xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMLowOverheadLoops.cpp (revision 8311bc5f17dec348749f763b82dfe2737bc53cd7)
1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo
10 /// instructions into machine operations.
11 /// The expectation is that the loop contains three pseudo instructions:
12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop
13 ///   form should be in the preheader, whereas the while form should be in the
14 ///   preheaders only predecessor.
15 /// - t2LoopDec - placed within in the loop body.
16 /// - t2LoopEnd - the loop latch terminator.
17 ///
18 /// In addition to this, we also look for the presence of the VCTP instruction,
19 /// which determines whether we can generated the tail-predicated low-overhead
20 /// loop form.
21 ///
22 /// Assumptions and Dependencies:
23 /// Low-overhead loops are constructed and executed using a setup instruction:
24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP.
25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range
26 /// but fixed polarity: WLS can only branch forwards and LE can only branch
27 /// backwards. These restrictions mean that this pass is dependent upon block
28 /// layout and block sizes, which is why it's the last pass to run. The same is
29 /// true for ConstantIslands, but this pass does not increase the size of the
30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed
31 /// during the transform and pseudo instructions are replaced by real ones. In
32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce
33 /// multiple instructions for a single pseudo (see RevertWhile and
34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStartLR and t2LoopEnd
35 /// are defined to be as large as this maximum sequence of replacement
36 /// instructions.
37 ///
38 /// A note on VPR.P0 (the lane mask):
39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a
40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks).
41 /// They will simply "and" the result of their calculation with the current
42 /// value of VPR.P0. You can think of it like this:
43 /// \verbatim
44 /// if VPT active:    ; Between a DLSTP/LETP, or for predicated instrs
45 ///   VPR.P0 &= Value
46 /// else
47 ///   VPR.P0 = Value
48 /// \endverbatim
49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always
50 /// fall in the "VPT active" case, so we can consider that all VPR writes by
51 /// one of those instruction is actually a "and".
52 //===----------------------------------------------------------------------===//
53 
54 #include "ARM.h"
55 #include "ARMBaseInstrInfo.h"
56 #include "ARMBaseRegisterInfo.h"
57 #include "ARMBasicBlockInfo.h"
58 #include "ARMSubtarget.h"
59 #include "MVETailPredUtils.h"
60 #include "Thumb2InstrInfo.h"
61 #include "llvm/ADT/SetOperations.h"
62 #include "llvm/ADT/SetVector.h"
63 #include "llvm/ADT/SmallSet.h"
64 #include "llvm/CodeGen/LivePhysRegs.h"
65 #include "llvm/CodeGen/MachineFrameInfo.h"
66 #include "llvm/CodeGen/MachineFunctionPass.h"
67 #include "llvm/CodeGen/MachineLoopInfo.h"
68 #include "llvm/CodeGen/MachineLoopUtils.h"
69 #include "llvm/CodeGen/MachineRegisterInfo.h"
70 #include "llvm/CodeGen/Passes.h"
71 #include "llvm/CodeGen/ReachingDefAnalysis.h"
72 #include "llvm/MC/MCInstrDesc.h"
73 
74 using namespace llvm;
75 
76 #define DEBUG_TYPE "arm-low-overhead-loops"
77 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass"
78 
79 static cl::opt<bool>
80 DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden,
81     cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"),
82     cl::init(false));
83 
84 static cl::opt<bool>
85     DisableOmitDLS("arm-disable-omit-dls", cl::Hidden,
86                    cl::desc("Disable omitting 'dls lr, lr' instructions"),
87                    cl::init(false));
88 
89 static bool isVectorPredicated(MachineInstr *MI) {
90   int PIdx = llvm::findFirstVPTPredOperandIdx(*MI);
91   return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR;
92 }
93 
94 static bool isVectorPredicate(MachineInstr *MI) {
95   return MI->findRegisterDefOperandIdx(ARM::VPR) != -1;
96 }
97 
98 static bool hasVPRUse(MachineInstr &MI) {
99   return MI.findRegisterUseOperandIdx(ARM::VPR) != -1;
100 }
101 
102 static bool isDomainMVE(MachineInstr *MI) {
103   uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask;
104   return Domain == ARMII::DomainMVE;
105 }
106 
107 static int getVecSize(const MachineInstr &MI) {
108   const MCInstrDesc &MCID = MI.getDesc();
109   uint64_t Flags = MCID.TSFlags;
110   return (Flags & ARMII::VecSize) >> ARMII::VecSizeShift;
111 }
112 
113 static bool shouldInspect(MachineInstr &MI) {
114   if (MI.isDebugInstr())
115     return false;
116   return isDomainMVE(&MI) || isVectorPredicate(&MI) || hasVPRUse(MI);
117 }
118 
119 namespace {
120 
121   using InstSet = SmallPtrSetImpl<MachineInstr *>;
122 
123   class PostOrderLoopTraversal {
124     MachineLoop &ML;
125     MachineLoopInfo &MLI;
126     SmallPtrSet<MachineBasicBlock*, 4> Visited;
127     SmallVector<MachineBasicBlock*, 4> Order;
128 
129   public:
130     PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI)
131       : ML(ML), MLI(MLI) { }
132 
133     const SmallVectorImpl<MachineBasicBlock*> &getOrder() const {
134       return Order;
135     }
136 
137     // Visit all the blocks within the loop, as well as exit blocks and any
138     // blocks properly dominating the header.
139     void ProcessLoop() {
140       std::function<void(MachineBasicBlock*)> Search = [this, &Search]
141         (MachineBasicBlock *MBB) -> void {
142         if (Visited.count(MBB))
143           return;
144 
145         Visited.insert(MBB);
146         for (auto *Succ : MBB->successors()) {
147           if (!ML.contains(Succ))
148             continue;
149           Search(Succ);
150         }
151         Order.push_back(MBB);
152       };
153 
154       // Insert exit blocks.
155       SmallVector<MachineBasicBlock*, 2> ExitBlocks;
156       ML.getExitBlocks(ExitBlocks);
157       append_range(Order, ExitBlocks);
158 
159       // Then add the loop body.
160       Search(ML.getHeader());
161 
162       // Then try the preheader and its predecessors.
163       std::function<void(MachineBasicBlock*)> GetPredecessor =
164         [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void {
165         Order.push_back(MBB);
166         if (MBB->pred_size() == 1)
167           GetPredecessor(*MBB->pred_begin());
168       };
169 
170       if (auto *Preheader = ML.getLoopPreheader())
171         GetPredecessor(Preheader);
172       else if (auto *Preheader = MLI.findLoopPreheader(&ML, true, true))
173         GetPredecessor(Preheader);
174     }
175   };
176 
177   struct PredicatedMI {
178     MachineInstr *MI = nullptr;
179     SetVector<MachineInstr*> Predicates;
180 
181   public:
182     PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) {
183       assert(I && "Instruction must not be null!");
184       Predicates.insert(Preds.begin(), Preds.end());
185     }
186   };
187 
188   // Represent the current state of the VPR and hold all instances which
189   // represent a VPT block, which is a list of instructions that begins with a
190   // VPT/VPST and has a maximum of four proceeding instructions. All
191   // instructions within the block are predicated upon the vpr and we allow
192   // instructions to define the vpr within in the block too.
193   class VPTState {
194     friend struct LowOverheadLoop;
195 
196     SmallVector<MachineInstr *, 4> Insts;
197 
198     static SmallVector<VPTState, 4> Blocks;
199     static SetVector<MachineInstr *> CurrentPredicates;
200     static std::map<MachineInstr *,
201       std::unique_ptr<PredicatedMI>> PredicatedInsts;
202 
203     static void CreateVPTBlock(MachineInstr *MI) {
204       assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR))
205              && "Can't begin VPT without predicate");
206       Blocks.emplace_back(MI);
207       // The execution of MI is predicated upon the current set of instructions
208       // that are AND'ed together to form the VPR predicate value. In the case
209       // that MI is a VPT, CurrentPredicates will also just be MI.
210       PredicatedInsts.emplace(
211         MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates));
212     }
213 
214     static void reset() {
215       Blocks.clear();
216       PredicatedInsts.clear();
217       CurrentPredicates.clear();
218     }
219 
220     static void addInst(MachineInstr *MI) {
221       Blocks.back().insert(MI);
222       PredicatedInsts.emplace(
223         MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates));
224     }
225 
226     static void addPredicate(MachineInstr *MI) {
227       LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI);
228       CurrentPredicates.insert(MI);
229     }
230 
231     static void resetPredicate(MachineInstr *MI) {
232       LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI);
233       CurrentPredicates.clear();
234       CurrentPredicates.insert(MI);
235     }
236 
237   public:
238     // Have we found an instruction within the block which defines the vpr? If
239     // so, not all the instructions in the block will have the same predicate.
240     static bool hasUniformPredicate(VPTState &Block) {
241       return getDivergent(Block) == nullptr;
242     }
243 
244     // If it exists, return the first internal instruction which modifies the
245     // VPR.
246     static MachineInstr *getDivergent(VPTState &Block) {
247       SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
248       for (unsigned i = 1; i < Insts.size(); ++i) {
249         MachineInstr *Next = Insts[i];
250         if (isVectorPredicate(Next))
251           return Next; // Found an instruction altering the vpr.
252       }
253       return nullptr;
254     }
255 
256     // Return whether the given instruction is predicated upon a VCTP.
257     static bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) {
258       SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI]->Predicates;
259       if (Exclusive && Predicates.size() != 1)
260         return false;
261       return llvm::any_of(Predicates, isVCTP);
262     }
263 
264     // Is the VPST, controlling the block entry, predicated upon a VCTP.
265     static bool isEntryPredicatedOnVCTP(VPTState &Block,
266                                         bool Exclusive = false) {
267       SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
268       return isPredicatedOnVCTP(Insts.front(), Exclusive);
269     }
270 
271     // If this block begins with a VPT, we can check whether it's using
272     // at least one predicated input(s), as well as possible loop invariant
273     // which would result in it being implicitly predicated.
274     static bool hasImplicitlyValidVPT(VPTState &Block,
275                                       ReachingDefAnalysis &RDA) {
276       SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
277       MachineInstr *VPT = Insts.front();
278       assert(isVPTOpcode(VPT->getOpcode()) &&
279              "Expected VPT block to begin with VPT/VPST");
280 
281       if (VPT->getOpcode() == ARM::MVE_VPST)
282         return false;
283 
284       auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) {
285         MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx));
286         return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op);
287       };
288 
289       auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) {
290         MachineOperand &MO = MI->getOperand(Idx);
291         if (!MO.isReg() || !MO.getReg())
292           return true;
293 
294         SmallPtrSet<MachineInstr *, 2> Defs;
295         RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs);
296         if (Defs.empty())
297           return true;
298 
299         for (auto *Def : Defs)
300           if (Def->getParent() == VPT->getParent())
301             return false;
302         return true;
303       };
304 
305       // Check that at least one of the operands is directly predicated on a
306       // vctp and allow an invariant value too.
307       return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) &&
308              (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) &&
309              (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2));
310     }
311 
312     static bool isValid(ReachingDefAnalysis &RDA) {
313       // All predication within the loop should be based on vctp. If the block
314       // isn't predicated on entry, check whether the vctp is within the block
315       // and that all other instructions are then predicated on it.
316       for (auto &Block : Blocks) {
317         if (isEntryPredicatedOnVCTP(Block, false) ||
318             hasImplicitlyValidVPT(Block, RDA))
319           continue;
320 
321         SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
322         // We don't know how to convert a block with just a VPT;VCTP into
323         // anything valid once we remove the VCTP. For now just bail out.
324         assert(isVPTOpcode(Insts.front()->getOpcode()) &&
325                "Expected VPT block to start with a VPST or VPT!");
326         if (Insts.size() == 2 && Insts.front()->getOpcode() != ARM::MVE_VPST &&
327             isVCTP(Insts.back()))
328           return false;
329 
330         for (auto *MI : Insts) {
331           // Check that any internal VCTPs are 'Then' predicated.
332           if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then)
333             return false;
334           // Skip other instructions that build up the predicate.
335           if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI))
336             continue;
337           // Check that any other instructions are predicated upon a vctp.
338           // TODO: We could infer when VPTs are implicitly predicated on the
339           // vctp (when the operands are predicated).
340           if (!isPredicatedOnVCTP(MI)) {
341             LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI);
342             return false;
343           }
344         }
345       }
346       return true;
347     }
348 
349     VPTState(MachineInstr *MI) { Insts.push_back(MI); }
350 
351     void insert(MachineInstr *MI) {
352       Insts.push_back(MI);
353       // VPT/VPST + 4 predicated instructions.
354       assert(Insts.size() <= 5 && "Too many instructions in VPT block!");
355     }
356 
357     bool containsVCTP() const {
358       return llvm::any_of(Insts, isVCTP);
359     }
360 
361     unsigned size() const { return Insts.size(); }
362     SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; }
363   };
364 
365   struct LowOverheadLoop {
366 
367     MachineLoop &ML;
368     MachineBasicBlock *Preheader = nullptr;
369     MachineLoopInfo &MLI;
370     ReachingDefAnalysis &RDA;
371     const TargetRegisterInfo &TRI;
372     const ARMBaseInstrInfo &TII;
373     MachineFunction *MF = nullptr;
374     MachineBasicBlock::iterator StartInsertPt;
375     MachineBasicBlock *StartInsertBB = nullptr;
376     MachineInstr *Start = nullptr;
377     MachineInstr *Dec = nullptr;
378     MachineInstr *End = nullptr;
379     MachineOperand TPNumElements;
380     SmallVector<MachineInstr *, 4> VCTPs;
381     SmallPtrSet<MachineInstr *, 4> ToRemove;
382     SmallPtrSet<MachineInstr *, 4> BlockMasksToRecompute;
383     SmallPtrSet<MachineInstr *, 4> DoubleWidthResultInstrs;
384     SmallPtrSet<MachineInstr *, 4> VMOVCopies;
385     bool Revert = false;
386     bool CannotTailPredicate = false;
387 
388     LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI,
389                     ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI,
390                     const ARMBaseInstrInfo &TII)
391         : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII),
392           TPNumElements(MachineOperand::CreateImm(0)) {
393       MF = ML.getHeader()->getParent();
394       if (auto *MBB = ML.getLoopPreheader())
395         Preheader = MBB;
396       else if (auto *MBB = MLI.findLoopPreheader(&ML, true, true))
397         Preheader = MBB;
398       VPTState::reset();
399     }
400 
401     // If this is an MVE instruction, check that we know how to use tail
402     // predication with it. Record VPT blocks and return whether the
403     // instruction is valid for tail predication.
404     bool ValidateMVEInst(MachineInstr *MI);
405 
406     void AnalyseMVEInst(MachineInstr *MI) {
407       CannotTailPredicate = !ValidateMVEInst(MI);
408     }
409 
410     bool IsTailPredicationLegal() const {
411       // For now, let's keep things really simple and only support a single
412       // block for tail predication.
413       return !Revert && FoundAllComponents() && !VCTPs.empty() &&
414              !CannotTailPredicate && ML.getNumBlocks() == 1;
415     }
416 
417     // Given that MI is a VCTP, check that is equivalent to any other VCTPs
418     // found.
419     bool AddVCTP(MachineInstr *MI);
420 
421     // Check that the predication in the loop will be equivalent once we
422     // perform the conversion. Also ensure that we can provide the number
423     // of elements to the loop start instruction.
424     bool ValidateTailPredicate();
425 
426     // Check that any values available outside of the loop will be the same
427     // after tail predication conversion.
428     bool ValidateLiveOuts();
429 
430     // Check the branch targets are within range and we satisfy our
431     // restrictions.
432     void Validate(ARMBasicBlockUtils *BBUtils);
433 
434     bool FoundAllComponents() const {
435       return Start && Dec && End;
436     }
437 
438     SmallVectorImpl<VPTState> &getVPTBlocks() {
439       return VPTState::Blocks;
440     }
441 
442     // Return the operand for the loop start instruction. This will be the loop
443     // iteration count, or the number of elements if we're tail predicating.
444     MachineOperand &getLoopStartOperand() {
445       if (IsTailPredicationLegal())
446         return TPNumElements;
447       return Start->getOperand(1);
448     }
449 
450     unsigned getStartOpcode() const {
451       bool IsDo = isDoLoopStart(*Start);
452       if (!IsTailPredicationLegal())
453         return IsDo ? ARM::t2DLS : ARM::t2WLS;
454 
455       return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo);
456     }
457 
458     void dump() const {
459       if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start;
460       if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec;
461       if (End) dbgs() << "ARM Loops: Found Loop End: " << *End;
462       if (!VCTPs.empty()) {
463         dbgs() << "ARM Loops: Found VCTP(s):\n";
464         for (auto *MI : VCTPs)
465           dbgs() << " - " << *MI;
466       }
467       if (!FoundAllComponents())
468         dbgs() << "ARM Loops: Not a low-overhead loop.\n";
469       else if (!(Start && Dec && End))
470         dbgs() << "ARM Loops: Failed to find all loop components.\n";
471     }
472   };
473 
474   class ARMLowOverheadLoops : public MachineFunctionPass {
475     MachineFunction           *MF = nullptr;
476     MachineLoopInfo           *MLI = nullptr;
477     ReachingDefAnalysis       *RDA = nullptr;
478     const ARMBaseInstrInfo    *TII = nullptr;
479     MachineRegisterInfo       *MRI = nullptr;
480     const TargetRegisterInfo  *TRI = nullptr;
481     std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr;
482 
483   public:
484     static char ID;
485 
486     ARMLowOverheadLoops() : MachineFunctionPass(ID) { }
487 
488     void getAnalysisUsage(AnalysisUsage &AU) const override {
489       AU.setPreservesCFG();
490       AU.addRequired<MachineLoopInfo>();
491       AU.addRequired<ReachingDefAnalysis>();
492       MachineFunctionPass::getAnalysisUsage(AU);
493     }
494 
495     bool runOnMachineFunction(MachineFunction &MF) override;
496 
497     MachineFunctionProperties getRequiredProperties() const override {
498       return MachineFunctionProperties().set(
499           MachineFunctionProperties::Property::NoVRegs).set(
500           MachineFunctionProperties::Property::TracksLiveness);
501     }
502 
503     StringRef getPassName() const override {
504       return ARM_LOW_OVERHEAD_LOOPS_NAME;
505     }
506 
507   private:
508     bool ProcessLoop(MachineLoop *ML);
509 
510     bool RevertNonLoops();
511 
512     void RevertWhile(MachineInstr *MI) const;
513     void RevertDo(MachineInstr *MI) const;
514 
515     bool RevertLoopDec(MachineInstr *MI) const;
516 
517     void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const;
518 
519     void RevertLoopEndDec(MachineInstr *MI) const;
520 
521     void ConvertVPTBlocks(LowOverheadLoop &LoLoop);
522 
523     MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop);
524 
525     void Expand(LowOverheadLoop &LoLoop);
526 
527     void IterationCountDCE(LowOverheadLoop &LoLoop);
528   };
529 }
530 
531 char ARMLowOverheadLoops::ID = 0;
532 
533 SmallVector<VPTState, 4> VPTState::Blocks;
534 SetVector<MachineInstr *> VPTState::CurrentPredicates;
535 std::map<MachineInstr *,
536          std::unique_ptr<PredicatedMI>> VPTState::PredicatedInsts;
537 
538 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME,
539                 false, false)
540 
541 static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA,
542                       InstSet &ToRemove, InstSet &Ignore) {
543 
544   // Check that we can remove all of Killed without having to modify any IT
545   // blocks.
546   auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) {
547     // Collect the dead code and the MBBs in which they reside.
548     SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks;
549     for (auto *Dead : Killed)
550       BasicBlocks.insert(Dead->getParent());
551 
552     // Collect IT blocks in all affected basic blocks.
553     std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks;
554     for (auto *MBB : BasicBlocks) {
555       for (auto &IT : *MBB) {
556         if (IT.getOpcode() != ARM::t2IT)
557           continue;
558         RDA.getReachingLocalUses(&IT, MCRegister::from(ARM::ITSTATE),
559                                  ITBlocks[&IT]);
560       }
561     }
562 
563     // If we're removing all of the instructions within an IT block, then
564     // also remove the IT instruction.
565     SmallPtrSet<MachineInstr *, 2> ModifiedITs;
566     SmallPtrSet<MachineInstr *, 2> RemoveITs;
567     for (auto *Dead : Killed) {
568       if (MachineOperand *MO = Dead->findRegisterUseOperand(ARM::ITSTATE)) {
569         MachineInstr *IT = RDA.getMIOperand(Dead, *MO);
570         RemoveITs.insert(IT);
571         auto &CurrentBlock = ITBlocks[IT];
572         CurrentBlock.erase(Dead);
573         if (CurrentBlock.empty())
574           ModifiedITs.erase(IT);
575         else
576           ModifiedITs.insert(IT);
577       }
578     }
579     if (!ModifiedITs.empty())
580       return false;
581     Killed.insert(RemoveITs.begin(), RemoveITs.end());
582     return true;
583   };
584 
585   SmallPtrSet<MachineInstr *, 2> Uses;
586   if (!RDA.isSafeToRemove(MI, Uses, Ignore))
587     return false;
588 
589   if (WontCorruptITs(Uses, RDA)) {
590     ToRemove.insert(Uses.begin(), Uses.end());
591     LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI
592                << " - can also remove:\n";
593                for (auto *Use : Uses)
594                  dbgs() << "   - " << *Use);
595 
596     SmallPtrSet<MachineInstr*, 4> Killed;
597     RDA.collectKilledOperands(MI, Killed);
598     if (WontCorruptITs(Killed, RDA)) {
599       ToRemove.insert(Killed.begin(), Killed.end());
600       LLVM_DEBUG(for (auto *Dead : Killed)
601                    dbgs() << "   - " << *Dead);
602     }
603     return true;
604   }
605   return false;
606 }
607 
608 bool LowOverheadLoop::ValidateTailPredicate() {
609   if (!IsTailPredicationLegal()) {
610     LLVM_DEBUG(if (VCTPs.empty())
611                  dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n";
612                dbgs() << "ARM Loops: Tail-predication is not valid.\n");
613     return false;
614   }
615 
616   assert(!VCTPs.empty() && "VCTP instruction expected but is not set");
617   assert(ML.getBlocks().size() == 1 &&
618          "Shouldn't be processing a loop with more than one block");
619 
620   if (DisableTailPredication) {
621     LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n");
622     return false;
623   }
624 
625   if (!VPTState::isValid(RDA)) {
626     LLVM_DEBUG(dbgs() << "ARM Loops: Invalid VPT state.\n");
627     return false;
628   }
629 
630   if (!ValidateLiveOuts()) {
631     LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n");
632     return false;
633   }
634 
635   // For tail predication, we need to provide the number of elements, instead
636   // of the iteration count, to the loop start instruction. The number of
637   // elements is provided to the vctp instruction, so we need to check that
638   // we can use this register at InsertPt.
639   MachineInstr *VCTP = VCTPs.back();
640   if (Start->getOpcode() == ARM::t2DoLoopStartTP ||
641       Start->getOpcode() == ARM::t2WhileLoopStartTP) {
642     TPNumElements = Start->getOperand(2);
643     StartInsertPt = Start;
644     StartInsertBB = Start->getParent();
645   } else {
646     TPNumElements = VCTP->getOperand(1);
647     MCRegister NumElements = TPNumElements.getReg().asMCReg();
648 
649     // If the register is defined within loop, then we can't perform TP.
650     // TODO: Check whether this is just a mov of a register that would be
651     // available.
652     if (RDA.hasLocalDefBefore(VCTP, NumElements)) {
653       LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n");
654       return false;
655     }
656 
657     // The element count register maybe defined after InsertPt, in which case we
658     // need to try to move either InsertPt or the def so that the [w|d]lstp can
659     // use the value.
660 
661     if (StartInsertPt != StartInsertBB->end() &&
662         !RDA.isReachingDefLiveOut(&*StartInsertPt, NumElements)) {
663       if (auto *ElemDef =
664               RDA.getLocalLiveOutMIDef(StartInsertBB, NumElements)) {
665         if (RDA.isSafeToMoveForwards(ElemDef, &*StartInsertPt)) {
666           ElemDef->removeFromParent();
667           StartInsertBB->insert(StartInsertPt, ElemDef);
668           LLVM_DEBUG(dbgs()
669                      << "ARM Loops: Moved element count def: " << *ElemDef);
670         } else if (RDA.isSafeToMoveBackwards(&*StartInsertPt, ElemDef)) {
671           StartInsertPt->removeFromParent();
672           StartInsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef),
673                                      &*StartInsertPt);
674           LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef);
675         } else {
676           // If we fail to move an instruction and the element count is provided
677           // by a mov, use the mov operand if it will have the same value at the
678           // insertion point
679           MachineOperand Operand = ElemDef->getOperand(1);
680           if (isMovRegOpcode(ElemDef->getOpcode()) &&
681               RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg().asMCReg()) ==
682                   RDA.getUniqueReachingMIDef(&*StartInsertPt,
683                                              Operand.getReg().asMCReg())) {
684             TPNumElements = Operand;
685             NumElements = TPNumElements.getReg();
686           } else {
687             LLVM_DEBUG(dbgs()
688                        << "ARM Loops: Unable to move element count to loop "
689                        << "start instruction.\n");
690             return false;
691           }
692         }
693       }
694     }
695 
696     // Especially in the case of while loops, InsertBB may not be the
697     // preheader, so we need to check that the register isn't redefined
698     // before entering the loop.
699     auto CannotProvideElements = [this](MachineBasicBlock *MBB,
700                                         MCRegister NumElements) {
701       if (MBB->empty())
702         return false;
703       // NumElements is redefined in this block.
704       if (RDA.hasLocalDefBefore(&MBB->back(), NumElements))
705         return true;
706 
707       // Don't continue searching up through multiple predecessors.
708       if (MBB->pred_size() > 1)
709         return true;
710 
711       return false;
712     };
713 
714     // Search backwards for a def, until we get to InsertBB.
715     MachineBasicBlock *MBB = Preheader;
716     while (MBB && MBB != StartInsertBB) {
717       if (CannotProvideElements(MBB, NumElements)) {
718         LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n");
719         return false;
720       }
721       MBB = *MBB->pred_begin();
722     }
723   }
724 
725   // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect
726   // world the [w|d]lstp instruction would be last instruction in the preheader
727   // and so it would only affect instructions within the loop body. But due to
728   // scheduling, and/or the logic in this pass (above), the insertion point can
729   // be moved earlier. So if the Loop Start isn't the last instruction in the
730   // preheader, and if the initial element count is smaller than the vector
731   // width, the Loop Start instruction will immediately generate one or more
732   // false lane mask which can, incorrectly, affect the proceeding MVE
733   // instructions in the preheader.
734   if (std::any_of(StartInsertPt, StartInsertBB->end(), shouldInspect)) {
735     LLVM_DEBUG(dbgs() << "ARM Loops: Instruction blocks [W|D]LSTP\n");
736     return false;
737   }
738 
739   // For any DoubleWidthResultInstrs we found whilst scanning instructions, they
740   // need to compute an output size that is smaller than the VCTP mask operates
741   // on. The VecSize of the DoubleWidthResult is the larger vector size - the
742   // size it extends into, so any VCTP VecSize <= is valid.
743   unsigned VCTPVecSize = getVecSize(*VCTP);
744   for (MachineInstr *MI : DoubleWidthResultInstrs) {
745     unsigned InstrVecSize = getVecSize(*MI);
746     if (InstrVecSize > VCTPVecSize) {
747       LLVM_DEBUG(dbgs() << "ARM Loops: Double width result larger than VCTP "
748                         << "VecSize:\n" << *MI);
749       return false;
750     }
751   }
752 
753   // Check that the value change of the element count is what we expect and
754   // that the predication will be equivalent. For this we need:
755   // NumElements = NumElements - VectorWidth. The sub will be a sub immediate
756   // and we can also allow register copies within the chain too.
757   auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) {
758     return -getAddSubImmediate(*MI) == ExpectedVecWidth;
759   };
760 
761   MachineBasicBlock *MBB = VCTP->getParent();
762   // Remove modifications to the element count since they have no purpose in a
763   // tail predicated loop. Explicitly refer to the vctp operand no matter which
764   // register NumElements has been assigned to, since that is what the
765   // modifications will be using
766   if (auto *Def = RDA.getUniqueReachingMIDef(
767           &MBB->back(), VCTP->getOperand(1).getReg().asMCReg())) {
768     SmallPtrSet<MachineInstr*, 2> ElementChain;
769     SmallPtrSet<MachineInstr*, 2> Ignore;
770     unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode());
771 
772     Ignore.insert(VCTPs.begin(), VCTPs.end());
773 
774     if (TryRemove(Def, RDA, ElementChain, Ignore)) {
775       bool FoundSub = false;
776 
777       for (auto *MI : ElementChain) {
778         if (isMovRegOpcode(MI->getOpcode()))
779           continue;
780 
781         if (isSubImmOpcode(MI->getOpcode())) {
782           if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) {
783             LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element"
784                        " count: " << *MI);
785             return false;
786           }
787           FoundSub = true;
788         } else {
789           LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element"
790                      " count: " << *MI);
791           return false;
792         }
793       }
794       ToRemove.insert(ElementChain.begin(), ElementChain.end());
795     }
796   }
797 
798   // If we converted the LoopStart to a t2DoLoopStartTP/t2WhileLoopStartTP, we
799   // can also remove any extra instructions in the preheader, which often
800   // includes a now unused MOV.
801   if ((Start->getOpcode() == ARM::t2DoLoopStartTP ||
802        Start->getOpcode() == ARM::t2WhileLoopStartTP) &&
803       Preheader && !Preheader->empty() &&
804       !RDA.hasLocalDefBefore(VCTP, VCTP->getOperand(1).getReg())) {
805     if (auto *Def = RDA.getUniqueReachingMIDef(
806             &Preheader->back(), VCTP->getOperand(1).getReg().asMCReg())) {
807       SmallPtrSet<MachineInstr*, 2> Ignore;
808       Ignore.insert(VCTPs.begin(), VCTPs.end());
809       TryRemove(Def, RDA, ToRemove, Ignore);
810     }
811   }
812 
813   return true;
814 }
815 
816 static bool isRegInClass(const MachineOperand &MO,
817                          const TargetRegisterClass *Class) {
818   return MO.isReg() && MO.getReg() && Class->contains(MO.getReg());
819 }
820 
821 // MVE 'narrowing' operate on half a lane, reading from half and writing
822 // to half, which are referred to has the top and bottom half. The other
823 // half retains its previous value.
824 static bool retainsPreviousHalfElement(const MachineInstr &MI) {
825   const MCInstrDesc &MCID = MI.getDesc();
826   uint64_t Flags = MCID.TSFlags;
827   return (Flags & ARMII::RetainsPreviousHalfElement) != 0;
828 }
829 
830 // Some MVE instructions read from the top/bottom halves of their operand(s)
831 // and generate a vector result with result elements that are double the
832 // width of the input.
833 static bool producesDoubleWidthResult(const MachineInstr &MI) {
834   const MCInstrDesc &MCID = MI.getDesc();
835   uint64_t Flags = MCID.TSFlags;
836   return (Flags & ARMII::DoubleWidthResult) != 0;
837 }
838 
839 static bool isHorizontalReduction(const MachineInstr &MI) {
840   const MCInstrDesc &MCID = MI.getDesc();
841   uint64_t Flags = MCID.TSFlags;
842   return (Flags & ARMII::HorizontalReduction) != 0;
843 }
844 
845 // Can this instruction generate a non-zero result when given only zeroed
846 // operands? This allows us to know that, given operands with false bytes
847 // zeroed by masked loads, that the result will also contain zeros in those
848 // bytes.
849 static bool canGenerateNonZeros(const MachineInstr &MI) {
850 
851   // Check for instructions which can write into a larger element size,
852   // possibly writing into a previous zero'd lane.
853   if (producesDoubleWidthResult(MI))
854     return true;
855 
856   switch (MI.getOpcode()) {
857   default:
858     break;
859   // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow
860   // fp16 -> fp32 vector conversions.
861   // Instructions that perform a NOT will generate 1s from 0s.
862   case ARM::MVE_VMVN:
863   case ARM::MVE_VORN:
864   // Count leading zeros will do just that!
865   case ARM::MVE_VCLZs8:
866   case ARM::MVE_VCLZs16:
867   case ARM::MVE_VCLZs32:
868     return true;
869   }
870   return false;
871 }
872 
873 // Look at its register uses to see if it only can only receive zeros
874 // into its false lanes which would then produce zeros. Also check that
875 // the output register is also defined by an FalseLanesZero instruction
876 // so that if tail-predication happens, the lanes that aren't updated will
877 // still be zeros.
878 static bool producesFalseLanesZero(MachineInstr &MI,
879                                    const TargetRegisterClass *QPRs,
880                                    const ReachingDefAnalysis &RDA,
881                                    InstSet &FalseLanesZero) {
882   if (canGenerateNonZeros(MI))
883     return false;
884 
885   bool isPredicated = isVectorPredicated(&MI);
886   // Predicated loads will write zeros to the falsely predicated bytes of the
887   // destination register.
888   if (MI.mayLoad())
889     return isPredicated;
890 
891   auto IsZeroInit = [](MachineInstr *Def) {
892     return !isVectorPredicated(Def) &&
893            Def->getOpcode() == ARM::MVE_VMOVimmi32 &&
894            Def->getOperand(1).getImm() == 0;
895   };
896 
897   bool AllowScalars = isHorizontalReduction(MI);
898   for (auto &MO : MI.operands()) {
899     if (!MO.isReg() || !MO.getReg())
900       continue;
901     if (!isRegInClass(MO, QPRs) && AllowScalars)
902       continue;
903     // Skip the lr predicate reg
904     int PIdx = llvm::findFirstVPTPredOperandIdx(MI);
905     if (PIdx != -1 && (int)MO.getOperandNo() == PIdx + 2)
906       continue;
907 
908     // Check that this instruction will produce zeros in its false lanes:
909     // - If it only consumes false lanes zero or constant 0 (vmov #0)
910     // - If it's predicated, it only matters that it's def register already has
911     //   false lane zeros, so we can ignore the uses.
912     SmallPtrSet<MachineInstr *, 2> Defs;
913     RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs);
914     if (Defs.empty())
915       return false;
916     for (auto *Def : Defs) {
917       if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def))
918         continue;
919       if (MO.isUse() && isPredicated)
920         continue;
921       return false;
922     }
923   }
924   LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI);
925   return true;
926 }
927 
928 bool LowOverheadLoop::ValidateLiveOuts() {
929   // We want to find out if the tail-predicated version of this loop will
930   // produce the same values as the loop in its original form. For this to
931   // be true, the newly inserted implicit predication must not change the
932   // the (observable) results.
933   // We're doing this because many instructions in the loop will not be
934   // predicated and so the conversion from VPT predication to tail-predication
935   // can result in different values being produced; due to the tail-predication
936   // preventing many instructions from updating their falsely predicated
937   // lanes. This analysis assumes that all the instructions perform lane-wise
938   // operations and don't perform any exchanges.
939   // A masked load, whether through VPT or tail predication, will write zeros
940   // to any of the falsely predicated bytes. So, from the loads, we know that
941   // the false lanes are zeroed and here we're trying to track that those false
942   // lanes remain zero, or where they change, the differences are masked away
943   // by their user(s).
944   // All MVE stores have to be predicated, so we know that any predicate load
945   // operands, or stored results are equivalent already. Other explicitly
946   // predicated instructions will perform the same operation in the original
947   // loop and the tail-predicated form too. Because of this, we can insert
948   // loads, stores and other predicated instructions into our Predicated
949   // set and build from there.
950   const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID);
951   SetVector<MachineInstr *> FalseLanesUnknown;
952   SmallPtrSet<MachineInstr *, 4> FalseLanesZero;
953   SmallPtrSet<MachineInstr *, 4> Predicated;
954   MachineBasicBlock *Header = ML.getHeader();
955 
956   LLVM_DEBUG(dbgs() << "ARM Loops: Validating Live outs\n");
957 
958   for (auto &MI : *Header) {
959     if (!shouldInspect(MI))
960       continue;
961 
962     if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode()))
963       continue;
964 
965     bool isPredicated = isVectorPredicated(&MI);
966     bool retainsOrReduces =
967       retainsPreviousHalfElement(MI) || isHorizontalReduction(MI);
968 
969     if (isPredicated)
970       Predicated.insert(&MI);
971     if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero))
972       FalseLanesZero.insert(&MI);
973     else if (MI.getNumDefs() == 0)
974       continue;
975     else if (!isPredicated && retainsOrReduces) {
976       LLVM_DEBUG(dbgs() << "  Unpredicated instruction that retainsOrReduces: " << MI);
977       return false;
978     } else if (!isPredicated && MI.getOpcode() != ARM::MQPRCopy)
979       FalseLanesUnknown.insert(&MI);
980   }
981 
982   LLVM_DEBUG({
983     dbgs() << "  Predicated:\n";
984     for (auto *I : Predicated)
985       dbgs() << "  " << *I;
986     dbgs() << "  FalseLanesZero:\n";
987     for (auto *I : FalseLanesZero)
988       dbgs() << "  " << *I;
989     dbgs() << "  FalseLanesUnknown:\n";
990     for (auto *I : FalseLanesUnknown)
991       dbgs() << "  " << *I;
992   });
993 
994   auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO,
995                               SmallPtrSetImpl<MachineInstr *> &Predicated) {
996     SmallPtrSet<MachineInstr *, 2> Uses;
997     RDA.getGlobalUses(MI, MO.getReg().asMCReg(), Uses);
998     for (auto *Use : Uses) {
999       if (Use != MI && !Predicated.count(Use))
1000         return false;
1001     }
1002     return true;
1003   };
1004 
1005   // Visit the unknowns in reverse so that we can start at the values being
1006   // stored and then we can work towards the leaves, hopefully adding more
1007   // instructions to Predicated. Successfully terminating the loop means that
1008   // all the unknown values have to found to be masked by predicated user(s).
1009   // For any unpredicated values, we store them in NonPredicated so that we
1010   // can later check whether these form a reduction.
1011   SmallPtrSet<MachineInstr*, 2> NonPredicated;
1012   for (auto *MI : reverse(FalseLanesUnknown)) {
1013     for (auto &MO : MI->operands()) {
1014       if (!isRegInClass(MO, QPRs) || !MO.isDef())
1015         continue;
1016       if (!HasPredicatedUsers(MI, MO, Predicated)) {
1017         LLVM_DEBUG(dbgs() << "  Found an unknown def of : "
1018                           << TRI.getRegAsmName(MO.getReg()) << " at " << *MI);
1019         NonPredicated.insert(MI);
1020         break;
1021       }
1022     }
1023     // Any unknown false lanes have been masked away by the user(s).
1024     if (!NonPredicated.contains(MI))
1025       Predicated.insert(MI);
1026   }
1027 
1028   SmallPtrSet<MachineInstr *, 2> LiveOutMIs;
1029   SmallVector<MachineBasicBlock *, 2> ExitBlocks;
1030   ML.getExitBlocks(ExitBlocks);
1031   assert(ML.getNumBlocks() == 1 && "Expected single block loop!");
1032   assert(ExitBlocks.size() == 1 && "Expected a single exit block");
1033   MachineBasicBlock *ExitBB = ExitBlocks.front();
1034   for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) {
1035     // TODO: Instead of blocking predication, we could move the vctp to the exit
1036     // block and calculate it's operand there in or the preheader.
1037     if (RegMask.PhysReg == ARM::VPR) {
1038       LLVM_DEBUG(dbgs() << "  VPR is live in to the exit block.");
1039       return false;
1040     }
1041     // Check Q-regs that are live in the exit blocks. We don't collect scalars
1042     // because they won't be affected by lane predication.
1043     if (QPRs->contains(RegMask.PhysReg))
1044       if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg))
1045         LiveOutMIs.insert(MI);
1046   }
1047 
1048   // We've already validated that any VPT predication within the loop will be
1049   // equivalent when we perform the predication transformation; so we know that
1050   // any VPT predicated instruction is predicated upon VCTP. Any live-out
1051   // instruction needs to be predicated, so check this here. The instructions
1052   // in NonPredicated have been found to be a reduction that we can ensure its
1053   // legality. Any MQPRCopy found will need to validate its input as if it was
1054   // live out.
1055   SmallVector<MachineInstr *> Worklist(LiveOutMIs.begin(), LiveOutMIs.end());
1056   while (!Worklist.empty()) {
1057     MachineInstr *MI = Worklist.pop_back_val();
1058     if (MI->getOpcode() == ARM::MQPRCopy) {
1059       VMOVCopies.insert(MI);
1060       MachineInstr *CopySrc =
1061           RDA.getUniqueReachingMIDef(MI, MI->getOperand(1).getReg());
1062       if (CopySrc)
1063         Worklist.push_back(CopySrc);
1064     } else if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) {
1065       LLVM_DEBUG(dbgs() << " Unable to handle live out: " << *MI);
1066       VMOVCopies.clear();
1067       return false;
1068     }
1069   }
1070 
1071   return true;
1072 }
1073 
1074 void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) {
1075   if (Revert)
1076     return;
1077 
1078   // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP]
1079   // can only jump back.
1080   auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End,
1081                            ARMBasicBlockUtils *BBUtils, MachineLoop &ML) {
1082     MachineBasicBlock *TgtBB = End->getOpcode() == ARM::t2LoopEnd
1083                                    ? End->getOperand(1).getMBB()
1084                                    : End->getOperand(2).getMBB();
1085     // TODO Maybe there's cases where the target doesn't have to be the header,
1086     // but for now be safe and revert.
1087     if (TgtBB != ML.getHeader()) {
1088       LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n");
1089       return false;
1090     }
1091 
1092     // The WLS and LE instructions have 12-bits for the label offset. WLS
1093     // requires a positive offset, while LE uses negative.
1094     if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) ||
1095         !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) {
1096       LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n");
1097       return false;
1098     }
1099 
1100     if (isWhileLoopStart(*Start)) {
1101       MachineBasicBlock *TargetBB = getWhileLoopStartTargetBB(*Start);
1102       if (BBUtils->getOffsetOf(Start) > BBUtils->getOffsetOf(TargetBB) ||
1103           !BBUtils->isBBInRange(Start, TargetBB, 4094)) {
1104         LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n");
1105         return false;
1106       }
1107     }
1108     return true;
1109   };
1110 
1111   StartInsertPt = MachineBasicBlock::iterator(Start);
1112   StartInsertBB = Start->getParent();
1113   LLVM_DEBUG(dbgs() << "ARM Loops: Will insert LoopStart at "
1114                     << *StartInsertPt);
1115 
1116   Revert = !ValidateRanges(Start, End, BBUtils, ML);
1117   CannotTailPredicate = !ValidateTailPredicate();
1118 }
1119 
1120 bool LowOverheadLoop::AddVCTP(MachineInstr *MI) {
1121   LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI);
1122   if (VCTPs.empty()) {
1123     VCTPs.push_back(MI);
1124     return true;
1125   }
1126 
1127   // If we find another VCTP, check whether it uses the same value as the main VCTP.
1128   // If it does, store it in the VCTPs set, else refuse it.
1129   MachineInstr *Prev = VCTPs.back();
1130   if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) ||
1131       !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg().asMCReg())) {
1132     LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching "
1133                          "definition from the main VCTP");
1134     return false;
1135   }
1136   VCTPs.push_back(MI);
1137   return true;
1138 }
1139 
1140 static bool ValidateMVEStore(MachineInstr *MI, MachineLoop *ML) {
1141 
1142   auto GetFrameIndex = [](MachineMemOperand *Operand) {
1143     const PseudoSourceValue *PseudoValue = Operand->getPseudoValue();
1144     if (PseudoValue && PseudoValue->kind() == PseudoSourceValue::FixedStack) {
1145       if (const auto *FS = dyn_cast<FixedStackPseudoSourceValue>(PseudoValue)) {
1146         return FS->getFrameIndex();
1147       }
1148     }
1149     return -1;
1150   };
1151 
1152   auto IsStackOp = [GetFrameIndex](MachineInstr *I) {
1153     switch (I->getOpcode()) {
1154     case ARM::MVE_VSTRWU32:
1155     case ARM::MVE_VLDRWU32: {
1156       return I->getOperand(1).getReg() == ARM::SP &&
1157              I->memoperands().size() == 1 &&
1158              GetFrameIndex(I->memoperands().front()) >= 0;
1159     }
1160     default:
1161       return false;
1162     }
1163   };
1164 
1165   // An unpredicated vector register spill is allowed if all of the uses of the
1166   // stack slot are within the loop
1167   if (MI->getOpcode() != ARM::MVE_VSTRWU32 || !IsStackOp(MI))
1168     return false;
1169 
1170   // Search all blocks after the loop for accesses to the same stack slot.
1171   // ReachingDefAnalysis doesn't work for sp as it relies on registers being
1172   // live-out (which sp never is) to know what blocks to look in
1173   if (MI->memoperands().size() == 0)
1174     return false;
1175   int FI = GetFrameIndex(MI->memoperands().front());
1176 
1177   auto &FrameInfo = MI->getParent()->getParent()->getFrameInfo();
1178   if (FI == -1 || !FrameInfo.isSpillSlotObjectIndex(FI))
1179     return false;
1180 
1181   SmallVector<MachineBasicBlock *> Frontier;
1182   ML->getExitBlocks(Frontier);
1183   SmallPtrSet<MachineBasicBlock *, 4> Visited{MI->getParent()};
1184   unsigned Idx = 0;
1185   while (Idx < Frontier.size()) {
1186     MachineBasicBlock *BB = Frontier[Idx];
1187     bool LookAtSuccessors = true;
1188     for (auto &I : *BB) {
1189       if (!IsStackOp(&I) || I.memoperands().size() == 0)
1190         continue;
1191       if (GetFrameIndex(I.memoperands().front()) != FI)
1192         continue;
1193       // If this block has a store to the stack slot before any loads then we
1194       // can ignore the block
1195       if (I.getOpcode() == ARM::MVE_VSTRWU32) {
1196         LookAtSuccessors = false;
1197         break;
1198       }
1199       // If the store and the load are using the same stack slot then the
1200       // store isn't valid for tail predication
1201       if (I.getOpcode() == ARM::MVE_VLDRWU32)
1202         return false;
1203     }
1204 
1205     if (LookAtSuccessors) {
1206       for (auto *Succ : BB->successors()) {
1207         if (!Visited.contains(Succ) && !is_contained(Frontier, Succ))
1208           Frontier.push_back(Succ);
1209       }
1210     }
1211     Visited.insert(BB);
1212     Idx++;
1213   }
1214 
1215   return true;
1216 }
1217 
1218 bool LowOverheadLoop::ValidateMVEInst(MachineInstr *MI) {
1219   if (CannotTailPredicate)
1220     return false;
1221 
1222   if (!shouldInspect(*MI))
1223     return true;
1224 
1225   if (MI->getOpcode() == ARM::MVE_VPSEL ||
1226       MI->getOpcode() == ARM::MVE_VPNOT) {
1227     // TODO: Allow VPSEL and VPNOT, we currently cannot because:
1228     // 1) It will use the VPR as a predicate operand, but doesn't have to be
1229     //    instead a VPT block, which means we can assert while building up
1230     //    the VPT block because we don't find another VPT or VPST to being a new
1231     //    one.
1232     // 2) VPSEL still requires a VPR operand even after tail predicating,
1233     //    which means we can't remove it unless there is another
1234     //    instruction, such as vcmp, that can provide the VPR def.
1235     return false;
1236   }
1237 
1238   // Record all VCTPs and check that they're equivalent to one another.
1239   if (isVCTP(MI) && !AddVCTP(MI))
1240     return false;
1241 
1242   // Inspect uses first so that any instructions that alter the VPR don't
1243   // alter the predicate upon themselves.
1244   const MCInstrDesc &MCID = MI->getDesc();
1245   bool IsUse = false;
1246   unsigned LastOpIdx = MI->getNumOperands() - 1;
1247   for (const auto &Op : enumerate(reverse(MCID.operands()))) {
1248     const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index());
1249     if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR)
1250       continue;
1251 
1252     if (ARM::isVpred(Op.value().OperandType)) {
1253       VPTState::addInst(MI);
1254       IsUse = true;
1255     } else if (MI->getOpcode() != ARM::MVE_VPST) {
1256       LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI);
1257       return false;
1258     }
1259   }
1260 
1261   // If we find an instruction that has been marked as not valid for tail
1262   // predication, only allow the instruction if it's contained within a valid
1263   // VPT block.
1264   bool RequiresExplicitPredication =
1265     (MCID.TSFlags & ARMII::ValidForTailPredication) == 0;
1266   if (isDomainMVE(MI) && RequiresExplicitPredication) {
1267     if (MI->getOpcode() == ARM::MQPRCopy)
1268       return true;
1269     if (!IsUse && producesDoubleWidthResult(*MI)) {
1270       DoubleWidthResultInstrs.insert(MI);
1271       return true;
1272     }
1273 
1274     LLVM_DEBUG(if (!IsUse) dbgs()
1275                << "ARM Loops: Can't tail predicate: " << *MI);
1276     return IsUse;
1277   }
1278 
1279   // If the instruction is already explicitly predicated, then the conversion
1280   // will be fine, but ensure that all store operations are predicated.
1281   if (MI->mayStore() && !ValidateMVEStore(MI, &ML))
1282     return IsUse;
1283 
1284   // If this instruction defines the VPR, update the predicate for the
1285   // proceeding instructions.
1286   if (isVectorPredicate(MI)) {
1287     // Clear the existing predicate when we're not in VPT Active state,
1288     // otherwise we add to it.
1289     if (!isVectorPredicated(MI))
1290       VPTState::resetPredicate(MI);
1291     else
1292       VPTState::addPredicate(MI);
1293   }
1294 
1295   // Finally once the predicate has been modified, we can start a new VPT
1296   // block if necessary.
1297   if (isVPTOpcode(MI->getOpcode()))
1298     VPTState::CreateVPTBlock(MI);
1299 
1300   return true;
1301 }
1302 
1303 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) {
1304   const ARMSubtarget &ST = mf.getSubtarget<ARMSubtarget>();
1305   if (!ST.hasLOB())
1306     return false;
1307 
1308   MF = &mf;
1309   LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n");
1310 
1311   MLI = &getAnalysis<MachineLoopInfo>();
1312   RDA = &getAnalysis<ReachingDefAnalysis>();
1313   MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness);
1314   MRI = &MF->getRegInfo();
1315   TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo());
1316   TRI = ST.getRegisterInfo();
1317   BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF));
1318   BBUtils->computeAllBlockSizes();
1319   BBUtils->adjustBBOffsetsAfter(&MF->front());
1320 
1321   bool Changed = false;
1322   for (auto *ML : *MLI) {
1323     if (ML->isOutermost())
1324       Changed |= ProcessLoop(ML);
1325   }
1326   Changed |= RevertNonLoops();
1327   return Changed;
1328 }
1329 
1330 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) {
1331 
1332   bool Changed = false;
1333 
1334   // Process inner loops first.
1335   for (MachineLoop *L : *ML)
1336     Changed |= ProcessLoop(L);
1337 
1338   LLVM_DEBUG({
1339     dbgs() << "ARM Loops: Processing loop containing:\n";
1340     if (auto *Preheader = ML->getLoopPreheader())
1341       dbgs() << " - Preheader: " << printMBBReference(*Preheader) << "\n";
1342     else if (auto *Preheader = MLI->findLoopPreheader(ML, true, true))
1343       dbgs() << " - Preheader: " << printMBBReference(*Preheader) << "\n";
1344     for (auto *MBB : ML->getBlocks())
1345       dbgs() << " - Block: " << printMBBReference(*MBB) << "\n";
1346   });
1347 
1348   // Search the given block for a loop start instruction. If one isn't found,
1349   // and there's only one predecessor block, search that one too.
1350   std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart =
1351     [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* {
1352     for (auto &MI : *MBB) {
1353       if (isLoopStart(MI))
1354         return &MI;
1355     }
1356     if (MBB->pred_size() == 1)
1357       return SearchForStart(*MBB->pred_begin());
1358     return nullptr;
1359   };
1360 
1361   LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII);
1362   // Search the preheader for the start intrinsic.
1363   // FIXME: I don't see why we shouldn't be supporting multiple predecessors
1364   // with potentially multiple set.loop.iterations, so we need to enable this.
1365   if (LoLoop.Preheader)
1366     LoLoop.Start = SearchForStart(LoLoop.Preheader);
1367   else
1368     return Changed;
1369 
1370   // Find the low-overhead loop components and decide whether or not to fall
1371   // back to a normal loop. Also look for a vctp instructions and decide
1372   // whether we can convert that predicate using tail predication.
1373   for (auto *MBB : reverse(ML->getBlocks())) {
1374     for (auto &MI : *MBB) {
1375       if (MI.isDebugValue())
1376         continue;
1377       else if (MI.getOpcode() == ARM::t2LoopDec)
1378         LoLoop.Dec = &MI;
1379       else if (MI.getOpcode() == ARM::t2LoopEnd)
1380         LoLoop.End = &MI;
1381       else if (MI.getOpcode() == ARM::t2LoopEndDec)
1382         LoLoop.End = LoLoop.Dec = &MI;
1383       else if (isLoopStart(MI))
1384         LoLoop.Start = &MI;
1385       else if (MI.getDesc().isCall()) {
1386         // TODO: Though the call will require LE to execute again, does this
1387         // mean we should revert? Always executing LE hopefully should be
1388         // faster than performing a sub,cmp,br or even subs,br.
1389         LoLoop.Revert = true;
1390         LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n");
1391       } else {
1392         // Record VPR defs and build up their corresponding vpt blocks.
1393         // Check we know how to tail predicate any mve instructions.
1394         LoLoop.AnalyseMVEInst(&MI);
1395       }
1396     }
1397   }
1398 
1399   LLVM_DEBUG(LoLoop.dump());
1400   if (!LoLoop.FoundAllComponents()) {
1401     LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n");
1402     return Changed;
1403   }
1404 
1405   assert(LoLoop.Start->getOpcode() != ARM::t2WhileLoopStart &&
1406          "Expected t2WhileLoopStart to be removed before regalloc!");
1407 
1408   // Check that the only instruction using LoopDec is LoopEnd. This can only
1409   // happen when the Dec and End are separate, not a single t2LoopEndDec.
1410   // TODO: Check for copy chains that really have no effect.
1411   if (LoLoop.Dec != LoLoop.End) {
1412     SmallPtrSet<MachineInstr *, 2> Uses;
1413     RDA->getReachingLocalUses(LoLoop.Dec, MCRegister::from(ARM::LR), Uses);
1414     if (Uses.size() > 1 || !Uses.count(LoLoop.End)) {
1415       LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n");
1416       LoLoop.Revert = true;
1417     }
1418   }
1419   LoLoop.Validate(BBUtils.get());
1420   Expand(LoLoop);
1421   return true;
1422 }
1423 
1424 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a
1425 // beq that branches to the exit branch.
1426 // TODO: We could also try to generate a cbz if the value in LR is also in
1427 // another low register.
1428 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const {
1429   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI);
1430   MachineBasicBlock *DestBB = getWhileLoopStartTargetBB(*MI);
1431   unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
1432     ARM::tBcc : ARM::t2Bcc;
1433 
1434   RevertWhileLoopStartLR(MI, TII, BrOpc);
1435 }
1436 
1437 void ARMLowOverheadLoops::RevertDo(MachineInstr *MI) const {
1438   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to mov: " << *MI);
1439   RevertDoLoopStart(MI, TII);
1440 }
1441 
1442 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const {
1443   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI);
1444   MachineBasicBlock *MBB = MI->getParent();
1445   SmallPtrSet<MachineInstr*, 1> Ignore;
1446   for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) {
1447     if (I->getOpcode() == ARM::t2LoopEnd) {
1448       Ignore.insert(&*I);
1449       break;
1450     }
1451   }
1452 
1453   // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS.
1454   bool SetFlags =
1455       RDA->isSafeToDefRegAt(MI, MCRegister::from(ARM::CPSR), Ignore);
1456 
1457   llvm::RevertLoopDec(MI, TII, SetFlags);
1458   return SetFlags;
1459 }
1460 
1461 // Generate a subs, or sub and cmp, and a branch instead of an LE.
1462 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const {
1463   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI);
1464 
1465   MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
1466   unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
1467     ARM::tBcc : ARM::t2Bcc;
1468 
1469   llvm::RevertLoopEnd(MI, TII, BrOpc, SkipCmp);
1470 }
1471 
1472 // Generate a subs, or sub and cmp, and a branch instead of an LE.
1473 void ARMLowOverheadLoops::RevertLoopEndDec(MachineInstr *MI) const {
1474   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to subs, br: " << *MI);
1475   assert(MI->getOpcode() == ARM::t2LoopEndDec && "Expected a t2LoopEndDec!");
1476   MachineBasicBlock *MBB = MI->getParent();
1477 
1478   MachineInstrBuilder MIB =
1479       BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::t2SUBri));
1480   MIB.addDef(ARM::LR);
1481   MIB.add(MI->getOperand(1));
1482   MIB.addImm(1);
1483   MIB.addImm(ARMCC::AL);
1484   MIB.addReg(ARM::NoRegister);
1485   MIB.addReg(ARM::CPSR);
1486   MIB->getOperand(5).setIsDef(true);
1487 
1488   MachineBasicBlock *DestBB = MI->getOperand(2).getMBB();
1489   unsigned BrOpc =
1490       BBUtils->isBBInRange(MI, DestBB, 254) ? ARM::tBcc : ARM::t2Bcc;
1491 
1492   // Create bne
1493   MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
1494   MIB.add(MI->getOperand(2)); // branch target
1495   MIB.addImm(ARMCC::NE);      // condition code
1496   MIB.addReg(ARM::CPSR);
1497 
1498   MI->eraseFromParent();
1499 }
1500 
1501 // Perform dead code elimation on the loop iteration count setup expression.
1502 // If we are tail-predicating, the number of elements to be processed is the
1503 // operand of the VCTP instruction in the vector body, see getCount(), which is
1504 // register $r3 in this example:
1505 //
1506 //   $lr = big-itercount-expression
1507 //   ..
1508 //   $lr = t2DoLoopStart renamable $lr
1509 //   vector.body:
1510 //     ..
1511 //     $vpr = MVE_VCTP32 renamable $r3
1512 //     renamable $lr = t2LoopDec killed renamable $lr, 1
1513 //     t2LoopEnd renamable $lr, %vector.body
1514 //     tB %end
1515 //
1516 // What we would like achieve here is to replace the do-loop start pseudo
1517 // instruction t2DoLoopStart with:
1518 //
1519 //    $lr = MVE_DLSTP_32 killed renamable $r3
1520 //
1521 // Thus, $r3 which defines the number of elements, is written to $lr,
1522 // and then we want to delete the whole chain that used to define $lr,
1523 // see the comment below how this chain could look like.
1524 //
1525 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) {
1526   if (!LoLoop.IsTailPredicationLegal())
1527     return;
1528 
1529   LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n");
1530 
1531   MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 1);
1532   if (!Def) {
1533     LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n");
1534     return;
1535   }
1536 
1537   // Collect and remove the users of iteration count.
1538   SmallPtrSet<MachineInstr*, 4> Killed  = { LoLoop.Start, LoLoop.Dec,
1539                                             LoLoop.End };
1540   if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed))
1541     LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n");
1542 }
1543 
1544 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) {
1545   LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n");
1546   // When using tail-predication, try to delete the dead code that was used to
1547   // calculate the number of loop iterations.
1548   IterationCountDCE(LoLoop);
1549 
1550   MachineBasicBlock::iterator InsertPt = LoLoop.StartInsertPt;
1551   MachineInstr *Start = LoLoop.Start;
1552   MachineBasicBlock *MBB = LoLoop.StartInsertBB;
1553   unsigned Opc = LoLoop.getStartOpcode();
1554   MachineOperand &Count = LoLoop.getLoopStartOperand();
1555 
1556   // A DLS lr, lr we needn't emit
1557   MachineInstr* NewStart;
1558   if (!DisableOmitDLS && Opc == ARM::t2DLS && Count.isReg() &&
1559       Count.getReg() == ARM::LR) {
1560     LLVM_DEBUG(dbgs() << "ARM Loops: Didn't insert start: DLS lr, lr");
1561     NewStart = nullptr;
1562   } else {
1563     MachineInstrBuilder MIB =
1564       BuildMI(*MBB, InsertPt, Start->getDebugLoc(), TII->get(Opc));
1565 
1566     MIB.addDef(ARM::LR);
1567     MIB.add(Count);
1568     if (isWhileLoopStart(*Start))
1569       MIB.addMBB(getWhileLoopStartTargetBB(*Start));
1570 
1571     LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB);
1572     NewStart = &*MIB;
1573   }
1574 
1575   LoLoop.ToRemove.insert(Start);
1576   return NewStart;
1577 }
1578 
1579 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) {
1580   auto RemovePredicate = [](MachineInstr *MI) {
1581     if (MI->isDebugInstr())
1582       return;
1583     LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI);
1584     int PIdx = llvm::findFirstVPTPredOperandIdx(*MI);
1585     assert(PIdx >= 1 && "Trying to unpredicate a non-predicated instruction");
1586     assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then &&
1587            "Expected Then predicate!");
1588     MI->getOperand(PIdx).setImm(ARMVCC::None);
1589     MI->getOperand(PIdx + 1).setReg(0);
1590   };
1591 
1592   for (auto &Block : LoLoop.getVPTBlocks()) {
1593     SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts();
1594 
1595     auto ReplaceVCMPWithVPT = [&](MachineInstr *&TheVCMP, MachineInstr *At) {
1596       assert(TheVCMP && "Replacing a removed or non-existent VCMP");
1597       // Replace the VCMP with a VPT
1598       MachineInstrBuilder MIB =
1599           BuildMI(*At->getParent(), At, At->getDebugLoc(),
1600                   TII->get(VCMPOpcodeToVPT(TheVCMP->getOpcode())));
1601       MIB.addImm(ARMVCC::Then);
1602       // Register one
1603       MIB.add(TheVCMP->getOperand(1));
1604       // Register two
1605       MIB.add(TheVCMP->getOperand(2));
1606       // The comparison code, e.g. ge, eq, lt
1607       MIB.add(TheVCMP->getOperand(3));
1608       LLVM_DEBUG(dbgs() << "ARM Loops: Combining with VCMP to VPT: " << *MIB);
1609       LoLoop.BlockMasksToRecompute.insert(MIB.getInstr());
1610       LoLoop.ToRemove.insert(TheVCMP);
1611       TheVCMP = nullptr;
1612     };
1613 
1614     if (VPTState::isEntryPredicatedOnVCTP(Block, /*exclusive*/ true)) {
1615       MachineInstr *VPST = Insts.front();
1616       if (VPTState::hasUniformPredicate(Block)) {
1617         // A vpt block starting with VPST, is only predicated upon vctp and has no
1618         // internal vpr defs:
1619         // - Remove vpst.
1620         // - Unpredicate the remaining instructions.
1621         LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST);
1622         for (unsigned i = 1; i < Insts.size(); ++i)
1623           RemovePredicate(Insts[i]);
1624       } else {
1625         // The VPT block has a non-uniform predicate but it uses a vpst and its
1626         // entry is guarded only by a vctp, which means we:
1627         // - Need to remove the original vpst.
1628         // - Then need to unpredicate any following instructions, until
1629         //   we come across the divergent vpr def.
1630         // - Insert a new vpst to predicate the instruction(s) that following
1631         //   the divergent vpr def.
1632         MachineInstr *Divergent = VPTState::getDivergent(Block);
1633         MachineBasicBlock *MBB = Divergent->getParent();
1634         auto DivergentNext = ++MachineBasicBlock::iterator(Divergent);
1635         while (DivergentNext != MBB->end() && DivergentNext->isDebugInstr())
1636           ++DivergentNext;
1637 
1638         bool DivergentNextIsPredicated =
1639             DivergentNext != MBB->end() &&
1640             getVPTInstrPredicate(*DivergentNext) != ARMVCC::None;
1641 
1642         for (auto I = ++MachineBasicBlock::iterator(VPST), E = DivergentNext;
1643              I != E; ++I)
1644           RemovePredicate(&*I);
1645 
1646         // Check if the instruction defining vpr is a vcmp so it can be combined
1647         // with the VPST This should be the divergent instruction
1648         MachineInstr *VCMP =
1649             VCMPOpcodeToVPT(Divergent->getOpcode()) != 0 ? Divergent : nullptr;
1650 
1651         if (DivergentNextIsPredicated) {
1652           // Insert a VPST at the divergent only if the next instruction
1653           // would actually use it. A VCMP following a VPST can be
1654           // merged into a VPT so do that instead if the VCMP exists.
1655           if (!VCMP) {
1656             // Create a VPST (with a null mask for now, we'll recompute it
1657             // later)
1658             MachineInstrBuilder MIB =
1659                 BuildMI(*Divergent->getParent(), Divergent,
1660                         Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST));
1661             MIB.addImm(0);
1662             LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB);
1663             LoLoop.BlockMasksToRecompute.insert(MIB.getInstr());
1664           } else {
1665             // No RDA checks are necessary here since the VPST would have been
1666             // directly after the VCMP
1667             ReplaceVCMPWithVPT(VCMP, VCMP);
1668           }
1669         }
1670       }
1671       LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST);
1672       LoLoop.ToRemove.insert(VPST);
1673     } else if (Block.containsVCTP()) {
1674       // The vctp will be removed, so either the entire block will be dead or
1675       // the block mask of the vp(s)t will need to be recomputed.
1676       MachineInstr *VPST = Insts.front();
1677       if (Block.size() == 2) {
1678         assert(VPST->getOpcode() == ARM::MVE_VPST &&
1679                "Found a VPST in an otherwise empty vpt block");
1680         LoLoop.ToRemove.insert(VPST);
1681       } else
1682         LoLoop.BlockMasksToRecompute.insert(VPST);
1683     } else if (Insts.front()->getOpcode() == ARM::MVE_VPST) {
1684       // If this block starts with a VPST then attempt to merge it with the
1685       // preceeding un-merged VCMP into a VPT. This VCMP comes from a VPT
1686       // block that no longer exists
1687       MachineInstr *VPST = Insts.front();
1688       auto Next = ++MachineBasicBlock::iterator(VPST);
1689       assert(getVPTInstrPredicate(*Next) != ARMVCC::None &&
1690              "The instruction after a VPST must be predicated");
1691       (void)Next;
1692       MachineInstr *VprDef = RDA->getUniqueReachingMIDef(VPST, ARM::VPR);
1693       if (VprDef && VCMPOpcodeToVPT(VprDef->getOpcode()) &&
1694           !LoLoop.ToRemove.contains(VprDef)) {
1695         MachineInstr *VCMP = VprDef;
1696         // The VCMP and VPST can only be merged if the VCMP's operands will have
1697         // the same values at the VPST.
1698         // If any of the instructions between the VCMP and VPST are predicated
1699         // then a different code path is expected to have merged the VCMP and
1700         // VPST already.
1701         if (std::none_of(++MachineBasicBlock::iterator(VCMP),
1702                          MachineBasicBlock::iterator(VPST), hasVPRUse) &&
1703             RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(1).getReg()) &&
1704             RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(2).getReg())) {
1705           ReplaceVCMPWithVPT(VCMP, VPST);
1706           LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST);
1707           LoLoop.ToRemove.insert(VPST);
1708         }
1709       }
1710     }
1711   }
1712 
1713   LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end());
1714 }
1715 
1716 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) {
1717 
1718   // Combine the LoopDec and LoopEnd instructions into LE(TP).
1719   auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) {
1720     MachineInstr *End = LoLoop.End;
1721     MachineBasicBlock *MBB = End->getParent();
1722     unsigned Opc = LoLoop.IsTailPredicationLegal() ?
1723       ARM::MVE_LETP : ARM::t2LEUpdate;
1724     MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(),
1725                                       TII->get(Opc));
1726     MIB.addDef(ARM::LR);
1727     unsigned Off = LoLoop.Dec == LoLoop.End ? 1 : 0;
1728     MIB.add(End->getOperand(Off + 0));
1729     MIB.add(End->getOperand(Off + 1));
1730     LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB);
1731     LoLoop.ToRemove.insert(LoLoop.Dec);
1732     LoLoop.ToRemove.insert(End);
1733     return &*MIB;
1734   };
1735 
1736   // TODO: We should be able to automatically remove these branches before we
1737   // get here - probably by teaching analyzeBranch about the pseudo
1738   // instructions.
1739   // If there is an unconditional branch, after I, that just branches to the
1740   // next block, remove it.
1741   auto RemoveDeadBranch = [](MachineInstr *I) {
1742     MachineBasicBlock *BB = I->getParent();
1743     MachineInstr *Terminator = &BB->instr_back();
1744     if (Terminator->isUnconditionalBranch() && I != Terminator) {
1745       MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB();
1746       if (BB->isLayoutSuccessor(Succ)) {
1747         LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator);
1748         Terminator->eraseFromParent();
1749       }
1750     }
1751   };
1752 
1753   // And VMOVCopies need to become 2xVMOVD for tail predication to be valid.
1754   // Anything other MQPRCopy can be converted to MVE_VORR later on.
1755   auto ExpandVMOVCopies = [this](SmallPtrSet<MachineInstr *, 4> &VMOVCopies) {
1756     for (auto *MI : VMOVCopies) {
1757       LLVM_DEBUG(dbgs() << "Converting copy to VMOVD: " << *MI);
1758       assert(MI->getOpcode() == ARM::MQPRCopy && "Only expected MQPRCOPY!");
1759       MachineBasicBlock *MBB = MI->getParent();
1760       Register Dst = MI->getOperand(0).getReg();
1761       Register Src = MI->getOperand(1).getReg();
1762       auto MIB1 = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::VMOVD),
1763                           ARM::D0 + (Dst - ARM::Q0) * 2)
1764                       .addReg(ARM::D0 + (Src - ARM::Q0) * 2)
1765                       .add(predOps(ARMCC::AL));
1766       (void)MIB1;
1767       LLVM_DEBUG(dbgs() << " into " << *MIB1);
1768       auto MIB2 = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::VMOVD),
1769                           ARM::D0 + (Dst - ARM::Q0) * 2 + 1)
1770                       .addReg(ARM::D0 + (Src - ARM::Q0) * 2 + 1)
1771                       .add(predOps(ARMCC::AL));
1772       LLVM_DEBUG(dbgs() << " and  " << *MIB2);
1773       (void)MIB2;
1774       MI->eraseFromParent();
1775     }
1776   };
1777 
1778   if (LoLoop.Revert) {
1779     if (isWhileLoopStart(*LoLoop.Start))
1780       RevertWhile(LoLoop.Start);
1781     else
1782       RevertDo(LoLoop.Start);
1783     if (LoLoop.Dec == LoLoop.End)
1784       RevertLoopEndDec(LoLoop.End);
1785     else
1786       RevertLoopEnd(LoLoop.End, RevertLoopDec(LoLoop.Dec));
1787   } else {
1788     ExpandVMOVCopies(LoLoop.VMOVCopies);
1789     LoLoop.Start = ExpandLoopStart(LoLoop);
1790     if (LoLoop.Start)
1791       RemoveDeadBranch(LoLoop.Start);
1792     LoLoop.End = ExpandLoopEnd(LoLoop);
1793     RemoveDeadBranch(LoLoop.End);
1794     if (LoLoop.IsTailPredicationLegal())
1795       ConvertVPTBlocks(LoLoop);
1796     for (auto *I : LoLoop.ToRemove) {
1797       LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I);
1798       I->eraseFromParent();
1799     }
1800     for (auto *I : LoLoop.BlockMasksToRecompute) {
1801       LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I);
1802       recomputeVPTBlockMask(*I);
1803       LLVM_DEBUG(dbgs() << "           ... done: " << *I);
1804     }
1805   }
1806 
1807   PostOrderLoopTraversal DFS(LoLoop.ML, *MLI);
1808   DFS.ProcessLoop();
1809   const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder();
1810   for (auto *MBB : PostOrder) {
1811     recomputeLiveIns(*MBB);
1812     // FIXME: For some reason, the live-in print order is non-deterministic for
1813     // our tests and I can't out why... So just sort them.
1814     MBB->sortUniqueLiveIns();
1815   }
1816 
1817   for (auto *MBB : reverse(PostOrder))
1818     recomputeLivenessFlags(*MBB);
1819 
1820   // We've moved, removed and inserted new instructions, so update RDA.
1821   RDA->reset();
1822 }
1823 
1824 bool ARMLowOverheadLoops::RevertNonLoops() {
1825   LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n");
1826   bool Changed = false;
1827 
1828   for (auto &MBB : *MF) {
1829     SmallVector<MachineInstr*, 4> Starts;
1830     SmallVector<MachineInstr*, 4> Decs;
1831     SmallVector<MachineInstr*, 4> Ends;
1832     SmallVector<MachineInstr *, 4> EndDecs;
1833     SmallVector<MachineInstr *, 4> MQPRCopies;
1834 
1835     for (auto &I : MBB) {
1836       if (isLoopStart(I))
1837         Starts.push_back(&I);
1838       else if (I.getOpcode() == ARM::t2LoopDec)
1839         Decs.push_back(&I);
1840       else if (I.getOpcode() == ARM::t2LoopEnd)
1841         Ends.push_back(&I);
1842       else if (I.getOpcode() == ARM::t2LoopEndDec)
1843         EndDecs.push_back(&I);
1844       else if (I.getOpcode() == ARM::MQPRCopy)
1845         MQPRCopies.push_back(&I);
1846     }
1847 
1848     if (Starts.empty() && Decs.empty() && Ends.empty() && EndDecs.empty() &&
1849         MQPRCopies.empty())
1850       continue;
1851 
1852     Changed = true;
1853 
1854     for (auto *Start : Starts) {
1855       if (isWhileLoopStart(*Start))
1856         RevertWhile(Start);
1857       else
1858         RevertDo(Start);
1859     }
1860     for (auto *Dec : Decs)
1861       RevertLoopDec(Dec);
1862 
1863     for (auto *End : Ends)
1864       RevertLoopEnd(End);
1865     for (auto *End : EndDecs)
1866       RevertLoopEndDec(End);
1867     for (auto *MI : MQPRCopies) {
1868       LLVM_DEBUG(dbgs() << "Converting copy to VORR: " << *MI);
1869       assert(MI->getOpcode() == ARM::MQPRCopy && "Only expected MQPRCOPY!");
1870       MachineBasicBlock *MBB = MI->getParent();
1871       auto MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::MVE_VORR),
1872                          MI->getOperand(0).getReg())
1873                      .add(MI->getOperand(1))
1874                      .add(MI->getOperand(1));
1875       addUnpredicatedMveVpredROp(MIB, MI->getOperand(0).getReg());
1876       MI->eraseFromParent();
1877     }
1878   }
1879   return Changed;
1880 }
1881 
1882 FunctionPass *llvm::createARMLowOverheadLoopsPass() {
1883   return new ARMLowOverheadLoops();
1884 }
1885