1 //===- ARMLoadStoreOptimizer.cpp - ARM load / store opt. pass -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This file contains a pass that performs load / store related peephole 10 /// optimizations. This pass should be run after register allocation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARM.h" 15 #include "ARMBaseInstrInfo.h" 16 #include "ARMBaseRegisterInfo.h" 17 #include "ARMISelLowering.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMBaseInfo.h" 22 #include "Utils/ARMBaseInfo.h" 23 #include "llvm/ADT/ArrayRef.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/DenseSet.h" 26 #include "llvm/ADT/STLExtras.h" 27 #include "llvm/ADT/SetVector.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/SmallSet.h" 30 #include "llvm/ADT/SmallVector.h" 31 #include "llvm/ADT/Statistic.h" 32 #include "llvm/ADT/iterator_range.h" 33 #include "llvm/Analysis/AliasAnalysis.h" 34 #include "llvm/CodeGen/LivePhysRegs.h" 35 #include "llvm/CodeGen/MachineBasicBlock.h" 36 #include "llvm/CodeGen/MachineDominators.h" 37 #include "llvm/CodeGen/MachineFrameInfo.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineFunctionPass.h" 40 #include "llvm/CodeGen/MachineInstr.h" 41 #include "llvm/CodeGen/MachineInstrBuilder.h" 42 #include "llvm/CodeGen/MachineMemOperand.h" 43 #include "llvm/CodeGen/MachineOperand.h" 44 #include "llvm/CodeGen/MachineRegisterInfo.h" 45 #include "llvm/CodeGen/RegisterClassInfo.h" 46 #include "llvm/CodeGen/TargetFrameLowering.h" 47 #include "llvm/CodeGen/TargetInstrInfo.h" 48 #include "llvm/CodeGen/TargetLowering.h" 49 #include "llvm/CodeGen/TargetRegisterInfo.h" 50 #include "llvm/CodeGen/TargetSubtargetInfo.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/DebugLoc.h" 53 #include "llvm/IR/DerivedTypes.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/InitializePasses.h" 57 #include "llvm/MC/MCInstrDesc.h" 58 #include "llvm/Pass.h" 59 #include "llvm/Support/Allocator.h" 60 #include "llvm/Support/CommandLine.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include <algorithm> 65 #include <cassert> 66 #include <cstddef> 67 #include <cstdlib> 68 #include <iterator> 69 #include <limits> 70 #include <utility> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "arm-ldst-opt" 75 76 STATISTIC(NumLDMGened , "Number of ldm instructions generated"); 77 STATISTIC(NumSTMGened , "Number of stm instructions generated"); 78 STATISTIC(NumVLDMGened, "Number of vldm instructions generated"); 79 STATISTIC(NumVSTMGened, "Number of vstm instructions generated"); 80 STATISTIC(NumLdStMoved, "Number of load / store instructions moved"); 81 STATISTIC(NumLDRDFormed,"Number of ldrd created before allocation"); 82 STATISTIC(NumSTRDFormed,"Number of strd created before allocation"); 83 STATISTIC(NumLDRD2LDM, "Number of ldrd instructions turned back into ldm"); 84 STATISTIC(NumSTRD2STM, "Number of strd instructions turned back into stm"); 85 STATISTIC(NumLDRD2LDR, "Number of ldrd instructions turned back into ldr's"); 86 STATISTIC(NumSTRD2STR, "Number of strd instructions turned back into str's"); 87 88 /// This switch disables formation of double/multi instructions that could 89 /// potentially lead to (new) alignment traps even with CCR.UNALIGN_TRP 90 /// disabled. This can be used to create libraries that are robust even when 91 /// users provoke undefined behaviour by supplying misaligned pointers. 92 /// \see mayCombineMisaligned() 93 static cl::opt<bool> 94 AssumeMisalignedLoadStores("arm-assume-misaligned-load-store", cl::Hidden, 95 cl::init(false), cl::desc("Be more conservative in ARM load/store opt")); 96 97 #define ARM_LOAD_STORE_OPT_NAME "ARM load / store optimization pass" 98 99 namespace { 100 101 /// Post- register allocation pass the combine load / store instructions to 102 /// form ldm / stm instructions. 103 struct ARMLoadStoreOpt : public MachineFunctionPass { 104 static char ID; 105 106 const MachineFunction *MF; 107 const TargetInstrInfo *TII; 108 const TargetRegisterInfo *TRI; 109 const ARMSubtarget *STI; 110 const TargetLowering *TL; 111 ARMFunctionInfo *AFI; 112 LivePhysRegs LiveRegs; 113 RegisterClassInfo RegClassInfo; 114 MachineBasicBlock::const_iterator LiveRegPos; 115 bool LiveRegsValid; 116 bool RegClassInfoValid; 117 bool isThumb1, isThumb2; 118 119 ARMLoadStoreOpt() : MachineFunctionPass(ID) {} 120 121 bool runOnMachineFunction(MachineFunction &Fn) override; 122 123 MachineFunctionProperties getRequiredProperties() const override { 124 return MachineFunctionProperties().set( 125 MachineFunctionProperties::Property::NoVRegs); 126 } 127 128 StringRef getPassName() const override { return ARM_LOAD_STORE_OPT_NAME; } 129 130 private: 131 /// A set of load/store MachineInstrs with same base register sorted by 132 /// offset. 133 struct MemOpQueueEntry { 134 MachineInstr *MI; 135 int Offset; ///< Load/Store offset. 136 unsigned Position; ///< Position as counted from end of basic block. 137 138 MemOpQueueEntry(MachineInstr &MI, int Offset, unsigned Position) 139 : MI(&MI), Offset(Offset), Position(Position) {} 140 }; 141 using MemOpQueue = SmallVector<MemOpQueueEntry, 8>; 142 143 /// A set of MachineInstrs that fulfill (nearly all) conditions to get 144 /// merged into a LDM/STM. 145 struct MergeCandidate { 146 /// List of instructions ordered by load/store offset. 147 SmallVector<MachineInstr*, 4> Instrs; 148 149 /// Index in Instrs of the instruction being latest in the schedule. 150 unsigned LatestMIIdx; 151 152 /// Index in Instrs of the instruction being earliest in the schedule. 153 unsigned EarliestMIIdx; 154 155 /// Index into the basic block where the merged instruction will be 156 /// inserted. (See MemOpQueueEntry.Position) 157 unsigned InsertPos; 158 159 /// Whether the instructions can be merged into a ldm/stm instruction. 160 bool CanMergeToLSMulti; 161 162 /// Whether the instructions can be merged into a ldrd/strd instruction. 163 bool CanMergeToLSDouble; 164 }; 165 SpecificBumpPtrAllocator<MergeCandidate> Allocator; 166 SmallVector<const MergeCandidate*,4> Candidates; 167 SmallVector<MachineInstr*,4> MergeBaseCandidates; 168 169 void moveLiveRegsBefore(const MachineBasicBlock &MBB, 170 MachineBasicBlock::const_iterator Before); 171 unsigned findFreeReg(const TargetRegisterClass &RegClass); 172 void UpdateBaseRegUses(MachineBasicBlock &MBB, 173 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, 174 unsigned Base, unsigned WordOffset, 175 ARMCC::CondCodes Pred, unsigned PredReg); 176 MachineInstr *CreateLoadStoreMulti( 177 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 178 int Offset, unsigned Base, bool BaseKill, unsigned Opcode, 179 ARMCC::CondCodes Pred, unsigned PredReg, const DebugLoc &DL, 180 ArrayRef<std::pair<unsigned, bool>> Regs, 181 ArrayRef<MachineInstr*> Instrs); 182 MachineInstr *CreateLoadStoreDouble( 183 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 184 int Offset, unsigned Base, bool BaseKill, unsigned Opcode, 185 ARMCC::CondCodes Pred, unsigned PredReg, const DebugLoc &DL, 186 ArrayRef<std::pair<unsigned, bool>> Regs, 187 ArrayRef<MachineInstr*> Instrs) const; 188 void FormCandidates(const MemOpQueue &MemOps); 189 MachineInstr *MergeOpsUpdate(const MergeCandidate &Cand); 190 bool FixInvalidRegPairOp(MachineBasicBlock &MBB, 191 MachineBasicBlock::iterator &MBBI); 192 bool MergeBaseUpdateLoadStore(MachineInstr *MI); 193 bool MergeBaseUpdateLSMultiple(MachineInstr *MI); 194 bool MergeBaseUpdateLSDouble(MachineInstr &MI) const; 195 bool LoadStoreMultipleOpti(MachineBasicBlock &MBB); 196 bool MergeReturnIntoLDM(MachineBasicBlock &MBB); 197 bool CombineMovBx(MachineBasicBlock &MBB); 198 }; 199 200 } // end anonymous namespace 201 202 char ARMLoadStoreOpt::ID = 0; 203 204 INITIALIZE_PASS(ARMLoadStoreOpt, "arm-ldst-opt", ARM_LOAD_STORE_OPT_NAME, false, 205 false) 206 207 static bool definesCPSR(const MachineInstr &MI) { 208 for (const auto &MO : MI.operands()) { 209 if (!MO.isReg()) 210 continue; 211 if (MO.isDef() && MO.getReg() == ARM::CPSR && !MO.isDead()) 212 // If the instruction has live CPSR def, then it's not safe to fold it 213 // into load / store. 214 return true; 215 } 216 217 return false; 218 } 219 220 static int getMemoryOpOffset(const MachineInstr &MI) { 221 unsigned Opcode = MI.getOpcode(); 222 bool isAM3 = Opcode == ARM::LDRD || Opcode == ARM::STRD; 223 unsigned NumOperands = MI.getDesc().getNumOperands(); 224 unsigned OffField = MI.getOperand(NumOperands - 3).getImm(); 225 226 if (Opcode == ARM::t2LDRi12 || Opcode == ARM::t2LDRi8 || 227 Opcode == ARM::t2STRi12 || Opcode == ARM::t2STRi8 || 228 Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8 || 229 Opcode == ARM::LDRi12 || Opcode == ARM::STRi12) 230 return OffField; 231 232 // Thumb1 immediate offsets are scaled by 4 233 if (Opcode == ARM::tLDRi || Opcode == ARM::tSTRi || 234 Opcode == ARM::tLDRspi || Opcode == ARM::tSTRspi) 235 return OffField * 4; 236 237 int Offset = isAM3 ? ARM_AM::getAM3Offset(OffField) 238 : ARM_AM::getAM5Offset(OffField) * 4; 239 ARM_AM::AddrOpc Op = isAM3 ? ARM_AM::getAM3Op(OffField) 240 : ARM_AM::getAM5Op(OffField); 241 242 if (Op == ARM_AM::sub) 243 return -Offset; 244 245 return Offset; 246 } 247 248 static const MachineOperand &getLoadStoreBaseOp(const MachineInstr &MI) { 249 return MI.getOperand(1); 250 } 251 252 static const MachineOperand &getLoadStoreRegOp(const MachineInstr &MI) { 253 return MI.getOperand(0); 254 } 255 256 static int getLoadStoreMultipleOpcode(unsigned Opcode, ARM_AM::AMSubMode Mode) { 257 switch (Opcode) { 258 default: llvm_unreachable("Unhandled opcode!"); 259 case ARM::LDRi12: 260 ++NumLDMGened; 261 switch (Mode) { 262 default: llvm_unreachable("Unhandled submode!"); 263 case ARM_AM::ia: return ARM::LDMIA; 264 case ARM_AM::da: return ARM::LDMDA; 265 case ARM_AM::db: return ARM::LDMDB; 266 case ARM_AM::ib: return ARM::LDMIB; 267 } 268 case ARM::STRi12: 269 ++NumSTMGened; 270 switch (Mode) { 271 default: llvm_unreachable("Unhandled submode!"); 272 case ARM_AM::ia: return ARM::STMIA; 273 case ARM_AM::da: return ARM::STMDA; 274 case ARM_AM::db: return ARM::STMDB; 275 case ARM_AM::ib: return ARM::STMIB; 276 } 277 case ARM::tLDRi: 278 case ARM::tLDRspi: 279 // tLDMIA is writeback-only - unless the base register is in the input 280 // reglist. 281 ++NumLDMGened; 282 switch (Mode) { 283 default: llvm_unreachable("Unhandled submode!"); 284 case ARM_AM::ia: return ARM::tLDMIA; 285 } 286 case ARM::tSTRi: 287 case ARM::tSTRspi: 288 // There is no non-writeback tSTMIA either. 289 ++NumSTMGened; 290 switch (Mode) { 291 default: llvm_unreachable("Unhandled submode!"); 292 case ARM_AM::ia: return ARM::tSTMIA_UPD; 293 } 294 case ARM::t2LDRi8: 295 case ARM::t2LDRi12: 296 ++NumLDMGened; 297 switch (Mode) { 298 default: llvm_unreachable("Unhandled submode!"); 299 case ARM_AM::ia: return ARM::t2LDMIA; 300 case ARM_AM::db: return ARM::t2LDMDB; 301 } 302 case ARM::t2STRi8: 303 case ARM::t2STRi12: 304 ++NumSTMGened; 305 switch (Mode) { 306 default: llvm_unreachable("Unhandled submode!"); 307 case ARM_AM::ia: return ARM::t2STMIA; 308 case ARM_AM::db: return ARM::t2STMDB; 309 } 310 case ARM::VLDRS: 311 ++NumVLDMGened; 312 switch (Mode) { 313 default: llvm_unreachable("Unhandled submode!"); 314 case ARM_AM::ia: return ARM::VLDMSIA; 315 case ARM_AM::db: return 0; // Only VLDMSDB_UPD exists. 316 } 317 case ARM::VSTRS: 318 ++NumVSTMGened; 319 switch (Mode) { 320 default: llvm_unreachable("Unhandled submode!"); 321 case ARM_AM::ia: return ARM::VSTMSIA; 322 case ARM_AM::db: return 0; // Only VSTMSDB_UPD exists. 323 } 324 case ARM::VLDRD: 325 ++NumVLDMGened; 326 switch (Mode) { 327 default: llvm_unreachable("Unhandled submode!"); 328 case ARM_AM::ia: return ARM::VLDMDIA; 329 case ARM_AM::db: return 0; // Only VLDMDDB_UPD exists. 330 } 331 case ARM::VSTRD: 332 ++NumVSTMGened; 333 switch (Mode) { 334 default: llvm_unreachable("Unhandled submode!"); 335 case ARM_AM::ia: return ARM::VSTMDIA; 336 case ARM_AM::db: return 0; // Only VSTMDDB_UPD exists. 337 } 338 } 339 } 340 341 static ARM_AM::AMSubMode getLoadStoreMultipleSubMode(unsigned Opcode) { 342 switch (Opcode) { 343 default: llvm_unreachable("Unhandled opcode!"); 344 case ARM::LDMIA_RET: 345 case ARM::LDMIA: 346 case ARM::LDMIA_UPD: 347 case ARM::STMIA: 348 case ARM::STMIA_UPD: 349 case ARM::tLDMIA: 350 case ARM::tLDMIA_UPD: 351 case ARM::tSTMIA_UPD: 352 case ARM::t2LDMIA_RET: 353 case ARM::t2LDMIA: 354 case ARM::t2LDMIA_UPD: 355 case ARM::t2STMIA: 356 case ARM::t2STMIA_UPD: 357 case ARM::VLDMSIA: 358 case ARM::VLDMSIA_UPD: 359 case ARM::VSTMSIA: 360 case ARM::VSTMSIA_UPD: 361 case ARM::VLDMDIA: 362 case ARM::VLDMDIA_UPD: 363 case ARM::VSTMDIA: 364 case ARM::VSTMDIA_UPD: 365 return ARM_AM::ia; 366 367 case ARM::LDMDA: 368 case ARM::LDMDA_UPD: 369 case ARM::STMDA: 370 case ARM::STMDA_UPD: 371 return ARM_AM::da; 372 373 case ARM::LDMDB: 374 case ARM::LDMDB_UPD: 375 case ARM::STMDB: 376 case ARM::STMDB_UPD: 377 case ARM::t2LDMDB: 378 case ARM::t2LDMDB_UPD: 379 case ARM::t2STMDB: 380 case ARM::t2STMDB_UPD: 381 case ARM::VLDMSDB_UPD: 382 case ARM::VSTMSDB_UPD: 383 case ARM::VLDMDDB_UPD: 384 case ARM::VSTMDDB_UPD: 385 return ARM_AM::db; 386 387 case ARM::LDMIB: 388 case ARM::LDMIB_UPD: 389 case ARM::STMIB: 390 case ARM::STMIB_UPD: 391 return ARM_AM::ib; 392 } 393 } 394 395 static bool isT1i32Load(unsigned Opc) { 396 return Opc == ARM::tLDRi || Opc == ARM::tLDRspi; 397 } 398 399 static bool isT2i32Load(unsigned Opc) { 400 return Opc == ARM::t2LDRi12 || Opc == ARM::t2LDRi8; 401 } 402 403 static bool isi32Load(unsigned Opc) { 404 return Opc == ARM::LDRi12 || isT1i32Load(Opc) || isT2i32Load(Opc) ; 405 } 406 407 static bool isT1i32Store(unsigned Opc) { 408 return Opc == ARM::tSTRi || Opc == ARM::tSTRspi; 409 } 410 411 static bool isT2i32Store(unsigned Opc) { 412 return Opc == ARM::t2STRi12 || Opc == ARM::t2STRi8; 413 } 414 415 static bool isi32Store(unsigned Opc) { 416 return Opc == ARM::STRi12 || isT1i32Store(Opc) || isT2i32Store(Opc); 417 } 418 419 static bool isLoadSingle(unsigned Opc) { 420 return isi32Load(Opc) || Opc == ARM::VLDRS || Opc == ARM::VLDRD; 421 } 422 423 static unsigned getImmScale(unsigned Opc) { 424 switch (Opc) { 425 default: llvm_unreachable("Unhandled opcode!"); 426 case ARM::tLDRi: 427 case ARM::tSTRi: 428 case ARM::tLDRspi: 429 case ARM::tSTRspi: 430 return 1; 431 case ARM::tLDRHi: 432 case ARM::tSTRHi: 433 return 2; 434 case ARM::tLDRBi: 435 case ARM::tSTRBi: 436 return 4; 437 } 438 } 439 440 static unsigned getLSMultipleTransferSize(const MachineInstr *MI) { 441 switch (MI->getOpcode()) { 442 default: return 0; 443 case ARM::LDRi12: 444 case ARM::STRi12: 445 case ARM::tLDRi: 446 case ARM::tSTRi: 447 case ARM::tLDRspi: 448 case ARM::tSTRspi: 449 case ARM::t2LDRi8: 450 case ARM::t2LDRi12: 451 case ARM::t2STRi8: 452 case ARM::t2STRi12: 453 case ARM::VLDRS: 454 case ARM::VSTRS: 455 return 4; 456 case ARM::VLDRD: 457 case ARM::VSTRD: 458 return 8; 459 case ARM::LDMIA: 460 case ARM::LDMDA: 461 case ARM::LDMDB: 462 case ARM::LDMIB: 463 case ARM::STMIA: 464 case ARM::STMDA: 465 case ARM::STMDB: 466 case ARM::STMIB: 467 case ARM::tLDMIA: 468 case ARM::tLDMIA_UPD: 469 case ARM::tSTMIA_UPD: 470 case ARM::t2LDMIA: 471 case ARM::t2LDMDB: 472 case ARM::t2STMIA: 473 case ARM::t2STMDB: 474 case ARM::VLDMSIA: 475 case ARM::VSTMSIA: 476 return (MI->getNumOperands() - MI->getDesc().getNumOperands() + 1) * 4; 477 case ARM::VLDMDIA: 478 case ARM::VSTMDIA: 479 return (MI->getNumOperands() - MI->getDesc().getNumOperands() + 1) * 8; 480 } 481 } 482 483 /// Update future uses of the base register with the offset introduced 484 /// due to writeback. This function only works on Thumb1. 485 void ARMLoadStoreOpt::UpdateBaseRegUses(MachineBasicBlock &MBB, 486 MachineBasicBlock::iterator MBBI, 487 const DebugLoc &DL, unsigned Base, 488 unsigned WordOffset, 489 ARMCC::CondCodes Pred, 490 unsigned PredReg) { 491 assert(isThumb1 && "Can only update base register uses for Thumb1!"); 492 // Start updating any instructions with immediate offsets. Insert a SUB before 493 // the first non-updateable instruction (if any). 494 for (; MBBI != MBB.end(); ++MBBI) { 495 bool InsertSub = false; 496 unsigned Opc = MBBI->getOpcode(); 497 498 if (MBBI->readsRegister(Base)) { 499 int Offset; 500 bool IsLoad = 501 Opc == ARM::tLDRi || Opc == ARM::tLDRHi || Opc == ARM::tLDRBi; 502 bool IsStore = 503 Opc == ARM::tSTRi || Opc == ARM::tSTRHi || Opc == ARM::tSTRBi; 504 505 if (IsLoad || IsStore) { 506 // Loads and stores with immediate offsets can be updated, but only if 507 // the new offset isn't negative. 508 // The MachineOperand containing the offset immediate is the last one 509 // before predicates. 510 MachineOperand &MO = 511 MBBI->getOperand(MBBI->getDesc().getNumOperands() - 3); 512 // The offsets are scaled by 1, 2 or 4 depending on the Opcode. 513 Offset = MO.getImm() - WordOffset * getImmScale(Opc); 514 515 // If storing the base register, it needs to be reset first. 516 Register InstrSrcReg = getLoadStoreRegOp(*MBBI).getReg(); 517 518 if (Offset >= 0 && !(IsStore && InstrSrcReg == Base)) 519 MO.setImm(Offset); 520 else 521 InsertSub = true; 522 } else if ((Opc == ARM::tSUBi8 || Opc == ARM::tADDi8) && 523 !definesCPSR(*MBBI)) { 524 // SUBS/ADDS using this register, with a dead def of the CPSR. 525 // Merge it with the update; if the merged offset is too large, 526 // insert a new sub instead. 527 MachineOperand &MO = 528 MBBI->getOperand(MBBI->getDesc().getNumOperands() - 3); 529 Offset = (Opc == ARM::tSUBi8) ? 530 MO.getImm() + WordOffset * 4 : 531 MO.getImm() - WordOffset * 4 ; 532 if (Offset >= 0 && TL->isLegalAddImmediate(Offset)) { 533 // FIXME: Swap ADDS<->SUBS if Offset < 0, erase instruction if 534 // Offset == 0. 535 MO.setImm(Offset); 536 // The base register has now been reset, so exit early. 537 return; 538 } else { 539 InsertSub = true; 540 } 541 } else { 542 // Can't update the instruction. 543 InsertSub = true; 544 } 545 } else if (definesCPSR(*MBBI) || MBBI->isCall() || MBBI->isBranch()) { 546 // Since SUBS sets the condition flags, we can't place the base reset 547 // after an instruction that has a live CPSR def. 548 // The base register might also contain an argument for a function call. 549 InsertSub = true; 550 } 551 552 if (InsertSub) { 553 // An instruction above couldn't be updated, so insert a sub. 554 BuildMI(MBB, MBBI, DL, TII->get(ARM::tSUBi8), Base) 555 .add(t1CondCodeOp(true)) 556 .addReg(Base) 557 .addImm(WordOffset * 4) 558 .addImm(Pred) 559 .addReg(PredReg); 560 return; 561 } 562 563 if (MBBI->killsRegister(Base) || MBBI->definesRegister(Base)) 564 // Register got killed. Stop updating. 565 return; 566 } 567 568 // End of block was reached. 569 if (!MBB.succ_empty()) { 570 // FIXME: Because of a bug, live registers are sometimes missing from 571 // the successor blocks' live-in sets. This means we can't trust that 572 // information and *always* have to reset at the end of a block. 573 // See PR21029. 574 if (MBBI != MBB.end()) --MBBI; 575 BuildMI(MBB, MBBI, DL, TII->get(ARM::tSUBi8), Base) 576 .add(t1CondCodeOp(true)) 577 .addReg(Base) 578 .addImm(WordOffset * 4) 579 .addImm(Pred) 580 .addReg(PredReg); 581 } 582 } 583 584 /// Return the first register of class \p RegClass that is not in \p Regs. 585 unsigned ARMLoadStoreOpt::findFreeReg(const TargetRegisterClass &RegClass) { 586 if (!RegClassInfoValid) { 587 RegClassInfo.runOnMachineFunction(*MF); 588 RegClassInfoValid = true; 589 } 590 591 for (unsigned Reg : RegClassInfo.getOrder(&RegClass)) 592 if (LiveRegs.available(MF->getRegInfo(), Reg)) 593 return Reg; 594 return 0; 595 } 596 597 /// Compute live registers just before instruction \p Before (in normal schedule 598 /// direction). Computes backwards so multiple queries in the same block must 599 /// come in reverse order. 600 void ARMLoadStoreOpt::moveLiveRegsBefore(const MachineBasicBlock &MBB, 601 MachineBasicBlock::const_iterator Before) { 602 // Initialize if we never queried in this block. 603 if (!LiveRegsValid) { 604 LiveRegs.init(*TRI); 605 LiveRegs.addLiveOuts(MBB); 606 LiveRegPos = MBB.end(); 607 LiveRegsValid = true; 608 } 609 // Move backward just before the "Before" position. 610 while (LiveRegPos != Before) { 611 --LiveRegPos; 612 LiveRegs.stepBackward(*LiveRegPos); 613 } 614 } 615 616 static bool ContainsReg(const ArrayRef<std::pair<unsigned, bool>> &Regs, 617 unsigned Reg) { 618 for (const std::pair<unsigned, bool> &R : Regs) 619 if (R.first == Reg) 620 return true; 621 return false; 622 } 623 624 /// Create and insert a LDM or STM with Base as base register and registers in 625 /// Regs as the register operands that would be loaded / stored. It returns 626 /// true if the transformation is done. 627 MachineInstr *ARMLoadStoreOpt::CreateLoadStoreMulti( 628 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 629 int Offset, unsigned Base, bool BaseKill, unsigned Opcode, 630 ARMCC::CondCodes Pred, unsigned PredReg, const DebugLoc &DL, 631 ArrayRef<std::pair<unsigned, bool>> Regs, 632 ArrayRef<MachineInstr*> Instrs) { 633 unsigned NumRegs = Regs.size(); 634 assert(NumRegs > 1); 635 636 // For Thumb1 targets, it might be necessary to clobber the CPSR to merge. 637 // Compute liveness information for that register to make the decision. 638 bool SafeToClobberCPSR = !isThumb1 || 639 (MBB.computeRegisterLiveness(TRI, ARM::CPSR, InsertBefore, 20) == 640 MachineBasicBlock::LQR_Dead); 641 642 bool Writeback = isThumb1; // Thumb1 LDM/STM have base reg writeback. 643 644 // Exception: If the base register is in the input reglist, Thumb1 LDM is 645 // non-writeback. 646 // It's also not possible to merge an STR of the base register in Thumb1. 647 if (isThumb1 && ContainsReg(Regs, Base)) { 648 assert(Base != ARM::SP && "Thumb1 does not allow SP in register list"); 649 if (Opcode == ARM::tLDRi) 650 Writeback = false; 651 else if (Opcode == ARM::tSTRi) 652 return nullptr; 653 } 654 655 ARM_AM::AMSubMode Mode = ARM_AM::ia; 656 // VFP and Thumb2 do not support IB or DA modes. Thumb1 only supports IA. 657 bool isNotVFP = isi32Load(Opcode) || isi32Store(Opcode); 658 bool haveIBAndDA = isNotVFP && !isThumb2 && !isThumb1; 659 660 if (Offset == 4 && haveIBAndDA) { 661 Mode = ARM_AM::ib; 662 } else if (Offset == -4 * (int)NumRegs + 4 && haveIBAndDA) { 663 Mode = ARM_AM::da; 664 } else if (Offset == -4 * (int)NumRegs && isNotVFP && !isThumb1) { 665 // VLDM/VSTM do not support DB mode without also updating the base reg. 666 Mode = ARM_AM::db; 667 } else if (Offset != 0 || Opcode == ARM::tLDRspi || Opcode == ARM::tSTRspi) { 668 // Check if this is a supported opcode before inserting instructions to 669 // calculate a new base register. 670 if (!getLoadStoreMultipleOpcode(Opcode, Mode)) return nullptr; 671 672 // If starting offset isn't zero, insert a MI to materialize a new base. 673 // But only do so if it is cost effective, i.e. merging more than two 674 // loads / stores. 675 if (NumRegs <= 2) 676 return nullptr; 677 678 // On Thumb1, it's not worth materializing a new base register without 679 // clobbering the CPSR (i.e. not using ADDS/SUBS). 680 if (!SafeToClobberCPSR) 681 return nullptr; 682 683 unsigned NewBase; 684 if (isi32Load(Opcode)) { 685 // If it is a load, then just use one of the destination registers 686 // as the new base. Will no longer be writeback in Thumb1. 687 NewBase = Regs[NumRegs-1].first; 688 Writeback = false; 689 } else { 690 // Find a free register that we can use as scratch register. 691 moveLiveRegsBefore(MBB, InsertBefore); 692 // The merged instruction does not exist yet but will use several Regs if 693 // it is a Store. 694 if (!isLoadSingle(Opcode)) 695 for (const std::pair<unsigned, bool> &R : Regs) 696 LiveRegs.addReg(R.first); 697 698 NewBase = findFreeReg(isThumb1 ? ARM::tGPRRegClass : ARM::GPRRegClass); 699 if (NewBase == 0) 700 return nullptr; 701 } 702 703 int BaseOpc = isThumb2 ? (BaseKill && Base == ARM::SP ? ARM::t2ADDspImm 704 : ARM::t2ADDri) 705 : (isThumb1 && Base == ARM::SP) 706 ? ARM::tADDrSPi 707 : (isThumb1 && Offset < 8) 708 ? ARM::tADDi3 709 : isThumb1 ? ARM::tADDi8 : ARM::ADDri; 710 711 if (Offset < 0) { 712 // FIXME: There are no Thumb1 load/store instructions with negative 713 // offsets. So the Base != ARM::SP might be unnecessary. 714 Offset = -Offset; 715 BaseOpc = isThumb2 ? (BaseKill && Base == ARM::SP ? ARM::t2SUBspImm 716 : ARM::t2SUBri) 717 : (isThumb1 && Offset < 8 && Base != ARM::SP) 718 ? ARM::tSUBi3 719 : isThumb1 ? ARM::tSUBi8 : ARM::SUBri; 720 } 721 722 if (!TL->isLegalAddImmediate(Offset)) 723 // FIXME: Try add with register operand? 724 return nullptr; // Probably not worth it then. 725 726 // We can only append a kill flag to the add/sub input if the value is not 727 // used in the register list of the stm as well. 728 bool KillOldBase = BaseKill && 729 (!isi32Store(Opcode) || !ContainsReg(Regs, Base)); 730 731 if (isThumb1) { 732 // Thumb1: depending on immediate size, use either 733 // ADDS NewBase, Base, #imm3 734 // or 735 // MOV NewBase, Base 736 // ADDS NewBase, #imm8. 737 if (Base != NewBase && 738 (BaseOpc == ARM::tADDi8 || BaseOpc == ARM::tSUBi8)) { 739 // Need to insert a MOV to the new base first. 740 if (isARMLowRegister(NewBase) && isARMLowRegister(Base) && 741 !STI->hasV6Ops()) { 742 // thumbv4t doesn't have lo->lo copies, and we can't predicate tMOVSr 743 if (Pred != ARMCC::AL) 744 return nullptr; 745 BuildMI(MBB, InsertBefore, DL, TII->get(ARM::tMOVSr), NewBase) 746 .addReg(Base, getKillRegState(KillOldBase)); 747 } else 748 BuildMI(MBB, InsertBefore, DL, TII->get(ARM::tMOVr), NewBase) 749 .addReg(Base, getKillRegState(KillOldBase)) 750 .add(predOps(Pred, PredReg)); 751 752 // The following ADDS/SUBS becomes an update. 753 Base = NewBase; 754 KillOldBase = true; 755 } 756 if (BaseOpc == ARM::tADDrSPi) { 757 assert(Offset % 4 == 0 && "tADDrSPi offset is scaled by 4"); 758 BuildMI(MBB, InsertBefore, DL, TII->get(BaseOpc), NewBase) 759 .addReg(Base, getKillRegState(KillOldBase)) 760 .addImm(Offset / 4) 761 .add(predOps(Pred, PredReg)); 762 } else 763 BuildMI(MBB, InsertBefore, DL, TII->get(BaseOpc), NewBase) 764 .add(t1CondCodeOp(true)) 765 .addReg(Base, getKillRegState(KillOldBase)) 766 .addImm(Offset) 767 .add(predOps(Pred, PredReg)); 768 } else { 769 BuildMI(MBB, InsertBefore, DL, TII->get(BaseOpc), NewBase) 770 .addReg(Base, getKillRegState(KillOldBase)) 771 .addImm(Offset) 772 .add(predOps(Pred, PredReg)) 773 .add(condCodeOp()); 774 } 775 Base = NewBase; 776 BaseKill = true; // New base is always killed straight away. 777 } 778 779 bool isDef = isLoadSingle(Opcode); 780 781 // Get LS multiple opcode. Note that for Thumb1 this might be an opcode with 782 // base register writeback. 783 Opcode = getLoadStoreMultipleOpcode(Opcode, Mode); 784 if (!Opcode) 785 return nullptr; 786 787 // Check if a Thumb1 LDM/STM merge is safe. This is the case if: 788 // - There is no writeback (LDM of base register), 789 // - the base register is killed by the merged instruction, 790 // - or it's safe to overwrite the condition flags, i.e. to insert a SUBS 791 // to reset the base register. 792 // Otherwise, don't merge. 793 // It's safe to return here since the code to materialize a new base register 794 // above is also conditional on SafeToClobberCPSR. 795 if (isThumb1 && !SafeToClobberCPSR && Writeback && !BaseKill) 796 return nullptr; 797 798 MachineInstrBuilder MIB; 799 800 if (Writeback) { 801 assert(isThumb1 && "expected Writeback only inThumb1"); 802 if (Opcode == ARM::tLDMIA) { 803 assert(!(ContainsReg(Regs, Base)) && "Thumb1 can't LDM ! with Base in Regs"); 804 // Update tLDMIA with writeback if necessary. 805 Opcode = ARM::tLDMIA_UPD; 806 } 807 808 MIB = BuildMI(MBB, InsertBefore, DL, TII->get(Opcode)); 809 810 // Thumb1: we might need to set base writeback when building the MI. 811 MIB.addReg(Base, getDefRegState(true)) 812 .addReg(Base, getKillRegState(BaseKill)); 813 814 // The base isn't dead after a merged instruction with writeback. 815 // Insert a sub instruction after the newly formed instruction to reset. 816 if (!BaseKill) 817 UpdateBaseRegUses(MBB, InsertBefore, DL, Base, NumRegs, Pred, PredReg); 818 } else { 819 // No writeback, simply build the MachineInstr. 820 MIB = BuildMI(MBB, InsertBefore, DL, TII->get(Opcode)); 821 MIB.addReg(Base, getKillRegState(BaseKill)); 822 } 823 824 MIB.addImm(Pred).addReg(PredReg); 825 826 for (const std::pair<unsigned, bool> &R : Regs) 827 MIB.addReg(R.first, getDefRegState(isDef) | getKillRegState(R.second)); 828 829 MIB.cloneMergedMemRefs(Instrs); 830 831 return MIB.getInstr(); 832 } 833 834 MachineInstr *ARMLoadStoreOpt::CreateLoadStoreDouble( 835 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 836 int Offset, unsigned Base, bool BaseKill, unsigned Opcode, 837 ARMCC::CondCodes Pred, unsigned PredReg, const DebugLoc &DL, 838 ArrayRef<std::pair<unsigned, bool>> Regs, 839 ArrayRef<MachineInstr*> Instrs) const { 840 bool IsLoad = isi32Load(Opcode); 841 assert((IsLoad || isi32Store(Opcode)) && "Must have integer load or store"); 842 unsigned LoadStoreOpcode = IsLoad ? ARM::t2LDRDi8 : ARM::t2STRDi8; 843 844 assert(Regs.size() == 2); 845 MachineInstrBuilder MIB = BuildMI(MBB, InsertBefore, DL, 846 TII->get(LoadStoreOpcode)); 847 if (IsLoad) { 848 MIB.addReg(Regs[0].first, RegState::Define) 849 .addReg(Regs[1].first, RegState::Define); 850 } else { 851 MIB.addReg(Regs[0].first, getKillRegState(Regs[0].second)) 852 .addReg(Regs[1].first, getKillRegState(Regs[1].second)); 853 } 854 MIB.addReg(Base).addImm(Offset).addImm(Pred).addReg(PredReg); 855 MIB.cloneMergedMemRefs(Instrs); 856 return MIB.getInstr(); 857 } 858 859 /// Call MergeOps and update MemOps and merges accordingly on success. 860 MachineInstr *ARMLoadStoreOpt::MergeOpsUpdate(const MergeCandidate &Cand) { 861 const MachineInstr *First = Cand.Instrs.front(); 862 unsigned Opcode = First->getOpcode(); 863 bool IsLoad = isLoadSingle(Opcode); 864 SmallVector<std::pair<unsigned, bool>, 8> Regs; 865 SmallVector<unsigned, 4> ImpDefs; 866 DenseSet<unsigned> KilledRegs; 867 DenseSet<unsigned> UsedRegs; 868 // Determine list of registers and list of implicit super-register defs. 869 for (const MachineInstr *MI : Cand.Instrs) { 870 const MachineOperand &MO = getLoadStoreRegOp(*MI); 871 Register Reg = MO.getReg(); 872 bool IsKill = MO.isKill(); 873 if (IsKill) 874 KilledRegs.insert(Reg); 875 Regs.push_back(std::make_pair(Reg, IsKill)); 876 UsedRegs.insert(Reg); 877 878 if (IsLoad) { 879 // Collect any implicit defs of super-registers, after merging we can't 880 // be sure anymore that we properly preserved these live ranges and must 881 // removed these implicit operands. 882 for (const MachineOperand &MO : MI->implicit_operands()) { 883 if (!MO.isReg() || !MO.isDef() || MO.isDead()) 884 continue; 885 assert(MO.isImplicit()); 886 Register DefReg = MO.getReg(); 887 888 if (is_contained(ImpDefs, DefReg)) 889 continue; 890 // We can ignore cases where the super-reg is read and written. 891 if (MI->readsRegister(DefReg)) 892 continue; 893 ImpDefs.push_back(DefReg); 894 } 895 } 896 } 897 898 // Attempt the merge. 899 using iterator = MachineBasicBlock::iterator; 900 901 MachineInstr *LatestMI = Cand.Instrs[Cand.LatestMIIdx]; 902 iterator InsertBefore = std::next(iterator(LatestMI)); 903 MachineBasicBlock &MBB = *LatestMI->getParent(); 904 unsigned Offset = getMemoryOpOffset(*First); 905 Register Base = getLoadStoreBaseOp(*First).getReg(); 906 bool BaseKill = LatestMI->killsRegister(Base); 907 Register PredReg; 908 ARMCC::CondCodes Pred = getInstrPredicate(*First, PredReg); 909 DebugLoc DL = First->getDebugLoc(); 910 MachineInstr *Merged = nullptr; 911 if (Cand.CanMergeToLSDouble) 912 Merged = CreateLoadStoreDouble(MBB, InsertBefore, Offset, Base, BaseKill, 913 Opcode, Pred, PredReg, DL, Regs, 914 Cand.Instrs); 915 if (!Merged && Cand.CanMergeToLSMulti) 916 Merged = CreateLoadStoreMulti(MBB, InsertBefore, Offset, Base, BaseKill, 917 Opcode, Pred, PredReg, DL, Regs, Cand.Instrs); 918 if (!Merged) 919 return nullptr; 920 921 // Determine earliest instruction that will get removed. We then keep an 922 // iterator just above it so the following erases don't invalidated it. 923 iterator EarliestI(Cand.Instrs[Cand.EarliestMIIdx]); 924 bool EarliestAtBegin = false; 925 if (EarliestI == MBB.begin()) { 926 EarliestAtBegin = true; 927 } else { 928 EarliestI = std::prev(EarliestI); 929 } 930 931 // Remove instructions which have been merged. 932 for (MachineInstr *MI : Cand.Instrs) 933 MBB.erase(MI); 934 935 // Determine range between the earliest removed instruction and the new one. 936 if (EarliestAtBegin) 937 EarliestI = MBB.begin(); 938 else 939 EarliestI = std::next(EarliestI); 940 auto FixupRange = make_range(EarliestI, iterator(Merged)); 941 942 if (isLoadSingle(Opcode)) { 943 // If the previous loads defined a super-reg, then we have to mark earlier 944 // operands undef; Replicate the super-reg def on the merged instruction. 945 for (MachineInstr &MI : FixupRange) { 946 for (unsigned &ImpDefReg : ImpDefs) { 947 for (MachineOperand &MO : MI.implicit_operands()) { 948 if (!MO.isReg() || MO.getReg() != ImpDefReg) 949 continue; 950 if (MO.readsReg()) 951 MO.setIsUndef(); 952 else if (MO.isDef()) 953 ImpDefReg = 0; 954 } 955 } 956 } 957 958 MachineInstrBuilder MIB(*Merged->getParent()->getParent(), Merged); 959 for (unsigned ImpDef : ImpDefs) 960 MIB.addReg(ImpDef, RegState::ImplicitDefine); 961 } else { 962 // Remove kill flags: We are possibly storing the values later now. 963 assert(isi32Store(Opcode) || Opcode == ARM::VSTRS || Opcode == ARM::VSTRD); 964 for (MachineInstr &MI : FixupRange) { 965 for (MachineOperand &MO : MI.uses()) { 966 if (!MO.isReg() || !MO.isKill()) 967 continue; 968 if (UsedRegs.count(MO.getReg())) 969 MO.setIsKill(false); 970 } 971 } 972 assert(ImpDefs.empty()); 973 } 974 975 return Merged; 976 } 977 978 static bool isValidLSDoubleOffset(int Offset) { 979 unsigned Value = abs(Offset); 980 // t2LDRDi8/t2STRDi8 supports an 8 bit immediate which is internally 981 // multiplied by 4. 982 return (Value % 4) == 0 && Value < 1024; 983 } 984 985 /// Return true for loads/stores that can be combined to a double/multi 986 /// operation without increasing the requirements for alignment. 987 static bool mayCombineMisaligned(const TargetSubtargetInfo &STI, 988 const MachineInstr &MI) { 989 // vldr/vstr trap on misaligned pointers anyway, forming vldm makes no 990 // difference. 991 unsigned Opcode = MI.getOpcode(); 992 if (!isi32Load(Opcode) && !isi32Store(Opcode)) 993 return true; 994 995 // Stack pointer alignment is out of the programmers control so we can trust 996 // SP-relative loads/stores. 997 if (getLoadStoreBaseOp(MI).getReg() == ARM::SP && 998 STI.getFrameLowering()->getTransientStackAlign() >= Align(4)) 999 return true; 1000 return false; 1001 } 1002 1003 /// Find candidates for load/store multiple merge in list of MemOpQueueEntries. 1004 void ARMLoadStoreOpt::FormCandidates(const MemOpQueue &MemOps) { 1005 const MachineInstr *FirstMI = MemOps[0].MI; 1006 unsigned Opcode = FirstMI->getOpcode(); 1007 bool isNotVFP = isi32Load(Opcode) || isi32Store(Opcode); 1008 unsigned Size = getLSMultipleTransferSize(FirstMI); 1009 1010 unsigned SIndex = 0; 1011 unsigned EIndex = MemOps.size(); 1012 do { 1013 // Look at the first instruction. 1014 const MachineInstr *MI = MemOps[SIndex].MI; 1015 int Offset = MemOps[SIndex].Offset; 1016 const MachineOperand &PMO = getLoadStoreRegOp(*MI); 1017 Register PReg = PMO.getReg(); 1018 unsigned PRegNum = PMO.isUndef() ? std::numeric_limits<unsigned>::max() 1019 : TRI->getEncodingValue(PReg); 1020 unsigned Latest = SIndex; 1021 unsigned Earliest = SIndex; 1022 unsigned Count = 1; 1023 bool CanMergeToLSDouble = 1024 STI->isThumb2() && isNotVFP && isValidLSDoubleOffset(Offset); 1025 // ARM errata 602117: LDRD with base in list may result in incorrect base 1026 // register when interrupted or faulted. 1027 if (STI->isCortexM3() && isi32Load(Opcode) && 1028 PReg == getLoadStoreBaseOp(*MI).getReg()) 1029 CanMergeToLSDouble = false; 1030 1031 bool CanMergeToLSMulti = true; 1032 // On swift vldm/vstm starting with an odd register number as that needs 1033 // more uops than single vldrs. 1034 if (STI->hasSlowOddRegister() && !isNotVFP && (PRegNum % 2) == 1) 1035 CanMergeToLSMulti = false; 1036 1037 // LDRD/STRD do not allow SP/PC. LDM/STM do not support it or have it 1038 // deprecated; LDM to PC is fine but cannot happen here. 1039 if (PReg == ARM::SP || PReg == ARM::PC) 1040 CanMergeToLSMulti = CanMergeToLSDouble = false; 1041 1042 // Should we be conservative? 1043 if (AssumeMisalignedLoadStores && !mayCombineMisaligned(*STI, *MI)) 1044 CanMergeToLSMulti = CanMergeToLSDouble = false; 1045 1046 // vldm / vstm limit are 32 for S variants, 16 for D variants. 1047 unsigned Limit; 1048 switch (Opcode) { 1049 default: 1050 Limit = UINT_MAX; 1051 break; 1052 case ARM::VLDRD: 1053 case ARM::VSTRD: 1054 Limit = 16; 1055 break; 1056 } 1057 1058 // Merge following instructions where possible. 1059 for (unsigned I = SIndex+1; I < EIndex; ++I, ++Count) { 1060 int NewOffset = MemOps[I].Offset; 1061 if (NewOffset != Offset + (int)Size) 1062 break; 1063 const MachineOperand &MO = getLoadStoreRegOp(*MemOps[I].MI); 1064 Register Reg = MO.getReg(); 1065 if (Reg == ARM::SP || Reg == ARM::PC) 1066 break; 1067 if (Count == Limit) 1068 break; 1069 1070 // See if the current load/store may be part of a multi load/store. 1071 unsigned RegNum = MO.isUndef() ? std::numeric_limits<unsigned>::max() 1072 : TRI->getEncodingValue(Reg); 1073 bool PartOfLSMulti = CanMergeToLSMulti; 1074 if (PartOfLSMulti) { 1075 // Register numbers must be in ascending order. 1076 if (RegNum <= PRegNum) 1077 PartOfLSMulti = false; 1078 // For VFP / NEON load/store multiples, the registers must be 1079 // consecutive and within the limit on the number of registers per 1080 // instruction. 1081 else if (!isNotVFP && RegNum != PRegNum+1) 1082 PartOfLSMulti = false; 1083 } 1084 // See if the current load/store may be part of a double load/store. 1085 bool PartOfLSDouble = CanMergeToLSDouble && Count <= 1; 1086 1087 if (!PartOfLSMulti && !PartOfLSDouble) 1088 break; 1089 CanMergeToLSMulti &= PartOfLSMulti; 1090 CanMergeToLSDouble &= PartOfLSDouble; 1091 // Track MemOp with latest and earliest position (Positions are 1092 // counted in reverse). 1093 unsigned Position = MemOps[I].Position; 1094 if (Position < MemOps[Latest].Position) 1095 Latest = I; 1096 else if (Position > MemOps[Earliest].Position) 1097 Earliest = I; 1098 // Prepare for next MemOp. 1099 Offset += Size; 1100 PRegNum = RegNum; 1101 } 1102 1103 // Form a candidate from the Ops collected so far. 1104 MergeCandidate *Candidate = new(Allocator.Allocate()) MergeCandidate; 1105 for (unsigned C = SIndex, CE = SIndex + Count; C < CE; ++C) 1106 Candidate->Instrs.push_back(MemOps[C].MI); 1107 Candidate->LatestMIIdx = Latest - SIndex; 1108 Candidate->EarliestMIIdx = Earliest - SIndex; 1109 Candidate->InsertPos = MemOps[Latest].Position; 1110 if (Count == 1) 1111 CanMergeToLSMulti = CanMergeToLSDouble = false; 1112 Candidate->CanMergeToLSMulti = CanMergeToLSMulti; 1113 Candidate->CanMergeToLSDouble = CanMergeToLSDouble; 1114 Candidates.push_back(Candidate); 1115 // Continue after the chain. 1116 SIndex += Count; 1117 } while (SIndex < EIndex); 1118 } 1119 1120 static unsigned getUpdatingLSMultipleOpcode(unsigned Opc, 1121 ARM_AM::AMSubMode Mode) { 1122 switch (Opc) { 1123 default: llvm_unreachable("Unhandled opcode!"); 1124 case ARM::LDMIA: 1125 case ARM::LDMDA: 1126 case ARM::LDMDB: 1127 case ARM::LDMIB: 1128 switch (Mode) { 1129 default: llvm_unreachable("Unhandled submode!"); 1130 case ARM_AM::ia: return ARM::LDMIA_UPD; 1131 case ARM_AM::ib: return ARM::LDMIB_UPD; 1132 case ARM_AM::da: return ARM::LDMDA_UPD; 1133 case ARM_AM::db: return ARM::LDMDB_UPD; 1134 } 1135 case ARM::STMIA: 1136 case ARM::STMDA: 1137 case ARM::STMDB: 1138 case ARM::STMIB: 1139 switch (Mode) { 1140 default: llvm_unreachable("Unhandled submode!"); 1141 case ARM_AM::ia: return ARM::STMIA_UPD; 1142 case ARM_AM::ib: return ARM::STMIB_UPD; 1143 case ARM_AM::da: return ARM::STMDA_UPD; 1144 case ARM_AM::db: return ARM::STMDB_UPD; 1145 } 1146 case ARM::t2LDMIA: 1147 case ARM::t2LDMDB: 1148 switch (Mode) { 1149 default: llvm_unreachable("Unhandled submode!"); 1150 case ARM_AM::ia: return ARM::t2LDMIA_UPD; 1151 case ARM_AM::db: return ARM::t2LDMDB_UPD; 1152 } 1153 case ARM::t2STMIA: 1154 case ARM::t2STMDB: 1155 switch (Mode) { 1156 default: llvm_unreachable("Unhandled submode!"); 1157 case ARM_AM::ia: return ARM::t2STMIA_UPD; 1158 case ARM_AM::db: return ARM::t2STMDB_UPD; 1159 } 1160 case ARM::VLDMSIA: 1161 switch (Mode) { 1162 default: llvm_unreachable("Unhandled submode!"); 1163 case ARM_AM::ia: return ARM::VLDMSIA_UPD; 1164 case ARM_AM::db: return ARM::VLDMSDB_UPD; 1165 } 1166 case ARM::VLDMDIA: 1167 switch (Mode) { 1168 default: llvm_unreachable("Unhandled submode!"); 1169 case ARM_AM::ia: return ARM::VLDMDIA_UPD; 1170 case ARM_AM::db: return ARM::VLDMDDB_UPD; 1171 } 1172 case ARM::VSTMSIA: 1173 switch (Mode) { 1174 default: llvm_unreachable("Unhandled submode!"); 1175 case ARM_AM::ia: return ARM::VSTMSIA_UPD; 1176 case ARM_AM::db: return ARM::VSTMSDB_UPD; 1177 } 1178 case ARM::VSTMDIA: 1179 switch (Mode) { 1180 default: llvm_unreachable("Unhandled submode!"); 1181 case ARM_AM::ia: return ARM::VSTMDIA_UPD; 1182 case ARM_AM::db: return ARM::VSTMDDB_UPD; 1183 } 1184 } 1185 } 1186 1187 /// Check if the given instruction increments or decrements a register and 1188 /// return the amount it is incremented/decremented. Returns 0 if the CPSR flags 1189 /// generated by the instruction are possibly read as well. 1190 static int isIncrementOrDecrement(const MachineInstr &MI, Register Reg, 1191 ARMCC::CondCodes Pred, Register PredReg) { 1192 bool CheckCPSRDef; 1193 int Scale; 1194 switch (MI.getOpcode()) { 1195 case ARM::tADDi8: Scale = 4; CheckCPSRDef = true; break; 1196 case ARM::tSUBi8: Scale = -4; CheckCPSRDef = true; break; 1197 case ARM::t2SUBri: 1198 case ARM::t2SUBspImm: 1199 case ARM::SUBri: Scale = -1; CheckCPSRDef = true; break; 1200 case ARM::t2ADDri: 1201 case ARM::t2ADDspImm: 1202 case ARM::ADDri: Scale = 1; CheckCPSRDef = true; break; 1203 case ARM::tADDspi: Scale = 4; CheckCPSRDef = false; break; 1204 case ARM::tSUBspi: Scale = -4; CheckCPSRDef = false; break; 1205 default: return 0; 1206 } 1207 1208 Register MIPredReg; 1209 if (MI.getOperand(0).getReg() != Reg || 1210 MI.getOperand(1).getReg() != Reg || 1211 getInstrPredicate(MI, MIPredReg) != Pred || 1212 MIPredReg != PredReg) 1213 return 0; 1214 1215 if (CheckCPSRDef && definesCPSR(MI)) 1216 return 0; 1217 return MI.getOperand(2).getImm() * Scale; 1218 } 1219 1220 /// Searches for an increment or decrement of \p Reg before \p MBBI. 1221 static MachineBasicBlock::iterator 1222 findIncDecBefore(MachineBasicBlock::iterator MBBI, Register Reg, 1223 ARMCC::CondCodes Pred, Register PredReg, int &Offset) { 1224 Offset = 0; 1225 MachineBasicBlock &MBB = *MBBI->getParent(); 1226 MachineBasicBlock::iterator BeginMBBI = MBB.begin(); 1227 MachineBasicBlock::iterator EndMBBI = MBB.end(); 1228 if (MBBI == BeginMBBI) 1229 return EndMBBI; 1230 1231 // Skip debug values. 1232 MachineBasicBlock::iterator PrevMBBI = std::prev(MBBI); 1233 while (PrevMBBI->isDebugInstr() && PrevMBBI != BeginMBBI) 1234 --PrevMBBI; 1235 1236 Offset = isIncrementOrDecrement(*PrevMBBI, Reg, Pred, PredReg); 1237 return Offset == 0 ? EndMBBI : PrevMBBI; 1238 } 1239 1240 /// Searches for a increment or decrement of \p Reg after \p MBBI. 1241 static MachineBasicBlock::iterator 1242 findIncDecAfter(MachineBasicBlock::iterator MBBI, Register Reg, 1243 ARMCC::CondCodes Pred, Register PredReg, int &Offset, 1244 const TargetRegisterInfo *TRI) { 1245 Offset = 0; 1246 MachineBasicBlock &MBB = *MBBI->getParent(); 1247 MachineBasicBlock::iterator EndMBBI = MBB.end(); 1248 MachineBasicBlock::iterator NextMBBI = std::next(MBBI); 1249 while (NextMBBI != EndMBBI) { 1250 // Skip debug values. 1251 while (NextMBBI != EndMBBI && NextMBBI->isDebugInstr()) 1252 ++NextMBBI; 1253 if (NextMBBI == EndMBBI) 1254 return EndMBBI; 1255 1256 unsigned Off = isIncrementOrDecrement(*NextMBBI, Reg, Pred, PredReg); 1257 if (Off) { 1258 Offset = Off; 1259 return NextMBBI; 1260 } 1261 1262 // SP can only be combined if it is the next instruction after the original 1263 // MBBI, otherwise we may be incrementing the stack pointer (invalidating 1264 // anything below the new pointer) when its frame elements are still in 1265 // use. Other registers can attempt to look further, until a different use 1266 // or def of the register is found. 1267 if (Reg == ARM::SP || NextMBBI->readsRegister(Reg, TRI) || 1268 NextMBBI->definesRegister(Reg, TRI)) 1269 return EndMBBI; 1270 1271 ++NextMBBI; 1272 } 1273 return EndMBBI; 1274 } 1275 1276 /// Fold proceeding/trailing inc/dec of base register into the 1277 /// LDM/STM/VLDM{D|S}/VSTM{D|S} op when possible: 1278 /// 1279 /// stmia rn, <ra, rb, rc> 1280 /// rn := rn + 4 * 3; 1281 /// => 1282 /// stmia rn!, <ra, rb, rc> 1283 /// 1284 /// rn := rn - 4 * 3; 1285 /// ldmia rn, <ra, rb, rc> 1286 /// => 1287 /// ldmdb rn!, <ra, rb, rc> 1288 bool ARMLoadStoreOpt::MergeBaseUpdateLSMultiple(MachineInstr *MI) { 1289 // Thumb1 is already using updating loads/stores. 1290 if (isThumb1) return false; 1291 LLVM_DEBUG(dbgs() << "Attempting to merge update of: " << *MI); 1292 1293 const MachineOperand &BaseOP = MI->getOperand(0); 1294 Register Base = BaseOP.getReg(); 1295 bool BaseKill = BaseOP.isKill(); 1296 Register PredReg; 1297 ARMCC::CondCodes Pred = getInstrPredicate(*MI, PredReg); 1298 unsigned Opcode = MI->getOpcode(); 1299 DebugLoc DL = MI->getDebugLoc(); 1300 1301 // Can't use an updating ld/st if the base register is also a dest 1302 // register. e.g. ldmdb r0!, {r0, r1, r2}. The behavior is undefined. 1303 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1304 if (MO.getReg() == Base) 1305 return false; 1306 1307 int Bytes = getLSMultipleTransferSize(MI); 1308 MachineBasicBlock &MBB = *MI->getParent(); 1309 MachineBasicBlock::iterator MBBI(MI); 1310 int Offset; 1311 MachineBasicBlock::iterator MergeInstr 1312 = findIncDecBefore(MBBI, Base, Pred, PredReg, Offset); 1313 ARM_AM::AMSubMode Mode = getLoadStoreMultipleSubMode(Opcode); 1314 if (Mode == ARM_AM::ia && Offset == -Bytes) { 1315 Mode = ARM_AM::db; 1316 } else if (Mode == ARM_AM::ib && Offset == -Bytes) { 1317 Mode = ARM_AM::da; 1318 } else { 1319 MergeInstr = findIncDecAfter(MBBI, Base, Pred, PredReg, Offset, TRI); 1320 if (((Mode != ARM_AM::ia && Mode != ARM_AM::ib) || Offset != Bytes) && 1321 ((Mode != ARM_AM::da && Mode != ARM_AM::db) || Offset != -Bytes)) { 1322 1323 // We couldn't find an inc/dec to merge. But if the base is dead, we 1324 // can still change to a writeback form as that will save us 2 bytes 1325 // of code size. It can create WAW hazards though, so only do it if 1326 // we're minimizing code size. 1327 if (!STI->hasMinSize() || !BaseKill) 1328 return false; 1329 1330 bool HighRegsUsed = false; 1331 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1332 if (MO.getReg() >= ARM::R8) { 1333 HighRegsUsed = true; 1334 break; 1335 } 1336 1337 if (!HighRegsUsed) 1338 MergeInstr = MBB.end(); 1339 else 1340 return false; 1341 } 1342 } 1343 if (MergeInstr != MBB.end()) { 1344 LLVM_DEBUG(dbgs() << " Erasing old increment: " << *MergeInstr); 1345 MBB.erase(MergeInstr); 1346 } 1347 1348 unsigned NewOpc = getUpdatingLSMultipleOpcode(Opcode, Mode); 1349 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc)) 1350 .addReg(Base, getDefRegState(true)) // WB base register 1351 .addReg(Base, getKillRegState(BaseKill)) 1352 .addImm(Pred).addReg(PredReg); 1353 1354 // Transfer the rest of operands. 1355 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 3)) 1356 MIB.add(MO); 1357 1358 // Transfer memoperands. 1359 MIB.setMemRefs(MI->memoperands()); 1360 1361 LLVM_DEBUG(dbgs() << " Added new load/store: " << *MIB); 1362 MBB.erase(MBBI); 1363 return true; 1364 } 1365 1366 static unsigned getPreIndexedLoadStoreOpcode(unsigned Opc, 1367 ARM_AM::AddrOpc Mode) { 1368 switch (Opc) { 1369 case ARM::LDRi12: 1370 return ARM::LDR_PRE_IMM; 1371 case ARM::STRi12: 1372 return ARM::STR_PRE_IMM; 1373 case ARM::VLDRS: 1374 return Mode == ARM_AM::add ? ARM::VLDMSIA_UPD : ARM::VLDMSDB_UPD; 1375 case ARM::VLDRD: 1376 return Mode == ARM_AM::add ? ARM::VLDMDIA_UPD : ARM::VLDMDDB_UPD; 1377 case ARM::VSTRS: 1378 return Mode == ARM_AM::add ? ARM::VSTMSIA_UPD : ARM::VSTMSDB_UPD; 1379 case ARM::VSTRD: 1380 return Mode == ARM_AM::add ? ARM::VSTMDIA_UPD : ARM::VSTMDDB_UPD; 1381 case ARM::t2LDRi8: 1382 case ARM::t2LDRi12: 1383 return ARM::t2LDR_PRE; 1384 case ARM::t2STRi8: 1385 case ARM::t2STRi12: 1386 return ARM::t2STR_PRE; 1387 default: llvm_unreachable("Unhandled opcode!"); 1388 } 1389 } 1390 1391 static unsigned getPostIndexedLoadStoreOpcode(unsigned Opc, 1392 ARM_AM::AddrOpc Mode) { 1393 switch (Opc) { 1394 case ARM::LDRi12: 1395 return ARM::LDR_POST_IMM; 1396 case ARM::STRi12: 1397 return ARM::STR_POST_IMM; 1398 case ARM::VLDRS: 1399 return Mode == ARM_AM::add ? ARM::VLDMSIA_UPD : ARM::VLDMSDB_UPD; 1400 case ARM::VLDRD: 1401 return Mode == ARM_AM::add ? ARM::VLDMDIA_UPD : ARM::VLDMDDB_UPD; 1402 case ARM::VSTRS: 1403 return Mode == ARM_AM::add ? ARM::VSTMSIA_UPD : ARM::VSTMSDB_UPD; 1404 case ARM::VSTRD: 1405 return Mode == ARM_AM::add ? ARM::VSTMDIA_UPD : ARM::VSTMDDB_UPD; 1406 case ARM::t2LDRi8: 1407 case ARM::t2LDRi12: 1408 return ARM::t2LDR_POST; 1409 case ARM::t2LDRBi8: 1410 case ARM::t2LDRBi12: 1411 return ARM::t2LDRB_POST; 1412 case ARM::t2LDRSBi8: 1413 case ARM::t2LDRSBi12: 1414 return ARM::t2LDRSB_POST; 1415 case ARM::t2LDRHi8: 1416 case ARM::t2LDRHi12: 1417 return ARM::t2LDRH_POST; 1418 case ARM::t2LDRSHi8: 1419 case ARM::t2LDRSHi12: 1420 return ARM::t2LDRSH_POST; 1421 case ARM::t2STRi8: 1422 case ARM::t2STRi12: 1423 return ARM::t2STR_POST; 1424 case ARM::t2STRBi8: 1425 case ARM::t2STRBi12: 1426 return ARM::t2STRB_POST; 1427 case ARM::t2STRHi8: 1428 case ARM::t2STRHi12: 1429 return ARM::t2STRH_POST; 1430 1431 case ARM::MVE_VLDRBS16: 1432 return ARM::MVE_VLDRBS16_post; 1433 case ARM::MVE_VLDRBS32: 1434 return ARM::MVE_VLDRBS32_post; 1435 case ARM::MVE_VLDRBU16: 1436 return ARM::MVE_VLDRBU16_post; 1437 case ARM::MVE_VLDRBU32: 1438 return ARM::MVE_VLDRBU32_post; 1439 case ARM::MVE_VLDRHS32: 1440 return ARM::MVE_VLDRHS32_post; 1441 case ARM::MVE_VLDRHU32: 1442 return ARM::MVE_VLDRHU32_post; 1443 case ARM::MVE_VLDRBU8: 1444 return ARM::MVE_VLDRBU8_post; 1445 case ARM::MVE_VLDRHU16: 1446 return ARM::MVE_VLDRHU16_post; 1447 case ARM::MVE_VLDRWU32: 1448 return ARM::MVE_VLDRWU32_post; 1449 case ARM::MVE_VSTRB16: 1450 return ARM::MVE_VSTRB16_post; 1451 case ARM::MVE_VSTRB32: 1452 return ARM::MVE_VSTRB32_post; 1453 case ARM::MVE_VSTRH32: 1454 return ARM::MVE_VSTRH32_post; 1455 case ARM::MVE_VSTRBU8: 1456 return ARM::MVE_VSTRBU8_post; 1457 case ARM::MVE_VSTRHU16: 1458 return ARM::MVE_VSTRHU16_post; 1459 case ARM::MVE_VSTRWU32: 1460 return ARM::MVE_VSTRWU32_post; 1461 1462 default: llvm_unreachable("Unhandled opcode!"); 1463 } 1464 } 1465 1466 /// Fold proceeding/trailing inc/dec of base register into the 1467 /// LDR/STR/FLD{D|S}/FST{D|S} op when possible: 1468 bool ARMLoadStoreOpt::MergeBaseUpdateLoadStore(MachineInstr *MI) { 1469 // Thumb1 doesn't have updating LDR/STR. 1470 // FIXME: Use LDM/STM with single register instead. 1471 if (isThumb1) return false; 1472 LLVM_DEBUG(dbgs() << "Attempting to merge update of: " << *MI); 1473 1474 Register Base = getLoadStoreBaseOp(*MI).getReg(); 1475 bool BaseKill = getLoadStoreBaseOp(*MI).isKill(); 1476 unsigned Opcode = MI->getOpcode(); 1477 DebugLoc DL = MI->getDebugLoc(); 1478 bool isAM5 = (Opcode == ARM::VLDRD || Opcode == ARM::VLDRS || 1479 Opcode == ARM::VSTRD || Opcode == ARM::VSTRS); 1480 bool isAM2 = (Opcode == ARM::LDRi12 || Opcode == ARM::STRi12); 1481 if (isi32Load(Opcode) || isi32Store(Opcode)) 1482 if (MI->getOperand(2).getImm() != 0) 1483 return false; 1484 if (isAM5 && ARM_AM::getAM5Offset(MI->getOperand(2).getImm()) != 0) 1485 return false; 1486 1487 // Can't do the merge if the destination register is the same as the would-be 1488 // writeback register. 1489 if (MI->getOperand(0).getReg() == Base) 1490 return false; 1491 1492 Register PredReg; 1493 ARMCC::CondCodes Pred = getInstrPredicate(*MI, PredReg); 1494 int Bytes = getLSMultipleTransferSize(MI); 1495 MachineBasicBlock &MBB = *MI->getParent(); 1496 MachineBasicBlock::iterator MBBI(MI); 1497 int Offset; 1498 MachineBasicBlock::iterator MergeInstr 1499 = findIncDecBefore(MBBI, Base, Pred, PredReg, Offset); 1500 unsigned NewOpc; 1501 if (!isAM5 && Offset == Bytes) { 1502 NewOpc = getPreIndexedLoadStoreOpcode(Opcode, ARM_AM::add); 1503 } else if (Offset == -Bytes) { 1504 NewOpc = getPreIndexedLoadStoreOpcode(Opcode, ARM_AM::sub); 1505 } else { 1506 MergeInstr = findIncDecAfter(MBBI, Base, Pred, PredReg, Offset, TRI); 1507 if (MergeInstr == MBB.end()) 1508 return false; 1509 1510 NewOpc = getPostIndexedLoadStoreOpcode(Opcode, ARM_AM::add); 1511 if ((isAM5 && Offset != Bytes) || 1512 (!isAM5 && !isLegalAddressImm(NewOpc, Offset, TII))) { 1513 NewOpc = getPostIndexedLoadStoreOpcode(Opcode, ARM_AM::sub); 1514 if (isAM5 || !isLegalAddressImm(NewOpc, Offset, TII)) 1515 return false; 1516 } 1517 } 1518 LLVM_DEBUG(dbgs() << " Erasing old increment: " << *MergeInstr); 1519 MBB.erase(MergeInstr); 1520 1521 ARM_AM::AddrOpc AddSub = Offset < 0 ? ARM_AM::sub : ARM_AM::add; 1522 1523 bool isLd = isLoadSingle(Opcode); 1524 if (isAM5) { 1525 // VLDM[SD]_UPD, VSTM[SD]_UPD 1526 // (There are no base-updating versions of VLDR/VSTR instructions, but the 1527 // updating load/store-multiple instructions can be used with only one 1528 // register.) 1529 MachineOperand &MO = MI->getOperand(0); 1530 auto MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc)) 1531 .addReg(Base, getDefRegState(true)) // WB base register 1532 .addReg(Base, getKillRegState(isLd ? BaseKill : false)) 1533 .addImm(Pred) 1534 .addReg(PredReg) 1535 .addReg(MO.getReg(), (isLd ? getDefRegState(true) 1536 : getKillRegState(MO.isKill()))) 1537 .cloneMemRefs(*MI); 1538 (void)MIB; 1539 LLVM_DEBUG(dbgs() << " Added new instruction: " << *MIB); 1540 } else if (isLd) { 1541 if (isAM2) { 1542 // LDR_PRE, LDR_POST 1543 if (NewOpc == ARM::LDR_PRE_IMM || NewOpc == ARM::LDRB_PRE_IMM) { 1544 auto MIB = 1545 BuildMI(MBB, MBBI, DL, TII->get(NewOpc), MI->getOperand(0).getReg()) 1546 .addReg(Base, RegState::Define) 1547 .addReg(Base) 1548 .addImm(Offset) 1549 .addImm(Pred) 1550 .addReg(PredReg) 1551 .cloneMemRefs(*MI); 1552 (void)MIB; 1553 LLVM_DEBUG(dbgs() << " Added new instruction: " << *MIB); 1554 } else { 1555 int Imm = ARM_AM::getAM2Opc(AddSub, abs(Offset), ARM_AM::no_shift); 1556 auto MIB = 1557 BuildMI(MBB, MBBI, DL, TII->get(NewOpc), MI->getOperand(0).getReg()) 1558 .addReg(Base, RegState::Define) 1559 .addReg(Base) 1560 .addReg(0) 1561 .addImm(Imm) 1562 .add(predOps(Pred, PredReg)) 1563 .cloneMemRefs(*MI); 1564 (void)MIB; 1565 LLVM_DEBUG(dbgs() << " Added new instruction: " << *MIB); 1566 } 1567 } else { 1568 // t2LDR_PRE, t2LDR_POST 1569 auto MIB = 1570 BuildMI(MBB, MBBI, DL, TII->get(NewOpc), MI->getOperand(0).getReg()) 1571 .addReg(Base, RegState::Define) 1572 .addReg(Base) 1573 .addImm(Offset) 1574 .add(predOps(Pred, PredReg)) 1575 .cloneMemRefs(*MI); 1576 (void)MIB; 1577 LLVM_DEBUG(dbgs() << " Added new instruction: " << *MIB); 1578 } 1579 } else { 1580 MachineOperand &MO = MI->getOperand(0); 1581 // FIXME: post-indexed stores use am2offset_imm, which still encodes 1582 // the vestigal zero-reg offset register. When that's fixed, this clause 1583 // can be removed entirely. 1584 if (isAM2 && NewOpc == ARM::STR_POST_IMM) { 1585 int Imm = ARM_AM::getAM2Opc(AddSub, abs(Offset), ARM_AM::no_shift); 1586 // STR_PRE, STR_POST 1587 auto MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc), Base) 1588 .addReg(MO.getReg(), getKillRegState(MO.isKill())) 1589 .addReg(Base) 1590 .addReg(0) 1591 .addImm(Imm) 1592 .add(predOps(Pred, PredReg)) 1593 .cloneMemRefs(*MI); 1594 (void)MIB; 1595 LLVM_DEBUG(dbgs() << " Added new instruction: " << *MIB); 1596 } else { 1597 // t2STR_PRE, t2STR_POST 1598 auto MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc), Base) 1599 .addReg(MO.getReg(), getKillRegState(MO.isKill())) 1600 .addReg(Base) 1601 .addImm(Offset) 1602 .add(predOps(Pred, PredReg)) 1603 .cloneMemRefs(*MI); 1604 (void)MIB; 1605 LLVM_DEBUG(dbgs() << " Added new instruction: " << *MIB); 1606 } 1607 } 1608 MBB.erase(MBBI); 1609 1610 return true; 1611 } 1612 1613 bool ARMLoadStoreOpt::MergeBaseUpdateLSDouble(MachineInstr &MI) const { 1614 unsigned Opcode = MI.getOpcode(); 1615 assert((Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8) && 1616 "Must have t2STRDi8 or t2LDRDi8"); 1617 if (MI.getOperand(3).getImm() != 0) 1618 return false; 1619 LLVM_DEBUG(dbgs() << "Attempting to merge update of: " << MI); 1620 1621 // Behaviour for writeback is undefined if base register is the same as one 1622 // of the others. 1623 const MachineOperand &BaseOp = MI.getOperand(2); 1624 Register Base = BaseOp.getReg(); 1625 const MachineOperand &Reg0Op = MI.getOperand(0); 1626 const MachineOperand &Reg1Op = MI.getOperand(1); 1627 if (Reg0Op.getReg() == Base || Reg1Op.getReg() == Base) 1628 return false; 1629 1630 Register PredReg; 1631 ARMCC::CondCodes Pred = getInstrPredicate(MI, PredReg); 1632 MachineBasicBlock::iterator MBBI(MI); 1633 MachineBasicBlock &MBB = *MI.getParent(); 1634 int Offset; 1635 MachineBasicBlock::iterator MergeInstr = findIncDecBefore(MBBI, Base, Pred, 1636 PredReg, Offset); 1637 unsigned NewOpc; 1638 if (Offset == 8 || Offset == -8) { 1639 NewOpc = Opcode == ARM::t2LDRDi8 ? ARM::t2LDRD_PRE : ARM::t2STRD_PRE; 1640 } else { 1641 MergeInstr = findIncDecAfter(MBBI, Base, Pred, PredReg, Offset, TRI); 1642 if (MergeInstr == MBB.end()) 1643 return false; 1644 NewOpc = Opcode == ARM::t2LDRDi8 ? ARM::t2LDRD_POST : ARM::t2STRD_POST; 1645 if (!isLegalAddressImm(NewOpc, Offset, TII)) 1646 return false; 1647 } 1648 LLVM_DEBUG(dbgs() << " Erasing old increment: " << *MergeInstr); 1649 MBB.erase(MergeInstr); 1650 1651 DebugLoc DL = MI.getDebugLoc(); 1652 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc)); 1653 if (NewOpc == ARM::t2LDRD_PRE || NewOpc == ARM::t2LDRD_POST) { 1654 MIB.add(Reg0Op).add(Reg1Op).addReg(BaseOp.getReg(), RegState::Define); 1655 } else { 1656 assert(NewOpc == ARM::t2STRD_PRE || NewOpc == ARM::t2STRD_POST); 1657 MIB.addReg(BaseOp.getReg(), RegState::Define).add(Reg0Op).add(Reg1Op); 1658 } 1659 MIB.addReg(BaseOp.getReg(), RegState::Kill) 1660 .addImm(Offset).addImm(Pred).addReg(PredReg); 1661 assert(TII->get(Opcode).getNumOperands() == 6 && 1662 TII->get(NewOpc).getNumOperands() == 7 && 1663 "Unexpected number of operands in Opcode specification."); 1664 1665 // Transfer implicit operands. 1666 for (const MachineOperand &MO : MI.implicit_operands()) 1667 MIB.add(MO); 1668 MIB.cloneMemRefs(MI); 1669 1670 LLVM_DEBUG(dbgs() << " Added new load/store: " << *MIB); 1671 MBB.erase(MBBI); 1672 return true; 1673 } 1674 1675 /// Returns true if instruction is a memory operation that this pass is capable 1676 /// of operating on. 1677 static bool isMemoryOp(const MachineInstr &MI) { 1678 unsigned Opcode = MI.getOpcode(); 1679 switch (Opcode) { 1680 case ARM::VLDRS: 1681 case ARM::VSTRS: 1682 case ARM::VLDRD: 1683 case ARM::VSTRD: 1684 case ARM::LDRi12: 1685 case ARM::STRi12: 1686 case ARM::tLDRi: 1687 case ARM::tSTRi: 1688 case ARM::tLDRspi: 1689 case ARM::tSTRspi: 1690 case ARM::t2LDRi8: 1691 case ARM::t2LDRi12: 1692 case ARM::t2STRi8: 1693 case ARM::t2STRi12: 1694 break; 1695 default: 1696 return false; 1697 } 1698 if (!MI.getOperand(1).isReg()) 1699 return false; 1700 1701 // When no memory operands are present, conservatively assume unaligned, 1702 // volatile, unfoldable. 1703 if (!MI.hasOneMemOperand()) 1704 return false; 1705 1706 const MachineMemOperand &MMO = **MI.memoperands_begin(); 1707 1708 // Don't touch volatile memory accesses - we may be changing their order. 1709 // TODO: We could allow unordered and monotonic atomics here, but we need to 1710 // make sure the resulting ldm/stm is correctly marked as atomic. 1711 if (MMO.isVolatile() || MMO.isAtomic()) 1712 return false; 1713 1714 // Unaligned ldr/str is emulated by some kernels, but unaligned ldm/stm is 1715 // not. 1716 if (MMO.getAlign() < Align(4)) 1717 return false; 1718 1719 // str <undef> could probably be eliminated entirely, but for now we just want 1720 // to avoid making a mess of it. 1721 // FIXME: Use str <undef> as a wildcard to enable better stm folding. 1722 if (MI.getOperand(0).isReg() && MI.getOperand(0).isUndef()) 1723 return false; 1724 1725 // Likewise don't mess with references to undefined addresses. 1726 if (MI.getOperand(1).isUndef()) 1727 return false; 1728 1729 return true; 1730 } 1731 1732 static void InsertLDR_STR(MachineBasicBlock &MBB, 1733 MachineBasicBlock::iterator &MBBI, int Offset, 1734 bool isDef, unsigned NewOpc, unsigned Reg, 1735 bool RegDeadKill, bool RegUndef, unsigned BaseReg, 1736 bool BaseKill, bool BaseUndef, ARMCC::CondCodes Pred, 1737 unsigned PredReg, const TargetInstrInfo *TII, 1738 MachineInstr *MI) { 1739 if (isDef) { 1740 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MBBI->getDebugLoc(), 1741 TII->get(NewOpc)) 1742 .addReg(Reg, getDefRegState(true) | getDeadRegState(RegDeadKill)) 1743 .addReg(BaseReg, getKillRegState(BaseKill)|getUndefRegState(BaseUndef)); 1744 MIB.addImm(Offset).addImm(Pred).addReg(PredReg); 1745 // FIXME: This is overly conservative; the new instruction accesses 4 1746 // bytes, not 8. 1747 MIB.cloneMemRefs(*MI); 1748 } else { 1749 MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MBBI->getDebugLoc(), 1750 TII->get(NewOpc)) 1751 .addReg(Reg, getKillRegState(RegDeadKill) | getUndefRegState(RegUndef)) 1752 .addReg(BaseReg, getKillRegState(BaseKill)|getUndefRegState(BaseUndef)); 1753 MIB.addImm(Offset).addImm(Pred).addReg(PredReg); 1754 // FIXME: This is overly conservative; the new instruction accesses 4 1755 // bytes, not 8. 1756 MIB.cloneMemRefs(*MI); 1757 } 1758 } 1759 1760 bool ARMLoadStoreOpt::FixInvalidRegPairOp(MachineBasicBlock &MBB, 1761 MachineBasicBlock::iterator &MBBI) { 1762 MachineInstr *MI = &*MBBI; 1763 unsigned Opcode = MI->getOpcode(); 1764 // FIXME: Code/comments below check Opcode == t2STRDi8, but this check returns 1765 // if we see this opcode. 1766 if (Opcode != ARM::LDRD && Opcode != ARM::STRD && Opcode != ARM::t2LDRDi8) 1767 return false; 1768 1769 const MachineOperand &BaseOp = MI->getOperand(2); 1770 Register BaseReg = BaseOp.getReg(); 1771 Register EvenReg = MI->getOperand(0).getReg(); 1772 Register OddReg = MI->getOperand(1).getReg(); 1773 unsigned EvenRegNum = TRI->getDwarfRegNum(EvenReg, false); 1774 unsigned OddRegNum = TRI->getDwarfRegNum(OddReg, false); 1775 1776 // ARM errata 602117: LDRD with base in list may result in incorrect base 1777 // register when interrupted or faulted. 1778 bool Errata602117 = EvenReg == BaseReg && 1779 (Opcode == ARM::LDRD || Opcode == ARM::t2LDRDi8) && STI->isCortexM3(); 1780 // ARM LDRD/STRD needs consecutive registers. 1781 bool NonConsecutiveRegs = (Opcode == ARM::LDRD || Opcode == ARM::STRD) && 1782 (EvenRegNum % 2 != 0 || EvenRegNum + 1 != OddRegNum); 1783 1784 if (!Errata602117 && !NonConsecutiveRegs) 1785 return false; 1786 1787 bool isT2 = Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8; 1788 bool isLd = Opcode == ARM::LDRD || Opcode == ARM::t2LDRDi8; 1789 bool EvenDeadKill = isLd ? 1790 MI->getOperand(0).isDead() : MI->getOperand(0).isKill(); 1791 bool EvenUndef = MI->getOperand(0).isUndef(); 1792 bool OddDeadKill = isLd ? 1793 MI->getOperand(1).isDead() : MI->getOperand(1).isKill(); 1794 bool OddUndef = MI->getOperand(1).isUndef(); 1795 bool BaseKill = BaseOp.isKill(); 1796 bool BaseUndef = BaseOp.isUndef(); 1797 assert((isT2 || MI->getOperand(3).getReg() == ARM::NoRegister) && 1798 "register offset not handled below"); 1799 int OffImm = getMemoryOpOffset(*MI); 1800 Register PredReg; 1801 ARMCC::CondCodes Pred = getInstrPredicate(*MI, PredReg); 1802 1803 if (OddRegNum > EvenRegNum && OffImm == 0) { 1804 // Ascending register numbers and no offset. It's safe to change it to a 1805 // ldm or stm. 1806 unsigned NewOpc = (isLd) 1807 ? (isT2 ? ARM::t2LDMIA : ARM::LDMIA) 1808 : (isT2 ? ARM::t2STMIA : ARM::STMIA); 1809 if (isLd) { 1810 BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(NewOpc)) 1811 .addReg(BaseReg, getKillRegState(BaseKill)) 1812 .addImm(Pred).addReg(PredReg) 1813 .addReg(EvenReg, getDefRegState(isLd) | getDeadRegState(EvenDeadKill)) 1814 .addReg(OddReg, getDefRegState(isLd) | getDeadRegState(OddDeadKill)) 1815 .cloneMemRefs(*MI); 1816 ++NumLDRD2LDM; 1817 } else { 1818 BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(NewOpc)) 1819 .addReg(BaseReg, getKillRegState(BaseKill)) 1820 .addImm(Pred).addReg(PredReg) 1821 .addReg(EvenReg, 1822 getKillRegState(EvenDeadKill) | getUndefRegState(EvenUndef)) 1823 .addReg(OddReg, 1824 getKillRegState(OddDeadKill) | getUndefRegState(OddUndef)) 1825 .cloneMemRefs(*MI); 1826 ++NumSTRD2STM; 1827 } 1828 } else { 1829 // Split into two instructions. 1830 unsigned NewOpc = (isLd) 1831 ? (isT2 ? (OffImm < 0 ? ARM::t2LDRi8 : ARM::t2LDRi12) : ARM::LDRi12) 1832 : (isT2 ? (OffImm < 0 ? ARM::t2STRi8 : ARM::t2STRi12) : ARM::STRi12); 1833 // Be extra careful for thumb2. t2LDRi8 can't reference a zero offset, 1834 // so adjust and use t2LDRi12 here for that. 1835 unsigned NewOpc2 = (isLd) 1836 ? (isT2 ? (OffImm+4 < 0 ? ARM::t2LDRi8 : ARM::t2LDRi12) : ARM::LDRi12) 1837 : (isT2 ? (OffImm+4 < 0 ? ARM::t2STRi8 : ARM::t2STRi12) : ARM::STRi12); 1838 // If this is a load, make sure the first load does not clobber the base 1839 // register before the second load reads it. 1840 if (isLd && TRI->regsOverlap(EvenReg, BaseReg)) { 1841 assert(!TRI->regsOverlap(OddReg, BaseReg)); 1842 InsertLDR_STR(MBB, MBBI, OffImm + 4, isLd, NewOpc2, OddReg, OddDeadKill, 1843 false, BaseReg, false, BaseUndef, Pred, PredReg, TII, MI); 1844 InsertLDR_STR(MBB, MBBI, OffImm, isLd, NewOpc, EvenReg, EvenDeadKill, 1845 false, BaseReg, BaseKill, BaseUndef, Pred, PredReg, TII, 1846 MI); 1847 } else { 1848 if (OddReg == EvenReg && EvenDeadKill) { 1849 // If the two source operands are the same, the kill marker is 1850 // probably on the first one. e.g. 1851 // t2STRDi8 killed %r5, %r5, killed %r9, 0, 14, %reg0 1852 EvenDeadKill = false; 1853 OddDeadKill = true; 1854 } 1855 // Never kill the base register in the first instruction. 1856 if (EvenReg == BaseReg) 1857 EvenDeadKill = false; 1858 InsertLDR_STR(MBB, MBBI, OffImm, isLd, NewOpc, EvenReg, EvenDeadKill, 1859 EvenUndef, BaseReg, false, BaseUndef, Pred, PredReg, TII, 1860 MI); 1861 InsertLDR_STR(MBB, MBBI, OffImm + 4, isLd, NewOpc2, OddReg, OddDeadKill, 1862 OddUndef, BaseReg, BaseKill, BaseUndef, Pred, PredReg, TII, 1863 MI); 1864 } 1865 if (isLd) 1866 ++NumLDRD2LDR; 1867 else 1868 ++NumSTRD2STR; 1869 } 1870 1871 MBBI = MBB.erase(MBBI); 1872 return true; 1873 } 1874 1875 /// An optimization pass to turn multiple LDR / STR ops of the same base and 1876 /// incrementing offset into LDM / STM ops. 1877 bool ARMLoadStoreOpt::LoadStoreMultipleOpti(MachineBasicBlock &MBB) { 1878 MemOpQueue MemOps; 1879 unsigned CurrBase = 0; 1880 unsigned CurrOpc = ~0u; 1881 ARMCC::CondCodes CurrPred = ARMCC::AL; 1882 unsigned Position = 0; 1883 assert(Candidates.size() == 0); 1884 assert(MergeBaseCandidates.size() == 0); 1885 LiveRegsValid = false; 1886 1887 for (MachineBasicBlock::iterator I = MBB.end(), MBBI; I != MBB.begin(); 1888 I = MBBI) { 1889 // The instruction in front of the iterator is the one we look at. 1890 MBBI = std::prev(I); 1891 if (FixInvalidRegPairOp(MBB, MBBI)) 1892 continue; 1893 ++Position; 1894 1895 if (isMemoryOp(*MBBI)) { 1896 unsigned Opcode = MBBI->getOpcode(); 1897 const MachineOperand &MO = MBBI->getOperand(0); 1898 Register Reg = MO.getReg(); 1899 Register Base = getLoadStoreBaseOp(*MBBI).getReg(); 1900 Register PredReg; 1901 ARMCC::CondCodes Pred = getInstrPredicate(*MBBI, PredReg); 1902 int Offset = getMemoryOpOffset(*MBBI); 1903 if (CurrBase == 0) { 1904 // Start of a new chain. 1905 CurrBase = Base; 1906 CurrOpc = Opcode; 1907 CurrPred = Pred; 1908 MemOps.push_back(MemOpQueueEntry(*MBBI, Offset, Position)); 1909 continue; 1910 } 1911 // Note: No need to match PredReg in the next if. 1912 if (CurrOpc == Opcode && CurrBase == Base && CurrPred == Pred) { 1913 // Watch out for: 1914 // r4 := ldr [r0, #8] 1915 // r4 := ldr [r0, #4] 1916 // or 1917 // r0 := ldr [r0] 1918 // If a load overrides the base register or a register loaded by 1919 // another load in our chain, we cannot take this instruction. 1920 bool Overlap = false; 1921 if (isLoadSingle(Opcode)) { 1922 Overlap = (Base == Reg); 1923 if (!Overlap) { 1924 for (const MemOpQueueEntry &E : MemOps) { 1925 if (TRI->regsOverlap(Reg, E.MI->getOperand(0).getReg())) { 1926 Overlap = true; 1927 break; 1928 } 1929 } 1930 } 1931 } 1932 1933 if (!Overlap) { 1934 // Check offset and sort memory operation into the current chain. 1935 if (Offset > MemOps.back().Offset) { 1936 MemOps.push_back(MemOpQueueEntry(*MBBI, Offset, Position)); 1937 continue; 1938 } else { 1939 MemOpQueue::iterator MI, ME; 1940 for (MI = MemOps.begin(), ME = MemOps.end(); MI != ME; ++MI) { 1941 if (Offset < MI->Offset) { 1942 // Found a place to insert. 1943 break; 1944 } 1945 if (Offset == MI->Offset) { 1946 // Collision, abort. 1947 MI = ME; 1948 break; 1949 } 1950 } 1951 if (MI != MemOps.end()) { 1952 MemOps.insert(MI, MemOpQueueEntry(*MBBI, Offset, Position)); 1953 continue; 1954 } 1955 } 1956 } 1957 } 1958 1959 // Don't advance the iterator; The op will start a new chain next. 1960 MBBI = I; 1961 --Position; 1962 // Fallthrough to look into existing chain. 1963 } else if (MBBI->isDebugInstr()) { 1964 continue; 1965 } else if (MBBI->getOpcode() == ARM::t2LDRDi8 || 1966 MBBI->getOpcode() == ARM::t2STRDi8) { 1967 // ARMPreAllocLoadStoreOpt has already formed some LDRD/STRD instructions 1968 // remember them because we may still be able to merge add/sub into them. 1969 MergeBaseCandidates.push_back(&*MBBI); 1970 } 1971 1972 // If we are here then the chain is broken; Extract candidates for a merge. 1973 if (MemOps.size() > 0) { 1974 FormCandidates(MemOps); 1975 // Reset for the next chain. 1976 CurrBase = 0; 1977 CurrOpc = ~0u; 1978 CurrPred = ARMCC::AL; 1979 MemOps.clear(); 1980 } 1981 } 1982 if (MemOps.size() > 0) 1983 FormCandidates(MemOps); 1984 1985 // Sort candidates so they get processed from end to begin of the basic 1986 // block later; This is necessary for liveness calculation. 1987 auto LessThan = [](const MergeCandidate* M0, const MergeCandidate *M1) { 1988 return M0->InsertPos < M1->InsertPos; 1989 }; 1990 llvm::sort(Candidates, LessThan); 1991 1992 // Go through list of candidates and merge. 1993 bool Changed = false; 1994 for (const MergeCandidate *Candidate : Candidates) { 1995 if (Candidate->CanMergeToLSMulti || Candidate->CanMergeToLSDouble) { 1996 MachineInstr *Merged = MergeOpsUpdate(*Candidate); 1997 // Merge preceding/trailing base inc/dec into the merged op. 1998 if (Merged) { 1999 Changed = true; 2000 unsigned Opcode = Merged->getOpcode(); 2001 if (Opcode == ARM::t2STRDi8 || Opcode == ARM::t2LDRDi8) 2002 MergeBaseUpdateLSDouble(*Merged); 2003 else 2004 MergeBaseUpdateLSMultiple(Merged); 2005 } else { 2006 for (MachineInstr *MI : Candidate->Instrs) { 2007 if (MergeBaseUpdateLoadStore(MI)) 2008 Changed = true; 2009 } 2010 } 2011 } else { 2012 assert(Candidate->Instrs.size() == 1); 2013 if (MergeBaseUpdateLoadStore(Candidate->Instrs.front())) 2014 Changed = true; 2015 } 2016 } 2017 Candidates.clear(); 2018 // Try to fold add/sub into the LDRD/STRD formed by ARMPreAllocLoadStoreOpt. 2019 for (MachineInstr *MI : MergeBaseCandidates) 2020 MergeBaseUpdateLSDouble(*MI); 2021 MergeBaseCandidates.clear(); 2022 2023 return Changed; 2024 } 2025 2026 /// If this is a exit BB, try merging the return ops ("bx lr" and "mov pc, lr") 2027 /// into the preceding stack restore so it directly restore the value of LR 2028 /// into pc. 2029 /// ldmfd sp!, {..., lr} 2030 /// bx lr 2031 /// or 2032 /// ldmfd sp!, {..., lr} 2033 /// mov pc, lr 2034 /// => 2035 /// ldmfd sp!, {..., pc} 2036 bool ARMLoadStoreOpt::MergeReturnIntoLDM(MachineBasicBlock &MBB) { 2037 // Thumb1 LDM doesn't allow high registers. 2038 if (isThumb1) return false; 2039 if (MBB.empty()) return false; 2040 2041 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); 2042 if (MBBI != MBB.begin() && MBBI != MBB.end() && 2043 (MBBI->getOpcode() == ARM::BX_RET || 2044 MBBI->getOpcode() == ARM::tBX_RET || 2045 MBBI->getOpcode() == ARM::MOVPCLR)) { 2046 MachineBasicBlock::iterator PrevI = std::prev(MBBI); 2047 // Ignore any debug instructions. 2048 while (PrevI->isDebugInstr() && PrevI != MBB.begin()) 2049 --PrevI; 2050 MachineInstr &PrevMI = *PrevI; 2051 unsigned Opcode = PrevMI.getOpcode(); 2052 if (Opcode == ARM::LDMIA_UPD || Opcode == ARM::LDMDA_UPD || 2053 Opcode == ARM::LDMDB_UPD || Opcode == ARM::LDMIB_UPD || 2054 Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) { 2055 MachineOperand &MO = PrevMI.getOperand(PrevMI.getNumOperands() - 1); 2056 if (MO.getReg() != ARM::LR) 2057 return false; 2058 unsigned NewOpc = (isThumb2 ? ARM::t2LDMIA_RET : ARM::LDMIA_RET); 2059 assert(((isThumb2 && Opcode == ARM::t2LDMIA_UPD) || 2060 Opcode == ARM::LDMIA_UPD) && "Unsupported multiple load-return!"); 2061 PrevMI.setDesc(TII->get(NewOpc)); 2062 MO.setReg(ARM::PC); 2063 PrevMI.copyImplicitOps(*MBB.getParent(), *MBBI); 2064 MBB.erase(MBBI); 2065 // We now restore LR into PC so it is not live-out of the return block 2066 // anymore: Clear the CSI Restored bit. 2067 MachineFrameInfo &MFI = MBB.getParent()->getFrameInfo(); 2068 // CSI should be fixed after PrologEpilog Insertion 2069 assert(MFI.isCalleeSavedInfoValid() && "CSI should be valid"); 2070 for (CalleeSavedInfo &Info : MFI.getCalleeSavedInfo()) { 2071 if (Info.getReg() == ARM::LR) { 2072 Info.setRestored(false); 2073 break; 2074 } 2075 } 2076 return true; 2077 } 2078 } 2079 return false; 2080 } 2081 2082 bool ARMLoadStoreOpt::CombineMovBx(MachineBasicBlock &MBB) { 2083 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 2084 if (MBBI == MBB.begin() || MBBI == MBB.end() || 2085 MBBI->getOpcode() != ARM::tBX_RET) 2086 return false; 2087 2088 MachineBasicBlock::iterator Prev = MBBI; 2089 --Prev; 2090 if (Prev->getOpcode() != ARM::tMOVr || !Prev->definesRegister(ARM::LR)) 2091 return false; 2092 2093 for (auto Use : Prev->uses()) 2094 if (Use.isKill()) { 2095 assert(STI->hasV4TOps()); 2096 BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(ARM::tBX)) 2097 .addReg(Use.getReg(), RegState::Kill) 2098 .add(predOps(ARMCC::AL)) 2099 .copyImplicitOps(*MBBI); 2100 MBB.erase(MBBI); 2101 MBB.erase(Prev); 2102 return true; 2103 } 2104 2105 llvm_unreachable("tMOVr doesn't kill a reg before tBX_RET?"); 2106 } 2107 2108 bool ARMLoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { 2109 if (skipFunction(Fn.getFunction())) 2110 return false; 2111 2112 MF = &Fn; 2113 STI = &Fn.getSubtarget<ARMSubtarget>(); 2114 TL = STI->getTargetLowering(); 2115 AFI = Fn.getInfo<ARMFunctionInfo>(); 2116 TII = STI->getInstrInfo(); 2117 TRI = STI->getRegisterInfo(); 2118 2119 RegClassInfoValid = false; 2120 isThumb2 = AFI->isThumb2Function(); 2121 isThumb1 = AFI->isThumbFunction() && !isThumb2; 2122 2123 bool Modified = false; 2124 for (MachineBasicBlock &MBB : Fn) { 2125 Modified |= LoadStoreMultipleOpti(MBB); 2126 if (STI->hasV5TOps() && !AFI->shouldSignReturnAddress()) 2127 Modified |= MergeReturnIntoLDM(MBB); 2128 if (isThumb1) 2129 Modified |= CombineMovBx(MBB); 2130 } 2131 2132 Allocator.DestroyAll(); 2133 return Modified; 2134 } 2135 2136 #define ARM_PREALLOC_LOAD_STORE_OPT_NAME \ 2137 "ARM pre- register allocation load / store optimization pass" 2138 2139 namespace { 2140 2141 /// Pre- register allocation pass that move load / stores from consecutive 2142 /// locations close to make it more likely they will be combined later. 2143 struct ARMPreAllocLoadStoreOpt : public MachineFunctionPass{ 2144 static char ID; 2145 2146 AliasAnalysis *AA; 2147 const DataLayout *TD; 2148 const TargetInstrInfo *TII; 2149 const TargetRegisterInfo *TRI; 2150 const ARMSubtarget *STI; 2151 MachineRegisterInfo *MRI; 2152 MachineDominatorTree *DT; 2153 MachineFunction *MF; 2154 2155 ARMPreAllocLoadStoreOpt() : MachineFunctionPass(ID) {} 2156 2157 bool runOnMachineFunction(MachineFunction &Fn) override; 2158 2159 StringRef getPassName() const override { 2160 return ARM_PREALLOC_LOAD_STORE_OPT_NAME; 2161 } 2162 2163 void getAnalysisUsage(AnalysisUsage &AU) const override { 2164 AU.addRequired<AAResultsWrapperPass>(); 2165 AU.addRequired<MachineDominatorTree>(); 2166 AU.addPreserved<MachineDominatorTree>(); 2167 MachineFunctionPass::getAnalysisUsage(AU); 2168 } 2169 2170 private: 2171 bool CanFormLdStDWord(MachineInstr *Op0, MachineInstr *Op1, DebugLoc &dl, 2172 unsigned &NewOpc, Register &EvenReg, Register &OddReg, 2173 Register &BaseReg, int &Offset, Register &PredReg, 2174 ARMCC::CondCodes &Pred, bool &isT2); 2175 bool RescheduleOps( 2176 MachineBasicBlock *MBB, SmallVectorImpl<MachineInstr *> &Ops, 2177 unsigned Base, bool isLd, DenseMap<MachineInstr *, unsigned> &MI2LocMap, 2178 SmallDenseMap<Register, SmallVector<MachineInstr *>, 8> &RegisterMap); 2179 bool RescheduleLoadStoreInstrs(MachineBasicBlock *MBB); 2180 bool DistributeIncrements(); 2181 bool DistributeIncrements(Register Base); 2182 }; 2183 2184 } // end anonymous namespace 2185 2186 char ARMPreAllocLoadStoreOpt::ID = 0; 2187 2188 INITIALIZE_PASS_BEGIN(ARMPreAllocLoadStoreOpt, "arm-prera-ldst-opt", 2189 ARM_PREALLOC_LOAD_STORE_OPT_NAME, false, false) 2190 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 2191 INITIALIZE_PASS_END(ARMPreAllocLoadStoreOpt, "arm-prera-ldst-opt", 2192 ARM_PREALLOC_LOAD_STORE_OPT_NAME, false, false) 2193 2194 // Limit the number of instructions to be rescheduled. 2195 // FIXME: tune this limit, and/or come up with some better heuristics. 2196 static cl::opt<unsigned> InstReorderLimit("arm-prera-ldst-opt-reorder-limit", 2197 cl::init(8), cl::Hidden); 2198 2199 bool ARMPreAllocLoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { 2200 if (AssumeMisalignedLoadStores || skipFunction(Fn.getFunction())) 2201 return false; 2202 2203 TD = &Fn.getDataLayout(); 2204 STI = &Fn.getSubtarget<ARMSubtarget>(); 2205 TII = STI->getInstrInfo(); 2206 TRI = STI->getRegisterInfo(); 2207 MRI = &Fn.getRegInfo(); 2208 DT = &getAnalysis<MachineDominatorTree>(); 2209 MF = &Fn; 2210 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 2211 2212 bool Modified = DistributeIncrements(); 2213 for (MachineBasicBlock &MFI : Fn) 2214 Modified |= RescheduleLoadStoreInstrs(&MFI); 2215 2216 return Modified; 2217 } 2218 2219 static bool IsSafeAndProfitableToMove(bool isLd, unsigned Base, 2220 MachineBasicBlock::iterator I, 2221 MachineBasicBlock::iterator E, 2222 SmallPtrSetImpl<MachineInstr*> &MemOps, 2223 SmallSet<unsigned, 4> &MemRegs, 2224 const TargetRegisterInfo *TRI, 2225 AliasAnalysis *AA) { 2226 // Are there stores / loads / calls between them? 2227 SmallSet<unsigned, 4> AddedRegPressure; 2228 while (++I != E) { 2229 if (I->isDebugInstr() || MemOps.count(&*I)) 2230 continue; 2231 if (I->isCall() || I->isTerminator() || I->hasUnmodeledSideEffects()) 2232 return false; 2233 if (I->mayStore() || (!isLd && I->mayLoad())) 2234 for (MachineInstr *MemOp : MemOps) 2235 if (I->mayAlias(AA, *MemOp, /*UseTBAA*/ false)) 2236 return false; 2237 for (unsigned j = 0, NumOps = I->getNumOperands(); j != NumOps; ++j) { 2238 MachineOperand &MO = I->getOperand(j); 2239 if (!MO.isReg()) 2240 continue; 2241 Register Reg = MO.getReg(); 2242 if (MO.isDef() && TRI->regsOverlap(Reg, Base)) 2243 return false; 2244 if (Reg != Base && !MemRegs.count(Reg)) 2245 AddedRegPressure.insert(Reg); 2246 } 2247 } 2248 2249 // Estimate register pressure increase due to the transformation. 2250 if (MemRegs.size() <= 4) 2251 // Ok if we are moving small number of instructions. 2252 return true; 2253 return AddedRegPressure.size() <= MemRegs.size() * 2; 2254 } 2255 2256 bool ARMPreAllocLoadStoreOpt::CanFormLdStDWord( 2257 MachineInstr *Op0, MachineInstr *Op1, DebugLoc &dl, unsigned &NewOpc, 2258 Register &FirstReg, Register &SecondReg, Register &BaseReg, int &Offset, 2259 Register &PredReg, ARMCC::CondCodes &Pred, bool &isT2) { 2260 // Make sure we're allowed to generate LDRD/STRD. 2261 if (!STI->hasV5TEOps()) 2262 return false; 2263 2264 // FIXME: VLDRS / VSTRS -> VLDRD / VSTRD 2265 unsigned Scale = 1; 2266 unsigned Opcode = Op0->getOpcode(); 2267 if (Opcode == ARM::LDRi12) { 2268 NewOpc = ARM::LDRD; 2269 } else if (Opcode == ARM::STRi12) { 2270 NewOpc = ARM::STRD; 2271 } else if (Opcode == ARM::t2LDRi8 || Opcode == ARM::t2LDRi12) { 2272 NewOpc = ARM::t2LDRDi8; 2273 Scale = 4; 2274 isT2 = true; 2275 } else if (Opcode == ARM::t2STRi8 || Opcode == ARM::t2STRi12) { 2276 NewOpc = ARM::t2STRDi8; 2277 Scale = 4; 2278 isT2 = true; 2279 } else { 2280 return false; 2281 } 2282 2283 // Make sure the base address satisfies i64 ld / st alignment requirement. 2284 // At the moment, we ignore the memoryoperand's value. 2285 // If we want to use AliasAnalysis, we should check it accordingly. 2286 if (!Op0->hasOneMemOperand() || 2287 (*Op0->memoperands_begin())->isVolatile() || 2288 (*Op0->memoperands_begin())->isAtomic()) 2289 return false; 2290 2291 Align Alignment = (*Op0->memoperands_begin())->getAlign(); 2292 Align ReqAlign = STI->getDualLoadStoreAlignment(); 2293 if (Alignment < ReqAlign) 2294 return false; 2295 2296 // Then make sure the immediate offset fits. 2297 int OffImm = getMemoryOpOffset(*Op0); 2298 if (isT2) { 2299 int Limit = (1 << 8) * Scale; 2300 if (OffImm >= Limit || (OffImm <= -Limit) || (OffImm & (Scale-1))) 2301 return false; 2302 Offset = OffImm; 2303 } else { 2304 ARM_AM::AddrOpc AddSub = ARM_AM::add; 2305 if (OffImm < 0) { 2306 AddSub = ARM_AM::sub; 2307 OffImm = - OffImm; 2308 } 2309 int Limit = (1 << 8) * Scale; 2310 if (OffImm >= Limit || (OffImm & (Scale-1))) 2311 return false; 2312 Offset = ARM_AM::getAM3Opc(AddSub, OffImm); 2313 } 2314 FirstReg = Op0->getOperand(0).getReg(); 2315 SecondReg = Op1->getOperand(0).getReg(); 2316 if (FirstReg == SecondReg) 2317 return false; 2318 BaseReg = Op0->getOperand(1).getReg(); 2319 Pred = getInstrPredicate(*Op0, PredReg); 2320 dl = Op0->getDebugLoc(); 2321 return true; 2322 } 2323 2324 bool ARMPreAllocLoadStoreOpt::RescheduleOps( 2325 MachineBasicBlock *MBB, SmallVectorImpl<MachineInstr *> &Ops, unsigned Base, 2326 bool isLd, DenseMap<MachineInstr *, unsigned> &MI2LocMap, 2327 SmallDenseMap<Register, SmallVector<MachineInstr *>, 8> &RegisterMap) { 2328 bool RetVal = false; 2329 2330 // Sort by offset (in reverse order). 2331 llvm::sort(Ops, [](const MachineInstr *LHS, const MachineInstr *RHS) { 2332 int LOffset = getMemoryOpOffset(*LHS); 2333 int ROffset = getMemoryOpOffset(*RHS); 2334 assert(LHS == RHS || LOffset != ROffset); 2335 return LOffset > ROffset; 2336 }); 2337 2338 // The loads / stores of the same base are in order. Scan them from first to 2339 // last and check for the following: 2340 // 1. Any def of base. 2341 // 2. Any gaps. 2342 while (Ops.size() > 1) { 2343 unsigned FirstLoc = ~0U; 2344 unsigned LastLoc = 0; 2345 MachineInstr *FirstOp = nullptr; 2346 MachineInstr *LastOp = nullptr; 2347 int LastOffset = 0; 2348 unsigned LastOpcode = 0; 2349 unsigned LastBytes = 0; 2350 unsigned NumMove = 0; 2351 for (MachineInstr *Op : llvm::reverse(Ops)) { 2352 // Make sure each operation has the same kind. 2353 unsigned LSMOpcode 2354 = getLoadStoreMultipleOpcode(Op->getOpcode(), ARM_AM::ia); 2355 if (LastOpcode && LSMOpcode != LastOpcode) 2356 break; 2357 2358 // Check that we have a continuous set of offsets. 2359 int Offset = getMemoryOpOffset(*Op); 2360 unsigned Bytes = getLSMultipleTransferSize(Op); 2361 if (LastBytes) { 2362 if (Bytes != LastBytes || Offset != (LastOffset + (int)Bytes)) 2363 break; 2364 } 2365 2366 // Don't try to reschedule too many instructions. 2367 if (NumMove == InstReorderLimit) 2368 break; 2369 2370 // Found a mergable instruction; save information about it. 2371 ++NumMove; 2372 LastOffset = Offset; 2373 LastBytes = Bytes; 2374 LastOpcode = LSMOpcode; 2375 2376 unsigned Loc = MI2LocMap[Op]; 2377 if (Loc <= FirstLoc) { 2378 FirstLoc = Loc; 2379 FirstOp = Op; 2380 } 2381 if (Loc >= LastLoc) { 2382 LastLoc = Loc; 2383 LastOp = Op; 2384 } 2385 } 2386 2387 if (NumMove <= 1) 2388 Ops.pop_back(); 2389 else { 2390 SmallPtrSet<MachineInstr*, 4> MemOps; 2391 SmallSet<unsigned, 4> MemRegs; 2392 for (size_t i = Ops.size() - NumMove, e = Ops.size(); i != e; ++i) { 2393 MemOps.insert(Ops[i]); 2394 MemRegs.insert(Ops[i]->getOperand(0).getReg()); 2395 } 2396 2397 // Be conservative, if the instructions are too far apart, don't 2398 // move them. We want to limit the increase of register pressure. 2399 bool DoMove = (LastLoc - FirstLoc) <= NumMove*4; // FIXME: Tune this. 2400 if (DoMove) 2401 DoMove = IsSafeAndProfitableToMove(isLd, Base, FirstOp, LastOp, 2402 MemOps, MemRegs, TRI, AA); 2403 if (!DoMove) { 2404 for (unsigned i = 0; i != NumMove; ++i) 2405 Ops.pop_back(); 2406 } else { 2407 // This is the new location for the loads / stores. 2408 MachineBasicBlock::iterator InsertPos = isLd ? FirstOp : LastOp; 2409 while (InsertPos != MBB->end() && 2410 (MemOps.count(&*InsertPos) || InsertPos->isDebugInstr())) 2411 ++InsertPos; 2412 2413 // If we are moving a pair of loads / stores, see if it makes sense 2414 // to try to allocate a pair of registers that can form register pairs. 2415 MachineInstr *Op0 = Ops.back(); 2416 MachineInstr *Op1 = Ops[Ops.size()-2]; 2417 Register FirstReg, SecondReg; 2418 Register BaseReg, PredReg; 2419 ARMCC::CondCodes Pred = ARMCC::AL; 2420 bool isT2 = false; 2421 unsigned NewOpc = 0; 2422 int Offset = 0; 2423 DebugLoc dl; 2424 if (NumMove == 2 && CanFormLdStDWord(Op0, Op1, dl, NewOpc, 2425 FirstReg, SecondReg, BaseReg, 2426 Offset, PredReg, Pred, isT2)) { 2427 Ops.pop_back(); 2428 Ops.pop_back(); 2429 2430 const MCInstrDesc &MCID = TII->get(NewOpc); 2431 const TargetRegisterClass *TRC = TII->getRegClass(MCID, 0, TRI, *MF); 2432 MRI->constrainRegClass(FirstReg, TRC); 2433 MRI->constrainRegClass(SecondReg, TRC); 2434 2435 // Form the pair instruction. 2436 if (isLd) { 2437 MachineInstrBuilder MIB = BuildMI(*MBB, InsertPos, dl, MCID) 2438 .addReg(FirstReg, RegState::Define) 2439 .addReg(SecondReg, RegState::Define) 2440 .addReg(BaseReg); 2441 // FIXME: We're converting from LDRi12 to an insn that still 2442 // uses addrmode2, so we need an explicit offset reg. It should 2443 // always by reg0 since we're transforming LDRi12s. 2444 if (!isT2) 2445 MIB.addReg(0); 2446 MIB.addImm(Offset).addImm(Pred).addReg(PredReg); 2447 MIB.cloneMergedMemRefs({Op0, Op1}); 2448 LLVM_DEBUG(dbgs() << "Formed " << *MIB << "\n"); 2449 ++NumLDRDFormed; 2450 } else { 2451 MachineInstrBuilder MIB = BuildMI(*MBB, InsertPos, dl, MCID) 2452 .addReg(FirstReg) 2453 .addReg(SecondReg) 2454 .addReg(BaseReg); 2455 // FIXME: We're converting from LDRi12 to an insn that still 2456 // uses addrmode2, so we need an explicit offset reg. It should 2457 // always by reg0 since we're transforming STRi12s. 2458 if (!isT2) 2459 MIB.addReg(0); 2460 MIB.addImm(Offset).addImm(Pred).addReg(PredReg); 2461 MIB.cloneMergedMemRefs({Op0, Op1}); 2462 LLVM_DEBUG(dbgs() << "Formed " << *MIB << "\n"); 2463 ++NumSTRDFormed; 2464 } 2465 MBB->erase(Op0); 2466 MBB->erase(Op1); 2467 2468 if (!isT2) { 2469 // Add register allocation hints to form register pairs. 2470 MRI->setRegAllocationHint(FirstReg, ARMRI::RegPairEven, SecondReg); 2471 MRI->setRegAllocationHint(SecondReg, ARMRI::RegPairOdd, FirstReg); 2472 } 2473 } else { 2474 for (unsigned i = 0; i != NumMove; ++i) { 2475 MachineInstr *Op = Ops.pop_back_val(); 2476 if (isLd) { 2477 // Populate RegisterMap with all Registers defined by loads. 2478 Register Reg = Op->getOperand(0).getReg(); 2479 RegisterMap[Reg]; 2480 } 2481 2482 MBB->splice(InsertPos, MBB, Op); 2483 } 2484 } 2485 2486 NumLdStMoved += NumMove; 2487 RetVal = true; 2488 } 2489 } 2490 } 2491 2492 return RetVal; 2493 } 2494 2495 static void forEachDbgRegOperand(MachineInstr *MI, 2496 std::function<void(MachineOperand &)> Fn) { 2497 if (MI->isNonListDebugValue()) { 2498 auto &Op = MI->getOperand(0); 2499 if (Op.isReg()) 2500 Fn(Op); 2501 } else { 2502 for (unsigned I = 2; I < MI->getNumOperands(); I++) { 2503 auto &Op = MI->getOperand(I); 2504 if (Op.isReg()) 2505 Fn(Op); 2506 } 2507 } 2508 } 2509 2510 // Update the RegisterMap with the instruction that was moved because a 2511 // DBG_VALUE_LIST may need to be moved again. 2512 static void updateRegisterMapForDbgValueListAfterMove( 2513 SmallDenseMap<Register, SmallVector<MachineInstr *>, 8> &RegisterMap, 2514 MachineInstr *DbgValueListInstr, MachineInstr *InstrToReplace) { 2515 2516 forEachDbgRegOperand(DbgValueListInstr, [&](MachineOperand &Op) { 2517 auto RegIt = RegisterMap.find(Op.getReg()); 2518 if (RegIt == RegisterMap.end()) 2519 return; 2520 auto &InstrVec = RegIt->getSecond(); 2521 for (unsigned I = 0; I < InstrVec.size(); I++) 2522 if (InstrVec[I] == InstrToReplace) 2523 InstrVec[I] = DbgValueListInstr; 2524 }); 2525 } 2526 2527 static DebugVariable createDebugVariableFromMachineInstr(MachineInstr *MI) { 2528 auto DbgVar = DebugVariable(MI->getDebugVariable(), MI->getDebugExpression(), 2529 MI->getDebugLoc()->getInlinedAt()); 2530 return DbgVar; 2531 } 2532 2533 bool 2534 ARMPreAllocLoadStoreOpt::RescheduleLoadStoreInstrs(MachineBasicBlock *MBB) { 2535 bool RetVal = false; 2536 2537 DenseMap<MachineInstr*, unsigned> MI2LocMap; 2538 using MapIt = DenseMap<unsigned, SmallVector<MachineInstr *, 4>>::iterator; 2539 using Base2InstMap = DenseMap<unsigned, SmallVector<MachineInstr *, 4>>; 2540 using BaseVec = SmallVector<unsigned, 4>; 2541 Base2InstMap Base2LdsMap; 2542 Base2InstMap Base2StsMap; 2543 BaseVec LdBases; 2544 BaseVec StBases; 2545 // This map is used to track the relationship between the virtual 2546 // register that is the result of a load that is moved and the DBG_VALUE 2547 // MachineInstr pointer that uses that virtual register. 2548 SmallDenseMap<Register, SmallVector<MachineInstr *>, 8> RegisterMap; 2549 2550 unsigned Loc = 0; 2551 MachineBasicBlock::iterator MBBI = MBB->begin(); 2552 MachineBasicBlock::iterator E = MBB->end(); 2553 while (MBBI != E) { 2554 for (; MBBI != E; ++MBBI) { 2555 MachineInstr &MI = *MBBI; 2556 if (MI.isCall() || MI.isTerminator()) { 2557 // Stop at barriers. 2558 ++MBBI; 2559 break; 2560 } 2561 2562 if (!MI.isDebugInstr()) 2563 MI2LocMap[&MI] = ++Loc; 2564 2565 if (!isMemoryOp(MI)) 2566 continue; 2567 Register PredReg; 2568 if (getInstrPredicate(MI, PredReg) != ARMCC::AL) 2569 continue; 2570 2571 int Opc = MI.getOpcode(); 2572 bool isLd = isLoadSingle(Opc); 2573 Register Base = MI.getOperand(1).getReg(); 2574 int Offset = getMemoryOpOffset(MI); 2575 bool StopHere = false; 2576 auto FindBases = [&] (Base2InstMap &Base2Ops, BaseVec &Bases) { 2577 MapIt BI = Base2Ops.find(Base); 2578 if (BI == Base2Ops.end()) { 2579 Base2Ops[Base].push_back(&MI); 2580 Bases.push_back(Base); 2581 return; 2582 } 2583 for (unsigned i = 0, e = BI->second.size(); i != e; ++i) { 2584 if (Offset == getMemoryOpOffset(*BI->second[i])) { 2585 StopHere = true; 2586 break; 2587 } 2588 } 2589 if (!StopHere) 2590 BI->second.push_back(&MI); 2591 }; 2592 2593 if (isLd) 2594 FindBases(Base2LdsMap, LdBases); 2595 else 2596 FindBases(Base2StsMap, StBases); 2597 2598 if (StopHere) { 2599 // Found a duplicate (a base+offset combination that's seen earlier). 2600 // Backtrack. 2601 --Loc; 2602 break; 2603 } 2604 } 2605 2606 // Re-schedule loads. 2607 for (unsigned Base : LdBases) { 2608 SmallVectorImpl<MachineInstr *> &Lds = Base2LdsMap[Base]; 2609 if (Lds.size() > 1) 2610 RetVal |= RescheduleOps(MBB, Lds, Base, true, MI2LocMap, RegisterMap); 2611 } 2612 2613 // Re-schedule stores. 2614 for (unsigned Base : StBases) { 2615 SmallVectorImpl<MachineInstr *> &Sts = Base2StsMap[Base]; 2616 if (Sts.size() > 1) 2617 RetVal |= RescheduleOps(MBB, Sts, Base, false, MI2LocMap, RegisterMap); 2618 } 2619 2620 if (MBBI != E) { 2621 Base2LdsMap.clear(); 2622 Base2StsMap.clear(); 2623 LdBases.clear(); 2624 StBases.clear(); 2625 } 2626 } 2627 2628 // Reschedule DBG_VALUEs to match any loads that were moved. When a load is 2629 // sunk beyond a DBG_VALUE that is referring to it, the DBG_VALUE becomes a 2630 // use-before-def, resulting in a loss of debug info. 2631 2632 // Example: 2633 // Before the Pre Register Allocation Load Store Pass 2634 // inst_a 2635 // %2 = ld ... 2636 // inst_b 2637 // DBG_VALUE %2, "x", ... 2638 // %3 = ld ... 2639 2640 // After the Pass: 2641 // inst_a 2642 // inst_b 2643 // DBG_VALUE %2, "x", ... 2644 // %2 = ld ... 2645 // %3 = ld ... 2646 2647 // The code below addresses this by moving the DBG_VALUE to the position 2648 // immediately after the load. 2649 2650 // Example: 2651 // After the code below: 2652 // inst_a 2653 // inst_b 2654 // %2 = ld ... 2655 // DBG_VALUE %2, "x", ... 2656 // %3 = ld ... 2657 2658 // The algorithm works in two phases: First RescheduleOps() populates the 2659 // RegisterMap with registers that were moved as keys, there is no value 2660 // inserted. In the next phase, every MachineInstr in a basic block is 2661 // iterated over. If it is a valid DBG_VALUE or DBG_VALUE_LIST and it uses one 2662 // or more registers in the RegisterMap, the RegisterMap and InstrMap are 2663 // populated with the MachineInstr. If the DBG_VALUE or DBG_VALUE_LIST 2664 // describes debug information for a variable that already exists in the 2665 // DbgValueSinkCandidates, the MachineInstr in the DbgValueSinkCandidates must 2666 // be set to undef. If the current MachineInstr is a load that was moved, 2667 // undef the corresponding DBG_VALUE or DBG_VALUE_LIST and clone it to below 2668 // the load. 2669 2670 // To illustrate the above algorithm visually let's take this example. 2671 2672 // Before the Pre Register Allocation Load Store Pass: 2673 // %2 = ld ... 2674 // DBG_VALUE %2, A, .... # X 2675 // DBG_VALUE 0, A, ... # Y 2676 // %3 = ld ... 2677 // DBG_VALUE %3, A, ..., # Z 2678 // %4 = ld ... 2679 2680 // After Pre Register Allocation Load Store Pass: 2681 // DBG_VALUE %2, A, .... # X 2682 // DBG_VALUE 0, A, ... # Y 2683 // DBG_VALUE %3, A, ..., # Z 2684 // %2 = ld ... 2685 // %3 = ld ... 2686 // %4 = ld ... 2687 2688 // The algorithm below does the following: 2689 2690 // In the beginning, the RegisterMap will have been populated with the virtual 2691 // registers %2, and %3, the DbgValueSinkCandidates and the InstrMap will be 2692 // empty. DbgValueSinkCandidates = {}, RegisterMap = {2 -> {}, 3 -> {}}, 2693 // InstrMap {} 2694 // -> DBG_VALUE %2, A, .... # X 2695 // DBG_VALUE 0, A, ... # Y 2696 // DBG_VALUE %3, A, ..., # Z 2697 // %2 = ld ... 2698 // %3 = ld ... 2699 // %4 = ld ... 2700 2701 // After the first DBG_VALUE (denoted with an X) is processed, the 2702 // DbgValueSinkCandidates and InstrMap will be populated and the RegisterMap 2703 // entry for %2 will be populated as well. DbgValueSinkCandidates = {A -> X}, 2704 // RegisterMap = {2 -> {X}, 3 -> {}}, InstrMap {X -> 2} 2705 // DBG_VALUE %2, A, .... # X 2706 // -> DBG_VALUE 0, A, ... # Y 2707 // DBG_VALUE %3, A, ..., # Z 2708 // %2 = ld ... 2709 // %3 = ld ... 2710 // %4 = ld ... 2711 2712 // After the DBG_VALUE Y is processed, the DbgValueSinkCandidates is updated 2713 // to now hold Y for A and the RegisterMap is also updated to remove X from 2714 // %2, this is because both X and Y describe the same debug variable A. X is 2715 // also updated to have a $noreg as the first operand. 2716 // DbgValueSinkCandidates = {A -> {Y}}, RegisterMap = {2 -> {}, 3 -> {}}, 2717 // InstrMap = {X-> 2} 2718 // DBG_VALUE $noreg, A, .... # X 2719 // DBG_VALUE 0, A, ... # Y 2720 // -> DBG_VALUE %3, A, ..., # Z 2721 // %2 = ld ... 2722 // %3 = ld ... 2723 // %4 = ld ... 2724 2725 // After DBG_VALUE Z is processed, the DbgValueSinkCandidates is updated to 2726 // hold Z fr A, the RegisterMap is updated to hold Z for %3, and the InstrMap 2727 // is updated to have Z mapped to %3. This is again because Z describes the 2728 // debug variable A, Y is not updated to have $noreg as first operand because 2729 // its first operand is an immediate, not a register. 2730 // DbgValueSinkCandidates = {A -> {Z}}, RegisterMap = {2 -> {}, 3 -> {Z}}, 2731 // InstrMap = {X -> 2, Z -> 3} 2732 // DBG_VALUE $noreg, A, .... # X 2733 // DBG_VALUE 0, A, ... # Y 2734 // DBG_VALUE %3, A, ..., # Z 2735 // -> %2 = ld ... 2736 // %3 = ld ... 2737 // %4 = ld ... 2738 2739 // Nothing happens here since the RegisterMap for %2 contains no value. 2740 // DbgValueSinkCandidates = {A -> {Z}}, RegisterMap = {2 -> {}, 3 -> {Z}}, 2741 // InstrMap = {X -> 2, Z -> 3} 2742 // DBG_VALUE $noreg, A, .... # X 2743 // DBG_VALUE 0, A, ... # Y 2744 // DBG_VALUE %3, A, ..., # Z 2745 // %2 = ld ... 2746 // -> %3 = ld ... 2747 // %4 = ld ... 2748 2749 // Since the RegisterMap contains Z as a value for %3, the MachineInstr 2750 // pointer Z is copied to come after the load for %3 and the old Z's first 2751 // operand is changed to $noreg the Basic Block iterator is moved to after the 2752 // DBG_VALUE Z's new position. 2753 // DbgValueSinkCandidates = {A -> {Z}}, RegisterMap = {2 -> {}, 3 -> {Z}}, 2754 // InstrMap = {X -> 2, Z -> 3} 2755 // DBG_VALUE $noreg, A, .... # X 2756 // DBG_VALUE 0, A, ... # Y 2757 // DBG_VALUE $noreg, A, ..., # Old Z 2758 // %2 = ld ... 2759 // %3 = ld ... 2760 // DBG_VALUE %3, A, ..., # Z 2761 // -> %4 = ld ... 2762 2763 // Nothing happens for %4 and the algorithm exits having processed the entire 2764 // Basic Block. 2765 // DbgValueSinkCandidates = {A -> {Z}}, RegisterMap = {2 -> {}, 3 -> {Z}}, 2766 // InstrMap = {X -> 2, Z -> 3} 2767 // DBG_VALUE $noreg, A, .... # X 2768 // DBG_VALUE 0, A, ... # Y 2769 // DBG_VALUE $noreg, A, ..., # Old Z 2770 // %2 = ld ... 2771 // %3 = ld ... 2772 // DBG_VALUE %3, A, ..., # Z 2773 // %4 = ld ... 2774 2775 // This map is used to track the relationship between 2776 // a Debug Variable and the DBG_VALUE MachineInstr pointer that describes the 2777 // debug information for that Debug Variable. 2778 SmallDenseMap<DebugVariable, MachineInstr *, 8> DbgValueSinkCandidates; 2779 // This map is used to track the relationship between a DBG_VALUE or 2780 // DBG_VALUE_LIST MachineInstr pointer and Registers that it uses. 2781 SmallDenseMap<MachineInstr *, SmallVector<Register>, 8> InstrMap; 2782 for (MBBI = MBB->begin(), E = MBB->end(); MBBI != E; ++MBBI) { 2783 MachineInstr &MI = *MBBI; 2784 2785 auto PopulateRegisterAndInstrMapForDebugInstr = [&](Register Reg) { 2786 auto RegIt = RegisterMap.find(Reg); 2787 if (RegIt == RegisterMap.end()) 2788 return; 2789 auto &InstrVec = RegIt->getSecond(); 2790 InstrVec.push_back(&MI); 2791 InstrMap[&MI].push_back(Reg); 2792 }; 2793 2794 if (MI.isDebugValue()) { 2795 assert(MI.getDebugVariable() && 2796 "DBG_VALUE or DBG_VALUE_LIST must contain a DILocalVariable"); 2797 2798 auto DbgVar = createDebugVariableFromMachineInstr(&MI); 2799 // If the first operand is a register and it exists in the RegisterMap, we 2800 // know this is a DBG_VALUE that uses the result of a load that was moved, 2801 // and is therefore a candidate to also be moved, add it to the 2802 // RegisterMap and InstrMap. 2803 forEachDbgRegOperand(&MI, [&](MachineOperand &Op) { 2804 PopulateRegisterAndInstrMapForDebugInstr(Op.getReg()); 2805 }); 2806 2807 // If the current DBG_VALUE describes the same variable as one of the 2808 // in-flight DBG_VALUEs, remove the candidate from the list and set it to 2809 // undef. Moving one DBG_VALUE past another would result in the variable's 2810 // value going back in time when stepping through the block in the 2811 // debugger. 2812 auto InstrIt = DbgValueSinkCandidates.find(DbgVar); 2813 if (InstrIt != DbgValueSinkCandidates.end()) { 2814 auto *Instr = InstrIt->getSecond(); 2815 auto RegIt = InstrMap.find(Instr); 2816 if (RegIt != InstrMap.end()) { 2817 const auto &RegVec = RegIt->getSecond(); 2818 // For every Register in the RegVec, remove the MachineInstr in the 2819 // RegisterMap that describes the DbgVar. 2820 for (auto &Reg : RegVec) { 2821 auto RegIt = RegisterMap.find(Reg); 2822 if (RegIt == RegisterMap.end()) 2823 continue; 2824 auto &InstrVec = RegIt->getSecond(); 2825 auto IsDbgVar = [&](MachineInstr *I) -> bool { 2826 auto Var = createDebugVariableFromMachineInstr(I); 2827 return Var == DbgVar; 2828 }; 2829 2830 llvm::erase_if(InstrVec, IsDbgVar); 2831 } 2832 forEachDbgRegOperand(Instr, 2833 [&](MachineOperand &Op) { Op.setReg(0); }); 2834 } 2835 } 2836 DbgValueSinkCandidates[DbgVar] = &MI; 2837 } else { 2838 // If the first operand of a load matches with a DBG_VALUE in RegisterMap, 2839 // then move that DBG_VALUE to below the load. 2840 auto Opc = MI.getOpcode(); 2841 if (!isLoadSingle(Opc)) 2842 continue; 2843 auto Reg = MI.getOperand(0).getReg(); 2844 auto RegIt = RegisterMap.find(Reg); 2845 if (RegIt == RegisterMap.end()) 2846 continue; 2847 auto &DbgInstrVec = RegIt->getSecond(); 2848 if (!DbgInstrVec.size()) 2849 continue; 2850 for (auto *DbgInstr : DbgInstrVec) { 2851 MachineBasicBlock::iterator InsertPos = std::next(MBBI); 2852 auto *ClonedMI = MI.getMF()->CloneMachineInstr(DbgInstr); 2853 MBB->insert(InsertPos, ClonedMI); 2854 MBBI++; 2855 // Erase the entry into the DbgValueSinkCandidates for the DBG_VALUE 2856 // that was moved. 2857 auto DbgVar = createDebugVariableFromMachineInstr(DbgInstr); 2858 auto DbgIt = DbgValueSinkCandidates.find(DbgVar); 2859 // If the instruction is a DBG_VALUE_LIST, it may have already been 2860 // erased from the DbgValueSinkCandidates. Only erase if it exists in 2861 // the DbgValueSinkCandidates. 2862 if (DbgIt != DbgValueSinkCandidates.end()) 2863 DbgValueSinkCandidates.erase(DbgIt); 2864 // Zero out original dbg instr 2865 forEachDbgRegOperand(DbgInstr, 2866 [&](MachineOperand &Op) { Op.setReg(0); }); 2867 // Update RegisterMap with ClonedMI because it might have to be moved 2868 // again. 2869 if (DbgInstr->isDebugValueList()) 2870 updateRegisterMapForDbgValueListAfterMove(RegisterMap, ClonedMI, 2871 DbgInstr); 2872 } 2873 } 2874 } 2875 return RetVal; 2876 } 2877 2878 // Get the Base register operand index from the memory access MachineInst if we 2879 // should attempt to distribute postinc on it. Return -1 if not of a valid 2880 // instruction type. If it returns an index, it is assumed that instruction is a 2881 // r+i indexing mode, and getBaseOperandIndex() + 1 is the Offset index. 2882 static int getBaseOperandIndex(MachineInstr &MI) { 2883 switch (MI.getOpcode()) { 2884 case ARM::MVE_VLDRBS16: 2885 case ARM::MVE_VLDRBS32: 2886 case ARM::MVE_VLDRBU16: 2887 case ARM::MVE_VLDRBU32: 2888 case ARM::MVE_VLDRHS32: 2889 case ARM::MVE_VLDRHU32: 2890 case ARM::MVE_VLDRBU8: 2891 case ARM::MVE_VLDRHU16: 2892 case ARM::MVE_VLDRWU32: 2893 case ARM::MVE_VSTRB16: 2894 case ARM::MVE_VSTRB32: 2895 case ARM::MVE_VSTRH32: 2896 case ARM::MVE_VSTRBU8: 2897 case ARM::MVE_VSTRHU16: 2898 case ARM::MVE_VSTRWU32: 2899 case ARM::t2LDRHi8: 2900 case ARM::t2LDRHi12: 2901 case ARM::t2LDRSHi8: 2902 case ARM::t2LDRSHi12: 2903 case ARM::t2LDRBi8: 2904 case ARM::t2LDRBi12: 2905 case ARM::t2LDRSBi8: 2906 case ARM::t2LDRSBi12: 2907 case ARM::t2STRBi8: 2908 case ARM::t2STRBi12: 2909 case ARM::t2STRHi8: 2910 case ARM::t2STRHi12: 2911 return 1; 2912 case ARM::MVE_VLDRBS16_post: 2913 case ARM::MVE_VLDRBS32_post: 2914 case ARM::MVE_VLDRBU16_post: 2915 case ARM::MVE_VLDRBU32_post: 2916 case ARM::MVE_VLDRHS32_post: 2917 case ARM::MVE_VLDRHU32_post: 2918 case ARM::MVE_VLDRBU8_post: 2919 case ARM::MVE_VLDRHU16_post: 2920 case ARM::MVE_VLDRWU32_post: 2921 case ARM::MVE_VSTRB16_post: 2922 case ARM::MVE_VSTRB32_post: 2923 case ARM::MVE_VSTRH32_post: 2924 case ARM::MVE_VSTRBU8_post: 2925 case ARM::MVE_VSTRHU16_post: 2926 case ARM::MVE_VSTRWU32_post: 2927 case ARM::MVE_VLDRBS16_pre: 2928 case ARM::MVE_VLDRBS32_pre: 2929 case ARM::MVE_VLDRBU16_pre: 2930 case ARM::MVE_VLDRBU32_pre: 2931 case ARM::MVE_VLDRHS32_pre: 2932 case ARM::MVE_VLDRHU32_pre: 2933 case ARM::MVE_VLDRBU8_pre: 2934 case ARM::MVE_VLDRHU16_pre: 2935 case ARM::MVE_VLDRWU32_pre: 2936 case ARM::MVE_VSTRB16_pre: 2937 case ARM::MVE_VSTRB32_pre: 2938 case ARM::MVE_VSTRH32_pre: 2939 case ARM::MVE_VSTRBU8_pre: 2940 case ARM::MVE_VSTRHU16_pre: 2941 case ARM::MVE_VSTRWU32_pre: 2942 return 2; 2943 } 2944 return -1; 2945 } 2946 2947 static bool isPostIndex(MachineInstr &MI) { 2948 switch (MI.getOpcode()) { 2949 case ARM::MVE_VLDRBS16_post: 2950 case ARM::MVE_VLDRBS32_post: 2951 case ARM::MVE_VLDRBU16_post: 2952 case ARM::MVE_VLDRBU32_post: 2953 case ARM::MVE_VLDRHS32_post: 2954 case ARM::MVE_VLDRHU32_post: 2955 case ARM::MVE_VLDRBU8_post: 2956 case ARM::MVE_VLDRHU16_post: 2957 case ARM::MVE_VLDRWU32_post: 2958 case ARM::MVE_VSTRB16_post: 2959 case ARM::MVE_VSTRB32_post: 2960 case ARM::MVE_VSTRH32_post: 2961 case ARM::MVE_VSTRBU8_post: 2962 case ARM::MVE_VSTRHU16_post: 2963 case ARM::MVE_VSTRWU32_post: 2964 return true; 2965 } 2966 return false; 2967 } 2968 2969 static bool isPreIndex(MachineInstr &MI) { 2970 switch (MI.getOpcode()) { 2971 case ARM::MVE_VLDRBS16_pre: 2972 case ARM::MVE_VLDRBS32_pre: 2973 case ARM::MVE_VLDRBU16_pre: 2974 case ARM::MVE_VLDRBU32_pre: 2975 case ARM::MVE_VLDRHS32_pre: 2976 case ARM::MVE_VLDRHU32_pre: 2977 case ARM::MVE_VLDRBU8_pre: 2978 case ARM::MVE_VLDRHU16_pre: 2979 case ARM::MVE_VLDRWU32_pre: 2980 case ARM::MVE_VSTRB16_pre: 2981 case ARM::MVE_VSTRB32_pre: 2982 case ARM::MVE_VSTRH32_pre: 2983 case ARM::MVE_VSTRBU8_pre: 2984 case ARM::MVE_VSTRHU16_pre: 2985 case ARM::MVE_VSTRWU32_pre: 2986 return true; 2987 } 2988 return false; 2989 } 2990 2991 // Given a memory access Opcode, check that the give Imm would be a valid Offset 2992 // for this instruction (same as isLegalAddressImm), Or if the instruction 2993 // could be easily converted to one where that was valid. For example converting 2994 // t2LDRi12 to t2LDRi8 for negative offsets. Works in conjunction with 2995 // AdjustBaseAndOffset below. 2996 static bool isLegalOrConvertableAddressImm(unsigned Opcode, int Imm, 2997 const TargetInstrInfo *TII, 2998 int &CodesizeEstimate) { 2999 if (isLegalAddressImm(Opcode, Imm, TII)) 3000 return true; 3001 3002 // We can convert AddrModeT2_i12 to AddrModeT2_i8neg. 3003 const MCInstrDesc &Desc = TII->get(Opcode); 3004 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); 3005 switch (AddrMode) { 3006 case ARMII::AddrModeT2_i12: 3007 CodesizeEstimate += 1; 3008 return Imm < 0 && -Imm < ((1 << 8) * 1); 3009 } 3010 return false; 3011 } 3012 3013 // Given an MI adjust its address BaseReg to use NewBaseReg and address offset 3014 // by -Offset. This can either happen in-place or be a replacement as MI is 3015 // converted to another instruction type. 3016 static void AdjustBaseAndOffset(MachineInstr *MI, Register NewBaseReg, 3017 int Offset, const TargetInstrInfo *TII, 3018 const TargetRegisterInfo *TRI) { 3019 // Set the Base reg 3020 unsigned BaseOp = getBaseOperandIndex(*MI); 3021 MI->getOperand(BaseOp).setReg(NewBaseReg); 3022 // and constrain the reg class to that required by the instruction. 3023 MachineFunction *MF = MI->getMF(); 3024 MachineRegisterInfo &MRI = MF->getRegInfo(); 3025 const MCInstrDesc &MCID = TII->get(MI->getOpcode()); 3026 const TargetRegisterClass *TRC = TII->getRegClass(MCID, BaseOp, TRI, *MF); 3027 MRI.constrainRegClass(NewBaseReg, TRC); 3028 3029 int OldOffset = MI->getOperand(BaseOp + 1).getImm(); 3030 if (isLegalAddressImm(MI->getOpcode(), OldOffset - Offset, TII)) 3031 MI->getOperand(BaseOp + 1).setImm(OldOffset - Offset); 3032 else { 3033 unsigned ConvOpcode; 3034 switch (MI->getOpcode()) { 3035 case ARM::t2LDRHi12: 3036 ConvOpcode = ARM::t2LDRHi8; 3037 break; 3038 case ARM::t2LDRSHi12: 3039 ConvOpcode = ARM::t2LDRSHi8; 3040 break; 3041 case ARM::t2LDRBi12: 3042 ConvOpcode = ARM::t2LDRBi8; 3043 break; 3044 case ARM::t2LDRSBi12: 3045 ConvOpcode = ARM::t2LDRSBi8; 3046 break; 3047 case ARM::t2STRHi12: 3048 ConvOpcode = ARM::t2STRHi8; 3049 break; 3050 case ARM::t2STRBi12: 3051 ConvOpcode = ARM::t2STRBi8; 3052 break; 3053 default: 3054 llvm_unreachable("Unhandled convertable opcode"); 3055 } 3056 assert(isLegalAddressImm(ConvOpcode, OldOffset - Offset, TII) && 3057 "Illegal Address Immediate after convert!"); 3058 3059 const MCInstrDesc &MCID = TII->get(ConvOpcode); 3060 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), MCID) 3061 .add(MI->getOperand(0)) 3062 .add(MI->getOperand(1)) 3063 .addImm(OldOffset - Offset) 3064 .add(MI->getOperand(3)) 3065 .add(MI->getOperand(4)) 3066 .cloneMemRefs(*MI); 3067 MI->eraseFromParent(); 3068 } 3069 } 3070 3071 static MachineInstr *createPostIncLoadStore(MachineInstr *MI, int Offset, 3072 Register NewReg, 3073 const TargetInstrInfo *TII, 3074 const TargetRegisterInfo *TRI) { 3075 MachineFunction *MF = MI->getMF(); 3076 MachineRegisterInfo &MRI = MF->getRegInfo(); 3077 3078 unsigned NewOpcode = getPostIndexedLoadStoreOpcode( 3079 MI->getOpcode(), Offset > 0 ? ARM_AM::add : ARM_AM::sub); 3080 3081 const MCInstrDesc &MCID = TII->get(NewOpcode); 3082 // Constrain the def register class 3083 const TargetRegisterClass *TRC = TII->getRegClass(MCID, 0, TRI, *MF); 3084 MRI.constrainRegClass(NewReg, TRC); 3085 // And do the same for the base operand 3086 TRC = TII->getRegClass(MCID, 2, TRI, *MF); 3087 MRI.constrainRegClass(MI->getOperand(1).getReg(), TRC); 3088 3089 unsigned AddrMode = (MCID.TSFlags & ARMII::AddrModeMask); 3090 switch (AddrMode) { 3091 case ARMII::AddrModeT2_i7: 3092 case ARMII::AddrModeT2_i7s2: 3093 case ARMII::AddrModeT2_i7s4: 3094 // Any MVE load/store 3095 return BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), MCID) 3096 .addReg(NewReg, RegState::Define) 3097 .add(MI->getOperand(0)) 3098 .add(MI->getOperand(1)) 3099 .addImm(Offset) 3100 .add(MI->getOperand(3)) 3101 .add(MI->getOperand(4)) 3102 .add(MI->getOperand(5)) 3103 .cloneMemRefs(*MI); 3104 case ARMII::AddrModeT2_i8: 3105 if (MI->mayLoad()) { 3106 return BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), MCID) 3107 .add(MI->getOperand(0)) 3108 .addReg(NewReg, RegState::Define) 3109 .add(MI->getOperand(1)) 3110 .addImm(Offset) 3111 .add(MI->getOperand(3)) 3112 .add(MI->getOperand(4)) 3113 .cloneMemRefs(*MI); 3114 } else { 3115 return BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), MCID) 3116 .addReg(NewReg, RegState::Define) 3117 .add(MI->getOperand(0)) 3118 .add(MI->getOperand(1)) 3119 .addImm(Offset) 3120 .add(MI->getOperand(3)) 3121 .add(MI->getOperand(4)) 3122 .cloneMemRefs(*MI); 3123 } 3124 default: 3125 llvm_unreachable("Unhandled createPostIncLoadStore"); 3126 } 3127 } 3128 3129 // Given a Base Register, optimise the load/store uses to attempt to create more 3130 // post-inc accesses and less register moves. We do this by taking zero offset 3131 // loads/stores with an add, and convert them to a postinc load/store of the 3132 // same type. Any subsequent accesses will be adjusted to use and account for 3133 // the post-inc value. 3134 // For example: 3135 // LDR #0 LDR_POSTINC #16 3136 // LDR #4 LDR #-12 3137 // LDR #8 LDR #-8 3138 // LDR #12 LDR #-4 3139 // ADD #16 3140 // 3141 // At the same time if we do not find an increment but do find an existing 3142 // pre/post inc instruction, we can still adjust the offsets of subsequent 3143 // instructions to save the register move that would otherwise be needed for the 3144 // in-place increment. 3145 bool ARMPreAllocLoadStoreOpt::DistributeIncrements(Register Base) { 3146 // We are looking for: 3147 // One zero offset load/store that can become postinc 3148 MachineInstr *BaseAccess = nullptr; 3149 MachineInstr *PrePostInc = nullptr; 3150 // An increment that can be folded in 3151 MachineInstr *Increment = nullptr; 3152 // Other accesses after BaseAccess that will need to be updated to use the 3153 // postinc value. 3154 SmallPtrSet<MachineInstr *, 8> OtherAccesses; 3155 for (auto &Use : MRI->use_nodbg_instructions(Base)) { 3156 if (!Increment && getAddSubImmediate(Use) != 0) { 3157 Increment = &Use; 3158 continue; 3159 } 3160 3161 int BaseOp = getBaseOperandIndex(Use); 3162 if (BaseOp == -1) 3163 return false; 3164 3165 if (!Use.getOperand(BaseOp).isReg() || 3166 Use.getOperand(BaseOp).getReg() != Base) 3167 return false; 3168 if (isPreIndex(Use) || isPostIndex(Use)) 3169 PrePostInc = &Use; 3170 else if (Use.getOperand(BaseOp + 1).getImm() == 0) 3171 BaseAccess = &Use; 3172 else 3173 OtherAccesses.insert(&Use); 3174 } 3175 3176 int IncrementOffset; 3177 Register NewBaseReg; 3178 if (BaseAccess && Increment) { 3179 if (PrePostInc || BaseAccess->getParent() != Increment->getParent()) 3180 return false; 3181 Register PredReg; 3182 if (Increment->definesRegister(ARM::CPSR) || 3183 getInstrPredicate(*Increment, PredReg) != ARMCC::AL) 3184 return false; 3185 3186 LLVM_DEBUG(dbgs() << "\nAttempting to distribute increments on VirtualReg " 3187 << Base.virtRegIndex() << "\n"); 3188 3189 // Make sure that Increment has no uses before BaseAccess that are not PHI 3190 // uses. 3191 for (MachineInstr &Use : 3192 MRI->use_nodbg_instructions(Increment->getOperand(0).getReg())) { 3193 if (&Use == BaseAccess || (Use.getOpcode() != TargetOpcode::PHI && 3194 !DT->dominates(BaseAccess, &Use))) { 3195 LLVM_DEBUG(dbgs() << " BaseAccess doesn't dominate use of increment\n"); 3196 return false; 3197 } 3198 } 3199 3200 // Make sure that Increment can be folded into Base 3201 IncrementOffset = getAddSubImmediate(*Increment); 3202 unsigned NewPostIncOpcode = getPostIndexedLoadStoreOpcode( 3203 BaseAccess->getOpcode(), IncrementOffset > 0 ? ARM_AM::add : ARM_AM::sub); 3204 if (!isLegalAddressImm(NewPostIncOpcode, IncrementOffset, TII)) { 3205 LLVM_DEBUG(dbgs() << " Illegal addressing mode immediate on postinc\n"); 3206 return false; 3207 } 3208 } 3209 else if (PrePostInc) { 3210 // If we already have a pre/post index load/store then set BaseAccess, 3211 // IncrementOffset and NewBaseReg to the values it already produces, 3212 // allowing us to update and subsequent uses of BaseOp reg with the 3213 // incremented value. 3214 if (Increment) 3215 return false; 3216 3217 LLVM_DEBUG(dbgs() << "\nAttempting to distribute increments on already " 3218 << "indexed VirtualReg " << Base.virtRegIndex() << "\n"); 3219 int BaseOp = getBaseOperandIndex(*PrePostInc); 3220 IncrementOffset = PrePostInc->getOperand(BaseOp+1).getImm(); 3221 BaseAccess = PrePostInc; 3222 NewBaseReg = PrePostInc->getOperand(0).getReg(); 3223 } 3224 else 3225 return false; 3226 3227 // And make sure that the negative value of increment can be added to all 3228 // other offsets after the BaseAccess. We rely on either 3229 // dominates(BaseAccess, OtherAccess) or dominates(OtherAccess, BaseAccess) 3230 // to keep things simple. 3231 // This also adds a simple codesize metric, to detect if an instruction (like 3232 // t2LDRBi12) which can often be shrunk to a thumb1 instruction (tLDRBi) 3233 // cannot because it is converted to something else (t2LDRBi8). We start this 3234 // at -1 for the gain from removing the increment. 3235 SmallPtrSet<MachineInstr *, 4> SuccessorAccesses; 3236 int CodesizeEstimate = -1; 3237 for (auto *Use : OtherAccesses) { 3238 if (DT->dominates(BaseAccess, Use)) { 3239 SuccessorAccesses.insert(Use); 3240 unsigned BaseOp = getBaseOperandIndex(*Use); 3241 if (!isLegalOrConvertableAddressImm(Use->getOpcode(), 3242 Use->getOperand(BaseOp + 1).getImm() - 3243 IncrementOffset, 3244 TII, CodesizeEstimate)) { 3245 LLVM_DEBUG(dbgs() << " Illegal addressing mode immediate on use\n"); 3246 return false; 3247 } 3248 } else if (!DT->dominates(Use, BaseAccess)) { 3249 LLVM_DEBUG( 3250 dbgs() << " Unknown dominance relation between Base and Use\n"); 3251 return false; 3252 } 3253 } 3254 if (STI->hasMinSize() && CodesizeEstimate > 0) { 3255 LLVM_DEBUG(dbgs() << " Expected to grow instructions under minsize\n"); 3256 return false; 3257 } 3258 3259 if (!PrePostInc) { 3260 // Replace BaseAccess with a post inc 3261 LLVM_DEBUG(dbgs() << "Changing: "; BaseAccess->dump()); 3262 LLVM_DEBUG(dbgs() << " And : "; Increment->dump()); 3263 NewBaseReg = Increment->getOperand(0).getReg(); 3264 MachineInstr *BaseAccessPost = 3265 createPostIncLoadStore(BaseAccess, IncrementOffset, NewBaseReg, TII, TRI); 3266 BaseAccess->eraseFromParent(); 3267 Increment->eraseFromParent(); 3268 (void)BaseAccessPost; 3269 LLVM_DEBUG(dbgs() << " To : "; BaseAccessPost->dump()); 3270 } 3271 3272 for (auto *Use : SuccessorAccesses) { 3273 LLVM_DEBUG(dbgs() << "Changing: "; Use->dump()); 3274 AdjustBaseAndOffset(Use, NewBaseReg, IncrementOffset, TII, TRI); 3275 LLVM_DEBUG(dbgs() << " To : "; Use->dump()); 3276 } 3277 3278 // Remove the kill flag from all uses of NewBaseReg, in case any old uses 3279 // remain. 3280 for (MachineOperand &Op : MRI->use_nodbg_operands(NewBaseReg)) 3281 Op.setIsKill(false); 3282 return true; 3283 } 3284 3285 bool ARMPreAllocLoadStoreOpt::DistributeIncrements() { 3286 bool Changed = false; 3287 SmallSetVector<Register, 4> Visited; 3288 for (auto &MBB : *MF) { 3289 for (auto &MI : MBB) { 3290 int BaseOp = getBaseOperandIndex(MI); 3291 if (BaseOp == -1 || !MI.getOperand(BaseOp).isReg()) 3292 continue; 3293 3294 Register Base = MI.getOperand(BaseOp).getReg(); 3295 if (!Base.isVirtual() || Visited.count(Base)) 3296 continue; 3297 3298 Visited.insert(Base); 3299 } 3300 } 3301 3302 for (auto Base : Visited) 3303 Changed |= DistributeIncrements(Base); 3304 3305 return Changed; 3306 } 3307 3308 /// Returns an instance of the load / store optimization pass. 3309 FunctionPass *llvm::createARMLoadStoreOptimizationPass(bool PreAlloc) { 3310 if (PreAlloc) 3311 return new ARMPreAllocLoadStoreOpt(); 3312 return new ARMLoadStoreOpt(); 3313 } 3314