1//===-- ARMInstrMVE.td - MVE support for ARM ---------------*- tablegen -*-===// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// This file describes the ARM MVE instruction set. 10// 11//===----------------------------------------------------------------------===// 12 13// VPT condition mask 14def vpt_mask : Operand<i32> { 15 let PrintMethod = "printVPTMask"; 16 let ParserMatchClass = it_mask_asmoperand; 17 let EncoderMethod = "getVPTMaskOpValue"; 18 let DecoderMethod = "DecodeVPTMaskOperand"; 19} 20 21// VPT/VCMP restricted predicate for sign invariant types 22def pred_restricted_i_asmoperand : AsmOperandClass { 23 let Name = "CondCodeRestrictedI"; 24 let RenderMethod = "addITCondCodeOperands"; 25 let PredicateMethod = "isITCondCodeRestrictedI"; 26 let ParserMethod = "parseITCondCode"; 27 let DiagnosticString = "condition code for sign-independent integer "# 28 "comparison must be EQ or NE"; 29} 30 31// VPT/VCMP restricted predicate for signed types 32def pred_restricted_s_asmoperand : AsmOperandClass { 33 let Name = "CondCodeRestrictedS"; 34 let RenderMethod = "addITCondCodeOperands"; 35 let PredicateMethod = "isITCondCodeRestrictedS"; 36 let ParserMethod = "parseITCondCode"; 37 let DiagnosticString = "condition code for signed integer "# 38 "comparison must be EQ, NE, LT, GT, LE or GE"; 39} 40 41// VPT/VCMP restricted predicate for unsigned types 42def pred_restricted_u_asmoperand : AsmOperandClass { 43 let Name = "CondCodeRestrictedU"; 44 let RenderMethod = "addITCondCodeOperands"; 45 let PredicateMethod = "isITCondCodeRestrictedU"; 46 let ParserMethod = "parseITCondCode"; 47 let DiagnosticString = "condition code for unsigned integer "# 48 "comparison must be EQ, NE, HS or HI"; 49} 50 51// VPT/VCMP restricted predicate for floating point 52def pred_restricted_fp_asmoperand : AsmOperandClass { 53 let Name = "CondCodeRestrictedFP"; 54 let RenderMethod = "addITCondCodeOperands"; 55 let PredicateMethod = "isITCondCodeRestrictedFP"; 56 let ParserMethod = "parseITCondCode"; 57 let DiagnosticString = "condition code for floating-point "# 58 "comparison must be EQ, NE, LT, GT, LE or GE"; 59} 60 61class VCMPPredicateOperand : Operand<i32>; 62 63def pred_basic_i : VCMPPredicateOperand { 64 let PrintMethod = "printMandatoryRestrictedPredicateOperand"; 65 let ParserMatchClass = pred_restricted_i_asmoperand; 66 let DecoderMethod = "DecodeRestrictedIPredicateOperand"; 67 let EncoderMethod = "getRestrictedCondCodeOpValue"; 68} 69 70def pred_basic_u : VCMPPredicateOperand { 71 let PrintMethod = "printMandatoryRestrictedPredicateOperand"; 72 let ParserMatchClass = pred_restricted_u_asmoperand; 73 let DecoderMethod = "DecodeRestrictedUPredicateOperand"; 74 let EncoderMethod = "getRestrictedCondCodeOpValue"; 75} 76 77def pred_basic_s : VCMPPredicateOperand { 78 let PrintMethod = "printMandatoryRestrictedPredicateOperand"; 79 let ParserMatchClass = pred_restricted_s_asmoperand; 80 let DecoderMethod = "DecodeRestrictedSPredicateOperand"; 81 let EncoderMethod = "getRestrictedCondCodeOpValue"; 82} 83 84def pred_basic_fp : VCMPPredicateOperand { 85 let PrintMethod = "printMandatoryRestrictedPredicateOperand"; 86 let ParserMatchClass = pred_restricted_fp_asmoperand; 87 let DecoderMethod = "DecodeRestrictedFPPredicateOperand"; 88 let EncoderMethod = "getRestrictedCondCodeOpValue"; 89} 90 91// Register list operands for interleaving load/stores 92def VecList2QAsmOperand : AsmOperandClass { 93 let Name = "VecListTwoMQ"; 94 let ParserMethod = "parseVectorList"; 95 let RenderMethod = "addMVEVecListOperands"; 96 let DiagnosticString = "operand must be a list of two consecutive "# 97 "q-registers in range [q0,q7]"; 98} 99 100def VecList2Q : RegisterOperand<QQPR, "printMVEVectorListTwoQ"> { 101 let ParserMatchClass = VecList2QAsmOperand; 102 let PrintMethod = "printMVEVectorList<2>"; 103} 104 105def VecList4QAsmOperand : AsmOperandClass { 106 let Name = "VecListFourMQ"; 107 let ParserMethod = "parseVectorList"; 108 let RenderMethod = "addMVEVecListOperands"; 109 let DiagnosticString = "operand must be a list of four consecutive "# 110 "q-registers in range [q0,q7]"; 111} 112 113def VecList4Q : RegisterOperand<QQQQPR, "printMVEVectorListFourQ"> { 114 let ParserMatchClass = VecList4QAsmOperand; 115 let PrintMethod = "printMVEVectorList<4>"; 116} 117 118// taddrmode_imm7 := reg[r0-r7] +/- (imm7 << shift) 119class TMemImm7ShiftOffsetAsmOperand<int shift> : AsmOperandClass { 120 let Name = "TMemImm7Shift"#shift#"Offset"; 121 let PredicateMethod = "isMemImm7ShiftedOffset<"#shift#",ARM::tGPRRegClassID>"; 122 let RenderMethod = "addMemImmOffsetOperands"; 123} 124 125class taddrmode_imm7<int shift> : MemOperand, 126 ComplexPattern<i32, 2, "SelectTAddrModeImm7<"#shift#">", []> { 127 let ParserMatchClass = TMemImm7ShiftOffsetAsmOperand<shift>; 128 // They are printed the same way as the T2 imm8 version 129 let PrintMethod = "printT2AddrModeImm8Operand<false>"; 130 // This can also be the same as the T2 version. 131 let EncoderMethod = "getT2AddrModeImmOpValue<7,"#shift#">"; 132 let DecoderMethod = "DecodeTAddrModeImm7<"#shift#">"; 133 let MIOperandInfo = (ops tGPR:$base, i32imm:$offsimm); 134} 135 136// t2addrmode_imm7 := reg +/- (imm7) 137class MemImm7ShiftOffsetAsmOperand<int shift> : AsmOperandClass { 138 let Name = "MemImm7Shift"#shift#"Offset"; 139 let PredicateMethod = "isMemImm7ShiftedOffset<" # shift # 140 ",ARM::GPRnopcRegClassID>"; 141 let RenderMethod = "addMemImmOffsetOperands"; 142} 143 144def MemImm7Shift0OffsetAsmOperand : MemImm7ShiftOffsetAsmOperand<0>; 145def MemImm7Shift1OffsetAsmOperand : MemImm7ShiftOffsetAsmOperand<1>; 146def MemImm7Shift2OffsetAsmOperand : MemImm7ShiftOffsetAsmOperand<2>; 147class T2AddrMode_Imm7<int shift> : MemOperand, 148 ComplexPattern<i32, 2, "SelectT2AddrModeImm7<"#shift#">", []> { 149 let EncoderMethod = "getT2AddrModeImmOpValue<7,"#shift#">"; 150 let DecoderMethod = "DecodeT2AddrModeImm7<"#shift#", 0>"; 151 let ParserMatchClass = 152 !cast<AsmOperandClass>("MemImm7Shift"#shift#"OffsetAsmOperand"); 153 let MIOperandInfo = (ops GPRnopc:$base, i32imm:$offsimm); 154} 155 156class t2addrmode_imm7<int shift> : T2AddrMode_Imm7<shift> { 157 // They are printed the same way as the imm8 version 158 let PrintMethod = "printT2AddrModeImm8Operand<false>"; 159} 160 161class MemImm7ShiftOffsetWBAsmOperand<int shift> : AsmOperandClass { 162 let Name = "MemImm7Shift"#shift#"OffsetWB"; 163 let PredicateMethod = "isMemImm7ShiftedOffset<" # shift # 164 ",ARM::rGPRRegClassID>"; 165 let RenderMethod = "addMemImmOffsetOperands"; 166} 167 168def MemImm7Shift0OffsetWBAsmOperand : MemImm7ShiftOffsetWBAsmOperand<0>; 169def MemImm7Shift1OffsetWBAsmOperand : MemImm7ShiftOffsetWBAsmOperand<1>; 170def MemImm7Shift2OffsetWBAsmOperand : MemImm7ShiftOffsetWBAsmOperand<2>; 171 172class t2addrmode_imm7_pre<int shift> : T2AddrMode_Imm7<shift> { 173 // They are printed the same way as the imm8 version 174 let PrintMethod = "printT2AddrModeImm8Operand<true>"; 175 let ParserMatchClass = 176 !cast<AsmOperandClass>("MemImm7Shift"#shift#"OffsetWBAsmOperand"); 177 let DecoderMethod = "DecodeT2AddrModeImm7<"#shift#", 1>"; 178 let MIOperandInfo = (ops rGPR:$base, i32imm:$offsim); 179} 180 181class t2am_imm7shiftOffsetAsmOperand<int shift> 182 : AsmOperandClass { let Name = "Imm7Shift"#shift; } 183def t2am_imm7shift0OffsetAsmOperand : t2am_imm7shiftOffsetAsmOperand<0>; 184def t2am_imm7shift1OffsetAsmOperand : t2am_imm7shiftOffsetAsmOperand<1>; 185def t2am_imm7shift2OffsetAsmOperand : t2am_imm7shiftOffsetAsmOperand<2>; 186 187class t2am_imm7_offset<int shift> : MemOperand, 188 ComplexPattern<i32, 1, "SelectT2AddrModeImm7Offset<"#shift#">", 189 [], [SDNPWantRoot]> { 190 // They are printed the same way as the imm8 version 191 let PrintMethod = "printT2AddrModeImm8OffsetOperand"; 192 let ParserMatchClass = 193 !cast<AsmOperandClass>("t2am_imm7shift"#shift#"OffsetAsmOperand"); 194 let EncoderMethod = "getT2ScaledImmOpValue<7,"#shift#">"; 195 let DecoderMethod = "DecodeT2Imm7<"#shift#">"; 196} 197 198// Operands for gather/scatter loads of the form [Rbase, Qoffsets] 199class MemRegRQOffsetAsmOperand<int shift> : AsmOperandClass { 200 let Name = "MemRegRQS"#shift#"Offset"; 201 let PredicateMethod = "isMemRegRQOffset<"#shift#">"; 202 let RenderMethod = "addMemRegRQOffsetOperands"; 203} 204 205def MemRegRQS0OffsetAsmOperand : MemRegRQOffsetAsmOperand<0>; 206def MemRegRQS1OffsetAsmOperand : MemRegRQOffsetAsmOperand<1>; 207def MemRegRQS2OffsetAsmOperand : MemRegRQOffsetAsmOperand<2>; 208def MemRegRQS3OffsetAsmOperand : MemRegRQOffsetAsmOperand<3>; 209 210// mve_addr_rq_shift := reg + vreg{ << UXTW #shift} 211class mve_addr_rq_shift<int shift> : MemOperand { 212 let EncoderMethod = "getMveAddrModeRQOpValue"; 213 let PrintMethod = "printMveAddrModeRQOperand<"#shift#">"; 214 let ParserMatchClass = 215 !cast<AsmOperandClass>("MemRegRQS"#shift#"OffsetAsmOperand"); 216 let DecoderMethod = "DecodeMveAddrModeRQ"; 217 let MIOperandInfo = (ops GPRnopc:$base, MQPR:$offsreg); 218} 219 220class MemRegQOffsetAsmOperand<int shift> : AsmOperandClass { 221 let Name = "MemRegQS"#shift#"Offset"; 222 let PredicateMethod = "isMemRegQOffset<"#shift#">"; 223 let RenderMethod = "addMemImmOffsetOperands"; 224} 225 226def MemRegQS2OffsetAsmOperand : MemRegQOffsetAsmOperand<2>; 227def MemRegQS3OffsetAsmOperand : MemRegQOffsetAsmOperand<3>; 228 229// mve_addr_q_shift := vreg {+ #imm7s2/4} 230class mve_addr_q_shift<int shift> : MemOperand { 231 let EncoderMethod = "getMveAddrModeQOpValue<"#shift#">"; 232 // Can be printed same way as other reg + imm operands 233 let PrintMethod = "printT2AddrModeImm8Operand<false>"; 234 let ParserMatchClass = 235 !cast<AsmOperandClass>("MemRegQS"#shift#"OffsetAsmOperand"); 236 let DecoderMethod = "DecodeMveAddrModeQ<"#shift#">"; 237 let MIOperandInfo = (ops MQPR:$base, i32imm:$imm); 238} 239 240// A family of classes wrapping up information about the vector types 241// used by MVE. 242class MVEVectorVTInfo<ValueType vec, ValueType dblvec, 243 ValueType pred, ValueType dblpred, 244 bits<2> size, string suffixletter, bit unsigned> { 245 // The LLVM ValueType representing the vector, so we can use it in 246 // ISel patterns. 247 ValueType Vec = vec; 248 249 // The LLVM ValueType representing a vector with elements double the size 250 // of those in Vec, so we can use it in ISel patterns. It is up to the 251 // invoker of this class to ensure that this is a correct choice. 252 ValueType DblVec = dblvec; 253 254 // An LLVM ValueType representing a corresponding vector of 255 // predicate bits, for use in ISel patterns that handle an IR 256 // intrinsic describing the predicated form of the instruction. 257 // 258 // Usually, for a vector of N things, this will be vNi1. But for 259 // vectors of 2 values, we make an exception, and use v4i1 instead 260 // of v2i1. Rationale: MVE codegen doesn't support doing all the 261 // auxiliary operations on v2i1 (vector shuffles etc), and also, 262 // there's no MVE compare instruction that will _generate_ v2i1 263 // directly. 264 ValueType Pred = pred; 265 266 // Same as Pred but for DblVec rather than Vec. 267 ValueType DblPred = dblpred; 268 269 // The most common representation of the vector element size in MVE 270 // instruction encodings: a 2-bit value V representing an (8<<V)-bit 271 // vector element. 272 bits<2> Size = size; 273 274 // For vectors explicitly mentioning a signedness of integers: 0 for 275 // signed and 1 for unsigned. For anything else, undefined. 276 bit Unsigned = unsigned; 277 278 // The number of bits in a vector element, in integer form. 279 int LaneBits = !shl(8, Size); 280 281 // The suffix used in assembly language on an instruction operating 282 // on this lane if it only cares about number of bits. 283 string BitsSuffix = !if(!eq(suffixletter, "p"), 284 !if(!eq(unsigned, 0b0), "8", "16"), 285 !cast<string>(LaneBits)); 286 287 // The suffix used on an instruction that mentions the whole type. 288 string Suffix = suffixletter # BitsSuffix; 289 290 // The letter part of the suffix only. 291 string SuffixLetter = suffixletter; 292} 293 294// Integer vector types that don't treat signed and unsigned differently. 295def MVE_v16i8 : MVEVectorVTInfo<v16i8, v8i16, v16i1, v8i1, 0b00, "i", ?>; 296def MVE_v8i16 : MVEVectorVTInfo<v8i16, v4i32, v8i1, v4i1, 0b01, "i", ?>; 297def MVE_v4i32 : MVEVectorVTInfo<v4i32, v2i64, v4i1, v4i1, 0b10, "i", ?>; 298def MVE_v2i64 : MVEVectorVTInfo<v2i64, ?, v4i1, ?, 0b11, "i", ?>; 299 300// Explicitly signed and unsigned integer vectors. They map to the 301// same set of LLVM ValueTypes as above, but are represented 302// differently in assembly and instruction encodings. 303def MVE_v16s8 : MVEVectorVTInfo<v16i8, v8i16, v16i1, v8i1, 0b00, "s", 0b0>; 304def MVE_v8s16 : MVEVectorVTInfo<v8i16, v4i32, v8i1, v4i1, 0b01, "s", 0b0>; 305def MVE_v4s32 : MVEVectorVTInfo<v4i32, v2i64, v4i1, v4i1, 0b10, "s", 0b0>; 306def MVE_v2s64 : MVEVectorVTInfo<v2i64, ?, v4i1, ?, 0b11, "s", 0b0>; 307def MVE_v16u8 : MVEVectorVTInfo<v16i8, v8i16, v16i1, v8i1, 0b00, "u", 0b1>; 308def MVE_v8u16 : MVEVectorVTInfo<v8i16, v4i32, v8i1, v4i1, 0b01, "u", 0b1>; 309def MVE_v4u32 : MVEVectorVTInfo<v4i32, v2i64, v4i1, v4i1, 0b10, "u", 0b1>; 310def MVE_v2u64 : MVEVectorVTInfo<v2i64, ?, v4i1, ?, 0b11, "u", 0b1>; 311 312// FP vector types. 313def MVE_v8f16 : MVEVectorVTInfo<v8f16, v4f32, v8i1, v4i1, 0b01, "f", ?>; 314def MVE_v4f32 : MVEVectorVTInfo<v4f32, v2f64, v4i1, v4i1, 0b10, "f", ?>; 315def MVE_v2f64 : MVEVectorVTInfo<v2f64, ?, v4i1, ?, 0b11, "f", ?>; 316 317// Polynomial vector types. 318def MVE_v16p8 : MVEVectorVTInfo<v16i8, v8i16, v16i1, v8i1, 0b11, "p", 0b0>; 319def MVE_v8p16 : MVEVectorVTInfo<v8i16, v4i32, v8i1, v4i1, 0b11, "p", 0b1>; 320 321multiclass MVE_TwoOpPattern<MVEVectorVTInfo VTI, PatFrag Op, Intrinsic PredInt, 322 dag PredOperands, Instruction Inst, 323 SDPatternOperator IdentityVec = null_frag> { 324 // Unpredicated 325 def : Pat<(VTI.Vec (Op (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn))), 326 (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn)))>; 327 328 // Predicated with select 329 if !ne(VTI.Size, 0b11) then { 330 def : Pat<(VTI.Vec (vselect (VTI.Pred VCCR:$mask), 331 (VTI.Vec (Op (VTI.Vec MQPR:$Qm), 332 (VTI.Vec MQPR:$Qn))), 333 (VTI.Vec MQPR:$inactive))), 334 (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), 335 ARMVCCThen, (VTI.Pred VCCR:$mask), 336 (VTI.Vec MQPR:$inactive)))>; 337 338 // Optionally with the select folded through the op 339 def : Pat<(VTI.Vec (Op (VTI.Vec MQPR:$Qm), 340 (VTI.Vec (vselect (VTI.Pred VCCR:$mask), 341 (VTI.Vec MQPR:$Qn), 342 (VTI.Vec IdentityVec))))), 343 (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), 344 ARMVCCThen, (VTI.Pred VCCR:$mask), 345 (VTI.Vec MQPR:$Qm)))>; 346 } 347 348 // Predicated with intrinsic 349 def : Pat<(VTI.Vec !con((PredInt (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn)), 350 PredOperands, 351 (? (VTI.Pred VCCR:$mask), (VTI.Vec MQPR:$inactive)))), 352 (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), 353 ARMVCCThen, (VTI.Pred VCCR:$mask), 354 (VTI.Vec MQPR:$inactive)))>; 355} 356 357multiclass MVE_TwoOpPatternDup<MVEVectorVTInfo VTI, PatFrag Op, Intrinsic PredInt, 358 dag PredOperands, Instruction Inst, 359 SDPatternOperator IdentityVec = null_frag> { 360 // Unpredicated 361 def : Pat<(VTI.Vec (Op (VTI.Vec MQPR:$Qm), (VTI.Vec (ARMvdup rGPR:$Rn)))), 362 (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), rGPR:$Rn))>; 363 364 // Predicated with select 365 if !ne(VTI.Size, 0b11) then { 366 def : Pat<(VTI.Vec (vselect (VTI.Pred VCCR:$mask), 367 (VTI.Vec (Op (VTI.Vec MQPR:$Qm), 368 (VTI.Vec (ARMvdup rGPR:$Rn)))), 369 (VTI.Vec MQPR:$inactive))), 370 (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), rGPR:$Rn, 371 ARMVCCThen, (VTI.Pred VCCR:$mask), 372 (VTI.Vec MQPR:$inactive)))>; 373 374 // Optionally with the select folded through the op 375 def : Pat<(VTI.Vec (Op (VTI.Vec MQPR:$Qm), 376 (VTI.Vec (vselect (VTI.Pred VCCR:$mask), 377 (ARMvdup rGPR:$Rn), 378 (VTI.Vec IdentityVec))))), 379 (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), rGPR:$Rn, 380 ARMVCCThen, (VTI.Pred VCCR:$mask), 381 (VTI.Vec MQPR:$Qm)))>; 382 } 383 384 // Predicated with intrinsic 385 def : Pat<(VTI.Vec !con((PredInt (VTI.Vec MQPR:$Qm), (VTI.Vec (ARMvdup rGPR:$Rn))), 386 PredOperands, 387 (? (VTI.Pred VCCR:$mask), (VTI.Vec MQPR:$inactive)))), 388 (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), rGPR:$Rn, 389 ARMVCCThen, (VTI.Pred VCCR:$mask), 390 (VTI.Vec MQPR:$inactive)))>; 391} 392 393// --------- Start of base classes for the instructions themselves 394 395class MVE_MI<dag oops, dag iops, InstrItinClass itin, string asm, 396 string ops, string cstr, list<dag> pattern> 397 : Thumb2XI<oops, iops, AddrModeNone, 4, itin, !strconcat(asm, "\t", ops), cstr, 398 pattern>, 399 Requires<[HasMVEInt]> { 400 let D = MVEDomain; 401 let DecoderNamespace = "MVE"; 402} 403 404// MVE_p is used for most predicated instructions, to add the cluster 405// of input operands that provides the VPT suffix (none, T or E) and 406// the input predicate register. 407class MVE_p<dag oops, dag iops, InstrItinClass itin, string iname, 408 string suffix, string ops, vpred_ops vpred, string cstr, 409 list<dag> pattern=[]> 410 : MVE_MI<oops, !con(iops, (ins vpred:$vp)), itin, 411 // If the instruction has a suffix, like vadd.f32, then the 412 // VPT predication suffix goes before the dot, so the full 413 // name has to be "vadd${vp}.f32". 414 !strconcat(iname, "${vp}", 415 !if(!eq(suffix, ""), "", !strconcat(".", suffix))), 416 ops, !strconcat(cstr, vpred.vpred_constraint), pattern> { 417 let Inst{31-29} = 0b111; 418 let Inst{27-26} = 0b11; 419} 420 421class MVE_f<dag oops, dag iops, InstrItinClass itin, string iname, 422 string suffix, string ops, vpred_ops vpred, string cstr, 423 list<dag> pattern=[]> 424 : MVE_p<oops, iops, itin, iname, suffix, ops, vpred, cstr, pattern> { 425 let Predicates = [HasMVEFloat]; 426} 427 428class MVE_MI_with_pred<dag oops, dag iops, InstrItinClass itin, string asm, 429 string ops, string cstr, list<dag> pattern> 430 : Thumb2I<oops, iops, AddrModeNone, 4, itin, asm, !strconcat("\t", ops), cstr, 431 pattern>, 432 Requires<[HasV8_1MMainline, HasMVEInt]> { 433 let D = MVEDomain; 434 let DecoderNamespace = "MVE"; 435} 436 437class MVE_VMOV_lane_base<dag oops, dag iops, InstrItinClass itin, string asm, 438 string suffix, string ops, string cstr, 439 list<dag> pattern> 440 : Thumb2I<oops, iops, AddrModeNone, 4, itin, asm, 441 !if(!eq(suffix, ""), "", "." # suffix) # "\t" # ops, 442 cstr, pattern>, 443 Requires<[HasV8_1MMainline, HasMVEInt]> { 444 let D = MVEDomain; 445 let DecoderNamespace = "MVE"; 446} 447 448class MVE_ScalarShift<string iname, dag oops, dag iops, string asm, string cstr, 449 list<dag> pattern=[]> 450 : MVE_MI_with_pred<oops, iops, NoItinerary, iname, asm, cstr, pattern> { 451 let Inst{31-20} = 0b111010100101; 452 let Inst{8} = 0b1; 453 let validForTailPredication=1; 454} 455 456class MVE_ScalarShiftSingleReg<string iname, dag iops, string asm, string cstr, 457 list<dag> pattern=[]> 458 : MVE_ScalarShift<iname, (outs rGPR:$RdaDest), iops, asm, cstr, pattern> { 459 bits<4> RdaDest; 460 461 let Inst{19-16} = RdaDest{3-0}; 462} 463 464class MVE_ScalarShiftSRegImm<string iname, bits<2> op5_4> 465 : MVE_ScalarShiftSingleReg<iname, (ins rGPR:$RdaSrc, long_shift:$imm), 466 "$RdaSrc, $imm", "$RdaDest = $RdaSrc", 467 [(set rGPR:$RdaDest, 468 (i32 (!cast<Intrinsic>("int_arm_mve_" # iname) 469 (i32 rGPR:$RdaSrc), (i32 imm:$imm))))]> { 470 bits<5> imm; 471 472 let Inst{15} = 0b0; 473 let Inst{14-12} = imm{4-2}; 474 let Inst{11-8} = 0b1111; 475 let Inst{7-6} = imm{1-0}; 476 let Inst{5-4} = op5_4{1-0}; 477 let Inst{3-0} = 0b1111; 478} 479 480def MVE_SQSHL : MVE_ScalarShiftSRegImm<"sqshl", 0b11>; 481def MVE_SRSHR : MVE_ScalarShiftSRegImm<"srshr", 0b10>; 482def MVE_UQSHL : MVE_ScalarShiftSRegImm<"uqshl", 0b00>; 483def MVE_URSHR : MVE_ScalarShiftSRegImm<"urshr", 0b01>; 484 485class MVE_ScalarShiftSRegReg<string iname, bits<2> op5_4> 486 : MVE_ScalarShiftSingleReg<iname, (ins rGPR:$RdaSrc, rGPR:$Rm), 487 "$RdaSrc, $Rm", "$RdaDest = $RdaSrc", 488 [(set rGPR:$RdaDest, 489 (i32 (!cast<Intrinsic>("int_arm_mve_" # iname) 490 (i32 rGPR:$RdaSrc), (i32 rGPR:$Rm))))]> { 491 bits<4> Rm; 492 493 let Inst{15-12} = Rm{3-0}; 494 let Inst{11-8} = 0b1111; 495 let Inst{7-6} = 0b00; 496 let Inst{5-4} = op5_4{1-0}; 497 let Inst{3-0} = 0b1101; 498 499 let Unpredictable{8-6} = 0b111; 500} 501 502def MVE_SQRSHR : MVE_ScalarShiftSRegReg<"sqrshr", 0b10>; 503def MVE_UQRSHL : MVE_ScalarShiftSRegReg<"uqrshl", 0b00>; 504 505class MVE_ScalarShiftDoubleReg<string iname, dag iops, string asm, 506 string cstr, list<dag> pattern=[]> 507 : MVE_ScalarShift<iname, (outs tGPREven:$RdaLo, tGPROdd:$RdaHi), 508 iops, asm, cstr, pattern> { 509 bits<4> RdaLo; 510 bits<4> RdaHi; 511 512 let Inst{19-17} = RdaLo{3-1}; 513 let Inst{11-9} = RdaHi{3-1}; 514 515 let hasSideEffects = 0; 516} 517 518class MVE_ScalarShiftDRegImm<string iname, bits<2> op5_4, bit op16, 519 list<dag> pattern=[]> 520 : MVE_ScalarShiftDoubleReg< 521 iname, (ins tGPREven:$RdaLo_src, tGPROdd:$RdaHi_src, long_shift:$imm), 522 "$RdaLo, $RdaHi, $imm", "$RdaLo = $RdaLo_src,$RdaHi = $RdaHi_src", 523 pattern> { 524 bits<5> imm; 525 526 let Inst{16} = op16; 527 let Inst{15} = 0b0; 528 let Inst{14-12} = imm{4-2}; 529 let Inst{7-6} = imm{1-0}; 530 let Inst{5-4} = op5_4{1-0}; 531 let Inst{3-0} = 0b1111; 532} 533 534class MVE_ScalarShiftDRegRegBase<string iname, dag iops, string asm, 535 bit op5, bit op16, list<dag> pattern=[]> 536 : MVE_ScalarShiftDoubleReg< 537 iname, iops, asm, "@earlyclobber $RdaHi,@earlyclobber $RdaLo," 538 "$RdaLo = $RdaLo_src,$RdaHi = $RdaHi_src", 539 pattern> { 540 bits<4> Rm; 541 542 let Inst{16} = op16; 543 let Inst{15-12} = Rm{3-0}; 544 let Inst{6} = 0b0; 545 let Inst{5} = op5; 546 let Inst{4} = 0b0; 547 let Inst{3-0} = 0b1101; 548 549 // Custom decoder method because of the following overlapping encodings: 550 // ASRL and SQRSHR 551 // LSLL and UQRSHL 552 // SQRSHRL and SQRSHR 553 // UQRSHLL and UQRSHL 554 let DecoderMethod = "DecodeMVEOverlappingLongShift"; 555} 556 557class MVE_ScalarShiftDRegReg<string iname, bit op5, list<dag> pattern=[]> 558 : MVE_ScalarShiftDRegRegBase< 559 iname, (ins tGPREven:$RdaLo_src, tGPROdd:$RdaHi_src, rGPR:$Rm), 560 "$RdaLo, $RdaHi, $Rm", op5, 0b0, pattern> { 561 562 let Inst{7} = 0b0; 563} 564 565class MVE_ScalarShiftDRegRegWithSat<string iname, bit op5, list<dag> pattern=[]> 566 : MVE_ScalarShiftDRegRegBase< 567 iname, (ins tGPREven:$RdaLo_src, tGPROdd:$RdaHi_src, rGPR:$Rm, saturateop:$sat), 568 "$RdaLo, $RdaHi, $sat, $Rm", op5, 0b1, pattern> { 569 bit sat; 570 571 let Inst{7} = sat; 572} 573 574def MVE_ASRLr : MVE_ScalarShiftDRegReg<"asrl", 0b1, [(set tGPREven:$RdaLo, tGPROdd:$RdaHi, 575 (ARMasrl tGPREven:$RdaLo_src, 576 tGPROdd:$RdaHi_src, rGPR:$Rm))]>; 577def MVE_ASRLi : MVE_ScalarShiftDRegImm<"asrl", 0b10, ?, [(set tGPREven:$RdaLo, tGPROdd:$RdaHi, 578 (ARMasrl tGPREven:$RdaLo_src, 579 tGPROdd:$RdaHi_src, (i32 long_shift:$imm)))]>; 580def MVE_LSLLr : MVE_ScalarShiftDRegReg<"lsll", 0b0, [(set tGPREven:$RdaLo, tGPROdd:$RdaHi, 581 (ARMlsll tGPREven:$RdaLo_src, 582 tGPROdd:$RdaHi_src, rGPR:$Rm))]>; 583def MVE_LSLLi : MVE_ScalarShiftDRegImm<"lsll", 0b00, ?, [(set tGPREven:$RdaLo, tGPROdd:$RdaHi, 584 (ARMlsll tGPREven:$RdaLo_src, 585 tGPROdd:$RdaHi_src, (i32 long_shift:$imm)))]>; 586def MVE_LSRL : MVE_ScalarShiftDRegImm<"lsrl", 0b01, ?, [(set tGPREven:$RdaLo, tGPROdd:$RdaHi, 587 (ARMlsrl tGPREven:$RdaLo_src, 588 tGPROdd:$RdaHi_src, (i32 long_shift:$imm)))]>; 589 590def MVE_SQRSHRL : MVE_ScalarShiftDRegRegWithSat<"sqrshrl", 0b1>; 591def MVE_SQSHLL : MVE_ScalarShiftDRegImm<"sqshll", 0b11, 0b1>; 592def MVE_SRSHRL : MVE_ScalarShiftDRegImm<"srshrl", 0b10, 0b1>; 593 594def MVE_UQRSHLL : MVE_ScalarShiftDRegRegWithSat<"uqrshll", 0b0>; 595def MVE_UQSHLL : MVE_ScalarShiftDRegImm<"uqshll", 0b00, 0b1>; 596def MVE_URSHRL : MVE_ScalarShiftDRegImm<"urshrl", 0b01, 0b1>; 597 598// start of mve_rDest instructions 599 600class MVE_rDest<dag oops, dag iops, InstrItinClass itin, 601 string iname, string suffix, 602 string ops, string cstr, list<dag> pattern=[]> 603// Always use vpred_n and not vpred_r: with the output register being 604// a GPR and not a vector register, there can't be any question of 605// what to put in its inactive lanes. 606 : MVE_p<oops, iops, itin, iname, suffix, ops, vpred_n, cstr, pattern> { 607 608 let Inst{25-23} = 0b101; 609 let Inst{11-9} = 0b111; 610 let Inst{4} = 0b0; 611} 612 613class MVE_VABAV<string suffix, bit U, bits<2> size> 614 : MVE_rDest<(outs rGPR:$Rda), (ins rGPR:$Rda_src, MQPR:$Qn, MQPR:$Qm), 615 NoItinerary, "vabav", suffix, "$Rda, $Qn, $Qm", "$Rda = $Rda_src", 616 []> { 617 bits<4> Qm; 618 bits<4> Qn; 619 bits<4> Rda; 620 621 let Inst{28} = U; 622 let Inst{22} = 0b0; 623 let Inst{21-20} = size{1-0}; 624 let Inst{19-17} = Qn{2-0}; 625 let Inst{16} = 0b0; 626 let Inst{15-12} = Rda{3-0}; 627 let Inst{8} = 0b1; 628 let Inst{7} = Qn{3}; 629 let Inst{6} = 0b0; 630 let Inst{5} = Qm{3}; 631 let Inst{3-1} = Qm{2-0}; 632 let Inst{0} = 0b1; 633 let horizontalReduction = 1; 634} 635 636multiclass MVE_VABAV_m<MVEVectorVTInfo VTI> { 637 def "" : MVE_VABAV<VTI.Suffix, VTI.Unsigned, VTI.Size>; 638 defvar Inst = !cast<Instruction>(NAME); 639 640 let Predicates = [HasMVEInt] in { 641 def : Pat<(i32 (int_arm_mve_vabav 642 (i32 VTI.Unsigned), 643 (i32 rGPR:$Rda_src), 644 (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm))), 645 (i32 (Inst (i32 rGPR:$Rda_src), 646 (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm)))>; 647 648 def : Pat<(i32 (int_arm_mve_vabav_predicated 649 (i32 VTI.Unsigned), 650 (i32 rGPR:$Rda_src), 651 (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), 652 (VTI.Pred VCCR:$mask))), 653 (i32 (Inst (i32 rGPR:$Rda_src), 654 (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), 655 ARMVCCThen, (VTI.Pred VCCR:$mask)))>; 656 } 657} 658 659defm MVE_VABAVs8 : MVE_VABAV_m<MVE_v16s8>; 660defm MVE_VABAVs16 : MVE_VABAV_m<MVE_v8s16>; 661defm MVE_VABAVs32 : MVE_VABAV_m<MVE_v4s32>; 662defm MVE_VABAVu8 : MVE_VABAV_m<MVE_v16u8>; 663defm MVE_VABAVu16 : MVE_VABAV_m<MVE_v8u16>; 664defm MVE_VABAVu32 : MVE_VABAV_m<MVE_v4u32>; 665 666class MVE_VADDV<string iname, string suffix, dag iops, string cstr, 667 bit A, bit U, bits<2> size, list<dag> pattern=[]> 668 : MVE_rDest<(outs tGPREven:$Rda), iops, NoItinerary, 669 iname, suffix, "$Rda, $Qm", cstr, pattern> { 670 bits<3> Qm; 671 bits<4> Rda; 672 673 let Inst{28} = U; 674 let Inst{22-20} = 0b111; 675 let Inst{19-18} = size{1-0}; 676 let Inst{17-16} = 0b01; 677 let Inst{15-13} = Rda{3-1}; 678 let Inst{12} = 0b0; 679 let Inst{8-6} = 0b100; 680 let Inst{5} = A; 681 let Inst{3-1} = Qm{2-0}; 682 let Inst{0} = 0b0; 683 let horizontalReduction = 1; 684 let validForTailPredication = 1; 685} 686 687def SDTVecReduceP : SDTypeProfile<1, 2, [ // VADDLVp 688 SDTCisInt<0>, SDTCisVec<1>, SDTCisVec<2> 689]>; 690def ARMVADDVs : SDNode<"ARMISD::VADDVs", SDTVecReduce>; 691def ARMVADDVu : SDNode<"ARMISD::VADDVu", SDTVecReduce>; 692def ARMVADDVps : SDNode<"ARMISD::VADDVps", SDTVecReduceP>; 693def ARMVADDVpu : SDNode<"ARMISD::VADDVpu", SDTVecReduceP>; 694 695multiclass MVE_VADDV_A<MVEVectorVTInfo VTI> { 696 def acc : MVE_VADDV<"vaddva", VTI.Suffix, 697 (ins tGPREven:$Rda_src, MQPR:$Qm), "$Rda = $Rda_src", 698 0b1, VTI.Unsigned, VTI.Size>; 699 def no_acc : MVE_VADDV<"vaddv", VTI.Suffix, 700 (ins MQPR:$Qm), "", 701 0b0, VTI.Unsigned, VTI.Size>; 702 703 defvar InstA = !cast<Instruction>(NAME # "acc"); 704 defvar InstN = !cast<Instruction>(NAME # "no_acc"); 705 706 let Predicates = [HasMVEInt] in { 707 if VTI.Unsigned then { 708 def : Pat<(i32 (vecreduce_add (VTI.Vec MQPR:$vec))), 709 (i32 (InstN $vec))>; 710 def : Pat<(i32 (vecreduce_add (VTI.Vec (vselect (VTI.Pred VCCR:$pred), 711 (VTI.Vec MQPR:$vec), 712 (VTI.Vec ARMimmAllZerosV))))), 713 (i32 (InstN $vec, ARMVCCThen, $pred))>; 714 def : Pat<(i32 (ARMVADDVu (VTI.Vec MQPR:$vec))), 715 (i32 (InstN $vec))>; 716 def : Pat<(i32 (ARMVADDVpu (VTI.Vec MQPR:$vec), (VTI.Pred VCCR:$pred))), 717 (i32 (InstN $vec, ARMVCCThen, $pred))>; 718 def : Pat<(i32 (add (i32 (vecreduce_add (VTI.Vec MQPR:$vec))), 719 (i32 tGPREven:$acc))), 720 (i32 (InstA $acc, $vec))>; 721 def : Pat<(i32 (add (i32 (vecreduce_add (VTI.Vec (vselect (VTI.Pred VCCR:$pred), 722 (VTI.Vec MQPR:$vec), 723 (VTI.Vec ARMimmAllZerosV))))), 724 (i32 tGPREven:$acc))), 725 (i32 (InstA $acc, $vec, ARMVCCThen, $pred))>; 726 def : Pat<(i32 (add (i32 (ARMVADDVu (VTI.Vec MQPR:$vec))), 727 (i32 tGPREven:$acc))), 728 (i32 (InstA $acc, $vec))>; 729 def : Pat<(i32 (add (i32 (ARMVADDVpu (VTI.Vec MQPR:$vec), (VTI.Pred VCCR:$pred))), 730 (i32 tGPREven:$acc))), 731 (i32 (InstA $acc, $vec, ARMVCCThen, $pred))>; 732 } else { 733 def : Pat<(i32 (ARMVADDVs (VTI.Vec MQPR:$vec))), 734 (i32 (InstN $vec))>; 735 def : Pat<(i32 (add (i32 (ARMVADDVs (VTI.Vec MQPR:$vec))), 736 (i32 tGPREven:$acc))), 737 (i32 (InstA $acc, $vec))>; 738 def : Pat<(i32 (ARMVADDVps (VTI.Vec MQPR:$vec), (VTI.Pred VCCR:$pred))), 739 (i32 (InstN $vec, ARMVCCThen, $pred))>; 740 def : Pat<(i32 (add (i32 (ARMVADDVps (VTI.Vec MQPR:$vec), (VTI.Pred VCCR:$pred))), 741 (i32 tGPREven:$acc))), 742 (i32 (InstA $acc, $vec, ARMVCCThen, $pred))>; 743 } 744 745 def : Pat<(i32 (int_arm_mve_addv_predicated (VTI.Vec MQPR:$vec), 746 (i32 VTI.Unsigned), 747 (VTI.Pred VCCR:$pred))), 748 (i32 (InstN $vec, ARMVCCThen, $pred))>; 749 def : Pat<(i32 (add (int_arm_mve_addv_predicated (VTI.Vec MQPR:$vec), 750 (i32 VTI.Unsigned), 751 (VTI.Pred VCCR:$pred)), 752 (i32 tGPREven:$acc))), 753 (i32 (InstA $acc, $vec, ARMVCCThen, $pred))>; 754 } 755} 756 757defm MVE_VADDVs8 : MVE_VADDV_A<MVE_v16s8>; 758defm MVE_VADDVs16 : MVE_VADDV_A<MVE_v8s16>; 759defm MVE_VADDVs32 : MVE_VADDV_A<MVE_v4s32>; 760defm MVE_VADDVu8 : MVE_VADDV_A<MVE_v16u8>; 761defm MVE_VADDVu16 : MVE_VADDV_A<MVE_v8u16>; 762defm MVE_VADDVu32 : MVE_VADDV_A<MVE_v4u32>; 763 764class MVE_VADDLV<string iname, string suffix, dag iops, string cstr, 765 bit A, bit U, list<dag> pattern=[]> 766 : MVE_rDest<(outs tGPREven:$RdaLo, tGPROdd:$RdaHi), iops, NoItinerary, iname, 767 suffix, "$RdaLo, $RdaHi, $Qm", cstr, pattern> { 768 bits<3> Qm; 769 bits<4> RdaLo; 770 bits<4> RdaHi; 771 772 let Inst{28} = U; 773 let Inst{22-20} = RdaHi{3-1}; 774 let Inst{19-18} = 0b10; 775 let Inst{17-16} = 0b01; 776 let Inst{15-13} = RdaLo{3-1}; 777 let Inst{12} = 0b0; 778 let Inst{8-6} = 0b100; 779 let Inst{5} = A; 780 let Inst{3-1} = Qm{2-0}; 781 let Inst{0} = 0b0; 782 let horizontalReduction = 1; 783} 784 785def SDTVecReduceL : SDTypeProfile<2, 1, [ // VADDLV 786 SDTCisInt<0>, SDTCisInt<1>, SDTCisVec<2> 787]>; 788def SDTVecReduceLA : SDTypeProfile<2, 3, [ // VADDLVA 789 SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>, SDTCisInt<3>, 790 SDTCisVec<4> 791]>; 792def SDTVecReduceLP : SDTypeProfile<2, 2, [ // VADDLVp 793 SDTCisInt<0>, SDTCisInt<1>, SDTCisVec<2>, SDTCisVec<2> 794]>; 795def SDTVecReduceLPA : SDTypeProfile<2, 4, [ // VADDLVAp 796 SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>, SDTCisInt<3>, 797 SDTCisVec<4>, SDTCisVec<5> 798]>; 799 800multiclass MVE_VADDLV_A<MVEVectorVTInfo VTI> { 801 def acc : MVE_VADDLV<"vaddlva", VTI.Suffix, 802 (ins tGPREven:$RdaLo_src, tGPROdd:$RdaHi_src, MQPR:$Qm), 803 "$RdaLo = $RdaLo_src,$RdaHi = $RdaHi_src", 804 0b1, VTI.Unsigned>; 805 def no_acc : MVE_VADDLV<"vaddlv", VTI.Suffix, 806 (ins MQPR:$Qm), "", 807 0b0, VTI.Unsigned>; 808 809 defvar InstA = !cast<Instruction>(NAME # "acc"); 810 defvar InstN = !cast<Instruction>(NAME # "no_acc"); 811 812 defvar letter = VTI.SuffixLetter; 813 defvar ARMVADDLV = SDNode<"ARMISD::VADDLV" # letter, SDTVecReduceL>; 814 defvar ARMVADDLVA = SDNode<"ARMISD::VADDLVA" # letter, SDTVecReduceLA>; 815 defvar ARMVADDLVp = SDNode<"ARMISD::VADDLVp" # letter, SDTVecReduceLP>; 816 defvar ARMVADDLVAp = SDNode<"ARMISD::VADDLVAp" # letter, SDTVecReduceLPA>; 817 818 let Predicates = [HasMVEInt] in { 819 def : Pat<(ARMVADDLV (v4i32 MQPR:$vec)), 820 (InstN (v4i32 MQPR:$vec))>; 821 def : Pat<(ARMVADDLVA tGPREven:$acclo, tGPROdd:$acchi, (v4i32 MQPR:$vec)), 822 (InstA tGPREven:$acclo, tGPROdd:$acchi, (v4i32 MQPR:$vec))>; 823 def : Pat<(ARMVADDLVp (v4i32 MQPR:$vec), (VTI.Pred VCCR:$pred)), 824 (InstN (v4i32 MQPR:$vec), ARMVCCThen, (VTI.Pred VCCR:$pred))>; 825 def : Pat<(ARMVADDLVAp tGPREven:$acclo, tGPROdd:$acchi, (v4i32 MQPR:$vec), 826 (VTI.Pred VCCR:$pred)), 827 (InstA tGPREven:$acclo, tGPROdd:$acchi, (v4i32 MQPR:$vec), 828 ARMVCCThen, (VTI.Pred VCCR:$pred))>; 829 } 830} 831 832defm MVE_VADDLVs32 : MVE_VADDLV_A<MVE_v4s32>; 833defm MVE_VADDLVu32 : MVE_VADDLV_A<MVE_v4u32>; 834 835class MVE_VMINMAXNMV<string iname, string suffix, bit sz, 836 bit bit_17, bit bit_7, list<dag> pattern=[]> 837 : MVE_rDest<(outs rGPR:$RdaDest), (ins rGPR:$RdaSrc, MQPR:$Qm), 838 NoItinerary, iname, suffix, "$RdaSrc, $Qm", 839 "$RdaDest = $RdaSrc", pattern> { 840 bits<3> Qm; 841 bits<4> RdaDest; 842 843 let Inst{28} = sz; 844 let Inst{22-20} = 0b110; 845 let Inst{19-18} = 0b11; 846 let Inst{17} = bit_17; 847 let Inst{16} = 0b0; 848 let Inst{15-12} = RdaDest{3-0}; 849 let Inst{8} = 0b1; 850 let Inst{7} = bit_7; 851 let Inst{6-5} = 0b00; 852 let Inst{3-1} = Qm{2-0}; 853 let Inst{0} = 0b0; 854 let horizontalReduction = 1; 855 856 let Predicates = [HasMVEFloat]; 857 let hasSideEffects = 0; 858} 859 860multiclass MVE_VMINMAXNMV_p<string iname, bit notAbs, bit isMin, 861 MVEVectorVTInfo VTI, string intrBaseName, 862 ValueType Scalar, RegisterClass ScalarReg> { 863 def "": MVE_VMINMAXNMV<iname, VTI.Suffix, VTI.Size{0}, notAbs, isMin>; 864 defvar Inst = !cast<Instruction>(NAME); 865 defvar unpred_intr = !cast<Intrinsic>(intrBaseName); 866 defvar pred_intr = !cast<Intrinsic>(intrBaseName#"_predicated"); 867 868 let Predicates = [HasMVEFloat] in { 869 def : Pat<(Scalar (unpred_intr (Scalar ScalarReg:$prev), 870 (VTI.Vec MQPR:$vec))), 871 (COPY_TO_REGCLASS (Inst (COPY_TO_REGCLASS ScalarReg:$prev, rGPR), 872 (VTI.Vec MQPR:$vec)), 873 ScalarReg)>; 874 def : Pat<(Scalar (pred_intr (Scalar ScalarReg:$prev), 875 (VTI.Vec MQPR:$vec), 876 (VTI.Pred VCCR:$pred))), 877 (COPY_TO_REGCLASS (Inst (COPY_TO_REGCLASS ScalarReg:$prev, rGPR), 878 (VTI.Vec MQPR:$vec), 879 ARMVCCThen, (VTI.Pred VCCR:$pred)), 880 ScalarReg)>; 881 } 882} 883 884multiclass MVE_VMINMAXNMV_fty<string iname, bit notAbs, bit isMin, 885 string intrBase> { 886 defm f32 : MVE_VMINMAXNMV_p<iname, notAbs, isMin, MVE_v4f32, intrBase, 887 f32, SPR>; 888 defm f16 : MVE_VMINMAXNMV_p<iname, notAbs, isMin, MVE_v8f16, intrBase, 889 f16, HPR>; 890} 891 892defm MVE_VMINNMV : MVE_VMINMAXNMV_fty<"vminnmv", 1, 1, "int_arm_mve_minnmv">; 893defm MVE_VMAXNMV : MVE_VMINMAXNMV_fty<"vmaxnmv", 1, 0, "int_arm_mve_maxnmv">; 894defm MVE_VMINNMAV: MVE_VMINMAXNMV_fty<"vminnmav", 0, 1, "int_arm_mve_minnmav">; 895defm MVE_VMAXNMAV: MVE_VMINMAXNMV_fty<"vmaxnmav", 0, 0, "int_arm_mve_maxnmav">; 896 897class MVE_VMINMAXV<string iname, string suffix, bit U, bits<2> size, 898 bit bit_17, bit bit_7, list<dag> pattern=[]> 899 : MVE_rDest<(outs rGPR:$RdaDest), (ins rGPR:$RdaSrc, MQPR:$Qm), NoItinerary, 900 iname, suffix, "$RdaSrc, $Qm", "$RdaDest = $RdaSrc", pattern> { 901 bits<3> Qm; 902 bits<4> RdaDest; 903 904 let Inst{28} = U; 905 let Inst{22-20} = 0b110; 906 let Inst{19-18} = size{1-0}; 907 let Inst{17} = bit_17; 908 let Inst{16} = 0b0; 909 let Inst{15-12} = RdaDest{3-0}; 910 let Inst{8} = 0b1; 911 let Inst{7} = bit_7; 912 let Inst{6-5} = 0b00; 913 let Inst{3-1} = Qm{2-0}; 914 let Inst{0} = 0b0; 915 let horizontalReduction = 1; 916} 917 918multiclass MVE_VMINMAXV_p<string iname, bit notAbs, bit isMin, 919 MVEVectorVTInfo VTI, string intrBaseName> { 920 def "": MVE_VMINMAXV<iname, VTI.Suffix, VTI.Unsigned, VTI.Size, 921 notAbs, isMin>; 922 defvar Inst = !cast<Instruction>(NAME); 923 defvar unpred_intr = !cast<Intrinsic>(intrBaseName); 924 defvar pred_intr = !cast<Intrinsic>(intrBaseName#"_predicated"); 925 defvar base_args = (? (i32 rGPR:$prev), (VTI.Vec MQPR:$vec)); 926 defvar args = !if(notAbs, !con(base_args, (? (i32 VTI.Unsigned))), 927 base_args); 928 929 let Predicates = [HasMVEInt] in { 930 def : Pat<(i32 !con(args, (unpred_intr))), 931 (i32 (Inst (i32 rGPR:$prev), (VTI.Vec MQPR:$vec)))>; 932 def : Pat<(i32 !con(args, (pred_intr (VTI.Pred VCCR:$pred)))), 933 (i32 (Inst (i32 rGPR:$prev), (VTI.Vec MQPR:$vec), 934 ARMVCCThen, (VTI.Pred VCCR:$pred)))>; 935 } 936} 937 938multiclass MVE_VMINMAXV_ty<string iname, bit isMin, string intrBaseName> { 939 defm s8 : MVE_VMINMAXV_p<iname, 1, isMin, MVE_v16s8, intrBaseName>; 940 defm s16: MVE_VMINMAXV_p<iname, 1, isMin, MVE_v8s16, intrBaseName>; 941 defm s32: MVE_VMINMAXV_p<iname, 1, isMin, MVE_v4s32, intrBaseName>; 942 defm u8 : MVE_VMINMAXV_p<iname, 1, isMin, MVE_v16u8, intrBaseName>; 943 defm u16: MVE_VMINMAXV_p<iname, 1, isMin, MVE_v8u16, intrBaseName>; 944 defm u32: MVE_VMINMAXV_p<iname, 1, isMin, MVE_v4u32, intrBaseName>; 945} 946 947def SDTVecReduceR : SDTypeProfile<1, 2, [ // Reduction of an integer and vector into an integer 948 SDTCisInt<0>, SDTCisInt<1>, SDTCisVec<2> 949]>; 950def ARMVMINVu : SDNode<"ARMISD::VMINVu", SDTVecReduceR>; 951def ARMVMINVs : SDNode<"ARMISD::VMINVs", SDTVecReduceR>; 952def ARMVMAXVu : SDNode<"ARMISD::VMAXVu", SDTVecReduceR>; 953def ARMVMAXVs : SDNode<"ARMISD::VMAXVs", SDTVecReduceR>; 954 955defm MVE_VMINV : MVE_VMINMAXV_ty<"vminv", 1, "int_arm_mve_minv">; 956defm MVE_VMAXV : MVE_VMINMAXV_ty<"vmaxv", 0, "int_arm_mve_maxv">; 957 958let Predicates = [HasMVEInt] in { 959 def : Pat<(i32 (vecreduce_smax (v16i8 MQPR:$src))), 960 (i32 (MVE_VMAXVs8 (t2MVNi (i32 127)), $src))>; 961 def : Pat<(i32 (vecreduce_smax (v8i16 MQPR:$src))), 962 (i32 (MVE_VMAXVs16 (t2MOVi32imm (i32 -32768)), $src))>; 963 def : Pat<(i32 (vecreduce_smax (v4i32 MQPR:$src))), 964 (i32 (MVE_VMAXVs32 (t2MOVi (i32 -2147483648)), $src))>; 965 def : Pat<(i32 (vecreduce_umax (v16i8 MQPR:$src))), 966 (i32 (MVE_VMAXVu8 (t2MOVi (i32 0)), $src))>; 967 def : Pat<(i32 (vecreduce_umax (v8i16 MQPR:$src))), 968 (i32 (MVE_VMAXVu16 (t2MOVi (i32 0)), $src))>; 969 def : Pat<(i32 (vecreduce_umax (v4i32 MQPR:$src))), 970 (i32 (MVE_VMAXVu32 (t2MOVi (i32 0)), $src))>; 971 972 def : Pat<(i32 (vecreduce_smin (v16i8 MQPR:$src))), 973 (i32 (MVE_VMINVs8 (t2MOVi (i32 127)), $src))>; 974 def : Pat<(i32 (vecreduce_smin (v8i16 MQPR:$src))), 975 (i32 (MVE_VMINVs16 (t2MOVi16 (i32 32767)), $src))>; 976 def : Pat<(i32 (vecreduce_smin (v4i32 MQPR:$src))), 977 (i32 (MVE_VMINVs32 (t2MVNi (i32 -2147483648)), $src))>; 978 def : Pat<(i32 (vecreduce_umin (v16i8 MQPR:$src))), 979 (i32 (MVE_VMINVu8 (t2MOVi (i32 255)), $src))>; 980 def : Pat<(i32 (vecreduce_umin (v8i16 MQPR:$src))), 981 (i32 (MVE_VMINVu16 (t2MOVi16 (i32 65535)), $src))>; 982 def : Pat<(i32 (vecreduce_umin (v4i32 MQPR:$src))), 983 (i32 (MVE_VMINVu32 (t2MOVi (i32 4294967295)), $src))>; 984 985 def : Pat<(i32 (ARMVMINVu (i32 rGPR:$x), (v16i8 MQPR:$src))), 986 (i32 (MVE_VMINVu8 $x, $src))>; 987 def : Pat<(i32 (ARMVMINVu (i32 rGPR:$x), (v8i16 MQPR:$src))), 988 (i32 (MVE_VMINVu16 $x, $src))>; 989 def : Pat<(i32 (ARMVMINVu (i32 rGPR:$x), (v4i32 MQPR:$src))), 990 (i32 (MVE_VMINVu32 $x, $src))>; 991 def : Pat<(i32 (ARMVMINVs (i32 rGPR:$x), (v16i8 MQPR:$src))), 992 (i32 (MVE_VMINVs8 $x, $src))>; 993 def : Pat<(i32 (ARMVMINVs (i32 rGPR:$x), (v8i16 MQPR:$src))), 994 (i32 (MVE_VMINVs16 $x, $src))>; 995 def : Pat<(i32 (ARMVMINVs (i32 rGPR:$x), (v4i32 MQPR:$src))), 996 (i32 (MVE_VMINVs32 $x, $src))>; 997 998 def : Pat<(i32 (ARMVMAXVu (i32 rGPR:$x), (v16i8 MQPR:$src))), 999 (i32 (MVE_VMAXVu8 $x, $src))>; 1000 def : Pat<(i32 (ARMVMAXVu (i32 rGPR:$x), (v8i16 MQPR:$src))), 1001 (i32 (MVE_VMAXVu16 $x, $src))>; 1002 def : Pat<(i32 (ARMVMAXVu (i32 rGPR:$x), (v4i32 MQPR:$src))), 1003 (i32 (MVE_VMAXVu32 $x, $src))>; 1004 def : Pat<(i32 (ARMVMAXVs (i32 rGPR:$x), (v16i8 MQPR:$src))), 1005 (i32 (MVE_VMAXVs8 $x, $src))>; 1006 def : Pat<(i32 (ARMVMAXVs (i32 rGPR:$x), (v8i16 MQPR:$src))), 1007 (i32 (MVE_VMAXVs16 $x, $src))>; 1008 def : Pat<(i32 (ARMVMAXVs (i32 rGPR:$x), (v4i32 MQPR:$src))), 1009 (i32 (MVE_VMAXVs32 $x, $src))>; 1010 1011} 1012 1013multiclass MVE_VMINMAXAV_ty<string iname, bit isMin, string intrBaseName> { 1014 defm s8 : MVE_VMINMAXV_p<iname, 0, isMin, MVE_v16s8, intrBaseName>; 1015 defm s16: MVE_VMINMAXV_p<iname, 0, isMin, MVE_v8s16, intrBaseName>; 1016 defm s32: MVE_VMINMAXV_p<iname, 0, isMin, MVE_v4s32, intrBaseName>; 1017} 1018 1019defm MVE_VMINAV : MVE_VMINMAXAV_ty<"vminav", 1, "int_arm_mve_minav">; 1020defm MVE_VMAXAV : MVE_VMINMAXAV_ty<"vmaxav", 0, "int_arm_mve_maxav">; 1021 1022class MVE_VMLAMLSDAV<string iname, string suffix, dag iops, string cstr, 1023 bit sz, bit bit_28, bit A, bit X, bit bit_8, bit bit_0> 1024 : MVE_rDest<(outs tGPREven:$RdaDest), iops, NoItinerary, iname, suffix, 1025 "$RdaDest, $Qn, $Qm", cstr, []> { 1026 bits<4> RdaDest; 1027 bits<3> Qm; 1028 bits<3> Qn; 1029 1030 let Inst{28} = bit_28; 1031 let Inst{22-20} = 0b111; 1032 let Inst{19-17} = Qn{2-0}; 1033 let Inst{16} = sz; 1034 let Inst{15-13} = RdaDest{3-1}; 1035 let Inst{12} = X; 1036 let Inst{8} = bit_8; 1037 let Inst{7-6} = 0b00; 1038 let Inst{5} = A; 1039 let Inst{3-1} = Qm{2-0}; 1040 let Inst{0} = bit_0; 1041 let horizontalReduction = 1; 1042 // Allow tail predication for non-exchanging versions. As this is also a 1043 // horizontalReduction, ARMLowOverheadLoops will also have to check that 1044 // the vector operands contain zeros in their false lanes for the instruction 1045 // to be properly valid. 1046 let validForTailPredication = !eq(X, 0); 1047} 1048 1049multiclass MVE_VMLAMLSDAV_A<string iname, string x, MVEVectorVTInfo VTI, 1050 bit sz, bit bit_28, bit X, bit bit_8, bit bit_0> { 1051 def ""#x#VTI.Suffix : MVE_VMLAMLSDAV<iname # x, VTI.Suffix, 1052 (ins MQPR:$Qn, MQPR:$Qm), "", 1053 sz, bit_28, 0b0, X, bit_8, bit_0>; 1054 def "a"#x#VTI.Suffix : MVE_VMLAMLSDAV<iname # "a" # x, VTI.Suffix, 1055 (ins tGPREven:$RdaSrc, MQPR:$Qn, MQPR:$Qm), 1056 "$RdaDest = $RdaSrc", 1057 sz, bit_28, 0b1, X, bit_8, bit_0>; 1058 let Predicates = [HasMVEInt] in { 1059 def : Pat<(i32 (int_arm_mve_vmldava 1060 (i32 VTI.Unsigned), 1061 (i32 bit_0) /* subtract */, 1062 (i32 X) /* exchange */, 1063 (i32 0) /* accumulator */, 1064 (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm))), 1065 (i32 (!cast<Instruction>(NAME # x # VTI.Suffix) 1066 (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm)))>; 1067 1068 def : Pat<(i32 (int_arm_mve_vmldava_predicated 1069 (i32 VTI.Unsigned), 1070 (i32 bit_0) /* subtract */, 1071 (i32 X) /* exchange */, 1072 (i32 0) /* accumulator */, 1073 (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), 1074 (VTI.Pred VCCR:$mask))), 1075 (i32 (!cast<Instruction>(NAME # x # VTI.Suffix) 1076 (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), 1077 ARMVCCThen, (VTI.Pred VCCR:$mask)))>; 1078 1079 def : Pat<(i32 (int_arm_mve_vmldava 1080 (i32 VTI.Unsigned), 1081 (i32 bit_0) /* subtract */, 1082 (i32 X) /* exchange */, 1083 (i32 tGPREven:$RdaSrc), 1084 (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm))), 1085 (i32 (!cast<Instruction>(NAME # "a" # x # VTI.Suffix) 1086 (i32 tGPREven:$RdaSrc), 1087 (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm)))>; 1088 1089 def : Pat<(i32 (int_arm_mve_vmldava_predicated 1090 (i32 VTI.Unsigned), 1091 (i32 bit_0) /* subtract */, 1092 (i32 X) /* exchange */, 1093 (i32 tGPREven:$RdaSrc), 1094 (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), 1095 (VTI.Pred VCCR:$mask))), 1096 (i32 (!cast<Instruction>(NAME # "a" # x # VTI.Suffix) 1097 (i32 tGPREven:$RdaSrc), 1098 (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), 1099 ARMVCCThen, (VTI.Pred VCCR:$mask)))>; 1100 } 1101} 1102 1103multiclass MVE_VMLAMLSDAV_AX<string iname, MVEVectorVTInfo VTI, bit sz, 1104 bit bit_28, bit bit_8, bit bit_0> { 1105 defm "" : MVE_VMLAMLSDAV_A<iname, "", VTI, sz, bit_28, 1106 0b0, bit_8, bit_0>; 1107 defm "" : MVE_VMLAMLSDAV_A<iname, "x", VTI, sz, bit_28, 1108 0b1, bit_8, bit_0>; 1109} 1110 1111multiclass MVE_VMLADAV_multi<MVEVectorVTInfo SVTI, MVEVectorVTInfo UVTI, 1112 bit sz, bit bit_8> { 1113 defm "" : MVE_VMLAMLSDAV_AX<"vmladav", SVTI, 1114 sz, 0b0, bit_8, 0b0>; 1115 defm "" : MVE_VMLAMLSDAV_A<"vmladav", "", UVTI, 1116 sz, 0b1, 0b0, bit_8, 0b0>; 1117} 1118 1119multiclass MVE_VMLSDAV_multi<MVEVectorVTInfo VTI, bit sz, bit bit_28> { 1120 defm "" : MVE_VMLAMLSDAV_AX<"vmlsdav", VTI, 1121 sz, bit_28, 0b0, 0b1>; 1122} 1123 1124defm MVE_VMLADAV : MVE_VMLADAV_multi<MVE_v16s8, MVE_v16u8, 0b0, 0b1>; 1125defm MVE_VMLADAV : MVE_VMLADAV_multi<MVE_v8s16, MVE_v8u16, 0b0, 0b0>; 1126defm MVE_VMLADAV : MVE_VMLADAV_multi<MVE_v4s32, MVE_v4u32, 0b1, 0b0>; 1127 1128defm MVE_VMLSDAV : MVE_VMLSDAV_multi<MVE_v16s8, 0b0, 0b1>; 1129defm MVE_VMLSDAV : MVE_VMLSDAV_multi<MVE_v8s16, 0b0, 0b0>; 1130defm MVE_VMLSDAV : MVE_VMLSDAV_multi<MVE_v4s32, 0b1, 0b0>; 1131 1132def SDTVecReduce2 : SDTypeProfile<1, 2, [ // VMLAV 1133 SDTCisInt<0>, SDTCisVec<1>, SDTCisVec<2> 1134]>; 1135def SDTVecReduce2L : SDTypeProfile<2, 2, [ // VMLALV 1136 SDTCisInt<0>, SDTCisInt<1>, SDTCisVec<2>, SDTCisVec<3> 1137]>; 1138def SDTVecReduce2LA : SDTypeProfile<2, 4, [ // VMLALVA 1139 SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>, SDTCisInt<3>, 1140 SDTCisVec<4>, SDTCisVec<5> 1141]>; 1142def SDTVecReduce2P : SDTypeProfile<1, 3, [ // VMLAV 1143 SDTCisInt<0>, SDTCisVec<1>, SDTCisVec<2>, SDTCisVec<3> 1144]>; 1145def SDTVecReduce2LP : SDTypeProfile<2, 3, [ // VMLALV 1146 SDTCisInt<0>, SDTCisInt<1>, SDTCisVec<2>, SDTCisVec<3>, SDTCisVec<4> 1147]>; 1148def SDTVecReduce2LAP : SDTypeProfile<2, 5, [ // VMLALVA 1149 SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>, SDTCisInt<3>, 1150 SDTCisVec<4>, SDTCisVec<5>, SDTCisVec<6> 1151]>; 1152def ARMVMLAVs : SDNode<"ARMISD::VMLAVs", SDTVecReduce2>; 1153def ARMVMLAVu : SDNode<"ARMISD::VMLAVu", SDTVecReduce2>; 1154def ARMVMLALVs : SDNode<"ARMISD::VMLALVs", SDTVecReduce2L>; 1155def ARMVMLALVu : SDNode<"ARMISD::VMLALVu", SDTVecReduce2L>; 1156def ARMVMLALVAs : SDNode<"ARMISD::VMLALVAs", SDTVecReduce2LA>; 1157def ARMVMLALVAu : SDNode<"ARMISD::VMLALVAu", SDTVecReduce2LA>; 1158def ARMVMLAVps : SDNode<"ARMISD::VMLAVps", SDTVecReduce2P>; 1159def ARMVMLAVpu : SDNode<"ARMISD::VMLAVpu", SDTVecReduce2P>; 1160def ARMVMLALVps : SDNode<"ARMISD::VMLALVps", SDTVecReduce2LP>; 1161def ARMVMLALVpu : SDNode<"ARMISD::VMLALVpu", SDTVecReduce2LP>; 1162def ARMVMLALVAps : SDNode<"ARMISD::VMLALVAps", SDTVecReduce2LAP>; 1163def ARMVMLALVApu : SDNode<"ARMISD::VMLALVApu", SDTVecReduce2LAP>; 1164 1165let Predicates = [HasMVEInt] in { 1166 def : Pat<(i32 (vecreduce_add (mul (v4i32 MQPR:$src1), (v4i32 MQPR:$src2)))), 1167 (i32 (MVE_VMLADAVu32 $src1, $src2))>; 1168 def : Pat<(i32 (vecreduce_add (mul (v8i16 MQPR:$src1), (v8i16 MQPR:$src2)))), 1169 (i32 (MVE_VMLADAVu16 $src1, $src2))>; 1170 def : Pat<(i32 (ARMVMLAVs (v8i16 MQPR:$val1), (v8i16 MQPR:$val2))), 1171 (i32 (MVE_VMLADAVs16 (v8i16 MQPR:$val1), (v8i16 MQPR:$val2)))>; 1172 def : Pat<(i32 (ARMVMLAVu (v8i16 MQPR:$val1), (v8i16 MQPR:$val2))), 1173 (i32 (MVE_VMLADAVu16 (v8i16 MQPR:$val1), (v8i16 MQPR:$val2)))>; 1174 def : Pat<(i32 (vecreduce_add (mul (v16i8 MQPR:$src1), (v16i8 MQPR:$src2)))), 1175 (i32 (MVE_VMLADAVu8 $src1, $src2))>; 1176 def : Pat<(i32 (ARMVMLAVs (v16i8 MQPR:$val1), (v16i8 MQPR:$val2))), 1177 (i32 (MVE_VMLADAVs8 (v16i8 MQPR:$val1), (v16i8 MQPR:$val2)))>; 1178 def : Pat<(i32 (ARMVMLAVu (v16i8 MQPR:$val1), (v16i8 MQPR:$val2))), 1179 (i32 (MVE_VMLADAVu8 (v16i8 MQPR:$val1), (v16i8 MQPR:$val2)))>; 1180 1181 def : Pat<(i32 (add (i32 (vecreduce_add (mul (v4i32 MQPR:$src1), (v4i32 MQPR:$src2)))), 1182 (i32 tGPREven:$src3))), 1183 (i32 (MVE_VMLADAVau32 $src3, $src1, $src2))>; 1184 def : Pat<(i32 (add (i32 (vecreduce_add (mul (v8i16 MQPR:$src1), (v8i16 MQPR:$src2)))), 1185 (i32 tGPREven:$src3))), 1186 (i32 (MVE_VMLADAVau16 $src3, $src1, $src2))>; 1187 def : Pat<(i32 (add (ARMVMLAVs (v8i16 MQPR:$val1), (v8i16 MQPR:$val2)), tGPREven:$Rd)), 1188 (i32 (MVE_VMLADAVas16 tGPREven:$Rd, (v8i16 MQPR:$val1), (v8i16 MQPR:$val2)))>; 1189 def : Pat<(i32 (add (ARMVMLAVu (v8i16 MQPR:$val1), (v8i16 MQPR:$val2)), tGPREven:$Rd)), 1190 (i32 (MVE_VMLADAVau16 tGPREven:$Rd, (v8i16 MQPR:$val1), (v8i16 MQPR:$val2)))>; 1191 def : Pat<(i32 (add (i32 (vecreduce_add (mul (v16i8 MQPR:$src1), (v16i8 MQPR:$src2)))), 1192 (i32 tGPREven:$src3))), 1193 (i32 (MVE_VMLADAVau8 $src3, $src1, $src2))>; 1194 def : Pat<(i32 (add (ARMVMLAVs (v16i8 MQPR:$val1), (v16i8 MQPR:$val2)), tGPREven:$Rd)), 1195 (i32 (MVE_VMLADAVas8 tGPREven:$Rd, (v16i8 MQPR:$val1), (v16i8 MQPR:$val2)))>; 1196 def : Pat<(i32 (add (ARMVMLAVu (v16i8 MQPR:$val1), (v16i8 MQPR:$val2)), tGPREven:$Rd)), 1197 (i32 (MVE_VMLADAVau8 tGPREven:$Rd, (v16i8 MQPR:$val1), (v16i8 MQPR:$val2)))>; 1198 1199 // Predicated 1200 def : Pat<(i32 (vecreduce_add (vselect (v4i1 VCCR:$pred), 1201 (mul (v4i32 MQPR:$src1), (v4i32 MQPR:$src2)), 1202 (v4i32 ARMimmAllZerosV)))), 1203 (i32 (MVE_VMLADAVu32 $src1, $src2, ARMVCCThen, $pred))>; 1204 def : Pat<(i32 (vecreduce_add (vselect (v8i1 VCCR:$pred), 1205 (mul (v8i16 MQPR:$src1), (v8i16 MQPR:$src2)), 1206 (v8i16 ARMimmAllZerosV)))), 1207 (i32 (MVE_VMLADAVu16 $src1, $src2, ARMVCCThen, $pred))>; 1208 def : Pat<(i32 (ARMVMLAVps (v8i16 MQPR:$val1), (v8i16 MQPR:$val2), (v8i1 VCCR:$pred))), 1209 (i32 (MVE_VMLADAVs16 (v8i16 MQPR:$val1), (v8i16 MQPR:$val2), ARMVCCThen, $pred))>; 1210 def : Pat<(i32 (ARMVMLAVpu (v8i16 MQPR:$val1), (v8i16 MQPR:$val2), (v8i1 VCCR:$pred))), 1211 (i32 (MVE_VMLADAVu16 (v8i16 MQPR:$val1), (v8i16 MQPR:$val2), ARMVCCThen, $pred))>; 1212 def : Pat<(i32 (vecreduce_add (vselect (v16i1 VCCR:$pred), 1213 (mul (v16i8 MQPR:$src1), (v16i8 MQPR:$src2)), 1214 (v16i8 ARMimmAllZerosV)))), 1215 (i32 (MVE_VMLADAVu8 $src1, $src2, ARMVCCThen, $pred))>; 1216 def : Pat<(i32 (ARMVMLAVps (v16i8 MQPR:$val1), (v16i8 MQPR:$val2), (v16i1 VCCR:$pred))), 1217 (i32 (MVE_VMLADAVs8 (v16i8 MQPR:$val1), (v16i8 MQPR:$val2), ARMVCCThen, $pred))>; 1218 def : Pat<(i32 (ARMVMLAVpu (v16i8 MQPR:$val1), (v16i8 MQPR:$val2), (v16i1 VCCR:$pred))), 1219 (i32 (MVE_VMLADAVu8 (v16i8 MQPR:$val1), (v16i8 MQPR:$val2), ARMVCCThen, $pred))>; 1220 1221 def : Pat<(i32 (add (i32 (vecreduce_add (vselect (v4i1 VCCR:$pred), 1222 (mul (v4i32 MQPR:$src1), (v4i32 MQPR:$src2)), 1223 (v4i32 ARMimmAllZerosV)))), 1224 (i32 tGPREven:$src3))), 1225 (i32 (MVE_VMLADAVau32 $src3, $src1, $src2, ARMVCCThen, $pred))>; 1226 def : Pat<(i32 (add (i32 (vecreduce_add (vselect (v8i1 VCCR:$pred), 1227 (mul (v8i16 MQPR:$src1), (v8i16 MQPR:$src2)), 1228 (v8i16 ARMimmAllZerosV)))), 1229 (i32 tGPREven:$src3))), 1230 (i32 (MVE_VMLADAVau16 $src3, $src1, $src2, ARMVCCThen, $pred))>; 1231 def : Pat<(i32 (add (ARMVMLAVps (v8i16 MQPR:$val1), (v8i16 MQPR:$val2), (v8i1 VCCR:$pred)), tGPREven:$Rd)), 1232 (i32 (MVE_VMLADAVas16 tGPREven:$Rd, (v8i16 MQPR:$val1), (v8i16 MQPR:$val2), ARMVCCThen, $pred))>; 1233 def : Pat<(i32 (add (ARMVMLAVpu (v8i16 MQPR:$val1), (v8i16 MQPR:$val2), (v8i1 VCCR:$pred)), tGPREven:$Rd)), 1234 (i32 (MVE_VMLADAVau16 tGPREven:$Rd, (v8i16 MQPR:$val1), (v8i16 MQPR:$val2), ARMVCCThen, $pred))>; 1235 def : Pat<(i32 (add (i32 (vecreduce_add (vselect (v16i1 VCCR:$pred), 1236 (mul (v16i8 MQPR:$src1), (v16i8 MQPR:$src2)), 1237 (v16i8 ARMimmAllZerosV)))), 1238 (i32 tGPREven:$src3))), 1239 (i32 (MVE_VMLADAVau8 $src3, $src1, $src2, ARMVCCThen, $pred))>; 1240 def : Pat<(i32 (add (ARMVMLAVps (v16i8 MQPR:$val1), (v16i8 MQPR:$val2), (v16i1 VCCR:$pred)), tGPREven:$Rd)), 1241 (i32 (MVE_VMLADAVas8 tGPREven:$Rd, (v16i8 MQPR:$val1), (v16i8 MQPR:$val2), ARMVCCThen, $pred))>; 1242 def : Pat<(i32 (add (ARMVMLAVpu (v16i8 MQPR:$val1), (v16i8 MQPR:$val2), (v16i1 VCCR:$pred)), tGPREven:$Rd)), 1243 (i32 (MVE_VMLADAVau8 tGPREven:$Rd, (v16i8 MQPR:$val1), (v16i8 MQPR:$val2), ARMVCCThen, $pred))>; 1244} 1245 1246// vmlav aliases vmladav 1247foreach acc = ["", "a"] in { 1248 foreach suffix = ["s8", "s16", "s32", "u8", "u16", "u32"] in { 1249 def : MVEInstAlias<"vmlav"#acc#"${vp}."#suffix#"\t$RdaDest, $Qn, $Qm", 1250 (!cast<Instruction>("MVE_VMLADAV"#acc#suffix) 1251 tGPREven:$RdaDest, MQPR:$Qn, MQPR:$Qm, vpred_n:$vp)>; 1252 } 1253} 1254 1255// Base class for VMLALDAV and VMLSLDAV, VRMLALDAVH, VRMLSLDAVH 1256class MVE_VMLALDAVBase<string iname, string suffix, dag iops, string cstr, 1257 bit sz, bit bit_28, bit A, bit X, bit bit_8, bit bit_0, 1258 list<dag> pattern=[]> 1259 : MVE_rDest<(outs tGPREven:$RdaLoDest, tGPROdd:$RdaHiDest), iops, NoItinerary, 1260 iname, suffix, "$RdaLoDest, $RdaHiDest, $Qn, $Qm", cstr, pattern> { 1261 bits<4> RdaLoDest; 1262 bits<4> RdaHiDest; 1263 bits<3> Qm; 1264 bits<3> Qn; 1265 1266 let Inst{28} = bit_28; 1267 let Inst{22-20} = RdaHiDest{3-1}; 1268 let Inst{19-17} = Qn{2-0}; 1269 let Inst{16} = sz; 1270 let Inst{15-13} = RdaLoDest{3-1}; 1271 let Inst{12} = X; 1272 let Inst{8} = bit_8; 1273 let Inst{7-6} = 0b00; 1274 let Inst{5} = A; 1275 let Inst{3-1} = Qm{2-0}; 1276 let Inst{0} = bit_0; 1277 let horizontalReduction = 1; 1278 // Allow tail predication for non-exchanging versions. As this is also a 1279 // horizontalReduction, ARMLowOverheadLoops will also have to check that 1280 // the vector operands contain zeros in their false lanes for the instruction 1281 // to be properly valid. 1282 let validForTailPredication = !eq(X, 0); 1283 1284 let hasSideEffects = 0; 1285} 1286 1287multiclass MVE_VMLALDAVBase_A<string iname, string x, string suffix, 1288 bit sz, bit bit_28, bit X, bit bit_8, bit bit_0, 1289 list<dag> pattern=[]> { 1290 def ""#x#suffix : MVE_VMLALDAVBase< 1291 iname # x, suffix, (ins MQPR:$Qn, MQPR:$Qm), "", 1292 sz, bit_28, 0b0, X, bit_8, bit_0, pattern>; 1293 def "a"#x#suffix : MVE_VMLALDAVBase< 1294 iname # "a" # x, suffix, 1295 (ins tGPREven:$RdaLoSrc, tGPROdd:$RdaHiSrc, MQPR:$Qn, MQPR:$Qm), 1296 "$RdaLoDest = $RdaLoSrc,$RdaHiDest = $RdaHiSrc", 1297 sz, bit_28, 0b1, X, bit_8, bit_0, pattern>; 1298} 1299 1300 1301multiclass MVE_VMLALDAVBase_AX<string iname, string suffix, bit sz, bit bit_28, 1302 bit bit_8, bit bit_0, list<dag> pattern=[]> { 1303 defm "" : MVE_VMLALDAVBase_A<iname, "", suffix, sz, 1304 bit_28, 0b0, bit_8, bit_0, pattern>; 1305 defm "" : MVE_VMLALDAVBase_A<iname, "x", suffix, sz, 1306 bit_28, 0b1, bit_8, bit_0, pattern>; 1307} 1308 1309multiclass MVE_VRMLALDAVH_multi<string suffix, list<dag> pattern=[]> { 1310 defm "" : MVE_VMLALDAVBase_AX<"vrmlaldavh", "s"#suffix, 1311 0b0, 0b0, 0b1, 0b0, pattern>; 1312 defm "" : MVE_VMLALDAVBase_A<"vrmlaldavh", "", "u"#suffix, 1313 0b0, 0b1, 0b0, 0b1, 0b0, pattern>; 1314} 1315 1316defm MVE_VRMLALDAVH : MVE_VRMLALDAVH_multi<"32">; 1317 1318// vrmlalvh aliases for vrmlaldavh 1319def : MVEInstAlias<"vrmlalvh${vp}.s32\t$RdaLo, $RdaHi, $Qn, $Qm", 1320 (MVE_VRMLALDAVHs32 1321 tGPREven:$RdaLo, tGPROdd:$RdaHi, 1322 MQPR:$Qn, MQPR:$Qm, vpred_n:$vp)>; 1323def : MVEInstAlias<"vrmlalvha${vp}.s32\t$RdaLo, $RdaHi, $Qn, $Qm", 1324 (MVE_VRMLALDAVHas32 1325 tGPREven:$RdaLo, tGPROdd:$RdaHi, 1326 MQPR:$Qn, MQPR:$Qm, vpred_n:$vp)>; 1327def : MVEInstAlias<"vrmlalvh${vp}.u32\t$RdaLo, $RdaHi, $Qn, $Qm", 1328 (MVE_VRMLALDAVHu32 1329 tGPREven:$RdaLo, tGPROdd:$RdaHi, 1330 MQPR:$Qn, MQPR:$Qm, vpred_n:$vp)>; 1331def : MVEInstAlias<"vrmlalvha${vp}.u32\t$RdaLo, $RdaHi, $Qn, $Qm", 1332 (MVE_VRMLALDAVHau32 1333 tGPREven:$RdaLo, tGPROdd:$RdaHi, 1334 MQPR:$Qn, MQPR:$Qm, vpred_n:$vp)>; 1335 1336multiclass MVE_VMLALDAV_multi<string suffix, bit sz, list<dag> pattern=[]> { 1337 defm "" : MVE_VMLALDAVBase_AX<"vmlaldav", "s"#suffix, sz, 0b0, 0b0, 0b0, pattern>; 1338 defm "" : MVE_VMLALDAVBase_A<"vmlaldav", "", "u"#suffix, 1339 sz, 0b1, 0b0, 0b0, 0b0, pattern>; 1340} 1341 1342defm MVE_VMLALDAV : MVE_VMLALDAV_multi<"16", 0b0>; 1343defm MVE_VMLALDAV : MVE_VMLALDAV_multi<"32", 0b1>; 1344 1345let Predicates = [HasMVEInt] in { 1346 def : Pat<(ARMVMLALVs (v4i32 MQPR:$val1), (v4i32 MQPR:$val2)), 1347 (MVE_VMLALDAVs32 (v4i32 MQPR:$val1), (v4i32 MQPR:$val2))>; 1348 def : Pat<(ARMVMLALVu (v4i32 MQPR:$val1), (v4i32 MQPR:$val2)), 1349 (MVE_VMLALDAVu32 (v4i32 MQPR:$val1), (v4i32 MQPR:$val2))>; 1350 def : Pat<(ARMVMLALVs (v8i16 MQPR:$val1), (v8i16 MQPR:$val2)), 1351 (MVE_VMLALDAVs16 (v8i16 MQPR:$val1), (v8i16 MQPR:$val2))>; 1352 def : Pat<(ARMVMLALVu (v8i16 MQPR:$val1), (v8i16 MQPR:$val2)), 1353 (MVE_VMLALDAVu16 (v8i16 MQPR:$val1), (v8i16 MQPR:$val2))>; 1354 1355 def : Pat<(ARMVMLALVAs tGPREven:$Rda, tGPROdd:$Rdb, (v4i32 MQPR:$val1), (v4i32 MQPR:$val2)), 1356 (MVE_VMLALDAVas32 tGPREven:$Rda, tGPROdd:$Rdb, (v4i32 MQPR:$val1), (v4i32 MQPR:$val2))>; 1357 def : Pat<(ARMVMLALVAu tGPREven:$Rda, tGPROdd:$Rdb, (v4i32 MQPR:$val1), (v4i32 MQPR:$val2)), 1358 (MVE_VMLALDAVau32 tGPREven:$Rda, tGPROdd:$Rdb, (v4i32 MQPR:$val1), (v4i32 MQPR:$val2))>; 1359 def : Pat<(ARMVMLALVAs tGPREven:$Rda, tGPROdd:$Rdb, (v8i16 MQPR:$val1), (v8i16 MQPR:$val2)), 1360 (MVE_VMLALDAVas16 tGPREven:$Rda, tGPROdd:$Rdb, (v8i16 MQPR:$val1), (v8i16 MQPR:$val2))>; 1361 def : Pat<(ARMVMLALVAu tGPREven:$Rda, tGPROdd:$Rdb, (v8i16 MQPR:$val1), (v8i16 MQPR:$val2)), 1362 (MVE_VMLALDAVau16 tGPREven:$Rda, tGPROdd:$Rdb, (v8i16 MQPR:$val1), (v8i16 MQPR:$val2))>; 1363 1364 // Predicated 1365 def : Pat<(ARMVMLALVps (v4i32 MQPR:$val1), (v4i32 MQPR:$val2), (v4i1 VCCR:$pred)), 1366 (MVE_VMLALDAVs32 (v4i32 MQPR:$val1), (v4i32 MQPR:$val2), ARMVCCThen, $pred)>; 1367 def : Pat<(ARMVMLALVpu (v4i32 MQPR:$val1), (v4i32 MQPR:$val2), (v4i1 VCCR:$pred)), 1368 (MVE_VMLALDAVu32 (v4i32 MQPR:$val1), (v4i32 MQPR:$val2), ARMVCCThen, $pred)>; 1369 def : Pat<(ARMVMLALVps (v8i16 MQPR:$val1), (v8i16 MQPR:$val2), (v8i1 VCCR:$pred)), 1370 (MVE_VMLALDAVs16 (v8i16 MQPR:$val1), (v8i16 MQPR:$val2), ARMVCCThen, $pred)>; 1371 def : Pat<(ARMVMLALVpu (v8i16 MQPR:$val1), (v8i16 MQPR:$val2), (v8i1 VCCR:$pred)), 1372 (MVE_VMLALDAVu16 (v8i16 MQPR:$val1), (v8i16 MQPR:$val2), ARMVCCThen, $pred)>; 1373 1374 def : Pat<(ARMVMLALVAps tGPREven:$Rda, tGPROdd:$Rdb, (v4i32 MQPR:$val1), (v4i32 MQPR:$val2), (v4i1 VCCR:$pred)), 1375 (MVE_VMLALDAVas32 tGPREven:$Rda, tGPROdd:$Rdb, (v4i32 MQPR:$val1), (v4i32 MQPR:$val2), ARMVCCThen, $pred)>; 1376 def : Pat<(ARMVMLALVApu tGPREven:$Rda, tGPROdd:$Rdb, (v4i32 MQPR:$val1), (v4i32 MQPR:$val2), (v4i1 VCCR:$pred)), 1377 (MVE_VMLALDAVau32 tGPREven:$Rda, tGPROdd:$Rdb, (v4i32 MQPR:$val1), (v4i32 MQPR:$val2), ARMVCCThen, $pred)>; 1378 def : Pat<(ARMVMLALVAps tGPREven:$Rda, tGPROdd:$Rdb, (v8i16 MQPR:$val1), (v8i16 MQPR:$val2), (v8i1 VCCR:$pred)), 1379 (MVE_VMLALDAVas16 tGPREven:$Rda, tGPROdd:$Rdb, (v8i16 MQPR:$val1), (v8i16 MQPR:$val2), ARMVCCThen, $pred)>; 1380 def : Pat<(ARMVMLALVApu tGPREven:$Rda, tGPROdd:$Rdb, (v8i16 MQPR:$val1), (v8i16 MQPR:$val2), (v8i1 VCCR:$pred)), 1381 (MVE_VMLALDAVau16 tGPREven:$Rda, tGPROdd:$Rdb, (v8i16 MQPR:$val1), (v8i16 MQPR:$val2), ARMVCCThen, $pred)>; 1382} 1383 1384// vmlalv aliases vmlaldav 1385foreach acc = ["", "a"] in { 1386 foreach suffix = ["s16", "s32", "u16", "u32"] in { 1387 def : MVEInstAlias<"vmlalv" # acc # "${vp}." # suffix # 1388 "\t$RdaLoDest, $RdaHiDest, $Qn, $Qm", 1389 (!cast<Instruction>("MVE_VMLALDAV"#acc#suffix) 1390 tGPREven:$RdaLoDest, tGPROdd:$RdaHiDest, 1391 MQPR:$Qn, MQPR:$Qm, vpred_n:$vp)>; 1392 } 1393} 1394 1395multiclass MVE_VMLSLDAV_multi<string iname, string suffix, bit sz, 1396 bit bit_28, list<dag> pattern=[]> { 1397 defm "" : MVE_VMLALDAVBase_AX<iname, suffix, sz, bit_28, 0b0, 0b1, pattern>; 1398} 1399 1400defm MVE_VMLSLDAV : MVE_VMLSLDAV_multi<"vmlsldav", "s16", 0b0, 0b0>; 1401defm MVE_VMLSLDAV : MVE_VMLSLDAV_multi<"vmlsldav", "s32", 0b1, 0b0>; 1402defm MVE_VRMLSLDAVH : MVE_VMLSLDAV_multi<"vrmlsldavh", "s32", 0b0, 0b1>; 1403 1404// end of mve_rDest instructions 1405 1406// start of mve_comp instructions 1407 1408class MVE_comp<InstrItinClass itin, string iname, string suffix, 1409 string cstr, list<dag> pattern=[]> 1410 : MVE_p<(outs MQPR:$Qd), (ins MQPR:$Qn, MQPR:$Qm), itin, iname, suffix, 1411 "$Qd, $Qn, $Qm", vpred_r, cstr, pattern> { 1412 bits<4> Qd; 1413 bits<4> Qn; 1414 bits<4> Qm; 1415 1416 let Inst{22} = Qd{3}; 1417 let Inst{19-17} = Qn{2-0}; 1418 let Inst{16} = 0b0; 1419 let Inst{15-13} = Qd{2-0}; 1420 let Inst{12} = 0b0; 1421 let Inst{10-9} = 0b11; 1422 let Inst{7} = Qn{3}; 1423 let Inst{5} = Qm{3}; 1424 let Inst{3-1} = Qm{2-0}; 1425 let Inst{0} = 0b0; 1426} 1427 1428class MVE_VMINMAXNM<string iname, string suffix, bit sz, bit bit_21, 1429 list<dag> pattern=[]> 1430 : MVE_comp<NoItinerary, iname, suffix, "", pattern> { 1431 1432 let Inst{28} = 0b1; 1433 let Inst{25-24} = 0b11; 1434 let Inst{23} = 0b0; 1435 let Inst{21} = bit_21; 1436 let Inst{20} = sz; 1437 let Inst{11} = 0b1; 1438 let Inst{8} = 0b1; 1439 let Inst{6} = 0b1; 1440 let Inst{4} = 0b1; 1441 1442 let Predicates = [HasMVEFloat]; 1443} 1444 1445multiclass MVE_VMINMAXNM_m<string iname, bit bit_4, MVEVectorVTInfo VTI, SDNode Op, Intrinsic PredInt> { 1446 def "" : MVE_VMINMAXNM<iname, VTI.Suffix, VTI.Size{0}, bit_4>; 1447 1448 let Predicates = [HasMVEFloat] in { 1449 defm : MVE_TwoOpPattern<VTI, Op, PredInt, (? (i32 0)), !cast<Instruction>(NAME)>; 1450 } 1451} 1452 1453defm MVE_VMAXNMf32 : MVE_VMINMAXNM_m<"vmaxnm", 0b0, MVE_v4f32, fmaxnum, int_arm_mve_max_predicated>; 1454defm MVE_VMAXNMf16 : MVE_VMINMAXNM_m<"vmaxnm", 0b0, MVE_v8f16, fmaxnum, int_arm_mve_max_predicated>; 1455defm MVE_VMINNMf32 : MVE_VMINMAXNM_m<"vminnm", 0b1, MVE_v4f32, fminnum, int_arm_mve_min_predicated>; 1456defm MVE_VMINNMf16 : MVE_VMINMAXNM_m<"vminnm", 0b1, MVE_v8f16, fminnum, int_arm_mve_min_predicated>; 1457 1458 1459class MVE_VMINMAX<string iname, string suffix, bit U, bits<2> size, 1460 bit bit_4, list<dag> pattern=[]> 1461 : MVE_comp<NoItinerary, iname, suffix, "", pattern> { 1462 1463 let Inst{28} = U; 1464 let Inst{25-24} = 0b11; 1465 let Inst{23} = 0b0; 1466 let Inst{21-20} = size{1-0}; 1467 let Inst{11} = 0b0; 1468 let Inst{8} = 0b0; 1469 let Inst{6} = 0b1; 1470 let Inst{4} = bit_4; 1471 let validForTailPredication = 1; 1472} 1473 1474multiclass MVE_VMINMAX_m<string iname, bit bit_4, MVEVectorVTInfo VTI, 1475 SDNode Op, Intrinsic PredInt> { 1476 def "" : MVE_VMINMAX<iname, VTI.Suffix, VTI.Unsigned, VTI.Size, bit_4>; 1477 1478 let Predicates = [HasMVEInt] in { 1479 defm : MVE_TwoOpPattern<VTI, Op, PredInt, (? (i32 VTI.Unsigned)), !cast<Instruction>(NAME)>; 1480 } 1481} 1482 1483multiclass MVE_VMAX<MVEVectorVTInfo VTI> 1484 : MVE_VMINMAX_m<"vmax", 0b0, VTI, !if(VTI.Unsigned, umax, smax), int_arm_mve_max_predicated>; 1485multiclass MVE_VMIN<MVEVectorVTInfo VTI> 1486 : MVE_VMINMAX_m<"vmin", 0b1, VTI, !if(VTI.Unsigned, umin, smin), int_arm_mve_min_predicated>; 1487 1488defm MVE_VMINs8 : MVE_VMIN<MVE_v16s8>; 1489defm MVE_VMINs16 : MVE_VMIN<MVE_v8s16>; 1490defm MVE_VMINs32 : MVE_VMIN<MVE_v4s32>; 1491defm MVE_VMINu8 : MVE_VMIN<MVE_v16u8>; 1492defm MVE_VMINu16 : MVE_VMIN<MVE_v8u16>; 1493defm MVE_VMINu32 : MVE_VMIN<MVE_v4u32>; 1494 1495defm MVE_VMAXs8 : MVE_VMAX<MVE_v16s8>; 1496defm MVE_VMAXs16 : MVE_VMAX<MVE_v8s16>; 1497defm MVE_VMAXs32 : MVE_VMAX<MVE_v4s32>; 1498defm MVE_VMAXu8 : MVE_VMAX<MVE_v16u8>; 1499defm MVE_VMAXu16 : MVE_VMAX<MVE_v8u16>; 1500defm MVE_VMAXu32 : MVE_VMAX<MVE_v4u32>; 1501 1502// end of mve_comp instructions 1503 1504// start of mve_bit instructions 1505 1506class MVE_bit_arith<dag oops, dag iops, string iname, string suffix, 1507 string ops, string cstr, list<dag> pattern=[]> 1508 : MVE_p<oops, iops, NoItinerary, iname, suffix, ops, vpred_r, cstr, pattern> { 1509 bits<4> Qd; 1510 bits<4> Qm; 1511 1512 let Inst{22} = Qd{3}; 1513 let Inst{15-13} = Qd{2-0}; 1514 let Inst{5} = Qm{3}; 1515 let Inst{3-1} = Qm{2-0}; 1516} 1517 1518def MVE_VBIC : MVE_bit_arith<(outs MQPR:$Qd), (ins MQPR:$Qn, MQPR:$Qm), 1519 "vbic", "", "$Qd, $Qn, $Qm", ""> { 1520 bits<4> Qn; 1521 1522 let Inst{28} = 0b0; 1523 let Inst{25-23} = 0b110; 1524 let Inst{21-20} = 0b01; 1525 let Inst{19-17} = Qn{2-0}; 1526 let Inst{16} = 0b0; 1527 let Inst{12-8} = 0b00001; 1528 let Inst{7} = Qn{3}; 1529 let Inst{6} = 0b1; 1530 let Inst{4} = 0b1; 1531 let Inst{0} = 0b0; 1532 let validForTailPredication = 1; 1533} 1534 1535class MVE_VREV<string iname, string suffix, bits<2> size, bits<2> bit_8_7, string cstr=""> 1536 : MVE_bit_arith<(outs MQPR:$Qd), (ins MQPR:$Qm), iname, 1537 suffix, "$Qd, $Qm", cstr> { 1538 1539 let Inst{28} = 0b1; 1540 let Inst{25-23} = 0b111; 1541 let Inst{21-20} = 0b11; 1542 let Inst{19-18} = size; 1543 let Inst{17-16} = 0b00; 1544 let Inst{12-9} = 0b0000; 1545 let Inst{8-7} = bit_8_7; 1546 let Inst{6} = 0b1; 1547 let Inst{4} = 0b0; 1548 let Inst{0} = 0b0; 1549} 1550 1551def MVE_VREV64_8 : MVE_VREV<"vrev64", "8", 0b00, 0b00, "@earlyclobber $Qd">; 1552def MVE_VREV64_16 : MVE_VREV<"vrev64", "16", 0b01, 0b00, "@earlyclobber $Qd">; 1553def MVE_VREV64_32 : MVE_VREV<"vrev64", "32", 0b10, 0b00, "@earlyclobber $Qd">; 1554 1555def MVE_VREV32_8 : MVE_VREV<"vrev32", "8", 0b00, 0b01>; 1556def MVE_VREV32_16 : MVE_VREV<"vrev32", "16", 0b01, 0b01>; 1557 1558def MVE_VREV16_8 : MVE_VREV<"vrev16", "8", 0b00, 0b10>; 1559 1560let Predicates = [HasMVEInt] in { 1561 def : Pat<(v8i16 (bswap (v8i16 MQPR:$src))), 1562 (v8i16 (MVE_VREV16_8 (v8i16 MQPR:$src)))>; 1563 def : Pat<(v4i32 (bswap (v4i32 MQPR:$src))), 1564 (v4i32 (MVE_VREV32_8 (v4i32 MQPR:$src)))>; 1565} 1566 1567multiclass MVE_VREV_basic_patterns<int revbits, list<MVEVectorVTInfo> VTIs, 1568 Instruction Inst> { 1569 defvar unpred_op = !cast<SDNode>("ARMvrev" # revbits); 1570 1571 foreach VTI = VTIs in { 1572 def : Pat<(VTI.Vec (unpred_op (VTI.Vec MQPR:$src))), 1573 (VTI.Vec (Inst (VTI.Vec MQPR:$src)))>; 1574 def : Pat<(VTI.Vec (int_arm_mve_vrev_predicated (VTI.Vec MQPR:$src), 1575 revbits, (VTI.Pred VCCR:$pred), (VTI.Vec MQPR:$inactive))), 1576 (VTI.Vec (Inst (VTI.Vec MQPR:$src), ARMVCCThen, 1577 (VTI.Pred VCCR:$pred), (VTI.Vec MQPR:$inactive)))>; 1578 } 1579} 1580 1581let Predicates = [HasMVEInt] in { 1582 defm: MVE_VREV_basic_patterns<64, [MVE_v4i32, MVE_v4f32], MVE_VREV64_32>; 1583 defm: MVE_VREV_basic_patterns<64, [MVE_v8i16, MVE_v8f16], MVE_VREV64_16>; 1584 defm: MVE_VREV_basic_patterns<64, [MVE_v16i8 ], MVE_VREV64_8>; 1585 1586 defm: MVE_VREV_basic_patterns<32, [MVE_v8i16, MVE_v8f16], MVE_VREV32_16>; 1587 defm: MVE_VREV_basic_patterns<32, [MVE_v16i8 ], MVE_VREV32_8>; 1588 1589 defm: MVE_VREV_basic_patterns<16, [MVE_v16i8 ], MVE_VREV16_8>; 1590} 1591 1592def MVE_VMVN : MVE_bit_arith<(outs MQPR:$Qd), (ins MQPR:$Qm), 1593 "vmvn", "", "$Qd, $Qm", ""> { 1594 let Inst{28} = 0b1; 1595 let Inst{25-23} = 0b111; 1596 let Inst{21-16} = 0b110000; 1597 let Inst{12-6} = 0b0010111; 1598 let Inst{4} = 0b0; 1599 let Inst{0} = 0b0; 1600 let validForTailPredication = 1; 1601} 1602 1603let Predicates = [HasMVEInt] in { 1604 foreach VTI = [ MVE_v16i8, MVE_v8i16, MVE_v4i32, MVE_v2i64 ] in { 1605 def : Pat<(VTI.Vec (vnotq (VTI.Vec MQPR:$val1))), 1606 (VTI.Vec (MVE_VMVN (VTI.Vec MQPR:$val1)))>; 1607 def : Pat<(VTI.Vec (int_arm_mve_mvn_predicated (VTI.Vec MQPR:$val1), 1608 (VTI.Pred VCCR:$pred), (VTI.Vec MQPR:$inactive))), 1609 (VTI.Vec (MVE_VMVN (VTI.Vec MQPR:$val1), ARMVCCThen, 1610 (VTI.Pred VCCR:$pred), (VTI.Vec MQPR:$inactive)))>; 1611 } 1612} 1613 1614class MVE_bit_ops<string iname, bits<2> bit_21_20, bit bit_28> 1615 : MVE_bit_arith<(outs MQPR:$Qd), (ins MQPR:$Qn, MQPR:$Qm), 1616 iname, "", "$Qd, $Qn, $Qm", ""> { 1617 bits<4> Qn; 1618 1619 let Inst{28} = bit_28; 1620 let Inst{25-23} = 0b110; 1621 let Inst{21-20} = bit_21_20; 1622 let Inst{19-17} = Qn{2-0}; 1623 let Inst{16} = 0b0; 1624 let Inst{12-8} = 0b00001; 1625 let Inst{7} = Qn{3}; 1626 let Inst{6} = 0b1; 1627 let Inst{4} = 0b1; 1628 let Inst{0} = 0b0; 1629 let validForTailPredication = 1; 1630} 1631 1632def MVE_VEOR : MVE_bit_ops<"veor", 0b00, 0b1>; 1633def MVE_VORN : MVE_bit_ops<"vorn", 0b11, 0b0>; 1634def MVE_VORR : MVE_bit_ops<"vorr", 0b10, 0b0>; 1635def MVE_VAND : MVE_bit_ops<"vand", 0b00, 0b0>; 1636 1637// add ignored suffixes as aliases 1638 1639foreach s=["s8", "s16", "s32", "u8", "u16", "u32", "i8", "i16", "i32", "f16", "f32"] in { 1640 def : MVEInstAlias<"vbic${vp}." # s # "\t$QdSrc, $QnSrc, $QmSrc", 1641 (MVE_VBIC MQPR:$QdSrc, MQPR:$QnSrc, MQPR:$QmSrc, vpred_r:$vp)>; 1642 def : MVEInstAlias<"veor${vp}." # s # "\t$QdSrc, $QnSrc, $QmSrc", 1643 (MVE_VEOR MQPR:$QdSrc, MQPR:$QnSrc, MQPR:$QmSrc, vpred_r:$vp)>; 1644 def : MVEInstAlias<"vorn${vp}." # s # "\t$QdSrc, $QnSrc, $QmSrc", 1645 (MVE_VORN MQPR:$QdSrc, MQPR:$QnSrc, MQPR:$QmSrc, vpred_r:$vp)>; 1646 def : MVEInstAlias<"vorr${vp}." # s # "\t$QdSrc, $QnSrc, $QmSrc", 1647 (MVE_VORR MQPR:$QdSrc, MQPR:$QnSrc, MQPR:$QmSrc, vpred_r:$vp)>; 1648 def : MVEInstAlias<"vand${vp}." # s # "\t$QdSrc, $QnSrc, $QmSrc", 1649 (MVE_VAND MQPR:$QdSrc, MQPR:$QnSrc, MQPR:$QmSrc, vpred_r:$vp)>; 1650} 1651 1652let Predicates = [HasMVEInt] in { 1653 defm : MVE_TwoOpPattern<MVE_v16i8, and, int_arm_mve_and_predicated, (? ), MVE_VAND, ARMimmAllOnesV>; 1654 defm : MVE_TwoOpPattern<MVE_v8i16, and, int_arm_mve_and_predicated, (? ), MVE_VAND, ARMimmAllOnesV>; 1655 defm : MVE_TwoOpPattern<MVE_v4i32, and, int_arm_mve_and_predicated, (? ), MVE_VAND, ARMimmAllOnesV>; 1656 defm : MVE_TwoOpPattern<MVE_v2i64, and, int_arm_mve_and_predicated, (? ), MVE_VAND, ARMimmAllOnesV>; 1657 1658 defm : MVE_TwoOpPattern<MVE_v16i8, or, int_arm_mve_orr_predicated, (? ), MVE_VORR, ARMimmAllZerosV>; 1659 defm : MVE_TwoOpPattern<MVE_v8i16, or, int_arm_mve_orr_predicated, (? ), MVE_VORR, ARMimmAllZerosV>; 1660 defm : MVE_TwoOpPattern<MVE_v4i32, or, int_arm_mve_orr_predicated, (? ), MVE_VORR, ARMimmAllZerosV>; 1661 defm : MVE_TwoOpPattern<MVE_v2i64, or, int_arm_mve_orr_predicated, (? ), MVE_VORR, ARMimmAllZerosV>; 1662 1663 defm : MVE_TwoOpPattern<MVE_v16i8, xor, int_arm_mve_eor_predicated, (? ), MVE_VEOR, ARMimmAllZerosV>; 1664 defm : MVE_TwoOpPattern<MVE_v8i16, xor, int_arm_mve_eor_predicated, (? ), MVE_VEOR, ARMimmAllZerosV>; 1665 defm : MVE_TwoOpPattern<MVE_v4i32, xor, int_arm_mve_eor_predicated, (? ), MVE_VEOR, ARMimmAllZerosV>; 1666 defm : MVE_TwoOpPattern<MVE_v2i64, xor, int_arm_mve_eor_predicated, (? ), MVE_VEOR, ARMimmAllZerosV>; 1667 1668 defm : MVE_TwoOpPattern<MVE_v16i8, BinOpFrag<(and node:$LHS, (vnotq node:$RHS))>, 1669 int_arm_mve_bic_predicated, (? ), MVE_VBIC>; 1670 defm : MVE_TwoOpPattern<MVE_v8i16, BinOpFrag<(and node:$LHS, (vnotq node:$RHS))>, 1671 int_arm_mve_bic_predicated, (? ), MVE_VBIC>; 1672 defm : MVE_TwoOpPattern<MVE_v4i32, BinOpFrag<(and node:$LHS, (vnotq node:$RHS))>, 1673 int_arm_mve_bic_predicated, (? ), MVE_VBIC>; 1674 defm : MVE_TwoOpPattern<MVE_v2i64, BinOpFrag<(and node:$LHS, (vnotq node:$RHS))>, 1675 int_arm_mve_bic_predicated, (? ), MVE_VBIC>; 1676 1677 defm : MVE_TwoOpPattern<MVE_v16i8, BinOpFrag<(or node:$LHS, (vnotq node:$RHS))>, 1678 int_arm_mve_orn_predicated, (? ), MVE_VORN>; 1679 defm : MVE_TwoOpPattern<MVE_v8i16, BinOpFrag<(or node:$LHS, (vnotq node:$RHS))>, 1680 int_arm_mve_orn_predicated, (? ), MVE_VORN>; 1681 defm : MVE_TwoOpPattern<MVE_v4i32, BinOpFrag<(or node:$LHS, (vnotq node:$RHS))>, 1682 int_arm_mve_orn_predicated, (? ), MVE_VORN>; 1683 defm : MVE_TwoOpPattern<MVE_v2i64, BinOpFrag<(or node:$LHS, (vnotq node:$RHS))>, 1684 int_arm_mve_orn_predicated, (? ), MVE_VORN>; 1685} 1686 1687class MVE_bit_cmode<string iname, string suffix, bit halfword, dag inOps> 1688 : MVE_p<(outs MQPR:$Qd), inOps, NoItinerary, 1689 iname, suffix, "$Qd, $imm", vpred_n, "$Qd = $Qd_src"> { 1690 bits<12> imm; 1691 bits<4> Qd; 1692 1693 let Inst{28} = imm{7}; 1694 let Inst{27-23} = 0b11111; 1695 let Inst{22} = Qd{3}; 1696 let Inst{21-19} = 0b000; 1697 let Inst{18-16} = imm{6-4}; 1698 let Inst{15-13} = Qd{2-0}; 1699 let Inst{12} = 0b0; 1700 let Inst{11} = halfword; 1701 let Inst{10} = !if(halfword, 0, imm{10}); 1702 let Inst{9} = imm{9}; 1703 let Inst{8} = 0b1; 1704 let Inst{7-6} = 0b01; 1705 let Inst{4} = 0b1; 1706 let Inst{3-0} = imm{3-0}; 1707} 1708 1709multiclass MVE_bit_cmode_p<string iname, bit opcode, 1710 MVEVectorVTInfo VTI, Operand imm_type, SDNode op> { 1711 def "" : MVE_bit_cmode<iname, VTI.Suffix, VTI.Size{0}, 1712 (ins MQPR:$Qd_src, imm_type:$imm)> { 1713 let Inst{5} = opcode; 1714 let validForTailPredication = 1; 1715 } 1716 1717 defvar Inst = !cast<Instruction>(NAME); 1718 defvar UnpredPat = (VTI.Vec (op (VTI.Vec MQPR:$src), timm:$simm)); 1719 1720 let Predicates = [HasMVEInt] in { 1721 def : Pat<UnpredPat, 1722 (VTI.Vec (Inst (VTI.Vec MQPR:$src), imm_type:$simm))>; 1723 def : Pat<(VTI.Vec (vselect (VTI.Pred VCCR:$pred), 1724 UnpredPat, (VTI.Vec MQPR:$src))), 1725 (VTI.Vec (Inst (VTI.Vec MQPR:$src), imm_type:$simm, 1726 ARMVCCThen, (VTI.Pred VCCR:$pred)))>; 1727 } 1728} 1729 1730multiclass MVE_VORRimm<MVEVectorVTInfo VTI, Operand imm_type> { 1731 defm "": MVE_bit_cmode_p<"vorr", 0, VTI, imm_type, ARMvorrImm>; 1732} 1733multiclass MVE_VBICimm<MVEVectorVTInfo VTI, Operand imm_type> { 1734 defm "": MVE_bit_cmode_p<"vbic", 1, VTI, imm_type, ARMvbicImm>; 1735} 1736 1737defm MVE_VORRimmi16 : MVE_VORRimm<MVE_v8i16, nImmSplatI16>; 1738defm MVE_VORRimmi32 : MVE_VORRimm<MVE_v4i32, nImmSplatI32>; 1739defm MVE_VBICimmi16 : MVE_VBICimm<MVE_v8i16, nImmSplatI16>; 1740defm MVE_VBICimmi32 : MVE_VBICimm<MVE_v4i32, nImmSplatI32>; 1741 1742def MVE_VORNimmi16 : MVEInstAlias<"vorn${vp}.i16\t$Qd, $imm", 1743 (MVE_VORRimmi16 MQPR:$Qd, nImmSplatNotI16:$imm, vpred_n:$vp), 0>; 1744def MVE_VORNimmi32 : MVEInstAlias<"vorn${vp}.i32\t$Qd, $imm", 1745 (MVE_VORRimmi32 MQPR:$Qd, nImmSplatNotI32:$imm, vpred_n:$vp), 0>; 1746 1747def MVE_VANDimmi16 : MVEInstAlias<"vand${vp}.i16\t$Qd, $imm", 1748 (MVE_VBICimmi16 MQPR:$Qd, nImmSplatNotI16:$imm, vpred_n:$vp), 0>; 1749def MVE_VANDimmi32 : MVEInstAlias<"vand${vp}.i32\t$Qd, $imm", 1750 (MVE_VBICimmi32 MQPR:$Qd, nImmSplatNotI32:$imm, vpred_n:$vp), 0>; 1751 1752def MVE_VMOV : MVEInstAlias<"vmov${vp}\t$Qd, $Qm", 1753 (MVE_VORR MQPR:$Qd, MQPR:$Qm, MQPR:$Qm, vpred_r:$vp)>; 1754 1755class MVE_VMOV_lane_direction { 1756 bit bit_20; 1757 dag oops; 1758 dag iops; 1759 string ops; 1760 string cstr; 1761} 1762def MVE_VMOV_from_lane : MVE_VMOV_lane_direction { 1763 let bit_20 = 0b1; 1764 let oops = (outs rGPR:$Rt); 1765 let iops = (ins MQPR:$Qd); 1766 let ops = "$Rt, $Qd$Idx"; 1767 let cstr = ""; 1768} 1769def MVE_VMOV_to_lane : MVE_VMOV_lane_direction { 1770 let bit_20 = 0b0; 1771 let oops = (outs MQPR:$Qd); 1772 let iops = (ins MQPR:$Qd_src, rGPR:$Rt); 1773 let ops = "$Qd$Idx, $Rt"; 1774 let cstr = "$Qd = $Qd_src"; 1775} 1776 1777class MVE_VMOV_lane<string suffix, bit U, dag indexop, 1778 MVE_VMOV_lane_direction dir> 1779 : MVE_VMOV_lane_base<dir.oops, !con(dir.iops, indexop), NoItinerary, 1780 "vmov", suffix, dir.ops, dir.cstr, []> { 1781 bits<4> Qd; 1782 bits<4> Rt; 1783 1784 let Inst{31-24} = 0b11101110; 1785 let Inst{23} = U; 1786 let Inst{20} = dir.bit_20; 1787 let Inst{19-17} = Qd{2-0}; 1788 let Inst{15-12} = Rt{3-0}; 1789 let Inst{11-8} = 0b1011; 1790 let Inst{7} = Qd{3}; 1791 let Inst{4-0} = 0b10000; 1792 1793 let hasSideEffects = 0; 1794} 1795 1796class MVE_VMOV_lane_32<MVE_VMOV_lane_direction dir> 1797 : MVE_VMOV_lane<"32", 0b0, (ins MVEVectorIndex<4>:$Idx), dir> { 1798 bits<2> Idx; 1799 let Inst{22} = 0b0; 1800 let Inst{6-5} = 0b00; 1801 let Inst{16} = Idx{1}; 1802 let Inst{21} = Idx{0}; 1803 1804 let Predicates = [HasFPRegsV8_1M]; 1805} 1806 1807class MVE_VMOV_lane_16<string suffix, bit U, MVE_VMOV_lane_direction dir> 1808 : MVE_VMOV_lane<suffix, U, (ins MVEVectorIndex<8>:$Idx), dir> { 1809 bits<3> Idx; 1810 let Inst{22} = 0b0; 1811 let Inst{5} = 0b1; 1812 let Inst{16} = Idx{2}; 1813 let Inst{21} = Idx{1}; 1814 let Inst{6} = Idx{0}; 1815} 1816 1817class MVE_VMOV_lane_8<string suffix, bit U, MVE_VMOV_lane_direction dir> 1818 : MVE_VMOV_lane<suffix, U, (ins MVEVectorIndex<16>:$Idx), dir> { 1819 bits<4> Idx; 1820 let Inst{22} = 0b1; 1821 let Inst{16} = Idx{3}; 1822 let Inst{21} = Idx{2}; 1823 let Inst{6} = Idx{1}; 1824 let Inst{5} = Idx{0}; 1825} 1826 1827def MVE_VMOV_from_lane_32 : MVE_VMOV_lane_32< MVE_VMOV_from_lane>; 1828def MVE_VMOV_to_lane_32 : MVE_VMOV_lane_32< MVE_VMOV_to_lane>; 1829def MVE_VMOV_from_lane_s16 : MVE_VMOV_lane_16<"s16", 0b0, MVE_VMOV_from_lane>; 1830def MVE_VMOV_from_lane_u16 : MVE_VMOV_lane_16<"u16", 0b1, MVE_VMOV_from_lane>; 1831def MVE_VMOV_to_lane_16 : MVE_VMOV_lane_16< "16", 0b0, MVE_VMOV_to_lane>; 1832def MVE_VMOV_from_lane_s8 : MVE_VMOV_lane_8 < "s8", 0b0, MVE_VMOV_from_lane>; 1833def MVE_VMOV_from_lane_u8 : MVE_VMOV_lane_8 < "u8", 0b1, MVE_VMOV_from_lane>; 1834def MVE_VMOV_to_lane_8 : MVE_VMOV_lane_8 < "8", 0b0, MVE_VMOV_to_lane>; 1835 1836let Predicates = [HasMVEInt] in { 1837 def : Pat<(extractelt (v2f64 MQPR:$src), imm:$lane), 1838 (f64 (EXTRACT_SUBREG MQPR:$src, (DSubReg_f64_reg imm:$lane)))>; 1839 def : Pat<(insertelt (v2f64 MQPR:$src1), DPR:$src2, imm:$lane), 1840 (INSERT_SUBREG (v2f64 (COPY_TO_REGCLASS MQPR:$src1, MQPR)), DPR:$src2, (DSubReg_f64_reg imm:$lane))>; 1841 1842 def : Pat<(extractelt (v4i32 MQPR:$src), imm:$lane), 1843 (COPY_TO_REGCLASS 1844 (i32 (EXTRACT_SUBREG MQPR:$src, (SSubReg_f32_reg imm:$lane))), rGPR)>; 1845 def : Pat<(insertelt (v4i32 MQPR:$src1), rGPR:$src2, imm:$lane), 1846 (MVE_VMOV_to_lane_32 MQPR:$src1, rGPR:$src2, imm:$lane)>; 1847 1848 def : Pat<(vector_insert (v16i8 MQPR:$src1), rGPR:$src2, imm:$lane), 1849 (MVE_VMOV_to_lane_8 MQPR:$src1, rGPR:$src2, imm:$lane)>; 1850 def : Pat<(vector_insert (v8i16 MQPR:$src1), rGPR:$src2, imm:$lane), 1851 (MVE_VMOV_to_lane_16 MQPR:$src1, rGPR:$src2, imm:$lane)>; 1852 1853 def : Pat<(ARMvgetlanes (v16i8 MQPR:$src), imm:$lane), 1854 (MVE_VMOV_from_lane_s8 MQPR:$src, imm:$lane)>; 1855 def : Pat<(ARMvgetlanes (v8i16 MQPR:$src), imm:$lane), 1856 (MVE_VMOV_from_lane_s16 MQPR:$src, imm:$lane)>; 1857 def : Pat<(ARMvgetlanes (v8f16 MQPR:$src), imm:$lane), 1858 (MVE_VMOV_from_lane_s16 MQPR:$src, imm:$lane)>; 1859 def : Pat<(ARMvgetlaneu (v16i8 MQPR:$src), imm:$lane), 1860 (MVE_VMOV_from_lane_u8 MQPR:$src, imm:$lane)>; 1861 def : Pat<(ARMvgetlaneu (v8i16 MQPR:$src), imm:$lane), 1862 (MVE_VMOV_from_lane_u16 MQPR:$src, imm:$lane)>; 1863 def : Pat<(ARMvgetlaneu (v8f16 MQPR:$src), imm:$lane), 1864 (MVE_VMOV_from_lane_u16 MQPR:$src, imm:$lane)>; 1865 1866 def : Pat<(v16i8 (scalar_to_vector GPR:$src)), 1867 (MVE_VMOV_to_lane_8 (v16i8 (IMPLICIT_DEF)), rGPR:$src, (i32 0))>; 1868 def : Pat<(v8i16 (scalar_to_vector GPR:$src)), 1869 (MVE_VMOV_to_lane_16 (v8i16 (IMPLICIT_DEF)), rGPR:$src, (i32 0))>; 1870 def : Pat<(v4i32 (scalar_to_vector GPR:$src)), 1871 (MVE_VMOV_to_lane_32 (v4i32 (IMPLICIT_DEF)), rGPR:$src, (i32 0))>; 1872 1873 // Floating point patterns, still enabled under HasMVEInt 1874 def : Pat<(extractelt (v4f32 MQPR:$src), imm:$lane), 1875 (COPY_TO_REGCLASS (f32 (EXTRACT_SUBREG MQPR:$src, (SSubReg_f32_reg imm:$lane))), SPR)>; 1876 def : Pat<(insertelt (v4f32 MQPR:$src1), (f32 SPR:$src2), imm:$lane), 1877 (INSERT_SUBREG (v4f32 (COPY_TO_REGCLASS MQPR:$src1, MQPR)), SPR:$src2, (SSubReg_f32_reg imm:$lane))>; 1878 1879 def : Pat<(insertelt (v8f16 MQPR:$src1), (f16 HPR:$src2), imm:$lane), 1880 (MVE_VMOV_to_lane_16 MQPR:$src1, (COPY_TO_REGCLASS (f16 HPR:$src2), rGPR), imm:$lane)>; 1881 def : Pat<(extractelt (v8f16 MQPR:$src), imm_even:$lane), 1882 (EXTRACT_SUBREG MQPR:$src, (SSubReg_f16_reg imm_even:$lane))>; 1883 def : Pat<(extractelt (v8f16 MQPR:$src), imm_odd:$lane), 1884 (COPY_TO_REGCLASS 1885 (VMOVH (EXTRACT_SUBREG MQPR:$src, (SSubReg_f16_reg imm_odd:$lane))), 1886 HPR)>; 1887 1888 def : Pat<(v4f32 (scalar_to_vector SPR:$src)), 1889 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), SPR:$src, ssub_0)>; 1890 def : Pat<(v4f32 (scalar_to_vector GPR:$src)), 1891 (MVE_VMOV_to_lane_32 (v4f32 (IMPLICIT_DEF)), rGPR:$src, (i32 0))>; 1892 def : Pat<(v8f16 (scalar_to_vector (f16 HPR:$src))), 1893 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), (f16 HPR:$src), ssub_0)>; 1894 def : Pat<(v8f16 (scalar_to_vector GPR:$src)), 1895 (MVE_VMOV_to_lane_16 (v8f16 (IMPLICIT_DEF)), rGPR:$src, (i32 0))>; 1896} 1897 1898// end of mve_bit instructions 1899 1900// start of MVE Integer instructions 1901 1902class MVE_int<string iname, string suffix, bits<2> size, list<dag> pattern=[]> 1903 : MVE_p<(outs MQPR:$Qd), (ins MQPR:$Qn, MQPR:$Qm), NoItinerary, 1904 iname, suffix, "$Qd, $Qn, $Qm", vpred_r, "", pattern> { 1905 bits<4> Qd; 1906 bits<4> Qn; 1907 bits<4> Qm; 1908 1909 let Inst{22} = Qd{3}; 1910 let Inst{21-20} = size; 1911 let Inst{19-17} = Qn{2-0}; 1912 let Inst{15-13} = Qd{2-0}; 1913 let Inst{7} = Qn{3}; 1914 let Inst{6} = 0b1; 1915 let Inst{5} = Qm{3}; 1916 let Inst{3-1} = Qm{2-0}; 1917} 1918 1919class MVE_VMULt1<string iname, string suffix, bits<2> size, 1920 list<dag> pattern=[]> 1921 : MVE_int<iname, suffix, size, pattern> { 1922 1923 let Inst{28} = 0b0; 1924 let Inst{25-23} = 0b110; 1925 let Inst{16} = 0b0; 1926 let Inst{12-8} = 0b01001; 1927 let Inst{4} = 0b1; 1928 let Inst{0} = 0b0; 1929 let validForTailPredication = 1; 1930} 1931 1932multiclass MVE_VMUL_m<MVEVectorVTInfo VTI> { 1933 def "" : MVE_VMULt1<"vmul", VTI.Suffix, VTI.Size>; 1934 1935 let Predicates = [HasMVEInt] in { 1936 defm : MVE_TwoOpPattern<VTI, mul, int_arm_mve_mul_predicated, (? ), 1937 !cast<Instruction>(NAME), ARMimmOneV>; 1938 } 1939} 1940 1941defm MVE_VMULi8 : MVE_VMUL_m<MVE_v16i8>; 1942defm MVE_VMULi16 : MVE_VMUL_m<MVE_v8i16>; 1943defm MVE_VMULi32 : MVE_VMUL_m<MVE_v4i32>; 1944 1945class MVE_VQxDMULH_Base<string iname, string suffix, bits<2> size, bit rounding, 1946 list<dag> pattern=[]> 1947 : MVE_int<iname, suffix, size, pattern> { 1948 1949 let Inst{28} = rounding; 1950 let Inst{25-23} = 0b110; 1951 let Inst{16} = 0b0; 1952 let Inst{12-8} = 0b01011; 1953 let Inst{4} = 0b0; 1954 let Inst{0} = 0b0; 1955 let validForTailPredication = 1; 1956} 1957 1958def MVEvqdmulh : SDNode<"ARMISD::VQDMULH", SDTIntBinOp>; 1959 1960multiclass MVE_VQxDMULH_m<string iname, MVEVectorVTInfo VTI, 1961 SDNode Op, Intrinsic unpred_int, Intrinsic pred_int, 1962 bit rounding> { 1963 def "" : MVE_VQxDMULH_Base<iname, VTI.Suffix, VTI.Size, rounding>; 1964 defvar Inst = !cast<Instruction>(NAME); 1965 1966 let Predicates = [HasMVEInt] in { 1967 defm : MVE_TwoOpPattern<VTI, Op, pred_int, (? ), Inst>; 1968 1969 // Extra unpredicated multiply intrinsic patterns 1970 def : Pat<(VTI.Vec (unpred_int (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn))), 1971 (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn)))>; 1972 } 1973} 1974 1975multiclass MVE_VQxDMULH<string iname, MVEVectorVTInfo VTI, bit rounding> 1976 : MVE_VQxDMULH_m<iname, VTI, !if(rounding, null_frag, 1977 MVEvqdmulh), 1978 !if(rounding, int_arm_mve_vqrdmulh, 1979 int_arm_mve_vqdmulh), 1980 !if(rounding, int_arm_mve_qrdmulh_predicated, 1981 int_arm_mve_qdmulh_predicated), 1982 rounding>; 1983 1984defm MVE_VQDMULHi8 : MVE_VQxDMULH<"vqdmulh", MVE_v16s8, 0b0>; 1985defm MVE_VQDMULHi16 : MVE_VQxDMULH<"vqdmulh", MVE_v8s16, 0b0>; 1986defm MVE_VQDMULHi32 : MVE_VQxDMULH<"vqdmulh", MVE_v4s32, 0b0>; 1987 1988defm MVE_VQRDMULHi8 : MVE_VQxDMULH<"vqrdmulh", MVE_v16s8, 0b1>; 1989defm MVE_VQRDMULHi16 : MVE_VQxDMULH<"vqrdmulh", MVE_v8s16, 0b1>; 1990defm MVE_VQRDMULHi32 : MVE_VQxDMULH<"vqrdmulh", MVE_v4s32, 0b1>; 1991 1992class MVE_VADDSUB<string iname, string suffix, bits<2> size, bit subtract, 1993 list<dag> pattern=[]> 1994 : MVE_int<iname, suffix, size, pattern> { 1995 1996 let Inst{28} = subtract; 1997 let Inst{25-23} = 0b110; 1998 let Inst{16} = 0b0; 1999 let Inst{12-8} = 0b01000; 2000 let Inst{4} = 0b0; 2001 let Inst{0} = 0b0; 2002 let validForTailPredication = 1; 2003} 2004 2005multiclass MVE_VADDSUB_m<string iname, MVEVectorVTInfo VTI, bit subtract, 2006 SDNode Op, Intrinsic PredInt> { 2007 def "" : MVE_VADDSUB<iname, VTI.Suffix, VTI.Size, subtract>; 2008 defvar Inst = !cast<Instruction>(NAME); 2009 2010 let Predicates = [HasMVEInt] in { 2011 defm : MVE_TwoOpPattern<VTI, Op, PredInt, (? ), !cast<Instruction>(NAME), ARMimmAllZerosV>; 2012 } 2013} 2014 2015multiclass MVE_VADD<MVEVectorVTInfo VTI> 2016 : MVE_VADDSUB_m<"vadd", VTI, 0b0, add, int_arm_mve_add_predicated>; 2017multiclass MVE_VSUB<MVEVectorVTInfo VTI> 2018 : MVE_VADDSUB_m<"vsub", VTI, 0b1, sub, int_arm_mve_sub_predicated>; 2019 2020defm MVE_VADDi8 : MVE_VADD<MVE_v16i8>; 2021defm MVE_VADDi16 : MVE_VADD<MVE_v8i16>; 2022defm MVE_VADDi32 : MVE_VADD<MVE_v4i32>; 2023 2024defm MVE_VSUBi8 : MVE_VSUB<MVE_v16i8>; 2025defm MVE_VSUBi16 : MVE_VSUB<MVE_v8i16>; 2026defm MVE_VSUBi32 : MVE_VSUB<MVE_v4i32>; 2027 2028class MVE_VQADDSUB<string iname, string suffix, bit U, bit subtract, 2029 bits<2> size> 2030 : MVE_int<iname, suffix, size, []> { 2031 2032 let Inst{28} = U; 2033 let Inst{25-23} = 0b110; 2034 let Inst{16} = 0b0; 2035 let Inst{12-10} = 0b000; 2036 let Inst{9} = subtract; 2037 let Inst{8} = 0b0; 2038 let Inst{4} = 0b1; 2039 let Inst{0} = 0b0; 2040 let validForTailPredication = 1; 2041} 2042 2043class MVE_VQADD_<string suffix, bit U, bits<2> size> 2044 : MVE_VQADDSUB<"vqadd", suffix, U, 0b0, size>; 2045class MVE_VQSUB_<string suffix, bit U, bits<2> size> 2046 : MVE_VQADDSUB<"vqsub", suffix, U, 0b1, size>; 2047 2048multiclass MVE_VQADD_m<MVEVectorVTInfo VTI, 2049 SDNode Op, Intrinsic PredInt> { 2050 def "" : MVE_VQADD_<VTI.Suffix, VTI.Unsigned, VTI.Size>; 2051 defvar Inst = !cast<Instruction>(NAME); 2052 2053 let Predicates = [HasMVEInt] in { 2054 defm : MVE_TwoOpPattern<VTI, Op, PredInt, (? (i32 VTI.Unsigned)), 2055 !cast<Instruction>(NAME)>; 2056 } 2057} 2058 2059multiclass MVE_VQADD<MVEVectorVTInfo VTI, SDNode unpred_op> 2060 : MVE_VQADD_m<VTI, unpred_op, int_arm_mve_qadd_predicated>; 2061 2062defm MVE_VQADDs8 : MVE_VQADD<MVE_v16s8, saddsat>; 2063defm MVE_VQADDs16 : MVE_VQADD<MVE_v8s16, saddsat>; 2064defm MVE_VQADDs32 : MVE_VQADD<MVE_v4s32, saddsat>; 2065defm MVE_VQADDu8 : MVE_VQADD<MVE_v16u8, uaddsat>; 2066defm MVE_VQADDu16 : MVE_VQADD<MVE_v8u16, uaddsat>; 2067defm MVE_VQADDu32 : MVE_VQADD<MVE_v4u32, uaddsat>; 2068 2069multiclass MVE_VQSUB_m<MVEVectorVTInfo VTI, 2070 SDNode Op, Intrinsic PredInt> { 2071 def "" : MVE_VQSUB_<VTI.Suffix, VTI.Unsigned, VTI.Size>; 2072 defvar Inst = !cast<Instruction>(NAME); 2073 2074 let Predicates = [HasMVEInt] in { 2075 defm : MVE_TwoOpPattern<VTI, Op, PredInt, (? (i32 VTI.Unsigned)), 2076 !cast<Instruction>(NAME)>; 2077 } 2078} 2079 2080multiclass MVE_VQSUB<MVEVectorVTInfo VTI, SDNode unpred_op> 2081 : MVE_VQSUB_m<VTI, unpred_op, int_arm_mve_qsub_predicated>; 2082 2083defm MVE_VQSUBs8 : MVE_VQSUB<MVE_v16s8, ssubsat>; 2084defm MVE_VQSUBs16 : MVE_VQSUB<MVE_v8s16, ssubsat>; 2085defm MVE_VQSUBs32 : MVE_VQSUB<MVE_v4s32, ssubsat>; 2086defm MVE_VQSUBu8 : MVE_VQSUB<MVE_v16u8, usubsat>; 2087defm MVE_VQSUBu16 : MVE_VQSUB<MVE_v8u16, usubsat>; 2088defm MVE_VQSUBu32 : MVE_VQSUB<MVE_v4u32, usubsat>; 2089 2090class MVE_VABD_int<string suffix, bit U, bits<2> size, 2091 list<dag> pattern=[]> 2092 : MVE_int<"vabd", suffix, size, pattern> { 2093 2094 let Inst{28} = U; 2095 let Inst{25-23} = 0b110; 2096 let Inst{16} = 0b0; 2097 let Inst{12-8} = 0b00111; 2098 let Inst{4} = 0b0; 2099 let Inst{0} = 0b0; 2100 let validForTailPredication = 1; 2101} 2102 2103multiclass MVE_VABD_m<MVEVectorVTInfo VTI, 2104 Intrinsic unpred_int, Intrinsic pred_int> { 2105 def "" : MVE_VABD_int<VTI.Suffix, VTI.Unsigned, VTI.Size>; 2106 defvar Inst = !cast<Instruction>(NAME); 2107 2108 let Predicates = [HasMVEInt] in { 2109 // Unpredicated absolute difference 2110 def : Pat<(VTI.Vec (unpred_int (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), 2111 (i32 VTI.Unsigned))), 2112 (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn)))>; 2113 2114 // Predicated absolute difference 2115 def : Pat<(VTI.Vec (pred_int (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), 2116 (i32 VTI.Unsigned), (VTI.Pred VCCR:$mask), 2117 (VTI.Vec MQPR:$inactive))), 2118 (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), 2119 ARMVCCThen, (VTI.Pred VCCR:$mask), 2120 (VTI.Vec MQPR:$inactive)))>; 2121 } 2122} 2123 2124multiclass MVE_VABD<MVEVectorVTInfo VTI> 2125 : MVE_VABD_m<VTI, int_arm_mve_vabd, int_arm_mve_abd_predicated>; 2126 2127defm MVE_VABDs8 : MVE_VABD<MVE_v16s8>; 2128defm MVE_VABDs16 : MVE_VABD<MVE_v8s16>; 2129defm MVE_VABDs32 : MVE_VABD<MVE_v4s32>; 2130defm MVE_VABDu8 : MVE_VABD<MVE_v16u8>; 2131defm MVE_VABDu16 : MVE_VABD<MVE_v8u16>; 2132defm MVE_VABDu32 : MVE_VABD<MVE_v4u32>; 2133 2134class MVE_VRHADD_Base<string suffix, bit U, bits<2> size, list<dag> pattern=[]> 2135 : MVE_int<"vrhadd", suffix, size, pattern> { 2136 2137 let Inst{28} = U; 2138 let Inst{25-23} = 0b110; 2139 let Inst{16} = 0b0; 2140 let Inst{12-8} = 0b00001; 2141 let Inst{4} = 0b0; 2142 let Inst{0} = 0b0; 2143 let validForTailPredication = 1; 2144} 2145 2146def addnuw : PatFrag<(ops node:$lhs, node:$rhs), 2147 (add node:$lhs, node:$rhs), [{ 2148 return N->getFlags().hasNoUnsignedWrap(); 2149}]>; 2150 2151def addnsw : PatFrag<(ops node:$lhs, node:$rhs), 2152 (add node:$lhs, node:$rhs), [{ 2153 return N->getFlags().hasNoSignedWrap(); 2154}]>; 2155 2156def subnuw : PatFrag<(ops node:$lhs, node:$rhs), 2157 (sub node:$lhs, node:$rhs), [{ 2158 return N->getFlags().hasNoUnsignedWrap(); 2159}]>; 2160 2161def subnsw : PatFrag<(ops node:$lhs, node:$rhs), 2162 (sub node:$lhs, node:$rhs), [{ 2163 return N->getFlags().hasNoSignedWrap(); 2164}]>; 2165 2166multiclass MVE_VRHADD_m<MVEVectorVTInfo VTI, 2167 SDNode unpred_op, Intrinsic pred_int> { 2168 def "" : MVE_VRHADD_Base<VTI.Suffix, VTI.Unsigned, VTI.Size>; 2169 defvar Inst = !cast<Instruction>(NAME); 2170 2171 let Predicates = [HasMVEInt] in { 2172 // Unpredicated rounding add-with-divide-by-two 2173 def : Pat<(VTI.Vec (unpred_op (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), 2174 (i32 VTI.Unsigned))), 2175 (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn)))>; 2176 2177 // Predicated add-with-divide-by-two 2178 def : Pat<(VTI.Vec (pred_int (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), 2179 (i32 VTI.Unsigned), (VTI.Pred VCCR:$mask), 2180 (VTI.Vec MQPR:$inactive))), 2181 (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), 2182 ARMVCCThen, (VTI.Pred VCCR:$mask), 2183 (VTI.Vec MQPR:$inactive)))>; 2184 } 2185} 2186 2187multiclass MVE_VRHADD<MVEVectorVTInfo VTI> 2188 : MVE_VRHADD_m<VTI, int_arm_mve_vrhadd, int_arm_mve_rhadd_predicated>; 2189 2190defm MVE_VRHADDs8 : MVE_VRHADD<MVE_v16s8>; 2191defm MVE_VRHADDs16 : MVE_VRHADD<MVE_v8s16>; 2192defm MVE_VRHADDs32 : MVE_VRHADD<MVE_v4s32>; 2193defm MVE_VRHADDu8 : MVE_VRHADD<MVE_v16u8>; 2194defm MVE_VRHADDu16 : MVE_VRHADD<MVE_v8u16>; 2195defm MVE_VRHADDu32 : MVE_VRHADD<MVE_v4u32>; 2196 2197// Rounding Halving Add perform the arithemtic operation with an extra bit of 2198// precision, before performing the shift, to void clipping errors. We're not 2199// modelling that here with these patterns, but we're using no wrap forms of 2200// add to ensure that the extra bit of information is not needed for the 2201// arithmetic or the rounding. 2202let Predicates = [HasMVEInt] in { 2203 def : Pat<(v16i8 (ARMvshrsImm (addnsw (addnsw (v16i8 MQPR:$Qm), (v16i8 MQPR:$Qn)), 2204 (v16i8 (ARMvmovImm (i32 3585)))), 2205 (i32 1))), 2206 (MVE_VRHADDs8 MQPR:$Qm, MQPR:$Qn)>; 2207 def : Pat<(v8i16 (ARMvshrsImm (addnsw (addnsw (v8i16 MQPR:$Qm), (v8i16 MQPR:$Qn)), 2208 (v8i16 (ARMvmovImm (i32 2049)))), 2209 (i32 1))), 2210 (MVE_VRHADDs16 MQPR:$Qm, MQPR:$Qn)>; 2211 def : Pat<(v4i32 (ARMvshrsImm (addnsw (addnsw (v4i32 MQPR:$Qm), (v4i32 MQPR:$Qn)), 2212 (v4i32 (ARMvmovImm (i32 1)))), 2213 (i32 1))), 2214 (MVE_VRHADDs32 MQPR:$Qm, MQPR:$Qn)>; 2215 def : Pat<(v16i8 (ARMvshruImm (addnuw (addnuw (v16i8 MQPR:$Qm), (v16i8 MQPR:$Qn)), 2216 (v16i8 (ARMvmovImm (i32 3585)))), 2217 (i32 1))), 2218 (MVE_VRHADDu8 MQPR:$Qm, MQPR:$Qn)>; 2219 def : Pat<(v8i16 (ARMvshruImm (addnuw (addnuw (v8i16 MQPR:$Qm), (v8i16 MQPR:$Qn)), 2220 (v8i16 (ARMvmovImm (i32 2049)))), 2221 (i32 1))), 2222 (MVE_VRHADDu16 MQPR:$Qm, MQPR:$Qn)>; 2223 def : Pat<(v4i32 (ARMvshruImm (addnuw (addnuw (v4i32 MQPR:$Qm), (v4i32 MQPR:$Qn)), 2224 (v4i32 (ARMvmovImm (i32 1)))), 2225 (i32 1))), 2226 (MVE_VRHADDu32 MQPR:$Qm, MQPR:$Qn)>; 2227} 2228 2229 2230class MVE_VHADDSUB<string iname, string suffix, bit U, bit subtract, 2231 bits<2> size, list<dag> pattern=[]> 2232 : MVE_int<iname, suffix, size, pattern> { 2233 2234 let Inst{28} = U; 2235 let Inst{25-23} = 0b110; 2236 let Inst{16} = 0b0; 2237 let Inst{12-10} = 0b000; 2238 let Inst{9} = subtract; 2239 let Inst{8} = 0b0; 2240 let Inst{4} = 0b0; 2241 let Inst{0} = 0b0; 2242 let validForTailPredication = 1; 2243} 2244 2245class MVE_VHADD_<string suffix, bit U, bits<2> size, 2246 list<dag> pattern=[]> 2247 : MVE_VHADDSUB<"vhadd", suffix, U, 0b0, size, pattern>; 2248class MVE_VHSUB_<string suffix, bit U, bits<2> size, 2249 list<dag> pattern=[]> 2250 : MVE_VHADDSUB<"vhsub", suffix, U, 0b1, size, pattern>; 2251 2252multiclass MVE_VHADD_m<MVEVectorVTInfo VTI, 2253 SDNode unpred_op, Intrinsic pred_int, PatFrag add_op, 2254 SDNode shift_op> { 2255 def "" : MVE_VHADD_<VTI.Suffix, VTI.Unsigned, VTI.Size>; 2256 defvar Inst = !cast<Instruction>(NAME); 2257 2258 let Predicates = [HasMVEInt] in { 2259 // Unpredicated add-and-divide-by-two 2260 def : Pat<(VTI.Vec (unpred_op (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), (i32 VTI.Unsigned))), 2261 (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn)))>; 2262 2263 def : Pat<(VTI.Vec (shift_op (add_op (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn)), (i32 1))), 2264 (Inst MQPR:$Qm, MQPR:$Qn)>; 2265 2266 // Predicated add-and-divide-by-two 2267 def : Pat<(VTI.Vec (pred_int (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), (i32 VTI.Unsigned), 2268 (VTI.Pred VCCR:$mask), (VTI.Vec MQPR:$inactive))), 2269 (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), 2270 ARMVCCThen, (VTI.Pred VCCR:$mask), 2271 (VTI.Vec MQPR:$inactive)))>; 2272 } 2273} 2274 2275multiclass MVE_VHADD<MVEVectorVTInfo VTI, PatFrag add_op, SDNode shift_op> 2276 : MVE_VHADD_m<VTI, int_arm_mve_vhadd, int_arm_mve_hadd_predicated, add_op, 2277 shift_op>; 2278 2279// Halving add/sub perform the arithemtic operation with an extra bit of 2280// precision, before performing the shift, to void clipping errors. We're not 2281// modelling that here with these patterns, but we're using no wrap forms of 2282// add/sub to ensure that the extra bit of information is not needed. 2283defm MVE_VHADDs8 : MVE_VHADD<MVE_v16s8, addnsw, ARMvshrsImm>; 2284defm MVE_VHADDs16 : MVE_VHADD<MVE_v8s16, addnsw, ARMvshrsImm>; 2285defm MVE_VHADDs32 : MVE_VHADD<MVE_v4s32, addnsw, ARMvshrsImm>; 2286defm MVE_VHADDu8 : MVE_VHADD<MVE_v16u8, addnuw, ARMvshruImm>; 2287defm MVE_VHADDu16 : MVE_VHADD<MVE_v8u16, addnuw, ARMvshruImm>; 2288defm MVE_VHADDu32 : MVE_VHADD<MVE_v4u32, addnuw, ARMvshruImm>; 2289 2290multiclass MVE_VHSUB_m<MVEVectorVTInfo VTI, 2291 SDNode unpred_op, Intrinsic pred_int, PatFrag sub_op, 2292 SDNode shift_op> { 2293 def "" : MVE_VHSUB_<VTI.Suffix, VTI.Unsigned, VTI.Size>; 2294 defvar Inst = !cast<Instruction>(NAME); 2295 2296 let Predicates = [HasMVEInt] in { 2297 // Unpredicated subtract-and-divide-by-two 2298 def : Pat<(VTI.Vec (unpred_op (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), 2299 (i32 VTI.Unsigned))), 2300 (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn)))>; 2301 2302 def : Pat<(VTI.Vec (shift_op (sub_op (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn)), (i32 1))), 2303 (Inst MQPR:$Qm, MQPR:$Qn)>; 2304 2305 2306 // Predicated subtract-and-divide-by-two 2307 def : Pat<(VTI.Vec (pred_int (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), 2308 (i32 VTI.Unsigned), (VTI.Pred VCCR:$mask), 2309 (VTI.Vec MQPR:$inactive))), 2310 (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), 2311 ARMVCCThen, (VTI.Pred VCCR:$mask), 2312 (VTI.Vec MQPR:$inactive)))>; 2313 } 2314} 2315 2316multiclass MVE_VHSUB<MVEVectorVTInfo VTI, PatFrag sub_op, SDNode shift_op> 2317 : MVE_VHSUB_m<VTI, int_arm_mve_vhsub, int_arm_mve_hsub_predicated, sub_op, 2318 shift_op>; 2319 2320defm MVE_VHSUBs8 : MVE_VHSUB<MVE_v16s8, subnsw, ARMvshrsImm>; 2321defm MVE_VHSUBs16 : MVE_VHSUB<MVE_v8s16, subnsw, ARMvshrsImm>; 2322defm MVE_VHSUBs32 : MVE_VHSUB<MVE_v4s32, subnsw, ARMvshrsImm>; 2323defm MVE_VHSUBu8 : MVE_VHSUB<MVE_v16u8, subnuw, ARMvshruImm>; 2324defm MVE_VHSUBu16 : MVE_VHSUB<MVE_v8u16, subnuw, ARMvshruImm>; 2325defm MVE_VHSUBu32 : MVE_VHSUB<MVE_v4u32, subnuw, ARMvshruImm>; 2326 2327class MVE_VDUP<string suffix, bit B, bit E, list<dag> pattern=[]> 2328 : MVE_p<(outs MQPR:$Qd), (ins rGPR:$Rt), NoItinerary, 2329 "vdup", suffix, "$Qd, $Rt", vpred_r, "", pattern> { 2330 bits<4> Qd; 2331 bits<4> Rt; 2332 2333 let Inst{28} = 0b0; 2334 let Inst{25-23} = 0b101; 2335 let Inst{22} = B; 2336 let Inst{21-20} = 0b10; 2337 let Inst{19-17} = Qd{2-0}; 2338 let Inst{16} = 0b0; 2339 let Inst{15-12} = Rt; 2340 let Inst{11-8} = 0b1011; 2341 let Inst{7} = Qd{3}; 2342 let Inst{6} = 0b0; 2343 let Inst{5} = E; 2344 let Inst{4-0} = 0b10000; 2345 let validForTailPredication = 1; 2346} 2347 2348def MVE_VDUP32 : MVE_VDUP<"32", 0b0, 0b0>; 2349def MVE_VDUP16 : MVE_VDUP<"16", 0b0, 0b1>; 2350def MVE_VDUP8 : MVE_VDUP<"8", 0b1, 0b0>; 2351 2352let Predicates = [HasMVEInt] in { 2353 def : Pat<(v16i8 (ARMvdup (i32 rGPR:$elem))), 2354 (MVE_VDUP8 rGPR:$elem)>; 2355 def : Pat<(v8i16 (ARMvdup (i32 rGPR:$elem))), 2356 (MVE_VDUP16 rGPR:$elem)>; 2357 def : Pat<(v4i32 (ARMvdup (i32 rGPR:$elem))), 2358 (MVE_VDUP32 rGPR:$elem)>; 2359 2360 def : Pat<(v8f16 (ARMvdup (i32 rGPR:$elem))), 2361 (MVE_VDUP16 rGPR:$elem)>; 2362 def : Pat<(v4f32 (ARMvdup (i32 rGPR:$elem))), 2363 (MVE_VDUP32 rGPR:$elem)>; 2364 2365 // Match a vselect with an ARMvdup as a predicated MVE_VDUP 2366 def : Pat<(v16i8 (vselect (v16i1 VCCR:$pred), 2367 (v16i8 (ARMvdup (i32 rGPR:$elem))), 2368 (v16i8 MQPR:$inactive))), 2369 (MVE_VDUP8 rGPR:$elem, ARMVCCThen, (v16i1 VCCR:$pred), 2370 (v16i8 MQPR:$inactive))>; 2371 def : Pat<(v8i16 (vselect (v8i1 VCCR:$pred), 2372 (v8i16 (ARMvdup (i32 rGPR:$elem))), 2373 (v8i16 MQPR:$inactive))), 2374 (MVE_VDUP16 rGPR:$elem, ARMVCCThen, (v8i1 VCCR:$pred), 2375 (v8i16 MQPR:$inactive))>; 2376 def : Pat<(v4i32 (vselect (v4i1 VCCR:$pred), 2377 (v4i32 (ARMvdup (i32 rGPR:$elem))), 2378 (v4i32 MQPR:$inactive))), 2379 (MVE_VDUP32 rGPR:$elem, ARMVCCThen, (v4i1 VCCR:$pred), 2380 (v4i32 MQPR:$inactive))>; 2381 def : Pat<(v4f32 (vselect (v4i1 VCCR:$pred), 2382 (v4f32 (ARMvdup (i32 rGPR:$elem))), 2383 (v4f32 MQPR:$inactive))), 2384 (MVE_VDUP32 rGPR:$elem, ARMVCCThen, (v4i1 VCCR:$pred), 2385 (v4f32 MQPR:$inactive))>; 2386 def : Pat<(v8f16 (vselect (v8i1 VCCR:$pred), 2387 (v8f16 (ARMvdup (i32 rGPR:$elem))), 2388 (v8f16 MQPR:$inactive))), 2389 (MVE_VDUP16 rGPR:$elem, ARMVCCThen, (v8i1 VCCR:$pred), 2390 (v8f16 MQPR:$inactive))>; 2391} 2392 2393 2394class MVEIntSingleSrc<string iname, string suffix, bits<2> size, 2395 list<dag> pattern=[]> 2396 : MVE_p<(outs MQPR:$Qd), (ins MQPR:$Qm), NoItinerary, 2397 iname, suffix, "$Qd, $Qm", vpred_r, "", pattern> { 2398 bits<4> Qd; 2399 bits<4> Qm; 2400 2401 let Inst{22} = Qd{3}; 2402 let Inst{19-18} = size{1-0}; 2403 let Inst{15-13} = Qd{2-0}; 2404 let Inst{5} = Qm{3}; 2405 let Inst{3-1} = Qm{2-0}; 2406} 2407 2408class MVE_VCLSCLZ<string iname, string suffix, bits<2> size, 2409 bit count_zeroes, list<dag> pattern=[]> 2410 : MVEIntSingleSrc<iname, suffix, size, pattern> { 2411 2412 let Inst{28} = 0b1; 2413 let Inst{25-23} = 0b111; 2414 let Inst{21-20} = 0b11; 2415 let Inst{17-16} = 0b00; 2416 let Inst{12-8} = 0b00100; 2417 let Inst{7} = count_zeroes; 2418 let Inst{6} = 0b1; 2419 let Inst{4} = 0b0; 2420 let Inst{0} = 0b0; 2421 let validForTailPredication = 1; 2422} 2423 2424multiclass MVE_VCLSCLZ_p<string opname, bit opcode, MVEVectorVTInfo VTI, 2425 SDNode unpred_op> { 2426 def "": MVE_VCLSCLZ<"v"#opname, VTI.Suffix, VTI.Size, opcode>; 2427 2428 defvar Inst = !cast<Instruction>(NAME); 2429 defvar pred_int = !cast<Intrinsic>("int_arm_mve_"#opname#"_predicated"); 2430 2431 let Predicates = [HasMVEInt] in { 2432 def : Pat<(VTI.Vec (unpred_op (VTI.Vec MQPR:$val))), 2433 (VTI.Vec (Inst (VTI.Vec MQPR:$val)))>; 2434 def : Pat<(VTI.Vec (pred_int (VTI.Vec MQPR:$val), (VTI.Pred VCCR:$pred), 2435 (VTI.Vec MQPR:$inactive))), 2436 (VTI.Vec (Inst (VTI.Vec MQPR:$val), ARMVCCThen, 2437 (VTI.Pred VCCR:$pred), (VTI.Vec MQPR:$inactive)))>; 2438 } 2439} 2440 2441defm MVE_VCLSs8 : MVE_VCLSCLZ_p<"cls", 0, MVE_v16s8, int_arm_mve_vcls>; 2442defm MVE_VCLSs16 : MVE_VCLSCLZ_p<"cls", 0, MVE_v8s16, int_arm_mve_vcls>; 2443defm MVE_VCLSs32 : MVE_VCLSCLZ_p<"cls", 0, MVE_v4s32, int_arm_mve_vcls>; 2444 2445defm MVE_VCLZs8 : MVE_VCLSCLZ_p<"clz", 1, MVE_v16i8, ctlz>; 2446defm MVE_VCLZs16 : MVE_VCLSCLZ_p<"clz", 1, MVE_v8i16, ctlz>; 2447defm MVE_VCLZs32 : MVE_VCLSCLZ_p<"clz", 1, MVE_v4i32, ctlz>; 2448 2449class MVE_VABSNEG_int<string iname, string suffix, bits<2> size, bit negate, 2450 bit saturate, list<dag> pattern=[]> 2451 : MVEIntSingleSrc<iname, suffix, size, pattern> { 2452 2453 let Inst{28} = 0b1; 2454 let Inst{25-23} = 0b111; 2455 let Inst{21-20} = 0b11; 2456 let Inst{17} = 0b0; 2457 let Inst{16} = !eq(saturate, 0); 2458 let Inst{12-11} = 0b00; 2459 let Inst{10} = saturate; 2460 let Inst{9-8} = 0b11; 2461 let Inst{7} = negate; 2462 let Inst{6} = 0b1; 2463 let Inst{4} = 0b0; 2464 let Inst{0} = 0b0; 2465 let validForTailPredication = 1; 2466} 2467 2468multiclass MVE_VABSNEG_int_m<string iname, bit negate, bit saturate, 2469 SDNode unpred_op, Intrinsic pred_int, 2470 MVEVectorVTInfo VTI> { 2471 def "" : MVE_VABSNEG_int<iname, VTI.Suffix, VTI.Size, negate, saturate>; 2472 defvar Inst = !cast<Instruction>(NAME); 2473 2474 let Predicates = [HasMVEInt] in { 2475 // VQABS and VQNEG have more difficult isel patterns defined elsewhere 2476 if !not(saturate) then { 2477 def : Pat<(VTI.Vec (unpred_op (VTI.Vec MQPR:$v))), 2478 (VTI.Vec (Inst $v))>; 2479 } 2480 2481 def : Pat<(VTI.Vec (pred_int (VTI.Vec MQPR:$v), (VTI.Pred VCCR:$mask), 2482 (VTI.Vec MQPR:$inactive))), 2483 (VTI.Vec (Inst $v, ARMVCCThen, $mask, $inactive))>; 2484 } 2485} 2486 2487foreach VTI = [ MVE_v16s8, MVE_v8s16, MVE_v4s32 ] in { 2488 defm "MVE_VABS" # VTI.Suffix : MVE_VABSNEG_int_m< 2489 "vabs", 0, 0, abs, int_arm_mve_abs_predicated, VTI>; 2490 defm "MVE_VQABS" # VTI.Suffix : MVE_VABSNEG_int_m< 2491 "vqabs", 0, 1, ?, int_arm_mve_qabs_predicated, VTI>; 2492 defm "MVE_VNEG" # VTI.Suffix : MVE_VABSNEG_int_m< 2493 "vneg", 1, 0, vnegq, int_arm_mve_neg_predicated, VTI>; 2494 defm "MVE_VQNEG" # VTI.Suffix : MVE_VABSNEG_int_m< 2495 "vqneg", 1, 1, ?, int_arm_mve_qneg_predicated, VTI>; 2496} 2497 2498// int_min/int_max: vector containing INT_MIN/INT_MAX VTI.Size times 2499// zero_vec: v4i32-initialized zero vector, potentially wrapped in a bitconvert 2500multiclass vqabsneg_pattern<MVEVectorVTInfo VTI, dag int_min, dag int_max, 2501 dag zero_vec, MVE_VABSNEG_int vqabs_instruction, 2502 MVE_VABSNEG_int vqneg_instruction> { 2503 let Predicates = [HasMVEInt] in { 2504 // The below tree can be replaced by a vqabs instruction, as it represents 2505 // the following vectorized expression (r being the value in $reg): 2506 // r > 0 ? r : (r == INT_MIN ? INT_MAX : -r) 2507 def : Pat<(VTI.Vec (vselect 2508 (VTI.Pred (ARMvcmpz (VTI.Vec MQPR:$reg), ARMCCgt)), 2509 (VTI.Vec MQPR:$reg), 2510 (VTI.Vec (vselect 2511 (VTI.Pred (ARMvcmp (VTI.Vec MQPR:$reg), int_min, ARMCCeq)), 2512 int_max, 2513 (sub (VTI.Vec zero_vec), (VTI.Vec MQPR:$reg)))))), 2514 (VTI.Vec (vqabs_instruction (VTI.Vec MQPR:$reg)))>; 2515 // Similarly, this tree represents vqneg, i.e. the following vectorized expression: 2516 // r == INT_MIN ? INT_MAX : -r 2517 def : Pat<(VTI.Vec (vselect 2518 (VTI.Pred (ARMvcmp (VTI.Vec MQPR:$reg), int_min, ARMCCeq)), 2519 int_max, 2520 (sub (VTI.Vec zero_vec), (VTI.Vec MQPR:$reg)))), 2521 (VTI.Vec (vqneg_instruction (VTI.Vec MQPR:$reg)))>; 2522 } 2523} 2524 2525defm MVE_VQABSNEG_Ps8 : vqabsneg_pattern<MVE_v16i8, 2526 (v16i8 (ARMvmovImm (i32 3712))), 2527 (v16i8 (ARMvmovImm (i32 3711))), 2528 (bitconvert (v4i32 (ARMvmovImm (i32 0)))), 2529 MVE_VQABSs8, MVE_VQNEGs8>; 2530defm MVE_VQABSNEG_Ps16 : vqabsneg_pattern<MVE_v8i16, 2531 (v8i16 (ARMvmovImm (i32 2688))), 2532 (v8i16 (ARMvmvnImm (i32 2688))), 2533 (bitconvert (v4i32 (ARMvmovImm (i32 0)))), 2534 MVE_VQABSs16, MVE_VQNEGs16>; 2535defm MVE_VQABSNEG_Ps32 : vqabsneg_pattern<MVE_v4i32, 2536 (v4i32 (ARMvmovImm (i32 1664))), 2537 (v4i32 (ARMvmvnImm (i32 1664))), 2538 (ARMvmovImm (i32 0)), 2539 MVE_VQABSs32, MVE_VQNEGs32>; 2540 2541class MVE_mod_imm<string iname, string suffix, bits<4> cmode, bit op, 2542 dag iops, list<dag> pattern=[]> 2543 : MVE_p<(outs MQPR:$Qd), iops, NoItinerary, iname, suffix, "$Qd, $imm", 2544 vpred_r, "", pattern> { 2545 bits<13> imm; 2546 bits<4> Qd; 2547 2548 let Inst{28} = imm{7}; 2549 let Inst{25-23} = 0b111; 2550 let Inst{22} = Qd{3}; 2551 let Inst{21-19} = 0b000; 2552 let Inst{18-16} = imm{6-4}; 2553 let Inst{15-13} = Qd{2-0}; 2554 let Inst{12} = 0b0; 2555 let Inst{11-8} = cmode{3-0}; 2556 let Inst{7-6} = 0b01; 2557 let Inst{5} = op; 2558 let Inst{4} = 0b1; 2559 let Inst{3-0} = imm{3-0}; 2560 2561 let DecoderMethod = "DecodeMVEModImmInstruction"; 2562 let validForTailPredication = 1; 2563} 2564 2565let isReMaterializable = 1 in { 2566let isAsCheapAsAMove = 1 in { 2567def MVE_VMOVimmi8 : MVE_mod_imm<"vmov", "i8", {1,1,1,0}, 0b0, (ins nImmSplatI8:$imm)>; 2568def MVE_VMOVimmi16 : MVE_mod_imm<"vmov", "i16", {1,0,?,0}, 0b0, (ins nImmSplatI16:$imm)> { 2569 let Inst{9} = imm{9}; 2570} 2571def MVE_VMOVimmi32 : MVE_mod_imm<"vmov", "i32", {?,?,?,?}, 0b0, (ins nImmVMOVI32:$imm)> { 2572 let Inst{11-8} = imm{11-8}; 2573} 2574def MVE_VMOVimmi64 : MVE_mod_imm<"vmov", "i64", {1,1,1,0}, 0b1, (ins nImmSplatI64:$imm)>; 2575def MVE_VMOVimmf32 : MVE_mod_imm<"vmov", "f32", {1,1,1,1}, 0b0, (ins nImmVMOVF32:$imm)>; 2576} // let isAsCheapAsAMove = 1 2577 2578def MVE_VMVNimmi16 : MVE_mod_imm<"vmvn", "i16", {1,0,?,0}, 0b1, (ins nImmSplatI16:$imm)> { 2579 let Inst{9} = imm{9}; 2580} 2581def MVE_VMVNimmi32 : MVE_mod_imm<"vmvn", "i32", {?,?,?,?}, 0b1, (ins nImmVMOVI32:$imm)> { 2582 let Inst{11-8} = imm{11-8}; 2583} 2584} // let isReMaterializable = 1 2585 2586let Predicates = [HasMVEInt] in { 2587 def : Pat<(v16i8 (ARMvmovImm timm:$simm)), 2588 (v16i8 (MVE_VMOVimmi8 nImmSplatI8:$simm))>; 2589 def : Pat<(v8i16 (ARMvmovImm timm:$simm)), 2590 (v8i16 (MVE_VMOVimmi16 nImmSplatI16:$simm))>; 2591 def : Pat<(v4i32 (ARMvmovImm timm:$simm)), 2592 (v4i32 (MVE_VMOVimmi32 nImmVMOVI32:$simm))>; 2593 def : Pat<(v2i64 (ARMvmovImm timm:$simm)), 2594 (v2i64 (MVE_VMOVimmi64 nImmSplatI64:$simm))>; 2595 2596 def : Pat<(v8i16 (ARMvmvnImm timm:$simm)), 2597 (v8i16 (MVE_VMVNimmi16 nImmSplatI16:$simm))>; 2598 def : Pat<(v4i32 (ARMvmvnImm timm:$simm)), 2599 (v4i32 (MVE_VMVNimmi32 nImmVMOVI32:$simm))>; 2600 2601 def : Pat<(v4f32 (ARMvmovFPImm timm:$simm)), 2602 (v4f32 (MVE_VMOVimmf32 nImmVMOVF32:$simm))>; 2603 2604 def : Pat<(v8i16 (vselect (v8i1 VCCR:$pred), (ARMvmvnImm timm:$simm), 2605 MQPR:$inactive)), 2606 (v8i16 (MVE_VMVNimmi16 nImmSplatI16:$simm, 2607 ARMVCCThen, VCCR:$pred, MQPR:$inactive))>; 2608 def : Pat<(v4i32 (vselect (v4i1 VCCR:$pred), (ARMvmvnImm timm:$simm), 2609 MQPR:$inactive)), 2610 (v4i32 (MVE_VMVNimmi32 nImmSplatI32:$simm, 2611 ARMVCCThen, VCCR:$pred, MQPR:$inactive))>; 2612} 2613 2614class MVE_VMINMAXA<string iname, string suffix, bits<2> size, 2615 bit bit_12, list<dag> pattern=[]> 2616 : MVE_p<(outs MQPR:$Qd), (ins MQPR:$Qd_src, MQPR:$Qm), 2617 NoItinerary, iname, suffix, "$Qd, $Qm", vpred_n, "$Qd = $Qd_src", 2618 pattern> { 2619 bits<4> Qd; 2620 bits<4> Qm; 2621 2622 let Inst{28} = 0b0; 2623 let Inst{25-23} = 0b100; 2624 let Inst{22} = Qd{3}; 2625 let Inst{21-20} = 0b11; 2626 let Inst{19-18} = size; 2627 let Inst{17-16} = 0b11; 2628 let Inst{15-13} = Qd{2-0}; 2629 let Inst{12} = bit_12; 2630 let Inst{11-6} = 0b111010; 2631 let Inst{5} = Qm{3}; 2632 let Inst{4} = 0b0; 2633 let Inst{3-1} = Qm{2-0}; 2634 let Inst{0} = 0b1; 2635 let validForTailPredication = 1; 2636} 2637 2638multiclass MVE_VMINMAXA_m<string iname, MVEVectorVTInfo VTI, 2639 SDNode unpred_op, Intrinsic pred_int, bit bit_12> { 2640 def "" : MVE_VMINMAXA<iname, VTI.Suffix, VTI.Size, bit_12>; 2641 defvar Inst = !cast<Instruction>(NAME); 2642 2643 let Predicates = [HasMVEInt] in { 2644 // Unpredicated v(min|max)a 2645 def : Pat<(VTI.Vec (unpred_op (VTI.Vec MQPR:$Qd), (abs (VTI.Vec MQPR:$Qm)))), 2646 (VTI.Vec (Inst (VTI.Vec MQPR:$Qd), (VTI.Vec MQPR:$Qm)))>; 2647 2648 // Predicated v(min|max)a 2649 def : Pat<(VTI.Vec (pred_int (VTI.Vec MQPR:$Qd), (VTI.Vec MQPR:$Qm), 2650 (VTI.Pred VCCR:$mask))), 2651 (VTI.Vec (Inst (VTI.Vec MQPR:$Qd), (VTI.Vec MQPR:$Qm), 2652 ARMVCCThen, (VTI.Pred VCCR:$mask)))>; 2653 } 2654} 2655 2656multiclass MVE_VMINA<MVEVectorVTInfo VTI> 2657 : MVE_VMINMAXA_m<"vmina", VTI, umin, int_arm_mve_vmina_predicated, 0b1>; 2658 2659defm MVE_VMINAs8 : MVE_VMINA<MVE_v16s8>; 2660defm MVE_VMINAs16 : MVE_VMINA<MVE_v8s16>; 2661defm MVE_VMINAs32 : MVE_VMINA<MVE_v4s32>; 2662 2663multiclass MVE_VMAXA<MVEVectorVTInfo VTI> 2664 : MVE_VMINMAXA_m<"vmaxa", VTI, umax, int_arm_mve_vmaxa_predicated, 0b0>; 2665 2666defm MVE_VMAXAs8 : MVE_VMAXA<MVE_v16s8>; 2667defm MVE_VMAXAs16 : MVE_VMAXA<MVE_v8s16>; 2668defm MVE_VMAXAs32 : MVE_VMAXA<MVE_v4s32>; 2669 2670// end of MVE Integer instructions 2671 2672// start of mve_imm_shift instructions 2673 2674def MVE_VSHLC : MVE_p<(outs rGPR:$RdmDest, MQPR:$Qd), 2675 (ins MQPR:$QdSrc, rGPR:$RdmSrc, long_shift:$imm), 2676 NoItinerary, "vshlc", "", "$QdSrc, $RdmSrc, $imm", 2677 vpred_n, "$RdmDest = $RdmSrc,$Qd = $QdSrc"> { 2678 bits<5> imm; 2679 bits<4> Qd; 2680 bits<4> RdmDest; 2681 2682 let Inst{28} = 0b0; 2683 let Inst{25-23} = 0b101; 2684 let Inst{22} = Qd{3}; 2685 let Inst{21} = 0b1; 2686 let Inst{20-16} = imm{4-0}; 2687 let Inst{15-13} = Qd{2-0}; 2688 let Inst{12-4} = 0b011111100; 2689 let Inst{3-0} = RdmDest{3-0}; 2690} 2691 2692class MVE_shift_imm<dag oops, dag iops, string iname, string suffix, 2693 string ops, vpred_ops vpred, string cstr, 2694 list<dag> pattern=[]> 2695 : MVE_p<oops, iops, NoItinerary, iname, suffix, ops, vpred, cstr, pattern> { 2696 bits<4> Qd; 2697 bits<4> Qm; 2698 2699 let Inst{22} = Qd{3}; 2700 let Inst{15-13} = Qd{2-0}; 2701 let Inst{5} = Qm{3}; 2702 let Inst{3-1} = Qm{2-0}; 2703} 2704 2705class MVE_VMOVL<string iname, string suffix, bits<2> sz, bit U, bit top, 2706 list<dag> pattern=[]> 2707 : MVE_shift_imm<(outs MQPR:$Qd), (ins MQPR:$Qm), 2708 iname, suffix, "$Qd, $Qm", vpred_r, "", 2709 pattern> { 2710 let Inst{28} = U; 2711 let Inst{25-23} = 0b101; 2712 let Inst{21} = 0b1; 2713 let Inst{20-19} = sz{1-0}; 2714 let Inst{18-16} = 0b000; 2715 let Inst{12} = top; 2716 let Inst{11-6} = 0b111101; 2717 let Inst{4} = 0b0; 2718 let Inst{0} = 0b0; 2719 let doubleWidthResult = 1; 2720} 2721 2722multiclass MVE_VMOVL_m<bit top, string chr, MVEVectorVTInfo OutVTI, 2723 MVEVectorVTInfo InVTI> { 2724 def "": MVE_VMOVL<"vmovl" # chr, InVTI.Suffix, OutVTI.Size, 2725 InVTI.Unsigned, top>; 2726 defvar Inst = !cast<Instruction>(NAME); 2727 2728 def : Pat<(OutVTI.Vec (int_arm_mve_vmovl_predicated (InVTI.Vec MQPR:$src), 2729 (i32 InVTI.Unsigned), (i32 top), 2730 (OutVTI.Pred VCCR:$pred), 2731 (OutVTI.Vec MQPR:$inactive))), 2732 (OutVTI.Vec (Inst (InVTI.Vec MQPR:$src), ARMVCCThen, 2733 (OutVTI.Pred VCCR:$pred), 2734 (OutVTI.Vec MQPR:$inactive)))>; 2735} 2736 2737defm MVE_VMOVLs8bh : MVE_VMOVL_m<0, "b", MVE_v8s16, MVE_v16s8>; 2738defm MVE_VMOVLs8th : MVE_VMOVL_m<1, "t", MVE_v8s16, MVE_v16s8>; 2739defm MVE_VMOVLu8bh : MVE_VMOVL_m<0, "b", MVE_v8u16, MVE_v16u8>; 2740defm MVE_VMOVLu8th : MVE_VMOVL_m<1, "t", MVE_v8u16, MVE_v16u8>; 2741defm MVE_VMOVLs16bh : MVE_VMOVL_m<0, "b", MVE_v4s32, MVE_v8s16>; 2742defm MVE_VMOVLs16th : MVE_VMOVL_m<1, "t", MVE_v4s32, MVE_v8s16>; 2743defm MVE_VMOVLu16bh : MVE_VMOVL_m<0, "b", MVE_v4s32, MVE_v8u16>; 2744defm MVE_VMOVLu16th : MVE_VMOVL_m<1, "t", MVE_v4s32, MVE_v8u16>; 2745 2746let Predicates = [HasMVEInt] in { 2747 def : Pat<(sext_inreg (v4i32 MQPR:$src), v4i16), 2748 (MVE_VMOVLs16bh MQPR:$src)>; 2749 def : Pat<(sext_inreg (v8i16 MQPR:$src), v8i8), 2750 (MVE_VMOVLs8bh MQPR:$src)>; 2751 def : Pat<(sext_inreg (v4i32 MQPR:$src), v4i8), 2752 (MVE_VMOVLs16bh (MVE_VMOVLs8bh MQPR:$src))>; 2753 2754 def : Pat<(sext_inreg (v8i16 (ARMVectorRegCast (ARMvrev16 (v16i8 MQPR:$src)))), v8i8), 2755 (MVE_VMOVLs8th MQPR:$src)>; 2756 def : Pat<(sext_inreg (v4i32 (ARMVectorRegCast (ARMvrev32 (v8i16 MQPR:$src)))), v4i16), 2757 (MVE_VMOVLs16th MQPR:$src)>; 2758 2759 // zext_inreg 8 -> 16 2760 def : Pat<(ARMvbicImm (v8i16 MQPR:$src), (i32 0xAFF)), 2761 (MVE_VMOVLu8bh MQPR:$src)>; 2762 // zext_inreg 16 -> 32 2763 def : Pat<(and (v4i32 MQPR:$src), (v4i32 (ARMvmovImm (i32 0xCFF)))), 2764 (MVE_VMOVLu16bh MQPR:$src)>; 2765 // Same zext_inreg with vrevs, picking the top half 2766 def : Pat<(ARMvbicImm (v8i16 (ARMVectorRegCast (ARMvrev16 (v16i8 MQPR:$src)))), (i32 0xAFF)), 2767 (MVE_VMOVLu8th MQPR:$src)>; 2768 def : Pat<(and (v4i32 (ARMVectorRegCast (ARMvrev32 (v8i16 MQPR:$src)))), 2769 (v4i32 (ARMvmovImm (i32 0xCFF)))), 2770 (MVE_VMOVLu16th MQPR:$src)>; 2771} 2772 2773 2774class MVE_VSHLL_imm<string iname, string suffix, bit U, bit th, 2775 Operand immtype, list<dag> pattern=[]> 2776 : MVE_shift_imm<(outs MQPR:$Qd), (ins MQPR:$Qm, immtype:$imm), 2777 iname, suffix, "$Qd, $Qm, $imm", vpred_r, "", pattern> { 2778 let Inst{28} = U; 2779 let Inst{25-23} = 0b101; 2780 let Inst{21} = 0b1; 2781 let Inst{12} = th; 2782 let Inst{11-6} = 0b111101; 2783 let Inst{4} = 0b0; 2784 let Inst{0} = 0b0; 2785 2786 // For the MVE_VSHLL_patterns multiclass to refer to 2787 Operand immediateType = immtype; 2788 2789 let doubleWidthResult = 1; 2790} 2791 2792// The immediate VSHLL instructions accept shift counts from 1 up to 2793// the lane width (8 or 16), but the full-width shifts have an 2794// entirely separate encoding, given below with 'lw' in the name. 2795 2796class MVE_VSHLL_imm8<string iname, string suffix, 2797 bit U, bit th, list<dag> pattern=[]> 2798 : MVE_VSHLL_imm<iname, suffix, U, th, mve_shift_imm1_7, pattern> { 2799 bits<3> imm; 2800 let Inst{20-19} = 0b01; 2801 let Inst{18-16} = imm; 2802} 2803 2804class MVE_VSHLL_imm16<string iname, string suffix, 2805 bit U, bit th, list<dag> pattern=[]> 2806 : MVE_VSHLL_imm<iname, suffix, U, th, mve_shift_imm1_15, pattern> { 2807 bits<4> imm; 2808 let Inst{20} = 0b1; 2809 let Inst{19-16} = imm; 2810} 2811 2812def MVE_VSHLL_imms8bh : MVE_VSHLL_imm8 <"vshllb", "s8", 0b0, 0b0>; 2813def MVE_VSHLL_imms8th : MVE_VSHLL_imm8 <"vshllt", "s8", 0b0, 0b1>; 2814def MVE_VSHLL_immu8bh : MVE_VSHLL_imm8 <"vshllb", "u8", 0b1, 0b0>; 2815def MVE_VSHLL_immu8th : MVE_VSHLL_imm8 <"vshllt", "u8", 0b1, 0b1>; 2816def MVE_VSHLL_imms16bh : MVE_VSHLL_imm16<"vshllb", "s16", 0b0, 0b0>; 2817def MVE_VSHLL_imms16th : MVE_VSHLL_imm16<"vshllt", "s16", 0b0, 0b1>; 2818def MVE_VSHLL_immu16bh : MVE_VSHLL_imm16<"vshllb", "u16", 0b1, 0b0>; 2819def MVE_VSHLL_immu16th : MVE_VSHLL_imm16<"vshllt", "u16", 0b1, 0b1>; 2820 2821class MVE_VSHLL_by_lane_width<string iname, string suffix, bits<2> size, 2822 bit U, string ops, list<dag> pattern=[]> 2823 : MVE_shift_imm<(outs MQPR:$Qd), (ins MQPR:$Qm), 2824 iname, suffix, ops, vpred_r, "", pattern> { 2825 let Inst{28} = U; 2826 let Inst{25-23} = 0b100; 2827 let Inst{21-20} = 0b11; 2828 let Inst{19-18} = size{1-0}; 2829 let Inst{17-16} = 0b01; 2830 let Inst{11-6} = 0b111000; 2831 let Inst{4} = 0b0; 2832 let Inst{0} = 0b1; 2833 let doubleWidthResult = 1; 2834} 2835 2836multiclass MVE_VSHLL_lw<string iname, string suffix, bits<2> sz, bit U, 2837 string ops, list<dag> pattern=[]> { 2838 def bh : MVE_VSHLL_by_lane_width<iname#"b", suffix, sz, U, ops, pattern> { 2839 let Inst{12} = 0b0; 2840 } 2841 def th : MVE_VSHLL_by_lane_width<iname#"t", suffix, sz, U, ops, pattern> { 2842 let Inst{12} = 0b1; 2843 } 2844} 2845 2846defm MVE_VSHLL_lws8 : MVE_VSHLL_lw<"vshll", "s8", 0b00, 0b0, "$Qd, $Qm, #8">; 2847defm MVE_VSHLL_lws16 : MVE_VSHLL_lw<"vshll", "s16", 0b01, 0b0, "$Qd, $Qm, #16">; 2848defm MVE_VSHLL_lwu8 : MVE_VSHLL_lw<"vshll", "u8", 0b00, 0b1, "$Qd, $Qm, #8">; 2849defm MVE_VSHLL_lwu16 : MVE_VSHLL_lw<"vshll", "u16", 0b01, 0b1, "$Qd, $Qm, #16">; 2850 2851multiclass MVE_VSHLL_patterns<MVEVectorVTInfo VTI, int top> { 2852 defvar suffix = !strconcat(VTI.Suffix, !if(top, "th", "bh")); 2853 defvar inst_imm = !cast<MVE_VSHLL_imm>("MVE_VSHLL_imm" # suffix); 2854 defvar inst_lw = !cast<MVE_VSHLL_by_lane_width>("MVE_VSHLL_lw" # suffix); 2855 defvar unpred_int = int_arm_mve_vshll_imm; 2856 defvar pred_int = int_arm_mve_vshll_imm_predicated; 2857 defvar imm = inst_imm.immediateType; 2858 2859 def : Pat<(VTI.DblVec (unpred_int (VTI.Vec MQPR:$src), imm:$imm, 2860 (i32 VTI.Unsigned), (i32 top))), 2861 (VTI.DblVec (inst_imm (VTI.Vec MQPR:$src), imm:$imm))>; 2862 def : Pat<(VTI.DblVec (unpred_int (VTI.Vec MQPR:$src), (i32 VTI.LaneBits), 2863 (i32 VTI.Unsigned), (i32 top))), 2864 (VTI.DblVec (inst_lw (VTI.Vec MQPR:$src)))>; 2865 2866 def : Pat<(VTI.DblVec (pred_int (VTI.Vec MQPR:$src), imm:$imm, 2867 (i32 VTI.Unsigned), (i32 top), 2868 (VTI.DblPred VCCR:$mask), 2869 (VTI.DblVec MQPR:$inactive))), 2870 (VTI.DblVec (inst_imm (VTI.Vec MQPR:$src), imm:$imm, 2871 ARMVCCThen, (VTI.DblPred VCCR:$mask), 2872 (VTI.DblVec MQPR:$inactive)))>; 2873 def : Pat<(VTI.DblVec (pred_int (VTI.Vec MQPR:$src), (i32 VTI.LaneBits), 2874 (i32 VTI.Unsigned), (i32 top), 2875 (VTI.DblPred VCCR:$mask), 2876 (VTI.DblVec MQPR:$inactive))), 2877 (VTI.DblVec (inst_lw (VTI.Vec MQPR:$src), ARMVCCThen, 2878 (VTI.DblPred VCCR:$mask), 2879 (VTI.DblVec MQPR:$inactive)))>; 2880} 2881 2882foreach VTI = [MVE_v16s8, MVE_v8s16, MVE_v16u8, MVE_v8u16] in 2883 foreach top = [0, 1] in 2884 defm : MVE_VSHLL_patterns<VTI, top>; 2885 2886class MVE_shift_imm_partial<Operand imm, string iname, string suffix> 2887 : MVE_shift_imm<(outs MQPR:$Qd), (ins MQPR:$QdSrc, MQPR:$Qm, imm:$imm), 2888 iname, suffix, "$Qd, $Qm, $imm", vpred_n, "$Qd = $QdSrc"> { 2889 Operand immediateType = imm; 2890} 2891 2892class MVE_VxSHRN<string iname, string suffix, bit bit_12, bit bit_28, 2893 Operand imm, list<dag> pattern=[]> 2894 : MVE_shift_imm_partial<imm, iname, suffix> { 2895 bits<5> imm; 2896 2897 let Inst{28} = bit_28; 2898 let Inst{25-23} = 0b101; 2899 let Inst{21} = 0b0; 2900 let Inst{20-16} = imm{4-0}; 2901 let Inst{12} = bit_12; 2902 let Inst{11-6} = 0b111111; 2903 let Inst{4} = 0b0; 2904 let Inst{0} = 0b1; 2905 let validForTailPredication = 1; 2906 let retainsPreviousHalfElement = 1; 2907} 2908 2909def MVE_VRSHRNi16bh : MVE_VxSHRN<"vrshrnb", "i16", 0b0, 0b1, shr_imm8> { 2910 let Inst{20-19} = 0b01; 2911} 2912def MVE_VRSHRNi16th : MVE_VxSHRN<"vrshrnt", "i16", 0b1, 0b1, shr_imm8> { 2913 let Inst{20-19} = 0b01; 2914} 2915def MVE_VRSHRNi32bh : MVE_VxSHRN<"vrshrnb", "i32", 0b0, 0b1, shr_imm16> { 2916 let Inst{20} = 0b1; 2917} 2918def MVE_VRSHRNi32th : MVE_VxSHRN<"vrshrnt", "i32", 0b1, 0b1, shr_imm16> { 2919 let Inst{20} = 0b1; 2920} 2921 2922def MVE_VSHRNi16bh : MVE_VxSHRN<"vshrnb", "i16", 0b0, 0b0, shr_imm8> { 2923 let Inst{20-19} = 0b01; 2924} 2925def MVE_VSHRNi16th : MVE_VxSHRN<"vshrnt", "i16", 0b1, 0b0, shr_imm8> { 2926 let Inst{20-19} = 0b01; 2927} 2928def MVE_VSHRNi32bh : MVE_VxSHRN<"vshrnb", "i32", 0b0, 0b0, shr_imm16> { 2929 let Inst{20} = 0b1; 2930} 2931def MVE_VSHRNi32th : MVE_VxSHRN<"vshrnt", "i32", 0b1, 0b0, shr_imm16> { 2932 let Inst{20} = 0b1; 2933} 2934 2935class MVE_VxQRSHRUN<string iname, string suffix, bit bit_28, bit bit_12, 2936 Operand imm, list<dag> pattern=[]> 2937 : MVE_shift_imm_partial<imm, iname, suffix> { 2938 bits<5> imm; 2939 2940 let Inst{28} = bit_28; 2941 let Inst{25-23} = 0b101; 2942 let Inst{21} = 0b0; 2943 let Inst{20-16} = imm{4-0}; 2944 let Inst{12} = bit_12; 2945 let Inst{11-6} = 0b111111; 2946 let Inst{4} = 0b0; 2947 let Inst{0} = 0b0; 2948 let validForTailPredication = 1; 2949 let retainsPreviousHalfElement = 1; 2950} 2951 2952def MVE_VQRSHRUNs16bh : MVE_VxQRSHRUN< 2953 "vqrshrunb", "s16", 0b1, 0b0, shr_imm8> { 2954 let Inst{20-19} = 0b01; 2955} 2956def MVE_VQRSHRUNs16th : MVE_VxQRSHRUN< 2957 "vqrshrunt", "s16", 0b1, 0b1, shr_imm8> { 2958 let Inst{20-19} = 0b01; 2959} 2960def MVE_VQRSHRUNs32bh : MVE_VxQRSHRUN< 2961 "vqrshrunb", "s32", 0b1, 0b0, shr_imm16> { 2962 let Inst{20} = 0b1; 2963} 2964def MVE_VQRSHRUNs32th : MVE_VxQRSHRUN< 2965 "vqrshrunt", "s32", 0b1, 0b1, shr_imm16> { 2966 let Inst{20} = 0b1; 2967} 2968 2969def MVE_VQSHRUNs16bh : MVE_VxQRSHRUN< 2970 "vqshrunb", "s16", 0b0, 0b0, shr_imm8> { 2971 let Inst{20-19} = 0b01; 2972} 2973def MVE_VQSHRUNs16th : MVE_VxQRSHRUN< 2974 "vqshrunt", "s16", 0b0, 0b1, shr_imm8> { 2975 let Inst{20-19} = 0b01; 2976} 2977def MVE_VQSHRUNs32bh : MVE_VxQRSHRUN< 2978 "vqshrunb", "s32", 0b0, 0b0, shr_imm16> { 2979 let Inst{20} = 0b1; 2980} 2981def MVE_VQSHRUNs32th : MVE_VxQRSHRUN< 2982 "vqshrunt", "s32", 0b0, 0b1, shr_imm16> { 2983 let Inst{20} = 0b1; 2984} 2985 2986class MVE_VxQRSHRN<string iname, string suffix, bit bit_0, bit bit_12, 2987 Operand imm, list<dag> pattern=[]> 2988 : MVE_shift_imm_partial<imm, iname, suffix> { 2989 bits<5> imm; 2990 2991 let Inst{25-23} = 0b101; 2992 let Inst{21} = 0b0; 2993 let Inst{20-16} = imm{4-0}; 2994 let Inst{12} = bit_12; 2995 let Inst{11-6} = 0b111101; 2996 let Inst{4} = 0b0; 2997 let Inst{0} = bit_0; 2998 let validForTailPredication = 1; 2999 let retainsPreviousHalfElement = 1; 3000} 3001 3002multiclass MVE_VxQRSHRN_types<string iname, bit bit_0, bit bit_12> { 3003 def s16 : MVE_VxQRSHRN<iname, "s16", bit_0, bit_12, shr_imm8> { 3004 let Inst{28} = 0b0; 3005 let Inst{20-19} = 0b01; 3006 } 3007 def u16 : MVE_VxQRSHRN<iname, "u16", bit_0, bit_12, shr_imm8> { 3008 let Inst{28} = 0b1; 3009 let Inst{20-19} = 0b01; 3010 } 3011 def s32 : MVE_VxQRSHRN<iname, "s32", bit_0, bit_12, shr_imm16> { 3012 let Inst{28} = 0b0; 3013 let Inst{20} = 0b1; 3014 } 3015 def u32 : MVE_VxQRSHRN<iname, "u32", bit_0, bit_12, shr_imm16> { 3016 let Inst{28} = 0b1; 3017 let Inst{20} = 0b1; 3018 } 3019} 3020 3021defm MVE_VQRSHRNbh : MVE_VxQRSHRN_types<"vqrshrnb", 0b1, 0b0>; 3022defm MVE_VQRSHRNth : MVE_VxQRSHRN_types<"vqrshrnt", 0b1, 0b1>; 3023defm MVE_VQSHRNbh : MVE_VxQRSHRN_types<"vqshrnb", 0b0, 0b0>; 3024defm MVE_VQSHRNth : MVE_VxQRSHRN_types<"vqshrnt", 0b0, 0b1>; 3025 3026multiclass MVE_VSHRN_patterns<MVE_shift_imm_partial inst, 3027 MVEVectorVTInfo OutVTI, MVEVectorVTInfo InVTI, 3028 bit q, bit r, bit top> { 3029 defvar inparams = (? (OutVTI.Vec MQPR:$QdSrc), (InVTI.Vec MQPR:$Qm), 3030 (inst.immediateType:$imm), (i32 q), (i32 r), 3031 (i32 OutVTI.Unsigned), (i32 InVTI.Unsigned), (i32 top)); 3032 defvar outparams = (inst (OutVTI.Vec MQPR:$QdSrc), (InVTI.Vec MQPR:$Qm), 3033 (imm:$imm)); 3034 3035 def : Pat<(OutVTI.Vec !setdagop(inparams, int_arm_mve_vshrn)), 3036 (OutVTI.Vec outparams)>; 3037 def : Pat<(OutVTI.Vec !con(inparams, (int_arm_mve_vshrn_predicated 3038 (InVTI.Pred VCCR:$pred)))), 3039 (OutVTI.Vec !con(outparams, (? ARMVCCThen, VCCR:$pred)))>; 3040} 3041 3042defm : MVE_VSHRN_patterns<MVE_VSHRNi16bh, MVE_v16s8, MVE_v8s16, 0,0,0>; 3043defm : MVE_VSHRN_patterns<MVE_VSHRNi16th, MVE_v16s8, MVE_v8s16, 0,0,1>; 3044defm : MVE_VSHRN_patterns<MVE_VSHRNi32bh, MVE_v8s16, MVE_v4s32, 0,0,0>; 3045defm : MVE_VSHRN_patterns<MVE_VSHRNi32th, MVE_v8s16, MVE_v4s32, 0,0,1>; 3046defm : MVE_VSHRN_patterns<MVE_VSHRNi16bh, MVE_v16u8, MVE_v8u16, 0,0,0>; 3047defm : MVE_VSHRN_patterns<MVE_VSHRNi16th, MVE_v16u8, MVE_v8u16, 0,0,1>; 3048defm : MVE_VSHRN_patterns<MVE_VSHRNi32bh, MVE_v8u16, MVE_v4u32, 0,0,0>; 3049defm : MVE_VSHRN_patterns<MVE_VSHRNi32th, MVE_v8u16, MVE_v4u32, 0,0,1>; 3050defm : MVE_VSHRN_patterns<MVE_VRSHRNi16bh, MVE_v16s8, MVE_v8s16, 0,1,0>; 3051defm : MVE_VSHRN_patterns<MVE_VRSHRNi16th, MVE_v16s8, MVE_v8s16, 0,1,1>; 3052defm : MVE_VSHRN_patterns<MVE_VRSHRNi32bh, MVE_v8s16, MVE_v4s32, 0,1,0>; 3053defm : MVE_VSHRN_patterns<MVE_VRSHRNi32th, MVE_v8s16, MVE_v4s32, 0,1,1>; 3054defm : MVE_VSHRN_patterns<MVE_VRSHRNi16bh, MVE_v16u8, MVE_v8u16, 0,1,0>; 3055defm : MVE_VSHRN_patterns<MVE_VRSHRNi16th, MVE_v16u8, MVE_v8u16, 0,1,1>; 3056defm : MVE_VSHRN_patterns<MVE_VRSHRNi32bh, MVE_v8u16, MVE_v4u32, 0,1,0>; 3057defm : MVE_VSHRN_patterns<MVE_VRSHRNi32th, MVE_v8u16, MVE_v4u32, 0,1,1>; 3058defm : MVE_VSHRN_patterns<MVE_VQSHRNbhs16, MVE_v16s8, MVE_v8s16, 1,0,0>; 3059defm : MVE_VSHRN_patterns<MVE_VQSHRNths16, MVE_v16s8, MVE_v8s16, 1,0,1>; 3060defm : MVE_VSHRN_patterns<MVE_VQSHRNbhs32, MVE_v8s16, MVE_v4s32, 1,0,0>; 3061defm : MVE_VSHRN_patterns<MVE_VQSHRNths32, MVE_v8s16, MVE_v4s32, 1,0,1>; 3062defm : MVE_VSHRN_patterns<MVE_VQSHRNbhu16, MVE_v16u8, MVE_v8u16, 1,0,0>; 3063defm : MVE_VSHRN_patterns<MVE_VQSHRNthu16, MVE_v16u8, MVE_v8u16, 1,0,1>; 3064defm : MVE_VSHRN_patterns<MVE_VQSHRNbhu32, MVE_v8u16, MVE_v4u32, 1,0,0>; 3065defm : MVE_VSHRN_patterns<MVE_VQSHRNthu32, MVE_v8u16, MVE_v4u32, 1,0,1>; 3066defm : MVE_VSHRN_patterns<MVE_VQRSHRNbhs16, MVE_v16s8, MVE_v8s16, 1,1,0>; 3067defm : MVE_VSHRN_patterns<MVE_VQRSHRNths16, MVE_v16s8, MVE_v8s16, 1,1,1>; 3068defm : MVE_VSHRN_patterns<MVE_VQRSHRNbhs32, MVE_v8s16, MVE_v4s32, 1,1,0>; 3069defm : MVE_VSHRN_patterns<MVE_VQRSHRNths32, MVE_v8s16, MVE_v4s32, 1,1,1>; 3070defm : MVE_VSHRN_patterns<MVE_VQRSHRNbhu16, MVE_v16u8, MVE_v8u16, 1,1,0>; 3071defm : MVE_VSHRN_patterns<MVE_VQRSHRNthu16, MVE_v16u8, MVE_v8u16, 1,1,1>; 3072defm : MVE_VSHRN_patterns<MVE_VQRSHRNbhu32, MVE_v8u16, MVE_v4u32, 1,1,0>; 3073defm : MVE_VSHRN_patterns<MVE_VQRSHRNthu32, MVE_v8u16, MVE_v4u32, 1,1,1>; 3074defm : MVE_VSHRN_patterns<MVE_VQSHRUNs16bh, MVE_v16u8, MVE_v8s16, 1,0,0>; 3075defm : MVE_VSHRN_patterns<MVE_VQSHRUNs16th, MVE_v16u8, MVE_v8s16, 1,0,1>; 3076defm : MVE_VSHRN_patterns<MVE_VQSHRUNs32bh, MVE_v8u16, MVE_v4s32, 1,0,0>; 3077defm : MVE_VSHRN_patterns<MVE_VQSHRUNs32th, MVE_v8u16, MVE_v4s32, 1,0,1>; 3078defm : MVE_VSHRN_patterns<MVE_VQRSHRUNs16bh, MVE_v16u8, MVE_v8s16, 1,1,0>; 3079defm : MVE_VSHRN_patterns<MVE_VQRSHRUNs16th, MVE_v16u8, MVE_v8s16, 1,1,1>; 3080defm : MVE_VSHRN_patterns<MVE_VQRSHRUNs32bh, MVE_v8u16, MVE_v4s32, 1,1,0>; 3081defm : MVE_VSHRN_patterns<MVE_VQRSHRUNs32th, MVE_v8u16, MVE_v4s32, 1,1,1>; 3082 3083// end of mve_imm_shift instructions 3084 3085// start of mve_shift instructions 3086 3087class MVE_shift_by_vec<string iname, string suffix, bit U, 3088 bits<2> size, bit bit_4, bit bit_8> 3089 : MVE_p<(outs MQPR:$Qd), (ins MQPR:$Qm, MQPR:$Qn), NoItinerary, 3090 iname, suffix, "$Qd, $Qm, $Qn", vpred_r, "", []> { 3091 // Shift instructions which take a vector of shift counts 3092 bits<4> Qd; 3093 bits<4> Qm; 3094 bits<4> Qn; 3095 3096 let Inst{28} = U; 3097 let Inst{25-24} = 0b11; 3098 let Inst{23} = 0b0; 3099 let Inst{22} = Qd{3}; 3100 let Inst{21-20} = size; 3101 let Inst{19-17} = Qn{2-0}; 3102 let Inst{16} = 0b0; 3103 let Inst{15-13} = Qd{2-0}; 3104 let Inst{12-9} = 0b0010; 3105 let Inst{8} = bit_8; 3106 let Inst{7} = Qn{3}; 3107 let Inst{6} = 0b1; 3108 let Inst{5} = Qm{3}; 3109 let Inst{4} = bit_4; 3110 let Inst{3-1} = Qm{2-0}; 3111 let Inst{0} = 0b0; 3112 let validForTailPredication = 1; 3113} 3114 3115multiclass MVE_shift_by_vec_p<string iname, MVEVectorVTInfo VTI, bit q, bit r> { 3116 def "" : MVE_shift_by_vec<iname, VTI.Suffix, VTI.Unsigned, VTI.Size, q, r>; 3117 defvar Inst = !cast<Instruction>(NAME); 3118 3119 def : Pat<(VTI.Vec (int_arm_mve_vshl_vector 3120 (VTI.Vec MQPR:$in), (VTI.Vec MQPR:$sh), 3121 (i32 q), (i32 r), (i32 VTI.Unsigned))), 3122 (VTI.Vec (Inst (VTI.Vec MQPR:$in), (VTI.Vec MQPR:$sh)))>; 3123 3124 def : Pat<(VTI.Vec (int_arm_mve_vshl_vector_predicated 3125 (VTI.Vec MQPR:$in), (VTI.Vec MQPR:$sh), 3126 (i32 q), (i32 r), (i32 VTI.Unsigned), 3127 (VTI.Pred VCCR:$mask), (VTI.Vec MQPR:$inactive))), 3128 (VTI.Vec (Inst (VTI.Vec MQPR:$in), (VTI.Vec MQPR:$sh), 3129 ARMVCCThen, (VTI.Pred VCCR:$mask), 3130 (VTI.Vec MQPR:$inactive)))>; 3131} 3132 3133multiclass mve_shift_by_vec_multi<string iname, bit bit_4, bit bit_8> { 3134 defm s8 : MVE_shift_by_vec_p<iname, MVE_v16s8, bit_4, bit_8>; 3135 defm s16 : MVE_shift_by_vec_p<iname, MVE_v8s16, bit_4, bit_8>; 3136 defm s32 : MVE_shift_by_vec_p<iname, MVE_v4s32, bit_4, bit_8>; 3137 defm u8 : MVE_shift_by_vec_p<iname, MVE_v16u8, bit_4, bit_8>; 3138 defm u16 : MVE_shift_by_vec_p<iname, MVE_v8u16, bit_4, bit_8>; 3139 defm u32 : MVE_shift_by_vec_p<iname, MVE_v4u32, bit_4, bit_8>; 3140} 3141 3142defm MVE_VSHL_by_vec : mve_shift_by_vec_multi<"vshl", 0b0, 0b0>; 3143defm MVE_VQSHL_by_vec : mve_shift_by_vec_multi<"vqshl", 0b1, 0b0>; 3144defm MVE_VQRSHL_by_vec : mve_shift_by_vec_multi<"vqrshl", 0b1, 0b1>; 3145defm MVE_VRSHL_by_vec : mve_shift_by_vec_multi<"vrshl", 0b0, 0b1>; 3146 3147let Predicates = [HasMVEInt] in { 3148 def : Pat<(v4i32 (ARMvshlu (v4i32 MQPR:$Qm), (v4i32 MQPR:$Qn))), 3149 (v4i32 (MVE_VSHL_by_vecu32 (v4i32 MQPR:$Qm), (v4i32 MQPR:$Qn)))>; 3150 def : Pat<(v8i16 (ARMvshlu (v8i16 MQPR:$Qm), (v8i16 MQPR:$Qn))), 3151 (v8i16 (MVE_VSHL_by_vecu16 (v8i16 MQPR:$Qm), (v8i16 MQPR:$Qn)))>; 3152 def : Pat<(v16i8 (ARMvshlu (v16i8 MQPR:$Qm), (v16i8 MQPR:$Qn))), 3153 (v16i8 (MVE_VSHL_by_vecu8 (v16i8 MQPR:$Qm), (v16i8 MQPR:$Qn)))>; 3154 3155 def : Pat<(v4i32 (ARMvshls (v4i32 MQPR:$Qm), (v4i32 MQPR:$Qn))), 3156 (v4i32 (MVE_VSHL_by_vecs32 (v4i32 MQPR:$Qm), (v4i32 MQPR:$Qn)))>; 3157 def : Pat<(v8i16 (ARMvshls (v8i16 MQPR:$Qm), (v8i16 MQPR:$Qn))), 3158 (v8i16 (MVE_VSHL_by_vecs16 (v8i16 MQPR:$Qm), (v8i16 MQPR:$Qn)))>; 3159 def : Pat<(v16i8 (ARMvshls (v16i8 MQPR:$Qm), (v16i8 MQPR:$Qn))), 3160 (v16i8 (MVE_VSHL_by_vecs8 (v16i8 MQPR:$Qm), (v16i8 MQPR:$Qn)))>; 3161} 3162 3163class MVE_shift_with_imm<string iname, string suffix, dag oops, dag iops, 3164 string ops, vpred_ops vpred, string cstr, 3165 list<dag> pattern=[]> 3166 : MVE_p<oops, iops, NoItinerary, iname, suffix, ops, vpred, cstr, pattern> { 3167 bits<4> Qd; 3168 bits<4> Qm; 3169 3170 let Inst{23} = 0b1; 3171 let Inst{22} = Qd{3}; 3172 let Inst{15-13} = Qd{2-0}; 3173 let Inst{12-11} = 0b00; 3174 let Inst{7-6} = 0b01; 3175 let Inst{5} = Qm{3}; 3176 let Inst{4} = 0b1; 3177 let Inst{3-1} = Qm{2-0}; 3178 let Inst{0} = 0b0; 3179 let validForTailPredication = 1; 3180 3181 // For the MVE_shift_imm_patterns multiclass to refer to 3182 MVEVectorVTInfo VTI; 3183 Operand immediateType; 3184 Intrinsic unpred_int; 3185 Intrinsic pred_int; 3186 dag unsignedFlag = (?); 3187} 3188 3189class MVE_VSxI_imm<string iname, string suffix, bit bit_8, Operand immType> 3190 : MVE_shift_with_imm<iname, suffix, (outs MQPR:$Qd), 3191 (ins MQPR:$Qd_src, MQPR:$Qm, immType:$imm), 3192 "$Qd, $Qm, $imm", vpred_n, "$Qd = $Qd_src"> { 3193 bits<6> imm; 3194 let Inst{28} = 0b1; 3195 let Inst{25-24} = 0b11; 3196 let Inst{21-16} = imm; 3197 let Inst{10-9} = 0b10; 3198 let Inst{8} = bit_8; 3199 let validForTailPredication = 1; 3200 3201 Operand immediateType = immType; 3202} 3203 3204def MVE_VSRIimm8 : MVE_VSxI_imm<"vsri", "8", 0b0, shr_imm8> { 3205 let Inst{21-19} = 0b001; 3206} 3207 3208def MVE_VSRIimm16 : MVE_VSxI_imm<"vsri", "16", 0b0, shr_imm16> { 3209 let Inst{21-20} = 0b01; 3210} 3211 3212def MVE_VSRIimm32 : MVE_VSxI_imm<"vsri", "32", 0b0, shr_imm32> { 3213 let Inst{21} = 0b1; 3214} 3215 3216def MVE_VSLIimm8 : MVE_VSxI_imm<"vsli", "8", 0b1, imm0_7> { 3217 let Inst{21-19} = 0b001; 3218} 3219 3220def MVE_VSLIimm16 : MVE_VSxI_imm<"vsli", "16", 0b1, imm0_15> { 3221 let Inst{21-20} = 0b01; 3222} 3223 3224def MVE_VSLIimm32 : MVE_VSxI_imm<"vsli", "32", 0b1,imm0_31> { 3225 let Inst{21} = 0b1; 3226} 3227 3228multiclass MVE_VSxI_patterns<MVE_VSxI_imm inst, string name, 3229 MVEVectorVTInfo VTI> { 3230 defvar inparams = (? (VTI.Vec MQPR:$QdSrc), (VTI.Vec MQPR:$Qm), 3231 (inst.immediateType:$imm)); 3232 defvar outparams = (inst (VTI.Vec MQPR:$QdSrc), (VTI.Vec MQPR:$Qm), 3233 (inst.immediateType:$imm)); 3234 defvar unpred_int = !cast<Intrinsic>("int_arm_mve_" # name); 3235 defvar pred_int = !cast<Intrinsic>("int_arm_mve_" # name # "_predicated"); 3236 3237 def : Pat<(VTI.Vec !setdagop(inparams, unpred_int)), 3238 (VTI.Vec outparams)>; 3239 def : Pat<(VTI.Vec !con(inparams, (pred_int (VTI.Pred VCCR:$pred)))), 3240 (VTI.Vec !con(outparams, (? ARMVCCThen, VCCR:$pred)))>; 3241} 3242 3243defm : MVE_VSxI_patterns<MVE_VSLIimm8, "vsli", MVE_v16i8>; 3244defm : MVE_VSxI_patterns<MVE_VSLIimm16, "vsli", MVE_v8i16>; 3245defm : MVE_VSxI_patterns<MVE_VSLIimm32, "vsli", MVE_v4i32>; 3246defm : MVE_VSxI_patterns<MVE_VSRIimm8, "vsri", MVE_v16i8>; 3247defm : MVE_VSxI_patterns<MVE_VSRIimm16, "vsri", MVE_v8i16>; 3248defm : MVE_VSxI_patterns<MVE_VSRIimm32, "vsri", MVE_v4i32>; 3249 3250class MVE_VQSHL_imm<MVEVectorVTInfo VTI_, Operand immType> 3251 : MVE_shift_with_imm<"vqshl", VTI_.Suffix, (outs MQPR:$Qd), 3252 (ins MQPR:$Qm, immType:$imm), "$Qd, $Qm, $imm", 3253 vpred_r, ""> { 3254 bits<6> imm; 3255 3256 let Inst{28} = VTI_.Unsigned; 3257 let Inst{25-24} = 0b11; 3258 let Inst{21-16} = imm; 3259 let Inst{10-8} = 0b111; 3260 3261 let VTI = VTI_; 3262 let immediateType = immType; 3263 let unsignedFlag = (? (i32 VTI.Unsigned)); 3264} 3265 3266let unpred_int = int_arm_mve_vqshl_imm, 3267 pred_int = int_arm_mve_vqshl_imm_predicated in { 3268 def MVE_VQSHLimms8 : MVE_VQSHL_imm<MVE_v16s8, imm0_7> { 3269 let Inst{21-19} = 0b001; 3270 } 3271 def MVE_VQSHLimmu8 : MVE_VQSHL_imm<MVE_v16u8, imm0_7> { 3272 let Inst{21-19} = 0b001; 3273 } 3274 3275 def MVE_VQSHLimms16 : MVE_VQSHL_imm<MVE_v8s16, imm0_15> { 3276 let Inst{21-20} = 0b01; 3277 } 3278 def MVE_VQSHLimmu16 : MVE_VQSHL_imm<MVE_v8u16, imm0_15> { 3279 let Inst{21-20} = 0b01; 3280 } 3281 3282 def MVE_VQSHLimms32 : MVE_VQSHL_imm<MVE_v4s32, imm0_31> { 3283 let Inst{21} = 0b1; 3284 } 3285 def MVE_VQSHLimmu32 : MVE_VQSHL_imm<MVE_v4u32, imm0_31> { 3286 let Inst{21} = 0b1; 3287 } 3288} 3289 3290class MVE_VQSHLU_imm<MVEVectorVTInfo VTI_, Operand immType> 3291 : MVE_shift_with_imm<"vqshlu", VTI_.Suffix, (outs MQPR:$Qd), 3292 (ins MQPR:$Qm, immType:$imm), "$Qd, $Qm, $imm", 3293 vpred_r, ""> { 3294 bits<6> imm; 3295 3296 let Inst{28} = 0b1; 3297 let Inst{25-24} = 0b11; 3298 let Inst{21-16} = imm; 3299 let Inst{10-8} = 0b110; 3300 3301 let VTI = VTI_; 3302 let immediateType = immType; 3303} 3304 3305let unpred_int = int_arm_mve_vqshlu_imm, 3306 pred_int = int_arm_mve_vqshlu_imm_predicated in { 3307 def MVE_VQSHLU_imms8 : MVE_VQSHLU_imm<MVE_v16s8, imm0_7> { 3308 let Inst{21-19} = 0b001; 3309 } 3310 3311 def MVE_VQSHLU_imms16 : MVE_VQSHLU_imm<MVE_v8s16, imm0_15> { 3312 let Inst{21-20} = 0b01; 3313 } 3314 3315 def MVE_VQSHLU_imms32 : MVE_VQSHLU_imm<MVE_v4s32, imm0_31> { 3316 let Inst{21} = 0b1; 3317 } 3318} 3319 3320class MVE_VRSHR_imm<MVEVectorVTInfo VTI_, Operand immType> 3321 : MVE_shift_with_imm<"vrshr", VTI_.Suffix, (outs MQPR:$Qd), 3322 (ins MQPR:$Qm, immType:$imm), "$Qd, $Qm, $imm", 3323 vpred_r, ""> { 3324 bits<6> imm; 3325 3326 let Inst{28} = VTI_.Unsigned; 3327 let Inst{25-24} = 0b11; 3328 let Inst{21-16} = imm; 3329 let Inst{10-8} = 0b010; 3330 3331 let VTI = VTI_; 3332 let immediateType = immType; 3333 let unsignedFlag = (? (i32 VTI.Unsigned)); 3334} 3335 3336let unpred_int = int_arm_mve_vrshr_imm, 3337 pred_int = int_arm_mve_vrshr_imm_predicated in { 3338 def MVE_VRSHR_imms8 : MVE_VRSHR_imm<MVE_v16s8, shr_imm8> { 3339 let Inst{21-19} = 0b001; 3340 } 3341 3342 def MVE_VRSHR_immu8 : MVE_VRSHR_imm<MVE_v16u8, shr_imm8> { 3343 let Inst{21-19} = 0b001; 3344 } 3345 3346 def MVE_VRSHR_imms16 : MVE_VRSHR_imm<MVE_v8s16, shr_imm16> { 3347 let Inst{21-20} = 0b01; 3348 } 3349 3350 def MVE_VRSHR_immu16 : MVE_VRSHR_imm<MVE_v8u16, shr_imm16> { 3351 let Inst{21-20} = 0b01; 3352 } 3353 3354 def MVE_VRSHR_imms32 : MVE_VRSHR_imm<MVE_v4s32, shr_imm32> { 3355 let Inst{21} = 0b1; 3356 } 3357 3358 def MVE_VRSHR_immu32 : MVE_VRSHR_imm<MVE_v4u32, shr_imm32> { 3359 let Inst{21} = 0b1; 3360 } 3361} 3362 3363multiclass MVE_shift_imm_patterns<MVE_shift_with_imm inst> { 3364 def : Pat<(inst.VTI.Vec !con((inst.unpred_int (inst.VTI.Vec MQPR:$src), 3365 inst.immediateType:$imm), 3366 inst.unsignedFlag)), 3367 (inst.VTI.Vec (inst (inst.VTI.Vec MQPR:$src), 3368 inst.immediateType:$imm))>; 3369 3370 def : Pat<(inst.VTI.Vec !con((inst.pred_int (inst.VTI.Vec MQPR:$src), 3371 inst.immediateType:$imm), 3372 inst.unsignedFlag, 3373 (? (inst.VTI.Pred VCCR:$mask), 3374 (inst.VTI.Vec MQPR:$inactive)))), 3375 (inst.VTI.Vec (inst (inst.VTI.Vec MQPR:$src), 3376 inst.immediateType:$imm, 3377 ARMVCCThen, (inst.VTI.Pred VCCR:$mask), 3378 (inst.VTI.Vec MQPR:$inactive)))>; 3379} 3380 3381defm : MVE_shift_imm_patterns<MVE_VQSHLimms8>; 3382defm : MVE_shift_imm_patterns<MVE_VQSHLimmu8>; 3383defm : MVE_shift_imm_patterns<MVE_VQSHLimms16>; 3384defm : MVE_shift_imm_patterns<MVE_VQSHLimmu16>; 3385defm : MVE_shift_imm_patterns<MVE_VQSHLimms32>; 3386defm : MVE_shift_imm_patterns<MVE_VQSHLimmu32>; 3387defm : MVE_shift_imm_patterns<MVE_VQSHLU_imms8>; 3388defm : MVE_shift_imm_patterns<MVE_VQSHLU_imms16>; 3389defm : MVE_shift_imm_patterns<MVE_VQSHLU_imms32>; 3390defm : MVE_shift_imm_patterns<MVE_VRSHR_imms8>; 3391defm : MVE_shift_imm_patterns<MVE_VRSHR_immu8>; 3392defm : MVE_shift_imm_patterns<MVE_VRSHR_imms16>; 3393defm : MVE_shift_imm_patterns<MVE_VRSHR_immu16>; 3394defm : MVE_shift_imm_patterns<MVE_VRSHR_imms32>; 3395defm : MVE_shift_imm_patterns<MVE_VRSHR_immu32>; 3396 3397class MVE_VSHR_imm<string suffix, dag imm> 3398 : MVE_shift_with_imm<"vshr", suffix, (outs MQPR:$Qd), 3399 !con((ins MQPR:$Qm), imm), "$Qd, $Qm, $imm", 3400 vpred_r, ""> { 3401 bits<6> imm; 3402 3403 let Inst{25-24} = 0b11; 3404 let Inst{21-16} = imm; 3405 let Inst{10-8} = 0b000; 3406} 3407 3408def MVE_VSHR_imms8 : MVE_VSHR_imm<"s8", (ins shr_imm8:$imm)> { 3409 let Inst{28} = 0b0; 3410 let Inst{21-19} = 0b001; 3411} 3412 3413def MVE_VSHR_immu8 : MVE_VSHR_imm<"u8", (ins shr_imm8:$imm)> { 3414 let Inst{28} = 0b1; 3415 let Inst{21-19} = 0b001; 3416} 3417 3418def MVE_VSHR_imms16 : MVE_VSHR_imm<"s16", (ins shr_imm16:$imm)> { 3419 let Inst{28} = 0b0; 3420 let Inst{21-20} = 0b01; 3421} 3422 3423def MVE_VSHR_immu16 : MVE_VSHR_imm<"u16", (ins shr_imm16:$imm)> { 3424 let Inst{28} = 0b1; 3425 let Inst{21-20} = 0b01; 3426} 3427 3428def MVE_VSHR_imms32 : MVE_VSHR_imm<"s32", (ins shr_imm32:$imm)> { 3429 let Inst{28} = 0b0; 3430 let Inst{21} = 0b1; 3431} 3432 3433def MVE_VSHR_immu32 : MVE_VSHR_imm<"u32", (ins shr_imm32:$imm)> { 3434 let Inst{28} = 0b1; 3435 let Inst{21} = 0b1; 3436} 3437 3438class MVE_VSHL_imm<string suffix, dag imm> 3439 : MVE_shift_with_imm<"vshl", suffix, (outs MQPR:$Qd), 3440 !con((ins MQPR:$Qm), imm), "$Qd, $Qm, $imm", 3441 vpred_r, ""> { 3442 bits<6> imm; 3443 3444 let Inst{28} = 0b0; 3445 let Inst{25-24} = 0b11; 3446 let Inst{21-16} = imm; 3447 let Inst{10-8} = 0b101; 3448} 3449 3450def MVE_VSHL_immi8 : MVE_VSHL_imm<"i8", (ins imm0_7:$imm)> { 3451 let Inst{21-19} = 0b001; 3452} 3453 3454def MVE_VSHL_immi16 : MVE_VSHL_imm<"i16", (ins imm0_15:$imm)> { 3455 let Inst{21-20} = 0b01; 3456} 3457 3458def MVE_VSHL_immi32 : MVE_VSHL_imm<"i32", (ins imm0_31:$imm)> { 3459 let Inst{21} = 0b1; 3460} 3461 3462multiclass MVE_immediate_shift_patterns_inner< 3463 MVEVectorVTInfo VTI, Operand imm_operand_type, SDNode unpred_op, 3464 Intrinsic pred_int, Instruction inst, list<int> unsignedFlag = []> { 3465 3466 def : Pat<(VTI.Vec (unpred_op (VTI.Vec MQPR:$src), imm_operand_type:$imm)), 3467 (VTI.Vec (inst (VTI.Vec MQPR:$src), imm_operand_type:$imm))>; 3468 3469 def : Pat<(VTI.Vec !con((pred_int (VTI.Vec MQPR:$src), imm_operand_type:$imm), 3470 !dag(pred_int, unsignedFlag, ?), 3471 (pred_int (VTI.Pred VCCR:$mask), 3472 (VTI.Vec MQPR:$inactive)))), 3473 (VTI.Vec (inst (VTI.Vec MQPR:$src), imm_operand_type:$imm, 3474 ARMVCCThen, (VTI.Pred VCCR:$mask), 3475 (VTI.Vec MQPR:$inactive)))>; 3476} 3477 3478multiclass MVE_immediate_shift_patterns<MVEVectorVTInfo VTI, 3479 Operand imm_operand_type> { 3480 defm : MVE_immediate_shift_patterns_inner<VTI, imm_operand_type, 3481 ARMvshlImm, int_arm_mve_shl_imm_predicated, 3482 !cast<Instruction>("MVE_VSHL_immi" # VTI.BitsSuffix)>; 3483 defm : MVE_immediate_shift_patterns_inner<VTI, imm_operand_type, 3484 ARMvshruImm, int_arm_mve_shr_imm_predicated, 3485 !cast<Instruction>("MVE_VSHR_immu" # VTI.BitsSuffix), [1]>; 3486 defm : MVE_immediate_shift_patterns_inner<VTI, imm_operand_type, 3487 ARMvshrsImm, int_arm_mve_shr_imm_predicated, 3488 !cast<Instruction>("MVE_VSHR_imms" # VTI.BitsSuffix), [0]>; 3489} 3490 3491let Predicates = [HasMVEInt] in { 3492 defm : MVE_immediate_shift_patterns<MVE_v16i8, imm0_7>; 3493 defm : MVE_immediate_shift_patterns<MVE_v8i16, imm0_15>; 3494 defm : MVE_immediate_shift_patterns<MVE_v4i32, imm0_31>; 3495} 3496 3497// end of mve_shift instructions 3498 3499// start of MVE Floating Point instructions 3500 3501class MVE_float<string iname, string suffix, dag oops, dag iops, string ops, 3502 vpred_ops vpred, string cstr, list<dag> pattern=[]> 3503 : MVE_f<oops, iops, NoItinerary, iname, suffix, ops, vpred, cstr, pattern> { 3504 bits<4> Qm; 3505 3506 let Inst{12} = 0b0; 3507 let Inst{6} = 0b1; 3508 let Inst{5} = Qm{3}; 3509 let Inst{3-1} = Qm{2-0}; 3510 let Inst{0} = 0b0; 3511} 3512 3513class MVE_VRINT<string rmode, bits<3> op, string suffix, bits<2> size, 3514 list<dag> pattern=[]> 3515 : MVE_float<!strconcat("vrint", rmode), suffix, (outs MQPR:$Qd), 3516 (ins MQPR:$Qm), "$Qd, $Qm", vpred_r, "", pattern> { 3517 bits<4> Qd; 3518 3519 let Inst{28} = 0b1; 3520 let Inst{25-23} = 0b111; 3521 let Inst{22} = Qd{3}; 3522 let Inst{21-20} = 0b11; 3523 let Inst{19-18} = size; 3524 let Inst{17-16} = 0b10; 3525 let Inst{15-13} = Qd{2-0}; 3526 let Inst{11-10} = 0b01; 3527 let Inst{9-7} = op{2-0}; 3528 let Inst{4} = 0b0; 3529 let validForTailPredication = 1; 3530 3531} 3532 3533multiclass MVE_VRINT_m<MVEVectorVTInfo VTI, string suffix, bits<3> opcode, 3534 SDNode unpred_op> { 3535 def "": MVE_VRINT<suffix, opcode, VTI.Suffix, VTI.Size>; 3536 defvar Inst = !cast<Instruction>(NAME); 3537 defvar pred_int = !cast<Intrinsic>("int_arm_mve_vrint"#suffix#"_predicated"); 3538 3539 let Predicates = [HasMVEFloat] in { 3540 def : Pat<(VTI.Vec (unpred_op (VTI.Vec MQPR:$val))), 3541 (VTI.Vec (Inst (VTI.Vec MQPR:$val)))>; 3542 def : Pat<(VTI.Vec (pred_int (VTI.Vec MQPR:$val), (VTI.Pred VCCR:$pred), 3543 (VTI.Vec MQPR:$inactive))), 3544 (VTI.Vec (Inst (VTI.Vec MQPR:$val), ARMVCCThen, 3545 (VTI.Pred VCCR:$pred), (VTI.Vec MQPR:$inactive)))>; 3546 } 3547} 3548 3549multiclass MVE_VRINT_ops<MVEVectorVTInfo VTI> { 3550 defm N : MVE_VRINT_m<VTI, "n", 0b000, int_arm_mve_vrintn>; 3551 defm X : MVE_VRINT_m<VTI, "x", 0b001, frint>; 3552 defm A : MVE_VRINT_m<VTI, "a", 0b010, fround>; 3553 defm Z : MVE_VRINT_m<VTI, "z", 0b011, ftrunc>; 3554 defm M : MVE_VRINT_m<VTI, "m", 0b101, ffloor>; 3555 defm P : MVE_VRINT_m<VTI, "p", 0b111, fceil>; 3556} 3557 3558defm MVE_VRINTf16 : MVE_VRINT_ops<MVE_v8f16>; 3559defm MVE_VRINTf32 : MVE_VRINT_ops<MVE_v4f32>; 3560 3561class MVEFloatArithNeon<string iname, string suffix, bit size, 3562 dag oops, dag iops, string ops, 3563 vpred_ops vpred, string cstr, list<dag> pattern=[]> 3564 : MVE_float<iname, suffix, oops, iops, ops, vpred, cstr, pattern> { 3565 let Inst{20} = size; 3566 let Inst{16} = 0b0; 3567} 3568 3569class MVE_VMUL_fp<string iname, string suffix, bit size, list<dag> pattern=[]> 3570 : MVEFloatArithNeon<iname, suffix, size, (outs MQPR:$Qd), 3571 (ins MQPR:$Qn, MQPR:$Qm), "$Qd, $Qn, $Qm", vpred_r, "", 3572 pattern> { 3573 bits<4> Qd; 3574 bits<4> Qn; 3575 3576 let Inst{28} = 0b1; 3577 let Inst{25-23} = 0b110; 3578 let Inst{22} = Qd{3}; 3579 let Inst{21} = 0b0; 3580 let Inst{19-17} = Qn{2-0}; 3581 let Inst{15-13} = Qd{2-0}; 3582 let Inst{12-8} = 0b01101; 3583 let Inst{7} = Qn{3}; 3584 let Inst{4} = 0b1; 3585 let validForTailPredication = 1; 3586} 3587 3588multiclass MVE_VMULT_fp_m<string iname, bit bit_21, MVEVectorVTInfo VTI, 3589 SDNode Op, Intrinsic PredInt> { 3590 def "" : MVE_VMUL_fp<iname, VTI.Suffix, VTI.Size{0}>; 3591 defvar Inst = !cast<Instruction>(NAME); 3592 3593 let Predicates = [HasMVEFloat] in { 3594 defm : MVE_TwoOpPattern<VTI, Op, PredInt, (? ), !cast<Instruction>(NAME)>; 3595 } 3596} 3597 3598multiclass MVE_VMUL_fp_m<MVEVectorVTInfo VTI> 3599 : MVE_VMULT_fp_m<"vmul", 0, VTI, fmul, int_arm_mve_mul_predicated>; 3600 3601defm MVE_VMULf32 : MVE_VMUL_fp_m<MVE_v4f32>; 3602defm MVE_VMULf16 : MVE_VMUL_fp_m<MVE_v8f16>; 3603 3604class MVE_VCMLA<string suffix, bit size> 3605 : MVEFloatArithNeon<"vcmla", suffix, size, (outs MQPR:$Qd), 3606 (ins MQPR:$Qd_src, MQPR:$Qn, MQPR:$Qm, complexrotateop:$rot), 3607 "$Qd, $Qn, $Qm, $rot", vpred_n, "$Qd = $Qd_src", []> { 3608 bits<4> Qd; 3609 bits<4> Qn; 3610 bits<2> rot; 3611 3612 let Inst{28} = 0b1; 3613 let Inst{25} = 0b0; 3614 let Inst{24-23} = rot; 3615 let Inst{22} = Qd{3}; 3616 let Inst{21} = 0b1; 3617 let Inst{19-17} = Qn{2-0}; 3618 let Inst{15-13} = Qd{2-0}; 3619 let Inst{12-8} = 0b01000; 3620 let Inst{7} = Qn{3}; 3621 let Inst{4} = 0b0; 3622} 3623 3624multiclass MVE_VCMLA_m<MVEVectorVTInfo VTI, bit size> { 3625 def "" : MVE_VCMLA<VTI.Suffix, size>; 3626 defvar Inst = !cast<Instruction>(NAME); 3627 3628 let Predicates = [HasMVEFloat] in { 3629 def : Pat<(VTI.Vec (int_arm_mve_vcmlaq 3630 imm:$rot, (VTI.Vec MQPR:$Qd_src), 3631 (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm))), 3632 (VTI.Vec (Inst (VTI.Vec MQPR:$Qd_src), 3633 (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), 3634 imm:$rot))>; 3635 3636 def : Pat<(VTI.Vec (int_arm_mve_vcmlaq_predicated 3637 imm:$rot, (VTI.Vec MQPR:$Qd_src), 3638 (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), 3639 (VTI.Pred VCCR:$mask))), 3640 (VTI.Vec (Inst (VTI.Vec MQPR:$Qd_src), (VTI.Vec MQPR:$Qn), 3641 (VTI.Vec MQPR:$Qm), imm:$rot, 3642 ARMVCCThen, (VTI.Pred VCCR:$mask)))>; 3643 3644 } 3645} 3646 3647defm MVE_VCMLAf16 : MVE_VCMLA_m<MVE_v8f16, 0b0>; 3648defm MVE_VCMLAf32 : MVE_VCMLA_m<MVE_v4f32, 0b1>; 3649 3650class MVE_VADDSUBFMA_fp<string iname, string suffix, bit size, bit bit_4, 3651 bit bit_8, bit bit_21, dag iops=(ins), 3652 vpred_ops vpred=vpred_r, string cstr="", 3653 list<dag> pattern=[]> 3654 : MVEFloatArithNeon<iname, suffix, size, (outs MQPR:$Qd), 3655 !con(iops, (ins MQPR:$Qn, MQPR:$Qm)), "$Qd, $Qn, $Qm", 3656 vpred, cstr, pattern> { 3657 bits<4> Qd; 3658 bits<4> Qn; 3659 3660 let Inst{28} = 0b0; 3661 let Inst{25-23} = 0b110; 3662 let Inst{22} = Qd{3}; 3663 let Inst{21} = bit_21; 3664 let Inst{19-17} = Qn{2-0}; 3665 let Inst{15-13} = Qd{2-0}; 3666 let Inst{11-9} = 0b110; 3667 let Inst{8} = bit_8; 3668 let Inst{7} = Qn{3}; 3669 let Inst{4} = bit_4; 3670 let validForTailPredication = 1; 3671} 3672 3673multiclass MVE_VFMA_fp_multi<string iname, bit fms, MVEVectorVTInfo VTI> { 3674 def "" : MVE_VADDSUBFMA_fp<iname, VTI.Suffix, VTI.Size{0}, 0b1, 0b0, fms, 3675 (ins MQPR:$Qd_src), vpred_n, "$Qd = $Qd_src">; 3676 defvar Inst = !cast<Instruction>(NAME); 3677 defvar pred_int = int_arm_mve_fma_predicated; 3678 defvar m1 = (VTI.Vec MQPR:$m1); 3679 defvar m2 = (VTI.Vec MQPR:$m2); 3680 defvar add = (VTI.Vec MQPR:$add); 3681 defvar pred = (VTI.Pred VCCR:$pred); 3682 3683 let Predicates = [HasMVEFloat] in { 3684 if fms then { 3685 def : Pat<(VTI.Vec (fma (fneg m1), m2, add)), 3686 (Inst $add, $m1, $m2)>; 3687 def : Pat<(VTI.Vec (vselect (VTI.Pred VCCR:$pred), 3688 (VTI.Vec (fma (fneg m1), m2, add)), 3689 add)), 3690 (Inst $add, $m1, $m2, ARMVCCThen, $pred)>; 3691 def : Pat<(VTI.Vec (pred_int (fneg m1), m2, add, pred)), 3692 (Inst $add, $m1, $m2, ARMVCCThen, $pred)>; 3693 def : Pat<(VTI.Vec (pred_int m1, (fneg m2), add, pred)), 3694 (Inst $add, $m1, $m2, ARMVCCThen, $pred)>; 3695 } else { 3696 def : Pat<(VTI.Vec (fma m1, m2, add)), 3697 (Inst $add, $m1, $m2)>; 3698 def : Pat<(VTI.Vec (vselect (VTI.Pred VCCR:$pred), 3699 (VTI.Vec (fma m1, m2, add)), 3700 add)), 3701 (Inst $add, $m1, $m2, ARMVCCThen, $pred)>; 3702 def : Pat<(VTI.Vec (pred_int m1, m2, add, pred)), 3703 (Inst $add, $m1, $m2, ARMVCCThen, $pred)>; 3704 } 3705 } 3706} 3707 3708defm MVE_VFMAf32 : MVE_VFMA_fp_multi<"vfma", 0, MVE_v4f32>; 3709defm MVE_VFMAf16 : MVE_VFMA_fp_multi<"vfma", 0, MVE_v8f16>; 3710defm MVE_VFMSf32 : MVE_VFMA_fp_multi<"vfms", 1, MVE_v4f32>; 3711defm MVE_VFMSf16 : MVE_VFMA_fp_multi<"vfms", 1, MVE_v8f16>; 3712 3713multiclass MVE_VADDSUB_fp_m<string iname, bit bit_21, MVEVectorVTInfo VTI, 3714 SDNode Op, Intrinsic PredInt> { 3715 def "" : MVE_VADDSUBFMA_fp<iname, VTI.Suffix, VTI.Size{0}, 0, 1, bit_21> { 3716 let validForTailPredication = 1; 3717 } 3718 defvar Inst = !cast<Instruction>(NAME); 3719 3720 let Predicates = [HasMVEFloat] in { 3721 defm : MVE_TwoOpPattern<VTI, Op, PredInt, (? ), !cast<Instruction>(NAME)>; 3722 } 3723} 3724 3725multiclass MVE_VADD_fp_m<MVEVectorVTInfo VTI> 3726 : MVE_VADDSUB_fp_m<"vadd", 0, VTI, fadd, int_arm_mve_add_predicated>; 3727multiclass MVE_VSUB_fp_m<MVEVectorVTInfo VTI> 3728 : MVE_VADDSUB_fp_m<"vsub", 1, VTI, fsub, int_arm_mve_sub_predicated>; 3729 3730defm MVE_VADDf32 : MVE_VADD_fp_m<MVE_v4f32>; 3731defm MVE_VADDf16 : MVE_VADD_fp_m<MVE_v8f16>; 3732 3733defm MVE_VSUBf32 : MVE_VSUB_fp_m<MVE_v4f32>; 3734defm MVE_VSUBf16 : MVE_VSUB_fp_m<MVE_v8f16>; 3735 3736class MVE_VCADD<string suffix, bit size, string cstr=""> 3737 : MVEFloatArithNeon<"vcadd", suffix, size, (outs MQPR:$Qd), 3738 (ins MQPR:$Qn, MQPR:$Qm, complexrotateopodd:$rot), 3739 "$Qd, $Qn, $Qm, $rot", vpred_r, cstr, []> { 3740 bits<4> Qd; 3741 bits<4> Qn; 3742 bit rot; 3743 3744 let Inst{28} = 0b1; 3745 let Inst{25} = 0b0; 3746 let Inst{24} = rot; 3747 let Inst{23} = 0b1; 3748 let Inst{22} = Qd{3}; 3749 let Inst{21} = 0b0; 3750 let Inst{19-17} = Qn{2-0}; 3751 let Inst{15-13} = Qd{2-0}; 3752 let Inst{12-8} = 0b01000; 3753 let Inst{7} = Qn{3}; 3754 let Inst{4} = 0b0; 3755} 3756 3757multiclass MVE_VCADD_m<MVEVectorVTInfo VTI, bit size, string cstr=""> { 3758 def "" : MVE_VCADD<VTI.Suffix, size, cstr>; 3759 defvar Inst = !cast<Instruction>(NAME); 3760 3761 let Predicates = [HasMVEFloat] in { 3762 def : Pat<(VTI.Vec (int_arm_mve_vcaddq (i32 1), 3763 imm:$rot, (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm))), 3764 (VTI.Vec (Inst (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), 3765 imm:$rot))>; 3766 3767 def : Pat<(VTI.Vec (int_arm_mve_vcaddq_predicated (i32 1), 3768 imm:$rot, (VTI.Vec MQPR:$inactive), 3769 (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), 3770 (VTI.Pred VCCR:$mask))), 3771 (VTI.Vec (Inst (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), 3772 imm:$rot, ARMVCCThen, (VTI.Pred VCCR:$mask), 3773 (VTI.Vec MQPR:$inactive)))>; 3774 3775 } 3776} 3777 3778defm MVE_VCADDf16 : MVE_VCADD_m<MVE_v8f16, 0b0>; 3779defm MVE_VCADDf32 : MVE_VCADD_m<MVE_v4f32, 0b1, "@earlyclobber $Qd">; 3780 3781class MVE_VABD_fp<string suffix, bit size> 3782 : MVE_float<"vabd", suffix, (outs MQPR:$Qd), (ins MQPR:$Qn, MQPR:$Qm), 3783 "$Qd, $Qn, $Qm", vpred_r, ""> { 3784 bits<4> Qd; 3785 bits<4> Qn; 3786 3787 let Inst{28} = 0b1; 3788 let Inst{25-23} = 0b110; 3789 let Inst{22} = Qd{3}; 3790 let Inst{21} = 0b1; 3791 let Inst{20} = size; 3792 let Inst{19-17} = Qn{2-0}; 3793 let Inst{16} = 0b0; 3794 let Inst{15-13} = Qd{2-0}; 3795 let Inst{11-8} = 0b1101; 3796 let Inst{7} = Qn{3}; 3797 let Inst{4} = 0b0; 3798 let validForTailPredication = 1; 3799} 3800 3801multiclass MVE_VABDT_fp_m<MVEVectorVTInfo VTI, 3802 Intrinsic unpred_int, Intrinsic pred_int> { 3803 def "" : MVE_VABD_fp<VTI.Suffix, VTI.Size{0}>; 3804 defvar Inst = !cast<Instruction>(NAME); 3805 3806 let Predicates = [HasMVEFloat] in { 3807 def : Pat<(VTI.Vec (unpred_int (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), 3808 (i32 0))), 3809 (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn)))>; 3810 def : Pat<(VTI.Vec (pred_int (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), 3811 (i32 0), (VTI.Pred VCCR:$mask), 3812 (VTI.Vec MQPR:$inactive))), 3813 (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), 3814 ARMVCCThen, (VTI.Pred VCCR:$mask), 3815 (VTI.Vec MQPR:$inactive)))>; 3816 } 3817} 3818 3819multiclass MVE_VABD_fp_m<MVEVectorVTInfo VTI> 3820 : MVE_VABDT_fp_m<VTI, int_arm_mve_vabd, int_arm_mve_abd_predicated>; 3821 3822defm MVE_VABDf32 : MVE_VABD_fp_m<MVE_v4f32>; 3823defm MVE_VABDf16 : MVE_VABD_fp_m<MVE_v8f16>; 3824 3825let Predicates = [HasMVEFloat] in { 3826 def : Pat<(v8f16 (fabs (fsub (v8f16 MQPR:$Qm), (v8f16 MQPR:$Qn)))), 3827 (MVE_VABDf16 MQPR:$Qm, MQPR:$Qn)>; 3828 def : Pat<(v4f32 (fabs (fsub (v4f32 MQPR:$Qm), (v4f32 MQPR:$Qn)))), 3829 (MVE_VABDf32 MQPR:$Qm, MQPR:$Qn)>; 3830} 3831 3832class MVE_VCVT_fix<string suffix, bit fsi, bit U, bit op, 3833 Operand imm_operand_type> 3834 : MVE_float<"vcvt", suffix, 3835 (outs MQPR:$Qd), (ins MQPR:$Qm, imm_operand_type:$imm6), 3836 "$Qd, $Qm, $imm6", vpred_r, "", []> { 3837 bits<4> Qd; 3838 bits<6> imm6; 3839 3840 let Inst{28} = U; 3841 let Inst{25-23} = 0b111; 3842 let Inst{22} = Qd{3}; 3843 let Inst{21} = 0b1; 3844 let Inst{19-16} = imm6{3-0}; 3845 let Inst{15-13} = Qd{2-0}; 3846 let Inst{11-10} = 0b11; 3847 let Inst{9} = fsi; 3848 let Inst{8} = op; 3849 let Inst{7} = 0b0; 3850 let Inst{4} = 0b1; 3851 3852 let DecoderMethod = "DecodeMVEVCVTt1fp"; 3853 let validForTailPredication = 1; 3854} 3855 3856class MVE_VCVT_imm_asmop<int Bits> : AsmOperandClass { 3857 let PredicateMethod = "isImmediate<1," # Bits # ">"; 3858 let DiagnosticString = 3859 "MVE fixed-point immediate operand must be between 1 and " # Bits; 3860 let Name = "MVEVcvtImm" # Bits; 3861 let RenderMethod = "addImmOperands"; 3862} 3863class MVE_VCVT_imm<int Bits>: Operand<i32> { 3864 let ParserMatchClass = MVE_VCVT_imm_asmop<Bits>; 3865 let EncoderMethod = "getNEONVcvtImm32OpValue"; 3866 let DecoderMethod = "DecodeVCVTImmOperand"; 3867} 3868 3869class MVE_VCVT_fix_f32<string suffix, bit U, bit op> 3870 : MVE_VCVT_fix<suffix, 0b1, U, op, MVE_VCVT_imm<32>> { 3871 let Inst{20} = imm6{4}; 3872} 3873class MVE_VCVT_fix_f16<string suffix, bit U, bit op> 3874 : MVE_VCVT_fix<suffix, 0b0, U, op, MVE_VCVT_imm<16>> { 3875 let Inst{20} = 0b1; 3876} 3877 3878multiclass MVE_VCVT_fix_patterns<Instruction Inst, bit U, MVEVectorVTInfo DestVTI, 3879 MVEVectorVTInfo SrcVTI> { 3880 let Predicates = [HasMVEFloat] in { 3881 def : Pat<(DestVTI.Vec (int_arm_mve_vcvt_fix 3882 (i32 U), (SrcVTI.Vec MQPR:$Qm), imm:$scale)), 3883 (DestVTI.Vec (Inst (SrcVTI.Vec MQPR:$Qm), imm:$scale))>; 3884 def : Pat<(DestVTI.Vec (int_arm_mve_vcvt_fix_predicated (i32 U), 3885 (DestVTI.Vec MQPR:$inactive), 3886 (SrcVTI.Vec MQPR:$Qm), 3887 imm:$scale, 3888 (DestVTI.Pred VCCR:$mask))), 3889 (DestVTI.Vec (Inst (SrcVTI.Vec MQPR:$Qm), imm:$scale, 3890 ARMVCCThen, (DestVTI.Pred VCCR:$mask), 3891 (DestVTI.Vec MQPR:$inactive)))>; 3892 } 3893} 3894 3895multiclass MVE_VCVT_fix_f32_m<bit U, bit op, 3896 MVEVectorVTInfo DestVTI, MVEVectorVTInfo SrcVTI> { 3897 def "" : MVE_VCVT_fix_f32<DestVTI.Suffix#"."#SrcVTI.Suffix, U, op>; 3898 defm : MVE_VCVT_fix_patterns<!cast<Instruction>(NAME), U, DestVTI, SrcVTI>; 3899} 3900 3901multiclass MVE_VCVT_fix_f16_m<bit U, bit op, 3902 MVEVectorVTInfo DestVTI, MVEVectorVTInfo SrcVTI> { 3903 def "" : MVE_VCVT_fix_f16<DestVTI.Suffix#"."#SrcVTI.Suffix, U, op>; 3904 defm : MVE_VCVT_fix_patterns<!cast<Instruction>(NAME), U, DestVTI, SrcVTI>; 3905} 3906 3907defm MVE_VCVTf16s16_fix : MVE_VCVT_fix_f16_m<0b0, 0b0, MVE_v8f16, MVE_v8s16>; 3908defm MVE_VCVTs16f16_fix : MVE_VCVT_fix_f16_m<0b0, 0b1, MVE_v8s16, MVE_v8f16>; 3909defm MVE_VCVTf16u16_fix : MVE_VCVT_fix_f16_m<0b1, 0b0, MVE_v8f16, MVE_v8u16>; 3910defm MVE_VCVTu16f16_fix : MVE_VCVT_fix_f16_m<0b1, 0b1, MVE_v8u16, MVE_v8f16>; 3911defm MVE_VCVTf32s32_fix : MVE_VCVT_fix_f32_m<0b0, 0b0, MVE_v4f32, MVE_v4s32>; 3912defm MVE_VCVTs32f32_fix : MVE_VCVT_fix_f32_m<0b0, 0b1, MVE_v4s32, MVE_v4f32>; 3913defm MVE_VCVTf32u32_fix : MVE_VCVT_fix_f32_m<0b1, 0b0, MVE_v4f32, MVE_v4u32>; 3914defm MVE_VCVTu32f32_fix : MVE_VCVT_fix_f32_m<0b1, 0b1, MVE_v4u32, MVE_v4f32>; 3915 3916class MVE_VCVT_fp_int_anpm<string suffix, bits<2> size, bit op, string anpm, 3917 bits<2> rm, list<dag> pattern=[]> 3918 : MVE_float<!strconcat("vcvt", anpm), suffix, (outs MQPR:$Qd), 3919 (ins MQPR:$Qm), "$Qd, $Qm", vpred_r, "", pattern> { 3920 bits<4> Qd; 3921 3922 let Inst{28} = 0b1; 3923 let Inst{25-23} = 0b111; 3924 let Inst{22} = Qd{3}; 3925 let Inst{21-20} = 0b11; 3926 let Inst{19-18} = size; 3927 let Inst{17-16} = 0b11; 3928 let Inst{15-13} = Qd{2-0}; 3929 let Inst{12-10} = 0b000; 3930 let Inst{9-8} = rm; 3931 let Inst{7} = op; 3932 let Inst{4} = 0b0; 3933 let validForTailPredication = 1; 3934} 3935 3936multiclass MVE_VCVT_fp_int_anpm_inner<MVEVectorVTInfo Int, MVEVectorVTInfo Flt, 3937 string anpm, bits<2> rm> { 3938 def "": MVE_VCVT_fp_int_anpm<Int.Suffix # "." # Flt.Suffix, Int.Size, 3939 Int.Unsigned, anpm, rm>; 3940 3941 defvar Inst = !cast<Instruction>(NAME); 3942 defvar IntrBaseName = "int_arm_mve_vcvt" # anpm; 3943 defvar UnpredIntr = !cast<Intrinsic>(IntrBaseName); 3944 defvar PredIntr = !cast<Intrinsic>(IntrBaseName # "_predicated"); 3945 3946 let Predicates = [HasMVEFloat] in { 3947 def : Pat<(Int.Vec (UnpredIntr (i32 Int.Unsigned), (Flt.Vec MQPR:$in))), 3948 (Int.Vec (Inst (Flt.Vec MQPR:$in)))>; 3949 3950 def : Pat<(Int.Vec (PredIntr (i32 Int.Unsigned), (Int.Vec MQPR:$inactive), 3951 (Flt.Vec MQPR:$in), (Flt.Pred VCCR:$pred))), 3952 (Int.Vec (Inst (Flt.Vec MQPR:$in), ARMVCCThen, 3953 (Flt.Pred VCCR:$pred), (Int.Vec MQPR:$inactive)))>; 3954 } 3955} 3956 3957multiclass MVE_VCVT_fp_int_anpm_outer<MVEVectorVTInfo Int, 3958 MVEVectorVTInfo Flt> { 3959 defm a : MVE_VCVT_fp_int_anpm_inner<Int, Flt, "a", 0b00>; 3960 defm n : MVE_VCVT_fp_int_anpm_inner<Int, Flt, "n", 0b01>; 3961 defm p : MVE_VCVT_fp_int_anpm_inner<Int, Flt, "p", 0b10>; 3962 defm m : MVE_VCVT_fp_int_anpm_inner<Int, Flt, "m", 0b11>; 3963} 3964 3965// This defines instructions such as MVE_VCVTu16f16a, with an explicit 3966// rounding-mode suffix on the mnemonic. The class below will define 3967// the bare MVE_VCVTu16f16 (with implied rounding toward zero). 3968defm MVE_VCVTs16f16 : MVE_VCVT_fp_int_anpm_outer<MVE_v8s16, MVE_v8f16>; 3969defm MVE_VCVTu16f16 : MVE_VCVT_fp_int_anpm_outer<MVE_v8u16, MVE_v8f16>; 3970defm MVE_VCVTs32f32 : MVE_VCVT_fp_int_anpm_outer<MVE_v4s32, MVE_v4f32>; 3971defm MVE_VCVTu32f32 : MVE_VCVT_fp_int_anpm_outer<MVE_v4u32, MVE_v4f32>; 3972 3973class MVE_VCVT_fp_int<string suffix, bits<2> size, bit toint, bit unsigned, 3974 list<dag> pattern=[]> 3975 : MVE_float<"vcvt", suffix, (outs MQPR:$Qd), 3976 (ins MQPR:$Qm), "$Qd, $Qm", vpred_r, "", pattern> { 3977 bits<4> Qd; 3978 3979 let Inst{28} = 0b1; 3980 let Inst{25-23} = 0b111; 3981 let Inst{22} = Qd{3}; 3982 let Inst{21-20} = 0b11; 3983 let Inst{19-18} = size; 3984 let Inst{17-16} = 0b11; 3985 let Inst{15-13} = Qd{2-0}; 3986 let Inst{12-9} = 0b0011; 3987 let Inst{8} = toint; 3988 let Inst{7} = unsigned; 3989 let Inst{4} = 0b0; 3990 let validForTailPredication = 1; 3991} 3992 3993multiclass MVE_VCVT_fp_int_m<MVEVectorVTInfo Dest, MVEVectorVTInfo Src, 3994 SDNode unpred_op> { 3995 defvar Unsigned = !or(!eq(Dest.SuffixLetter,"u"), !eq(Src.SuffixLetter,"u")); 3996 defvar ToInt = !eq(Src.SuffixLetter,"f"); 3997 3998 def "" : MVE_VCVT_fp_int<Dest.Suffix # "." # Src.Suffix, Dest.Size, 3999 ToInt, Unsigned>; 4000 defvar Inst = !cast<Instruction>(NAME); 4001 4002 let Predicates = [HasMVEFloat] in { 4003 def : Pat<(Dest.Vec (unpred_op (Src.Vec MQPR:$src))), 4004 (Dest.Vec (Inst (Src.Vec MQPR:$src)))>; 4005 def : Pat<(Dest.Vec (int_arm_mve_vcvt_fp_int_predicated 4006 (Src.Vec MQPR:$src), (i32 Unsigned), 4007 (Src.Pred VCCR:$mask), (Dest.Vec MQPR:$inactive))), 4008 (Dest.Vec (Inst (Src.Vec MQPR:$src), ARMVCCThen, 4009 (Src.Pred VCCR:$mask), 4010 (Dest.Vec MQPR:$inactive)))>; 4011 } 4012} 4013// The unsuffixed VCVT for float->int implicitly rounds toward zero, 4014// which I reflect here in the llvm instruction names 4015defm MVE_VCVTs16f16z : MVE_VCVT_fp_int_m<MVE_v8s16, MVE_v8f16, fp_to_sint>; 4016defm MVE_VCVTu16f16z : MVE_VCVT_fp_int_m<MVE_v8u16, MVE_v8f16, fp_to_uint>; 4017defm MVE_VCVTs32f32z : MVE_VCVT_fp_int_m<MVE_v4s32, MVE_v4f32, fp_to_sint>; 4018defm MVE_VCVTu32f32z : MVE_VCVT_fp_int_m<MVE_v4u32, MVE_v4f32, fp_to_uint>; 4019// Whereas VCVT for int->float rounds to nearest 4020defm MVE_VCVTf16s16n : MVE_VCVT_fp_int_m<MVE_v8f16, MVE_v8s16, sint_to_fp>; 4021defm MVE_VCVTf16u16n : MVE_VCVT_fp_int_m<MVE_v8f16, MVE_v8u16, uint_to_fp>; 4022defm MVE_VCVTf32s32n : MVE_VCVT_fp_int_m<MVE_v4f32, MVE_v4s32, sint_to_fp>; 4023defm MVE_VCVTf32u32n : MVE_VCVT_fp_int_m<MVE_v4f32, MVE_v4u32, uint_to_fp>; 4024 4025class MVE_VABSNEG_fp<string iname, string suffix, bits<2> size, bit negate, 4026 list<dag> pattern=[]> 4027 : MVE_float<iname, suffix, (outs MQPR:$Qd), 4028 (ins MQPR:$Qm), "$Qd, $Qm", vpred_r, "", pattern> { 4029 bits<4> Qd; 4030 4031 let Inst{28} = 0b1; 4032 let Inst{25-23} = 0b111; 4033 let Inst{22} = Qd{3}; 4034 let Inst{21-20} = 0b11; 4035 let Inst{19-18} = size; 4036 let Inst{17-16} = 0b01; 4037 let Inst{15-13} = Qd{2-0}; 4038 let Inst{11-8} = 0b0111; 4039 let Inst{7} = negate; 4040 let Inst{4} = 0b0; 4041 let validForTailPredication = 1; 4042} 4043 4044multiclass MVE_VABSNEG_fp_m<string iname, SDNode unpred_op, Intrinsic pred_int, 4045 MVEVectorVTInfo VTI, bit opcode> { 4046 def "" : MVE_VABSNEG_fp<iname, VTI.Suffix, VTI.Size, opcode>; 4047 defvar Inst = !cast<Instruction>(NAME); 4048 4049 let Predicates = [HasMVEInt] in { 4050 def : Pat<(VTI.Vec (unpred_op (VTI.Vec MQPR:$v))), 4051 (VTI.Vec (Inst $v))>; 4052 def : Pat<(VTI.Vec (pred_int (VTI.Vec MQPR:$v), (VTI.Pred VCCR:$mask), 4053 (VTI.Vec MQPR:$inactive))), 4054 (VTI.Vec (Inst $v, ARMVCCThen, $mask, $inactive))>; 4055 } 4056} 4057 4058defm MVE_VABSf16 : MVE_VABSNEG_fp_m<"vabs", fabs, int_arm_mve_abs_predicated, 4059 MVE_v8f16, 0>; 4060defm MVE_VABSf32 : MVE_VABSNEG_fp_m<"vabs", fabs, int_arm_mve_abs_predicated, 4061 MVE_v4f32, 0>; 4062defm MVE_VNEGf16 : MVE_VABSNEG_fp_m<"vneg", fneg, int_arm_mve_neg_predicated, 4063 MVE_v8f16, 1>; 4064defm MVE_VNEGf32 : MVE_VABSNEG_fp_m<"vneg", fneg, int_arm_mve_neg_predicated, 4065 MVE_v4f32, 1>; 4066 4067class MVE_VMAXMINNMA<string iname, string suffix, bit size, bit bit_12, 4068 list<dag> pattern=[]> 4069 : MVE_f<(outs MQPR:$Qd), (ins MQPR:$Qd_src, MQPR:$Qm), 4070 NoItinerary, iname, suffix, "$Qd, $Qm", vpred_n, "$Qd = $Qd_src", 4071 pattern> { 4072 bits<4> Qd; 4073 bits<4> Qm; 4074 4075 let Inst{28} = size; 4076 let Inst{25-23} = 0b100; 4077 let Inst{22} = Qd{3}; 4078 let Inst{21-16} = 0b111111; 4079 let Inst{15-13} = Qd{2-0}; 4080 let Inst{12} = bit_12; 4081 let Inst{11-6} = 0b111010; 4082 let Inst{5} = Qm{3}; 4083 let Inst{4} = 0b0; 4084 let Inst{3-1} = Qm{2-0}; 4085 let Inst{0} = 0b1; 4086 4087 let isCommutable = 1; 4088} 4089 4090multiclass MVE_VMAXMINNMA_m<string iname, MVEVectorVTInfo VTI, 4091 SDNode unpred_op, Intrinsic pred_int, 4092 bit bit_12> { 4093 def "" : MVE_VMAXMINNMA<iname, VTI.Suffix, VTI.Size{0}, bit_12>; 4094 defvar Inst = !cast<Instruction>(NAME); 4095 4096 let Predicates = [HasMVEInt] in { 4097 // Unpredicated v(max|min)nma 4098 def : Pat<(VTI.Vec (unpred_op (fabs (VTI.Vec MQPR:$Qd)), 4099 (fabs (VTI.Vec MQPR:$Qm)))), 4100 (VTI.Vec (Inst (VTI.Vec MQPR:$Qd), (VTI.Vec MQPR:$Qm)))>; 4101 4102 // Predicated v(max|min)nma 4103 def : Pat<(VTI.Vec (pred_int (VTI.Vec MQPR:$Qd), (VTI.Vec MQPR:$Qm), 4104 (VTI.Pred VCCR:$mask))), 4105 (VTI.Vec (Inst (VTI.Vec MQPR:$Qd), (VTI.Vec MQPR:$Qm), 4106 ARMVCCThen, (VTI.Pred VCCR:$mask)))>; 4107 } 4108} 4109 4110multiclass MVE_VMAXNMA<MVEVectorVTInfo VTI, bit bit_12> 4111 : MVE_VMAXMINNMA_m<"vmaxnma", VTI, fmaxnum, int_arm_mve_vmaxnma_predicated, bit_12>; 4112 4113defm MVE_VMAXNMAf32 : MVE_VMAXNMA<MVE_v4f32, 0b0>; 4114defm MVE_VMAXNMAf16 : MVE_VMAXNMA<MVE_v8f16, 0b0>; 4115 4116multiclass MVE_VMINNMA<MVEVectorVTInfo VTI, bit bit_12> 4117 : MVE_VMAXMINNMA_m<"vminnma", VTI, fminnum, int_arm_mve_vminnma_predicated, bit_12>; 4118 4119defm MVE_VMINNMAf32 : MVE_VMINNMA<MVE_v4f32, 0b1>; 4120defm MVE_VMINNMAf16 : MVE_VMINNMA<MVE_v8f16, 0b1>; 4121 4122// end of MVE Floating Point instructions 4123 4124// start of MVE compares 4125 4126class MVE_VCMPqq<string suffix, bit bit_28, bits<2> bits_21_20, 4127 VCMPPredicateOperand predtype, list<dag> pattern=[]> 4128 : MVE_p<(outs VCCR:$P0), (ins MQPR:$Qn, MQPR:$Qm, predtype:$fc), 4129 NoItinerary, "vcmp", suffix, "$fc, $Qn, $Qm", vpred_n, "", pattern> { 4130 // Base class for comparing two vector registers 4131 bits<3> fc; 4132 bits<4> Qn; 4133 bits<4> Qm; 4134 4135 let Inst{28} = bit_28; 4136 let Inst{25-22} = 0b1000; 4137 let Inst{21-20} = bits_21_20; 4138 let Inst{19-17} = Qn{2-0}; 4139 let Inst{16-13} = 0b1000; 4140 let Inst{12} = fc{2}; 4141 let Inst{11-8} = 0b1111; 4142 let Inst{7} = fc{0}; 4143 let Inst{6} = 0b0; 4144 let Inst{5} = Qm{3}; 4145 let Inst{4} = 0b0; 4146 let Inst{3-1} = Qm{2-0}; 4147 let Inst{0} = fc{1}; 4148 4149 let Constraints = ""; 4150 4151 // We need a custom decoder method for these instructions because of 4152 // the output VCCR operand, which isn't encoded in the instruction 4153 // bits anywhere (there is only one choice for it) but has to be 4154 // included in the MC operands so that codegen will be able to track 4155 // its data flow between instructions, spill/reload it when 4156 // necessary, etc. There seems to be no way to get the Tablegen 4157 // decoder to emit an operand that isn't affected by any instruction 4158 // bit. 4159 let DecoderMethod = "DecodeMVEVCMP<false," # predtype.DecoderMethod # ">"; 4160 let validForTailPredication = 1; 4161} 4162 4163class MVE_VCMPqqf<string suffix, bit size> 4164 : MVE_VCMPqq<suffix, size, 0b11, pred_basic_fp> { 4165 let Predicates = [HasMVEFloat]; 4166} 4167 4168class MVE_VCMPqqi<string suffix, bits<2> size> 4169 : MVE_VCMPqq<suffix, 0b1, size, pred_basic_i> { 4170 let Inst{12} = 0b0; 4171 let Inst{0} = 0b0; 4172} 4173 4174class MVE_VCMPqqu<string suffix, bits<2> size> 4175 : MVE_VCMPqq<suffix, 0b1, size, pred_basic_u> { 4176 let Inst{12} = 0b0; 4177 let Inst{0} = 0b1; 4178} 4179 4180class MVE_VCMPqqs<string suffix, bits<2> size> 4181 : MVE_VCMPqq<suffix, 0b1, size, pred_basic_s> { 4182 let Inst{12} = 0b1; 4183} 4184 4185def MVE_VCMPf32 : MVE_VCMPqqf<"f32", 0b0>; 4186def MVE_VCMPf16 : MVE_VCMPqqf<"f16", 0b1>; 4187 4188def MVE_VCMPi8 : MVE_VCMPqqi<"i8", 0b00>; 4189def MVE_VCMPi16 : MVE_VCMPqqi<"i16", 0b01>; 4190def MVE_VCMPi32 : MVE_VCMPqqi<"i32", 0b10>; 4191 4192def MVE_VCMPu8 : MVE_VCMPqqu<"u8", 0b00>; 4193def MVE_VCMPu16 : MVE_VCMPqqu<"u16", 0b01>; 4194def MVE_VCMPu32 : MVE_VCMPqqu<"u32", 0b10>; 4195 4196def MVE_VCMPs8 : MVE_VCMPqqs<"s8", 0b00>; 4197def MVE_VCMPs16 : MVE_VCMPqqs<"s16", 0b01>; 4198def MVE_VCMPs32 : MVE_VCMPqqs<"s32", 0b10>; 4199 4200class MVE_VCMPqr<string suffix, bit bit_28, bits<2> bits_21_20, 4201 VCMPPredicateOperand predtype, list<dag> pattern=[]> 4202 : MVE_p<(outs VCCR:$P0), (ins MQPR:$Qn, GPRwithZR:$Rm, predtype:$fc), 4203 NoItinerary, "vcmp", suffix, "$fc, $Qn, $Rm", vpred_n, "", pattern> { 4204 // Base class for comparing a vector register with a scalar 4205 bits<3> fc; 4206 bits<4> Qn; 4207 bits<4> Rm; 4208 4209 let Inst{28} = bit_28; 4210 let Inst{25-22} = 0b1000; 4211 let Inst{21-20} = bits_21_20; 4212 let Inst{19-17} = Qn{2-0}; 4213 let Inst{16-13} = 0b1000; 4214 let Inst{12} = fc{2}; 4215 let Inst{11-8} = 0b1111; 4216 let Inst{7} = fc{0}; 4217 let Inst{6} = 0b1; 4218 let Inst{5} = fc{1}; 4219 let Inst{4} = 0b0; 4220 let Inst{3-0} = Rm{3-0}; 4221 4222 let Constraints = ""; 4223 // Custom decoder method, for the same reason as MVE_VCMPqq 4224 let DecoderMethod = "DecodeMVEVCMP<true," # predtype.DecoderMethod # ">"; 4225 let validForTailPredication = 1; 4226} 4227 4228class MVE_VCMPqrf<string suffix, bit size> 4229 : MVE_VCMPqr<suffix, size, 0b11, pred_basic_fp> { 4230 let Predicates = [HasMVEFloat]; 4231} 4232 4233class MVE_VCMPqri<string suffix, bits<2> size> 4234 : MVE_VCMPqr<suffix, 0b1, size, pred_basic_i> { 4235 let Inst{12} = 0b0; 4236 let Inst{5} = 0b0; 4237} 4238 4239class MVE_VCMPqru<string suffix, bits<2> size> 4240 : MVE_VCMPqr<suffix, 0b1, size, pred_basic_u> { 4241 let Inst{12} = 0b0; 4242 let Inst{5} = 0b1; 4243} 4244 4245class MVE_VCMPqrs<string suffix, bits<2> size> 4246 : MVE_VCMPqr<suffix, 0b1, size, pred_basic_s> { 4247 let Inst{12} = 0b1; 4248} 4249 4250def MVE_VCMPf32r : MVE_VCMPqrf<"f32", 0b0>; 4251def MVE_VCMPf16r : MVE_VCMPqrf<"f16", 0b1>; 4252 4253def MVE_VCMPi8r : MVE_VCMPqri<"i8", 0b00>; 4254def MVE_VCMPi16r : MVE_VCMPqri<"i16", 0b01>; 4255def MVE_VCMPi32r : MVE_VCMPqri<"i32", 0b10>; 4256 4257def MVE_VCMPu8r : MVE_VCMPqru<"u8", 0b00>; 4258def MVE_VCMPu16r : MVE_VCMPqru<"u16", 0b01>; 4259def MVE_VCMPu32r : MVE_VCMPqru<"u32", 0b10>; 4260 4261def MVE_VCMPs8r : MVE_VCMPqrs<"s8", 0b00>; 4262def MVE_VCMPs16r : MVE_VCMPqrs<"s16", 0b01>; 4263def MVE_VCMPs32r : MVE_VCMPqrs<"s32", 0b10>; 4264 4265multiclass unpred_vcmp_z<string suffix, PatLeaf fc> { 4266 def i8 : Pat<(v16i1 (ARMvcmpz (v16i8 MQPR:$v1), fc)), 4267 (v16i1 (!cast<Instruction>("MVE_VCMP"#suffix#"8r") (v16i8 MQPR:$v1), ZR, fc))>; 4268 def i16 : Pat<(v8i1 (ARMvcmpz (v8i16 MQPR:$v1), fc)), 4269 (v8i1 (!cast<Instruction>("MVE_VCMP"#suffix#"16r") (v8i16 MQPR:$v1), ZR, fc))>; 4270 def i32 : Pat<(v4i1 (ARMvcmpz (v4i32 MQPR:$v1), fc)), 4271 (v4i1 (!cast<Instruction>("MVE_VCMP"#suffix#"32r") (v4i32 MQPR:$v1), ZR, fc))>; 4272 4273 def : Pat<(v16i1 (and (v16i1 VCCR:$p1), (v16i1 (ARMvcmpz (v16i8 MQPR:$v1), fc)))), 4274 (v16i1 (!cast<Instruction>("MVE_VCMP"#suffix#"8r") (v16i8 MQPR:$v1), ZR, fc, ARMVCCThen, VCCR:$p1))>; 4275 def : Pat<(v8i1 (and (v8i1 VCCR:$p1), (v8i1 (ARMvcmpz (v8i16 MQPR:$v1), fc)))), 4276 (v8i1 (!cast<Instruction>("MVE_VCMP"#suffix#"16r") (v8i16 MQPR:$v1), ZR, fc, ARMVCCThen, VCCR:$p1))>; 4277 def : Pat<(v4i1 (and (v4i1 VCCR:$p1), (v4i1 (ARMvcmpz (v4i32 MQPR:$v1), fc)))), 4278 (v4i1 (!cast<Instruction>("MVE_VCMP"#suffix#"32r") (v4i32 MQPR:$v1), ZR, fc, ARMVCCThen, VCCR:$p1))>; 4279} 4280 4281multiclass unpred_vcmp_r<string suffix, PatLeaf fc> { 4282 def i8 : Pat<(v16i1 (ARMvcmp (v16i8 MQPR:$v1), (v16i8 MQPR:$v2), fc)), 4283 (v16i1 (!cast<Instruction>("MVE_VCMP"#suffix#"8") (v16i8 MQPR:$v1), (v16i8 MQPR:$v2), fc))>; 4284 def i16 : Pat<(v8i1 (ARMvcmp (v8i16 MQPR:$v1), (v8i16 MQPR:$v2), fc)), 4285 (v8i1 (!cast<Instruction>("MVE_VCMP"#suffix#"16") (v8i16 MQPR:$v1), (v8i16 MQPR:$v2), fc))>; 4286 def i32 : Pat<(v4i1 (ARMvcmp (v4i32 MQPR:$v1), (v4i32 MQPR:$v2), fc)), 4287 (v4i1 (!cast<Instruction>("MVE_VCMP"#suffix#"32") (v4i32 MQPR:$v1), (v4i32 MQPR:$v2), fc))>; 4288 4289 def i8r : Pat<(v16i1 (ARMvcmp (v16i8 MQPR:$v1), (v16i8 (ARMvdup rGPR:$v2)), fc)), 4290 (v16i1 (!cast<Instruction>("MVE_VCMP"#suffix#"8r") (v16i8 MQPR:$v1), (i32 rGPR:$v2), fc))>; 4291 def i16r : Pat<(v8i1 (ARMvcmp (v8i16 MQPR:$v1), (v8i16 (ARMvdup rGPR:$v2)), fc)), 4292 (v8i1 (!cast<Instruction>("MVE_VCMP"#suffix#"16r") (v8i16 MQPR:$v1), (i32 rGPR:$v2), fc))>; 4293 def i32r : Pat<(v4i1 (ARMvcmp (v4i32 MQPR:$v1), (v4i32 (ARMvdup rGPR:$v2)), fc)), 4294 (v4i1 (!cast<Instruction>("MVE_VCMP"#suffix#"32r") (v4i32 MQPR:$v1), (i32 rGPR:$v2), fc))>; 4295 4296 def : Pat<(v16i1 (and (v16i1 VCCR:$p1), (v16i1 (ARMvcmp (v16i8 MQPR:$v1), (v16i8 MQPR:$v2), fc)))), 4297 (v16i1 (!cast<Instruction>("MVE_VCMP"#suffix#"8") (v16i8 MQPR:$v1), (v16i8 MQPR:$v2), fc, ARMVCCThen, VCCR:$p1))>; 4298 def : Pat<(v8i1 (and (v8i1 VCCR:$p1), (v8i1 (ARMvcmp (v8i16 MQPR:$v1), (v8i16 MQPR:$v2), fc)))), 4299 (v8i1 (!cast<Instruction>("MVE_VCMP"#suffix#"16") (v8i16 MQPR:$v1), (v8i16 MQPR:$v2), fc, ARMVCCThen, VCCR:$p1))>; 4300 def : Pat<(v4i1 (and (v4i1 VCCR:$p1), (v4i1 (ARMvcmp (v4i32 MQPR:$v1), (v4i32 MQPR:$v2), fc)))), 4301 (v4i1 (!cast<Instruction>("MVE_VCMP"#suffix#"32") (v4i32 MQPR:$v1), (v4i32 MQPR:$v2), fc, ARMVCCThen, VCCR:$p1))>; 4302 4303 def : Pat<(v16i1 (and (v16i1 VCCR:$p1), (v16i1 (ARMvcmp (v16i8 MQPR:$v1), (v16i8 (ARMvdup rGPR:$v2)), fc)))), 4304 (v16i1 (!cast<Instruction>("MVE_VCMP"#suffix#"8r") (v16i8 MQPR:$v1), (i32 rGPR:$v2), fc, ARMVCCThen, VCCR:$p1))>; 4305 def : Pat<(v8i1 (and (v8i1 VCCR:$p1), (v8i1 (ARMvcmp (v8i16 MQPR:$v1), (v8i16 (ARMvdup rGPR:$v2)), fc)))), 4306 (v8i1 (!cast<Instruction>("MVE_VCMP"#suffix#"16r") (v8i16 MQPR:$v1), (i32 rGPR:$v2), fc, ARMVCCThen, VCCR:$p1))>; 4307 def : Pat<(v4i1 (and (v4i1 VCCR:$p1), (v4i1 (ARMvcmp (v4i32 MQPR:$v1), (v4i32 (ARMvdup rGPR:$v2)), fc)))), 4308 (v4i1 (!cast<Instruction>("MVE_VCMP"#suffix#"32r") (v4i32 MQPR:$v1), (i32 rGPR:$v2), fc, ARMVCCThen, VCCR:$p1))>; 4309} 4310 4311multiclass unpred_vcmpf_z<PatLeaf fc> { 4312 def f16 : Pat<(v8i1 (ARMvcmpz (v8f16 MQPR:$v1), fc)), 4313 (v8i1 (MVE_VCMPf16r (v8f16 MQPR:$v1), ZR, fc))>; 4314 def f32 : Pat<(v4i1 (ARMvcmpz (v4f32 MQPR:$v1), fc)), 4315 (v4i1 (MVE_VCMPf32r (v4f32 MQPR:$v1), ZR, fc))>; 4316 4317 def : Pat<(v8i1 (and (v8i1 VCCR:$p1), (v8i1 (ARMvcmpz (v8f16 MQPR:$v1), fc)))), 4318 (v8i1 (MVE_VCMPf16r (v8f16 MQPR:$v1), ZR, fc, ARMVCCThen, VCCR:$p1))>; 4319 def : Pat<(v4i1 (and (v4i1 VCCR:$p1), (v4i1 (ARMvcmpz (v4f32 MQPR:$v1), fc)))), 4320 (v4i1 (MVE_VCMPf32r (v4f32 MQPR:$v1), ZR, fc, ARMVCCThen, VCCR:$p1))>; 4321} 4322 4323multiclass unpred_vcmpf_r<int fc> { 4324 def : Pat<(v8i1 (ARMvcmp (v8f16 MQPR:$v1), (v8f16 MQPR:$v2), fc)), 4325 (v8i1 (MVE_VCMPf16 (v8f16 MQPR:$v1), (v8f16 MQPR:$v2), fc))>; 4326 def : Pat<(v4i1 (ARMvcmp (v4f32 MQPR:$v1), (v4f32 MQPR:$v2), fc)), 4327 (v4i1 (MVE_VCMPf32 (v4f32 MQPR:$v1), (v4f32 MQPR:$v2), fc))>; 4328 4329 def : Pat<(v8i1 (ARMvcmp (v8f16 MQPR:$v1), (v8f16 (ARMvdup rGPR:$v2)), fc)), 4330 (v8i1 (MVE_VCMPf16r (v8f16 MQPR:$v1), (i32 rGPR:$v2), fc))>; 4331 def : Pat<(v4i1 (ARMvcmp (v4f32 MQPR:$v1), (v4f32 (ARMvdup rGPR:$v2)), fc)), 4332 (v4i1 (MVE_VCMPf32r (v4f32 MQPR:$v1), (i32 rGPR:$v2), fc))>; 4333 4334 def : Pat<(v8i1 (and (v8i1 VCCR:$p1), (v8i1 (ARMvcmp (v8f16 MQPR:$v1), (v8f16 MQPR:$v2), fc)))), 4335 (v8i1 (MVE_VCMPf16 (v8f16 MQPR:$v1), (v8f16 MQPR:$v2), fc, ARMVCCThen, VCCR:$p1))>; 4336 def : Pat<(v4i1 (and (v4i1 VCCR:$p1), (v4i1 (ARMvcmp (v4f32 MQPR:$v1), (v4f32 MQPR:$v2), fc)))), 4337 (v4i1 (MVE_VCMPf32 (v4f32 MQPR:$v1), (v4f32 MQPR:$v2), fc, ARMVCCThen, VCCR:$p1))>; 4338 4339 def : Pat<(v8i1 (and (v8i1 VCCR:$p1), (v8i1 (ARMvcmp (v8f16 MQPR:$v1), (v8f16 (ARMvdup rGPR:$v2)), fc)))), 4340 (v8i1 (MVE_VCMPf16r (v8f16 MQPR:$v1), (i32 rGPR:$v2), fc, ARMVCCThen, VCCR:$p1))>; 4341 def : Pat<(v4i1 (and (v4i1 VCCR:$p1), (v4i1 (ARMvcmp (v4f32 MQPR:$v1), (v4f32 (ARMvdup rGPR:$v2)), fc)))), 4342 (v4i1 (MVE_VCMPf32r (v4f32 MQPR:$v1), (i32 rGPR:$v2), fc, ARMVCCThen, VCCR:$p1))>; 4343} 4344 4345let Predicates = [HasMVEInt] in { 4346 defm MVE_VCEQZ : unpred_vcmp_z<"i", ARMCCeq>; 4347 defm MVE_VCNEZ : unpred_vcmp_z<"i", ARMCCne>; 4348 defm MVE_VCGEZ : unpred_vcmp_z<"s", ARMCCge>; 4349 defm MVE_VCLTZ : unpred_vcmp_z<"s", ARMCClt>; 4350 defm MVE_VCGTZ : unpred_vcmp_z<"s", ARMCCgt>; 4351 defm MVE_VCLEZ : unpred_vcmp_z<"s", ARMCCle>; 4352 defm MVE_VCGTUZ : unpred_vcmp_z<"u", ARMCChi>; 4353 defm MVE_VCGEUZ : unpred_vcmp_z<"u", ARMCChs>; 4354 4355 defm MVE_VCEQ : unpred_vcmp_r<"i", ARMCCeq>; 4356 defm MVE_VCNE : unpred_vcmp_r<"i", ARMCCne>; 4357 defm MVE_VCGE : unpred_vcmp_r<"s", ARMCCge>; 4358 defm MVE_VCLT : unpred_vcmp_r<"s", ARMCClt>; 4359 defm MVE_VCGT : unpred_vcmp_r<"s", ARMCCgt>; 4360 defm MVE_VCLE : unpred_vcmp_r<"s", ARMCCle>; 4361 defm MVE_VCGTU : unpred_vcmp_r<"u", ARMCChi>; 4362 defm MVE_VCGEU : unpred_vcmp_r<"u", ARMCChs>; 4363} 4364 4365let Predicates = [HasMVEFloat] in { 4366 defm MVE_VFCEQZ : unpred_vcmpf_z<ARMCCeq>; 4367 defm MVE_VFCNEZ : unpred_vcmpf_z<ARMCCne>; 4368 defm MVE_VFCGEZ : unpred_vcmpf_z<ARMCCge>; 4369 defm MVE_VFCLTZ : unpred_vcmpf_z<ARMCClt>; 4370 defm MVE_VFCGTZ : unpred_vcmpf_z<ARMCCgt>; 4371 defm MVE_VFCLEZ : unpred_vcmpf_z<ARMCCle>; 4372 4373 defm MVE_VFCEQ : unpred_vcmpf_r<ARMCCeq>; 4374 defm MVE_VFCNE : unpred_vcmpf_r<ARMCCne>; 4375 defm MVE_VFCGE : unpred_vcmpf_r<ARMCCge>; 4376 defm MVE_VFCLT : unpred_vcmpf_r<ARMCClt>; 4377 defm MVE_VFCGT : unpred_vcmpf_r<ARMCCgt>; 4378 defm MVE_VFCLE : unpred_vcmpf_r<ARMCCle>; 4379} 4380 4381 4382// Extra "worst case" and/or/xor patterns, going into and out of GRP 4383multiclass two_predops<SDPatternOperator opnode, Instruction insn> { 4384 def v16i1 : Pat<(v16i1 (opnode (v16i1 VCCR:$p1), (v16i1 VCCR:$p2))), 4385 (v16i1 (COPY_TO_REGCLASS 4386 (insn (i32 (COPY_TO_REGCLASS (v16i1 VCCR:$p1), rGPR)), 4387 (i32 (COPY_TO_REGCLASS (v16i1 VCCR:$p2), rGPR))), 4388 VCCR))>; 4389 def v8i1 : Pat<(v8i1 (opnode (v8i1 VCCR:$p1), (v8i1 VCCR:$p2))), 4390 (v8i1 (COPY_TO_REGCLASS 4391 (insn (i32 (COPY_TO_REGCLASS (v8i1 VCCR:$p1), rGPR)), 4392 (i32 (COPY_TO_REGCLASS (v8i1 VCCR:$p2), rGPR))), 4393 VCCR))>; 4394 def v4i1 : Pat<(v4i1 (opnode (v4i1 VCCR:$p1), (v4i1 VCCR:$p2))), 4395 (v4i1 (COPY_TO_REGCLASS 4396 (insn (i32 (COPY_TO_REGCLASS (v4i1 VCCR:$p1), rGPR)), 4397 (i32 (COPY_TO_REGCLASS (v4i1 VCCR:$p2), rGPR))), 4398 VCCR))>; 4399} 4400 4401let Predicates = [HasMVEInt] in { 4402 defm POR : two_predops<or, t2ORRrr>; 4403 defm PAND : two_predops<and, t2ANDrr>; 4404 defm PEOR : two_predops<xor, t2EORrr>; 4405} 4406 4407// Occasionally we need to cast between a i32 and a boolean vector, for 4408// example when moving between rGPR and VPR.P0 as part of predicate vector 4409// shuffles. We also sometimes need to cast between different predicate 4410// vector types (v4i1<>v8i1, etc.) also as part of lowering vector shuffles. 4411def predicate_cast : SDNode<"ARMISD::PREDICATE_CAST", SDTUnaryOp>; 4412 4413def load_align4 : PatFrag<(ops node:$ptr), (load node:$ptr), [{ 4414 return cast<LoadSDNode>(N)->getAlignment() >= 4; 4415}]>; 4416 4417let Predicates = [HasMVEInt] in { 4418 foreach VT = [ v4i1, v8i1, v16i1 ] in { 4419 def : Pat<(i32 (predicate_cast (VT VCCR:$src))), 4420 (i32 (COPY_TO_REGCLASS (VT VCCR:$src), VCCR))>; 4421 def : Pat<(VT (predicate_cast (i32 VCCR:$src))), 4422 (VT (COPY_TO_REGCLASS (i32 VCCR:$src), VCCR))>; 4423 4424 foreach VT2 = [ v4i1, v8i1, v16i1 ] in 4425 def : Pat<(VT (predicate_cast (VT2 VCCR:$src))), 4426 (VT (COPY_TO_REGCLASS (VT2 VCCR:$src), VCCR))>; 4427 } 4428 4429 // If we happen to be casting from a load we can convert that straight 4430 // into a predicate load, so long as the load is of the correct type. 4431 foreach VT = [ v4i1, v8i1, v16i1 ] in { 4432 def : Pat<(VT (predicate_cast (i32 (load_align4 taddrmode_imm7<2>:$addr)))), 4433 (VT (VLDR_P0_off taddrmode_imm7<2>:$addr))>; 4434 } 4435 4436 // Here we match the specific SDNode type 'ARMVectorRegCastImpl' 4437 // rather than the more general 'ARMVectorRegCast' which would also 4438 // match some bitconverts. If we use the latter in cases where the 4439 // input and output types are the same, the bitconvert gets elided 4440 // and we end up generating a nonsense match of nothing. 4441 4442 foreach VT = [ v16i8, v8i16, v8f16, v4i32, v4f32, v2i64, v2f64 ] in 4443 foreach VT2 = [ v16i8, v8i16, v8f16, v4i32, v4f32, v2i64, v2f64 ] in 4444 def : Pat<(VT (ARMVectorRegCastImpl (VT2 MQPR:$src))), 4445 (VT MQPR:$src)>; 4446} 4447 4448// end of MVE compares 4449 4450// start of MVE_qDest_qSrc 4451 4452class MVE_qDest_qSrc<string iname, string suffix, dag oops, dag iops, 4453 string ops, vpred_ops vpred, string cstr, 4454 list<dag> pattern=[]> 4455 : MVE_p<oops, iops, NoItinerary, iname, suffix, 4456 ops, vpred, cstr, pattern> { 4457 bits<4> Qd; 4458 bits<4> Qm; 4459 4460 let Inst{25-23} = 0b100; 4461 let Inst{22} = Qd{3}; 4462 let Inst{15-13} = Qd{2-0}; 4463 let Inst{11-9} = 0b111; 4464 let Inst{6} = 0b0; 4465 let Inst{5} = Qm{3}; 4466 let Inst{4} = 0b0; 4467 let Inst{3-1} = Qm{2-0}; 4468} 4469 4470class MVE_VQxDMLxDH<string iname, bit exch, bit round, bit subtract, 4471 string suffix, bits<2> size, string cstr="", list<dag> pattern=[]> 4472 : MVE_qDest_qSrc<iname, suffix, (outs MQPR:$Qd), 4473 (ins MQPR:$Qd_src, MQPR:$Qn, MQPR:$Qm), "$Qd, $Qn, $Qm", 4474 vpred_n, "$Qd = $Qd_src"#cstr, pattern> { 4475 bits<4> Qn; 4476 4477 let Inst{28} = subtract; 4478 let Inst{21-20} = size; 4479 let Inst{19-17} = Qn{2-0}; 4480 let Inst{16} = 0b0; 4481 let Inst{12} = exch; 4482 let Inst{8} = 0b0; 4483 let Inst{7} = Qn{3}; 4484 let Inst{0} = round; 4485} 4486 4487multiclass MVE_VQxDMLxDH_p<string iname, bit exch, bit round, bit subtract, 4488 MVEVectorVTInfo VTI> { 4489 def "": MVE_VQxDMLxDH<iname, exch, round, subtract, VTI.Suffix, VTI.Size, 4490 !if(!eq(VTI.LaneBits, 32), ",@earlyclobber $Qd", "")>; 4491 defvar Inst = !cast<Instruction>(NAME); 4492 defvar ConstParams = (? (i32 exch), (i32 round), (i32 subtract)); 4493 defvar unpred_intr = int_arm_mve_vqdmlad; 4494 defvar pred_intr = int_arm_mve_vqdmlad_predicated; 4495 4496 def : Pat<(VTI.Vec !con((unpred_intr (VTI.Vec MQPR:$a), (VTI.Vec MQPR:$b), 4497 (VTI.Vec MQPR:$c)), ConstParams)), 4498 (VTI.Vec (Inst (VTI.Vec MQPR:$a), (VTI.Vec MQPR:$b), 4499 (VTI.Vec MQPR:$c)))>; 4500 def : Pat<(VTI.Vec !con((pred_intr (VTI.Vec MQPR:$a), (VTI.Vec MQPR:$b), 4501 (VTI.Vec MQPR:$c)), ConstParams, 4502 (? (VTI.Pred VCCR:$pred)))), 4503 (VTI.Vec (Inst (VTI.Vec MQPR:$a), (VTI.Vec MQPR:$b), 4504 (VTI.Vec MQPR:$c), 4505 ARMVCCThen, (VTI.Pred VCCR:$pred)))>; 4506} 4507 4508multiclass MVE_VQxDMLxDH_multi<string iname, bit exch, 4509 bit round, bit subtract> { 4510 defm s8 : MVE_VQxDMLxDH_p<iname, exch, round, subtract, MVE_v16s8>; 4511 defm s16 : MVE_VQxDMLxDH_p<iname, exch, round, subtract, MVE_v8s16>; 4512 defm s32 : MVE_VQxDMLxDH_p<iname, exch, round, subtract, MVE_v4s32>; 4513} 4514 4515defm MVE_VQDMLADH : MVE_VQxDMLxDH_multi<"vqdmladh", 0b0, 0b0, 0b0>; 4516defm MVE_VQDMLADHX : MVE_VQxDMLxDH_multi<"vqdmladhx", 0b1, 0b0, 0b0>; 4517defm MVE_VQRDMLADH : MVE_VQxDMLxDH_multi<"vqrdmladh", 0b0, 0b1, 0b0>; 4518defm MVE_VQRDMLADHX : MVE_VQxDMLxDH_multi<"vqrdmladhx", 0b1, 0b1, 0b0>; 4519defm MVE_VQDMLSDH : MVE_VQxDMLxDH_multi<"vqdmlsdh", 0b0, 0b0, 0b1>; 4520defm MVE_VQDMLSDHX : MVE_VQxDMLxDH_multi<"vqdmlsdhx", 0b1, 0b0, 0b1>; 4521defm MVE_VQRDMLSDH : MVE_VQxDMLxDH_multi<"vqrdmlsdh", 0b0, 0b1, 0b1>; 4522defm MVE_VQRDMLSDHX : MVE_VQxDMLxDH_multi<"vqrdmlsdhx", 0b1, 0b1, 0b1>; 4523 4524class MVE_VCMUL<string iname, string suffix, bit size, string cstr=""> 4525 : MVE_qDest_qSrc<iname, suffix, (outs MQPR:$Qd), 4526 (ins MQPR:$Qn, MQPR:$Qm, complexrotateop:$rot), 4527 "$Qd, $Qn, $Qm, $rot", vpred_r, cstr, []> { 4528 bits<4> Qn; 4529 bits<2> rot; 4530 4531 let Inst{28} = size; 4532 let Inst{21-20} = 0b11; 4533 let Inst{19-17} = Qn{2-0}; 4534 let Inst{16} = 0b0; 4535 let Inst{12} = rot{1}; 4536 let Inst{8} = 0b0; 4537 let Inst{7} = Qn{3}; 4538 let Inst{0} = rot{0}; 4539 4540 let Predicates = [HasMVEFloat]; 4541} 4542 4543multiclass MVE_VCMUL_m<string iname, MVEVectorVTInfo VTI, 4544 bit size, string cstr=""> { 4545 def "" : MVE_VCMUL<iname, VTI.Suffix, size, cstr>; 4546 defvar Inst = !cast<Instruction>(NAME); 4547 4548 let Predicates = [HasMVEFloat] in { 4549 def : Pat<(VTI.Vec (int_arm_mve_vcmulq 4550 imm:$rot, (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm))), 4551 (VTI.Vec (Inst (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), 4552 imm:$rot))>; 4553 4554 def : Pat<(VTI.Vec (int_arm_mve_vcmulq_predicated 4555 imm:$rot, (VTI.Vec MQPR:$inactive), 4556 (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), 4557 (VTI.Pred VCCR:$mask))), 4558 (VTI.Vec (Inst (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), 4559 imm:$rot, ARMVCCThen, (VTI.Pred VCCR:$mask), 4560 (VTI.Vec MQPR:$inactive)))>; 4561 4562 } 4563} 4564 4565defm MVE_VCMULf16 : MVE_VCMUL_m<"vcmul", MVE_v8f16, 0b0>; 4566defm MVE_VCMULf32 : MVE_VCMUL_m<"vcmul", MVE_v4f32, 0b1, "@earlyclobber $Qd">; 4567 4568class MVE_VMULL<string iname, string suffix, bit bit_28, bits<2> bits_21_20, 4569 bit T, string cstr, list<dag> pattern=[]> 4570 : MVE_qDest_qSrc<iname, suffix, (outs MQPR:$Qd), 4571 (ins MQPR:$Qn, MQPR:$Qm), "$Qd, $Qn, $Qm", 4572 vpred_r, cstr, pattern> { 4573 bits<4> Qd; 4574 bits<4> Qn; 4575 bits<4> Qm; 4576 4577 let Inst{28} = bit_28; 4578 let Inst{21-20} = bits_21_20; 4579 let Inst{19-17} = Qn{2-0}; 4580 let Inst{16} = 0b1; 4581 let Inst{12} = T; 4582 let Inst{8} = 0b0; 4583 let Inst{7} = Qn{3}; 4584 let Inst{0} = 0b0; 4585 let validForTailPredication = 1; 4586 let doubleWidthResult = 1; 4587} 4588 4589multiclass MVE_VMULL_m<MVEVectorVTInfo VTI, 4590 SDNode unpred_op, Intrinsic pred_int, 4591 bit Top, string cstr=""> { 4592 def "" : MVE_VMULL<"vmull" # !if(Top, "t", "b"), VTI.Suffix, VTI.Unsigned, 4593 VTI.Size, Top, cstr>; 4594 defvar Inst = !cast<Instruction>(NAME); 4595 4596 let Predicates = [HasMVEInt] in { 4597 defvar uflag = !if(!eq(VTI.SuffixLetter, "p"), (?), (? (i32 VTI.Unsigned))); 4598 4599 // Unpredicated multiply 4600 def : Pat<(VTI.DblVec !con((unpred_op (VTI.Vec MQPR:$Qm), 4601 (VTI.Vec MQPR:$Qn)), 4602 uflag, (? (i32 Top)))), 4603 (VTI.DblVec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn)))>; 4604 4605 // Predicated multiply 4606 def : Pat<(VTI.DblVec !con((pred_int (VTI.Vec MQPR:$Qm), 4607 (VTI.Vec MQPR:$Qn)), 4608 uflag, (? (i32 Top), (VTI.DblPred VCCR:$mask), 4609 (VTI.DblVec MQPR:$inactive)))), 4610 (VTI.DblVec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), 4611 ARMVCCThen, (VTI.DblPred VCCR:$mask), 4612 (VTI.DblVec MQPR:$inactive)))>; 4613 } 4614} 4615 4616// For polynomial multiplies, the size bits take the unused value 0b11, and 4617// the unsigned bit switches to encoding the size. 4618 4619defm MVE_VMULLBs8 : MVE_VMULL_m<MVE_v16s8, int_arm_mve_vmull, 4620 int_arm_mve_mull_int_predicated, 0b0>; 4621defm MVE_VMULLTs8 : MVE_VMULL_m<MVE_v16s8, int_arm_mve_vmull, 4622 int_arm_mve_mull_int_predicated, 0b1>; 4623defm MVE_VMULLBs16 : MVE_VMULL_m<MVE_v8s16, int_arm_mve_vmull, 4624 int_arm_mve_mull_int_predicated, 0b0>; 4625defm MVE_VMULLTs16 : MVE_VMULL_m<MVE_v8s16, int_arm_mve_vmull, 4626 int_arm_mve_mull_int_predicated, 0b1>; 4627defm MVE_VMULLBs32 : MVE_VMULL_m<MVE_v4s32, int_arm_mve_vmull, 4628 int_arm_mve_mull_int_predicated, 0b0, 4629 "@earlyclobber $Qd">; 4630defm MVE_VMULLTs32 : MVE_VMULL_m<MVE_v4s32, int_arm_mve_vmull, 4631 int_arm_mve_mull_int_predicated, 0b1, 4632 "@earlyclobber $Qd">; 4633 4634defm MVE_VMULLBu8 : MVE_VMULL_m<MVE_v16u8, int_arm_mve_vmull, 4635 int_arm_mve_mull_int_predicated, 0b0>; 4636defm MVE_VMULLTu8 : MVE_VMULL_m<MVE_v16u8, int_arm_mve_vmull, 4637 int_arm_mve_mull_int_predicated, 0b1>; 4638defm MVE_VMULLBu16 : MVE_VMULL_m<MVE_v8u16, int_arm_mve_vmull, 4639 int_arm_mve_mull_int_predicated, 0b0>; 4640defm MVE_VMULLTu16 : MVE_VMULL_m<MVE_v8u16, int_arm_mve_vmull, 4641 int_arm_mve_mull_int_predicated, 0b1>; 4642defm MVE_VMULLBu32 : MVE_VMULL_m<MVE_v4u32, int_arm_mve_vmull, 4643 int_arm_mve_mull_int_predicated, 0b0, 4644 "@earlyclobber $Qd">; 4645defm MVE_VMULLTu32 : MVE_VMULL_m<MVE_v4u32, int_arm_mve_vmull, 4646 int_arm_mve_mull_int_predicated, 0b1, 4647 "@earlyclobber $Qd">; 4648 4649defm MVE_VMULLBp8 : MVE_VMULL_m<MVE_v16p8, int_arm_mve_vmull_poly, 4650 int_arm_mve_mull_poly_predicated, 0b0>; 4651defm MVE_VMULLTp8 : MVE_VMULL_m<MVE_v16p8, int_arm_mve_vmull_poly, 4652 int_arm_mve_mull_poly_predicated, 0b1>; 4653defm MVE_VMULLBp16 : MVE_VMULL_m<MVE_v8p16, int_arm_mve_vmull_poly, 4654 int_arm_mve_mull_poly_predicated, 0b0>; 4655defm MVE_VMULLTp16 : MVE_VMULL_m<MVE_v8p16, int_arm_mve_vmull_poly, 4656 int_arm_mve_mull_poly_predicated, 0b1>; 4657 4658let Predicates = [HasMVEInt] in { 4659 def : Pat<(v2i64 (ARMvmulls (v4i32 MQPR:$src1), (v4i32 MQPR:$src2))), 4660 (MVE_VMULLBs32 MQPR:$src1, MQPR:$src2)>; 4661 def : Pat<(v2i64 (ARMvmulls (v4i32 (ARMvrev64 (v4i32 MQPR:$src1))), 4662 (v4i32 (ARMvrev64 (v4i32 MQPR:$src2))))), 4663 (MVE_VMULLTs32 MQPR:$src1, MQPR:$src2)>; 4664 4665 def : Pat<(mul (sext_inreg (v4i32 MQPR:$src1), v4i16), 4666 (sext_inreg (v4i32 MQPR:$src2), v4i16)), 4667 (MVE_VMULLBs16 MQPR:$src1, MQPR:$src2)>; 4668 def : Pat<(mul (sext_inreg (v4i32 (ARMVectorRegCast (ARMvrev32 (v8i16 MQPR:$src1)))), v4i16), 4669 (sext_inreg (v4i32 (ARMVectorRegCast (ARMvrev32 (v8i16 MQPR:$src2)))), v4i16)), 4670 (MVE_VMULLTs16 MQPR:$src1, MQPR:$src2)>; 4671 4672 def : Pat<(mul (sext_inreg (v8i16 MQPR:$src1), v8i8), 4673 (sext_inreg (v8i16 MQPR:$src2), v8i8)), 4674 (MVE_VMULLBs8 MQPR:$src1, MQPR:$src2)>; 4675 def : Pat<(mul (sext_inreg (v8i16 (ARMVectorRegCast (ARMvrev16 (v16i8 MQPR:$src1)))), v8i8), 4676 (sext_inreg (v8i16 (ARMVectorRegCast (ARMvrev16 (v16i8 MQPR:$src2)))), v8i8)), 4677 (MVE_VMULLTs8 MQPR:$src1, MQPR:$src2)>; 4678 4679 def : Pat<(v2i64 (ARMvmullu (v4i32 MQPR:$src1), (v4i32 MQPR:$src2))), 4680 (MVE_VMULLBu32 MQPR:$src1, MQPR:$src2)>; 4681 def : Pat<(v2i64 (ARMvmullu (v4i32 (ARMvrev64 (v4i32 MQPR:$src1))), 4682 (v4i32 (ARMvrev64 (v4i32 MQPR:$src2))))), 4683 (MVE_VMULLTu32 MQPR:$src1, MQPR:$src2)>; 4684 4685 def : Pat<(mul (and (v4i32 MQPR:$src1), (v4i32 (ARMvmovImm (i32 0xCFF)))), 4686 (and (v4i32 MQPR:$src2), (v4i32 (ARMvmovImm (i32 0xCFF))))), 4687 (MVE_VMULLBu16 MQPR:$src1, MQPR:$src2)>; 4688 def : Pat<(mul (and (v4i32 (ARMVectorRegCast (ARMvrev32 (v8i16 MQPR:$src1)))), 4689 (v4i32 (ARMvmovImm (i32 0xCFF)))), 4690 (and (v4i32 (ARMVectorRegCast (ARMvrev32 (v8i16 MQPR:$src2)))), 4691 (v4i32 (ARMvmovImm (i32 0xCFF))))), 4692 (MVE_VMULLTu16 MQPR:$src1, MQPR:$src2)>; 4693 4694 def : Pat<(mul (ARMvbicImm (v8i16 MQPR:$src1), (i32 0xAFF)), 4695 (ARMvbicImm (v8i16 MQPR:$src2), (i32 0xAFF))), 4696 (MVE_VMULLBu8 MQPR:$src1, MQPR:$src2)>; 4697 def : Pat<(mul (ARMvbicImm (v8i16 (ARMVectorRegCast (ARMvrev16 (v16i8 MQPR:$src1)))), (i32 0xAFF)), 4698 (ARMvbicImm (v8i16 (ARMVectorRegCast (ARMvrev16 (v16i8 MQPR:$src2)))), (i32 0xAFF))), 4699 (MVE_VMULLTu8 MQPR:$src1, MQPR:$src2)>; 4700} 4701 4702class MVE_VxMULH<string iname, string suffix, bit U, bits<2> size, bit round, 4703 list<dag> pattern=[]> 4704 : MVE_qDest_qSrc<iname, suffix, (outs MQPR:$Qd), 4705 (ins MQPR:$Qn, MQPR:$Qm), "$Qd, $Qn, $Qm", 4706 vpred_r, "", pattern> { 4707 bits<4> Qn; 4708 4709 let Inst{28} = U; 4710 let Inst{21-20} = size; 4711 let Inst{19-17} = Qn{2-0}; 4712 let Inst{16} = 0b1; 4713 let Inst{12} = round; 4714 let Inst{8} = 0b0; 4715 let Inst{7} = Qn{3}; 4716 let Inst{0} = 0b1; 4717} 4718 4719multiclass MVE_VxMULH_m<string iname, MVEVectorVTInfo VTI, SDNode unpred_op, 4720 Intrinsic pred_int, bit round> { 4721 def "" : MVE_VxMULH<iname, VTI.Suffix, VTI.Unsigned, VTI.Size, round>; 4722 defvar Inst = !cast<Instruction>(NAME); 4723 4724 let Predicates = [HasMVEInt] in { 4725 // Unpredicated multiply returning high bits 4726 def : Pat<(VTI.Vec (unpred_op (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), 4727 (i32 VTI.Unsigned))), 4728 (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn)))>; 4729 4730 // Predicated multiply returning high bits 4731 def : Pat<(VTI.Vec (pred_int (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), 4732 (i32 VTI.Unsigned), (VTI.Pred VCCR:$mask), 4733 (VTI.Vec MQPR:$inactive))), 4734 (VTI.Vec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), 4735 ARMVCCThen, (VTI.Pred VCCR:$mask), 4736 (VTI.Vec MQPR:$inactive)))>; 4737 } 4738} 4739 4740multiclass MVE_VMULT<string iname, MVEVectorVTInfo VTI, bit round> 4741 : MVE_VxMULH_m<iname, VTI, !if(round, int_arm_mve_vrmulh, int_arm_mve_vmulh), 4742 !if(round, int_arm_mve_rmulh_predicated, 4743 int_arm_mve_mulh_predicated), 4744 round>; 4745 4746defm MVE_VMULHs8 : MVE_VMULT<"vmulh", MVE_v16s8, 0b0>; 4747defm MVE_VMULHs16 : MVE_VMULT<"vmulh", MVE_v8s16, 0b0>; 4748defm MVE_VMULHs32 : MVE_VMULT<"vmulh", MVE_v4s32, 0b0>; 4749defm MVE_VMULHu8 : MVE_VMULT<"vmulh", MVE_v16u8, 0b0>; 4750defm MVE_VMULHu16 : MVE_VMULT<"vmulh", MVE_v8u16, 0b0>; 4751defm MVE_VMULHu32 : MVE_VMULT<"vmulh", MVE_v4u32, 0b0>; 4752 4753defm MVE_VRMULHs8 : MVE_VMULT<"vrmulh", MVE_v16s8, 0b1>; 4754defm MVE_VRMULHs16 : MVE_VMULT<"vrmulh", MVE_v8s16, 0b1>; 4755defm MVE_VRMULHs32 : MVE_VMULT<"vrmulh", MVE_v4s32, 0b1>; 4756defm MVE_VRMULHu8 : MVE_VMULT<"vrmulh", MVE_v16u8, 0b1>; 4757defm MVE_VRMULHu16 : MVE_VMULT<"vrmulh", MVE_v8u16, 0b1>; 4758defm MVE_VRMULHu32 : MVE_VMULT<"vrmulh", MVE_v4u32, 0b1>; 4759 4760class MVE_VxMOVxN<string iname, string suffix, bit bit_28, bit bit_17, 4761 bits<2> size, bit T, list<dag> pattern=[]> 4762 : MVE_qDest_qSrc<iname, suffix, (outs MQPR:$Qd), 4763 (ins MQPR:$Qd_src, MQPR:$Qm), "$Qd, $Qm", 4764 vpred_n, "$Qd = $Qd_src", pattern> { 4765 4766 let Inst{28} = bit_28; 4767 let Inst{21-20} = 0b11; 4768 let Inst{19-18} = size; 4769 let Inst{17} = bit_17; 4770 let Inst{16} = 0b1; 4771 let Inst{12} = T; 4772 let Inst{8} = 0b0; 4773 let Inst{7} = !not(bit_17); 4774 let Inst{0} = 0b1; 4775 let validForTailPredication = 1; 4776 let retainsPreviousHalfElement = 1; 4777} 4778 4779multiclass MVE_VxMOVxN_halves<string iname, string suffix, 4780 bit bit_28, bit bit_17, bits<2> size> { 4781 def bh : MVE_VxMOVxN<iname # "b", suffix, bit_28, bit_17, size, 0b0>; 4782 def th : MVE_VxMOVxN<iname # "t", suffix, bit_28, bit_17, size, 0b1>; 4783} 4784 4785defm MVE_VMOVNi16 : MVE_VxMOVxN_halves<"vmovn", "i16", 0b1, 0b0, 0b00>; 4786defm MVE_VMOVNi32 : MVE_VxMOVxN_halves<"vmovn", "i32", 0b1, 0b0, 0b01>; 4787defm MVE_VQMOVNs16 : MVE_VxMOVxN_halves<"vqmovn", "s16", 0b0, 0b1, 0b00>; 4788defm MVE_VQMOVNs32 : MVE_VxMOVxN_halves<"vqmovn", "s32", 0b0, 0b1, 0b01>; 4789defm MVE_VQMOVNu16 : MVE_VxMOVxN_halves<"vqmovn", "u16", 0b1, 0b1, 0b00>; 4790defm MVE_VQMOVNu32 : MVE_VxMOVxN_halves<"vqmovn", "u32", 0b1, 0b1, 0b01>; 4791defm MVE_VQMOVUNs16 : MVE_VxMOVxN_halves<"vqmovun", "s16", 0b0, 0b0, 0b00>; 4792defm MVE_VQMOVUNs32 : MVE_VxMOVxN_halves<"vqmovun", "s32", 0b0, 0b0, 0b01>; 4793 4794def MVEvmovn : SDNode<"ARMISD::VMOVN", SDTARMVEXT>; 4795 4796multiclass MVE_VMOVN_p<Instruction Inst, bit top, 4797 MVEVectorVTInfo VTI, MVEVectorVTInfo InVTI> { 4798 // Match the most obvious MVEvmovn(a,b,t), which overwrites the odd or even 4799 // lanes of a (depending on t) with the even lanes of b. 4800 def : Pat<(VTI.Vec (MVEvmovn (VTI.Vec MQPR:$Qd_src), 4801 (VTI.Vec MQPR:$Qm), (i32 top))), 4802 (VTI.Vec (Inst (VTI.Vec MQPR:$Qd_src), (VTI.Vec MQPR:$Qm)))>; 4803 4804 if !not(top) then { 4805 // If we see MVEvmovn(a,ARMvrev(b),1), that wants to overwrite the odd 4806 // lanes of a with the odd lanes of b. In other words, the lanes we're 4807 // _keeping_ from a are the even ones. So we can flip it round and say that 4808 // this is the same as overwriting the even lanes of b with the even lanes 4809 // of a, i.e. it's a VMOVNB with the operands reversed. 4810 defvar vrev = !cast<SDNode>("ARMvrev" # InVTI.LaneBits); 4811 def : Pat<(VTI.Vec (MVEvmovn (VTI.Vec MQPR:$Qm), 4812 (VTI.Vec (vrev MQPR:$Qd_src)), (i32 1))), 4813 (VTI.Vec (Inst (VTI.Vec MQPR:$Qd_src), (VTI.Vec MQPR:$Qm)))>; 4814 } 4815 4816 // Match the IR intrinsic for a predicated VMOVN. This regards the Qm input 4817 // as having wider lanes that we're narrowing, instead of already-narrow 4818 // lanes that we're taking every other one of. 4819 def : Pat<(VTI.Vec (int_arm_mve_vmovn_predicated (VTI.Vec MQPR:$Qd_src), 4820 (InVTI.Vec MQPR:$Qm), (i32 top), 4821 (InVTI.Pred VCCR:$pred))), 4822 (VTI.Vec (Inst (VTI.Vec MQPR:$Qd_src), 4823 (InVTI.Vec MQPR:$Qm), 4824 ARMVCCThen, (InVTI.Pred VCCR:$pred)))>; 4825} 4826 4827defm : MVE_VMOVN_p<MVE_VMOVNi32bh, 0, MVE_v8i16, MVE_v4i32>; 4828defm : MVE_VMOVN_p<MVE_VMOVNi32th, 1, MVE_v8i16, MVE_v4i32>; 4829defm : MVE_VMOVN_p<MVE_VMOVNi16bh, 0, MVE_v16i8, MVE_v8i16>; 4830defm : MVE_VMOVN_p<MVE_VMOVNi16th, 1, MVE_v16i8, MVE_v8i16>; 4831 4832multiclass MVE_VQMOVN_p<Instruction Inst, bit outU, bit inU, bit top, 4833 MVEVectorVTInfo VTI, MVEVectorVTInfo InVTI> { 4834 def : Pat<(VTI.Vec (int_arm_mve_vqmovn (VTI.Vec MQPR:$Qd_src), 4835 (InVTI.Vec MQPR:$Qm), 4836 (i32 outU), (i32 inU), (i32 top))), 4837 (VTI.Vec (Inst (VTI.Vec MQPR:$Qd_src), 4838 (InVTI.Vec MQPR:$Qm)))>; 4839 4840 def : Pat<(VTI.Vec (int_arm_mve_vqmovn_predicated (VTI.Vec MQPR:$Qd_src), 4841 (InVTI.Vec MQPR:$Qm), 4842 (i32 outU), (i32 inU), (i32 top), 4843 (InVTI.Pred VCCR:$pred))), 4844 (VTI.Vec (Inst (VTI.Vec MQPR:$Qd_src), 4845 (InVTI.Vec MQPR:$Qm), 4846 ARMVCCThen, (InVTI.Pred VCCR:$pred)))>; 4847} 4848 4849defm : MVE_VQMOVN_p<MVE_VQMOVNs32bh, 0, 0, 0, MVE_v8i16, MVE_v4i32>; 4850defm : MVE_VQMOVN_p<MVE_VQMOVNs32th, 0, 0, 1, MVE_v8i16, MVE_v4i32>; 4851defm : MVE_VQMOVN_p<MVE_VQMOVNs16bh, 0, 0, 0, MVE_v16i8, MVE_v8i16>; 4852defm : MVE_VQMOVN_p<MVE_VQMOVNs16th, 0, 0, 1, MVE_v16i8, MVE_v8i16>; 4853defm : MVE_VQMOVN_p<MVE_VQMOVNu32bh, 1, 1, 0, MVE_v8i16, MVE_v4i32>; 4854defm : MVE_VQMOVN_p<MVE_VQMOVNu32th, 1, 1, 1, MVE_v8i16, MVE_v4i32>; 4855defm : MVE_VQMOVN_p<MVE_VQMOVNu16bh, 1, 1, 0, MVE_v16i8, MVE_v8i16>; 4856defm : MVE_VQMOVN_p<MVE_VQMOVNu16th, 1, 1, 1, MVE_v16i8, MVE_v8i16>; 4857defm : MVE_VQMOVN_p<MVE_VQMOVUNs32bh, 1, 0, 0, MVE_v8i16, MVE_v4i32>; 4858defm : MVE_VQMOVN_p<MVE_VQMOVUNs32th, 1, 0, 1, MVE_v8i16, MVE_v4i32>; 4859defm : MVE_VQMOVN_p<MVE_VQMOVUNs16bh, 1, 0, 0, MVE_v16i8, MVE_v8i16>; 4860defm : MVE_VQMOVN_p<MVE_VQMOVUNs16th, 1, 0, 1, MVE_v16i8, MVE_v8i16>; 4861 4862def SDTARMVMOVNQ : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0, 1>, 4863 SDTCisVec<2>, SDTCisVT<3, i32>]>; 4864def MVEvqmovns : SDNode<"ARMISD::VQMOVNs", SDTARMVMOVNQ>; 4865def MVEvqmovnu : SDNode<"ARMISD::VQMOVNu", SDTARMVMOVNQ>; 4866 4867let Predicates = [HasMVEInt] in { 4868 def : Pat<(v8i16 (MVEvqmovns (v8i16 MQPR:$Qd_src), (v4i32 MQPR:$Qm), (i32 0))), 4869 (v8i16 (MVE_VQMOVNs32bh (v8i16 MQPR:$Qd_src), (v4i32 MQPR:$Qm)))>; 4870 def : Pat<(v8i16 (MVEvqmovns (v8i16 MQPR:$Qd_src), (v4i32 MQPR:$Qm), (i32 1))), 4871 (v8i16 (MVE_VQMOVNs32th (v8i16 MQPR:$Qd_src), (v4i32 MQPR:$Qm)))>; 4872 def : Pat<(v16i8 (MVEvqmovns (v16i8 MQPR:$Qd_src), (v8i16 MQPR:$Qm), (i32 0))), 4873 (v16i8 (MVE_VQMOVNs16bh (v16i8 MQPR:$Qd_src), (v8i16 MQPR:$Qm)))>; 4874 def : Pat<(v16i8 (MVEvqmovns (v16i8 MQPR:$Qd_src), (v8i16 MQPR:$Qm), (i32 1))), 4875 (v16i8 (MVE_VQMOVNs16th (v16i8 MQPR:$Qd_src), (v8i16 MQPR:$Qm)))>; 4876 4877 def : Pat<(v8i16 (MVEvqmovnu (v8i16 MQPR:$Qd_src), (v4i32 MQPR:$Qm), (i32 0))), 4878 (v8i16 (MVE_VQMOVNu32bh (v8i16 MQPR:$Qd_src), (v4i32 MQPR:$Qm)))>; 4879 def : Pat<(v8i16 (MVEvqmovnu (v8i16 MQPR:$Qd_src), (v4i32 MQPR:$Qm), (i32 1))), 4880 (v8i16 (MVE_VQMOVNu32th (v8i16 MQPR:$Qd_src), (v4i32 MQPR:$Qm)))>; 4881 def : Pat<(v16i8 (MVEvqmovnu (v16i8 MQPR:$Qd_src), (v8i16 MQPR:$Qm), (i32 0))), 4882 (v16i8 (MVE_VQMOVNu16bh (v16i8 MQPR:$Qd_src), (v8i16 MQPR:$Qm)))>; 4883 def : Pat<(v16i8 (MVEvqmovnu (v16i8 MQPR:$Qd_src), (v8i16 MQPR:$Qm), (i32 1))), 4884 (v16i8 (MVE_VQMOVNu16th (v16i8 MQPR:$Qd_src), (v8i16 MQPR:$Qm)))>; 4885 4886 def : Pat<(v8i16 (MVEvqmovns (v8i16 MQPR:$Qd_src), (v4i32 (ARMvshrsImm (v4i32 MQPR:$Qm), imm0_31:$imm)), (i32 0))), 4887 (v8i16 (MVE_VQSHRNbhs32 (v8i16 MQPR:$Qd_src), (v4i32 MQPR:$Qm), imm0_31:$imm))>; 4888 def : Pat<(v16i8 (MVEvqmovns (v16i8 MQPR:$Qd_src), (v8i16 (ARMvshrsImm (v8i16 MQPR:$Qm), imm0_15:$imm)), (i32 0))), 4889 (v16i8 (MVE_VQSHRNbhs16 (v16i8 MQPR:$Qd_src), (v8i16 MQPR:$Qm), imm0_15:$imm))>; 4890 def : Pat<(v8i16 (MVEvqmovns (v8i16 MQPR:$Qd_src), (v4i32 (ARMvshrsImm (v4i32 MQPR:$Qm), imm0_31:$imm)), (i32 1))), 4891 (v8i16 (MVE_VQSHRNths32 (v8i16 MQPR:$Qd_src), (v4i32 MQPR:$Qm), imm0_31:$imm))>; 4892 def : Pat<(v16i8 (MVEvqmovns (v16i8 MQPR:$Qd_src), (v8i16 (ARMvshrsImm (v8i16 MQPR:$Qm), imm0_15:$imm)), (i32 1))), 4893 (v16i8 (MVE_VQSHRNths16 (v16i8 MQPR:$Qd_src), (v8i16 MQPR:$Qm), imm0_15:$imm))>; 4894 4895 def : Pat<(v8i16 (MVEvqmovnu (v8i16 MQPR:$Qd_src), (v4i32 (ARMvshruImm (v4i32 MQPR:$Qm), imm0_31:$imm)), (i32 0))), 4896 (v8i16 (MVE_VQSHRNbhu32 (v8i16 MQPR:$Qd_src), (v4i32 MQPR:$Qm), imm0_31:$imm))>; 4897 def : Pat<(v16i8 (MVEvqmovnu (v16i8 MQPR:$Qd_src), (v8i16 (ARMvshruImm (v8i16 MQPR:$Qm), imm0_15:$imm)), (i32 0))), 4898 (v16i8 (MVE_VQSHRNbhu16 (v16i8 MQPR:$Qd_src), (v8i16 MQPR:$Qm), imm0_15:$imm))>; 4899 def : Pat<(v8i16 (MVEvqmovnu (v8i16 MQPR:$Qd_src), (v4i32 (ARMvshruImm (v4i32 MQPR:$Qm), imm0_31:$imm)), (i32 1))), 4900 (v8i16 (MVE_VQSHRNthu32 (v8i16 MQPR:$Qd_src), (v4i32 MQPR:$Qm), imm0_31:$imm))>; 4901 def : Pat<(v16i8 (MVEvqmovnu (v16i8 MQPR:$Qd_src), (v8i16 (ARMvshruImm (v8i16 MQPR:$Qm), imm0_15:$imm)), (i32 1))), 4902 (v16i8 (MVE_VQSHRNthu16 (v16i8 MQPR:$Qd_src), (v8i16 MQPR:$Qm), imm0_15:$imm))>; 4903} 4904 4905class MVE_VCVT_ff<string iname, string suffix, bit op, bit T, 4906 dag iops_extra, vpred_ops vpred, string cstr> 4907 : MVE_qDest_qSrc<iname, suffix, (outs MQPR:$Qd), 4908 !con(iops_extra, (ins MQPR:$Qm)), "$Qd, $Qm", 4909 vpred, cstr, []> { 4910 let Inst{28} = op; 4911 let Inst{21-16} = 0b111111; 4912 let Inst{12} = T; 4913 let Inst{8-7} = 0b00; 4914 let Inst{0} = 0b1; 4915 4916 let Predicates = [HasMVEFloat]; 4917 let retainsPreviousHalfElement = 1; 4918} 4919 4920def SDTARMVCVTL : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>, 4921 SDTCisVT<2, i32>]>; 4922def MVEvcvtn : SDNode<"ARMISD::VCVTN", SDTARMVMOVNQ>; 4923def MVEvcvtl : SDNode<"ARMISD::VCVTL", SDTARMVCVTL>; 4924 4925multiclass MVE_VCVT_f2h_m<string iname, int half> { 4926 def "": MVE_VCVT_ff<iname, "f16.f32", 0b0, half, 4927 (ins MQPR:$Qd_src), vpred_n, "$Qd = $Qd_src">; 4928 defvar Inst = !cast<Instruction>(NAME); 4929 4930 let Predicates = [HasMVEFloat] in { 4931 def : Pat<(v8f16 (int_arm_mve_vcvt_narrow 4932 (v8f16 MQPR:$Qd_src), (v4f32 MQPR:$Qm), (i32 half))), 4933 (v8f16 (Inst (v8f16 MQPR:$Qd_src), (v4f32 MQPR:$Qm)))>; 4934 def : Pat<(v8f16 (int_arm_mve_vcvt_narrow_predicated 4935 (v8f16 MQPR:$Qd_src), (v4f32 MQPR:$Qm), (i32 half), 4936 (v4i1 VCCR:$mask))), 4937 (v8f16 (Inst (v8f16 MQPR:$Qd_src), (v4f32 MQPR:$Qm), 4938 ARMVCCThen, (v4i1 VCCR:$mask)))>; 4939 4940 def : Pat<(v8f16 (MVEvcvtn (v8f16 MQPR:$Qd_src), (v4f32 MQPR:$Qm), (i32 half))), 4941 (v8f16 (Inst (v8f16 MQPR:$Qd_src), (v4f32 MQPR:$Qm)))>; 4942 } 4943} 4944 4945multiclass MVE_VCVT_h2f_m<string iname, int half> { 4946 def "": MVE_VCVT_ff<iname, "f32.f16", 0b1, half, (ins), vpred_r, "">; 4947 defvar Inst = !cast<Instruction>(NAME); 4948 4949 let Predicates = [HasMVEFloat] in { 4950 def : Pat<(v4f32 (int_arm_mve_vcvt_widen (v8f16 MQPR:$Qm), (i32 half))), 4951 (v4f32 (Inst (v8f16 MQPR:$Qm)))>; 4952 def : Pat<(v4f32 (int_arm_mve_vcvt_widen_predicated 4953 (v4f32 MQPR:$inactive), (v8f16 MQPR:$Qm), (i32 half), 4954 (v4i1 VCCR:$mask))), 4955 (v4f32 (Inst (v8f16 MQPR:$Qm), ARMVCCThen, 4956 (v4i1 VCCR:$mask), (v4f32 MQPR:$inactive)))>; 4957 4958 def : Pat<(v4f32 (MVEvcvtl (v8f16 MQPR:$Qm), (i32 half))), 4959 (v4f32 (Inst (v8f16 MQPR:$Qm)))>; 4960 } 4961} 4962 4963defm MVE_VCVTf16f32bh : MVE_VCVT_f2h_m<"vcvtb", 0b0>; 4964defm MVE_VCVTf16f32th : MVE_VCVT_f2h_m<"vcvtt", 0b1>; 4965defm MVE_VCVTf32f16bh : MVE_VCVT_h2f_m<"vcvtb", 0b0>; 4966defm MVE_VCVTf32f16th : MVE_VCVT_h2f_m<"vcvtt", 0b1>; 4967 4968class MVE_VxCADD<string iname, string suffix, bits<2> size, bit halve, 4969 string cstr=""> 4970 : MVE_qDest_qSrc<iname, suffix, (outs MQPR:$Qd), 4971 (ins MQPR:$Qn, MQPR:$Qm, complexrotateopodd:$rot), 4972 "$Qd, $Qn, $Qm, $rot", vpred_r, cstr, []> { 4973 bits<4> Qn; 4974 bit rot; 4975 4976 let Inst{28} = halve; 4977 let Inst{21-20} = size; 4978 let Inst{19-17} = Qn{2-0}; 4979 let Inst{16} = 0b0; 4980 let Inst{12} = rot; 4981 let Inst{8} = 0b1; 4982 let Inst{7} = Qn{3}; 4983 let Inst{0} = 0b0; 4984} 4985 4986multiclass MVE_VxCADD_m<string iname, MVEVectorVTInfo VTI, 4987 bit halve, string cstr=""> { 4988 def "" : MVE_VxCADD<iname, VTI.Suffix, VTI.Size, halve, cstr>; 4989 defvar Inst = !cast<Instruction>(NAME); 4990 4991 let Predicates = [HasMVEInt] in { 4992 def : Pat<(VTI.Vec (int_arm_mve_vcaddq halve, 4993 imm:$rot, (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm))), 4994 (VTI.Vec (Inst (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), 4995 imm:$rot))>; 4996 4997 def : Pat<(VTI.Vec (int_arm_mve_vcaddq_predicated halve, 4998 imm:$rot, (VTI.Vec MQPR:$inactive), 4999 (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), 5000 (VTI.Pred VCCR:$mask))), 5001 (VTI.Vec (Inst (VTI.Vec MQPR:$Qn), (VTI.Vec MQPR:$Qm), 5002 imm:$rot, ARMVCCThen, (VTI.Pred VCCR:$mask), 5003 (VTI.Vec MQPR:$inactive)))>; 5004 5005 } 5006} 5007 5008defm MVE_VCADDi8 : MVE_VxCADD_m<"vcadd", MVE_v16i8, 0b1>; 5009defm MVE_VCADDi16 : MVE_VxCADD_m<"vcadd", MVE_v8i16, 0b1>; 5010defm MVE_VCADDi32 : MVE_VxCADD_m<"vcadd", MVE_v4i32, 0b1, "@earlyclobber $Qd">; 5011 5012defm MVE_VHCADDs8 : MVE_VxCADD_m<"vhcadd", MVE_v16s8, 0b0>; 5013defm MVE_VHCADDs16 : MVE_VxCADD_m<"vhcadd", MVE_v8s16, 0b0>; 5014defm MVE_VHCADDs32 : MVE_VxCADD_m<"vhcadd", MVE_v4s32, 0b0, "@earlyclobber $Qd">; 5015 5016class MVE_VADCSBC<string iname, bit I, bit subtract, 5017 dag carryin, list<dag> pattern=[]> 5018 : MVE_qDest_qSrc<iname, "i32", (outs MQPR:$Qd, cl_FPSCR_NZCV:$carryout), 5019 !con((ins MQPR:$Qn, MQPR:$Qm), carryin), 5020 "$Qd, $Qn, $Qm", vpred_r, "", pattern> { 5021 bits<4> Qn; 5022 5023 let Inst{28} = subtract; 5024 let Inst{21-20} = 0b11; 5025 let Inst{19-17} = Qn{2-0}; 5026 let Inst{16} = 0b0; 5027 let Inst{12} = I; 5028 let Inst{8} = 0b1; 5029 let Inst{7} = Qn{3}; 5030 let Inst{0} = 0b0; 5031 5032 // Custom decoder method in order to add the FPSCR operand(s), which 5033 // Tablegen won't do right 5034 let DecoderMethod = "DecodeMVEVADCInstruction"; 5035} 5036 5037def MVE_VADC : MVE_VADCSBC<"vadc", 0b0, 0b0, (ins cl_FPSCR_NZCV:$carryin)>; 5038def MVE_VADCI : MVE_VADCSBC<"vadci", 0b1, 0b0, (ins)>; 5039 5040def MVE_VSBC : MVE_VADCSBC<"vsbc", 0b0, 0b1, (ins cl_FPSCR_NZCV:$carryin)>; 5041def MVE_VSBCI : MVE_VADCSBC<"vsbci", 0b1, 0b1, (ins)>; 5042 5043class MVE_VQDMULL<string iname, string suffix, bit size, bit T, 5044 string cstr="", list<dag> pattern=[]> 5045 : MVE_qDest_qSrc<iname, suffix, (outs MQPR:$Qd), 5046 (ins MQPR:$Qn, MQPR:$Qm), "$Qd, $Qn, $Qm", 5047 vpred_r, cstr, pattern> { 5048 bits<4> Qn; 5049 5050 let Inst{28} = size; 5051 let Inst{21-20} = 0b11; 5052 let Inst{19-17} = Qn{2-0}; 5053 let Inst{16} = 0b0; 5054 let Inst{12} = T; 5055 let Inst{8} = 0b1; 5056 let Inst{7} = Qn{3}; 5057 let Inst{0} = 0b1; 5058 let validForTailPredication = 1; 5059 let doubleWidthResult = 1; 5060} 5061 5062multiclass MVE_VQDMULL_m<string iname, MVEVectorVTInfo VTI, bit size, bit T, 5063 string cstr> { 5064 def "" : MVE_VQDMULL<iname, VTI.Suffix, size, T, cstr>; 5065 defvar Inst = !cast<Instruction>(NAME); 5066 5067 let Predicates = [HasMVEInt] in { 5068 // Unpredicated saturating multiply 5069 def : Pat<(VTI.DblVec (int_arm_mve_vqdmull (VTI.Vec MQPR:$Qm), 5070 (VTI.Vec MQPR:$Qn), (i32 T))), 5071 (VTI.DblVec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn)))>; 5072 // Predicated saturating multiply 5073 def : Pat<(VTI.DblVec (int_arm_mve_vqdmull_predicated 5074 (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), 5075 (i32 T), (VTI.DblPred VCCR:$mask), 5076 (VTI.DblVec MQPR:$inactive))), 5077 (VTI.DblVec (Inst (VTI.Vec MQPR:$Qm), (VTI.Vec MQPR:$Qn), 5078 ARMVCCThen, (VTI.DblPred VCCR:$mask), 5079 (VTI.DblVec MQPR:$inactive)))>; 5080 } 5081} 5082 5083multiclass MVE_VQDMULL_halves<MVEVectorVTInfo VTI, bit size, string cstr=""> { 5084 defm bh : MVE_VQDMULL_m<"vqdmullb", VTI, size, 0b0, cstr>; 5085 defm th : MVE_VQDMULL_m<"vqdmullt", VTI, size, 0b1, cstr>; 5086} 5087 5088defm MVE_VQDMULLs16 : MVE_VQDMULL_halves<MVE_v8s16, 0b0>; 5089defm MVE_VQDMULLs32 : MVE_VQDMULL_halves<MVE_v4s32, 0b1, "@earlyclobber $Qd">; 5090 5091// end of mve_qDest_qSrc 5092 5093// start of mve_qDest_rSrc 5094 5095class MVE_qr_base<dag oops, dag iops, InstrItinClass itin, string iname, 5096 string suffix, string ops, vpred_ops vpred, string cstr, 5097 list<dag> pattern=[]> 5098 : MVE_p<oops, iops, NoItinerary, iname, suffix, ops, vpred, cstr, pattern> { 5099 bits<4> Qd; 5100 bits<4> Qn; 5101 bits<4> Rm; 5102 5103 let Inst{25-23} = 0b100; 5104 let Inst{22} = Qd{3}; 5105 let Inst{19-17} = Qn{2-0}; 5106 let Inst{15-13} = Qd{2-0}; 5107 let Inst{11-9} = 0b111; 5108 let Inst{7} = Qn{3}; 5109 let Inst{6} = 0b1; 5110 let Inst{4} = 0b0; 5111 let Inst{3-0} = Rm{3-0}; 5112} 5113 5114class MVE_qDest_rSrc<string iname, string suffix, string cstr="", list<dag> pattern=[]> 5115 : MVE_qr_base<(outs MQPR:$Qd), (ins MQPR:$Qn, rGPR:$Rm), 5116 NoItinerary, iname, suffix, "$Qd, $Qn, $Rm", vpred_r, cstr, 5117 pattern>; 5118 5119class MVE_qDestSrc_rSrc<string iname, string suffix, list<dag> pattern=[]> 5120 : MVE_qr_base<(outs MQPR:$Qd), (ins MQPR:$Qd_src, MQPR:$Qn, rGPR:$Rm), 5121 NoItinerary, iname, suffix, "$Qd, $Qn, $Rm", vpred_n, "$Qd = $Qd_src", 5122 pattern>; 5123 5124class MVE_qDest_single_rSrc<string iname, string suffix, list<dag> pattern=[]> 5125 : MVE_p<(outs MQPR:$Qd), (ins MQPR:$Qd_src, rGPR:$Rm), NoItinerary, iname, 5126 suffix, "$Qd, $Rm", vpred_n, "$Qd = $Qd_src", pattern> { 5127 bits<4> Qd; 5128 bits<4> Rm; 5129 5130 let Inst{22} = Qd{3}; 5131 let Inst{15-13} = Qd{2-0}; 5132 let Inst{3-0} = Rm{3-0}; 5133} 5134 5135// Patterns for vector-scalar instructions with integer operands 5136multiclass MVE_vec_scalar_int_pat_m<Instruction inst, MVEVectorVTInfo VTI, 5137 SDNode unpred_op, SDNode pred_op, 5138 bit unpred_has_sign = 0, 5139 bit pred_has_sign = 0> { 5140 defvar UnpredSign = !if(unpred_has_sign, (? (i32 VTI.Unsigned)), (?)); 5141 defvar PredSign = !if(pred_has_sign, (? (i32 VTI.Unsigned)), (?)); 5142 5143 let Predicates = [HasMVEInt] in { 5144 // Unpredicated version 5145 def : Pat<(VTI.Vec !con((unpred_op (VTI.Vec MQPR:$Qm), 5146 (VTI.Vec (ARMvdup rGPR:$val))), 5147 UnpredSign)), 5148 (VTI.Vec (inst (VTI.Vec MQPR:$Qm), (i32 rGPR:$val)))>; 5149 // Predicated version 5150 def : Pat<(VTI.Vec !con((pred_op (VTI.Vec MQPR:$Qm), 5151 (VTI.Vec (ARMvdup rGPR:$val))), 5152 PredSign, 5153 (pred_op (VTI.Pred VCCR:$mask), 5154 (VTI.Vec MQPR:$inactive)))), 5155 (VTI.Vec (inst (VTI.Vec MQPR:$Qm), (i32 rGPR:$val), 5156 ARMVCCThen, (VTI.Pred VCCR:$mask), 5157 (VTI.Vec MQPR:$inactive)))>; 5158 } 5159} 5160 5161class MVE_VADDSUB_qr<string iname, string suffix, bits<2> size, 5162 bit bit_5, bit bit_12, bit bit_16, bit bit_28> 5163 : MVE_qDest_rSrc<iname, suffix, ""> { 5164 5165 let Inst{28} = bit_28; 5166 let Inst{21-20} = size; 5167 let Inst{16} = bit_16; 5168 let Inst{12} = bit_12; 5169 let Inst{8} = 0b1; 5170 let Inst{5} = bit_5; 5171 let validForTailPredication = 1; 5172} 5173 5174// Vector-scalar add/sub 5175multiclass MVE_VADDSUB_qr_m<string iname, MVEVectorVTInfo VTI, bit subtract, 5176 SDNode Op, Intrinsic PredInt> { 5177 def "" : MVE_VADDSUB_qr<iname, VTI.Suffix, VTI.Size, 0b0, subtract, 0b1, 0b0>; 5178 let Predicates = [HasMVEInt] in { 5179 defm : MVE_TwoOpPatternDup<VTI, Op, PredInt, (? ), !cast<Instruction>(NAME), ARMimmAllZerosV>; 5180 } 5181} 5182 5183multiclass MVE_VADD_qr_m<MVEVectorVTInfo VTI> 5184 : MVE_VADDSUB_qr_m<"vadd", VTI, 0b0, add, int_arm_mve_add_predicated>; 5185 5186multiclass MVE_VSUB_qr_m<MVEVectorVTInfo VTI> 5187 : MVE_VADDSUB_qr_m<"vsub", VTI, 0b1, sub, int_arm_mve_sub_predicated>; 5188 5189defm MVE_VADD_qr_i8 : MVE_VADD_qr_m<MVE_v16i8>; 5190defm MVE_VADD_qr_i16 : MVE_VADD_qr_m<MVE_v8i16>; 5191defm MVE_VADD_qr_i32 : MVE_VADD_qr_m<MVE_v4i32>; 5192 5193defm MVE_VSUB_qr_i8 : MVE_VSUB_qr_m<MVE_v16i8>; 5194defm MVE_VSUB_qr_i16 : MVE_VSUB_qr_m<MVE_v8i16>; 5195defm MVE_VSUB_qr_i32 : MVE_VSUB_qr_m<MVE_v4i32>; 5196 5197// Vector-scalar saturating add/sub 5198multiclass MVE_VQADDSUB_qr_m<string iname, MVEVectorVTInfo VTI, bit subtract, 5199 SDNode Op, Intrinsic PredInt> { 5200 def "" : MVE_VADDSUB_qr<iname, VTI.Suffix, VTI.Size, 0b1, subtract, 5201 0b0, VTI.Unsigned>; 5202 5203 let Predicates = [HasMVEInt] in { 5204 defm : MVE_TwoOpPatternDup<VTI, Op, PredInt, (? (i32 VTI.Unsigned)), 5205 !cast<Instruction>(NAME)>; 5206 } 5207} 5208 5209multiclass MVE_VQADD_qr_m<MVEVectorVTInfo VTI, SDNode Op> 5210 : MVE_VQADDSUB_qr_m<"vqadd", VTI, 0b0, Op, int_arm_mve_qadd_predicated>; 5211 5212multiclass MVE_VQSUB_qr_m<MVEVectorVTInfo VTI, SDNode Op> 5213 : MVE_VQADDSUB_qr_m<"vqsub", VTI, 0b1, Op, int_arm_mve_qsub_predicated>; 5214 5215defm MVE_VQADD_qr_s8 : MVE_VQADD_qr_m<MVE_v16s8, saddsat>; 5216defm MVE_VQADD_qr_s16 : MVE_VQADD_qr_m<MVE_v8s16, saddsat>; 5217defm MVE_VQADD_qr_s32 : MVE_VQADD_qr_m<MVE_v4s32, saddsat>; 5218defm MVE_VQADD_qr_u8 : MVE_VQADD_qr_m<MVE_v16u8, uaddsat>; 5219defm MVE_VQADD_qr_u16 : MVE_VQADD_qr_m<MVE_v8u16, uaddsat>; 5220defm MVE_VQADD_qr_u32 : MVE_VQADD_qr_m<MVE_v4u32, uaddsat>; 5221 5222defm MVE_VQSUB_qr_s8 : MVE_VQSUB_qr_m<MVE_v16s8, ssubsat>; 5223defm MVE_VQSUB_qr_s16 : MVE_VQSUB_qr_m<MVE_v8s16, ssubsat>; 5224defm MVE_VQSUB_qr_s32 : MVE_VQSUB_qr_m<MVE_v4s32, ssubsat>; 5225defm MVE_VQSUB_qr_u8 : MVE_VQSUB_qr_m<MVE_v16u8, usubsat>; 5226defm MVE_VQSUB_qr_u16 : MVE_VQSUB_qr_m<MVE_v8u16, usubsat>; 5227defm MVE_VQSUB_qr_u32 : MVE_VQSUB_qr_m<MVE_v4u32, usubsat>; 5228 5229class MVE_VQDMULL_qr<string iname, string suffix, bit size, 5230 bit T, string cstr="", list<dag> pattern=[]> 5231 : MVE_qDest_rSrc<iname, suffix, cstr, pattern> { 5232 5233 let Inst{28} = size; 5234 let Inst{21-20} = 0b11; 5235 let Inst{16} = 0b0; 5236 let Inst{12} = T; 5237 let Inst{8} = 0b1; 5238 let Inst{5} = 0b1; 5239 let validForTailPredication = 1; 5240 let doubleWidthResult = 1; 5241} 5242 5243multiclass MVE_VQDMULL_qr_m<string iname, MVEVectorVTInfo VTI, bit size, 5244 bit T, string cstr> { 5245 def "" : MVE_VQDMULL_qr<iname, VTI.Suffix, size, T, cstr>; 5246 defvar Inst = !cast<Instruction>(NAME); 5247 5248 let Predicates = [HasMVEInt] in { 5249 // Unpredicated saturating multiply 5250 def : Pat<(VTI.DblVec (int_arm_mve_vqdmull (VTI.Vec MQPR:$Qm), 5251 (VTI.Vec (ARMvdup rGPR:$val)), 5252 (i32 T))), 5253 (VTI.DblVec (Inst (VTI.Vec MQPR:$Qm), (i32 rGPR:$val)))>; 5254 // Predicated saturating multiply 5255 def : Pat<(VTI.DblVec (int_arm_mve_vqdmull_predicated 5256 (VTI.Vec MQPR:$Qm), 5257 (VTI.Vec (ARMvdup rGPR:$val)), 5258 (i32 T), 5259 (VTI.DblPred VCCR:$mask), 5260 (VTI.DblVec MQPR:$inactive))), 5261 (VTI.DblVec (Inst (VTI.Vec MQPR:$Qm), (i32 rGPR:$val), 5262 ARMVCCThen, (VTI.DblPred VCCR:$mask), 5263 (VTI.DblVec MQPR:$inactive)))>; 5264 } 5265} 5266 5267multiclass MVE_VQDMULL_qr_halves<MVEVectorVTInfo VTI, bit size, string cstr=""> { 5268 defm bh : MVE_VQDMULL_qr_m<"vqdmullb", VTI, size, 0b0, cstr>; 5269 defm th : MVE_VQDMULL_qr_m<"vqdmullt", VTI, size, 0b1, cstr>; 5270} 5271 5272defm MVE_VQDMULL_qr_s16 : MVE_VQDMULL_qr_halves<MVE_v8s16, 0b0>; 5273defm MVE_VQDMULL_qr_s32 : MVE_VQDMULL_qr_halves<MVE_v4s32, 0b1, "@earlyclobber $Qd">; 5274 5275class MVE_VxADDSUB_qr<string iname, string suffix, 5276 bit bit_28, bits<2> bits_21_20, bit subtract, 5277 list<dag> pattern=[]> 5278 : MVE_qDest_rSrc<iname, suffix, "", pattern> { 5279 5280 let Inst{28} = bit_28; 5281 let Inst{21-20} = bits_21_20; 5282 let Inst{16} = 0b0; 5283 let Inst{12} = subtract; 5284 let Inst{8} = 0b1; 5285 let Inst{5} = 0b0; 5286 let validForTailPredication = 1; 5287} 5288 5289multiclass MVE_VHADDSUB_qr_m<string iname, MVEVectorVTInfo VTI, bit subtract, 5290 Intrinsic unpred_int, Intrinsic pred_int> { 5291 def "" : MVE_VxADDSUB_qr<iname, VTI.Suffix, VTI.Unsigned, VTI.Size, subtract>; 5292 defm : MVE_vec_scalar_int_pat_m<!cast<Instruction>(NAME), 5293 VTI, unpred_int, pred_int, 1, 1>; 5294} 5295 5296multiclass MVE_VHADD_qr_m<MVEVectorVTInfo VTI> : 5297 MVE_VHADDSUB_qr_m<"vhadd", VTI, 0b0, int_arm_mve_vhadd, 5298 int_arm_mve_hadd_predicated>; 5299 5300multiclass MVE_VHSUB_qr_m<MVEVectorVTInfo VTI> : 5301 MVE_VHADDSUB_qr_m<"vhsub", VTI, 0b1, int_arm_mve_vhsub, 5302 int_arm_mve_hsub_predicated>; 5303 5304defm MVE_VHADD_qr_s8 : MVE_VHADD_qr_m<MVE_v16s8>; 5305defm MVE_VHADD_qr_s16 : MVE_VHADD_qr_m<MVE_v8s16>; 5306defm MVE_VHADD_qr_s32 : MVE_VHADD_qr_m<MVE_v4s32>; 5307defm MVE_VHADD_qr_u8 : MVE_VHADD_qr_m<MVE_v16u8>; 5308defm MVE_VHADD_qr_u16 : MVE_VHADD_qr_m<MVE_v8u16>; 5309defm MVE_VHADD_qr_u32 : MVE_VHADD_qr_m<MVE_v4u32>; 5310 5311defm MVE_VHSUB_qr_s8 : MVE_VHSUB_qr_m<MVE_v16s8>; 5312defm MVE_VHSUB_qr_s16 : MVE_VHSUB_qr_m<MVE_v8s16>; 5313defm MVE_VHSUB_qr_s32 : MVE_VHSUB_qr_m<MVE_v4s32>; 5314defm MVE_VHSUB_qr_u8 : MVE_VHSUB_qr_m<MVE_v16u8>; 5315defm MVE_VHSUB_qr_u16 : MVE_VHSUB_qr_m<MVE_v8u16>; 5316defm MVE_VHSUB_qr_u32 : MVE_VHSUB_qr_m<MVE_v4u32>; 5317 5318multiclass MVE_VADDSUB_qr_f<string iname, MVEVectorVTInfo VTI, bit subtract, 5319 SDNode Op, Intrinsic PredInt> { 5320 def "" : MVE_VxADDSUB_qr<iname, VTI.Suffix, VTI.Size{0}, 0b11, subtract>; 5321 defm : MVE_TwoOpPatternDup<VTI, Op, PredInt, (? ), 5322 !cast<Instruction>(NAME)>; 5323} 5324 5325let Predicates = [HasMVEFloat] in { 5326 defm MVE_VADD_qr_f32 : MVE_VADDSUB_qr_f<"vadd", MVE_v4f32, 0b0, fadd, 5327 int_arm_mve_add_predicated>; 5328 defm MVE_VADD_qr_f16 : MVE_VADDSUB_qr_f<"vadd", MVE_v8f16, 0b0, fadd, 5329 int_arm_mve_add_predicated>; 5330 5331 defm MVE_VSUB_qr_f32 : MVE_VADDSUB_qr_f<"vsub", MVE_v4f32, 0b1, fsub, 5332 int_arm_mve_sub_predicated>; 5333 defm MVE_VSUB_qr_f16 : MVE_VADDSUB_qr_f<"vsub", MVE_v8f16, 0b1, fsub, 5334 int_arm_mve_sub_predicated>; 5335} 5336 5337class MVE_VxSHL_qr<string iname, string suffix, bit U, bits<2> size, 5338 bit bit_7, bit bit_17, list<dag> pattern=[]> 5339 : MVE_qDest_single_rSrc<iname, suffix, pattern> { 5340 5341 let Inst{28} = U; 5342 let Inst{25-23} = 0b100; 5343 let Inst{21-20} = 0b11; 5344 let Inst{19-18} = size; 5345 let Inst{17} = bit_17; 5346 let Inst{16} = 0b1; 5347 let Inst{12-8} = 0b11110; 5348 let Inst{7} = bit_7; 5349 let Inst{6-4} = 0b110; 5350 let validForTailPredication = 1; 5351} 5352 5353multiclass MVE_VxSHL_qr_p<string iname, MVEVectorVTInfo VTI, bit q, bit r> { 5354 def "" : MVE_VxSHL_qr<iname, VTI.Suffix, VTI.Unsigned, VTI.Size, q, r>; 5355 defvar Inst = !cast<Instruction>(NAME); 5356 5357 def : Pat<(VTI.Vec (int_arm_mve_vshl_scalar 5358 (VTI.Vec MQPR:$in), (i32 rGPR:$sh), 5359 (i32 q), (i32 r), (i32 VTI.Unsigned))), 5360 (VTI.Vec (Inst (VTI.Vec MQPR:$in), (i32 rGPR:$sh)))>; 5361 5362 def : Pat<(VTI.Vec (int_arm_mve_vshl_scalar_predicated 5363 (VTI.Vec MQPR:$in), (i32 rGPR:$sh), 5364 (i32 q), (i32 r), (i32 VTI.Unsigned), 5365 (VTI.Pred VCCR:$mask))), 5366 (VTI.Vec (Inst (VTI.Vec MQPR:$in), (i32 rGPR:$sh), 5367 ARMVCCThen, (VTI.Pred VCCR:$mask)))>; 5368} 5369 5370multiclass MVE_VxSHL_qr_types<string iname, bit bit_7, bit bit_17> { 5371 defm s8 : MVE_VxSHL_qr_p<iname, MVE_v16s8, bit_7, bit_17>; 5372 defm s16 : MVE_VxSHL_qr_p<iname, MVE_v8s16, bit_7, bit_17>; 5373 defm s32 : MVE_VxSHL_qr_p<iname, MVE_v4s32, bit_7, bit_17>; 5374 defm u8 : MVE_VxSHL_qr_p<iname, MVE_v16u8, bit_7, bit_17>; 5375 defm u16 : MVE_VxSHL_qr_p<iname, MVE_v8u16, bit_7, bit_17>; 5376 defm u32 : MVE_VxSHL_qr_p<iname, MVE_v4u32, bit_7, bit_17>; 5377} 5378 5379defm MVE_VSHL_qr : MVE_VxSHL_qr_types<"vshl", 0b0, 0b0>; 5380defm MVE_VRSHL_qr : MVE_VxSHL_qr_types<"vrshl", 0b0, 0b1>; 5381defm MVE_VQSHL_qr : MVE_VxSHL_qr_types<"vqshl", 0b1, 0b0>; 5382defm MVE_VQRSHL_qr : MVE_VxSHL_qr_types<"vqrshl", 0b1, 0b1>; 5383 5384let Predicates = [HasMVEInt] in { 5385 def : Pat<(v4i32 (ARMvshlu (v4i32 MQPR:$Qm), (v4i32 (ARMvdup rGPR:$Rm)))), 5386 (v4i32 (MVE_VSHL_qru32 (v4i32 MQPR:$Qm), rGPR:$Rm))>; 5387 def : Pat<(v8i16 (ARMvshlu (v8i16 MQPR:$Qm), (v8i16 (ARMvdup rGPR:$Rm)))), 5388 (v8i16 (MVE_VSHL_qru16 (v8i16 MQPR:$Qm), rGPR:$Rm))>; 5389 def : Pat<(v16i8 (ARMvshlu (v16i8 MQPR:$Qm), (v16i8 (ARMvdup rGPR:$Rm)))), 5390 (v16i8 (MVE_VSHL_qru8 (v16i8 MQPR:$Qm), rGPR:$Rm))>; 5391 5392 def : Pat<(v4i32 (ARMvshls (v4i32 MQPR:$Qm), (v4i32 (ARMvdup rGPR:$Rm)))), 5393 (v4i32 (MVE_VSHL_qrs32 (v4i32 MQPR:$Qm), rGPR:$Rm))>; 5394 def : Pat<(v8i16 (ARMvshls (v8i16 MQPR:$Qm), (v8i16 (ARMvdup rGPR:$Rm)))), 5395 (v8i16 (MVE_VSHL_qrs16 (v8i16 MQPR:$Qm), rGPR:$Rm))>; 5396 def : Pat<(v16i8 (ARMvshls (v16i8 MQPR:$Qm), (v16i8 (ARMvdup rGPR:$Rm)))), 5397 (v16i8 (MVE_VSHL_qrs8 (v16i8 MQPR:$Qm), rGPR:$Rm))>; 5398} 5399 5400class MVE_VBRSR<string iname, string suffix, bits<2> size, list<dag> pattern=[]> 5401 : MVE_qDest_rSrc<iname, suffix, "", pattern> { 5402 5403 let Inst{28} = 0b1; 5404 let Inst{21-20} = size; 5405 let Inst{16} = 0b1; 5406 let Inst{12} = 0b1; 5407 let Inst{8} = 0b0; 5408 let Inst{5} = 0b1; 5409 let validForTailPredication = 1; 5410} 5411 5412def MVE_VBRSR8 : MVE_VBRSR<"vbrsr", "8", 0b00>; 5413def MVE_VBRSR16 : MVE_VBRSR<"vbrsr", "16", 0b01>; 5414def MVE_VBRSR32 : MVE_VBRSR<"vbrsr", "32", 0b10>; 5415 5416multiclass MVE_VBRSR_pat_m<MVEVectorVTInfo VTI, Instruction Inst> { 5417 // Unpredicated 5418 def : Pat<(VTI.Vec (int_arm_mve_vbrsr (VTI.Vec MQPR:$Qn), (i32 rGPR:$Rm))), 5419 (VTI.Vec (Inst (VTI.Vec MQPR:$Qn), (i32 rGPR:$Rm)))>; 5420 // Predicated 5421 def : Pat<(VTI.Vec (int_arm_mve_vbrsr_predicated 5422 (VTI.Vec MQPR:$inactive), 5423 (VTI.Vec MQPR:$Qn), (i32 rGPR:$Rm), 5424 (VTI.Pred VCCR:$mask))), 5425 (VTI.Vec (Inst (VTI.Vec MQPR:$Qn), (i32 rGPR:$Rm), 5426 ARMVCCThen, (VTI.Pred VCCR:$mask), 5427 (VTI.Vec MQPR:$inactive)))>; 5428} 5429 5430let Predicates = [HasMVEInt] in { 5431 def : Pat<(v16i8 ( bitreverse (v16i8 MQPR:$val1))), 5432 (v16i8 ( MVE_VBRSR8 (v16i8 MQPR:$val1), (t2MOVi (i32 8)) ))>; 5433 5434 def : Pat<(v4i32 ( bitreverse (v4i32 MQPR:$val1))), 5435 (v4i32 ( MVE_VBRSR32 (v4i32 MQPR:$val1), (t2MOVi (i32 32)) ))>; 5436 5437 def : Pat<(v8i16 ( bitreverse (v8i16 MQPR:$val1))), 5438 (v8i16 ( MVE_VBRSR16 (v8i16 MQPR:$val1), (t2MOVi (i32 16)) ))>; 5439 5440 defm : MVE_VBRSR_pat_m<MVE_v16i8, MVE_VBRSR8>; 5441 defm : MVE_VBRSR_pat_m<MVE_v8i16, MVE_VBRSR16>; 5442 defm : MVE_VBRSR_pat_m<MVE_v4i32, MVE_VBRSR32>; 5443} 5444 5445let Predicates = [HasMVEFloat] in { 5446 defm : MVE_VBRSR_pat_m<MVE_v8f16, MVE_VBRSR16>; 5447 defm : MVE_VBRSR_pat_m<MVE_v4f32, MVE_VBRSR32>; 5448} 5449 5450class MVE_VMUL_qr_int<string iname, string suffix, bits<2> size> 5451 : MVE_qDest_rSrc<iname, suffix, ""> { 5452 5453 let Inst{28} = 0b0; 5454 let Inst{21-20} = size; 5455 let Inst{16} = 0b1; 5456 let Inst{12} = 0b1; 5457 let Inst{8} = 0b0; 5458 let Inst{5} = 0b1; 5459 let validForTailPredication = 1; 5460} 5461 5462multiclass MVE_VMUL_qr_int_m<MVEVectorVTInfo VTI> { 5463 def "" : MVE_VMUL_qr_int<"vmul", VTI.Suffix, VTI.Size>; 5464 let Predicates = [HasMVEInt] in { 5465 defm : MVE_TwoOpPatternDup<VTI, mul, int_arm_mve_mul_predicated, (? ), 5466 !cast<Instruction>(NAME), ARMimmOneV>; 5467 } 5468} 5469 5470defm MVE_VMUL_qr_i8 : MVE_VMUL_qr_int_m<MVE_v16i8>; 5471defm MVE_VMUL_qr_i16 : MVE_VMUL_qr_int_m<MVE_v8i16>; 5472defm MVE_VMUL_qr_i32 : MVE_VMUL_qr_int_m<MVE_v4i32>; 5473 5474class MVE_VxxMUL_qr<string iname, string suffix, 5475 bit bit_28, bits<2> bits_21_20, list<dag> pattern=[]> 5476 : MVE_qDest_rSrc<iname, suffix, "", pattern> { 5477 5478 let Inst{28} = bit_28; 5479 let Inst{21-20} = bits_21_20; 5480 let Inst{16} = 0b1; 5481 let Inst{12} = 0b0; 5482 let Inst{8} = 0b0; 5483 let Inst{5} = 0b1; 5484 let validForTailPredication = 1; 5485} 5486 5487multiclass MVE_VxxMUL_qr_m<string iname, MVEVectorVTInfo VTI, bit bit_28, 5488 PatFrag Op, Intrinsic int_unpred, Intrinsic int_pred> { 5489 def "" : MVE_VxxMUL_qr<iname, VTI.Suffix, bit_28, VTI.Size>; 5490 5491 let Predicates = [HasMVEInt] in { 5492 defm : MVE_TwoOpPatternDup<VTI, Op, int_pred, (? ), !cast<Instruction>(NAME)>; 5493 } 5494 defm : MVE_vec_scalar_int_pat_m<!cast<Instruction>(NAME), VTI, int_unpred, int_pred>; 5495} 5496 5497multiclass MVE_VQDMULH_qr_m<MVEVectorVTInfo VTI> : 5498 MVE_VxxMUL_qr_m<"vqdmulh", VTI, 0b0, MVEvqdmulh, 5499 int_arm_mve_vqdmulh, int_arm_mve_qdmulh_predicated>; 5500 5501multiclass MVE_VQRDMULH_qr_m<MVEVectorVTInfo VTI> : 5502 MVE_VxxMUL_qr_m<"vqrdmulh", VTI, 0b1, null_frag, 5503 int_arm_mve_vqrdmulh, int_arm_mve_qrdmulh_predicated>; 5504 5505defm MVE_VQDMULH_qr_s8 : MVE_VQDMULH_qr_m<MVE_v16s8>; 5506defm MVE_VQDMULH_qr_s16 : MVE_VQDMULH_qr_m<MVE_v8s16>; 5507defm MVE_VQDMULH_qr_s32 : MVE_VQDMULH_qr_m<MVE_v4s32>; 5508 5509defm MVE_VQRDMULH_qr_s8 : MVE_VQRDMULH_qr_m<MVE_v16s8>; 5510defm MVE_VQRDMULH_qr_s16 : MVE_VQRDMULH_qr_m<MVE_v8s16>; 5511defm MVE_VQRDMULH_qr_s32 : MVE_VQRDMULH_qr_m<MVE_v4s32>; 5512 5513multiclass MVE_VxxMUL_qr_f_m<MVEVectorVTInfo VTI> { 5514 let validForTailPredication = 1 in 5515 def "" : MVE_VxxMUL_qr<"vmul", VTI.Suffix, VTI.Size{0}, 0b11>; 5516 defm : MVE_TwoOpPatternDup<VTI, fmul, int_arm_mve_mul_predicated, (? ), 5517 !cast<Instruction>(NAME)>; 5518} 5519 5520let Predicates = [HasMVEFloat] in { 5521 defm MVE_VMUL_qr_f16 : MVE_VxxMUL_qr_f_m<MVE_v8f16>; 5522 defm MVE_VMUL_qr_f32 : MVE_VxxMUL_qr_f_m<MVE_v4f32>; 5523} 5524 5525class MVE_VFMAMLA_qr<string iname, string suffix, 5526 bit bit_28, bits<2> bits_21_20, bit S, 5527 list<dag> pattern=[]> 5528 : MVE_qDestSrc_rSrc<iname, suffix, pattern> { 5529 5530 let Inst{28} = bit_28; 5531 let Inst{21-20} = bits_21_20; 5532 let Inst{16} = 0b1; 5533 let Inst{12} = S; 5534 let Inst{8} = 0b0; 5535 let Inst{5} = 0b0; 5536 let validForTailPredication = 1; 5537 let hasSideEffects = 0; 5538} 5539 5540multiclass MVE_VMLA_qr_multi<string iname, MVEVectorVTInfo VTI, 5541 bit scalar_addend> { 5542 def "": MVE_VFMAMLA_qr<iname, VTI.Suffix, VTI.Unsigned, VTI.Size, 5543 scalar_addend>; 5544 defvar Inst = !cast<Instruction>(NAME); 5545 defvar pred_int = !cast<Intrinsic>("int_arm_mve_" # iname # "_n_predicated"); 5546 defvar v1 = (VTI.Vec MQPR:$v1); 5547 defvar v2 = (VTI.Vec MQPR:$v2); 5548 defvar vs = (VTI.Vec (ARMvdup rGPR:$s)); 5549 defvar s = (i32 rGPR:$s); 5550 defvar pred = (VTI.Pred VCCR:$pred); 5551 5552 // The signed and unsigned variants of this instruction have different 5553 // encodings, but they're functionally identical. For the sake of 5554 // determinism, we generate only the unsigned variant. 5555 if VTI.Unsigned then let Predicates = [HasMVEInt] in { 5556 if scalar_addend then { 5557 def : Pat<(VTI.Vec (add (mul v1, v2), vs)), 5558 (VTI.Vec (Inst v1, v2, s))>; 5559 } else { 5560 def : Pat<(VTI.Vec (add (mul v2, vs), v1)), 5561 (VTI.Vec (Inst v1, v2, s))>; 5562 } 5563 5564 def : Pat<(VTI.Vec (pred_int v1, v2, s, pred)), 5565 (VTI.Vec (Inst v1, v2, s, ARMVCCThen, pred))>; 5566 } 5567} 5568 5569defm MVE_VMLA_qr_s8 : MVE_VMLA_qr_multi<"vmla", MVE_v16s8, 0b0>; 5570defm MVE_VMLA_qr_s16 : MVE_VMLA_qr_multi<"vmla", MVE_v8s16, 0b0>; 5571defm MVE_VMLA_qr_s32 : MVE_VMLA_qr_multi<"vmla", MVE_v4s32, 0b0>; 5572defm MVE_VMLA_qr_u8 : MVE_VMLA_qr_multi<"vmla", MVE_v16u8, 0b0>; 5573defm MVE_VMLA_qr_u16 : MVE_VMLA_qr_multi<"vmla", MVE_v8u16, 0b0>; 5574defm MVE_VMLA_qr_u32 : MVE_VMLA_qr_multi<"vmla", MVE_v4u32, 0b0>; 5575 5576defm MVE_VMLAS_qr_s8 : MVE_VMLA_qr_multi<"vmlas", MVE_v16s8, 0b1>; 5577defm MVE_VMLAS_qr_s16 : MVE_VMLA_qr_multi<"vmlas", MVE_v8s16, 0b1>; 5578defm MVE_VMLAS_qr_s32 : MVE_VMLA_qr_multi<"vmlas", MVE_v4s32, 0b1>; 5579defm MVE_VMLAS_qr_u8 : MVE_VMLA_qr_multi<"vmlas", MVE_v16u8, 0b1>; 5580defm MVE_VMLAS_qr_u16 : MVE_VMLA_qr_multi<"vmlas", MVE_v8u16, 0b1>; 5581defm MVE_VMLAS_qr_u32 : MVE_VMLA_qr_multi<"vmlas", MVE_v4u32, 0b1>; 5582 5583multiclass MVE_VFMA_qr_multi<string iname, MVEVectorVTInfo VTI, 5584 bit scalar_addend> { 5585 def "": MVE_VFMAMLA_qr<iname, VTI.Suffix, VTI.Size{0}, 0b11, scalar_addend>; 5586 defvar Inst = !cast<Instruction>(NAME); 5587 defvar pred_int = int_arm_mve_fma_predicated; 5588 defvar v1 = (VTI.Vec MQPR:$v1); 5589 defvar v2 = (VTI.Vec MQPR:$v2); 5590 defvar vs = (VTI.Vec (ARMvdup (i32 rGPR:$s))); 5591 defvar is = (i32 rGPR:$s); 5592 defvar pred = (VTI.Pred VCCR:$pred); 5593 5594 let Predicates = [HasMVEFloat] in { 5595 if scalar_addend then { 5596 def : Pat<(VTI.Vec (fma v1, v2, vs)), 5597 (VTI.Vec (Inst v1, v2, is))>; 5598 def : Pat<(VTI.Vec (vselect (VTI.Pred VCCR:$pred), 5599 (VTI.Vec (fma v1, v2, vs)), 5600 v1)), 5601 (VTI.Vec (Inst v1, v2, is, ARMVCCThen, $pred))>; 5602 def : Pat<(VTI.Vec (pred_int v1, v2, vs, pred)), 5603 (VTI.Vec (Inst v1, v2, is, ARMVCCThen, pred))>; 5604 } else { 5605 def : Pat<(VTI.Vec (fma v1, vs, v2)), 5606 (VTI.Vec (Inst v2, v1, is))>; 5607 def : Pat<(VTI.Vec (fma vs, v1, v2)), 5608 (VTI.Vec (Inst v2, v1, is))>; 5609 def : Pat<(VTI.Vec (vselect (VTI.Pred VCCR:$pred), 5610 (VTI.Vec (fma vs, v2, v1)), 5611 v1)), 5612 (VTI.Vec (Inst v1, v2, is, ARMVCCThen, $pred))>; 5613 def : Pat<(VTI.Vec (vselect (VTI.Pred VCCR:$pred), 5614 (VTI.Vec (fma v2, vs, v1)), 5615 v1)), 5616 (VTI.Vec (Inst v1, v2, is, ARMVCCThen, $pred))>; 5617 def : Pat<(VTI.Vec (pred_int v1, vs, v2, pred)), 5618 (VTI.Vec (Inst v2, v1, is, ARMVCCThen, pred))>; 5619 def : Pat<(VTI.Vec (pred_int vs, v1, v2, pred)), 5620 (VTI.Vec (Inst v2, v1, is, ARMVCCThen, pred))>; 5621 } 5622 } 5623} 5624 5625let Predicates = [HasMVEFloat] in { 5626 defm MVE_VFMA_qr_f16 : MVE_VFMA_qr_multi<"vfma", MVE_v8f16, 0>; 5627 defm MVE_VFMA_qr_f32 : MVE_VFMA_qr_multi<"vfma", MVE_v4f32, 0>; 5628 defm MVE_VFMA_qr_Sf16 : MVE_VFMA_qr_multi<"vfmas", MVE_v8f16, 1>; 5629 defm MVE_VFMA_qr_Sf32 : MVE_VFMA_qr_multi<"vfmas", MVE_v4f32, 1>; 5630} 5631 5632class MVE_VQDMLAH_qr<string iname, string suffix, bit U, bits<2> size, 5633 bit bit_5, bit bit_12, list<dag> pattern=[]> 5634 : MVE_qDestSrc_rSrc<iname, suffix, pattern> { 5635 5636 let Inst{28} = U; 5637 let Inst{21-20} = size; 5638 let Inst{16} = 0b0; 5639 let Inst{12} = bit_12; 5640 let Inst{8} = 0b0; 5641 let Inst{5} = bit_5; 5642} 5643 5644multiclass MVE_VQDMLAH_qr_multi<string iname, MVEVectorVTInfo VTI, 5645 bit bit_5, bit bit_12> { 5646 def "": MVE_VQDMLAH_qr<iname, VTI.Suffix, 0b0, VTI.Size, bit_5, bit_12>; 5647 defvar Inst = !cast<Instruction>(NAME); 5648 defvar unpred_int = !cast<Intrinsic>("int_arm_mve_" # iname); 5649 defvar pred_int = !cast<Intrinsic>("int_arm_mve_" # iname # "_predicated"); 5650 5651 let Predicates = [HasMVEInt] in { 5652 def : Pat<(VTI.Vec (unpred_int (VTI.Vec MQPR:$v1), (VTI.Vec MQPR:$v2), 5653 (i32 rGPR:$s))), 5654 (VTI.Vec (Inst (VTI.Vec MQPR:$v1), (VTI.Vec MQPR:$v2), 5655 (i32 rGPR:$s)))>; 5656 def : Pat<(VTI.Vec (pred_int (VTI.Vec MQPR:$v1), (VTI.Vec MQPR:$v2), 5657 (i32 rGPR:$s), (VTI.Pred VCCR:$pred))), 5658 (VTI.Vec (Inst (VTI.Vec MQPR:$v1), (VTI.Vec MQPR:$v2), 5659 (i32 rGPR:$s), ARMVCCThen, 5660 (VTI.Pred VCCR:$pred)))>; 5661 } 5662} 5663 5664multiclass MVE_VQDMLAH_qr_types<string iname, bit bit_5, bit bit_12> { 5665 defm s8 : MVE_VQDMLAH_qr_multi<iname, MVE_v16s8, bit_5, bit_12>; 5666 defm s16 : MVE_VQDMLAH_qr_multi<iname, MVE_v8s16, bit_5, bit_12>; 5667 defm s32 : MVE_VQDMLAH_qr_multi<iname, MVE_v4s32, bit_5, bit_12>; 5668} 5669 5670defm MVE_VQDMLAH_qr : MVE_VQDMLAH_qr_types<"vqdmlah", 0b1, 0b0>; 5671defm MVE_VQRDMLAH_qr : MVE_VQDMLAH_qr_types<"vqrdmlah", 0b0, 0b0>; 5672defm MVE_VQDMLASH_qr : MVE_VQDMLAH_qr_types<"vqdmlash", 0b1, 0b1>; 5673defm MVE_VQRDMLASH_qr : MVE_VQDMLAH_qr_types<"vqrdmlash", 0b0, 0b1>; 5674 5675class MVE_VxDUP<string iname, string suffix, bits<2> size, bit bit_12, 5676 list<dag> pattern=[]> 5677 : MVE_p<(outs MQPR:$Qd, tGPREven:$Rn), 5678 (ins tGPREven:$Rn_src, MVE_VIDUP_imm:$imm), NoItinerary, 5679 iname, suffix, "$Qd, $Rn, $imm", vpred_r, "$Rn = $Rn_src", 5680 pattern> { 5681 bits<4> Qd; 5682 bits<4> Rn; 5683 bits<2> imm; 5684 5685 let Inst{28} = 0b0; 5686 let Inst{25-23} = 0b100; 5687 let Inst{22} = Qd{3}; 5688 let Inst{21-20} = size; 5689 let Inst{19-17} = Rn{3-1}; 5690 let Inst{16} = 0b1; 5691 let Inst{15-13} = Qd{2-0}; 5692 let Inst{12} = bit_12; 5693 let Inst{11-8} = 0b1111; 5694 let Inst{7} = imm{1}; 5695 let Inst{6-1} = 0b110111; 5696 let Inst{0} = imm{0}; 5697 let validForTailPredication = 1; 5698 let hasSideEffects = 0; 5699} 5700 5701def MVE_VIDUPu8 : MVE_VxDUP<"vidup", "u8", 0b00, 0b0>; 5702def MVE_VIDUPu16 : MVE_VxDUP<"vidup", "u16", 0b01, 0b0>; 5703def MVE_VIDUPu32 : MVE_VxDUP<"vidup", "u32", 0b10, 0b0>; 5704 5705def MVE_VDDUPu8 : MVE_VxDUP<"vddup", "u8", 0b00, 0b1>; 5706def MVE_VDDUPu16 : MVE_VxDUP<"vddup", "u16", 0b01, 0b1>; 5707def MVE_VDDUPu32 : MVE_VxDUP<"vddup", "u32", 0b10, 0b1>; 5708 5709class MVE_VxWDUP<string iname, string suffix, bits<2> size, bit bit_12, 5710 list<dag> pattern=[]> 5711 : MVE_p<(outs MQPR:$Qd, tGPREven:$Rn), 5712 (ins tGPREven:$Rn_src, tGPROdd:$Rm, MVE_VIDUP_imm:$imm), NoItinerary, 5713 iname, suffix, "$Qd, $Rn, $Rm, $imm", vpred_r, "$Rn = $Rn_src", 5714 pattern> { 5715 bits<4> Qd; 5716 bits<4> Rm; 5717 bits<4> Rn; 5718 bits<2> imm; 5719 5720 let Inst{28} = 0b0; 5721 let Inst{25-23} = 0b100; 5722 let Inst{22} = Qd{3}; 5723 let Inst{21-20} = size; 5724 let Inst{19-17} = Rn{3-1}; 5725 let Inst{16} = 0b1; 5726 let Inst{15-13} = Qd{2-0}; 5727 let Inst{12} = bit_12; 5728 let Inst{11-8} = 0b1111; 5729 let Inst{7} = imm{1}; 5730 let Inst{6-4} = 0b110; 5731 let Inst{3-1} = Rm{3-1}; 5732 let Inst{0} = imm{0}; 5733 let validForTailPredication = 1; 5734 let hasSideEffects = 0; 5735} 5736 5737def MVE_VIWDUPu8 : MVE_VxWDUP<"viwdup", "u8", 0b00, 0b0>; 5738def MVE_VIWDUPu16 : MVE_VxWDUP<"viwdup", "u16", 0b01, 0b0>; 5739def MVE_VIWDUPu32 : MVE_VxWDUP<"viwdup", "u32", 0b10, 0b0>; 5740 5741def MVE_VDWDUPu8 : MVE_VxWDUP<"vdwdup", "u8", 0b00, 0b1>; 5742def MVE_VDWDUPu16 : MVE_VxWDUP<"vdwdup", "u16", 0b01, 0b1>; 5743def MVE_VDWDUPu32 : MVE_VxWDUP<"vdwdup", "u32", 0b10, 0b1>; 5744 5745let isReMaterializable = 1 in 5746class MVE_VCTPInst<string suffix, bits<2> size, list<dag> pattern=[]> 5747 : MVE_p<(outs VCCR:$P0), (ins rGPR:$Rn), NoItinerary, "vctp", suffix, 5748 "$Rn", vpred_n, "", pattern> { 5749 bits<4> Rn; 5750 5751 let Inst{28-27} = 0b10; 5752 let Inst{26-22} = 0b00000; 5753 let Inst{21-20} = size; 5754 let Inst{19-16} = Rn{3-0}; 5755 let Inst{15-11} = 0b11101; 5756 let Inst{10-0} = 0b00000000001; 5757 let Unpredictable{10-0} = 0b11111111111; 5758 5759 let Constraints = ""; 5760 let DecoderMethod = "DecodeMveVCTP"; 5761 let validForTailPredication = 1; 5762} 5763 5764multiclass MVE_VCTP<MVEVectorVTInfo VTI, Intrinsic intr> { 5765 def "": MVE_VCTPInst<VTI.BitsSuffix, VTI.Size>; 5766 defvar Inst = !cast<Instruction>(NAME); 5767 5768 let Predicates = [HasMVEInt] in { 5769 def : Pat<(intr rGPR:$Rn), 5770 (VTI.Pred (Inst rGPR:$Rn))>; 5771 def : Pat<(and (intr rGPR:$Rn), (VTI.Pred VCCR:$mask)), 5772 (VTI.Pred (Inst rGPR:$Rn, ARMVCCThen, VCCR:$mask))>; 5773 } 5774} 5775 5776defm MVE_VCTP8 : MVE_VCTP<MVE_v16i8, int_arm_mve_vctp8>; 5777defm MVE_VCTP16 : MVE_VCTP<MVE_v8i16, int_arm_mve_vctp16>; 5778defm MVE_VCTP32 : MVE_VCTP<MVE_v4i32, int_arm_mve_vctp32>; 5779defm MVE_VCTP64 : MVE_VCTP<MVE_v2i64, int_arm_mve_vctp64>; 5780 5781// end of mve_qDest_rSrc 5782 5783// start of coproc mov 5784 5785class MVE_VMOV_64bit<dag oops, dag iops, bit to_qreg, string ops, string cstr> 5786 : MVE_VMOV_lane_base<oops, !con(iops, (ins MVEPairVectorIndex2:$idx, 5787 MVEPairVectorIndex0:$idx2)), 5788 NoItinerary, "vmov", "", ops, cstr, []> { 5789 bits<5> Rt; 5790 bits<5> Rt2; 5791 bits<4> Qd; 5792 bit idx; 5793 bit idx2; 5794 5795 let Inst{31-23} = 0b111011000; 5796 let Inst{22} = Qd{3}; 5797 let Inst{21} = 0b0; 5798 let Inst{20} = to_qreg; 5799 let Inst{19-16} = Rt2{3-0}; 5800 let Inst{15-13} = Qd{2-0}; 5801 let Inst{12-5} = 0b01111000; 5802 let Inst{4} = idx2; 5803 let Inst{3-0} = Rt{3-0}; 5804 5805 let hasSideEffects = 0; 5806} 5807 5808// The assembly syntax for these instructions mentions the vector 5809// register name twice, e.g. 5810// 5811// vmov q2[2], q2[0], r0, r1 5812// vmov r0, r1, q2[2], q2[0] 5813// 5814// which needs a bit of juggling with MC operand handling. 5815// 5816// For the move _into_ a vector register, the MC operand list also has 5817// to mention the register name twice: once as the output, and once as 5818// an extra input to represent where the unchanged half of the output 5819// register comes from (when this instruction is used in code 5820// generation). So we arrange that the first mention of the vector reg 5821// in the instruction is considered by the AsmMatcher to be the output 5822// ($Qd), and the second one is the input ($QdSrc). Binding them 5823// together with the existing 'tie' constraint is enough to enforce at 5824// register allocation time that they have to be the same register. 5825// 5826// For the move _from_ a vector register, there's no way to get round 5827// the fact that both instances of that register name have to be 5828// inputs. They have to be the same register again, but this time, we 5829// can't use a tie constraint, because that has to be between an 5830// output and an input operand. So this time, we have to arrange that 5831// the q-reg appears just once in the MC operand list, in spite of 5832// being mentioned twice in the asm syntax - which needs a custom 5833// AsmMatchConverter. 5834 5835def MVE_VMOV_q_rr : MVE_VMOV_64bit<(outs MQPR:$Qd), 5836 (ins MQPR:$QdSrc, rGPR:$Rt, rGPR:$Rt2), 5837 0b1, "$Qd$idx, $QdSrc$idx2, $Rt, $Rt2", 5838 "$Qd = $QdSrc"> { 5839 let DecoderMethod = "DecodeMVEVMOVDRegtoQ"; 5840} 5841 5842def MVE_VMOV_rr_q : MVE_VMOV_64bit<(outs rGPR:$Rt, rGPR:$Rt2), (ins MQPR:$Qd), 5843 0b0, "$Rt, $Rt2, $Qd$idx, $Qd$idx2", ""> { 5844 let DecoderMethod = "DecodeMVEVMOVQtoDReg"; 5845 let AsmMatchConverter = "cvtMVEVMOVQtoDReg"; 5846} 5847 5848let Predicates = [HasMVEInt] in { 5849 // Double lane moves. There are a number of patterns here. We know that the 5850 // insertelt's will be in descending order by index, and need to match the 5 5851 // patterns that might contain 2-0 or 3-1 pairs. These are: 5852 // 3 2 1 0 -> vmovqrr 31; vmovqrr 20 5853 // 3 2 1 -> vmovqrr 31; vmov 2 5854 // 3 1 -> vmovqrr 31 5855 // 2 1 0 -> vmovqrr 20; vmov 1 5856 // 2 0 -> vmovqrr 20 5857 // The other potential patterns will be handled by single lane inserts. 5858 def : Pat<(insertelt (insertelt (insertelt (insertelt (v4i32 MQPR:$src1), 5859 rGPR:$srcA, (i32 0)), 5860 rGPR:$srcB, (i32 1)), 5861 rGPR:$srcC, (i32 2)), 5862 rGPR:$srcD, (i32 3)), 5863 (MVE_VMOV_q_rr (MVE_VMOV_q_rr MQPR:$src1, rGPR:$srcA, rGPR:$srcC, (i32 2), (i32 0)), 5864 rGPR:$srcB, rGPR:$srcD, (i32 3), (i32 1))>; 5865 def : Pat<(insertelt (insertelt (insertelt (v4i32 MQPR:$src1), 5866 rGPR:$srcB, (i32 1)), 5867 rGPR:$srcC, (i32 2)), 5868 rGPR:$srcD, (i32 3)), 5869 (MVE_VMOV_q_rr (MVE_VMOV_to_lane_32 MQPR:$src1, rGPR:$srcC, (i32 2)), 5870 rGPR:$srcB, rGPR:$srcD, (i32 3), (i32 1))>; 5871 def : Pat<(insertelt (insertelt (v4i32 MQPR:$src1), rGPR:$srcA, (i32 1)), rGPR:$srcB, (i32 3)), 5872 (MVE_VMOV_q_rr MQPR:$src1, rGPR:$srcA, rGPR:$srcB, (i32 3), (i32 1))>; 5873 def : Pat<(insertelt (insertelt (insertelt (v4i32 MQPR:$src1), 5874 rGPR:$srcB, (i32 0)), 5875 rGPR:$srcC, (i32 1)), 5876 rGPR:$srcD, (i32 2)), 5877 (MVE_VMOV_q_rr (MVE_VMOV_to_lane_32 MQPR:$src1, rGPR:$srcC, (i32 1)), 5878 rGPR:$srcB, rGPR:$srcD, (i32 2), (i32 0))>; 5879 def : Pat<(insertelt (insertelt (v4i32 MQPR:$src1), rGPR:$srcA, (i32 0)), rGPR:$srcB, (i32 2)), 5880 (MVE_VMOV_q_rr MQPR:$src1, rGPR:$srcA, rGPR:$srcB, (i32 2), (i32 0))>; 5881} 5882 5883// end of coproc mov 5884 5885// start of MVE interleaving load/store 5886 5887// Base class for the family of interleaving/deinterleaving 5888// load/stores with names like VLD20.8 and VST43.32. 5889class MVE_vldst24_base<bit writeback, bit fourregs, bits<2> stage, bits<2> size, 5890 bit load, dag Oops, dag loadIops, dag wbIops, 5891 string iname, string ops, 5892 string cstr, list<dag> pattern=[]> 5893 : MVE_MI<Oops, !con(loadIops, wbIops), NoItinerary, iname, ops, cstr, pattern> { 5894 bits<4> VQd; 5895 bits<4> Rn; 5896 5897 let Inst{31-22} = 0b1111110010; 5898 let Inst{21} = writeback; 5899 let Inst{20} = load; 5900 let Inst{19-16} = Rn; 5901 let Inst{15-13} = VQd{2-0}; 5902 let Inst{12-9} = 0b1111; 5903 let Inst{8-7} = size; 5904 let Inst{6-5} = stage; 5905 let Inst{4-1} = 0b0000; 5906 let Inst{0} = fourregs; 5907 5908 let mayLoad = load; 5909 let mayStore = !eq(load,0); 5910 let hasSideEffects = 0; 5911 let validForTailPredication = load; 5912} 5913 5914// A parameter class used to encapsulate all the ways the writeback 5915// variants of VLD20 and friends differ from the non-writeback ones. 5916class MVE_vldst24_writeback<bit b, dag Oo, dag Io, 5917 string sy="", string c="", string n=""> { 5918 bit writeback = b; 5919 dag Oops = Oo; 5920 dag Iops = Io; 5921 string syntax = sy; 5922 string cstr = c; 5923 string id_suffix = n; 5924} 5925 5926// Another parameter class that encapsulates the differences between VLD2x 5927// and VLD4x. 5928class MVE_vldst24_nvecs<int n, list<int> s, bit b, RegisterOperand vl> { 5929 int nvecs = n; 5930 list<int> stages = s; 5931 bit bit0 = b; 5932 RegisterOperand VecList = vl; 5933} 5934 5935// A third parameter class that distinguishes VLDnn.8 from .16 from .32. 5936class MVE_vldst24_lanesize<int i, bits<2> b> { 5937 int lanesize = i; 5938 bits<2> sizebits = b; 5939} 5940 5941// A base class for each direction of transfer: one for load, one for 5942// store. I can't make these a fourth independent parametric tuple 5943// class, because they have to take the nvecs tuple class as a 5944// parameter, in order to find the right VecList operand type. 5945 5946class MVE_vld24_base<MVE_vldst24_nvecs n, bits<2> pat, bits<2> size, 5947 MVE_vldst24_writeback wb, string iname, 5948 list<dag> pattern=[]> 5949 : MVE_vldst24_base<wb.writeback, n.bit0, pat, size, 1, 5950 !con((outs n.VecList:$VQd), wb.Oops), 5951 (ins n.VecList:$VQdSrc), wb.Iops, 5952 iname, "$VQd, $Rn" # wb.syntax, 5953 wb.cstr # ",$VQdSrc = $VQd", pattern>; 5954 5955class MVE_vst24_base<MVE_vldst24_nvecs n, bits<2> pat, bits<2> size, 5956 MVE_vldst24_writeback wb, string iname, 5957 list<dag> pattern=[]> 5958 : MVE_vldst24_base<wb.writeback, n.bit0, pat, size, 0, 5959 wb.Oops, (ins n.VecList:$VQd), wb.Iops, 5960 iname, "$VQd, $Rn" # wb.syntax, 5961 wb.cstr, pattern>; 5962 5963// Actually define all the interleaving loads and stores, by a series 5964// of nested foreaches over number of vectors (VLD2/VLD4); stage 5965// within one of those series (VLDx0/VLDx1/VLDx2/VLDx3); size of 5966// vector lane; writeback or no writeback. 5967foreach n = [MVE_vldst24_nvecs<2, [0,1], 0, VecList2Q>, 5968 MVE_vldst24_nvecs<4, [0,1,2,3], 1, VecList4Q>] in 5969foreach stage = n.stages in 5970foreach s = [MVE_vldst24_lanesize< 8, 0b00>, 5971 MVE_vldst24_lanesize<16, 0b01>, 5972 MVE_vldst24_lanesize<32, 0b10>] in 5973foreach wb = [MVE_vldst24_writeback< 5974 1, (outs rGPR:$wb), (ins t2_nosp_addr_offset_none:$Rn), 5975 "!", "$Rn.base = $wb", "_wb">, 5976 MVE_vldst24_writeback<0, (outs), (ins t2_addr_offset_none:$Rn)>] in { 5977 5978 // For each case within all of those foreaches, define the actual 5979 // instructions. The def names are made by gluing together pieces 5980 // from all the parameter classes, and will end up being things like 5981 // MVE_VLD20_8 and MVE_VST43_16_wb. 5982 5983 def "MVE_VLD" # n.nvecs # stage # "_" # s.lanesize # wb.id_suffix 5984 : MVE_vld24_base<n, stage, s.sizebits, wb, 5985 "vld" # n.nvecs # stage # "." # s.lanesize>; 5986 5987 def "MVE_VST" # n.nvecs # stage # "_" # s.lanesize # wb.id_suffix 5988 : MVE_vst24_base<n, stage, s.sizebits, wb, 5989 "vst" # n.nvecs # stage # "." # s.lanesize>; 5990} 5991 5992def SDTARMVST2 : SDTypeProfile<1, 5, [SDTCisPtrTy<0>, SDTCisPtrTy<1>, SDTCisVT<2, i32>, SDTCisVec<3>, 5993 SDTCisSameAs<3, 4>, SDTCisVT<5, i32>]>; 5994def SDTARMVST4 : SDTypeProfile<1, 7, [SDTCisPtrTy<0>, SDTCisPtrTy<1>, SDTCisVT<2, i32>, SDTCisVec<3>, 5995 SDTCisSameAs<3, 4>, SDTCisSameAs<3, 5>, 5996 SDTCisSameAs<3, 6>, SDTCisVT<7, i32>]>; 5997def MVEVST2UPD : SDNode<"ARMISD::VST2_UPD", SDTARMVST2, [SDNPHasChain]>; 5998def MVEVST4UPD : SDNode<"ARMISD::VST4_UPD", SDTARMVST4, [SDNPHasChain]>; 5999 6000multiclass MVE_vst24_patterns<int lanesize, ValueType VT> { 6001 foreach stage = [0,1] in 6002 def : Pat<(int_arm_mve_vst2q i32:$addr, 6003 (VT MQPR:$v0), (VT MQPR:$v1), (i32 stage)), 6004 (!cast<Instruction>("MVE_VST2"#stage#"_"#lanesize) 6005 (REG_SEQUENCE QQPR, VT:$v0, qsub_0, VT:$v1, qsub_1), 6006 t2_addr_offset_none:$addr)>; 6007 foreach stage = [0,1] in 6008 def : Pat<(i32 (MVEVST2UPD i32:$addr, (i32 32), 6009 (VT MQPR:$v0), (VT MQPR:$v1), (i32 stage))), 6010 (i32 (!cast<Instruction>("MVE_VST2"#stage#"_"#lanesize#_wb) 6011 (REG_SEQUENCE QQPR, VT:$v0, qsub_0, VT:$v1, qsub_1), 6012 t2_addr_offset_none:$addr))>; 6013 6014 foreach stage = [0,1,2,3] in 6015 def : Pat<(int_arm_mve_vst4q i32:$addr, 6016 (VT MQPR:$v0), (VT MQPR:$v1), 6017 (VT MQPR:$v2), (VT MQPR:$v3), (i32 stage)), 6018 (!cast<Instruction>("MVE_VST4"#stage#"_"#lanesize) 6019 (REG_SEQUENCE QQQQPR, VT:$v0, qsub_0, VT:$v1, qsub_1, 6020 VT:$v2, qsub_2, VT:$v3, qsub_3), 6021 t2_addr_offset_none:$addr)>; 6022 foreach stage = [0,1,2,3] in 6023 def : Pat<(i32 (MVEVST4UPD i32:$addr, (i32 64), 6024 (VT MQPR:$v0), (VT MQPR:$v1), 6025 (VT MQPR:$v2), (VT MQPR:$v3), (i32 stage))), 6026 (i32 (!cast<Instruction>("MVE_VST4"#stage#"_"#lanesize#_wb) 6027 (REG_SEQUENCE QQQQPR, VT:$v0, qsub_0, VT:$v1, qsub_1, 6028 VT:$v2, qsub_2, VT:$v3, qsub_3), 6029 t2_addr_offset_none:$addr))>; 6030} 6031defm : MVE_vst24_patterns<8, v16i8>; 6032defm : MVE_vst24_patterns<16, v8i16>; 6033defm : MVE_vst24_patterns<32, v4i32>; 6034defm : MVE_vst24_patterns<16, v8f16>; 6035defm : MVE_vst24_patterns<32, v4f32>; 6036 6037// end of MVE interleaving load/store 6038 6039// start of MVE predicable load/store 6040 6041// A parameter class for the direction of transfer. 6042class MVE_ldst_direction<bit b, dag Oo, dag Io, string c=""> { 6043 bit load = b; 6044 dag Oops = Oo; 6045 dag Iops = Io; 6046 string cstr = c; 6047} 6048def MVE_ld: MVE_ldst_direction<1, (outs MQPR:$Qd), (ins), ",@earlyclobber $Qd">; 6049def MVE_st: MVE_ldst_direction<0, (outs), (ins MQPR:$Qd)>; 6050 6051// A parameter class for the size of memory access in a load. 6052class MVE_memsz<bits<2> e, int s, AddrMode m, string mn, list<string> types> { 6053 bits<2> encoding = e; // opcode bit(s) for encoding 6054 int shift = s; // shift applied to immediate load offset 6055 AddrMode AM = m; 6056 6057 // For instruction aliases: define the complete list of type 6058 // suffixes at this size, and the canonical ones for loads and 6059 // stores. 6060 string MnemonicLetter = mn; 6061 int TypeBits = !shl(8, s); 6062 string CanonLoadSuffix = ".u" # TypeBits; 6063 string CanonStoreSuffix = "." # TypeBits; 6064 list<string> suffixes = !foreach(letter, types, "." # letter # TypeBits); 6065} 6066 6067// Instances of MVE_memsz. 6068// 6069// (memD doesn't need an AddrMode, because those are only for 6070// contiguous loads, and memD is only used by gather/scatters.) 6071def MVE_memB: MVE_memsz<0b00, 0, AddrModeT2_i7, "b", ["", "u", "s"]>; 6072def MVE_memH: MVE_memsz<0b01, 1, AddrModeT2_i7s2, "h", ["", "u", "s", "f"]>; 6073def MVE_memW: MVE_memsz<0b10, 2, AddrModeT2_i7s4, "w", ["", "u", "s", "f"]>; 6074def MVE_memD: MVE_memsz<0b11, 3, ?, "d", ["", "u", "s", "f"]>; 6075 6076// This is the base class for all the MVE loads and stores other than 6077// the interleaving ones. All the non-interleaving loads/stores share 6078// the characteristic that they operate on just one vector register, 6079// so they are VPT-predicable. 6080// 6081// The predication operand is vpred_n, for both loads and stores. For 6082// store instructions, the reason is obvious: if there is no output 6083// register, there can't be a need for an input parameter giving the 6084// output register's previous value. Load instructions also don't need 6085// that input parameter, because unlike MVE data processing 6086// instructions, predicated loads are defined to set the inactive 6087// lanes of the output register to zero, instead of preserving their 6088// input values. 6089class MVE_VLDRSTR_base<MVE_ldst_direction dir, bit U, bit P, bit W, bit opc, 6090 dag oops, dag iops, string asm, string suffix, 6091 string ops, string cstr, list<dag> pattern=[]> 6092 : MVE_p<oops, iops, NoItinerary, asm, suffix, ops, vpred_n, cstr, pattern> { 6093 bits<3> Qd; 6094 6095 let Inst{28} = U; 6096 let Inst{25} = 0b0; 6097 let Inst{24} = P; 6098 let Inst{22} = 0b0; 6099 let Inst{21} = W; 6100 let Inst{20} = dir.load; 6101 let Inst{15-13} = Qd{2-0}; 6102 let Inst{12} = opc; 6103 let Inst{11-9} = 0b111; 6104 6105 let mayLoad = dir.load; 6106 let mayStore = !eq(dir.load,0); 6107 let hasSideEffects = 0; 6108 let validForTailPredication = 1; 6109} 6110 6111// Contiguous load and store instructions. These come in two main 6112// categories: same-size loads/stores in which 128 bits of vector 6113// register is transferred to or from 128 bits of memory in the most 6114// obvious way, and widening loads / narrowing stores, in which the 6115// size of memory accessed is less than the size of a vector register, 6116// so the load instructions sign- or zero-extend each memory value 6117// into a wider vector lane, and the store instructions truncate 6118// correspondingly. 6119// 6120// The instruction mnemonics for these two classes look reasonably 6121// similar, but the actual encodings are different enough to need two 6122// separate base classes. 6123 6124// Contiguous, same size 6125class MVE_VLDRSTR_cs<MVE_ldst_direction dir, MVE_memsz memsz, bit P, bit W, 6126 dag oops, dag iops, string asm, string suffix, 6127 IndexMode im, string ops, string cstr> 6128 : MVE_VLDRSTR_base<dir, 0, P, W, 1, oops, iops, asm, suffix, ops, cstr> { 6129 bits<12> addr; 6130 let Inst{23} = addr{7}; 6131 let Inst{19-16} = addr{11-8}; 6132 let Inst{8-7} = memsz.encoding; 6133 let Inst{6-0} = addr{6-0}; 6134} 6135 6136// Contiguous, widening/narrowing 6137class MVE_VLDRSTR_cw<MVE_ldst_direction dir, MVE_memsz memsz, bit U, 6138 bit P, bit W, bits<2> size, dag oops, dag iops, 6139 string asm, string suffix, IndexMode im, 6140 string ops, string cstr> 6141 : MVE_VLDRSTR_base<dir, U, P, W, 0, oops, iops, asm, suffix, ops, cstr> { 6142 bits<11> addr; 6143 let Inst{23} = addr{7}; 6144 let Inst{19} = memsz.encoding{0}; // enough to tell 16- from 32-bit 6145 let Inst{18-16} = addr{10-8}; 6146 let Inst{8-7} = size; 6147 let Inst{6-0} = addr{6-0}; 6148 6149 let IM = im; 6150} 6151 6152// Multiclass wrapper on each of the _cw and _cs base classes, to 6153// generate three writeback modes (none, preindex, postindex). 6154 6155multiclass MVE_VLDRSTR_cw_m<MVE_ldst_direction dir, MVE_memsz memsz, 6156 string asm, string suffix, bit U, bits<2> size> { 6157 let AM = memsz.AM in { 6158 def "" : MVE_VLDRSTR_cw< 6159 dir, memsz, U, 1, 0, size, 6160 dir.Oops, !con(dir.Iops, (ins taddrmode_imm7<memsz.shift>:$addr)), 6161 asm, suffix, IndexModeNone, "$Qd, $addr", "">; 6162 6163 def _pre : MVE_VLDRSTR_cw< 6164 dir, memsz, U, 1, 1, size, 6165 !con((outs tGPR:$wb), dir.Oops), 6166 !con(dir.Iops, (ins taddrmode_imm7<memsz.shift>:$addr)), 6167 asm, suffix, IndexModePre, "$Qd, $addr!", "$addr.base = $wb"> { 6168 let DecoderMethod = "DecodeMVE_MEM_1_pre<"#memsz.shift#">"; 6169 } 6170 6171 def _post : MVE_VLDRSTR_cw< 6172 dir, memsz, U, 0, 1, size, 6173 !con((outs tGPR:$wb), dir.Oops), 6174 !con(dir.Iops, (ins t_addr_offset_none:$Rn, 6175 t2am_imm7_offset<memsz.shift>:$addr)), 6176 asm, suffix, IndexModePost, "$Qd, $Rn$addr", "$Rn.base = $wb"> { 6177 bits<4> Rn; 6178 let Inst{18-16} = Rn{2-0}; 6179 } 6180 } 6181} 6182 6183multiclass MVE_VLDRSTR_cs_m<MVE_ldst_direction dir, MVE_memsz memsz, 6184 string asm, string suffix> { 6185 let AM = memsz.AM in { 6186 def "" : MVE_VLDRSTR_cs< 6187 dir, memsz, 1, 0, 6188 dir.Oops, !con(dir.Iops, (ins t2addrmode_imm7<memsz.shift>:$addr)), 6189 asm, suffix, IndexModeNone, "$Qd, $addr", "">; 6190 6191 def _pre : MVE_VLDRSTR_cs< 6192 dir, memsz, 1, 1, 6193 !con((outs rGPR:$wb), dir.Oops), 6194 !con(dir.Iops, (ins t2addrmode_imm7_pre<memsz.shift>:$addr)), 6195 asm, suffix, IndexModePre, "$Qd, $addr!", "$addr.base = $wb"> { 6196 let DecoderMethod = "DecodeMVE_MEM_2_pre<"#memsz.shift#">"; 6197 } 6198 6199 def _post : MVE_VLDRSTR_cs< 6200 dir, memsz, 0, 1, 6201 !con((outs rGPR:$wb), dir.Oops), 6202 // We need an !if here to select the base register class, 6203 // because it's legal to write back to SP in a load of this 6204 // type, but not in a store. 6205 !con(dir.Iops, (ins !if(dir.load, t2_addr_offset_none, 6206 t2_nosp_addr_offset_none):$Rn, 6207 t2am_imm7_offset<memsz.shift>:$addr)), 6208 asm, suffix, IndexModePost, "$Qd, $Rn$addr", "$Rn.base = $wb"> { 6209 bits<4> Rn; 6210 let Inst{19-16} = Rn{3-0}; 6211 } 6212 } 6213} 6214 6215// Now actually declare all the contiguous load/stores, via those 6216// multiclasses. The instruction ids coming out of this are the bare 6217// names shown in the defm, with _pre or _post appended for writeback, 6218// e.g. MVE_VLDRBS16, MVE_VSTRB16_pre, MVE_VSTRHU16_post. 6219 6220defm MVE_VLDRBS16: MVE_VLDRSTR_cw_m<MVE_ld, MVE_memB, "vldrb", "s16", 0, 0b01>; 6221defm MVE_VLDRBS32: MVE_VLDRSTR_cw_m<MVE_ld, MVE_memB, "vldrb", "s32", 0, 0b10>; 6222defm MVE_VLDRBU16: MVE_VLDRSTR_cw_m<MVE_ld, MVE_memB, "vldrb", "u16", 1, 0b01>; 6223defm MVE_VLDRBU32: MVE_VLDRSTR_cw_m<MVE_ld, MVE_memB, "vldrb", "u32", 1, 0b10>; 6224defm MVE_VLDRHS32: MVE_VLDRSTR_cw_m<MVE_ld, MVE_memH, "vldrh", "s32", 0, 0b10>; 6225defm MVE_VLDRHU32: MVE_VLDRSTR_cw_m<MVE_ld, MVE_memH, "vldrh", "u32", 1, 0b10>; 6226 6227defm MVE_VLDRBU8: MVE_VLDRSTR_cs_m<MVE_ld, MVE_memB, "vldrb", "u8">; 6228defm MVE_VLDRHU16: MVE_VLDRSTR_cs_m<MVE_ld, MVE_memH, "vldrh", "u16">; 6229defm MVE_VLDRWU32: MVE_VLDRSTR_cs_m<MVE_ld, MVE_memW, "vldrw", "u32">; 6230 6231defm MVE_VSTRB16: MVE_VLDRSTR_cw_m<MVE_st, MVE_memB, "vstrb", "16", 0, 0b01>; 6232defm MVE_VSTRB32: MVE_VLDRSTR_cw_m<MVE_st, MVE_memB, "vstrb", "32", 0, 0b10>; 6233defm MVE_VSTRH32: MVE_VLDRSTR_cw_m<MVE_st, MVE_memH, "vstrh", "32", 0, 0b10>; 6234 6235defm MVE_VSTRBU8 : MVE_VLDRSTR_cs_m<MVE_st, MVE_memB, "vstrb", "8">; 6236defm MVE_VSTRHU16: MVE_VLDRSTR_cs_m<MVE_st, MVE_memH, "vstrh", "16">; 6237defm MVE_VSTRWU32: MVE_VLDRSTR_cs_m<MVE_st, MVE_memW, "vstrw", "32">; 6238 6239// Gather loads / scatter stores whose address operand is of the form 6240// [Rn,Qm], i.e. a single GPR as the common base address, plus a 6241// vector of offset from it. ('Load/store this sequence of elements of 6242// the same array.') 6243// 6244// Like the contiguous family, these loads and stores can widen the 6245// loaded values / truncate the stored ones, or they can just 6246// load/store the same size of memory and vector lane. But unlike the 6247// contiguous family, there's no particular difference in encoding 6248// between those two cases. 6249// 6250// This family also comes with the option to scale the offset values 6251// in Qm by the size of the loaded memory (i.e. to treat them as array 6252// indices), or not to scale them (to treat them as plain byte offsets 6253// in memory, so that perhaps the loaded values are unaligned). The 6254// scaled instructions' address operand in assembly looks like 6255// [Rn,Qm,UXTW #2] or similar. 6256 6257// Base class. 6258class MVE_VLDRSTR_rq<MVE_ldst_direction dir, MVE_memsz memsz, bit U, 6259 bits<2> size, bit os, string asm, string suffix, int shift> 6260 : MVE_VLDRSTR_base<dir, U, 0b0, 0b0, 0, dir.Oops, 6261 !con(dir.Iops, (ins mve_addr_rq_shift<shift>:$addr)), 6262 asm, suffix, "$Qd, $addr", dir.cstr> { 6263 bits<7> addr; 6264 let Inst{23} = 0b1; 6265 let Inst{19-16} = addr{6-3}; 6266 let Inst{8-7} = size; 6267 let Inst{6} = memsz.encoding{1}; 6268 let Inst{5} = 0; 6269 let Inst{4} = memsz.encoding{0}; 6270 let Inst{3-1} = addr{2-0}; 6271 let Inst{0} = os; 6272} 6273 6274// Multiclass that defines the scaled and unscaled versions of an 6275// instruction, when the memory size is wider than a byte. The scaled 6276// version gets the default name like MVE_VLDRBU16_rq; the unscaled / 6277// potentially unaligned version gets a "_u" suffix, e.g. 6278// MVE_VLDRBU16_rq_u. 6279multiclass MVE_VLDRSTR_rq_w<MVE_ldst_direction dir, MVE_memsz memsz, 6280 string asm, string suffix, bit U, bits<2> size> { 6281 def _u : MVE_VLDRSTR_rq<dir, memsz, U, size, 0, asm, suffix, 0>; 6282 def "" : MVE_VLDRSTR_rq<dir, memsz, U, size, 1, asm, suffix, memsz.shift>; 6283} 6284 6285// Subclass of MVE_VLDRSTR_rq with the same API as that multiclass, 6286// for use when the memory size is one byte, so there's no 'scaled' 6287// version of the instruction at all. (This is encoded as if it were 6288// unscaled, but named in the default way with no _u suffix.) 6289class MVE_VLDRSTR_rq_b<MVE_ldst_direction dir, MVE_memsz memsz, 6290 string asm, string suffix, bit U, bits<2> size> 6291 : MVE_VLDRSTR_rq<dir, memsz, U, size, 0, asm, suffix, 0>; 6292 6293// Multiclasses wrapping that to add ISel patterns for intrinsics. 6294multiclass MVE_VLDR_rq_w<MVE_memsz memsz, list<MVEVectorVTInfo> VTIs> { 6295 defm "": MVE_VLDRSTR_rq_w<MVE_ld, memsz, "vldr" # memsz.MnemonicLetter, 6296 VTIs[0].Suffix, VTIs[0].Unsigned, VTIs[0].Size>; 6297 defvar Inst = !cast<Instruction>(NAME); 6298 defvar InstU = !cast<Instruction>(NAME # "_u"); 6299 6300 foreach VTI = VTIs in 6301 foreach UnsignedFlag = !if(!eq(VTI.Size, memsz.encoding), 6302 [0,1], [VTI.Unsigned]) in { 6303 def : Pat<(VTI.Vec (int_arm_mve_vldr_gather_offset GPR:$base, (VTIs[0].Vec MQPR:$offsets), memsz.TypeBits, 0, UnsignedFlag)), 6304 (VTI.Vec (InstU GPR:$base, MQPR:$offsets))>; 6305 def : Pat<(VTI.Vec (int_arm_mve_vldr_gather_offset GPR:$base, (VTIs[0].Vec MQPR:$offsets), memsz.TypeBits, memsz.shift, UnsignedFlag)), 6306 (VTI.Vec (Inst GPR:$base, MQPR:$offsets))>; 6307 def : Pat<(VTI.Vec (int_arm_mve_vldr_gather_offset_predicated GPR:$base, (VTIs[0].Vec MQPR:$offsets), memsz.TypeBits, 0, UnsignedFlag, (VTI.Pred VCCR:$pred))), 6308 (VTI.Vec (InstU GPR:$base, MQPR:$offsets, ARMVCCThen, VCCR:$pred))>; 6309 def : Pat<(VTI.Vec (int_arm_mve_vldr_gather_offset_predicated GPR:$base, (VTIs[0].Vec MQPR:$offsets), memsz.TypeBits, memsz.shift, UnsignedFlag, (VTI.Pred VCCR:$pred))), 6310 (VTI.Vec (Inst GPR:$base, MQPR:$offsets, ARMVCCThen, VCCR:$pred))>; 6311 } 6312} 6313multiclass MVE_VLDR_rq_b<list<MVEVectorVTInfo> VTIs> { 6314 def "": MVE_VLDRSTR_rq_b<MVE_ld, MVE_memB, "vldrb", 6315 VTIs[0].Suffix, VTIs[0].Unsigned, VTIs[0].Size>; 6316 defvar Inst = !cast<Instruction>(NAME); 6317 6318 foreach VTI = VTIs in { 6319 def : Pat<(VTI.Vec (int_arm_mve_vldr_gather_offset GPR:$base, (VTIs[0].Vec MQPR:$offsets), 8, 0, VTI.Unsigned)), 6320 (VTI.Vec (Inst GPR:$base, MQPR:$offsets))>; 6321 def : Pat<(VTI.Vec (int_arm_mve_vldr_gather_offset_predicated GPR:$base, (VTIs[0].Vec MQPR:$offsets), 8, 0, VTI.Unsigned, (VTI.Pred VCCR:$pred))), 6322 (VTI.Vec (Inst GPR:$base, MQPR:$offsets, ARMVCCThen, VCCR:$pred))>; 6323 } 6324} 6325multiclass MVE_VSTR_rq_w<MVE_memsz memsz, list<MVEVectorVTInfo> VTIs> { 6326 defm "": MVE_VLDRSTR_rq_w<MVE_st, memsz, "vstr" # memsz.MnemonicLetter, 6327 VTIs[0].BitsSuffix, 0, VTIs[0].Size>; 6328 defvar Inst = !cast<Instruction>(NAME); 6329 defvar InstU = !cast<Instruction>(NAME # "_u"); 6330 6331 foreach VTI = VTIs in { 6332 def : Pat<(int_arm_mve_vstr_scatter_offset GPR:$base, (VTIs[0].Vec MQPR:$offsets), (VTI.Vec MQPR:$data), memsz.TypeBits, 0), 6333 (InstU MQPR:$data, GPR:$base, MQPR:$offsets)>; 6334 def : Pat<(int_arm_mve_vstr_scatter_offset GPR:$base, (VTIs[0].Vec MQPR:$offsets), (VTI.Vec MQPR:$data), memsz.TypeBits, memsz.shift), 6335 (Inst MQPR:$data, GPR:$base, MQPR:$offsets)>; 6336 def : Pat<(int_arm_mve_vstr_scatter_offset_predicated GPR:$base, (VTIs[0].Vec MQPR:$offsets), (VTI.Vec MQPR:$data), memsz.TypeBits, 0, (VTI.Pred VCCR:$pred)), 6337 (InstU MQPR:$data, GPR:$base, MQPR:$offsets, ARMVCCThen, VCCR:$pred)>; 6338 def : Pat<(int_arm_mve_vstr_scatter_offset_predicated GPR:$base, (VTIs[0].Vec MQPR:$offsets), (VTI.Vec MQPR:$data), memsz.TypeBits, memsz.shift, (VTI.Pred VCCR:$pred)), 6339 (Inst MQPR:$data, GPR:$base, MQPR:$offsets, ARMVCCThen, VCCR:$pred)>; 6340 } 6341} 6342multiclass MVE_VSTR_rq_b<list<MVEVectorVTInfo> VTIs> { 6343 def "": MVE_VLDRSTR_rq_b<MVE_st, MVE_memB, "vstrb", 6344 VTIs[0].BitsSuffix, 0, VTIs[0].Size>; 6345 defvar Inst = !cast<Instruction>(NAME); 6346 6347 foreach VTI = VTIs in { 6348 def : Pat<(int_arm_mve_vstr_scatter_offset GPR:$base, (VTIs[0].Vec MQPR:$offsets), (VTI.Vec MQPR:$data), 8, 0), 6349 (Inst MQPR:$data, GPR:$base, MQPR:$offsets)>; 6350 def : Pat<(int_arm_mve_vstr_scatter_offset_predicated GPR:$base, (VTIs[0].Vec MQPR:$offsets), (VTI.Vec MQPR:$data), 8, 0, (VTI.Pred VCCR:$pred)), 6351 (Inst MQPR:$data, GPR:$base, MQPR:$offsets, ARMVCCThen, VCCR:$pred)>; 6352 } 6353} 6354 6355// Actually define all the loads and stores in this family. 6356 6357defm MVE_VLDRBU8_rq : MVE_VLDR_rq_b<[MVE_v16u8,MVE_v16s8]>; 6358defm MVE_VLDRBU16_rq: MVE_VLDR_rq_b<[MVE_v8u16]>; 6359defm MVE_VLDRBS16_rq: MVE_VLDR_rq_b<[MVE_v8s16]>; 6360defm MVE_VLDRBU32_rq: MVE_VLDR_rq_b<[MVE_v4u32]>; 6361defm MVE_VLDRBS32_rq: MVE_VLDR_rq_b<[MVE_v4s32]>; 6362 6363defm MVE_VLDRHU16_rq: MVE_VLDR_rq_w<MVE_memH, [MVE_v8u16,MVE_v8s16,MVE_v8f16]>; 6364defm MVE_VLDRHU32_rq: MVE_VLDR_rq_w<MVE_memH, [MVE_v4u32]>; 6365defm MVE_VLDRHS32_rq: MVE_VLDR_rq_w<MVE_memH, [MVE_v4s32]>; 6366defm MVE_VLDRWU32_rq: MVE_VLDR_rq_w<MVE_memW, [MVE_v4u32,MVE_v4s32,MVE_v4f32]>; 6367defm MVE_VLDRDU64_rq: MVE_VLDR_rq_w<MVE_memD, [MVE_v2u64,MVE_v2s64]>; 6368 6369defm MVE_VSTRB8_rq : MVE_VSTR_rq_b<[MVE_v16i8]>; 6370defm MVE_VSTRB16_rq : MVE_VSTR_rq_b<[MVE_v8i16]>; 6371defm MVE_VSTRB32_rq : MVE_VSTR_rq_b<[MVE_v4i32]>; 6372 6373defm MVE_VSTRH16_rq : MVE_VSTR_rq_w<MVE_memH, [MVE_v8i16,MVE_v8f16]>; 6374defm MVE_VSTRH32_rq : MVE_VSTR_rq_w<MVE_memH, [MVE_v4i32]>; 6375defm MVE_VSTRW32_rq : MVE_VSTR_rq_w<MVE_memW, [MVE_v4i32,MVE_v4f32]>; 6376defm MVE_VSTRD64_rq : MVE_VSTR_rq_w<MVE_memD, [MVE_v2i64]>; 6377 6378// Gather loads / scatter stores whose address operand is of the form 6379// [Qm,#imm], i.e. a vector containing a full base address for each 6380// loaded item, plus an immediate offset applied consistently to all 6381// of them. ('Load/store the same field from this vector of pointers 6382// to a structure type.') 6383// 6384// This family requires the vector lane size to be at least 32 bits 6385// (so there's room for an address in each lane at all). It has no 6386// widening/narrowing variants. But it does support preindex 6387// writeback, in which the address vector is updated to hold the 6388// addresses actually loaded from. 6389 6390// Base class. 6391class MVE_VLDRSTR_qi<MVE_ldst_direction dir, MVE_memsz memsz, bit W, dag wbops, 6392 string asm, string wbAsm, string suffix, string cstr = ""> 6393 : MVE_VLDRSTR_base<dir, 1, 1, W, 1, !con(wbops, dir.Oops), 6394 !con(dir.Iops, (ins mve_addr_q_shift<memsz.shift>:$addr)), 6395 asm, suffix, "$Qd, $addr" # wbAsm, cstr # dir.cstr> { 6396 bits<11> addr; 6397 let Inst{23} = addr{7}; 6398 let Inst{19-17} = addr{10-8}; 6399 let Inst{16} = 0; 6400 let Inst{8} = memsz.encoding{0}; // enough to distinguish 32- from 64-bit 6401 let Inst{7} = 0; 6402 let Inst{6-0} = addr{6-0}; 6403} 6404 6405// Multiclass that generates the non-writeback and writeback variants. 6406multiclass MVE_VLDRSTR_qi_m<MVE_ldst_direction dir, MVE_memsz memsz, 6407 string asm, string suffix> { 6408 def "" : MVE_VLDRSTR_qi<dir, memsz, 0, (outs), asm, "", suffix>; 6409 def _pre : MVE_VLDRSTR_qi<dir, memsz, 1, (outs MQPR:$wb), asm, "!", suffix, 6410 "$addr.base = $wb"> { 6411 let DecoderMethod="DecodeMVE_MEM_3_pre<"#memsz.shift#">"; 6412 } 6413} 6414 6415// Multiclasses wrapping that one, adding selection patterns for the 6416// non-writeback loads and all the stores. (The writeback loads must 6417// deliver multiple output values, so they have to be selected by C++ 6418// code.) 6419multiclass MVE_VLDR_qi<MVE_memsz memsz, MVEVectorVTInfo AVTI, 6420 list<MVEVectorVTInfo> DVTIs> { 6421 defm "" : MVE_VLDRSTR_qi_m<MVE_ld, memsz, "vldr" # memsz.MnemonicLetter, 6422 "u" # memsz.TypeBits>; 6423 defvar Inst = !cast<Instruction>(NAME); 6424 6425 foreach DVTI = DVTIs in { 6426 def : Pat<(DVTI.Vec (int_arm_mve_vldr_gather_base 6427 (AVTI.Vec MQPR:$addr), (i32 imm:$offset))), 6428 (DVTI.Vec (Inst (AVTI.Vec MQPR:$addr), (i32 imm:$offset)))>; 6429 def : Pat<(DVTI.Vec (int_arm_mve_vldr_gather_base_predicated 6430 (AVTI.Vec MQPR:$addr), (i32 imm:$offset), (AVTI.Pred VCCR:$pred))), 6431 (DVTI.Vec (Inst (AVTI.Vec MQPR:$addr), (i32 imm:$offset), 6432 ARMVCCThen, VCCR:$pred))>; 6433 } 6434} 6435multiclass MVE_VSTR_qi<MVE_memsz memsz, MVEVectorVTInfo AVTI, 6436 list<MVEVectorVTInfo> DVTIs> { 6437 defm "" : MVE_VLDRSTR_qi_m<MVE_st, memsz, "vstr" # memsz.MnemonicLetter, 6438 !cast<string>(memsz.TypeBits)>; 6439 defvar Inst = !cast<Instruction>(NAME); 6440 defvar InstPre = !cast<Instruction>(NAME # "_pre"); 6441 6442 foreach DVTI = DVTIs in { 6443 def : Pat<(int_arm_mve_vstr_scatter_base 6444 (AVTI.Vec MQPR:$addr), (i32 imm:$offset), (DVTI.Vec MQPR:$data)), 6445 (Inst (DVTI.Vec MQPR:$data), (AVTI.Vec MQPR:$addr), 6446 (i32 imm:$offset))>; 6447 def : Pat<(int_arm_mve_vstr_scatter_base_predicated 6448 (AVTI.Vec MQPR:$addr), (i32 imm:$offset), (DVTI.Vec MQPR:$data), (AVTI.Pred VCCR:$pred)), 6449 (Inst (DVTI.Vec MQPR:$data), (AVTI.Vec MQPR:$addr), 6450 (i32 imm:$offset), ARMVCCThen, VCCR:$pred)>; 6451 def : Pat<(AVTI.Vec (int_arm_mve_vstr_scatter_base_wb 6452 (AVTI.Vec MQPR:$addr), (i32 imm:$offset), (DVTI.Vec MQPR:$data))), 6453 (AVTI.Vec (InstPre (DVTI.Vec MQPR:$data), (AVTI.Vec MQPR:$addr), 6454 (i32 imm:$offset)))>; 6455 def : Pat<(AVTI.Vec (int_arm_mve_vstr_scatter_base_wb_predicated 6456 (AVTI.Vec MQPR:$addr), (i32 imm:$offset), (DVTI.Vec MQPR:$data), (AVTI.Pred VCCR:$pred))), 6457 (AVTI.Vec (InstPre (DVTI.Vec MQPR:$data), (AVTI.Vec MQPR:$addr), 6458 (i32 imm:$offset), ARMVCCThen, VCCR:$pred))>; 6459 } 6460} 6461 6462// Actual instruction definitions. 6463defm MVE_VLDRWU32_qi: MVE_VLDR_qi<MVE_memW, MVE_v4i32, [MVE_v4i32,MVE_v4f32]>; 6464defm MVE_VLDRDU64_qi: MVE_VLDR_qi<MVE_memD, MVE_v2i64, [MVE_v2i64,MVE_v2f64]>; 6465defm MVE_VSTRW32_qi: MVE_VSTR_qi<MVE_memW, MVE_v4i32, [MVE_v4i32,MVE_v4f32]>; 6466defm MVE_VSTRD64_qi: MVE_VSTR_qi<MVE_memD, MVE_v2i64, [MVE_v2i64,MVE_v2f64]>; 6467 6468// Define aliases for all the instructions where memory size and 6469// vector lane size are the same. These are mnemonic aliases, so they 6470// apply consistently across all of the above families - contiguous 6471// loads, and both the rq and qi types of gather/scatter. 6472// 6473// Rationale: As long as you're loading (for example) 16-bit memory 6474// values into 16-bit vector lanes, you can think of them as signed or 6475// unsigned integers, fp16 or just raw 16-bit blobs and it makes no 6476// difference. So we permit all of vldrh.16, vldrh.u16, vldrh.s16, 6477// vldrh.f16 and treat them all as equivalent to the canonical 6478// spelling (which happens to be .u16 for loads, and just .16 for 6479// stores). 6480 6481foreach vpt_cond = ["", "t", "e"] in 6482foreach memsz = [MVE_memB, MVE_memH, MVE_memW, MVE_memD] in 6483foreach suffix = memsz.suffixes in { 6484 // Define an alias with every suffix in the list, except for the one 6485 // used by the real Instruction record (i.e. the one that all the 6486 // rest are aliases *for*). 6487 6488 if !ne(suffix, memsz.CanonLoadSuffix) then { 6489 def : MnemonicAlias< 6490 "vldr" # memsz.MnemonicLetter # vpt_cond # suffix, 6491 "vldr" # memsz.MnemonicLetter # vpt_cond # memsz.CanonLoadSuffix>; 6492 } 6493 6494 if !ne(suffix, memsz.CanonStoreSuffix) then { 6495 def : MnemonicAlias< 6496 "vstr" # memsz.MnemonicLetter # vpt_cond # suffix, 6497 "vstr" # memsz.MnemonicLetter # vpt_cond # memsz.CanonStoreSuffix>; 6498 } 6499} 6500 6501// end of MVE predicable load/store 6502 6503class MVE_VPT<string suffix, bits<2> size, dag iops, string asm, list<dag> pattern=[]> 6504 : MVE_MI<(outs ), iops, NoItinerary, !strconcat("vpt", "${Mk}", ".", suffix), asm, "", pattern> { 6505 bits<3> fc; 6506 bits<4> Mk; 6507 bits<3> Qn; 6508 6509 let Inst{31-23} = 0b111111100; 6510 let Inst{22} = Mk{3}; 6511 let Inst{21-20} = size; 6512 let Inst{19-17} = Qn{2-0}; 6513 let Inst{16} = 0b1; 6514 let Inst{15-13} = Mk{2-0}; 6515 let Inst{12} = fc{2}; 6516 let Inst{11-8} = 0b1111; 6517 let Inst{7} = fc{0}; 6518 let Inst{4} = 0b0; 6519 6520 let Defs = [VPR]; 6521 let validForTailPredication=1; 6522} 6523 6524class MVE_VPTt1<string suffix, bits<2> size, dag iops> 6525 : MVE_VPT<suffix, size, iops, "$fc, $Qn, $Qm"> { 6526 bits<4> Qm; 6527 bits<4> Mk; 6528 6529 let Inst{6} = 0b0; 6530 let Inst{5} = Qm{3}; 6531 let Inst{3-1} = Qm{2-0}; 6532 let Inst{0} = fc{1}; 6533} 6534 6535class MVE_VPTt1i<string suffix, bits<2> size> 6536 : MVE_VPTt1<suffix, size, 6537 (ins vpt_mask:$Mk, MQPR:$Qn, MQPR:$Qm, pred_basic_i:$fc)> { 6538 let Inst{12} = 0b0; 6539 let Inst{0} = 0b0; 6540} 6541 6542def MVE_VPTv4i32 : MVE_VPTt1i<"i32", 0b10>; 6543def MVE_VPTv8i16 : MVE_VPTt1i<"i16", 0b01>; 6544def MVE_VPTv16i8 : MVE_VPTt1i<"i8", 0b00>; 6545 6546class MVE_VPTt1u<string suffix, bits<2> size> 6547 : MVE_VPTt1<suffix, size, 6548 (ins vpt_mask:$Mk, MQPR:$Qn, MQPR:$Qm, pred_basic_u:$fc)> { 6549 let Inst{12} = 0b0; 6550 let Inst{0} = 0b1; 6551} 6552 6553def MVE_VPTv4u32 : MVE_VPTt1u<"u32", 0b10>; 6554def MVE_VPTv8u16 : MVE_VPTt1u<"u16", 0b01>; 6555def MVE_VPTv16u8 : MVE_VPTt1u<"u8", 0b00>; 6556 6557class MVE_VPTt1s<string suffix, bits<2> size> 6558 : MVE_VPTt1<suffix, size, 6559 (ins vpt_mask:$Mk, MQPR:$Qn, MQPR:$Qm, pred_basic_s:$fc)> { 6560 let Inst{12} = 0b1; 6561} 6562 6563def MVE_VPTv4s32 : MVE_VPTt1s<"s32", 0b10>; 6564def MVE_VPTv8s16 : MVE_VPTt1s<"s16", 0b01>; 6565def MVE_VPTv16s8 : MVE_VPTt1s<"s8", 0b00>; 6566 6567class MVE_VPTt2<string suffix, bits<2> size, dag iops> 6568 : MVE_VPT<suffix, size, iops, 6569 "$fc, $Qn, $Rm"> { 6570 bits<4> Rm; 6571 bits<3> fc; 6572 bits<4> Mk; 6573 6574 let Inst{6} = 0b1; 6575 let Inst{5} = fc{1}; 6576 let Inst{3-0} = Rm{3-0}; 6577} 6578 6579class MVE_VPTt2i<string suffix, bits<2> size> 6580 : MVE_VPTt2<suffix, size, 6581 (ins vpt_mask:$Mk, MQPR:$Qn, GPRwithZR:$Rm, pred_basic_i:$fc)> { 6582 let Inst{12} = 0b0; 6583 let Inst{5} = 0b0; 6584} 6585 6586def MVE_VPTv4i32r : MVE_VPTt2i<"i32", 0b10>; 6587def MVE_VPTv8i16r : MVE_VPTt2i<"i16", 0b01>; 6588def MVE_VPTv16i8r : MVE_VPTt2i<"i8", 0b00>; 6589 6590class MVE_VPTt2u<string suffix, bits<2> size> 6591 : MVE_VPTt2<suffix, size, 6592 (ins vpt_mask:$Mk, MQPR:$Qn, GPRwithZR:$Rm, pred_basic_u:$fc)> { 6593 let Inst{12} = 0b0; 6594 let Inst{5} = 0b1; 6595} 6596 6597def MVE_VPTv4u32r : MVE_VPTt2u<"u32", 0b10>; 6598def MVE_VPTv8u16r : MVE_VPTt2u<"u16", 0b01>; 6599def MVE_VPTv16u8r : MVE_VPTt2u<"u8", 0b00>; 6600 6601class MVE_VPTt2s<string suffix, bits<2> size> 6602 : MVE_VPTt2<suffix, size, 6603 (ins vpt_mask:$Mk, MQPR:$Qn, GPRwithZR:$Rm, pred_basic_s:$fc)> { 6604 let Inst{12} = 0b1; 6605} 6606 6607def MVE_VPTv4s32r : MVE_VPTt2s<"s32", 0b10>; 6608def MVE_VPTv8s16r : MVE_VPTt2s<"s16", 0b01>; 6609def MVE_VPTv16s8r : MVE_VPTt2s<"s8", 0b00>; 6610 6611 6612class MVE_VPTf<string suffix, bit size, dag iops, string asm, list<dag> pattern=[]> 6613 : MVE_MI<(outs ), iops, NoItinerary, !strconcat("vpt", "${Mk}", ".", suffix), asm, 6614 "", pattern> { 6615 bits<3> fc; 6616 bits<4> Mk; 6617 bits<3> Qn; 6618 6619 let Inst{31-29} = 0b111; 6620 let Inst{28} = size; 6621 let Inst{27-23} = 0b11100; 6622 let Inst{22} = Mk{3}; 6623 let Inst{21-20} = 0b11; 6624 let Inst{19-17} = Qn{2-0}; 6625 let Inst{16} = 0b1; 6626 let Inst{15-13} = Mk{2-0}; 6627 let Inst{12} = fc{2}; 6628 let Inst{11-8} = 0b1111; 6629 let Inst{7} = fc{0}; 6630 let Inst{4} = 0b0; 6631 6632 let Defs = [VPR]; 6633 let Predicates = [HasMVEFloat]; 6634 let validForTailPredication=1; 6635} 6636 6637class MVE_VPTft1<string suffix, bit size> 6638 : MVE_VPTf<suffix, size, (ins vpt_mask:$Mk, MQPR:$Qn, MQPR:$Qm, pred_basic_fp:$fc), 6639 "$fc, $Qn, $Qm"> { 6640 bits<3> fc; 6641 bits<4> Qm; 6642 6643 let Inst{6} = 0b0; 6644 let Inst{5} = Qm{3}; 6645 let Inst{3-1} = Qm{2-0}; 6646 let Inst{0} = fc{1}; 6647} 6648 6649def MVE_VPTv4f32 : MVE_VPTft1<"f32", 0b0>; 6650def MVE_VPTv8f16 : MVE_VPTft1<"f16", 0b1>; 6651 6652class MVE_VPTft2<string suffix, bit size> 6653 : MVE_VPTf<suffix, size, (ins vpt_mask:$Mk, MQPR:$Qn, GPRwithZR:$Rm, pred_basic_fp:$fc), 6654 "$fc, $Qn, $Rm"> { 6655 bits<3> fc; 6656 bits<4> Rm; 6657 6658 let Inst{6} = 0b1; 6659 let Inst{5} = fc{1}; 6660 let Inst{3-0} = Rm{3-0}; 6661} 6662 6663def MVE_VPTv4f32r : MVE_VPTft2<"f32", 0b0>; 6664def MVE_VPTv8f16r : MVE_VPTft2<"f16", 0b1>; 6665 6666def MVE_VPST : MVE_MI<(outs ), (ins vpt_mask:$Mk), NoItinerary, 6667 !strconcat("vpst", "${Mk}"), "", "", []> { 6668 bits<4> Mk; 6669 6670 let Inst{31-23} = 0b111111100; 6671 let Inst{22} = Mk{3}; 6672 let Inst{21-16} = 0b110001; 6673 let Inst{15-13} = Mk{2-0}; 6674 let Inst{12-0} = 0b0111101001101; 6675 let Unpredictable{12} = 0b1; 6676 let Unpredictable{7} = 0b1; 6677 let Unpredictable{5} = 0b1; 6678 6679 let Uses = [VPR]; 6680 let validForTailPredication = 1; 6681} 6682 6683def MVE_VPSEL : MVE_p<(outs MQPR:$Qd), (ins MQPR:$Qn, MQPR:$Qm), NoItinerary, 6684 "vpsel", "", "$Qd, $Qn, $Qm", vpred_n, "", []> { 6685 bits<4> Qn; 6686 bits<4> Qd; 6687 bits<4> Qm; 6688 6689 let Inst{28} = 0b1; 6690 let Inst{25-23} = 0b100; 6691 let Inst{22} = Qd{3}; 6692 let Inst{21-20} = 0b11; 6693 let Inst{19-17} = Qn{2-0}; 6694 let Inst{16} = 0b1; 6695 let Inst{15-13} = Qd{2-0}; 6696 let Inst{12-9} = 0b0111; 6697 let Inst{8} = 0b1; 6698 let Inst{7} = Qn{3}; 6699 let Inst{6} = 0b0; 6700 let Inst{5} = Qm{3}; 6701 let Inst{4} = 0b0; 6702 let Inst{3-1} = Qm{2-0}; 6703 let Inst{0} = 0b1; 6704} 6705 6706foreach suffix = ["s8", "s16", "s32", "u8", "u16", "u32", 6707 "i8", "i16", "i32", "f16", "f32"] in 6708def : MVEInstAlias<"vpsel${vp}." # suffix # "\t$Qd, $Qn, $Qm", 6709 (MVE_VPSEL MQPR:$Qd, MQPR:$Qn, MQPR:$Qm, vpred_n:$vp)>; 6710 6711let Predicates = [HasMVEInt] in { 6712 def : Pat<(v16i8 (vselect (v16i1 VCCR:$pred), (v16i8 MQPR:$v1), (v16i8 MQPR:$v2))), 6713 (v16i8 (MVE_VPSEL MQPR:$v1, MQPR:$v2, ARMVCCNone, VCCR:$pred))>; 6714 def : Pat<(v8i16 (vselect (v8i1 VCCR:$pred), (v8i16 MQPR:$v1), (v8i16 MQPR:$v2))), 6715 (v8i16 (MVE_VPSEL MQPR:$v1, MQPR:$v2, ARMVCCNone, VCCR:$pred))>; 6716 def : Pat<(v4i32 (vselect (v4i1 VCCR:$pred), (v4i32 MQPR:$v1), (v4i32 MQPR:$v2))), 6717 (v4i32 (MVE_VPSEL MQPR:$v1, MQPR:$v2, ARMVCCNone, VCCR:$pred))>; 6718 6719 def : Pat<(v8f16 (vselect (v8i1 VCCR:$pred), (v8f16 MQPR:$v1), (v8f16 MQPR:$v2))), 6720 (v8f16 (MVE_VPSEL MQPR:$v1, MQPR:$v2, ARMVCCNone, VCCR:$pred))>; 6721 def : Pat<(v4f32 (vselect (v4i1 VCCR:$pred), (v4f32 MQPR:$v1), (v4f32 MQPR:$v2))), 6722 (v4f32 (MVE_VPSEL MQPR:$v1, MQPR:$v2, ARMVCCNone, VCCR:$pred))>; 6723 6724 def : Pat<(v16i8 (vselect (v16i8 MQPR:$pred), (v16i8 MQPR:$v1), (v16i8 MQPR:$v2))), 6725 (v16i8 (MVE_VPSEL MQPR:$v1, MQPR:$v2, ARMVCCNone, 6726 (MVE_VCMPi8 (v16i8 MQPR:$pred), (MVE_VMOVimmi8 0), ARMCCne)))>; 6727 def : Pat<(v8i16 (vselect (v8i16 MQPR:$pred), (v8i16 MQPR:$v1), (v8i16 MQPR:$v2))), 6728 (v8i16 (MVE_VPSEL MQPR:$v1, MQPR:$v2, ARMVCCNone, 6729 (MVE_VCMPi16 (v8i16 MQPR:$pred), (MVE_VMOVimmi16 0), ARMCCne)))>; 6730 def : Pat<(v4i32 (vselect (v4i32 MQPR:$pred), (v4i32 MQPR:$v1), (v4i32 MQPR:$v2))), 6731 (v4i32 (MVE_VPSEL MQPR:$v1, MQPR:$v2, ARMVCCNone, 6732 (MVE_VCMPi32 (v4i32 MQPR:$pred), (MVE_VMOVimmi32 0), ARMCCne)))>; 6733 6734 def : Pat<(v8f16 (vselect (v8i16 MQPR:$pred), (v8f16 MQPR:$v1), (v8f16 MQPR:$v2))), 6735 (v8f16 (MVE_VPSEL MQPR:$v1, MQPR:$v2, ARMVCCNone, 6736 (MVE_VCMPi16 (v8i16 MQPR:$pred), (MVE_VMOVimmi16 0), ARMCCne)))>; 6737 def : Pat<(v4f32 (vselect (v4i32 MQPR:$pred), (v4f32 MQPR:$v1), (v4f32 MQPR:$v2))), 6738 (v4f32 (MVE_VPSEL MQPR:$v1, MQPR:$v2, ARMVCCNone, 6739 (MVE_VCMPi32 (v4i32 MQPR:$pred), (MVE_VMOVimmi32 0), ARMCCne)))>; 6740 6741 // Pred <-> Int 6742 def : Pat<(v16i8 (zext (v16i1 VCCR:$pred))), 6743 (v16i8 (MVE_VPSEL (MVE_VMOVimmi8 1), (MVE_VMOVimmi8 0), ARMVCCNone, VCCR:$pred))>; 6744 def : Pat<(v8i16 (zext (v8i1 VCCR:$pred))), 6745 (v8i16 (MVE_VPSEL (MVE_VMOVimmi16 1), (MVE_VMOVimmi16 0), ARMVCCNone, VCCR:$pred))>; 6746 def : Pat<(v4i32 (zext (v4i1 VCCR:$pred))), 6747 (v4i32 (MVE_VPSEL (MVE_VMOVimmi32 1), (MVE_VMOVimmi32 0), ARMVCCNone, VCCR:$pred))>; 6748 6749 def : Pat<(v16i8 (sext (v16i1 VCCR:$pred))), 6750 (v16i8 (MVE_VPSEL (MVE_VMOVimmi8 255), (MVE_VMOVimmi8 0), ARMVCCNone, VCCR:$pred))>; 6751 def : Pat<(v8i16 (sext (v8i1 VCCR:$pred))), 6752 (v8i16 (MVE_VPSEL (MVE_VMOVimmi8 255), (MVE_VMOVimmi16 0), ARMVCCNone, VCCR:$pred))>; 6753 def : Pat<(v4i32 (sext (v4i1 VCCR:$pred))), 6754 (v4i32 (MVE_VPSEL (MVE_VMOVimmi8 255), (MVE_VMOVimmi32 0), ARMVCCNone, VCCR:$pred))>; 6755 6756 def : Pat<(v16i8 (anyext (v16i1 VCCR:$pred))), 6757 (v16i8 (MVE_VPSEL (MVE_VMOVimmi8 1), (MVE_VMOVimmi8 0), ARMVCCNone, VCCR:$pred))>; 6758 def : Pat<(v8i16 (anyext (v8i1 VCCR:$pred))), 6759 (v8i16 (MVE_VPSEL (MVE_VMOVimmi16 1), (MVE_VMOVimmi16 0), ARMVCCNone, VCCR:$pred))>; 6760 def : Pat<(v4i32 (anyext (v4i1 VCCR:$pred))), 6761 (v4i32 (MVE_VPSEL (MVE_VMOVimmi32 1), (MVE_VMOVimmi32 0), ARMVCCNone, VCCR:$pred))>; 6762} 6763 6764let Predicates = [HasMVEFloat] in { 6765 // Pred <-> Float 6766 // 112 is 1.0 in float 6767 def : Pat<(v4f32 (uint_to_fp (v4i1 VCCR:$pred))), 6768 (v4f32 (MVE_VPSEL (v4f32 (MVE_VMOVimmf32 112)), (v4f32 (MVE_VMOVimmi32 0)), ARMVCCNone, VCCR:$pred))>; 6769 // 2620 in 1.0 in half 6770 def : Pat<(v8f16 (uint_to_fp (v8i1 VCCR:$pred))), 6771 (v8f16 (MVE_VPSEL (v8f16 (MVE_VMOVimmi16 2620)), (v8f16 (MVE_VMOVimmi16 0)), ARMVCCNone, VCCR:$pred))>; 6772 // 240 is -1.0 in float 6773 def : Pat<(v4f32 (sint_to_fp (v4i1 VCCR:$pred))), 6774 (v4f32 (MVE_VPSEL (v4f32 (MVE_VMOVimmf32 240)), (v4f32 (MVE_VMOVimmi32 0)), ARMVCCNone, VCCR:$pred))>; 6775 // 2748 is -1.0 in half 6776 def : Pat<(v8f16 (sint_to_fp (v8i1 VCCR:$pred))), 6777 (v8f16 (MVE_VPSEL (v8f16 (MVE_VMOVimmi16 2748)), (v8f16 (MVE_VMOVimmi16 0)), ARMVCCNone, VCCR:$pred))>; 6778 6779 def : Pat<(v4i1 (fp_to_uint (v4f32 MQPR:$v1))), 6780 (v4i1 (MVE_VCMPf32r (v4f32 MQPR:$v1), ZR, ARMCCne))>; 6781 def : Pat<(v8i1 (fp_to_uint (v8f16 MQPR:$v1))), 6782 (v8i1 (MVE_VCMPf16r (v8f16 MQPR:$v1), ZR, ARMCCne))>; 6783 def : Pat<(v4i1 (fp_to_sint (v4f32 MQPR:$v1))), 6784 (v4i1 (MVE_VCMPf32r (v4f32 MQPR:$v1), ZR, ARMCCne))>; 6785 def : Pat<(v8i1 (fp_to_sint (v8f16 MQPR:$v1))), 6786 (v8i1 (MVE_VCMPf16r (v8f16 MQPR:$v1), ZR, ARMCCne))>; 6787} 6788 6789def MVE_VPNOT : MVE_p<(outs VCCR:$P0), (ins VCCR:$P0_in), NoItinerary, 6790 "vpnot", "", "", vpred_n, "", []> { 6791 let Inst{31-0} = 0b11111110001100010000111101001101; 6792 let Unpredictable{19-17} = 0b111; 6793 let Unpredictable{12} = 0b1; 6794 let Unpredictable{7} = 0b1; 6795 let Unpredictable{5} = 0b1; 6796 6797 let Constraints = ""; 6798 let DecoderMethod = "DecodeMVEVPNOT"; 6799} 6800 6801let Predicates = [HasMVEInt] in { 6802 def : Pat<(v4i1 (xor (v4i1 VCCR:$pred), (v4i1 (predicate_cast (i32 65535))))), 6803 (v4i1 (MVE_VPNOT (v4i1 VCCR:$pred)))>; 6804 def : Pat<(v8i1 (xor (v8i1 VCCR:$pred), (v8i1 (predicate_cast (i32 65535))))), 6805 (v8i1 (MVE_VPNOT (v8i1 VCCR:$pred)))>; 6806 def : Pat<(v16i1 (xor (v16i1 VCCR:$pred), (v16i1 (predicate_cast (i32 65535))))), 6807 (v16i1 (MVE_VPNOT (v16i1 VCCR:$pred)))>; 6808} 6809 6810 6811class MVE_loltp_start<dag iops, string asm, string ops, bits<2> size> 6812 : t2LOL<(outs GPRlr:$LR), iops, asm, ops> { 6813 bits<4> Rn; 6814 let Predicates = [HasMVEInt]; 6815 let Inst{22} = 0b0; 6816 let Inst{21-20} = size; 6817 let Inst{19-16} = Rn{3-0}; 6818 let Inst{12} = 0b0; 6819} 6820 6821class MVE_DLSTP<string asm, bits<2> size> 6822 : MVE_loltp_start<(ins rGPR:$Rn), asm, "$LR, $Rn", size> { 6823 let Inst{13} = 0b1; 6824 let Inst{11-1} = 0b00000000000; 6825 let Unpredictable{10-1} = 0b1111111111; 6826} 6827 6828class MVE_WLSTP<string asm, bits<2> size> 6829 : MVE_loltp_start<(ins rGPR:$Rn, wlslabel_u11:$label), 6830 asm, "$LR, $Rn, $label", size> { 6831 bits<11> label; 6832 let Inst{13} = 0b0; 6833 let Inst{11} = label{0}; 6834 let Inst{10-1} = label{10-1}; 6835 let isBranch = 1; 6836 let isTerminator = 1; 6837} 6838 6839def MVE_DLSTP_8 : MVE_DLSTP<"dlstp.8", 0b00>; 6840def MVE_DLSTP_16 : MVE_DLSTP<"dlstp.16", 0b01>; 6841def MVE_DLSTP_32 : MVE_DLSTP<"dlstp.32", 0b10>; 6842def MVE_DLSTP_64 : MVE_DLSTP<"dlstp.64", 0b11>; 6843 6844def MVE_WLSTP_8 : MVE_WLSTP<"wlstp.8", 0b00>; 6845def MVE_WLSTP_16 : MVE_WLSTP<"wlstp.16", 0b01>; 6846def MVE_WLSTP_32 : MVE_WLSTP<"wlstp.32", 0b10>; 6847def MVE_WLSTP_64 : MVE_WLSTP<"wlstp.64", 0b11>; 6848 6849class MVE_loltp_end<dag oops, dag iops, string asm, string ops> 6850 : t2LOL<oops, iops, asm, ops> { 6851 let Predicates = [HasMVEInt]; 6852 let Inst{22-21} = 0b00; 6853 let Inst{19-16} = 0b1111; 6854 let Inst{12} = 0b0; 6855} 6856 6857def MVE_LETP : MVE_loltp_end<(outs GPRlr:$LRout), 6858 (ins GPRlr:$LRin, lelabel_u11:$label), 6859 "letp", "$LRin, $label"> { 6860 bits<11> label; 6861 let Inst{20} = 0b1; 6862 let Inst{13} = 0b0; 6863 let Inst{11} = label{0}; 6864 let Inst{10-1} = label{10-1}; 6865 let isBranch = 1; 6866 let isTerminator = 1; 6867} 6868 6869def MVE_LCTP : MVE_loltp_end<(outs), (ins pred:$p), "lctp${p}", ""> { 6870 let Inst{20} = 0b0; 6871 let Inst{13} = 0b1; 6872 let Inst{11-1} = 0b00000000000; 6873 let Unpredictable{21-20} = 0b11; 6874 let Unpredictable{11-1} = 0b11111111111; 6875} 6876 6877 6878//===----------------------------------------------------------------------===// 6879// Patterns 6880//===----------------------------------------------------------------------===// 6881 6882// PatFrags for loads and stores. Often trying to keep semi-consistent names. 6883 6884def aligned32_pre_store : PatFrag<(ops node:$val, node:$ptr, node:$offset), 6885 (pre_store node:$val, node:$ptr, node:$offset), [{ 6886 return cast<StoreSDNode>(N)->getAlignment() >= 4; 6887}]>; 6888def aligned32_post_store : PatFrag<(ops node:$val, node:$ptr, node:$offset), 6889 (post_store node:$val, node:$ptr, node:$offset), [{ 6890 return cast<StoreSDNode>(N)->getAlignment() >= 4; 6891}]>; 6892def aligned16_pre_store : PatFrag<(ops node:$val, node:$ptr, node:$offset), 6893 (pre_store node:$val, node:$ptr, node:$offset), [{ 6894 return cast<StoreSDNode>(N)->getAlignment() >= 2; 6895}]>; 6896def aligned16_post_store : PatFrag<(ops node:$val, node:$ptr, node:$offset), 6897 (post_store node:$val, node:$ptr, node:$offset), [{ 6898 return cast<StoreSDNode>(N)->getAlignment() >= 2; 6899}]>; 6900 6901 6902def aligned_maskedloadvi8 : PatFrag<(ops node:$ptr, node:$pred, node:$passthru), 6903 (masked_ld node:$ptr, undef, node:$pred, node:$passthru), [{ 6904 auto *Ld = cast<MaskedLoadSDNode>(N); 6905 return Ld->getMemoryVT().getScalarType() == MVT::i8; 6906}]>; 6907def aligned_sextmaskedloadvi8 : PatFrag<(ops node:$ptr, node:$pred, node:$passthru), 6908 (aligned_maskedloadvi8 node:$ptr, node:$pred, node:$passthru), [{ 6909 return cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD; 6910}]>; 6911def aligned_zextmaskedloadvi8 : PatFrag<(ops node:$ptr, node:$pred, node:$passthru), 6912 (aligned_maskedloadvi8 node:$ptr, node:$pred, node:$passthru), [{ 6913 return cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD; 6914}]>; 6915def aligned_extmaskedloadvi8 : PatFrag<(ops node:$ptr, node:$pred, node:$passthru), 6916 (aligned_maskedloadvi8 node:$ptr, node:$pred, node:$passthru), [{ 6917 auto *Ld = cast<MaskedLoadSDNode>(N); 6918 EVT ScalarVT = Ld->getMemoryVT().getScalarType(); 6919 return ScalarVT.isInteger() && Ld->getExtensionType() == ISD::EXTLOAD; 6920}]>; 6921def aligned_maskedloadvi16: PatFrag<(ops node:$ptr, node:$pred, node:$passthru), 6922 (masked_ld node:$ptr, undef, node:$pred, node:$passthru), [{ 6923 auto *Ld = cast<MaskedLoadSDNode>(N); 6924 EVT ScalarVT = Ld->getMemoryVT().getScalarType(); 6925 return (ScalarVT == MVT::i16 || ScalarVT == MVT::f16) && Ld->getAlignment() >= 2; 6926}]>; 6927def aligned_sextmaskedloadvi16 : PatFrag<(ops node:$ptr, node:$pred, node:$passthru), 6928 (aligned_maskedloadvi16 node:$ptr, node:$pred, node:$passthru), [{ 6929 return cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD; 6930}]>; 6931def aligned_zextmaskedloadvi16 : PatFrag<(ops node:$ptr, node:$pred, node:$passthru), 6932 (aligned_maskedloadvi16 node:$ptr, node:$pred, node:$passthru), [{ 6933 return cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD; 6934}]>; 6935def aligned_extmaskedloadvi16 : PatFrag<(ops node:$ptr, node:$pred, node:$passthru), 6936 (aligned_maskedloadvi16 node:$ptr, node:$pred, node:$passthru), [{ 6937 auto *Ld = cast<MaskedLoadSDNode>(N); 6938 EVT ScalarVT = Ld->getMemoryVT().getScalarType(); 6939 return ScalarVT.isInteger() && Ld->getExtensionType() == ISD::EXTLOAD; 6940}]>; 6941def aligned_maskedloadvi32: PatFrag<(ops node:$ptr, node:$pred, node:$passthru), 6942 (masked_ld node:$ptr, undef, node:$pred, node:$passthru), [{ 6943 auto *Ld = cast<MaskedLoadSDNode>(N); 6944 EVT ScalarVT = Ld->getMemoryVT().getScalarType(); 6945 return (ScalarVT == MVT::i32 || ScalarVT == MVT::f32) && Ld->getAlignment() >= 4; 6946}]>; 6947 6948def aligned_maskedstvi8 : PatFrag<(ops node:$val, node:$ptr, node:$pred), 6949 (masked_st node:$val, node:$ptr, undef, node:$pred), [{ 6950 return cast<MaskedStoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::i8; 6951}]>; 6952def aligned_maskedstvi16 : PatFrag<(ops node:$val, node:$ptr, node:$pred), 6953 (masked_st node:$val, node:$ptr, undef, node:$pred), [{ 6954 auto *St = cast<MaskedStoreSDNode>(N); 6955 EVT ScalarVT = St->getMemoryVT().getScalarType(); 6956 return (ScalarVT == MVT::i16 || ScalarVT == MVT::f16) && St->getAlignment() >= 2; 6957}]>; 6958def aligned_maskedstvi32 : PatFrag<(ops node:$val, node:$ptr, node:$pred), 6959 (masked_st node:$val, node:$ptr, undef, node:$pred), [{ 6960 auto *St = cast<MaskedStoreSDNode>(N); 6961 EVT ScalarVT = St->getMemoryVT().getScalarType(); 6962 return (ScalarVT == MVT::i32 || ScalarVT == MVT::f32) && St->getAlignment() >= 4; 6963}]>; 6964 6965def pre_maskedstore : PatFrag<(ops node:$val, node:$base, node:$offset, node:$mask), 6966 (masked_st node:$val, node:$base, node:$offset, node:$mask), [{ 6967 ISD::MemIndexedMode AM = cast<MaskedStoreSDNode>(N)->getAddressingMode(); 6968 return AM == ISD::PRE_INC || AM == ISD::PRE_DEC; 6969}]>; 6970def post_maskedstore : PatFrag<(ops node:$val, node:$base, node:$offset, node:$mask), 6971 (masked_st node:$val, node:$base, node:$offset, node:$mask), [{ 6972 ISD::MemIndexedMode AM = cast<MaskedStoreSDNode>(N)->getAddressingMode(); 6973 return AM == ISD::POST_INC || AM == ISD::POST_DEC; 6974}]>; 6975def aligned_pre_maskedstorevi8 : PatFrag<(ops node:$val, node:$ptr, node:$offset, node:$mask), 6976 (pre_maskedstore node:$val, node:$ptr, node:$offset, node:$mask), [{ 6977 return cast<MaskedStoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::i8; 6978}]>; 6979def aligned_post_maskedstorevi8 : PatFrag<(ops node:$val, node:$ptr, node:$offset, node:$mask), 6980 (post_maskedstore node:$val, node:$ptr, node:$offset, node:$mask), [{ 6981 return cast<MaskedStoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::i8; 6982}]>; 6983def aligned_pre_maskedstorevi16 : PatFrag<(ops node:$val, node:$ptr, node:$offset, node:$mask), 6984 (pre_maskedstore node:$val, node:$ptr, node:$offset, node:$mask), [{ 6985 auto *St = cast<MaskedStoreSDNode>(N); 6986 EVT ScalarVT = St->getMemoryVT().getScalarType(); 6987 return (ScalarVT == MVT::i16 || ScalarVT == MVT::f16) && St->getAlignment() >= 2; 6988}]>; 6989def aligned_post_maskedstorevi16 : PatFrag<(ops node:$val, node:$ptr, node:$offset, node:$mask), 6990 (post_maskedstore node:$val, node:$ptr, node:$offset, node:$mask), [{ 6991 auto *St = cast<MaskedStoreSDNode>(N); 6992 EVT ScalarVT = St->getMemoryVT().getScalarType(); 6993 return (ScalarVT == MVT::i16 || ScalarVT == MVT::f16) && St->getAlignment() >= 2; 6994}]>; 6995def aligned_pre_maskedstorevi32 : PatFrag<(ops node:$val, node:$ptr, node:$offset, node:$mask), 6996 (pre_maskedstore node:$val, node:$ptr, node:$offset, node:$mask), [{ 6997 auto *St = cast<MaskedStoreSDNode>(N); 6998 EVT ScalarVT = St->getMemoryVT().getScalarType(); 6999 return (ScalarVT == MVT::i32 || ScalarVT == MVT::f32) && St->getAlignment() >= 4; 7000}]>; 7001def aligned_post_maskedstorevi32 : PatFrag<(ops node:$val, node:$ptr, node:$offset, node:$mask), 7002 (post_maskedstore node:$val, node:$ptr, node:$offset, node:$mask), [{ 7003 auto *St = cast<MaskedStoreSDNode>(N); 7004 EVT ScalarVT = St->getMemoryVT().getScalarType(); 7005 return (ScalarVT == MVT::i32 || ScalarVT == MVT::f32) && St->getAlignment() >= 4; 7006}]>; 7007 7008 7009// PatFrags for "Aligned" extending / truncating 7010 7011def aligned_extloadvi8 : PatFrag<(ops node:$ptr), (extloadvi8 node:$ptr)>; 7012def aligned_sextloadvi8 : PatFrag<(ops node:$ptr), (sextloadvi8 node:$ptr)>; 7013def aligned_zextloadvi8 : PatFrag<(ops node:$ptr), (zextloadvi8 node:$ptr)>; 7014 7015def aligned_truncstvi8 : PatFrag<(ops node:$val, node:$ptr), 7016 (truncstorevi8 node:$val, node:$ptr)>; 7017def aligned_post_truncstvi8 : PatFrag<(ops node:$val, node:$base, node:$offset), 7018 (post_truncstvi8 node:$val, node:$base, node:$offset)>; 7019def aligned_pre_truncstvi8 : PatFrag<(ops node:$val, node:$base, node:$offset), 7020 (pre_truncstvi8 node:$val, node:$base, node:$offset)>; 7021 7022let MinAlignment = 2 in { 7023 def aligned_extloadvi16 : PatFrag<(ops node:$ptr), (extloadvi16 node:$ptr)>; 7024 def aligned_sextloadvi16 : PatFrag<(ops node:$ptr), (sextloadvi16 node:$ptr)>; 7025 def aligned_zextloadvi16 : PatFrag<(ops node:$ptr), (zextloadvi16 node:$ptr)>; 7026 7027 def aligned_truncstvi16 : PatFrag<(ops node:$val, node:$ptr), 7028 (truncstorevi16 node:$val, node:$ptr)>; 7029 def aligned_post_truncstvi16 : PatFrag<(ops node:$val, node:$base, node:$offset), 7030 (post_truncstvi16 node:$val, node:$base, node:$offset)>; 7031 def aligned_pre_truncstvi16 : PatFrag<(ops node:$val, node:$base, node:$offset), 7032 (pre_truncstvi16 node:$val, node:$base, node:$offset)>; 7033} 7034 7035def truncmaskedst : PatFrag<(ops node:$val, node:$base, node:$pred), 7036 (masked_st node:$val, node:$base, undef, node:$pred), [{ 7037 return cast<MaskedStoreSDNode>(N)->isTruncatingStore(); 7038}]>; 7039def aligned_truncmaskedstvi8 : PatFrag<(ops node:$val, node:$base, node:$pred), 7040 (truncmaskedst node:$val, node:$base, node:$pred), [{ 7041 return cast<MaskedStoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::i8; 7042}]>; 7043def aligned_truncmaskedstvi16 : PatFrag<(ops node:$val, node:$base, node:$pred), 7044 (truncmaskedst node:$val, node:$base, node:$pred), [{ 7045 auto *St = cast<MaskedStoreSDNode>(N); 7046 EVT ScalarVT = St->getMemoryVT().getScalarType(); 7047 return (ScalarVT == MVT::i16 || ScalarVT == MVT::f16) && St->getAlignment() >= 2; 7048}]>; 7049def pre_truncmaskedst : PatFrag<(ops node:$val, node:$base, node:$offset, node:$pred), 7050 (masked_st node:$val, node:$base, node:$offset, node:$pred), [{ 7051 ISD::MemIndexedMode AM = cast<MaskedStoreSDNode>(N)->getAddressingMode(); 7052 return cast<MaskedStoreSDNode>(N)->isTruncatingStore() && (AM == ISD::PRE_INC || AM == ISD::PRE_DEC); 7053}]>; 7054def aligned_pre_truncmaskedstvi8 : PatFrag<(ops node:$val, node:$base, node:$offset, node:$pred), 7055 (pre_truncmaskedst node:$val, node:$base, node:$offset, node:$pred), [{ 7056 return cast<MaskedStoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::i8; 7057}]>; 7058def aligned_pre_truncmaskedstvi16 : PatFrag<(ops node:$val, node:$base, node:$offset, node:$pred), 7059 (pre_truncmaskedst node:$val, node:$base, node:$offset, node:$pred), [{ 7060 auto *St = cast<MaskedStoreSDNode>(N); 7061 EVT ScalarVT = St->getMemoryVT().getScalarType(); 7062 return (ScalarVT == MVT::i16 || ScalarVT == MVT::f16) && St->getAlignment() >= 2; 7063}]>; 7064def post_truncmaskedst : PatFrag<(ops node:$val, node:$base, node:$offset, node:$postd), 7065 (masked_st node:$val, node:$base, node:$offset, node:$postd), [{ 7066 ISD::MemIndexedMode AM = cast<MaskedStoreSDNode>(N)->getAddressingMode(); 7067 return cast<MaskedStoreSDNode>(N)->isTruncatingStore() && (AM == ISD::POST_INC || AM == ISD::POST_DEC); 7068}]>; 7069def aligned_post_truncmaskedstvi8 : PatFrag<(ops node:$val, node:$base, node:$offset, node:$postd), 7070 (post_truncmaskedst node:$val, node:$base, node:$offset, node:$postd), [{ 7071 return cast<MaskedStoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::i8; 7072}]>; 7073def aligned_post_truncmaskedstvi16 : PatFrag<(ops node:$val, node:$base, node:$offset, node:$postd), 7074 (post_truncmaskedst node:$val, node:$base, node:$offset, node:$postd), [{ 7075 auto *St = cast<MaskedStoreSDNode>(N); 7076 EVT ScalarVT = St->getMemoryVT().getScalarType(); 7077 return (ScalarVT == MVT::i16 || ScalarVT == MVT::f16) && St->getAlignment() >= 2; 7078}]>; 7079 7080// Load/store patterns 7081 7082class MVE_vector_store_typed<ValueType Ty, Instruction RegImmInst, 7083 PatFrag StoreKind, int shift> 7084 : Pat<(StoreKind (Ty MQPR:$val), t2addrmode_imm7<shift>:$addr), 7085 (RegImmInst (Ty MQPR:$val), t2addrmode_imm7<shift>:$addr)>; 7086 7087class MVE_vector_maskedstore_typed<ValueType Ty, Instruction RegImmInst, 7088 PatFrag StoreKind, int shift> 7089 : Pat<(StoreKind (Ty MQPR:$val), t2addrmode_imm7<shift>:$addr, VCCR:$pred), 7090 (RegImmInst (Ty MQPR:$val), t2addrmode_imm7<shift>:$addr, ARMVCCThen, VCCR:$pred)>; 7091 7092multiclass MVE_vector_store<Instruction RegImmInst, PatFrag StoreKind, 7093 int shift> { 7094 def : MVE_vector_store_typed<v16i8, RegImmInst, StoreKind, shift>; 7095 def : MVE_vector_store_typed<v8i16, RegImmInst, StoreKind, shift>; 7096 def : MVE_vector_store_typed<v8f16, RegImmInst, StoreKind, shift>; 7097 def : MVE_vector_store_typed<v4i32, RegImmInst, StoreKind, shift>; 7098 def : MVE_vector_store_typed<v4f32, RegImmInst, StoreKind, shift>; 7099 def : MVE_vector_store_typed<v2i64, RegImmInst, StoreKind, shift>; 7100 def : MVE_vector_store_typed<v2f64, RegImmInst, StoreKind, shift>; 7101} 7102 7103class MVE_vector_load_typed<ValueType Ty, Instruction RegImmInst, 7104 PatFrag LoadKind, int shift> 7105 : Pat<(Ty (LoadKind t2addrmode_imm7<shift>:$addr)), 7106 (Ty (RegImmInst t2addrmode_imm7<shift>:$addr))>; 7107 7108class MVE_vector_maskedload_typed<ValueType Ty, Instruction RegImmInst, 7109 PatFrag LoadKind, int shift> 7110 : Pat<(Ty (LoadKind t2addrmode_imm7<shift>:$addr, VCCR:$pred, (Ty (ARMvmovImm (i32 0))))), 7111 (Ty (RegImmInst t2addrmode_imm7<shift>:$addr, ARMVCCThen, VCCR:$pred))>; 7112 7113multiclass MVE_vector_load<Instruction RegImmInst, PatFrag LoadKind, 7114 int shift> { 7115 def : MVE_vector_load_typed<v16i8, RegImmInst, LoadKind, shift>; 7116 def : MVE_vector_load_typed<v8i16, RegImmInst, LoadKind, shift>; 7117 def : MVE_vector_load_typed<v8f16, RegImmInst, LoadKind, shift>; 7118 def : MVE_vector_load_typed<v4i32, RegImmInst, LoadKind, shift>; 7119 def : MVE_vector_load_typed<v4f32, RegImmInst, LoadKind, shift>; 7120 def : MVE_vector_load_typed<v2i64, RegImmInst, LoadKind, shift>; 7121 def : MVE_vector_load_typed<v2f64, RegImmInst, LoadKind, shift>; 7122} 7123 7124class MVE_vector_offset_store_typed<ValueType Ty, Instruction Opcode, 7125 PatFrag StoreKind, int shift> 7126 : Pat<(StoreKind (Ty MQPR:$Rt), tGPR:$Rn, t2am_imm7_offset<shift>:$addr), 7127 (Opcode MQPR:$Rt, tGPR:$Rn, t2am_imm7_offset<shift>:$addr)>; 7128 7129class MVE_vector_offset_maskedstore_typed<ValueType Ty, Instruction Opcode, 7130 PatFrag StoreKind, int shift> 7131 : Pat<(StoreKind (Ty MQPR:$Rt), tGPR:$Rn, t2am_imm7_offset<shift>:$addr, VCCR:$pred), 7132 (Opcode MQPR:$Rt, tGPR:$Rn, t2am_imm7_offset<shift>:$addr, ARMVCCThen, VCCR:$pred)>; 7133 7134multiclass MVE_vector_offset_store<Instruction RegImmInst, PatFrag StoreKind, 7135 int shift> { 7136 def : MVE_vector_offset_store_typed<v16i8, RegImmInst, StoreKind, shift>; 7137 def : MVE_vector_offset_store_typed<v8i16, RegImmInst, StoreKind, shift>; 7138 def : MVE_vector_offset_store_typed<v8f16, RegImmInst, StoreKind, shift>; 7139 def : MVE_vector_offset_store_typed<v4i32, RegImmInst, StoreKind, shift>; 7140 def : MVE_vector_offset_store_typed<v4f32, RegImmInst, StoreKind, shift>; 7141 def : MVE_vector_offset_store_typed<v2i64, RegImmInst, StoreKind, shift>; 7142 def : MVE_vector_offset_store_typed<v2f64, RegImmInst, StoreKind, shift>; 7143} 7144 7145 7146let Predicates = [HasMVEInt, IsLE] in { 7147 // Stores 7148 defm : MVE_vector_store<MVE_VSTRBU8, byte_alignedstore, 0>; 7149 defm : MVE_vector_store<MVE_VSTRHU16, hword_alignedstore, 1>; 7150 defm : MVE_vector_store<MVE_VSTRWU32, alignedstore32, 2>; 7151 7152 // Loads 7153 defm : MVE_vector_load<MVE_VLDRBU8, byte_alignedload, 0>; 7154 defm : MVE_vector_load<MVE_VLDRHU16, hword_alignedload, 1>; 7155 defm : MVE_vector_load<MVE_VLDRWU32, alignedload32, 2>; 7156 7157 // Pre/post inc stores 7158 defm : MVE_vector_offset_store<MVE_VSTRBU8_pre, pre_store, 0>; 7159 defm : MVE_vector_offset_store<MVE_VSTRBU8_post, post_store, 0>; 7160 defm : MVE_vector_offset_store<MVE_VSTRHU16_pre, aligned16_pre_store, 1>; 7161 defm : MVE_vector_offset_store<MVE_VSTRHU16_post, aligned16_post_store, 1>; 7162 defm : MVE_vector_offset_store<MVE_VSTRWU32_pre, aligned32_pre_store, 2>; 7163 defm : MVE_vector_offset_store<MVE_VSTRWU32_post, aligned32_post_store, 2>; 7164} 7165 7166let Predicates = [HasMVEInt, IsBE] in { 7167 // Aligned Stores 7168 def : MVE_vector_store_typed<v16i8, MVE_VSTRBU8, store, 0>; 7169 def : MVE_vector_store_typed<v8i16, MVE_VSTRHU16, alignedstore16, 1>; 7170 def : MVE_vector_store_typed<v8f16, MVE_VSTRHU16, alignedstore16, 1>; 7171 def : MVE_vector_store_typed<v4i32, MVE_VSTRWU32, alignedstore32, 2>; 7172 def : MVE_vector_store_typed<v4f32, MVE_VSTRWU32, alignedstore32, 2>; 7173 7174 // Aligned Loads 7175 def : MVE_vector_load_typed<v16i8, MVE_VLDRBU8, load, 0>; 7176 def : MVE_vector_load_typed<v8i16, MVE_VLDRHU16, alignedload16, 1>; 7177 def : MVE_vector_load_typed<v8f16, MVE_VLDRHU16, alignedload16, 1>; 7178 def : MVE_vector_load_typed<v4i32, MVE_VLDRWU32, alignedload32, 2>; 7179 def : MVE_vector_load_typed<v4f32, MVE_VLDRWU32, alignedload32, 2>; 7180 7181 // Other unaligned loads/stores need to go though a VREV 7182 def : Pat<(v2f64 (load t2addrmode_imm7<0>:$addr)), 7183 (v2f64 (MVE_VREV64_8 (MVE_VLDRBU8 t2addrmode_imm7<0>:$addr)))>; 7184 def : Pat<(v2i64 (load t2addrmode_imm7<0>:$addr)), 7185 (v2i64 (MVE_VREV64_8 (MVE_VLDRBU8 t2addrmode_imm7<0>:$addr)))>; 7186 def : Pat<(v4i32 (load t2addrmode_imm7<0>:$addr)), 7187 (v4i32 (MVE_VREV32_8 (MVE_VLDRBU8 t2addrmode_imm7<0>:$addr)))>; 7188 def : Pat<(v4f32 (load t2addrmode_imm7<0>:$addr)), 7189 (v4f32 (MVE_VREV32_8 (MVE_VLDRBU8 t2addrmode_imm7<0>:$addr)))>; 7190 def : Pat<(v8i16 (load t2addrmode_imm7<0>:$addr)), 7191 (v8i16 (MVE_VREV16_8 (MVE_VLDRBU8 t2addrmode_imm7<0>:$addr)))>; 7192 def : Pat<(v8f16 (load t2addrmode_imm7<0>:$addr)), 7193 (v8f16 (MVE_VREV16_8 (MVE_VLDRBU8 t2addrmode_imm7<0>:$addr)))>; 7194 def : Pat<(store (v2f64 MQPR:$val), t2addrmode_imm7<0>:$addr), 7195 (MVE_VSTRBU8 (MVE_VREV64_8 MQPR:$val), t2addrmode_imm7<0>:$addr)>; 7196 def : Pat<(store (v2i64 MQPR:$val), t2addrmode_imm7<0>:$addr), 7197 (MVE_VSTRBU8 (MVE_VREV64_8 MQPR:$val), t2addrmode_imm7<0>:$addr)>; 7198 def : Pat<(store (v4i32 MQPR:$val), t2addrmode_imm7<0>:$addr), 7199 (MVE_VSTRBU8 (MVE_VREV32_8 MQPR:$val), t2addrmode_imm7<0>:$addr)>; 7200 def : Pat<(store (v4f32 MQPR:$val), t2addrmode_imm7<0>:$addr), 7201 (MVE_VSTRBU8 (MVE_VREV32_8 MQPR:$val), t2addrmode_imm7<0>:$addr)>; 7202 def : Pat<(store (v8i16 MQPR:$val), t2addrmode_imm7<0>:$addr), 7203 (MVE_VSTRBU8 (MVE_VREV16_8 MQPR:$val), t2addrmode_imm7<0>:$addr)>; 7204 def : Pat<(store (v8f16 MQPR:$val), t2addrmode_imm7<0>:$addr), 7205 (MVE_VSTRBU8 (MVE_VREV16_8 MQPR:$val), t2addrmode_imm7<0>:$addr)>; 7206 7207 // Pre/Post inc stores 7208 def : MVE_vector_offset_store_typed<v16i8, MVE_VSTRBU8_pre, pre_store, 0>; 7209 def : MVE_vector_offset_store_typed<v16i8, MVE_VSTRBU8_post, post_store, 0>; 7210 def : MVE_vector_offset_store_typed<v8i16, MVE_VSTRHU16_pre, aligned16_pre_store, 1>; 7211 def : MVE_vector_offset_store_typed<v8i16, MVE_VSTRHU16_post, aligned16_post_store, 1>; 7212 def : MVE_vector_offset_store_typed<v8f16, MVE_VSTRHU16_pre, aligned16_pre_store, 1>; 7213 def : MVE_vector_offset_store_typed<v8f16, MVE_VSTRHU16_post, aligned16_post_store, 1>; 7214 def : MVE_vector_offset_store_typed<v4i32, MVE_VSTRWU32_pre, aligned32_pre_store, 2>; 7215 def : MVE_vector_offset_store_typed<v4i32, MVE_VSTRWU32_post, aligned32_post_store, 2>; 7216 def : MVE_vector_offset_store_typed<v4f32, MVE_VSTRWU32_pre, aligned32_pre_store, 2>; 7217 def : MVE_vector_offset_store_typed<v4f32, MVE_VSTRWU32_post, aligned32_post_store, 2>; 7218} 7219 7220let Predicates = [HasMVEInt] in { 7221 // Aligned masked store, shared between LE and BE 7222 def : MVE_vector_maskedstore_typed<v16i8, MVE_VSTRBU8, aligned_maskedstvi8, 0>; 7223 def : MVE_vector_maskedstore_typed<v8i16, MVE_VSTRHU16, aligned_maskedstvi16, 1>; 7224 def : MVE_vector_maskedstore_typed<v8f16, MVE_VSTRHU16, aligned_maskedstvi16, 1>; 7225 def : MVE_vector_maskedstore_typed<v4i32, MVE_VSTRWU32, aligned_maskedstvi32, 2>; 7226 def : MVE_vector_maskedstore_typed<v4f32, MVE_VSTRWU32, aligned_maskedstvi32, 2>; 7227 7228 // Pre/Post inc masked stores 7229 def : MVE_vector_offset_maskedstore_typed<v16i8, MVE_VSTRBU8_pre, aligned_pre_maskedstorevi8, 0>; 7230 def : MVE_vector_offset_maskedstore_typed<v16i8, MVE_VSTRBU8_post, aligned_post_maskedstorevi8, 0>; 7231 def : MVE_vector_offset_maskedstore_typed<v8i16, MVE_VSTRHU16_pre, aligned_pre_maskedstorevi16, 1>; 7232 def : MVE_vector_offset_maskedstore_typed<v8i16, MVE_VSTRHU16_post, aligned_post_maskedstorevi16, 1>; 7233 def : MVE_vector_offset_maskedstore_typed<v8f16, MVE_VSTRHU16_pre, aligned_pre_maskedstorevi16, 1>; 7234 def : MVE_vector_offset_maskedstore_typed<v8f16, MVE_VSTRHU16_post, aligned_post_maskedstorevi16, 1>; 7235 def : MVE_vector_offset_maskedstore_typed<v4i32, MVE_VSTRWU32_pre, aligned_pre_maskedstorevi32, 2>; 7236 def : MVE_vector_offset_maskedstore_typed<v4i32, MVE_VSTRWU32_post, aligned_post_maskedstorevi32, 2>; 7237 def : MVE_vector_offset_maskedstore_typed<v4f32, MVE_VSTRWU32_pre, aligned_pre_maskedstorevi32, 2>; 7238 def : MVE_vector_offset_maskedstore_typed<v4f32, MVE_VSTRWU32_post, aligned_post_maskedstorevi32, 2>; 7239 7240 // Aligned masked loads 7241 def : MVE_vector_maskedload_typed<v16i8, MVE_VLDRBU8, aligned_maskedloadvi8, 0>; 7242 def : MVE_vector_maskedload_typed<v8i16, MVE_VLDRHU16, aligned_maskedloadvi16, 1>; 7243 def : MVE_vector_maskedload_typed<v8f16, MVE_VLDRHU16, aligned_maskedloadvi16, 1>; 7244 def : MVE_vector_maskedload_typed<v4i32, MVE_VLDRWU32, aligned_maskedloadvi32, 2>; 7245 def : MVE_vector_maskedload_typed<v4f32, MVE_VLDRWU32, aligned_maskedloadvi32, 2>; 7246} 7247 7248// Widening/Narrowing Loads/Stores 7249 7250multiclass MVEExtLoadStore<Instruction LoadSInst, Instruction LoadUInst, string StoreInst, 7251 string Amble, ValueType VT, int Shift> { 7252 // Trunc stores 7253 def : Pat<(!cast<PatFrag>("aligned_truncst"#Amble) (VT MQPR:$val), taddrmode_imm7<Shift>:$addr), 7254 (!cast<Instruction>(StoreInst) MQPR:$val, taddrmode_imm7<Shift>:$addr)>; 7255 def : Pat<(!cast<PatFrag>("aligned_post_truncst"#Amble) (VT MQPR:$Rt), tGPR:$Rn, t2am_imm7_offset<Shift>:$addr), 7256 (!cast<Instruction>(StoreInst#"_post") MQPR:$Rt, tGPR:$Rn, t2am_imm7_offset<Shift>:$addr)>; 7257 def : Pat<(!cast<PatFrag>("aligned_pre_truncst"#Amble) (VT MQPR:$Rt), tGPR:$Rn, t2am_imm7_offset<Shift>:$addr), 7258 (!cast<Instruction>(StoreInst#"_pre") MQPR:$Rt, tGPR:$Rn, t2am_imm7_offset<Shift>:$addr)>; 7259 7260 // Masked trunc stores 7261 def : Pat<(!cast<PatFrag>("aligned_truncmaskedst"#Amble) (VT MQPR:$val), taddrmode_imm7<Shift>:$addr, VCCR:$pred), 7262 (!cast<Instruction>(StoreInst) MQPR:$val, taddrmode_imm7<Shift>:$addr, ARMVCCThen, VCCR:$pred)>; 7263 def : Pat<(!cast<PatFrag>("aligned_post_truncmaskedst"#Amble) (VT MQPR:$Rt), tGPR:$Rn, t2am_imm7_offset<Shift>:$addr, VCCR:$pred), 7264 (!cast<Instruction>(StoreInst#"_post") MQPR:$Rt, tGPR:$Rn, t2am_imm7_offset<Shift>:$addr, ARMVCCThen, VCCR:$pred)>; 7265 def : Pat<(!cast<PatFrag>("aligned_pre_truncmaskedst"#Amble) (VT MQPR:$Rt), tGPR:$Rn, t2am_imm7_offset<Shift>:$addr, VCCR:$pred), 7266 (!cast<Instruction>(StoreInst#"_pre") MQPR:$Rt, tGPR:$Rn, t2am_imm7_offset<Shift>:$addr, ARMVCCThen, VCCR:$pred)>; 7267 7268 // Ext loads 7269 def : Pat<(VT (!cast<PatFrag>("aligned_extload"#Amble) taddrmode_imm7<Shift>:$addr)), 7270 (VT (LoadUInst taddrmode_imm7<Shift>:$addr))>; 7271 def : Pat<(VT (!cast<PatFrag>("aligned_sextload"#Amble) taddrmode_imm7<Shift>:$addr)), 7272 (VT (LoadSInst taddrmode_imm7<Shift>:$addr))>; 7273 def : Pat<(VT (!cast<PatFrag>("aligned_zextload"#Amble) taddrmode_imm7<Shift>:$addr)), 7274 (VT (LoadUInst taddrmode_imm7<Shift>:$addr))>; 7275 7276 // Masked ext loads 7277 def : Pat<(VT (!cast<PatFrag>("aligned_extmaskedload"#Amble) taddrmode_imm7<Shift>:$addr, VCCR:$pred, (VT (ARMvmovImm (i32 0))))), 7278 (VT (LoadUInst taddrmode_imm7<Shift>:$addr, ARMVCCThen, VCCR:$pred))>; 7279 def : Pat<(VT (!cast<PatFrag>("aligned_sextmaskedload"#Amble) taddrmode_imm7<Shift>:$addr, VCCR:$pred, (VT (ARMvmovImm (i32 0))))), 7280 (VT (LoadSInst taddrmode_imm7<Shift>:$addr, ARMVCCThen, VCCR:$pred))>; 7281 def : Pat<(VT (!cast<PatFrag>("aligned_zextmaskedload"#Amble) taddrmode_imm7<Shift>:$addr, VCCR:$pred, (VT (ARMvmovImm (i32 0))))), 7282 (VT (LoadUInst taddrmode_imm7<Shift>:$addr, ARMVCCThen, VCCR:$pred))>; 7283} 7284 7285let Predicates = [HasMVEInt] in { 7286 defm : MVEExtLoadStore<MVE_VLDRBS16, MVE_VLDRBU16, "MVE_VSTRB16", "vi8", v8i16, 0>; 7287 defm : MVEExtLoadStore<MVE_VLDRBS32, MVE_VLDRBU32, "MVE_VSTRB32", "vi8", v4i32, 0>; 7288 defm : MVEExtLoadStore<MVE_VLDRHS32, MVE_VLDRHU32, "MVE_VSTRH32", "vi16", v4i32, 1>; 7289} 7290 7291 7292// Bit convert patterns 7293 7294let Predicates = [HasMVEInt] in { 7295 def : Pat<(v2f64 (bitconvert (v2i64 MQPR:$src))), (v2f64 MQPR:$src)>; 7296 def : Pat<(v2i64 (bitconvert (v2f64 MQPR:$src))), (v2i64 MQPR:$src)>; 7297 7298 def : Pat<(v4i32 (bitconvert (v4f32 MQPR:$src))), (v4i32 MQPR:$src)>; 7299 def : Pat<(v4f32 (bitconvert (v4i32 MQPR:$src))), (v4f32 MQPR:$src)>; 7300 7301 def : Pat<(v8i16 (bitconvert (v8f16 MQPR:$src))), (v8i16 MQPR:$src)>; 7302 def : Pat<(v8f16 (bitconvert (v8i16 MQPR:$src))), (v8f16 MQPR:$src)>; 7303} 7304 7305let Predicates = [IsLE,HasMVEInt] in { 7306 def : Pat<(v2f64 (bitconvert (v4f32 MQPR:$src))), (v2f64 MQPR:$src)>; 7307 def : Pat<(v2f64 (bitconvert (v4i32 MQPR:$src))), (v2f64 MQPR:$src)>; 7308 def : Pat<(v2f64 (bitconvert (v8f16 MQPR:$src))), (v2f64 MQPR:$src)>; 7309 def : Pat<(v2f64 (bitconvert (v8i16 MQPR:$src))), (v2f64 MQPR:$src)>; 7310 def : Pat<(v2f64 (bitconvert (v16i8 MQPR:$src))), (v2f64 MQPR:$src)>; 7311 7312 def : Pat<(v2i64 (bitconvert (v4f32 MQPR:$src))), (v2i64 MQPR:$src)>; 7313 def : Pat<(v2i64 (bitconvert (v4i32 MQPR:$src))), (v2i64 MQPR:$src)>; 7314 def : Pat<(v2i64 (bitconvert (v8f16 MQPR:$src))), (v2i64 MQPR:$src)>; 7315 def : Pat<(v2i64 (bitconvert (v8i16 MQPR:$src))), (v2i64 MQPR:$src)>; 7316 def : Pat<(v2i64 (bitconvert (v16i8 MQPR:$src))), (v2i64 MQPR:$src)>; 7317 7318 def : Pat<(v4f32 (bitconvert (v2f64 MQPR:$src))), (v4f32 MQPR:$src)>; 7319 def : Pat<(v4f32 (bitconvert (v2i64 MQPR:$src))), (v4f32 MQPR:$src)>; 7320 def : Pat<(v4f32 (bitconvert (v8f16 MQPR:$src))), (v4f32 MQPR:$src)>; 7321 def : Pat<(v4f32 (bitconvert (v8i16 MQPR:$src))), (v4f32 MQPR:$src)>; 7322 def : Pat<(v4f32 (bitconvert (v16i8 MQPR:$src))), (v4f32 MQPR:$src)>; 7323 7324 def : Pat<(v4i32 (bitconvert (v2f64 MQPR:$src))), (v4i32 MQPR:$src)>; 7325 def : Pat<(v4i32 (bitconvert (v2i64 MQPR:$src))), (v4i32 MQPR:$src)>; 7326 def : Pat<(v4i32 (bitconvert (v8f16 MQPR:$src))), (v4i32 MQPR:$src)>; 7327 def : Pat<(v4i32 (bitconvert (v8i16 MQPR:$src))), (v4i32 MQPR:$src)>; 7328 def : Pat<(v4i32 (bitconvert (v16i8 MQPR:$src))), (v4i32 MQPR:$src)>; 7329 7330 def : Pat<(v8f16 (bitconvert (v2f64 MQPR:$src))), (v8f16 MQPR:$src)>; 7331 def : Pat<(v8f16 (bitconvert (v2i64 MQPR:$src))), (v8f16 MQPR:$src)>; 7332 def : Pat<(v8f16 (bitconvert (v4f32 MQPR:$src))), (v8f16 MQPR:$src)>; 7333 def : Pat<(v8f16 (bitconvert (v4i32 MQPR:$src))), (v8f16 MQPR:$src)>; 7334 def : Pat<(v8f16 (bitconvert (v16i8 MQPR:$src))), (v8f16 MQPR:$src)>; 7335 7336 def : Pat<(v8i16 (bitconvert (v2f64 MQPR:$src))), (v8i16 MQPR:$src)>; 7337 def : Pat<(v8i16 (bitconvert (v2i64 MQPR:$src))), (v8i16 MQPR:$src)>; 7338 def : Pat<(v8i16 (bitconvert (v4f32 MQPR:$src))), (v8i16 MQPR:$src)>; 7339 def : Pat<(v8i16 (bitconvert (v4i32 MQPR:$src))), (v8i16 MQPR:$src)>; 7340 def : Pat<(v8i16 (bitconvert (v16i8 MQPR:$src))), (v8i16 MQPR:$src)>; 7341 7342 def : Pat<(v16i8 (bitconvert (v2f64 MQPR:$src))), (v16i8 MQPR:$src)>; 7343 def : Pat<(v16i8 (bitconvert (v2i64 MQPR:$src))), (v16i8 MQPR:$src)>; 7344 def : Pat<(v16i8 (bitconvert (v4f32 MQPR:$src))), (v16i8 MQPR:$src)>; 7345 def : Pat<(v16i8 (bitconvert (v4i32 MQPR:$src))), (v16i8 MQPR:$src)>; 7346 def : Pat<(v16i8 (bitconvert (v8f16 MQPR:$src))), (v16i8 MQPR:$src)>; 7347 def : Pat<(v16i8 (bitconvert (v8i16 MQPR:$src))), (v16i8 MQPR:$src)>; 7348} 7349 7350let Predicates = [IsBE,HasMVEInt] in { 7351 def : Pat<(v2f64 (bitconvert (v4f32 MQPR:$src))), (v2f64 (MVE_VREV64_32 MQPR:$src))>; 7352 def : Pat<(v2f64 (bitconvert (v4i32 MQPR:$src))), (v2f64 (MVE_VREV64_32 MQPR:$src))>; 7353 def : Pat<(v2f64 (bitconvert (v8f16 MQPR:$src))), (v2f64 (MVE_VREV64_16 MQPR:$src))>; 7354 def : Pat<(v2f64 (bitconvert (v8i16 MQPR:$src))), (v2f64 (MVE_VREV64_16 MQPR:$src))>; 7355 def : Pat<(v2f64 (bitconvert (v16i8 MQPR:$src))), (v2f64 (MVE_VREV64_8 MQPR:$src))>; 7356 7357 def : Pat<(v2i64 (bitconvert (v4f32 MQPR:$src))), (v2i64 (MVE_VREV64_32 MQPR:$src))>; 7358 def : Pat<(v2i64 (bitconvert (v4i32 MQPR:$src))), (v2i64 (MVE_VREV64_32 MQPR:$src))>; 7359 def : Pat<(v2i64 (bitconvert (v8f16 MQPR:$src))), (v2i64 (MVE_VREV64_16 MQPR:$src))>; 7360 def : Pat<(v2i64 (bitconvert (v8i16 MQPR:$src))), (v2i64 (MVE_VREV64_16 MQPR:$src))>; 7361 def : Pat<(v2i64 (bitconvert (v16i8 MQPR:$src))), (v2i64 (MVE_VREV64_8 MQPR:$src))>; 7362 7363 def : Pat<(v4f32 (bitconvert (v2f64 MQPR:$src))), (v4f32 (MVE_VREV64_32 MQPR:$src))>; 7364 def : Pat<(v4f32 (bitconvert (v2i64 MQPR:$src))), (v4f32 (MVE_VREV64_32 MQPR:$src))>; 7365 def : Pat<(v4f32 (bitconvert (v8f16 MQPR:$src))), (v4f32 (MVE_VREV32_16 MQPR:$src))>; 7366 def : Pat<(v4f32 (bitconvert (v8i16 MQPR:$src))), (v4f32 (MVE_VREV32_16 MQPR:$src))>; 7367 def : Pat<(v4f32 (bitconvert (v16i8 MQPR:$src))), (v4f32 (MVE_VREV32_8 MQPR:$src))>; 7368 7369 def : Pat<(v4i32 (bitconvert (v2f64 MQPR:$src))), (v4i32 (MVE_VREV64_32 MQPR:$src))>; 7370 def : Pat<(v4i32 (bitconvert (v2i64 MQPR:$src))), (v4i32 (MVE_VREV64_32 MQPR:$src))>; 7371 def : Pat<(v4i32 (bitconvert (v8f16 MQPR:$src))), (v4i32 (MVE_VREV32_16 MQPR:$src))>; 7372 def : Pat<(v4i32 (bitconvert (v8i16 MQPR:$src))), (v4i32 (MVE_VREV32_16 MQPR:$src))>; 7373 def : Pat<(v4i32 (bitconvert (v16i8 MQPR:$src))), (v4i32 (MVE_VREV32_8 MQPR:$src))>; 7374 7375 def : Pat<(v8f16 (bitconvert (v2f64 MQPR:$src))), (v8f16 (MVE_VREV64_16 MQPR:$src))>; 7376 def : Pat<(v8f16 (bitconvert (v2i64 MQPR:$src))), (v8f16 (MVE_VREV64_16 MQPR:$src))>; 7377 def : Pat<(v8f16 (bitconvert (v4f32 MQPR:$src))), (v8f16 (MVE_VREV32_16 MQPR:$src))>; 7378 def : Pat<(v8f16 (bitconvert (v4i32 MQPR:$src))), (v8f16 (MVE_VREV32_16 MQPR:$src))>; 7379 def : Pat<(v8f16 (bitconvert (v16i8 MQPR:$src))), (v8f16 (MVE_VREV16_8 MQPR:$src))>; 7380 7381 def : Pat<(v8i16 (bitconvert (v2f64 MQPR:$src))), (v8i16 (MVE_VREV64_16 MQPR:$src))>; 7382 def : Pat<(v8i16 (bitconvert (v2i64 MQPR:$src))), (v8i16 (MVE_VREV64_16 MQPR:$src))>; 7383 def : Pat<(v8i16 (bitconvert (v4f32 MQPR:$src))), (v8i16 (MVE_VREV32_16 MQPR:$src))>; 7384 def : Pat<(v8i16 (bitconvert (v4i32 MQPR:$src))), (v8i16 (MVE_VREV32_16 MQPR:$src))>; 7385 def : Pat<(v8i16 (bitconvert (v16i8 MQPR:$src))), (v8i16 (MVE_VREV16_8 MQPR:$src))>; 7386 7387 def : Pat<(v16i8 (bitconvert (v2f64 MQPR:$src))), (v16i8 (MVE_VREV64_8 MQPR:$src))>; 7388 def : Pat<(v16i8 (bitconvert (v2i64 MQPR:$src))), (v16i8 (MVE_VREV64_8 MQPR:$src))>; 7389 def : Pat<(v16i8 (bitconvert (v4f32 MQPR:$src))), (v16i8 (MVE_VREV32_8 MQPR:$src))>; 7390 def : Pat<(v16i8 (bitconvert (v4i32 MQPR:$src))), (v16i8 (MVE_VREV32_8 MQPR:$src))>; 7391 def : Pat<(v16i8 (bitconvert (v8f16 MQPR:$src))), (v16i8 (MVE_VREV16_8 MQPR:$src))>; 7392 def : Pat<(v16i8 (bitconvert (v8i16 MQPR:$src))), (v16i8 (MVE_VREV16_8 MQPR:$src))>; 7393} 7394