1 //===- ARMLegalizerInfo.cpp --------------------------------------*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// \file 9 /// This file implements the targeting of the Machinelegalizer class for ARM. 10 /// \todo This should be generated by TableGen. 11 //===----------------------------------------------------------------------===// 12 13 #include "ARMLegalizerInfo.h" 14 #include "ARMCallLowering.h" 15 #include "ARMSubtarget.h" 16 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" 17 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" 18 #include "llvm/CodeGen/LowLevelTypeUtils.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/TargetOpcodes.h" 21 #include "llvm/CodeGen/ValueTypes.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/Type.h" 24 25 using namespace llvm; 26 using namespace LegalizeActions; 27 28 /// FIXME: The following static functions are SizeChangeStrategy functions 29 /// that are meant to temporarily mimic the behaviour of the old legalization 30 /// based on doubling/halving non-legal types as closely as possible. This is 31 /// not entirly possible as only legalizing the types that are exactly a power 32 /// of 2 times the size of the legal types would require specifying all those 33 /// sizes explicitly. 34 /// In practice, not specifying those isn't a problem, and the below functions 35 /// should disappear quickly as we add support for legalizing non-power-of-2 36 /// sized types further. 37 static void addAndInterleaveWithUnsupported( 38 LegacyLegalizerInfo::SizeAndActionsVec &result, 39 const LegacyLegalizerInfo::SizeAndActionsVec &v) { 40 for (unsigned i = 0; i < v.size(); ++i) { 41 result.push_back(v[i]); 42 if (i + 1 < v[i].first && i + 1 < v.size() && 43 v[i + 1].first != v[i].first + 1) 44 result.push_back({v[i].first + 1, LegacyLegalizeActions::Unsupported}); 45 } 46 } 47 48 static LegacyLegalizerInfo::SizeAndActionsVec 49 widen_8_16(const LegacyLegalizerInfo::SizeAndActionsVec &v) { 50 assert(v.size() >= 1); 51 assert(v[0].first > 17); 52 LegacyLegalizerInfo::SizeAndActionsVec result = { 53 {1, LegacyLegalizeActions::Unsupported}, 54 {8, LegacyLegalizeActions::WidenScalar}, 55 {9, LegacyLegalizeActions::Unsupported}, 56 {16, LegacyLegalizeActions::WidenScalar}, 57 {17, LegacyLegalizeActions::Unsupported}}; 58 addAndInterleaveWithUnsupported(result, v); 59 auto Largest = result.back().first; 60 result.push_back({Largest + 1, LegacyLegalizeActions::Unsupported}); 61 return result; 62 } 63 64 static bool AEABI(const ARMSubtarget &ST) { 65 return ST.isTargetAEABI() || ST.isTargetGNUAEABI() || ST.isTargetMuslAEABI(); 66 } 67 68 ARMLegalizerInfo::ARMLegalizerInfo(const ARMSubtarget &ST) { 69 using namespace TargetOpcode; 70 71 const LLT p0 = LLT::pointer(0, 32); 72 73 const LLT s1 = LLT::scalar(1); 74 const LLT s8 = LLT::scalar(8); 75 const LLT s16 = LLT::scalar(16); 76 const LLT s32 = LLT::scalar(32); 77 const LLT s64 = LLT::scalar(64); 78 79 auto &LegacyInfo = getLegacyLegalizerInfo(); 80 if (ST.isThumb1Only()) { 81 // Thumb1 is not supported yet. 82 LegacyInfo.computeTables(); 83 verify(*ST.getInstrInfo()); 84 return; 85 } 86 87 getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT}) 88 .legalForCartesianProduct({s8, s16, s32}, {s1, s8, s16}); 89 90 getActionDefinitionsBuilder(G_SEXT_INREG).lower(); 91 92 getActionDefinitionsBuilder({G_MUL, G_AND, G_OR, G_XOR}) 93 .legalFor({s32}) 94 .clampScalar(0, s32, s32); 95 96 if (ST.hasNEON()) 97 getActionDefinitionsBuilder({G_ADD, G_SUB}) 98 .legalFor({s32, s64}) 99 .minScalar(0, s32); 100 else 101 getActionDefinitionsBuilder({G_ADD, G_SUB}) 102 .legalFor({s32}) 103 .minScalar(0, s32); 104 105 getActionDefinitionsBuilder({G_ASHR, G_LSHR, G_SHL}) 106 .legalFor({{s32, s32}}) 107 .minScalar(0, s32) 108 .clampScalar(1, s32, s32); 109 110 bool HasHWDivide = (!ST.isThumb() && ST.hasDivideInARMMode()) || 111 (ST.isThumb() && ST.hasDivideInThumbMode()); 112 if (HasHWDivide) 113 getActionDefinitionsBuilder({G_SDIV, G_UDIV}) 114 .legalFor({s32}) 115 .clampScalar(0, s32, s32); 116 else 117 getActionDefinitionsBuilder({G_SDIV, G_UDIV}) 118 .libcallFor({s32}) 119 .clampScalar(0, s32, s32); 120 121 for (unsigned Op : {G_SREM, G_UREM}) { 122 LegacyInfo.setLegalizeScalarToDifferentSizeStrategy(Op, 0, widen_8_16); 123 if (HasHWDivide) 124 LegacyInfo.setAction({Op, s32}, LegacyLegalizeActions::Lower); 125 else if (AEABI(ST)) 126 LegacyInfo.setAction({Op, s32}, LegacyLegalizeActions::Custom); 127 else 128 LegacyInfo.setAction({Op, s32}, LegacyLegalizeActions::Libcall); 129 } 130 131 getActionDefinitionsBuilder(G_INTTOPTR) 132 .legalFor({{p0, s32}}) 133 .minScalar(1, s32); 134 getActionDefinitionsBuilder(G_PTRTOINT) 135 .legalFor({{s32, p0}}) 136 .minScalar(0, s32); 137 138 getActionDefinitionsBuilder(G_CONSTANT) 139 .legalFor({s32, p0}) 140 .clampScalar(0, s32, s32); 141 142 getActionDefinitionsBuilder(G_ICMP) 143 .legalForCartesianProduct({s1}, {s32, p0}) 144 .minScalar(1, s32); 145 146 getActionDefinitionsBuilder(G_SELECT) 147 .legalForCartesianProduct({s32, p0}, {s1}) 148 .minScalar(0, s32); 149 150 // We're keeping these builders around because we'll want to add support for 151 // floating point to them. 152 auto &LoadStoreBuilder = getActionDefinitionsBuilder({G_LOAD, G_STORE}) 153 .legalForTypesWithMemDesc({{s8, p0, s8, 8}, 154 {s16, p0, s16, 8}, 155 {s32, p0, s32, 8}, 156 {p0, p0, p0, 8}}) 157 .unsupportedIfMemSizeNotPow2(); 158 159 getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({p0}); 160 getActionDefinitionsBuilder(G_GLOBAL_VALUE).legalFor({p0}); 161 162 auto &PhiBuilder = 163 getActionDefinitionsBuilder(G_PHI) 164 .legalFor({s32, p0}) 165 .minScalar(0, s32); 166 167 getActionDefinitionsBuilder(G_PTR_ADD) 168 .legalFor({{p0, s32}}) 169 .minScalar(1, s32); 170 171 getActionDefinitionsBuilder(G_BRCOND).legalFor({s1}); 172 173 if (!ST.useSoftFloat() && ST.hasVFP2Base()) { 174 getActionDefinitionsBuilder( 175 {G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FCONSTANT, G_FNEG}) 176 .legalFor({s32, s64}); 177 178 LoadStoreBuilder 179 .legalForTypesWithMemDesc({{s64, p0, s64, 32}}) 180 .maxScalar(0, s32); 181 PhiBuilder.legalFor({s64}); 182 183 getActionDefinitionsBuilder(G_FCMP).legalForCartesianProduct({s1}, 184 {s32, s64}); 185 186 getActionDefinitionsBuilder(G_MERGE_VALUES).legalFor({{s64, s32}}); 187 getActionDefinitionsBuilder(G_UNMERGE_VALUES).legalFor({{s32, s64}}); 188 189 getActionDefinitionsBuilder(G_FPEXT).legalFor({{s64, s32}}); 190 getActionDefinitionsBuilder(G_FPTRUNC).legalFor({{s32, s64}}); 191 192 getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI}) 193 .legalForCartesianProduct({s32}, {s32, s64}); 194 getActionDefinitionsBuilder({G_SITOFP, G_UITOFP}) 195 .legalForCartesianProduct({s32, s64}, {s32}); 196 } else { 197 getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV}) 198 .libcallFor({s32, s64}); 199 200 LoadStoreBuilder.maxScalar(0, s32); 201 202 for (auto Ty : {s32, s64}) 203 LegacyInfo.setAction({G_FNEG, Ty}, LegacyLegalizeActions::Lower); 204 205 getActionDefinitionsBuilder(G_FCONSTANT).customFor({s32, s64}); 206 207 getActionDefinitionsBuilder(G_FCMP).customForCartesianProduct({s1}, 208 {s32, s64}); 209 210 if (AEABI(ST)) 211 setFCmpLibcallsAEABI(); 212 else 213 setFCmpLibcallsGNU(); 214 215 getActionDefinitionsBuilder(G_FPEXT).libcallFor({{s64, s32}}); 216 getActionDefinitionsBuilder(G_FPTRUNC).libcallFor({{s32, s64}}); 217 218 getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI}) 219 .libcallForCartesianProduct({s32}, {s32, s64}); 220 getActionDefinitionsBuilder({G_SITOFP, G_UITOFP}) 221 .libcallForCartesianProduct({s32, s64}, {s32}); 222 } 223 224 // Just expand whatever loads and stores are left. 225 LoadStoreBuilder.lower(); 226 227 if (!ST.useSoftFloat() && ST.hasVFP4Base()) 228 getActionDefinitionsBuilder(G_FMA).legalFor({s32, s64}); 229 else 230 getActionDefinitionsBuilder(G_FMA).libcallFor({s32, s64}); 231 232 getActionDefinitionsBuilder({G_FREM, G_FPOW}).libcallFor({s32, s64}); 233 234 if (ST.hasV5TOps()) { 235 getActionDefinitionsBuilder(G_CTLZ) 236 .legalFor({s32, s32}) 237 .clampScalar(1, s32, s32) 238 .clampScalar(0, s32, s32); 239 getActionDefinitionsBuilder(G_CTLZ_ZERO_UNDEF) 240 .lowerFor({s32, s32}) 241 .clampScalar(1, s32, s32) 242 .clampScalar(0, s32, s32); 243 } else { 244 getActionDefinitionsBuilder(G_CTLZ_ZERO_UNDEF) 245 .libcallFor({s32, s32}) 246 .clampScalar(1, s32, s32) 247 .clampScalar(0, s32, s32); 248 getActionDefinitionsBuilder(G_CTLZ) 249 .lowerFor({s32, s32}) 250 .clampScalar(1, s32, s32) 251 .clampScalar(0, s32, s32); 252 } 253 254 LegacyInfo.computeTables(); 255 verify(*ST.getInstrInfo()); 256 } 257 258 void ARMLegalizerInfo::setFCmpLibcallsAEABI() { 259 // FCMP_TRUE and FCMP_FALSE don't need libcalls, they should be 260 // default-initialized. 261 FCmp32Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1); 262 FCmp32Libcalls[CmpInst::FCMP_OEQ] = { 263 {RTLIB::OEQ_F32, CmpInst::BAD_ICMP_PREDICATE}}; 264 FCmp32Libcalls[CmpInst::FCMP_OGE] = { 265 {RTLIB::OGE_F32, CmpInst::BAD_ICMP_PREDICATE}}; 266 FCmp32Libcalls[CmpInst::FCMP_OGT] = { 267 {RTLIB::OGT_F32, CmpInst::BAD_ICMP_PREDICATE}}; 268 FCmp32Libcalls[CmpInst::FCMP_OLE] = { 269 {RTLIB::OLE_F32, CmpInst::BAD_ICMP_PREDICATE}}; 270 FCmp32Libcalls[CmpInst::FCMP_OLT] = { 271 {RTLIB::OLT_F32, CmpInst::BAD_ICMP_PREDICATE}}; 272 FCmp32Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::UO_F32, CmpInst::ICMP_EQ}}; 273 FCmp32Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F32, CmpInst::ICMP_EQ}}; 274 FCmp32Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F32, CmpInst::ICMP_EQ}}; 275 FCmp32Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F32, CmpInst::ICMP_EQ}}; 276 FCmp32Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F32, CmpInst::ICMP_EQ}}; 277 FCmp32Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F32, CmpInst::ICMP_EQ}}; 278 FCmp32Libcalls[CmpInst::FCMP_UNO] = { 279 {RTLIB::UO_F32, CmpInst::BAD_ICMP_PREDICATE}}; 280 FCmp32Libcalls[CmpInst::FCMP_ONE] = { 281 {RTLIB::OGT_F32, CmpInst::BAD_ICMP_PREDICATE}, 282 {RTLIB::OLT_F32, CmpInst::BAD_ICMP_PREDICATE}}; 283 FCmp32Libcalls[CmpInst::FCMP_UEQ] = { 284 {RTLIB::OEQ_F32, CmpInst::BAD_ICMP_PREDICATE}, 285 {RTLIB::UO_F32, CmpInst::BAD_ICMP_PREDICATE}}; 286 287 FCmp64Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1); 288 FCmp64Libcalls[CmpInst::FCMP_OEQ] = { 289 {RTLIB::OEQ_F64, CmpInst::BAD_ICMP_PREDICATE}}; 290 FCmp64Libcalls[CmpInst::FCMP_OGE] = { 291 {RTLIB::OGE_F64, CmpInst::BAD_ICMP_PREDICATE}}; 292 FCmp64Libcalls[CmpInst::FCMP_OGT] = { 293 {RTLIB::OGT_F64, CmpInst::BAD_ICMP_PREDICATE}}; 294 FCmp64Libcalls[CmpInst::FCMP_OLE] = { 295 {RTLIB::OLE_F64, CmpInst::BAD_ICMP_PREDICATE}}; 296 FCmp64Libcalls[CmpInst::FCMP_OLT] = { 297 {RTLIB::OLT_F64, CmpInst::BAD_ICMP_PREDICATE}}; 298 FCmp64Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::UO_F64, CmpInst::ICMP_EQ}}; 299 FCmp64Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F64, CmpInst::ICMP_EQ}}; 300 FCmp64Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F64, CmpInst::ICMP_EQ}}; 301 FCmp64Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F64, CmpInst::ICMP_EQ}}; 302 FCmp64Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F64, CmpInst::ICMP_EQ}}; 303 FCmp64Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F64, CmpInst::ICMP_EQ}}; 304 FCmp64Libcalls[CmpInst::FCMP_UNO] = { 305 {RTLIB::UO_F64, CmpInst::BAD_ICMP_PREDICATE}}; 306 FCmp64Libcalls[CmpInst::FCMP_ONE] = { 307 {RTLIB::OGT_F64, CmpInst::BAD_ICMP_PREDICATE}, 308 {RTLIB::OLT_F64, CmpInst::BAD_ICMP_PREDICATE}}; 309 FCmp64Libcalls[CmpInst::FCMP_UEQ] = { 310 {RTLIB::OEQ_F64, CmpInst::BAD_ICMP_PREDICATE}, 311 {RTLIB::UO_F64, CmpInst::BAD_ICMP_PREDICATE}}; 312 } 313 314 void ARMLegalizerInfo::setFCmpLibcallsGNU() { 315 // FCMP_TRUE and FCMP_FALSE don't need libcalls, they should be 316 // default-initialized. 317 FCmp32Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1); 318 FCmp32Libcalls[CmpInst::FCMP_OEQ] = {{RTLIB::OEQ_F32, CmpInst::ICMP_EQ}}; 319 FCmp32Libcalls[CmpInst::FCMP_OGE] = {{RTLIB::OGE_F32, CmpInst::ICMP_SGE}}; 320 FCmp32Libcalls[CmpInst::FCMP_OGT] = {{RTLIB::OGT_F32, CmpInst::ICMP_SGT}}; 321 FCmp32Libcalls[CmpInst::FCMP_OLE] = {{RTLIB::OLE_F32, CmpInst::ICMP_SLE}}; 322 FCmp32Libcalls[CmpInst::FCMP_OLT] = {{RTLIB::OLT_F32, CmpInst::ICMP_SLT}}; 323 FCmp32Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::UO_F32, CmpInst::ICMP_EQ}}; 324 FCmp32Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F32, CmpInst::ICMP_SGE}}; 325 FCmp32Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F32, CmpInst::ICMP_SGT}}; 326 FCmp32Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F32, CmpInst::ICMP_SLE}}; 327 FCmp32Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F32, CmpInst::ICMP_SLT}}; 328 FCmp32Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F32, CmpInst::ICMP_NE}}; 329 FCmp32Libcalls[CmpInst::FCMP_UNO] = {{RTLIB::UO_F32, CmpInst::ICMP_NE}}; 330 FCmp32Libcalls[CmpInst::FCMP_ONE] = {{RTLIB::OGT_F32, CmpInst::ICMP_SGT}, 331 {RTLIB::OLT_F32, CmpInst::ICMP_SLT}}; 332 FCmp32Libcalls[CmpInst::FCMP_UEQ] = {{RTLIB::OEQ_F32, CmpInst::ICMP_EQ}, 333 {RTLIB::UO_F32, CmpInst::ICMP_NE}}; 334 335 FCmp64Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1); 336 FCmp64Libcalls[CmpInst::FCMP_OEQ] = {{RTLIB::OEQ_F64, CmpInst::ICMP_EQ}}; 337 FCmp64Libcalls[CmpInst::FCMP_OGE] = {{RTLIB::OGE_F64, CmpInst::ICMP_SGE}}; 338 FCmp64Libcalls[CmpInst::FCMP_OGT] = {{RTLIB::OGT_F64, CmpInst::ICMP_SGT}}; 339 FCmp64Libcalls[CmpInst::FCMP_OLE] = {{RTLIB::OLE_F64, CmpInst::ICMP_SLE}}; 340 FCmp64Libcalls[CmpInst::FCMP_OLT] = {{RTLIB::OLT_F64, CmpInst::ICMP_SLT}}; 341 FCmp64Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::UO_F64, CmpInst::ICMP_EQ}}; 342 FCmp64Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F64, CmpInst::ICMP_SGE}}; 343 FCmp64Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F64, CmpInst::ICMP_SGT}}; 344 FCmp64Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F64, CmpInst::ICMP_SLE}}; 345 FCmp64Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F64, CmpInst::ICMP_SLT}}; 346 FCmp64Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F64, CmpInst::ICMP_NE}}; 347 FCmp64Libcalls[CmpInst::FCMP_UNO] = {{RTLIB::UO_F64, CmpInst::ICMP_NE}}; 348 FCmp64Libcalls[CmpInst::FCMP_ONE] = {{RTLIB::OGT_F64, CmpInst::ICMP_SGT}, 349 {RTLIB::OLT_F64, CmpInst::ICMP_SLT}}; 350 FCmp64Libcalls[CmpInst::FCMP_UEQ] = {{RTLIB::OEQ_F64, CmpInst::ICMP_EQ}, 351 {RTLIB::UO_F64, CmpInst::ICMP_NE}}; 352 } 353 354 ARMLegalizerInfo::FCmpLibcallsList 355 ARMLegalizerInfo::getFCmpLibcalls(CmpInst::Predicate Predicate, 356 unsigned Size) const { 357 assert(CmpInst::isFPPredicate(Predicate) && "Unsupported FCmp predicate"); 358 if (Size == 32) 359 return FCmp32Libcalls[Predicate]; 360 if (Size == 64) 361 return FCmp64Libcalls[Predicate]; 362 llvm_unreachable("Unsupported size for FCmp predicate"); 363 } 364 365 bool ARMLegalizerInfo::legalizeCustom(LegalizerHelper &Helper, 366 MachineInstr &MI) const { 367 using namespace TargetOpcode; 368 369 MachineIRBuilder &MIRBuilder = Helper.MIRBuilder; 370 MachineRegisterInfo &MRI = *MIRBuilder.getMRI(); 371 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); 372 373 switch (MI.getOpcode()) { 374 default: 375 return false; 376 case G_SREM: 377 case G_UREM: { 378 Register OriginalResult = MI.getOperand(0).getReg(); 379 auto Size = MRI.getType(OriginalResult).getSizeInBits(); 380 if (Size != 32) 381 return false; 382 383 auto Libcall = 384 MI.getOpcode() == G_SREM ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; 385 386 // Our divmod libcalls return a struct containing the quotient and the 387 // remainder. Create a new, unused register for the quotient and use the 388 // destination of the original instruction for the remainder. 389 Type *ArgTy = Type::getInt32Ty(Ctx); 390 StructType *RetTy = StructType::get(Ctx, {ArgTy, ArgTy}, /* Packed */ true); 391 Register RetRegs[] = {MRI.createGenericVirtualRegister(LLT::scalar(32)), 392 OriginalResult}; 393 auto Status = createLibcall(MIRBuilder, Libcall, {RetRegs, RetTy, 0}, 394 {{MI.getOperand(1).getReg(), ArgTy, 0}, 395 {MI.getOperand(2).getReg(), ArgTy, 0}}); 396 if (Status != LegalizerHelper::Legalized) 397 return false; 398 break; 399 } 400 case G_FCMP: { 401 assert(MRI.getType(MI.getOperand(2).getReg()) == 402 MRI.getType(MI.getOperand(3).getReg()) && 403 "Mismatched operands for G_FCMP"); 404 auto OpSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits(); 405 406 auto OriginalResult = MI.getOperand(0).getReg(); 407 auto Predicate = 408 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); 409 auto Libcalls = getFCmpLibcalls(Predicate, OpSize); 410 411 if (Libcalls.empty()) { 412 assert((Predicate == CmpInst::FCMP_TRUE || 413 Predicate == CmpInst::FCMP_FALSE) && 414 "Predicate needs libcalls, but none specified"); 415 MIRBuilder.buildConstant(OriginalResult, 416 Predicate == CmpInst::FCMP_TRUE ? 1 : 0); 417 MI.eraseFromParent(); 418 return true; 419 } 420 421 assert((OpSize == 32 || OpSize == 64) && "Unsupported operand size"); 422 auto *ArgTy = OpSize == 32 ? Type::getFloatTy(Ctx) : Type::getDoubleTy(Ctx); 423 auto *RetTy = Type::getInt32Ty(Ctx); 424 425 SmallVector<Register, 2> Results; 426 for (auto Libcall : Libcalls) { 427 auto LibcallResult = MRI.createGenericVirtualRegister(LLT::scalar(32)); 428 auto Status = createLibcall(MIRBuilder, Libcall.LibcallID, 429 {LibcallResult, RetTy, 0}, 430 {{MI.getOperand(2).getReg(), ArgTy, 0}, 431 {MI.getOperand(3).getReg(), ArgTy, 0}}); 432 433 if (Status != LegalizerHelper::Legalized) 434 return false; 435 436 auto ProcessedResult = 437 Libcalls.size() == 1 438 ? OriginalResult 439 : MRI.createGenericVirtualRegister(MRI.getType(OriginalResult)); 440 441 // We have a result, but we need to transform it into a proper 1-bit 0 or 442 // 1, taking into account the different peculiarities of the values 443 // returned by the comparison functions. 444 CmpInst::Predicate ResultPred = Libcall.Predicate; 445 if (ResultPred == CmpInst::BAD_ICMP_PREDICATE) { 446 // We have a nice 0 or 1, and we just need to truncate it back to 1 bit 447 // to keep the types consistent. 448 MIRBuilder.buildTrunc(ProcessedResult, LibcallResult); 449 } else { 450 // We need to compare against 0. 451 assert(CmpInst::isIntPredicate(ResultPred) && "Unsupported predicate"); 452 auto Zero = MIRBuilder.buildConstant(LLT::scalar(32), 0); 453 MIRBuilder.buildICmp(ResultPred, ProcessedResult, LibcallResult, Zero); 454 } 455 Results.push_back(ProcessedResult); 456 } 457 458 if (Results.size() != 1) { 459 assert(Results.size() == 2 && "Unexpected number of results"); 460 MIRBuilder.buildOr(OriginalResult, Results[0], Results[1]); 461 } 462 break; 463 } 464 case G_FCONSTANT: { 465 // Convert to integer constants, while preserving the binary representation. 466 auto AsInteger = 467 MI.getOperand(1).getFPImm()->getValueAPF().bitcastToAPInt(); 468 MIRBuilder.buildConstant(MI.getOperand(0), 469 *ConstantInt::get(Ctx, AsInteger)); 470 break; 471 } 472 } 473 474 MI.eraseFromParent(); 475 return true; 476 } 477