate
749   // and we can also allow register copies within the chain too.
750   auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) {
751     return -getAddSubImmediate(*MI) == ExpectedVecWidth;
752   };
753 
754   MachineBasicBlock *MBB = VCTP->getParent();
755   // Remove modifications to the element count since they have no purpose in a
756   // tail predicated loop. Explicitly refer to the vctp operand no matter which
757   // register NumElements has been assigned to, since that is what the
758   // modifications will be using
759   if (auto *Def = RDA.getUniqueReachingMIDef(
760           &MBB->back(), VCTP->getOperand(1).getReg().asMCReg())) {
761     SmallPtrSet<MachineInstr*, 2> ElementChain;
762     SmallPtrSet<MachineInstr*, 2> Ignore;
763     unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode());
764 
765     Ignore.insert(VCTPs.begin(), VCTPs.end());
766 
767     if (TryRemove(Def, RDA, ElementChain, Ignore)) {
768       bool FoundSub = false;
769 
770       for (auto *MI : ElementChain) {
771         if (isMovRegOpcode(MI->getOpcode()))
772           continue;
773 
774         if (isSubImmOpcode(MI->getOpcode())) {
775           if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) {
776             LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element"
777                        " count: " << *MI);
778             return false;
779           }
780           FoundSub = true;
781         } else {
782           LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element"
783                      " count: " << *MI);
784           return false;
785         }
786       }
787       ToRemove.insert(ElementChain.begin(), ElementChain.end());
788     }
789   }
790 
791   // If we converted the LoopStart to a t2DoLoopStartTP/t2WhileLoopStartTP, we
792   // can also remove any extra instructions in the preheader, which often
793   // includes a now unused MOV.
794   if ((Start->getOpcode() == ARM::t2DoLoopStartTP ||
795        Start->getOpcode() == ARM::t2WhileLoopStartTP) &&
796       Preheader && !Preheader->empty() &&
797       !RDA.hasLocalDefBefore(VCTP, VCTP->getOperand(1).getReg())) {
798     if (auto *Def = RDA.getUniqueReachingMIDef(
799             &Preheader->back(), VCTP->getOperand(1).getReg().asMCReg())) {
800       SmallPtrSet<MachineInstr*, 2> Ignore;
801       Ignore.insert(VCTPs.begin(), VCTPs.end());
802       TryRemove(Def, RDA, ToRemove, Ignore);
803     }
804   }
805 
806   return true;
807 }
808 
809 static bool isRegInClass(const MachineOperand &MO,
810                          const TargetRegisterClass *Class) {
811   return MO.isReg() && MO.getReg() && Class->contains(MO.getReg());
812 }
813 
814 // MVE 'narrowing' operate on half a lane, reading from half and writing
815 // to half, which are referred to has the top and bottom half. The other
816 // half retains its previous value.
817 static bool retainsPreviousHalfElement(const MachineInstr &MI) {
818   const MCInstrDesc &MCID = MI.getDesc();
819   uint64_t Flags = MCID.TSFlags;
820   return (Flags & ARMII::RetainsPreviousHalfElement) != 0;
821 }
822 
823 // Some MVE instructions read from the top/bottom halves of their operand(s)
824 // and generate a vector result with result elements that are double the
825 // width of the input.
826 static bool producesDoubleWidthResult(const MachineInstr &MI) {
827   const MCInstrDesc &MCID = MI.getDesc();
828   uint64_t Flags = MCID.TSFlags;
829   return (Flags & ARMII::DoubleWidthResult) != 0;
830 }
831 
832 // Can this instruction generate a non-zero result when given only zeroed
833 // operands? This allows us to know that, given operands with false bytes
834 // zeroed by masked loads, that the result will also contain zeros in those
835 // bytes.
836 static bool canGenerateNonZeros(const MachineInstr &MI) {
837 
838   // Check for instructions which can write into a larger element size,
839   // possibly writing into a previous zero'd lane.
840   if (producesDoubleWidthResult(MI))
841     return true;
842 
843   switch (MI.getOpcode()) {
844   default:
845     break;
846   // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow
847   // fp16 -> fp32 vector conversions.
848   // Instructions that perform a NOT will generate 1s from 0s.
849   case ARM::MVE_VMVN:
850   case ARM::MVE_VORN:
851   // Count leading zeros will do just that!
852   case ARM::MVE_VCLZs8:
853   case ARM::MVE_VCLZs16:
854   case ARM::MVE_VCLZs32:
855     return true;
856   }
857   return false;
858 }
859 
860 // Look at its register uses to see if it only can only receive zeros
861 // into its false lanes which would then produce zeros. Also check that
862 // the output register is also defined by an FalseLanesZero instruction
863 // so that if tail-predication happens, the lanes that aren't updated will
864 // still be zeros.
865 static bool producesFalseLanesZero(MachineInstr &MI,
866                                    const TargetRegisterClass *QPRs,
867                                    const ReachingDefAnalysis &RDA,
868                                    InstSet &FalseLanesZero) {
869   if (canGenerateNonZeros(MI))
870     return false;
871 
872   bool isPredicated = isVectorPredicated(&MI);
873   // Predicated loads will write zeros to the falsely predicated bytes of the
874   // destination register.
875   if (MI.mayLoad())
876     return isPredicated;
877 
878   auto IsZeroInit = [](MachineInstr *Def) {
879     return !isVectorPredicated(Def) &&
880            Def->getOpcode() == ARM::MVE_VMOVimmi32 &&
881            Def->getOperand(1).getImm() == 0;
882   };
883 
884   bool AllowScalars = isHorizontalReduction(MI);
885   for (auto &MO : MI.operands()) {
886     if (!MO.isReg() || !MO.getReg())
887       continue;
888     if (!isRegInClass(MO, QPRs) && AllowScalars)
889       continue;
890     // Skip the lr predicate reg
891     int PIdx = llvm::findFirstVPTPredOperandIdx(MI);
892     if (PIdx != -1 && (int)MO.getOperandNo() == PIdx + 2)
893       continue;
894 
895     // Check that this instruction will produce zeros in its false lanes:
896     // - If it only consumes false lanes zero or constant 0 (vmov #0)
897     // - If it's predicated, it only matters that it's def register already has
898     //   false lane zeros, so we can ignore the uses.
899     SmallPtrSet<MachineInstr *, 2> Defs;
900     RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs);
901     if (Defs.empty())
902       return false;
903     for (auto *Def : Defs) {
904       if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def))
905         continue;
906       if (MO.isUse() && isPredicated)
907         continue;
908       return false;
909     }
910   }
911   LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI);
912   return true;
913 }
914 
915 bool LowOverheadLoop::ValidateLiveOuts() {
916   // We want to find out if the tail-predicated version of this loop will
917   // produce the same values as the loop in its original form. For this to
918   // be true, the newly inserted implicit predication must not change the
919   // the (observable) results.
920   // We're doing this because many instructions in the loop will not be
921   // predicated and so the conversion from VPT predication to tail-predication
922   // can result in different values being produced; due to the tail-predication
923   // preventing many instructions from updating their falsely predicated
924   // lanes. This analysis assumes that all the instructions perform lane-wise
925   // operations and don't perform any exchanges.
926   // A masked load, whether through VPT or tail predication, will write zeros
927   // to any of the falsely predicated bytes. So, from the loads, we know that
928   // the false lanes are zeroed and here we're trying to track that those false
929   // lanes remain zero, or where they change, the differences are masked away
930   // by their user(s).
931   // All MVE stores have to be predicated, so we know that any predicate load
932   // operands, or stored results are equivalent already. Other explicitly
933   // predicated instructions will perform the same operation in the original
934   // loop and the tail-predicated form too. Because of this, we can insert
935   // loads, stores and other predicated instructions into our Predicated
936   // set and build from there.
937   const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID);
938   SetVector<MachineInstr *> FalseLanesUnknown;
939   SmallPtrSet<MachineInstr *, 4> FalseLanesZero;
940   SmallPtrSet<MachineInstr *, 4> Predicated;
941   MachineBasicBlock *Header = ML.getHeader();
942 
943   LLVM_DEBUG(dbgs() << "ARM Loops: Validating Live outs\n");
944 
945   for (auto &MI : *Header) {
946     if (!shouldInspect(MI))
947       continue;
948 
949     if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode()))
950       continue;
951 
952     bool isPredicated = isVectorPredicated(&MI);
953     bool retainsOrReduces =
954       retainsPreviousHalfElement(MI) || isHorizontalReduction(MI);
955 
956     if (isPredicated)
957       Predicated.insert(&MI);
958     if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero))
959       FalseLanesZero.insert(&MI);
960     else if (MI.getNumDefs() == 0)
961       continue;
962     else if (!isPredicated && retainsOrReduces) {
963       LLVM_DEBUG(dbgs() << "  Unpredicated instruction that retainsOrReduces: " << MI);
964       return false;
965     } else if (!isPredicated && MI.getOpcode() != ARM::MQPRCopy)
966       FalseLanesUnknown.insert(&MI);
967   }
968 
969   LLVM_DEBUG({
970     dbgs() << "  Predicated:\n";
971     for (auto *I : Predicated)
972       dbgs() << "  " << *I;
973     dbgs() << "  FalseLanesZero:\n";
974     for (auto *I : FalseLanesZero)
975       dbgs() << "  " << *I;
976     dbgs() << "  FalseLanesUnknown:\n";
977     for (auto *I : FalseLanesUnknown)
978       dbgs() << "  " << *I;
979   });
980 
981   auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO,
982                               SmallPtrSetImpl<MachineInstr *> &Predicated) {
983     SmallPtrSet<MachineInstr *, 2> Uses;
984     RDA.getGlobalUses(MI, MO.getReg().asMCReg(), Uses);
985     for (auto *Use : Uses) {
986       if (Use != MI && !Predicated.count(Use))
987         return false;
988     }
989     return true;
990   };
991 
992   // Visit the unknowns in reverse so that we can start at the values being
993   // stored and then we can work towards the leaves, hopefully adding more
994   // instructions to Predicated. Successfully terminating the loop means that
995   // all the unknown values have to found to be masked by predicated user(s).
996   // For any unpredicated values, we store them in NonPredicated so that we
997   // can later check whether these form a reduction.
998   SmallPtrSet<MachineInstr*, 2> NonPredicated;
999   for (auto *MI : reverse(FalseLanesUnknown)) {
1000     for (auto &MO : MI->operands()) {
1001       if (!isRegInClass(MO, QPRs) || !MO.isDef())
1002         continue;
1003       if (!HasPredicatedUsers(MI, MO, Predicated)) {
1004         LLVM_DEBUG(dbgs() << "  Found an unknown def of : "
1005                           << TRI.getRegAsmName(MO.getReg()) << " at " << *MI);
1006         NonPredicated.insert(MI);
1007         break;
1008       }
1009     }
1010     // Any unknown false lanes have been masked away by the user(s).
1011     if (!NonPredicated.contains(MI))
1012       Predicated.insert(MI);
1013   }
1014 
1015   SmallPtrSet<MachineInstr *, 2> LiveOutMIs;
1016   SmallVector<MachineBasicBlock *, 2> ExitBlocks;
1017   ML.getExitBlocks(ExitBlocks);
1018   assert(ML.getNumBlocks() == 1 && "Expected single block loop!");
1019   assert(ExitBlocks.size() == 1 && "Expected a single exit block");
1020   MachineBasicBlock *ExitBB = ExitBlocks.front();
1021   for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) {
1022     // TODO: Instead of blocking predication, we could move the vctp to the exit
1023     // block and calculate it's operand there in or the preheader.
1024     if (RegMask.PhysReg == ARM::VPR) {
1025       LLVM_DEBUG(dbgs() << "  VPR is live in to the exit block.");
1026       return false;
1027     }
1028     // Check Q-regs that are live in the exit blocks. We don't collect scalars
1029     // because they won't be affected by lane predication.
1030     if (QPRs->contains(RegMask.PhysReg))
1031       if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg))
1032         LiveOutMIs.insert(MI);
1033   }
1034 
1035   // We've already validated that any VPT predication within the loop will be
1036   // equivalent when we perform the predication transformation; so we know that
1037   // any VPT predicated instruction is predicated upon VCTP. Any live-out
1038   // instruction needs to be predicated, so check this here. The instructions
1039   // in NonPredicated have been found to be a reduction that we can ensure its
1040   // legality. Any MQPRCopy found will need to validate its input as if it was
1041   // live out.
1042   SmallVector<MachineInstr *> Worklist(LiveOutMIs.begin(), LiveOutMIs.end());
1043   while (!Worklist.empty()) {
1044     MachineInstr *MI = Worklist.pop_back_val();
1045     if (MI->getOpcode() == ARM::MQPRCopy) {
1046       VMOVCopies.insert(MI);
1047       MachineInstr *CopySrc =
1048           RDA.getUniqueReachingMIDef(MI, MI->getOperand(1).getReg());
1049       if (CopySrc)
1050         Worklist.push_back(CopySrc);
1051     } else if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) {
1052       LLVM_DEBUG(dbgs() << " Unable to handle live out: " << *MI);
1053       VMOVCopies.clear();
1054       return false;
1055     }
1056   }
1057 
1058   return true;
1059 }
1060 
1061 void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) {
1062   if (Revert)
1063     return;
1064 
1065   // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP]
1066   // can only jump back.
1067   auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End,
1068                            ARMBasicBlockUtils *BBUtils, MachineLoop &ML) {
1069     MachineBasicBlock *TgtBB = End->getOpcode() == ARM::t2LoopEnd
1070                                    ? End->getOperand(1).getMBB()
1071                                    : End->getOperand(2).getMBB();
1072     // TODO Maybe there's cases where the target doesn't have to be the header,
1073     // but for now be safe and revert.
1074     if (TgtBB != ML.getHeader()) {
1075       LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n");
1076       return false;
1077     }
1078 
1079     // The WLS and LE instructions have 12-bits for the label offset. WLS
1080     // requires a positive offset, while LE uses negative.
1081     if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) ||
1082         !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) {
1083       LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n");
1084       return false;
1085     }
1086 
1087     if (isWhileLoopStart(*Start)) {
1088       MachineBasicBlock *TargetBB = getWhileLoopStartTargetBB(*Start);
1089       if (BBUtils->getOffsetOf(Start) > BBUtils->getOffsetOf(TargetBB) ||
1090           !BBUtils->isBBInRange(Start, TargetBB, 4094)) {
1091         LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n");
1092         return false;
1093       }
1094     }
1095     return true;
1096   };
1097 
1098   StartInsertPt = MachineBasicBlock::iterator(Start);
1099   StartInsertBB = Start->getParent();
1100   LLVM_DEBUG(dbgs() << "ARM Loops: Will insert LoopStart at "
1101                     << *StartInsertPt);
1102 
1103   Revert = !ValidateRanges(Start, End, BBUtils, ML);
1104   CannotTailPredicate = !ValidateTailPredicate();
1105 }
1106 
1107 bool LowOverheadLoop::AddVCTP(MachineInstr *MI) {
1108   LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI);
1109   if (VCTPs.empty()) {
1110     VCTPs.push_back(MI);
1111     return true;
1112   }
1113 
1114   // If we find another VCTP, check whether it uses the same value as the main VCTP.
1115   // If it does, store it in the VCTPs set, else refuse it.
1116   MachineInstr *Prev = VCTPs.back();
1117   if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) ||
1118       !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg().asMCReg())) {
1119     LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching "
1120                          "definition from the main VCTP");
1121     return false;
1122   }
1123   VCTPs.push_back(MI);
1124   return true;
1125 }
1126 
1127 static bool ValidateMVEStore(MachineInstr *MI, MachineLoop *ML) {
1128 
1129   auto GetFrameIndex = [](MachineMemOperand *Operand) {
1130     const PseudoSourceValue *PseudoValue = Operand->getPseudoValue();
1131     if (PseudoValue && PseudoValue->kind() == PseudoSourceValue::FixedStack) {
1132       if (const auto *FS = dyn_cast<FixedStackPseudoSourceValue>(PseudoValue)) {
1133         return FS->getFrameIndex();
1134       }
1135     }
1136     return -1;
1137   };
1138 
1139   auto IsStackOp = [GetFrameIndex](MachineInstr *I) {
1140     switch (I->getOpcode()) {
1141     case ARM::MVE_VSTRWU32:
1142     case ARM::MVE_VLDRWU32: {
1143       return I->getOperand(1).getReg() == ARM::SP &&
1144              I->memoperands().size() == 1 &&
1145              GetFrameIndex(I->memoperands().front()) >= 0;
1146     }
1147     default:
1148       return false;
1149     }
1150   };
1151 
1152   // An unpredicated vector register spill is allowed if all of the uses of the
1153   // stack slot are within the loop
1154   if (MI->getOpcode() != ARM::MVE_VSTRWU32 || !IsStackOp(MI))
1155     return false;
1156 
1157   // Search all blocks after the loop for accesses to the same stack slot.
1158   // ReachingDefAnalysis doesn't work for sp as it relies on registers being
1159   // live-out (which sp never is) to know what blocks to look in
1160   if (MI->memoperands().size() == 0)
1161     return false;
1162   int FI = GetFrameIndex(MI->memoperands().front());
1163 
1164   auto &FrameInfo = MI->getParent()->getParent()->getFrameInfo();
1165   if (FI == -1 || !FrameInfo.isSpillSlotObjectIndex(FI))
1166     return false;
1167 
1168   SmallVector<MachineBasicBlock *> Frontier;
1169   ML->getExitBlocks(Frontier);
1170   SmallPtrSet<MachineBasicBlock *, 4> Visited{MI->getParent()};
1171   unsigned Idx = 0;
1172   while (Idx < Frontier.size()) {
1173     MachineBasicBlock *BB = Frontier[Idx];
1174     bool LookAtSuccessors = true;
1175     for (auto &I : *BB) {
1176       if (!IsStackOp(&I) || I.memoperands().size() == 0)
1177         continue;
1178       if (GetFrameIndex(I.memoperands().front()) != FI)
1179         continue;
1180       // If this block has a store to the stack slot before any loads then we
1181       // can ignore the block
1182       if (I.getOpcode() == ARM::MVE_VSTRWU32) {
1183         LookAtSuccessors = false;
1184         break;
1185       }
1186       // If the store and the load are using the same stack slot then the
1187       // store isn't valid for tail predication
1188       if (I.getOpcode() == ARM::MVE_VLDRWU32)
1189         return false;
1190     }
1191 
1192     if (LookAtSuccessors) {
1193       for (auto *Succ : BB->successors()) {
1194         if (!Visited.contains(Succ) && !is_contained(Frontier, Succ))
1195           Frontier.push_back(Succ);
1196       }
1197     }
1198     Visited.insert(BB);
1199     Idx++;
1200   }
1201 
1202   return true;
1203 }
1204 
1205 bool LowOverheadLoop::ValidateMVEInst(MachineInstr *MI) {
1206   if (CannotTailPredicate)
1207     return false;
1208 
1209   if (!shouldInspect(*MI))
1210     return true;
1211 
1212   if (MI->getOpcode() == ARM::MVE_VPSEL ||
1213       MI->getOpcode() == ARM::MVE_VPNOT) {
1214     // TODO: Allow VPSEL and VPNOT, we currently cannot because:
1215     // 1) It will use the VPR as a predicate operand, but doesn't have to be
1216     //    instead a VPT block, which means we can assert while building up
1217     //    the VPT block because we don't find another VPT or VPST to being a new
1218     //    one.
1219     // 2) VPSEL still requires a VPR operand even after tail predicating,
1220     //    which means we can't remove it unless there is another
1221     //    instruction, such as vcmp, that can provide the VPR def.
1222     return false;
1223   }
1224 
1225   // Record all VCTPs and check that they're equivalent to one another.
1226   if (isVCTP(MI) && !AddVCTP(MI))
1227     return false;
1228 
1229   // Inspect uses first so that any instructions that alter the VPR don't
1230   // alter the predicate upon themselves.
1231   const MCInstrDesc &MCID = MI->getDesc();
1232   bool IsUse = false;
1233   unsigned LastOpIdx = MI->getNumOperands() - 1;
1234   for (const auto &Op : enumerate(reverse(MCID.operands()))) {
1235     const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index());
1236     if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR)
1237       continue;
1238 
1239     if (ARM::isVpred(Op.value().OperandType)) {
1240       VPTstate.addInst(MI);
1241       IsUse = true;
1242     } else if (MI->getOpcode() != ARM::MVE_VPST) {
1243       LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI);
1244       return false;
1245     }
1246   }
1247 
1248   // If we find an instruction that has been marked as not valid for tail
1249   // predication, only allow the instruction if it's contained within a valid
1250   // VPT block.
1251   bool RequiresExplicitPredication =
1252     (MCID.TSFlags & ARMII::ValidForTailPredication) == 0;
1253   if (isDomainMVE(MI) && RequiresExplicitPredication) {
1254     if (MI->getOpcode() == ARM::MQPRCopy)
1255       return true;
1256     if (!IsUse && producesDoubleWidthResult(*MI)) {
1257       DoubleWidthResultInstrs.insert(MI);
1258       return true;
1259     }
1260 
1261     LLVM_DEBUG(if (!IsUse) dbgs()
1262                << "ARM Loops: Can't tail predicate: " << *MI);
1263     return IsUse;
1264   }
1265 
1266   // If the instruction is already explicitly predicated, then the conversion
1267   // will be fine, but ensure that all store operations are predicated.
1268   if (MI->mayStore() && !ValidateMVEStore(MI, &ML))
1269     return IsUse;
1270 
1271   // If this instruction defines the VPR, update the predicate for the
1272   // proceeding instructions.
1273   if (isVectorPredicate(MI)) {
1274     // Clear the existing predicate when we're not in VPT Active state,
1275     // otherwise we add to it.
1276     if (!isVectorPredicated(MI))
1277       VPTstate.resetPredicate(MI);
1278     else
1279       VPTstate.addPredicate(MI);
1280   }
1281 
1282   // Finally once the predicate has been modified, we can start a new VPT
1283   // block if necessary.
1284   if (isVPTOpcode(MI->getOpcode()))
1285     VPTstate.CreateVPTBlock(MI);
1286 
1287   return true;
1288 }
1289 
1290 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) {
1291   const ARMSubtarget &ST = mf.getSubtarget<ARMSubtarget>();
1292   if (!ST.hasLOB())
1293     return false;
1294 
1295   MF = &mf;
1296   LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n");
1297 
1298   MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI();
1299   RDA = &getAnalysis<ReachingDefAnalysis>();
1300   MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness);
1301   MRI = &MF->getRegInfo();
1302   TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo());
1303   TRI = ST.getRegisterInfo();
1304   BBUtils = std::make_unique<ARMBasicBlockUtils>(*MF);
1305   BBUtils->computeAllBlockSizes();
1306   BBUtils->adjustBBOffsetsAfter(&MF->front());
1307 
1308   bool Changed = false;
1309   for (auto *ML : *MLI) {
1310     if (ML->isOutermost())
1311       Changed |= ProcessLoop(ML);
1312   }
1313   Changed |= RevertNonLoops();
1314   return Changed;
1315 }
1316 
1317 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) {
1318   bool Changed = false;
1319 
1320   // Process inner loops first.
1321   for (MachineLoop *L : *ML)
1322     Changed |= ProcessLoop(L);
1323 
1324   LLVM_DEBUG({
1325     dbgs() << "ARM Loops: Processing loop containing:\n";
1326     if (auto *Preheader = ML->getLoopPreheader())
1327       dbgs() << " - Preheader: " << printMBBReference(*Preheader) << "\n";
1328     else if (auto *Preheader = MLI->findLoopPreheader(ML, true, true))
1329       dbgs() << " - Preheader: " << printMBBReference(*Preheader) << "\n";
1330     for (auto *MBB : ML->getBlocks())
1331       dbgs() << " - Block: " << printMBBReference(*MBB) << "\n";
1332   });
1333 
1334   // Search the given block for a loop start instruction. If one isn't found,
1335   // and there's only one predecessor block, search that one too.
1336   std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart =
1337     [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* {
1338     for (auto &MI : *MBB) {
1339       if (isLoopStart(MI))
1340         return &MI;
1341     }
1342     if (MBB->pred_size() == 1)
1343       return SearchForStart(*MBB->pred_begin());
1344     return nullptr;
1345   };
1346 
1347   LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII);
1348   // Search the preheader for the start intrinsic.
1349   // FIXME: I don't see why we shouldn't be supporting multiple predecessors
1350   // with potentially multiple set.loop.iterations, so we need to enable this.
1351   if (LoLoop.Preheader)
1352     LoLoop.Start = SearchForStart(LoLoop.Preheader);
1353   else
1354     return Changed;
1355 
1356   // Find the low-overhead loop components and decide whether or not to fall
1357   // back to a normal loop. Also look for a vctp instructions and decide
1358   // whether we can convert that predicate using tail predication.
1359   for (auto *MBB : reverse(ML->getBlocks())) {
1360     for (auto &MI : *MBB) {
1361       if (MI.isDebugValue())
1362         continue;
1363       else if (MI.getOpcode() == ARM::t2LoopDec)
1364         LoLoop.Dec = &MI;
1365       else if (MI.getOpcode() == ARM::t2LoopEnd)
1366         LoLoop.End = &MI;
1367       else if (MI.getOpcode() == ARM::t2LoopEndDec)
1368         LoLoop.End = LoLoop.Dec = &MI;
1369       else if (isLoopStart(MI))
1370         LoLoop.Start = &MI;
1371       else if (MI.getDesc().isCall()) {
1372         // TODO: Though the call will require LE to execute again, does this
1373         // mean we should revert? Always executing LE hopefully should be
1374         // faster than performing a sub,cmp,br or even subs,br.
1375         LoLoop.Revert = true;
1376         LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n");
1377       } else {
1378         // Record VPR defs and build up their corresponding vpt blocks.
1379         // Check we know how to tail predicate any mve instructions.
1380         LoLoop.AnalyseMVEInst(&MI);
1381       }
1382     }
1383   }
1384 
1385   LLVM_DEBUG(LoLoop.dump());
1386   if (!LoLoop.FoundAllComponents()) {
1387     LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n");
1388     return Changed;
1389   }
1390 
1391   assert(LoLoop.Start->getOpcode() != ARM::t2WhileLoopStart &&
1392          "Expected t2WhileLoopStart to be removed before regalloc!");
1393 
1394   // Check that the only instruction using LoopDec is LoopEnd. This can only
1395   // happen when the Dec and End are separate, not a single t2LoopEndDec.
1396   // TODO: Check for copy chains that really have no effect.
1397   if (LoLoop.Dec != LoLoop.End) {
1398     SmallPtrSet<MachineInstr *, 2> Uses;
1399     RDA->getReachingLocalUses(LoLoop.Dec, MCRegister::from(ARM::LR), Uses);
1400     if (Uses.size() > 1 || !Uses.count(LoLoop.End)) {
1401       LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n");
1402       LoLoop.Revert = true;
1403     }
1404   }
1405   LoLoop.Validate(BBUtils.get());
1406   Expand(LoLoop);
1407   return true;
1408 }
1409 
1410 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a
1411 // beq that branches to the exit branch.
1412 // TODO: We could also try to generate a cbz if the value in LR is also in
1413 // another low register.
1414 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const {
1415   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI);
1416   MachineBasicBlock *DestBB = getWhileLoopStartTargetBB(*MI);
1417   unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
1418     ARM::tBcc : ARM::t2Bcc;
1419 
1420   RevertWhileLoopStartLR(MI, TII, BrOpc);
1421 }
1422 
1423 void ARMLowOverheadLoops::RevertDo(MachineInstr *MI) const {
1424   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to mov: " << *MI);
1425   RevertDoLoopStart(MI, TII);
1426 }
1427 
1428 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const {
1429   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI);
1430   MachineBasicBlock *MBB = MI->getParent();
1431   SmallPtrSet<MachineInstr*, 1> Ignore;
1432   for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) {
1433     if (I->getOpcode() == ARM::t2LoopEnd) {
1434       Ignore.insert(&*I);
1435       break;
1436     }
1437   }
1438 
1439   // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS.
1440   bool SetFlags =
1441       RDA->isSafeToDefRegAt(MI, MCRegister::from(ARM::CPSR), Ignore);
1442 
1443   llvm::RevertLoopDec(MI, TII, SetFlags);
1444   return SetFlags;
1445 }
1446 
1447 // Generate a subs, or sub and cmp, and a branch instead of an LE.
1448 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const {
1449   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI);
1450 
1451   MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
1452   unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
1453     ARM::tBcc : ARM::t2Bcc;
1454 
1455   llvm::RevertLoopEnd(MI, TII, BrOpc, SkipCmp);
1456 }
1457 
1458 // Generate a subs, or sub and cmp, and a branch instead of an LE.
1459 void ARMLowOverheadLoops::RevertLoopEndDec(MachineInstr *MI) const {
1460   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to subs, br: " << *MI);
1461   assert(MI->getOpcode() == ARM::t2LoopEndDec && "Expected a t2LoopEndDec!");
1462   MachineBasicBlock *MBB = MI->getParent();
1463 
1464   MachineInstrBuilder MIB =
1465       BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::t2SUBri));
1466   MIB.addDef(ARM::LR);
1467   MIB.add(MI->getOperand(1));
1468   MIB.addImm(1);
1469   MIB.addImm(ARMCC::AL);
1470   MIB.addReg(ARM::NoRegister);
1471   MIB.addReg(ARM::CPSR);
1472   MIB->getOperand(5).setIsDef(true);
1473 
1474   MachineBasicBlock *DestBB = MI->getOperand(2).getMBB();
1475   unsigned BrOpc =
1476       BBUtils->isBBInRange(MI, DestBB, 254) ? ARM::tBcc : ARM::t2Bcc;
1477 
1478   // Create bne
1479   MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
1480   MIB.add(MI->getOperand(2)); // branch target
1481   MIB.addImm(ARMCC::NE);      // condition code
1482   MIB.addReg(ARM::CPSR);
1483 
1484   MI->eraseFromParent();
1485 }
1486 
1487 // Perform dead code elimation on the loop iteration count setup expression.
1488 // If we are tail-predicating, the number of elements to be processed is the
1489 // operand of the VCTP instruction in the vector body, see getCount(), which is
1490 // register $r3 in this example:
1491 //
1492 //   $lr = big-itercount-expression
1493 //   ..
1494 //   $lr = t2DoLoopStart renamable $lr
1495 //   vector.body:
1496 //     ..
1497 //     $vpr = MVE_VCTP32 renamable $r3
1498 //     renamable $lr = t2LoopDec killed renamable $lr, 1
1499 //     t2LoopEnd renamable $lr, %vector.body
1500 //     tB %end
1501 //
1502 // What we would like achieve here is to replace the do-loop start pseudo
1503 // instruction t2DoLoopStart with:
1504 //
1505 //    $lr = MVE_DLSTP_32 killed renamable $r3
1506 //
1507 // Thus, $r3 which defines the number of elements, is written to $lr,
1508 // and then we want to delete the whole chain that used to define $lr,
1509 // see the comment below how this chain could look like.
1510 //
1511 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) {
1512   if (!LoLoop.IsTailPredicationLegal())
1513     return;
1514 
1515   LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n");
1516 
1517   MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 1);
1518   if (!Def) {
1519     LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n");
1520     return;
1521   }
1522 
1523   // Collect and remove the users of iteration count.
1524   SmallPtrSet<MachineInstr*, 4> Killed  = { LoLoop.Start, LoLoop.Dec,
1525                                             LoLoop.End };
1526   if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed))
1527     LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n");
1528 }
1529 
1530 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) {
1531   LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n");
1532   // When using tail-predication, try to delete the dead code that was used to
1533   // calculate the number of loop iterations.
1534   IterationCountDCE(LoLoop);
1535 
1536   MachineBasicBlock::iterator InsertPt = LoLoop.StartInsertPt;
1537   MachineInstr *Start = LoLoop.Start;
1538   MachineBasicBlock *MBB = LoLoop.StartInsertBB;
1539   unsigned Opc = LoLoop.getStartOpcode();
1540   MachineOperand &Count = LoLoop.getLoopStartOperand();
1541 
1542   // A DLS lr, lr we needn't emit
1543   MachineInstr* NewStart;
1544   if (!DisableOmitDLS && Opc == ARM::t2DLS && Count.isReg() &&
1545       Count.getReg() == ARM::LR) {
1546     LLVM_DEBUG(dbgs() << "ARM Loops: Didn't insert start: DLS lr, lr");
1547     NewStart = nullptr;
1548   } else {
1549     MachineInstrBuilder MIB =
1550       BuildMI(*MBB, InsertPt, Start->getDebugLoc(), TII->get(Opc));
1551 
1552     MIB.addDef(ARM::LR);
1553     MIB.add(Count);
1554     if (isWhileLoopStart(*Start))
1555       MIB.addMBB(getWhileLoopStartTargetBB(*Start));
1556 
1557     LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB);
1558     NewStart = &*MIB;
1559   }
1560 
1561   LoLoop.ToRemove.insert(Start);
1562   return NewStart;
1563 }
1564 
1565 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) {
1566   auto RemovePredicate = [](MachineInstr *MI) {
1567     if (MI->isDebugInstr())
1568       return;
1569     LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI);
1570     int PIdx = llvm::findFirstVPTPredOperandIdx(*MI);
1571     assert(PIdx >= 1 && "Trying to unpredicate a non-predicated instruction");
1572     assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then &&
1573            "Expected Then predicate!");
1574     MI->getOperand(PIdx).setImm(ARMVCC::None);
1575     MI->getOperand(PIdx + 1).setReg(0);
1576   };
1577 
1578   for (auto &Block : LoLoop.getVPTBlocks()) {
1579     SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
1580 
1581     auto ReplaceVCMPWithVPT = [&](MachineInstr *&TheVCMP, MachineInstr *At) {
1582       assert(TheVCMP && "Replacing a removed or non-existent VCMP");
1583       // Replace the VCMP with a VPT
1584       MachineInstrBuilder MIB =
1585           BuildMI(*At->getParent(), At, At->getDebugLoc(),
1586                   TII->get(VCMPOpcodeToVPT(TheVCMP->getOpcode())));
1587       MIB.addImm(ARMVCC::Then);
1588       // Register one
1589       MIB.add(TheVCMP->getOperand(1));
1590       // Register two
1591       MIB.add(TheVCMP->getOperand(2));
1592       // The comparison code, e.g. ge, eq, lt
1593       MIB.add(TheVCMP->getOperand(3));
1594       LLVM_DEBUG(dbgs() << "ARM Loops: Combining with VCMP to VPT: " << *MIB);
1595       LoLoop.BlockMasksToRecompute.insert(MIB.getInstr());
1596       LoLoop.ToRemove.insert(TheVCMP);
1597       TheVCMP = nullptr;
1598     };
1599 
1600     if (LoLoop.VPTstate.isEntryPredicatedOnVCTP(Block, /*exclusive*/ true)) {
1601       MachineInstr *VPST = Insts.front();
1602       if (Block.hasUniformPredicate()) {
1603         // A vpt block starting with VPST, is only predicated upon vctp and has no
1604         // internal vpr defs:
1605         // - Remove vpst.
1606         // - Unpredicate the remaining instructions.
1607         LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST);
1608         for (unsigned i = 1; i < Insts.size(); ++i)
1609           RemovePredicate(Insts[i]);
1610       } else {
1611         // The VPT block has a non-uniform predicate but it uses a vpst and its
1612         // entry is guarded only by a vctp, which means we:
1613         // - Need to remove the original vpst.
1614         // - Then need to unpredicate any following instructions, until
1615         //   we come across the divergent vpr def.
1616         // - Insert a new vpst to predicate the instruction(s) that following
1617         //   the divergent vpr def.
1618         MachineInstr *Divergent = Block.getDivergent();
1619         MachineBasicBlock *MBB = Divergent->getParent();
1620         auto DivergentNext = ++MachineBasicBlock::iterator(Divergent);
1621         while (DivergentNext != MBB->end() && DivergentNext->isDebugInstr())
1622           ++DivergentNext;
1623 
1624         bool DivergentNextIsPredicated =
1625             DivergentNext != MBB->end() &&
1626             getVPTInstrPredicate(*DivergentNext) != ARMVCC::None;
1627 
1628         for (auto I = ++MachineBasicBlock::iterator(VPST), E = DivergentNext;
1629              I != E; ++I)
1630           RemovePredicate(&*I);
1631 
1632         // Check if the instruction defining vpr is a vcmp so it can be combined
1633         // with the VPST This should be the divergent instruction
1634         MachineInstr *VCMP =
1635             VCMPOpcodeToVPT(Divergent->getOpcode()) != 0 ? Divergent : nullptr;
1636 
1637         if (DivergentNextIsPredicated) {
1638           // Insert a VPST at the divergent only if the next instruction
1639           // would actually use it. A VCMP following a VPST can be
1640           // merged into a VPT so do that instead if the VCMP exists.
1641           if (!VCMP) {
1642             // Create a VPST (with a null mask for now, we'll recompute it
1643             // later)
1644             MachineInstrBuilder MIB =
1645                 BuildMI(*Divergent->getParent(), Divergent,
1646                         Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST));
1647             MIB.addImm(0);
1648             LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB);
1649             LoLoop.BlockMasksToRecompute.insert(MIB.getInstr());
1650           } else {
1651             // No RDA checks are necessary here since the VPST would have been
1652             // directly after the VCMP
1653             ReplaceVCMPWithVPT(VCMP, VCMP);
1654           }
1655         }
1656       }
1657       LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST);
1658       LoLoop.ToRemove.insert(VPST);
1659     } else if (Block.containsVCTP()) {
1660       // The vctp will be removed, so either the entire block will be dead or
1661       // the block mask of the vp(s)t will need to be recomputed.
1662       MachineInstr *VPST = Insts.front();
1663       if (Block.size() == 2) {
1664         assert(VPST->getOpcode() == ARM::MVE_VPST &&
1665                "Found a VPST in an otherwise empty vpt block");
1666         LoLoop.ToRemove.insert(VPST);
1667       } else
1668         LoLoop.BlockMasksToRecompute.insert(VPST);
1669     } else if (Insts.front()->getOpcode() == ARM::MVE_VPST) {
1670       // If this block starts with a VPST then attempt to merge it with the
1671       // preceeding un-merged VCMP into a VPT. This VCMP comes from a VPT
1672       // block that no longer exists
1673       MachineInstr *VPST = Insts.front();
1674       auto Next = ++MachineBasicBlock::iterator(VPST);
1675       assert(getVPTInstrPredicate(*Next) != ARMVCC::None &&
1676              "The instruction after a VPST must be predicated");
1677       (void)Next;
1678       MachineInstr *VprDef = RDA->getUniqueReachingMIDef(VPST, ARM::VPR);
1679       if (VprDef && VCMPOpcodeToVPT(VprDef->getOpcode()) &&
1680           !LoLoop.ToRemove.contains(VprDef)) {
1681         MachineInstr *VCMP = VprDef;
1682         // The VCMP and VPST can only be merged if the VCMP's operands will have
1683         // the same values at the VPST.
1684         // If any of the instructions between the VCMP and VPST are predicated
1685         // then a different code path is expected to have merged the VCMP and
1686         // VPST already.
1687         if (std::none_of(++MachineBasicBlock::iterator(VCMP),
1688                          MachineBasicBlock::iterator(VPST), hasVPRUse) &&
1689             RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(1).getReg()) &&
1690             RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(2).getReg())) {
1691           ReplaceVCMPWithVPT(VCMP, VPST);
1692           LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST);
1693           LoLoop.ToRemove.insert(VPST);
1694         }
1695       }
1696     }
1697   }
1698 
1699   LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end());
1700 }
1701 
1702 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) {
1703 
1704   // Combine the LoopDec and LoopEnd instructions into LE(TP).
1705   auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) {
1706     MachineInstr *End = LoLoop.End;
1707     MachineBasicBlock *MBB = End->getParent();
1708     unsigned Opc = LoLoop.IsTailPredicationLegal() ?
1709       ARM::MVE_LETP : ARM::t2LEUpdate;
1710     MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(),
1711                                       TII->get(Opc));
1712     MIB.addDef(ARM::LR);
1713     unsigned Off = LoLoop.Dec == LoLoop.End ? 1 : 0;
1714     MIB.add(End->getOperand(Off + 0));
1715     MIB.add(End->getOperand(Off + 1));
1716     LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB);
1717     LoLoop.ToRemove.insert(LoLoop.Dec);
1718     LoLoop.ToRemove.insert(End);
1719     return &*MIB;
1720   };
1721 
1722   // TODO: We should be able to automatically remove these branches before we
1723   // get here - probably by teaching analyzeBranch about the pseudo
1724   // instructions.
1725   // If there is an unconditional branch, after I, that just branches to the
1726   // next block, remove it.
1727   auto RemoveDeadBranch = [](MachineInstr *I) {
1728     MachineBasicBlock *BB = I->getParent();
1729     MachineInstr *Terminator = &BB->instr_back();
1730     if (Terminator->isUnconditionalBranch() && I != Terminator) {
1731       MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB();
1732       if (BB->isLayoutSuccessor(Succ)) {
1733         LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator);
1734         Terminator->eraseFromParent();
1735       }
1736     }
1737   };
1738 
1739   // And VMOVCopies need to become 2xVMOVD for tail predication to be valid.
1740   // Anything other MQPRCopy can be converted to MVE_VORR later on.
1741   auto ExpandVMOVCopies = [this](SmallPtrSet<MachineInstr *, 4> &VMOVCopies) {
1742     for (auto *MI : VMOVCopies) {
1743       LLVM_DEBUG(dbgs() << "Converting copy to VMOVD: " << *MI);
1744       assert(MI->getOpcode() == ARM::MQPRCopy && "Only expected MQPRCOPY!");
1745       MachineBasicBlock *MBB = MI->getParent();
1746       Register Dst = MI->getOperand(0).getReg();
1747       Register Src = MI->getOperand(1).getReg();
1748       auto MIB1 = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::VMOVD),
1749                           ARM::D0 + (Dst - ARM::Q0) * 2)
1750                       .addReg(ARM::D0 + (Src - ARM::Q0) * 2)
1751                       .add(predOps(ARMCC::AL));
1752       (void)MIB1;
1753       LLVM_DEBUG(dbgs() << " into " << *MIB1);
1754       auto MIB2 = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::VMOVD),
1755                           ARM::D0 + (Dst - ARM::Q0) * 2 + 1)
1756                       .addReg(ARM::D0 + (Src - ARM::Q0) * 2 + 1)
1757                       .add(predOps(ARMCC::AL));
1758       LLVM_DEBUG(dbgs() << " and  " << *MIB2);
1759       (void)MIB2;
1760       MI->eraseFromParent();
1761     }
1762   };
1763 
1764   if (LoLoop.Revert) {
1765     if (isWhileLoopStart(*LoLoop.Start))
1766       RevertWhile(LoLoop.Start);
1767     else
1768       RevertDo(LoLoop.Start);
1769     if (LoLoop.Dec == LoLoop.End)
1770       RevertLoopEndDec(LoLoop.End);
1771     else
1772       RevertLoopEnd(LoLoop.End, RevertLoopDec(LoLoop.Dec));
1773   } else {
1774     ExpandVMOVCopies(LoLoop.VMOVCopies);
1775     LoLoop.Start = ExpandLoopStart(LoLoop);
1776     if (LoLoop.Start)
1777       RemoveDeadBranch(LoLoop.Start);
1778     LoLoop.End = ExpandLoopEnd(LoLoop);
1779     RemoveDeadBranch(LoLoop.End);
1780     if (LoLoop.IsTailPredicationLegal())
1781       ConvertVPTBlocks(LoLoop);
1782     for (auto *I : LoLoop.ToRemove) {
1783       LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I);
1784       I->eraseFromParent();
1785     }
1786     for (auto *I : LoLoop.BlockMasksToRecompute) {
1787       LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I);
1788       recomputeVPTBlockMask(*I);
1789       LLVM_DEBUG(dbgs() << "           ... done: " << *I);
1790     }
1791   }
1792 
1793   PostOrderLoopTraversal DFS(LoLoop.ML, *MLI);
1794   DFS.ProcessLoop();
1795   const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder();
1796   fullyRecomputeLiveIns(PostOrder);
1797 
1798   for (auto *MBB : reverse(PostOrder))
1799     recomputeLivenessFlags(*MBB);
1800 
1801   // We've moved, removed and inserted new instructions, so update RDA.
1802   RDA->reset();
1803 }
1804 
1805 bool ARMLowOverheadLoops::RevertNonLoops() {
1806   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n");
1807   bool Changed = false;
1808 
1809   for (auto &MBB : *MF) {
1810     SmallVector<MachineInstr*, 4> Starts;
1811     SmallVector<MachineInstr*, 4> Decs;
1812     SmallVector<MachineInstr*, 4> Ends;
1813     SmallVector<MachineInstr *, 4> EndDecs;
1814     SmallVector<MachineInstr *, 4> MQPRCopies;
1815 
1816     for (auto &I : MBB) {
1817       if (isLoopStart(I))
1818         Starts.push_back(&I);
1819       else if (I.getOpcode() == ARM::t2LoopDec)
1820         Decs.push_back(&I);
1821       else if (I.getOpcode() == ARM::t2LoopEnd)
1822         Ends.push_back(&I);
1823       else if (I.getOpcode() == ARM::t2LoopEndDec)
1824         EndDecs.push_back(&I);
1825       else if (I.getOpcode() == ARM::MQPRCopy)
1826         MQPRCopies.push_back(&I);
1827     }
1828 
1829     if (Starts.empty() && Decs.empty() && Ends.empty() && EndDecs.empty() &&
1830         MQPRCopies.empty())
1831       continue;
1832 
1833     Changed = true;
1834 
1835     for (auto *Start : Starts) {
1836       if (isWhileLoopStart(*Start))
1837         RevertWhile(Start);
1838       else
1839         RevertDo(Start);
1840     }
1841     for (auto *Dec : Decs)
1842       RevertLoopDec(Dec);
1843 
1844     for (auto *End : Ends)
1845       RevertLoopEnd(End);
1846     for (auto *End : EndDecs)
1847       RevertLoopEndDec(End);
1848     for (auto *MI : MQPRCopies) {
1849       LLVM_DEBUG(dbgs() << "Converting copy to VORR: " << *MI);
1850       assert(MI->getOpcode() == ARM::MQPRCopy && "Only expected MQPRCOPY!");
1851       MachineBasicBlock *MBB = MI->getParent();
1852       auto MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::MVE_VORR),
1853                          MI->getOperand(0).getReg())
1854                      .add(MI->getOperand(1))
1855                      .add(MI->getOperand(1));
1856       addUnpredicatedMveVpredROp(MIB, MI->getOperand(0).getReg());
1857       MI->eraseFromParent();
1858     }
1859   }
1860   return Changed;
1861 }
1862 
1863 FunctionPass *llvm::createARMLowOverheadLoopsPass() {
1864   return new ARMLowOverheadLoops();
1865 }
1866