1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo 10 /// instructions into machine operations. 11 /// The expectation is that the loop contains three pseudo instructions: 12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop 13 /// form should be in the preheader, whereas the while form should be in the 14 /// preheaders only predecessor. 15 /// - t2LoopDec - placed within in the loop body. 16 /// - t2LoopEnd - the loop latch terminator. 17 /// 18 /// In addition to this, we also look for the presence of the VCTP instruction, 19 /// which determines whether we can generated the tail-predicated low-overhead 20 /// loop form. 21 /// 22 /// Assumptions and Dependencies: 23 /// Low-overhead loops are constructed and executed using a setup instruction: 24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. 25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range 26 /// but fixed polarity: WLS can only branch forwards and LE can only branch 27 /// backwards. These restrictions mean that this pass is dependent upon block 28 /// layout and block sizes, which is why it's the last pass to run. The same is 29 /// true for ConstantIslands, but this pass does not increase the size of the 30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed 31 /// during the transform and pseudo instructions are replaced by real ones. In 32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce 33 /// multiple instructions for a single pseudo (see RevertWhile and 34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStartLR and t2LoopEnd 35 /// are defined to be as large as this maximum sequence of replacement 36 /// instructions. 37 /// 38 /// A note on VPR.P0 (the lane mask): 39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a 40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks). 41 /// They will simply "and" the result of their calculation with the current 42 /// value of VPR.P0. You can think of it like this: 43 /// \verbatim 44 /// if VPT active: ; Between a DLSTP/LETP, or for predicated instrs 45 /// VPR.P0 &= Value 46 /// else 47 /// VPR.P0 = Value 48 /// \endverbatim 49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always 50 /// fall in the "VPT active" case, so we can consider that all VPR writes by 51 /// one of those instruction is actually a "and". 52 //===----------------------------------------------------------------------===// 53 54 #include "ARM.h" 55 #include "ARMBaseInstrInfo.h" 56 #include "ARMBaseRegisterInfo.h" 57 #include "ARMBasicBlockInfo.h" 58 #include "ARMSubtarget.h" 59 #include "MVETailPredUtils.h" 60 #include "Thumb2InstrInfo.h" 61 #include "llvm/ADT/SetOperations.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/ADT/SmallSet.h" 64 #include "llvm/CodeGen/LivePhysRegs.h" 65 #include "llvm/CodeGen/MachineFrameInfo.h" 66 #include "llvm/CodeGen/MachineFunctionPass.h" 67 #include "llvm/CodeGen/MachineLoopInfo.h" 68 #include "llvm/CodeGen/MachineLoopUtils.h" 69 #include "llvm/CodeGen/MachineRegisterInfo.h" 70 #include "llvm/CodeGen/Passes.h" 71 #include "llvm/CodeGen/ReachingDefAnalysis.h" 72 #include "llvm/MC/MCInstrDesc.h" 73 74 using namespace llvm; 75 76 #define DEBUG_TYPE "arm-low-overhead-loops" 77 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" 78 79 static cl::opt<bool> 80 DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden, 81 cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"), 82 cl::init(false)); 83 84 static cl::opt<bool> 85 DisableOmitDLS("arm-disable-omit-dls", cl::Hidden, 86 cl::desc("Disable omitting 'dls lr, lr' instructions"), 87 cl::init(false)); 88 89 static bool isVectorPredicated(MachineInstr *MI) { 90 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 91 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR; 92 } 93 94 static bool isVectorPredicate(MachineInstr *MI) { 95 return MI->findRegisterDefOperandIdx(ARM::VPR) != -1; 96 } 97 98 static bool hasVPRUse(MachineInstr &MI) { 99 return MI.findRegisterUseOperandIdx(ARM::VPR) != -1; 100 } 101 102 static bool isDomainMVE(MachineInstr *MI) { 103 uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask; 104 return Domain == ARMII::DomainMVE; 105 } 106 107 static int getVecSize(const MachineInstr &MI) { 108 const MCInstrDesc &MCID = MI.getDesc(); 109 uint64_t Flags = MCID.TSFlags; 110 return (Flags & ARMII::VecSize) >> ARMII::VecSizeShift; 111 } 112 113 static bool shouldInspect(MachineInstr &MI) { 114 if (MI.isDebugInstr()) 115 return false; 116 return isDomainMVE(&MI) || isVectorPredicate(&MI) || hasVPRUse(MI); 117 } 118 119 namespace { 120 121 using InstSet = SmallPtrSetImpl<MachineInstr *>; 122 123 class PostOrderLoopTraversal { 124 MachineLoop &ML; 125 MachineLoopInfo &MLI; 126 SmallPtrSet<MachineBasicBlock*, 4> Visited; 127 SmallVector<MachineBasicBlock*, 4> Order; 128 129 public: 130 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI) 131 : ML(ML), MLI(MLI) { } 132 133 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const { 134 return Order; 135 } 136 137 // Visit all the blocks within the loop, as well as exit blocks and any 138 // blocks properly dominating the header. 139 void ProcessLoop() { 140 std::function<void(MachineBasicBlock*)> Search = [this, &Search] 141 (MachineBasicBlock *MBB) -> void { 142 if (Visited.count(MBB)) 143 return; 144 145 Visited.insert(MBB); 146 for (auto *Succ : MBB->successors()) { 147 if (!ML.contains(Succ)) 148 continue; 149 Search(Succ); 150 } 151 Order.push_back(MBB); 152 }; 153 154 // Insert exit blocks. 155 SmallVector<MachineBasicBlock*, 2> ExitBlocks; 156 ML.getExitBlocks(ExitBlocks); 157 append_range(Order, ExitBlocks); 158 159 // Then add the loop body. 160 Search(ML.getHeader()); 161 162 // Then try the preheader and its predecessors. 163 std::function<void(MachineBasicBlock*)> GetPredecessor = 164 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void { 165 Order.push_back(MBB); 166 if (MBB->pred_size() == 1) 167 GetPredecessor(*MBB->pred_begin()); 168 }; 169 170 if (auto *Preheader = ML.getLoopPreheader()) 171 GetPredecessor(Preheader); 172 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true, true)) 173 GetPredecessor(Preheader); 174 } 175 }; 176 177 struct PredicatedMI { 178 MachineInstr *MI = nullptr; 179 SetVector<MachineInstr*> Predicates; 180 181 public: 182 PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) { 183 assert(I && "Instruction must not be null!"); 184 Predicates.insert(Preds.begin(), Preds.end()); 185 } 186 }; 187 188 // Represent the current state of the VPR and hold all instances which 189 // represent a VPT block, which is a list of instructions that begins with a 190 // VPT/VPST and has a maximum of four proceeding instructions. All 191 // instructions within the block are predicated upon the vpr and we allow 192 // instructions to define the vpr within in the block too. 193 class VPTState { 194 friend struct LowOverheadLoop; 195 196 SmallVector<MachineInstr *, 4> Insts; 197 198 static SmallVector<VPTState, 4> Blocks; 199 static SetVector<MachineInstr *> CurrentPredicates; 200 static std::map<MachineInstr *, 201 std::unique_ptr<PredicatedMI>> PredicatedInsts; 202 203 static void CreateVPTBlock(MachineInstr *MI) { 204 assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR)) 205 && "Can't begin VPT without predicate"); 206 Blocks.emplace_back(MI); 207 // The execution of MI is predicated upon the current set of instructions 208 // that are AND'ed together to form the VPR predicate value. In the case 209 // that MI is a VPT, CurrentPredicates will also just be MI. 210 PredicatedInsts.emplace( 211 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates)); 212 } 213 214 static void reset() { 215 Blocks.clear(); 216 PredicatedInsts.clear(); 217 CurrentPredicates.clear(); 218 } 219 220 static void addInst(MachineInstr *MI) { 221 Blocks.back().insert(MI); 222 PredicatedInsts.emplace( 223 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates)); 224 } 225 226 static void addPredicate(MachineInstr *MI) { 227 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI); 228 CurrentPredicates.insert(MI); 229 } 230 231 static void resetPredicate(MachineInstr *MI) { 232 LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI); 233 CurrentPredicates.clear(); 234 CurrentPredicates.insert(MI); 235 } 236 237 public: 238 // Have we found an instruction within the block which defines the vpr? If 239 // so, not all the instructions in the block will have the same predicate. 240 static bool hasUniformPredicate(VPTState &Block) { 241 return getDivergent(Block) == nullptr; 242 } 243 244 // If it exists, return the first internal instruction which modifies the 245 // VPR. 246 static MachineInstr *getDivergent(VPTState &Block) { 247 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 248 for (unsigned i = 1; i < Insts.size(); ++i) { 249 MachineInstr *Next = Insts[i]; 250 if (isVectorPredicate(Next)) 251 return Next; // Found an instruction altering the vpr. 252 } 253 return nullptr; 254 } 255 256 // Return whether the given instruction is predicated upon a VCTP. 257 static bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) { 258 SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI]->Predicates; 259 if (Exclusive && Predicates.size() != 1) 260 return false; 261 return llvm::any_of(Predicates, isVCTP); 262 } 263 264 // Is the VPST, controlling the block entry, predicated upon a VCTP. 265 static bool isEntryPredicatedOnVCTP(VPTState &Block, 266 bool Exclusive = false) { 267 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 268 return isPredicatedOnVCTP(Insts.front(), Exclusive); 269 } 270 271 // If this block begins with a VPT, we can check whether it's using 272 // at least one predicated input(s), as well as possible loop invariant 273 // which would result in it being implicitly predicated. 274 static bool hasImplicitlyValidVPT(VPTState &Block, 275 ReachingDefAnalysis &RDA) { 276 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 277 MachineInstr *VPT = Insts.front(); 278 assert(isVPTOpcode(VPT->getOpcode()) && 279 "Expected VPT block to begin with VPT/VPST"); 280 281 if (VPT->getOpcode() == ARM::MVE_VPST) 282 return false; 283 284 auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) { 285 MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx)); 286 return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op); 287 }; 288 289 auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) { 290 MachineOperand &MO = MI->getOperand(Idx); 291 if (!MO.isReg() || !MO.getReg()) 292 return true; 293 294 SmallPtrSet<MachineInstr *, 2> Defs; 295 RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs); 296 if (Defs.empty()) 297 return true; 298 299 for (auto *Def : Defs) 300 if (Def->getParent() == VPT->getParent()) 301 return false; 302 return true; 303 }; 304 305 // Check that at least one of the operands is directly predicated on a 306 // vctp and allow an invariant value too. 307 return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) && 308 (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) && 309 (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2)); 310 } 311 312 static bool isValid(ReachingDefAnalysis &RDA) { 313 // All predication within the loop should be based on vctp. If the block 314 // isn't predicated on entry, check whether the vctp is within the block 315 // and that all other instructions are then predicated on it. 316 for (auto &Block : Blocks) { 317 if (isEntryPredicatedOnVCTP(Block, false) || 318 hasImplicitlyValidVPT(Block, RDA)) 319 continue; 320 321 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 322 // We don't know how to convert a block with just a VPT;VCTP into 323 // anything valid once we remove the VCTP. For now just bail out. 324 assert(isVPTOpcode(Insts.front()->getOpcode()) && 325 "Expected VPT block to start with a VPST or VPT!"); 326 if (Insts.size() == 2 && Insts.front()->getOpcode() != ARM::MVE_VPST && 327 isVCTP(Insts.back())) 328 return false; 329 330 for (auto *MI : Insts) { 331 // Check that any internal VCTPs are 'Then' predicated. 332 if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then) 333 return false; 334 // Skip other instructions that build up the predicate. 335 if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI)) 336 continue; 337 // Check that any other instructions are predicated upon a vctp. 338 // TODO: We could infer when VPTs are implicitly predicated on the 339 // vctp (when the operands are predicated). 340 if (!isPredicatedOnVCTP(MI)) { 341 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI); 342 return false; 343 } 344 } 345 } 346 return true; 347 } 348 349 VPTState(MachineInstr *MI) { Insts.push_back(MI); } 350 351 void insert(MachineInstr *MI) { 352 Insts.push_back(MI); 353 // VPT/VPST + 4 predicated instructions. 354 assert(Insts.size() <= 5 && "Too many instructions in VPT block!"); 355 } 356 357 bool containsVCTP() const { 358 return llvm::any_of(Insts, isVCTP); 359 } 360 361 unsigned size() const { return Insts.size(); } 362 SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; } 363 }; 364 365 struct LowOverheadLoop { 366 367 MachineLoop &ML; 368 MachineBasicBlock *Preheader = nullptr; 369 MachineLoopInfo &MLI; 370 ReachingDefAnalysis &RDA; 371 const TargetRegisterInfo &TRI; 372 const ARMBaseInstrInfo &TII; 373 MachineFunction *MF = nullptr; 374 MachineBasicBlock::iterator StartInsertPt; 375 MachineBasicBlock *StartInsertBB = nullptr; 376 MachineInstr *Start = nullptr; 377 MachineInstr *Dec = nullptr; 378 MachineInstr *End = nullptr; 379 MachineOperand TPNumElements; 380 SmallVector<MachineInstr *, 4> VCTPs; 381 SmallPtrSet<MachineInstr *, 4> ToRemove; 382 SmallPtrSet<MachineInstr *, 4> BlockMasksToRecompute; 383 SmallPtrSet<MachineInstr *, 4> DoubleWidthResultInstrs; 384 SmallPtrSet<MachineInstr *, 4> VMOVCopies; 385 bool Revert = false; 386 bool CannotTailPredicate = false; 387 388 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI, 389 ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI, 390 const ARMBaseInstrInfo &TII) 391 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII), 392 TPNumElements(MachineOperand::CreateImm(0)) { 393 MF = ML.getHeader()->getParent(); 394 if (auto *MBB = ML.getLoopPreheader()) 395 Preheader = MBB; 396 else if (auto *MBB = MLI.findLoopPreheader(&ML, true, true)) 397 Preheader = MBB; 398 VPTState::reset(); 399 } 400 401 // If this is an MVE instruction, check that we know how to use tail 402 // predication with it. Record VPT blocks and return whether the 403 // instruction is valid for tail predication. 404 bool ValidateMVEInst(MachineInstr *MI); 405 406 void AnalyseMVEInst(MachineInstr *MI) { 407 CannotTailPredicate = !ValidateMVEInst(MI); 408 } 409 410 bool IsTailPredicationLegal() const { 411 // For now, let's keep things really simple and only support a single 412 // block for tail predication. 413 return !Revert && FoundAllComponents() && !VCTPs.empty() && 414 !CannotTailPredicate && ML.getNumBlocks() == 1; 415 } 416 417 // Given that MI is a VCTP, check that is equivalent to any other VCTPs 418 // found. 419 bool AddVCTP(MachineInstr *MI); 420 421 // Check that the predication in the loop will be equivalent once we 422 // perform the conversion. Also ensure that we can provide the number 423 // of elements to the loop start instruction. 424 bool ValidateTailPredicate(); 425 426 // Check that any values available outside of the loop will be the same 427 // after tail predication conversion. 428 bool ValidateLiveOuts(); 429 430 // Check the branch targets are within range and we satisfy our 431 // restrictions. 432 void Validate(ARMBasicBlockUtils *BBUtils); 433 434 bool FoundAllComponents() const { 435 return Start && Dec && End; 436 } 437 438 SmallVectorImpl<VPTState> &getVPTBlocks() { 439 return VPTState::Blocks; 440 } 441 442 // Return the operand for the loop start instruction. This will be the loop 443 // iteration count, or the number of elements if we're tail predicating. 444 MachineOperand &getLoopStartOperand() { 445 if (IsTailPredicationLegal()) 446 return TPNumElements; 447 return Start->getOperand(1); 448 } 449 450 unsigned getStartOpcode() const { 451 bool IsDo = isDoLoopStart(*Start); 452 if (!IsTailPredicationLegal()) 453 return IsDo ? ARM::t2DLS : ARM::t2WLS; 454 455 return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo); 456 } 457 458 void dump() const { 459 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; 460 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; 461 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; 462 if (!VCTPs.empty()) { 463 dbgs() << "ARM Loops: Found VCTP(s):\n"; 464 for (auto *MI : VCTPs) 465 dbgs() << " - " << *MI; 466 } 467 if (!FoundAllComponents()) 468 dbgs() << "ARM Loops: Not a low-overhead loop.\n"; 469 else if (!(Start && Dec && End)) 470 dbgs() << "ARM Loops: Failed to find all loop components.\n"; 471 } 472 }; 473 474 class ARMLowOverheadLoops : public MachineFunctionPass { 475 MachineFunction *MF = nullptr; 476 MachineLoopInfo *MLI = nullptr; 477 ReachingDefAnalysis *RDA = nullptr; 478 const ARMBaseInstrInfo *TII = nullptr; 479 MachineRegisterInfo *MRI = nullptr; 480 const TargetRegisterInfo *TRI = nullptr; 481 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 482 483 public: 484 static char ID; 485 486 ARMLowOverheadLoops() : MachineFunctionPass(ID) { } 487 488 void getAnalysisUsage(AnalysisUsage &AU) const override { 489 AU.setPreservesCFG(); 490 AU.addRequired<MachineLoopInfo>(); 491 AU.addRequired<ReachingDefAnalysis>(); 492 MachineFunctionPass::getAnalysisUsage(AU); 493 } 494 495 bool runOnMachineFunction(MachineFunction &MF) override; 496 497 MachineFunctionProperties getRequiredProperties() const override { 498 return MachineFunctionProperties().set( 499 MachineFunctionProperties::Property::NoVRegs).set( 500 MachineFunctionProperties::Property::TracksLiveness); 501 } 502 503 StringRef getPassName() const override { 504 return ARM_LOW_OVERHEAD_LOOPS_NAME; 505 } 506 507 private: 508 bool ProcessLoop(MachineLoop *ML); 509 510 bool RevertNonLoops(); 511 512 void RevertWhile(MachineInstr *MI) const; 513 void RevertDo(MachineInstr *MI) const; 514 515 bool RevertLoopDec(MachineInstr *MI) const; 516 517 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; 518 519 void RevertLoopEndDec(MachineInstr *MI) const; 520 521 void ConvertVPTBlocks(LowOverheadLoop &LoLoop); 522 523 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); 524 525 void Expand(LowOverheadLoop &LoLoop); 526 527 void IterationCountDCE(LowOverheadLoop &LoLoop); 528 }; 529 } 530 531 char ARMLowOverheadLoops::ID = 0; 532 533 SmallVector<VPTState, 4> VPTState::Blocks; 534 SetVector<MachineInstr *> VPTState::CurrentPredicates; 535 std::map<MachineInstr *, 536 std::unique_ptr<PredicatedMI>> VPTState::PredicatedInsts; 537 538 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, 539 false, false) 540 541 static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA, 542 InstSet &ToRemove, InstSet &Ignore) { 543 544 // Check that we can remove all of Killed without having to modify any IT 545 // blocks. 546 auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) { 547 // Collect the dead code and the MBBs in which they reside. 548 SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks; 549 for (auto *Dead : Killed) 550 BasicBlocks.insert(Dead->getParent()); 551 552 // Collect IT blocks in all affected basic blocks. 553 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks; 554 for (auto *MBB : BasicBlocks) { 555 for (auto &IT : *MBB) { 556 if (IT.getOpcode() != ARM::t2IT) 557 continue; 558 RDA.getReachingLocalUses(&IT, MCRegister::from(ARM::ITSTATE), 559 ITBlocks[&IT]); 560 } 561 } 562 563 // If we're removing all of the instructions within an IT block, then 564 // also remove the IT instruction. 565 SmallPtrSet<MachineInstr *, 2> ModifiedITs; 566 SmallPtrSet<MachineInstr *, 2> RemoveITs; 567 for (auto *Dead : Killed) { 568 if (MachineOperand *MO = Dead->findRegisterUseOperand(ARM::ITSTATE)) { 569 MachineInstr *IT = RDA.getMIOperand(Dead, *MO); 570 RemoveITs.insert(IT); 571 auto &CurrentBlock = ITBlocks[IT]; 572 CurrentBlock.erase(Dead); 573 if (CurrentBlock.empty()) 574 ModifiedITs.erase(IT); 575 else 576 ModifiedITs.insert(IT); 577 } 578 } 579 if (!ModifiedITs.empty()) 580 return false; 581 Killed.insert(RemoveITs.begin(), RemoveITs.end()); 582 return true; 583 }; 584 585 SmallPtrSet<MachineInstr *, 2> Uses; 586 if (!RDA.isSafeToRemove(MI, Uses, Ignore)) 587 return false; 588 589 if (WontCorruptITs(Uses, RDA)) { 590 ToRemove.insert(Uses.begin(), Uses.end()); 591 LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI 592 << " - can also remove:\n"; 593 for (auto *Use : Uses) 594 dbgs() << " - " << *Use); 595 596 SmallPtrSet<MachineInstr*, 4> Killed; 597 RDA.collectKilledOperands(MI, Killed); 598 if (WontCorruptITs(Killed, RDA)) { 599 ToRemove.insert(Killed.begin(), Killed.end()); 600 LLVM_DEBUG(for (auto *Dead : Killed) 601 dbgs() << " - " << *Dead); 602 } 603 return true; 604 } 605 return false; 606 } 607 608 bool LowOverheadLoop::ValidateTailPredicate() { 609 if (!IsTailPredicationLegal()) { 610 LLVM_DEBUG(if (VCTPs.empty()) 611 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; 612 dbgs() << "ARM Loops: Tail-predication is not valid.\n"); 613 return false; 614 } 615 616 assert(!VCTPs.empty() && "VCTP instruction expected but is not set"); 617 assert(ML.getBlocks().size() == 1 && 618 "Shouldn't be processing a loop with more than one block"); 619 620 if (DisableTailPredication) { 621 LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n"); 622 return false; 623 } 624 625 if (!VPTState::isValid(RDA)) { 626 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid VPT state.\n"); 627 return false; 628 } 629 630 if (!ValidateLiveOuts()) { 631 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n"); 632 return false; 633 } 634 635 // For tail predication, we need to provide the number of elements, instead 636 // of the iteration count, to the loop start instruction. The number of 637 // elements is provided to the vctp instruction, so we need to check that 638 // we can use this register at InsertPt. 639 MachineInstr *VCTP = VCTPs.back(); 640 if (Start->getOpcode() == ARM::t2DoLoopStartTP || 641 Start->getOpcode() == ARM::t2WhileLoopStartTP) { 642 TPNumElements = Start->getOperand(2); 643 StartInsertPt = Start; 644 StartInsertBB = Start->getParent(); 645 } else { 646 TPNumElements = VCTP->getOperand(1); 647 MCRegister NumElements = TPNumElements.getReg().asMCReg(); 648 649 // If the register is defined within loop, then we can't perform TP. 650 // TODO: Check whether this is just a mov of a register that would be 651 // available. 652 if (RDA.hasLocalDefBefore(VCTP, NumElements)) { 653 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); 654 return false; 655 } 656 657 // The element count register maybe defined after InsertPt, in which case we 658 // need to try to move either InsertPt or the def so that the [w|d]lstp can 659 // use the value. 660 661 if (StartInsertPt != StartInsertBB->end() && 662 !RDA.isReachingDefLiveOut(&*StartInsertPt, NumElements)) { 663 if (auto *ElemDef = 664 RDA.getLocalLiveOutMIDef(StartInsertBB, NumElements)) { 665 if (RDA.isSafeToMoveForwards(ElemDef, &*StartInsertPt)) { 666 ElemDef->removeFromParent(); 667 StartInsertBB->insert(StartInsertPt, ElemDef); 668 LLVM_DEBUG(dbgs() 669 << "ARM Loops: Moved element count def: " << *ElemDef); 670 } else if (RDA.isSafeToMoveBackwards(&*StartInsertPt, ElemDef)) { 671 StartInsertPt->removeFromParent(); 672 StartInsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), 673 &*StartInsertPt); 674 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); 675 } else { 676 // If we fail to move an instruction and the element count is provided 677 // by a mov, use the mov operand if it will have the same value at the 678 // insertion point 679 MachineOperand Operand = ElemDef->getOperand(1); 680 if (isMovRegOpcode(ElemDef->getOpcode()) && 681 RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg().asMCReg()) == 682 RDA.getUniqueReachingMIDef(&*StartInsertPt, 683 Operand.getReg().asMCReg())) { 684 TPNumElements = Operand; 685 NumElements = TPNumElements.getReg(); 686 } else { 687 LLVM_DEBUG(dbgs() 688 << "ARM Loops: Unable to move element count to loop " 689 << "start instruction.\n"); 690 return false; 691 } 692 } 693 } 694 } 695 696 // Especially in the case of while loops, InsertBB may not be the 697 // preheader, so we need to check that the register isn't redefined 698 // before entering the loop. 699 auto CannotProvideElements = [this](MachineBasicBlock *MBB, 700 MCRegister NumElements) { 701 if (MBB->empty()) 702 return false; 703 // NumElements is redefined in this block. 704 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements)) 705 return true; 706 707 // Don't continue searching up through multiple predecessors. 708 if (MBB->pred_size() > 1) 709 return true; 710 711 return false; 712 }; 713 714 // Search backwards for a def, until we get to InsertBB. 715 MachineBasicBlock *MBB = Preheader; 716 while (MBB && MBB != StartInsertBB) { 717 if (CannotProvideElements(MBB, NumElements)) { 718 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n"); 719 return false; 720 } 721 MBB = *MBB->pred_begin(); 722 } 723 } 724 725 // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect 726 // world the [w|d]lstp instruction would be last instruction in the preheader 727 // and so it would only affect instructions within the loop body. But due to 728 // scheduling, and/or the logic in this pass (above), the insertion point can 729 // be moved earlier. So if the Loop Start isn't the last instruction in the 730 // preheader, and if the initial element count is smaller than the vector 731 // width, the Loop Start instruction will immediately generate one or more 732 // false lane mask which can, incorrectly, affect the proceeding MVE 733 // instructions in the preheader. 734 if (std::any_of(StartInsertPt, StartInsertBB->end(), shouldInspect)) { 735 LLVM_DEBUG(dbgs() << "ARM Loops: Instruction blocks [W|D]LSTP\n"); 736 return false; 737 } 738 739 // For any DoubleWidthResultInstrs we found whilst scanning instructions, they 740 // need to compute an output size that is smaller than the VCTP mask operates 741 // on. The VecSize of the DoubleWidthResult is the larger vector size - the 742 // size it extends into, so any VCTP VecSize <= is valid. 743 unsigned VCTPVecSize = getVecSize(*VCTP); 744 for (MachineInstr *MI : DoubleWidthResultInstrs) { 745 unsigned InstrVecSize = getVecSize(*MI); 746 if (InstrVecSize > VCTPVecSize) { 747 LLVM_DEBUG(dbgs() << "ARM Loops: Double width result larger than VCTP " 748 << "VecSize:\n" << *MI); 749 return false; 750 } 751 } 752 753 // Check that the value change of the element count is what we expect and 754 // that the predication will be equivalent. For this we need: 755 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate 756 // and we can also allow register copies within the chain too. 757 auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) { 758 return -getAddSubImmediate(*MI) == ExpectedVecWidth; 759 }; 760 761 MachineBasicBlock *MBB = VCTP->getParent(); 762 // Remove modifications to the element count since they have no purpose in a 763 // tail predicated loop. Explicitly refer to the vctp operand no matter which 764 // register NumElements has been assigned to, since that is what the 765 // modifications will be using 766 if (auto *Def = RDA.getUniqueReachingMIDef( 767 &MBB->back(), VCTP->getOperand(1).getReg().asMCReg())) { 768 SmallPtrSet<MachineInstr*, 2> ElementChain; 769 SmallPtrSet<MachineInstr*, 2> Ignore; 770 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode()); 771 772 Ignore.insert(VCTPs.begin(), VCTPs.end()); 773 774 if (TryRemove(Def, RDA, ElementChain, Ignore)) { 775 bool FoundSub = false; 776 777 for (auto *MI : ElementChain) { 778 if (isMovRegOpcode(MI->getOpcode())) 779 continue; 780 781 if (isSubImmOpcode(MI->getOpcode())) { 782 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) { 783 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element" 784 " count: " << *MI); 785 return false; 786 } 787 FoundSub = true; 788 } else { 789 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element" 790 " count: " << *MI); 791 return false; 792 } 793 } 794 ToRemove.insert(ElementChain.begin(), ElementChain.end()); 795 } 796 } 797 798 // If we converted the LoopStart to a t2DoLoopStartTP/t2WhileLoopStartTP, we 799 // can also remove any extra instructions in the preheader, which often 800 // includes a now unused MOV. 801 if ((Start->getOpcode() == ARM::t2DoLoopStartTP || 802 Start->getOpcode() == ARM::t2WhileLoopStartTP) && 803 Preheader && !Preheader->empty() && 804 !RDA.hasLocalDefBefore(VCTP, VCTP->getOperand(1).getReg())) { 805 if (auto *Def = RDA.getUniqueReachingMIDef( 806 &Preheader->back(), VCTP->getOperand(1).getReg().asMCReg())) { 807 SmallPtrSet<MachineInstr*, 2> Ignore; 808 Ignore.insert(VCTPs.begin(), VCTPs.end()); 809 TryRemove(Def, RDA, ToRemove, Ignore); 810 } 811 } 812 813 return true; 814 } 815 816 static bool isRegInClass(const MachineOperand &MO, 817 const TargetRegisterClass *Class) { 818 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg()); 819 } 820 821 // MVE 'narrowing' operate on half a lane, reading from half and writing 822 // to half, which are referred to has the top and bottom half. The other 823 // half retains its previous value. 824 static bool retainsPreviousHalfElement(const MachineInstr &MI) { 825 const MCInstrDesc &MCID = MI.getDesc(); 826 uint64_t Flags = MCID.TSFlags; 827 return (Flags & ARMII::RetainsPreviousHalfElement) != 0; 828 } 829 830 // Some MVE instructions read from the top/bottom halves of their operand(s) 831 // and generate a vector result with result elements that are double the 832 // width of the input. 833 static bool producesDoubleWidthResult(const MachineInstr &MI) { 834 const MCInstrDesc &MCID = MI.getDesc(); 835 uint64_t Flags = MCID.TSFlags; 836 return (Flags & ARMII::DoubleWidthResult) != 0; 837 } 838 839 static bool isHorizontalReduction(const MachineInstr &MI) { 840 const MCInstrDesc &MCID = MI.getDesc(); 841 uint64_t Flags = MCID.TSFlags; 842 return (Flags & ARMII::HorizontalReduction) != 0; 843 } 844 845 // Can this instruction generate a non-zero result when given only zeroed 846 // operands? This allows us to know that, given operands with false bytes 847 // zeroed by masked loads, that the result will also contain zeros in those 848 // bytes. 849 static bool canGenerateNonZeros(const MachineInstr &MI) { 850 851 // Check for instructions which can write into a larger element size, 852 // possibly writing into a previous zero'd lane. 853 if (producesDoubleWidthResult(MI)) 854 return true; 855 856 switch (MI.getOpcode()) { 857 default: 858 break; 859 // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow 860 // fp16 -> fp32 vector conversions. 861 // Instructions that perform a NOT will generate 1s from 0s. 862 case ARM::MVE_VMVN: 863 case ARM::MVE_VORN: 864 // Count leading zeros will do just that! 865 case ARM::MVE_VCLZs8: 866 case ARM::MVE_VCLZs16: 867 case ARM::MVE_VCLZs32: 868 return true; 869 } 870 return false; 871 } 872 873 // Look at its register uses to see if it only can only receive zeros 874 // into its false lanes which would then produce zeros. Also check that 875 // the output register is also defined by an FalseLanesZero instruction 876 // so that if tail-predication happens, the lanes that aren't updated will 877 // still be zeros. 878 static bool producesFalseLanesZero(MachineInstr &MI, 879 const TargetRegisterClass *QPRs, 880 const ReachingDefAnalysis &RDA, 881 InstSet &FalseLanesZero) { 882 if (canGenerateNonZeros(MI)) 883 return false; 884 885 bool isPredicated = isVectorPredicated(&MI); 886 // Predicated loads will write zeros to the falsely predicated bytes of the 887 // destination register. 888 if (MI.mayLoad()) 889 return isPredicated; 890 891 auto IsZeroInit = [](MachineInstr *Def) { 892 return !isVectorPredicated(Def) && 893 Def->getOpcode() == ARM::MVE_VMOVimmi32 && 894 Def->getOperand(1).getImm() == 0; 895 }; 896 897 bool AllowScalars = isHorizontalReduction(MI); 898 for (auto &MO : MI.operands()) { 899 if (!MO.isReg() || !MO.getReg()) 900 continue; 901 if (!isRegInClass(MO, QPRs) && AllowScalars) 902 continue; 903 // Skip the lr predicate reg 904 int PIdx = llvm::findFirstVPTPredOperandIdx(MI); 905 if (PIdx != -1 && (int)MO.getOperandNo() == PIdx + 2) 906 continue; 907 908 // Check that this instruction will produce zeros in its false lanes: 909 // - If it only consumes false lanes zero or constant 0 (vmov #0) 910 // - If it's predicated, it only matters that it's def register already has 911 // false lane zeros, so we can ignore the uses. 912 SmallPtrSet<MachineInstr *, 2> Defs; 913 RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs); 914 if (Defs.empty()) 915 return false; 916 for (auto *Def : Defs) { 917 if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def)) 918 continue; 919 if (MO.isUse() && isPredicated) 920 continue; 921 return false; 922 } 923 } 924 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI); 925 return true; 926 } 927 928 bool LowOverheadLoop::ValidateLiveOuts() { 929 // We want to find out if the tail-predicated version of this loop will 930 // produce the same values as the loop in its original form. For this to 931 // be true, the newly inserted implicit predication must not change the 932 // the (observable) results. 933 // We're doing this because many instructions in the loop will not be 934 // predicated and so the conversion from VPT predication to tail-predication 935 // can result in different values being produced; due to the tail-predication 936 // preventing many instructions from updating their falsely predicated 937 // lanes. This analysis assumes that all the instructions perform lane-wise 938 // operations and don't perform any exchanges. 939 // A masked load, whether through VPT or tail predication, will write zeros 940 // to any of the falsely predicated bytes. So, from the loads, we know that 941 // the false lanes are zeroed and here we're trying to track that those false 942 // lanes remain zero, or where they change, the differences are masked away 943 // by their user(s). 944 // All MVE stores have to be predicated, so we know that any predicate load 945 // operands, or stored results are equivalent already. Other explicitly 946 // predicated instructions will perform the same operation in the original 947 // loop and the tail-predicated form too. Because of this, we can insert 948 // loads, stores and other predicated instructions into our Predicated 949 // set and build from there. 950 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID); 951 SetVector<MachineInstr *> FalseLanesUnknown; 952 SmallPtrSet<MachineInstr *, 4> FalseLanesZero; 953 SmallPtrSet<MachineInstr *, 4> Predicated; 954 MachineBasicBlock *Header = ML.getHeader(); 955 956 LLVM_DEBUG(dbgs() << "ARM Loops: Validating Live outs\n"); 957 958 for (auto &MI : *Header) { 959 if (!shouldInspect(MI)) 960 continue; 961 962 if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode())) 963 continue; 964 965 bool isPredicated = isVectorPredicated(&MI); 966 bool retainsOrReduces = 967 retainsPreviousHalfElement(MI) || isHorizontalReduction(MI); 968 969 if (isPredicated) 970 Predicated.insert(&MI); 971 if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero)) 972 FalseLanesZero.insert(&MI); 973 else if (MI.getNumDefs() == 0) 974 continue; 975 else if (!isPredicated && retainsOrReduces) { 976 LLVM_DEBUG(dbgs() << " Unpredicated instruction that retainsOrReduces: " << MI); 977 return false; 978 } else if (!isPredicated && MI.getOpcode() != ARM::MQPRCopy) 979 FalseLanesUnknown.insert(&MI); 980 } 981 982 LLVM_DEBUG({ 983 dbgs() << " Predicated:\n"; 984 for (auto *I : Predicated) 985 dbgs() << " " << *I; 986 dbgs() << " FalseLanesZero:\n"; 987 for (auto *I : FalseLanesZero) 988 dbgs() << " " << *I; 989 dbgs() << " FalseLanesUnknown:\n"; 990 for (auto *I : FalseLanesUnknown) 991 dbgs() << " " << *I; 992 }); 993 994 auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO, 995 SmallPtrSetImpl<MachineInstr *> &Predicated) { 996 SmallPtrSet<MachineInstr *, 2> Uses; 997 RDA.getGlobalUses(MI, MO.getReg().asMCReg(), Uses); 998 for (auto *Use : Uses) { 999 if (Use != MI && !Predicated.count(Use)) 1000 return false; 1001 } 1002 return true; 1003 }; 1004 1005 // Visit the unknowns in reverse so that we can start at the values being 1006 // stored and then we can work towards the leaves, hopefully adding more 1007 // instructions to Predicated. Successfully terminating the loop means that 1008 // all the unknown values have to found to be masked by predicated user(s). 1009 // For any unpredicated values, we store them in NonPredicated so that we 1010 // can later check whether these form a reduction. 1011 SmallPtrSet<MachineInstr*, 2> NonPredicated; 1012 for (auto *MI : reverse(FalseLanesUnknown)) { 1013 for (auto &MO : MI->operands()) { 1014 if (!isRegInClass(MO, QPRs) || !MO.isDef()) 1015 continue; 1016 if (!HasPredicatedUsers(MI, MO, Predicated)) { 1017 LLVM_DEBUG(dbgs() << " Found an unknown def of : " 1018 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI); 1019 NonPredicated.insert(MI); 1020 break; 1021 } 1022 } 1023 // Any unknown false lanes have been masked away by the user(s). 1024 if (!NonPredicated.contains(MI)) 1025 Predicated.insert(MI); 1026 } 1027 1028 SmallPtrSet<MachineInstr *, 2> LiveOutMIs; 1029 SmallVector<MachineBasicBlock *, 2> ExitBlocks; 1030 ML.getExitBlocks(ExitBlocks); 1031 assert(ML.getNumBlocks() == 1 && "Expected single block loop!"); 1032 assert(ExitBlocks.size() == 1 && "Expected a single exit block"); 1033 MachineBasicBlock *ExitBB = ExitBlocks.front(); 1034 for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) { 1035 // TODO: Instead of blocking predication, we could move the vctp to the exit 1036 // block and calculate it's operand there in or the preheader. 1037 if (RegMask.PhysReg == ARM::VPR) { 1038 LLVM_DEBUG(dbgs() << " VPR is live in to the exit block."); 1039 return false; 1040 } 1041 // Check Q-regs that are live in the exit blocks. We don't collect scalars 1042 // because they won't be affected by lane predication. 1043 if (QPRs->contains(RegMask.PhysReg)) 1044 if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg)) 1045 LiveOutMIs.insert(MI); 1046 } 1047 1048 // We've already validated that any VPT predication within the loop will be 1049 // equivalent when we perform the predication transformation; so we know that 1050 // any VPT predicated instruction is predicated upon VCTP. Any live-out 1051 // instruction needs to be predicated, so check this here. The instructions 1052 // in NonPredicated have been found to be a reduction that we can ensure its 1053 // legality. Any MQPRCopy found will need to validate its input as if it was 1054 // live out. 1055 SmallVector<MachineInstr *> Worklist(LiveOutMIs.begin(), LiveOutMIs.end()); 1056 while (!Worklist.empty()) { 1057 MachineInstr *MI = Worklist.pop_back_val(); 1058 if (MI->getOpcode() == ARM::MQPRCopy) { 1059 VMOVCopies.insert(MI); 1060 MachineInstr *CopySrc = 1061 RDA.getUniqueReachingMIDef(MI, MI->getOperand(1).getReg()); 1062 if (CopySrc) 1063 Worklist.push_back(CopySrc); 1064 } else if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) { 1065 LLVM_DEBUG(dbgs() << " Unable to handle live out: " << *MI); 1066 VMOVCopies.clear(); 1067 return false; 1068 } 1069 } 1070 1071 return true; 1072 } 1073 1074 void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) { 1075 if (Revert) 1076 return; 1077 1078 // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP] 1079 // can only jump back. 1080 auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End, 1081 ARMBasicBlockUtils *BBUtils, MachineLoop &ML) { 1082 MachineBasicBlock *TgtBB = End->getOpcode() == ARM::t2LoopEnd 1083 ? End->getOperand(1).getMBB() 1084 : End->getOperand(2).getMBB(); 1085 // TODO Maybe there's cases where the target doesn't have to be the header, 1086 // but for now be safe and revert. 1087 if (TgtBB != ML.getHeader()) { 1088 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n"); 1089 return false; 1090 } 1091 1092 // The WLS and LE instructions have 12-bits for the label offset. WLS 1093 // requires a positive offset, while LE uses negative. 1094 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) || 1095 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) { 1096 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); 1097 return false; 1098 } 1099 1100 if (isWhileLoopStart(*Start)) { 1101 MachineBasicBlock *TargetBB = getWhileLoopStartTargetBB(*Start); 1102 if (BBUtils->getOffsetOf(Start) > BBUtils->getOffsetOf(TargetBB) || 1103 !BBUtils->isBBInRange(Start, TargetBB, 4094)) { 1104 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); 1105 return false; 1106 } 1107 } 1108 return true; 1109 }; 1110 1111 StartInsertPt = MachineBasicBlock::iterator(Start); 1112 StartInsertBB = Start->getParent(); 1113 LLVM_DEBUG(dbgs() << "ARM Loops: Will insert LoopStart at " 1114 << *StartInsertPt); 1115 1116 Revert = !ValidateRanges(Start, End, BBUtils, ML); 1117 CannotTailPredicate = !ValidateTailPredicate(); 1118 } 1119 1120 bool LowOverheadLoop::AddVCTP(MachineInstr *MI) { 1121 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI); 1122 if (VCTPs.empty()) { 1123 VCTPs.push_back(MI); 1124 return true; 1125 } 1126 1127 // If we find another VCTP, check whether it uses the same value as the main VCTP. 1128 // If it does, store it in the VCTPs set, else refuse it. 1129 MachineInstr *Prev = VCTPs.back(); 1130 if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) || 1131 !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg().asMCReg())) { 1132 LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching " 1133 "definition from the main VCTP"); 1134 return false; 1135 } 1136 VCTPs.push_back(MI); 1137 return true; 1138 } 1139 1140 static bool ValidateMVEStore(MachineInstr *MI, MachineLoop *ML) { 1141 1142 auto GetFrameIndex = [](MachineMemOperand *Operand) { 1143 const PseudoSourceValue *PseudoValue = Operand->getPseudoValue(); 1144 if (PseudoValue && PseudoValue->kind() == PseudoSourceValue::FixedStack) { 1145 if (const auto *FS = dyn_cast<FixedStackPseudoSourceValue>(PseudoValue)) { 1146 return FS->getFrameIndex(); 1147 } 1148 } 1149 return -1; 1150 }; 1151 1152 auto IsStackOp = [GetFrameIndex](MachineInstr *I) { 1153 switch (I->getOpcode()) { 1154 case ARM::MVE_VSTRWU32: 1155 case ARM::MVE_VLDRWU32: { 1156 return I->getOperand(1).getReg() == ARM::SP && 1157 I->memoperands().size() == 1 && 1158 GetFrameIndex(I->memoperands().front()) >= 0; 1159 } 1160 default: 1161 return false; 1162 } 1163 }; 1164 1165 // An unpredicated vector register spill is allowed if all of the uses of the 1166 // stack slot are within the loop 1167 if (MI->getOpcode() != ARM::MVE_VSTRWU32 || !IsStackOp(MI)) 1168 return false; 1169 1170 // Search all blocks after the loop for accesses to the same stack slot. 1171 // ReachingDefAnalysis doesn't work for sp as it relies on registers being 1172 // live-out (which sp never is) to know what blocks to look in 1173 if (MI->memoperands().size() == 0) 1174 return false; 1175 int FI = GetFrameIndex(MI->memoperands().front()); 1176 1177 auto &FrameInfo = MI->getParent()->getParent()->getFrameInfo(); 1178 if (FI == -1 || !FrameInfo.isSpillSlotObjectIndex(FI)) 1179 return false; 1180 1181 SmallVector<MachineBasicBlock *> Frontier; 1182 ML->getExitBlocks(Frontier); 1183 SmallPtrSet<MachineBasicBlock *, 4> Visited{MI->getParent()}; 1184 unsigned Idx = 0; 1185 while (Idx < Frontier.size()) { 1186 MachineBasicBlock *BB = Frontier[Idx]; 1187 bool LookAtSuccessors = true; 1188 for (auto &I : *BB) { 1189 if (!IsStackOp(&I) || I.memoperands().size() == 0) 1190 continue; 1191 if (GetFrameIndex(I.memoperands().front()) != FI) 1192 continue; 1193 // If this block has a store to the stack slot before any loads then we 1194 // can ignore the block 1195 if (I.getOpcode() == ARM::MVE_VSTRWU32) { 1196 LookAtSuccessors = false; 1197 break; 1198 } 1199 // If the store and the load are using the same stack slot then the 1200 // store isn't valid for tail predication 1201 if (I.getOpcode() == ARM::MVE_VLDRWU32) 1202 return false; 1203 } 1204 1205 if (LookAtSuccessors) { 1206 for (auto *Succ : BB->successors()) { 1207 if (!Visited.contains(Succ) && !is_contained(Frontier, Succ)) 1208 Frontier.push_back(Succ); 1209 } 1210 } 1211 Visited.insert(BB); 1212 Idx++; 1213 } 1214 1215 return true; 1216 } 1217 1218 bool LowOverheadLoop::ValidateMVEInst(MachineInstr *MI) { 1219 if (CannotTailPredicate) 1220 return false; 1221 1222 if (!shouldInspect(*MI)) 1223 return true; 1224 1225 if (MI->getOpcode() == ARM::MVE_VPSEL || 1226 MI->getOpcode() == ARM::MVE_VPNOT) { 1227 // TODO: Allow VPSEL and VPNOT, we currently cannot because: 1228 // 1) It will use the VPR as a predicate operand, but doesn't have to be 1229 // instead a VPT block, which means we can assert while building up 1230 // the VPT block because we don't find another VPT or VPST to being a new 1231 // one. 1232 // 2) VPSEL still requires a VPR operand even after tail predicating, 1233 // which means we can't remove it unless there is another 1234 // instruction, such as vcmp, that can provide the VPR def. 1235 return false; 1236 } 1237 1238 // Record all VCTPs and check that they're equivalent to one another. 1239 if (isVCTP(MI) && !AddVCTP(MI)) 1240 return false; 1241 1242 // Inspect uses first so that any instructions that alter the VPR don't 1243 // alter the predicate upon themselves. 1244 const MCInstrDesc &MCID = MI->getDesc(); 1245 bool IsUse = false; 1246 unsigned LastOpIdx = MI->getNumOperands() - 1; 1247 for (const auto &Op : enumerate(reverse(MCID.operands()))) { 1248 const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index()); 1249 if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR) 1250 continue; 1251 1252 if (ARM::isVpred(Op.value().OperandType)) { 1253 VPTState::addInst(MI); 1254 IsUse = true; 1255 } else if (MI->getOpcode() != ARM::MVE_VPST) { 1256 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); 1257 return false; 1258 } 1259 } 1260 1261 // If we find an instruction that has been marked as not valid for tail 1262 // predication, only allow the instruction if it's contained within a valid 1263 // VPT block. 1264 bool RequiresExplicitPredication = 1265 (MCID.TSFlags & ARMII::ValidForTailPredication) == 0; 1266 if (isDomainMVE(MI) && RequiresExplicitPredication) { 1267 if (MI->getOpcode() == ARM::MQPRCopy) 1268 return true; 1269 if (!IsUse && producesDoubleWidthResult(*MI)) { 1270 DoubleWidthResultInstrs.insert(MI); 1271 return true; 1272 } 1273 1274 LLVM_DEBUG(if (!IsUse) dbgs() 1275 << "ARM Loops: Can't tail predicate: " << *MI); 1276 return IsUse; 1277 } 1278 1279 // If the instruction is already explicitly predicated, then the conversion 1280 // will be fine, but ensure that all store operations are predicated. 1281 if (MI->mayStore() && !ValidateMVEStore(MI, &ML)) 1282 return IsUse; 1283 1284 // If this instruction defines the VPR, update the predicate for the 1285 // proceeding instructions. 1286 if (isVectorPredicate(MI)) { 1287 // Clear the existing predicate when we're not in VPT Active state, 1288 // otherwise we add to it. 1289 if (!isVectorPredicated(MI)) 1290 VPTState::resetPredicate(MI); 1291 else 1292 VPTState::addPredicate(MI); 1293 } 1294 1295 // Finally once the predicate has been modified, we can start a new VPT 1296 // block if necessary. 1297 if (isVPTOpcode(MI->getOpcode())) 1298 VPTState::CreateVPTBlock(MI); 1299 1300 return true; 1301 } 1302 1303 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { 1304 const ARMSubtarget &ST = mf.getSubtarget<ARMSubtarget>(); 1305 if (!ST.hasLOB()) 1306 return false; 1307 1308 MF = &mf; 1309 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); 1310 1311 MLI = &getAnalysis<MachineLoopInfo>(); 1312 RDA = &getAnalysis<ReachingDefAnalysis>(); 1313 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); 1314 MRI = &MF->getRegInfo(); 1315 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo()); 1316 TRI = ST.getRegisterInfo(); 1317 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF)); 1318 BBUtils->computeAllBlockSizes(); 1319 BBUtils->adjustBBOffsetsAfter(&MF->front()); 1320 1321 bool Changed = false; 1322 for (auto *ML : *MLI) { 1323 if (ML->isOutermost()) 1324 Changed |= ProcessLoop(ML); 1325 } 1326 Changed |= RevertNonLoops(); 1327 return Changed; 1328 } 1329 1330 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { 1331 1332 bool Changed = false; 1333 1334 // Process inner loops first. 1335 for (MachineLoop *L : *ML) 1336 Changed |= ProcessLoop(L); 1337 1338 LLVM_DEBUG({ 1339 dbgs() << "ARM Loops: Processing loop containing:\n"; 1340 if (auto *Preheader = ML->getLoopPreheader()) 1341 dbgs() << " - Preheader: " << printMBBReference(*Preheader) << "\n"; 1342 else if (auto *Preheader = MLI->findLoopPreheader(ML, true, true)) 1343 dbgs() << " - Preheader: " << printMBBReference(*Preheader) << "\n"; 1344 for (auto *MBB : ML->getBlocks()) 1345 dbgs() << " - Block: " << printMBBReference(*MBB) << "\n"; 1346 }); 1347 1348 // Search the given block for a loop start instruction. If one isn't found, 1349 // and there's only one predecessor block, search that one too. 1350 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart = 1351 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { 1352 for (auto &MI : *MBB) { 1353 if (isLoopStart(MI)) 1354 return &MI; 1355 } 1356 if (MBB->pred_size() == 1) 1357 return SearchForStart(*MBB->pred_begin()); 1358 return nullptr; 1359 }; 1360 1361 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII); 1362 // Search the preheader for the start intrinsic. 1363 // FIXME: I don't see why we shouldn't be supporting multiple predecessors 1364 // with potentially multiple set.loop.iterations, so we need to enable this. 1365 if (LoLoop.Preheader) 1366 LoLoop.Start = SearchForStart(LoLoop.Preheader); 1367 else 1368 return Changed; 1369 1370 // Find the low-overhead loop components and decide whether or not to fall 1371 // back to a normal loop. Also look for a vctp instructions and decide 1372 // whether we can convert that predicate using tail predication. 1373 for (auto *MBB : reverse(ML->getBlocks())) { 1374 for (auto &MI : *MBB) { 1375 if (MI.isDebugValue()) 1376 continue; 1377 else if (MI.getOpcode() == ARM::t2LoopDec) 1378 LoLoop.Dec = &MI; 1379 else if (MI.getOpcode() == ARM::t2LoopEnd) 1380 LoLoop.End = &MI; 1381 else if (MI.getOpcode() == ARM::t2LoopEndDec) 1382 LoLoop.End = LoLoop.Dec = &MI; 1383 else if (isLoopStart(MI)) 1384 LoLoop.Start = &MI; 1385 else if (MI.getDesc().isCall()) { 1386 // TODO: Though the call will require LE to execute again, does this 1387 // mean we should revert? Always executing LE hopefully should be 1388 // faster than performing a sub,cmp,br or even subs,br. 1389 LoLoop.Revert = true; 1390 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); 1391 } else { 1392 // Record VPR defs and build up their corresponding vpt blocks. 1393 // Check we know how to tail predicate any mve instructions. 1394 LoLoop.AnalyseMVEInst(&MI); 1395 } 1396 } 1397 } 1398 1399 LLVM_DEBUG(LoLoop.dump()); 1400 if (!LoLoop.FoundAllComponents()) { 1401 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); 1402 return Changed; 1403 } 1404 1405 assert(LoLoop.Start->getOpcode() != ARM::t2WhileLoopStart && 1406 "Expected t2WhileLoopStart to be removed before regalloc!"); 1407 1408 // Check that the only instruction using LoopDec is LoopEnd. This can only 1409 // happen when the Dec and End are separate, not a single t2LoopEndDec. 1410 // TODO: Check for copy chains that really have no effect. 1411 if (LoLoop.Dec != LoLoop.End) { 1412 SmallPtrSet<MachineInstr *, 2> Uses; 1413 RDA->getReachingLocalUses(LoLoop.Dec, MCRegister::from(ARM::LR), Uses); 1414 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) { 1415 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n"); 1416 LoLoop.Revert = true; 1417 } 1418 } 1419 LoLoop.Validate(BBUtils.get()); 1420 Expand(LoLoop); 1421 return true; 1422 } 1423 1424 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a 1425 // beq that branches to the exit branch. 1426 // TODO: We could also try to generate a cbz if the value in LR is also in 1427 // another low register. 1428 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { 1429 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); 1430 MachineBasicBlock *DestBB = getWhileLoopStartTargetBB(*MI); 1431 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1432 ARM::tBcc : ARM::t2Bcc; 1433 1434 RevertWhileLoopStartLR(MI, TII, BrOpc); 1435 } 1436 1437 void ARMLowOverheadLoops::RevertDo(MachineInstr *MI) const { 1438 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to mov: " << *MI); 1439 RevertDoLoopStart(MI, TII); 1440 } 1441 1442 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const { 1443 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); 1444 MachineBasicBlock *MBB = MI->getParent(); 1445 SmallPtrSet<MachineInstr*, 1> Ignore; 1446 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) { 1447 if (I->getOpcode() == ARM::t2LoopEnd) { 1448 Ignore.insert(&*I); 1449 break; 1450 } 1451 } 1452 1453 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. 1454 bool SetFlags = 1455 RDA->isSafeToDefRegAt(MI, MCRegister::from(ARM::CPSR), Ignore); 1456 1457 llvm::RevertLoopDec(MI, TII, SetFlags); 1458 return SetFlags; 1459 } 1460 1461 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1462 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { 1463 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); 1464 1465 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1466 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1467 ARM::tBcc : ARM::t2Bcc; 1468 1469 llvm::RevertLoopEnd(MI, TII, BrOpc, SkipCmp); 1470 } 1471 1472 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1473 void ARMLowOverheadLoops::RevertLoopEndDec(MachineInstr *MI) const { 1474 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to subs, br: " << *MI); 1475 assert(MI->getOpcode() == ARM::t2LoopEndDec && "Expected a t2LoopEndDec!"); 1476 MachineBasicBlock *MBB = MI->getParent(); 1477 1478 MachineInstrBuilder MIB = 1479 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::t2SUBri)); 1480 MIB.addDef(ARM::LR); 1481 MIB.add(MI->getOperand(1)); 1482 MIB.addImm(1); 1483 MIB.addImm(ARMCC::AL); 1484 MIB.addReg(ARM::NoRegister); 1485 MIB.addReg(ARM::CPSR); 1486 MIB->getOperand(5).setIsDef(true); 1487 1488 MachineBasicBlock *DestBB = MI->getOperand(2).getMBB(); 1489 unsigned BrOpc = 1490 BBUtils->isBBInRange(MI, DestBB, 254) ? ARM::tBcc : ARM::t2Bcc; 1491 1492 // Create bne 1493 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1494 MIB.add(MI->getOperand(2)); // branch target 1495 MIB.addImm(ARMCC::NE); // condition code 1496 MIB.addReg(ARM::CPSR); 1497 1498 MI->eraseFromParent(); 1499 } 1500 1501 // Perform dead code elimation on the loop iteration count setup expression. 1502 // If we are tail-predicating, the number of elements to be processed is the 1503 // operand of the VCTP instruction in the vector body, see getCount(), which is 1504 // register $r3 in this example: 1505 // 1506 // $lr = big-itercount-expression 1507 // .. 1508 // $lr = t2DoLoopStart renamable $lr 1509 // vector.body: 1510 // .. 1511 // $vpr = MVE_VCTP32 renamable $r3 1512 // renamable $lr = t2LoopDec killed renamable $lr, 1 1513 // t2LoopEnd renamable $lr, %vector.body 1514 // tB %end 1515 // 1516 // What we would like achieve here is to replace the do-loop start pseudo 1517 // instruction t2DoLoopStart with: 1518 // 1519 // $lr = MVE_DLSTP_32 killed renamable $r3 1520 // 1521 // Thus, $r3 which defines the number of elements, is written to $lr, 1522 // and then we want to delete the whole chain that used to define $lr, 1523 // see the comment below how this chain could look like. 1524 // 1525 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) { 1526 if (!LoLoop.IsTailPredicationLegal()) 1527 return; 1528 1529 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n"); 1530 1531 MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 1); 1532 if (!Def) { 1533 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n"); 1534 return; 1535 } 1536 1537 // Collect and remove the users of iteration count. 1538 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec, 1539 LoLoop.End }; 1540 if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed)) 1541 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n"); 1542 } 1543 1544 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { 1545 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n"); 1546 // When using tail-predication, try to delete the dead code that was used to 1547 // calculate the number of loop iterations. 1548 IterationCountDCE(LoLoop); 1549 1550 MachineBasicBlock::iterator InsertPt = LoLoop.StartInsertPt; 1551 MachineInstr *Start = LoLoop.Start; 1552 MachineBasicBlock *MBB = LoLoop.StartInsertBB; 1553 unsigned Opc = LoLoop.getStartOpcode(); 1554 MachineOperand &Count = LoLoop.getLoopStartOperand(); 1555 1556 // A DLS lr, lr we needn't emit 1557 MachineInstr* NewStart; 1558 if (!DisableOmitDLS && Opc == ARM::t2DLS && Count.isReg() && 1559 Count.getReg() == ARM::LR) { 1560 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't insert start: DLS lr, lr"); 1561 NewStart = nullptr; 1562 } else { 1563 MachineInstrBuilder MIB = 1564 BuildMI(*MBB, InsertPt, Start->getDebugLoc(), TII->get(Opc)); 1565 1566 MIB.addDef(ARM::LR); 1567 MIB.add(Count); 1568 if (isWhileLoopStart(*Start)) 1569 MIB.addMBB(getWhileLoopStartTargetBB(*Start)); 1570 1571 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); 1572 NewStart = &*MIB; 1573 } 1574 1575 LoLoop.ToRemove.insert(Start); 1576 return NewStart; 1577 } 1578 1579 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { 1580 auto RemovePredicate = [](MachineInstr *MI) { 1581 if (MI->isDebugInstr()) 1582 return; 1583 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); 1584 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 1585 assert(PIdx >= 1 && "Trying to unpredicate a non-predicated instruction"); 1586 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then && 1587 "Expected Then predicate!"); 1588 MI->getOperand(PIdx).setImm(ARMVCC::None); 1589 MI->getOperand(PIdx + 1).setReg(0); 1590 }; 1591 1592 for (auto &Block : LoLoop.getVPTBlocks()) { 1593 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 1594 1595 auto ReplaceVCMPWithVPT = [&](MachineInstr *&TheVCMP, MachineInstr *At) { 1596 assert(TheVCMP && "Replacing a removed or non-existent VCMP"); 1597 // Replace the VCMP with a VPT 1598 MachineInstrBuilder MIB = 1599 BuildMI(*At->getParent(), At, At->getDebugLoc(), 1600 TII->get(VCMPOpcodeToVPT(TheVCMP->getOpcode()))); 1601 MIB.addImm(ARMVCC::Then); 1602 // Register one 1603 MIB.add(TheVCMP->getOperand(1)); 1604 // Register two 1605 MIB.add(TheVCMP->getOperand(2)); 1606 // The comparison code, e.g. ge, eq, lt 1607 MIB.add(TheVCMP->getOperand(3)); 1608 LLVM_DEBUG(dbgs() << "ARM Loops: Combining with VCMP to VPT: " << *MIB); 1609 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1610 LoLoop.ToRemove.insert(TheVCMP); 1611 TheVCMP = nullptr; 1612 }; 1613 1614 if (VPTState::isEntryPredicatedOnVCTP(Block, /*exclusive*/ true)) { 1615 MachineInstr *VPST = Insts.front(); 1616 if (VPTState::hasUniformPredicate(Block)) { 1617 // A vpt block starting with VPST, is only predicated upon vctp and has no 1618 // internal vpr defs: 1619 // - Remove vpst. 1620 // - Unpredicate the remaining instructions. 1621 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1622 for (unsigned i = 1; i < Insts.size(); ++i) 1623 RemovePredicate(Insts[i]); 1624 } else { 1625 // The VPT block has a non-uniform predicate but it uses a vpst and its 1626 // entry is guarded only by a vctp, which means we: 1627 // - Need to remove the original vpst. 1628 // - Then need to unpredicate any following instructions, until 1629 // we come across the divergent vpr def. 1630 // - Insert a new vpst to predicate the instruction(s) that following 1631 // the divergent vpr def. 1632 MachineInstr *Divergent = VPTState::getDivergent(Block); 1633 MachineBasicBlock *MBB = Divergent->getParent(); 1634 auto DivergentNext = ++MachineBasicBlock::iterator(Divergent); 1635 while (DivergentNext != MBB->end() && DivergentNext->isDebugInstr()) 1636 ++DivergentNext; 1637 1638 bool DivergentNextIsPredicated = 1639 DivergentNext != MBB->end() && 1640 getVPTInstrPredicate(*DivergentNext) != ARMVCC::None; 1641 1642 for (auto I = ++MachineBasicBlock::iterator(VPST), E = DivergentNext; 1643 I != E; ++I) 1644 RemovePredicate(&*I); 1645 1646 // Check if the instruction defining vpr is a vcmp so it can be combined 1647 // with the VPST This should be the divergent instruction 1648 MachineInstr *VCMP = 1649 VCMPOpcodeToVPT(Divergent->getOpcode()) != 0 ? Divergent : nullptr; 1650 1651 if (DivergentNextIsPredicated) { 1652 // Insert a VPST at the divergent only if the next instruction 1653 // would actually use it. A VCMP following a VPST can be 1654 // merged into a VPT so do that instead if the VCMP exists. 1655 if (!VCMP) { 1656 // Create a VPST (with a null mask for now, we'll recompute it 1657 // later) 1658 MachineInstrBuilder MIB = 1659 BuildMI(*Divergent->getParent(), Divergent, 1660 Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST)); 1661 MIB.addImm(0); 1662 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); 1663 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1664 } else { 1665 // No RDA checks are necessary here since the VPST would have been 1666 // directly after the VCMP 1667 ReplaceVCMPWithVPT(VCMP, VCMP); 1668 } 1669 } 1670 } 1671 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1672 LoLoop.ToRemove.insert(VPST); 1673 } else if (Block.containsVCTP()) { 1674 // The vctp will be removed, so either the entire block will be dead or 1675 // the block mask of the vp(s)t will need to be recomputed. 1676 MachineInstr *VPST = Insts.front(); 1677 if (Block.size() == 2) { 1678 assert(VPST->getOpcode() == ARM::MVE_VPST && 1679 "Found a VPST in an otherwise empty vpt block"); 1680 LoLoop.ToRemove.insert(VPST); 1681 } else 1682 LoLoop.BlockMasksToRecompute.insert(VPST); 1683 } else if (Insts.front()->getOpcode() == ARM::MVE_VPST) { 1684 // If this block starts with a VPST then attempt to merge it with the 1685 // preceeding un-merged VCMP into a VPT. This VCMP comes from a VPT 1686 // block that no longer exists 1687 MachineInstr *VPST = Insts.front(); 1688 auto Next = ++MachineBasicBlock::iterator(VPST); 1689 assert(getVPTInstrPredicate(*Next) != ARMVCC::None && 1690 "The instruction after a VPST must be predicated"); 1691 (void)Next; 1692 MachineInstr *VprDef = RDA->getUniqueReachingMIDef(VPST, ARM::VPR); 1693 if (VprDef && VCMPOpcodeToVPT(VprDef->getOpcode()) && 1694 !LoLoop.ToRemove.contains(VprDef)) { 1695 MachineInstr *VCMP = VprDef; 1696 // The VCMP and VPST can only be merged if the VCMP's operands will have 1697 // the same values at the VPST. 1698 // If any of the instructions between the VCMP and VPST are predicated 1699 // then a different code path is expected to have merged the VCMP and 1700 // VPST already. 1701 if (std::none_of(++MachineBasicBlock::iterator(VCMP), 1702 MachineBasicBlock::iterator(VPST), hasVPRUse) && 1703 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(1).getReg()) && 1704 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(2).getReg())) { 1705 ReplaceVCMPWithVPT(VCMP, VPST); 1706 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1707 LoLoop.ToRemove.insert(VPST); 1708 } 1709 } 1710 } 1711 } 1712 1713 LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end()); 1714 } 1715 1716 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { 1717 1718 // Combine the LoopDec and LoopEnd instructions into LE(TP). 1719 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { 1720 MachineInstr *End = LoLoop.End; 1721 MachineBasicBlock *MBB = End->getParent(); 1722 unsigned Opc = LoLoop.IsTailPredicationLegal() ? 1723 ARM::MVE_LETP : ARM::t2LEUpdate; 1724 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), 1725 TII->get(Opc)); 1726 MIB.addDef(ARM::LR); 1727 unsigned Off = LoLoop.Dec == LoLoop.End ? 1 : 0; 1728 MIB.add(End->getOperand(Off + 0)); 1729 MIB.add(End->getOperand(Off + 1)); 1730 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); 1731 LoLoop.ToRemove.insert(LoLoop.Dec); 1732 LoLoop.ToRemove.insert(End); 1733 return &*MIB; 1734 }; 1735 1736 // TODO: We should be able to automatically remove these branches before we 1737 // get here - probably by teaching analyzeBranch about the pseudo 1738 // instructions. 1739 // If there is an unconditional branch, after I, that just branches to the 1740 // next block, remove it. 1741 auto RemoveDeadBranch = [](MachineInstr *I) { 1742 MachineBasicBlock *BB = I->getParent(); 1743 MachineInstr *Terminator = &BB->instr_back(); 1744 if (Terminator->isUnconditionalBranch() && I != Terminator) { 1745 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); 1746 if (BB->isLayoutSuccessor(Succ)) { 1747 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); 1748 Terminator->eraseFromParent(); 1749 } 1750 } 1751 }; 1752 1753 // And VMOVCopies need to become 2xVMOVD for tail predication to be valid. 1754 // Anything other MQPRCopy can be converted to MVE_VORR later on. 1755 auto ExpandVMOVCopies = [this](SmallPtrSet<MachineInstr *, 4> &VMOVCopies) { 1756 for (auto *MI : VMOVCopies) { 1757 LLVM_DEBUG(dbgs() << "Converting copy to VMOVD: " << *MI); 1758 assert(MI->getOpcode() == ARM::MQPRCopy && "Only expected MQPRCOPY!"); 1759 MachineBasicBlock *MBB = MI->getParent(); 1760 Register Dst = MI->getOperand(0).getReg(); 1761 Register Src = MI->getOperand(1).getReg(); 1762 auto MIB1 = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::VMOVD), 1763 ARM::D0 + (Dst - ARM::Q0) * 2) 1764 .addReg(ARM::D0 + (Src - ARM::Q0) * 2) 1765 .add(predOps(ARMCC::AL)); 1766 (void)MIB1; 1767 LLVM_DEBUG(dbgs() << " into " << *MIB1); 1768 auto MIB2 = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::VMOVD), 1769 ARM::D0 + (Dst - ARM::Q0) * 2 + 1) 1770 .addReg(ARM::D0 + (Src - ARM::Q0) * 2 + 1) 1771 .add(predOps(ARMCC::AL)); 1772 LLVM_DEBUG(dbgs() << " and " << *MIB2); 1773 (void)MIB2; 1774 MI->eraseFromParent(); 1775 } 1776 }; 1777 1778 if (LoLoop.Revert) { 1779 if (isWhileLoopStart(*LoLoop.Start)) 1780 RevertWhile(LoLoop.Start); 1781 else 1782 RevertDo(LoLoop.Start); 1783 if (LoLoop.Dec == LoLoop.End) 1784 RevertLoopEndDec(LoLoop.End); 1785 else 1786 RevertLoopEnd(LoLoop.End, RevertLoopDec(LoLoop.Dec)); 1787 } else { 1788 ExpandVMOVCopies(LoLoop.VMOVCopies); 1789 LoLoop.Start = ExpandLoopStart(LoLoop); 1790 if (LoLoop.Start) 1791 RemoveDeadBranch(LoLoop.Start); 1792 LoLoop.End = ExpandLoopEnd(LoLoop); 1793 RemoveDeadBranch(LoLoop.End); 1794 if (LoLoop.IsTailPredicationLegal()) 1795 ConvertVPTBlocks(LoLoop); 1796 for (auto *I : LoLoop.ToRemove) { 1797 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I); 1798 I->eraseFromParent(); 1799 } 1800 for (auto *I : LoLoop.BlockMasksToRecompute) { 1801 LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I); 1802 recomputeVPTBlockMask(*I); 1803 LLVM_DEBUG(dbgs() << " ... done: " << *I); 1804 } 1805 } 1806 1807 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI); 1808 DFS.ProcessLoop(); 1809 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder(); 1810 for (auto *MBB : PostOrder) { 1811 recomputeLiveIns(*MBB); 1812 // FIXME: For some reason, the live-in print order is non-deterministic for 1813 // our tests and I can't out why... So just sort them. 1814 MBB->sortUniqueLiveIns(); 1815 } 1816 1817 for (auto *MBB : reverse(PostOrder)) 1818 recomputeLivenessFlags(*MBB); 1819 1820 // We've moved, removed and inserted new instructions, so update RDA. 1821 RDA->reset(); 1822 } 1823 1824 bool ARMLowOverheadLoops::RevertNonLoops() { 1825 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); 1826 bool Changed = false; 1827 1828 for (auto &MBB : *MF) { 1829 SmallVector<MachineInstr*, 4> Starts; 1830 SmallVector<MachineInstr*, 4> Decs; 1831 SmallVector<MachineInstr*, 4> Ends; 1832 SmallVector<MachineInstr *, 4> EndDecs; 1833 SmallVector<MachineInstr *, 4> MQPRCopies; 1834 1835 for (auto &I : MBB) { 1836 if (isLoopStart(I)) 1837 Starts.push_back(&I); 1838 else if (I.getOpcode() == ARM::t2LoopDec) 1839 Decs.push_back(&I); 1840 else if (I.getOpcode() == ARM::t2LoopEnd) 1841 Ends.push_back(&I); 1842 else if (I.getOpcode() == ARM::t2LoopEndDec) 1843 EndDecs.push_back(&I); 1844 else if (I.getOpcode() == ARM::MQPRCopy) 1845 MQPRCopies.push_back(&I); 1846 } 1847 1848 if (Starts.empty() && Decs.empty() && Ends.empty() && EndDecs.empty() && 1849 MQPRCopies.empty()) 1850 continue; 1851 1852 Changed = true; 1853 1854 for (auto *Start : Starts) { 1855 if (isWhileLoopStart(*Start)) 1856 RevertWhile(Start); 1857 else 1858 RevertDo(Start); 1859 } 1860 for (auto *Dec : Decs) 1861 RevertLoopDec(Dec); 1862 1863 for (auto *End : Ends) 1864 RevertLoopEnd(End); 1865 for (auto *End : EndDecs) 1866 RevertLoopEndDec(End); 1867 for (auto *MI : MQPRCopies) { 1868 LLVM_DEBUG(dbgs() << "Converting copy to VORR: " << *MI); 1869 assert(MI->getOpcode() == ARM::MQPRCopy && "Only expected MQPRCOPY!"); 1870 MachineBasicBlock *MBB = MI->getParent(); 1871 auto MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::MVE_VORR), 1872 MI->getOperand(0).getReg()) 1873 .add(MI->getOperand(1)) 1874 .add(MI->getOperand(1)); 1875 addUnpredicatedMveVpredROp(MIB, MI->getOperand(0).getReg()); 1876 MI->eraseFromParent(); 1877 } 1878 } 1879 return Changed; 1880 } 1881 1882 FunctionPass *llvm::createARMLowOverheadLoopsPass() { 1883 return new ARMLowOverheadLoops(); 1884 } 1885