1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo 10 /// instructions into machine operations. 11 /// The expectation is that the loop contains three pseudo instructions: 12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop 13 /// form should be in the preheader, whereas the while form should be in the 14 /// preheaders only predecessor. 15 /// - t2LoopDec - placed within in the loop body. 16 /// - t2LoopEnd - the loop latch terminator. 17 /// 18 /// In addition to this, we also look for the presence of the VCTP instruction, 19 /// which determines whether we can generated the tail-predicated low-overhead 20 /// loop form. 21 /// 22 /// Assumptions and Dependencies: 23 /// Low-overhead loops are constructed and executed using a setup instruction: 24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. 25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range 26 /// but fixed polarity: WLS can only branch forwards and LE can only branch 27 /// backwards. These restrictions mean that this pass is dependent upon block 28 /// layout and block sizes, which is why it's the last pass to run. The same is 29 /// true for ConstantIslands, but this pass does not increase the size of the 30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed 31 /// during the transform and pseudo instructions are replaced by real ones. In 32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce 33 /// multiple instructions for a single pseudo (see RevertWhile and 34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStartLR and t2LoopEnd 35 /// are defined to be as large as this maximum sequence of replacement 36 /// instructions. 37 /// 38 /// A note on VPR.P0 (the lane mask): 39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a 40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks). 41 /// They will simply "and" the result of their calculation with the current 42 /// value of VPR.P0. You can think of it like this: 43 /// \verbatim 44 /// if VPT active: ; Between a DLSTP/LETP, or for predicated instrs 45 /// VPR.P0 &= Value 46 /// else 47 /// VPR.P0 = Value 48 /// \endverbatim 49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always 50 /// fall in the "VPT active" case, so we can consider that all VPR writes by 51 /// one of those instruction is actually a "and". 52 //===----------------------------------------------------------------------===// 53 54 #include "ARM.h" 55 #include "ARMBaseInstrInfo.h" 56 #include "ARMBaseRegisterInfo.h" 57 #include "ARMBasicBlockInfo.h" 58 #include "ARMSubtarget.h" 59 #include "MVETailPredUtils.h" 60 #include "Thumb2InstrInfo.h" 61 #include "llvm/ADT/SetOperations.h" 62 #include "llvm/ADT/SmallSet.h" 63 #include "llvm/CodeGen/LivePhysRegs.h" 64 #include "llvm/CodeGen/MachineFunctionPass.h" 65 #include "llvm/CodeGen/MachineLoopInfo.h" 66 #include "llvm/CodeGen/MachineLoopUtils.h" 67 #include "llvm/CodeGen/MachineRegisterInfo.h" 68 #include "llvm/CodeGen/Passes.h" 69 #include "llvm/CodeGen/ReachingDefAnalysis.h" 70 #include "llvm/MC/MCInstrDesc.h" 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "arm-low-overhead-loops" 75 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" 76 77 static cl::opt<bool> 78 DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden, 79 cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"), 80 cl::init(false)); 81 82 static bool isVectorPredicated(MachineInstr *MI) { 83 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 84 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR; 85 } 86 87 static bool isVectorPredicate(MachineInstr *MI) { 88 return MI->findRegisterDefOperandIdx(ARM::VPR) != -1; 89 } 90 91 static bool hasVPRUse(MachineInstr &MI) { 92 return MI.findRegisterUseOperandIdx(ARM::VPR) != -1; 93 } 94 95 static bool isDomainMVE(MachineInstr *MI) { 96 uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask; 97 return Domain == ARMII::DomainMVE; 98 } 99 100 static int getVecSize(const MachineInstr &MI) { 101 const MCInstrDesc &MCID = MI.getDesc(); 102 uint64_t Flags = MCID.TSFlags; 103 return (Flags & ARMII::VecSize) >> ARMII::VecSizeShift; 104 } 105 106 static bool shouldInspect(MachineInstr &MI) { 107 if (MI.isDebugInstr()) 108 return false; 109 return isDomainMVE(&MI) || isVectorPredicate(&MI) || hasVPRUse(MI); 110 } 111 112 namespace { 113 114 using InstSet = SmallPtrSetImpl<MachineInstr *>; 115 116 class PostOrderLoopTraversal { 117 MachineLoop &ML; 118 MachineLoopInfo &MLI; 119 SmallPtrSet<MachineBasicBlock*, 4> Visited; 120 SmallVector<MachineBasicBlock*, 4> Order; 121 122 public: 123 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI) 124 : ML(ML), MLI(MLI) { } 125 126 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const { 127 return Order; 128 } 129 130 // Visit all the blocks within the loop, as well as exit blocks and any 131 // blocks properly dominating the header. 132 void ProcessLoop() { 133 std::function<void(MachineBasicBlock*)> Search = [this, &Search] 134 (MachineBasicBlock *MBB) -> void { 135 if (Visited.count(MBB)) 136 return; 137 138 Visited.insert(MBB); 139 for (auto *Succ : MBB->successors()) { 140 if (!ML.contains(Succ)) 141 continue; 142 Search(Succ); 143 } 144 Order.push_back(MBB); 145 }; 146 147 // Insert exit blocks. 148 SmallVector<MachineBasicBlock*, 2> ExitBlocks; 149 ML.getExitBlocks(ExitBlocks); 150 append_range(Order, ExitBlocks); 151 152 // Then add the loop body. 153 Search(ML.getHeader()); 154 155 // Then try the preheader and its predecessors. 156 std::function<void(MachineBasicBlock*)> GetPredecessor = 157 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void { 158 Order.push_back(MBB); 159 if (MBB->pred_size() == 1) 160 GetPredecessor(*MBB->pred_begin()); 161 }; 162 163 if (auto *Preheader = ML.getLoopPreheader()) 164 GetPredecessor(Preheader); 165 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true, true)) 166 GetPredecessor(Preheader); 167 } 168 }; 169 170 struct PredicatedMI { 171 MachineInstr *MI = nullptr; 172 SetVector<MachineInstr*> Predicates; 173 174 public: 175 PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) { 176 assert(I && "Instruction must not be null!"); 177 Predicates.insert(Preds.begin(), Preds.end()); 178 } 179 }; 180 181 // Represent the current state of the VPR and hold all instances which 182 // represent a VPT block, which is a list of instructions that begins with a 183 // VPT/VPST and has a maximum of four proceeding instructions. All 184 // instructions within the block are predicated upon the vpr and we allow 185 // instructions to define the vpr within in the block too. 186 class VPTState { 187 friend struct LowOverheadLoop; 188 189 SmallVector<MachineInstr *, 4> Insts; 190 191 static SmallVector<VPTState, 4> Blocks; 192 static SetVector<MachineInstr *> CurrentPredicates; 193 static std::map<MachineInstr *, 194 std::unique_ptr<PredicatedMI>> PredicatedInsts; 195 196 static void CreateVPTBlock(MachineInstr *MI) { 197 assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR)) 198 && "Can't begin VPT without predicate"); 199 Blocks.emplace_back(MI); 200 // The execution of MI is predicated upon the current set of instructions 201 // that are AND'ed together to form the VPR predicate value. In the case 202 // that MI is a VPT, CurrentPredicates will also just be MI. 203 PredicatedInsts.emplace( 204 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates)); 205 } 206 207 static void reset() { 208 Blocks.clear(); 209 PredicatedInsts.clear(); 210 CurrentPredicates.clear(); 211 } 212 213 static void addInst(MachineInstr *MI) { 214 Blocks.back().insert(MI); 215 PredicatedInsts.emplace( 216 MI, std::make_unique<PredicatedMI>(MI, CurrentPredicates)); 217 } 218 219 static void addPredicate(MachineInstr *MI) { 220 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI); 221 CurrentPredicates.insert(MI); 222 } 223 224 static void resetPredicate(MachineInstr *MI) { 225 LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI); 226 CurrentPredicates.clear(); 227 CurrentPredicates.insert(MI); 228 } 229 230 public: 231 // Have we found an instruction within the block which defines the vpr? If 232 // so, not all the instructions in the block will have the same predicate. 233 static bool hasUniformPredicate(VPTState &Block) { 234 return getDivergent(Block) == nullptr; 235 } 236 237 // If it exists, return the first internal instruction which modifies the 238 // VPR. 239 static MachineInstr *getDivergent(VPTState &Block) { 240 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 241 for (unsigned i = 1; i < Insts.size(); ++i) { 242 MachineInstr *Next = Insts[i]; 243 if (isVectorPredicate(Next)) 244 return Next; // Found an instruction altering the vpr. 245 } 246 return nullptr; 247 } 248 249 // Return whether the given instruction is predicated upon a VCTP. 250 static bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) { 251 SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI]->Predicates; 252 if (Exclusive && Predicates.size() != 1) 253 return false; 254 for (auto *PredMI : Predicates) 255 if (isVCTP(PredMI)) 256 return true; 257 return false; 258 } 259 260 // Is the VPST, controlling the block entry, predicated upon a VCTP. 261 static bool isEntryPredicatedOnVCTP(VPTState &Block, 262 bool Exclusive = false) { 263 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 264 return isPredicatedOnVCTP(Insts.front(), Exclusive); 265 } 266 267 // If this block begins with a VPT, we can check whether it's using 268 // at least one predicated input(s), as well as possible loop invariant 269 // which would result in it being implicitly predicated. 270 static bool hasImplicitlyValidVPT(VPTState &Block, 271 ReachingDefAnalysis &RDA) { 272 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 273 MachineInstr *VPT = Insts.front(); 274 assert(isVPTOpcode(VPT->getOpcode()) && 275 "Expected VPT block to begin with VPT/VPST"); 276 277 if (VPT->getOpcode() == ARM::MVE_VPST) 278 return false; 279 280 auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) { 281 MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx)); 282 return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op); 283 }; 284 285 auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) { 286 MachineOperand &MO = MI->getOperand(Idx); 287 if (!MO.isReg() || !MO.getReg()) 288 return true; 289 290 SmallPtrSet<MachineInstr *, 2> Defs; 291 RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs); 292 if (Defs.empty()) 293 return true; 294 295 for (auto *Def : Defs) 296 if (Def->getParent() == VPT->getParent()) 297 return false; 298 return true; 299 }; 300 301 // Check that at least one of the operands is directly predicated on a 302 // vctp and allow an invariant value too. 303 return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) && 304 (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) && 305 (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2)); 306 } 307 308 static bool isValid(ReachingDefAnalysis &RDA) { 309 // All predication within the loop should be based on vctp. If the block 310 // isn't predicated on entry, check whether the vctp is within the block 311 // and that all other instructions are then predicated on it. 312 for (auto &Block : Blocks) { 313 if (isEntryPredicatedOnVCTP(Block, false) || 314 hasImplicitlyValidVPT(Block, RDA)) 315 continue; 316 317 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 318 // We don't know how to convert a block with just a VPT;VCTP into 319 // anything valid once we remove the VCTP. For now just bail out. 320 assert(isVPTOpcode(Insts.front()->getOpcode()) && 321 "Expected VPT block to start with a VPST or VPT!"); 322 if (Insts.size() == 2 && Insts.front()->getOpcode() != ARM::MVE_VPST && 323 isVCTP(Insts.back())) 324 return false; 325 326 for (auto *MI : Insts) { 327 // Check that any internal VCTPs are 'Then' predicated. 328 if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then) 329 return false; 330 // Skip other instructions that build up the predicate. 331 if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI)) 332 continue; 333 // Check that any other instructions are predicated upon a vctp. 334 // TODO: We could infer when VPTs are implicitly predicated on the 335 // vctp (when the operands are predicated). 336 if (!isPredicatedOnVCTP(MI)) { 337 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI); 338 return false; 339 } 340 } 341 } 342 return true; 343 } 344 345 VPTState(MachineInstr *MI) { Insts.push_back(MI); } 346 347 void insert(MachineInstr *MI) { 348 Insts.push_back(MI); 349 // VPT/VPST + 4 predicated instructions. 350 assert(Insts.size() <= 5 && "Too many instructions in VPT block!"); 351 } 352 353 bool containsVCTP() const { 354 for (auto *MI : Insts) 355 if (isVCTP(MI)) 356 return true; 357 return false; 358 } 359 360 unsigned size() const { return Insts.size(); } 361 SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; } 362 }; 363 364 struct LowOverheadLoop { 365 366 MachineLoop &ML; 367 MachineBasicBlock *Preheader = nullptr; 368 MachineLoopInfo &MLI; 369 ReachingDefAnalysis &RDA; 370 const TargetRegisterInfo &TRI; 371 const ARMBaseInstrInfo &TII; 372 MachineFunction *MF = nullptr; 373 MachineBasicBlock::iterator StartInsertPt; 374 MachineBasicBlock *StartInsertBB = nullptr; 375 MachineInstr *Start = nullptr; 376 MachineInstr *Dec = nullptr; 377 MachineInstr *End = nullptr; 378 MachineOperand TPNumElements; 379 SmallVector<MachineInstr *, 4> VCTPs; 380 SmallPtrSet<MachineInstr *, 4> ToRemove; 381 SmallPtrSet<MachineInstr *, 4> BlockMasksToRecompute; 382 SmallPtrSet<MachineInstr *, 4> DoubleWidthResultInstrs; 383 SmallPtrSet<MachineInstr *, 4> VMOVCopies; 384 bool Revert = false; 385 bool CannotTailPredicate = false; 386 387 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI, 388 ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI, 389 const ARMBaseInstrInfo &TII) 390 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII), 391 TPNumElements(MachineOperand::CreateImm(0)) { 392 MF = ML.getHeader()->getParent(); 393 if (auto *MBB = ML.getLoopPreheader()) 394 Preheader = MBB; 395 else if (auto *MBB = MLI.findLoopPreheader(&ML, true, true)) 396 Preheader = MBB; 397 VPTState::reset(); 398 } 399 400 // If this is an MVE instruction, check that we know how to use tail 401 // predication with it. Record VPT blocks and return whether the 402 // instruction is valid for tail predication. 403 bool ValidateMVEInst(MachineInstr *MI); 404 405 void AnalyseMVEInst(MachineInstr *MI) { 406 CannotTailPredicate = !ValidateMVEInst(MI); 407 } 408 409 bool IsTailPredicationLegal() const { 410 // For now, let's keep things really simple and only support a single 411 // block for tail predication. 412 return !Revert && FoundAllComponents() && !VCTPs.empty() && 413 !CannotTailPredicate && ML.getNumBlocks() == 1; 414 } 415 416 // Given that MI is a VCTP, check that is equivalent to any other VCTPs 417 // found. 418 bool AddVCTP(MachineInstr *MI); 419 420 // Check that the predication in the loop will be equivalent once we 421 // perform the conversion. Also ensure that we can provide the number 422 // of elements to the loop start instruction. 423 bool ValidateTailPredicate(); 424 425 // Check that any values available outside of the loop will be the same 426 // after tail predication conversion. 427 bool ValidateLiveOuts(); 428 429 // Is it safe to define LR with DLS/WLS? 430 // LR can be defined if it is the operand to start, because it's the same 431 // value, or if it's going to be equivalent to the operand to Start. 432 MachineInstr *isSafeToDefineLR(); 433 434 // Check the branch targets are within range and we satisfy our 435 // restrictions. 436 void Validate(ARMBasicBlockUtils *BBUtils); 437 438 bool FoundAllComponents() const { 439 return Start && Dec && End; 440 } 441 442 SmallVectorImpl<VPTState> &getVPTBlocks() { 443 return VPTState::Blocks; 444 } 445 446 // Return the operand for the loop start instruction. This will be the loop 447 // iteration count, or the number of elements if we're tail predicating. 448 MachineOperand &getLoopStartOperand() { 449 if (IsTailPredicationLegal()) 450 return TPNumElements; 451 return Start->getOperand(1); 452 } 453 454 unsigned getStartOpcode() const { 455 bool IsDo = isDoLoopStart(*Start); 456 if (!IsTailPredicationLegal()) 457 return IsDo ? ARM::t2DLS : ARM::t2WLS; 458 459 return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo); 460 } 461 462 void dump() const { 463 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; 464 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; 465 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; 466 if (!VCTPs.empty()) { 467 dbgs() << "ARM Loops: Found VCTP(s):\n"; 468 for (auto *MI : VCTPs) 469 dbgs() << " - " << *MI; 470 } 471 if (!FoundAllComponents()) 472 dbgs() << "ARM Loops: Not a low-overhead loop.\n"; 473 else if (!(Start && Dec && End)) 474 dbgs() << "ARM Loops: Failed to find all loop components.\n"; 475 } 476 }; 477 478 class ARMLowOverheadLoops : public MachineFunctionPass { 479 MachineFunction *MF = nullptr; 480 MachineLoopInfo *MLI = nullptr; 481 ReachingDefAnalysis *RDA = nullptr; 482 const ARMBaseInstrInfo *TII = nullptr; 483 MachineRegisterInfo *MRI = nullptr; 484 const TargetRegisterInfo *TRI = nullptr; 485 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 486 487 public: 488 static char ID; 489 490 ARMLowOverheadLoops() : MachineFunctionPass(ID) { } 491 492 void getAnalysisUsage(AnalysisUsage &AU) const override { 493 AU.setPreservesCFG(); 494 AU.addRequired<MachineLoopInfo>(); 495 AU.addRequired<ReachingDefAnalysis>(); 496 MachineFunctionPass::getAnalysisUsage(AU); 497 } 498 499 bool runOnMachineFunction(MachineFunction &MF) override; 500 501 MachineFunctionProperties getRequiredProperties() const override { 502 return MachineFunctionProperties().set( 503 MachineFunctionProperties::Property::NoVRegs).set( 504 MachineFunctionProperties::Property::TracksLiveness); 505 } 506 507 StringRef getPassName() const override { 508 return ARM_LOW_OVERHEAD_LOOPS_NAME; 509 } 510 511 private: 512 bool ProcessLoop(MachineLoop *ML); 513 514 bool RevertNonLoops(); 515 516 void RevertWhile(MachineInstr *MI) const; 517 void RevertDo(MachineInstr *MI) const; 518 519 bool RevertLoopDec(MachineInstr *MI) const; 520 521 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; 522 523 void RevertLoopEndDec(MachineInstr *MI) const; 524 525 void ConvertVPTBlocks(LowOverheadLoop &LoLoop); 526 527 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); 528 529 void Expand(LowOverheadLoop &LoLoop); 530 531 void IterationCountDCE(LowOverheadLoop &LoLoop); 532 }; 533 } 534 535 char ARMLowOverheadLoops::ID = 0; 536 537 SmallVector<VPTState, 4> VPTState::Blocks; 538 SetVector<MachineInstr *> VPTState::CurrentPredicates; 539 std::map<MachineInstr *, 540 std::unique_ptr<PredicatedMI>> VPTState::PredicatedInsts; 541 542 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, 543 false, false) 544 545 static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA, 546 InstSet &ToRemove, InstSet &Ignore) { 547 548 // Check that we can remove all of Killed without having to modify any IT 549 // blocks. 550 auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) { 551 // Collect the dead code and the MBBs in which they reside. 552 SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks; 553 for (auto *Dead : Killed) 554 BasicBlocks.insert(Dead->getParent()); 555 556 // Collect IT blocks in all affected basic blocks. 557 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks; 558 for (auto *MBB : BasicBlocks) { 559 for (auto &IT : *MBB) { 560 if (IT.getOpcode() != ARM::t2IT) 561 continue; 562 RDA.getReachingLocalUses(&IT, MCRegister::from(ARM::ITSTATE), 563 ITBlocks[&IT]); 564 } 565 } 566 567 // If we're removing all of the instructions within an IT block, then 568 // also remove the IT instruction. 569 SmallPtrSet<MachineInstr *, 2> ModifiedITs; 570 SmallPtrSet<MachineInstr *, 2> RemoveITs; 571 for (auto *Dead : Killed) { 572 if (MachineOperand *MO = Dead->findRegisterUseOperand(ARM::ITSTATE)) { 573 MachineInstr *IT = RDA.getMIOperand(Dead, *MO); 574 RemoveITs.insert(IT); 575 auto &CurrentBlock = ITBlocks[IT]; 576 CurrentBlock.erase(Dead); 577 if (CurrentBlock.empty()) 578 ModifiedITs.erase(IT); 579 else 580 ModifiedITs.insert(IT); 581 } 582 } 583 if (!ModifiedITs.empty()) 584 return false; 585 Killed.insert(RemoveITs.begin(), RemoveITs.end()); 586 return true; 587 }; 588 589 SmallPtrSet<MachineInstr *, 2> Uses; 590 if (!RDA.isSafeToRemove(MI, Uses, Ignore)) 591 return false; 592 593 if (WontCorruptITs(Uses, RDA)) { 594 ToRemove.insert(Uses.begin(), Uses.end()); 595 LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI 596 << " - can also remove:\n"; 597 for (auto *Use : Uses) 598 dbgs() << " - " << *Use); 599 600 SmallPtrSet<MachineInstr*, 4> Killed; 601 RDA.collectKilledOperands(MI, Killed); 602 if (WontCorruptITs(Killed, RDA)) { 603 ToRemove.insert(Killed.begin(), Killed.end()); 604 LLVM_DEBUG(for (auto *Dead : Killed) 605 dbgs() << " - " << *Dead); 606 } 607 return true; 608 } 609 return false; 610 } 611 612 bool LowOverheadLoop::ValidateTailPredicate() { 613 if (!IsTailPredicationLegal()) { 614 LLVM_DEBUG(if (VCTPs.empty()) 615 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; 616 dbgs() << "ARM Loops: Tail-predication is not valid.\n"); 617 return false; 618 } 619 620 assert(!VCTPs.empty() && "VCTP instruction expected but is not set"); 621 assert(ML.getBlocks().size() == 1 && 622 "Shouldn't be processing a loop with more than one block"); 623 624 if (DisableTailPredication) { 625 LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n"); 626 return false; 627 } 628 629 if (!VPTState::isValid(RDA)) { 630 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid VPT state.\n"); 631 return false; 632 } 633 634 if (!ValidateLiveOuts()) { 635 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n"); 636 return false; 637 } 638 639 // For tail predication, we need to provide the number of elements, instead 640 // of the iteration count, to the loop start instruction. The number of 641 // elements is provided to the vctp instruction, so we need to check that 642 // we can use this register at InsertPt. 643 MachineInstr *VCTP = VCTPs.back(); 644 if (Start->getOpcode() == ARM::t2DoLoopStartTP || 645 Start->getOpcode() == ARM::t2WhileLoopStartTP) { 646 TPNumElements = Start->getOperand(2); 647 StartInsertPt = Start; 648 StartInsertBB = Start->getParent(); 649 } else { 650 TPNumElements = VCTP->getOperand(1); 651 MCRegister NumElements = TPNumElements.getReg().asMCReg(); 652 653 // If the register is defined within loop, then we can't perform TP. 654 // TODO: Check whether this is just a mov of a register that would be 655 // available. 656 if (RDA.hasLocalDefBefore(VCTP, NumElements)) { 657 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); 658 return false; 659 } 660 661 // The element count register maybe defined after InsertPt, in which case we 662 // need to try to move either InsertPt or the def so that the [w|d]lstp can 663 // use the value. 664 665 if (StartInsertPt != StartInsertBB->end() && 666 !RDA.isReachingDefLiveOut(&*StartInsertPt, NumElements)) { 667 if (auto *ElemDef = 668 RDA.getLocalLiveOutMIDef(StartInsertBB, NumElements)) { 669 if (RDA.isSafeToMoveForwards(ElemDef, &*StartInsertPt)) { 670 ElemDef->removeFromParent(); 671 StartInsertBB->insert(StartInsertPt, ElemDef); 672 LLVM_DEBUG(dbgs() 673 << "ARM Loops: Moved element count def: " << *ElemDef); 674 } else if (RDA.isSafeToMoveBackwards(&*StartInsertPt, ElemDef)) { 675 StartInsertPt->removeFromParent(); 676 StartInsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), 677 &*StartInsertPt); 678 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); 679 } else { 680 // If we fail to move an instruction and the element count is provided 681 // by a mov, use the mov operand if it will have the same value at the 682 // insertion point 683 MachineOperand Operand = ElemDef->getOperand(1); 684 if (isMovRegOpcode(ElemDef->getOpcode()) && 685 RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg().asMCReg()) == 686 RDA.getUniqueReachingMIDef(&*StartInsertPt, 687 Operand.getReg().asMCReg())) { 688 TPNumElements = Operand; 689 NumElements = TPNumElements.getReg(); 690 } else { 691 LLVM_DEBUG(dbgs() 692 << "ARM Loops: Unable to move element count to loop " 693 << "start instruction.\n"); 694 return false; 695 } 696 } 697 } 698 } 699 700 // Especially in the case of while loops, InsertBB may not be the 701 // preheader, so we need to check that the register isn't redefined 702 // before entering the loop. 703 auto CannotProvideElements = [this](MachineBasicBlock *MBB, 704 MCRegister NumElements) { 705 if (MBB->empty()) 706 return false; 707 // NumElements is redefined in this block. 708 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements)) 709 return true; 710 711 // Don't continue searching up through multiple predecessors. 712 if (MBB->pred_size() > 1) 713 return true; 714 715 return false; 716 }; 717 718 // Search backwards for a def, until we get to InsertBB. 719 MachineBasicBlock *MBB = Preheader; 720 while (MBB && MBB != StartInsertBB) { 721 if (CannotProvideElements(MBB, NumElements)) { 722 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n"); 723 return false; 724 } 725 MBB = *MBB->pred_begin(); 726 } 727 } 728 729 // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect 730 // world the [w|d]lstp instruction would be last instruction in the preheader 731 // and so it would only affect instructions within the loop body. But due to 732 // scheduling, and/or the logic in this pass (above), the insertion point can 733 // be moved earlier. So if the Loop Start isn't the last instruction in the 734 // preheader, and if the initial element count is smaller than the vector 735 // width, the Loop Start instruction will immediately generate one or more 736 // false lane mask which can, incorrectly, affect the proceeding MVE 737 // instructions in the preheader. 738 if (std::any_of(StartInsertPt, StartInsertBB->end(), shouldInspect)) { 739 LLVM_DEBUG(dbgs() << "ARM Loops: Instruction blocks [W|D]LSTP\n"); 740 return false; 741 } 742 743 // For any DoubleWidthResultInstrs we found whilst scanning instructions, they 744 // need to compute an output size that is smaller than the VCTP mask operates 745 // on. The VecSize of the DoubleWidthResult is the larger vector size - the 746 // size it extends into, so any VCTP VecSize <= is valid. 747 unsigned VCTPVecSize = getVecSize(*VCTP); 748 for (MachineInstr *MI : DoubleWidthResultInstrs) { 749 unsigned InstrVecSize = getVecSize(*MI); 750 if (InstrVecSize > VCTPVecSize) { 751 LLVM_DEBUG(dbgs() << "ARM Loops: Double width result larger than VCTP " 752 << "VecSize:\n" << *MI); 753 return false; 754 } 755 } 756 757 // Check that the value change of the element count is what we expect and 758 // that the predication will be equivalent. For this we need: 759 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate 760 // and we can also allow register copies within the chain too. 761 auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) { 762 return -getAddSubImmediate(*MI) == ExpectedVecWidth; 763 }; 764 765 MachineBasicBlock *MBB = VCTP->getParent(); 766 // Remove modifications to the element count since they have no purpose in a 767 // tail predicated loop. Explicitly refer to the vctp operand no matter which 768 // register NumElements has been assigned to, since that is what the 769 // modifications will be using 770 if (auto *Def = RDA.getUniqueReachingMIDef( 771 &MBB->back(), VCTP->getOperand(1).getReg().asMCReg())) { 772 SmallPtrSet<MachineInstr*, 2> ElementChain; 773 SmallPtrSet<MachineInstr*, 2> Ignore; 774 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode()); 775 776 Ignore.insert(VCTPs.begin(), VCTPs.end()); 777 778 if (TryRemove(Def, RDA, ElementChain, Ignore)) { 779 bool FoundSub = false; 780 781 for (auto *MI : ElementChain) { 782 if (isMovRegOpcode(MI->getOpcode())) 783 continue; 784 785 if (isSubImmOpcode(MI->getOpcode())) { 786 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) { 787 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element" 788 " count: " << *MI); 789 return false; 790 } 791 FoundSub = true; 792 } else { 793 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element" 794 " count: " << *MI); 795 return false; 796 } 797 } 798 ToRemove.insert(ElementChain.begin(), ElementChain.end()); 799 } 800 } 801 802 // If we converted the LoopStart to a t2DoLoopStartTP/t2WhileLoopStartTP, we 803 // can also remove any extra instructions in the preheader, which often 804 // includes a now unused MOV. 805 if ((Start->getOpcode() == ARM::t2DoLoopStartTP || 806 Start->getOpcode() == ARM::t2WhileLoopStartTP) && 807 Preheader && !Preheader->empty() && 808 !RDA.hasLocalDefBefore(VCTP, VCTP->getOperand(1).getReg())) { 809 if (auto *Def = RDA.getUniqueReachingMIDef( 810 &Preheader->back(), VCTP->getOperand(1).getReg().asMCReg())) { 811 SmallPtrSet<MachineInstr*, 2> Ignore; 812 Ignore.insert(VCTPs.begin(), VCTPs.end()); 813 TryRemove(Def, RDA, ToRemove, Ignore); 814 } 815 } 816 817 return true; 818 } 819 820 static bool isRegInClass(const MachineOperand &MO, 821 const TargetRegisterClass *Class) { 822 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg()); 823 } 824 825 // MVE 'narrowing' operate on half a lane, reading from half and writing 826 // to half, which are referred to has the top and bottom half. The other 827 // half retains its previous value. 828 static bool retainsPreviousHalfElement(const MachineInstr &MI) { 829 const MCInstrDesc &MCID = MI.getDesc(); 830 uint64_t Flags = MCID.TSFlags; 831 return (Flags & ARMII::RetainsPreviousHalfElement) != 0; 832 } 833 834 // Some MVE instructions read from the top/bottom halves of their operand(s) 835 // and generate a vector result with result elements that are double the 836 // width of the input. 837 static bool producesDoubleWidthResult(const MachineInstr &MI) { 838 const MCInstrDesc &MCID = MI.getDesc(); 839 uint64_t Flags = MCID.TSFlags; 840 return (Flags & ARMII::DoubleWidthResult) != 0; 841 } 842 843 static bool isHorizontalReduction(const MachineInstr &MI) { 844 const MCInstrDesc &MCID = MI.getDesc(); 845 uint64_t Flags = MCID.TSFlags; 846 return (Flags & ARMII::HorizontalReduction) != 0; 847 } 848 849 // Can this instruction generate a non-zero result when given only zeroed 850 // operands? This allows us to know that, given operands with false bytes 851 // zeroed by masked loads, that the result will also contain zeros in those 852 // bytes. 853 static bool canGenerateNonZeros(const MachineInstr &MI) { 854 855 // Check for instructions which can write into a larger element size, 856 // possibly writing into a previous zero'd lane. 857 if (producesDoubleWidthResult(MI)) 858 return true; 859 860 switch (MI.getOpcode()) { 861 default: 862 break; 863 // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow 864 // fp16 -> fp32 vector conversions. 865 // Instructions that perform a NOT will generate 1s from 0s. 866 case ARM::MVE_VMVN: 867 case ARM::MVE_VORN: 868 // Count leading zeros will do just that! 869 case ARM::MVE_VCLZs8: 870 case ARM::MVE_VCLZs16: 871 case ARM::MVE_VCLZs32: 872 return true; 873 } 874 return false; 875 } 876 877 // Look at its register uses to see if it only can only receive zeros 878 // into its false lanes which would then produce zeros. Also check that 879 // the output register is also defined by an FalseLanesZero instruction 880 // so that if tail-predication happens, the lanes that aren't updated will 881 // still be zeros. 882 static bool producesFalseLanesZero(MachineInstr &MI, 883 const TargetRegisterClass *QPRs, 884 const ReachingDefAnalysis &RDA, 885 InstSet &FalseLanesZero) { 886 if (canGenerateNonZeros(MI)) 887 return false; 888 889 bool isPredicated = isVectorPredicated(&MI); 890 // Predicated loads will write zeros to the falsely predicated bytes of the 891 // destination register. 892 if (MI.mayLoad()) 893 return isPredicated; 894 895 auto IsZeroInit = [](MachineInstr *Def) { 896 return !isVectorPredicated(Def) && 897 Def->getOpcode() == ARM::MVE_VMOVimmi32 && 898 Def->getOperand(1).getImm() == 0; 899 }; 900 901 bool AllowScalars = isHorizontalReduction(MI); 902 for (auto &MO : MI.operands()) { 903 if (!MO.isReg() || !MO.getReg()) 904 continue; 905 if (!isRegInClass(MO, QPRs) && AllowScalars) 906 continue; 907 // Skip the lr predicate reg 908 int PIdx = llvm::findFirstVPTPredOperandIdx(MI); 909 if (PIdx != -1 && (int)MI.getOperandNo(&MO) == PIdx + 2) 910 continue; 911 912 // Check that this instruction will produce zeros in its false lanes: 913 // - If it only consumes false lanes zero or constant 0 (vmov #0) 914 // - If it's predicated, it only matters that it's def register already has 915 // false lane zeros, so we can ignore the uses. 916 SmallPtrSet<MachineInstr *, 2> Defs; 917 RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs); 918 for (auto *Def : Defs) { 919 if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def)) 920 continue; 921 if (MO.isUse() && isPredicated) 922 continue; 923 return false; 924 } 925 } 926 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI); 927 return true; 928 } 929 930 bool LowOverheadLoop::ValidateLiveOuts() { 931 // We want to find out if the tail-predicated version of this loop will 932 // produce the same values as the loop in its original form. For this to 933 // be true, the newly inserted implicit predication must not change the 934 // the (observable) results. 935 // We're doing this because many instructions in the loop will not be 936 // predicated and so the conversion from VPT predication to tail-predication 937 // can result in different values being produced; due to the tail-predication 938 // preventing many instructions from updating their falsely predicated 939 // lanes. This analysis assumes that all the instructions perform lane-wise 940 // operations and don't perform any exchanges. 941 // A masked load, whether through VPT or tail predication, will write zeros 942 // to any of the falsely predicated bytes. So, from the loads, we know that 943 // the false lanes are zeroed and here we're trying to track that those false 944 // lanes remain zero, or where they change, the differences are masked away 945 // by their user(s). 946 // All MVE stores have to be predicated, so we know that any predicate load 947 // operands, or stored results are equivalent already. Other explicitly 948 // predicated instructions will perform the same operation in the original 949 // loop and the tail-predicated form too. Because of this, we can insert 950 // loads, stores and other predicated instructions into our Predicated 951 // set and build from there. 952 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID); 953 SetVector<MachineInstr *> FalseLanesUnknown; 954 SmallPtrSet<MachineInstr *, 4> FalseLanesZero; 955 SmallPtrSet<MachineInstr *, 4> Predicated; 956 MachineBasicBlock *Header = ML.getHeader(); 957 958 LLVM_DEBUG(dbgs() << "ARM Loops: Validating Live outs\n"); 959 960 for (auto &MI : *Header) { 961 if (!shouldInspect(MI)) 962 continue; 963 964 if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode())) 965 continue; 966 967 bool isPredicated = isVectorPredicated(&MI); 968 bool retainsOrReduces = 969 retainsPreviousHalfElement(MI) || isHorizontalReduction(MI); 970 971 if (isPredicated) 972 Predicated.insert(&MI); 973 if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero)) 974 FalseLanesZero.insert(&MI); 975 else if (MI.getNumDefs() == 0) 976 continue; 977 else if (!isPredicated && retainsOrReduces) { 978 LLVM_DEBUG(dbgs() << " Unpredicated instruction that retainsOrReduces: " << MI); 979 return false; 980 } else if (!isPredicated && MI.getOpcode() != ARM::MQPRCopy) 981 FalseLanesUnknown.insert(&MI); 982 } 983 984 LLVM_DEBUG({ 985 dbgs() << " Predicated:\n"; 986 for (auto *I : Predicated) 987 dbgs() << " " << *I; 988 dbgs() << " FalseLanesZero:\n"; 989 for (auto *I : FalseLanesZero) 990 dbgs() << " " << *I; 991 dbgs() << " FalseLanesUnknown:\n"; 992 for (auto *I : FalseLanesUnknown) 993 dbgs() << " " << *I; 994 }); 995 996 auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO, 997 SmallPtrSetImpl<MachineInstr *> &Predicated) { 998 SmallPtrSet<MachineInstr *, 2> Uses; 999 RDA.getGlobalUses(MI, MO.getReg().asMCReg(), Uses); 1000 for (auto *Use : Uses) { 1001 if (Use != MI && !Predicated.count(Use)) 1002 return false; 1003 } 1004 return true; 1005 }; 1006 1007 // Visit the unknowns in reverse so that we can start at the values being 1008 // stored and then we can work towards the leaves, hopefully adding more 1009 // instructions to Predicated. Successfully terminating the loop means that 1010 // all the unknown values have to found to be masked by predicated user(s). 1011 // For any unpredicated values, we store them in NonPredicated so that we 1012 // can later check whether these form a reduction. 1013 SmallPtrSet<MachineInstr*, 2> NonPredicated; 1014 for (auto *MI : reverse(FalseLanesUnknown)) { 1015 for (auto &MO : MI->operands()) { 1016 if (!isRegInClass(MO, QPRs) || !MO.isDef()) 1017 continue; 1018 if (!HasPredicatedUsers(MI, MO, Predicated)) { 1019 LLVM_DEBUG(dbgs() << " Found an unknown def of : " 1020 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI); 1021 NonPredicated.insert(MI); 1022 break; 1023 } 1024 } 1025 // Any unknown false lanes have been masked away by the user(s). 1026 if (!NonPredicated.contains(MI)) 1027 Predicated.insert(MI); 1028 } 1029 1030 SmallPtrSet<MachineInstr *, 2> LiveOutMIs; 1031 SmallVector<MachineBasicBlock *, 2> ExitBlocks; 1032 ML.getExitBlocks(ExitBlocks); 1033 assert(ML.getNumBlocks() == 1 && "Expected single block loop!"); 1034 assert(ExitBlocks.size() == 1 && "Expected a single exit block"); 1035 MachineBasicBlock *ExitBB = ExitBlocks.front(); 1036 for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) { 1037 // TODO: Instead of blocking predication, we could move the vctp to the exit 1038 // block and calculate it's operand there in or the preheader. 1039 if (RegMask.PhysReg == ARM::VPR) { 1040 LLVM_DEBUG(dbgs() << " VPR is live in to the exit block."); 1041 return false; 1042 } 1043 // Check Q-regs that are live in the exit blocks. We don't collect scalars 1044 // because they won't be affected by lane predication. 1045 if (QPRs->contains(RegMask.PhysReg)) 1046 if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg)) 1047 LiveOutMIs.insert(MI); 1048 } 1049 1050 // We've already validated that any VPT predication within the loop will be 1051 // equivalent when we perform the predication transformation; so we know that 1052 // any VPT predicated instruction is predicated upon VCTP. Any live-out 1053 // instruction needs to be predicated, so check this here. The instructions 1054 // in NonPredicated have been found to be a reduction that we can ensure its 1055 // legality. Any MQPRCopy found will need to validate its input as if it was 1056 // live out. 1057 SmallVector<MachineInstr *> Worklist(LiveOutMIs.begin(), LiveOutMIs.end()); 1058 while (!Worklist.empty()) { 1059 MachineInstr *MI = Worklist.pop_back_val(); 1060 if (MI->getOpcode() == ARM::MQPRCopy) { 1061 VMOVCopies.insert(MI); 1062 MachineInstr *CopySrc = 1063 RDA.getUniqueReachingMIDef(MI, MI->getOperand(1).getReg()); 1064 if (CopySrc) 1065 Worklist.push_back(CopySrc); 1066 } else if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) { 1067 LLVM_DEBUG(dbgs() << " Unable to handle live out: " << *MI); 1068 VMOVCopies.clear(); 1069 return false; 1070 } 1071 } 1072 1073 return true; 1074 } 1075 1076 void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) { 1077 if (Revert) 1078 return; 1079 1080 // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP] 1081 // can only jump back. 1082 auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End, 1083 ARMBasicBlockUtils *BBUtils, MachineLoop &ML) { 1084 MachineBasicBlock *TgtBB = End->getOpcode() == ARM::t2LoopEnd 1085 ? End->getOperand(1).getMBB() 1086 : End->getOperand(2).getMBB(); 1087 // TODO Maybe there's cases where the target doesn't have to be the header, 1088 // but for now be safe and revert. 1089 if (TgtBB != ML.getHeader()) { 1090 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n"); 1091 return false; 1092 } 1093 1094 // The WLS and LE instructions have 12-bits for the label offset. WLS 1095 // requires a positive offset, while LE uses negative. 1096 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) || 1097 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) { 1098 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); 1099 return false; 1100 } 1101 1102 if (isWhileLoopStart(*Start)) { 1103 MachineBasicBlock *TargetBB = getWhileLoopStartTargetBB(*Start); 1104 if (BBUtils->getOffsetOf(Start) > BBUtils->getOffsetOf(TargetBB) || 1105 !BBUtils->isBBInRange(Start, TargetBB, 4094)) { 1106 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); 1107 return false; 1108 } 1109 } 1110 return true; 1111 }; 1112 1113 StartInsertPt = MachineBasicBlock::iterator(Start); 1114 StartInsertBB = Start->getParent(); 1115 LLVM_DEBUG(dbgs() << "ARM Loops: Will insert LoopStart at " 1116 << *StartInsertPt); 1117 1118 Revert = !ValidateRanges(Start, End, BBUtils, ML); 1119 CannotTailPredicate = !ValidateTailPredicate(); 1120 } 1121 1122 bool LowOverheadLoop::AddVCTP(MachineInstr *MI) { 1123 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI); 1124 if (VCTPs.empty()) { 1125 VCTPs.push_back(MI); 1126 return true; 1127 } 1128 1129 // If we find another VCTP, check whether it uses the same value as the main VCTP. 1130 // If it does, store it in the VCTPs set, else refuse it. 1131 MachineInstr *Prev = VCTPs.back(); 1132 if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) || 1133 !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg().asMCReg())) { 1134 LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching " 1135 "definition from the main VCTP"); 1136 return false; 1137 } 1138 VCTPs.push_back(MI); 1139 return true; 1140 } 1141 1142 static bool ValidateMVEStore(MachineInstr *MI, MachineLoop *ML) { 1143 1144 auto GetFrameIndex = [](MachineMemOperand *Operand) { 1145 const PseudoSourceValue *PseudoValue = Operand->getPseudoValue(); 1146 if (PseudoValue && PseudoValue->kind() == PseudoSourceValue::FixedStack) { 1147 if (const auto *FS = dyn_cast<FixedStackPseudoSourceValue>(PseudoValue)) { 1148 return FS->getFrameIndex(); 1149 } 1150 } 1151 return -1; 1152 }; 1153 1154 auto IsStackOp = [GetFrameIndex](MachineInstr *I) { 1155 switch (I->getOpcode()) { 1156 case ARM::MVE_VSTRWU32: 1157 case ARM::MVE_VLDRWU32: { 1158 return I->getOperand(1).getReg() == ARM::SP && 1159 I->memoperands().size() == 1 && 1160 GetFrameIndex(I->memoperands().front()) >= 0; 1161 } 1162 default: 1163 return false; 1164 } 1165 }; 1166 1167 // An unpredicated vector register spill is allowed if all of the uses of the 1168 // stack slot are within the loop 1169 if (MI->getOpcode() != ARM::MVE_VSTRWU32 || !IsStackOp(MI)) 1170 return false; 1171 1172 // Search all blocks after the loop for accesses to the same stack slot. 1173 // ReachingDefAnalysis doesn't work for sp as it relies on registers being 1174 // live-out (which sp never is) to know what blocks to look in 1175 if (MI->memoperands().size() == 0) 1176 return false; 1177 int FI = GetFrameIndex(MI->memoperands().front()); 1178 1179 auto &FrameInfo = MI->getParent()->getParent()->getFrameInfo(); 1180 if (FI == -1 || !FrameInfo.isSpillSlotObjectIndex(FI)) 1181 return false; 1182 1183 SmallVector<MachineBasicBlock *> Frontier; 1184 ML->getExitBlocks(Frontier); 1185 SmallPtrSet<MachineBasicBlock *, 4> Visited{MI->getParent()}; 1186 unsigned Idx = 0; 1187 while (Idx < Frontier.size()) { 1188 MachineBasicBlock *BB = Frontier[Idx]; 1189 bool LookAtSuccessors = true; 1190 for (auto &I : *BB) { 1191 if (!IsStackOp(&I) || I.memoperands().size() == 0) 1192 continue; 1193 if (GetFrameIndex(I.memoperands().front()) != FI) 1194 continue; 1195 // If this block has a store to the stack slot before any loads then we 1196 // can ignore the block 1197 if (I.getOpcode() == ARM::MVE_VSTRWU32) { 1198 LookAtSuccessors = false; 1199 break; 1200 } 1201 // If the store and the load are using the same stack slot then the 1202 // store isn't valid for tail predication 1203 if (I.getOpcode() == ARM::MVE_VLDRWU32) 1204 return false; 1205 } 1206 1207 if (LookAtSuccessors) { 1208 for (auto Succ : BB->successors()) { 1209 if (!Visited.contains(Succ) && !is_contained(Frontier, Succ)) 1210 Frontier.push_back(Succ); 1211 } 1212 } 1213 Visited.insert(BB); 1214 Idx++; 1215 } 1216 1217 return true; 1218 } 1219 1220 bool LowOverheadLoop::ValidateMVEInst(MachineInstr *MI) { 1221 if (CannotTailPredicate) 1222 return false; 1223 1224 if (!shouldInspect(*MI)) 1225 return true; 1226 1227 if (MI->getOpcode() == ARM::MVE_VPSEL || 1228 MI->getOpcode() == ARM::MVE_VPNOT) { 1229 // TODO: Allow VPSEL and VPNOT, we currently cannot because: 1230 // 1) It will use the VPR as a predicate operand, but doesn't have to be 1231 // instead a VPT block, which means we can assert while building up 1232 // the VPT block because we don't find another VPT or VPST to being a new 1233 // one. 1234 // 2) VPSEL still requires a VPR operand even after tail predicating, 1235 // which means we can't remove it unless there is another 1236 // instruction, such as vcmp, that can provide the VPR def. 1237 return false; 1238 } 1239 1240 // Record all VCTPs and check that they're equivalent to one another. 1241 if (isVCTP(MI) && !AddVCTP(MI)) 1242 return false; 1243 1244 // Inspect uses first so that any instructions that alter the VPR don't 1245 // alter the predicate upon themselves. 1246 const MCInstrDesc &MCID = MI->getDesc(); 1247 bool IsUse = false; 1248 unsigned LastOpIdx = MI->getNumOperands() - 1; 1249 for (auto &Op : enumerate(reverse(MCID.operands()))) { 1250 const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index()); 1251 if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR) 1252 continue; 1253 1254 if (ARM::isVpred(Op.value().OperandType)) { 1255 VPTState::addInst(MI); 1256 IsUse = true; 1257 } else if (MI->getOpcode() != ARM::MVE_VPST) { 1258 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); 1259 return false; 1260 } 1261 } 1262 1263 // If we find an instruction that has been marked as not valid for tail 1264 // predication, only allow the instruction if it's contained within a valid 1265 // VPT block. 1266 bool RequiresExplicitPredication = 1267 (MCID.TSFlags & ARMII::ValidForTailPredication) == 0; 1268 if (isDomainMVE(MI) && RequiresExplicitPredication) { 1269 if (MI->getOpcode() == ARM::MQPRCopy) 1270 return true; 1271 if (!IsUse && producesDoubleWidthResult(*MI)) { 1272 DoubleWidthResultInstrs.insert(MI); 1273 return true; 1274 } 1275 1276 LLVM_DEBUG(if (!IsUse) dbgs() 1277 << "ARM Loops: Can't tail predicate: " << *MI); 1278 return IsUse; 1279 } 1280 1281 // If the instruction is already explicitly predicated, then the conversion 1282 // will be fine, but ensure that all store operations are predicated. 1283 if (MI->mayStore() && !ValidateMVEStore(MI, &ML)) 1284 return IsUse; 1285 1286 // If this instruction defines the VPR, update the predicate for the 1287 // proceeding instructions. 1288 if (isVectorPredicate(MI)) { 1289 // Clear the existing predicate when we're not in VPT Active state, 1290 // otherwise we add to it. 1291 if (!isVectorPredicated(MI)) 1292 VPTState::resetPredicate(MI); 1293 else 1294 VPTState::addPredicate(MI); 1295 } 1296 1297 // Finally once the predicate has been modified, we can start a new VPT 1298 // block if necessary. 1299 if (isVPTOpcode(MI->getOpcode())) 1300 VPTState::CreateVPTBlock(MI); 1301 1302 return true; 1303 } 1304 1305 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { 1306 const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget()); 1307 if (!ST.hasLOB()) 1308 return false; 1309 1310 MF = &mf; 1311 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); 1312 1313 MLI = &getAnalysis<MachineLoopInfo>(); 1314 RDA = &getAnalysis<ReachingDefAnalysis>(); 1315 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); 1316 MRI = &MF->getRegInfo(); 1317 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo()); 1318 TRI = ST.getRegisterInfo(); 1319 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF)); 1320 BBUtils->computeAllBlockSizes(); 1321 BBUtils->adjustBBOffsetsAfter(&MF->front()); 1322 1323 bool Changed = false; 1324 for (auto ML : *MLI) { 1325 if (ML->isOutermost()) 1326 Changed |= ProcessLoop(ML); 1327 } 1328 Changed |= RevertNonLoops(); 1329 return Changed; 1330 } 1331 1332 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { 1333 1334 bool Changed = false; 1335 1336 // Process inner loops first. 1337 for (auto I = ML->begin(), E = ML->end(); I != E; ++I) 1338 Changed |= ProcessLoop(*I); 1339 1340 LLVM_DEBUG({ 1341 dbgs() << "ARM Loops: Processing loop containing:\n"; 1342 if (auto *Preheader = ML->getLoopPreheader()) 1343 dbgs() << " - Preheader: " << printMBBReference(*Preheader) << "\n"; 1344 else if (auto *Preheader = MLI->findLoopPreheader(ML, true, true)) 1345 dbgs() << " - Preheader: " << printMBBReference(*Preheader) << "\n"; 1346 for (auto *MBB : ML->getBlocks()) 1347 dbgs() << " - Block: " << printMBBReference(*MBB) << "\n"; 1348 }); 1349 1350 // Search the given block for a loop start instruction. If one isn't found, 1351 // and there's only one predecessor block, search that one too. 1352 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart = 1353 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { 1354 for (auto &MI : *MBB) { 1355 if (isLoopStart(MI)) 1356 return &MI; 1357 } 1358 if (MBB->pred_size() == 1) 1359 return SearchForStart(*MBB->pred_begin()); 1360 return nullptr; 1361 }; 1362 1363 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII); 1364 // Search the preheader for the start intrinsic. 1365 // FIXME: I don't see why we shouldn't be supporting multiple predecessors 1366 // with potentially multiple set.loop.iterations, so we need to enable this. 1367 if (LoLoop.Preheader) 1368 LoLoop.Start = SearchForStart(LoLoop.Preheader); 1369 else 1370 return Changed; 1371 1372 // Find the low-overhead loop components and decide whether or not to fall 1373 // back to a normal loop. Also look for a vctp instructions and decide 1374 // whether we can convert that predicate using tail predication. 1375 for (auto *MBB : reverse(ML->getBlocks())) { 1376 for (auto &MI : *MBB) { 1377 if (MI.isDebugValue()) 1378 continue; 1379 else if (MI.getOpcode() == ARM::t2LoopDec) 1380 LoLoop.Dec = &MI; 1381 else if (MI.getOpcode() == ARM::t2LoopEnd) 1382 LoLoop.End = &MI; 1383 else if (MI.getOpcode() == ARM::t2LoopEndDec) 1384 LoLoop.End = LoLoop.Dec = &MI; 1385 else if (isLoopStart(MI)) 1386 LoLoop.Start = &MI; 1387 else if (MI.getDesc().isCall()) { 1388 // TODO: Though the call will require LE to execute again, does this 1389 // mean we should revert? Always executing LE hopefully should be 1390 // faster than performing a sub,cmp,br or even subs,br. 1391 LoLoop.Revert = true; 1392 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); 1393 } else { 1394 // Record VPR defs and build up their corresponding vpt blocks. 1395 // Check we know how to tail predicate any mve instructions. 1396 LoLoop.AnalyseMVEInst(&MI); 1397 } 1398 } 1399 } 1400 1401 LLVM_DEBUG(LoLoop.dump()); 1402 if (!LoLoop.FoundAllComponents()) { 1403 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); 1404 return Changed; 1405 } 1406 1407 assert(LoLoop.Start->getOpcode() != ARM::t2WhileLoopStart && 1408 "Expected t2WhileLoopStart to be removed before regalloc!"); 1409 1410 // Check that the only instruction using LoopDec is LoopEnd. This can only 1411 // happen when the Dec and End are separate, not a single t2LoopEndDec. 1412 // TODO: Check for copy chains that really have no effect. 1413 if (LoLoop.Dec != LoLoop.End) { 1414 SmallPtrSet<MachineInstr *, 2> Uses; 1415 RDA->getReachingLocalUses(LoLoop.Dec, MCRegister::from(ARM::LR), Uses); 1416 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) { 1417 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n"); 1418 LoLoop.Revert = true; 1419 } 1420 } 1421 LoLoop.Validate(BBUtils.get()); 1422 Expand(LoLoop); 1423 return true; 1424 } 1425 1426 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a 1427 // beq that branches to the exit branch. 1428 // TODO: We could also try to generate a cbz if the value in LR is also in 1429 // another low register. 1430 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { 1431 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); 1432 MachineBasicBlock *DestBB = getWhileLoopStartTargetBB(*MI); 1433 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1434 ARM::tBcc : ARM::t2Bcc; 1435 1436 RevertWhileLoopStartLR(MI, TII, BrOpc); 1437 } 1438 1439 void ARMLowOverheadLoops::RevertDo(MachineInstr *MI) const { 1440 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to mov: " << *MI); 1441 RevertDoLoopStart(MI, TII); 1442 } 1443 1444 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const { 1445 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); 1446 MachineBasicBlock *MBB = MI->getParent(); 1447 SmallPtrSet<MachineInstr*, 1> Ignore; 1448 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) { 1449 if (I->getOpcode() == ARM::t2LoopEnd) { 1450 Ignore.insert(&*I); 1451 break; 1452 } 1453 } 1454 1455 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. 1456 bool SetFlags = 1457 RDA->isSafeToDefRegAt(MI, MCRegister::from(ARM::CPSR), Ignore); 1458 1459 llvm::RevertLoopDec(MI, TII, SetFlags); 1460 return SetFlags; 1461 } 1462 1463 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1464 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { 1465 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); 1466 1467 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1468 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1469 ARM::tBcc : ARM::t2Bcc; 1470 1471 llvm::RevertLoopEnd(MI, TII, BrOpc, SkipCmp); 1472 } 1473 1474 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1475 void ARMLowOverheadLoops::RevertLoopEndDec(MachineInstr *MI) const { 1476 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to subs, br: " << *MI); 1477 assert(MI->getOpcode() == ARM::t2LoopEndDec && "Expected a t2LoopEndDec!"); 1478 MachineBasicBlock *MBB = MI->getParent(); 1479 1480 MachineInstrBuilder MIB = 1481 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::t2SUBri)); 1482 MIB.addDef(ARM::LR); 1483 MIB.add(MI->getOperand(1)); 1484 MIB.addImm(1); 1485 MIB.addImm(ARMCC::AL); 1486 MIB.addReg(ARM::NoRegister); 1487 MIB.addReg(ARM::CPSR); 1488 MIB->getOperand(5).setIsDef(true); 1489 1490 MachineBasicBlock *DestBB = MI->getOperand(2).getMBB(); 1491 unsigned BrOpc = 1492 BBUtils->isBBInRange(MI, DestBB, 254) ? ARM::tBcc : ARM::t2Bcc; 1493 1494 // Create bne 1495 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1496 MIB.add(MI->getOperand(2)); // branch target 1497 MIB.addImm(ARMCC::NE); // condition code 1498 MIB.addReg(ARM::CPSR); 1499 1500 MI->eraseFromParent(); 1501 } 1502 1503 // Perform dead code elimation on the loop iteration count setup expression. 1504 // If we are tail-predicating, the number of elements to be processed is the 1505 // operand of the VCTP instruction in the vector body, see getCount(), which is 1506 // register $r3 in this example: 1507 // 1508 // $lr = big-itercount-expression 1509 // .. 1510 // $lr = t2DoLoopStart renamable $lr 1511 // vector.body: 1512 // .. 1513 // $vpr = MVE_VCTP32 renamable $r3 1514 // renamable $lr = t2LoopDec killed renamable $lr, 1 1515 // t2LoopEnd renamable $lr, %vector.body 1516 // tB %end 1517 // 1518 // What we would like achieve here is to replace the do-loop start pseudo 1519 // instruction t2DoLoopStart with: 1520 // 1521 // $lr = MVE_DLSTP_32 killed renamable $r3 1522 // 1523 // Thus, $r3 which defines the number of elements, is written to $lr, 1524 // and then we want to delete the whole chain that used to define $lr, 1525 // see the comment below how this chain could look like. 1526 // 1527 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) { 1528 if (!LoLoop.IsTailPredicationLegal()) 1529 return; 1530 1531 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n"); 1532 1533 MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 1); 1534 if (!Def) { 1535 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n"); 1536 return; 1537 } 1538 1539 // Collect and remove the users of iteration count. 1540 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec, 1541 LoLoop.End }; 1542 if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed)) 1543 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n"); 1544 } 1545 1546 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { 1547 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n"); 1548 // When using tail-predication, try to delete the dead code that was used to 1549 // calculate the number of loop iterations. 1550 IterationCountDCE(LoLoop); 1551 1552 MachineBasicBlock::iterator InsertPt = LoLoop.StartInsertPt; 1553 MachineInstr *Start = LoLoop.Start; 1554 MachineBasicBlock *MBB = LoLoop.StartInsertBB; 1555 unsigned Opc = LoLoop.getStartOpcode(); 1556 MachineOperand &Count = LoLoop.getLoopStartOperand(); 1557 1558 // A DLS lr, lr we needn't emit 1559 MachineInstr* NewStart; 1560 if (Opc == ARM::t2DLS && Count.isReg() && Count.getReg() == ARM::LR) { 1561 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't insert start: DLS lr, lr"); 1562 NewStart = nullptr; 1563 } else { 1564 MachineInstrBuilder MIB = 1565 BuildMI(*MBB, InsertPt, Start->getDebugLoc(), TII->get(Opc)); 1566 1567 MIB.addDef(ARM::LR); 1568 MIB.add(Count); 1569 if (isWhileLoopStart(*Start)) 1570 MIB.addMBB(getWhileLoopStartTargetBB(*Start)); 1571 1572 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); 1573 NewStart = &*MIB; 1574 } 1575 1576 LoLoop.ToRemove.insert(Start); 1577 return NewStart; 1578 } 1579 1580 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { 1581 auto RemovePredicate = [](MachineInstr *MI) { 1582 if (MI->isDebugInstr()) 1583 return; 1584 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); 1585 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 1586 assert(PIdx >= 1 && "Trying to unpredicate a non-predicated instruction"); 1587 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then && 1588 "Expected Then predicate!"); 1589 MI->getOperand(PIdx).setImm(ARMVCC::None); 1590 MI->getOperand(PIdx + 1).setReg(0); 1591 }; 1592 1593 for (auto &Block : LoLoop.getVPTBlocks()) { 1594 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 1595 1596 auto ReplaceVCMPWithVPT = [&](MachineInstr *&TheVCMP, MachineInstr *At) { 1597 assert(TheVCMP && "Replacing a removed or non-existent VCMP"); 1598 // Replace the VCMP with a VPT 1599 MachineInstrBuilder MIB = 1600 BuildMI(*At->getParent(), At, At->getDebugLoc(), 1601 TII->get(VCMPOpcodeToVPT(TheVCMP->getOpcode()))); 1602 MIB.addImm(ARMVCC::Then); 1603 // Register one 1604 MIB.add(TheVCMP->getOperand(1)); 1605 // Register two 1606 MIB.add(TheVCMP->getOperand(2)); 1607 // The comparison code, e.g. ge, eq, lt 1608 MIB.add(TheVCMP->getOperand(3)); 1609 LLVM_DEBUG(dbgs() << "ARM Loops: Combining with VCMP to VPT: " << *MIB); 1610 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1611 LoLoop.ToRemove.insert(TheVCMP); 1612 TheVCMP = nullptr; 1613 }; 1614 1615 if (VPTState::isEntryPredicatedOnVCTP(Block, /*exclusive*/ true)) { 1616 MachineInstr *VPST = Insts.front(); 1617 if (VPTState::hasUniformPredicate(Block)) { 1618 // A vpt block starting with VPST, is only predicated upon vctp and has no 1619 // internal vpr defs: 1620 // - Remove vpst. 1621 // - Unpredicate the remaining instructions. 1622 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1623 for (unsigned i = 1; i < Insts.size(); ++i) 1624 RemovePredicate(Insts[i]); 1625 } else { 1626 // The VPT block has a non-uniform predicate but it uses a vpst and its 1627 // entry is guarded only by a vctp, which means we: 1628 // - Need to remove the original vpst. 1629 // - Then need to unpredicate any following instructions, until 1630 // we come across the divergent vpr def. 1631 // - Insert a new vpst to predicate the instruction(s) that following 1632 // the divergent vpr def. 1633 MachineInstr *Divergent = VPTState::getDivergent(Block); 1634 MachineBasicBlock *MBB = Divergent->getParent(); 1635 auto DivergentNext = ++MachineBasicBlock::iterator(Divergent); 1636 while (DivergentNext != MBB->end() && DivergentNext->isDebugInstr()) 1637 ++DivergentNext; 1638 1639 bool DivergentNextIsPredicated = 1640 DivergentNext != MBB->end() && 1641 getVPTInstrPredicate(*DivergentNext) != ARMVCC::None; 1642 1643 for (auto I = ++MachineBasicBlock::iterator(VPST), E = DivergentNext; 1644 I != E; ++I) 1645 RemovePredicate(&*I); 1646 1647 // Check if the instruction defining vpr is a vcmp so it can be combined 1648 // with the VPST This should be the divergent instruction 1649 MachineInstr *VCMP = 1650 VCMPOpcodeToVPT(Divergent->getOpcode()) != 0 ? Divergent : nullptr; 1651 1652 if (DivergentNextIsPredicated) { 1653 // Insert a VPST at the divergent only if the next instruction 1654 // would actually use it. A VCMP following a VPST can be 1655 // merged into a VPT so do that instead if the VCMP exists. 1656 if (!VCMP) { 1657 // Create a VPST (with a null mask for now, we'll recompute it 1658 // later) 1659 MachineInstrBuilder MIB = 1660 BuildMI(*Divergent->getParent(), Divergent, 1661 Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST)); 1662 MIB.addImm(0); 1663 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); 1664 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1665 } else { 1666 // No RDA checks are necessary here since the VPST would have been 1667 // directly after the VCMP 1668 ReplaceVCMPWithVPT(VCMP, VCMP); 1669 } 1670 } 1671 } 1672 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1673 LoLoop.ToRemove.insert(VPST); 1674 } else if (Block.containsVCTP()) { 1675 // The vctp will be removed, so either the entire block will be dead or 1676 // the block mask of the vp(s)t will need to be recomputed. 1677 MachineInstr *VPST = Insts.front(); 1678 if (Block.size() == 2) { 1679 assert(VPST->getOpcode() == ARM::MVE_VPST && 1680 "Found a VPST in an otherwise empty vpt block"); 1681 LoLoop.ToRemove.insert(VPST); 1682 } else 1683 LoLoop.BlockMasksToRecompute.insert(VPST); 1684 } else if (Insts.front()->getOpcode() == ARM::MVE_VPST) { 1685 // If this block starts with a VPST then attempt to merge it with the 1686 // preceeding un-merged VCMP into a VPT. This VCMP comes from a VPT 1687 // block that no longer exists 1688 MachineInstr *VPST = Insts.front(); 1689 auto Next = ++MachineBasicBlock::iterator(VPST); 1690 assert(getVPTInstrPredicate(*Next) != ARMVCC::None && 1691 "The instruction after a VPST must be predicated"); 1692 (void)Next; 1693 MachineInstr *VprDef = RDA->getUniqueReachingMIDef(VPST, ARM::VPR); 1694 if (VprDef && VCMPOpcodeToVPT(VprDef->getOpcode()) && 1695 !LoLoop.ToRemove.contains(VprDef)) { 1696 MachineInstr *VCMP = VprDef; 1697 // The VCMP and VPST can only be merged if the VCMP's operands will have 1698 // the same values at the VPST. 1699 // If any of the instructions between the VCMP and VPST are predicated 1700 // then a different code path is expected to have merged the VCMP and 1701 // VPST already. 1702 if (!std::any_of(++MachineBasicBlock::iterator(VCMP), 1703 MachineBasicBlock::iterator(VPST), hasVPRUse) && 1704 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(1).getReg()) && 1705 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(2).getReg())) { 1706 ReplaceVCMPWithVPT(VCMP, VPST); 1707 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1708 LoLoop.ToRemove.insert(VPST); 1709 } 1710 } 1711 } 1712 } 1713 1714 LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end()); 1715 } 1716 1717 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { 1718 1719 // Combine the LoopDec and LoopEnd instructions into LE(TP). 1720 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { 1721 MachineInstr *End = LoLoop.End; 1722 MachineBasicBlock *MBB = End->getParent(); 1723 unsigned Opc = LoLoop.IsTailPredicationLegal() ? 1724 ARM::MVE_LETP : ARM::t2LEUpdate; 1725 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), 1726 TII->get(Opc)); 1727 MIB.addDef(ARM::LR); 1728 unsigned Off = LoLoop.Dec == LoLoop.End ? 1 : 0; 1729 MIB.add(End->getOperand(Off + 0)); 1730 MIB.add(End->getOperand(Off + 1)); 1731 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); 1732 LoLoop.ToRemove.insert(LoLoop.Dec); 1733 LoLoop.ToRemove.insert(End); 1734 return &*MIB; 1735 }; 1736 1737 // TODO: We should be able to automatically remove these branches before we 1738 // get here - probably by teaching analyzeBranch about the pseudo 1739 // instructions. 1740 // If there is an unconditional branch, after I, that just branches to the 1741 // next block, remove it. 1742 auto RemoveDeadBranch = [](MachineInstr *I) { 1743 MachineBasicBlock *BB = I->getParent(); 1744 MachineInstr *Terminator = &BB->instr_back(); 1745 if (Terminator->isUnconditionalBranch() && I != Terminator) { 1746 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); 1747 if (BB->isLayoutSuccessor(Succ)) { 1748 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); 1749 Terminator->eraseFromParent(); 1750 } 1751 } 1752 }; 1753 1754 // And VMOVCopies need to become 2xVMOVD for tail predication to be valid. 1755 // Anything other MQPRCopy can be converted to MVE_VORR later on. 1756 auto ExpandVMOVCopies = [this](SmallPtrSet<MachineInstr *, 4> &VMOVCopies) { 1757 for (auto *MI : VMOVCopies) { 1758 LLVM_DEBUG(dbgs() << "Converting copy to VMOVD: " << *MI); 1759 assert(MI->getOpcode() == ARM::MQPRCopy && "Only expected MQPRCOPY!"); 1760 MachineBasicBlock *MBB = MI->getParent(); 1761 Register Dst = MI->getOperand(0).getReg(); 1762 Register Src = MI->getOperand(1).getReg(); 1763 auto MIB1 = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::VMOVD), 1764 ARM::D0 + (Dst - ARM::Q0) * 2) 1765 .addReg(ARM::D0 + (Src - ARM::Q0) * 2) 1766 .add(predOps(ARMCC::AL)); 1767 (void)MIB1; 1768 LLVM_DEBUG(dbgs() << " into " << *MIB1); 1769 auto MIB2 = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::VMOVD), 1770 ARM::D0 + (Dst - ARM::Q0) * 2 + 1) 1771 .addReg(ARM::D0 + (Src - ARM::Q0) * 2 + 1) 1772 .add(predOps(ARMCC::AL)); 1773 LLVM_DEBUG(dbgs() << " and " << *MIB2); 1774 (void)MIB2; 1775 MI->eraseFromParent(); 1776 } 1777 }; 1778 1779 if (LoLoop.Revert) { 1780 if (isWhileLoopStart(*LoLoop.Start)) 1781 RevertWhile(LoLoop.Start); 1782 else 1783 RevertDo(LoLoop.Start); 1784 if (LoLoop.Dec == LoLoop.End) 1785 RevertLoopEndDec(LoLoop.End); 1786 else 1787 RevertLoopEnd(LoLoop.End, RevertLoopDec(LoLoop.Dec)); 1788 } else { 1789 ExpandVMOVCopies(LoLoop.VMOVCopies); 1790 LoLoop.Start = ExpandLoopStart(LoLoop); 1791 if (LoLoop.Start) 1792 RemoveDeadBranch(LoLoop.Start); 1793 LoLoop.End = ExpandLoopEnd(LoLoop); 1794 RemoveDeadBranch(LoLoop.End); 1795 if (LoLoop.IsTailPredicationLegal()) 1796 ConvertVPTBlocks(LoLoop); 1797 for (auto *I : LoLoop.ToRemove) { 1798 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I); 1799 I->eraseFromParent(); 1800 } 1801 for (auto *I : LoLoop.BlockMasksToRecompute) { 1802 LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I); 1803 recomputeVPTBlockMask(*I); 1804 LLVM_DEBUG(dbgs() << " ... done: " << *I); 1805 } 1806 } 1807 1808 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI); 1809 DFS.ProcessLoop(); 1810 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder(); 1811 for (auto *MBB : PostOrder) { 1812 recomputeLiveIns(*MBB); 1813 // FIXME: For some reason, the live-in print order is non-deterministic for 1814 // our tests and I can't out why... So just sort them. 1815 MBB->sortUniqueLiveIns(); 1816 } 1817 1818 for (auto *MBB : reverse(PostOrder)) 1819 recomputeLivenessFlags(*MBB); 1820 1821 // We've moved, removed and inserted new instructions, so update RDA. 1822 RDA->reset(); 1823 } 1824 1825 bool ARMLowOverheadLoops::RevertNonLoops() { 1826 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); 1827 bool Changed = false; 1828 1829 for (auto &MBB : *MF) { 1830 SmallVector<MachineInstr*, 4> Starts; 1831 SmallVector<MachineInstr*, 4> Decs; 1832 SmallVector<MachineInstr*, 4> Ends; 1833 SmallVector<MachineInstr *, 4> EndDecs; 1834 SmallVector<MachineInstr *, 4> MQPRCopies; 1835 1836 for (auto &I : MBB) { 1837 if (isLoopStart(I)) 1838 Starts.push_back(&I); 1839 else if (I.getOpcode() == ARM::t2LoopDec) 1840 Decs.push_back(&I); 1841 else if (I.getOpcode() == ARM::t2LoopEnd) 1842 Ends.push_back(&I); 1843 else if (I.getOpcode() == ARM::t2LoopEndDec) 1844 EndDecs.push_back(&I); 1845 else if (I.getOpcode() == ARM::MQPRCopy) 1846 MQPRCopies.push_back(&I); 1847 } 1848 1849 if (Starts.empty() && Decs.empty() && Ends.empty() && EndDecs.empty() && 1850 MQPRCopies.empty()) 1851 continue; 1852 1853 Changed = true; 1854 1855 for (auto *Start : Starts) { 1856 if (isWhileLoopStart(*Start)) 1857 RevertWhile(Start); 1858 else 1859 RevertDo(Start); 1860 } 1861 for (auto *Dec : Decs) 1862 RevertLoopDec(Dec); 1863 1864 for (auto *End : Ends) 1865 RevertLoopEnd(End); 1866 for (auto *End : EndDecs) 1867 RevertLoopEndDec(End); 1868 for (auto *MI : MQPRCopies) { 1869 LLVM_DEBUG(dbgs() << "Converting copy to VORR: " << *MI); 1870 assert(MI->getOpcode() == ARM::MQPRCopy && "Only expected MQPRCOPY!"); 1871 MachineBasicBlock *MBB = MI->getParent(); 1872 auto MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::MVE_VORR), 1873 MI->getOperand(0).getReg()) 1874 .add(MI->getOperand(1)) 1875 .add(MI->getOperand(1)); 1876 addUnpredicatedMveVpredROp(MIB, MI->getOperand(0).getReg()); 1877 MI->eraseFromParent(); 1878 } 1879 } 1880 return Changed; 1881 } 1882 1883 FunctionPass *llvm::createARMLowOverheadLoopsPass() { 1884 return new ARMLowOverheadLoops(); 1885 } 1886