1 //===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// Finalize v8.1-m low-overhead loops by converting the associated pseudo 10 /// instructions into machine operations. 11 /// The expectation is that the loop contains three pseudo instructions: 12 /// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop 13 /// form should be in the preheader, whereas the while form should be in the 14 /// preheaders only predecessor. 15 /// - t2LoopDec - placed within in the loop body. 16 /// - t2LoopEnd - the loop latch terminator. 17 /// 18 /// In addition to this, we also look for the presence of the VCTP instruction, 19 /// which determines whether we can generated the tail-predicated low-overhead 20 /// loop form. 21 /// 22 /// Assumptions and Dependencies: 23 /// Low-overhead loops are constructed and executed using a setup instruction: 24 /// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP. 25 /// WLS(TP) and LE(TP) are branching instructions with a (large) limited range 26 /// but fixed polarity: WLS can only branch forwards and LE can only branch 27 /// backwards. These restrictions mean that this pass is dependent upon block 28 /// layout and block sizes, which is why it's the last pass to run. The same is 29 /// true for ConstantIslands, but this pass does not increase the size of the 30 /// basic blocks, nor does it change the CFG. Instructions are mainly removed 31 /// during the transform and pseudo instructions are replaced by real ones. In 32 /// some cases, when we have to revert to a 'normal' loop, we have to introduce 33 /// multiple instructions for a single pseudo (see RevertWhile and 34 /// RevertLoopEnd). To handle this situation, t2WhileLoopStartLR and t2LoopEnd 35 /// are defined to be as large as this maximum sequence of replacement 36 /// instructions. 37 /// 38 /// A note on VPR.P0 (the lane mask): 39 /// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a 40 /// "VPT Active" context (which includes low-overhead loops and vpt blocks). 41 /// They will simply "and" the result of their calculation with the current 42 /// value of VPR.P0. You can think of it like this: 43 /// \verbatim 44 /// if VPT active: ; Between a DLSTP/LETP, or for predicated instrs 45 /// VPR.P0 &= Value 46 /// else 47 /// VPR.P0 = Value 48 /// \endverbatim 49 /// When we're inside the low-overhead loop (between DLSTP and LETP), we always 50 /// fall in the "VPT active" case, so we can consider that all VPR writes by 51 /// one of those instruction is actually a "and". 52 //===----------------------------------------------------------------------===// 53 54 #include "ARM.h" 55 #include "ARMBaseInstrInfo.h" 56 #include "ARMBaseRegisterInfo.h" 57 #include "ARMBasicBlockInfo.h" 58 #include "ARMSubtarget.h" 59 #include "MVETailPredUtils.h" 60 #include "Thumb2InstrInfo.h" 61 #include "llvm/ADT/SetOperations.h" 62 #include "llvm/ADT/SetVector.h" 63 #include "llvm/CodeGen/LivePhysRegs.h" 64 #include "llvm/CodeGen/MachineFrameInfo.h" 65 #include "llvm/CodeGen/MachineFunctionPass.h" 66 #include "llvm/CodeGen/MachineLoopInfo.h" 67 #include "llvm/CodeGen/MachineLoopUtils.h" 68 #include "llvm/CodeGen/MachineRegisterInfo.h" 69 #include "llvm/CodeGen/Passes.h" 70 #include "llvm/CodeGen/ReachingDefAnalysis.h" 71 #include "llvm/MC/MCInstrDesc.h" 72 73 using namespace llvm; 74 75 #define DEBUG_TYPE "arm-low-overhead-loops" 76 #define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass" 77 78 static cl::opt<bool> 79 DisableTailPredication("arm-loloops-disable-tailpred", cl::Hidden, 80 cl::desc("Disable tail-predication in the ARM LowOverheadLoop pass"), 81 cl::init(false)); 82 83 static cl::opt<bool> 84 DisableOmitDLS("arm-disable-omit-dls", cl::Hidden, 85 cl::desc("Disable omitting 'dls lr, lr' instructions"), 86 cl::init(false)); 87 88 static bool isVectorPredicated(MachineInstr *MI) { 89 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 90 return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR; 91 } 92 93 static bool isVectorPredicate(MachineInstr *MI) { 94 return MI->findRegisterDefOperandIdx(ARM::VPR, /*TRI=*/nullptr) != -1; 95 } 96 97 static bool hasVPRUse(MachineInstr &MI) { 98 return MI.findRegisterUseOperandIdx(ARM::VPR, /*TRI=*/nullptr) != -1; 99 } 100 101 static bool isDomainMVE(MachineInstr *MI) { 102 uint64_t Domain = MI->getDesc().TSFlags & ARMII::DomainMask; 103 return Domain == ARMII::DomainMVE; 104 } 105 106 static int getVecSize(const MachineInstr &MI) { 107 const MCInstrDesc &MCID = MI.getDesc(); 108 uint64_t Flags = MCID.TSFlags; 109 return (Flags & ARMII::VecSize) >> ARMII::VecSizeShift; 110 } 111 112 static bool shouldInspect(MachineInstr &MI) { 113 if (MI.isDebugInstr()) 114 return false; 115 return isDomainMVE(&MI) || isVectorPredicate(&MI) || hasVPRUse(MI); 116 } 117 118 static bool isHorizontalReduction(const MachineInstr &MI) { 119 const MCInstrDesc &MCID = MI.getDesc(); 120 uint64_t Flags = MCID.TSFlags; 121 return (Flags & ARMII::HorizontalReduction) != 0; 122 } 123 124 namespace { 125 126 using InstSet = SmallPtrSetImpl<MachineInstr *>; 127 128 class PostOrderLoopTraversal { 129 MachineLoop &ML; 130 MachineLoopInfo &MLI; 131 SmallPtrSet<MachineBasicBlock*, 4> Visited; 132 SmallVector<MachineBasicBlock*, 4> Order; 133 134 public: 135 PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI) 136 : ML(ML), MLI(MLI) { } 137 138 const SmallVectorImpl<MachineBasicBlock*> &getOrder() const { 139 return Order; 140 } 141 142 // Visit all the blocks within the loop, as well as exit blocks and any 143 // blocks properly dominating the header. 144 void ProcessLoop() { 145 std::function<void(MachineBasicBlock*)> Search = [this, &Search] 146 (MachineBasicBlock *MBB) -> void { 147 if (Visited.count(MBB)) 148 return; 149 150 Visited.insert(MBB); 151 for (auto *Succ : MBB->successors()) { 152 if (!ML.contains(Succ)) 153 continue; 154 Search(Succ); 155 } 156 Order.push_back(MBB); 157 }; 158 159 // Insert exit blocks. 160 SmallVector<MachineBasicBlock*, 2> ExitBlocks; 161 ML.getExitBlocks(ExitBlocks); 162 append_range(Order, ExitBlocks); 163 164 // Then add the loop body. 165 Search(ML.getHeader()); 166 167 // Then try the preheader and its predecessors. 168 std::function<void(MachineBasicBlock*)> GetPredecessor = 169 [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void { 170 Order.push_back(MBB); 171 if (MBB->pred_size() == 1) 172 GetPredecessor(*MBB->pred_begin()); 173 }; 174 175 if (auto *Preheader = ML.getLoopPreheader()) 176 GetPredecessor(Preheader); 177 else if (auto *Preheader = MLI.findLoopPreheader(&ML, true, true)) 178 GetPredecessor(Preheader); 179 } 180 }; 181 182 class VPTBlock { 183 SmallVector<MachineInstr *, 4> Insts; 184 185 public: 186 VPTBlock(MachineInstr *MI) { Insts.push_back(MI); } 187 188 // Have we found an instruction within the block which defines the vpr? If 189 // so, not all the instructions in the block will have the same predicate. 190 bool hasUniformPredicate() { return getDivergent() == nullptr; } 191 192 // If it exists, return the first internal instruction which modifies the 193 // VPR. 194 MachineInstr *getDivergent() { 195 SmallVectorImpl<MachineInstr *> &Insts = getInsts(); 196 for (unsigned i = 1; i < Insts.size(); ++i) { 197 MachineInstr *Next = Insts[i]; 198 if (isVectorPredicate(Next)) 199 return Next; // Found an instruction altering the vpr. 200 } 201 return nullptr; 202 } 203 204 void insert(MachineInstr *MI) { 205 Insts.push_back(MI); 206 // VPT/VPST + 4 predicated instructions. 207 assert(Insts.size() <= 5 && "Too many instructions in VPT block!"); 208 } 209 210 bool containsVCTP() const { return llvm::any_of(Insts, isVCTP); } 211 212 unsigned size() const { return Insts.size(); } 213 SmallVectorImpl<MachineInstr *> &getInsts() { return Insts; } 214 }; 215 216 // Represent the current state of the VPR and hold all instances which 217 // represent a VPT block, which is a list of instructions that begins with a 218 // VPT/VPST and has a maximum of four proceeding instructions. All 219 // instructions within the block are predicated upon the vpr and we allow 220 // instructions to define the vpr within in the block too. 221 class VPTState { 222 friend struct LowOverheadLoop; 223 224 SmallVector<VPTBlock, 4> Blocks; 225 SetVector<MachineInstr *> CurrentPredicates; 226 std::map<MachineInstr *, SetVector<MachineInstr *>> PredicatedInsts; 227 228 void CreateVPTBlock(MachineInstr *MI) { 229 assert((CurrentPredicates.size() || MI->getParent()->isLiveIn(ARM::VPR)) 230 && "Can't begin VPT without predicate"); 231 Blocks.emplace_back(MI); 232 // The execution of MI is predicated upon the current set of instructions 233 // that are AND'ed together to form the VPR predicate value. In the case 234 // that MI is a VPT, CurrentPredicates will also just be MI. 235 PredicatedInsts[MI] = CurrentPredicates; 236 } 237 238 void addInst(MachineInstr *MI) { 239 Blocks.back().insert(MI); 240 PredicatedInsts[MI] = CurrentPredicates; 241 } 242 243 void addPredicate(MachineInstr *MI) { 244 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VPT Predicate: " << *MI); 245 CurrentPredicates.insert(MI); 246 } 247 248 void resetPredicate(MachineInstr *MI) { 249 LLVM_DEBUG(dbgs() << "ARM Loops: Resetting VPT Predicate: " << *MI); 250 CurrentPredicates.clear(); 251 CurrentPredicates.insert(MI); 252 } 253 254 public: 255 // Return whether the given instruction is predicated upon a VCTP. 256 bool isPredicatedOnVCTP(MachineInstr *MI, bool Exclusive = false) { 257 SetVector<MachineInstr *> &Predicates = PredicatedInsts[MI]; 258 if (Exclusive && Predicates.size() != 1) 259 return false; 260 // We do not know how to convert an else predicate of a VCTP. 261 if (getVPTInstrPredicate(*MI) == ARMVCC::Else) 262 return false; 263 return llvm::any_of(Predicates, isVCTP); 264 } 265 266 // Is the VPST, controlling the block entry, predicated upon a VCTP. 267 bool isEntryPredicatedOnVCTP(VPTBlock &Block, bool Exclusive = false) { 268 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 269 return isPredicatedOnVCTP(Insts.front(), Exclusive); 270 } 271 272 // If this block begins with a VPT, we can check whether it's using 273 // at least one predicated input(s), as well as possible loop invariant 274 // which would result in it being implicitly predicated. 275 bool hasImplicitlyValidVPT(VPTBlock &Block, ReachingDefAnalysis &RDA) { 276 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 277 MachineInstr *VPT = Insts.front(); 278 assert(isVPTOpcode(VPT->getOpcode()) && 279 "Expected VPT block to begin with VPT/VPST"); 280 281 if (VPT->getOpcode() == ARM::MVE_VPST) 282 return false; 283 284 // If the VPT block does not define something that is an "output", then 285 // the tail-predicated version will just perform a subset of the original 286 // vpt block, where the last lanes should not be used. 287 if (isVPTOpcode(VPT->getOpcode()) && 288 all_of(Block.getInsts(), [](const MachineInstr *MI) { 289 return !MI->mayStore() && !MI->mayLoad() && 290 !isHorizontalReduction(*MI) && !isVCTP(MI); 291 })) 292 return true; 293 294 auto IsOperandPredicated = [&](MachineInstr *MI, unsigned Idx) { 295 MachineInstr *Op = RDA.getMIOperand(MI, MI->getOperand(Idx)); 296 return Op && PredicatedInsts.count(Op) && isPredicatedOnVCTP(Op); 297 }; 298 299 auto IsOperandInvariant = [&](MachineInstr *MI, unsigned Idx) { 300 MachineOperand &MO = MI->getOperand(Idx); 301 if (!MO.isReg() || !MO.getReg()) 302 return true; 303 304 SmallPtrSet<MachineInstr *, 2> Defs; 305 RDA.getGlobalReachingDefs(MI, MO.getReg(), Defs); 306 if (Defs.empty()) 307 return true; 308 309 for (auto *Def : Defs) 310 if (Def->getParent() == VPT->getParent()) 311 return false; 312 return true; 313 }; 314 315 // Check that at least one of the operands is directly predicated on a 316 // vctp and allow an invariant value too. 317 return (IsOperandPredicated(VPT, 1) || IsOperandPredicated(VPT, 2)) && 318 (IsOperandPredicated(VPT, 1) || IsOperandInvariant(VPT, 1)) && 319 (IsOperandPredicated(VPT, 2) || IsOperandInvariant(VPT, 2)); 320 } 321 322 bool isValid(ReachingDefAnalysis &RDA) { 323 // All predication within the loop should be based on vctp. If the block 324 // isn't predicated on entry, check whether the vctp is within the block 325 // and that all other instructions are then predicated on it. 326 for (auto &Block : Blocks) { 327 if (isEntryPredicatedOnVCTP(Block, false) && 328 !any_of(drop_begin(Block.getInsts()), [](const MachineInstr *MI) { 329 return getVPTInstrPredicate(*MI) == ARMVCC::Else; 330 })) 331 continue; 332 if (hasImplicitlyValidVPT(Block, RDA)) 333 continue; 334 335 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 336 // We don't know how to convert a block with just a VPT;VCTP into 337 // anything valid once we remove the VCTP. For now just bail out. 338 assert(isVPTOpcode(Insts.front()->getOpcode()) && 339 "Expected VPT block to start with a VPST or VPT!"); 340 if (Insts.size() == 2 && Insts.front()->getOpcode() != ARM::MVE_VPST && 341 isVCTP(Insts.back())) 342 return false; 343 344 for (auto *MI : Insts) { 345 // Check that any internal VCTPs are 'Then' predicated. 346 if (isVCTP(MI) && getVPTInstrPredicate(*MI) != ARMVCC::Then) 347 return false; 348 // Skip other instructions that build up the predicate. 349 if (MI->getOpcode() == ARM::MVE_VPST || isVectorPredicate(MI)) 350 continue; 351 // Check that any other instructions are predicated upon a vctp. 352 // TODO: We could infer when VPTs are implicitly predicated on the 353 // vctp (when the operands are predicated). 354 if (!isPredicatedOnVCTP(MI)) { 355 LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *MI); 356 return false; 357 } 358 } 359 } 360 return true; 361 } 362 }; 363 364 struct LowOverheadLoop { 365 366 MachineLoop &ML; 367 MachineBasicBlock *Preheader = nullptr; 368 MachineLoopInfo &MLI; 369 ReachingDefAnalysis &RDA; 370 const TargetRegisterInfo &TRI; 371 const ARMBaseInstrInfo &TII; 372 MachineFunction *MF = nullptr; 373 MachineBasicBlock::iterator StartInsertPt; 374 MachineBasicBlock *StartInsertBB = nullptr; 375 MachineInstr *Start = nullptr; 376 MachineInstr *Dec = nullptr; 377 MachineInstr *End = nullptr; 378 MachineOperand TPNumElements; 379 SmallVector<MachineInstr *, 4> VCTPs; 380 SmallPtrSet<MachineInstr *, 4> ToRemove; 381 SmallPtrSet<MachineInstr *, 4> BlockMasksToRecompute; 382 SmallPtrSet<MachineInstr *, 4> DoubleWidthResultInstrs; 383 SmallPtrSet<MachineInstr *, 4> VMOVCopies; 384 bool Revert = false; 385 bool CannotTailPredicate = false; 386 VPTState VPTstate; 387 388 LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI, 389 ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI, 390 const ARMBaseInstrInfo &TII) 391 : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII), 392 TPNumElements(MachineOperand::CreateImm(0)) { 393 MF = ML.getHeader()->getParent(); 394 if (auto *MBB = ML.getLoopPreheader()) 395 Preheader = MBB; 396 else if (auto *MBB = MLI.findLoopPreheader(&ML, true, true)) 397 Preheader = MBB; 398 } 399 400 // If this is an MVE instruction, check that we know how to use tail 401 // predication with it. Record VPT blocks and return whether the 402 // instruction is valid for tail predication. 403 bool ValidateMVEInst(MachineInstr *MI); 404 405 void AnalyseMVEInst(MachineInstr *MI) { 406 CannotTailPredicate = !ValidateMVEInst(MI); 407 } 408 409 bool IsTailPredicationLegal() const { 410 // For now, let's keep things really simple and only support a single 411 // block for tail predication. 412 return !Revert && FoundAllComponents() && !VCTPs.empty() && 413 !CannotTailPredicate && ML.getNumBlocks() == 1; 414 } 415 416 // Given that MI is a VCTP, check that is equivalent to any other VCTPs 417 // found. 418 bool AddVCTP(MachineInstr *MI); 419 420 // Check that the predication in the loop will be equivalent once we 421 // perform the conversion. Also ensure that we can provide the number 422 // of elements to the loop start instruction. 423 bool ValidateTailPredicate(); 424 425 // Check that any values available outside of the loop will be the same 426 // after tail predication conversion. 427 bool ValidateLiveOuts(); 428 429 // Check the branch targets are within range and we satisfy our 430 // restrictions. 431 void Validate(ARMBasicBlockUtils *BBUtils); 432 433 bool FoundAllComponents() const { 434 return Start && Dec && End; 435 } 436 437 SmallVectorImpl<VPTBlock> &getVPTBlocks() { return VPTstate.Blocks; } 438 439 // Return the operand for the loop start instruction. This will be the loop 440 // iteration count, or the number of elements if we're tail predicating. 441 MachineOperand &getLoopStartOperand() { 442 if (IsTailPredicationLegal()) 443 return TPNumElements; 444 return Start->getOperand(1); 445 } 446 447 unsigned getStartOpcode() const { 448 bool IsDo = isDoLoopStart(*Start); 449 if (!IsTailPredicationLegal()) 450 return IsDo ? ARM::t2DLS : ARM::t2WLS; 451 452 return VCTPOpcodeToLSTP(VCTPs.back()->getOpcode(), IsDo); 453 } 454 455 void dump() const { 456 if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start; 457 if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec; 458 if (End) dbgs() << "ARM Loops: Found Loop End: " << *End; 459 if (!VCTPs.empty()) { 460 dbgs() << "ARM Loops: Found VCTP(s):\n"; 461 for (auto *MI : VCTPs) 462 dbgs() << " - " << *MI; 463 } 464 if (!FoundAllComponents()) 465 dbgs() << "ARM Loops: Not a low-overhead loop.\n"; 466 else if (!(Start && Dec && End)) 467 dbgs() << "ARM Loops: Failed to find all loop components.\n"; 468 } 469 }; 470 471 class ARMLowOverheadLoops : public MachineFunctionPass { 472 MachineFunction *MF = nullptr; 473 MachineLoopInfo *MLI = nullptr; 474 ReachingDefAnalysis *RDA = nullptr; 475 const ARMBaseInstrInfo *TII = nullptr; 476 MachineRegisterInfo *MRI = nullptr; 477 const TargetRegisterInfo *TRI = nullptr; 478 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 479 480 public: 481 static char ID; 482 483 ARMLowOverheadLoops() : MachineFunctionPass(ID) { } 484 485 void getAnalysisUsage(AnalysisUsage &AU) const override { 486 AU.setPreservesCFG(); 487 AU.addRequired<MachineLoopInfoWrapperPass>(); 488 AU.addRequired<ReachingDefAnalysis>(); 489 MachineFunctionPass::getAnalysisUsage(AU); 490 } 491 492 bool runOnMachineFunction(MachineFunction &MF) override; 493 494 MachineFunctionProperties getRequiredProperties() const override { 495 return MachineFunctionProperties().set( 496 MachineFunctionProperties::Property::NoVRegs).set( 497 MachineFunctionProperties::Property::TracksLiveness); 498 } 499 500 StringRef getPassName() const override { 501 return ARM_LOW_OVERHEAD_LOOPS_NAME; 502 } 503 504 private: 505 bool ProcessLoop(MachineLoop *ML); 506 507 bool RevertNonLoops(); 508 509 void RevertWhile(MachineInstr *MI) const; 510 void RevertDo(MachineInstr *MI) const; 511 512 bool RevertLoopDec(MachineInstr *MI) const; 513 514 void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const; 515 516 void RevertLoopEndDec(MachineInstr *MI) const; 517 518 void ConvertVPTBlocks(LowOverheadLoop &LoLoop); 519 520 MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop); 521 522 void Expand(LowOverheadLoop &LoLoop); 523 524 void IterationCountDCE(LowOverheadLoop &LoLoop); 525 }; 526 } 527 528 char ARMLowOverheadLoops::ID = 0; 529 530 INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME, 531 false, false) 532 533 static bool TryRemove(MachineInstr *MI, ReachingDefAnalysis &RDA, 534 InstSet &ToRemove, InstSet &Ignore) { 535 536 // Check that we can remove all of Killed without having to modify any IT 537 // blocks. 538 auto WontCorruptITs = [](InstSet &Killed, ReachingDefAnalysis &RDA) { 539 // Collect the dead code and the MBBs in which they reside. 540 SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks; 541 for (auto *Dead : Killed) 542 BasicBlocks.insert(Dead->getParent()); 543 544 // Collect IT blocks in all affected basic blocks. 545 std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks; 546 for (auto *MBB : BasicBlocks) { 547 for (auto &IT : *MBB) { 548 if (IT.getOpcode() != ARM::t2IT) 549 continue; 550 RDA.getReachingLocalUses(&IT, MCRegister::from(ARM::ITSTATE), 551 ITBlocks[&IT]); 552 } 553 } 554 555 // If we're removing all of the instructions within an IT block, then 556 // also remove the IT instruction. 557 SmallPtrSet<MachineInstr *, 2> ModifiedITs; 558 SmallPtrSet<MachineInstr *, 2> RemoveITs; 559 for (auto *Dead : Killed) { 560 if (MachineOperand *MO = 561 Dead->findRegisterUseOperand(ARM::ITSTATE, /*TRI=*/nullptr)) { 562 MachineInstr *IT = RDA.getMIOperand(Dead, *MO); 563 RemoveITs.insert(IT); 564 auto &CurrentBlock = ITBlocks[IT]; 565 CurrentBlock.erase(Dead); 566 if (CurrentBlock.empty()) 567 ModifiedITs.erase(IT); 568 else 569 ModifiedITs.insert(IT); 570 } 571 } 572 if (!ModifiedITs.empty()) 573 return false; 574 Killed.insert(RemoveITs.begin(), RemoveITs.end()); 575 return true; 576 }; 577 578 SmallPtrSet<MachineInstr *, 2> Uses; 579 if (!RDA.isSafeToRemove(MI, Uses, Ignore)) 580 return false; 581 582 if (WontCorruptITs(Uses, RDA)) { 583 ToRemove.insert(Uses.begin(), Uses.end()); 584 LLVM_DEBUG(dbgs() << "ARM Loops: Able to remove: " << *MI 585 << " - can also remove:\n"; 586 for (auto *Use : Uses) 587 dbgs() << " - " << *Use); 588 589 SmallPtrSet<MachineInstr*, 4> Killed; 590 RDA.collectKilledOperands(MI, Killed); 591 if (WontCorruptITs(Killed, RDA)) { 592 ToRemove.insert(Killed.begin(), Killed.end()); 593 LLVM_DEBUG(for (auto *Dead : Killed) 594 dbgs() << " - " << *Dead); 595 } 596 return true; 597 } 598 return false; 599 } 600 601 bool LowOverheadLoop::ValidateTailPredicate() { 602 if (!IsTailPredicationLegal()) { 603 LLVM_DEBUG(if (VCTPs.empty()) 604 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n"; 605 dbgs() << "ARM Loops: Tail-predication is not valid.\n"); 606 return false; 607 } 608 609 assert(!VCTPs.empty() && "VCTP instruction expected but is not set"); 610 assert(ML.getBlocks().size() == 1 && 611 "Shouldn't be processing a loop with more than one block"); 612 613 if (DisableTailPredication) { 614 LLVM_DEBUG(dbgs() << "ARM Loops: tail-predication is disabled\n"); 615 return false; 616 } 617 618 if (!VPTstate.isValid(RDA)) { 619 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid VPT state.\n"); 620 return false; 621 } 622 623 if (!ValidateLiveOuts()) { 624 LLVM_DEBUG(dbgs() << "ARM Loops: Invalid live outs.\n"); 625 return false; 626 } 627 628 // For tail predication, we need to provide the number of elements, instead 629 // of the iteration count, to the loop start instruction. The number of 630 // elements is provided to the vctp instruction, so we need to check that 631 // we can use this register at InsertPt. 632 MachineInstr *VCTP = VCTPs.back(); 633 if (Start->getOpcode() == ARM::t2DoLoopStartTP || 634 Start->getOpcode() == ARM::t2WhileLoopStartTP) { 635 TPNumElements = Start->getOperand(2); 636 StartInsertPt = Start; 637 StartInsertBB = Start->getParent(); 638 } else { 639 TPNumElements = VCTP->getOperand(1); 640 MCRegister NumElements = TPNumElements.getReg().asMCReg(); 641 642 // If the register is defined within loop, then we can't perform TP. 643 // TODO: Check whether this is just a mov of a register that would be 644 // available. 645 if (RDA.hasLocalDefBefore(VCTP, NumElements)) { 646 LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n"); 647 return false; 648 } 649 650 // The element count register maybe defined after InsertPt, in which case we 651 // need to try to move either InsertPt or the def so that the [w|d]lstp can 652 // use the value. 653 654 if (StartInsertPt != StartInsertBB->end() && 655 !RDA.isReachingDefLiveOut(&*StartInsertPt, NumElements)) { 656 if (auto *ElemDef = 657 RDA.getLocalLiveOutMIDef(StartInsertBB, NumElements)) { 658 if (RDA.isSafeToMoveForwards(ElemDef, &*StartInsertPt)) { 659 ElemDef->removeFromParent(); 660 StartInsertBB->insert(StartInsertPt, ElemDef); 661 LLVM_DEBUG(dbgs() 662 << "ARM Loops: Moved element count def: " << *ElemDef); 663 } else if (RDA.isSafeToMoveBackwards(&*StartInsertPt, ElemDef)) { 664 StartInsertPt->removeFromParent(); 665 StartInsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef), 666 &*StartInsertPt); 667 LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef); 668 } else { 669 // If we fail to move an instruction and the element count is provided 670 // by a mov, use the mov operand if it will have the same value at the 671 // insertion point 672 MachineOperand Operand = ElemDef->getOperand(1); 673 if (isMovRegOpcode(ElemDef->getOpcode()) && 674 RDA.getUniqueReachingMIDef(ElemDef, Operand.getReg().asMCReg()) == 675 RDA.getUniqueReachingMIDef(&*StartInsertPt, 676 Operand.getReg().asMCReg())) { 677 TPNumElements = Operand; 678 NumElements = TPNumElements.getReg(); 679 } else { 680 LLVM_DEBUG(dbgs() 681 << "ARM Loops: Unable to move element count to loop " 682 << "start instruction.\n"); 683 return false; 684 } 685 } 686 } 687 } 688 689 // Especially in the case of while loops, InsertBB may not be the 690 // preheader, so we need to check that the register isn't redefined 691 // before entering the loop. 692 auto CannotProvideElements = [this](MachineBasicBlock *MBB, 693 MCRegister NumElements) { 694 if (MBB->empty()) 695 return false; 696 // NumElements is redefined in this block. 697 if (RDA.hasLocalDefBefore(&MBB->back(), NumElements)) 698 return true; 699 700 // Don't continue searching up through multiple predecessors. 701 if (MBB->pred_size() > 1) 702 return true; 703 704 return false; 705 }; 706 707 // Search backwards for a def, until we get to InsertBB. 708 MachineBasicBlock *MBB = Preheader; 709 while (MBB && MBB != StartInsertBB) { 710 if (CannotProvideElements(MBB, NumElements)) { 711 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n"); 712 return false; 713 } 714 MBB = *MBB->pred_begin(); 715 } 716 } 717 718 // Could inserting the [W|D]LSTP cause some unintended affects? In a perfect 719 // world the [w|d]lstp instruction would be last instruction in the preheader 720 // and so it would only affect instructions within the loop body. But due to 721 // scheduling, and/or the logic in this pass (above), the insertion point can 722 // be moved earlier. So if the Loop Start isn't the last instruction in the 723 // preheader, and if the initial element count is smaller than the vector 724 // width, the Loop Start instruction will immediately generate one or more 725 // false lane mask which can, incorrectly, affect the proceeding MVE 726 // instructions in the preheader. 727 if (std::any_of(StartInsertPt, StartInsertBB->end(), shouldInspect)) { 728 LLVM_DEBUG(dbgs() << "ARM Loops: Instruction blocks [W|D]LSTP\n"); 729 return false; 730 } 731 732 // For any DoubleWidthResultInstrs we found whilst scanning instructions, they 733 // need to compute an output size that is smaller than the VCTP mask operates 734 // on. The VecSize of the DoubleWidthResult is the larger vector size - the 735 // size it extends into, so any VCTP VecSize <= is valid. 736 unsigned VCTPVecSize = getVecSize(*VCTP); 737 for (MachineInstr *MI : DoubleWidthResultInstrs) { 738 unsigned InstrVecSize = getVecSize(*MI); 739 if (InstrVecSize > VCTPVecSize) { 740 LLVM_DEBUG(dbgs() << "ARM Loops: Double width result larger than VCTP " 741 << "VecSize:\n" << *MI); 742 return false; 743 } 744 } 745 746 // Check that the value change of the element count is what we expect and 747 // that the predication will be equivalent. For this we need: 748 // NumElements = NumElements - VectorWidth. The sub will be a sub immediate 749 // and we can also allow register copies within the chain too. 750 auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) { 751 return -getAddSubImmediate(*MI) == ExpectedVecWidth; 752 }; 753 754 MachineBasicBlock *MBB = VCTP->getParent(); 755 // Remove modifications to the element count since they have no purpose in a 756 // tail predicated loop. Explicitly refer to the vctp operand no matter which 757 // register NumElements has been assigned to, since that is what the 758 // modifications will be using 759 if (auto *Def = RDA.getUniqueReachingMIDef( 760 &MBB->back(), VCTP->getOperand(1).getReg().asMCReg())) { 761 SmallPtrSet<MachineInstr*, 2> ElementChain; 762 SmallPtrSet<MachineInstr*, 2> Ignore; 763 unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode()); 764 765 Ignore.insert(VCTPs.begin(), VCTPs.end()); 766 767 if (TryRemove(Def, RDA, ElementChain, Ignore)) { 768 bool FoundSub = false; 769 770 for (auto *MI : ElementChain) { 771 if (isMovRegOpcode(MI->getOpcode())) 772 continue; 773 774 if (isSubImmOpcode(MI->getOpcode())) { 775 if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth)) { 776 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element" 777 " count: " << *MI); 778 return false; 779 } 780 FoundSub = true; 781 } else { 782 LLVM_DEBUG(dbgs() << "ARM Loops: Unexpected instruction in element" 783 " count: " << *MI); 784 return false; 785 } 786 } 787 ToRemove.insert(ElementChain.begin(), ElementChain.end()); 788 } 789 } 790 791 // If we converted the LoopStart to a t2DoLoopStartTP/t2WhileLoopStartTP, we 792 // can also remove any extra instructions in the preheader, which often 793 // includes a now unused MOV. 794 if ((Start->getOpcode() == ARM::t2DoLoopStartTP || 795 Start->getOpcode() == ARM::t2WhileLoopStartTP) && 796 Preheader && !Preheader->empty() && 797 !RDA.hasLocalDefBefore(VCTP, VCTP->getOperand(1).getReg())) { 798 if (auto *Def = RDA.getUniqueReachingMIDef( 799 &Preheader->back(), VCTP->getOperand(1).getReg().asMCReg())) { 800 SmallPtrSet<MachineInstr*, 2> Ignore; 801 Ignore.insert(VCTPs.begin(), VCTPs.end()); 802 TryRemove(Def, RDA, ToRemove, Ignore); 803 } 804 } 805 806 return true; 807 } 808 809 static bool isRegInClass(const MachineOperand &MO, 810 const TargetRegisterClass *Class) { 811 return MO.isReg() && MO.getReg() && Class->contains(MO.getReg()); 812 } 813 814 // MVE 'narrowing' operate on half a lane, reading from half and writing 815 // to half, which are referred to has the top and bottom half. The other 816 // half retains its previous value. 817 static bool retainsPreviousHalfElement(const MachineInstr &MI) { 818 const MCInstrDesc &MCID = MI.getDesc(); 819 uint64_t Flags = MCID.TSFlags; 820 return (Flags & ARMII::RetainsPreviousHalfElement) != 0; 821 } 822 823 // Some MVE instructions read from the top/bottom halves of their operand(s) 824 // and generate a vector result with result elements that are double the 825 // width of the input. 826 static bool producesDoubleWidthResult(const MachineInstr &MI) { 827 const MCInstrDesc &MCID = MI.getDesc(); 828 uint64_t Flags = MCID.TSFlags; 829 return (Flags & ARMII::DoubleWidthResult) != 0; 830 } 831 832 // Can this instruction generate a non-zero result when given only zeroed 833 // operands? This allows us to know that, given operands with false bytes 834 // zeroed by masked loads, that the result will also contain zeros in those 835 // bytes. 836 static bool canGenerateNonZeros(const MachineInstr &MI) { 837 838 // Check for instructions which can write into a larger element size, 839 // possibly writing into a previous zero'd lane. 840 if (producesDoubleWidthResult(MI)) 841 return true; 842 843 switch (MI.getOpcode()) { 844 default: 845 break; 846 // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow 847 // fp16 -> fp32 vector conversions. 848 // Instructions that perform a NOT will generate 1s from 0s. 849 case ARM::MVE_VMVN: 850 case ARM::MVE_VORN: 851 // Count leading zeros will do just that! 852 case ARM::MVE_VCLZs8: 853 case ARM::MVE_VCLZs16: 854 case ARM::MVE_VCLZs32: 855 return true; 856 } 857 return false; 858 } 859 860 // Look at its register uses to see if it only can only receive zeros 861 // into its false lanes which would then produce zeros. Also check that 862 // the output register is also defined by an FalseLanesZero instruction 863 // so that if tail-predication happens, the lanes that aren't updated will 864 // still be zeros. 865 static bool producesFalseLanesZero(MachineInstr &MI, 866 const TargetRegisterClass *QPRs, 867 const ReachingDefAnalysis &RDA, 868 InstSet &FalseLanesZero) { 869 if (canGenerateNonZeros(MI)) 870 return false; 871 872 bool isPredicated = isVectorPredicated(&MI); 873 // Predicated loads will write zeros to the falsely predicated bytes of the 874 // destination register. 875 if (MI.mayLoad()) 876 return isPredicated; 877 878 auto IsZeroInit = [](MachineInstr *Def) { 879 return !isVectorPredicated(Def) && 880 Def->getOpcode() == ARM::MVE_VMOVimmi32 && 881 Def->getOperand(1).getImm() == 0; 882 }; 883 884 bool AllowScalars = isHorizontalReduction(MI); 885 for (auto &MO : MI.operands()) { 886 if (!MO.isReg() || !MO.getReg()) 887 continue; 888 if (!isRegInClass(MO, QPRs) && AllowScalars) 889 continue; 890 // Skip the lr predicate reg 891 int PIdx = llvm::findFirstVPTPredOperandIdx(MI); 892 if (PIdx != -1 && (int)MO.getOperandNo() == PIdx + 2) 893 continue; 894 895 // Check that this instruction will produce zeros in its false lanes: 896 // - If it only consumes false lanes zero or constant 0 (vmov #0) 897 // - If it's predicated, it only matters that it's def register already has 898 // false lane zeros, so we can ignore the uses. 899 SmallPtrSet<MachineInstr *, 2> Defs; 900 RDA.getGlobalReachingDefs(&MI, MO.getReg(), Defs); 901 if (Defs.empty()) 902 return false; 903 for (auto *Def : Defs) { 904 if (Def == &MI || FalseLanesZero.count(Def) || IsZeroInit(Def)) 905 continue; 906 if (MO.isUse() && isPredicated) 907 continue; 908 return false; 909 } 910 } 911 LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI); 912 return true; 913 } 914 915 bool LowOverheadLoop::ValidateLiveOuts() { 916 // We want to find out if the tail-predicated version of this loop will 917 // produce the same values as the loop in its original form. For this to 918 // be true, the newly inserted implicit predication must not change the 919 // the (observable) results. 920 // We're doing this because many instructions in the loop will not be 921 // predicated and so the conversion from VPT predication to tail-predication 922 // can result in different values being produced; due to the tail-predication 923 // preventing many instructions from updating their falsely predicated 924 // lanes. This analysis assumes that all the instructions perform lane-wise 925 // operations and don't perform any exchanges. 926 // A masked load, whether through VPT or tail predication, will write zeros 927 // to any of the falsely predicated bytes. So, from the loads, we know that 928 // the false lanes are zeroed and here we're trying to track that those false 929 // lanes remain zero, or where they change, the differences are masked away 930 // by their user(s). 931 // All MVE stores have to be predicated, so we know that any predicate load 932 // operands, or stored results are equivalent already. Other explicitly 933 // predicated instructions will perform the same operation in the original 934 // loop and the tail-predicated form too. Because of this, we can insert 935 // loads, stores and other predicated instructions into our Predicated 936 // set and build from there. 937 const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID); 938 SetVector<MachineInstr *> FalseLanesUnknown; 939 SmallPtrSet<MachineInstr *, 4> FalseLanesZero; 940 SmallPtrSet<MachineInstr *, 4> Predicated; 941 MachineBasicBlock *Header = ML.getHeader(); 942 943 LLVM_DEBUG(dbgs() << "ARM Loops: Validating Live outs\n"); 944 945 for (auto &MI : *Header) { 946 if (!shouldInspect(MI)) 947 continue; 948 949 if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode())) 950 continue; 951 952 bool isPredicated = isVectorPredicated(&MI); 953 bool retainsOrReduces = 954 retainsPreviousHalfElement(MI) || isHorizontalReduction(MI); 955 956 if (isPredicated) 957 Predicated.insert(&MI); 958 if (producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero)) 959 FalseLanesZero.insert(&MI); 960 else if (MI.getNumDefs() == 0) 961 continue; 962 else if (!isPredicated && retainsOrReduces) { 963 LLVM_DEBUG(dbgs() << " Unpredicated instruction that retainsOrReduces: " << MI); 964 return false; 965 } else if (!isPredicated && MI.getOpcode() != ARM::MQPRCopy) 966 FalseLanesUnknown.insert(&MI); 967 } 968 969 LLVM_DEBUG({ 970 dbgs() << " Predicated:\n"; 971 for (auto *I : Predicated) 972 dbgs() << " " << *I; 973 dbgs() << " FalseLanesZero:\n"; 974 for (auto *I : FalseLanesZero) 975 dbgs() << " " << *I; 976 dbgs() << " FalseLanesUnknown:\n"; 977 for (auto *I : FalseLanesUnknown) 978 dbgs() << " " << *I; 979 }); 980 981 auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO, 982 SmallPtrSetImpl<MachineInstr *> &Predicated) { 983 SmallPtrSet<MachineInstr *, 2> Uses; 984 RDA.getGlobalUses(MI, MO.getReg().asMCReg(), Uses); 985 for (auto *Use : Uses) { 986 if (Use != MI && !Predicated.count(Use)) 987 return false; 988 } 989 return true; 990 }; 991 992 // Visit the unknowns in reverse so that we can start at the values being 993 // stored and then we can work towards the leaves, hopefully adding more 994 // instructions to Predicated. Successfully terminating the loop means that 995 // all the unknown values have to found to be masked by predicated user(s). 996 // For any unpredicated values, we store them in NonPredicated so that we 997 // can later check whether these form a reduction. 998 SmallPtrSet<MachineInstr*, 2> NonPredicated; 999 for (auto *MI : reverse(FalseLanesUnknown)) { 1000 for (auto &MO : MI->operands()) { 1001 if (!isRegInClass(MO, QPRs) || !MO.isDef()) 1002 continue; 1003 if (!HasPredicatedUsers(MI, MO, Predicated)) { 1004 LLVM_DEBUG(dbgs() << " Found an unknown def of : " 1005 << TRI.getRegAsmName(MO.getReg()) << " at " << *MI); 1006 NonPredicated.insert(MI); 1007 break; 1008 } 1009 } 1010 // Any unknown false lanes have been masked away by the user(s). 1011 if (!NonPredicated.contains(MI)) 1012 Predicated.insert(MI); 1013 } 1014 1015 SmallPtrSet<MachineInstr *, 2> LiveOutMIs; 1016 SmallVector<MachineBasicBlock *, 2> ExitBlocks; 1017 ML.getExitBlocks(ExitBlocks); 1018 assert(ML.getNumBlocks() == 1 && "Expected single block loop!"); 1019 assert(ExitBlocks.size() == 1 && "Expected a single exit block"); 1020 MachineBasicBlock *ExitBB = ExitBlocks.front(); 1021 for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) { 1022 // TODO: Instead of blocking predication, we could move the vctp to the exit 1023 // block and calculate it's operand there in or the preheader. 1024 if (RegMask.PhysReg == ARM::VPR) { 1025 LLVM_DEBUG(dbgs() << " VPR is live in to the exit block."); 1026 return false; 1027 } 1028 // Check Q-regs that are live in the exit blocks. We don't collect scalars 1029 // because they won't be affected by lane predication. 1030 if (QPRs->contains(RegMask.PhysReg)) 1031 if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg)) 1032 LiveOutMIs.insert(MI); 1033 } 1034 1035 // We've already validated that any VPT predication within the loop will be 1036 // equivalent when we perform the predication transformation; so we know that 1037 // any VPT predicated instruction is predicated upon VCTP. Any live-out 1038 // instruction needs to be predicated, so check this here. The instructions 1039 // in NonPredicated have been found to be a reduction that we can ensure its 1040 // legality. Any MQPRCopy found will need to validate its input as if it was 1041 // live out. 1042 SmallVector<MachineInstr *> Worklist(LiveOutMIs.begin(), LiveOutMIs.end()); 1043 while (!Worklist.empty()) { 1044 MachineInstr *MI = Worklist.pop_back_val(); 1045 if (MI->getOpcode() == ARM::MQPRCopy) { 1046 VMOVCopies.insert(MI); 1047 MachineInstr *CopySrc = 1048 RDA.getUniqueReachingMIDef(MI, MI->getOperand(1).getReg()); 1049 if (CopySrc) 1050 Worklist.push_back(CopySrc); 1051 } else if (NonPredicated.count(MI) && FalseLanesUnknown.contains(MI)) { 1052 LLVM_DEBUG(dbgs() << " Unable to handle live out: " << *MI); 1053 VMOVCopies.clear(); 1054 return false; 1055 } 1056 } 1057 1058 return true; 1059 } 1060 1061 void LowOverheadLoop::Validate(ARMBasicBlockUtils *BBUtils) { 1062 if (Revert) 1063 return; 1064 1065 // Check branch target ranges: WLS[TP] can only branch forwards and LE[TP] 1066 // can only jump back. 1067 auto ValidateRanges = [](MachineInstr *Start, MachineInstr *End, 1068 ARMBasicBlockUtils *BBUtils, MachineLoop &ML) { 1069 MachineBasicBlock *TgtBB = End->getOpcode() == ARM::t2LoopEnd 1070 ? End->getOperand(1).getMBB() 1071 : End->getOperand(2).getMBB(); 1072 // TODO Maybe there's cases where the target doesn't have to be the header, 1073 // but for now be safe and revert. 1074 if (TgtBB != ML.getHeader()) { 1075 LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targeting header.\n"); 1076 return false; 1077 } 1078 1079 // The WLS and LE instructions have 12-bits for the label offset. WLS 1080 // requires a positive offset, while LE uses negative. 1081 if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) || 1082 !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) { 1083 LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n"); 1084 return false; 1085 } 1086 1087 if (isWhileLoopStart(*Start)) { 1088 MachineBasicBlock *TargetBB = getWhileLoopStartTargetBB(*Start); 1089 if (BBUtils->getOffsetOf(Start) > BBUtils->getOffsetOf(TargetBB) || 1090 !BBUtils->isBBInRange(Start, TargetBB, 4094)) { 1091 LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n"); 1092 return false; 1093 } 1094 } 1095 return true; 1096 }; 1097 1098 StartInsertPt = MachineBasicBlock::iterator(Start); 1099 StartInsertBB = Start->getParent(); 1100 LLVM_DEBUG(dbgs() << "ARM Loops: Will insert LoopStart at " 1101 << *StartInsertPt); 1102 1103 Revert = !ValidateRanges(Start, End, BBUtils, ML); 1104 CannotTailPredicate = !ValidateTailPredicate(); 1105 } 1106 1107 bool LowOverheadLoop::AddVCTP(MachineInstr *MI) { 1108 LLVM_DEBUG(dbgs() << "ARM Loops: Adding VCTP: " << *MI); 1109 if (VCTPs.empty()) { 1110 VCTPs.push_back(MI); 1111 return true; 1112 } 1113 1114 // If we find another VCTP, check whether it uses the same value as the main VCTP. 1115 // If it does, store it in the VCTPs set, else refuse it. 1116 MachineInstr *Prev = VCTPs.back(); 1117 if (!Prev->getOperand(1).isIdenticalTo(MI->getOperand(1)) || 1118 !RDA.hasSameReachingDef(Prev, MI, MI->getOperand(1).getReg().asMCReg())) { 1119 LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching " 1120 "definition from the main VCTP"); 1121 return false; 1122 } 1123 VCTPs.push_back(MI); 1124 return true; 1125 } 1126 1127 static bool ValidateMVEStore(MachineInstr *MI, MachineLoop *ML) { 1128 1129 auto GetFrameIndex = [](MachineMemOperand *Operand) { 1130 const PseudoSourceValue *PseudoValue = Operand->getPseudoValue(); 1131 if (PseudoValue && PseudoValue->kind() == PseudoSourceValue::FixedStack) { 1132 if (const auto *FS = dyn_cast<FixedStackPseudoSourceValue>(PseudoValue)) { 1133 return FS->getFrameIndex(); 1134 } 1135 } 1136 return -1; 1137 }; 1138 1139 auto IsStackOp = [GetFrameIndex](MachineInstr *I) { 1140 switch (I->getOpcode()) { 1141 case ARM::MVE_VSTRWU32: 1142 case ARM::MVE_VLDRWU32: { 1143 return I->getOperand(1).getReg() == ARM::SP && 1144 I->memoperands().size() == 1 && 1145 GetFrameIndex(I->memoperands().front()) >= 0; 1146 } 1147 default: 1148 return false; 1149 } 1150 }; 1151 1152 // An unpredicated vector register spill is allowed if all of the uses of the 1153 // stack slot are within the loop 1154 if (MI->getOpcode() != ARM::MVE_VSTRWU32 || !IsStackOp(MI)) 1155 return false; 1156 1157 // Search all blocks after the loop for accesses to the same stack slot. 1158 // ReachingDefAnalysis doesn't work for sp as it relies on registers being 1159 // live-out (which sp never is) to know what blocks to look in 1160 if (MI->memoperands().size() == 0) 1161 return false; 1162 int FI = GetFrameIndex(MI->memoperands().front()); 1163 1164 auto &FrameInfo = MI->getParent()->getParent()->getFrameInfo(); 1165 if (FI == -1 || !FrameInfo.isSpillSlotObjectIndex(FI)) 1166 return false; 1167 1168 SmallVector<MachineBasicBlock *> Frontier; 1169 ML->getExitBlocks(Frontier); 1170 SmallPtrSet<MachineBasicBlock *, 4> Visited{MI->getParent()}; 1171 unsigned Idx = 0; 1172 while (Idx < Frontier.size()) { 1173 MachineBasicBlock *BB = Frontier[Idx]; 1174 bool LookAtSuccessors = true; 1175 for (auto &I : *BB) { 1176 if (!IsStackOp(&I) || I.memoperands().size() == 0) 1177 continue; 1178 if (GetFrameIndex(I.memoperands().front()) != FI) 1179 continue; 1180 // If this block has a store to the stack slot before any loads then we 1181 // can ignore the block 1182 if (I.getOpcode() == ARM::MVE_VSTRWU32) { 1183 LookAtSuccessors = false; 1184 break; 1185 } 1186 // If the store and the load are using the same stack slot then the 1187 // store isn't valid for tail predication 1188 if (I.getOpcode() == ARM::MVE_VLDRWU32) 1189 return false; 1190 } 1191 1192 if (LookAtSuccessors) { 1193 for (auto *Succ : BB->successors()) { 1194 if (!Visited.contains(Succ) && !is_contained(Frontier, Succ)) 1195 Frontier.push_back(Succ); 1196 } 1197 } 1198 Visited.insert(BB); 1199 Idx++; 1200 } 1201 1202 return true; 1203 } 1204 1205 bool LowOverheadLoop::ValidateMVEInst(MachineInstr *MI) { 1206 if (CannotTailPredicate) 1207 return false; 1208 1209 if (!shouldInspect(*MI)) 1210 return true; 1211 1212 if (MI->getOpcode() == ARM::MVE_VPSEL || 1213 MI->getOpcode() == ARM::MVE_VPNOT) { 1214 // TODO: Allow VPSEL and VPNOT, we currently cannot because: 1215 // 1) It will use the VPR as a predicate operand, but doesn't have to be 1216 // instead a VPT block, which means we can assert while building up 1217 // the VPT block because we don't find another VPT or VPST to being a new 1218 // one. 1219 // 2) VPSEL still requires a VPR operand even after tail predicating, 1220 // which means we can't remove it unless there is another 1221 // instruction, such as vcmp, that can provide the VPR def. 1222 return false; 1223 } 1224 1225 // Record all VCTPs and check that they're equivalent to one another. 1226 if (isVCTP(MI) && !AddVCTP(MI)) 1227 return false; 1228 1229 // Inspect uses first so that any instructions that alter the VPR don't 1230 // alter the predicate upon themselves. 1231 const MCInstrDesc &MCID = MI->getDesc(); 1232 bool IsUse = false; 1233 unsigned LastOpIdx = MI->getNumOperands() - 1; 1234 for (const auto &Op : enumerate(reverse(MCID.operands()))) { 1235 const MachineOperand &MO = MI->getOperand(LastOpIdx - Op.index()); 1236 if (!MO.isReg() || !MO.isUse() || MO.getReg() != ARM::VPR) 1237 continue; 1238 1239 if (ARM::isVpred(Op.value().OperandType)) { 1240 VPTstate.addInst(MI); 1241 IsUse = true; 1242 } else if (MI->getOpcode() != ARM::MVE_VPST) { 1243 LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI); 1244 return false; 1245 } 1246 } 1247 1248 // If we find an instruction that has been marked as not valid for tail 1249 // predication, only allow the instruction if it's contained within a valid 1250 // VPT block. 1251 bool RequiresExplicitPredication = 1252 (MCID.TSFlags & ARMII::ValidForTailPredication) == 0; 1253 if (isDomainMVE(MI) && RequiresExplicitPredication) { 1254 if (MI->getOpcode() == ARM::MQPRCopy) 1255 return true; 1256 if (!IsUse && producesDoubleWidthResult(*MI)) { 1257 DoubleWidthResultInstrs.insert(MI); 1258 return true; 1259 } 1260 1261 LLVM_DEBUG(if (!IsUse) dbgs() 1262 << "ARM Loops: Can't tail predicate: " << *MI); 1263 return IsUse; 1264 } 1265 1266 // If the instruction is already explicitly predicated, then the conversion 1267 // will be fine, but ensure that all store operations are predicated. 1268 if (MI->mayStore() && !ValidateMVEStore(MI, &ML)) 1269 return IsUse; 1270 1271 // If this instruction defines the VPR, update the predicate for the 1272 // proceeding instructions. 1273 if (isVectorPredicate(MI)) { 1274 // Clear the existing predicate when we're not in VPT Active state, 1275 // otherwise we add to it. 1276 if (!isVectorPredicated(MI)) 1277 VPTstate.resetPredicate(MI); 1278 else 1279 VPTstate.addPredicate(MI); 1280 } 1281 1282 // Finally once the predicate has been modified, we can start a new VPT 1283 // block if necessary. 1284 if (isVPTOpcode(MI->getOpcode())) 1285 VPTstate.CreateVPTBlock(MI); 1286 1287 return true; 1288 } 1289 1290 bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) { 1291 const ARMSubtarget &ST = mf.getSubtarget<ARMSubtarget>(); 1292 if (!ST.hasLOB()) 1293 return false; 1294 1295 MF = &mf; 1296 LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n"); 1297 1298 MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); 1299 RDA = &getAnalysis<ReachingDefAnalysis>(); 1300 MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness); 1301 MRI = &MF->getRegInfo(); 1302 TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo()); 1303 TRI = ST.getRegisterInfo(); 1304 BBUtils = std::make_unique<ARMBasicBlockUtils>(*MF); 1305 BBUtils->computeAllBlockSizes(); 1306 BBUtils->adjustBBOffsetsAfter(&MF->front()); 1307 1308 bool Changed = false; 1309 for (auto *ML : *MLI) { 1310 if (ML->isOutermost()) 1311 Changed |= ProcessLoop(ML); 1312 } 1313 Changed |= RevertNonLoops(); 1314 return Changed; 1315 } 1316 1317 bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) { 1318 bool Changed = false; 1319 1320 // Process inner loops first. 1321 for (MachineLoop *L : *ML) 1322 Changed |= ProcessLoop(L); 1323 1324 LLVM_DEBUG({ 1325 dbgs() << "ARM Loops: Processing loop containing:\n"; 1326 if (auto *Preheader = ML->getLoopPreheader()) 1327 dbgs() << " - Preheader: " << printMBBReference(*Preheader) << "\n"; 1328 else if (auto *Preheader = MLI->findLoopPreheader(ML, true, true)) 1329 dbgs() << " - Preheader: " << printMBBReference(*Preheader) << "\n"; 1330 for (auto *MBB : ML->getBlocks()) 1331 dbgs() << " - Block: " << printMBBReference(*MBB) << "\n"; 1332 }); 1333 1334 // Search the given block for a loop start instruction. If one isn't found, 1335 // and there's only one predecessor block, search that one too. 1336 std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart = 1337 [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* { 1338 for (auto &MI : *MBB) { 1339 if (isLoopStart(MI)) 1340 return &MI; 1341 } 1342 if (MBB->pred_size() == 1) 1343 return SearchForStart(*MBB->pred_begin()); 1344 return nullptr; 1345 }; 1346 1347 LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII); 1348 // Search the preheader for the start intrinsic. 1349 // FIXME: I don't see why we shouldn't be supporting multiple predecessors 1350 // with potentially multiple set.loop.iterations, so we need to enable this. 1351 if (LoLoop.Preheader) 1352 LoLoop.Start = SearchForStart(LoLoop.Preheader); 1353 else 1354 return Changed; 1355 1356 // Find the low-overhead loop components and decide whether or not to fall 1357 // back to a normal loop. Also look for a vctp instructions and decide 1358 // whether we can convert that predicate using tail predication. 1359 for (auto *MBB : reverse(ML->getBlocks())) { 1360 for (auto &MI : *MBB) { 1361 if (MI.isDebugValue()) 1362 continue; 1363 else if (MI.getOpcode() == ARM::t2LoopDec) 1364 LoLoop.Dec = &MI; 1365 else if (MI.getOpcode() == ARM::t2LoopEnd) 1366 LoLoop.End = &MI; 1367 else if (MI.getOpcode() == ARM::t2LoopEndDec) 1368 LoLoop.End = LoLoop.Dec = &MI; 1369 else if (isLoopStart(MI)) 1370 LoLoop.Start = &MI; 1371 else if (MI.getDesc().isCall()) { 1372 // TODO: Though the call will require LE to execute again, does this 1373 // mean we should revert? Always executing LE hopefully should be 1374 // faster than performing a sub,cmp,br or even subs,br. 1375 LoLoop.Revert = true; 1376 LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n"); 1377 } else { 1378 // Record VPR defs and build up their corresponding vpt blocks. 1379 // Check we know how to tail predicate any mve instructions. 1380 LoLoop.AnalyseMVEInst(&MI); 1381 } 1382 } 1383 } 1384 1385 LLVM_DEBUG(LoLoop.dump()); 1386 if (!LoLoop.FoundAllComponents()) { 1387 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n"); 1388 return Changed; 1389 } 1390 1391 assert(LoLoop.Start->getOpcode() != ARM::t2WhileLoopStart && 1392 "Expected t2WhileLoopStart to be removed before regalloc!"); 1393 1394 // Check that the only instruction using LoopDec is LoopEnd. This can only 1395 // happen when the Dec and End are separate, not a single t2LoopEndDec. 1396 // TODO: Check for copy chains that really have no effect. 1397 if (LoLoop.Dec != LoLoop.End) { 1398 SmallPtrSet<MachineInstr *, 2> Uses; 1399 RDA->getReachingLocalUses(LoLoop.Dec, MCRegister::from(ARM::LR), Uses); 1400 if (Uses.size() > 1 || !Uses.count(LoLoop.End)) { 1401 LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n"); 1402 LoLoop.Revert = true; 1403 } 1404 } 1405 LoLoop.Validate(BBUtils.get()); 1406 Expand(LoLoop); 1407 return true; 1408 } 1409 1410 // WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a 1411 // beq that branches to the exit branch. 1412 // TODO: We could also try to generate a cbz if the value in LR is also in 1413 // another low register. 1414 void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const { 1415 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI); 1416 MachineBasicBlock *DestBB = getWhileLoopStartTargetBB(*MI); 1417 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1418 ARM::tBcc : ARM::t2Bcc; 1419 1420 RevertWhileLoopStartLR(MI, TII, BrOpc); 1421 } 1422 1423 void ARMLowOverheadLoops::RevertDo(MachineInstr *MI) const { 1424 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to mov: " << *MI); 1425 RevertDoLoopStart(MI, TII); 1426 } 1427 1428 bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const { 1429 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI); 1430 MachineBasicBlock *MBB = MI->getParent(); 1431 SmallPtrSet<MachineInstr*, 1> Ignore; 1432 for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) { 1433 if (I->getOpcode() == ARM::t2LoopEnd) { 1434 Ignore.insert(&*I); 1435 break; 1436 } 1437 } 1438 1439 // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS. 1440 bool SetFlags = 1441 RDA->isSafeToDefRegAt(MI, MCRegister::from(ARM::CPSR), Ignore); 1442 1443 llvm::RevertLoopDec(MI, TII, SetFlags); 1444 return SetFlags; 1445 } 1446 1447 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1448 void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const { 1449 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI); 1450 1451 MachineBasicBlock *DestBB = MI->getOperand(1).getMBB(); 1452 unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ? 1453 ARM::tBcc : ARM::t2Bcc; 1454 1455 llvm::RevertLoopEnd(MI, TII, BrOpc, SkipCmp); 1456 } 1457 1458 // Generate a subs, or sub and cmp, and a branch instead of an LE. 1459 void ARMLowOverheadLoops::RevertLoopEndDec(MachineInstr *MI) const { 1460 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to subs, br: " << *MI); 1461 assert(MI->getOpcode() == ARM::t2LoopEndDec && "Expected a t2LoopEndDec!"); 1462 MachineBasicBlock *MBB = MI->getParent(); 1463 1464 MachineInstrBuilder MIB = 1465 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::t2SUBri)); 1466 MIB.addDef(ARM::LR); 1467 MIB.add(MI->getOperand(1)); 1468 MIB.addImm(1); 1469 MIB.addImm(ARMCC::AL); 1470 MIB.addReg(ARM::NoRegister); 1471 MIB.addReg(ARM::CPSR); 1472 MIB->getOperand(5).setIsDef(true); 1473 1474 MachineBasicBlock *DestBB = MI->getOperand(2).getMBB(); 1475 unsigned BrOpc = 1476 BBUtils->isBBInRange(MI, DestBB, 254) ? ARM::tBcc : ARM::t2Bcc; 1477 1478 // Create bne 1479 MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc)); 1480 MIB.add(MI->getOperand(2)); // branch target 1481 MIB.addImm(ARMCC::NE); // condition code 1482 MIB.addReg(ARM::CPSR); 1483 1484 MI->eraseFromParent(); 1485 } 1486 1487 // Perform dead code elimation on the loop iteration count setup expression. 1488 // If we are tail-predicating, the number of elements to be processed is the 1489 // operand of the VCTP instruction in the vector body, see getCount(), which is 1490 // register $r3 in this example: 1491 // 1492 // $lr = big-itercount-expression 1493 // .. 1494 // $lr = t2DoLoopStart renamable $lr 1495 // vector.body: 1496 // .. 1497 // $vpr = MVE_VCTP32 renamable $r3 1498 // renamable $lr = t2LoopDec killed renamable $lr, 1 1499 // t2LoopEnd renamable $lr, %vector.body 1500 // tB %end 1501 // 1502 // What we would like achieve here is to replace the do-loop start pseudo 1503 // instruction t2DoLoopStart with: 1504 // 1505 // $lr = MVE_DLSTP_32 killed renamable $r3 1506 // 1507 // Thus, $r3 which defines the number of elements, is written to $lr, 1508 // and then we want to delete the whole chain that used to define $lr, 1509 // see the comment below how this chain could look like. 1510 // 1511 void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) { 1512 if (!LoLoop.IsTailPredicationLegal()) 1513 return; 1514 1515 LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n"); 1516 1517 MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 1); 1518 if (!Def) { 1519 LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n"); 1520 return; 1521 } 1522 1523 // Collect and remove the users of iteration count. 1524 SmallPtrSet<MachineInstr*, 4> Killed = { LoLoop.Start, LoLoop.Dec, 1525 LoLoop.End }; 1526 if (!TryRemove(Def, *RDA, LoLoop.ToRemove, Killed)) 1527 LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n"); 1528 } 1529 1530 MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) { 1531 LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n"); 1532 // When using tail-predication, try to delete the dead code that was used to 1533 // calculate the number of loop iterations. 1534 IterationCountDCE(LoLoop); 1535 1536 MachineBasicBlock::iterator InsertPt = LoLoop.StartInsertPt; 1537 MachineInstr *Start = LoLoop.Start; 1538 MachineBasicBlock *MBB = LoLoop.StartInsertBB; 1539 unsigned Opc = LoLoop.getStartOpcode(); 1540 MachineOperand &Count = LoLoop.getLoopStartOperand(); 1541 1542 // A DLS lr, lr we needn't emit 1543 MachineInstr* NewStart; 1544 if (!DisableOmitDLS && Opc == ARM::t2DLS && Count.isReg() && 1545 Count.getReg() == ARM::LR) { 1546 LLVM_DEBUG(dbgs() << "ARM Loops: Didn't insert start: DLS lr, lr"); 1547 NewStart = nullptr; 1548 } else { 1549 MachineInstrBuilder MIB = 1550 BuildMI(*MBB, InsertPt, Start->getDebugLoc(), TII->get(Opc)); 1551 1552 MIB.addDef(ARM::LR); 1553 MIB.add(Count); 1554 if (isWhileLoopStart(*Start)) 1555 MIB.addMBB(getWhileLoopStartTargetBB(*Start)); 1556 1557 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB); 1558 NewStart = &*MIB; 1559 } 1560 1561 LoLoop.ToRemove.insert(Start); 1562 return NewStart; 1563 } 1564 1565 void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) { 1566 auto RemovePredicate = [](MachineInstr *MI) { 1567 if (MI->isDebugInstr()) 1568 return; 1569 LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI); 1570 int PIdx = llvm::findFirstVPTPredOperandIdx(*MI); 1571 assert(PIdx >= 1 && "Trying to unpredicate a non-predicated instruction"); 1572 assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then && 1573 "Expected Then predicate!"); 1574 MI->getOperand(PIdx).setImm(ARMVCC::None); 1575 MI->getOperand(PIdx + 1).setReg(0); 1576 }; 1577 1578 for (auto &Block : LoLoop.getVPTBlocks()) { 1579 SmallVectorImpl<MachineInstr *> &Insts = Block.getInsts(); 1580 1581 auto ReplaceVCMPWithVPT = [&](MachineInstr *&TheVCMP, MachineInstr *At) { 1582 assert(TheVCMP && "Replacing a removed or non-existent VCMP"); 1583 // Replace the VCMP with a VPT 1584 MachineInstrBuilder MIB = 1585 BuildMI(*At->getParent(), At, At->getDebugLoc(), 1586 TII->get(VCMPOpcodeToVPT(TheVCMP->getOpcode()))); 1587 MIB.addImm(ARMVCC::Then); 1588 // Register one 1589 MIB.add(TheVCMP->getOperand(1)); 1590 // Register two 1591 MIB.add(TheVCMP->getOperand(2)); 1592 // The comparison code, e.g. ge, eq, lt 1593 MIB.add(TheVCMP->getOperand(3)); 1594 LLVM_DEBUG(dbgs() << "ARM Loops: Combining with VCMP to VPT: " << *MIB); 1595 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1596 LoLoop.ToRemove.insert(TheVCMP); 1597 TheVCMP = nullptr; 1598 }; 1599 1600 if (LoLoop.VPTstate.isEntryPredicatedOnVCTP(Block, /*exclusive*/ true)) { 1601 MachineInstr *VPST = Insts.front(); 1602 if (Block.hasUniformPredicate()) { 1603 // A vpt block starting with VPST, is only predicated upon vctp and has no 1604 // internal vpr defs: 1605 // - Remove vpst. 1606 // - Unpredicate the remaining instructions. 1607 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1608 for (unsigned i = 1; i < Insts.size(); ++i) 1609 RemovePredicate(Insts[i]); 1610 } else { 1611 // The VPT block has a non-uniform predicate but it uses a vpst and its 1612 // entry is guarded only by a vctp, which means we: 1613 // - Need to remove the original vpst. 1614 // - Then need to unpredicate any following instructions, until 1615 // we come across the divergent vpr def. 1616 // - Insert a new vpst to predicate the instruction(s) that following 1617 // the divergent vpr def. 1618 MachineInstr *Divergent = Block.getDivergent(); 1619 MachineBasicBlock *MBB = Divergent->getParent(); 1620 auto DivergentNext = ++MachineBasicBlock::iterator(Divergent); 1621 while (DivergentNext != MBB->end() && DivergentNext->isDebugInstr()) 1622 ++DivergentNext; 1623 1624 bool DivergentNextIsPredicated = 1625 DivergentNext != MBB->end() && 1626 getVPTInstrPredicate(*DivergentNext) != ARMVCC::None; 1627 1628 for (auto I = ++MachineBasicBlock::iterator(VPST), E = DivergentNext; 1629 I != E; ++I) 1630 RemovePredicate(&*I); 1631 1632 // Check if the instruction defining vpr is a vcmp so it can be combined 1633 // with the VPST This should be the divergent instruction 1634 MachineInstr *VCMP = 1635 VCMPOpcodeToVPT(Divergent->getOpcode()) != 0 ? Divergent : nullptr; 1636 1637 if (DivergentNextIsPredicated) { 1638 // Insert a VPST at the divergent only if the next instruction 1639 // would actually use it. A VCMP following a VPST can be 1640 // merged into a VPT so do that instead if the VCMP exists. 1641 if (!VCMP) { 1642 // Create a VPST (with a null mask for now, we'll recompute it 1643 // later) 1644 MachineInstrBuilder MIB = 1645 BuildMI(*Divergent->getParent(), Divergent, 1646 Divergent->getDebugLoc(), TII->get(ARM::MVE_VPST)); 1647 MIB.addImm(0); 1648 LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB); 1649 LoLoop.BlockMasksToRecompute.insert(MIB.getInstr()); 1650 } else { 1651 // No RDA checks are necessary here since the VPST would have been 1652 // directly after the VCMP 1653 ReplaceVCMPWithVPT(VCMP, VCMP); 1654 } 1655 } 1656 } 1657 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1658 LoLoop.ToRemove.insert(VPST); 1659 } else if (Block.containsVCTP()) { 1660 // The vctp will be removed, so either the entire block will be dead or 1661 // the block mask of the vp(s)t will need to be recomputed. 1662 MachineInstr *VPST = Insts.front(); 1663 if (Block.size() == 2) { 1664 assert(VPST->getOpcode() == ARM::MVE_VPST && 1665 "Found a VPST in an otherwise empty vpt block"); 1666 LoLoop.ToRemove.insert(VPST); 1667 } else 1668 LoLoop.BlockMasksToRecompute.insert(VPST); 1669 } else if (Insts.front()->getOpcode() == ARM::MVE_VPST) { 1670 // If this block starts with a VPST then attempt to merge it with the 1671 // preceeding un-merged VCMP into a VPT. This VCMP comes from a VPT 1672 // block that no longer exists 1673 MachineInstr *VPST = Insts.front(); 1674 auto Next = ++MachineBasicBlock::iterator(VPST); 1675 assert(getVPTInstrPredicate(*Next) != ARMVCC::None && 1676 "The instruction after a VPST must be predicated"); 1677 (void)Next; 1678 MachineInstr *VprDef = RDA->getUniqueReachingMIDef(VPST, ARM::VPR); 1679 if (VprDef && VCMPOpcodeToVPT(VprDef->getOpcode()) && 1680 !LoLoop.ToRemove.contains(VprDef)) { 1681 MachineInstr *VCMP = VprDef; 1682 // The VCMP and VPST can only be merged if the VCMP's operands will have 1683 // the same values at the VPST. 1684 // If any of the instructions between the VCMP and VPST are predicated 1685 // then a different code path is expected to have merged the VCMP and 1686 // VPST already. 1687 if (std::none_of(++MachineBasicBlock::iterator(VCMP), 1688 MachineBasicBlock::iterator(VPST), hasVPRUse) && 1689 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(1).getReg()) && 1690 RDA->hasSameReachingDef(VCMP, VPST, VCMP->getOperand(2).getReg())) { 1691 ReplaceVCMPWithVPT(VCMP, VPST); 1692 LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *VPST); 1693 LoLoop.ToRemove.insert(VPST); 1694 } 1695 } 1696 } 1697 } 1698 1699 LoLoop.ToRemove.insert(LoLoop.VCTPs.begin(), LoLoop.VCTPs.end()); 1700 } 1701 1702 void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) { 1703 1704 // Combine the LoopDec and LoopEnd instructions into LE(TP). 1705 auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) { 1706 MachineInstr *End = LoLoop.End; 1707 MachineBasicBlock *MBB = End->getParent(); 1708 unsigned Opc = LoLoop.IsTailPredicationLegal() ? 1709 ARM::MVE_LETP : ARM::t2LEUpdate; 1710 MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(), 1711 TII->get(Opc)); 1712 MIB.addDef(ARM::LR); 1713 unsigned Off = LoLoop.Dec == LoLoop.End ? 1 : 0; 1714 MIB.add(End->getOperand(Off + 0)); 1715 MIB.add(End->getOperand(Off + 1)); 1716 LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB); 1717 LoLoop.ToRemove.insert(LoLoop.Dec); 1718 LoLoop.ToRemove.insert(End); 1719 return &*MIB; 1720 }; 1721 1722 // TODO: We should be able to automatically remove these branches before we 1723 // get here - probably by teaching analyzeBranch about the pseudo 1724 // instructions. 1725 // If there is an unconditional branch, after I, that just branches to the 1726 // next block, remove it. 1727 auto RemoveDeadBranch = [](MachineInstr *I) { 1728 MachineBasicBlock *BB = I->getParent(); 1729 MachineInstr *Terminator = &BB->instr_back(); 1730 if (Terminator->isUnconditionalBranch() && I != Terminator) { 1731 MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB(); 1732 if (BB->isLayoutSuccessor(Succ)) { 1733 LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator); 1734 Terminator->eraseFromParent(); 1735 } 1736 } 1737 }; 1738 1739 // And VMOVCopies need to become 2xVMOVD for tail predication to be valid. 1740 // Anything other MQPRCopy can be converted to MVE_VORR later on. 1741 auto ExpandVMOVCopies = [this](SmallPtrSet<MachineInstr *, 4> &VMOVCopies) { 1742 for (auto *MI : VMOVCopies) { 1743 LLVM_DEBUG(dbgs() << "Converting copy to VMOVD: " << *MI); 1744 assert(MI->getOpcode() == ARM::MQPRCopy && "Only expected MQPRCOPY!"); 1745 MachineBasicBlock *MBB = MI->getParent(); 1746 Register Dst = MI->getOperand(0).getReg(); 1747 Register Src = MI->getOperand(1).getReg(); 1748 auto MIB1 = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::VMOVD), 1749 ARM::D0 + (Dst - ARM::Q0) * 2) 1750 .addReg(ARM::D0 + (Src - ARM::Q0) * 2) 1751 .add(predOps(ARMCC::AL)); 1752 (void)MIB1; 1753 LLVM_DEBUG(dbgs() << " into " << *MIB1); 1754 auto MIB2 = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::VMOVD), 1755 ARM::D0 + (Dst - ARM::Q0) * 2 + 1) 1756 .addReg(ARM::D0 + (Src - ARM::Q0) * 2 + 1) 1757 .add(predOps(ARMCC::AL)); 1758 LLVM_DEBUG(dbgs() << " and " << *MIB2); 1759 (void)MIB2; 1760 MI->eraseFromParent(); 1761 } 1762 }; 1763 1764 if (LoLoop.Revert) { 1765 if (isWhileLoopStart(*LoLoop.Start)) 1766 RevertWhile(LoLoop.Start); 1767 else 1768 RevertDo(LoLoop.Start); 1769 if (LoLoop.Dec == LoLoop.End) 1770 RevertLoopEndDec(LoLoop.End); 1771 else 1772 RevertLoopEnd(LoLoop.End, RevertLoopDec(LoLoop.Dec)); 1773 } else { 1774 ExpandVMOVCopies(LoLoop.VMOVCopies); 1775 LoLoop.Start = ExpandLoopStart(LoLoop); 1776 if (LoLoop.Start) 1777 RemoveDeadBranch(LoLoop.Start); 1778 LoLoop.End = ExpandLoopEnd(LoLoop); 1779 RemoveDeadBranch(LoLoop.End); 1780 if (LoLoop.IsTailPredicationLegal()) 1781 ConvertVPTBlocks(LoLoop); 1782 for (auto *I : LoLoop.ToRemove) { 1783 LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I); 1784 I->eraseFromParent(); 1785 } 1786 for (auto *I : LoLoop.BlockMasksToRecompute) { 1787 LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I); 1788 recomputeVPTBlockMask(*I); 1789 LLVM_DEBUG(dbgs() << " ... done: " << *I); 1790 } 1791 } 1792 1793 PostOrderLoopTraversal DFS(LoLoop.ML, *MLI); 1794 DFS.ProcessLoop(); 1795 const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder(); 1796 fullyRecomputeLiveIns(PostOrder); 1797 1798 for (auto *MBB : reverse(PostOrder)) 1799 recomputeLivenessFlags(*MBB); 1800 1801 // We've moved, removed and inserted new instructions, so update RDA. 1802 RDA->reset(); 1803 } 1804 1805 bool ARMLowOverheadLoops::RevertNonLoops() { 1806 LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n"); 1807 bool Changed = false; 1808 1809 for (auto &MBB : *MF) { 1810 SmallVector<MachineInstr*, 4> Starts; 1811 SmallVector<MachineInstr*, 4> Decs; 1812 SmallVector<MachineInstr*, 4> Ends; 1813 SmallVector<MachineInstr *, 4> EndDecs; 1814 SmallVector<MachineInstr *, 4> MQPRCopies; 1815 1816 for (auto &I : MBB) { 1817 if (isLoopStart(I)) 1818 Starts.push_back(&I); 1819 else if (I.getOpcode() == ARM::t2LoopDec) 1820 Decs.push_back(&I); 1821 else if (I.getOpcode() == ARM::t2LoopEnd) 1822 Ends.push_back(&I); 1823 else if (I.getOpcode() == ARM::t2LoopEndDec) 1824 EndDecs.push_back(&I); 1825 else if (I.getOpcode() == ARM::MQPRCopy) 1826 MQPRCopies.push_back(&I); 1827 } 1828 1829 if (Starts.empty() && Decs.empty() && Ends.empty() && EndDecs.empty() && 1830 MQPRCopies.empty()) 1831 continue; 1832 1833 Changed = true; 1834 1835 for (auto *Start : Starts) { 1836 if (isWhileLoopStart(*Start)) 1837 RevertWhile(Start); 1838 else 1839 RevertDo(Start); 1840 } 1841 for (auto *Dec : Decs) 1842 RevertLoopDec(Dec); 1843 1844 for (auto *End : Ends) 1845 RevertLoopEnd(End); 1846 for (auto *End : EndDecs) 1847 RevertLoopEndDec(End); 1848 for (auto *MI : MQPRCopies) { 1849 LLVM_DEBUG(dbgs() << "Converting copy to VORR: " << *MI); 1850 assert(MI->getOpcode() == ARM::MQPRCopy && "Only expected MQPRCOPY!"); 1851 MachineBasicBlock *MBB = MI->getParent(); 1852 auto MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(ARM::MVE_VORR), 1853 MI->getOperand(0).getReg()) 1854 .add(MI->getOperand(1)) 1855 .add(MI->getOperand(1)); 1856 addUnpredicatedMveVpredROp(MIB, MI->getOperand(0).getReg()); 1857 MI->eraseFromParent(); 1858 } 1859 } 1860 return Changed; 1861 } 1862 1863 FunctionPass *llvm::createARMLowOverheadLoopsPass() { 1864 return new ARMLowOverheadLoops(); 1865 } 1866