xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMLoadStoreOptimizer.cpp (revision 53120fbb68952b7d620c2c0e1cf05c5017fc1b27)
1 //===- ARMLoadStoreOptimizer.cpp - ARM load / store opt. pass -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file contains a pass that performs load / store related peephole
10 /// optimizations. This pass should be run after register allocation.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARM.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMISelLowering.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "MCTargetDesc/ARMBaseInfo.h"
22 #include "Utils/ARMBaseInfo.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SetVector.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/ADT/SmallSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/ADT/iterator_range.h"
33 #include "llvm/Analysis/AliasAnalysis.h"
34 #include "llvm/CodeGen/LivePhysRegs.h"
35 #include "llvm/CodeGen/MachineBasicBlock.h"
36 #include "llvm/CodeGen/MachineDominators.h"
37 #include "llvm/CodeGen/MachineFrameInfo.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineFunctionPass.h"
40 #include "llvm/CodeGen/MachineInstr.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineMemOperand.h"
43 #include "llvm/CodeGen/MachineOperand.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/RegisterClassInfo.h"
46 #include "llvm/CodeGen/TargetFrameLowering.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetLowering.h"
49 #include "llvm/CodeGen/TargetRegisterInfo.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/DebugLoc.h"
53 #include "llvm/IR/DerivedTypes.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/InitializePasses.h"
57 #include "llvm/MC/MCInstrDesc.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Allocator.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include <algorithm>
65 #include <cassert>
66 #include <cstddef>
67 #include <cstdlib>
68 #include <iterator>
69 #include <limits>
70 #include <utility>
71 
72 using namespace llvm;
73 
74 #define DEBUG_TYPE "arm-ldst-opt"
75 
76 STATISTIC(NumLDMGened , "Number of ldm instructions generated");
77 STATISTIC(NumSTMGened , "Number of stm instructions generated");
78 STATISTIC(NumVLDMGened, "Number of vldm instructions generated");
79 STATISTIC(NumVSTMGened, "Number of vstm instructions generated");
80 STATISTIC(NumLdStMoved, "Number of load / store instructions moved");
81 STATISTIC(NumLDRDFormed,"Number of ldrd created before allocation");
82 STATISTIC(NumSTRDFormed,"Number of strd created before allocation");
83 STATISTIC(NumLDRD2LDM,  "Number of ldrd instructions turned back into ldm");
84 STATISTIC(NumSTRD2STM,  "Number of strd instructions turned back into stm");
85 STATISTIC(NumLDRD2LDR,  "Number of ldrd instructions turned back into ldr's");
86 STATISTIC(NumSTRD2STR,  "Number of strd instructions turned back into str's");
87 
88 /// This switch disables formation of double/multi instructions that could
89 /// potentially lead to (new) alignment traps even with CCR.UNALIGN_TRP
90 /// disabled. This can be used to create libraries that are robust even when
91 /// users provoke undefined behaviour by supplying misaligned pointers.
92 /// \see mayCombineMisaligned()
93 static cl::opt<bool>
94 AssumeMisalignedLoadStores("arm-assume-misaligned-load-store", cl::Hidden,
95     cl::init(false), cl::desc("Be more conservative in ARM load/store opt"));
96 
97 #define ARM_LOAD_STORE_OPT_NAME "ARM load / store optimization pass"
98 
99 namespace {
100 
101   /// Post- register allocation pass the combine load / store instructions to
102   /// form ldm / stm instructions.
103   struct ARMLoadStoreOpt : public MachineFunctionPass {
104     static char ID;
105 
106     const MachineFunction *MF;
107     const TargetInstrInfo *TII;
108     const TargetRegisterInfo *TRI;
109     const ARMSubtarget *STI;
110     const TargetLowering *TL;
111     ARMFunctionInfo *AFI;
112     LivePhysRegs LiveRegs;
113     RegisterClassInfo RegClassInfo;
114     MachineBasicBlock::const_iterator LiveRegPos;
115     bool LiveRegsValid;
116     bool RegClassInfoValid;
117     bool isThumb1, isThumb2;
118 
119     ARMLoadStoreOpt() : MachineFunctionPass(ID) {}
120 
121     bool runOnMachineFunction(MachineFunction &Fn) override;
122 
123     MachineFunctionProperties getRequiredProperties() const override {
124       return MachineFunctionProperties().set(
125           MachineFunctionProperties::Property::NoVRegs);
126     }
127 
128     StringRef getPassName() const override { return ARM_LOAD_STORE_OPT_NAME; }
129 
130   private:
131     /// A set of load/store MachineInstrs with same base register sorted by
132     /// offset.
133     struct MemOpQueueEntry {
134       MachineInstr *MI;
135       int Offset;        ///< Load/Store offset.
136       unsigned Position; ///< Position as counted from end of basic block.
137 
138       MemOpQueueEntry(MachineInstr &MI, int Offset, unsigned Position)
139           : MI(&MI), Offset(Offset), Position(Position) {}
140     };
141     using MemOpQueue = SmallVector<MemOpQueueEntry, 8>;
142 
143     /// A set of MachineInstrs that fulfill (nearly all) conditions to get
144     /// merged into a LDM/STM.
145     struct MergeCandidate {
146       /// List of instructions ordered by load/store offset.
147       SmallVector<MachineInstr*, 4> Instrs;
148 
149       /// Index in Instrs of the instruction being latest in the schedule.
150       unsigned LatestMIIdx;
151 
152       /// Index in Instrs of the instruction being earliest in the schedule.
153       unsigned EarliestMIIdx;
154 
155       /// Index into the basic block where the merged instruction will be
156       /// inserted. (See MemOpQueueEntry.Position)
157       unsigned InsertPos;
158 
159       /// Whether the instructions can be merged into a ldm/stm instruction.
160       bool CanMergeToLSMulti;
161 
162       /// Whether the instructions can be merged into a ldrd/strd instruction.
163       bool CanMergeToLSDouble;
164     };
165     SpecificBumpPtrAllocator<MergeCandidate> Allocator;
166     SmallVector<const MergeCandidate*,4> Candidates;
167     SmallVector<MachineInstr*,4> MergeBaseCandidates;
168 
169     void moveLiveRegsBefore(const MachineBasicBlock &MBB,
170                             MachineBasicBlock::const_iterator Before);
171     unsigned findFreeReg(const TargetRegisterClass &RegClass);
172     void UpdateBaseRegUses(MachineBasicBlock &MBB,
173                            MachineBasicBlock::iterator MBBI, const DebugLoc &DL,
174                            unsigned Base, unsigned WordOffset,
175                            ARMCC::CondCodes Pred, unsigned PredReg);
176     MachineInstr *CreateLoadStoreMulti(
177         MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
178         int Offset, unsigned Base, bool BaseKill, unsigned Opcode,
179         ARMCC::CondCodes Pred, unsigned PredReg, const DebugLoc &DL,
180         ArrayRef<std::pair<unsigned, bool>> Regs,
181         ArrayRef<MachineInstr*> Instrs);
182     MachineInstr *CreateLoadStoreDouble(
183         MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
184         int Offset, unsigned Base, bool BaseKill, unsigned Opcode,
185         ARMCC::CondCodes Pred, unsigned PredReg, const DebugLoc &DL,
186         ArrayRef<std::pair<unsigned, bool>> Regs,
187         ArrayRef<MachineInstr*> Instrs) const;
188     void FormCandidates(const MemOpQueue &MemOps);
189     MachineInstr *MergeOpsUpdate(const MergeCandidate &Cand);
190     bool FixInvalidRegPairOp(MachineBasicBlock &MBB,
191                              MachineBasicBlock::iterator &MBBI);
192     bool MergeBaseUpdateLoadStore(MachineInstr *MI);
193     bool MergeBaseUpdateLSMultiple(MachineInstr *MI);
194     bool MergeBaseUpdateLSDouble(MachineInstr &MI) const;
195     bool LoadStoreMultipleOpti(MachineBasicBlock &MBB);
196     bool MergeReturnIntoLDM(MachineBasicBlock &MBB);
197     bool CombineMovBx(MachineBasicBlock &MBB);
198   };
199 
200 } // end anonymous namespace
201 
202 char ARMLoadStoreOpt::ID = 0;
203 
204 INITIALIZE_PASS(ARMLoadStoreOpt, "arm-ldst-opt", ARM_LOAD_STORE_OPT_NAME, false,
205                 false)
206 
207 static bool definesCPSR(const MachineInstr &MI) {
208   for (const auto &MO : MI.operands()) {
209     if (!MO.isReg())
210       continue;
211     if (MO.isDef() && MO.getReg() == ARM::CPSR && !MO.isDead())
212       // If the instruction has live CPSR def, then it's not safe to fold it
213       // into load / store.
214       return true;
215   }
216 
217   return false;
218 }
219 
220 static int getMemoryOpOffset(const MachineInstr &MI) {
221   unsigned Opcode = MI.getOpcode();
222   bool isAM3 = Opcode == ARM::LDRD || Opcode == ARM::STRD;
223   unsigned NumOperands = MI.getDesc().getNumOperands();
224   unsigned OffField = MI.getOperand(NumOperands - 3).getImm();
225 
226   if (Opcode == ARM::t2LDRi12 || Opcode == ARM::t2LDRi8 ||
227       Opcode == ARM::t2STRi12 || Opcode == ARM::t2STRi8 ||
228       Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8 ||
229       Opcode == ARM::LDRi12   || Opcode == ARM::STRi12)
230     return OffField;
231 
232   // Thumb1 immediate offsets are scaled by 4
233   if (Opcode == ARM::tLDRi || Opcode == ARM::tSTRi ||
234       Opcode == ARM::tLDRspi || Opcode == ARM::tSTRspi)
235     return OffField * 4;
236 
237   int Offset = isAM3 ? ARM_AM::getAM3Offset(OffField)
238     : ARM_AM::getAM5Offset(OffField) * 4;
239   ARM_AM::AddrOpc Op = isAM3 ? ARM_AM::getAM3Op(OffField)
240     : ARM_AM::getAM5Op(OffField);
241 
242   if (Op == ARM_AM::sub)
243     return -Offset;
244 
245   return Offset;
246 }
247 
248 static const MachineOperand &getLoadStoreBaseOp(const MachineInstr &MI) {
249   return MI.getOperand(1);
250 }
251 
252 static const MachineOperand &getLoadStoreRegOp(const MachineInstr &MI) {
253   return MI.getOperand(0);
254 }
255 
256 static int getLoadStoreMultipleOpcode(unsigned Opcode, ARM_AM::AMSubMode Mode) {
257   switch (Opcode) {
258   default: llvm_unreachable("Unhandled opcode!");
259   case ARM::LDRi12:
260     ++NumLDMGened;
261     switch (Mode) {
262     default: llvm_unreachable("Unhandled submode!");
263     case ARM_AM::ia: return ARM::LDMIA;
264     case ARM_AM::da: return ARM::LDMDA;
265     case ARM_AM::db: return ARM::LDMDB;
266     case ARM_AM::ib: return ARM::LDMIB;
267     }
268   case ARM::STRi12:
269     ++NumSTMGened;
270     switch (Mode) {
271     default: llvm_unreachable("Unhandled submode!");
272     case ARM_AM::ia: return ARM::STMIA;
273     case ARM_AM::da: return ARM::STMDA;
274     case ARM_AM::db: return ARM::STMDB;
275     case ARM_AM::ib: return ARM::STMIB;
276     }
277   case ARM::tLDRi:
278   case ARM::tLDRspi:
279     // tLDMIA is writeback-only - unless the base register is in the input
280     // reglist.
281     ++NumLDMGened;
282     switch (Mode) {
283     default: llvm_unreachable("Unhandled submode!");
284     case ARM_AM::ia: return ARM::tLDMIA;
285     }
286   case ARM::tSTRi:
287   case ARM::tSTRspi:
288     // There is no non-writeback tSTMIA either.
289     ++NumSTMGened;
290     switch (Mode) {
291     default: llvm_unreachable("Unhandled submode!");
292     case ARM_AM::ia: return ARM::tSTMIA_UPD;
293     }
294   case ARM::t2LDRi8:
295   case ARM::t2LDRi12:
296     ++NumLDMGened;
297     switch (Mode) {
298     default: llvm_unreachable("Unhandled submode!");
299     case ARM_AM::ia: return ARM::t2LDMIA;
300     case ARM_AM::db: return ARM::t2LDMDB;
301     }
302   case ARM::t2STRi8:
303   case ARM::t2STRi12:
304     ++NumSTMGened;
305     switch (Mode) {
306     default: llvm_unreachable("Unhandled submode!");
307     case ARM_AM::ia: return ARM::t2STMIA;
308     case ARM_AM::db: return ARM::t2STMDB;
309     }
310   case ARM::VLDRS:
311     ++NumVLDMGened;
312     switch (Mode) {
313     default: llvm_unreachable("Unhandled submode!");
314     case ARM_AM::ia: return ARM::VLDMSIA;
315     case ARM_AM::db: return 0; // Only VLDMSDB_UPD exists.
316     }
317   case ARM::VSTRS:
318     ++NumVSTMGened;
319     switch (Mode) {
320     default: llvm_unreachable("Unhandled submode!");
321     case ARM_AM::ia: return ARM::VSTMSIA;
322     case ARM_AM::db: return 0; // Only VSTMSDB_UPD exists.
323     }
324   case ARM::VLDRD:
325     ++NumVLDMGened;
326     switch (Mode) {
327     default: llvm_unreachable("Unhandled submode!");
328     case ARM_AM::ia: return ARM::VLDMDIA;
329     case ARM_AM::db: return 0; // Only VLDMDDB_UPD exists.
330     }
331   case ARM::VSTRD:
332     ++NumVSTMGened;
333     switch (Mode) {
334     default: llvm_unreachable("Unhandled submode!");
335     case ARM_AM::ia: return ARM::VSTMDIA;
336     case ARM_AM::db: return 0; // Only VSTMDDB_UPD exists.
337     }
338   }
339 }
340 
341 static ARM_AM::AMSubMode getLoadStoreMultipleSubMode(unsigned Opcode) {
342   switch (Opcode) {
343   default: llvm_unreachable("Unhandled opcode!");
344   case ARM::LDMIA_RET:
345   case ARM::LDMIA:
346   case ARM::LDMIA_UPD:
347   case ARM::STMIA:
348   case ARM::STMIA_UPD:
349   case ARM::tLDMIA:
350   case ARM::tLDMIA_UPD:
351   case ARM::tSTMIA_UPD:
352   case ARM::t2LDMIA_RET:
353   case ARM::t2LDMIA:
354   case ARM::t2LDMIA_UPD:
355   case ARM::t2STMIA:
356   case ARM::t2STMIA_UPD:
357   case ARM::VLDMSIA:
358   case ARM::VLDMSIA_UPD:
359   case ARM::VSTMSIA:
360   case ARM::VSTMSIA_UPD:
361   case ARM::VLDMDIA:
362   case ARM::VLDMDIA_UPD:
363   case ARM::VSTMDIA:
364   case ARM::VSTMDIA_UPD:
365     return ARM_AM::ia;
366 
367   case ARM::LDMDA:
368   case ARM::LDMDA_UPD:
369   case ARM::STMDA:
370   case ARM::STMDA_UPD:
371     return ARM_AM::da;
372 
373   case ARM::LDMDB:
374   case ARM::LDMDB_UPD:
375   case ARM::STMDB:
376   case ARM::STMDB_UPD:
377   case ARM::t2LDMDB:
378   case ARM::t2LDMDB_UPD:
379   case ARM::t2STMDB:
380   case ARM::t2STMDB_UPD:
381   case ARM::VLDMSDB_UPD:
382   case ARM::VSTMSDB_UPD:
383   case ARM::VLDMDDB_UPD:
384   case ARM::VSTMDDB_UPD:
385     return ARM_AM::db;
386 
387   case ARM::LDMIB:
388   case ARM::LDMIB_UPD:
389   case ARM::STMIB:
390   case ARM::STMIB_UPD:
391     return ARM_AM::ib;
392   }
393 }
394 
395 static bool isT1i32Load(unsigned Opc) {
396   return Opc == ARM::tLDRi || Opc == ARM::tLDRspi;
397 }
398 
399 static bool isT2i32Load(unsigned Opc) {
400   return Opc == ARM::t2LDRi12 || Opc == ARM::t2LDRi8;
401 }
402 
403 static bool isi32Load(unsigned Opc) {
404   return Opc == ARM::LDRi12 || isT1i32Load(Opc) || isT2i32Load(Opc) ;
405 }
406 
407 static bool isT1i32Store(unsigned Opc) {
408   return Opc == ARM::tSTRi || Opc == ARM::tSTRspi;
409 }
410 
411 static bool isT2i32Store(unsigned Opc) {
412   return Opc == ARM::t2STRi12 || Opc == ARM::t2STRi8;
413 }
414 
415 static bool isi32Store(unsigned Opc) {
416   return Opc == ARM::STRi12 || isT1i32Store(Opc) || isT2i32Store(Opc);
417 }
418 
419 static bool isLoadSingle(unsigned Opc) {
420   return isi32Load(Opc) || Opc == ARM::VLDRS || Opc == ARM::VLDRD;
421 }
422 
423 static unsigned getImmScale(unsigned Opc) {
424   switch (Opc) {
425   default: llvm_unreachable("Unhandled opcode!");
426   case ARM::tLDRi:
427   case ARM::tSTRi:
428   case ARM::tLDRspi:
429   case ARM::tSTRspi:
430     return 1;
431   case ARM::tLDRHi:
432   case ARM::tSTRHi:
433     return 2;
434   case ARM::tLDRBi:
435   case ARM::tSTRBi:
436     return 4;
437   }
438 }
439 
440 static unsigned getLSMultipleTransferSize(const MachineInstr *MI) {
441   switch (MI->getOpcode()) {
442   default: return 0;
443   case ARM::LDRi12:
444   case ARM::STRi12:
445   case ARM::tLDRi:
446   case ARM::tSTRi:
447   case ARM::tLDRspi:
448   case ARM::tSTRspi:
449   case ARM::t2LDRi8:
450   case ARM::t2LDRi12:
451   case ARM::t2STRi8:
452   case ARM::t2STRi12:
453   case ARM::VLDRS:
454   case ARM::VSTRS:
455     return 4;
456   case ARM::VLDRD:
457   case ARM::VSTRD:
458     return 8;
459   case ARM::LDMIA:
460   case ARM::LDMDA:
461   case ARM::LDMDB:
462   case ARM::LDMIB:
463   case ARM::STMIA:
464   case ARM::STMDA:
465   case ARM::STMDB:
466   case ARM::STMIB:
467   case ARM::tLDMIA:
468   case ARM::tLDMIA_UPD:
469   case ARM::tSTMIA_UPD:
470   case ARM::t2LDMIA:
471   case ARM::t2LDMDB:
472   case ARM::t2STMIA:
473   case ARM::t2STMDB:
474   case ARM::VLDMSIA:
475   case ARM::VSTMSIA:
476     return (MI->getNumOperands() - MI->getDesc().getNumOperands() + 1) * 4;
477   case ARM::VLDMDIA:
478   case ARM::VSTMDIA:
479     return (MI->getNumOperands() - MI->getDesc().getNumOperands() + 1) * 8;
480   }
481 }
482 
483 /// Update future uses of the base register with the offset introduced
484 /// due to writeback. This function only works on Thumb1.
485 void ARMLoadStoreOpt::UpdateBaseRegUses(MachineBasicBlock &MBB,
486                                         MachineBasicBlock::iterator MBBI,
487                                         const DebugLoc &DL, unsigned Base,
488                                         unsigned WordOffset,
489                                         ARMCC::CondCodes Pred,
490                                         unsigned PredReg) {
491   assert(isThumb1 && "Can only update base register uses for Thumb1!");
492   // Start updating any instructions with immediate offsets. Insert a SUB before
493   // the first non-updateable instruction (if any).
494   for (; MBBI != MBB.end(); ++MBBI) {
495     bool InsertSub = false;
496     unsigned Opc = MBBI->getOpcode();
497 
498     if (MBBI->readsRegister(Base)) {
499       int Offset;
500       bool IsLoad =
501         Opc == ARM::tLDRi || Opc == ARM::tLDRHi || Opc == ARM::tLDRBi;
502       bool IsStore =
503         Opc == ARM::tSTRi || Opc == ARM::tSTRHi || Opc == ARM::tSTRBi;
504 
505       if (IsLoad || IsStore) {
506         // Loads and stores with immediate offsets can be updated, but only if
507         // the new offset isn't negative.
508         // The MachineOperand containing the offset immediate is the last one
509         // before predicates.
510         MachineOperand &MO =
511           MBBI->getOperand(MBBI->getDesc().getNumOperands() - 3);
512         // The offsets are scaled by 1, 2 or 4 depending on the Opcode.
513         Offset = MO.getImm() - WordOffset * getImmScale(Opc);
514 
515         // If storing the base register, it needs to be reset first.
516         Register InstrSrcReg = getLoadStoreRegOp(*MBBI).getReg();
517 
518         if (Offset >= 0 && !(IsStore && InstrSrcReg == Base))
519           MO.setImm(Offset);
520         else
521           InsertSub = true;
522       } else if ((Opc == ARM::tSUBi8 || Opc == ARM::tADDi8) &&
523                  !definesCPSR(*MBBI)) {
524         // SUBS/ADDS using this register, with a dead def of the CPSR.
525         // Merge it with the update; if the merged offset is too large,
526         // insert a new sub instead.
527         MachineOperand &MO =
528           MBBI->getOperand(MBBI->getDesc().getNumOperands() - 3);
529         Offset = (Opc == ARM::tSUBi8) ?
530           MO.getImm() + WordOffset * 4 :
531           MO.getImm() - WordOffset * 4 ;
532         if (Offset >= 0 && TL->isLegalAddImmediate(Offset)) {
533           // FIXME: Swap ADDS<->SUBS if Offset < 0, erase instruction if
534           // Offset == 0.
535           MO.setImm(Offset);
536           // The base register has now been reset, so exit early.
537           return;
538         } else {
539           InsertSub = true;
540         }
541       } else {
542         // Can't update the instruction.
543         InsertSub = true;
544       }
545     } else if (definesCPSR(*MBBI) || MBBI->isCall() || MBBI->isBranch()) {
546       // Since SUBS sets the condition flags, we can't place the base reset
547       // after an instruction that has a live CPSR def.
548       // The base register might also contain an argument for a function call.
549       InsertSub = true;
550     }
551 
552     if (InsertSub) {
553       // An instruction above couldn't be updated, so insert a sub.
554       BuildMI(MBB, MBBI, DL, TII->get(ARM::tSUBi8), Base)
555           .add(t1CondCodeOp(true))
556           .addReg(Base)
557           .addImm(WordOffset * 4)
558           .addImm(Pred)
559           .addReg(PredReg);
560       return;
561     }
562 
563     if (MBBI->killsRegister(Base) || MBBI->definesRegister(Base))
564       // Register got killed. Stop updating.
565       return;
566   }
567 
568   // End of block was reached.
569   if (!MBB.succ_empty()) {
570     // FIXME: Because of a bug, live registers are sometimes missing from
571     // the successor blocks' live-in sets. This means we can't trust that
572     // information and *always* have to reset at the end of a block.
573     // See PR21029.
574     if (MBBI != MBB.end()) --MBBI;
575     BuildMI(MBB, MBBI, DL, TII->get(ARM::tSUBi8), Base)
576         .add(t1CondCodeOp(true))
577         .addReg(Base)
578         .addImm(WordOffset * 4)
579         .addImm(Pred)
580         .addReg(PredReg);
581   }
582 }
583 
584 /// Return the first register of class \p RegClass that is not in \p Regs.
585 unsigned ARMLoadStoreOpt::findFreeReg(const TargetRegisterClass &RegClass) {
586   if (!RegClassInfoValid) {
587     RegClassInfo.runOnMachineFunction(*MF);
588     RegClassInfoValid = true;
589   }
590 
591   for (unsigned Reg : RegClassInfo.getOrder(&RegClass))
592     if (LiveRegs.available(MF->getRegInfo(), Reg))
593       return Reg;
594   return 0;
595 }
596 
597 /// Compute live registers just before instruction \p Before (in normal schedule
598 /// direction). Computes backwards so multiple queries in the same block must
599 /// come in reverse order.
600 void ARMLoadStoreOpt::moveLiveRegsBefore(const MachineBasicBlock &MBB,
601     MachineBasicBlock::const_iterator Before) {
602   // Initialize if we never queried in this block.
603   if (!LiveRegsValid) {
604     LiveRegs.init(*TRI);
605     LiveRegs.addLiveOuts(MBB);
606     LiveRegPos = MBB.end();
607     LiveRegsValid = true;
608   }
609   // Move backward just before the "Before" position.
610   while (LiveRegPos != Before) {
611     --LiveRegPos;
612     LiveRegs.stepBackward(*LiveRegPos);
613   }
614 }
615 
616 static bool ContainsReg(const ArrayRef<std::pair<unsigned, bool>> &Regs,
617                         unsigned Reg) {
618   for (const std::pair<unsigned, bool> &R : Regs)
619     if (R.first == Reg)
620       return true;
621   return false;
622 }
623 
624 /// Create and insert a LDM or STM with Base as base register and registers in
625 /// Regs as the register operands that would be loaded / stored.  It returns
626 /// true if the transformation is done.
627 MachineInstr *ARMLoadStoreOpt::CreateLoadStoreMulti(
628     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
629     int Offset, unsigned Base, bool BaseKill, unsigned Opcode,
630     ARMCC::CondCodes Pred, unsigned PredReg, const DebugLoc &DL,
631     ArrayRef<std::pair<unsigned, bool>> Regs,
632     ArrayRef<MachineInstr*> Instrs) {
633   unsigned NumRegs = Regs.size();
634   assert(NumRegs > 1);
635 
636   // For Thumb1 targets, it might be necessary to clobber the CPSR to merge.
637   // Compute liveness information for that register to make the decision.
638   bool SafeToClobberCPSR = !isThumb1 ||
639     (MBB.computeRegisterLiveness(TRI, ARM::CPSR, InsertBefore, 20) ==
640      MachineBasicBlock::LQR_Dead);
641 
642   bool Writeback = isThumb1; // Thumb1 LDM/STM have base reg writeback.
643 
644   // Exception: If the base register is in the input reglist, Thumb1 LDM is
645   // non-writeback.
646   // It's also not possible to merge an STR of the base register in Thumb1.
647   if (isThumb1 && ContainsReg(Regs, Base)) {
648     assert(Base != ARM::SP && "Thumb1 does not allow SP in register list");
649     if (Opcode == ARM::tLDRi)
650       Writeback = false;
651     else if (Opcode == ARM::tSTRi)
652       return nullptr;
653   }
654 
655   ARM_AM::AMSubMode Mode = ARM_AM::ia;
656   // VFP and Thumb2 do not support IB or DA modes. Thumb1 only supports IA.
657   bool isNotVFP = isi32Load(Opcode) || isi32Store(Opcode);
658   bool haveIBAndDA = isNotVFP && !isThumb2 && !isThumb1;
659 
660   if (Offset == 4 && haveIBAndDA) {
661     Mode = ARM_AM::ib;
662   } else if (Offset == -4 * (int)NumRegs + 4 && haveIBAndDA) {
663     Mode = ARM_AM::da;
664   } else if (Offset == -4 * (int)NumRegs && isNotVFP && !isThumb1) {
665     // VLDM/VSTM do not support DB mode without also updating the base reg.
666     Mode = ARM_AM::db;
667   } else if (Offset != 0 || Opcode == ARM::tLDRspi || Opcode == ARM::tSTRspi) {
668     // Check if this is a supported opcode before inserting instructions to
669     // calculate a new base register.
670     if (!getLoadStoreMultipleOpcode(Opcode, Mode)) return nullptr;
671 
672     // If starting offset isn't zero, insert a MI to materialize a new base.
673     // But only do so if it is cost effective, i.e. merging more than two
674     // loads / stores.
675     if (NumRegs <= 2)
676       return nullptr;
677 
678     // On Thumb1, it's not worth materializing a new base register without
679     // clobbering the CPSR (i.e. not using ADDS/SUBS).
680     if (!SafeToClobberCPSR)
681       return nullptr;
682 
683     unsigned NewBase;
684     if (isi32Load(Opcode)) {
685       // If it is a load, then just use one of the destination registers
686       // as the new base. Will no longer be writeback in Thumb1.
687       NewBase = Regs[NumRegs-1].first;
688       Writeback = false;
689     } else {
690       // Find a free register that we can use as scratch register.
691       moveLiveRegsBefore(MBB, InsertBefore);
692       // The merged instruction does not exist yet but will use several Regs if
693       // it is a Store.
694       if (!isLoadSingle(Opcode))
695         for (const std::pair<unsigned, bool> &R : Regs)
696           LiveRegs.addReg(R.first);
697 
698       NewBase = findFreeReg(isThumb1 ? ARM::tGPRRegClass : ARM::GPRRegClass);
699       if (NewBase == 0)
700         return nullptr;
701     }
702 
703     int BaseOpc = isThumb2 ? (BaseKill && Base == ARM::SP ? ARM::t2ADDspImm
704                                                           : ARM::t2ADDri)
705                            : (isThumb1 && Base == ARM::SP)
706                                  ? ARM::tADDrSPi
707                                  : (isThumb1 && Offset < 8)
708                                        ? ARM::tADDi3
709                                        : isThumb1 ? ARM::tADDi8 : ARM::ADDri;
710 
711     if (Offset < 0) {
712       // FIXME: There are no Thumb1 load/store instructions with negative
713       // offsets. So the Base != ARM::SP might be unnecessary.
714       Offset = -Offset;
715       BaseOpc = isThumb2 ? (BaseKill && Base == ARM::SP ? ARM::t2SUBspImm
716                                                         : ARM::t2SUBri)
717                          : (isThumb1 && Offset < 8 && Base != ARM::SP)
718                                ? ARM::tSUBi3
719                                : isThumb1 ? ARM::tSUBi8 : ARM::SUBri;
720     }
721 
722     if (!TL->isLegalAddImmediate(Offset))
723       // FIXME: Try add with register operand?
724       return nullptr; // Probably not worth it then.
725 
726     // We can only append a kill flag to the add/sub input if the value is not
727     // used in the register list of the stm as well.
728     bool KillOldBase = BaseKill &&
729       (!isi32Store(Opcode) || !ContainsReg(Regs, Base));
730 
731     if (isThumb1) {
732       // Thumb1: depending on immediate size, use either
733       //   ADDS NewBase, Base, #imm3
734       // or
735       //   MOV  NewBase, Base
736       //   ADDS NewBase, #imm8.
737       if (Base != NewBase &&
738           (BaseOpc == ARM::tADDi8 || BaseOpc == ARM::tSUBi8)) {
739         // Need to insert a MOV to the new base first.
740         if (isARMLowRegister(NewBase) && isARMLowRegister(Base) &&
741             !STI->hasV6Ops()) {
742           // thumbv4t doesn't have lo->lo copies, and we can't predicate tMOVSr
743           if (Pred != ARMCC::AL)
744             return nullptr;
745           BuildMI(MBB, InsertBefore, DL, TII->get(ARM::tMOVSr), NewBase)
746             .addReg(Base, getKillRegState(KillOldBase));
747         } else
748           BuildMI(MBB, InsertBefore, DL, TII->get(ARM::tMOVr), NewBase)
749               .addReg(Base, getKillRegState(KillOldBase))
750               .add(predOps(Pred, PredReg));
751 
752         // The following ADDS/SUBS becomes an update.
753         Base = NewBase;
754         KillOldBase = true;
755       }
756       if (BaseOpc == ARM::tADDrSPi) {
757         assert(Offset % 4 == 0 && "tADDrSPi offset is scaled by 4");
758         BuildMI(MBB, InsertBefore, DL, TII->get(BaseOpc), NewBase)
759             .addReg(Base, getKillRegState(KillOldBase))
760             .addImm(Offset / 4)
761             .add(predOps(Pred, PredReg));
762       } else
763         BuildMI(MBB, InsertBefore, DL, TII->get(BaseOpc), NewBase)
764             .add(t1CondCodeOp(true))
765             .addReg(Base, getKillRegState(KillOldBase))
766             .addImm(Offset)
767             .add(predOps(Pred, PredReg));
768     } else {
769       BuildMI(MBB, InsertBefore, DL, TII->get(BaseOpc), NewBase)
770           .addReg(Base, getKillRegState(KillOldBase))
771           .addImm(Offset)
772           .add(predOps(Pred, PredReg))
773           .add(condCodeOp());
774     }
775     Base = NewBase;
776     BaseKill = true; // New base is always killed straight away.
777   }
778 
779   bool isDef = isLoadSingle(Opcode);
780 
781   // Get LS multiple opcode. Note that for Thumb1 this might be an opcode with
782   // base register writeback.
783   Opcode = getLoadStoreMultipleOpcode(Opcode, Mode);
784   if (!Opcode)
785     return nullptr;
786 
787   // Check if a Thumb1 LDM/STM merge is safe. This is the case if:
788   // - There is no writeback (LDM of base register),
789   // - the base register is killed by the merged instruction,
790   // - or it's safe to overwrite the condition flags, i.e. to insert a SUBS
791   //   to reset the base register.
792   // Otherwise, don't merge.
793   // It's safe to return here since the code to materialize a new base register
794   // above is also conditional on SafeToClobberCPSR.
795   if (isThumb1 && !SafeToClobberCPSR && Writeback && !BaseKill)
796     return nullptr;
797 
798   MachineInstrBuilder MIB;
799 
800   if (Writeback) {
801     assert(isThumb1 && "expected Writeback only inThumb1");
802     if (Opcode == ARM::tLDMIA) {
803       assert(!(ContainsReg(Regs, Base)) && "Thumb1 can't LDM ! with Base in Regs");
804       // Update tLDMIA with writeback if necessary.
805       Opcode = ARM::tLDMIA_UPD;
806     }
807 
808     MIB = BuildMI(MBB, InsertBefore, DL, TII->get(Opcode));
809 
810     // Thumb1: we might need to set base writeback when building the MI.
811     MIB.addReg(Base, getDefRegState(true))
812        .addReg(Base, getKillRegState(BaseKill));
813 
814     // The base isn't dead after a merged instruction with writeback.
815     // Insert a sub instruction after the newly formed instruction to reset.
816     if (!BaseKill)
817       UpdateBaseRegUses(MBB, InsertBefore, DL, Base, NumRegs, Pred, PredReg);
818   } else {
819     // No writeback, simply build the MachineInstr.
820     MIB = BuildMI(MBB, InsertBefore, DL, TII->get(Opcode));
821     MIB.addReg(Base, getKillRegState(BaseKill));
822   }
823 
824   MIB.addImm(Pred).addReg(PredReg);
825 
826   for (const std::pair<unsigned, bool> &R : Regs)
827     MIB.addReg(R.first, getDefRegState(isDef) | getKillRegState(R.second));
828 
829   MIB.cloneMergedMemRefs(Instrs);
830 
831   return MIB.getInstr();
832 }
833 
834 MachineInstr *ARMLoadStoreOpt::CreateLoadStoreDouble(
835     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
836     int Offset, unsigned Base, bool BaseKill, unsigned Opcode,
837     ARMCC::CondCodes Pred, unsigned PredReg, const DebugLoc &DL,
838     ArrayRef<std::pair<unsigned, bool>> Regs,
839     ArrayRef<MachineInstr*> Instrs) const {
840   bool IsLoad = isi32Load(Opcode);
841   assert((IsLoad || isi32Store(Opcode)) && "Must have integer load or store");
842   unsigned LoadStoreOpcode = IsLoad ? ARM::t2LDRDi8 : ARM::t2STRDi8;
843 
844   assert(Regs.size() == 2);
845   MachineInstrBuilder MIB = BuildMI(MBB, InsertBefore, DL,
846                                     TII->get(LoadStoreOpcode));
847   if (IsLoad) {
848     MIB.addReg(Regs[0].first, RegState::Define)
849        .addReg(Regs[1].first, RegState::Define);
850   } else {
851     MIB.addReg(Regs[0].first, getKillRegState(Regs[0].second))
852        .addReg(Regs[1].first, getKillRegState(Regs[1].second));
853   }
854   MIB.addReg(Base).addImm(Offset).addImm(Pred).addReg(PredReg);
855   MIB.cloneMergedMemRefs(Instrs);
856   return MIB.getInstr();
857 }
858 
859 /// Call MergeOps and update MemOps and merges accordingly on success.
860 MachineInstr *ARMLoadStoreOpt::MergeOpsUpdate(const MergeCandidate &Cand) {
861   const MachineInstr *First = Cand.Instrs.front();
862   unsigned Opcode = First->getOpcode();
863   bool IsLoad = isLoadSingle(Opcode);
864   SmallVector<std::pair<unsigned, bool>, 8> Regs;
865   SmallVector<unsigned, 4> ImpDefs;
866   DenseSet<unsigned> KilledRegs;
867   DenseSet<unsigned> UsedRegs;
868   // Determine list of registers and list of implicit super-register defs.
869   for (const MachineInstr *MI : Cand.Instrs) {
870     const MachineOperand &MO = getLoadStoreRegOp(*MI);
871     Register Reg = MO.getReg();
872     bool IsKill = MO.isKill();
873     if (IsKill)
874       KilledRegs.insert(Reg);
875     Regs.push_back(std::make_pair(Reg, IsKill));
876     UsedRegs.insert(Reg);
877 
878     if (IsLoad) {
879       // Collect any implicit defs of super-registers, after merging we can't
880       // be sure anymore that we properly preserved these live ranges and must
881       // removed these implicit operands.
882       for (const MachineOperand &MO : MI->implicit_operands()) {
883         if (!MO.isReg() || !MO.isDef() || MO.isDead())
884           continue;
885         assert(MO.isImplicit());
886         Register DefReg = MO.getReg();
887 
888         if (is_contained(ImpDefs, DefReg))
889           continue;
890         // We can ignore cases where the super-reg is read and written.
891         if (MI->readsRegister(DefReg))
892           continue;
893         ImpDefs.push_back(DefReg);
894       }
895     }
896   }
897 
898   // Attempt the merge.
899   using iterator = MachineBasicBlock::iterator;
900 
901   MachineInstr *LatestMI = Cand.Instrs[Cand.LatestMIIdx];
902   iterator InsertBefore = std::next(iterator(LatestMI));
903   MachineBasicBlock &MBB = *LatestMI->getParent();
904   unsigned Offset = getMemoryOpOffset(*First);
905   Register Base = getLoadStoreBaseOp(*First).getReg();
906   bool BaseKill = LatestMI->killsRegister(Base);
907   Register PredReg;
908   ARMCC::CondCodes Pred = getInstrPredicate(*First, PredReg);
909   DebugLoc DL = First->getDebugLoc();
910   MachineInstr *Merged = nullptr;
911   if (Cand.CanMergeToLSDouble)
912     Merged = CreateLoadStoreDouble(MBB, InsertBefore, Offset, Base, BaseKill,
913                                    Opcode, Pred, PredReg, DL, Regs,
914                                    Cand.Instrs);
915   if (!Merged && Cand.CanMergeToLSMulti)
916     Merged = CreateLoadStoreMulti(MBB, InsertBefore, Offset, Base, BaseKill,
917                                   Opcode, Pred, PredReg, DL, Regs, Cand.Instrs);
918   if (!Merged)
919     return nullptr;
920 
921   // Determine earliest instruction that will get removed. We then keep an
922   // iterator just above it so the following erases don't invalidated it.
923   iterator EarliestI(Cand.Instrs[Cand.EarliestMIIdx]);
924   bool EarliestAtBegin = false;
925   if (EarliestI == MBB.begin()) {
926     EarliestAtBegin = true;
927   } else {
928     EarliestI = std::prev(EarliestI);
929   }
930 
931   // Remove instructions which have been merged.
932   for (MachineInstr *MI : Cand.Instrs)
933     MBB.erase(MI);
934 
935   // Determine range between the earliest removed instruction and the new one.
936   if (EarliestAtBegin)
937     EarliestI = MBB.begin();
938   else
939     EarliestI = std::next(EarliestI);
940   auto FixupRange = make_range(EarliestI, iterator(Merged));
941 
942   if (isLoadSingle(Opcode)) {
943     // If the previous loads defined a super-reg, then we have to mark earlier
944     // operands undef; Replicate the super-reg def on the merged instruction.
945     for (MachineInstr &MI : FixupRange) {
946       for (unsigned &ImpDefReg : ImpDefs) {
947         for (MachineOperand &MO : MI.implicit_operands()) {
948           if (!MO.isReg() || MO.getReg() != ImpDefReg)
949             continue;
950           if (MO.readsReg())
951             MO.setIsUndef();
952           else if (MO.isDef())
953             ImpDefReg = 0;
954         }
955       }
956     }
957 
958     MachineInstrBuilder MIB(*Merged->getParent()->getParent(), Merged);
959     for (unsigned ImpDef : ImpDefs)
960       MIB.addReg(ImpDef, RegState::ImplicitDefine);
961   } else {
962     // Remove kill flags: We are possibly storing the values later now.
963     assert(isi32Store(Opcode) || Opcode == ARM::VSTRS || Opcode == ARM::VSTRD);
964     for (MachineInstr &MI : FixupRange) {
965       for (MachineOperand &MO : MI.uses()) {
966         if (!MO.isReg() || !MO.isKill())
967           continue;
968         if (UsedRegs.count(MO.getReg()))
969           MO.setIsKill(false);
970       }
971     }
972     assert(ImpDefs.empty());
973   }
974 
975   return Merged;
976 }
977 
978 static bool isValidLSDoubleOffset(int Offset) {
979   unsigned Value = abs(Offset);
980   // t2LDRDi8/t2STRDi8 supports an 8 bit immediate which is internally
981   // multiplied by 4.
982   return (Value % 4) == 0 && Value < 1024;
983 }
984 
985 /// Return true for loads/stores that can be combined to a double/multi
986 /// operation without increasing the requirements for alignment.
987 static bool mayCombineMisaligned(const TargetSubtargetInfo &STI,
988                                  const MachineInstr &MI) {
989   // vldr/vstr trap on misaligned pointers anyway, forming vldm makes no
990   // difference.
991   unsigned Opcode = MI.getOpcode();
992   if (!isi32Load(Opcode) && !isi32Store(Opcode))
993     return true;
994 
995   // Stack pointer alignment is out of the programmers control so we can trust
996   // SP-relative loads/stores.
997   if (getLoadStoreBaseOp(MI).getReg() == ARM::SP &&
998       STI.getFrameLowering()->getTransientStackAlign() >= Align(4))
999     return true;
1000   return false;
1001 }
1002 
1003 /// Find candidates for load/store multiple merge in list of MemOpQueueEntries.
1004 void ARMLoadStoreOpt::FormCandidates(const MemOpQueue &MemOps) {
1005   const MachineInstr *FirstMI = MemOps[0].MI;
1006   unsigned Opcode = FirstMI->getOpcode();
1007   bool isNotVFP = isi32Load(Opcode) || isi32Store(Opcode);
1008   unsigned Size = getLSMultipleTransferSize(FirstMI);
1009 
1010   unsigned SIndex = 0;
1011   unsigned EIndex = MemOps.size();
1012   do {
1013     // Look at the first instruction.
1014     const MachineInstr *MI = MemOps[SIndex].MI;
1015     int Offset = MemOps[SIndex].Offset;
1016     const MachineOperand &PMO = getLoadStoreRegOp(*MI);
1017     Register PReg = PMO.getReg();
1018     unsigned PRegNum = PMO.isUndef() ? std::numeric_limits<unsigned>::max()
1019                                      : TRI->getEncodingValue(PReg);
1020     unsigned Latest = SIndex;
1021     unsigned Earliest = SIndex;
1022     unsigned Count = 1;
1023     bool CanMergeToLSDouble =
1024       STI->isThumb2() && isNotVFP && isValidLSDoubleOffset(Offset);
1025     // ARM errata 602117: LDRD with base in list may result in incorrect base
1026     // register when interrupted or faulted.
1027     if (STI->isCortexM3() && isi32Load(Opcode) &&
1028         PReg == getLoadStoreBaseOp(*MI).getReg())
1029       CanMergeToLSDouble = false;
1030 
1031     bool CanMergeToLSMulti = true;
1032     // On swift vldm/vstm starting with an odd register number as that needs
1033     // more uops than single vldrs.
1034     if (STI->hasSlowOddRegister() && !isNotVFP && (PRegNum % 2) == 1)
1035       CanMergeToLSMulti = false;
1036 
1037     // LDRD/STRD do not allow SP/PC. LDM/STM do not support it or have it
1038     // deprecated; LDM to PC is fine but cannot happen here.
1039     if (PReg == ARM::SP || PReg == ARM::PC)
1040       CanMergeToLSMulti = CanMergeToLSDouble = false;
1041 
1042     // Should we be conservative?
1043     if (AssumeMisalignedLoadStores && !mayCombineMisaligned(*STI, *MI))
1044       CanMergeToLSMulti = CanMergeToLSDouble = false;
1045 
1046     // vldm / vstm limit are 32 for S variants, 16 for D variants.
1047     unsigned Limit;
1048     switch (Opcode) {
1049     default:
1050       Limit = UINT_MAX;
1051       break;
1052     case ARM::VLDRD:
1053     case ARM::VSTRD:
1054       Limit = 16;
1055       break;
1056     }
1057 
1058     // Merge following instructions where possible.
1059     for (unsigned I = SIndex+1; I < EIndex; ++I, ++Count) {
1060       int NewOffset = MemOps[I].Offset;
1061       if (NewOffset != Offset + (int)Size)
1062         break;
1063       const MachineOperand &MO = getLoadStoreRegOp(*MemOps[I].MI);
1064       Register Reg = MO.getReg();
1065       if (Reg == ARM::SP || Reg == ARM::PC)
1066         break;
1067       if (Count == Limit)
1068         break;
1069 
1070       // See if the current load/store may be part of a multi load/store.
1071       unsigned RegNum = MO.isUndef() ? std::numeric_limits<unsigned>::max()
1072                                      : TRI->getEncodingValue(Reg);
1073       bool PartOfLSMulti = CanMergeToLSMulti;
1074       if (PartOfLSMulti) {
1075         // Register numbers must be in ascending order.
1076         if (RegNum <= PRegNum)
1077           PartOfLSMulti = false;
1078         // For VFP / NEON load/store multiples, the registers must be
1079         // consecutive and within the limit on the number of registers per
1080         // instruction.
1081         else if (!isNotVFP && RegNum != PRegNum+1)
1082           PartOfLSMulti = false;
1083       }
1084       // See if the current load/store may be part of a double load/store.
1085       bool PartOfLSDouble = CanMergeToLSDouble && Count <= 1;
1086 
1087       if (!PartOfLSMulti && !PartOfLSDouble)
1088         break;
1089       CanMergeToLSMulti &= PartOfLSMulti;
1090       CanMergeToLSDouble &= PartOfLSDouble;
1091       // Track MemOp with latest and earliest position (Positions are
1092       // counted in reverse).
1093       unsigned Position = MemOps[I].Position;
1094       if (Position < MemOps[Latest].Position)
1095         Latest = I;
1096       else if (Position > MemOps[Earliest].Position)
1097         Earliest = I;
1098       // Prepare for next MemOp.
1099       Offset += Size;
1100       PRegNum = RegNum;
1101     }
1102 
1103     // Form a candidate from the Ops collected so far.
1104     MergeCandidate *Candidate = new(Allocator.Allocate()) MergeCandidate;
1105     for (unsigned C = SIndex, CE = SIndex + Count; C < CE; ++C)
1106       Candidate->Instrs.push_back(MemOps[C].MI);
1107     Candidate->LatestMIIdx = Latest - SIndex;
1108     Candidate->EarliestMIIdx = Earliest - SIndex;
1109     Candidate->InsertPos = MemOps[Latest].Position;
1110     if (Count == 1)
1111       CanMergeToLSMulti = CanMergeToLSDouble = false;
1112     Candidate->CanMergeToLSMulti = CanMergeToLSMulti;
1113     Candidate->CanMergeToLSDouble = CanMergeToLSDouble;
1114     Candidates.push_back(Candidate);
1115     // Continue after the chain.
1116     SIndex += Count;
1117   } while (SIndex < EIndex);
1118 }
1119 
1120 static unsigned getUpdatingLSMultipleOpcode(unsigned Opc,
1121                                             ARM_AM::AMSubMode Mode) {
1122   switch (Opc) {
1123   default: llvm_unreachable("Unhandled opcode!");
1124   case ARM::LDMIA:
1125   case ARM::LDMDA:
1126   case ARM::LDMDB:
1127   case ARM::LDMIB:
1128     switch (Mode) {
1129     default: llvm_unreachable("Unhandled submode!");
1130     case ARM_AM::ia: return ARM::LDMIA_UPD;
1131     case ARM_AM::ib: return ARM::LDMIB_UPD;
1132     case ARM_AM::da: return ARM::LDMDA_UPD;
1133     case ARM_AM::db: return ARM::LDMDB_UPD;
1134     }
1135   case ARM::STMIA:
1136   case ARM::STMDA:
1137   case ARM::STMDB:
1138   case ARM::STMIB:
1139     switch (Mode) {
1140     default: llvm_unreachable("Unhandled submode!");
1141     case ARM_AM::ia: return ARM::STMIA_UPD;
1142     case ARM_AM::ib: return ARM::STMIB_UPD;
1143     case ARM_AM::da: return ARM::STMDA_UPD;
1144     case ARM_AM::db: return ARM::STMDB_UPD;
1145     }
1146   case ARM::t2LDMIA:
1147   case ARM::t2LDMDB:
1148     switch (Mode) {
1149     default: llvm_unreachable("Unhandled submode!");
1150     case ARM_AM::ia: return ARM::t2LDMIA_UPD;
1151     case ARM_AM::db: return ARM::t2LDMDB_UPD;
1152     }
1153   case ARM::t2STMIA:
1154   case ARM::t2STMDB:
1155     switch (Mode) {
1156     default: llvm_unreachable("Unhandled submode!");
1157     case ARM_AM::ia: return ARM::t2STMIA_UPD;
1158     case ARM_AM::db: return ARM::t2STMDB_UPD;
1159     }
1160   case ARM::VLDMSIA:
1161     switch (Mode) {
1162     default: llvm_unreachable("Unhandled submode!");
1163     case ARM_AM::ia: return ARM::VLDMSIA_UPD;
1164     case ARM_AM::db: return ARM::VLDMSDB_UPD;
1165     }
1166   case ARM::VLDMDIA:
1167     switch (Mode) {
1168     default: llvm_unreachable("Unhandled submode!");
1169     case ARM_AM::ia: return ARM::VLDMDIA_UPD;
1170     case ARM_AM::db: return ARM::VLDMDDB_UPD;
1171     }
1172   case ARM::VSTMSIA:
1173     switch (Mode) {
1174     default: llvm_unreachable("Unhandled submode!");
1175     case ARM_AM::ia: return ARM::VSTMSIA_UPD;
1176     case ARM_AM::db: return ARM::VSTMSDB_UPD;
1177     }
1178   case ARM::VSTMDIA:
1179     switch (Mode) {
1180     default: llvm_unreachable("Unhandled submode!");
1181     case ARM_AM::ia: return ARM::VSTMDIA_UPD;
1182     case ARM_AM::db: return ARM::VSTMDDB_UPD;
1183     }
1184   }
1185 }
1186 
1187 /// Check if the given instruction increments or decrements a register and
1188 /// return the amount it is incremented/decremented. Returns 0 if the CPSR flags
1189 /// generated by the instruction are possibly read as well.
1190 static int isIncrementOrDecrement(const MachineInstr &MI, Register Reg,
1191                                   ARMCC::CondCodes Pred, Register PredReg) {
1192   bool CheckCPSRDef;
1193   int Scale;
1194   switch (MI.getOpcode()) {
1195   case ARM::tADDi8:  Scale =  4; CheckCPSRDef = true; break;
1196   case ARM::tSUBi8:  Scale = -4; CheckCPSRDef = true; break;
1197   case ARM::t2SUBri:
1198   case ARM::t2SUBspImm:
1199   case ARM::SUBri:   Scale = -1; CheckCPSRDef = true; break;
1200   case ARM::t2ADDri:
1201   case ARM::t2ADDspImm:
1202   case ARM::ADDri:   Scale =  1; CheckCPSRDef = true; break;
1203   case ARM::tADDspi: Scale =  4; CheckCPSRDef = false; break;
1204   case ARM::tSUBspi: Scale = -4; CheckCPSRDef = false; break;
1205   default: return 0;
1206   }
1207 
1208   Register MIPredReg;
1209   if (MI.getOperand(0).getReg() != Reg ||
1210       MI.getOperand(1).getReg() != Reg ||
1211       getInstrPredicate(MI, MIPredReg) != Pred ||
1212       MIPredReg != PredReg)
1213     return 0;
1214 
1215   if (CheckCPSRDef && definesCPSR(MI))
1216     return 0;
1217   return MI.getOperand(2).getImm() * Scale;
1218 }
1219 
1220 /// Searches for an increment or decrement of \p Reg before \p MBBI.
1221 static MachineBasicBlock::iterator
1222 findIncDecBefore(MachineBasicBlock::iterator MBBI, Register Reg,
1223                  ARMCC::CondCodes Pred, Register PredReg, int &Offset) {
1224   Offset = 0;
1225   MachineBasicBlock &MBB = *MBBI->getParent();
1226   MachineBasicBlock::iterator BeginMBBI = MBB.begin();
1227   MachineBasicBlock::iterator EndMBBI = MBB.end();
1228   if (MBBI == BeginMBBI)
1229     return EndMBBI;
1230 
1231   // Skip debug values.
1232   MachineBasicBlock::iterator PrevMBBI = std::prev(MBBI);
1233   while (PrevMBBI->isDebugInstr() && PrevMBBI != BeginMBBI)
1234     --PrevMBBI;
1235 
1236   Offset = isIncrementOrDecrement(*PrevMBBI, Reg, Pred, PredReg);
1237   return Offset == 0 ? EndMBBI : PrevMBBI;
1238 }
1239 
1240 /// Searches for a increment or decrement of \p Reg after \p MBBI.
1241 static MachineBasicBlock::iterator
1242 findIncDecAfter(MachineBasicBlock::iterator MBBI, Register Reg,
1243                 ARMCC::CondCodes Pred, Register PredReg, int &Offset,
1244                 const TargetRegisterInfo *TRI) {
1245   Offset = 0;
1246   MachineBasicBlock &MBB = *MBBI->getParent();
1247   MachineBasicBlock::iterator EndMBBI = MBB.end();
1248   MachineBasicBlock::iterator NextMBBI = std::next(MBBI);
1249   while (NextMBBI != EndMBBI) {
1250     // Skip debug values.
1251     while (NextMBBI != EndMBBI && NextMBBI->isDebugInstr())
1252       ++NextMBBI;
1253     if (NextMBBI == EndMBBI)
1254       return EndMBBI;
1255 
1256     unsigned Off = isIncrementOrDecrement(*NextMBBI, Reg, Pred, PredReg);
1257     if (Off) {
1258       Offset = Off;
1259       return NextMBBI;
1260     }
1261 
1262     // SP can only be combined if it is the next instruction after the original
1263     // MBBI, otherwise we may be incrementing the stack pointer (invalidating
1264     // anything below the new pointer) when its frame elements are still in
1265     // use. Other registers can attempt to look further, until a different use
1266     // or def of the register is found.
1267     if (Reg == ARM::SP || NextMBBI->readsRegister(Reg, TRI) ||
1268         NextMBBI->definesRegister(Reg, TRI))
1269       return EndMBBI;
1270 
1271     ++NextMBBI;
1272   }
1273   return EndMBBI;
1274 }
1275 
1276 /// Fold proceeding/trailing inc/dec of base register into the
1277 /// LDM/STM/VLDM{D|S}/VSTM{D|S} op when possible:
1278 ///
1279 /// stmia rn, <ra, rb, rc>
1280 /// rn := rn + 4 * 3;
1281 /// =>
1282 /// stmia rn!, <ra, rb, rc>
1283 ///
1284 /// rn := rn - 4 * 3;
1285 /// ldmia rn, <ra, rb, rc>
1286 /// =>
1287 /// ldmdb rn!, <ra, rb, rc>
1288 bool ARMLoadStoreOpt::MergeBaseUpdateLSMultiple(MachineInstr *MI) {
1289   // Thumb1 is already using updating loads/stores.
1290   if (isThumb1) return false;
1291   LLVM_DEBUG(dbgs() << "Attempting to merge update of: " << *MI);
1292 
1293   const MachineOperand &BaseOP = MI->getOperand(0);
1294   Register Base = BaseOP.getReg();
1295   bool BaseKill = BaseOP.isKill();
1296   Register PredReg;
1297   ARMCC::CondCodes Pred = getInstrPredicate(*MI, PredReg);
1298   unsigned Opcode = MI->getOpcode();
1299   DebugLoc DL = MI->getDebugLoc();
1300 
1301   // Can't use an updating ld/st if the base register is also a dest
1302   // register. e.g. ldmdb r0!, {r0, r1, r2}. The behavior is undefined.
1303   for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
1304     if (MO.getReg() == Base)
1305       return false;
1306 
1307   int Bytes = getLSMultipleTransferSize(MI);
1308   MachineBasicBlock &MBB = *MI->getParent();
1309   MachineBasicBlock::iterator MBBI(MI);
1310   int Offset;
1311   MachineBasicBlock::iterator MergeInstr
1312     = findIncDecBefore(MBBI, Base, Pred, PredReg, Offset);
1313   ARM_AM::AMSubMode Mode = getLoadStoreMultipleSubMode(Opcode);
1314   if (Mode == ARM_AM::ia && Offset == -Bytes) {
1315     Mode = ARM_AM::db;
1316   } else if (Mode == ARM_AM::ib && Offset == -Bytes) {
1317     Mode = ARM_AM::da;
1318   } else {
1319     MergeInstr = findIncDecAfter(MBBI, Base, Pred, PredReg, Offset, TRI);
1320     if (((Mode != ARM_AM::ia && Mode != ARM_AM::ib) || Offset != Bytes) &&
1321         ((Mode != ARM_AM::da && Mode != ARM_AM::db) || Offset != -Bytes)) {
1322 
1323       // We couldn't find an inc/dec to merge. But if the base is dead, we
1324       // can still change to a writeback form as that will save us 2 bytes
1325       // of code size. It can create WAW hazards though, so only do it if
1326       // we're minimizing code size.
1327       if (!STI->hasMinSize() || !BaseKill)
1328         return false;
1329 
1330       bool HighRegsUsed = false;
1331       for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
1332         if (MO.getReg() >= ARM::R8) {
1333           HighRegsUsed = true;
1334           break;
1335         }
1336 
1337       if (!HighRegsUsed)
1338         MergeInstr = MBB.end();
1339       else
1340         return false;
1341     }
1342   }
1343   if (MergeInstr != MBB.end()) {
1344     LLVM_DEBUG(dbgs() << "  Erasing old increment: " << *MergeInstr);
1345     MBB.erase(MergeInstr);
1346   }
1347 
1348   unsigned NewOpc = getUpdatingLSMultipleOpcode(Opcode, Mode);
1349   MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc))
1350     .addReg(Base, getDefRegState(true)) // WB base register
1351     .addReg(Base, getKillRegState(BaseKill))
1352     .addImm(Pred).addReg(PredReg);
1353 
1354   // Transfer the rest of operands.
1355   for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 3))
1356     MIB.add(MO);
1357 
1358   // Transfer memoperands.
1359   MIB.setMemRefs(MI->memoperands());
1360 
1361   LLVM_DEBUG(dbgs() << "  Added new load/store: " << *MIB);
1362   MBB.erase(MBBI);
1363   return true;
1364 }
1365 
1366 static unsigned getPreIndexedLoadStoreOpcode(unsigned Opc,
1367                                              ARM_AM::AddrOpc Mode) {
1368   switch (Opc) {
1369   case ARM::LDRi12:
1370     return ARM::LDR_PRE_IMM;
1371   case ARM::STRi12:
1372     return ARM::STR_PRE_IMM;
1373   case ARM::VLDRS:
1374     return Mode == ARM_AM::add ? ARM::VLDMSIA_UPD : ARM::VLDMSDB_UPD;
1375   case ARM::VLDRD:
1376     return Mode == ARM_AM::add ? ARM::VLDMDIA_UPD : ARM::VLDMDDB_UPD;
1377   case ARM::VSTRS:
1378     return Mode == ARM_AM::add ? ARM::VSTMSIA_UPD : ARM::VSTMSDB_UPD;
1379   case ARM::VSTRD:
1380     return Mode == ARM_AM::add ? ARM::VSTMDIA_UPD : ARM::VSTMDDB_UPD;
1381   case ARM::t2LDRi8:
1382   case ARM::t2LDRi12:
1383     return ARM::t2LDR_PRE;
1384   case ARM::t2STRi8:
1385   case ARM::t2STRi12:
1386     return ARM::t2STR_PRE;
1387   default: llvm_unreachable("Unhandled opcode!");
1388   }
1389 }
1390 
1391 static unsigned getPostIndexedLoadStoreOpcode(unsigned Opc,
1392                                               ARM_AM::AddrOpc Mode) {
1393   switch (Opc) {
1394   case ARM::LDRi12:
1395     return ARM::LDR_POST_IMM;
1396   case ARM::STRi12:
1397     return ARM::STR_POST_IMM;
1398   case ARM::VLDRS:
1399     return Mode == ARM_AM::add ? ARM::VLDMSIA_UPD : ARM::VLDMSDB_UPD;
1400   case ARM::VLDRD:
1401     return Mode == ARM_AM::add ? ARM::VLDMDIA_UPD : ARM::VLDMDDB_UPD;
1402   case ARM::VSTRS:
1403     return Mode == ARM_AM::add ? ARM::VSTMSIA_UPD : ARM::VSTMSDB_UPD;
1404   case ARM::VSTRD:
1405     return Mode == ARM_AM::add ? ARM::VSTMDIA_UPD : ARM::VSTMDDB_UPD;
1406   case ARM::t2LDRi8:
1407   case ARM::t2LDRi12:
1408     return ARM::t2LDR_POST;
1409   case ARM::t2LDRBi8:
1410   case ARM::t2LDRBi12:
1411     return ARM::t2LDRB_POST;
1412   case ARM::t2LDRSBi8:
1413   case ARM::t2LDRSBi12:
1414     return ARM::t2LDRSB_POST;
1415   case ARM::t2LDRHi8:
1416   case ARM::t2LDRHi12:
1417     return ARM::t2LDRH_POST;
1418   case ARM::t2LDRSHi8:
1419   case ARM::t2LDRSHi12:
1420     return ARM::t2LDRSH_POST;
1421   case ARM::t2STRi8:
1422   case ARM::t2STRi12:
1423     return ARM::t2STR_POST;
1424   case ARM::t2STRBi8:
1425   case ARM::t2STRBi12:
1426     return ARM::t2STRB_POST;
1427   case ARM::t2STRHi8:
1428   case ARM::t2STRHi12:
1429     return ARM::t2STRH_POST;
1430 
1431   case ARM::MVE_VLDRBS16:
1432     return ARM::MVE_VLDRBS16_post;
1433   case ARM::MVE_VLDRBS32:
1434     return ARM::MVE_VLDRBS32_post;
1435   case ARM::MVE_VLDRBU16:
1436     return ARM::MVE_VLDRBU16_post;
1437   case ARM::MVE_VLDRBU32:
1438     return ARM::MVE_VLDRBU32_post;
1439   case ARM::MVE_VLDRHS32:
1440     return ARM::MVE_VLDRHS32_post;
1441   case ARM::MVE_VLDRHU32:
1442     return ARM::MVE_VLDRHU32_post;
1443   case ARM::MVE_VLDRBU8:
1444     return ARM::MVE_VLDRBU8_post;
1445   case ARM::MVE_VLDRHU16:
1446     return ARM::MVE_VLDRHU16_post;
1447   case ARM::MVE_VLDRWU32:
1448     return ARM::MVE_VLDRWU32_post;
1449   case ARM::MVE_VSTRB16:
1450     return ARM::MVE_VSTRB16_post;
1451   case ARM::MVE_VSTRB32:
1452     return ARM::MVE_VSTRB32_post;
1453   case ARM::MVE_VSTRH32:
1454     return ARM::MVE_VSTRH32_post;
1455   case ARM::MVE_VSTRBU8:
1456     return ARM::MVE_VSTRBU8_post;
1457   case ARM::MVE_VSTRHU16:
1458     return ARM::MVE_VSTRHU16_post;
1459   case ARM::MVE_VSTRWU32:
1460     return ARM::MVE_VSTRWU32_post;
1461 
1462   default: llvm_unreachable("Unhandled opcode!");
1463   }
1464 }
1465 
1466 /// Fold proceeding/trailing inc/dec of base register into the
1467 /// LDR/STR/FLD{D|S}/FST{D|S} op when possible:
1468 bool ARMLoadStoreOpt::MergeBaseUpdateLoadStore(MachineInstr *MI) {
1469   // Thumb1 doesn't have updating LDR/STR.
1470   // FIXME: Use LDM/STM with single register instead.
1471   if (isThumb1) return false;
1472   LLVM_DEBUG(dbgs() << "Attempting to merge update of: " << *MI);
1473 
1474   Register Base = getLoadStoreBaseOp(*MI).getReg();
1475   bool BaseKill = getLoadStoreBaseOp(*MI).isKill();
1476   unsigned Opcode = MI->getOpcode();
1477   DebugLoc DL = MI->getDebugLoc();
1478   bool isAM5 = (Opcode == ARM::VLDRD || Opcode == ARM::VLDRS ||
1479                 Opcode == ARM::VSTRD || Opcode == ARM::VSTRS);
1480   bool isAM2 = (Opcode == ARM::LDRi12 || Opcode == ARM::STRi12);
1481   if (isi32Load(Opcode) || isi32Store(Opcode))
1482     if (MI->getOperand(2).getImm() != 0)
1483       return false;
1484   if (isAM5 && ARM_AM::getAM5Offset(MI->getOperand(2).getImm()) != 0)
1485     return false;
1486 
1487   // Can't do the merge if the destination register is the same as the would-be
1488   // writeback register.
1489   if (MI->getOperand(0).getReg() == Base)
1490     return false;
1491 
1492   Register PredReg;
1493   ARMCC::CondCodes Pred = getInstrPredicate(*MI, PredReg);
1494   int Bytes = getLSMultipleTransferSize(MI);
1495   MachineBasicBlock &MBB = *MI->getParent();
1496   MachineBasicBlock::iterator MBBI(MI);
1497   int Offset;
1498   MachineBasicBlock::iterator MergeInstr
1499     = findIncDecBefore(MBBI, Base, Pred, PredReg, Offset);
1500   unsigned NewOpc;
1501   if (!isAM5 && Offset == Bytes) {
1502     NewOpc = getPreIndexedLoadStoreOpcode(Opcode, ARM_AM::add);
1503   } else if (Offset == -Bytes) {
1504     NewOpc = getPreIndexedLoadStoreOpcode(Opcode, ARM_AM::sub);
1505   } else {
1506     MergeInstr = findIncDecAfter(MBBI, Base, Pred, PredReg, Offset, TRI);
1507     if (MergeInstr == MBB.end())
1508       return false;
1509 
1510     NewOpc = getPostIndexedLoadStoreOpcode(Opcode, ARM_AM::add);
1511     if ((isAM5 && Offset != Bytes) ||
1512         (!isAM5 && !isLegalAddressImm(NewOpc, Offset, TII))) {
1513       NewOpc = getPostIndexedLoadStoreOpcode(Opcode, ARM_AM::sub);
1514       if (isAM5 || !isLegalAddressImm(NewOpc, Offset, TII))
1515         return false;
1516     }
1517   }
1518   LLVM_DEBUG(dbgs() << "  Erasing old increment: " << *MergeInstr);
1519   MBB.erase(MergeInstr);
1520 
1521   ARM_AM::AddrOpc AddSub = Offset < 0 ? ARM_AM::sub : ARM_AM::add;
1522 
1523   bool isLd = isLoadSingle(Opcode);
1524   if (isAM5) {
1525     // VLDM[SD]_UPD, VSTM[SD]_UPD
1526     // (There are no base-updating versions of VLDR/VSTR instructions, but the
1527     // updating load/store-multiple instructions can be used with only one
1528     // register.)
1529     MachineOperand &MO = MI->getOperand(0);
1530     auto MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc))
1531                    .addReg(Base, getDefRegState(true)) // WB base register
1532                    .addReg(Base, getKillRegState(isLd ? BaseKill : false))
1533                    .addImm(Pred)
1534                    .addReg(PredReg)
1535                    .addReg(MO.getReg(), (isLd ? getDefRegState(true)
1536                                               : getKillRegState(MO.isKill())))
1537                    .cloneMemRefs(*MI);
1538     (void)MIB;
1539     LLVM_DEBUG(dbgs() << "  Added new instruction: " << *MIB);
1540   } else if (isLd) {
1541     if (isAM2) {
1542       // LDR_PRE, LDR_POST
1543       if (NewOpc == ARM::LDR_PRE_IMM || NewOpc == ARM::LDRB_PRE_IMM) {
1544         auto MIB =
1545             BuildMI(MBB, MBBI, DL, TII->get(NewOpc), MI->getOperand(0).getReg())
1546                 .addReg(Base, RegState::Define)
1547                 .addReg(Base)
1548                 .addImm(Offset)
1549                 .addImm(Pred)
1550                 .addReg(PredReg)
1551                 .cloneMemRefs(*MI);
1552         (void)MIB;
1553         LLVM_DEBUG(dbgs() << "  Added new instruction: " << *MIB);
1554       } else {
1555         int Imm = ARM_AM::getAM2Opc(AddSub, abs(Offset), ARM_AM::no_shift);
1556         auto MIB =
1557             BuildMI(MBB, MBBI, DL, TII->get(NewOpc), MI->getOperand(0).getReg())
1558                 .addReg(Base, RegState::Define)
1559                 .addReg(Base)
1560                 .addReg(0)
1561                 .addImm(Imm)
1562                 .add(predOps(Pred, PredReg))
1563                 .cloneMemRefs(*MI);
1564         (void)MIB;
1565         LLVM_DEBUG(dbgs() << "  Added new instruction: " << *MIB);
1566       }
1567     } else {
1568       // t2LDR_PRE, t2LDR_POST
1569       auto MIB =
1570           BuildMI(MBB, MBBI, DL, TII->get(NewOpc), MI->getOperand(0).getReg())
1571               .addReg(Base, RegState::Define)
1572               .addReg(Base)
1573               .addImm(Offset)
1574               .add(predOps(Pred, PredReg))
1575               .cloneMemRefs(*MI);
1576       (void)MIB;
1577       LLVM_DEBUG(dbgs() << "  Added new instruction: " << *MIB);
1578     }
1579   } else {
1580     MachineOperand &MO = MI->getOperand(0);
1581     // FIXME: post-indexed stores use am2offset_imm, which still encodes
1582     // the vestigal zero-reg offset register. When that's fixed, this clause
1583     // can be removed entirely.
1584     if (isAM2 && NewOpc == ARM::STR_POST_IMM) {
1585       int Imm = ARM_AM::getAM2Opc(AddSub, abs(Offset), ARM_AM::no_shift);
1586       // STR_PRE, STR_POST
1587       auto MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc), Base)
1588                      .addReg(MO.getReg(), getKillRegState(MO.isKill()))
1589                      .addReg(Base)
1590                      .addReg(0)
1591                      .addImm(Imm)
1592                      .add(predOps(Pred, PredReg))
1593                      .cloneMemRefs(*MI);
1594       (void)MIB;
1595       LLVM_DEBUG(dbgs() << "  Added new instruction: " << *MIB);
1596     } else {
1597       // t2STR_PRE, t2STR_POST
1598       auto MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc), Base)
1599                      .addReg(MO.getReg(), getKillRegState(MO.isKill()))
1600                      .addReg(Base)
1601                      .addImm(Offset)
1602                      .add(predOps(Pred, PredReg))
1603                      .cloneMemRefs(*MI);
1604       (void)MIB;
1605       LLVM_DEBUG(dbgs() << "  Added new instruction: " << *MIB);
1606     }
1607   }
1608   MBB.erase(MBBI);
1609 
1610   return true;
1611 }
1612 
1613 bool ARMLoadStoreOpt::MergeBaseUpdateLSDouble(MachineInstr &MI) const {
1614   unsigned Opcode = MI.getOpcode();
1615   assert((Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8) &&
1616          "Must have t2STRDi8 or t2LDRDi8");
1617   if (MI.getOperand(3).getImm() != 0)
1618     return false;
1619   LLVM_DEBUG(dbgs() << "Attempting to merge update of: " << MI);
1620 
1621   // Behaviour for writeback is undefined if base register is the same as one
1622   // of the others.
1623   const MachineOperand &BaseOp = MI.getOperand(2);
1624   Register Base = BaseOp.getReg();
1625   const MachineOperand &Reg0Op = MI.getOperand(0);
1626   const MachineOperand &Reg1Op = MI.getOperand(1);
1627   if (Reg0Op.getReg() == Base || Reg1Op.getReg() == Base)
1628     return false;
1629 
1630   Register PredReg;
1631   ARMCC::CondCodes Pred = getInstrPredicate(MI, PredReg);
1632   MachineBasicBlock::iterator MBBI(MI);
1633   MachineBasicBlock &MBB = *MI.getParent();
1634   int Offset;
1635   MachineBasicBlock::iterator MergeInstr = findIncDecBefore(MBBI, Base, Pred,
1636                                                             PredReg, Offset);
1637   unsigned NewOpc;
1638   if (Offset == 8 || Offset == -8) {
1639     NewOpc = Opcode == ARM::t2LDRDi8 ? ARM::t2LDRD_PRE : ARM::t2STRD_PRE;
1640   } else {
1641     MergeInstr = findIncDecAfter(MBBI, Base, Pred, PredReg, Offset, TRI);
1642     if (MergeInstr == MBB.end())
1643       return false;
1644     NewOpc = Opcode == ARM::t2LDRDi8 ? ARM::t2LDRD_POST : ARM::t2STRD_POST;
1645     if (!isLegalAddressImm(NewOpc, Offset, TII))
1646       return false;
1647   }
1648   LLVM_DEBUG(dbgs() << "  Erasing old increment: " << *MergeInstr);
1649   MBB.erase(MergeInstr);
1650 
1651   DebugLoc DL = MI.getDebugLoc();
1652   MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc));
1653   if (NewOpc == ARM::t2LDRD_PRE || NewOpc == ARM::t2LDRD_POST) {
1654     MIB.add(Reg0Op).add(Reg1Op).addReg(BaseOp.getReg(), RegState::Define);
1655   } else {
1656     assert(NewOpc == ARM::t2STRD_PRE || NewOpc == ARM::t2STRD_POST);
1657     MIB.addReg(BaseOp.getReg(), RegState::Define).add(Reg0Op).add(Reg1Op);
1658   }
1659   MIB.addReg(BaseOp.getReg(), RegState::Kill)
1660      .addImm(Offset).addImm(Pred).addReg(PredReg);
1661   assert(TII->get(Opcode).getNumOperands() == 6 &&
1662          TII->get(NewOpc).getNumOperands() == 7 &&
1663          "Unexpected number of operands in Opcode specification.");
1664 
1665   // Transfer implicit operands.
1666   for (const MachineOperand &MO : MI.implicit_operands())
1667     MIB.add(MO);
1668   MIB.cloneMemRefs(MI);
1669 
1670   LLVM_DEBUG(dbgs() << "  Added new load/store: " << *MIB);
1671   MBB.erase(MBBI);
1672   return true;
1673 }
1674 
1675 /// Returns true if instruction is a memory operation that this pass is capable
1676 /// of operating on.
1677 static bool isMemoryOp(const MachineInstr &MI) {
1678   unsigned Opcode = MI.getOpcode();
1679   switch (Opcode) {
1680   case ARM::VLDRS:
1681   case ARM::VSTRS:
1682   case ARM::VLDRD:
1683   case ARM::VSTRD:
1684   case ARM::LDRi12:
1685   case ARM::STRi12:
1686   case ARM::tLDRi:
1687   case ARM::tSTRi:
1688   case ARM::tLDRspi:
1689   case ARM::tSTRspi:
1690   case ARM::t2LDRi8:
1691   case ARM::t2LDRi12:
1692   case ARM::t2STRi8:
1693   case ARM::t2STRi12:
1694     break;
1695   default:
1696     return false;
1697   }
1698   if (!MI.getOperand(1).isReg())
1699     return false;
1700 
1701   // When no memory operands are present, conservatively assume unaligned,
1702   // volatile, unfoldable.
1703   if (!MI.hasOneMemOperand())
1704     return false;
1705 
1706   const MachineMemOperand &MMO = **MI.memoperands_begin();
1707 
1708   // Don't touch volatile memory accesses - we may be changing their order.
1709   // TODO: We could allow unordered and monotonic atomics here, but we need to
1710   // make sure the resulting ldm/stm is correctly marked as atomic.
1711   if (MMO.isVolatile() || MMO.isAtomic())
1712     return false;
1713 
1714   // Unaligned ldr/str is emulated by some kernels, but unaligned ldm/stm is
1715   // not.
1716   if (MMO.getAlign() < Align(4))
1717     return false;
1718 
1719   // str <undef> could probably be eliminated entirely, but for now we just want
1720   // to avoid making a mess of it.
1721   // FIXME: Use str <undef> as a wildcard to enable better stm folding.
1722   if (MI.getOperand(0).isReg() && MI.getOperand(0).isUndef())
1723     return false;
1724 
1725   // Likewise don't mess with references to undefined addresses.
1726   if (MI.getOperand(1).isUndef())
1727     return false;
1728 
1729   return true;
1730 }
1731 
1732 static void InsertLDR_STR(MachineBasicBlock &MBB,
1733                           MachineBasicBlock::iterator &MBBI, int Offset,
1734                           bool isDef, unsigned NewOpc, unsigned Reg,
1735                           bool RegDeadKill, bool RegUndef, unsigned BaseReg,
1736                           bool BaseKill, bool BaseUndef, ARMCC::CondCodes Pred,
1737                           unsigned PredReg, const TargetInstrInfo *TII,
1738                           MachineInstr *MI) {
1739   if (isDef) {
1740     MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MBBI->getDebugLoc(),
1741                                       TII->get(NewOpc))
1742       .addReg(Reg, getDefRegState(true) | getDeadRegState(RegDeadKill))
1743       .addReg(BaseReg, getKillRegState(BaseKill)|getUndefRegState(BaseUndef));
1744     MIB.addImm(Offset).addImm(Pred).addReg(PredReg);
1745     // FIXME: This is overly conservative; the new instruction accesses 4
1746     // bytes, not 8.
1747     MIB.cloneMemRefs(*MI);
1748   } else {
1749     MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MBBI->getDebugLoc(),
1750                                       TII->get(NewOpc))
1751       .addReg(Reg, getKillRegState(RegDeadKill) | getUndefRegState(RegUndef))
1752       .addReg(BaseReg, getKillRegState(BaseKill)|getUndefRegState(BaseUndef));
1753     MIB.addImm(Offset).addImm(Pred).addReg(PredReg);
1754     // FIXME: This is overly conservative; the new instruction accesses 4
1755     // bytes, not 8.
1756     MIB.cloneMemRefs(*MI);
1757   }
1758 }
1759 
1760 bool ARMLoadStoreOpt::FixInvalidRegPairOp(MachineBasicBlock &MBB,
1761                                           MachineBasicBlock::iterator &MBBI) {
1762   MachineInstr *MI = &*MBBI;
1763   unsigned Opcode = MI->getOpcode();
1764   // FIXME: Code/comments below check Opcode == t2STRDi8, but this check returns
1765   // if we see this opcode.
1766   if (Opcode != ARM::LDRD && Opcode != ARM::STRD && Opcode != ARM::t2LDRDi8)
1767     return false;
1768 
1769   const MachineOperand &BaseOp = MI->getOperand(2);
1770   Register BaseReg = BaseOp.getReg();
1771   Register EvenReg = MI->getOperand(0).getReg();
1772   Register OddReg = MI->getOperand(1).getReg();
1773   unsigned EvenRegNum = TRI->getDwarfRegNum(EvenReg, false);
1774   unsigned OddRegNum  = TRI->getDwarfRegNum(OddReg, false);
1775 
1776   // ARM errata 602117: LDRD with base in list may result in incorrect base
1777   // register when interrupted or faulted.
1778   bool Errata602117 = EvenReg == BaseReg &&
1779     (Opcode == ARM::LDRD || Opcode == ARM::t2LDRDi8) && STI->isCortexM3();
1780   // ARM LDRD/STRD needs consecutive registers.
1781   bool NonConsecutiveRegs = (Opcode == ARM::LDRD || Opcode == ARM::STRD) &&
1782     (EvenRegNum % 2 != 0 || EvenRegNum + 1 != OddRegNum);
1783 
1784   if (!Errata602117 && !NonConsecutiveRegs)
1785     return false;
1786 
1787   bool isT2 = Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8;
1788   bool isLd = Opcode == ARM::LDRD || Opcode == ARM::t2LDRDi8;
1789   bool EvenDeadKill = isLd ?
1790     MI->getOperand(0).isDead() : MI->getOperand(0).isKill();
1791   bool EvenUndef = MI->getOperand(0).isUndef();
1792   bool OddDeadKill  = isLd ?
1793     MI->getOperand(1).isDead() : MI->getOperand(1).isKill();
1794   bool OddUndef = MI->getOperand(1).isUndef();
1795   bool BaseKill = BaseOp.isKill();
1796   bool BaseUndef = BaseOp.isUndef();
1797   assert((isT2 || MI->getOperand(3).getReg() == ARM::NoRegister) &&
1798          "register offset not handled below");
1799   int OffImm = getMemoryOpOffset(*MI);
1800   Register PredReg;
1801   ARMCC::CondCodes Pred = getInstrPredicate(*MI, PredReg);
1802 
1803   if (OddRegNum > EvenRegNum && OffImm == 0) {
1804     // Ascending register numbers and no offset. It's safe to change it to a
1805     // ldm or stm.
1806     unsigned NewOpc = (isLd)
1807       ? (isT2 ? ARM::t2LDMIA : ARM::LDMIA)
1808       : (isT2 ? ARM::t2STMIA : ARM::STMIA);
1809     if (isLd) {
1810       BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(NewOpc))
1811         .addReg(BaseReg, getKillRegState(BaseKill))
1812         .addImm(Pred).addReg(PredReg)
1813         .addReg(EvenReg, getDefRegState(isLd) | getDeadRegState(EvenDeadKill))
1814         .addReg(OddReg,  getDefRegState(isLd) | getDeadRegState(OddDeadKill))
1815         .cloneMemRefs(*MI);
1816       ++NumLDRD2LDM;
1817     } else {
1818       BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(NewOpc))
1819         .addReg(BaseReg, getKillRegState(BaseKill))
1820         .addImm(Pred).addReg(PredReg)
1821         .addReg(EvenReg,
1822                 getKillRegState(EvenDeadKill) | getUndefRegState(EvenUndef))
1823         .addReg(OddReg,
1824                 getKillRegState(OddDeadKill)  | getUndefRegState(OddUndef))
1825         .cloneMemRefs(*MI);
1826       ++NumSTRD2STM;
1827     }
1828   } else {
1829     // Split into two instructions.
1830     unsigned NewOpc = (isLd)
1831       ? (isT2 ? (OffImm < 0 ? ARM::t2LDRi8 : ARM::t2LDRi12) : ARM::LDRi12)
1832       : (isT2 ? (OffImm < 0 ? ARM::t2STRi8 : ARM::t2STRi12) : ARM::STRi12);
1833     // Be extra careful for thumb2. t2LDRi8 can't reference a zero offset,
1834     // so adjust and use t2LDRi12 here for that.
1835     unsigned NewOpc2 = (isLd)
1836       ? (isT2 ? (OffImm+4 < 0 ? ARM::t2LDRi8 : ARM::t2LDRi12) : ARM::LDRi12)
1837       : (isT2 ? (OffImm+4 < 0 ? ARM::t2STRi8 : ARM::t2STRi12) : ARM::STRi12);
1838     // If this is a load, make sure the first load does not clobber the base
1839     // register before the second load reads it.
1840     if (isLd && TRI->regsOverlap(EvenReg, BaseReg)) {
1841       assert(!TRI->regsOverlap(OddReg, BaseReg));
1842       InsertLDR_STR(MBB, MBBI, OffImm + 4, isLd, NewOpc2, OddReg, OddDeadKill,
1843                     false, BaseReg, false, BaseUndef, Pred, PredReg, TII, MI);
1844       InsertLDR_STR(MBB, MBBI, OffImm, isLd, NewOpc, EvenReg, EvenDeadKill,
1845                     false, BaseReg, BaseKill, BaseUndef, Pred, PredReg, TII,
1846                     MI);
1847     } else {
1848       if (OddReg == EvenReg && EvenDeadKill) {
1849         // If the two source operands are the same, the kill marker is
1850         // probably on the first one. e.g.
1851         // t2STRDi8 killed %r5, %r5, killed %r9, 0, 14, %reg0
1852         EvenDeadKill = false;
1853         OddDeadKill = true;
1854       }
1855       // Never kill the base register in the first instruction.
1856       if (EvenReg == BaseReg)
1857         EvenDeadKill = false;
1858       InsertLDR_STR(MBB, MBBI, OffImm, isLd, NewOpc, EvenReg, EvenDeadKill,
1859                     EvenUndef, BaseReg, false, BaseUndef, Pred, PredReg, TII,
1860                     MI);
1861       InsertLDR_STR(MBB, MBBI, OffImm + 4, isLd, NewOpc2, OddReg, OddDeadKill,
1862                     OddUndef, BaseReg, BaseKill, BaseUndef, Pred, PredReg, TII,
1863                     MI);
1864     }
1865     if (isLd)
1866       ++NumLDRD2LDR;
1867     else
1868       ++NumSTRD2STR;
1869   }
1870 
1871   MBBI = MBB.erase(MBBI);
1872   return true;
1873 }
1874 
1875 /// An optimization pass to turn multiple LDR / STR ops of the same base and
1876 /// incrementing offset into LDM / STM ops.
1877 bool ARMLoadStoreOpt::LoadStoreMultipleOpti(MachineBasicBlock &MBB) {
1878   MemOpQueue MemOps;
1879   unsigned CurrBase = 0;
1880   unsigned CurrOpc = ~0u;
1881   ARMCC::CondCodes CurrPred = ARMCC::AL;
1882   unsigned Position = 0;
1883   assert(Candidates.size() == 0);
1884   assert(MergeBaseCandidates.size() == 0);
1885   LiveRegsValid = false;
1886 
1887   for (MachineBasicBlock::iterator I = MBB.end(), MBBI; I != MBB.begin();
1888        I = MBBI) {
1889     // The instruction in front of the iterator is the one we look at.
1890     MBBI = std::prev(I);
1891     if (FixInvalidRegPairOp(MBB, MBBI))
1892       continue;
1893     ++Position;
1894 
1895     if (isMemoryOp(*MBBI)) {
1896       unsigned Opcode = MBBI->getOpcode();
1897       const MachineOperand &MO = MBBI->getOperand(0);
1898       Register Reg = MO.getReg();
1899       Register Base = getLoadStoreBaseOp(*MBBI).getReg();
1900       Register PredReg;
1901       ARMCC::CondCodes Pred = getInstrPredicate(*MBBI, PredReg);
1902       int Offset = getMemoryOpOffset(*MBBI);
1903       if (CurrBase == 0) {
1904         // Start of a new chain.
1905         CurrBase = Base;
1906         CurrOpc  = Opcode;
1907         CurrPred = Pred;
1908         MemOps.push_back(MemOpQueueEntry(*MBBI, Offset, Position));
1909         continue;
1910       }
1911       // Note: No need to match PredReg in the next if.
1912       if (CurrOpc == Opcode && CurrBase == Base && CurrPred == Pred) {
1913         // Watch out for:
1914         //   r4 := ldr [r0, #8]
1915         //   r4 := ldr [r0, #4]
1916         // or
1917         //   r0 := ldr [r0]
1918         // If a load overrides the base register or a register loaded by
1919         // another load in our chain, we cannot take this instruction.
1920         bool Overlap = false;
1921         if (isLoadSingle(Opcode)) {
1922           Overlap = (Base == Reg);
1923           if (!Overlap) {
1924             for (const MemOpQueueEntry &E : MemOps) {
1925               if (TRI->regsOverlap(Reg, E.MI->getOperand(0).getReg())) {
1926                 Overlap = true;
1927                 break;
1928               }
1929             }
1930           }
1931         }
1932 
1933         if (!Overlap) {
1934           // Check offset and sort memory operation into the current chain.
1935           if (Offset > MemOps.back().Offset) {
1936             MemOps.push_back(MemOpQueueEntry(*MBBI, Offset, Position));
1937             continue;
1938           } else {
1939             MemOpQueue::iterator MI, ME;
1940             for (MI = MemOps.begin(), ME = MemOps.end(); MI != ME; ++MI) {
1941               if (Offset < MI->Offset) {
1942                 // Found a place to insert.
1943                 break;
1944               }
1945               if (Offset == MI->Offset) {
1946                 // Collision, abort.
1947                 MI = ME;
1948                 break;
1949               }
1950             }
1951             if (MI != MemOps.end()) {
1952               MemOps.insert(MI, MemOpQueueEntry(*MBBI, Offset, Position));
1953               continue;
1954             }
1955           }
1956         }
1957       }
1958 
1959       // Don't advance the iterator; The op will start a new chain next.
1960       MBBI = I;
1961       --Position;
1962       // Fallthrough to look into existing chain.
1963     } else if (MBBI->isDebugInstr()) {
1964       continue;
1965     } else if (MBBI->getOpcode() == ARM::t2LDRDi8 ||
1966                MBBI->getOpcode() == ARM::t2STRDi8) {
1967       // ARMPreAllocLoadStoreOpt has already formed some LDRD/STRD instructions
1968       // remember them because we may still be able to merge add/sub into them.
1969       MergeBaseCandidates.push_back(&*MBBI);
1970     }
1971 
1972     // If we are here then the chain is broken; Extract candidates for a merge.
1973     if (MemOps.size() > 0) {
1974       FormCandidates(MemOps);
1975       // Reset for the next chain.
1976       CurrBase = 0;
1977       CurrOpc = ~0u;
1978       CurrPred = ARMCC::AL;
1979       MemOps.clear();
1980     }
1981   }
1982   if (MemOps.size() > 0)
1983     FormCandidates(MemOps);
1984 
1985   // Sort candidates so they get processed from end to begin of the basic
1986   // block later; This is necessary for liveness calculation.
1987   auto LessThan = [](const MergeCandidate* M0, const MergeCandidate *M1) {
1988     return M0->InsertPos < M1->InsertPos;
1989   };
1990   llvm::sort(Candidates, LessThan);
1991 
1992   // Go through list of candidates and merge.
1993   bool Changed = false;
1994   for (const MergeCandidate *Candidate : Candidates) {
1995     if (Candidate->CanMergeToLSMulti || Candidate->CanMergeToLSDouble) {
1996       MachineInstr *Merged = MergeOpsUpdate(*Candidate);
1997       // Merge preceding/trailing base inc/dec into the merged op.
1998       if (Merged) {
1999         Changed = true;
2000         unsigned Opcode = Merged->getOpcode();
2001         if (Opcode == ARM::t2STRDi8 || Opcode == ARM::t2LDRDi8)
2002           MergeBaseUpdateLSDouble(*Merged);
2003         else
2004           MergeBaseUpdateLSMultiple(Merged);
2005       } else {
2006         for (MachineInstr *MI : Candidate->Instrs) {
2007           if (MergeBaseUpdateLoadStore(MI))
2008             Changed = true;
2009         }
2010       }
2011     } else {
2012       assert(Candidate->Instrs.size() == 1);
2013       if (MergeBaseUpdateLoadStore(Candidate->Instrs.front()))
2014         Changed = true;
2015     }
2016   }
2017   Candidates.clear();
2018   // Try to fold add/sub into the LDRD/STRD formed by ARMPreAllocLoadStoreOpt.
2019   for (MachineInstr *MI : MergeBaseCandidates)
2020     MergeBaseUpdateLSDouble(*MI);
2021   MergeBaseCandidates.clear();
2022 
2023   return Changed;
2024 }
2025 
2026 /// If this is a exit BB, try merging the return ops ("bx lr" and "mov pc, lr")
2027 /// into the preceding stack restore so it directly restore the value of LR
2028 /// into pc.
2029 ///   ldmfd sp!, {..., lr}
2030 ///   bx lr
2031 /// or
2032 ///   ldmfd sp!, {..., lr}
2033 ///   mov pc, lr
2034 /// =>
2035 ///   ldmfd sp!, {..., pc}
2036 bool ARMLoadStoreOpt::MergeReturnIntoLDM(MachineBasicBlock &MBB) {
2037   // Thumb1 LDM doesn't allow high registers.
2038   if (isThumb1) return false;
2039   if (MBB.empty()) return false;
2040 
2041   MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
2042   if (MBBI != MBB.begin() && MBBI != MBB.end() &&
2043       (MBBI->getOpcode() == ARM::BX_RET ||
2044        MBBI->getOpcode() == ARM::tBX_RET ||
2045        MBBI->getOpcode() == ARM::MOVPCLR)) {
2046     MachineBasicBlock::iterator PrevI = std::prev(MBBI);
2047     // Ignore any debug instructions.
2048     while (PrevI->isDebugInstr() && PrevI != MBB.begin())
2049       --PrevI;
2050     MachineInstr &PrevMI = *PrevI;
2051     unsigned Opcode = PrevMI.getOpcode();
2052     if (Opcode == ARM::LDMIA_UPD || Opcode == ARM::LDMDA_UPD ||
2053         Opcode == ARM::LDMDB_UPD || Opcode == ARM::LDMIB_UPD ||
2054         Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) {
2055       MachineOperand &MO = PrevMI.getOperand(PrevMI.getNumOperands() - 1);
2056       if (MO.getReg() != ARM::LR)
2057         return false;
2058       unsigned NewOpc = (isThumb2 ? ARM::t2LDMIA_RET : ARM::LDMIA_RET);
2059       assert(((isThumb2 && Opcode == ARM::t2LDMIA_UPD) ||
2060               Opcode == ARM::LDMIA_UPD) && "Unsupported multiple load-return!");
2061       PrevMI.setDesc(TII->get(NewOpc));
2062       MO.setReg(ARM::PC);
2063       PrevMI.copyImplicitOps(*MBB.getParent(), *MBBI);
2064       MBB.erase(MBBI);
2065       return true;
2066     }
2067   }
2068   return false;
2069 }
2070 
2071 bool ARMLoadStoreOpt::CombineMovBx(MachineBasicBlock &MBB) {
2072   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
2073   if (MBBI == MBB.begin() || MBBI == MBB.end() ||
2074       MBBI->getOpcode() != ARM::tBX_RET)
2075     return false;
2076 
2077   MachineBasicBlock::iterator Prev = MBBI;
2078   --Prev;
2079   if (Prev->getOpcode() != ARM::tMOVr || !Prev->definesRegister(ARM::LR))
2080     return false;
2081 
2082   for (auto Use : Prev->uses())
2083     if (Use.isKill()) {
2084       assert(STI->hasV4TOps());
2085       BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(ARM::tBX))
2086           .addReg(Use.getReg(), RegState::Kill)
2087           .add(predOps(ARMCC::AL))
2088           .copyImplicitOps(*MBBI);
2089       MBB.erase(MBBI);
2090       MBB.erase(Prev);
2091       return true;
2092     }
2093 
2094   llvm_unreachable("tMOVr doesn't kill a reg before tBX_RET?");
2095 }
2096 
2097 bool ARMLoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
2098   if (skipFunction(Fn.getFunction()))
2099     return false;
2100 
2101   MF = &Fn;
2102   STI = &Fn.getSubtarget<ARMSubtarget>();
2103   TL = STI->getTargetLowering();
2104   AFI = Fn.getInfo<ARMFunctionInfo>();
2105   TII = STI->getInstrInfo();
2106   TRI = STI->getRegisterInfo();
2107 
2108   RegClassInfoValid = false;
2109   isThumb2 = AFI->isThumb2Function();
2110   isThumb1 = AFI->isThumbFunction() && !isThumb2;
2111 
2112   bool Modified = false, ModifiedLDMReturn = false;
2113   for (MachineBasicBlock &MBB : Fn) {
2114     Modified |= LoadStoreMultipleOpti(MBB);
2115     if (STI->hasV5TOps() && !AFI->shouldSignReturnAddress())
2116       ModifiedLDMReturn |= MergeReturnIntoLDM(MBB);
2117     if (isThumb1)
2118       Modified |= CombineMovBx(MBB);
2119   }
2120   Modified |= ModifiedLDMReturn;
2121 
2122   // If we merged a BX instruction into an LDM, we need to re-calculate whether
2123   // LR is restored. This check needs to consider the whole function, not just
2124   // the instruction(s) we changed, because there may be other BX returns which
2125   // still need LR to be restored.
2126   if (ModifiedLDMReturn)
2127     ARMFrameLowering::updateLRRestored(Fn);
2128 
2129   Allocator.DestroyAll();
2130   return Modified;
2131 }
2132 
2133 #define ARM_PREALLOC_LOAD_STORE_OPT_NAME                                       \
2134   "ARM pre- register allocation load / store optimization pass"
2135 
2136 namespace {
2137 
2138   /// Pre- register allocation pass that move load / stores from consecutive
2139   /// locations close to make it more likely they will be combined later.
2140   struct ARMPreAllocLoadStoreOpt : public MachineFunctionPass{
2141     static char ID;
2142 
2143     AliasAnalysis *AA;
2144     const DataLayout *TD;
2145     const TargetInstrInfo *TII;
2146     const TargetRegisterInfo *TRI;
2147     const ARMSubtarget *STI;
2148     MachineRegisterInfo *MRI;
2149     MachineDominatorTree *DT;
2150     MachineFunction *MF;
2151 
2152     ARMPreAllocLoadStoreOpt() : MachineFunctionPass(ID) {}
2153 
2154     bool runOnMachineFunction(MachineFunction &Fn) override;
2155 
2156     StringRef getPassName() const override {
2157       return ARM_PREALLOC_LOAD_STORE_OPT_NAME;
2158     }
2159 
2160     void getAnalysisUsage(AnalysisUsage &AU) const override {
2161       AU.addRequired<AAResultsWrapperPass>();
2162       AU.addRequired<MachineDominatorTree>();
2163       AU.addPreserved<MachineDominatorTree>();
2164       MachineFunctionPass::getAnalysisUsage(AU);
2165     }
2166 
2167   private:
2168     bool CanFormLdStDWord(MachineInstr *Op0, MachineInstr *Op1, DebugLoc &dl,
2169                           unsigned &NewOpc, Register &EvenReg, Register &OddReg,
2170                           Register &BaseReg, int &Offset, Register &PredReg,
2171                           ARMCC::CondCodes &Pred, bool &isT2);
2172     bool RescheduleOps(
2173         MachineBasicBlock *MBB, SmallVectorImpl<MachineInstr *> &Ops,
2174         unsigned Base, bool isLd, DenseMap<MachineInstr *, unsigned> &MI2LocMap,
2175         SmallDenseMap<Register, SmallVector<MachineInstr *>, 8> &RegisterMap);
2176     bool RescheduleLoadStoreInstrs(MachineBasicBlock *MBB);
2177     bool DistributeIncrements();
2178     bool DistributeIncrements(Register Base);
2179   };
2180 
2181 } // end anonymous namespace
2182 
2183 char ARMPreAllocLoadStoreOpt::ID = 0;
2184 
2185 INITIALIZE_PASS_BEGIN(ARMPreAllocLoadStoreOpt, "arm-prera-ldst-opt",
2186                       ARM_PREALLOC_LOAD_STORE_OPT_NAME, false, false)
2187 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
2188 INITIALIZE_PASS_END(ARMPreAllocLoadStoreOpt, "arm-prera-ldst-opt",
2189                     ARM_PREALLOC_LOAD_STORE_OPT_NAME, false, false)
2190 
2191 // Limit the number of instructions to be rescheduled.
2192 // FIXME: tune this limit, and/or come up with some better heuristics.
2193 static cl::opt<unsigned> InstReorderLimit("arm-prera-ldst-opt-reorder-limit",
2194                                           cl::init(8), cl::Hidden);
2195 
2196 bool ARMPreAllocLoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
2197   if (AssumeMisalignedLoadStores || skipFunction(Fn.getFunction()))
2198     return false;
2199 
2200   TD = &Fn.getDataLayout();
2201   STI = &Fn.getSubtarget<ARMSubtarget>();
2202   TII = STI->getInstrInfo();
2203   TRI = STI->getRegisterInfo();
2204   MRI = &Fn.getRegInfo();
2205   DT = &getAnalysis<MachineDominatorTree>();
2206   MF  = &Fn;
2207   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2208 
2209   bool Modified = DistributeIncrements();
2210   for (MachineBasicBlock &MFI : Fn)
2211     Modified |= RescheduleLoadStoreInstrs(&MFI);
2212 
2213   return Modified;
2214 }
2215 
2216 static bool IsSafeAndProfitableToMove(bool isLd, unsigned Base,
2217                                       MachineBasicBlock::iterator I,
2218                                       MachineBasicBlock::iterator E,
2219                                       SmallPtrSetImpl<MachineInstr*> &MemOps,
2220                                       SmallSet<unsigned, 4> &MemRegs,
2221                                       const TargetRegisterInfo *TRI,
2222                                       AliasAnalysis *AA) {
2223   // Are there stores / loads / calls between them?
2224   SmallSet<unsigned, 4> AddedRegPressure;
2225   while (++I != E) {
2226     if (I->isDebugInstr() || MemOps.count(&*I))
2227       continue;
2228     if (I->isCall() || I->isTerminator() || I->hasUnmodeledSideEffects())
2229       return false;
2230     if (I->mayStore() || (!isLd && I->mayLoad()))
2231       for (MachineInstr *MemOp : MemOps)
2232         if (I->mayAlias(AA, *MemOp, /*UseTBAA*/ false))
2233           return false;
2234     for (unsigned j = 0, NumOps = I->getNumOperands(); j != NumOps; ++j) {
2235       MachineOperand &MO = I->getOperand(j);
2236       if (!MO.isReg())
2237         continue;
2238       Register Reg = MO.getReg();
2239       if (MO.isDef() && TRI->regsOverlap(Reg, Base))
2240         return false;
2241       if (Reg != Base && !MemRegs.count(Reg))
2242         AddedRegPressure.insert(Reg);
2243     }
2244   }
2245 
2246   // Estimate register pressure increase due to the transformation.
2247   if (MemRegs.size() <= 4)
2248     // Ok if we are moving small number of instructions.
2249     return true;
2250   return AddedRegPressure.size() <= MemRegs.size() * 2;
2251 }
2252 
2253 bool ARMPreAllocLoadStoreOpt::CanFormLdStDWord(
2254     MachineInstr *Op0, MachineInstr *Op1, DebugLoc &dl, unsigned &NewOpc,
2255     Register &FirstReg, Register &SecondReg, Register &BaseReg, int &Offset,
2256     Register &PredReg, ARMCC::CondCodes &Pred, bool &isT2) {
2257   // Make sure we're allowed to generate LDRD/STRD.
2258   if (!STI->hasV5TEOps())
2259     return false;
2260 
2261   // FIXME: VLDRS / VSTRS -> VLDRD / VSTRD
2262   unsigned Scale = 1;
2263   unsigned Opcode = Op0->getOpcode();
2264   if (Opcode == ARM::LDRi12) {
2265     NewOpc = ARM::LDRD;
2266   } else if (Opcode == ARM::STRi12) {
2267     NewOpc = ARM::STRD;
2268   } else if (Opcode == ARM::t2LDRi8 || Opcode == ARM::t2LDRi12) {
2269     NewOpc = ARM::t2LDRDi8;
2270     Scale = 4;
2271     isT2 = true;
2272   } else if (Opcode == ARM::t2STRi8 || Opcode == ARM::t2STRi12) {
2273     NewOpc = ARM::t2STRDi8;
2274     Scale = 4;
2275     isT2 = true;
2276   } else {
2277     return false;
2278   }
2279 
2280   // Make sure the base address satisfies i64 ld / st alignment requirement.
2281   // At the moment, we ignore the memoryoperand's value.
2282   // If we want to use AliasAnalysis, we should check it accordingly.
2283   if (!Op0->hasOneMemOperand() ||
2284       (*Op0->memoperands_begin())->isVolatile() ||
2285       (*Op0->memoperands_begin())->isAtomic())
2286     return false;
2287 
2288   Align Alignment = (*Op0->memoperands_begin())->getAlign();
2289   Align ReqAlign = STI->getDualLoadStoreAlignment();
2290   if (Alignment < ReqAlign)
2291     return false;
2292 
2293   // Then make sure the immediate offset fits.
2294   int OffImm = getMemoryOpOffset(*Op0);
2295   if (isT2) {
2296     int Limit = (1 << 8) * Scale;
2297     if (OffImm >= Limit || (OffImm <= -Limit) || (OffImm & (Scale-1)))
2298       return false;
2299     Offset = OffImm;
2300   } else {
2301     ARM_AM::AddrOpc AddSub = ARM_AM::add;
2302     if (OffImm < 0) {
2303       AddSub = ARM_AM::sub;
2304       OffImm = - OffImm;
2305     }
2306     int Limit = (1 << 8) * Scale;
2307     if (OffImm >= Limit || (OffImm & (Scale-1)))
2308       return false;
2309     Offset = ARM_AM::getAM3Opc(AddSub, OffImm);
2310   }
2311   FirstReg = Op0->getOperand(0).getReg();
2312   SecondReg = Op1->getOperand(0).getReg();
2313   if (FirstReg == SecondReg)
2314     return false;
2315   BaseReg = Op0->getOperand(1).getReg();
2316   Pred = getInstrPredicate(*Op0, PredReg);
2317   dl = Op0->getDebugLoc();
2318   return true;
2319 }
2320 
2321 bool ARMPreAllocLoadStoreOpt::RescheduleOps(
2322     MachineBasicBlock *MBB, SmallVectorImpl<MachineInstr *> &Ops, unsigned Base,
2323     bool isLd, DenseMap<MachineInstr *, unsigned> &MI2LocMap,
2324     SmallDenseMap<Register, SmallVector<MachineInstr *>, 8> &RegisterMap) {
2325   bool RetVal = false;
2326 
2327   // Sort by offset (in reverse order).
2328   llvm::sort(Ops, [](const MachineInstr *LHS, const MachineInstr *RHS) {
2329     int LOffset = getMemoryOpOffset(*LHS);
2330     int ROffset = getMemoryOpOffset(*RHS);
2331     assert(LHS == RHS || LOffset != ROffset);
2332     return LOffset > ROffset;
2333   });
2334 
2335   // The loads / stores of the same base are in order. Scan them from first to
2336   // last and check for the following:
2337   // 1. Any def of base.
2338   // 2. Any gaps.
2339   while (Ops.size() > 1) {
2340     unsigned FirstLoc = ~0U;
2341     unsigned LastLoc = 0;
2342     MachineInstr *FirstOp = nullptr;
2343     MachineInstr *LastOp = nullptr;
2344     int LastOffset = 0;
2345     unsigned LastOpcode = 0;
2346     unsigned LastBytes = 0;
2347     unsigned NumMove = 0;
2348     for (MachineInstr *Op : llvm::reverse(Ops)) {
2349       // Make sure each operation has the same kind.
2350       unsigned LSMOpcode
2351         = getLoadStoreMultipleOpcode(Op->getOpcode(), ARM_AM::ia);
2352       if (LastOpcode && LSMOpcode != LastOpcode)
2353         break;
2354 
2355       // Check that we have a continuous set of offsets.
2356       int Offset = getMemoryOpOffset(*Op);
2357       unsigned Bytes = getLSMultipleTransferSize(Op);
2358       if (LastBytes) {
2359         if (Bytes != LastBytes || Offset != (LastOffset + (int)Bytes))
2360           break;
2361       }
2362 
2363       // Don't try to reschedule too many instructions.
2364       if (NumMove == InstReorderLimit)
2365         break;
2366 
2367       // Found a mergable instruction; save information about it.
2368       ++NumMove;
2369       LastOffset = Offset;
2370       LastBytes = Bytes;
2371       LastOpcode = LSMOpcode;
2372 
2373       unsigned Loc = MI2LocMap[Op];
2374       if (Loc <= FirstLoc) {
2375         FirstLoc = Loc;
2376         FirstOp = Op;
2377       }
2378       if (Loc >= LastLoc) {
2379         LastLoc = Loc;
2380         LastOp = Op;
2381       }
2382     }
2383 
2384     if (NumMove <= 1)
2385       Ops.pop_back();
2386     else {
2387       SmallPtrSet<MachineInstr*, 4> MemOps;
2388       SmallSet<unsigned, 4> MemRegs;
2389       for (size_t i = Ops.size() - NumMove, e = Ops.size(); i != e; ++i) {
2390         MemOps.insert(Ops[i]);
2391         MemRegs.insert(Ops[i]->getOperand(0).getReg());
2392       }
2393 
2394       // Be conservative, if the instructions are too far apart, don't
2395       // move them. We want to limit the increase of register pressure.
2396       bool DoMove = (LastLoc - FirstLoc) <= NumMove*4; // FIXME: Tune this.
2397       if (DoMove)
2398         DoMove = IsSafeAndProfitableToMove(isLd, Base, FirstOp, LastOp,
2399                                            MemOps, MemRegs, TRI, AA);
2400       if (!DoMove) {
2401         for (unsigned i = 0; i != NumMove; ++i)
2402           Ops.pop_back();
2403       } else {
2404         // This is the new location for the loads / stores.
2405         MachineBasicBlock::iterator InsertPos = isLd ? FirstOp : LastOp;
2406         while (InsertPos != MBB->end() &&
2407                (MemOps.count(&*InsertPos) || InsertPos->isDebugInstr()))
2408           ++InsertPos;
2409 
2410         // If we are moving a pair of loads / stores, see if it makes sense
2411         // to try to allocate a pair of registers that can form register pairs.
2412         MachineInstr *Op0 = Ops.back();
2413         MachineInstr *Op1 = Ops[Ops.size()-2];
2414         Register FirstReg, SecondReg;
2415         Register BaseReg, PredReg;
2416         ARMCC::CondCodes Pred = ARMCC::AL;
2417         bool isT2 = false;
2418         unsigned NewOpc = 0;
2419         int Offset = 0;
2420         DebugLoc dl;
2421         if (NumMove == 2 && CanFormLdStDWord(Op0, Op1, dl, NewOpc,
2422                                              FirstReg, SecondReg, BaseReg,
2423                                              Offset, PredReg, Pred, isT2)) {
2424           Ops.pop_back();
2425           Ops.pop_back();
2426 
2427           const MCInstrDesc &MCID = TII->get(NewOpc);
2428           const TargetRegisterClass *TRC = TII->getRegClass(MCID, 0, TRI, *MF);
2429           MRI->constrainRegClass(FirstReg, TRC);
2430           MRI->constrainRegClass(SecondReg, TRC);
2431 
2432           // Form the pair instruction.
2433           if (isLd) {
2434             MachineInstrBuilder MIB = BuildMI(*MBB, InsertPos, dl, MCID)
2435               .addReg(FirstReg, RegState::Define)
2436               .addReg(SecondReg, RegState::Define)
2437               .addReg(BaseReg);
2438             // FIXME: We're converting from LDRi12 to an insn that still
2439             // uses addrmode2, so we need an explicit offset reg. It should
2440             // always by reg0 since we're transforming LDRi12s.
2441             if (!isT2)
2442               MIB.addReg(0);
2443             MIB.addImm(Offset).addImm(Pred).addReg(PredReg);
2444             MIB.cloneMergedMemRefs({Op0, Op1});
2445             LLVM_DEBUG(dbgs() << "Formed " << *MIB << "\n");
2446             ++NumLDRDFormed;
2447           } else {
2448             MachineInstrBuilder MIB = BuildMI(*MBB, InsertPos, dl, MCID)
2449               .addReg(FirstReg)
2450               .addReg(SecondReg)
2451               .addReg(BaseReg);
2452             // FIXME: We're converting from LDRi12 to an insn that still
2453             // uses addrmode2, so we need an explicit offset reg. It should
2454             // always by reg0 since we're transforming STRi12s.
2455             if (!isT2)
2456               MIB.addReg(0);
2457             MIB.addImm(Offset).addImm(Pred).addReg(PredReg);
2458             MIB.cloneMergedMemRefs({Op0, Op1});
2459             LLVM_DEBUG(dbgs() << "Formed " << *MIB << "\n");
2460             ++NumSTRDFormed;
2461           }
2462           MBB->erase(Op0);
2463           MBB->erase(Op1);
2464 
2465           if (!isT2) {
2466             // Add register allocation hints to form register pairs.
2467             MRI->setRegAllocationHint(FirstReg, ARMRI::RegPairEven, SecondReg);
2468             MRI->setRegAllocationHint(SecondReg,  ARMRI::RegPairOdd, FirstReg);
2469           }
2470         } else {
2471           for (unsigned i = 0; i != NumMove; ++i) {
2472             MachineInstr *Op = Ops.pop_back_val();
2473             if (isLd) {
2474               // Populate RegisterMap with all Registers defined by loads.
2475               Register Reg = Op->getOperand(0).getReg();
2476               RegisterMap[Reg];
2477             }
2478 
2479             MBB->splice(InsertPos, MBB, Op);
2480           }
2481         }
2482 
2483         NumLdStMoved += NumMove;
2484         RetVal = true;
2485       }
2486     }
2487   }
2488 
2489   return RetVal;
2490 }
2491 
2492 static void forEachDbgRegOperand(MachineInstr *MI,
2493                                  std::function<void(MachineOperand &)> Fn) {
2494   if (MI->isNonListDebugValue()) {
2495     auto &Op = MI->getOperand(0);
2496     if (Op.isReg())
2497       Fn(Op);
2498   } else {
2499     for (unsigned I = 2; I < MI->getNumOperands(); I++) {
2500       auto &Op = MI->getOperand(I);
2501       if (Op.isReg())
2502         Fn(Op);
2503     }
2504   }
2505 }
2506 
2507 // Update the RegisterMap with the instruction that was moved because a
2508 // DBG_VALUE_LIST may need to be moved again.
2509 static void updateRegisterMapForDbgValueListAfterMove(
2510     SmallDenseMap<Register, SmallVector<MachineInstr *>, 8> &RegisterMap,
2511     MachineInstr *DbgValueListInstr, MachineInstr *InstrToReplace) {
2512 
2513   forEachDbgRegOperand(DbgValueListInstr, [&](MachineOperand &Op) {
2514     auto RegIt = RegisterMap.find(Op.getReg());
2515     if (RegIt == RegisterMap.end())
2516       return;
2517     auto &InstrVec = RegIt->getSecond();
2518     for (unsigned I = 0; I < InstrVec.size(); I++)
2519       if (InstrVec[I] == InstrToReplace)
2520         InstrVec[I] = DbgValueListInstr;
2521   });
2522 }
2523 
2524 static DebugVariable createDebugVariableFromMachineInstr(MachineInstr *MI) {
2525   auto DbgVar = DebugVariable(MI->getDebugVariable(), MI->getDebugExpression(),
2526                               MI->getDebugLoc()->getInlinedAt());
2527   return DbgVar;
2528 }
2529 
2530 bool
2531 ARMPreAllocLoadStoreOpt::RescheduleLoadStoreInstrs(MachineBasicBlock *MBB) {
2532   bool RetVal = false;
2533 
2534   DenseMap<MachineInstr*, unsigned> MI2LocMap;
2535   using MapIt = DenseMap<unsigned, SmallVector<MachineInstr *, 4>>::iterator;
2536   using Base2InstMap = DenseMap<unsigned, SmallVector<MachineInstr *, 4>>;
2537   using BaseVec = SmallVector<unsigned, 4>;
2538   Base2InstMap Base2LdsMap;
2539   Base2InstMap Base2StsMap;
2540   BaseVec LdBases;
2541   BaseVec StBases;
2542   // This map is used to track the relationship between the virtual
2543   // register that is the result of a load that is moved and the DBG_VALUE
2544   // MachineInstr pointer that uses that virtual register.
2545   SmallDenseMap<Register, SmallVector<MachineInstr *>, 8> RegisterMap;
2546 
2547   unsigned Loc = 0;
2548   MachineBasicBlock::iterator MBBI = MBB->begin();
2549   MachineBasicBlock::iterator E = MBB->end();
2550   while (MBBI != E) {
2551     for (; MBBI != E; ++MBBI) {
2552       MachineInstr &MI = *MBBI;
2553       if (MI.isCall() || MI.isTerminator()) {
2554         // Stop at barriers.
2555         ++MBBI;
2556         break;
2557       }
2558 
2559       if (!MI.isDebugInstr())
2560         MI2LocMap[&MI] = ++Loc;
2561 
2562       if (!isMemoryOp(MI))
2563         continue;
2564       Register PredReg;
2565       if (getInstrPredicate(MI, PredReg) != ARMCC::AL)
2566         continue;
2567 
2568       int Opc = MI.getOpcode();
2569       bool isLd = isLoadSingle(Opc);
2570       Register Base = MI.getOperand(1).getReg();
2571       int Offset = getMemoryOpOffset(MI);
2572       bool StopHere = false;
2573       auto FindBases = [&] (Base2InstMap &Base2Ops, BaseVec &Bases) {
2574         MapIt BI = Base2Ops.find(Base);
2575         if (BI == Base2Ops.end()) {
2576           Base2Ops[Base].push_back(&MI);
2577           Bases.push_back(Base);
2578           return;
2579         }
2580         for (unsigned i = 0, e = BI->second.size(); i != e; ++i) {
2581           if (Offset == getMemoryOpOffset(*BI->second[i])) {
2582             StopHere = true;
2583             break;
2584           }
2585         }
2586         if (!StopHere)
2587           BI->second.push_back(&MI);
2588       };
2589 
2590       if (isLd)
2591         FindBases(Base2LdsMap, LdBases);
2592       else
2593         FindBases(Base2StsMap, StBases);
2594 
2595       if (StopHere) {
2596         // Found a duplicate (a base+offset combination that's seen earlier).
2597         // Backtrack.
2598         --Loc;
2599         break;
2600       }
2601     }
2602 
2603     // Re-schedule loads.
2604     for (unsigned Base : LdBases) {
2605       SmallVectorImpl<MachineInstr *> &Lds = Base2LdsMap[Base];
2606       if (Lds.size() > 1)
2607         RetVal |= RescheduleOps(MBB, Lds, Base, true, MI2LocMap, RegisterMap);
2608     }
2609 
2610     // Re-schedule stores.
2611     for (unsigned Base : StBases) {
2612       SmallVectorImpl<MachineInstr *> &Sts = Base2StsMap[Base];
2613       if (Sts.size() > 1)
2614         RetVal |= RescheduleOps(MBB, Sts, Base, false, MI2LocMap, RegisterMap);
2615     }
2616 
2617     if (MBBI != E) {
2618       Base2LdsMap.clear();
2619       Base2StsMap.clear();
2620       LdBases.clear();
2621       StBases.clear();
2622     }
2623   }
2624 
2625   // Reschedule DBG_VALUEs to match any loads that were moved. When a load is
2626   // sunk beyond a DBG_VALUE that is referring to it, the DBG_VALUE becomes a
2627   // use-before-def, resulting in a loss of debug info.
2628 
2629   // Example:
2630   // Before the Pre Register Allocation Load Store Pass
2631   // inst_a
2632   // %2 = ld ...
2633   // inst_b
2634   // DBG_VALUE %2, "x", ...
2635   // %3 = ld ...
2636 
2637   // After the Pass:
2638   // inst_a
2639   // inst_b
2640   // DBG_VALUE %2, "x", ...
2641   // %2 = ld ...
2642   // %3 = ld ...
2643 
2644   // The code below addresses this by moving the DBG_VALUE to the position
2645   // immediately after the load.
2646 
2647   // Example:
2648   // After the code below:
2649   // inst_a
2650   // inst_b
2651   // %2 = ld ...
2652   // DBG_VALUE %2, "x", ...
2653   // %3 = ld ...
2654 
2655   // The algorithm works in two phases: First RescheduleOps() populates the
2656   // RegisterMap with registers that were moved as keys, there is no value
2657   // inserted. In the next phase, every MachineInstr in a basic block is
2658   // iterated over. If it is a valid DBG_VALUE or DBG_VALUE_LIST and it uses one
2659   // or more registers in the RegisterMap, the RegisterMap and InstrMap are
2660   // populated with the MachineInstr. If the DBG_VALUE or DBG_VALUE_LIST
2661   // describes debug information for a variable that already exists in the
2662   // DbgValueSinkCandidates, the MachineInstr in the DbgValueSinkCandidates must
2663   // be set to undef. If the current MachineInstr is a load that was moved,
2664   // undef the corresponding DBG_VALUE or DBG_VALUE_LIST and clone it to below
2665   // the load.
2666 
2667   // To illustrate the above algorithm visually let's take this example.
2668 
2669   // Before the Pre Register Allocation Load Store Pass:
2670   // %2 = ld ...
2671   // DBG_VALUE %2, A, .... # X
2672   // DBG_VALUE 0, A, ... # Y
2673   // %3 = ld ...
2674   // DBG_VALUE %3, A, ..., # Z
2675   // %4 = ld ...
2676 
2677   // After Pre Register Allocation Load Store Pass:
2678   // DBG_VALUE %2, A, .... # X
2679   // DBG_VALUE 0, A, ... # Y
2680   // DBG_VALUE %3, A, ..., # Z
2681   // %2 = ld ...
2682   // %3 = ld ...
2683   // %4 = ld ...
2684 
2685   // The algorithm below does the following:
2686 
2687   // In the beginning, the RegisterMap will have been populated with the virtual
2688   // registers %2, and %3, the DbgValueSinkCandidates and the InstrMap will be
2689   // empty. DbgValueSinkCandidates = {}, RegisterMap = {2 -> {}, 3 -> {}},
2690   // InstrMap {}
2691   // -> DBG_VALUE %2, A, .... # X
2692   // DBG_VALUE 0, A, ... # Y
2693   // DBG_VALUE %3, A, ..., # Z
2694   // %2 = ld ...
2695   // %3 = ld ...
2696   // %4 = ld ...
2697 
2698   // After the first DBG_VALUE (denoted with an X) is processed, the
2699   // DbgValueSinkCandidates and InstrMap will be populated and the RegisterMap
2700   // entry for %2 will be populated as well. DbgValueSinkCandidates = {A -> X},
2701   // RegisterMap = {2 -> {X}, 3 -> {}}, InstrMap {X -> 2}
2702   // DBG_VALUE %2, A, .... # X
2703   // -> DBG_VALUE 0, A, ... # Y
2704   // DBG_VALUE %3, A, ..., # Z
2705   // %2 = ld ...
2706   // %3 = ld ...
2707   // %4 = ld ...
2708 
2709   // After the DBG_VALUE Y is processed, the DbgValueSinkCandidates is updated
2710   // to now hold Y for A and the RegisterMap is also updated to remove X from
2711   // %2, this is because both X and Y describe the same debug variable A. X is
2712   // also updated to have a $noreg as the first operand.
2713   // DbgValueSinkCandidates = {A -> {Y}}, RegisterMap = {2 -> {}, 3 -> {}},
2714   // InstrMap = {X-> 2}
2715   // DBG_VALUE $noreg, A, .... # X
2716   // DBG_VALUE 0, A, ... # Y
2717   // -> DBG_VALUE %3, A, ..., # Z
2718   // %2 = ld ...
2719   // %3 = ld ...
2720   // %4 = ld ...
2721 
2722   // After DBG_VALUE Z is processed, the DbgValueSinkCandidates is updated to
2723   // hold Z fr A, the RegisterMap is updated to hold Z for %3, and the InstrMap
2724   // is updated to have Z mapped to %3. This is again because Z describes the
2725   // debug variable A, Y is not updated to have $noreg as first operand because
2726   // its first operand is an immediate, not a register.
2727   // DbgValueSinkCandidates = {A -> {Z}}, RegisterMap = {2 -> {}, 3 -> {Z}},
2728   // InstrMap = {X -> 2, Z -> 3}
2729   // DBG_VALUE $noreg, A, .... # X
2730   // DBG_VALUE 0, A, ... # Y
2731   // DBG_VALUE %3, A, ..., # Z
2732   // -> %2 = ld ...
2733   // %3 = ld ...
2734   // %4 = ld ...
2735 
2736   // Nothing happens here since the RegisterMap for %2 contains no value.
2737   // DbgValueSinkCandidates = {A -> {Z}}, RegisterMap = {2 -> {}, 3 -> {Z}},
2738   // InstrMap = {X -> 2, Z -> 3}
2739   // DBG_VALUE $noreg, A, .... # X
2740   // DBG_VALUE 0, A, ... # Y
2741   // DBG_VALUE %3, A, ..., # Z
2742   // %2 = ld ...
2743   // -> %3 = ld ...
2744   // %4 = ld ...
2745 
2746   // Since the RegisterMap contains Z as a value for %3, the MachineInstr
2747   // pointer Z is copied to come after the load for %3 and the old Z's first
2748   // operand is changed to $noreg the Basic Block iterator is moved to after the
2749   // DBG_VALUE Z's new position.
2750   // DbgValueSinkCandidates = {A -> {Z}}, RegisterMap = {2 -> {}, 3 -> {Z}},
2751   // InstrMap = {X -> 2, Z -> 3}
2752   // DBG_VALUE $noreg, A, .... # X
2753   // DBG_VALUE 0, A, ... # Y
2754   // DBG_VALUE $noreg, A, ..., # Old Z
2755   // %2 = ld ...
2756   // %3 = ld ...
2757   // DBG_VALUE %3, A, ..., # Z
2758   // -> %4 = ld ...
2759 
2760   // Nothing happens for %4 and the algorithm exits having processed the entire
2761   // Basic Block.
2762   // DbgValueSinkCandidates = {A -> {Z}}, RegisterMap = {2 -> {}, 3 -> {Z}},
2763   // InstrMap = {X -> 2, Z -> 3}
2764   // DBG_VALUE $noreg, A, .... # X
2765   // DBG_VALUE 0, A, ... # Y
2766   // DBG_VALUE $noreg, A, ..., # Old Z
2767   // %2 = ld ...
2768   // %3 = ld ...
2769   // DBG_VALUE %3, A, ..., # Z
2770   // %4 = ld ...
2771 
2772   // This map is used to track the relationship between
2773   // a Debug Variable and the DBG_VALUE MachineInstr pointer that describes the
2774   // debug information for that Debug Variable.
2775   SmallDenseMap<DebugVariable, MachineInstr *, 8> DbgValueSinkCandidates;
2776   // This map is used to track the relationship between a DBG_VALUE or
2777   // DBG_VALUE_LIST MachineInstr pointer and Registers that it uses.
2778   SmallDenseMap<MachineInstr *, SmallVector<Register>, 8> InstrMap;
2779   for (MBBI = MBB->begin(), E = MBB->end(); MBBI != E; ++MBBI) {
2780     MachineInstr &MI = *MBBI;
2781 
2782     auto PopulateRegisterAndInstrMapForDebugInstr = [&](Register Reg) {
2783       auto RegIt = RegisterMap.find(Reg);
2784       if (RegIt == RegisterMap.end())
2785         return;
2786       auto &InstrVec = RegIt->getSecond();
2787       InstrVec.push_back(&MI);
2788       InstrMap[&MI].push_back(Reg);
2789     };
2790 
2791     if (MI.isDebugValue()) {
2792       assert(MI.getDebugVariable() &&
2793              "DBG_VALUE or DBG_VALUE_LIST must contain a DILocalVariable");
2794 
2795       auto DbgVar = createDebugVariableFromMachineInstr(&MI);
2796       // If the first operand is a register and it exists in the RegisterMap, we
2797       // know this is a DBG_VALUE that uses the result of a load that was moved,
2798       // and is therefore a candidate to also be moved, add it to the
2799       // RegisterMap and InstrMap.
2800       forEachDbgRegOperand(&MI, [&](MachineOperand &Op) {
2801         PopulateRegisterAndInstrMapForDebugInstr(Op.getReg());
2802       });
2803 
2804       // If the current DBG_VALUE describes the same variable as one of the
2805       // in-flight DBG_VALUEs, remove the candidate from the list and set it to
2806       // undef. Moving one DBG_VALUE past another would result in the variable's
2807       // value going back in time when stepping through the block in the
2808       // debugger.
2809       auto InstrIt = DbgValueSinkCandidates.find(DbgVar);
2810       if (InstrIt != DbgValueSinkCandidates.end()) {
2811         auto *Instr = InstrIt->getSecond();
2812         auto RegIt = InstrMap.find(Instr);
2813         if (RegIt != InstrMap.end()) {
2814           const auto &RegVec = RegIt->getSecond();
2815           // For every Register in the RegVec, remove the MachineInstr in the
2816           // RegisterMap that describes the DbgVar.
2817           for (auto &Reg : RegVec) {
2818             auto RegIt = RegisterMap.find(Reg);
2819             if (RegIt == RegisterMap.end())
2820               continue;
2821             auto &InstrVec = RegIt->getSecond();
2822             auto IsDbgVar = [&](MachineInstr *I) -> bool {
2823               auto Var = createDebugVariableFromMachineInstr(I);
2824               return Var == DbgVar;
2825             };
2826 
2827             llvm::erase_if(InstrVec, IsDbgVar);
2828           }
2829           forEachDbgRegOperand(Instr,
2830                                [&](MachineOperand &Op) { Op.setReg(0); });
2831         }
2832       }
2833       DbgValueSinkCandidates[DbgVar] = &MI;
2834     } else {
2835       // If the first operand of a load matches with a DBG_VALUE in RegisterMap,
2836       // then move that DBG_VALUE to below the load.
2837       auto Opc = MI.getOpcode();
2838       if (!isLoadSingle(Opc))
2839         continue;
2840       auto Reg = MI.getOperand(0).getReg();
2841       auto RegIt = RegisterMap.find(Reg);
2842       if (RegIt == RegisterMap.end())
2843         continue;
2844       auto &DbgInstrVec = RegIt->getSecond();
2845       if (!DbgInstrVec.size())
2846         continue;
2847       for (auto *DbgInstr : DbgInstrVec) {
2848         MachineBasicBlock::iterator InsertPos = std::next(MBBI);
2849         auto *ClonedMI = MI.getMF()->CloneMachineInstr(DbgInstr);
2850         MBB->insert(InsertPos, ClonedMI);
2851         MBBI++;
2852         //  Erase the entry into the DbgValueSinkCandidates for the DBG_VALUE
2853         //  that was moved.
2854         auto DbgVar = createDebugVariableFromMachineInstr(DbgInstr);
2855         auto DbgIt = DbgValueSinkCandidates.find(DbgVar);
2856         // If the instruction is a DBG_VALUE_LIST, it may have already been
2857         // erased from the DbgValueSinkCandidates. Only erase if it exists in
2858         // the DbgValueSinkCandidates.
2859         if (DbgIt != DbgValueSinkCandidates.end())
2860           DbgValueSinkCandidates.erase(DbgIt);
2861         // Zero out original dbg instr
2862         forEachDbgRegOperand(DbgInstr,
2863                              [&](MachineOperand &Op) { Op.setReg(0); });
2864         // Update RegisterMap with ClonedMI because it might have to be moved
2865         // again.
2866         if (DbgInstr->isDebugValueList())
2867           updateRegisterMapForDbgValueListAfterMove(RegisterMap, ClonedMI,
2868                                                     DbgInstr);
2869       }
2870     }
2871   }
2872   return RetVal;
2873 }
2874 
2875 // Get the Base register operand index from the memory access MachineInst if we
2876 // should attempt to distribute postinc on it. Return -1 if not of a valid
2877 // instruction type. If it returns an index, it is assumed that instruction is a
2878 // r+i indexing mode, and getBaseOperandIndex() + 1 is the Offset index.
2879 static int getBaseOperandIndex(MachineInstr &MI) {
2880   switch (MI.getOpcode()) {
2881   case ARM::MVE_VLDRBS16:
2882   case ARM::MVE_VLDRBS32:
2883   case ARM::MVE_VLDRBU16:
2884   case ARM::MVE_VLDRBU32:
2885   case ARM::MVE_VLDRHS32:
2886   case ARM::MVE_VLDRHU32:
2887   case ARM::MVE_VLDRBU8:
2888   case ARM::MVE_VLDRHU16:
2889   case ARM::MVE_VLDRWU32:
2890   case ARM::MVE_VSTRB16:
2891   case ARM::MVE_VSTRB32:
2892   case ARM::MVE_VSTRH32:
2893   case ARM::MVE_VSTRBU8:
2894   case ARM::MVE_VSTRHU16:
2895   case ARM::MVE_VSTRWU32:
2896   case ARM::t2LDRHi8:
2897   case ARM::t2LDRHi12:
2898   case ARM::t2LDRSHi8:
2899   case ARM::t2LDRSHi12:
2900   case ARM::t2LDRBi8:
2901   case ARM::t2LDRBi12:
2902   case ARM::t2LDRSBi8:
2903   case ARM::t2LDRSBi12:
2904   case ARM::t2STRBi8:
2905   case ARM::t2STRBi12:
2906   case ARM::t2STRHi8:
2907   case ARM::t2STRHi12:
2908     return 1;
2909   case ARM::MVE_VLDRBS16_post:
2910   case ARM::MVE_VLDRBS32_post:
2911   case ARM::MVE_VLDRBU16_post:
2912   case ARM::MVE_VLDRBU32_post:
2913   case ARM::MVE_VLDRHS32_post:
2914   case ARM::MVE_VLDRHU32_post:
2915   case ARM::MVE_VLDRBU8_post:
2916   case ARM::MVE_VLDRHU16_post:
2917   case ARM::MVE_VLDRWU32_post:
2918   case ARM::MVE_VSTRB16_post:
2919   case ARM::MVE_VSTRB32_post:
2920   case ARM::MVE_VSTRH32_post:
2921   case ARM::MVE_VSTRBU8_post:
2922   case ARM::MVE_VSTRHU16_post:
2923   case ARM::MVE_VSTRWU32_post:
2924   case ARM::MVE_VLDRBS16_pre:
2925   case ARM::MVE_VLDRBS32_pre:
2926   case ARM::MVE_VLDRBU16_pre:
2927   case ARM::MVE_VLDRBU32_pre:
2928   case ARM::MVE_VLDRHS32_pre:
2929   case ARM::MVE_VLDRHU32_pre:
2930   case ARM::MVE_VLDRBU8_pre:
2931   case ARM::MVE_VLDRHU16_pre:
2932   case ARM::MVE_VLDRWU32_pre:
2933   case ARM::MVE_VSTRB16_pre:
2934   case ARM::MVE_VSTRB32_pre:
2935   case ARM::MVE_VSTRH32_pre:
2936   case ARM::MVE_VSTRBU8_pre:
2937   case ARM::MVE_VSTRHU16_pre:
2938   case ARM::MVE_VSTRWU32_pre:
2939     return 2;
2940   }
2941   return -1;
2942 }
2943 
2944 static bool isPostIndex(MachineInstr &MI) {
2945   switch (MI.getOpcode()) {
2946   case ARM::MVE_VLDRBS16_post:
2947   case ARM::MVE_VLDRBS32_post:
2948   case ARM::MVE_VLDRBU16_post:
2949   case ARM::MVE_VLDRBU32_post:
2950   case ARM::MVE_VLDRHS32_post:
2951   case ARM::MVE_VLDRHU32_post:
2952   case ARM::MVE_VLDRBU8_post:
2953   case ARM::MVE_VLDRHU16_post:
2954   case ARM::MVE_VLDRWU32_post:
2955   case ARM::MVE_VSTRB16_post:
2956   case ARM::MVE_VSTRB32_post:
2957   case ARM::MVE_VSTRH32_post:
2958   case ARM::MVE_VSTRBU8_post:
2959   case ARM::MVE_VSTRHU16_post:
2960   case ARM::MVE_VSTRWU32_post:
2961     return true;
2962   }
2963   return false;
2964 }
2965 
2966 static bool isPreIndex(MachineInstr &MI) {
2967   switch (MI.getOpcode()) {
2968   case ARM::MVE_VLDRBS16_pre:
2969   case ARM::MVE_VLDRBS32_pre:
2970   case ARM::MVE_VLDRBU16_pre:
2971   case ARM::MVE_VLDRBU32_pre:
2972   case ARM::MVE_VLDRHS32_pre:
2973   case ARM::MVE_VLDRHU32_pre:
2974   case ARM::MVE_VLDRBU8_pre:
2975   case ARM::MVE_VLDRHU16_pre:
2976   case ARM::MVE_VLDRWU32_pre:
2977   case ARM::MVE_VSTRB16_pre:
2978   case ARM::MVE_VSTRB32_pre:
2979   case ARM::MVE_VSTRH32_pre:
2980   case ARM::MVE_VSTRBU8_pre:
2981   case ARM::MVE_VSTRHU16_pre:
2982   case ARM::MVE_VSTRWU32_pre:
2983     return true;
2984   }
2985   return false;
2986 }
2987 
2988 // Given a memory access Opcode, check that the give Imm would be a valid Offset
2989 // for this instruction (same as isLegalAddressImm), Or if the instruction
2990 // could be easily converted to one where that was valid. For example converting
2991 // t2LDRi12 to t2LDRi8 for negative offsets. Works in conjunction with
2992 // AdjustBaseAndOffset below.
2993 static bool isLegalOrConvertableAddressImm(unsigned Opcode, int Imm,
2994                                            const TargetInstrInfo *TII,
2995                                            int &CodesizeEstimate) {
2996   if (isLegalAddressImm(Opcode, Imm, TII))
2997     return true;
2998 
2999   // We can convert AddrModeT2_i12 to AddrModeT2_i8neg.
3000   const MCInstrDesc &Desc = TII->get(Opcode);
3001   unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
3002   switch (AddrMode) {
3003   case ARMII::AddrModeT2_i12:
3004     CodesizeEstimate += 1;
3005     return Imm < 0 && -Imm < ((1 << 8) * 1);
3006   }
3007   return false;
3008 }
3009 
3010 // Given an MI adjust its address BaseReg to use NewBaseReg and address offset
3011 // by -Offset. This can either happen in-place or be a replacement as MI is
3012 // converted to another instruction type.
3013 static void AdjustBaseAndOffset(MachineInstr *MI, Register NewBaseReg,
3014                                 int Offset, const TargetInstrInfo *TII,
3015                                 const TargetRegisterInfo *TRI) {
3016   // Set the Base reg
3017   unsigned BaseOp = getBaseOperandIndex(*MI);
3018   MI->getOperand(BaseOp).setReg(NewBaseReg);
3019   // and constrain the reg class to that required by the instruction.
3020   MachineFunction *MF = MI->getMF();
3021   MachineRegisterInfo &MRI = MF->getRegInfo();
3022   const MCInstrDesc &MCID = TII->get(MI->getOpcode());
3023   const TargetRegisterClass *TRC = TII->getRegClass(MCID, BaseOp, TRI, *MF);
3024   MRI.constrainRegClass(NewBaseReg, TRC);
3025 
3026   int OldOffset = MI->getOperand(BaseOp + 1).getImm();
3027   if (isLegalAddressImm(MI->getOpcode(), OldOffset - Offset, TII))
3028     MI->getOperand(BaseOp + 1).setImm(OldOffset - Offset);
3029   else {
3030     unsigned ConvOpcode;
3031     switch (MI->getOpcode()) {
3032     case ARM::t2LDRHi12:
3033       ConvOpcode = ARM::t2LDRHi8;
3034       break;
3035     case ARM::t2LDRSHi12:
3036       ConvOpcode = ARM::t2LDRSHi8;
3037       break;
3038     case ARM::t2LDRBi12:
3039       ConvOpcode = ARM::t2LDRBi8;
3040       break;
3041     case ARM::t2LDRSBi12:
3042       ConvOpcode = ARM::t2LDRSBi8;
3043       break;
3044     case ARM::t2STRHi12:
3045       ConvOpcode = ARM::t2STRHi8;
3046       break;
3047     case ARM::t2STRBi12:
3048       ConvOpcode = ARM::t2STRBi8;
3049       break;
3050     default:
3051       llvm_unreachable("Unhandled convertable opcode");
3052     }
3053     assert(isLegalAddressImm(ConvOpcode, OldOffset - Offset, TII) &&
3054            "Illegal Address Immediate after convert!");
3055 
3056     const MCInstrDesc &MCID = TII->get(ConvOpcode);
3057     BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), MCID)
3058         .add(MI->getOperand(0))
3059         .add(MI->getOperand(1))
3060         .addImm(OldOffset - Offset)
3061         .add(MI->getOperand(3))
3062         .add(MI->getOperand(4))
3063         .cloneMemRefs(*MI);
3064     MI->eraseFromParent();
3065   }
3066 }
3067 
3068 static MachineInstr *createPostIncLoadStore(MachineInstr *MI, int Offset,
3069                                             Register NewReg,
3070                                             const TargetInstrInfo *TII,
3071                                             const TargetRegisterInfo *TRI) {
3072   MachineFunction *MF = MI->getMF();
3073   MachineRegisterInfo &MRI = MF->getRegInfo();
3074 
3075   unsigned NewOpcode = getPostIndexedLoadStoreOpcode(
3076       MI->getOpcode(), Offset > 0 ? ARM_AM::add : ARM_AM::sub);
3077 
3078   const MCInstrDesc &MCID = TII->get(NewOpcode);
3079   // Constrain the def register class
3080   const TargetRegisterClass *TRC = TII->getRegClass(MCID, 0, TRI, *MF);
3081   MRI.constrainRegClass(NewReg, TRC);
3082   // And do the same for the base operand
3083   TRC = TII->getRegClass(MCID, 2, TRI, *MF);
3084   MRI.constrainRegClass(MI->getOperand(1).getReg(), TRC);
3085 
3086   unsigned AddrMode = (MCID.TSFlags & ARMII::AddrModeMask);
3087   switch (AddrMode) {
3088   case ARMII::AddrModeT2_i7:
3089   case ARMII::AddrModeT2_i7s2:
3090   case ARMII::AddrModeT2_i7s4:
3091     // Any MVE load/store
3092     return BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), MCID)
3093         .addReg(NewReg, RegState::Define)
3094         .add(MI->getOperand(0))
3095         .add(MI->getOperand(1))
3096         .addImm(Offset)
3097         .add(MI->getOperand(3))
3098         .add(MI->getOperand(4))
3099         .add(MI->getOperand(5))
3100         .cloneMemRefs(*MI);
3101   case ARMII::AddrModeT2_i8:
3102     if (MI->mayLoad()) {
3103       return BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), MCID)
3104           .add(MI->getOperand(0))
3105           .addReg(NewReg, RegState::Define)
3106           .add(MI->getOperand(1))
3107           .addImm(Offset)
3108           .add(MI->getOperand(3))
3109           .add(MI->getOperand(4))
3110           .cloneMemRefs(*MI);
3111     } else {
3112       return BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), MCID)
3113           .addReg(NewReg, RegState::Define)
3114           .add(MI->getOperand(0))
3115           .add(MI->getOperand(1))
3116           .addImm(Offset)
3117           .add(MI->getOperand(3))
3118           .add(MI->getOperand(4))
3119           .cloneMemRefs(*MI);
3120     }
3121   default:
3122     llvm_unreachable("Unhandled createPostIncLoadStore");
3123   }
3124 }
3125 
3126 // Given a Base Register, optimise the load/store uses to attempt to create more
3127 // post-inc accesses and less register moves. We do this by taking zero offset
3128 // loads/stores with an add, and convert them to a postinc load/store of the
3129 // same type. Any subsequent accesses will be adjusted to use and account for
3130 // the post-inc value.
3131 // For example:
3132 // LDR #0            LDR_POSTINC #16
3133 // LDR #4            LDR #-12
3134 // LDR #8            LDR #-8
3135 // LDR #12           LDR #-4
3136 // ADD #16
3137 //
3138 // At the same time if we do not find an increment but do find an existing
3139 // pre/post inc instruction, we can still adjust the offsets of subsequent
3140 // instructions to save the register move that would otherwise be needed for the
3141 // in-place increment.
3142 bool ARMPreAllocLoadStoreOpt::DistributeIncrements(Register Base) {
3143   // We are looking for:
3144   // One zero offset load/store that can become postinc
3145   MachineInstr *BaseAccess = nullptr;
3146   MachineInstr *PrePostInc = nullptr;
3147   // An increment that can be folded in
3148   MachineInstr *Increment = nullptr;
3149   // Other accesses after BaseAccess that will need to be updated to use the
3150   // postinc value.
3151   SmallPtrSet<MachineInstr *, 8> OtherAccesses;
3152   for (auto &Use : MRI->use_nodbg_instructions(Base)) {
3153     if (!Increment && getAddSubImmediate(Use) != 0) {
3154       Increment = &Use;
3155       continue;
3156     }
3157 
3158     int BaseOp = getBaseOperandIndex(Use);
3159     if (BaseOp == -1)
3160       return false;
3161 
3162     if (!Use.getOperand(BaseOp).isReg() ||
3163         Use.getOperand(BaseOp).getReg() != Base)
3164       return false;
3165     if (isPreIndex(Use) || isPostIndex(Use))
3166       PrePostInc = &Use;
3167     else if (Use.getOperand(BaseOp + 1).getImm() == 0)
3168       BaseAccess = &Use;
3169     else
3170       OtherAccesses.insert(&Use);
3171   }
3172 
3173   int IncrementOffset;
3174   Register NewBaseReg;
3175   if (BaseAccess && Increment) {
3176     if (PrePostInc || BaseAccess->getParent() != Increment->getParent())
3177       return false;
3178     Register PredReg;
3179     if (Increment->definesRegister(ARM::CPSR) ||
3180         getInstrPredicate(*Increment, PredReg) != ARMCC::AL)
3181       return false;
3182 
3183     LLVM_DEBUG(dbgs() << "\nAttempting to distribute increments on VirtualReg "
3184                       << Base.virtRegIndex() << "\n");
3185 
3186     // Make sure that Increment has no uses before BaseAccess that are not PHI
3187     // uses.
3188     for (MachineInstr &Use :
3189         MRI->use_nodbg_instructions(Increment->getOperand(0).getReg())) {
3190       if (&Use == BaseAccess || (Use.getOpcode() != TargetOpcode::PHI &&
3191                                  !DT->dominates(BaseAccess, &Use))) {
3192         LLVM_DEBUG(dbgs() << "  BaseAccess doesn't dominate use of increment\n");
3193         return false;
3194       }
3195     }
3196 
3197     // Make sure that Increment can be folded into Base
3198     IncrementOffset = getAddSubImmediate(*Increment);
3199     unsigned NewPostIncOpcode = getPostIndexedLoadStoreOpcode(
3200         BaseAccess->getOpcode(), IncrementOffset > 0 ? ARM_AM::add : ARM_AM::sub);
3201     if (!isLegalAddressImm(NewPostIncOpcode, IncrementOffset, TII)) {
3202       LLVM_DEBUG(dbgs() << "  Illegal addressing mode immediate on postinc\n");
3203       return false;
3204     }
3205   }
3206   else if (PrePostInc) {
3207     // If we already have a pre/post index load/store then set BaseAccess,
3208     // IncrementOffset and NewBaseReg to the values it already produces,
3209     // allowing us to update and subsequent uses of BaseOp reg with the
3210     // incremented value.
3211     if (Increment)
3212       return false;
3213 
3214     LLVM_DEBUG(dbgs() << "\nAttempting to distribute increments on already "
3215                       << "indexed VirtualReg " << Base.virtRegIndex() << "\n");
3216     int BaseOp = getBaseOperandIndex(*PrePostInc);
3217     IncrementOffset = PrePostInc->getOperand(BaseOp+1).getImm();
3218     BaseAccess = PrePostInc;
3219     NewBaseReg = PrePostInc->getOperand(0).getReg();
3220   }
3221   else
3222     return false;
3223 
3224   // And make sure that the negative value of increment can be added to all
3225   // other offsets after the BaseAccess. We rely on either
3226   // dominates(BaseAccess, OtherAccess) or dominates(OtherAccess, BaseAccess)
3227   // to keep things simple.
3228   // This also adds a simple codesize metric, to detect if an instruction (like
3229   // t2LDRBi12) which can often be shrunk to a thumb1 instruction (tLDRBi)
3230   // cannot because it is converted to something else (t2LDRBi8). We start this
3231   // at -1 for the gain from removing the increment.
3232   SmallPtrSet<MachineInstr *, 4> SuccessorAccesses;
3233   int CodesizeEstimate = -1;
3234   for (auto *Use : OtherAccesses) {
3235     if (DT->dominates(BaseAccess, Use)) {
3236       SuccessorAccesses.insert(Use);
3237       unsigned BaseOp = getBaseOperandIndex(*Use);
3238       if (!isLegalOrConvertableAddressImm(Use->getOpcode(),
3239                                           Use->getOperand(BaseOp + 1).getImm() -
3240                                               IncrementOffset,
3241                                           TII, CodesizeEstimate)) {
3242         LLVM_DEBUG(dbgs() << "  Illegal addressing mode immediate on use\n");
3243         return false;
3244       }
3245     } else if (!DT->dominates(Use, BaseAccess)) {
3246       LLVM_DEBUG(
3247           dbgs() << "  Unknown dominance relation between Base and Use\n");
3248       return false;
3249     }
3250   }
3251   if (STI->hasMinSize() && CodesizeEstimate > 0) {
3252     LLVM_DEBUG(dbgs() << "  Expected to grow instructions under minsize\n");
3253     return false;
3254   }
3255 
3256   if (!PrePostInc) {
3257     // Replace BaseAccess with a post inc
3258     LLVM_DEBUG(dbgs() << "Changing: "; BaseAccess->dump());
3259     LLVM_DEBUG(dbgs() << "  And   : "; Increment->dump());
3260     NewBaseReg = Increment->getOperand(0).getReg();
3261     MachineInstr *BaseAccessPost =
3262         createPostIncLoadStore(BaseAccess, IncrementOffset, NewBaseReg, TII, TRI);
3263     BaseAccess->eraseFromParent();
3264     Increment->eraseFromParent();
3265     (void)BaseAccessPost;
3266     LLVM_DEBUG(dbgs() << "  To    : "; BaseAccessPost->dump());
3267   }
3268 
3269   for (auto *Use : SuccessorAccesses) {
3270     LLVM_DEBUG(dbgs() << "Changing: "; Use->dump());
3271     AdjustBaseAndOffset(Use, NewBaseReg, IncrementOffset, TII, TRI);
3272     LLVM_DEBUG(dbgs() << "  To    : "; Use->dump());
3273   }
3274 
3275   // Remove the kill flag from all uses of NewBaseReg, in case any old uses
3276   // remain.
3277   for (MachineOperand &Op : MRI->use_nodbg_operands(NewBaseReg))
3278     Op.setIsKill(false);
3279   return true;
3280 }
3281 
3282 bool ARMPreAllocLoadStoreOpt::DistributeIncrements() {
3283   bool Changed = false;
3284   SmallSetVector<Register, 4> Visited;
3285   for (auto &MBB : *MF) {
3286     for (auto &MI : MBB) {
3287       int BaseOp = getBaseOperandIndex(MI);
3288       if (BaseOp == -1 || !MI.getOperand(BaseOp).isReg())
3289         continue;
3290 
3291       Register Base = MI.getOperand(BaseOp).getReg();
3292       if (!Base.isVirtual() || Visited.count(Base))
3293         continue;
3294 
3295       Visited.insert(Base);
3296     }
3297   }
3298 
3299   for (auto Base : Visited)
3300     Changed |= DistributeIncrements(Base);
3301 
3302   return Changed;
3303 }
3304 
3305 /// Returns an instance of the load / store optimization pass.
3306 FunctionPass *llvm::createARMLoadStoreOptimizationPass(bool PreAlloc) {
3307   if (PreAlloc)
3308     return new ARMPreAllocLoadStoreOpt();
3309   return new ARMLoadStoreOpt();
3310 }
3311