1 //===- ARMLoadStoreOptimizer.cpp - ARM load / store opt. pass -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file contains a pass that performs load / store related peephole 10 /// optimizations. This pass should be run after register allocation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARM.h" 15 #include "ARMBaseInstrInfo.h" 16 #include "ARMBaseRegisterInfo.h" 17 #include "ARMISelLowering.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMBaseInfo.h" 22 #include "Utils/ARMBaseInfo.h" 23 #include "llvm/ADT/ArrayRef.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/DenseSet.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/ADT/iterator_range.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/CodeGen/LiveRegUnits.h" 35 #include "llvm/CodeGen/MachineBasicBlock.h" 36 #include "llvm/CodeGen/MachineDominators.h" 37 #include "llvm/CodeGen/MachineFrameInfo.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineFunctionPass.h" 40 #include "llvm/CodeGen/MachineInstr.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineMemOperand.h" 43 #include "llvm/CodeGen/MachineOperand.h" 44 #include "llvm/CodeGen/MachineRegisterInfo.h" 45 #include "llvm/CodeGen/RegisterClassInfo.h" 46 #include "llvm/CodeGen/TargetFrameLowering.h" 47 #include "llvm/CodeGen/TargetInstrInfo.h" 48 #include "llvm/CodeGen/TargetLowering.h" 49 #include "llvm/CodeGen/TargetRegisterInfo.h" 50 #include "llvm/CodeGen/TargetSubtargetInfo.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/DebugLoc.h" 53 #include "llvm/IR/DerivedTypes.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/InitializePasses.h" 57 #include "llvm/MC/MCInstrDesc.h" 58 #include "llvm/Pass.h" 59 #include "llvm/Support/Allocator.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include <algorithm> 65 #include <cassert> 66 #include <cstddef> 67 #include <cstdlib> 68 #include <iterator> 69 #include <limits> 70 #include <utility> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "arm-ldst-opt" 75 76 STATISTIC(NumLDMGened , "Number of ldm instructions generated"); 77 STATISTIC(NumSTMGened , "Number of stm instructions generated"); 78 STATISTIC(NumVLDMGened, "Number of vldm instructions generated"); 79 STATISTIC(NumVSTMGened, "Number of vstm instructions generated"); 80 STATISTIC(NumLdStMoved, "Number of load / store instructions moved"); 81 STATISTIC(NumLDRDFormed,"Number of ldrd created before allocation"); 82 STATISTIC(NumSTRDFormed,"Number of strd created before allocation"); 83 STATISTIC(NumLDRD2LDM, "Number of ldrd instructions turned back into ldm"); 84 STATISTIC(NumSTRD2STM, "Number of strd instructions turned back into stm"); 85 STATISTIC(NumLDRD2LDR, "Number of ldrd instructions turned back into ldr's"); 86 STATISTIC(NumSTRD2STR, "Number of strd instructions turned back into str's"); 87 88 /// This switch disables formation of double/multi instructions that could 89 /// potentially lead to (new) alignment traps even with CCR.UNALIGN_TRP 90 /// disabled. This can be used to create libraries that are robust even when 91 /// users provoke undefined behaviour by supplying misaligned pointers. 92 /// \see mayCombineMisaligned() 93 static cl::opt<bool> 94 AssumeMisalignedLoadStores("arm-assume-misaligned-load-store", cl::Hidden, 95 cl::init(false), cl::desc("Be more conservative in ARM load/store opt")); 96 97 #define ARM_LOAD_STORE_OPT_NAME "ARM load / store optimization pass" 98 99 namespace { 100 101 /// Post- register allocation pass the combine load / store instructions to 102 /// form ldm / stm instructions. 103 struct ARMLoadStoreOpt : public MachineFunctionPass { 104 static char ID; 105 106 const MachineFunction *MF; 107 const TargetInstrInfo *TII; 108 const TargetRegisterInfo *TRI; 109 const ARMSubtarget *STI; 110 const TargetLowering *TL; 111 ARMFunctionInfo *AFI; 112 LiveRegUnits LiveRegs; 113 RegisterClassInfo RegClassInfo; 114 MachineBasicBlock::const_iterator LiveRegPos; 115 bool LiveRegsValid; 116 bool RegClassInfoValid; 117 bool isThumb1, isThumb2; 118 119 ARMLoadStoreOpt() : MachineFunctionPass(ID) {} 120 121 bool runOnMachineFunction(MachineFunction &Fn) override; 122 123 MachineFunctionProperties getRequiredProperties() const override { 124 return MachineFunctionProperties().set( 125 MachineFunctionProperties::Property::NoVRegs); 126 } 127 128 StringRef getPassName() const override { return ARM_LOAD_STORE_OPT_NAME; } 129 130 private: 131 /// A set of load/store MachineInstrs with same base register sorted by 132 /// offset. 133 struct MemOpQueueEntry { 134 MachineInstr *MI; 135 int Offset; ///< Load/Store offset. 136 unsigned Position; ///< Position as counted from end of basic block. 137 138 MemOpQueueEntry(MachineInstr &MI, int Offset, unsigned Position) 139 : MI(&MI), Offset(Offset), Position(Position) {} 140 }; 141 using MemOpQueue = SmallVector<MemOpQueueEntry, 8>; 142 143 /// A set of MachineInstrs that fulfill (nearly all) conditions to get 144 /// merged into a LDM/STM. 145 struct MergeCandidate { 146 /// List of instructions ordered by load/store offset. 147 SmallVector<MachineInstr*, 4> Instrs; 148 149 /// Index in Instrs of the instruction being latest in the schedule. 150 unsigned LatestMIIdx; 151 152 /// Index in Instrs of the instruction being earliest in the schedule. 153 unsigned EarliestMIIdx; 154 155 /// Index into the basic block where the merged instruction will be 156 /// inserted. (See MemOpQueueEntry.Position) 157 unsigned InsertPos; 158 159 /// Whether the instructions can be merged into a ldm/stm instruction. 160 bool CanMergeToLSMulti; 161 162 /// Whether the instructions can be merged into a ldrd/strd instruction. 163 bool CanMergeToLSDouble; 164 }; 165 SpecificBumpPtrAllocator<MergeCandidate> Allocator; 166 SmallVector<const MergeCandidate*,4> Candidates; 167 SmallVector<MachineInstr*,4> MergeBaseCandidates; 168 169 void moveLiveRegsBefore(const MachineBasicBlock &MBB, 170 MachineBasicBlock::const_iterator Before); 171 unsigned findFreeReg(const TargetRegisterClass &RegClass); 172 void UpdateBaseRegUses(MachineBasicBlock &MBB, 173 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, 174 unsigned Base, unsigned WordOffset, 175 ARMCC::CondCodes Pred, unsigned PredReg); 176 MachineInstr *CreateLoadStoreMulti( 177 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 178 int Offset, unsigned Base, bool BaseKill, unsigned Opcode, 179 ARMCC::CondCodes Pred, unsigned PredReg, const DebugLoc &DL, 180 ArrayRef<std::pair<unsigned, bool>> Regs, 181 ArrayRef<MachineInstr*> Instrs); 182 MachineInstr *CreateLoadStoreDouble( 183 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 184 int Offset, unsigned Base, bool BaseKill, unsigned Opcode, 185 ARMCC::CondCodes Pred, unsigned PredReg, const DebugLoc &DL, 186 ArrayRef<std::pair<unsigned, bool>> Regs, 187 ArrayRef<MachineInstr*> Instrs) const; 188 void FormCandidates(const MemOpQueue &MemOps); 189 MachineInstr *MergeOpsUpdate(const MergeCandidate &Cand); 190 bool FixInvalidRegPairOp(MachineBasicBlock &MBB, 191 MachineBasicBlock::iterator &MBBI); 192 bool MergeBaseUpdateLoadStore(MachineInstr *MI); 193 bool MergeBaseUpdateLSMultiple(MachineInstr *MI); 194 bool MergeBaseUpdateLSDouble(MachineInstr &MI) const; 195 bool LoadStoreMultipleOpti(MachineBasicBlock &MBB); 196 bool MergeReturnIntoLDM(MachineBasicBlock &MBB); 197 bool CombineMovBx(MachineBasicBlock &MBB); 198 }; 199 200 } // end anonymous namespace 201 202 char ARMLoadStoreOpt::ID = 0; 203 204 INITIALIZE_PASS(ARMLoadStoreOpt, "arm-ldst-opt", ARM_LOAD_STORE_OPT_NAME, false, 205 false) 206 207 static bool definesCPSR(const MachineInstr &MI) { 208 for (const auto &MO : MI.operands()) { 209 if (!MO.isReg()) 210 continue; 211 if (MO.isDef() && MO.getReg() == ARM::CPSR && !MO.isDead()) 212 // If the instruction has live CPSR def, then it's not safe to fold it 213 // into load / store. 214 return true; 215 } 216 217 return false; 218 } 219 220 static int getMemoryOpOffset(const MachineInstr &MI) { 221 unsigned Opcode = MI.getOpcode(); 222 bool isAM3 = Opcode == ARM::LDRD || Opcode == ARM::STRD; 223 unsigned NumOperands = MI.getDesc().getNumOperands(); 224 unsigned OffField = MI.getOperand(NumOperands - 3).getImm(); 225 226 if (Opcode == ARM::t2LDRi12 || Opcode == ARM::t2LDRi8 || 227 Opcode == ARM::t2STRi12 || Opcode == ARM::t2STRi8 || 228 Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8 || 229 Opcode == ARM::LDRi12 || Opcode == ARM::STRi12) 230 return OffField; 231 232 // Thumb1 immediate offsets are scaled by 4 233 if (Opcode == ARM::tLDRi || Opcode == ARM::tSTRi || 234 Opcode == ARM::tLDRspi || Opcode == ARM::tSTRspi) 235 return OffField * 4; 236 237 int Offset = isAM3 ? ARM_AM::getAM3Offset(OffField) 238 : ARM_AM::getAM5Offset(OffField) * 4; 239 ARM_AM::AddrOpc Op = isAM3 ? ARM_AM::getAM3Op(OffField) 240 : ARM_AM::getAM5Op(OffField); 241 242 if (Op == ARM_AM::sub) 243 return -Offset; 244 245 return Offset; 246 } 247 248 static const MachineOperand &getLoadStoreBaseOp(const MachineInstr &MI) { 249 return MI.getOperand(1); 250 } 251 252 static const MachineOperand &getLoadStoreRegOp(const MachineInstr &MI) { 253 return MI.getOperand(0); 254 } 255 256 static int getLoadStoreMultipleOpcode(unsigned Opcode, ARM_AM::AMSubMode Mode) { 257 switch (Opcode) { 258 default: llvm_unreachable("Unhandled opcode!"); 259 case ARM::LDRi12: 260 ++NumLDMGened; 261 switch (Mode) { 262 default: llvm_unreachable("Unhandled submode!"); 263 case ARM_AM::ia: return ARM::LDMIA; 264 case ARM_AM::da: return ARM::LDMDA; 265 case ARM_AM::db: return ARM::LDMDB; 266 case ARM_AM::ib: return ARM::LDMIB; 267 } 268 case ARM::STRi12: 269 ++NumSTMGened; 270 switch (Mode) { 271 default: llvm_unreachable("Unhandled submode!"); 272 case ARM_AM::ia: return ARM::STMIA; 273 case ARM_AM::da: return ARM::STMDA; 274 case ARM_AM::db: return ARM::STMDB; 275 case ARM_AM::ib: return ARM::STMIB; 276 } 277 case ARM::tLDRi: 278 case ARM::tLDRspi: 279 // tLDMIA is writeback-only - unless the base register is in the input 280 // reglist. 281 ++NumLDMGened; 282 switch (Mode) { 283 default: llvm_unreachable("Unhandled submode!"); 284 case ARM_AM::ia: return ARM::tLDMIA; 285 } 286 case ARM::tSTRi: 287 case ARM::tSTRspi: 288 // There is no non-writeback tSTMIA either. 289 ++NumSTMGened; 290 switch (Mode) { 291 default: llvm_unreachable("Unhandled submode!"); 292 case ARM_AM::ia: return ARM::tSTMIA_UPD; 293 } 294 case ARM::t2LDRi8: 295 case ARM::t2LDRi12: 296 ++NumLDMGened; 297 switch (Mode) { 298 default: llvm_unreachable("Unhandled submode!"); 299 case ARM_AM::ia: return ARM::t2LDMIA; 300 case ARM_AM::db: return ARM::t2LDMDB; 301 } 302 case ARM::t2STRi8: 303 case ARM::t2STRi12: 304 ++NumSTMGened; 305 switch (Mode) { 306 default: llvm_unreachable("Unhandled submode!"); 307 case ARM_AM::ia: return ARM::t2STMIA; 308 case ARM_AM::db: return ARM::t2STMDB; 309 } 310 case ARM::VLDRS: 311 ++NumVLDMGened; 312 switch (Mode) { 313 default: llvm_unreachable("Unhandled submode!"); 314 case ARM_AM::ia: return ARM::VLDMSIA; 315 case ARM_AM::db: return 0; // Only VLDMSDB_UPD exists. 316 } 317 case ARM::VSTRS: 318 ++NumVSTMGened; 319 switch (Mode) { 320 default: llvm_unreachable("Unhandled submode!"); 321 case ARM_AM::ia: return ARM::VSTMSIA; 322 case ARM_AM::db: return 0; // Only VSTMSDB_UPD exists. 323 } 324 case ARM::VLDRD: 325 ++NumVLDMGened; 326 switch (Mode) { 327 default: llvm_unreachable("Unhandled submode!"); 328 case ARM_AM::ia: return ARM::VLDMDIA; 329 case ARM_AM::db: return 0; // Only VLDMDDB_UPD exists. 330 } 331 case ARM::VSTRD: 332 ++NumVSTMGened; 333 switch (Mode) { 334 default: llvm_unreachable("Unhandled submode!"); 335 case ARM_AM::ia: return ARM::VSTMDIA; 336 case ARM_AM::db: return 0; // Only VSTMDDB_UPD exists. 337 } 338 } 339 } 340 341 static ARM_AM::AMSubMode getLoadStoreMultipleSubMode(unsigned Opcode) { 342 switch (Opcode) { 343 default: llvm_unreachable("Unhandled opcode!"); 344 case ARM::LDMIA_RET: 345 case ARM::LDMIA: 346 case ARM::LDMIA_UPD: 347 case ARM::STMIA: 348 case ARM::STMIA_UPD: 349 case ARM::tLDMIA: 350 case ARM::tLDMIA_UPD: 351 case ARM::tSTMIA_UPD: 352 case ARM::t2LDMIA_RET: 353 case ARM::t2LDMIA: 354 case ARM::t2LDMIA_UPD: 355 case ARM::t2STMIA: 356 case ARM::t2STMIA_UPD: 357 case ARM::VLDMSIA: 358 case ARM::VLDMSIA_UPD: 359 case ARM::VSTMSIA: 360 case ARM::VSTMSIA_UPD: 361 case ARM::VLDMDIA: 362 case ARM::VLDMDIA_UPD: 363 case ARM::VSTMDIA: 364 case ARM::VSTMDIA_UPD: 365 return ARM_AM::ia; 366 367 case ARM::LDMDA: 368 case ARM::LDMDA_UPD: 369 case ARM::STMDA: 370 case ARM::STMDA_UPD: 371 return ARM_AM::da; 372 373 case ARM::LDMDB: 374 case ARM::LDMDB_UPD: 375 case ARM::STMDB: 376 case ARM::STMDB_UPD: 377 case ARM::t2LDMDB: 378 case ARM::t2LDMDB_UPD: 379 case ARM::t2STMDB: 380 case ARM::t2STMDB_UPD: 381 case ARM::VLDMSDB_UPD: 382 case ARM::VSTMSDB_UPD: 383 case ARM::VLDMDDB_UPD: 384 case ARM::VSTMDDB_UPD: 385 return ARM_AM::db; 386 387 case ARM::LDMIB: 388 case ARM::LDMIB_UPD: 389 case ARM::STMIB: 390 case ARM::STMIB_UPD: 391 return ARM_AM::ib; 392 } 393 } 394 395 static bool isT1i32Load(unsigned Opc) { 396 return Opc == ARM::tLDRi || Opc == ARM::tLDRspi; 397 } 398 399 static bool isT2i32Load(unsigned Opc) { 400 return Opc == ARM::t2LDRi12 || Opc == ARM::t2LDRi8; 401 } 402 403 static bool isi32Load(unsigned Opc) { 404 return Opc == ARM::LDRi12 || isT1i32Load(Opc) || isT2i32Load(Opc) ; 405 } 406 407 static bool isT1i32Store(unsigned Opc) { 408 return Opc == ARM::tSTRi || Opc == ARM::tSTRspi; 409 } 410 411 static bool isT2i32Store(unsigned Opc) { 412 return Opc == ARM::t2STRi12 || Opc == ARM::t2STRi8; 413 } 414 415 static bool isi32Store(unsigned Opc) { 416 return Opc == ARM::STRi12 || isT1i32Store(Opc) || isT2i32Store(Opc); 417 } 418 419 static bool isLoadSingle(unsigned Opc) { 420 return isi32Load(Opc) || Opc == ARM::VLDRS || Opc == ARM::VLDRD; 421 } 422 423 static unsigned getImmScale(unsigned Opc) { 424 switch (Opc) { 425 default: llvm_unreachable("Unhandled opcode!"); 426 case ARM::tLDRi: 427 case ARM::tSTRi: 428 case ARM::tLDRspi: 429 case ARM::tSTRspi: 430 return 1; 431 case ARM::tLDRHi: 432 case ARM::tSTRHi: 433 return 2; 434 case ARM::tLDRBi: 435 case ARM::tSTRBi: 436 return 4; 437 } 438 } 439 440 static unsigned getLSMultipleTransferSize(const MachineInstr *MI) { 441 switch (MI->getOpcode()) { 442 default: return 0; 443 case ARM::LDRi12: 444 case ARM::STRi12: 445 case ARM::tLDRi: 446 case ARM::tSTRi: 447 case ARM::tLDRspi: 448 case ARM::tSTRspi: 449 case ARM::t2LDRi8: 450 case ARM::t2LDRi12: 451 case ARM::t2STRi8: 452 case ARM::t2STRi12: 453 case ARM::VLDRS: 454 case ARM::VSTRS: 455 return 4; 456 case ARM::VLDRD: 457 case ARM::VSTRD: 458 return 8; 459 case ARM::LDMIA: 460 case ARM::LDMDA: 461 case ARM::LDMDB: 462 case ARM::LDMIB: 463 case ARM::STMIA: 464 case ARM::STMDA: 465 case ARM::STMDB: 466 case ARM::STMIB: 467 case ARM::tLDMIA: 468 case ARM::tLDMIA_UPD: 469 case ARM::tSTMIA_UPD: 470 case ARM::t2LDMIA: 471 case ARM::t2LDMDB: 472 case ARM::t2STMIA: 473 case ARM::t2STMDB: 474 case ARM::VLDMSIA: 475 case ARM::VSTMSIA: 476 return (MI->getNumOperands() - MI->getDesc().getNumOperands() + 1) * 4; 477 case ARM::VLDMDIA: 478 case ARM::VSTMDIA: 479 return (MI->getNumOperands() - MI->getDesc().getNumOperands() + 1) * 8; 480 } 481 } 482 483 /// Update future uses of the base register with the offset introduced 484 /// due to writeback. This function only works on Thumb1. 485 void ARMLoadStoreOpt::UpdateBaseRegUses(MachineBasicBlock &MBB, 486 MachineBasicBlock::iterator MBBI, 487 const DebugLoc &DL, unsigned Base, 488 unsigned WordOffset, 489 ARMCC::CondCodes Pred, 490 unsigned PredReg) { 491 assert(isThumb1 && "Can only update base register uses for Thumb1!"); 492 // Start updating any instructions with immediate offsets. Insert a SUB before 493 // the first non-updateable instruction (if any). 494 for (; MBBI != MBB.end(); ++MBBI) { 495 bool InsertSub = false; 496 unsigned Opc = MBBI->getOpcode(); 497 498 if (MBBI->readsRegister(Base, /*TRI=*/nullptr)) { 499 int Offset; 500 bool IsLoad = 501 Opc == ARM::tLDRi || Opc == ARM::tLDRHi || Opc == ARM::tLDRBi; 502 bool IsStore = 503 Opc == ARM::tSTRi || Opc == ARM::tSTRHi || Opc == ARM::tSTRBi; 504 505 if (IsLoad || IsStore) { 506 // Loads and stores with immediate offsets can be updated, but only if 507 // the new offset isn't negative. 508 // The MachineOperand containing the offset immediate is the last one 509 // before predicates. 510 MachineOperand &MO = 511 MBBI->getOperand(MBBI->getDesc().getNumOperands() - 3); 512 // The offsets are scaled by 1, 2 or 4 depending on the Opcode. 513 Offset = MO.getImm() - WordOffset * getImmScale(Opc); 514 515 // If storing the base register, it needs to be reset first. 516 Register InstrSrcReg = getLoadStoreRegOp(*MBBI).getReg(); 517 518 if (Offset >= 0 && !(IsStore && InstrSrcReg == Base)) 519 MO.setImm(Offset); 520 else 521 InsertSub = true; 522 } else if ((Opc == ARM::tSUBi8 || Opc == ARM::tADDi8) && 523 !definesCPSR(*MBBI)) { 524 // SUBS/ADDS using this register, with a dead def of the CPSR. 525 // Merge it with the update; if the merged offset is too large, 526 // insert a new sub instead. 527 MachineOperand &MO = 528 MBBI->getOperand(MBBI->getDesc().getNumOperands() - 3); 529 Offset = (Opc == ARM::tSUBi8) ? 530 MO.getImm() + WordOffset * 4 : 531 MO.getImm() - WordOffset * 4 ; 532 if (Offset >= 0 && TL->isLegalAddImmediate(Offset)) { 533 // FIXME: Swap ADDS<->SUBS if Offset < 0, erase instruction if 534 // Offset == 0. 535 MO.setImm(Offset); 536 // The base register has now been reset, so exit early. 537 return; 538 } else { 539 InsertSub = true; 540 } 541 } else { 542 // Can't update the instruction. 543 InsertSub = true; 544 } 545 } else if (definesCPSR(*MBBI) || MBBI->isCall() || MBBI->isBranch()) { 546 // Since SUBS sets the condition flags, we can't place the base reset 547 // after an instruction that has a live CPSR def. 548 // The base register might also contain an argument for a function call. 549 InsertSub = true; 550 } 551 552 if (InsertSub) { 553 // An instruction above couldn't be updated, so insert a sub. 554 BuildMI(MBB, MBBI, DL, TII->get(ARM::tSUBi8), Base) 555 .add(t1CondCodeOp(true)) 556 .addReg(Base) 557 .addImm(WordOffset * 4) 558 .addImm(Pred) 559 .addReg(PredReg); 560 return; 561 } 562 563 if (MBBI->killsRegister(Base, /*TRI=*/nullptr) || 564 MBBI->definesRegister(Base, /*TRI=*/nullptr)) 565 // Register got killed. Stop updating. 566 return; 567 } 568 569 // End of block was reached. 570 if (!MBB.succ_empty()) { 571 // FIXME: Because of a bug, live registers are sometimes missing from 572 // the successor blocks' live-in sets. This means we can't trust that 573 // information and *always* have to reset at the end of a block. 574 // See PR21029. 575 if (MBBI != MBB.end()) --MBBI; 576 BuildMI(MBB, MBBI, DL, TII->get(ARM::tSUBi8), Base) 577 .add(t1CondCodeOp(true)) 578 .addReg(Base) 579 .addImm(WordOffset * 4) 580 .addImm(Pred) 581 .addReg(PredReg); 582 } 583 } 584 585 /// Return the first register of class \p RegClass that is not in \p Regs. 586 unsigned ARMLoadStoreOpt::findFreeReg(const TargetRegisterClass &RegClass) { 587 if (!RegClassInfoValid) { 588 RegClassInfo.runOnMachineFunction(*MF); 589 RegClassInfoValid = true; 590 } 591 592 for (unsigned Reg : RegClassInfo.getOrder(&RegClass)) 593 if (LiveRegs.available(Reg) && !MF->getRegInfo().isReserved(Reg)) 594 return Reg; 595 return 0; 596 } 597 598 /// Compute live registers just before instruction \p Before (in normal schedule 599 /// direction). Computes backwards so multiple queries in the same block must 600 /// come in reverse order. 601 void ARMLoadStoreOpt::moveLiveRegsBefore(const MachineBasicBlock &MBB, 602 MachineBasicBlock::const_iterator Before) { 603 // Initialize if we never queried in this block. 604 if (!LiveRegsValid) { 605 LiveRegs.init(*TRI); 606 LiveRegs.addLiveOuts(MBB); 607 LiveRegPos = MBB.end(); 608 LiveRegsValid = true; 609 } 610 // Move backward just before the "Before" position. 611 while (LiveRegPos != Before) { 612 --LiveRegPos; 613 LiveRegs.stepBackward(*LiveRegPos); 614 } 615 } 616 617 static bool ContainsReg(const ArrayRef<std::pair<unsigned, bool>> &Regs, 618 unsigned Reg) { 619 for (const std::pair<unsigned, bool> &R : Regs) 620 if (R.first == Reg) 621 return true; 622 return false; 623 } 624 625 /// Create and insert a LDM or STM with Base as base register and registers in 626 /// Regs as the register operands that would be loaded / stored. It returns 627 /// true if the transformation is done. 628 MachineInstr *ARMLoadStoreOpt::CreateLoadStoreMulti( 629 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 630 int Offset, unsigned Base, bool BaseKill, unsigned Opcode, 631 ARMCC::CondCodes Pred, unsigned PredReg, const DebugLoc &DL, 632 ArrayRef<std::pair<unsigned, bool>> Regs, 633 ArrayRef<MachineInstr*> Instrs) { 634 unsigned NumRegs = Regs.size(); 635 assert(NumRegs > 1); 636 637 // For Thumb1 targets, it might be necessary to clobber the CPSR to merge. 638 // Compute liveness information for that register to make the decision. 639 bool SafeToClobberCPSR = !isThumb1 || 640 (MBB.computeRegisterLiveness(TRI, ARM::CPSR, InsertBefore, 20) == 641 MachineBasicBlock::LQR_Dead); 642 643 bool Writeback = isThumb1; // Thumb1 LDM/STM have base reg writeback. 644 645 // Exception: If the base register is in the input reglist, Thumb1 LDM is 646 // non-writeback. 647 // It's also not possible to merge an STR of the base register in Thumb1. 648 if (isThumb1 && ContainsReg(Regs, Base)) { 649 assert(Base != ARM::SP && "Thumb1 does not allow SP in register list"); 650 if (Opcode == ARM::tLDRi) 651 Writeback = false; 652 else if (Opcode == ARM::tSTRi) 653 return nullptr; 654 } 655 656 ARM_AM::AMSubMode Mode = ARM_AM::ia; 657 // VFP and Thumb2 do not support IB or DA modes. Thumb1 only supports IA. 658 bool isNotVFP = isi32Load(Opcode) || isi32Store(Opcode); 659 bool haveIBAndDA = isNotVFP && !isThumb2 && !isThumb1; 660 661 if (Offset == 4 && haveIBAndDA) { 662 Mode = ARM_AM::ib; 663 } else if (Offset == -4 * (int)NumRegs + 4 && haveIBAndDA) { 664 Mode = ARM_AM::da; 665 } else if (Offset == -4 * (int)NumRegs && isNotVFP && !isThumb1) { 666 // VLDM/VSTM do not support DB mode without also updating the base reg. 667 Mode = ARM_AM::db; 668 } else if (Offset != 0 || Opcode == ARM::tLDRspi || Opcode == ARM::tSTRspi) { 669 // Check if this is a supported opcode before inserting instructions to 670 // calculate a new base register. 671 if (!getLoadStoreMultipleOpcode(Opcode, Mode)) return nullptr; 672 673 // If starting offset isn't zero, insert a MI to materialize a new base. 674 // But only do so if it is cost effective, i.e. merging more than two 675 // loads / stores. 676 if (NumRegs <= 2) 677 return nullptr; 678 679 // On Thumb1, it's not worth materializing a new base register without 680 // clobbering the CPSR (i.e. not using ADDS/SUBS). 681 if (!SafeToClobberCPSR) 682 return nullptr; 683 684 unsigned NewBase; 685 if (isi32Load(Opcode)) { 686 // If it is a load, then just use one of the destination registers 687 // as the new base. Will no longer be writeback in Thumb1. 688 NewBase = Regs[NumRegs-1].first; 689 Writeback = false; 690 } else { 691 // Find a free register that we can use as scratch register. 692 moveLiveRegsBefore(MBB, InsertBefore); 693 // The merged instruction does not exist yet but will use several Regs if 694 // it is a Store. 695 if (!isLoadSingle(Opcode)) 696 for (const std::pair<unsigned, bool> &R : Regs) 697 LiveRegs.addReg(R.first); 698 699 NewBase = findFreeReg(isThumb1 ? ARM::tGPRRegClass : ARM::GPRRegClass); 700 if (NewBase == 0) 701 return nullptr; 702 } 703 704 int BaseOpc = isThumb2 ? (BaseKill && Base == ARM::SP ? ARM::t2ADDspImm 705 : ARM::t2ADDri) 706 : (isThumb1 && Base == ARM::SP) 707 ? ARM::tADDrSPi 708 : (isThumb1 && Offset < 8) 709 ? ARM::tADDi3 710 : isThumb1 ? ARM::tADDi8 : ARM::ADDri; 711 712 if (Offset < 0) { 713 // FIXME: There are no Thumb1 load/store instructions with negative 714 // offsets. So the Base != ARM::SP might be unnecessary. 715 Offset = -Offset; 716 BaseOpc = isThumb2 ? (BaseKill && Base == ARM::SP ? ARM::t2SUBspImm 717 : ARM::t2SUBri) 718 : (isThumb1 && Offset < 8 && Base != ARM::SP) 719 ? ARM::tSUBi3 720 : isThumb1 ? ARM::tSUBi8 : ARM::SUBri; 721 } 722 723 if (!TL->isLegalAddImmediate(Offset)) 724 // FIXME: Try add with register operand? 725 return nullptr; // Probably not worth it then. 726 727 // We can only append a kill flag to the add/sub input if the value is not 728 // used in the register list of the stm as well. 729 bool KillOldBase = BaseKill && 730 (!isi32Store(Opcode) || !ContainsReg(Regs, Base)); 731 732 if (isThumb1) { 733 // Thumb1: depending on immediate size, use either 734 // ADDS NewBase, Base, #imm3 735 // or 736 // MOV NewBase, Base 737 // ADDS NewBase, #imm8. 738 if (Base != NewBase && 739 (BaseOpc == ARM::tADDi8 || BaseOpc == ARM::tSUBi8)) { 740 // Need to insert a MOV to the new base first. 741 if (isARMLowRegister(NewBase) && isARMLowRegister(Base) && 742 !STI->hasV6Ops()) { 743 // thumbv4t doesn't have lo->lo copies, and we can't predicate tMOVSr 744 if (Pred != ARMCC::AL) 745 return nullptr; 746 BuildMI(MBB, InsertBefore, DL, TII->get(ARM::tMOVSr), NewBase) 747 .addReg(Base, getKillRegState(KillOldBase)); 748 } else 749 BuildMI(MBB, InsertBefore, DL, TII->get(ARM::tMOVr), NewBase) 750 .addReg(Base, getKillRegState(KillOldBase)) 751 .add(predOps(Pred, PredReg)); 752 753 // The following ADDS/SUBS becomes an update. 754 Base = NewBase; 755 KillOldBase = true; 756 } 757 if (BaseOpc == ARM::tADDrSPi) { 758 assert(Offset % 4 == 0 && "tADDrSPi offset is scaled by 4"); 759 BuildMI(MBB, InsertBefore, DL, TII->get(BaseOpc), NewBase) 760 .addReg(Base, getKillRegState(KillOldBase)) 761 .addImm(Offset / 4) 762 .add(predOps(Pred, PredReg)); 763 } else 764 BuildMI(MBB, InsertBefore, DL, TII->get(BaseOpc), NewBase) 765 .add(t1CondCodeOp(true)) 766 .addReg(Base, getKillRegState(KillOldBase)) 767 .addImm(Offset) 768 .add(predOps(Pred, PredReg)); 769 } else { 770 BuildMI(MBB, InsertBefore, DL, TII->get(BaseOpc), NewBase) 771 .addReg(Base, getKillRegState(KillOldBase)) 772 .addImm(Offset) 773 .add(predOps(Pred, PredReg)) 774 .add(condCodeOp()); 775 } 776 Base = NewBase; 777 BaseKill = true; // New base is always killed straight away. 778 } 779 780 bool isDef = isLoadSingle(Opcode); 781 782 // Get LS multiple opcode. Note that for Thumb1 this might be an opcode with 783 // base register writeback. 784 Opcode = getLoadStoreMultipleOpcode(Opcode, Mode); 785 if (!Opcode) 786 return nullptr; 787 788 // Check if a Thumb1 LDM/STM merge is safe. This is the case if: 789 // - There is no writeback (LDM of base register), 790 // - the base register is killed by the merged instruction, 791 // - or it's safe to overwrite the condition flags, i.e. to insert a SUBS 792 // to reset the base register. 793 // Otherwise, don't merge. 794 // It's safe to return here since the code to materialize a new base register 795 // above is also conditional on SafeToClobberCPSR. 796 if (isThumb1 && !SafeToClobberCPSR && Writeback && !BaseKill) 797 return nullptr; 798 799 MachineInstrBuilder MIB; 800 801 if (Writeback) { 802 assert(isThumb1 && "expected Writeback only inThumb1"); 803 if (Opcode == ARM::tLDMIA) { 804 assert(!(ContainsReg(Regs, Base)) && "Thumb1 can't LDM ! with Base in Regs"); 805 // Update tLDMIA with writeback if necessary. 806 Opcode = ARM::tLDMIA_UPD; 807 } 808 809 MIB = BuildMI(MBB, InsertBefore, DL, TII->get(Opcode)); 810 811 // Thumb1: we might need to set base writeback when building the MI. 812 MIB.addReg(Base, getDefRegState(true)) 813 .addReg(Base, getKillRegState(BaseKill)); 814 815 // The base isn't dead after a merged instruction with writeback. 816 // Insert a sub instruction after the newly formed instruction to reset. 817 if (!BaseKill) 818 UpdateBaseRegUses(MBB, InsertBefore, DL, Base, NumRegs, Pred, PredReg); 819 } else { 820 // No writeback, simply build the MachineInstr. 821 MIB = BuildMI(MBB, InsertBefore, DL, TII->get(Opcode)); 822 MIB.addReg(Base, getKillRegState(BaseKill)); 823 } 824 825 MIB.addImm(Pred).addReg(PredReg); 826 827 for (const std::pair<unsigned, bool> &R : Regs) 828 MIB.addReg(R.first, getDefRegState(isDef) | getKillRegState(R.second)); 829 830 MIB.cloneMergedMemRefs(Instrs); 831 832 return MIB.getInstr(); 833 } 834 835 MachineInstr *ARMLoadStoreOpt::CreateLoadStoreDouble( 836 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 837 int Offset, unsigned Base, bool BaseKill, unsigned Opcode, 838 ARMCC::CondCodes Pred, unsigned PredReg, const DebugLoc &DL, 839 ArrayRef<std::pair<unsigned, bool>> Regs, 840 ArrayRef<MachineInstr*> Instrs) const { 841 bool IsLoad = isi32Load(Opcode); 842 assert((IsLoad || isi32Store(Opcode)) && "Must have integer load or store"); 843 unsigned LoadStoreOpcode = IsLoad ? ARM::t2LDRDi8 : ARM::t2STRDi8; 844 845 assert(Regs.size() == 2); 846 MachineInstrBuilder MIB = BuildMI(MBB, InsertBefore, DL, 847 TII->get(LoadStoreOpcode)); 848 if (IsLoad) { 849 MIB.addReg(Regs[0].first, RegState::Define) 850 .addReg(Regs[1].first, RegState::Define); 851 } else { 852 MIB.addReg(Regs[0].first, getKillRegState(Regs[0].second)) 853 .addReg(Regs[1].first, getKillRegState(Regs[1].second)); 854 } 855 MIB.addReg(Base).addImm(Offset).addImm(Pred).addReg(PredReg); 856 MIB.cloneMergedMemRefs(Instrs); 857 return MIB.getInstr(); 858 } 859 860 /// Call MergeOps and update MemOps and merges accordingly on success. 861 MachineInstr *ARMLoadStoreOpt::MergeOpsUpdate(const MergeCandidate &Cand) { 862 const MachineInstr *First = Cand.Instrs.front(); 863 unsigned Opcode = First->getOpcode(); 864 bool IsLoad = isLoadSingle(Opcode); 865 SmallVector<std::pair<unsigned, bool>, 8> Regs; 866 SmallVector<unsigned, 4> ImpDefs; 867 DenseSet<unsigned> KilledRegs; 868 DenseSet<unsigned> UsedRegs; 869 // Determine list of registers and list of implicit super-register defs. 870 for (const MachineInstr *MI : Cand.Instrs) { 871 const MachineOperand &MO = getLoadStoreRegOp(*MI); 872 Register Reg = MO.getReg(); 873 bool IsKill = MO.isKill(); 874 if (IsKill) 875 KilledRegs.insert(Reg); 876 Regs.push_back(std::make_pair(Reg, IsKill)); 877 UsedRegs.insert(Reg); 878 879 if (IsLoad) { 880 // Collect any implicit defs of super-registers, after merging we can't 881 // be sure anymore that we properly preserved these live ranges and must 882 // removed these implicit operands. 883 for (const MachineOperand &MO : MI->implicit_operands()) { 884 if (!MO.isReg() || !MO.isDef() || MO.isDead()) 885 continue; 886 assert(MO.isImplicit()); 887 Register DefReg = MO.getReg(); 888 889 if (is_contained(ImpDefs, DefReg)) 890 continue; 891 // We can ignore cases where the super-reg is read and written. 892 if (MI->readsRegister(DefReg, /*TRI=*/nullptr)) 893 continue; 894 ImpDefs.push_back(DefReg); 895 } 896 } 897 } 898 899 // Attempt the merge. 900 using iterator = MachineBasicBlock::iterator; 901 902 MachineInstr *LatestMI = Cand.Instrs[Cand.LatestMIIdx]; 903 iterator InsertBefore = std::next(iterator(LatestMI)); 904 MachineBasicBlock &MBB = *LatestMI->getParent(); 905 unsigned Offset = getMemoryOpOffset(*First); 906 Register Base = getLoadStoreBaseOp(*First).getReg(); 907 bool BaseKill = LatestMI->killsRegister(Base, /*TRI=*/nullptr); 908 Register PredReg; 909 ARMCC::CondCodes Pred = getInstrPredicate(*First, PredReg); 910 DebugLoc DL = First->getDebugLoc(); 911 MachineInstr *Merged = nullptr; 912 if (Cand.CanMergeToLSDouble) 913 Merged = CreateLoadStoreDouble(MBB, InsertBefore, Offset, Base, BaseKill, 914 Opcode, Pred, PredReg, DL, Regs, 915 Cand.Instrs); 916 if (!Merged && Cand.CanMergeToLSMulti) 917 Merged = CreateLoadStoreMulti(MBB, InsertBefore, Offset, Base, BaseKill, 918 Opcode, Pred, PredReg, DL, Regs, Cand.Instrs); 919 if (!Merged) 920 return nullptr; 921 922 // Determine earliest instruction that will get removed. We then keep an 923 // iterator just above it so the following erases don't invalidated it. 924 iterator EarliestI(Cand.Instrs[Cand.EarliestMIIdx]); 925 bool EarliestAtBegin = false; 926 if (EarliestI == MBB.begin()) { 927 EarliestAtBegin = true; 928 } else { 929 EarliestI = std::prev(EarliestI); 930 } 931 932 // Remove instructions which have been merged. 933 for (MachineInstr *MI : Cand.Instrs) 934 MBB.erase(MI); 935 936 // Determine range between the earliest removed instruction and the new one. 937 if (EarliestAtBegin) 938 EarliestI = MBB.begin(); 939 else 940 EarliestI = std::next(EarliestI); 941 auto FixupRange = make_range(EarliestI, iterator(Merged)); 942 943 if (isLoadSingle(Opcode)) { 944 // If the previous loads defined a super-reg, then we have to mark earlier 945 // operands undef; Replicate the super-reg def on the merged instruction. 946 for (MachineInstr &MI : FixupRange) { 947 for (unsigned &ImpDefReg : ImpDefs) { 948 for (MachineOperand &MO : MI.implicit_operands()) { 949 if (!MO.isReg() || MO.getReg() != ImpDefReg) 950 continue; 951 if (MO.readsReg()) 952 MO.setIsUndef(); 953 else if (MO.isDef()) 954 ImpDefReg = 0; 955 } 956 } 957 } 958 959 MachineInstrBuilder MIB(*Merged->getParent()->getParent(), Merged); 960 for (unsigned ImpDef : ImpDefs) 961 MIB.addReg(ImpDef, RegState::ImplicitDefine); 962 } else { 963 // Remove kill flags: We are possibly storing the values later now. 964 assert(isi32Store(Opcode) || Opcode == ARM::VSTRS || Opcode == ARM::VSTRD); 965 for (MachineInstr &MI : FixupRange) { 966 for (MachineOperand &MO : MI.uses()) { 967 if (!MO.isReg() || !MO.isKill()) 968 continue; 969 if (UsedRegs.count(MO.getReg())) 970 MO.setIsKill(false); 971 } 972 } 973 assert(ImpDefs.empty()); 974 } 975 976 return Merged; 977 } 978 979 static bool isValidLSDoubleOffset(int Offset) { 980 unsigned Value = abs(Offset); 981 // t2LDRDi8/t2STRDi8 supports an 8 bit immediate which is internally 982 // multiplied by 4. 983 return (Value % 4) == 0 && Value < 1024; 984 } 985 986 /// Return true for loads/stores that can be combined to a double/multi 987 /// operation without increasing the requirements for alignment. 988 static bool mayCombineMisaligned(const TargetSubtargetInfo &STI, 989 const MachineInstr &MI) { 990 // vldr/vstr trap on misaligned pointers anyway, forming vldm makes no 991 // difference. 992 unsigned Opcode = MI.getOpcode(); 993 if (!isi32Load(Opcode) && !isi32Store(Opcode)) 994 return true; 995 996 // Stack pointer alignment is out of the programmers control so we can trust 997 // SP-relative loads/stores. 998 if (getLoadStoreBaseOp(MI).getReg() == ARM::SP && 999 STI.getFrameLowering()->getTransientStackAlign() >= Align(4)) 1000 return true; 1001 return false; 1002 } 1003 1004 /// Find candidates for load/store multiple merge in list of MemOpQueueEntries. 1005 void ARMLoadStoreOpt::FormCandidates(const MemOpQueue &MemOps) { 1006 const MachineInstr *FirstMI = MemOps[0].MI; 1007 unsigned Opcode = FirstMI->getOpcode(); 1008 bool isNotVFP = isi32Load(Opcode) || isi32Store(Opcode); 1009 unsigned Size = getLSMultipleTransferSize(FirstMI); 1010 1011 unsigned SIndex = 0; 1012 unsigned EIndex = MemOps.size(); 1013 do { 1014 // Look at the first instruction. 1015 const MachineInstr *MI = MemOps[SIndex].MI; 1016 int Offset = MemOps[SIndex].Offset; 1017 const MachineOperand &PMO = getLoadStoreRegOp(*MI); 1018 Register PReg = PMO.getReg(); 1019 unsigned PRegNum = PMO.isUndef() ? std::numeric_limits<unsigned>::max() 1020 : TRI->getEncodingValue(PReg); 1021 unsigned Latest = SIndex; 1022 unsigned Earliest = SIndex; 1023 unsigned Count = 1; 1024 bool CanMergeToLSDouble = 1025 STI->isThumb2() && isNotVFP && isValidLSDoubleOffset(Offset); 1026 // ARM errata 602117: LDRD with base in list may result in incorrect base 1027 // register when interrupted or faulted. 1028 if (STI->isCortexM3() && isi32Load(Opcode) && 1029 PReg == getLoadStoreBaseOp(*MI).getReg()) 1030 CanMergeToLSDouble = false; 1031 1032 bool CanMergeToLSMulti = true; 1033 // On swift vldm/vstm starting with an odd register number as that needs 1034 // more uops than single vldrs. 1035 if (STI->hasSlowOddRegister() && !isNotVFP && (PRegNum % 2) == 1) 1036 CanMergeToLSMulti = false; 1037 1038 // LDRD/STRD do not allow SP/PC. LDM/STM do not support it or have it 1039 // deprecated; LDM to PC is fine but cannot happen here. 1040 if (PReg == ARM::SP || PReg == ARM::PC) 1041 CanMergeToLSMulti = CanMergeToLSDouble = false; 1042 1043 // Should we be conservative? 1044 if (AssumeMisalignedLoadStores && !mayCombineMisaligned(*STI, *MI)) 1045 CanMergeToLSMulti = CanMergeToLSDouble = false; 1046 1047 // vldm / vstm limit are 32 for S variants, 16 for D variants. 1048 unsigned Limit; 1049 switch (Opcode) { 1050 default: 1051 Limit = UINT_MAX; 1052 break; 1053 case ARM::VLDRD: 1054 case ARM::VSTRD: 1055 Limit = 16; 1056 break; 1057 } 1058 1059 // Merge following instructions where possible. 1060 for (unsigned I = SIndex+1; I < EIndex; ++I, ++Count) { 1061 int NewOffset = MemOps[I].Offset; 1062 if (NewOffset != Offset + (int)Size) 1063 break; 1064 const MachineOperand &MO = getLoadStoreRegOp(*MemOps[I].MI); 1065 Register Reg = MO.getReg(); 1066 if (Reg == ARM::SP || Reg == ARM::PC) 1067 break; 1068 if (Count == Limit) 1069 break; 1070 1071 // See if the current load/store may be part of a multi load/store. 1072 unsigned RegNum = MO.isUndef() ? std::numeric_limits<unsigned>::max() 1073 : TRI->getEncodingValue(Reg); 1074 bool PartOfLSMulti = CanMergeToLSMulti; 1075 if (PartOfLSMulti) { 1076 // Register numbers must be in ascending order. 1077 if (RegNum <= PRegNum) 1078 PartOfLSMulti = false; 1079 // For VFP / NEON load/store multiples, the registers must be 1080 // consecutive and within the limit on the number of registers per 1081 // instruction. 1082 else if (!isNotVFP && RegNum != PRegNum+1) 1083 PartOfLSMulti = false; 1084 } 1085 // See if the current load/store may be part of a double load/store. 1086 bool PartOfLSDouble = CanMergeToLSDouble && Count <= 1; 1087 1088 if (!PartOfLSMulti && !PartOfLSDouble) 1089 break; 1090 CanMergeToLSMulti &= PartOfLSMulti; 1091 CanMergeToLSDouble &= PartOfLSDouble; 1092 // Track MemOp with latest and earliest position (Positions are 1093 // counted in reverse). 1094 unsigned Position = MemOps[I].Position; 1095 if (Position < MemOps[Latest].Position) 1096 Latest = I; 1097 else if (Position > MemOps[Earliest].Position) 1098 Earliest = I; 1099 // Prepare for next MemOp. 1100 Offset += Size; 1101 PRegNum = RegNum; 1102 } 1103 1104 // Form a candidate from the Ops collected so far. 1105 MergeCandidate *Candidate = new(Allocator.Allocate()) MergeCandidate; 1106 for (unsigned C = SIndex, CE = SIndex + Count; C < CE; ++C) 1107 Candidate->Instrs.push_back(MemOps[C].MI); 1108 Candidate->LatestMIIdx = Latest - SIndex; 1109 Candidate->EarliestMIIdx = Earliest - SIndex; 1110 Candidate->InsertPos = MemOps[Latest].Position; 1111 if (Count == 1) 1112 CanMergeToLSMulti = CanMergeToLSDouble = false; 1113 Candidate->CanMergeToLSMulti = CanMergeToLSMulti; 1114 Candidate->CanMergeToLSDouble = CanMergeToLSDouble; 1115 Candidates.push_back(Candidate); 1116 // Continue after the chain. 1117 SIndex += Count; 1118 } while (SIndex < EIndex); 1119 } 1120 1121 static unsigned getUpdatingLSMultipleOpcode(unsigned Opc, 1122 ARM_AM::AMSubMode Mode) { 1123 switch (Opc) { 1124 default: llvm_unreachable("Unhandled opcode!"); 1125 case ARM::LDMIA: 1126 case ARM::LDMDA: 1127 case ARM::LDMDB: 1128 case ARM::LDMIB: 1129 switch (Mode) { 1130 default: llvm_unreachable("Unhandled submode!"); 1131 case ARM_AM::ia: return ARM::LDMIA_UPD; 1132 case ARM_AM::ib: return ARM::LDMIB_UPD; 1133 case ARM_AM::da: return ARM::LDMDA_UPD; 1134 case ARM_AM::db: return ARM::LDMDB_UPD; 1135 } 1136 case ARM::STMIA: 1137 case ARM::STMDA: 1138 case ARM::STMDB: 1139 case ARM::STMIB: 1140 switch (Mode) { 1141 default: llvm_unreachable("Unhandled submode!"); 1142 case ARM_AM::ia: return ARM::STMIA_UPD; 1143 case ARM_AM::ib: return ARM::STMIB_UPD; 1144 case ARM_AM::da: return ARM::STMDA_UPD; 1145 case ARM_AM::db: return ARM::STMDB_UPD; 1146 } 1147 case ARM::t2LDMIA: 1148 case ARM::t2LDMDB: 1149 switch (Mode) { 1150 default: llvm_unreachable("Unhandled submode!"); 1151 case ARM_AM::ia: return ARM::t2LDMIA_UPD; 1152 case ARM_AM::db: return ARM::t2LDMDB_UPD; 1153 } 1154 case ARM::t2STMIA: 1155 case ARM::t2STMDB: 1156 switch (Mode) { 1157 default: llvm_unreachable("Unhandled submode!"); 1158 case ARM_AM::ia: return ARM::t2STMIA_UPD; 1159 case ARM_AM::db: return ARM::t2STMDB_UPD; 1160 } 1161 case ARM::VLDMSIA: 1162 switch (Mode) { 1163 default: llvm_unreachable("Unhandled submode!"); 1164 case ARM_AM::ia: return ARM::VLDMSIA_UPD; 1165 case ARM_AM::db: return ARM::VLDMSDB_UPD; 1166 } 1167 case ARM::VLDMDIA: 1168 switch (Mode) { 1169 default: llvm_unreachable("Unhandled submode!"); 1170 case ARM_AM::ia: return ARM::VLDMDIA_UPD; 1171 case ARM_AM::db: return ARM::VLDMDDB_UPD; 1172 } 1173 case ARM::VSTMSIA: 1174 switch (Mode) { 1175 default: llvm_unreachable("Unhandled submode!"); 1176 case ARM_AM::ia: return ARM::VSTMSIA_UPD; 1177 case ARM_AM::db: return ARM::VSTMSDB_UPD; 1178 } 1179 case ARM::VSTMDIA: 1180 switch (Mode) { 1181 default: llvm_unreachable("Unhandled submode!"); 1182 case ARM_AM::ia: return ARM::VSTMDIA_UPD; 1183 case ARM_AM::db: return ARM::VSTMDDB_UPD; 1184 } 1185 } 1186 } 1187 1188 /// Check if the given instruction increments or decrements a register and 1189 /// return the amount it is incremented/decremented. Returns 0 if the CPSR flags 1190 /// generated by the instruction are possibly read as well. 1191 static int isIncrementOrDecrement(const MachineInstr &MI, Register Reg, 1192 ARMCC::CondCodes Pred, Register PredReg) { 1193 bool CheckCPSRDef; 1194 int Scale; 1195 switch (MI.getOpcode()) { 1196 case ARM::tADDi8: Scale = 4; CheckCPSRDef = true; break; 1197 case ARM::tSUBi8: Scale = -4; CheckCPSRDef = true; break; 1198 case ARM::t2SUBri: 1199 case ARM::t2SUBspImm: 1200 case ARM::SUBri: Scale = -1; CheckCPSRDef = true; break; 1201 case ARM::t2ADDri: 1202 case ARM::t2ADDspImm: 1203 case ARM::ADDri: Scale = 1; CheckCPSRDef = true; break; 1204 case ARM::tADDspi: Scale = 4; CheckCPSRDef = false; break; 1205 case ARM::tSUBspi: Scale = -4; CheckCPSRDef = false; break; 1206 default: return 0; 1207 } 1208 1209 Register MIPredReg; 1210 if (MI.getOperand(0).getReg() != Reg || 1211 MI.getOperand(1).getReg() != Reg || 1212 getInstrPredicate(MI, MIPredReg) != Pred || 1213 MIPredReg != PredReg) 1214 return 0; 1215 1216 if (CheckCPSRDef && definesCPSR(MI)) 1217 return 0; 1218 return MI.getOperand(2).getImm() * Scale; 1219 } 1220 1221 /// Searches for an increment or decrement of \p Reg before \p MBBI. 1222 static MachineBasicBlock::iterator 1223 findIncDecBefore(MachineBasicBlock::iterator MBBI, Register Reg, 1224 ARMCC::CondCodes Pred, Register PredReg, int &Offset) { 1225 Offset = 0; 1226 MachineBasicBlock &MBB = *MBBI->getParent(); 1227 MachineBasicBlock::iterator BeginMBBI = MBB.begin(); 1228 MachineBasicBlock::iterator EndMBBI = MBB.end(); 1229 if (MBBI == BeginMBBI) 1230 return EndMBBI; 1231 1232 // Skip debug values. 1233 MachineBasicBlock::iterator PrevMBBI = std::prev(MBBI); 1234 while (PrevMBBI->isDebugInstr() && PrevMBBI != BeginMBBI) 1235 --PrevMBBI; 1236 1237 Offset = isIncrementOrDecrement(*PrevMBBI, Reg, Pred, PredReg); 1238 return Offset == 0 ? EndMBBI : PrevMBBI; 1239 } 1240 1241 /// Searches for a increment or decrement of \p Reg after \p MBBI. 1242 static MachineBasicBlock::iterator 1243 findIncDecAfter(MachineBasicBlock::iterator MBBI, Register Reg, 1244 ARMCC::CondCodes Pred, Register PredReg, int &Offset, 1245 const TargetRegisterInfo *TRI) { 1246 Offset = 0; 1247 MachineBasicBlock &MBB = *MBBI->getParent(); 1248 MachineBasicBlock::iterator EndMBBI = MBB.end(); 1249 MachineBasicBlock::iterator NextMBBI = std::next(MBBI); 1250 while (NextMBBI != EndMBBI) { 1251 // Skip debug values. 1252 while (NextMBBI != EndMBBI && NextMBBI->isDebugInstr()) 1253 ++NextMBBI; 1254 if (NextMBBI == EndMBBI) 1255 return EndMBBI; 1256 1257 unsigned Off = isIncrementOrDecrement(*NextMBBI, Reg, Pred, PredReg); 1258 if (Off) { 1259 Offset = Off; 1260 return NextMBBI; 1261 } 1262 1263 // SP can only be combined if it is the next instruction after the original 1264 // MBBI, otherwise we may be incrementing the stack pointer (invalidating 1265 // anything below the new pointer) when its frame elements are still in 1266 // use. Other registers can attempt to look further, until a different use 1267 // or def of the register is found. 1268 if (Reg == ARM::SP || NextMBBI->readsRegister(Reg, TRI) || 1269 NextMBBI->definesRegister(Reg, TRI)) 1270 return EndMBBI; 1271 1272 ++NextMBBI; 1273 } 1274 return EndMBBI; 1275 } 1276 1277 /// Fold proceeding/trailing inc/dec of base register into the 1278 /// LDM/STM/VLDM{D|S}/VSTM{D|S} op when possible: 1279 /// 1280 /// stmia rn, <ra, rb, rc> 1281 /// rn := rn + 4 * 3; 1282 /// => 1283 /// stmia rn!, <ra, rb, rc> 1284 /// 1285 /// rn := rn - 4 * 3; 1286 /// ldmia rn, <ra, rb, rc> 1287 /// => 1288 /// ldmdb rn!, <ra, rb, rc> 1289 bool ARMLoadStoreOpt::MergeBaseUpdateLSMultiple(MachineInstr *MI) { 1290 // Thumb1 is already using updating loads/stores. 1291 if (isThumb1) return false; 1292 LLVM_DEBUG(dbgs() << "Attempting to merge update of: " << *MI); 1293 1294 const MachineOperand &BaseOP = MI->getOperand(0); 1295 Register Base = BaseOP.getReg(); 1296 bool BaseKill = BaseOP.isKill(); 1297 Register PredReg; 1298 ARMCC::CondCodes Pred = getInstrPredicate(*MI, PredReg); 1299 unsigned Opcode = MI->getOpcode(); 1300 DebugLoc DL = MI->getDebugLoc(); 1301 1302 // Can't use an updating ld/st if the base register is also a dest 1303 // register. e.g. ldmdb r0!, {r0, r1, r2}. The behavior is undefined. 1304 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1305 if (MO.getReg() == Base) 1306 return false; 1307 1308 int Bytes = getLSMultipleTransferSize(MI); 1309 MachineBasicBlock &MBB = *MI->getParent(); 1310 MachineBasicBlock::iterator MBBI(MI); 1311 int Offset; 1312 MachineBasicBlock::iterator MergeInstr 1313 = findIncDecBefore(MBBI, Base, Pred, PredReg, Offset); 1314 ARM_AM::AMSubMode Mode = getLoadStoreMultipleSubMode(Opcode); 1315 if (Mode == ARM_AM::ia && Offset == -Bytes) { 1316 Mode = ARM_AM::db; 1317 } else if (Mode == ARM_AM::ib && Offset == -Bytes) { 1318 Mode = ARM_AM::da; 1319 } else { 1320 MergeInstr = findIncDecAfter(MBBI, Base, Pred, PredReg, Offset, TRI); 1321 if (((Mode != ARM_AM::ia && Mode != ARM_AM::ib) || Offset != Bytes) && 1322 ((Mode != ARM_AM::da && Mode != ARM_AM::db) || Offset != -Bytes)) { 1323 1324 // We couldn't find an inc/dec to merge. But if the base is dead, we 1325 // can still change to a writeback form as that will save us 2 bytes 1326 // of code size. It can create WAW hazards though, so only do it if 1327 // we're minimizing code size. 1328 if (!STI->hasMinSize() || !BaseKill) 1329 return false; 1330 1331 bool HighRegsUsed = false; 1332 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1333 if (MO.getReg() >= ARM::R8) { 1334 HighRegsUsed = true; 1335 break; 1336 } 1337 1338 if (!HighRegsUsed) 1339 MergeInstr = MBB.end(); 1340 else 1341 return false; 1342 } 1343 } 1344 if (MergeInstr != MBB.end()) { 1345 LLVM_DEBUG(dbgs() << " Erasing old increment: " << *MergeInstr); 1346 MBB.erase(MergeInstr); 1347 } 1348 1349 unsigned NewOpc = getUpdatingLSMultipleOpcode(Opcode, Mode); 1350 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc)) 1351 .addReg(Base, getDefRegState(true)) // WB base register 1352 .addReg(Base, getKillRegState(BaseKill)) 1353 .addImm(Pred).addReg(PredReg); 1354 1355 // Transfer the rest of operands. 1356 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 3)) 1357 MIB.add(MO); 1358 1359 // Transfer memoperands. 1360 MIB.setMemRefs(MI->memoperands()); 1361 1362 LLVM_DEBUG(dbgs() << " Added new load/store: " << *MIB); 1363 MBB.erase(MBBI); 1364 return true; 1365 } 1366 1367 static unsigned getPreIndexedLoadStoreOpcode(unsigned Opc, 1368 ARM_AM::AddrOpc Mode) { 1369 switch (Opc) { 1370 case ARM::LDRi12: 1371 return ARM::LDR_PRE_IMM; 1372 case ARM::STRi12: 1373 return ARM::STR_PRE_IMM; 1374 case ARM::VLDRS: 1375 return Mode == ARM_AM::add ? ARM::VLDMSIA_UPD : ARM::VLDMSDB_UPD; 1376 case ARM::VLDRD: 1377 return Mode == ARM_AM::add ? ARM::VLDMDIA_UPD : ARM::VLDMDDB_UPD; 1378 case ARM::VSTRS: 1379 return Mode == ARM_AM::add ? ARM::VSTMSIA_UPD : ARM::VSTMSDB_UPD; 1380 case ARM::VSTRD: 1381 return Mode == ARM_AM::add ? ARM::VSTMDIA_UPD : ARM::VSTMDDB_UPD; 1382 case ARM::t2LDRi8: 1383 case ARM::t2LDRi12: 1384 return ARM::t2LDR_PRE; 1385 case ARM::t2STRi8: 1386 case ARM::t2STRi12: 1387 return ARM::t2STR_PRE; 1388 default: llvm_unreachable("Unhandled opcode!"); 1389 } 1390 } 1391 1392 static unsigned getPostIndexedLoadStoreOpcode(unsigned Opc, 1393 ARM_AM::AddrOpc Mode) { 1394 switch (Opc) { 1395 case ARM::LDRi12: 1396 return ARM::LDR_POST_IMM; 1397 case ARM::STRi12: 1398 return ARM::STR_POST_IMM; 1399 case ARM::VLDRS: 1400 return Mode == ARM_AM::add ? ARM::VLDMSIA_UPD : ARM::VLDMSDB_UPD; 1401 case ARM::VLDRD: 1402 return Mode == ARM_AM::add ? ARM::VLDMDIA_UPD : ARM::VLDMDDB_UPD; 1403 case ARM::VSTRS: 1404 return Mode == ARM_AM::add ? ARM::VSTMSIA_UPD : ARM::VSTMSDB_UPD; 1405 case ARM::VSTRD: 1406 return Mode == ARM_AM::add ? ARM::VSTMDIA_UPD : ARM::VSTMDDB_UPD; 1407 case ARM::t2LDRi8: 1408 case ARM::t2LDRi12: 1409 return ARM::t2LDR_POST; 1410 case ARM::t2LDRBi8: 1411 case ARM::t2LDRBi12: 1412 return ARM::t2LDRB_POST; 1413 case ARM::t2LDRSBi8: 1414 case ARM::t2LDRSBi12: 1415 return ARM::t2LDRSB_POST; 1416 case ARM::t2LDRHi8: 1417 case ARM::t2LDRHi12: 1418 return ARM::t2LDRH_POST; 1419 case ARM::t2LDRSHi8: 1420 case ARM::t2LDRSHi12: 1421 return ARM::t2LDRSH_POST; 1422 case ARM::t2STRi8: 1423 case ARM::t2STRi12: 1424 return ARM::t2STR_POST; 1425 case ARM::t2STRBi8: 1426 case ARM::t2STRBi12: 1427 return ARM::t2STRB_POST; 1428 case ARM::t2STRHi8: 1429 case ARM::t2STRHi12: 1430 return ARM::t2STRH_POST; 1431 1432 case ARM::MVE_VLDRBS16: 1433 return ARM::MVE_VLDRBS16_post; 1434 case ARM::MVE_VLDRBS32: 1435 return ARM::MVE_VLDRBS32_post; 1436 case ARM::MVE_VLDRBU16: 1437 return ARM::MVE_VLDRBU16_post; 1438 case ARM::MVE_VLDRBU32: 1439 return ARM::MVE_VLDRBU32_post; 1440 case ARM::MVE_VLDRHS32: 1441 return ARM::MVE_VLDRHS32_post; 1442 case ARM::MVE_VLDRHU32: 1443 return ARM::MVE_VLDRHU32_post; 1444 case ARM::MVE_VLDRBU8: 1445 return ARM::MVE_VLDRBU8_post; 1446 case ARM::MVE_VLDRHU16: 1447 return ARM::MVE_VLDRHU16_post; 1448 case ARM::MVE_VLDRWU32: 1449 return ARM::MVE_VLDRWU32_post; 1450 case ARM::MVE_VSTRB16: 1451 return ARM::MVE_VSTRB16_post; 1452 case ARM::MVE_VSTRB32: 1453 return ARM::MVE_VSTRB32_post; 1454 case ARM::MVE_VSTRH32: 1455 return ARM::MVE_VSTRH32_post; 1456 case ARM::MVE_VSTRBU8: 1457 return ARM::MVE_VSTRBU8_post; 1458 case ARM::MVE_VSTRHU16: 1459 return ARM::MVE_VSTRHU16_post; 1460 case ARM::MVE_VSTRWU32: 1461 return ARM::MVE_VSTRWU32_post; 1462 1463 default: llvm_unreachable("Unhandled opcode!"); 1464 } 1465 } 1466 1467 /// Fold proceeding/trailing inc/dec of base register into the 1468 /// LDR/STR/FLD{D|S}/FST{D|S} op when possible: 1469 bool ARMLoadStoreOpt::MergeBaseUpdateLoadStore(MachineInstr *MI) { 1470 // Thumb1 doesn't have updating LDR/STR. 1471 // FIXME: Use LDM/STM with single register instead. 1472 if (isThumb1) return false; 1473 LLVM_DEBUG(dbgs() << "Attempting to merge update of: " << *MI); 1474 1475 Register Base = getLoadStoreBaseOp(*MI).getReg(); 1476 bool BaseKill = getLoadStoreBaseOp(*MI).isKill(); 1477 unsigned Opcode = MI->getOpcode(); 1478 DebugLoc DL = MI->getDebugLoc(); 1479 bool isAM5 = (Opcode == ARM::VLDRD || Opcode == ARM::VLDRS || 1480 Opcode == ARM::VSTRD || Opcode == ARM::VSTRS); 1481 bool isAM2 = (Opcode == ARM::LDRi12 || Opcode == ARM::STRi12); 1482 if (isi32Load(Opcode) || isi32Store(Opcode)) 1483 if (MI->getOperand(2).getImm() != 0) 1484 return false; 1485 if (isAM5 && ARM_AM::getAM5Offset(MI->getOperand(2).getImm()) != 0) 1486 return false; 1487 1488 // Can't do the merge if the destination register is the same as the would-be 1489 // writeback register. 1490 if (MI->getOperand(0).getReg() == Base) 1491 return false; 1492 1493 Register PredReg; 1494 ARMCC::CondCodes Pred = getInstrPredicate(*MI, PredReg); 1495 int Bytes = getLSMultipleTransferSize(MI); 1496 MachineBasicBlock &MBB = *MI->getParent(); 1497 MachineBasicBlock::iterator MBBI(MI); 1498 int Offset; 1499 MachineBasicBlock::iterator MergeInstr 1500 = findIncDecBefore(MBBI, Base, Pred, PredReg, Offset); 1501 unsigned NewOpc; 1502 if (!isAM5 && Offset == Bytes) { 1503 NewOpc = getPreIndexedLoadStoreOpcode(Opcode, ARM_AM::add); 1504 } else if (Offset == -Bytes) { 1505 NewOpc = getPreIndexedLoadStoreOpcode(Opcode, ARM_AM::sub); 1506 } else { 1507 MergeInstr = findIncDecAfter(MBBI, Base, Pred, PredReg, Offset, TRI); 1508 if (MergeInstr == MBB.end()) 1509 return false; 1510 1511 NewOpc = getPostIndexedLoadStoreOpcode(Opcode, ARM_AM::add); 1512 if ((isAM5 && Offset != Bytes) || 1513 (!isAM5 && !isLegalAddressImm(NewOpc, Offset, TII))) { 1514 NewOpc = getPostIndexedLoadStoreOpcode(Opcode, ARM_AM::sub); 1515 if (isAM5 || !isLegalAddressImm(NewOpc, Offset, TII)) 1516 return false; 1517 } 1518 } 1519 LLVM_DEBUG(dbgs() << " Erasing old increment: " << *MergeInstr); 1520 MBB.erase(MergeInstr); 1521 1522 ARM_AM::AddrOpc AddSub = Offset < 0 ? ARM_AM::sub : ARM_AM::add; 1523 1524 bool isLd = isLoadSingle(Opcode); 1525 if (isAM5) { 1526 // VLDM[SD]_UPD, VSTM[SD]_UPD 1527 // (There are no base-updating versions of VLDR/VSTR instructions, but the 1528 // updating load/store-multiple instructions can be used with only one 1529 // register.) 1530 MachineOperand &MO = MI->getOperand(0); 1531 auto MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc)) 1532 .addReg(Base, getDefRegState(true)) // WB base register 1533 .addReg(Base, getKillRegState(isLd ? BaseKill : false)) 1534 .addImm(Pred) 1535 .addReg(PredReg) 1536 .addReg(MO.getReg(), (isLd ? getDefRegState(true) 1537 : getKillRegState(MO.isKill()))) 1538 .cloneMemRefs(*MI); 1539 (void)MIB; 1540 LLVM_DEBUG(dbgs() << " Added new instruction: " << *MIB); 1541 } else if (isLd) { 1542 if (isAM2) { 1543 // LDR_PRE, LDR_POST 1544 if (NewOpc == ARM::LDR_PRE_IMM || NewOpc == ARM::LDRB_PRE_IMM) { 1545 auto MIB = 1546 BuildMI(MBB, MBBI, DL, TII->get(NewOpc), MI->getOperand(0).getReg()) 1547 .addReg(Base, RegState::Define) 1548 .addReg(Base) 1549 .addImm(Offset) 1550 .addImm(Pred) 1551 .addReg(PredReg) 1552 .cloneMemRefs(*MI); 1553 (void)MIB; 1554 LLVM_DEBUG(dbgs() << " Added new instruction: " << *MIB); 1555 } else { 1556 int Imm = ARM_AM::getAM2Opc(AddSub, abs(Offset), ARM_AM::no_shift); 1557 auto MIB = 1558 BuildMI(MBB, MBBI, DL, TII->get(NewOpc), MI->getOperand(0).getReg()) 1559 .addReg(Base, RegState::Define) 1560 .addReg(Base) 1561 .addReg(0) 1562 .addImm(Imm) 1563 .add(predOps(Pred, PredReg)) 1564 .cloneMemRefs(*MI); 1565 (void)MIB; 1566 LLVM_DEBUG(dbgs() << " Added new instruction: " << *MIB); 1567 } 1568 } else { 1569 // t2LDR_PRE, t2LDR_POST 1570 auto MIB = 1571 BuildMI(MBB, MBBI, DL, TII->get(NewOpc), MI->getOperand(0).getReg()) 1572 .addReg(Base, RegState::Define) 1573 .addReg(Base) 1574 .addImm(Offset) 1575 .add(predOps(Pred, PredReg)) 1576 .cloneMemRefs(*MI); 1577 (void)MIB; 1578 LLVM_DEBUG(dbgs() << " Added new instruction: " << *MIB); 1579 } 1580 } else { 1581 MachineOperand &MO = MI->getOperand(0); 1582 // FIXME: post-indexed stores use am2offset_imm, which still encodes 1583 // the vestigal zero-reg offset register. When that's fixed, this clause 1584 // can be removed entirely. 1585 if (isAM2 && NewOpc == ARM::STR_POST_IMM) { 1586 int Imm = ARM_AM::getAM2Opc(AddSub, abs(Offset), ARM_AM::no_shift); 1587 // STR_PRE, STR_POST 1588 auto MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc), Base) 1589 .addReg(MO.getReg(), getKillRegState(MO.isKill())) 1590 .addReg(Base) 1591 .addReg(0) 1592 .addImm(Imm) 1593 .add(predOps(Pred, PredReg)) 1594 .cloneMemRefs(*MI); 1595 (void)MIB; 1596 LLVM_DEBUG(dbgs() << " Added new instruction: " << *MIB); 1597 } else { 1598 // t2STR_PRE, t2STR_POST 1599 auto MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc), Base) 1600 .addReg(MO.getReg(), getKillRegState(MO.isKill())) 1601 .addReg(Base) 1602 .addImm(Offset) 1603 .add(predOps(Pred, PredReg)) 1604 .cloneMemRefs(*MI); 1605 (void)MIB; 1606 LLVM_DEBUG(dbgs() << " Added new instruction: " << *MIB); 1607 } 1608 } 1609 MBB.erase(MBBI); 1610 1611 return true; 1612 } 1613 1614 bool ARMLoadStoreOpt::MergeBaseUpdateLSDouble(MachineInstr &MI) const { 1615 unsigned Opcode = MI.getOpcode(); 1616 assert((Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8) && 1617 "Must have t2STRDi8 or t2LDRDi8"); 1618 if (MI.getOperand(3).getImm() != 0) 1619 return false; 1620 LLVM_DEBUG(dbgs() << "Attempting to merge update of: " << MI); 1621 1622 // Behaviour for writeback is undefined if base register is the same as one 1623 // of the others. 1624 const MachineOperand &BaseOp = MI.getOperand(2); 1625 Register Base = BaseOp.getReg(); 1626 const MachineOperand &Reg0Op = MI.getOperand(0); 1627 const MachineOperand &Reg1Op = MI.getOperand(1); 1628 if (Reg0Op.getReg() == Base || Reg1Op.getReg() == Base) 1629 return false; 1630 1631 Register PredReg; 1632 ARMCC::CondCodes Pred = getInstrPredicate(MI, PredReg); 1633 MachineBasicBlock::iterator MBBI(MI); 1634 MachineBasicBlock &MBB = *MI.getParent(); 1635 int Offset; 1636 MachineBasicBlock::iterator MergeInstr = findIncDecBefore(MBBI, Base, Pred, 1637 PredReg, Offset); 1638 unsigned NewOpc; 1639 if (Offset == 8 || Offset == -8) { 1640 NewOpc = Opcode == ARM::t2LDRDi8 ? ARM::t2LDRD_PRE : ARM::t2STRD_PRE; 1641 } else { 1642 MergeInstr = findIncDecAfter(MBBI, Base, Pred, PredReg, Offset, TRI); 1643 if (MergeInstr == MBB.end()) 1644 return false; 1645 NewOpc = Opcode == ARM::t2LDRDi8 ? ARM::t2LDRD_POST : ARM::t2STRD_POST; 1646 if (!isLegalAddressImm(NewOpc, Offset, TII)) 1647 return false; 1648 } 1649 LLVM_DEBUG(dbgs() << " Erasing old increment: " << *MergeInstr); 1650 MBB.erase(MergeInstr); 1651 1652 DebugLoc DL = MI.getDebugLoc(); 1653 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc)); 1654 if (NewOpc == ARM::t2LDRD_PRE || NewOpc == ARM::t2LDRD_POST) { 1655 MIB.add(Reg0Op).add(Reg1Op).addReg(BaseOp.getReg(), RegState::Define); 1656 } else { 1657 assert(NewOpc == ARM::t2STRD_PRE || NewOpc == ARM::t2STRD_POST); 1658 MIB.addReg(BaseOp.getReg(), RegState::Define).add(Reg0Op).add(Reg1Op); 1659 } 1660 MIB.addReg(BaseOp.getReg(), RegState::Kill) 1661 .addImm(Offset).addImm(Pred).addReg(PredReg); 1662 assert(TII->get(Opcode).getNumOperands() == 6 && 1663 TII->get(NewOpc).getNumOperands() == 7 && 1664 "Unexpected number of operands in Opcode specification."); 1665 1666 // Transfer implicit operands. 1667 for (const MachineOperand &MO : MI.implicit_operands()) 1668 MIB.add(MO); 1669 MIB.cloneMemRefs(MI); 1670 1671 LLVM_DEBUG(dbgs() << " Added new load/store: " << *MIB); 1672 MBB.erase(MBBI); 1673 return true; 1674 } 1675 1676 /// Returns true if instruction is a memory operation that this pass is capable 1677 /// of operating on. 1678 static bool isMemoryOp(const MachineInstr &MI) { 1679 unsigned Opcode = MI.getOpcode(); 1680 switch (Opcode) { 1681 case ARM::VLDRS: 1682 case ARM::VSTRS: 1683 case ARM::VLDRD: 1684 case ARM::VSTRD: 1685 case ARM::LDRi12: 1686 case ARM::STRi12: 1687 case ARM::tLDRi: 1688 case ARM::tSTRi: 1689 case ARM::tLDRspi: 1690 case ARM::tSTRspi: 1691 case ARM::t2LDRi8: 1692 case ARM::t2LDRi12: 1693 case ARM::t2STRi8: 1694 case ARM::t2STRi12: 1695 break; 1696 default: 1697 return false; 1698 } 1699 if (!MI.getOperand(1).isReg()) 1700 return false; 1701 1702 // When no memory operands are present, conservatively assume unaligned, 1703 // volatile, unfoldable. 1704 if (!MI.hasOneMemOperand()) 1705 return false; 1706 1707 const MachineMemOperand &MMO = **MI.memoperands_begin(); 1708 1709 // Don't touch volatile memory accesses - we may be changing their order. 1710 // TODO: We could allow unordered and monotonic atomics here, but we need to 1711 // make sure the resulting ldm/stm is correctly marked as atomic. 1712 if (MMO.isVolatile() || MMO.isAtomic()) 1713 return false; 1714 1715 // Unaligned ldr/str is emulated by some kernels, but unaligned ldm/stm is 1716 // not. 1717 if (MMO.getAlign() < Align(4)) 1718 return false; 1719 1720 // str <undef> could probably be eliminated entirely, but for now we just want 1721 // to avoid making a mess of it. 1722 // FIXME: Use str <undef> as a wildcard to enable better stm folding. 1723 if (MI.getOperand(0).isReg() && MI.getOperand(0).isUndef()) 1724 return false; 1725 1726 // Likewise don't mess with references to undefined addresses. 1727 if (MI.getOperand(1).isUndef()) 1728 return false; 1729 1730 return true; 1731 } 1732 1733 static void InsertLDR_STR(MachineBasicBlock &MBB, 1734 MachineBasicBlock::iterator &MBBI, int Offset, 1735 bool isDef, unsigned NewOpc, unsigned Reg, 1736 bool RegDeadKill, bool RegUndef, unsigned BaseReg, 1737 bool BaseKill, bool BaseUndef, ARMCC::CondCodes Pred, 1738 unsigned PredReg, const TargetInstrInfo *TII, 1739 MachineInstr *MI) { 1740 if (isDef) { 1741 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MBBI->getDebugLoc(), 1742 TII->get(NewOpc)) 1743 .addReg(Reg, getDefRegState(true) | getDeadRegState(RegDeadKill)) 1744 .addReg(BaseReg, getKillRegState(BaseKill)|getUndefRegState(BaseUndef)); 1745 MIB.addImm(Offset).addImm(Pred).addReg(PredReg); 1746 // FIXME: This is overly conservative; the new instruction accesses 4 1747 // bytes, not 8. 1748 MIB.cloneMemRefs(*MI); 1749 } else { 1750 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MBBI->getDebugLoc(), 1751 TII->get(NewOpc)) 1752 .addReg(Reg, getKillRegState(RegDeadKill) | getUndefRegState(RegUndef)) 1753 .addReg(BaseReg, getKillRegState(BaseKill)|getUndefRegState(BaseUndef)); 1754 MIB.addImm(Offset).addImm(Pred).addReg(PredReg); 1755 // FIXME: This is overly conservative; the new instruction accesses 4 1756 // bytes, not 8. 1757 MIB.cloneMemRefs(*MI); 1758 } 1759 } 1760 1761 bool ARMLoadStoreOpt::FixInvalidRegPairOp(MachineBasicBlock &MBB, 1762 MachineBasicBlock::iterator &MBBI) { 1763 MachineInstr *MI = &*MBBI; 1764 unsigned Opcode = MI->getOpcode(); 1765 // FIXME: Code/comments below check Opcode == t2STRDi8, but this check returns 1766 // if we see this opcode. 1767 if (Opcode != ARM::LDRD && Opcode != ARM::STRD && Opcode != ARM::t2LDRDi8) 1768 return false; 1769 1770 const MachineOperand &BaseOp = MI->getOperand(2); 1771 Register BaseReg = BaseOp.getReg(); 1772 Register EvenReg = MI->getOperand(0).getReg(); 1773 Register OddReg = MI->getOperand(1).getReg(); 1774 unsigned EvenRegNum = TRI->getDwarfRegNum(EvenReg, false); 1775 unsigned OddRegNum = TRI->getDwarfRegNum(OddReg, false); 1776 1777 // ARM errata 602117: LDRD with base in list may result in incorrect base 1778 // register when interrupted or faulted. 1779 bool Errata602117 = EvenReg == BaseReg && 1780 (Opcode == ARM::LDRD || Opcode == ARM::t2LDRDi8) && STI->isCortexM3(); 1781 // ARM LDRD/STRD needs consecutive registers. 1782 bool NonConsecutiveRegs = (Opcode == ARM::LDRD || Opcode == ARM::STRD) && 1783 (EvenRegNum % 2 != 0 || EvenRegNum + 1 != OddRegNum); 1784 1785 if (!Errata602117 && !NonConsecutiveRegs) 1786 return false; 1787 1788 bool isT2 = Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8; 1789 bool isLd = Opcode == ARM::LDRD || Opcode == ARM::t2LDRDi8; 1790 bool EvenDeadKill = isLd ? 1791 MI->getOperand(0).isDead() : MI->getOperand(0).isKill(); 1792 bool EvenUndef = MI->getOperand(0).isUndef(); 1793 bool OddDeadKill = isLd ? 1794 MI->getOperand(1).isDead() : MI->getOperand(1).isKill(); 1795 bool OddUndef = MI->getOperand(1).isUndef(); 1796 bool BaseKill = BaseOp.isKill(); 1797 bool BaseUndef = BaseOp.isUndef(); 1798 assert((isT2 || MI->getOperand(3).getReg() == ARM::NoRegister) && 1799 "register offset not handled below"); 1800 int OffImm = getMemoryOpOffset(*MI); 1801 Register PredReg; 1802 ARMCC::CondCodes Pred = getInstrPredicate(*MI, PredReg); 1803 1804 if (OddRegNum > EvenRegNum && OffImm == 0) { 1805 // Ascending register numbers and no offset. It's safe to change it to a 1806 // ldm or stm. 1807 unsigned NewOpc = (isLd) 1808 ? (isT2 ? ARM::t2LDMIA : ARM::LDMIA) 1809 : (isT2 ? ARM::t2STMIA : ARM::STMIA); 1810 if (isLd) { 1811 BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(NewOpc)) 1812 .addReg(BaseReg, getKillRegState(BaseKill)) 1813 .addImm(Pred).addReg(PredReg) 1814 .addReg(EvenReg, getDefRegState(isLd) | getDeadRegState(EvenDeadKill)) 1815 .addReg(OddReg, getDefRegState(isLd) | getDeadRegState(OddDeadKill)) 1816 .cloneMemRefs(*MI); 1817 ++NumLDRD2LDM; 1818 } else { 1819 BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(NewOpc)) 1820 .addReg(BaseReg, getKillRegState(BaseKill)) 1821 .addImm(Pred).addReg(PredReg) 1822 .addReg(EvenReg, 1823 getKillRegState(EvenDeadKill) | getUndefRegState(EvenUndef)) 1824 .addReg(OddReg, 1825 getKillRegState(OddDeadKill) | getUndefRegState(OddUndef)) 1826 .cloneMemRefs(*MI); 1827 ++NumSTRD2STM; 1828 } 1829 } else { 1830 // Split into two instructions. 1831 unsigned NewOpc = (isLd) 1832 ? (isT2 ? (OffImm < 0 ? ARM::t2LDRi8 : ARM::t2LDRi12) : ARM::LDRi12) 1833 : (isT2 ? (OffImm < 0 ? ARM::t2STRi8 : ARM::t2STRi12) : ARM::STRi12); 1834 // Be extra careful for thumb2. t2LDRi8 can't reference a zero offset, 1835 // so adjust and use t2LDRi12 here for that. 1836 unsigned NewOpc2 = (isLd) 1837 ? (isT2 ? (OffImm+4 < 0 ? ARM::t2LDRi8 : ARM::t2LDRi12) : ARM::LDRi12) 1838 : (isT2 ? (OffImm+4 < 0 ? ARM::t2STRi8 : ARM::t2STRi12) : ARM::STRi12); 1839 // If this is a load, make sure the first load does not clobber the base 1840 // register before the second load reads it. 1841 if (isLd && TRI->regsOverlap(EvenReg, BaseReg)) { 1842 assert(!TRI->regsOverlap(OddReg, BaseReg)); 1843 InsertLDR_STR(MBB, MBBI, OffImm + 4, isLd, NewOpc2, OddReg, OddDeadKill, 1844 false, BaseReg, false, BaseUndef, Pred, PredReg, TII, MI); 1845 InsertLDR_STR(MBB, MBBI, OffImm, isLd, NewOpc, EvenReg, EvenDeadKill, 1846 false, BaseReg, BaseKill, BaseUndef, Pred, PredReg, TII, 1847 MI); 1848 } else { 1849 if (OddReg == EvenReg && EvenDeadKill) { 1850 // If the two source operands are the same, the kill marker is 1851 // probably on the first one. e.g. 1852 // t2STRDi8 killed %r5, %r5, killed %r9, 0, 14, %reg0 1853 EvenDeadKill = false; 1854 OddDeadKill = true; 1855 } 1856 // Never kill the base register in the first instruction. 1857 if (EvenReg == BaseReg) 1858 EvenDeadKill = false; 1859 InsertLDR_STR(MBB, MBBI, OffImm, isLd, NewOpc, EvenReg, EvenDeadKill, 1860 EvenUndef, BaseReg, false, BaseUndef, Pred, PredReg, TII, 1861 MI); 1862 InsertLDR_STR(MBB, MBBI, OffImm + 4, isLd, NewOpc2, OddReg, OddDeadKill, 1863 OddUndef, BaseReg, BaseKill, BaseUndef, Pred, PredReg, TII, 1864 MI); 1865 } 1866 if (isLd) 1867 ++NumLDRD2LDR; 1868 else 1869 ++NumSTRD2STR; 1870 } 1871 1872 MBBI = MBB.erase(MBBI); 1873 return true; 1874 } 1875 1876 /// An optimization pass to turn multiple LDR / STR ops of the same base and 1877 /// incrementing offset into LDM / STM ops. 1878 bool ARMLoadStoreOpt::LoadStoreMultipleOpti(MachineBasicBlock &MBB) { 1879 MemOpQueue MemOps; 1880 unsigned CurrBase = 0; 1881 unsigned CurrOpc = ~0u; 1882 ARMCC::CondCodes CurrPred = ARMCC::AL; 1883 unsigned Position = 0; 1884 assert(Candidates.size() == 0); 1885 assert(MergeBaseCandidates.size() == 0); 1886 LiveRegsValid = false; 1887 1888 for (MachineBasicBlock::iterator I = MBB.end(), MBBI; I != MBB.begin(); 1889 I = MBBI) { 1890 // The instruction in front of the iterator is the one we look at. 1891 MBBI = std::prev(I); 1892 if (FixInvalidRegPairOp(MBB, MBBI)) 1893 continue; 1894 ++Position; 1895 1896 if (isMemoryOp(*MBBI)) { 1897 unsigned Opcode = MBBI->getOpcode(); 1898 const MachineOperand &MO = MBBI->getOperand(0); 1899 Register Reg = MO.getReg(); 1900 Register Base = getLoadStoreBaseOp(*MBBI).getReg(); 1901 Register PredReg; 1902 ARMCC::CondCodes Pred = getInstrPredicate(*MBBI, PredReg); 1903 int Offset = getMemoryOpOffset(*MBBI); 1904 if (CurrBase == 0) { 1905 // Start of a new chain. 1906 CurrBase = Base; 1907 CurrOpc = Opcode; 1908 CurrPred = Pred; 1909 MemOps.push_back(MemOpQueueEntry(*MBBI, Offset, Position)); 1910 continue; 1911 } 1912 // Note: No need to match PredReg in the next if. 1913 if (CurrOpc == Opcode && CurrBase == Base && CurrPred == Pred) { 1914 // Watch out for: 1915 // r4 := ldr [r0, #8] 1916 // r4 := ldr [r0, #4] 1917 // or 1918 // r0 := ldr [r0] 1919 // If a load overrides the base register or a register loaded by 1920 // another load in our chain, we cannot take this instruction. 1921 bool Overlap = false; 1922 if (isLoadSingle(Opcode)) { 1923 Overlap = (Base == Reg); 1924 if (!Overlap) { 1925 for (const MemOpQueueEntry &E : MemOps) { 1926 if (TRI->regsOverlap(Reg, E.MI->getOperand(0).getReg())) { 1927 Overlap = true; 1928 break; 1929 } 1930 } 1931 } 1932 } 1933 1934 if (!Overlap) { 1935 // Check offset and sort memory operation into the current chain. 1936 if (Offset > MemOps.back().Offset) { 1937 MemOps.push_back(MemOpQueueEntry(*MBBI, Offset, Position)); 1938 continue; 1939 } else { 1940 MemOpQueue::iterator MI, ME; 1941 for (MI = MemOps.begin(), ME = MemOps.end(); MI != ME; ++MI) { 1942 if (Offset < MI->Offset) { 1943 // Found a place to insert. 1944 break; 1945 } 1946 if (Offset == MI->Offset) { 1947 // Collision, abort. 1948 MI = ME; 1949 break; 1950 } 1951 } 1952 if (MI != MemOps.end()) { 1953 MemOps.insert(MI, MemOpQueueEntry(*MBBI, Offset, Position)); 1954 continue; 1955 } 1956 } 1957 } 1958 } 1959 1960 // Don't advance the iterator; The op will start a new chain next. 1961 MBBI = I; 1962 --Position; 1963 // Fallthrough to look into existing chain. 1964 } else if (MBBI->isDebugInstr()) { 1965 continue; 1966 } else if (MBBI->getOpcode() == ARM::t2LDRDi8 || 1967 MBBI->getOpcode() == ARM::t2STRDi8) { 1968 // ARMPreAllocLoadStoreOpt has already formed some LDRD/STRD instructions 1969 // remember them because we may still be able to merge add/sub into them. 1970 MergeBaseCandidates.push_back(&*MBBI); 1971 } 1972 1973 // If we are here then the chain is broken; Extract candidates for a merge. 1974 if (MemOps.size() > 0) { 1975 FormCandidates(MemOps); 1976 // Reset for the next chain. 1977 CurrBase = 0; 1978 CurrOpc = ~0u; 1979 CurrPred = ARMCC::AL; 1980 MemOps.clear(); 1981 } 1982 } 1983 if (MemOps.size() > 0) 1984 FormCandidates(MemOps); 1985 1986 // Sort candidates so they get processed from end to begin of the basic 1987 // block later; This is necessary for liveness calculation. 1988 auto LessThan = [](const MergeCandidate* M0, const MergeCandidate *M1) { 1989 return M0->InsertPos < M1->InsertPos; 1990 }; 1991 llvm::sort(Candidates, LessThan); 1992 1993 // Go through list of candidates and merge. 1994 bool Changed = false; 1995 for (const MergeCandidate *Candidate : Candidates) { 1996 if (Candidate->CanMergeToLSMulti || Candidate->CanMergeToLSDouble) { 1997 MachineInstr *Merged = MergeOpsUpdate(*Candidate); 1998 // Merge preceding/trailing base inc/dec into the merged op. 1999 if (Merged) { 2000 Changed = true; 2001 unsigned Opcode = Merged->getOpcode(); 2002 if (Opcode == ARM::t2STRDi8 || Opcode == ARM::t2LDRDi8) 2003 MergeBaseUpdateLSDouble(*Merged); 2004 else 2005 MergeBaseUpdateLSMultiple(Merged); 2006 } else { 2007 for (MachineInstr *MI : Candidate->Instrs) { 2008 if (MergeBaseUpdateLoadStore(MI)) 2009 Changed = true; 2010 } 2011 } 2012 } else { 2013 assert(Candidate->Instrs.size() == 1); 2014 if (MergeBaseUpdateLoadStore(Candidate->Instrs.front())) 2015 Changed = true; 2016 } 2017 } 2018 Candidates.clear(); 2019 // Try to fold add/sub into the LDRD/STRD formed by ARMPreAllocLoadStoreOpt. 2020 for (MachineInstr *MI : MergeBaseCandidates) 2021 MergeBaseUpdateLSDouble(*MI); 2022 MergeBaseCandidates.clear(); 2023 2024 return Changed; 2025 } 2026 2027 /// If this is a exit BB, try merging the return ops ("bx lr" and "mov pc, lr") 2028 /// into the preceding stack restore so it directly restore the value of LR 2029 /// into pc. 2030 /// ldmfd sp!, {..., lr} 2031 /// bx lr 2032 /// or 2033 /// ldmfd sp!, {..., lr} 2034 /// mov pc, lr 2035 /// => 2036 /// ldmfd sp!, {..., pc} 2037 bool ARMLoadStoreOpt::MergeReturnIntoLDM(MachineBasicBlock &MBB) { 2038 // Thumb1 LDM doesn't allow high registers. 2039 if (isThumb1) return false; 2040 if (MBB.empty()) return false; 2041 2042 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); 2043 if (MBBI != MBB.begin() && MBBI != MBB.end() && 2044 (MBBI->getOpcode() == ARM::BX_RET || 2045 MBBI->getOpcode() == ARM::tBX_RET || 2046 MBBI->getOpcode() == ARM::MOVPCLR)) { 2047 MachineBasicBlock::iterator PrevI = std::prev(MBBI); 2048 // Ignore any debug instructions. 2049 while (PrevI->isDebugInstr() && PrevI != MBB.begin()) 2050 --PrevI; 2051 MachineInstr &PrevMI = *PrevI; 2052 unsigned Opcode = PrevMI.getOpcode(); 2053 if (Opcode == ARM::LDMIA_UPD || Opcode == ARM::LDMDA_UPD || 2054 Opcode == ARM::LDMDB_UPD || Opcode == ARM::LDMIB_UPD || 2055 Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 2056 MachineOperand &MO = PrevMI.getOperand(PrevMI.getNumOperands() - 1); 2057 if (MO.getReg() != ARM::LR) 2058 return false; 2059 unsigned NewOpc = (isThumb2 ? ARM::t2LDMIA_RET : ARM::LDMIA_RET); 2060 assert(((isThumb2 && Opcode == ARM::t2LDMIA_UPD) || 2061 Opcode == ARM::LDMIA_UPD) && "Unsupported multiple load-return!"); 2062 PrevMI.setDesc(TII->get(NewOpc)); 2063 MO.setReg(ARM::PC); 2064 PrevMI.copyImplicitOps(*MBB.getParent(), *MBBI); 2065 MBB.erase(MBBI); 2066 return true; 2067 } 2068 } 2069 return false; 2070 } 2071 2072 bool ARMLoadStoreOpt::CombineMovBx(MachineBasicBlock &MBB) { 2073 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 2074 if (MBBI == MBB.begin() || MBBI == MBB.end() || 2075 MBBI->getOpcode() != ARM::tBX_RET) 2076 return false; 2077 2078 MachineBasicBlock::iterator Prev = MBBI; 2079 --Prev; 2080 if (Prev->getOpcode() != ARM::tMOVr || 2081 !Prev->definesRegister(ARM::LR, /*TRI=*/nullptr)) 2082 return false; 2083 2084 for (auto Use : Prev->uses()) 2085 if (Use.isKill()) { 2086 assert(STI->hasV4TOps()); 2087 BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(ARM::tBX)) 2088 .addReg(Use.getReg(), RegState::Kill) 2089 .add(predOps(ARMCC::AL)) 2090 .copyImplicitOps(*MBBI); 2091 MBB.erase(MBBI); 2092 MBB.erase(Prev); 2093 return true; 2094 } 2095 2096 llvm_unreachable("tMOVr doesn't kill a reg before tBX_RET?"); 2097 } 2098 2099 bool ARMLoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { 2100 if (skipFunction(Fn.getFunction())) 2101 return false; 2102 2103 MF = &Fn; 2104 STI = &Fn.getSubtarget<ARMSubtarget>(); 2105 TL = STI->getTargetLowering(); 2106 AFI = Fn.getInfo<ARMFunctionInfo>(); 2107 TII = STI->getInstrInfo(); 2108 TRI = STI->getRegisterInfo(); 2109 2110 RegClassInfoValid = false; 2111 isThumb2 = AFI->isThumb2Function(); 2112 isThumb1 = AFI->isThumbFunction() && !isThumb2; 2113 2114 bool Modified = false, ModifiedLDMReturn = false; 2115 for (MachineBasicBlock &MBB : Fn) { 2116 Modified |= LoadStoreMultipleOpti(MBB); 2117 if (STI->hasV5TOps() && !AFI->shouldSignReturnAddress()) 2118 ModifiedLDMReturn |= MergeReturnIntoLDM(MBB); 2119 if (isThumb1) 2120 Modified |= CombineMovBx(MBB); 2121 } 2122 Modified |= ModifiedLDMReturn; 2123 2124 // If we merged a BX instruction into an LDM, we need to re-calculate whether 2125 // LR is restored. This check needs to consider the whole function, not just 2126 // the instruction(s) we changed, because there may be other BX returns which 2127 // still need LR to be restored. 2128 if (ModifiedLDMReturn) 2129 ARMFrameLowering::updateLRRestored(Fn); 2130 2131 Allocator.DestroyAll(); 2132 return Modified; 2133 } 2134 2135 #define ARM_PREALLOC_LOAD_STORE_OPT_NAME \ 2136 "ARM pre- register allocation load / store optimization pass" 2137 2138 namespace { 2139 2140 /// Pre- register allocation pass that move load / stores from consecutive 2141 /// locations close to make it more likely they will be combined later. 2142 struct ARMPreAllocLoadStoreOpt : public MachineFunctionPass{ 2143 static char ID; 2144 2145 AliasAnalysis *AA; 2146 const DataLayout *TD; 2147 const TargetInstrInfo *TII; 2148 const TargetRegisterInfo *TRI; 2149 const ARMSubtarget *STI; 2150 MachineRegisterInfo *MRI; 2151 MachineDominatorTree *DT; 2152 MachineFunction *MF; 2153 2154 ARMPreAllocLoadStoreOpt() : MachineFunctionPass(ID) {} 2155 2156 bool runOnMachineFunction(MachineFunction &Fn) override; 2157 2158 StringRef getPassName() const override { 2159 return ARM_PREALLOC_LOAD_STORE_OPT_NAME; 2160 } 2161 2162 void getAnalysisUsage(AnalysisUsage &AU) const override { 2163 AU.addRequired<AAResultsWrapperPass>(); 2164 AU.addRequired<MachineDominatorTreeWrapperPass>(); 2165 AU.addPreserved<MachineDominatorTreeWrapperPass>(); 2166 MachineFunctionPass::getAnalysisUsage(AU); 2167 } 2168 2169 private: 2170 bool CanFormLdStDWord(MachineInstr *Op0, MachineInstr *Op1, DebugLoc &dl, 2171 unsigned &NewOpc, Register &EvenReg, Register &OddReg, 2172 Register &BaseReg, int &Offset, Register &PredReg, 2173 ARMCC::CondCodes &Pred, bool &isT2); 2174 bool RescheduleOps( 2175 MachineBasicBlock *MBB, SmallVectorImpl<MachineInstr *> &Ops, 2176 unsigned Base, bool isLd, DenseMap<MachineInstr *, unsigned> &MI2LocMap, 2177 SmallDenseMap<Register, SmallVector<MachineInstr *>, 8> &RegisterMap); 2178 bool RescheduleLoadStoreInstrs(MachineBasicBlock *MBB); 2179 bool DistributeIncrements(); 2180 bool DistributeIncrements(Register Base); 2181 }; 2182 2183 } // end anonymous namespace 2184 2185 char ARMPreAllocLoadStoreOpt::ID = 0; 2186 2187 INITIALIZE_PASS_BEGIN(ARMPreAllocLoadStoreOpt, "arm-prera-ldst-opt", 2188 ARM_PREALLOC_LOAD_STORE_OPT_NAME, false, false) 2189 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 2190 INITIALIZE_PASS_END(ARMPreAllocLoadStoreOpt, "arm-prera-ldst-opt", 2191 ARM_PREALLOC_LOAD_STORE_OPT_NAME, false, false) 2192 2193 // Limit the number of instructions to be rescheduled. 2194 // FIXME: tune this limit, and/or come up with some better heuristics. 2195 static cl::opt<unsigned> InstReorderLimit("arm-prera-ldst-opt-reorder-limit", 2196 cl::init(8), cl::Hidden); 2197 2198 bool ARMPreAllocLoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { 2199 if (AssumeMisalignedLoadStores || skipFunction(Fn.getFunction())) 2200 return false; 2201 2202 TD = &Fn.getDataLayout(); 2203 STI = &Fn.getSubtarget<ARMSubtarget>(); 2204 TII = STI->getInstrInfo(); 2205 TRI = STI->getRegisterInfo(); 2206 MRI = &Fn.getRegInfo(); 2207 DT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 2208 MF = &Fn; 2209 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2210 2211 bool Modified = DistributeIncrements(); 2212 for (MachineBasicBlock &MFI : Fn) 2213 Modified |= RescheduleLoadStoreInstrs(&MFI); 2214 2215 return Modified; 2216 } 2217 2218 static bool IsSafeAndProfitableToMove(bool isLd, unsigned Base, 2219 MachineBasicBlock::iterator I, 2220 MachineBasicBlock::iterator E, 2221 SmallPtrSetImpl<MachineInstr*> &MemOps, 2222 SmallSet<unsigned, 4> &MemRegs, 2223 const TargetRegisterInfo *TRI, 2224 AliasAnalysis *AA) { 2225 // Are there stores / loads / calls between them? 2226 SmallSet<unsigned, 4> AddedRegPressure; 2227 while (++I != E) { 2228 if (I->isDebugInstr() || MemOps.count(&*I)) 2229 continue; 2230 if (I->isCall() || I->isTerminator() || I->hasUnmodeledSideEffects()) 2231 return false; 2232 if (I->mayStore() || (!isLd && I->mayLoad())) 2233 for (MachineInstr *MemOp : MemOps) 2234 if (I->mayAlias(AA, *MemOp, /*UseTBAA*/ false)) 2235 return false; 2236 for (unsigned j = 0, NumOps = I->getNumOperands(); j != NumOps; ++j) { 2237 MachineOperand &MO = I->getOperand(j); 2238 if (!MO.isReg()) 2239 continue; 2240 Register Reg = MO.getReg(); 2241 if (MO.isDef() && TRI->regsOverlap(Reg, Base)) 2242 return false; 2243 if (Reg != Base && !MemRegs.count(Reg)) 2244 AddedRegPressure.insert(Reg); 2245 } 2246 } 2247 2248 // Estimate register pressure increase due to the transformation. 2249 if (MemRegs.size() <= 4) 2250 // Ok if we are moving small number of instructions. 2251 return true; 2252 return AddedRegPressure.size() <= MemRegs.size() * 2; 2253 } 2254 2255 bool ARMPreAllocLoadStoreOpt::CanFormLdStDWord( 2256 MachineInstr *Op0, MachineInstr *Op1, DebugLoc &dl, unsigned &NewOpc, 2257 Register &FirstReg, Register &SecondReg, Register &BaseReg, int &Offset, 2258 Register &PredReg, ARMCC::CondCodes &Pred, bool &isT2) { 2259 // Make sure we're allowed to generate LDRD/STRD. 2260 if (!STI->hasV5TEOps()) 2261 return false; 2262 2263 // FIXME: VLDRS / VSTRS -> VLDRD / VSTRD 2264 unsigned Scale = 1; 2265 unsigned Opcode = Op0->getOpcode(); 2266 if (Opcode == ARM::LDRi12) { 2267 NewOpc = ARM::LDRD; 2268 } else if (Opcode == ARM::STRi12) { 2269 NewOpc = ARM::STRD; 2270 } else if (Opcode == ARM::t2LDRi8 || Opcode == ARM::t2LDRi12) { 2271 NewOpc = ARM::t2LDRDi8; 2272 Scale = 4; 2273 isT2 = true; 2274 } else if (Opcode == ARM::t2STRi8 || Opcode == ARM::t2STRi12) { 2275 NewOpc = ARM::t2STRDi8; 2276 Scale = 4; 2277 isT2 = true; 2278 } else { 2279 return false; 2280 } 2281 2282 // Make sure the base address satisfies i64 ld / st alignment requirement. 2283 // At the moment, we ignore the memoryoperand's value. 2284 // If we want to use AliasAnalysis, we should check it accordingly. 2285 if (!Op0->hasOneMemOperand() || 2286 (*Op0->memoperands_begin())->isVolatile() || 2287 (*Op0->memoperands_begin())->isAtomic()) 2288 return false; 2289 2290 Align Alignment = (*Op0->memoperands_begin())->getAlign(); 2291 Align ReqAlign = STI->getDualLoadStoreAlignment(); 2292 if (Alignment < ReqAlign) 2293 return false; 2294 2295 // Then make sure the immediate offset fits. 2296 int OffImm = getMemoryOpOffset(*Op0); 2297 if (isT2) { 2298 int Limit = (1 << 8) * Scale; 2299 if (OffImm >= Limit || (OffImm <= -Limit) || (OffImm & (Scale-1))) 2300 return false; 2301 Offset = OffImm; 2302 } else { 2303 ARM_AM::AddrOpc AddSub = ARM_AM::add; 2304 if (OffImm < 0) { 2305 AddSub = ARM_AM::sub; 2306 OffImm = - OffImm; 2307 } 2308 int Limit = (1 << 8) * Scale; 2309 if (OffImm >= Limit || (OffImm & (Scale-1))) 2310 return false; 2311 Offset = ARM_AM::getAM3Opc(AddSub, OffImm); 2312 } 2313 FirstReg = Op0->getOperand(0).getReg(); 2314 SecondReg = Op1->getOperand(0).getReg(); 2315 if (FirstReg == SecondReg) 2316 return false; 2317 BaseReg = Op0->getOperand(1).getReg(); 2318 Pred = getInstrPredicate(*Op0, PredReg); 2319 dl = Op0->getDebugLoc(); 2320 return true; 2321 } 2322 2323 bool ARMPreAllocLoadStoreOpt::RescheduleOps( 2324 MachineBasicBlock *MBB, SmallVectorImpl<MachineInstr *> &Ops, unsigned Base, 2325 bool isLd, DenseMap<MachineInstr *, unsigned> &MI2LocMap, 2326 SmallDenseMap<Register, SmallVector<MachineInstr *>, 8> &RegisterMap) { 2327 bool RetVal = false; 2328 2329 // Sort by offset (in reverse order). 2330 llvm::sort(Ops, [](const MachineInstr *LHS, const MachineInstr *RHS) { 2331 int LOffset = getMemoryOpOffset(*LHS); 2332 int ROffset = getMemoryOpOffset(*RHS); 2333 assert(LHS == RHS || LOffset != ROffset); 2334 return LOffset > ROffset; 2335 }); 2336 2337 // The loads / stores of the same base are in order. Scan them from first to 2338 // last and check for the following: 2339 // 1. Any def of base. 2340 // 2. Any gaps. 2341 while (Ops.size() > 1) { 2342 unsigned FirstLoc = ~0U; 2343 unsigned LastLoc = 0; 2344 MachineInstr *FirstOp = nullptr; 2345 MachineInstr *LastOp = nullptr; 2346 int LastOffset = 0; 2347 unsigned LastOpcode = 0; 2348 unsigned LastBytes = 0; 2349 unsigned NumMove = 0; 2350 for (MachineInstr *Op : llvm::reverse(Ops)) { 2351 // Make sure each operation has the same kind. 2352 unsigned LSMOpcode 2353 = getLoadStoreMultipleOpcode(Op->getOpcode(), ARM_AM::ia); 2354 if (LastOpcode && LSMOpcode != LastOpcode) 2355 break; 2356 2357 // Check that we have a continuous set of offsets. 2358 int Offset = getMemoryOpOffset(*Op); 2359 unsigned Bytes = getLSMultipleTransferSize(Op); 2360 if (LastBytes) { 2361 if (Bytes != LastBytes || Offset != (LastOffset + (int)Bytes)) 2362 break; 2363 } 2364 2365 // Don't try to reschedule too many instructions. 2366 if (NumMove == InstReorderLimit) 2367 break; 2368 2369 // Found a mergable instruction; save information about it. 2370 ++NumMove; 2371 LastOffset = Offset; 2372 LastBytes = Bytes; 2373 LastOpcode = LSMOpcode; 2374 2375 unsigned Loc = MI2LocMap[Op]; 2376 if (Loc <= FirstLoc) { 2377 FirstLoc = Loc; 2378 FirstOp = Op; 2379 } 2380 if (Loc >= LastLoc) { 2381 LastLoc = Loc; 2382 LastOp = Op; 2383 } 2384 } 2385 2386 if (NumMove <= 1) 2387 Ops.pop_back(); 2388 else { 2389 SmallPtrSet<MachineInstr*, 4> MemOps; 2390 SmallSet<unsigned, 4> MemRegs; 2391 for (size_t i = Ops.size() - NumMove, e = Ops.size(); i != e; ++i) { 2392 MemOps.insert(Ops[i]); 2393 MemRegs.insert(Ops[i]->getOperand(0).getReg()); 2394 } 2395 2396 // Be conservative, if the instructions are too far apart, don't 2397 // move them. We want to limit the increase of register pressure. 2398 bool DoMove = (LastLoc - FirstLoc) <= NumMove*4; // FIXME: Tune this. 2399 if (DoMove) 2400 DoMove = IsSafeAndProfitableToMove(isLd, Base, FirstOp, LastOp, 2401 MemOps, MemRegs, TRI, AA); 2402 if (!DoMove) { 2403 for (unsigned i = 0; i != NumMove; ++i) 2404 Ops.pop_back(); 2405 } else { 2406 // This is the new location for the loads / stores. 2407 MachineBasicBlock::iterator InsertPos = isLd ? FirstOp : LastOp; 2408 while (InsertPos != MBB->end() && 2409 (MemOps.count(&*InsertPos) || InsertPos->isDebugInstr())) 2410 ++InsertPos; 2411 2412 // If we are moving a pair of loads / stores, see if it makes sense 2413 // to try to allocate a pair of registers that can form register pairs. 2414 MachineInstr *Op0 = Ops.back(); 2415 MachineInstr *Op1 = Ops[Ops.size()-2]; 2416 Register FirstReg, SecondReg; 2417 Register BaseReg, PredReg; 2418 ARMCC::CondCodes Pred = ARMCC::AL; 2419 bool isT2 = false; 2420 unsigned NewOpc = 0; 2421 int Offset = 0; 2422 DebugLoc dl; 2423 if (NumMove == 2 && CanFormLdStDWord(Op0, Op1, dl, NewOpc, 2424 FirstReg, SecondReg, BaseReg, 2425 Offset, PredReg, Pred, isT2)) { 2426 Ops.pop_back(); 2427 Ops.pop_back(); 2428 2429 const MCInstrDesc &MCID = TII->get(NewOpc); 2430 const TargetRegisterClass *TRC = TII->getRegClass(MCID, 0, TRI, *MF); 2431 MRI->constrainRegClass(FirstReg, TRC); 2432 MRI->constrainRegClass(SecondReg, TRC); 2433 2434 // Form the pair instruction. 2435 if (isLd) { 2436 MachineInstrBuilder MIB = BuildMI(*MBB, InsertPos, dl, MCID) 2437 .addReg(FirstReg, RegState::Define) 2438 .addReg(SecondReg, RegState::Define) 2439 .addReg(BaseReg); 2440 // FIXME: We're converting from LDRi12 to an insn that still 2441 // uses addrmode2, so we need an explicit offset reg. It should 2442 // always by reg0 since we're transforming LDRi12s. 2443 if (!isT2) 2444 MIB.addReg(0); 2445 MIB.addImm(Offset).addImm(Pred).addReg(PredReg); 2446 MIB.cloneMergedMemRefs({Op0, Op1}); 2447 LLVM_DEBUG(dbgs() << "Formed " << *MIB << "\n"); 2448 ++NumLDRDFormed; 2449 } else { 2450 MachineInstrBuilder MIB = BuildMI(*MBB, InsertPos, dl, MCID) 2451 .addReg(FirstReg) 2452 .addReg(SecondReg) 2453 .addReg(BaseReg); 2454 // FIXME: We're converting from LDRi12 to an insn that still 2455 // uses addrmode2, so we need an explicit offset reg. It should 2456 // always by reg0 since we're transforming STRi12s. 2457 if (!isT2) 2458 MIB.addReg(0); 2459 MIB.addImm(Offset).addImm(Pred).addReg(PredReg); 2460 MIB.cloneMergedMemRefs({Op0, Op1}); 2461 LLVM_DEBUG(dbgs() << "Formed " << *MIB << "\n"); 2462 ++NumSTRDFormed; 2463 } 2464 MBB->erase(Op0); 2465 MBB->erase(Op1); 2466 2467 if (!isT2) { 2468 // Add register allocation hints to form register pairs. 2469 MRI->setRegAllocationHint(FirstReg, ARMRI::RegPairEven, SecondReg); 2470 MRI->setRegAllocationHint(SecondReg, ARMRI::RegPairOdd, FirstReg); 2471 } 2472 } else { 2473 for (unsigned i = 0; i != NumMove; ++i) { 2474 MachineInstr *Op = Ops.pop_back_val(); 2475 if (isLd) { 2476 // Populate RegisterMap with all Registers defined by loads. 2477 Register Reg = Op->getOperand(0).getReg(); 2478 RegisterMap[Reg]; 2479 } 2480 2481 MBB->splice(InsertPos, MBB, Op); 2482 } 2483 } 2484 2485 NumLdStMoved += NumMove; 2486 RetVal = true; 2487 } 2488 } 2489 } 2490 2491 return RetVal; 2492 } 2493 2494 static void forEachDbgRegOperand(MachineInstr *MI, 2495 std::function<void(MachineOperand &)> Fn) { 2496 if (MI->isNonListDebugValue()) { 2497 auto &Op = MI->getOperand(0); 2498 if (Op.isReg()) 2499 Fn(Op); 2500 } else { 2501 for (unsigned I = 2; I < MI->getNumOperands(); I++) { 2502 auto &Op = MI->getOperand(I); 2503 if (Op.isReg()) 2504 Fn(Op); 2505 } 2506 } 2507 } 2508 2509 // Update the RegisterMap with the instruction that was moved because a 2510 // DBG_VALUE_LIST may need to be moved again. 2511 static void updateRegisterMapForDbgValueListAfterMove( 2512 SmallDenseMap<Register, SmallVector<MachineInstr *>, 8> &RegisterMap, 2513 MachineInstr *DbgValueListInstr, MachineInstr *InstrToReplace) { 2514 2515 forEachDbgRegOperand(DbgValueListInstr, [&](MachineOperand &Op) { 2516 auto RegIt = RegisterMap.find(Op.getReg()); 2517 if (RegIt == RegisterMap.end()) 2518 return; 2519 auto &InstrVec = RegIt->getSecond(); 2520 for (unsigned I = 0; I < InstrVec.size(); I++) 2521 if (InstrVec[I] == InstrToReplace) 2522 InstrVec[I] = DbgValueListInstr; 2523 }); 2524 } 2525 2526 static DebugVariable createDebugVariableFromMachineInstr(MachineInstr *MI) { 2527 auto DbgVar = DebugVariable(MI->getDebugVariable(), MI->getDebugExpression(), 2528 MI->getDebugLoc()->getInlinedAt()); 2529 return DbgVar; 2530 } 2531 2532 bool 2533 ARMPreAllocLoadStoreOpt::RescheduleLoadStoreInstrs(MachineBasicBlock *MBB) { 2534 bool RetVal = false; 2535 2536 DenseMap<MachineInstr*, unsigned> MI2LocMap; 2537 using MapIt = DenseMap<unsigned, SmallVector<MachineInstr *, 4>>::iterator; 2538 using Base2InstMap = DenseMap<unsigned, SmallVector<MachineInstr *, 4>>; 2539 using BaseVec = SmallVector<unsigned, 4>; 2540 Base2InstMap Base2LdsMap; 2541 Base2InstMap Base2StsMap; 2542 BaseVec LdBases; 2543 BaseVec StBases; 2544 // This map is used to track the relationship between the virtual 2545 // register that is the result of a load that is moved and the DBG_VALUE 2546 // MachineInstr pointer that uses that virtual register. 2547 SmallDenseMap<Register, SmallVector<MachineInstr *>, 8> RegisterMap; 2548 2549 unsigned Loc = 0; 2550 MachineBasicBlock::iterator MBBI = MBB->begin(); 2551 MachineBasicBlock::iterator E = MBB->end(); 2552 while (MBBI != E) { 2553 for (; MBBI != E; ++MBBI) { 2554 MachineInstr &MI = *MBBI; 2555 if (MI.isCall() || MI.isTerminator()) { 2556 // Stop at barriers. 2557 ++MBBI; 2558 break; 2559 } 2560 2561 if (!MI.isDebugInstr()) 2562 MI2LocMap[&MI] = ++Loc; 2563 2564 if (!isMemoryOp(MI)) 2565 continue; 2566 Register PredReg; 2567 if (getInstrPredicate(MI, PredReg) != ARMCC::AL) 2568 continue; 2569 2570 int Opc = MI.getOpcode(); 2571 bool isLd = isLoadSingle(Opc); 2572 Register Base = MI.getOperand(1).getReg(); 2573 int Offset = getMemoryOpOffset(MI); 2574 bool StopHere = false; 2575 auto FindBases = [&] (Base2InstMap &Base2Ops, BaseVec &Bases) { 2576 MapIt BI = Base2Ops.find(Base); 2577 if (BI == Base2Ops.end()) { 2578 Base2Ops[Base].push_back(&MI); 2579 Bases.push_back(Base); 2580 return; 2581 } 2582 for (const MachineInstr *MI : BI->second) { 2583 if (Offset == getMemoryOpOffset(*MI)) { 2584 StopHere = true; 2585 break; 2586 } 2587 } 2588 if (!StopHere) 2589 BI->second.push_back(&MI); 2590 }; 2591 2592 if (isLd) 2593 FindBases(Base2LdsMap, LdBases); 2594 else 2595 FindBases(Base2StsMap, StBases); 2596 2597 if (StopHere) { 2598 // Found a duplicate (a base+offset combination that's seen earlier). 2599 // Backtrack. 2600 --Loc; 2601 break; 2602 } 2603 } 2604 2605 // Re-schedule loads. 2606 for (unsigned Base : LdBases) { 2607 SmallVectorImpl<MachineInstr *> &Lds = Base2LdsMap[Base]; 2608 if (Lds.size() > 1) 2609 RetVal |= RescheduleOps(MBB, Lds, Base, true, MI2LocMap, RegisterMap); 2610 } 2611 2612 // Re-schedule stores. 2613 for (unsigned Base : StBases) { 2614 SmallVectorImpl<MachineInstr *> &Sts = Base2StsMap[Base]; 2615 if (Sts.size() > 1) 2616 RetVal |= RescheduleOps(MBB, Sts, Base, false, MI2LocMap, RegisterMap); 2617 } 2618 2619 if (MBBI != E) { 2620 Base2LdsMap.clear(); 2621 Base2StsMap.clear(); 2622 LdBases.clear(); 2623 StBases.clear(); 2624 } 2625 } 2626 2627 // Reschedule DBG_VALUEs to match any loads that were moved. When a load is 2628 // sunk beyond a DBG_VALUE that is referring to it, the DBG_VALUE becomes a 2629 // use-before-def, resulting in a loss of debug info. 2630 2631 // Example: 2632 // Before the Pre Register Allocation Load Store Pass 2633 // inst_a 2634 // %2 = ld ... 2635 // inst_b 2636 // DBG_VALUE %2, "x", ... 2637 // %3 = ld ... 2638 2639 // After the Pass: 2640 // inst_a 2641 // inst_b 2642 // DBG_VALUE %2, "x", ... 2643 // %2 = ld ... 2644 // %3 = ld ... 2645 2646 // The code below addresses this by moving the DBG_VALUE to the position 2647 // immediately after the load. 2648 2649 // Example: 2650 // After the code below: 2651 // inst_a 2652 // inst_b 2653 // %2 = ld ... 2654 // DBG_VALUE %2, "x", ... 2655 // %3 = ld ... 2656 2657 // The algorithm works in two phases: First RescheduleOps() populates the 2658 // RegisterMap with registers that were moved as keys, there is no value 2659 // inserted. In the next phase, every MachineInstr in a basic block is 2660 // iterated over. If it is a valid DBG_VALUE or DBG_VALUE_LIST and it uses one 2661 // or more registers in the RegisterMap, the RegisterMap and InstrMap are 2662 // populated with the MachineInstr. If the DBG_VALUE or DBG_VALUE_LIST 2663 // describes debug information for a variable that already exists in the 2664 // DbgValueSinkCandidates, the MachineInstr in the DbgValueSinkCandidates must 2665 // be set to undef. If the current MachineInstr is a load that was moved, 2666 // undef the corresponding DBG_VALUE or DBG_VALUE_LIST and clone it to below 2667 // the load. 2668 2669 // To illustrate the above algorithm visually let's take this example. 2670 2671 // Before the Pre Register Allocation Load Store Pass: 2672 // %2 = ld ... 2673 // DBG_VALUE %2, A, .... # X 2674 // DBG_VALUE 0, A, ... # Y 2675 // %3 = ld ... 2676 // DBG_VALUE %3, A, ..., # Z 2677 // %4 = ld ... 2678 2679 // After Pre Register Allocation Load Store Pass: 2680 // DBG_VALUE %2, A, .... # X 2681 // DBG_VALUE 0, A, ... # Y 2682 // DBG_VALUE %3, A, ..., # Z 2683 // %2 = ld ... 2684 // %3 = ld ... 2685 // %4 = ld ... 2686 2687 // The algorithm below does the following: 2688 2689 // In the beginning, the RegisterMap will have been populated with the virtual 2690 // registers %2, and %3, the DbgValueSinkCandidates and the InstrMap will be 2691 // empty. DbgValueSinkCandidates = {}, RegisterMap = {2 -> {}, 3 -> {}}, 2692 // InstrMap {} 2693 // -> DBG_VALUE %2, A, .... # X 2694 // DBG_VALUE 0, A, ... # Y 2695 // DBG_VALUE %3, A, ..., # Z 2696 // %2 = ld ... 2697 // %3 = ld ... 2698 // %4 = ld ... 2699 2700 // After the first DBG_VALUE (denoted with an X) is processed, the 2701 // DbgValueSinkCandidates and InstrMap will be populated and the RegisterMap 2702 // entry for %2 will be populated as well. DbgValueSinkCandidates = {A -> X}, 2703 // RegisterMap = {2 -> {X}, 3 -> {}}, InstrMap {X -> 2} 2704 // DBG_VALUE %2, A, .... # X 2705 // -> DBG_VALUE 0, A, ... # Y 2706 // DBG_VALUE %3, A, ..., # Z 2707 // %2 = ld ... 2708 // %3 = ld ... 2709 // %4 = ld ... 2710 2711 // After the DBG_VALUE Y is processed, the DbgValueSinkCandidates is updated 2712 // to now hold Y for A and the RegisterMap is also updated to remove X from 2713 // %2, this is because both X and Y describe the same debug variable A. X is 2714 // also updated to have a $noreg as the first operand. 2715 // DbgValueSinkCandidates = {A -> {Y}}, RegisterMap = {2 -> {}, 3 -> {}}, 2716 // InstrMap = {X-> 2} 2717 // DBG_VALUE $noreg, A, .... # X 2718 // DBG_VALUE 0, A, ... # Y 2719 // -> DBG_VALUE %3, A, ..., # Z 2720 // %2 = ld ... 2721 // %3 = ld ... 2722 // %4 = ld ... 2723 2724 // After DBG_VALUE Z is processed, the DbgValueSinkCandidates is updated to 2725 // hold Z fr A, the RegisterMap is updated to hold Z for %3, and the InstrMap 2726 // is updated to have Z mapped to %3. This is again because Z describes the 2727 // debug variable A, Y is not updated to have $noreg as first operand because 2728 // its first operand is an immediate, not a register. 2729 // DbgValueSinkCandidates = {A -> {Z}}, RegisterMap = {2 -> {}, 3 -> {Z}}, 2730 // InstrMap = {X -> 2, Z -> 3} 2731 // DBG_VALUE $noreg, A, .... # X 2732 // DBG_VALUE 0, A, ... # Y 2733 // DBG_VALUE %3, A, ..., # Z 2734 // -> %2 = ld ... 2735 // %3 = ld ... 2736 // %4 = ld ... 2737 2738 // Nothing happens here since the RegisterMap for %2 contains no value. 2739 // DbgValueSinkCandidates = {A -> {Z}}, RegisterMap = {2 -> {}, 3 -> {Z}}, 2740 // InstrMap = {X -> 2, Z -> 3} 2741 // DBG_VALUE $noreg, A, .... # X 2742 // DBG_VALUE 0, A, ... # Y 2743 // DBG_VALUE %3, A, ..., # Z 2744 // %2 = ld ... 2745 // -> %3 = ld ... 2746 // %4 = ld ... 2747 2748 // Since the RegisterMap contains Z as a value for %3, the MachineInstr 2749 // pointer Z is copied to come after the load for %3 and the old Z's first 2750 // operand is changed to $noreg the Basic Block iterator is moved to after the 2751 // DBG_VALUE Z's new position. 2752 // DbgValueSinkCandidates = {A -> {Z}}, RegisterMap = {2 -> {}, 3 -> {Z}}, 2753 // InstrMap = {X -> 2, Z -> 3} 2754 // DBG_VALUE $noreg, A, .... # X 2755 // DBG_VALUE 0, A, ... # Y 2756 // DBG_VALUE $noreg, A, ..., # Old Z 2757 // %2 = ld ... 2758 // %3 = ld ... 2759 // DBG_VALUE %3, A, ..., # Z 2760 // -> %4 = ld ... 2761 2762 // Nothing happens for %4 and the algorithm exits having processed the entire 2763 // Basic Block. 2764 // DbgValueSinkCandidates = {A -> {Z}}, RegisterMap = {2 -> {}, 3 -> {Z}}, 2765 // InstrMap = {X -> 2, Z -> 3} 2766 // DBG_VALUE $noreg, A, .... # X 2767 // DBG_VALUE 0, A, ... # Y 2768 // DBG_VALUE $noreg, A, ..., # Old Z 2769 // %2 = ld ... 2770 // %3 = ld ... 2771 // DBG_VALUE %3, A, ..., # Z 2772 // %4 = ld ... 2773 2774 // This map is used to track the relationship between 2775 // a Debug Variable and the DBG_VALUE MachineInstr pointer that describes the 2776 // debug information for that Debug Variable. 2777 SmallDenseMap<DebugVariable, MachineInstr *, 8> DbgValueSinkCandidates; 2778 // This map is used to track the relationship between a DBG_VALUE or 2779 // DBG_VALUE_LIST MachineInstr pointer and Registers that it uses. 2780 SmallDenseMap<MachineInstr *, SmallVector<Register>, 8> InstrMap; 2781 for (MBBI = MBB->begin(), E = MBB->end(); MBBI != E; ++MBBI) { 2782 MachineInstr &MI = *MBBI; 2783 2784 auto PopulateRegisterAndInstrMapForDebugInstr = [&](Register Reg) { 2785 auto RegIt = RegisterMap.find(Reg); 2786 if (RegIt == RegisterMap.end()) 2787 return; 2788 auto &InstrVec = RegIt->getSecond(); 2789 InstrVec.push_back(&MI); 2790 InstrMap[&MI].push_back(Reg); 2791 }; 2792 2793 if (MI.isDebugValue()) { 2794 assert(MI.getDebugVariable() && 2795 "DBG_VALUE or DBG_VALUE_LIST must contain a DILocalVariable"); 2796 2797 auto DbgVar = createDebugVariableFromMachineInstr(&MI); 2798 // If the first operand is a register and it exists in the RegisterMap, we 2799 // know this is a DBG_VALUE that uses the result of a load that was moved, 2800 // and is therefore a candidate to also be moved, add it to the 2801 // RegisterMap and InstrMap. 2802 forEachDbgRegOperand(&MI, [&](MachineOperand &Op) { 2803 PopulateRegisterAndInstrMapForDebugInstr(Op.getReg()); 2804 }); 2805 2806 // If the current DBG_VALUE describes the same variable as one of the 2807 // in-flight DBG_VALUEs, remove the candidate from the list and set it to 2808 // undef. Moving one DBG_VALUE past another would result in the variable's 2809 // value going back in time when stepping through the block in the 2810 // debugger. 2811 auto InstrIt = DbgValueSinkCandidates.find(DbgVar); 2812 if (InstrIt != DbgValueSinkCandidates.end()) { 2813 auto *Instr = InstrIt->getSecond(); 2814 auto RegIt = InstrMap.find(Instr); 2815 if (RegIt != InstrMap.end()) { 2816 const auto &RegVec = RegIt->getSecond(); 2817 // For every Register in the RegVec, remove the MachineInstr in the 2818 // RegisterMap that describes the DbgVar. 2819 for (auto &Reg : RegVec) { 2820 auto RegIt = RegisterMap.find(Reg); 2821 if (RegIt == RegisterMap.end()) 2822 continue; 2823 auto &InstrVec = RegIt->getSecond(); 2824 auto IsDbgVar = [&](MachineInstr *I) -> bool { 2825 auto Var = createDebugVariableFromMachineInstr(I); 2826 return Var == DbgVar; 2827 }; 2828 2829 llvm::erase_if(InstrVec, IsDbgVar); 2830 } 2831 forEachDbgRegOperand(Instr, 2832 [&](MachineOperand &Op) { Op.setReg(0); }); 2833 } 2834 } 2835 DbgValueSinkCandidates[DbgVar] = &MI; 2836 } else { 2837 // If the first operand of a load matches with a DBG_VALUE in RegisterMap, 2838 // then move that DBG_VALUE to below the load. 2839 auto Opc = MI.getOpcode(); 2840 if (!isLoadSingle(Opc)) 2841 continue; 2842 auto Reg = MI.getOperand(0).getReg(); 2843 auto RegIt = RegisterMap.find(Reg); 2844 if (RegIt == RegisterMap.end()) 2845 continue; 2846 auto &DbgInstrVec = RegIt->getSecond(); 2847 if (!DbgInstrVec.size()) 2848 continue; 2849 for (auto *DbgInstr : DbgInstrVec) { 2850 MachineBasicBlock::iterator InsertPos = std::next(MBBI); 2851 auto *ClonedMI = MI.getMF()->CloneMachineInstr(DbgInstr); 2852 MBB->insert(InsertPos, ClonedMI); 2853 MBBI++; 2854 // Erase the entry into the DbgValueSinkCandidates for the DBG_VALUE 2855 // that was moved. 2856 auto DbgVar = createDebugVariableFromMachineInstr(DbgInstr); 2857 auto DbgIt = DbgValueSinkCandidates.find(DbgVar); 2858 // If the instruction is a DBG_VALUE_LIST, it may have already been 2859 // erased from the DbgValueSinkCandidates. Only erase if it exists in 2860 // the DbgValueSinkCandidates. 2861 if (DbgIt != DbgValueSinkCandidates.end()) 2862 DbgValueSinkCandidates.erase(DbgIt); 2863 // Zero out original dbg instr 2864 forEachDbgRegOperand(DbgInstr, 2865 [&](MachineOperand &Op) { Op.setReg(0); }); 2866 // Update RegisterMap with ClonedMI because it might have to be moved 2867 // again. 2868 if (DbgInstr->isDebugValueList()) 2869 updateRegisterMapForDbgValueListAfterMove(RegisterMap, ClonedMI, 2870 DbgInstr); 2871 } 2872 } 2873 } 2874 return RetVal; 2875 } 2876 2877 // Get the Base register operand index from the memory access MachineInst if we 2878 // should attempt to distribute postinc on it. Return -1 if not of a valid 2879 // instruction type. If it returns an index, it is assumed that instruction is a 2880 // r+i indexing mode, and getBaseOperandIndex() + 1 is the Offset index. 2881 static int getBaseOperandIndex(MachineInstr &MI) { 2882 switch (MI.getOpcode()) { 2883 case ARM::MVE_VLDRBS16: 2884 case ARM::MVE_VLDRBS32: 2885 case ARM::MVE_VLDRBU16: 2886 case ARM::MVE_VLDRBU32: 2887 case ARM::MVE_VLDRHS32: 2888 case ARM::MVE_VLDRHU32: 2889 case ARM::MVE_VLDRBU8: 2890 case ARM::MVE_VLDRHU16: 2891 case ARM::MVE_VLDRWU32: 2892 case ARM::MVE_VSTRB16: 2893 case ARM::MVE_VSTRB32: 2894 case ARM::MVE_VSTRH32: 2895 case ARM::MVE_VSTRBU8: 2896 case ARM::MVE_VSTRHU16: 2897 case ARM::MVE_VSTRWU32: 2898 case ARM::t2LDRHi8: 2899 case ARM::t2LDRHi12: 2900 case ARM::t2LDRSHi8: 2901 case ARM::t2LDRSHi12: 2902 case ARM::t2LDRBi8: 2903 case ARM::t2LDRBi12: 2904 case ARM::t2LDRSBi8: 2905 case ARM::t2LDRSBi12: 2906 case ARM::t2STRBi8: 2907 case ARM::t2STRBi12: 2908 case ARM::t2STRHi8: 2909 case ARM::t2STRHi12: 2910 return 1; 2911 case ARM::MVE_VLDRBS16_post: 2912 case ARM::MVE_VLDRBS32_post: 2913 case ARM::MVE_VLDRBU16_post: 2914 case ARM::MVE_VLDRBU32_post: 2915 case ARM::MVE_VLDRHS32_post: 2916 case ARM::MVE_VLDRHU32_post: 2917 case ARM::MVE_VLDRBU8_post: 2918 case ARM::MVE_VLDRHU16_post: 2919 case ARM::MVE_VLDRWU32_post: 2920 case ARM::MVE_VSTRB16_post: 2921 case ARM::MVE_VSTRB32_post: 2922 case ARM::MVE_VSTRH32_post: 2923 case ARM::MVE_VSTRBU8_post: 2924 case ARM::MVE_VSTRHU16_post: 2925 case ARM::MVE_VSTRWU32_post: 2926 case ARM::MVE_VLDRBS16_pre: 2927 case ARM::MVE_VLDRBS32_pre: 2928 case ARM::MVE_VLDRBU16_pre: 2929 case ARM::MVE_VLDRBU32_pre: 2930 case ARM::MVE_VLDRHS32_pre: 2931 case ARM::MVE_VLDRHU32_pre: 2932 case ARM::MVE_VLDRBU8_pre: 2933 case ARM::MVE_VLDRHU16_pre: 2934 case ARM::MVE_VLDRWU32_pre: 2935 case ARM::MVE_VSTRB16_pre: 2936 case ARM::MVE_VSTRB32_pre: 2937 case ARM::MVE_VSTRH32_pre: 2938 case ARM::MVE_VSTRBU8_pre: 2939 case ARM::MVE_VSTRHU16_pre: 2940 case ARM::MVE_VSTRWU32_pre: 2941 return 2; 2942 } 2943 return -1; 2944 } 2945 2946 static bool isPostIndex(MachineInstr &MI) { 2947 switch (MI.getOpcode()) { 2948 case ARM::MVE_VLDRBS16_post: 2949 case ARM::MVE_VLDRBS32_post: 2950 case ARM::MVE_VLDRBU16_post: 2951 case ARM::MVE_VLDRBU32_post: 2952 case ARM::MVE_VLDRHS32_post: 2953 case ARM::MVE_VLDRHU32_post: 2954 case ARM::MVE_VLDRBU8_post: 2955 case ARM::MVE_VLDRHU16_post: 2956 case ARM::MVE_VLDRWU32_post: 2957 case ARM::MVE_VSTRB16_post: 2958 case ARM::MVE_VSTRB32_post: 2959 case ARM::MVE_VSTRH32_post: 2960 case ARM::MVE_VSTRBU8_post: 2961 case ARM::MVE_VSTRHU16_post: 2962 case ARM::MVE_VSTRWU32_post: 2963 return true; 2964 } 2965 return false; 2966 } 2967 2968 static bool isPreIndex(MachineInstr &MI) { 2969 switch (MI.getOpcode()) { 2970 case ARM::MVE_VLDRBS16_pre: 2971 case ARM::MVE_VLDRBS32_pre: 2972 case ARM::MVE_VLDRBU16_pre: 2973 case ARM::MVE_VLDRBU32_pre: 2974 case ARM::MVE_VLDRHS32_pre: 2975 case ARM::MVE_VLDRHU32_pre: 2976 case ARM::MVE_VLDRBU8_pre: 2977 case ARM::MVE_VLDRHU16_pre: 2978 case ARM::MVE_VLDRWU32_pre: 2979 case ARM::MVE_VSTRB16_pre: 2980 case ARM::MVE_VSTRB32_pre: 2981 case ARM::MVE_VSTRH32_pre: 2982 case ARM::MVE_VSTRBU8_pre: 2983 case ARM::MVE_VSTRHU16_pre: 2984 case ARM::MVE_VSTRWU32_pre: 2985 return true; 2986 } 2987 return false; 2988 } 2989 2990 // Given a memory access Opcode, check that the give Imm would be a valid Offset 2991 // for this instruction (same as isLegalAddressImm), Or if the instruction 2992 // could be easily converted to one where that was valid. For example converting 2993 // t2LDRi12 to t2LDRi8 for negative offsets. Works in conjunction with 2994 // AdjustBaseAndOffset below. 2995 static bool isLegalOrConvertableAddressImm(unsigned Opcode, int Imm, 2996 const TargetInstrInfo *TII, 2997 int &CodesizeEstimate) { 2998 if (isLegalAddressImm(Opcode, Imm, TII)) 2999 return true; 3000 3001 // We can convert AddrModeT2_i12 to AddrModeT2_i8neg. 3002 const MCInstrDesc &Desc = TII->get(Opcode); 3003 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); 3004 switch (AddrMode) { 3005 case ARMII::AddrModeT2_i12: 3006 CodesizeEstimate += 1; 3007 return Imm < 0 && -Imm < ((1 << 8) * 1); 3008 } 3009 return false; 3010 } 3011 3012 // Given an MI adjust its address BaseReg to use NewBaseReg and address offset 3013 // by -Offset. This can either happen in-place or be a replacement as MI is 3014 // converted to another instruction type. 3015 static void AdjustBaseAndOffset(MachineInstr *MI, Register NewBaseReg, 3016 int Offset, const TargetInstrInfo *TII, 3017 const TargetRegisterInfo *TRI) { 3018 // Set the Base reg 3019 unsigned BaseOp = getBaseOperandIndex(*MI); 3020 MI->getOperand(BaseOp).setReg(NewBaseReg); 3021 // and constrain the reg class to that required by the instruction. 3022 MachineFunction *MF = MI->getMF(); 3023 MachineRegisterInfo &MRI = MF->getRegInfo(); 3024 const MCInstrDesc &MCID = TII->get(MI->getOpcode()); 3025 const TargetRegisterClass *TRC = TII->getRegClass(MCID, BaseOp, TRI, *MF); 3026 MRI.constrainRegClass(NewBaseReg, TRC); 3027 3028 int OldOffset = MI->getOperand(BaseOp + 1).getImm(); 3029 if (isLegalAddressImm(MI->getOpcode(), OldOffset - Offset, TII)) 3030 MI->getOperand(BaseOp + 1).setImm(OldOffset - Offset); 3031 else { 3032 unsigned ConvOpcode; 3033 switch (MI->getOpcode()) { 3034 case ARM::t2LDRHi12: 3035 ConvOpcode = ARM::t2LDRHi8; 3036 break; 3037 case ARM::t2LDRSHi12: 3038 ConvOpcode = ARM::t2LDRSHi8; 3039 break; 3040 case ARM::t2LDRBi12: 3041 ConvOpcode = ARM::t2LDRBi8; 3042 break; 3043 case ARM::t2LDRSBi12: 3044 ConvOpcode = ARM::t2LDRSBi8; 3045 break; 3046 case ARM::t2STRHi12: 3047 ConvOpcode = ARM::t2STRHi8; 3048 break; 3049 case ARM::t2STRBi12: 3050 ConvOpcode = ARM::t2STRBi8; 3051 break; 3052 default: 3053 llvm_unreachable("Unhandled convertable opcode"); 3054 } 3055 assert(isLegalAddressImm(ConvOpcode, OldOffset - Offset, TII) && 3056 "Illegal Address Immediate after convert!"); 3057 3058 const MCInstrDesc &MCID = TII->get(ConvOpcode); 3059 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), MCID) 3060 .add(MI->getOperand(0)) 3061 .add(MI->getOperand(1)) 3062 .addImm(OldOffset - Offset) 3063 .add(MI->getOperand(3)) 3064 .add(MI->getOperand(4)) 3065 .cloneMemRefs(*MI); 3066 MI->eraseFromParent(); 3067 } 3068 } 3069 3070 static MachineInstr *createPostIncLoadStore(MachineInstr *MI, int Offset, 3071 Register NewReg, 3072 const TargetInstrInfo *TII, 3073 const TargetRegisterInfo *TRI) { 3074 MachineFunction *MF = MI->getMF(); 3075 MachineRegisterInfo &MRI = MF->getRegInfo(); 3076 3077 unsigned NewOpcode = getPostIndexedLoadStoreOpcode( 3078 MI->getOpcode(), Offset > 0 ? ARM_AM::add : ARM_AM::sub); 3079 3080 const MCInstrDesc &MCID = TII->get(NewOpcode); 3081 // Constrain the def register class 3082 const TargetRegisterClass *TRC = TII->getRegClass(MCID, 0, TRI, *MF); 3083 MRI.constrainRegClass(NewReg, TRC); 3084 // And do the same for the base operand 3085 TRC = TII->getRegClass(MCID, 2, TRI, *MF); 3086 MRI.constrainRegClass(MI->getOperand(1).getReg(), TRC); 3087 3088 unsigned AddrMode = (MCID.TSFlags & ARMII::AddrModeMask); 3089 switch (AddrMode) { 3090 case ARMII::AddrModeT2_i7: 3091 case ARMII::AddrModeT2_i7s2: 3092 case ARMII::AddrModeT2_i7s4: 3093 // Any MVE load/store 3094 return BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), MCID) 3095 .addReg(NewReg, RegState::Define) 3096 .add(MI->getOperand(0)) 3097 .add(MI->getOperand(1)) 3098 .addImm(Offset) 3099 .add(MI->getOperand(3)) 3100 .add(MI->getOperand(4)) 3101 .add(MI->getOperand(5)) 3102 .cloneMemRefs(*MI); 3103 case ARMII::AddrModeT2_i8: 3104 if (MI->mayLoad()) { 3105 return BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), MCID) 3106 .add(MI->getOperand(0)) 3107 .addReg(NewReg, RegState::Define) 3108 .add(MI->getOperand(1)) 3109 .addImm(Offset) 3110 .add(MI->getOperand(3)) 3111 .add(MI->getOperand(4)) 3112 .cloneMemRefs(*MI); 3113 } else { 3114 return BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), MCID) 3115 .addReg(NewReg, RegState::Define) 3116 .add(MI->getOperand(0)) 3117 .add(MI->getOperand(1)) 3118 .addImm(Offset) 3119 .add(MI->getOperand(3)) 3120 .add(MI->getOperand(4)) 3121 .cloneMemRefs(*MI); 3122 } 3123 default: 3124 llvm_unreachable("Unhandled createPostIncLoadStore"); 3125 } 3126 } 3127 3128 // Given a Base Register, optimise the load/store uses to attempt to create more 3129 // post-inc accesses and less register moves. We do this by taking zero offset 3130 // loads/stores with an add, and convert them to a postinc load/store of the 3131 // same type. Any subsequent accesses will be adjusted to use and account for 3132 // the post-inc value. 3133 // For example: 3134 // LDR #0 LDR_POSTINC #16 3135 // LDR #4 LDR #-12 3136 // LDR #8 LDR #-8 3137 // LDR #12 LDR #-4 3138 // ADD #16 3139 // 3140 // At the same time if we do not find an increment but do find an existing 3141 // pre/post inc instruction, we can still adjust the offsets of subsequent 3142 // instructions to save the register move that would otherwise be needed for the 3143 // in-place increment. 3144 bool ARMPreAllocLoadStoreOpt::DistributeIncrements(Register Base) { 3145 // We are looking for: 3146 // One zero offset load/store that can become postinc 3147 MachineInstr *BaseAccess = nullptr; 3148 MachineInstr *PrePostInc = nullptr; 3149 // An increment that can be folded in 3150 MachineInstr *Increment = nullptr; 3151 // Other accesses after BaseAccess that will need to be updated to use the 3152 // postinc value. 3153 SmallPtrSet<MachineInstr *, 8> OtherAccesses; 3154 for (auto &Use : MRI->use_nodbg_instructions(Base)) { 3155 if (!Increment && getAddSubImmediate(Use) != 0) { 3156 Increment = &Use; 3157 continue; 3158 } 3159 3160 int BaseOp = getBaseOperandIndex(Use); 3161 if (BaseOp == -1) 3162 return false; 3163 3164 if (!Use.getOperand(BaseOp).isReg() || 3165 Use.getOperand(BaseOp).getReg() != Base) 3166 return false; 3167 if (isPreIndex(Use) || isPostIndex(Use)) 3168 PrePostInc = &Use; 3169 else if (Use.getOperand(BaseOp + 1).getImm() == 0) 3170 BaseAccess = &Use; 3171 else 3172 OtherAccesses.insert(&Use); 3173 } 3174 3175 int IncrementOffset; 3176 Register NewBaseReg; 3177 if (BaseAccess && Increment) { 3178 if (PrePostInc || BaseAccess->getParent() != Increment->getParent()) 3179 return false; 3180 Register PredReg; 3181 if (Increment->definesRegister(ARM::CPSR, /*TRI=*/nullptr) || 3182 getInstrPredicate(*Increment, PredReg) != ARMCC::AL) 3183 return false; 3184 3185 LLVM_DEBUG(dbgs() << "\nAttempting to distribute increments on VirtualReg " 3186 << Base.virtRegIndex() << "\n"); 3187 3188 // Make sure that Increment has no uses before BaseAccess that are not PHI 3189 // uses. 3190 for (MachineInstr &Use : 3191 MRI->use_nodbg_instructions(Increment->getOperand(0).getReg())) { 3192 if (&Use == BaseAccess || (Use.getOpcode() != TargetOpcode::PHI && 3193 !DT->dominates(BaseAccess, &Use))) { 3194 LLVM_DEBUG(dbgs() << " BaseAccess doesn't dominate use of increment\n"); 3195 return false; 3196 } 3197 } 3198 3199 // Make sure that Increment can be folded into Base 3200 IncrementOffset = getAddSubImmediate(*Increment); 3201 unsigned NewPostIncOpcode = getPostIndexedLoadStoreOpcode( 3202 BaseAccess->getOpcode(), IncrementOffset > 0 ? ARM_AM::add : ARM_AM::sub); 3203 if (!isLegalAddressImm(NewPostIncOpcode, IncrementOffset, TII)) { 3204 LLVM_DEBUG(dbgs() << " Illegal addressing mode immediate on postinc\n"); 3205 return false; 3206 } 3207 } 3208 else if (PrePostInc) { 3209 // If we already have a pre/post index load/store then set BaseAccess, 3210 // IncrementOffset and NewBaseReg to the values it already produces, 3211 // allowing us to update and subsequent uses of BaseOp reg with the 3212 // incremented value. 3213 if (Increment) 3214 return false; 3215 3216 LLVM_DEBUG(dbgs() << "\nAttempting to distribute increments on already " 3217 << "indexed VirtualReg " << Base.virtRegIndex() << "\n"); 3218 int BaseOp = getBaseOperandIndex(*PrePostInc); 3219 IncrementOffset = PrePostInc->getOperand(BaseOp+1).getImm(); 3220 BaseAccess = PrePostInc; 3221 NewBaseReg = PrePostInc->getOperand(0).getReg(); 3222 } 3223 else 3224 return false; 3225 3226 // And make sure that the negative value of increment can be added to all 3227 // other offsets after the BaseAccess. We rely on either 3228 // dominates(BaseAccess, OtherAccess) or dominates(OtherAccess, BaseAccess) 3229 // to keep things simple. 3230 // This also adds a simple codesize metric, to detect if an instruction (like 3231 // t2LDRBi12) which can often be shrunk to a thumb1 instruction (tLDRBi) 3232 // cannot because it is converted to something else (t2LDRBi8). We start this 3233 // at -1 for the gain from removing the increment. 3234 SmallPtrSet<MachineInstr *, 4> SuccessorAccesses; 3235 int CodesizeEstimate = -1; 3236 for (auto *Use : OtherAccesses) { 3237 if (DT->dominates(BaseAccess, Use)) { 3238 SuccessorAccesses.insert(Use); 3239 unsigned BaseOp = getBaseOperandIndex(*Use); 3240 if (!isLegalOrConvertableAddressImm(Use->getOpcode(), 3241 Use->getOperand(BaseOp + 1).getImm() - 3242 IncrementOffset, 3243 TII, CodesizeEstimate)) { 3244 LLVM_DEBUG(dbgs() << " Illegal addressing mode immediate on use\n"); 3245 return false; 3246 } 3247 } else if (!DT->dominates(Use, BaseAccess)) { 3248 LLVM_DEBUG( 3249 dbgs() << " Unknown dominance relation between Base and Use\n"); 3250 return false; 3251 } 3252 } 3253 if (STI->hasMinSize() && CodesizeEstimate > 0) { 3254 LLVM_DEBUG(dbgs() << " Expected to grow instructions under minsize\n"); 3255 return false; 3256 } 3257 3258 if (!PrePostInc) { 3259 // Replace BaseAccess with a post inc 3260 LLVM_DEBUG(dbgs() << "Changing: "; BaseAccess->dump()); 3261 LLVM_DEBUG(dbgs() << " And : "; Increment->dump()); 3262 NewBaseReg = Increment->getOperand(0).getReg(); 3263 MachineInstr *BaseAccessPost = 3264 createPostIncLoadStore(BaseAccess, IncrementOffset, NewBaseReg, TII, TRI); 3265 BaseAccess->eraseFromParent(); 3266 Increment->eraseFromParent(); 3267 (void)BaseAccessPost; 3268 LLVM_DEBUG(dbgs() << " To : "; BaseAccessPost->dump()); 3269 } 3270 3271 for (auto *Use : SuccessorAccesses) { 3272 LLVM_DEBUG(dbgs() << "Changing: "; Use->dump()); 3273 AdjustBaseAndOffset(Use, NewBaseReg, IncrementOffset, TII, TRI); 3274 LLVM_DEBUG(dbgs() << " To : "; Use->dump()); 3275 } 3276 3277 // Remove the kill flag from all uses of NewBaseReg, in case any old uses 3278 // remain. 3279 for (MachineOperand &Op : MRI->use_nodbg_operands(NewBaseReg)) 3280 Op.setIsKill(false); 3281 return true; 3282 } 3283 3284 bool ARMPreAllocLoadStoreOpt::DistributeIncrements() { 3285 bool Changed = false; 3286 SmallSetVector<Register, 4> Visited; 3287 for (auto &MBB : *MF) { 3288 for (auto &MI : MBB) { 3289 int BaseOp = getBaseOperandIndex(MI); 3290 if (BaseOp == -1 || !MI.getOperand(BaseOp).isReg()) 3291 continue; 3292 3293 Register Base = MI.getOperand(BaseOp).getReg(); 3294 if (!Base.isVirtual() || Visited.count(Base)) 3295 continue; 3296 3297 Visited.insert(Base); 3298 } 3299 } 3300 3301 for (auto Base : Visited) 3302 Changed |= DistributeIncrements(Base); 3303 3304 return Changed; 3305 } 3306 3307 /// Returns an instance of the load / store optimization pass. 3308 FunctionPass *llvm::createARMLoadStoreOptimizationPass(bool PreAlloc) { 3309 if (PreAlloc) 3310 return new ARMPreAllocLoadStoreOpt(); 3311 return new ARMLoadStoreOpt(); 3312 } 3313