1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo 10 /// instructions into machine operations. 11 /// The expectation is that the loop contains three pseudo instructions: 12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop 13 /// form should be in the preheader, whereas the while form should be in the 14 /// preheaders only predecessor. 15 /// - t2LoopDec - placed within in the loop body. 16 /// - t2LoopEnd - the loop latch terminator. 17 /// 18 /// In addition to this, we also look for the presence of the VCTP instruction, 19 /// which determines whether we can generated the tail-predicated low-overhead 20 /// loop form. 21 /// 22 /// Assumptions and Dependencies: 23 /// Low-overhead loops are constructed and executed using a setup instruction: 24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. 25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range 26 /// but fixed polarity: WLS can only branch forwards and LE can only branch 27 /// backwards. These restrictions mean that this pass is dependent upon block 28 /// layout and block sizes, which is why it's the last pass to run. The same is 29 /// true for ConstantIslands, but this pass does not increase the size of the 30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed 31 /// during the transform and pseudo instructions are replaced by real ones. In 32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce 33 /// multiple instructions for a single pseudo (see RevertWhile and 34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStartLR and t2LoopEnd 35 /// are defined to be as large as this maximum sequence of replacement 36 /// instructions. 37 /// 38 /// A note on VPR.P0 (the lane mask): 39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a 40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks). 41 /// They will simply "and" the result of their calculation with the current 42 /// value of VPR.P0. You can think of it like this: 43 /// \verbatim 44 /// if VPT active: ; Between a DLSTP/LETP, or for predicated instrs 45 /// VPR.P0 &= Value 46 /// else 47 /// VPR.P0 = Value 48 /// \endverbatim 49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always 50 /// fall in the "VPT active" case, so we can consider that all VPR writes by 51 /// one of those instruction is actually a "and". 52 //===----------------------------------------------------------------------===// 53 54 #include "ARM.h" 55 #include "ARMBaseInstrInfo.h" 56 #include "ARMBaseRegisterInfo.h" 57 #include "ARMBasicBlockInfo.h" 58 #include "ARMSubtarget.h" 59 #include "MVETailPredUtils.h" 60 #include "Thumb2InstrInfo.h" 61 #include "llvm/ADT/SetOperations.h" 62 #include "llvm/ADT/SmallSet.h" 63 #include "llvm/CodeGen/LivePhysRegs.h" 64 #include "llvm/CodeGen/MachineFunctionPass.h" 65 #include "llvm/CodeGen/MachineLoopInfo.h" 66 #include "llvm/CodeGen/MachineLoopUtils.h" 67 #include "llvm/CodeGen/MachineRegisterInfo.h" 68 #include "llvm/CodeGen/Passes.h" 69 #include "llvm/CodeGen/ReachingDefAnalysis.h" 70 #include "llvm/MC/MCInstrDesc.h" 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "arm-low-overhead-loops" 75 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" 76 77 static cl::opt<bool> 78 DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden, 79 cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"), 80 cl::init(false)); 81 82 static bool isVectorPredicated(MachineInstr *MI) { 83 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 84 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR; 85 } 86 87 static bool isVectorPredicate(MachineInstr *MI) { 88 return MI->findRegisterDefOperandIdx(ARM::VPR) != -1; 89 } 90 91 static bool hasVPRUse(MachineInstr &MI) { 92 return MI.findRegisterUseOperandIdx(ARM::VPR) != -1; 93 } 94 95 static bool isDomainMVE(MachineInstr *MI) { 96 uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask; 97 return Domain == ARMII::DomainMVE; 98 } 99 100 static int getVecSize(const MachineInstr &MI) { 101 const MCInstrDesc &MCID = MI.getDesc(); 102 uint64_t Flags = MCID.TSFlags; 103 return (Flags & ARMII::VecSize) >> ARMII::VecSizeShift; 104 } 105 106 static bool shouldInspect(MachineInstr &MI) { 107 if (MI.isDebugInstr()) 108 return false; 109 return isDomainMVE(&MI) || isVectorPredicate(&MI) || hasVPRUse(MI); 110 } 111 112 namespace { 113 114 using InstSet = SmallPtrSetImpl<MachineInstr *>; 115 116 class PostOrderLoopTraversal { 117 MachineLoop &ML; 118 MachineLoopInfo &MLI; 119 SmallPtrSet<MachineBasicBlock*, 4> Visited; 120 SmallVector<MachineBasicBlock*, 4> Order; 121 122 public: 123 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI) 124 : ML(ML), MLI(MLI) { } 125 126 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const { 127 return Order; 128 } 129 130 // Visit all the blocks within the loop, as well as exit blocks and any 131 // blocks properly dominating the header. 132 void ProcessLoop() { 133 std::function<void(MachineBasicBlock*)> Search = [this, &Search] 134 (MachineBasicBlock *MBB) -> void { 135 if (Visited.count(MBB)) 136 return; 137 138 Visited.insert(MBB); 139 for (auto *Succ : MBB->successors()) { 140 if (!ML.contains(Succ)) 141 continue; 142 Search(Succ); 143 } 144 Order.push_back(MBB); 145 }; 146 147 // Insert exit blocks. 148 SmallVector<MachineBasicBlock*, 2> ExitBlocks; 149 ML.getExitBlocks(ExitBlocks); 150 append_range(Order, ExitBlocks); 151 152 // Then add the loop body. 153 Search(ML.getHeader()); 154 155 // Then try the preheader and its predecessors. 156 std::function<void(MachineBasicBlock*)> GetPredecessor = 157 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void { 158 Order.push_back(MBB); 159 if (MBB->pred_size() == 1) 160 GetPredecessor(*MBB->pred_begin()); 161 }; 162 163 if (auto *Preheader = ML.getLoopPreheader()) 164 GetPredecessor(Preheader); 165 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true, true)) 166 GetPredecessor(Preheader); 167 } 168 }; 169 170 struct PredicatedMI { 171 MachineInstr *MI = nullptr; 172 SetVector<MachineInstr*> Predicates; 173 174 public: 175 PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) { 176 assert(I && "Instruction must not be null!"); 177 Predicates.insert(Preds.begin(), Preds.end()); 178 } 179 }; 180 181 // Represent the current state of the VPR and hold all instances which 182 // represent a VPT block, which is a list of instructions that begins with a 183 // VPT/VPST and has a maximum of four proceeding instructions. All 184 // instructions within the block are predicated upon the vpr and we allow 185 // instructions to define the vpr within in the block too. 186 class VPTState { 187 friend struct LowOverheadLoop; 188 189 SmallVector<MachineInstr *, 4> Insts; 190 191 static SmallVector<VPTState, 4> Blocks; 192 static SetVector<MachineInstr *> CurrentPredicates; 193 static std::map<MachineInstr *, 194 std::unique_ptr<PredicatedMI>> PredicatedInsts; 195 196 static void CreateVPTBlock(MachineInstr *MI) { 197 assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR)) 198 && "Can't begin VPT without predicate"); 199 Blocks.emplace_back(MI); 200 // The execution of MI is predicated upon the current set of instructions 201 // that are AND'ed together to form the VPR predicate value. In the case 202 // that MI is a VPT, CurrentPredicates will also just be MI. 203 PredicatedInsts.emplace( 204 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates)); 205 } 206 207 static void reset() { 208 Blocks.clear(); 209 PredicatedInsts.clear(); 210 CurrentPredicates.clear(); 211 } 212 213 static void addInst(MachineInstr *MI) { 214 Blocks.back().insert(MI); 215 PredicatedInsts.emplace( 216 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates)); 217 } 218 219 static void addPredicate(MachineInstr *MI) { 220 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI); 221 CurrentPredicates.insert(MI); 222 } 223 224 static void resetPredicate(MachineInstr *MI) { 225 LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI); 226 CurrentPredicates.clear(); 227 CurrentPredicates.insert(MI); 228 } 229 230 public: 231 // Have we found an instruction within the block which defines the vpr? If 232 // so, not all the instructions in the block will have the same predicate. 233 static bool hasUniformPredicate(VPTState &Block) { 234 return getDivergent(Block) == nullptr; 235 } 236 237 // If it exists, return the first internal instruction which modifies the 238 // VPR. 239 static MachineInstr *getDivergent(VPTState &Block) { 240 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 241 for (unsigned i = 1; i < Insts.size(); ++i) { 242 MachineInstr *Next = Insts[i]; 243 if (isVectorPredicate(Next)) 244 return Next; // Found an instruction altering the vpr. 245 } 246 return nullptr; 247 } 248 249 // Return whether the given instruction is predicated upon a VCTP. 250 static bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) { 251 SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI]->Predicates; 252 if (Exclusive && Predicates.size() != 1) 253 return false; 254 return llvm::any_of(Predicates, isVCTP); 255 } 256 257 // Is the VPST, controlling the block entry, predicated upon a VCTP. 258 static bool isEntryPredicatedOnVCTP(VPTState &Block, 259 bool Exclusive = false) { 260 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 261 return isPredicatedOnVCTP(Insts.front(), Exclusive); 262 } 263 264 // If this block begins with a VPT, we can check whether it's using 265 // at least one predicated input(s), as well as possible loop invariant 266 // which would result in it being implicitly predicated. 267 static bool hasImplicitlyValidVPT(VPTState &Block, 268 ReachingDefAnalysis &RDA) { 269 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 270 MachineInstr *VPT = Insts.front(); 271 assert(isVPTOpcode(VPT->getOpcode()) && 272 "Expected VPT block to begin with VPT/VPST"); 273 274 if (VPT->getOpcode() == ARM::MVE_VPST) 275 return false; 276 277 auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) { 278 MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx)); 279 return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op); 280 }; 281 282 auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) { 283 MachineOperand &MO = MI->getOperand(Idx); 284 if (!MO.isReg() || !MO.getReg()) 285 return true; 286 287 SmallPtrSet<MachineInstr *, 2> Defs; 288 RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs); 289 if (Defs.empty()) 290 return true; 291 292 for (auto *Def : Defs) 293 if (Def->getParent() == VPT->getParent()) 294 return false; 295 return true; 296 }; 297 298 // Check that at least one of the operands is directly predicated on a 299 // vctp and allow an invariant value too. 300 return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) && 301 (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) && 302 (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2)); 303 } 304 305 static bool isValid(ReachingDefAnalysis &RDA) { 306 // All predication within the loop should be based on vctp. If the block 307 // isn't predicated on entry, check whether the vctp is within the block 308 // and that all other instructions are then predicated on it. 309 for (auto &Block : Blocks) { 310 if (isEntryPredicatedOnVCTP(Block, false) || 311 hasImplicitlyValidVPT(Block, RDA)) 312 continue; 313 314 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 315 // We don't know how to convert a block with just a VPT;VCTP into 316 // anything valid once we remove the VCTP. For now just bail out. 317 assert(isVPTOpcode(Insts.front()->getOpcode()) && 318 "Expected VPT block to start with a VPST or VPT!"); 319 if (Insts.size() == 2 && Insts.front()->getOpcode() != ARM::MVE_VPST && 320 isVCTP(Insts.back())) 321 return false; 322 323 for (auto *MI : Insts) { 324 // Check that any internal VCTPs are 'Then' predicated. 325 if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then) 326 return false; 327 // Skip other instructions that build up the predicate. 328 if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI)) 329 continue; 330 // Check that any other instructions are predicated upon a vctp. 331 // TODO: We could infer when VPTs are implicitly predicated on the 332 // vctp (when the operands are predicated). 333 if (!isPredicatedOnVCTP(MI)) { 334 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI); 335 return false; 336 } 337 } 338 } 339 return true; 340 } 341 342 VPTState(MachineInstr *MI) { Insts.push_back(MI); } 343 344 void insert(MachineInstr *MI) { 345 Insts.push_back(MI); 346 // VPT/VPST + 4 predicated instructions. 347 assert(Insts.size() <= 5 && "Too many instructions in VPT block!"); 348 } 349 350 bool containsVCTP() const { 351 return llvm::any_of(Insts, isVCTP); 352 } 353 354 unsigned size() const { return Insts.size(); } 355 SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; } 356 }; 357 358 struct LowOverheadLoop { 359 360 MachineLoop &ML; 361 MachineBasicBlock *Preheader = nullptr; 362 MachineLoopInfo &MLI; 363 ReachingDefAnalysis &RDA; 364 const TargetRegisterInfo &TRI; 365 const ARMBaseInstrInfo &TII; 366 MachineFunction *MF = nullptr; 367 MachineBasicBlock::iterator StartInsertPt; 368 MachineBasicBlock *StartInsertBB = nullptr; 369 MachineInstr *Start = nullptr; 370 MachineInstr *Dec = nullptr; 371 MachineInstr *End = nullptr; 372 MachineOperand TPNumElements; 373 SmallVector<MachineInstr *, 4> VCTPs; 374 SmallPtrSet<MachineInstr *, 4> ToRemove; 375 SmallPtrSet<MachineInstr *, 4> BlockMasksToRecompute; 376 SmallPtrSet<MachineInstr *, 4> DoubleWidthResultInstrs; 377 SmallPtrSet<MachineInstr *, 4> VMOVCopies; 378 bool Revert = false; 379 bool CannotTailPredicate = false; 380 381 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI, 382 ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI, 383 const ARMBaseInstrInfo &TII) 384 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII), 385 TPNumElements(MachineOperand::CreateImm(0)) { 386 MF = ML.getHeader()->getParent(); 387 if (auto *MBB = ML.getLoopPreheader()) 388 Preheader = MBB; 389 else if (auto *MBB = MLI.findLoopPreheader(&ML, true, true)) 390 Preheader = MBB; 391 VPTState::reset(); 392 } 393 394 // If this is an MVE instruction, check that we know how to use tail 395 // predication with it. Record VPT blocks and return whether the 396 // instruction is valid for tail predication. 397 bool ValidateMVEInst(MachineInstr *MI); 398 399 void AnalyseMVEInst(MachineInstr *MI) { 400 CannotTailPredicate = !ValidateMVEInst(MI); 401 } 402 403 bool IsTailPredicationLegal() const { 404 // For now, let's keep things really simple and only support a single 405 // block for tail predication. 406 return !Revert && FoundAllComponents() && !VCTPs.empty() && 407 !CannotTailPredicate && ML.getNumBlocks() == 1; 408 } 409 410 // Given that MI is a VCTP, check that is equivalent to any other VCTPs 411 // found. 412 bool AddVCTP(MachineInstr *MI); 413 414 // Check that the predication in the loop will be equivalent once we 415 // perform the conversion. Also ensure that we can provide the number 416 // of elements to the loop start instruction. 417 bool ValidateTailPredicate(); 418 419 // Check that any values available outside of the loop will be the same 420 // after tail predication conversion. 421 bool ValidateLiveOuts(); 422 423 // Is it safe to define LR with DLS/WLS? 424 // LR can be defined if it is the operand to start, because it's the same 425 // value, or if it's going to be equivalent to the operand to Start. 426 MachineInstr *isSafeToDefineLR(); 427 428 // Check the branch targets are within range and we satisfy our 429 // restrictions. 430 void Validate(ARMBasicBlockUtils *BBUtils); 431 432 bool FoundAllComponents() const { 433 return Start && Dec && End; 434 } 435 436 SmallVectorImpl<VPTState> &getVPTBlocks() { 437 return VPTState::Blocks; 438 } 439 440 // Return the operand for the loop start instruction. This will be the loop 441 // iteration count, or the number of elements if we're tail predicating. 442 MachineOperand &getLoopStartOperand() { 443 if (IsTailPredicationLegal()) 444 return TPNumElements; 445 return Start->getOperand(1); 446 } 447 448 unsigned getStartOpcode() const { 449 bool IsDo = isDoLoopStart(*Start); 450 if (!IsTailPredicationLegal()) 451 return IsDo ? ARM::t2DLS : ARM::t2WLS; 452 453 return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo); 454 } 455 456 void dump() const { 457 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; 458 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; 459 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; 460 if (!VCTPs.empty()) { 461 dbgs() << "ARM Loops: Found VCTP(s):\n"; 462 for (auto *MI : VCTPs) 463 dbgs() << " - " << *MI; 464 } 465 if (!FoundAllComponents()) 466 dbgs() << "ARM Loops: Not a low-overhead loop.\n"; 467 else if (!(Start && Dec && End)) 468 dbgs() << "ARM Loops: Failed to find all loop components.\n"; 469 } 470 }; 471 472 class ARMLowOverheadLoops : public MachineFunctionPass { 473 MachineFunction *MF = nullptr; 474 MachineLoopInfo *MLI = nullptr; 475 ReachingDefAnalysis *RDA = nullptr; 476 const ARMBaseInstrInfo *TII = nullptr; 477 MachineRegisterInfo *MRI = nullptr; 478 const TargetRegisterInfo *TRI = nullptr; 479 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 480 481 public: 482 static char ID; 483 484 ARMLowOverheadLoops() : MachineFunctionPass(ID) { } 485 486 void getAnalysisUsage(AnalysisUsage &AU) const override { 487 AU.setPreservesCFG(); 488 AU.addRequired<MachineLoopInfo>(); 489 AU.addRequired<ReachingDefAnalysis>(); 490 MachineFunctionPass::getAnalysisUsage(AU); 491 } 492 493 bool runOnMachineFunction(MachineFunction &MF) override; 494 495 MachineFunctionProperties getRequiredProperties() const override { 496 return MachineFunctionProperties().set( 497 MachineFunctionProperties::Property::NoVRegs).set( 498 MachineFunctionProperties::Property::TracksLiveness); 499 } 500 501 StringRef getPassName() const override { 502 return ARM_LOW_OVERHEAD_LOOPS_NAME; 503 } 504 505 private: 506 bool ProcessLoop(MachineLoop *ML); 507 508 bool RevertNonLoops(); 509 510 void RevertWhile(MachineInstr *MI) const; 511 void RevertDo(MachineInstr *MI) const; 512 513 bool RevertLoopDec(MachineInstr *MI) const; 514 515 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; 516 517 void RevertLoopEndDec(MachineInstr *MI) const; 518 519 void ConvertVPTBlocks(LowOverheadLoop &LoLoop); 520 521 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); 522 523 void Expand(LowOverheadLoop &LoLoop); 524 525 void IterationCountDCE(LowOverheadLoop &LoLoop); 526 }; 527 } 528 529 char ARMLowOverheadLoops::ID = 0; 530 531 SmallVector<VPTState, 4> VPTState::Blocks; 532 SetVector<MachineInstr *> VPTState::CurrentPredicates; 533 std::map<MachineInstr *, 534 std::unique_ptr<PredicatedMI>> VPTState::PredicatedInsts; 535 536 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, 537 false, false) 538 539 static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA, 540 InstSet &ToRemove, InstSet &Ignore) { 541 542 // Check that we can remove all of Killed without having to modify any IT 543 // blocks. 544 auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) { 545 // Collect the dead code and the MBBs in which they reside. 546 SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks; 547 for (auto *Dead : Killed) 548 BasicBlocks.insert(Dead->getParent()); 549 550 // Collect IT blocks in all affected basic blocks. 551 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks; 552 for (auto *MBB : BasicBlocks) { 553 for (auto &IT : *MBB) { 554 if (IT.getOpcode() != ARM::t2IT) 555 continue; 556 RDA.getReachingLocalUses(&IT, MCRegister::from(ARM::ITSTATE), 557 ITBlocks[&IT]); 558 } 559 } 560 561 // If we're removing all of the instructions within an IT block, then 562 // also remove the IT instruction. 563 SmallPtrSet<MachineInstr *, 2> ModifiedITs; 564 SmallPtrSet<MachineInstr *, 2> RemoveITs; 565 for (auto *Dead : Killed) { 566 if (MachineOperand *MO = Dead->findRegisterUseOperand(ARM::ITSTATE)) { 567 MachineInstr *IT = RDA.getMIOperand(Dead, *MO); 568 RemoveITs.insert(IT); 569 auto &CurrentBlock = ITBlocks[IT]; 570 CurrentBlock.erase(Dead); 571 if (CurrentBlock.empty()) 572 ModifiedITs.erase(IT); 573 else 574 ModifiedITs.insert(IT); 575 } 576 } 577 if (!ModifiedITs.empty()) 578 return false; 579 Killed.insert(RemoveITs.begin(), RemoveITs.end()); 580 return true; 581 }; 582 583 SmallPtrSet<MachineInstr *, 2> Uses; 584 if (!RDA.isSafeToRemove(MI, Uses, Ignore)) 585 return false; 586 587 if (WontCorruptITs(Uses, RDA)) { 588 ToRemove.insert(Uses.begin(), Uses.end()); 589 LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI 590 << " - can also remove:\n"; 591 for (auto *Use : Uses) 592 dbgs() << " - " << *Use); 593 594 SmallPtrSet<MachineInstr*, 4> Killed; 595 RDA.collectKilledOperands(MI, Killed); 596 if (WontCorruptITs(Killed, RDA)) { 597 ToRemove.insert(Killed.begin(), Killed.end()); 598 LLVM_DEBUG(for (auto *Dead : Killed) 599 dbgs() << " - " << *Dead); 600 } 601 return true; 602 } 603 return false; 604 } 605 606 bool LowOverheadLoop::ValidateTailPredicate() { 607 if (!IsTailPredicationLegal()) { 608 LLVM_DEBUG(if (VCTPs.empty()) 609 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; 610 dbgs() << "ARM Loops: Tail-predication is not valid.\n"); 611 return false; 612 } 613 614 assert(!VCTPs.empty() && "VCTP instruction expected but is not set"); 615 assert(ML.getBlocks().size() == 1 && 616 "Shouldn't be processing a loop with more than one block"); 617 618 if (DisableTailPredication) { 619 LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n"); 620 return false; 621 } 622 623 if (!VPTState::isValid(RDA)) { 624 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid VPT state.\n"); 625 return false; 626 } 627 628 if (!ValidateLiveOuts()) { 629 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n"); 630 return false; 631 } 632 633 // For tail predication, we need to provide the number of elements, instead 634 // of the iteration count, to the loop start instruction. The number of 635 // elements is provided to the vctp instruction, so we need to check that 636 // we can use this register at InsertPt. 637 MachineInstr *VCTP = VCTPs.back(); 638 if (Start->getOpcode() == ARM::t2DoLoopStartTP || 639 Start->getOpcode() == ARM::t2WhileLoopStartTP) { 640 TPNumElements = Start->getOperand(2); 641 StartInsertPt = Start; 642 StartInsertBB = Start->getParent(); 643 } else { 644 TPNumElements = VCTP->getOperand(1); 645 MCRegister NumElements = TPNumElements.getReg().asMCReg(); 646 647 // If the register is defined within loop, then we can't perform TP. 648 // TODO: Check whether this is just a mov of a register that would be 649 // available. 650 if (RDA.hasLocalDefBefore(VCTP, NumElements)) { 651 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); 652 return false; 653 } 654 655 // The element count register maybe defined after InsertPt, in which case we 656 // need to try to move either InsertPt or the def so that the [w|d]lstp can 657 // use the value. 658 659 if (StartInsertPt != StartInsertBB->end() && 660 !RDA.isReachingDefLiveOut(&*StartInsertPt, NumElements)) { 661 if (auto *ElemDef = 662 RDA.getLocalLiveOutMIDef(StartInsertBB, NumElements)) { 663 if (RDA.isSafeToMoveForwards(ElemDef, &*StartInsertPt)) { 664 ElemDef->removeFromParent(); 665 StartInsertBB->insert(StartInsertPt, ElemDef); 666 LLVM_DEBUG(dbgs() 667 << "ARM Loops: Moved element count def: " << *ElemDef); 668 } else if (RDA.isSafeToMoveBackwards(&*StartInsertPt, ElemDef)) { 669 StartInsertPt->removeFromParent(); 670 StartInsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), 671 &*StartInsertPt); 672 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); 673 } else { 674 // If we fail to move an instruction and the element count is provided 675 // by a mov, use the mov operand if it will have the same value at the 676 // insertion point 677 MachineOperand Operand = ElemDef->getOperand(1); 678 if (isMovRegOpcode(ElemDef->getOpcode()) && 679 RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg().asMCReg()) == 680 RDA.getUniqueReachingMIDef(&*StartInsertPt, 681 Operand.getReg().asMCReg())) { 682 TPNumElements = Operand; 683 NumElements = TPNumElements.getReg(); 684 } else { 685 LLVM_DEBUG(dbgs() 686 << "ARM Loops: Unable to move element count to loop " 687 << "start instruction.\n"); 688 return false; 689 } 690 } 691 } 692 } 693 694 // Especially in the case of while loops, InsertBB may not be the 695 // preheader, so we need to check that the register isn't redefined 696 // before entering the loop. 697 auto CannotProvideElements = [this](MachineBasicBlock *MBB, 698 MCRegister NumElements) { 699 if (MBB->empty()) 700 return false; 701 // NumElements is redefined in this block. 702 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements)) 703 return true; 704 705 // Don't continue searching up through multiple predecessors. 706 if (MBB->pred_size() > 1) 707 return true; 708 709 return false; 710 }; 711 712 // Search backwards for a def, until we get to InsertBB. 713 MachineBasicBlock *MBB = Preheader; 714 while (MBB && MBB != StartInsertBB) { 715 if (CannotProvideElements(MBB, NumElements)) { 716 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n"); 717 return false; 718 } 719 MBB = *MBB->pred_begin(); 720 } 721 } 722 723 // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect 724 // world the [w|d]lstp instruction would be last instruction in the preheader 725 // and so it would only affect instructions within the loop body. But due to 726 // scheduling, and/or the logic in this pass (above), the insertion point can 727 // be moved earlier. So if the Loop Start isn't the last instruction in the 728 // preheader, and if the initial element count is smaller than the vector 729 // width, the Loop Start instruction will immediately generate one or more 730 // false lane mask which can, incorrectly, affect the proceeding MVE 731 // instructions in the preheader. 732 if (std::any_of(StartInsertPt, StartInsertBB->end(), shouldInspect)) { 733 LLVM_DEBUG(dbgs() << "ARM Loops: Instruction blocks [W|D]LSTP\n"); 734 return false; 735 } 736 737 // For any DoubleWidthResultInstrs we found whilst scanning instructions, they 738 // need to compute an output size that is smaller than the VCTP mask operates 739 // on. The VecSize of the DoubleWidthResult is the larger vector size - the 740 // size it extends into, so any VCTP VecSize <= is valid. 741 unsigned VCTPVecSize = getVecSize(*VCTP); 742 for (MachineInstr *MI : DoubleWidthResultInstrs) { 743 unsigned InstrVecSize = getVecSize(*MI); 744 if (InstrVecSize > VCTPVecSize) { 745 LLVM_DEBUG(dbgs() << "ARM Loops: Double width result larger than VCTP " 746 << "VecSize:\n" << *MI); 747 return false; 748 } 749 } 750 751 // Check that the value change of the element count is what we expect and 752 // that the predication will be equivalent. For this we need: 753 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate 754 // and we can also allow register copies within the chain too. 755 auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) { 756 return -getAddSubImmediate(*MI) == ExpectedVecWidth; 757 }; 758 759 MachineBasicBlock *MBB = VCTP->getParent(); 760 // Remove modifications to the element count since they have no purpose in a 761 // tail predicated loop. Explicitly refer to the vctp operand no matter which 762 // register NumElements has been assigned to, since that is what the 763 // modifications will be using 764 if (auto *Def = RDA.getUniqueReachingMIDef( 765 &MBB->back(), VCTP->getOperand(1).getReg().asMCReg())) { 766 SmallPtrSet<MachineInstr*, 2> ElementChain; 767 SmallPtrSet<MachineInstr*, 2> Ignore; 768 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode()); 769 770 Ignore.insert(VCTPs.begin(), VCTPs.end()); 771 772 if (TryRemove(Def, RDA, ElementChain, Ignore)) { 773 bool FoundSub = false; 774 775 for (auto *MI : ElementChain) { 776 if (isMovRegOpcode(MI->getOpcode())) 777 continue; 778 779 if (isSubImmOpcode(MI->getOpcode())) { 780 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) { 781 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element" 782 " count: " << *MI); 783 return false; 784 } 785 FoundSub = true; 786 } else { 787 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element" 788 " count: " << *MI); 789 return false; 790 } 791 } 792 ToRemove.insert(ElementChain.begin(), ElementChain.end()); 793 } 794 } 795 796 // If we converted the LoopStart to a t2DoLoopStartTP/t2WhileLoopStartTP, we 797 // can also remove any extra instructions in the preheader, which often 798 // includes a now unused MOV. 799 if ((Start->getOpcode() == ARM::t2DoLoopStartTP || 800 Start->getOpcode() == ARM::t2WhileLoopStartTP) && 801 Preheader && !Preheader->empty() && 802 !RDA.hasLocalDefBefore(VCTP, VCTP->getOperand(1).getReg())) { 803 if (auto *Def = RDA.getUniqueReachingMIDef( 804 &Preheader->back(), VCTP->getOperand(1).getReg().asMCReg())) { 805 SmallPtrSet<MachineInstr*, 2> Ignore; 806 Ignore.insert(VCTPs.begin(), VCTPs.end()); 807 TryRemove(Def, RDA, ToRemove, Ignore); 808 } 809 } 810 811 return true; 812 } 813 814 static bool isRegInClass(const MachineOperand &MO, 815 const TargetRegisterClass *Class) { 816 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg()); 817 } 818 819 // MVE 'narrowing' operate on half a lane, reading from half and writing 820 // to half, which are referred to has the top and bottom half. The other 821 // half retains its previous value. 822 static bool retainsPreviousHalfElement(const MachineInstr &MI) { 823 const MCInstrDesc &MCID = MI.getDesc(); 824 uint64_t Flags = MCID.TSFlags; 825 return (Flags & ARMII::RetainsPreviousHalfElement) != 0; 826 } 827 828 // Some MVE instructions read from the top/bottom halves of their operand(s) 829 // and generate a vector result with result elements that are double the 830 // width of the input. 831 static bool producesDoubleWidthResult(const MachineInstr &MI) { 832 const MCInstrDesc &MCID = MI.getDesc(); 833 uint64_t Flags = MCID.TSFlags; 834 return (Flags & ARMII::DoubleWidthResult) != 0; 835 } 836 837 static bool isHorizontalReduction(const MachineInstr &MI) { 838 const MCInstrDesc &MCID = MI.getDesc(); 839 uint64_t Flags = MCID.TSFlags; 840 return (Flags & ARMII::HorizontalReduction) != 0; 841 } 842 843 // Can this instruction generate a non-zero result when given only zeroed 844 // operands? This allows us to know that, given operands with false bytes 845 // zeroed by masked loads, that the result will also contain zeros in those 846 // bytes. 847 static bool canGenerateNonZeros(const MachineInstr &MI) { 848 849 // Check for instructions which can write into a larger element size, 850 // possibly writing into a previous zero'd lane. 851 if (producesDoubleWidthResult(MI)) 852 return true; 853 854 switch (MI.getOpcode()) { 855 default: 856 break; 857 // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow 858 // fp16 -> fp32 vector conversions. 859 // Instructions that perform a NOT will generate 1s from 0s. 860 case ARM::MVE_VMVN: 861 case ARM::MVE_VORN: 862 // Count leading zeros will do just that! 863 case ARM::MVE_VCLZs8: 864 case ARM::MVE_VCLZs16: 865 case ARM::MVE_VCLZs32: 866 return true; 867 } 868 return false; 869 } 870 871 // Look at its register uses to see if it only can only receive zeros 872 // into its false lanes which would then produce zeros. Also check that 873 // the output register is also defined by an FalseLanesZero instruction 874 // so that if tail-predication happens, the lanes that aren't updated will 875 // still be zeros. 876 static bool producesFalseLanesZero(MachineInstr &MI, 877 const TargetRegisterClass *QPRs, 878 const ReachingDefAnalysis &RDA, 879 InstSet &FalseLanesZero) { 880 if (canGenerateNonZeros(MI)) 881 return false; 882 883 bool isPredicated = isVectorPredicated(&MI); 884 // Predicated loads will write zeros to the falsely predicated bytes of the 885 // destination register. 886 if (MI.mayLoad()) 887 return isPredicated; 888 889 auto IsZeroInit = [](MachineInstr *Def) { 890 return !isVectorPredicated(Def) && 891 Def->getOpcode() == ARM::MVE_VMOVimmi32 && 892 Def->getOperand(1).getImm() == 0; 893 }; 894 895 bool AllowScalars = isHorizontalReduction(MI); 896 for (auto &MO : MI.operands()) { 897 if (!MO.isReg() || !MO.getReg()) 898 continue; 899 if (!isRegInClass(MO, QPRs) && AllowScalars) 900 continue; 901 // Skip the lr predicate reg 902 int PIdx = llvm::findFirstVPTPredOperandIdx(MI); 903 if (PIdx != -1 && (int)MI.getOperandNo(&MO) == PIdx + 2) 904 continue; 905 906 // Check that this instruction will produce zeros in its false lanes: 907 // - If it only consumes false lanes zero or constant 0 (vmov #0) 908 // - If it's predicated, it only matters that it's def register already has 909 // false lane zeros, so we can ignore the uses. 910 SmallPtrSet<MachineInstr *, 2> Defs; 911 RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs); 912 for (auto *Def : Defs) { 913 if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def)) 914 continue; 915 if (MO.isUse() && isPredicated) 916 continue; 917 return false; 918 } 919 } 920 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI); 921 return true; 922 } 923 924 bool LowOverheadLoop::ValidateLiveOuts() { 925 // We want to find out if the tail-predicated version of this loop will 926 // produce the same values as the loop in its original form. For this to 927 // be true, the newly inserted implicit predication must not change the 928 // the (observable) results. 929 // We're doing this because many instructions in the loop will not be 930 // predicated and so the conversion from VPT predication to tail-predication 931 // can result in different values being produced; due to the tail-predication 932 // preventing many instructions from updating their falsely predicated 933 // lanes. This analysis assumes that all the instructions perform lane-wise 934 // operations and don't perform any exchanges. 935 // A masked load, whether through VPT or tail predication, will write zeros 936 // to any of the falsely predicated bytes. So, from the loads, we know that 937 // the false lanes are zeroed and here we're trying to track that those false 938 // lanes remain zero, or where they change, the differences are masked away 939 // by their user(s). 940 // All MVE stores have to be predicated, so we know that any predicate load 941 // operands, or stored results are equivalent already. Other explicitly 942 // predicated instructions will perform the same operation in the original 943 // loop and the tail-predicated form too. Because of this, we can insert 944 // loads, stores and other predicated instructions into our Predicated 945 // set and build from there. 946 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID); 947 SetVector<MachineInstr *> FalseLanesUnknown; 948 SmallPtrSet<MachineInstr *, 4> FalseLanesZero; 949 SmallPtrSet<MachineInstr *, 4> Predicated; 950 MachineBasicBlock *Header = ML.getHeader(); 951 952 LLVM_DEBUG(dbgs() << "ARM Loops: Validating Live outs\n"); 953 954 for (auto &MI : *Header) { 955 if (!shouldInspect(MI)) 956 continue; 957 958 if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode())) 959 continue; 960 961 bool isPredicated = isVectorPredicated(&MI); 962 bool retainsOrReduces = 963 retainsPreviousHalfElement(MI) || isHorizontalReduction(MI); 964 965 if (isPredicated) 966 Predicated.insert(&MI); 967 if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero)) 968 FalseLanesZero.insert(&MI); 969 else if (MI.getNumDefs() == 0) 970 continue; 971 else if (!isPredicated && retainsOrReduces) { 972 LLVM_DEBUG(dbgs() << " Unpredicated instruction that retainsOrReduces: " << MI); 973 return false; 974 } else if (!isPredicated && MI.getOpcode() != ARM::MQPRCopy) 975 FalseLanesUnknown.insert(&MI); 976 } 977 978 LLVM_DEBUG({ 979 dbgs() << " Predicated:\n"; 980 for (auto *I : Predicated) 981 dbgs() << " " << *I; 982 dbgs() << " FalseLanesZero:\n"; 983 for (auto *I : FalseLanesZero) 984 dbgs() << " " << *I; 985 dbgs() << " FalseLanesUnknown:\n"; 986 for (auto *I : FalseLanesUnknown) 987 dbgs() << " " << *I; 988 }); 989 990 auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO, 991 SmallPtrSetImpl<MachineInstr *> &Predicated) { 992 SmallPtrSet<MachineInstr *, 2> Uses; 993 RDA.getGlobalUses(MI, MO.getReg().asMCReg(), Uses); 994 for (auto *Use : Uses) { 995 if (Use != MI && !Predicated.count(Use)) 996 return false; 997 } 998 return true; 999 }; 1000 1001 // Visit the unknowns in reverse so that we can start at the values being 1002 // stored and then we can work towards the leaves, hopefully adding more 1003 // instructions to Predicated. Successfully terminating the loop means that 1004 // all the unknown values have to found to be masked by predicated user(s). 1005 // For any unpredicated values, we store them in NonPredicated so that we 1006 // can later check whether these form a reduction. 1007 SmallPtrSet<MachineInstr*, 2> NonPredicated; 1008 for (auto *MI : reverse(FalseLanesUnknown)) { 1009 for (auto &MO : MI->operands()) { 1010 if (!isRegInClass(MO, QPRs) || !MO.isDef()) 1011 continue; 1012 if (!HasPredicatedUsers(MI, MO, Predicated)) { 1013 LLVM_DEBUG(dbgs() << " Found an unknown def of : " 1014 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI); 1015 NonPredicated.insert(MI); 1016 break; 1017 } 1018 } 1019 // Any unknown false lanes have been masked away by the user(s). 1020 if (!NonPredicated.contains(MI)) 1021 Predicated.insert(MI); 1022 } 1023 1024 SmallPtrSet<MachineInstr *, 2> LiveOutMIs; 1025 SmallVector<MachineBasicBlock *, 2> ExitBlocks; 1026 ML.getExitBlocks(ExitBlocks); 1027 assert(ML.getNumBlocks() == 1 && "Expected single block loop!"); 1028 assert(ExitBlocks.size() == 1 && "Expected a single exit block"); 1029 MachineBasicBlock *ExitBB = ExitBlocks.front(); 1030 for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) { 1031 // TODO: Instead of blocking predication, we could move the vctp to the exit 1032 // block and calculate it's operand there in or the preheader. 1033 if (RegMask.PhysReg == ARM::VPR) { 1034 LLVM_DEBUG(dbgs() << " VPR is live in to the exit block."); 1035 return false; 1036 } 1037 // Check Q-regs that are live in the exit blocks. We don't collect scalars 1038 // because they won't be affected by lane predication. 1039 if (QPRs->contains(RegMask.PhysReg)) 1040 if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg)) 1041 LiveOutMIs.insert(MI); 1042 } 1043 1044 // We've already validated that any VPT predication within the loop will be 1045 // equivalent when we perform the predication transformation; so we know that 1046 // any VPT predicated instruction is predicated upon VCTP. Any live-out 1047 // instruction needs to be predicated, so check this here. The instructions 1048 // in NonPredicated have been found to be a reduction that we can ensure its 1049 // legality. Any MQPRCopy found will need to validate its input as if it was 1050 // live out. 1051 SmallVector<MachineInstr *> Worklist(LiveOutMIs.begin(), LiveOutMIs.end()); 1052 while (!Worklist.empty()) { 1053 MachineInstr *MI = Worklist.pop_back_val(); 1054 if (MI->getOpcode() == ARM::MQPRCopy) { 1055 VMOVCopies.insert(MI); 1056 MachineInstr *CopySrc = 1057 RDA.getUniqueReachingMIDef(MI, MI->getOperand(1).getReg()); 1058 if (CopySrc) 1059 Worklist.push_back(CopySrc); 1060 } else if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) { 1061 LLVM_DEBUG(dbgs() << " Unable to handle live out: " << *MI); 1062 VMOVCopies.clear(); 1063 return false; 1064 } 1065 } 1066 1067 return true; 1068 } 1069 1070 void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) { 1071 if (Revert) 1072 return; 1073 1074 // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP] 1075 // can only jump back. 1076 auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End, 1077 ARMBasicBlockUtils *BBUtils, MachineLoop &ML) { 1078 MachineBasicBlock *TgtBB = End->getOpcode() == ARM::t2LoopEnd 1079 ? End->getOperand(1).getMBB() 1080 : End->getOperand(2).getMBB(); 1081 // TODO Maybe there's cases where the target doesn't have to be the header, 1082 // but for now be safe and revert. 1083 if (TgtBB != ML.getHeader()) { 1084 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n"); 1085 return false; 1086 } 1087 1088 // The WLS and LE instructions have 12-bits for the label offset. WLS 1089 // requires a positive offset, while LE uses negative. 1090 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) || 1091 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) { 1092 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); 1093 return false; 1094 } 1095 1096 if (isWhileLoopStart(*Start)) { 1097 MachineBasicBlock *TargetBB = getWhileLoopStartTargetBB(*Start); 1098 if (BBUtils->getOffsetOf(Start) > BBUtils->getOffsetOf(TargetBB) || 1099 !BBUtils->isBBInRange(Start, TargetBB, 4094)) { 1100 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); 1101 return false; 1102 } 1103 } 1104 return true; 1105 }; 1106 1107 StartInsertPt = MachineBasicBlock::iterator(Start); 1108 StartInsertBB = Start->getParent(); 1109 LLVM_DEBUG(dbgs() << "ARM Loops: Will insert LoopStart at " 1110 << *StartInsertPt); 1111 1112 Revert = !ValidateRanges(Start, End, BBUtils, ML); 1113 CannotTailPredicate = !ValidateTailPredicate(); 1114 } 1115 1116 bool LowOverheadLoop::AddVCTP(MachineInstr *MI) { 1117 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI); 1118 if (VCTPs.empty()) { 1119 VCTPs.push_back(MI); 1120 return true; 1121 } 1122 1123 // If we find another VCTP, check whether it uses the same value as the main VCTP. 1124 // If it does, store it in the VCTPs set, else refuse it. 1125 MachineInstr *Prev = VCTPs.back(); 1126 if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) || 1127 !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg().asMCReg())) { 1128 LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching " 1129 "definition from the main VCTP"); 1130 return false; 1131 } 1132 VCTPs.push_back(MI); 1133 return true; 1134 } 1135 1136 static bool ValidateMVEStore(MachineInstr *MI, MachineLoop *ML) { 1137 1138 auto GetFrameIndex = [](MachineMemOperand *Operand) { 1139 const PseudoSourceValue *PseudoValue = Operand->getPseudoValue(); 1140 if (PseudoValue && PseudoValue->kind() == PseudoSourceValue::FixedStack) { 1141 if (const auto *FS = dyn_cast<FixedStackPseudoSourceValue>(PseudoValue)) { 1142 return FS->getFrameIndex(); 1143 } 1144 } 1145 return -1; 1146 }; 1147 1148 auto IsStackOp = [GetFrameIndex](MachineInstr *I) { 1149 switch (I->getOpcode()) { 1150 case ARM::MVE_VSTRWU32: 1151 case ARM::MVE_VLDRWU32: { 1152 return I->getOperand(1).getReg() == ARM::SP && 1153 I->memoperands().size() == 1 && 1154 GetFrameIndex(I->memoperands().front()) >= 0; 1155 } 1156 default: 1157 return false; 1158 } 1159 }; 1160 1161 // An unpredicated vector register spill is allowed if all of the uses of the 1162 // stack slot are within the loop 1163 if (MI->getOpcode() != ARM::MVE_VSTRWU32 || !IsStackOp(MI)) 1164 return false; 1165 1166 // Search all blocks after the loop for accesses to the same stack slot. 1167 // ReachingDefAnalysis doesn't work for sp as it relies on registers being 1168 // live-out (which sp never is) to know what blocks to look in 1169 if (MI->memoperands().size() == 0) 1170 return false; 1171 int FI = GetFrameIndex(MI->memoperands().front()); 1172 1173 auto &FrameInfo = MI->getParent()->getParent()->getFrameInfo(); 1174 if (FI == -1 || !FrameInfo.isSpillSlotObjectIndex(FI)) 1175 return false; 1176 1177 SmallVector<MachineBasicBlock *> Frontier; 1178 ML->getExitBlocks(Frontier); 1179 SmallPtrSet<MachineBasicBlock *, 4> Visited{MI->getParent()}; 1180 unsigned Idx = 0; 1181 while (Idx < Frontier.size()) { 1182 MachineBasicBlock *BB = Frontier[Idx]; 1183 bool LookAtSuccessors = true; 1184 for (auto &I : *BB) { 1185 if (!IsStackOp(&I) || I.memoperands().size() == 0) 1186 continue; 1187 if (GetFrameIndex(I.memoperands().front()) != FI) 1188 continue; 1189 // If this block has a store to the stack slot before any loads then we 1190 // can ignore the block 1191 if (I.getOpcode() == ARM::MVE_VSTRWU32) { 1192 LookAtSuccessors = false; 1193 break; 1194 } 1195 // If the store and the load are using the same stack slot then the 1196 // store isn't valid for tail predication 1197 if (I.getOpcode() == ARM::MVE_VLDRWU32) 1198 return false; 1199 } 1200 1201 if (LookAtSuccessors) { 1202 for (auto Succ : BB->successors()) { 1203 if (!Visited.contains(Succ) && !is_contained(Frontier, Succ)) 1204 Frontier.push_back(Succ); 1205 } 1206 } 1207 Visited.insert(BB); 1208 Idx++; 1209 } 1210 1211 return true; 1212 } 1213 1214 bool LowOverheadLoop::ValidateMVEInst(MachineInstr *MI) { 1215 if (CannotTailPredicate) 1216 return false; 1217 1218 if (!shouldInspect(*MI)) 1219 return true; 1220 1221 if (MI->getOpcode() == ARM::MVE_VPSEL || 1222 MI->getOpcode() == ARM::MVE_VPNOT) { 1223 // TODO: Allow VPSEL and VPNOT, we currently cannot because: 1224 // 1) It will use the VPR as a predicate operand, but doesn't have to be 1225 // instead a VPT block, which means we can assert while building up 1226 // the VPT block because we don't find another VPT or VPST to being a new 1227 // one. 1228 // 2) VPSEL still requires a VPR operand even after tail predicating, 1229 // which means we can't remove it unless there is another 1230 // instruction, such as vcmp, that can provide the VPR def. 1231 return false; 1232 } 1233 1234 // Record all VCTPs and check that they're equivalent to one another. 1235 if (isVCTP(MI) && !AddVCTP(MI)) 1236 return false; 1237 1238 // Inspect uses first so that any instructions that alter the VPR don't 1239 // alter the predicate upon themselves. 1240 const MCInstrDesc &MCID = MI->getDesc(); 1241 bool IsUse = false; 1242 unsigned LastOpIdx = MI->getNumOperands() - 1; 1243 for (auto &Op : enumerate(reverse(MCID.operands()))) { 1244 const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index()); 1245 if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR) 1246 continue; 1247 1248 if (ARM::isVpred(Op.value().OperandType)) { 1249 VPTState::addInst(MI); 1250 IsUse = true; 1251 } else if (MI->getOpcode() != ARM::MVE_VPST) { 1252 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); 1253 return false; 1254 } 1255 } 1256 1257 // If we find an instruction that has been marked as not valid for tail 1258 // predication, only allow the instruction if it's contained within a valid 1259 // VPT block. 1260 bool RequiresExplicitPredication = 1261 (MCID.TSFlags & ARMII::ValidForTailPredication) == 0; 1262 if (isDomainMVE(MI) && RequiresExplicitPredication) { 1263 if (MI->getOpcode() == ARM::MQPRCopy) 1264 return true; 1265 if (!IsUse && producesDoubleWidthResult(*MI)) { 1266 DoubleWidthResultInstrs.insert(MI); 1267 return true; 1268 } 1269 1270 LLVM_DEBUG(if (!IsUse) dbgs() 1271 << "ARM Loops: Can't tail predicate: " << *MI); 1272 return IsUse; 1273 } 1274 1275 // If the instruction is already explicitly predicated, then the conversion 1276 // will be fine, but ensure that all store operations are predicated. 1277 if (MI->mayStore() && !ValidateMVEStore(MI, &ML)) 1278 return IsUse; 1279 1280 // If this instruction defines the VPR, update the predicate for the 1281 // proceeding instructions. 1282 if (isVectorPredicate(MI)) { 1283 // Clear the existing predicate when we're not in VPT Active state, 1284 // otherwise we add to it. 1285 if (!isVectorPredicated(MI)) 1286 VPTState::resetPredicate(MI); 1287 else 1288 VPTState::addPredicate(MI); 1289 } 1290 1291 // Finally once the predicate has been modified, we can start a new VPT 1292 // block if necessary. 1293 if (isVPTOpcode(MI->getOpcode())) 1294 VPTState::CreateVPTBlock(MI); 1295 1296 return true; 1297 } 1298 1299 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { 1300 const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget()); 1301 if (!ST.hasLOB()) 1302 return false; 1303 1304 MF = &mf; 1305 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); 1306 1307 MLI = &getAnalysis<MachineLoopInfo>(); 1308 RDA = &getAnalysis<ReachingDefAnalysis>(); 1309 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); 1310 MRI = &MF->getRegInfo(); 1311 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo()); 1312 TRI = ST.getRegisterInfo(); 1313 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF)); 1314 BBUtils->computeAllBlockSizes(); 1315 BBUtils->adjustBBOffsetsAfter(&MF->front()); 1316 1317 bool Changed = false; 1318 for (auto ML : *MLI) { 1319 if (ML->isOutermost()) 1320 Changed |= ProcessLoop(ML); 1321 } 1322 Changed |= RevertNonLoops(); 1323 return Changed; 1324 } 1325 1326 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { 1327 1328 bool Changed = false; 1329 1330 // Process inner loops first. 1331 for (MachineLoop *L : *ML) 1332 Changed |= ProcessLoop(L); 1333 1334 LLVM_DEBUG({ 1335 dbgs() << "ARM Loops: Processing loop containing:\n"; 1336 if (auto *Preheader = ML->getLoopPreheader()) 1337 dbgs() << " - Preheader: " << printMBBReference(*Preheader) << "\n"; 1338 else if (auto *Preheader = MLI->findLoopPreheader(ML, true, true)) 1339 dbgs() << " - Preheader: " << printMBBReference(*Preheader) << "\n"; 1340 for (auto *MBB : ML->getBlocks()) 1341 dbgs() << " - Block: " << printMBBReference(*MBB) << "\n"; 1342 }); 1343 1344 // Search the given block for a loop start instruction. If one isn't found, 1345 // and there's only one predecessor block, search that one too. 1346 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart = 1347 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { 1348 for (auto &MI : *MBB) { 1349 if (isLoopStart(MI)) 1350 return &MI; 1351 } 1352 if (MBB->pred_size() == 1) 1353 return SearchForStart(*MBB->pred_begin()); 1354 return nullptr; 1355 }; 1356 1357 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII); 1358 // Search the preheader for the start intrinsic. 1359 // FIXME: I don't see why we shouldn't be supporting multiple predecessors 1360 // with potentially multiple set.loop.iterations, so we need to enable this. 1361 if (LoLoop.Preheader) 1362 LoLoop.Start = SearchForStart(LoLoop.Preheader); 1363 else 1364 return Changed; 1365 1366 // Find the low-overhead loop components and decide whether or not to fall 1367 // back to a normal loop. Also look for a vctp instructions and decide 1368 // whether we can convert that predicate using tail predication. 1369 for (auto *MBB : reverse(ML->getBlocks())) { 1370 for (auto &MI : *MBB) { 1371 if (MI.isDebugValue()) 1372 continue; 1373 else if (MI.getOpcode() == ARM::t2LoopDec) 1374 LoLoop.Dec = &MI; 1375 else if (MI.getOpcode() == ARM::t2LoopEnd) 1376 LoLoop.End = &MI; 1377 else if (MI.getOpcode() == ARM::t2LoopEndDec) 1378 LoLoop.End = LoLoop.Dec = &MI; 1379 else if (isLoopStart(MI)) 1380 LoLoop.Start = &MI; 1381 else if (MI.getDesc().isCall()) { 1382 // TODO: Though the call will require LE to execute again, does this 1383 // mean we should revert? Always executing LE hopefully should be 1384 // faster than performing a sub,cmp,br or even subs,br. 1385 LoLoop.Revert = true; 1386 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); 1387 } else { 1388 // Record VPR defs and build up their corresponding vpt blocks. 1389 // Check we know how to tail predicate any mve instructions. 1390 LoLoop.AnalyseMVEInst(&MI); 1391 } 1392 } 1393 } 1394 1395 LLVM_DEBUG(LoLoop.dump()); 1396 if (!LoLoop.FoundAllComponents()) { 1397 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); 1398 return Changed; 1399 } 1400 1401 assert(LoLoop.Start->getOpcode() != ARM::t2WhileLoopStart && 1402 "Expected t2WhileLoopStart to be removed before regalloc!"); 1403 1404 // Check that the only instruction using LoopDec is LoopEnd. This can only 1405 // happen when the Dec and End are separate, not a single t2LoopEndDec. 1406 // TODO: Check for copy chains that really have no effect. 1407 if (LoLoop.Dec != LoLoop.End) { 1408 SmallPtrSet<MachineInstr *, 2> Uses; 1409 RDA->getReachingLocalUses(LoLoop.Dec, MCRegister::from(ARM::LR), Uses); 1410 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) { 1411 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n"); 1412 LoLoop.Revert = true; 1413 } 1414 } 1415 LoLoop.Validate(BBUtils.get()); 1416 Expand(LoLoop); 1417 return true; 1418 } 1419 1420 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a 1421 // beq that branches to the exit branch. 1422 // TODO: We could also try to generate a cbz if the value in LR is also in 1423 // another low register. 1424 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { 1425 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); 1426 MachineBasicBlock *DestBB = getWhileLoopStartTargetBB(*MI); 1427 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1428 ARM::tBcc : ARM::t2Bcc; 1429 1430 RevertWhileLoopStartLR(MI, TII, BrOpc); 1431 } 1432 1433 void ARMLowOverheadLoops::RevertDo(MachineInstr *MI) const { 1434 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to mov: " << *MI); 1435 RevertDoLoopStart(MI, TII); 1436 } 1437 1438 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const { 1439 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); 1440 MachineBasicBlock *MBB = MI->getParent(); 1441 SmallPtrSet<MachineInstr*, 1> Ignore; 1442 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) { 1443 if (I->getOpcode() == ARM::t2LoopEnd) { 1444 Ignore.insert(&*I); 1445 break; 1446 } 1447 } 1448 1449 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. 1450 bool SetFlags = 1451 RDA->isSafeToDefRegAt(MI, MCRegister::from(ARM::CPSR), Ignore); 1452 1453 llvm::RevertLoopDec(MI, TII, SetFlags); 1454 return SetFlags; 1455 } 1456 1457 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1458 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { 1459 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); 1460 1461 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1462 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1463 ARM::tBcc : ARM::t2Bcc; 1464 1465 llvm::RevertLoopEnd(MI, TII, BrOpc, SkipCmp); 1466 } 1467 1468 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1469 void ARMLowOverheadLoops::RevertLoopEndDec(MachineInstr *MI) const { 1470 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to subs, br: " << *MI); 1471 assert(MI->getOpcode() == ARM::t2LoopEndDec && "Expected a t2LoopEndDec!"); 1472 MachineBasicBlock *MBB = MI->getParent(); 1473 1474 MachineInstrBuilder MIB = 1475 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::t2SUBri)); 1476 MIB.addDef(ARM::LR); 1477 MIB.add(MI->getOperand(1)); 1478 MIB.addImm(1); 1479 MIB.addImm(ARMCC::AL); 1480 MIB.addReg(ARM::NoRegister); 1481 MIB.addReg(ARM::CPSR); 1482 MIB->getOperand(5).setIsDef(true); 1483 1484 MachineBasicBlock *DestBB = MI->getOperand(2).getMBB(); 1485 unsigned BrOpc = 1486 BBUtils->isBBInRange(MI, DestBB, 254) ? ARM::tBcc : ARM::t2Bcc; 1487 1488 // Create bne 1489 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1490 MIB.add(MI->getOperand(2)); // branch target 1491 MIB.addImm(ARMCC::NE); // condition code 1492 MIB.addReg(ARM::CPSR); 1493 1494 MI->eraseFromParent(); 1495 } 1496 1497 // Perform dead code elimation on the loop iteration count setup expression. 1498 // If we are tail-predicating, the number of elements to be processed is the 1499 // operand of the VCTP instruction in the vector body, see getCount(), which is 1500 // register $r3 in this example: 1501 // 1502 // $lr = big-itercount-expression 1503 // .. 1504 // $lr = t2DoLoopStart renamable $lr 1505 // vector.body: 1506 // .. 1507 // $vpr = MVE_VCTP32 renamable $r3 1508 // renamable $lr = t2LoopDec killed renamable $lr, 1 1509 // t2LoopEnd renamable $lr, %vector.body 1510 // tB %end 1511 // 1512 // What we would like achieve here is to replace the do-loop start pseudo 1513 // instruction t2DoLoopStart with: 1514 // 1515 // $lr = MVE_DLSTP_32 killed renamable $r3 1516 // 1517 // Thus, $r3 which defines the number of elements, is written to $lr, 1518 // and then we want to delete the whole chain that used to define $lr, 1519 // see the comment below how this chain could look like. 1520 // 1521 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) { 1522 if (!LoLoop.IsTailPredicationLegal()) 1523 return; 1524 1525 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n"); 1526 1527 MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 1); 1528 if (!Def) { 1529 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n"); 1530 return; 1531 } 1532 1533 // Collect and remove the users of iteration count. 1534 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec, 1535 LoLoop.End }; 1536 if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed)) 1537 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n"); 1538 } 1539 1540 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { 1541 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n"); 1542 // When using tail-predication, try to delete the dead code that was used to 1543 // calculate the number of loop iterations. 1544 IterationCountDCE(LoLoop); 1545 1546 MachineBasicBlock::iterator InsertPt = LoLoop.StartInsertPt; 1547 MachineInstr *Start = LoLoop.Start; 1548 MachineBasicBlock *MBB = LoLoop.StartInsertBB; 1549 unsigned Opc = LoLoop.getStartOpcode(); 1550 MachineOperand &Count = LoLoop.getLoopStartOperand(); 1551 1552 // A DLS lr, lr we needn't emit 1553 MachineInstr* NewStart; 1554 if (Opc == ARM::t2DLS && Count.isReg() && Count.getReg() == ARM::LR) { 1555 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't insert start: DLS lr, lr"); 1556 NewStart = nullptr; 1557 } else { 1558 MachineInstrBuilder MIB = 1559 BuildMI(*MBB, InsertPt, Start->getDebugLoc(), TII->get(Opc)); 1560 1561 MIB.addDef(ARM::LR); 1562 MIB.add(Count); 1563 if (isWhileLoopStart(*Start)) 1564 MIB.addMBB(getWhileLoopStartTargetBB(*Start)); 1565 1566 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); 1567 NewStart = &*MIB; 1568 } 1569 1570 LoLoop.ToRemove.insert(Start); 1571 return NewStart; 1572 } 1573 1574 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { 1575 auto RemovePredicate = [](MachineInstr *MI) { 1576 if (MI->isDebugInstr()) 1577 return; 1578 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); 1579 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 1580 assert(PIdx >= 1 && "Trying to unpredicate a non-predicated instruction"); 1581 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then && 1582 "Expected Then predicate!"); 1583 MI->getOperand(PIdx).setImm(ARMVCC::None); 1584 MI->getOperand(PIdx + 1).setReg(0); 1585 }; 1586 1587 for (auto &Block : LoLoop.getVPTBlocks()) { 1588 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 1589 1590 auto ReplaceVCMPWithVPT = [&](MachineInstr *&TheVCMP, MachineInstr *At) { 1591 assert(TheVCMP && "Replacing a removed or non-existent VCMP"); 1592 // Replace the VCMP with a VPT 1593 MachineInstrBuilder MIB = 1594 BuildMI(*At->getParent(), At, At->getDebugLoc(), 1595 TII->get(VCMPOpcodeToVPT(TheVCMP->getOpcode()))); 1596 MIB.addImm(ARMVCC::Then); 1597 // Register one 1598 MIB.add(TheVCMP->getOperand(1)); 1599 // Register two 1600 MIB.add(TheVCMP->getOperand(2)); 1601 // The comparison code, e.g. ge, eq, lt 1602 MIB.add(TheVCMP->getOperand(3)); 1603 LLVM_DEBUG(dbgs() << "ARM Loops: Combining with VCMP to VPT: " << *MIB); 1604 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1605 LoLoop.ToRemove.insert(TheVCMP); 1606 TheVCMP = nullptr; 1607 }; 1608 1609 if (VPTState::isEntryPredicatedOnVCTP(Block, /*exclusive*/ true)) { 1610 MachineInstr *VPST = Insts.front(); 1611 if (VPTState::hasUniformPredicate(Block)) { 1612 // A vpt block starting with VPST, is only predicated upon vctp and has no 1613 // internal vpr defs: 1614 // - Remove vpst. 1615 // - Unpredicate the remaining instructions. 1616 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1617 for (unsigned i = 1; i < Insts.size(); ++i) 1618 RemovePredicate(Insts[i]); 1619 } else { 1620 // The VPT block has a non-uniform predicate but it uses a vpst and its 1621 // entry is guarded only by a vctp, which means we: 1622 // - Need to remove the original vpst. 1623 // - Then need to unpredicate any following instructions, until 1624 // we come across the divergent vpr def. 1625 // - Insert a new vpst to predicate the instruction(s) that following 1626 // the divergent vpr def. 1627 MachineInstr *Divergent = VPTState::getDivergent(Block); 1628 MachineBasicBlock *MBB = Divergent->getParent(); 1629 auto DivergentNext = ++MachineBasicBlock::iterator(Divergent); 1630 while (DivergentNext != MBB->end() && DivergentNext->isDebugInstr()) 1631 ++DivergentNext; 1632 1633 bool DivergentNextIsPredicated = 1634 DivergentNext != MBB->end() && 1635 getVPTInstrPredicate(*DivergentNext) != ARMVCC::None; 1636 1637 for (auto I = ++MachineBasicBlock::iterator(VPST), E = DivergentNext; 1638 I != E; ++I) 1639 RemovePredicate(&*I); 1640 1641 // Check if the instruction defining vpr is a vcmp so it can be combined 1642 // with the VPST This should be the divergent instruction 1643 MachineInstr *VCMP = 1644 VCMPOpcodeToVPT(Divergent->getOpcode()) != 0 ? Divergent : nullptr; 1645 1646 if (DivergentNextIsPredicated) { 1647 // Insert a VPST at the divergent only if the next instruction 1648 // would actually use it. A VCMP following a VPST can be 1649 // merged into a VPT so do that instead if the VCMP exists. 1650 if (!VCMP) { 1651 // Create a VPST (with a null mask for now, we'll recompute it 1652 // later) 1653 MachineInstrBuilder MIB = 1654 BuildMI(*Divergent->getParent(), Divergent, 1655 Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST)); 1656 MIB.addImm(0); 1657 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); 1658 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1659 } else { 1660 // No RDA checks are necessary here since the VPST would have been 1661 // directly after the VCMP 1662 ReplaceVCMPWithVPT(VCMP, VCMP); 1663 } 1664 } 1665 } 1666 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1667 LoLoop.ToRemove.insert(VPST); 1668 } else if (Block.containsVCTP()) { 1669 // The vctp will be removed, so either the entire block will be dead or 1670 // the block mask of the vp(s)t will need to be recomputed. 1671 MachineInstr *VPST = Insts.front(); 1672 if (Block.size() == 2) { 1673 assert(VPST->getOpcode() == ARM::MVE_VPST && 1674 "Found a VPST in an otherwise empty vpt block"); 1675 LoLoop.ToRemove.insert(VPST); 1676 } else 1677 LoLoop.BlockMasksToRecompute.insert(VPST); 1678 } else if (Insts.front()->getOpcode() == ARM::MVE_VPST) { 1679 // If this block starts with a VPST then attempt to merge it with the 1680 // preceeding un-merged VCMP into a VPT. This VCMP comes from a VPT 1681 // block that no longer exists 1682 MachineInstr *VPST = Insts.front(); 1683 auto Next = ++MachineBasicBlock::iterator(VPST); 1684 assert(getVPTInstrPredicate(*Next) != ARMVCC::None && 1685 "The instruction after a VPST must be predicated"); 1686 (void)Next; 1687 MachineInstr *VprDef = RDA->getUniqueReachingMIDef(VPST, ARM::VPR); 1688 if (VprDef && VCMPOpcodeToVPT(VprDef->getOpcode()) && 1689 !LoLoop.ToRemove.contains(VprDef)) { 1690 MachineInstr *VCMP = VprDef; 1691 // The VCMP and VPST can only be merged if the VCMP's operands will have 1692 // the same values at the VPST. 1693 // If any of the instructions between the VCMP and VPST are predicated 1694 // then a different code path is expected to have merged the VCMP and 1695 // VPST already. 1696 if (std::none_of(++MachineBasicBlock::iterator(VCMP), 1697 MachineBasicBlock::iterator(VPST), hasVPRUse) && 1698 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(1).getReg()) && 1699 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(2).getReg())) { 1700 ReplaceVCMPWithVPT(VCMP, VPST); 1701 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1702 LoLoop.ToRemove.insert(VPST); 1703 } 1704 } 1705 } 1706 } 1707 1708 LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end()); 1709 } 1710 1711 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { 1712 1713 // Combine the LoopDec and LoopEnd instructions into LE(TP). 1714 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { 1715 MachineInstr *End = LoLoop.End; 1716 MachineBasicBlock *MBB = End->getParent(); 1717 unsigned Opc = LoLoop.IsTailPredicationLegal() ? 1718 ARM::MVE_LETP : ARM::t2LEUpdate; 1719 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), 1720 TII->get(Opc)); 1721 MIB.addDef(ARM::LR); 1722 unsigned Off = LoLoop.Dec == LoLoop.End ? 1 : 0; 1723 MIB.add(End->getOperand(Off + 0)); 1724 MIB.add(End->getOperand(Off + 1)); 1725 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); 1726 LoLoop.ToRemove.insert(LoLoop.Dec); 1727 LoLoop.ToRemove.insert(End); 1728 return &*MIB; 1729 }; 1730 1731 // TODO: We should be able to automatically remove these branches before we 1732 // get here - probably by teaching analyzeBranch about the pseudo 1733 // instructions. 1734 // If there is an unconditional branch, after I, that just branches to the 1735 // next block, remove it. 1736 auto RemoveDeadBranch = [](MachineInstr *I) { 1737 MachineBasicBlock *BB = I->getParent(); 1738 MachineInstr *Terminator = &BB->instr_back(); 1739 if (Terminator->isUnconditionalBranch() && I != Terminator) { 1740 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); 1741 if (BB->isLayoutSuccessor(Succ)) { 1742 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); 1743 Terminator->eraseFromParent(); 1744 } 1745 } 1746 }; 1747 1748 // And VMOVCopies need to become 2xVMOVD for tail predication to be valid. 1749 // Anything other MQPRCopy can be converted to MVE_VORR later on. 1750 auto ExpandVMOVCopies = [this](SmallPtrSet<MachineInstr *, 4> &VMOVCopies) { 1751 for (auto *MI : VMOVCopies) { 1752 LLVM_DEBUG(dbgs() << "Converting copy to VMOVD: " << *MI); 1753 assert(MI->getOpcode() == ARM::MQPRCopy && "Only expected MQPRCOPY!"); 1754 MachineBasicBlock *MBB = MI->getParent(); 1755 Register Dst = MI->getOperand(0).getReg(); 1756 Register Src = MI->getOperand(1).getReg(); 1757 auto MIB1 = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::VMOVD), 1758 ARM::D0 + (Dst - ARM::Q0) * 2) 1759 .addReg(ARM::D0 + (Src - ARM::Q0) * 2) 1760 .add(predOps(ARMCC::AL)); 1761 (void)MIB1; 1762 LLVM_DEBUG(dbgs() << " into " << *MIB1); 1763 auto MIB2 = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::VMOVD), 1764 ARM::D0 + (Dst - ARM::Q0) * 2 + 1) 1765 .addReg(ARM::D0 + (Src - ARM::Q0) * 2 + 1) 1766 .add(predOps(ARMCC::AL)); 1767 LLVM_DEBUG(dbgs() << " and " << *MIB2); 1768 (void)MIB2; 1769 MI->eraseFromParent(); 1770 } 1771 }; 1772 1773 if (LoLoop.Revert) { 1774 if (isWhileLoopStart(*LoLoop.Start)) 1775 RevertWhile(LoLoop.Start); 1776 else 1777 RevertDo(LoLoop.Start); 1778 if (LoLoop.Dec == LoLoop.End) 1779 RevertLoopEndDec(LoLoop.End); 1780 else 1781 RevertLoopEnd(LoLoop.End, RevertLoopDec(LoLoop.Dec)); 1782 } else { 1783 ExpandVMOVCopies(LoLoop.VMOVCopies); 1784 LoLoop.Start = ExpandLoopStart(LoLoop); 1785 if (LoLoop.Start) 1786 RemoveDeadBranch(LoLoop.Start); 1787 LoLoop.End = ExpandLoopEnd(LoLoop); 1788 RemoveDeadBranch(LoLoop.End); 1789 if (LoLoop.IsTailPredicationLegal()) 1790 ConvertVPTBlocks(LoLoop); 1791 for (auto *I : LoLoop.ToRemove) { 1792 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I); 1793 I->eraseFromParent(); 1794 } 1795 for (auto *I : LoLoop.BlockMasksToRecompute) { 1796 LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I); 1797 recomputeVPTBlockMask(*I); 1798 LLVM_DEBUG(dbgs() << " ... done: " << *I); 1799 } 1800 } 1801 1802 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI); 1803 DFS.ProcessLoop(); 1804 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder(); 1805 for (auto *MBB : PostOrder) { 1806 recomputeLiveIns(*MBB); 1807 // FIXME: For some reason, the live-in print order is non-deterministic for 1808 // our tests and I can't out why... So just sort them. 1809 MBB->sortUniqueLiveIns(); 1810 } 1811 1812 for (auto *MBB : reverse(PostOrder)) 1813 recomputeLivenessFlags(*MBB); 1814 1815 // We've moved, removed and inserted new instructions, so update RDA. 1816 RDA->reset(); 1817 } 1818 1819 bool ARMLowOverheadLoops::RevertNonLoops() { 1820 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); 1821 bool Changed = false; 1822 1823 for (auto &MBB : *MF) { 1824 SmallVector<MachineInstr*, 4> Starts; 1825 SmallVector<MachineInstr*, 4> Decs; 1826 SmallVector<MachineInstr*, 4> Ends; 1827 SmallVector<MachineInstr *, 4> EndDecs; 1828 SmallVector<MachineInstr *, 4> MQPRCopies; 1829 1830 for (auto &I : MBB) { 1831 if (isLoopStart(I)) 1832 Starts.push_back(&I); 1833 else if (I.getOpcode() == ARM::t2LoopDec) 1834 Decs.push_back(&I); 1835 else if (I.getOpcode() == ARM::t2LoopEnd) 1836 Ends.push_back(&I); 1837 else if (I.getOpcode() == ARM::t2LoopEndDec) 1838 EndDecs.push_back(&I); 1839 else if (I.getOpcode() == ARM::MQPRCopy) 1840 MQPRCopies.push_back(&I); 1841 } 1842 1843 if (Starts.empty() && Decs.empty() && Ends.empty() && EndDecs.empty() && 1844 MQPRCopies.empty()) 1845 continue; 1846 1847 Changed = true; 1848 1849 for (auto *Start : Starts) { 1850 if (isWhileLoopStart(*Start)) 1851 RevertWhile(Start); 1852 else 1853 RevertDo(Start); 1854 } 1855 for (auto *Dec : Decs) 1856 RevertLoopDec(Dec); 1857 1858 for (auto *End : Ends) 1859 RevertLoopEnd(End); 1860 for (auto *End : EndDecs) 1861 RevertLoopEndDec(End); 1862 for (auto *MI : MQPRCopies) { 1863 LLVM_DEBUG(dbgs() << "Converting copy to VORR: " << *MI); 1864 assert(MI->getOpcode() == ARM::MQPRCopy && "Only expected MQPRCOPY!"); 1865 MachineBasicBlock *MBB = MI->getParent(); 1866 auto MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::MVE_VORR), 1867 MI->getOperand(0).getReg()) 1868 .add(MI->getOperand(1)) 1869 .add(MI->getOperand(1)); 1870 addUnpredicatedMveVpredROp(MIB, MI->getOperand(0).getReg()); 1871 MI->eraseFromParent(); 1872 } 1873 } 1874 return Changed; 1875 } 1876 1877 FunctionPass *llvm::createARMLowOverheadLoopsPass() { 1878 return new ARMLowOverheadLoops(); 1879 } 1880