xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMInstrInfo.td (revision 25038e8de6b4e5f2ffca821565b50a633eea499a)
1//===- ARMInstrInfo.td - Target Description for ARM Target -*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the ARM instructions in TableGen format.
10//
11//===----------------------------------------------------------------------===//
12
13//===----------------------------------------------------------------------===//
14// ARM specific DAG Nodes.
15//
16
17// Type profiles.
18def SDT_ARMCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32>,
19                                           SDTCisVT<1, i32> ]>;
20def SDT_ARMCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>, SDTCisVT<1, i32> ]>;
21def SDT_ARMStructByVal : SDTypeProfile<0, 4,
22                                       [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
23                                        SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
24
25def SDT_ARMSaveCallPC : SDTypeProfile<0, 1, []>;
26
27def SDT_ARMcall    : SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>;
28
29def SDT_ARMCMov    : SDTypeProfile<1, 3,
30                                   [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>,
31                                    SDTCisVT<3, i32>]>;
32
33def SDT_ARMBrcond  : SDTypeProfile<0, 2,
34                                   [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
35
36def SDT_ARMBrJT    : SDTypeProfile<0, 2,
37                                  [SDTCisPtrTy<0>, SDTCisVT<1, i32>]>;
38
39def SDT_ARMBr2JT   : SDTypeProfile<0, 3,
40                                  [SDTCisPtrTy<0>, SDTCisVT<1, i32>,
41                                   SDTCisVT<2, i32>]>;
42
43def SDT_ARMBCC_i64 : SDTypeProfile<0, 6,
44                                  [SDTCisVT<0, i32>,
45                                   SDTCisVT<1, i32>, SDTCisVT<2, i32>,
46                                   SDTCisVT<3, i32>, SDTCisVT<4, i32>,
47                                   SDTCisVT<5, OtherVT>]>;
48
49def SDT_ARMAnd     : SDTypeProfile<1, 2,
50                                   [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
51                                    SDTCisVT<2, i32>]>;
52
53def SDT_ARMCmp     : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>;
54
55def SDT_ARMPICAdd  : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>,
56                                          SDTCisPtrTy<1>, SDTCisVT<2, i32>]>;
57
58def SDT_ARMThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
59def SDT_ARMEH_SJLJ_Setjmp : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisPtrTy<1>,
60                                                 SDTCisInt<2>]>;
61def SDT_ARMEH_SJLJ_Longjmp: SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisInt<1>]>;
62def SDT_ARMEH_SJLJ_SetupDispatch: SDTypeProfile<0, 0, []>;
63
64def SDT_ARMMEMBARRIER     : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
65
66def SDT_ARMPREFETCH : SDTypeProfile<0, 3, [SDTCisPtrTy<0>, SDTCisSameAs<1, 2>,
67                                           SDTCisInt<1>]>;
68
69def SDT_ARMTCRET : SDTypeProfile<0, 2, [SDTCisPtrTy<0>]>;
70
71def SDT_ARMBFI : SDTypeProfile<1, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
72                                      SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
73
74def SDT_WIN__DBZCHK : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
75
76def SDT_ARMMEMCPY  : SDTypeProfile<2, 3, [SDTCisVT<0, i32>, SDTCisVT<1, i32>,
77                                          SDTCisVT<2, i32>, SDTCisVT<3, i32>,
78                                          SDTCisVT<4, i32>]>;
79
80def SDTBinaryArithWithFlags : SDTypeProfile<2, 2,
81                                            [SDTCisSameAs<0, 2>,
82                                             SDTCisSameAs<0, 3>,
83                                             SDTCisInt<0>, SDTCisVT<1, i32>]>;
84
85// SDTBinaryArithWithFlagsInOut - RES1, CPSR = op LHS, RHS, CPSR
86def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3,
87                                            [SDTCisSameAs<0, 2>,
88                                             SDTCisSameAs<0, 3>,
89                                             SDTCisInt<0>,
90                                             SDTCisVT<1, i32>,
91                                             SDTCisVT<4, i32>]>;
92
93def SDT_LongMac  : SDTypeProfile<2, 4, [SDTCisVT<0, i32>,
94                                        SDTCisSameAs<0, 1>,
95                                        SDTCisSameAs<0, 2>,
96                                        SDTCisSameAs<0, 3>,
97                                        SDTCisSameAs<0, 4>,
98                                        SDTCisSameAs<0, 5>]>;
99
100// ARMlsll, ARMlsrl, ARMasrl
101def SDT_ARMIntShiftParts : SDTypeProfile<2, 3, [SDTCisSameAs<0, 1>,
102                                              SDTCisSameAs<0, 2>,
103                                              SDTCisSameAs<0, 3>,
104                                              SDTCisInt<0>,
105                                              SDTCisInt<4>]>;
106
107def ARMSmlald        : SDNode<"ARMISD::SMLALD", SDT_LongMac>;
108def ARMSmlaldx       : SDNode<"ARMISD::SMLALDX", SDT_LongMac>;
109def ARMSmlsld        : SDNode<"ARMISD::SMLSLD", SDT_LongMac>;
110def ARMSmlsldx       : SDNode<"ARMISD::SMLSLDX", SDT_LongMac>;
111
112def SDT_ARMCSel      : SDTypeProfile<1, 3,
113                                   [SDTCisSameAs<0, 1>,
114                                    SDTCisSameAs<0, 2>,
115                                    SDTCisInt<3>,
116                                    SDTCisVT<3, i32>]>;
117
118def ARMcsinv         : SDNode<"ARMISD::CSINV", SDT_ARMCSel, [SDNPOptInGlue]>;
119def ARMcsneg         : SDNode<"ARMISD::CSNEG", SDT_ARMCSel, [SDNPOptInGlue]>;
120def ARMcsinc         : SDNode<"ARMISD::CSINC", SDT_ARMCSel, [SDNPOptInGlue]>;
121
122def SDT_MulHSR       : SDTypeProfile<1, 3, [SDTCisVT<0,i32>,
123                                            SDTCisSameAs<0, 1>,
124                                            SDTCisSameAs<0, 2>,
125                                            SDTCisSameAs<0, 3>]>;
126
127def ARMsmmlar      : SDNode<"ARMISD::SMMLAR", SDT_MulHSR>;
128def ARMsmmlsr      : SDNode<"ARMISD::SMMLSR", SDT_MulHSR>;
129
130// Node definitions.
131def ARMWrapper       : SDNode<"ARMISD::Wrapper",     SDTIntUnaryOp>;
132def ARMWrapperPIC    : SDNode<"ARMISD::WrapperPIC",  SDTIntUnaryOp>;
133def ARMWrapperJT     : SDNode<"ARMISD::WrapperJT",   SDTIntUnaryOp>;
134
135def ARMcallseq_start : SDNode<"ISD::CALLSEQ_START", SDT_ARMCallSeqStart,
136                              [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
137def ARMcallseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_ARMCallSeqEnd,
138                              [SDNPHasChain, SDNPSideEffect,
139                               SDNPOptInGlue, SDNPOutGlue]>;
140def ARMcopystructbyval : SDNode<"ARMISD::COPY_STRUCT_BYVAL" ,
141                                SDT_ARMStructByVal,
142                                [SDNPHasChain, SDNPInGlue, SDNPOutGlue,
143                                 SDNPMayStore, SDNPMayLoad]>;
144
145def ARMcall          : SDNode<"ARMISD::CALL", SDT_ARMcall,
146                              [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
147                               SDNPVariadic]>;
148def ARMcall_pred    : SDNode<"ARMISD::CALL_PRED", SDT_ARMcall,
149                              [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
150                               SDNPVariadic]>;
151def ARMcall_nolink   : SDNode<"ARMISD::CALL_NOLINK", SDT_ARMcall,
152                              [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
153                               SDNPVariadic]>;
154
155def ARMretglue       : SDNode<"ARMISD::RET_GLUE", SDTNone,
156                              [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
157def ARMseretglue     : SDNode<"ARMISD::SERET_GLUE", SDTNone,
158                              [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
159def ARMintretglue    : SDNode<"ARMISD::INTRET_GLUE", SDT_ARMcall,
160                              [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
161def ARMcmov          : SDNode<"ARMISD::CMOV", SDT_ARMCMov,
162                              [SDNPInGlue]>;
163def ARMsubs          : SDNode<"ARMISD::SUBS", SDTIntBinOp, [SDNPOutGlue]>;
164
165def ARMssat   : SDNode<"ARMISD::SSAT", SDTIntSatNoShOp, []>;
166
167def ARMusat   : SDNode<"ARMISD::USAT", SDTIntSatNoShOp, []>;
168
169def ARMbrcond        : SDNode<"ARMISD::BRCOND", SDT_ARMBrcond,
170                              [SDNPHasChain, SDNPInGlue, SDNPOutGlue]>;
171
172def ARMbrjt          : SDNode<"ARMISD::BR_JT", SDT_ARMBrJT,
173                              [SDNPHasChain]>;
174def ARMbr2jt         : SDNode<"ARMISD::BR2_JT", SDT_ARMBr2JT,
175                              [SDNPHasChain]>;
176
177def ARMBcci64        : SDNode<"ARMISD::BCC_i64", SDT_ARMBCC_i64,
178                              [SDNPHasChain]>;
179
180def ARMcmp           : SDNode<"ARMISD::CMP", SDT_ARMCmp,
181                              [SDNPOutGlue]>;
182
183def ARMcmn           : SDNode<"ARMISD::CMN", SDT_ARMCmp,
184                              [SDNPOutGlue]>;
185
186def ARMcmpZ          : SDNode<"ARMISD::CMPZ", SDT_ARMCmp,
187                              [SDNPOutGlue, SDNPCommutative]>;
188
189def ARMpic_add       : SDNode<"ARMISD::PIC_ADD", SDT_ARMPICAdd>;
190
191def ARMasrl          : SDNode<"ARMISD::ASRL", SDT_ARMIntShiftParts, []>;
192def ARMlsrl          : SDNode<"ARMISD::LSRL", SDT_ARMIntShiftParts, []>;
193def ARMlsll          : SDNode<"ARMISD::LSLL", SDT_ARMIntShiftParts, []>;
194
195def ARMsrl_glue      : SDNode<"ARMISD::SRL_GLUE", SDTIntUnaryOp, [SDNPOutGlue]>;
196def ARMsra_glue      : SDNode<"ARMISD::SRA_GLUE", SDTIntUnaryOp, [SDNPOutGlue]>;
197def ARMrrx           : SDNode<"ARMISD::RRX"     , SDTIntUnaryOp, [SDNPInGlue ]>;
198
199def ARMaddc          : SDNode<"ARMISD::ADDC",  SDTBinaryArithWithFlags,
200                              [SDNPCommutative]>;
201def ARMsubc          : SDNode<"ARMISD::SUBC",  SDTBinaryArithWithFlags>;
202def ARMlsls          : SDNode<"ARMISD::LSLS",  SDTBinaryArithWithFlags>;
203def ARMadde          : SDNode<"ARMISD::ADDE",  SDTBinaryArithWithFlagsInOut>;
204def ARMsube          : SDNode<"ARMISD::SUBE",  SDTBinaryArithWithFlagsInOut>;
205
206def ARMthread_pointer: SDNode<"ARMISD::THREAD_POINTER", SDT_ARMThreadPointer>;
207def ARMeh_sjlj_setjmp: SDNode<"ARMISD::EH_SJLJ_SETJMP",
208                               SDT_ARMEH_SJLJ_Setjmp,
209                               [SDNPHasChain, SDNPSideEffect]>;
210def ARMeh_sjlj_longjmp: SDNode<"ARMISD::EH_SJLJ_LONGJMP",
211                               SDT_ARMEH_SJLJ_Longjmp,
212                               [SDNPHasChain, SDNPSideEffect]>;
213def ARMeh_sjlj_setup_dispatch: SDNode<"ARMISD::EH_SJLJ_SETUP_DISPATCH",
214                                      SDT_ARMEH_SJLJ_SetupDispatch,
215                                      [SDNPHasChain, SDNPSideEffect]>;
216
217def ARMMemBarrierMCR  : SDNode<"ARMISD::MEMBARRIER_MCR", SDT_ARMMEMBARRIER,
218                               [SDNPHasChain, SDNPSideEffect]>;
219def ARMPreload        : SDNode<"ARMISD::PRELOAD", SDT_ARMPREFETCH,
220                               [SDNPHasChain, SDNPMayLoad, SDNPMayStore]>;
221
222def ARMtcret         : SDNode<"ARMISD::TC_RETURN", SDT_ARMTCRET,
223                        [SDNPHasChain,  SDNPOptInGlue, SDNPVariadic]>;
224
225def ARMbfi           : SDNode<"ARMISD::BFI", SDT_ARMBFI>;
226
227def ARMmemcopy : SDNode<"ARMISD::MEMCPY", SDT_ARMMEMCPY,
228                        [SDNPHasChain, SDNPInGlue, SDNPOutGlue,
229                         SDNPMayStore, SDNPMayLoad]>;
230
231def ARMsmulwb       : SDNode<"ARMISD::SMULWB", SDTIntBinOp, []>;
232def ARMsmulwt       : SDNode<"ARMISD::SMULWT", SDTIntBinOp, []>;
233def ARMsmlalbb      : SDNode<"ARMISD::SMLALBB", SDT_LongMac, []>;
234def ARMsmlalbt      : SDNode<"ARMISD::SMLALBT", SDT_LongMac, []>;
235def ARMsmlaltb      : SDNode<"ARMISD::SMLALTB", SDT_LongMac, []>;
236def ARMsmlaltt      : SDNode<"ARMISD::SMLALTT", SDT_LongMac, []>;
237
238def ARMqadd8b       : SDNode<"ARMISD::QADD8b", SDT_ARMAnd, []>;
239def ARMqsub8b       : SDNode<"ARMISD::QSUB8b", SDT_ARMAnd, []>;
240def ARMqadd16b      : SDNode<"ARMISD::QADD16b", SDT_ARMAnd, []>;
241def ARMqsub16b      : SDNode<"ARMISD::QSUB16b", SDT_ARMAnd, []>;
242
243def ARMuqadd8b       : SDNode<"ARMISD::UQADD8b", SDT_ARMAnd, []>;
244def ARMuqsub8b       : SDNode<"ARMISD::UQSUB8b", SDT_ARMAnd, []>;
245def ARMuqadd16b      : SDNode<"ARMISD::UQADD16b", SDT_ARMAnd, []>;
246def ARMuqsub16b      : SDNode<"ARMISD::UQSUB16b", SDT_ARMAnd, []>;
247
248def SDT_ARMldrd     : SDTypeProfile<2, 1, [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
249def ARMldrd         : SDNode<"ARMISD::LDRD", SDT_ARMldrd, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
250
251def SDT_ARMstrd     : SDTypeProfile<0, 3, [SDTCisVT<0, i32>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
252def ARMstrd         : SDNode<"ARMISD::STRD", SDT_ARMstrd, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
253
254// Vector operations shared between NEON and MVE
255
256def ARMvdup      : SDNode<"ARMISD::VDUP", SDTypeProfile<1, 1, [SDTCisVec<0>]>>;
257
258// VDUPLANE can produce a quad-register result from a double-register source,
259// so the result is not constrained to match the source.
260def ARMvduplane  : SDNode<"ARMISD::VDUPLANE",
261                          SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisVec<1>,
262                                               SDTCisVT<2, i32>]>>;
263
264def SDTARMVIDUP  : SDTypeProfile<2, 2, [SDTCisVec<0>, SDTCisVT<1, i32>,
265                                          SDTCisVT<2, i32>, SDTCisVT<3, i32>]>;
266def ARMvidup    : SDNode<"ARMISD::VIDUP", SDTARMVIDUP>;
267
268def SDTARMVSHUF   : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0, 1>]>;
269def ARMvrev64    : SDNode<"ARMISD::VREV64", SDTARMVSHUF>;
270def ARMvrev32    : SDNode<"ARMISD::VREV32", SDTARMVSHUF>;
271def ARMvrev16    : SDNode<"ARMISD::VREV16", SDTARMVSHUF>;
272
273def SDTARMVGETLN  : SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisVec<1>,
274                                         SDTCisVT<2, i32>]>;
275def ARMvgetlaneu : SDNode<"ARMISD::VGETLANEu", SDTARMVGETLN>;
276def ARMvgetlanes : SDNode<"ARMISD::VGETLANEs", SDTARMVGETLN>;
277
278def SDTARMVMOVIMM : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisVT<1, i32>]>;
279def ARMvmovImm   : SDNode<"ARMISD::VMOVIMM", SDTARMVMOVIMM>;
280def ARMvmvnImm   : SDNode<"ARMISD::VMVNIMM", SDTARMVMOVIMM>;
281def ARMvmovFPImm : SDNode<"ARMISD::VMOVFPIMM", SDTARMVMOVIMM>;
282
283def SDTARMVORRIMM : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0, 1>,
284                                           SDTCisVT<2, i32>]>;
285def ARMvorrImm   : SDNode<"ARMISD::VORRIMM", SDTARMVORRIMM>;
286def ARMvbicImm   : SDNode<"ARMISD::VBICIMM", SDTARMVORRIMM>;
287
288def SDTARMVSHIMM : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
289                                        SDTCisVT<2, i32>]>;
290def SDTARMVSH : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
291                                     SDTCisSameAs<0, 2>,]>;
292def ARMvshlImm   : SDNode<"ARMISD::VSHLIMM", SDTARMVSHIMM>;
293def ARMvshrsImm  : SDNode<"ARMISD::VSHRsIMM", SDTARMVSHIMM>;
294def ARMvshruImm  : SDNode<"ARMISD::VSHRuIMM", SDTARMVSHIMM>;
295def ARMvshls     : SDNode<"ARMISD::VSHLs", SDTARMVSH>;
296def ARMvshlu     : SDNode<"ARMISD::VSHLu", SDTARMVSH>;
297
298def SDTARMVMULL   : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisInt<1>,
299                                         SDTCisSameAs<1, 2>]>;
300def ARMvmulls    : SDNode<"ARMISD::VMULLs", SDTARMVMULL>;
301def ARMvmullu    : SDNode<"ARMISD::VMULLu", SDTARMVMULL>;
302
303def SDTARMVCMP    : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<1, 2>,
304                                         SDTCisInt<3>]>;
305def SDTARMVCMPZ   : SDTypeProfile<1, 2, [SDTCisInt<2>]>;
306
307def ARMvcmp      : SDNode<"ARMISD::VCMP", SDTARMVCMP>;
308def ARMvcmpz     : SDNode<"ARMISD::VCMPZ", SDTARMVCMPZ>;
309
310// 'VECTOR_REG_CAST' is an operation that reinterprets the contents of a
311// vector register as a different vector type, without changing the contents of
312// the register. It differs from 'bitconvert' in that bitconvert reinterprets
313// the _memory_ storage format of the vector, whereas VECTOR_REG_CAST
314// reinterprets the _register_ format - and in big-endian, the memory and
315// register formats are different, so they are different operations.
316//
317// For example, 'VECTOR_REG_CAST' between v8i16 and v16i8 will map the LSB of
318// the zeroth i16 lane to the zeroth i8 lane, regardless of system endianness,
319// whereas 'bitconvert' will map it to the high byte in big-endian mode,
320// because that's what (MVE) VSTRH.16 followed by VLDRB.8 would do. So the
321// bitconvert would have to emit a VREV16.8 instruction, whereas the
322// VECTOR_REG_CAST emits no code at all if the vector is already in a register.
323def ARMVectorRegCastImpl : SDNode<"ARMISD::VECTOR_REG_CAST", SDTUnaryOp>;
324
325// In little-endian, VECTOR_REG_CAST is often turned into bitconvert during
326// lowering (because in that situation they're identical). So an isel pattern
327// that needs to match something that's _logically_ a VECTOR_REG_CAST must
328// _physically_ match a different node type depending on endianness.
329//
330// This 'PatFrags' instance is a centralized facility to make that easy. It
331// matches VECTOR_REG_CAST in either endianness, and also bitconvert in the
332// endianness where it's equivalent.
333def ARMVectorRegCast: PatFrags<
334    (ops node:$x), [(ARMVectorRegCastImpl node:$x), (bitconvert node:$x)], [{
335       // Reject a match against bitconvert (aka ISD::BITCAST) if big-endian
336       return !(CurDAG->getDataLayout().isBigEndian() &&
337                N->getOpcode() == ISD::BITCAST);
338    }]>;
339
340//===----------------------------------------------------------------------===//
341// ARM Flag Definitions.
342
343class RegConstraint<string C> {
344  string Constraints = C;
345}
346
347// ARMCC condition codes. See ARMCC::CondCodes
348def ARMCCeq : PatLeaf<(i32 0)>;
349def ARMCCne : PatLeaf<(i32 1)>;
350def ARMCChs : PatLeaf<(i32 2)>;
351def ARMCClo : PatLeaf<(i32 3)>;
352def ARMCCmi : PatLeaf<(i32 4)>;
353def ARMCCpl : PatLeaf<(i32 5)>;
354def ARMCCvs : PatLeaf<(i32 6)>;
355def ARMCCvc : PatLeaf<(i32 7)>;
356def ARMCChi : PatLeaf<(i32 8)>;
357def ARMCCls : PatLeaf<(i32 9)>;
358def ARMCCge : PatLeaf<(i32 10)>;
359def ARMCClt : PatLeaf<(i32 11)>;
360def ARMCCgt : PatLeaf<(i32 12)>;
361def ARMCCle : PatLeaf<(i32 13)>;
362def ARMCCal : PatLeaf<(i32 14)>;
363
364// VCC predicates. See ARMVCC::VPTCodes
365def ARMVCCNone : PatLeaf<(i32 0)>;
366def ARMVCCThen : PatLeaf<(i32 1)>;
367def ARMVCCElse : PatLeaf<(i32 2)>;
368
369//===----------------------------------------------------------------------===//
370//  ARM specific transformation functions and pattern fragments.
371//
372
373// imm_neg_XFORM - Return the negation of an i32 immediate value.
374def imm_neg_XFORM : SDNodeXForm<imm, [{
375  return CurDAG->getTargetConstant(-(int)N->getZExtValue(), SDLoc(N), MVT::i32);
376}]>;
377
378// imm_not_XFORM - Return the complement of a i32 immediate value.
379def imm_not_XFORM : SDNodeXForm<imm, [{
380  return CurDAG->getTargetConstant(~(int)N->getZExtValue(), SDLoc(N), MVT::i32);
381}]>;
382
383// asr_imm_XFORM - Returns a shift immediate with bit {5} set to 1
384def asr_imm_XFORM : SDNodeXForm<imm, [{
385  return CurDAG->getTargetConstant(0x20 | N->getZExtValue(), SDLoc(N), MVT:: i32);
386}]>;
387
388/// imm16_31 predicate - True if the 32-bit immediate is in the range [16,31].
389def imm16_31 : ImmLeaf<i32, [{
390  return (int32_t)Imm >= 16 && (int32_t)Imm < 32;
391}]>;
392
393// sext_16_node predicate - True if the SDNode is sign-extended 16 or more bits.
394def sext_16_node : PatLeaf<(i32 GPR:$a), [{
395  return CurDAG->ComputeNumSignBits(SDValue(N,0)) >= 17;
396}]>;
397
398def sext_bottom_16 : PatFrag<(ops node:$a),
399                             (sext_inreg node:$a, i16)>;
400def sext_top_16 : PatFrag<(ops node:$a),
401                          (i32 (sra node:$a, (i32 16)))>;
402
403def bb_mul : PatFrag<(ops node:$a, node:$b),
404                     (mul (sext_bottom_16 node:$a), (sext_bottom_16 node:$b))>;
405def bt_mul : PatFrag<(ops node:$a, node:$b),
406                     (mul (sext_bottom_16 node:$a), (sra node:$b, (i32 16)))>;
407def tb_mul : PatFrag<(ops node:$a, node:$b),
408                     (mul (sra node:$a, (i32 16)), (sext_bottom_16 node:$b))>;
409def tt_mul : PatFrag<(ops node:$a, node:$b),
410                     (mul (sra node:$a, (i32 16)), (sra node:$b, (i32 16)))>;
411
412/// Split a 32-bit immediate into two 16 bit parts.
413def hi16 : SDNodeXForm<imm, [{
414  return CurDAG->getTargetConstant((uint32_t)N->getZExtValue() >> 16, SDLoc(N),
415                                   MVT::i32);
416}]>;
417
418def lo16AllZero : PatLeaf<(i32 imm), [{
419  // Returns true if all low 16-bits are 0.
420  return (((uint32_t)N->getZExtValue()) & 0xFFFFUL) == 0;
421}], hi16>;
422
423// top16Zero - answer true if the upper 16 bits of $src are 0, false otherwise
424def top16Zero: PatLeaf<(i32 GPR:$src), [{
425  return !SDValue(N,0)->getValueType(0).isVector() &&
426         CurDAG->MaskedValueIsZero(SDValue(N,0), APInt::getHighBitsSet(32, 16));
427  }]>;
428
429// topbitsallzero - Return true if all bits except the lowest bit are known zero
430def topbitsallzero32 : PatLeaf<(i32 GPRwithZR:$src), [{
431  return SDValue(N,0)->getValueType(0) == MVT::i32 &&
432         CurDAG->MaskedValueIsZero(SDValue(N,0), APInt::getHighBitsSet(32, 31));
433  }]>;
434
435class BinOpFrag<dag res> : PatFrag<(ops node:$LHS, node:$RHS), res>;
436class UnOpFrag <dag res> : PatFrag<(ops node:$Src), res>;
437
438// An 'and' node with a single use.
439def and_su : PatFrag<(ops node:$lhs, node:$rhs), (and node:$lhs, node:$rhs), [{
440  return N->hasOneUse();
441}]>;
442
443// An 'xor' node with a single use.
444def xor_su : PatFrag<(ops node:$lhs, node:$rhs), (xor node:$lhs, node:$rhs), [{
445  return N->hasOneUse();
446}]>;
447
448// An 'fmul' node with a single use.
449def fmul_su : PatFrag<(ops node:$lhs, node:$rhs), (fmul node:$lhs, node:$rhs),[{
450  return N->hasOneUse();
451}]>;
452
453// An 'fadd' node which checks for single non-hazardous use.
454def fadd_mlx : PatFrag<(ops node:$lhs, node:$rhs),(fadd node:$lhs, node:$rhs),[{
455  return hasNoVMLxHazardUse(N);
456}]>;
457
458// An 'fsub' node which checks for single non-hazardous use.
459def fsub_mlx : PatFrag<(ops node:$lhs, node:$rhs),(fsub node:$lhs, node:$rhs),[{
460  return hasNoVMLxHazardUse(N);
461}]>;
462
463// An 'fadd' node which can be contracted into a fma
464def fadd_contract : PatFrag<(ops node:$lhs, node:$rhs),(fadd node:$lhs, node:$rhs),[{
465  return N->getFlags().hasAllowContract();
466}]>;
467
468def imm_even : ImmLeaf<i32, [{ return (Imm & 1) == 0; }]>;
469def imm_odd : ImmLeaf<i32, [{ return (Imm & 1) == 1; }]>;
470
471def asr_imm : ImmLeaf<i32, [{ return Imm > 0 && Imm <= 32; }], asr_imm_XFORM>;
472
473//===----------------------------------------------------------------------===//
474// NEON/MVE pattern fragments
475//
476
477// Extract D sub-registers of Q registers.
478def DSubReg_i8_reg  : SDNodeXForm<imm, [{
479  assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
480  return CurDAG->getTargetConstant(ARM::dsub_0 + N->getZExtValue()/8, SDLoc(N),
481                                   MVT::i32);
482}]>;
483def DSubReg_i16_reg : SDNodeXForm<imm, [{
484  assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
485  return CurDAG->getTargetConstant(ARM::dsub_0 + N->getZExtValue()/4, SDLoc(N),
486                                   MVT::i32);
487}]>;
488def DSubReg_i32_reg : SDNodeXForm<imm, [{
489  assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
490  return CurDAG->getTargetConstant(ARM::dsub_0 + N->getZExtValue()/2, SDLoc(N),
491                                   MVT::i32);
492}]>;
493def DSubReg_f64_reg : SDNodeXForm<imm, [{
494  assert(ARM::dsub_7 == ARM::dsub_0+7 && "Unexpected subreg numbering");
495  return CurDAG->getTargetConstant(ARM::dsub_0 + N->getZExtValue(), SDLoc(N),
496                                   MVT::i32);
497}]>;
498
499// Extract S sub-registers of Q/D registers.
500def SSubReg_f32_reg : SDNodeXForm<imm, [{
501  assert(ARM::ssub_3 == ARM::ssub_0+3 && "Unexpected subreg numbering");
502  return CurDAG->getTargetConstant(ARM::ssub_0 + N->getZExtValue(), SDLoc(N),
503                                   MVT::i32);
504}]>;
505
506// Extract S sub-registers of Q/D registers containing a given f16/bf16 lane.
507def SSubReg_f16_reg : SDNodeXForm<imm, [{
508  assert(ARM::ssub_3 == ARM::ssub_0+3 && "Unexpected subreg numbering");
509  return CurDAG->getTargetConstant(ARM::ssub_0 + N->getZExtValue()/2, SDLoc(N),
510                                   MVT::i32);
511}]>;
512
513// Translate lane numbers from Q registers to D subregs.
514def SubReg_i8_lane  : SDNodeXForm<imm, [{
515  return CurDAG->getTargetConstant(N->getZExtValue() & 7, SDLoc(N), MVT::i32);
516}]>;
517def SubReg_i16_lane : SDNodeXForm<imm, [{
518  return CurDAG->getTargetConstant(N->getZExtValue() & 3, SDLoc(N), MVT::i32);
519}]>;
520def SubReg_i32_lane : SDNodeXForm<imm, [{
521  return CurDAG->getTargetConstant(N->getZExtValue() & 1, SDLoc(N), MVT::i32);
522}]>;
523
524
525def ARMimmAllZerosV: PatLeaf<(bitconvert (v4i32 (ARMvmovImm (i32 0))))>;
526def ARMimmAllZerosD: PatLeaf<(bitconvert (v2i32 (ARMvmovImm (i32 0))))>;
527def ARMimmAllOnesV: PatLeaf<(bitconvert (v16i8 (ARMvmovImm (i32 0xEFF))))>;
528def ARMimmAllOnesD: PatLeaf<(bitconvert (v8i8 (ARMvmovImm (i32 0xEFF))))>;
529
530def ARMimmOneV: PatLeaf<(ARMvmovImm (i32 timm)), [{
531  ConstantSDNode *ConstVal = cast<ConstantSDNode>(N->getOperand(0));
532  unsigned EltBits = 0;
533  uint64_t EltVal = ARM_AM::decodeVMOVModImm(ConstVal->getZExtValue(), EltBits);
534  return (EltBits == N->getValueType(0).getScalarSizeInBits() && EltVal == 0x01);
535}]>;
536
537
538//===----------------------------------------------------------------------===//
539// Operand Definitions.
540//
541
542// Immediate operands with a shared generic asm render method.
543class ImmAsmOperand<int Low, int High> : AsmOperandClass {
544  let RenderMethod = "addImmOperands";
545  let PredicateMethod = "isImmediate<" # Low # "," # High # ">";
546  let DiagnosticString = "operand must be an immediate in the range [" # Low # "," # High # "]";
547}
548
549class ImmAsmOperandMinusOne<int Low, int High> : AsmOperandClass {
550  let PredicateMethod = "isImmediate<" # Low # "," # High # ">";
551  let DiagnosticType = "ImmRange" # Low # "_" # High;
552  let DiagnosticString = "operand must be an immediate in the range [" # Low # "," # High # "]";
553}
554
555// Operands that are part of a memory addressing mode.
556class MemOperand : Operand<i32> { let OperandType = "OPERAND_MEMORY"; }
557
558// Branch target.
559// FIXME: rename brtarget to t2_brtarget
560def brtarget : Operand<OtherVT> {
561  let EncoderMethod = "getBranchTargetOpValue";
562  let OperandType = "OPERAND_PCREL";
563  let DecoderMethod = "DecodeT2BROperand";
564}
565
566// Branches targeting ARM-mode must be divisible by 4 if they're a raw
567// immediate.
568def ARMBranchTarget : AsmOperandClass {
569  let Name = "ARMBranchTarget";
570}
571
572// Branches targeting Thumb-mode must be divisible by 2 if they're a raw
573// immediate.
574def ThumbBranchTarget : AsmOperandClass {
575  let Name = "ThumbBranchTarget";
576}
577
578def arm_br_target : Operand<OtherVT> {
579  let ParserMatchClass = ARMBranchTarget;
580  let EncoderMethod = "getARMBranchTargetOpValue";
581  let OperandType = "OPERAND_PCREL";
582}
583
584// Call target for ARM. Handles conditional/unconditional
585// FIXME: rename bl_target to t2_bltarget?
586def arm_bl_target : Operand<i32> {
587  let ParserMatchClass = ARMBranchTarget;
588  let EncoderMethod = "getARMBLTargetOpValue";
589  let OperandType = "OPERAND_PCREL";
590}
591
592// Target for BLX *from* ARM mode.
593def arm_blx_target : Operand<i32> {
594  let ParserMatchClass = ThumbBranchTarget;
595  let EncoderMethod = "getARMBLXTargetOpValue";
596  let OperandType = "OPERAND_PCREL";
597}
598
599// A list of registers separated by comma. Used by load/store multiple.
600def RegListAsmOperand : AsmOperandClass { let Name = "RegList"; }
601def reglist : Operand<i32> {
602  let EncoderMethod = "getRegisterListOpValue";
603  let ParserMatchClass = RegListAsmOperand;
604  let PrintMethod = "printRegisterList";
605  let DecoderMethod = "DecodeRegListOperand";
606}
607
608// A list of general purpose registers and APSR separated by comma.
609// Used by CLRM
610def RegListWithAPSRAsmOperand : AsmOperandClass { let Name = "RegListWithAPSR"; }
611def reglist_with_apsr : Operand<i32> {
612  let EncoderMethod = "getRegisterListOpValue";
613  let ParserMatchClass = RegListWithAPSRAsmOperand;
614  let PrintMethod = "printRegisterList";
615  let DecoderMethod = "DecodeRegListOperand";
616}
617
618def GPRPairOp : RegisterOperand<GPRPair, "printGPRPairOperand">;
619
620def DPRRegListAsmOperand : AsmOperandClass {
621  let Name = "DPRRegList";
622  let DiagnosticType = "DPR_RegList";
623}
624def dpr_reglist : Operand<i32> {
625  let EncoderMethod = "getRegisterListOpValue";
626  let ParserMatchClass = DPRRegListAsmOperand;
627  let PrintMethod = "printRegisterList";
628  let DecoderMethod = "DecodeDPRRegListOperand";
629}
630
631def SPRRegListAsmOperand : AsmOperandClass {
632  let Name = "SPRRegList";
633  let DiagnosticString = "operand must be a list of registers in range [s0, s31]";
634}
635def spr_reglist : Operand<i32> {
636  let EncoderMethod = "getRegisterListOpValue";
637  let ParserMatchClass = SPRRegListAsmOperand;
638  let PrintMethod = "printRegisterList";
639  let DecoderMethod = "DecodeSPRRegListOperand";
640}
641
642def FPSRegListWithVPRAsmOperand : AsmOperandClass { let Name =
643    "FPSRegListWithVPR"; }
644def fp_sreglist_with_vpr : Operand<i32> {
645  let EncoderMethod = "getRegisterListOpValue";
646  let ParserMatchClass = FPSRegListWithVPRAsmOperand;
647  let PrintMethod = "printRegisterList";
648}
649def FPDRegListWithVPRAsmOperand : AsmOperandClass { let Name =
650    "FPDRegListWithVPR"; }
651def fp_dreglist_with_vpr : Operand<i32> {
652  let EncoderMethod = "getRegisterListOpValue";
653  let ParserMatchClass = FPDRegListWithVPRAsmOperand;
654  let PrintMethod = "printRegisterList";
655}
656
657// An operand for the CONSTPOOL_ENTRY pseudo-instruction.
658def cpinst_operand : Operand<i32> {
659  let PrintMethod = "printCPInstOperand";
660}
661
662// Local PC labels.
663def pclabel : Operand<i32> {
664  let PrintMethod = "printPCLabel";
665}
666
667// ADR instruction labels.
668def AdrLabelAsmOperand : AsmOperandClass { let Name = "AdrLabel"; }
669def adrlabel : Operand<i32> {
670  let EncoderMethod = "getAdrLabelOpValue";
671  let ParserMatchClass = AdrLabelAsmOperand;
672  let PrintMethod = "printAdrLabelOperand<0>";
673}
674
675def neon_vcvt_imm32 : Operand<i32> {
676  let EncoderMethod = "getNEONVcvtImm32OpValue";
677  let DecoderMethod = "DecodeVCVTImmOperand";
678}
679
680// rot_imm: An integer that encodes a rotate amount. Must be 8, 16, or 24.
681def rot_imm_XFORM: SDNodeXForm<imm, [{
682  switch (N->getZExtValue()){
683  default: llvm_unreachable(nullptr);
684  case 0:  return CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
685  case 8:  return CurDAG->getTargetConstant(1, SDLoc(N), MVT::i32);
686  case 16: return CurDAG->getTargetConstant(2, SDLoc(N), MVT::i32);
687  case 24: return CurDAG->getTargetConstant(3, SDLoc(N), MVT::i32);
688  }
689}]>;
690def RotImmAsmOperand : AsmOperandClass {
691  let Name = "RotImm";
692  let ParserMethod = "parseRotImm";
693}
694def rot_imm : Operand<i32>, PatLeaf<(i32 imm), [{
695    int32_t v = N->getZExtValue();
696    return v == 8 || v == 16 || v == 24; }],
697    rot_imm_XFORM> {
698  let PrintMethod = "printRotImmOperand";
699  let ParserMatchClass = RotImmAsmOperand;
700}
701
702// Power-of-two operand for MVE VIDUP and friends, which encode
703// {1,2,4,8} as its log to base 2, i.e. as {0,1,2,3} respectively
704def MVE_VIDUP_imm_asmoperand : AsmOperandClass {
705  let Name = "VIDUP_imm";
706  let PredicateMethod = "isPowerTwoInRange<1,8>";
707  let RenderMethod = "addPowerTwoOperands";
708  let DiagnosticString = "vector increment immediate must be 1, 2, 4 or 8";
709}
710def MVE_VIDUP_imm : Operand<i32> {
711  let EncoderMethod = "getPowerTwoOpValue";
712  let DecoderMethod = "DecodePowerTwoOperand<0,3>";
713  let ParserMatchClass = MVE_VIDUP_imm_asmoperand;
714}
715
716// Pair vector indexing
717class MVEPairVectorIndexOperand<string start, string end> : AsmOperandClass {
718  let Name = "MVEPairVectorIndex"#start;
719  let RenderMethod = "addMVEPairVectorIndexOperands";
720  let PredicateMethod = "isMVEPairVectorIndex<"#start#", "#end#">";
721}
722
723class MVEPairVectorIndex<string opval> : Operand<i32> {
724  let PrintMethod = "printVectorIndex";
725  let EncoderMethod = "getMVEPairVectorIndexOpValue<"#opval#">";
726  let DecoderMethod = "DecodeMVEPairVectorIndexOperand<"#opval#">";
727  let MIOperandInfo = (ops i32imm);
728}
729
730def MVEPairVectorIndex0 : MVEPairVectorIndex<"0"> {
731  let ParserMatchClass = MVEPairVectorIndexOperand<"0", "1">;
732}
733
734def MVEPairVectorIndex2 : MVEPairVectorIndex<"2"> {
735  let ParserMatchClass = MVEPairVectorIndexOperand<"2", "3">;
736}
737
738// Vector indexing
739class MVEVectorIndexOperand<int NumLanes> : AsmOperandClass {
740  let Name = "MVEVectorIndex"#NumLanes;
741  let RenderMethod = "addMVEVectorIndexOperands";
742  let PredicateMethod = "isVectorIndexInRange<"#NumLanes#">";
743}
744
745class MVEVectorIndex<int NumLanes> : Operand<i32> {
746  let PrintMethod = "printVectorIndex";
747  let ParserMatchClass = MVEVectorIndexOperand<NumLanes>;
748  let MIOperandInfo = (ops i32imm);
749}
750
751// shift_imm: An integer that encodes a shift amount and the type of shift
752// (asr or lsl). The 6-bit immediate encodes as:
753//    {5}     0 ==> lsl
754//            1     asr
755//    {4-0}   imm5 shift amount.
756//            asr #32 encoded as imm5 == 0.
757def ShifterImmAsmOperand : AsmOperandClass {
758  let Name = "ShifterImm";
759  let ParserMethod = "parseShifterImm";
760}
761def shift_imm : Operand<i32> {
762  let PrintMethod = "printShiftImmOperand";
763  let ParserMatchClass = ShifterImmAsmOperand;
764}
765
766// shifter_operand operands: so_reg_reg, so_reg_imm, and mod_imm.
767def ShiftedRegAsmOperand : AsmOperandClass { let Name = "RegShiftedReg"; }
768def so_reg_reg : Operand<i32>,  // reg reg imm
769                 ComplexPattern<i32, 3, "SelectRegShifterOperand",
770                                [shl, srl, sra, rotr]> {
771  let EncoderMethod = "getSORegRegOpValue";
772  let PrintMethod = "printSORegRegOperand";
773  let DecoderMethod = "DecodeSORegRegOperand";
774  let ParserMatchClass = ShiftedRegAsmOperand;
775  let MIOperandInfo = (ops GPRnopc, GPRnopc, i32imm);
776}
777
778def ShiftedImmAsmOperand : AsmOperandClass { let Name = "RegShiftedImm"; }
779def so_reg_imm : Operand<i32>, // reg imm
780                 ComplexPattern<i32, 2, "SelectImmShifterOperand",
781                                [shl, srl, sra, rotr]> {
782  let EncoderMethod = "getSORegImmOpValue";
783  let PrintMethod = "printSORegImmOperand";
784  let DecoderMethod = "DecodeSORegImmOperand";
785  let ParserMatchClass = ShiftedImmAsmOperand;
786  let MIOperandInfo = (ops GPR, i32imm);
787}
788
789// FIXME: Does this need to be distinct from so_reg?
790def shift_so_reg_reg : Operand<i32>,    // reg reg imm
791                   ComplexPattern<i32, 3, "SelectShiftRegShifterOperand",
792                                  [shl,srl,sra,rotr]> {
793  let EncoderMethod = "getSORegRegOpValue";
794  let PrintMethod = "printSORegRegOperand";
795  let DecoderMethod = "DecodeSORegRegOperand";
796  let ParserMatchClass = ShiftedRegAsmOperand;
797  let MIOperandInfo = (ops GPR, GPR, i32imm);
798}
799
800// FIXME: Does this need to be distinct from so_reg?
801def shift_so_reg_imm : Operand<i32>,    // reg reg imm
802                   ComplexPattern<i32, 2, "SelectShiftImmShifterOperand",
803                                  [shl,srl,sra,rotr]> {
804  let EncoderMethod = "getSORegImmOpValue";
805  let PrintMethod = "printSORegImmOperand";
806  let DecoderMethod = "DecodeSORegImmOperand";
807  let ParserMatchClass = ShiftedImmAsmOperand;
808  let MIOperandInfo = (ops GPR, i32imm);
809}
810
811// mod_imm: match a 32-bit immediate operand, which can be encoded into
812// a 12-bit immediate; an 8-bit integer and a 4-bit rotator (See ARMARM
813// - "Modified Immediate Constants"). Within the MC layer we keep this
814// immediate in its encoded form.
815def ModImmAsmOperand: AsmOperandClass {
816  let Name = "ModImm";
817  let ParserMethod = "parseModImm";
818}
819def mod_imm : Operand<i32>, ImmLeaf<i32, [{
820    return ARM_AM::getSOImmVal(Imm) != -1;
821  }]> {
822  let EncoderMethod = "getModImmOpValue";
823  let PrintMethod = "printModImmOperand";
824  let ParserMatchClass = ModImmAsmOperand;
825}
826
827// Note: the patterns mod_imm_not and mod_imm_neg do not require an encoder
828// method and such, as they are only used on aliases (Pat<> and InstAlias<>).
829// The actual parsing, encoding, decoding are handled by the destination
830// instructions, which use mod_imm.
831
832def ModImmNotAsmOperand : AsmOperandClass { let Name = "ModImmNot"; }
833def mod_imm_not : Operand<i32>, PatLeaf<(imm), [{
834    return ARM_AM::getSOImmVal(~(uint32_t)N->getZExtValue()) != -1;
835  }], imm_not_XFORM> {
836  let ParserMatchClass = ModImmNotAsmOperand;
837}
838
839def ModImmNegAsmOperand : AsmOperandClass { let Name = "ModImmNeg"; }
840def mod_imm_neg : Operand<i32>, PatLeaf<(imm), [{
841    unsigned Value = -(unsigned)N->getZExtValue();
842    return Value && ARM_AM::getSOImmVal(Value) != -1;
843  }], imm_neg_XFORM> {
844  let ParserMatchClass = ModImmNegAsmOperand;
845}
846
847/// arm_i32imm - True for +V6T2, or when isSOImmTwoParVal()
848def arm_i32imm : IntImmLeaf<i32, [{
849  if (Subtarget->useMovt())
850    return true;
851  if (ARM_AM::isSOImmTwoPartVal(Imm.getZExtValue()))
852    return true;
853  return ARM_AM::isSOImmTwoPartValNeg(Imm.getZExtValue());
854}]>;
855
856/// imm0_1 predicate - Immediate in the range [0,1].
857def Imm0_1AsmOperand: ImmAsmOperand<0,1> { let Name = "Imm0_1"; }
858def imm0_1 : Operand<i32> { let ParserMatchClass = Imm0_1AsmOperand; }
859
860/// imm0_3 predicate - Immediate in the range [0,3].
861def Imm0_3AsmOperand: ImmAsmOperand<0,3> { let Name = "Imm0_3"; }
862def imm0_3 : Operand<i32> { let ParserMatchClass = Imm0_3AsmOperand; }
863
864/// imm0_7 predicate - Immediate in the range [0,7].
865def Imm0_7AsmOperand: ImmAsmOperand<0,7> {
866  let Name = "Imm0_7";
867}
868def imm0_7 : Operand<i32>, ImmLeaf<i32, [{
869  return Imm >= 0 && Imm < 8;
870}]> {
871  let ParserMatchClass = Imm0_7AsmOperand;
872}
873
874/// imm8_255 predicate - Immediate in the range [8,255].
875def Imm8_255AsmOperand: ImmAsmOperand<8,255> { let Name = "Imm8_255"; }
876def imm8_255 : Operand<i32>, ImmLeaf<i32, [{
877  return Imm >= 8 && Imm < 256;
878}]> {
879  let ParserMatchClass = Imm8_255AsmOperand;
880}
881
882/// imm8 predicate - Immediate is exactly 8.
883def Imm8AsmOperand: ImmAsmOperand<8,8> { let Name = "Imm8"; }
884def imm8 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 8; }]> {
885  let ParserMatchClass = Imm8AsmOperand;
886}
887
888/// imm16 predicate - Immediate is exactly 16.
889def Imm16AsmOperand: ImmAsmOperand<16,16> { let Name = "Imm16"; }
890def imm16 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 16; }]> {
891  let ParserMatchClass = Imm16AsmOperand;
892}
893
894/// imm32 predicate - Immediate is exactly 32.
895def Imm32AsmOperand: ImmAsmOperand<32,32> { let Name = "Imm32"; }
896def imm32 : Operand<i32>, ImmLeaf<i32, [{ return Imm == 32; }]> {
897  let ParserMatchClass = Imm32AsmOperand;
898}
899
900def imm8_or_16 : ImmLeaf<i32, [{ return Imm == 8 || Imm == 16;}]>;
901
902/// imm1_7 predicate - Immediate in the range [1,7].
903def Imm1_7AsmOperand: ImmAsmOperand<1,7> { let Name = "Imm1_7"; }
904def imm1_7 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 8; }]> {
905  let ParserMatchClass = Imm1_7AsmOperand;
906}
907
908/// imm1_15 predicate - Immediate in the range [1,15].
909def Imm1_15AsmOperand: ImmAsmOperand<1,15> { let Name = "Imm1_15"; }
910def imm1_15 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 16; }]> {
911  let ParserMatchClass = Imm1_15AsmOperand;
912}
913
914/// imm1_31 predicate - Immediate in the range [1,31].
915def Imm1_31AsmOperand: ImmAsmOperand<1,31> { let Name = "Imm1_31"; }
916def imm1_31 : Operand<i32>, ImmLeaf<i32, [{ return Imm > 0 && Imm < 32; }]> {
917  let ParserMatchClass = Imm1_31AsmOperand;
918}
919
920/// imm0_15 predicate - Immediate in the range [0,15].
921def Imm0_15AsmOperand: ImmAsmOperand<0,15> {
922  let Name = "Imm0_15";
923}
924def imm0_15 : Operand<i32>, ImmLeaf<i32, [{
925  return Imm >= 0 && Imm < 16;
926}]> {
927  let ParserMatchClass = Imm0_15AsmOperand;
928}
929
930/// imm0_31 predicate - True if the 32-bit immediate is in the range [0,31].
931def Imm0_31AsmOperand: ImmAsmOperand<0,31> { let Name = "Imm0_31"; }
932def imm0_31 : Operand<i32>, ImmLeaf<i32, [{
933  return Imm >= 0 && Imm < 32;
934}]> {
935  let ParserMatchClass = Imm0_31AsmOperand;
936}
937
938/// imm0_32 predicate - True if the 32-bit immediate is in the range [0,32].
939def Imm0_32AsmOperand: ImmAsmOperand<0,32> { let Name = "Imm0_32"; }
940def imm0_32 : Operand<i32>, ImmLeaf<i32, [{
941  return Imm >= 0 && Imm < 33;
942}]> {
943  let ParserMatchClass = Imm0_32AsmOperand;
944}
945
946/// imm0_63 predicate - True if the 32-bit immediate is in the range [0,63].
947def Imm0_63AsmOperand: ImmAsmOperand<0,63> { let Name = "Imm0_63"; }
948def imm0_63 : Operand<i32>, ImmLeaf<i32, [{
949  return Imm >= 0 && Imm < 64;
950}]> {
951  let ParserMatchClass = Imm0_63AsmOperand;
952}
953
954/// imm0_239 predicate - Immediate in the range [0,239].
955def Imm0_239AsmOperand : ImmAsmOperand<0,239> {
956  let Name = "Imm0_239";
957}
958def imm0_239 : Operand<i32>, ImmLeaf<i32, [{ return Imm >= 0 && Imm < 240; }]> {
959  let ParserMatchClass = Imm0_239AsmOperand;
960}
961
962/// imm0_255 predicate - Immediate in the range [0,255].
963def Imm0_255AsmOperand : ImmAsmOperand<0,255> { let Name = "Imm0_255"; }
964def imm0_255 : Operand<i32>, ImmLeaf<i32, [{ return Imm >= 0 && Imm < 256; }]> {
965  let ParserMatchClass = Imm0_255AsmOperand;
966}
967
968// imm0_255_expr - For Thumb1 movs/adds - 8-bit immediate that can also reference
969// a relocatable expression.
970def Imm0_255ExprAsmOperand: AsmOperandClass {
971  let Name = "Imm0_255Expr";
972  let RenderMethod = "addImmOperands";
973  let DiagnosticString = "operand must be an immediate in the range [0,255] or a relocatable expression";
974}
975
976def imm0_255_expr : Operand<i32>, ImmLeaf<i32, [{ return Imm >= 0 && Imm < 256; }]> {
977  let EncoderMethod = "getHiLoImmOpValue";
978  let ParserMatchClass = Imm0_255ExprAsmOperand;
979}
980
981/// imm0_65535 - An immediate is in the range [0,65535].
982def Imm0_65535AsmOperand: ImmAsmOperand<0,65535> { let Name = "Imm0_65535"; }
983def imm0_65535 : Operand<i32>, ImmLeaf<i32, [{
984  return Imm >= 0 && Imm < 65536;
985}]> {
986  let ParserMatchClass = Imm0_65535AsmOperand;
987}
988
989// imm0_65535_neg - An immediate whose negative value is in the range [0.65535].
990def imm0_65535_neg : Operand<i32>, ImmLeaf<i32, [{
991  return -Imm >= 0 && -Imm < 65536;
992}]>;
993
994// imm0_65535_expr - For movt/movw - 16-bit immediate that can also reference
995// a relocatable expression.
996//
997// FIXME: This really needs a Thumb version separate from the ARM version.
998// While the range is the same, and can thus use the same match class,
999// the encoding is different so it should have a different encoder method.
1000def Imm0_65535ExprAsmOperand: AsmOperandClass {
1001  let Name = "Imm0_65535Expr";
1002  let RenderMethod = "addImmOperands";
1003  let DiagnosticString = "operand must be an immediate in the range [0,0xffff] or a relocatable expression";
1004}
1005
1006def imm0_65535_expr : Operand<i32>, ImmLeaf<i32, [{
1007  return Imm >= 0 && Imm < 65536;
1008}]> {
1009  let EncoderMethod = "getHiLoImmOpValue";
1010  let ParserMatchClass = Imm0_65535ExprAsmOperand;
1011}
1012
1013def Imm256_65535ExprAsmOperand: ImmAsmOperand<256,65535> { let Name = "Imm256_65535Expr"; }
1014def imm256_65535_expr : Operand<i32> {
1015  let ParserMatchClass = Imm256_65535ExprAsmOperand;
1016}
1017
1018/// imm24b - True if the 32-bit immediate is encodable in 24 bits.
1019def Imm24bitAsmOperand: ImmAsmOperand<0,0xffffff> {
1020  let Name = "Imm24bit";
1021  let DiagnosticString = "operand must be an immediate in the range [0,0xffffff]";
1022}
1023def imm24b : Operand<i32>, ImmLeaf<i32, [{
1024  return Imm >= 0 && Imm <= 0xffffff;
1025}]> {
1026  let ParserMatchClass = Imm24bitAsmOperand;
1027}
1028
1029
1030/// bf_inv_mask_imm predicate - An AND mask to clear an arbitrary width bitfield
1031/// e.g., 0xf000ffff
1032def BitfieldAsmOperand : AsmOperandClass {
1033  let Name = "Bitfield";
1034  let ParserMethod = "parseBitfield";
1035}
1036
1037def bf_inv_mask_imm : Operand<i32>,
1038                      PatLeaf<(imm), [{
1039  return ARM::isBitFieldInvertedMask(N->getZExtValue());
1040}] > {
1041  let EncoderMethod = "getBitfieldInvertedMaskOpValue";
1042  let PrintMethod = "printBitfieldInvMaskImmOperand";
1043  let DecoderMethod = "DecodeBitfieldMaskOperand";
1044  let ParserMatchClass = BitfieldAsmOperand;
1045  let GISelPredicateCode = [{
1046    // There's better methods of implementing this check. IntImmLeaf<> would be
1047    // equivalent and have less boilerplate but we need a test for C++
1048    // predicates and this one causes new rules to be imported into GlobalISel
1049    // without requiring additional features first.
1050    const auto &MO = MI.getOperand(1);
1051    if (!MO.isCImm())
1052      return false;
1053    return ARM::isBitFieldInvertedMask(MO.getCImm()->getZExtValue());
1054  }];
1055}
1056
1057def imm1_32_XFORM: SDNodeXForm<imm, [{
1058  return CurDAG->getTargetConstant((int)N->getZExtValue() - 1, SDLoc(N),
1059                                   MVT::i32);
1060}]>;
1061def Imm1_32AsmOperand: ImmAsmOperandMinusOne<1,32> {
1062  let Name = "Imm1_32";
1063}
1064def imm1_32 : Operand<i32>, PatLeaf<(imm), [{
1065   uint64_t Imm = N->getZExtValue();
1066   return Imm > 0 && Imm <= 32;
1067 }],
1068    imm1_32_XFORM> {
1069  let PrintMethod = "printImmPlusOneOperand";
1070  let ParserMatchClass = Imm1_32AsmOperand;
1071}
1072
1073def imm1_16_XFORM: SDNodeXForm<imm, [{
1074  return CurDAG->getTargetConstant((int)N->getZExtValue() - 1, SDLoc(N),
1075                                   MVT::i32);
1076}]>;
1077def Imm1_16AsmOperand: ImmAsmOperandMinusOne<1,16> { let Name = "Imm1_16"; }
1078def imm1_16 : Operand<i32>, ImmLeaf<i32, [{
1079    return Imm > 0 && Imm <= 16;
1080  }],
1081    imm1_16_XFORM> {
1082  let PrintMethod = "printImmPlusOneOperand";
1083  let ParserMatchClass = Imm1_16AsmOperand;
1084}
1085
1086def MVEShiftImm1_7AsmOperand: ImmAsmOperand<1,7> {
1087  let Name = "MVEShiftImm1_7";
1088  // Reason we're doing this is because instruction vshll.s8 t1 encoding
1089  // accepts 1,7 but the t2 encoding accepts 8.  By doing this we can get a
1090  // better diagnostic message if someone uses bigger immediate than the t1/t2
1091  // encodings allow.
1092  let DiagnosticString = "operand must be an immediate in the range [1,8]";
1093}
1094def mve_shift_imm1_7 : Operand<i32>,
1095    // SelectImmediateInRange / isScaledConstantInRange uses a
1096    // half-open interval, so the parameters <1,8> mean 1-7 inclusive
1097    ComplexPattern<i32, 1, "SelectImmediateInRange<1,8>", [], []> {
1098  let ParserMatchClass = MVEShiftImm1_7AsmOperand;
1099  let EncoderMethod = "getMVEShiftImmOpValue";
1100}
1101
1102def MVEShiftImm1_15AsmOperand: ImmAsmOperand<1,15> {
1103  let Name = "MVEShiftImm1_15";
1104  // Reason we're doing this is because instruction vshll.s16 t1 encoding
1105  // accepts 1,15 but the t2 encoding accepts 16.  By doing this we can get a
1106  // better diagnostic message if someone uses bigger immediate than the t1/t2
1107  // encodings allow.
1108  let DiagnosticString = "operand must be an immediate in the range [1,16]";
1109}
1110def mve_shift_imm1_15 : Operand<i32>,
1111    // SelectImmediateInRange / isScaledConstantInRange uses a
1112    // half-open interval, so the parameters <1,16> mean 1-15 inclusive
1113    ComplexPattern<i32, 1, "SelectImmediateInRange<1,16>", [], []> {
1114  let ParserMatchClass = MVEShiftImm1_15AsmOperand;
1115  let EncoderMethod = "getMVEShiftImmOpValue";
1116}
1117
1118// Define ARM specific addressing modes.
1119// addrmode_imm12 := reg +/- imm12
1120//
1121def MemImm12OffsetAsmOperand : AsmOperandClass { let Name = "MemImm12Offset"; }
1122class AddrMode_Imm12 : MemOperand,
1123                     ComplexPattern<i32, 2, "SelectAddrModeImm12", []> {
1124  // 12-bit immediate operand. Note that instructions using this encode
1125  // #0 and #-0 differently. We flag #-0 as the magic value INT32_MIN. All other
1126  // immediate values are as normal.
1127
1128  let EncoderMethod = "getAddrModeImm12OpValue";
1129  let DecoderMethod = "DecodeAddrModeImm12Operand";
1130  let ParserMatchClass = MemImm12OffsetAsmOperand;
1131  let MIOperandInfo = (ops GPR:$base, i32imm:$offsimm);
1132}
1133
1134def addrmode_imm12 : AddrMode_Imm12 {
1135  let PrintMethod = "printAddrModeImm12Operand<false>";
1136}
1137
1138def addrmode_imm12_pre : AddrMode_Imm12 {
1139  let PrintMethod = "printAddrModeImm12Operand<true>";
1140}
1141
1142// ldst_so_reg := reg +/- reg shop imm
1143//
1144def MemRegOffsetAsmOperand : AsmOperandClass { let Name = "MemRegOffset"; }
1145def ldst_so_reg : MemOperand,
1146                  ComplexPattern<i32, 3, "SelectLdStSOReg", []> {
1147  let EncoderMethod = "getLdStSORegOpValue";
1148  // FIXME: Simplify the printer
1149  let PrintMethod = "printAddrMode2Operand";
1150  let DecoderMethod = "DecodeSORegMemOperand";
1151  let ParserMatchClass = MemRegOffsetAsmOperand;
1152  let MIOperandInfo = (ops GPR:$base, GPRnopc:$offsreg, i32imm:$shift);
1153}
1154
1155// postidx_imm8 := +/- [0,255]
1156//
1157// 9 bit value:
1158//  {8}       1 is imm8 is non-negative. 0 otherwise.
1159//  {7-0}     [0,255] imm8 value.
1160def PostIdxImm8AsmOperand : AsmOperandClass { let Name = "PostIdxImm8"; }
1161def postidx_imm8 : MemOperand {
1162  let PrintMethod = "printPostIdxImm8Operand";
1163  let ParserMatchClass = PostIdxImm8AsmOperand;
1164  let MIOperandInfo = (ops i32imm);
1165}
1166
1167// postidx_imm8s4 := +/- [0,1020]
1168//
1169// 9 bit value:
1170//  {8}       1 is imm8 is non-negative. 0 otherwise.
1171//  {7-0}     [0,255] imm8 value, scaled by 4.
1172def PostIdxImm8s4AsmOperand : AsmOperandClass { let Name = "PostIdxImm8s4"; }
1173def postidx_imm8s4 : MemOperand {
1174  let PrintMethod = "printPostIdxImm8s4Operand";
1175  let ParserMatchClass = PostIdxImm8s4AsmOperand;
1176  let MIOperandInfo = (ops i32imm);
1177}
1178
1179
1180// postidx_reg := +/- reg
1181//
1182def PostIdxRegAsmOperand : AsmOperandClass {
1183  let Name = "PostIdxReg";
1184  let ParserMethod = "parsePostIdxReg";
1185}
1186def postidx_reg : MemOperand {
1187  let EncoderMethod = "getPostIdxRegOpValue";
1188  let DecoderMethod = "DecodePostIdxReg";
1189  let PrintMethod = "printPostIdxRegOperand";
1190  let ParserMatchClass = PostIdxRegAsmOperand;
1191  let MIOperandInfo = (ops GPRnopc, i32imm);
1192}
1193
1194def PostIdxRegShiftedAsmOperand : AsmOperandClass {
1195  let Name = "PostIdxRegShifted";
1196  let ParserMethod = "parsePostIdxReg";
1197}
1198def am2offset_reg : MemOperand,
1199                ComplexPattern<i32, 2, "SelectAddrMode2OffsetReg",
1200                [], [SDNPWantRoot]> {
1201  let EncoderMethod = "getAddrMode2OffsetOpValue";
1202  let PrintMethod = "printAddrMode2OffsetOperand";
1203  // When using this for assembly, it's always as a post-index offset.
1204  let ParserMatchClass = PostIdxRegShiftedAsmOperand;
1205  let MIOperandInfo = (ops GPRnopc, i32imm);
1206}
1207
1208// FIXME: am2offset_imm should only need the immediate, not the GPR. Having
1209// the GPR is purely vestigal at this point.
1210def AM2OffsetImmAsmOperand : AsmOperandClass { let Name = "AM2OffsetImm"; }
1211def am2offset_imm : MemOperand,
1212                ComplexPattern<i32, 2, "SelectAddrMode2OffsetImm",
1213                [], [SDNPWantRoot]> {
1214  let EncoderMethod = "getAddrMode2OffsetOpValue";
1215  let PrintMethod = "printAddrMode2OffsetOperand";
1216  let ParserMatchClass = AM2OffsetImmAsmOperand;
1217  let MIOperandInfo = (ops GPRnopc, i32imm);
1218}
1219
1220
1221// addrmode3 := reg +/- reg
1222// addrmode3 := reg +/- imm8
1223//
1224// FIXME: split into imm vs. reg versions.
1225def AddrMode3AsmOperand : AsmOperandClass { let Name = "AddrMode3"; }
1226class AddrMode3 : MemOperand,
1227                  ComplexPattern<i32, 3, "SelectAddrMode3", []> {
1228  let EncoderMethod = "getAddrMode3OpValue";
1229  let ParserMatchClass = AddrMode3AsmOperand;
1230  let MIOperandInfo = (ops GPR:$base, GPR:$offsreg, i32imm:$offsimm);
1231}
1232
1233def addrmode3 : AddrMode3
1234{
1235  let PrintMethod = "printAddrMode3Operand<false>";
1236}
1237
1238def addrmode3_pre : AddrMode3
1239{
1240  let PrintMethod = "printAddrMode3Operand<true>";
1241}
1242
1243// FIXME: split into imm vs. reg versions.
1244// FIXME: parser method to handle +/- register.
1245def AM3OffsetAsmOperand : AsmOperandClass {
1246  let Name = "AM3Offset";
1247  let ParserMethod = "parseAM3Offset";
1248}
1249def am3offset : MemOperand,
1250                ComplexPattern<i32, 2, "SelectAddrMode3Offset",
1251                               [], [SDNPWantRoot]> {
1252  let EncoderMethod = "getAddrMode3OffsetOpValue";
1253  let PrintMethod = "printAddrMode3OffsetOperand";
1254  let ParserMatchClass = AM3OffsetAsmOperand;
1255  let MIOperandInfo = (ops GPR, i32imm);
1256}
1257
1258// ldstm_mode := {ia, ib, da, db}
1259//
1260def ldstm_mode : OptionalDefOperand<OtherVT, (ops i32), (ops (i32 1))> {
1261  let EncoderMethod = "getLdStmModeOpValue";
1262  let PrintMethod = "printLdStmModeOperand";
1263}
1264
1265// addrmode5 := reg +/- imm8*4
1266//
1267def AddrMode5AsmOperand : AsmOperandClass { let Name = "AddrMode5"; }
1268class AddrMode5 : MemOperand,
1269                  ComplexPattern<i32, 2, "SelectAddrMode5", []> {
1270  let EncoderMethod = "getAddrMode5OpValue";
1271  let DecoderMethod = "DecodeAddrMode5Operand";
1272  let ParserMatchClass = AddrMode5AsmOperand;
1273  let MIOperandInfo = (ops GPR:$base, i32imm);
1274}
1275
1276def addrmode5 : AddrMode5 {
1277   let PrintMethod = "printAddrMode5Operand<false>";
1278}
1279
1280def addrmode5_pre : AddrMode5 {
1281   let PrintMethod = "printAddrMode5Operand<true>";
1282}
1283
1284// addrmode5fp16 := reg +/- imm8*2
1285//
1286def AddrMode5FP16AsmOperand : AsmOperandClass { let Name = "AddrMode5FP16"; }
1287class AddrMode5FP16 : MemOperand,
1288                      ComplexPattern<i32, 2, "SelectAddrMode5FP16", []> {
1289  let EncoderMethod = "getAddrMode5FP16OpValue";
1290  let DecoderMethod = "DecodeAddrMode5FP16Operand";
1291  let ParserMatchClass = AddrMode5FP16AsmOperand;
1292  let MIOperandInfo = (ops GPR:$base, i32imm);
1293}
1294
1295def addrmode5fp16 : AddrMode5FP16 {
1296   let PrintMethod = "printAddrMode5FP16Operand<false>";
1297}
1298
1299// addrmode6 := reg with optional alignment
1300//
1301def AddrMode6AsmOperand : AsmOperandClass { let Name = "AlignedMemory"; }
1302def addrmode6 : MemOperand,
1303                ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
1304  let PrintMethod = "printAddrMode6Operand";
1305  let MIOperandInfo = (ops GPR:$addr, i32imm:$align);
1306  let EncoderMethod = "getAddrMode6AddressOpValue";
1307  let DecoderMethod = "DecodeAddrMode6Operand";
1308  let ParserMatchClass = AddrMode6AsmOperand;
1309}
1310
1311def am6offset : MemOperand,
1312                ComplexPattern<i32, 1, "SelectAddrMode6Offset",
1313                               [], [SDNPWantRoot]> {
1314  let PrintMethod = "printAddrMode6OffsetOperand";
1315  let MIOperandInfo = (ops GPR);
1316  let EncoderMethod = "getAddrMode6OffsetOpValue";
1317  let DecoderMethod = "DecodeGPRRegisterClass";
1318}
1319
1320// Special version of addrmode6 to handle alignment encoding for VST1/VLD1
1321// (single element from one lane) for size 32.
1322def addrmode6oneL32 : MemOperand,
1323                ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
1324  let PrintMethod = "printAddrMode6Operand";
1325  let MIOperandInfo = (ops GPR:$addr, i32imm);
1326  let EncoderMethod = "getAddrMode6OneLane32AddressOpValue";
1327}
1328
1329// Base class for addrmode6 with specific alignment restrictions.
1330class AddrMode6Align : MemOperand,
1331                ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
1332  let PrintMethod = "printAddrMode6Operand";
1333  let MIOperandInfo = (ops GPR:$addr, i32imm:$align);
1334  let EncoderMethod = "getAddrMode6AddressOpValue";
1335  let DecoderMethod = "DecodeAddrMode6Operand";
1336}
1337
1338// Special version of addrmode6 to handle no allowed alignment encoding for
1339// VLD/VST instructions and checking the alignment is not specified.
1340def AddrMode6AlignNoneAsmOperand : AsmOperandClass {
1341  let Name = "AlignedMemoryNone";
1342  let DiagnosticString = "alignment must be omitted";
1343}
1344def addrmode6alignNone : AddrMode6Align {
1345  // The alignment specifier can only be omitted.
1346  let ParserMatchClass = AddrMode6AlignNoneAsmOperand;
1347}
1348
1349// Special version of addrmode6 to handle 16-bit alignment encoding for
1350// VLD/VST instructions and checking the alignment value.
1351def AddrMode6Align16AsmOperand : AsmOperandClass {
1352  let Name = "AlignedMemory16";
1353  let DiagnosticString = "alignment must be 16 or omitted";
1354}
1355def addrmode6align16 : AddrMode6Align {
1356  // The alignment specifier can only be 16 or omitted.
1357  let ParserMatchClass = AddrMode6Align16AsmOperand;
1358}
1359
1360// Special version of addrmode6 to handle 32-bit alignment encoding for
1361// VLD/VST instructions and checking the alignment value.
1362def AddrMode6Align32AsmOperand : AsmOperandClass {
1363  let Name = "AlignedMemory32";
1364  let DiagnosticString = "alignment must be 32 or omitted";
1365}
1366def addrmode6align32 : AddrMode6Align {
1367  // The alignment specifier can only be 32 or omitted.
1368  let ParserMatchClass = AddrMode6Align32AsmOperand;
1369}
1370
1371// Special version of addrmode6 to handle 64-bit alignment encoding for
1372// VLD/VST instructions and checking the alignment value.
1373def AddrMode6Align64AsmOperand : AsmOperandClass {
1374  let Name = "AlignedMemory64";
1375  let DiagnosticString = "alignment must be 64 or omitted";
1376}
1377def addrmode6align64 : AddrMode6Align {
1378  // The alignment specifier can only be 64 or omitted.
1379  let ParserMatchClass = AddrMode6Align64AsmOperand;
1380}
1381
1382// Special version of addrmode6 to handle 64-bit or 128-bit alignment encoding
1383// for VLD/VST instructions and checking the alignment value.
1384def AddrMode6Align64or128AsmOperand : AsmOperandClass {
1385  let Name = "AlignedMemory64or128";
1386  let DiagnosticString = "alignment must be 64, 128 or omitted";
1387}
1388def addrmode6align64or128 : AddrMode6Align {
1389  // The alignment specifier can only be 64, 128 or omitted.
1390  let ParserMatchClass = AddrMode6Align64or128AsmOperand;
1391}
1392
1393// Special version of addrmode6 to handle 64-bit, 128-bit or 256-bit alignment
1394// encoding for VLD/VST instructions and checking the alignment value.
1395def AddrMode6Align64or128or256AsmOperand : AsmOperandClass {
1396  let Name = "AlignedMemory64or128or256";
1397  let DiagnosticString = "alignment must be 64, 128, 256 or omitted";
1398}
1399def addrmode6align64or128or256 : AddrMode6Align {
1400  // The alignment specifier can only be 64, 128, 256 or omitted.
1401  let ParserMatchClass = AddrMode6Align64or128or256AsmOperand;
1402}
1403
1404// Special version of addrmode6 to handle alignment encoding for VLD-dup
1405// instructions, specifically VLD4-dup.
1406def addrmode6dup : MemOperand,
1407                ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
1408  let PrintMethod = "printAddrMode6Operand";
1409  let MIOperandInfo = (ops GPR:$addr, i32imm);
1410  let EncoderMethod = "getAddrMode6DupAddressOpValue";
1411  // FIXME: This is close, but not quite right. The alignment specifier is
1412  // different.
1413  let ParserMatchClass = AddrMode6AsmOperand;
1414}
1415
1416// Base class for addrmode6dup with specific alignment restrictions.
1417class AddrMode6DupAlign : MemOperand,
1418                ComplexPattern<i32, 2, "SelectAddrMode6", [], [SDNPWantParent]>{
1419  let PrintMethod = "printAddrMode6Operand";
1420  let MIOperandInfo = (ops GPR:$addr, i32imm);
1421  let EncoderMethod = "getAddrMode6DupAddressOpValue";
1422}
1423
1424// Special version of addrmode6 to handle no allowed alignment encoding for
1425// VLD-dup instruction and checking the alignment is not specified.
1426def AddrMode6dupAlignNoneAsmOperand : AsmOperandClass {
1427  let Name = "DupAlignedMemoryNone";
1428  let DiagnosticString = "alignment must be omitted";
1429}
1430def addrmode6dupalignNone : AddrMode6DupAlign {
1431  // The alignment specifier can only be omitted.
1432  let ParserMatchClass = AddrMode6dupAlignNoneAsmOperand;
1433}
1434
1435// Special version of addrmode6 to handle 16-bit alignment encoding for VLD-dup
1436// instruction and checking the alignment value.
1437def AddrMode6dupAlign16AsmOperand : AsmOperandClass {
1438  let Name = "DupAlignedMemory16";
1439  let DiagnosticString = "alignment must be 16 or omitted";
1440}
1441def addrmode6dupalign16 : AddrMode6DupAlign {
1442  // The alignment specifier can only be 16 or omitted.
1443  let ParserMatchClass = AddrMode6dupAlign16AsmOperand;
1444}
1445
1446// Special version of addrmode6 to handle 32-bit alignment encoding for VLD-dup
1447// instruction and checking the alignment value.
1448def AddrMode6dupAlign32AsmOperand : AsmOperandClass {
1449  let Name = "DupAlignedMemory32";
1450  let DiagnosticString = "alignment must be 32 or omitted";
1451}
1452def addrmode6dupalign32 : AddrMode6DupAlign {
1453  // The alignment specifier can only be 32 or omitted.
1454  let ParserMatchClass = AddrMode6dupAlign32AsmOperand;
1455}
1456
1457// Special version of addrmode6 to handle 64-bit alignment encoding for VLD
1458// instructions and checking the alignment value.
1459def AddrMode6dupAlign64AsmOperand : AsmOperandClass {
1460  let Name = "DupAlignedMemory64";
1461  let DiagnosticString = "alignment must be 64 or omitted";
1462}
1463def addrmode6dupalign64 : AddrMode6DupAlign {
1464  // The alignment specifier can only be 64 or omitted.
1465  let ParserMatchClass = AddrMode6dupAlign64AsmOperand;
1466}
1467
1468// Special version of addrmode6 to handle 64-bit or 128-bit alignment encoding
1469// for VLD instructions and checking the alignment value.
1470def AddrMode6dupAlign64or128AsmOperand : AsmOperandClass {
1471  let Name = "DupAlignedMemory64or128";
1472  let DiagnosticString = "alignment must be 64, 128 or omitted";
1473}
1474def addrmode6dupalign64or128 : AddrMode6DupAlign {
1475  // The alignment specifier can only be 64, 128 or omitted.
1476  let ParserMatchClass = AddrMode6dupAlign64or128AsmOperand;
1477}
1478
1479// addrmodepc := pc + reg
1480//
1481def addrmodepc : MemOperand,
1482                 ComplexPattern<i32, 2, "SelectAddrModePC", []> {
1483  let PrintMethod = "printAddrModePCOperand";
1484  let MIOperandInfo = (ops GPR, i32imm);
1485}
1486
1487// addr_offset_none := reg
1488//
1489def MemNoOffsetAsmOperand : AsmOperandClass { let Name = "MemNoOffset"; }
1490def addr_offset_none : MemOperand,
1491                       ComplexPattern<i32, 1, "SelectAddrOffsetNone", []> {
1492  let PrintMethod = "printAddrMode7Operand";
1493  let DecoderMethod = "DecodeAddrMode7Operand";
1494  let ParserMatchClass = MemNoOffsetAsmOperand;
1495  let MIOperandInfo = (ops GPR:$base);
1496}
1497
1498// t_addr_offset_none := reg [r0-r7]
1499def MemNoOffsetTAsmOperand : AsmOperandClass { let Name = "MemNoOffsetT"; }
1500def t_addr_offset_none : MemOperand {
1501  let PrintMethod = "printAddrMode7Operand";
1502  let DecoderMethod = "DecodetGPRRegisterClass";
1503  let ParserMatchClass = MemNoOffsetTAsmOperand;
1504  let MIOperandInfo = (ops tGPR:$base);
1505}
1506
1507def nohash_imm : Operand<i32> {
1508  let PrintMethod = "printNoHashImmediate";
1509}
1510
1511def CoprocNumAsmOperand : AsmOperandClass {
1512  let Name = "CoprocNum";
1513  let ParserMethod = "parseCoprocNumOperand";
1514}
1515def p_imm : Operand<i32> {
1516  let PrintMethod = "printPImmediate";
1517  let ParserMatchClass = CoprocNumAsmOperand;
1518  let DecoderMethod = "DecodeCoprocessor";
1519}
1520
1521def CoprocRegAsmOperand : AsmOperandClass {
1522  let Name = "CoprocReg";
1523  let ParserMethod = "parseCoprocRegOperand";
1524}
1525def c_imm : Operand<i32> {
1526  let PrintMethod = "printCImmediate";
1527  let ParserMatchClass = CoprocRegAsmOperand;
1528}
1529def CoprocOptionAsmOperand : AsmOperandClass {
1530  let Name = "CoprocOption";
1531  let ParserMethod = "parseCoprocOptionOperand";
1532}
1533def coproc_option_imm : Operand<i32> {
1534  let PrintMethod = "printCoprocOptionImm";
1535  let ParserMatchClass = CoprocOptionAsmOperand;
1536}
1537
1538//===----------------------------------------------------------------------===//
1539
1540include "ARMInstrFormats.td"
1541
1542//===----------------------------------------------------------------------===//
1543// Multiclass helpers...
1544//
1545
1546/// AsI1_bin_irs - Defines a set of (op r, {mod_imm|r|so_reg}) patterns for a
1547/// binop that produces a value.
1548let TwoOperandAliasConstraint = "$Rn = $Rd" in
1549multiclass AsI1_bin_irs<bits<4> opcod, string opc,
1550                     InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
1551                     SDPatternOperator opnode, bit Commutable = 0> {
1552  // The register-immediate version is re-materializable. This is useful
1553  // in particular for taking the address of a local.
1554  let isReMaterializable = 1 in {
1555  def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm), DPFrm,
1556               iii, opc, "\t$Rd, $Rn, $imm",
1557               [(set GPR:$Rd, (opnode GPR:$Rn, mod_imm:$imm))]>,
1558           Sched<[WriteALU, ReadALU]> {
1559    bits<4> Rd;
1560    bits<4> Rn;
1561    bits<12> imm;
1562    let Inst{25} = 1;
1563    let Inst{19-16} = Rn;
1564    let Inst{15-12} = Rd;
1565    let Inst{11-0} = imm;
1566  }
1567  }
1568  def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm,
1569               iir, opc, "\t$Rd, $Rn, $Rm",
1570               [(set GPR:$Rd, (opnode GPR:$Rn, GPR:$Rm))]>,
1571           Sched<[WriteALU, ReadALU, ReadALU]> {
1572    bits<4> Rd;
1573    bits<4> Rn;
1574    bits<4> Rm;
1575    let Inst{25} = 0;
1576    let isCommutable = Commutable;
1577    let Inst{19-16} = Rn;
1578    let Inst{15-12} = Rd;
1579    let Inst{11-4} = 0b00000000;
1580    let Inst{3-0} = Rm;
1581  }
1582
1583  def rsi : AsI1<opcod, (outs GPR:$Rd),
1584               (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm,
1585               iis, opc, "\t$Rd, $Rn, $shift",
1586               [(set GPR:$Rd, (opnode GPR:$Rn, so_reg_imm:$shift))]>,
1587            Sched<[WriteALUsi, ReadALU]> {
1588    bits<4> Rd;
1589    bits<4> Rn;
1590    bits<12> shift;
1591    let Inst{25} = 0;
1592    let Inst{19-16} = Rn;
1593    let Inst{15-12} = Rd;
1594    let Inst{11-5} = shift{11-5};
1595    let Inst{4} = 0;
1596    let Inst{3-0} = shift{3-0};
1597  }
1598
1599  def rsr : AsI1<opcod, (outs GPR:$Rd),
1600               (ins GPR:$Rn, so_reg_reg:$shift), DPSoRegRegFrm,
1601               iis, opc, "\t$Rd, $Rn, $shift",
1602               [(set GPR:$Rd, (opnode GPR:$Rn, so_reg_reg:$shift))]>,
1603            Sched<[WriteALUsr, ReadALUsr]> {
1604    bits<4> Rd;
1605    bits<4> Rn;
1606    bits<12> shift;
1607    let Inst{25} = 0;
1608    let Inst{19-16} = Rn;
1609    let Inst{15-12} = Rd;
1610    let Inst{11-8} = shift{11-8};
1611    let Inst{7} = 0;
1612    let Inst{6-5} = shift{6-5};
1613    let Inst{4} = 1;
1614    let Inst{3-0} = shift{3-0};
1615  }
1616}
1617
1618/// AsI1_rbin_irs - Same as AsI1_bin_irs except the order of operands are
1619/// reversed.  The 'rr' form is only defined for the disassembler; for codegen
1620/// it is equivalent to the AsI1_bin_irs counterpart.
1621let TwoOperandAliasConstraint = "$Rn = $Rd" in
1622multiclass AsI1_rbin_irs<bits<4> opcod, string opc,
1623                     InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
1624                     SDNode opnode> {
1625  // The register-immediate version is re-materializable. This is useful
1626  // in particular for taking the address of a local.
1627  let isReMaterializable = 1 in {
1628  def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm), DPFrm,
1629               iii, opc, "\t$Rd, $Rn, $imm",
1630               [(set GPR:$Rd, (opnode mod_imm:$imm, GPR:$Rn))]>,
1631           Sched<[WriteALU, ReadALU]> {
1632    bits<4> Rd;
1633    bits<4> Rn;
1634    bits<12> imm;
1635    let Inst{25} = 1;
1636    let Inst{19-16} = Rn;
1637    let Inst{15-12} = Rd;
1638    let Inst{11-0} = imm;
1639  }
1640  }
1641  def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm,
1642               iir, opc, "\t$Rd, $Rn, $Rm",
1643               [/* pattern left blank */]>,
1644           Sched<[WriteALU, ReadALU, ReadALU]> {
1645    bits<4> Rd;
1646    bits<4> Rn;
1647    bits<4> Rm;
1648    let Inst{11-4} = 0b00000000;
1649    let Inst{25} = 0;
1650    let Inst{3-0} = Rm;
1651    let Inst{15-12} = Rd;
1652    let Inst{19-16} = Rn;
1653  }
1654
1655  def rsi : AsI1<opcod, (outs GPR:$Rd),
1656               (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm,
1657               iis, opc, "\t$Rd, $Rn, $shift",
1658               [(set GPR:$Rd, (opnode so_reg_imm:$shift, GPR:$Rn))]>,
1659            Sched<[WriteALUsi, ReadALU]> {
1660    bits<4> Rd;
1661    bits<4> Rn;
1662    bits<12> shift;
1663    let Inst{25} = 0;
1664    let Inst{19-16} = Rn;
1665    let Inst{15-12} = Rd;
1666    let Inst{11-5} = shift{11-5};
1667    let Inst{4} = 0;
1668    let Inst{3-0} = shift{3-0};
1669  }
1670
1671  def rsr : AsI1<opcod, (outs GPR:$Rd),
1672               (ins GPR:$Rn, so_reg_reg:$shift), DPSoRegRegFrm,
1673               iis, opc, "\t$Rd, $Rn, $shift",
1674               [(set GPR:$Rd, (opnode so_reg_reg:$shift, GPR:$Rn))]>,
1675            Sched<[WriteALUsr, ReadALUsr]> {
1676    bits<4> Rd;
1677    bits<4> Rn;
1678    bits<12> shift;
1679    let Inst{25} = 0;
1680    let Inst{19-16} = Rn;
1681    let Inst{15-12} = Rd;
1682    let Inst{11-8} = shift{11-8};
1683    let Inst{7} = 0;
1684    let Inst{6-5} = shift{6-5};
1685    let Inst{4} = 1;
1686    let Inst{3-0} = shift{3-0};
1687  }
1688}
1689
1690/// AsI1_bin_s_irs - Same as AsI1_bin_irs except it sets the 's' bit by default.
1691///
1692/// These opcodes will be converted to the real non-S opcodes by
1693/// AdjustInstrPostInstrSelection after giving them an optional CPSR operand.
1694let hasPostISelHook = 1, Defs = [CPSR] in {
1695multiclass AsI1_bin_s_irs<InstrItinClass iii, InstrItinClass iir,
1696                          InstrItinClass iis, SDNode opnode,
1697                          bit Commutable = 0> {
1698  def ri : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm, pred:$p),
1699                         4, iii,
1700                         [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, mod_imm:$imm))]>,
1701                         Sched<[WriteALU, ReadALU]>;
1702
1703  def rr : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, pred:$p),
1704                         4, iir,
1705                         [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, GPR:$Rm))]>,
1706                         Sched<[WriteALU, ReadALU, ReadALU]> {
1707    let isCommutable = Commutable;
1708  }
1709  def rsi : ARMPseudoInst<(outs GPR:$Rd),
1710                          (ins GPR:$Rn, so_reg_imm:$shift, pred:$p),
1711                          4, iis,
1712                          [(set GPR:$Rd, CPSR, (opnode GPR:$Rn,
1713                                                so_reg_imm:$shift))]>,
1714                          Sched<[WriteALUsi, ReadALU]>;
1715
1716  def rsr : ARMPseudoInst<(outs GPR:$Rd),
1717                          (ins GPR:$Rn, so_reg_reg:$shift, pred:$p),
1718                          4, iis,
1719                          [(set GPR:$Rd, CPSR, (opnode GPR:$Rn,
1720                                                so_reg_reg:$shift))]>,
1721                          Sched<[WriteALUSsr, ReadALUsr]>;
1722}
1723}
1724
1725/// AsI1_rbin_s_is - Same as AsI1_bin_s_irs, except selection DAG
1726/// operands are reversed.
1727let hasPostISelHook = 1, Defs = [CPSR] in {
1728multiclass AsI1_rbin_s_is<InstrItinClass iii,
1729                          InstrItinClass iis, SDNode opnode> {
1730  def ri : ARMPseudoInst<(outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm, pred:$p),
1731                         4, iii,
1732                         [(set GPR:$Rd, CPSR, (opnode mod_imm:$imm, GPR:$Rn))]>,
1733           Sched<[WriteALU, ReadALU]>;
1734
1735  def rsi : ARMPseudoInst<(outs GPR:$Rd),
1736                          (ins GPR:$Rn, so_reg_imm:$shift, pred:$p),
1737                          4, iis,
1738                          [(set GPR:$Rd, CPSR, (opnode so_reg_imm:$shift,
1739                                             GPR:$Rn))]>,
1740            Sched<[WriteALUsi, ReadALU]>;
1741
1742  def rsr : ARMPseudoInst<(outs GPR:$Rd),
1743                          (ins GPR:$Rn, so_reg_reg:$shift, pred:$p),
1744                          4, iis,
1745                          [(set GPR:$Rd, CPSR, (opnode so_reg_reg:$shift,
1746                                             GPR:$Rn))]>,
1747            Sched<[WriteALUSsr, ReadALUsr]>;
1748}
1749}
1750
1751/// AI1_cmp_irs - Defines a set of (op r, {mod_imm|r|so_reg}) cmp / test
1752/// patterns. Similar to AsI1_bin_irs except the instruction does not produce
1753/// a explicit result, only implicitly set CPSR.
1754let isCompare = 1, Defs = [CPSR] in {
1755multiclass AI1_cmp_irs<bits<4> opcod, string opc,
1756                     InstrItinClass iii, InstrItinClass iir, InstrItinClass iis,
1757                     SDPatternOperator opnode, bit Commutable = 0,
1758                     string rrDecoderMethod = ""> {
1759  def ri : AI1<opcod, (outs), (ins GPR:$Rn, mod_imm:$imm), DPFrm, iii,
1760               opc, "\t$Rn, $imm",
1761               [(opnode GPR:$Rn, mod_imm:$imm)]>,
1762           Sched<[WriteCMP, ReadALU]> {
1763    bits<4> Rn;
1764    bits<12> imm;
1765    let Inst{25} = 1;
1766    let Inst{20} = 1;
1767    let Inst{19-16} = Rn;
1768    let Inst{15-12} = 0b0000;
1769    let Inst{11-0} = imm;
1770
1771    let Unpredictable{15-12} = 0b1111;
1772  }
1773  def rr : AI1<opcod, (outs), (ins GPR:$Rn, GPR:$Rm), DPFrm, iir,
1774               opc, "\t$Rn, $Rm",
1775               [(opnode GPR:$Rn, GPR:$Rm)]>,
1776           Sched<[WriteCMP, ReadALU, ReadALU]> {
1777    bits<4> Rn;
1778    bits<4> Rm;
1779    let isCommutable = Commutable;
1780    let Inst{25} = 0;
1781    let Inst{20} = 1;
1782    let Inst{19-16} = Rn;
1783    let Inst{15-12} = 0b0000;
1784    let Inst{11-4} = 0b00000000;
1785    let Inst{3-0} = Rm;
1786    let DecoderMethod = rrDecoderMethod;
1787
1788    let Unpredictable{15-12} = 0b1111;
1789  }
1790  def rsi : AI1<opcod, (outs),
1791               (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm, iis,
1792               opc, "\t$Rn, $shift",
1793               [(opnode GPR:$Rn, so_reg_imm:$shift)]>,
1794            Sched<[WriteCMPsi, ReadALU]> {
1795    bits<4> Rn;
1796    bits<12> shift;
1797    let Inst{25} = 0;
1798    let Inst{20} = 1;
1799    let Inst{19-16} = Rn;
1800    let Inst{15-12} = 0b0000;
1801    let Inst{11-5} = shift{11-5};
1802    let Inst{4} = 0;
1803    let Inst{3-0} = shift{3-0};
1804
1805    let Unpredictable{15-12} = 0b1111;
1806  }
1807  def rsr : AI1<opcod, (outs),
1808               (ins GPRnopc:$Rn, so_reg_reg:$shift), DPSoRegRegFrm, iis,
1809               opc, "\t$Rn, $shift",
1810               [(opnode GPRnopc:$Rn, so_reg_reg:$shift)]>,
1811            Sched<[WriteCMPsr, ReadALU]> {
1812    bits<4> Rn;
1813    bits<12> shift;
1814    let Inst{25} = 0;
1815    let Inst{20} = 1;
1816    let Inst{19-16} = Rn;
1817    let Inst{15-12} = 0b0000;
1818    let Inst{11-8} = shift{11-8};
1819    let Inst{7} = 0;
1820    let Inst{6-5} = shift{6-5};
1821    let Inst{4} = 1;
1822    let Inst{3-0} = shift{3-0};
1823
1824    let Unpredictable{15-12} = 0b1111;
1825  }
1826
1827}
1828}
1829
1830/// AI_ext_rrot - A unary operation with two forms: one whose operand is a
1831/// register and one whose operand is a register rotated by 8/16/24.
1832/// FIXME: Remove the 'r' variant. Its rot_imm is zero.
1833class AI_ext_rrot<bits<8> opcod, string opc, PatFrag opnode>
1834  : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPRnopc:$Rm, rot_imm:$rot),
1835          IIC_iEXTr, opc, "\t$Rd, $Rm$rot",
1836          [(set GPRnopc:$Rd, (opnode (rotr GPRnopc:$Rm, rot_imm:$rot)))]>,
1837       Requires<[IsARM, HasV6]>, Sched<[WriteALUsi]> {
1838  bits<4> Rd;
1839  bits<4> Rm;
1840  bits<2> rot;
1841  let Inst{19-16} = 0b1111;
1842  let Inst{15-12} = Rd;
1843  let Inst{11-10} = rot;
1844  let Inst{3-0}   = Rm;
1845}
1846
1847class AI_ext_rrot_np<bits<8> opcod, string opc>
1848  : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPRnopc:$Rm, rot_imm:$rot),
1849          IIC_iEXTr, opc, "\t$Rd, $Rm$rot", []>,
1850       Requires<[IsARM, HasV6]>, Sched<[WriteALUsi]> {
1851  bits<2> rot;
1852  let Inst{19-16} = 0b1111;
1853  let Inst{11-10} = rot;
1854 }
1855
1856/// AI_exta_rrot - A binary operation with two forms: one whose operand is a
1857/// register and one whose operand is a register rotated by 8/16/24.
1858class AI_exta_rrot<bits<8> opcod, string opc, PatFrag opnode>
1859  : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPR:$Rn, GPRnopc:$Rm, rot_imm:$rot),
1860          IIC_iEXTAr, opc, "\t$Rd, $Rn, $Rm$rot",
1861          [(set GPRnopc:$Rd, (opnode GPR:$Rn,
1862                                     (rotr GPRnopc:$Rm, rot_imm:$rot)))]>,
1863        Requires<[IsARM, HasV6]>, Sched<[WriteALUsr]> {
1864  bits<4> Rd;
1865  bits<4> Rm;
1866  bits<4> Rn;
1867  bits<2> rot;
1868  let Inst{19-16} = Rn;
1869  let Inst{15-12} = Rd;
1870  let Inst{11-10} = rot;
1871  let Inst{9-4}   = 0b000111;
1872  let Inst{3-0}   = Rm;
1873}
1874
1875class AI_exta_rrot_np<bits<8> opcod, string opc>
1876  : AExtI<opcod, (outs GPRnopc:$Rd), (ins GPR:$Rn, GPRnopc:$Rm, rot_imm:$rot),
1877          IIC_iEXTAr, opc, "\t$Rd, $Rn, $Rm$rot", []>,
1878       Requires<[IsARM, HasV6]>, Sched<[WriteALUsr]> {
1879  bits<4> Rn;
1880  bits<2> rot;
1881  let Inst{19-16} = Rn;
1882  let Inst{11-10} = rot;
1883}
1884
1885/// AI1_adde_sube_irs - Define instructions and patterns for adde and sube.
1886let TwoOperandAliasConstraint = "$Rn = $Rd" in
1887multiclass AI1_adde_sube_irs<bits<4> opcod, string opc, SDNode opnode,
1888                             bit Commutable = 0> {
1889  let hasPostISelHook = 1, Defs = [CPSR], Uses = [CPSR] in {
1890  def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm),
1891                DPFrm, IIC_iALUi, opc, "\t$Rd, $Rn, $imm",
1892               [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, mod_imm:$imm, CPSR))]>,
1893               Requires<[IsARM]>,
1894           Sched<[WriteALU, ReadALU]> {
1895    bits<4> Rd;
1896    bits<4> Rn;
1897    bits<12> imm;
1898    let Inst{25} = 1;
1899    let Inst{15-12} = Rd;
1900    let Inst{19-16} = Rn;
1901    let Inst{11-0} = imm;
1902  }
1903  def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
1904                DPFrm, IIC_iALUr, opc, "\t$Rd, $Rn, $Rm",
1905               [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, GPR:$Rm, CPSR))]>,
1906               Requires<[IsARM]>,
1907           Sched<[WriteALU, ReadALU, ReadALU]> {
1908    bits<4> Rd;
1909    bits<4> Rn;
1910    bits<4> Rm;
1911    let Inst{11-4} = 0b00000000;
1912    let Inst{25} = 0;
1913    let isCommutable = Commutable;
1914    let Inst{3-0} = Rm;
1915    let Inst{15-12} = Rd;
1916    let Inst{19-16} = Rn;
1917  }
1918  def rsi : AsI1<opcod, (outs GPR:$Rd),
1919                (ins GPR:$Rn, so_reg_imm:$shift),
1920                DPSoRegImmFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
1921              [(set GPR:$Rd, CPSR, (opnode GPR:$Rn, so_reg_imm:$shift, CPSR))]>,
1922               Requires<[IsARM]>,
1923            Sched<[WriteALUsi, ReadALU]> {
1924    bits<4> Rd;
1925    bits<4> Rn;
1926    bits<12> shift;
1927    let Inst{25} = 0;
1928    let Inst{19-16} = Rn;
1929    let Inst{15-12} = Rd;
1930    let Inst{11-5} = shift{11-5};
1931    let Inst{4} = 0;
1932    let Inst{3-0} = shift{3-0};
1933  }
1934  def rsr : AsI1<opcod, (outs GPRnopc:$Rd),
1935                (ins GPRnopc:$Rn, so_reg_reg:$shift),
1936                DPSoRegRegFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
1937              [(set GPRnopc:$Rd, CPSR,
1938                    (opnode GPRnopc:$Rn, so_reg_reg:$shift, CPSR))]>,
1939               Requires<[IsARM]>,
1940            Sched<[WriteALUsr, ReadALUsr]> {
1941    bits<4> Rd;
1942    bits<4> Rn;
1943    bits<12> shift;
1944    let Inst{25} = 0;
1945    let Inst{19-16} = Rn;
1946    let Inst{15-12} = Rd;
1947    let Inst{11-8} = shift{11-8};
1948    let Inst{7} = 0;
1949    let Inst{6-5} = shift{6-5};
1950    let Inst{4} = 1;
1951    let Inst{3-0} = shift{3-0};
1952  }
1953  }
1954}
1955
1956/// AI1_rsc_irs - Define instructions and patterns for rsc
1957let TwoOperandAliasConstraint = "$Rn = $Rd" in
1958multiclass AI1_rsc_irs<bits<4> opcod, string opc, SDNode opnode> {
1959  let hasPostISelHook = 1, Defs = [CPSR], Uses = [CPSR] in {
1960  def ri : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, mod_imm:$imm),
1961                DPFrm, IIC_iALUi, opc, "\t$Rd, $Rn, $imm",
1962               [(set GPR:$Rd, CPSR, (opnode mod_imm:$imm, GPR:$Rn, CPSR))]>,
1963               Requires<[IsARM]>,
1964           Sched<[WriteALU, ReadALU]> {
1965    bits<4> Rd;
1966    bits<4> Rn;
1967    bits<12> imm;
1968    let Inst{25} = 1;
1969    let Inst{15-12} = Rd;
1970    let Inst{19-16} = Rn;
1971    let Inst{11-0} = imm;
1972  }
1973  def rr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
1974                DPFrm, IIC_iALUr, opc, "\t$Rd, $Rn, $Rm",
1975               [/* pattern left blank */]>,
1976           Sched<[WriteALU, ReadALU, ReadALU]> {
1977    bits<4> Rd;
1978    bits<4> Rn;
1979    bits<4> Rm;
1980    let Inst{11-4} = 0b00000000;
1981    let Inst{25} = 0;
1982    let Inst{3-0} = Rm;
1983    let Inst{15-12} = Rd;
1984    let Inst{19-16} = Rn;
1985  }
1986  def rsi : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_reg_imm:$shift),
1987                DPSoRegImmFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
1988              [(set GPR:$Rd, CPSR, (opnode so_reg_imm:$shift, GPR:$Rn, CPSR))]>,
1989               Requires<[IsARM]>,
1990            Sched<[WriteALUsi, ReadALU]> {
1991    bits<4> Rd;
1992    bits<4> Rn;
1993    bits<12> shift;
1994    let Inst{25} = 0;
1995    let Inst{19-16} = Rn;
1996    let Inst{15-12} = Rd;
1997    let Inst{11-5} = shift{11-5};
1998    let Inst{4} = 0;
1999    let Inst{3-0} = shift{3-0};
2000  }
2001  def rsr : AsI1<opcod, (outs GPR:$Rd), (ins GPR:$Rn, so_reg_reg:$shift),
2002                DPSoRegRegFrm, IIC_iALUsr, opc, "\t$Rd, $Rn, $shift",
2003              [(set GPR:$Rd, CPSR, (opnode so_reg_reg:$shift, GPR:$Rn, CPSR))]>,
2004               Requires<[IsARM]>,
2005            Sched<[WriteALUsr, ReadALUsr]> {
2006    bits<4> Rd;
2007    bits<4> Rn;
2008    bits<12> shift;
2009    let Inst{25} = 0;
2010    let Inst{19-16} = Rn;
2011    let Inst{15-12} = Rd;
2012    let Inst{11-8} = shift{11-8};
2013    let Inst{7} = 0;
2014    let Inst{6-5} = shift{6-5};
2015    let Inst{4} = 1;
2016    let Inst{3-0} = shift{3-0};
2017  }
2018  }
2019}
2020
2021let canFoldAsLoad = 1, isReMaterializable = 1 in {
2022multiclass AI_ldr1<bit isByte, string opc, InstrItinClass iii,
2023           InstrItinClass iir, PatFrag opnode> {
2024  // Note: We use the complex addrmode_imm12 rather than just an input
2025  // GPR and a constrained immediate so that we can use this to match
2026  // frame index references and avoid matching constant pool references.
2027  def i12: AI2ldst<0b010, 1, isByte, (outs GPR:$Rt), (ins addrmode_imm12:$addr),
2028                   AddrMode_i12, LdFrm, iii, opc, "\t$Rt, $addr",
2029                  [(set GPR:$Rt, (opnode addrmode_imm12:$addr))]> {
2030    bits<4>  Rt;
2031    bits<17> addr;
2032    let Inst{23}    = addr{12};     // U (add = ('U' == 1))
2033    let Inst{19-16} = addr{16-13};  // Rn
2034    let Inst{15-12} = Rt;
2035    let Inst{11-0}  = addr{11-0};   // imm12
2036  }
2037  def rs : AI2ldst<0b011, 1, isByte, (outs GPR:$Rt), (ins ldst_so_reg:$shift),
2038                  AddrModeNone, LdFrm, iir, opc, "\t$Rt, $shift",
2039                 [(set GPR:$Rt, (opnode ldst_so_reg:$shift))]> {
2040    bits<4>  Rt;
2041    bits<17> shift;
2042    let shift{4}    = 0;            // Inst{4} = 0
2043    let Inst{23}    = shift{12};    // U (add = ('U' == 1))
2044    let Inst{19-16} = shift{16-13}; // Rn
2045    let Inst{15-12} = Rt;
2046    let Inst{11-0}  = shift{11-0};
2047  }
2048}
2049}
2050
2051let canFoldAsLoad = 1, isReMaterializable = 1 in {
2052multiclass AI_ldr1nopc<bit isByte, string opc, InstrItinClass iii,
2053           InstrItinClass iir, PatFrag opnode> {
2054  // Note: We use the complex addrmode_imm12 rather than just an input
2055  // GPR and a constrained immediate so that we can use this to match
2056  // frame index references and avoid matching constant pool references.
2057  def i12: AI2ldst<0b010, 1, isByte, (outs GPRnopc:$Rt),
2058                   (ins addrmode_imm12:$addr),
2059                   AddrMode_i12, LdFrm, iii, opc, "\t$Rt, $addr",
2060                   [(set GPRnopc:$Rt, (opnode addrmode_imm12:$addr))]> {
2061    bits<4>  Rt;
2062    bits<17> addr;
2063    let Inst{23}    = addr{12};     // U (add = ('U' == 1))
2064    let Inst{19-16} = addr{16-13};  // Rn
2065    let Inst{15-12} = Rt;
2066    let Inst{11-0}  = addr{11-0};   // imm12
2067  }
2068  def rs : AI2ldst<0b011, 1, isByte, (outs GPRnopc:$Rt),
2069                   (ins ldst_so_reg:$shift),
2070                   AddrModeNone, LdFrm, iir, opc, "\t$Rt, $shift",
2071                   [(set GPRnopc:$Rt, (opnode ldst_so_reg:$shift))]> {
2072    bits<4>  Rt;
2073    bits<17> shift;
2074    let shift{4}    = 0;            // Inst{4} = 0
2075    let Inst{23}    = shift{12};    // U (add = ('U' == 1))
2076    let Inst{19-16} = shift{16-13}; // Rn
2077    let Inst{15-12} = Rt;
2078    let Inst{11-0}  = shift{11-0};
2079  }
2080}
2081}
2082
2083
2084multiclass AI_str1<bit isByte, string opc, InstrItinClass iii,
2085           InstrItinClass iir, PatFrag opnode> {
2086  // Note: We use the complex addrmode_imm12 rather than just an input
2087  // GPR and a constrained immediate so that we can use this to match
2088  // frame index references and avoid matching constant pool references.
2089  def i12 : AI2ldst<0b010, 0, isByte, (outs),
2090                   (ins GPR:$Rt, addrmode_imm12:$addr),
2091                   AddrMode_i12, StFrm, iii, opc, "\t$Rt, $addr",
2092                  [(opnode GPR:$Rt, addrmode_imm12:$addr)]> {
2093    bits<4> Rt;
2094    bits<17> addr;
2095    let Inst{23}    = addr{12};     // U (add = ('U' == 1))
2096    let Inst{19-16} = addr{16-13};  // Rn
2097    let Inst{15-12} = Rt;
2098    let Inst{11-0}  = addr{11-0};   // imm12
2099  }
2100  def rs : AI2ldst<0b011, 0, isByte, (outs), (ins GPR:$Rt, ldst_so_reg:$shift),
2101                  AddrModeNone, StFrm, iir, opc, "\t$Rt, $shift",
2102                 [(opnode GPR:$Rt, ldst_so_reg:$shift)]> {
2103    bits<4> Rt;
2104    bits<17> shift;
2105    let shift{4}    = 0;            // Inst{4} = 0
2106    let Inst{23}    = shift{12};    // U (add = ('U' == 1))
2107    let Inst{19-16} = shift{16-13}; // Rn
2108    let Inst{15-12} = Rt;
2109    let Inst{11-0}  = shift{11-0};
2110  }
2111}
2112
2113multiclass AI_str1nopc<bit isByte, string opc, InstrItinClass iii,
2114           InstrItinClass iir, PatFrag opnode> {
2115  // Note: We use the complex addrmode_imm12 rather than just an input
2116  // GPR and a constrained immediate so that we can use this to match
2117  // frame index references and avoid matching constant pool references.
2118  def i12 : AI2ldst<0b010, 0, isByte, (outs),
2119                   (ins GPRnopc:$Rt, addrmode_imm12:$addr),
2120                   AddrMode_i12, StFrm, iii, opc, "\t$Rt, $addr",
2121                  [(opnode GPRnopc:$Rt, addrmode_imm12:$addr)]> {
2122    bits<4> Rt;
2123    bits<17> addr;
2124    let Inst{23}    = addr{12};     // U (add = ('U' == 1))
2125    let Inst{19-16} = addr{16-13};  // Rn
2126    let Inst{15-12} = Rt;
2127    let Inst{11-0}  = addr{11-0};   // imm12
2128  }
2129  def rs : AI2ldst<0b011, 0, isByte, (outs),
2130                   (ins GPRnopc:$Rt, ldst_so_reg:$shift),
2131                   AddrModeNone, StFrm, iir, opc, "\t$Rt, $shift",
2132                   [(opnode GPRnopc:$Rt, ldst_so_reg:$shift)]> {
2133    bits<4> Rt;
2134    bits<17> shift;
2135    let shift{4}    = 0;            // Inst{4} = 0
2136    let Inst{23}    = shift{12};    // U (add = ('U' == 1))
2137    let Inst{19-16} = shift{16-13}; // Rn
2138    let Inst{15-12} = Rt;
2139    let Inst{11-0}  = shift{11-0};
2140  }
2141}
2142
2143
2144//===----------------------------------------------------------------------===//
2145// Instructions
2146//===----------------------------------------------------------------------===//
2147
2148//===----------------------------------------------------------------------===//
2149//  Miscellaneous Instructions.
2150//
2151
2152/// CONSTPOOL_ENTRY - This instruction represents a floating constant pool in
2153/// the function.  The first operand is the ID# for this instruction, the second
2154/// is the index into the MachineConstantPool that this is, the third is the
2155/// size in bytes of this constant pool entry.
2156let hasSideEffects = 0, isNotDuplicable = 1, hasNoSchedulingInfo = 1 in
2157def CONSTPOOL_ENTRY :
2158PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
2159                    i32imm:$size), NoItinerary, []>;
2160
2161/// A jumptable consisting of direct 32-bit addresses of the destination basic
2162/// blocks (either absolute, or relative to the start of the jump-table in PIC
2163/// mode). Used mostly in ARM and Thumb-1 modes.
2164def JUMPTABLE_ADDRS :
2165PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
2166                        i32imm:$size), NoItinerary, []>;
2167
2168/// A jumptable consisting of 32-bit jump instructions. Used for Thumb-2 tables
2169/// that cannot be optimised to use TBB or TBH.
2170def JUMPTABLE_INSTS :
2171PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
2172                        i32imm:$size), NoItinerary, []>;
2173
2174/// A jumptable consisting of 8-bit unsigned integers representing offsets from
2175/// a TBB instruction.
2176def JUMPTABLE_TBB :
2177PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
2178                        i32imm:$size), NoItinerary, []>;
2179
2180/// A jumptable consisting of 16-bit unsigned integers representing offsets from
2181/// a TBH instruction.
2182def JUMPTABLE_TBH :
2183PseudoInst<(outs), (ins cpinst_operand:$instid, cpinst_operand:$cpidx,
2184                        i32imm:$size), NoItinerary, []>;
2185
2186
2187// FIXME: Marking these as hasSideEffects is necessary to prevent machine DCE
2188// from removing one half of the matched pairs. That breaks PEI, which assumes
2189// these will always be in pairs, and asserts if it finds otherwise. Better way?
2190let Defs = [SP], Uses = [SP], hasSideEffects = 1 in {
2191def ADJCALLSTACKUP :
2192PseudoInst<(outs), (ins i32imm:$amt1, i32imm:$amt2, pred:$p), NoItinerary,
2193           [(ARMcallseq_end timm:$amt1, timm:$amt2)]>;
2194
2195def ADJCALLSTACKDOWN :
2196PseudoInst<(outs), (ins i32imm:$amt, i32imm:$amt2, pred:$p), NoItinerary,
2197           [(ARMcallseq_start timm:$amt, timm:$amt2)]>;
2198}
2199
2200def HINT : AI<(outs), (ins imm0_239:$imm), MiscFrm, NoItinerary,
2201              "hint", "\t$imm", [(int_arm_hint imm0_239:$imm)]>,
2202           Requires<[IsARM, HasV6]> {
2203  bits<8> imm;
2204  let Inst{27-8} = 0b00110010000011110000;
2205  let Inst{7-0} = imm;
2206  let DecoderMethod = "DecodeHINTInstruction";
2207}
2208
2209def : InstAlias<"nop$p", (HINT 0, pred:$p)>, Requires<[IsARM, HasV6K]>;
2210def : InstAlias<"yield$p", (HINT 1, pred:$p)>, Requires<[IsARM, HasV6K]>;
2211def : InstAlias<"wfe$p", (HINT 2, pred:$p)>, Requires<[IsARM, HasV6K]>;
2212def : InstAlias<"wfi$p", (HINT 3, pred:$p)>, Requires<[IsARM, HasV6K]>;
2213def : InstAlias<"sev$p", (HINT 4, pred:$p)>, Requires<[IsARM, HasV6K]>;
2214def : InstAlias<"sevl$p", (HINT 5, pred:$p)>, Requires<[IsARM, HasV8]>;
2215def : InstAlias<"esb$p", (HINT 16, pred:$p)>, Requires<[IsARM, HasRAS]>;
2216def : InstAlias<"csdb$p", (HINT 20, pred:$p)>, Requires<[IsARM, HasV6K]>;
2217
2218// Clear BHB instruction
2219def : InstAlias<"clrbhb$p", (HINT 22, pred:$p), 0>, Requires<[IsARM, HasV8]>;
2220def : InstAlias<"clrbhb$p", (HINT 22, pred:$p), 1>, Requires<[IsARM, HasV8, HasCLRBHB]>;
2221
2222def SEL : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), DPFrm, NoItinerary, "sel",
2223             "\t$Rd, $Rn, $Rm",
2224             [(set GPR:$Rd, (int_arm_sel GPR:$Rn, GPR:$Rm))]>,
2225             Requires<[IsARM, HasV6]> {
2226  bits<4> Rd;
2227  bits<4> Rn;
2228  bits<4> Rm;
2229  let Inst{3-0} = Rm;
2230  let Inst{15-12} = Rd;
2231  let Inst{19-16} = Rn;
2232  let Inst{27-20} = 0b01101000;
2233  let Inst{7-4} = 0b1011;
2234  let Inst{11-8} = 0b1111;
2235  let Unpredictable{11-8} = 0b1111;
2236}
2237
2238// The 16-bit operand $val can be used by a debugger to store more information
2239// about the breakpoint.
2240def BKPT : AInoP<(outs), (ins imm0_65535:$val), MiscFrm, NoItinerary,
2241                 "bkpt", "\t$val", []>, Requires<[IsARM]> {
2242  bits<16> val;
2243  let Inst{3-0} = val{3-0};
2244  let Inst{19-8} = val{15-4};
2245  let Inst{27-20} = 0b00010010;
2246  let Inst{31-28} = 0xe; // AL
2247  let Inst{7-4} = 0b0111;
2248}
2249// default immediate for breakpoint mnemonic
2250def : InstAlias<"bkpt", (BKPT 0), 0>, Requires<[IsARM]>;
2251
2252def HLT : AInoP<(outs), (ins imm0_65535:$val), MiscFrm, NoItinerary,
2253                 "hlt", "\t$val", []>, Requires<[IsARM, HasV8]> {
2254  bits<16> val;
2255  let Inst{3-0} = val{3-0};
2256  let Inst{19-8} = val{15-4};
2257  let Inst{27-20} = 0b00010000;
2258  let Inst{31-28} = 0xe; // AL
2259  let Inst{7-4} = 0b0111;
2260}
2261
2262// Change Processor State
2263// FIXME: We should use InstAlias to handle the optional operands.
2264class CPS<dag iops, string asm_ops>
2265  : AXI<(outs), iops, MiscFrm, NoItinerary, !strconcat("cps", asm_ops),
2266        []>, Requires<[IsARM]> {
2267  bits<2> imod;
2268  bits<3> iflags;
2269  bits<5> mode;
2270  bit M;
2271
2272  let Inst{31-28} = 0b1111;
2273  let Inst{27-20} = 0b00010000;
2274  let Inst{19-18} = imod;
2275  let Inst{17}    = M; // Enabled if mode is set;
2276  let Inst{16-9}  = 0b00000000;
2277  let Inst{8-6}   = iflags;
2278  let Inst{5}     = 0;
2279  let Inst{4-0}   = mode;
2280}
2281
2282let DecoderMethod = "DecodeCPSInstruction" in {
2283let M = 1 in
2284  def CPS3p : CPS<(ins imod_op:$imod, iflags_op:$iflags, imm0_31:$mode),
2285                  "$imod\t$iflags, $mode">;
2286let mode = 0, M = 0 in
2287  def CPS2p : CPS<(ins imod_op:$imod, iflags_op:$iflags), "$imod\t$iflags">;
2288
2289let imod = 0, iflags = 0, M = 1 in
2290  def CPS1p : CPS<(ins imm0_31:$mode), "\t$mode">;
2291}
2292
2293// Preload signals the memory system of possible future data/instruction access.
2294multiclass APreLoad<bits<1> read, bits<1> data, string opc> {
2295
2296  def i12 : AXIM<(outs), (ins addrmode_imm12:$addr), AddrMode_i12, MiscFrm,
2297                IIC_Preload, !strconcat(opc, "\t$addr"),
2298                [(ARMPreload addrmode_imm12:$addr, (i32 read), (i32 data))]>,
2299                Sched<[WritePreLd]> {
2300    bits<4> Rt;
2301    bits<17> addr;
2302    let Inst{31-26} = 0b111101;
2303    let Inst{25} = 0; // 0 for immediate form
2304    let Inst{24} = data;
2305    let Inst{23} = addr{12};        // U (add = ('U' == 1))
2306    let Inst{22} = read;
2307    let Inst{21-20} = 0b01;
2308    let Inst{19-16} = addr{16-13};  // Rn
2309    let Inst{15-12} = 0b1111;
2310    let Inst{11-0}  = addr{11-0};   // imm12
2311  }
2312
2313  def rs : AXI<(outs), (ins ldst_so_reg:$shift), MiscFrm, IIC_Preload,
2314               !strconcat(opc, "\t$shift"),
2315               [(ARMPreload ldst_so_reg:$shift, (i32 read), (i32 data))]>,
2316               Sched<[WritePreLd]> {
2317    bits<17> shift;
2318    let Inst{31-26} = 0b111101;
2319    let Inst{25} = 1; // 1 for register form
2320    let Inst{24} = data;
2321    let Inst{23} = shift{12};    // U (add = ('U' == 1))
2322    let Inst{22} = read;
2323    let Inst{21-20} = 0b01;
2324    let Inst{19-16} = shift{16-13}; // Rn
2325    let Inst{15-12} = 0b1111;
2326    let Inst{11-0}  = shift{11-0};
2327    let Inst{4} = 0;
2328  }
2329}
2330
2331defm PLD  : APreLoad<1, 1, "pld">,  Requires<[IsARM]>;
2332defm PLDW : APreLoad<0, 1, "pldw">, Requires<[IsARM,HasV7,HasMP]>;
2333defm PLI  : APreLoad<1, 0, "pli">,  Requires<[IsARM,HasV7]>;
2334
2335def SETEND : AXI<(outs), (ins setend_op:$end), MiscFrm, NoItinerary,
2336                 "setend\t$end", []>, Requires<[IsARM]>, Deprecated<HasV8Ops> {
2337  bits<1> end;
2338  let Inst{31-10} = 0b1111000100000001000000;
2339  let Inst{9} = end;
2340  let Inst{8-0} = 0;
2341}
2342
2343def DBG : AI<(outs), (ins imm0_15:$opt), MiscFrm, NoItinerary, "dbg", "\t$opt",
2344             [(int_arm_dbg imm0_15:$opt)]>, Requires<[IsARM, HasV7]> {
2345  bits<4> opt;
2346  let Inst{27-4} = 0b001100100000111100001111;
2347  let Inst{3-0} = opt;
2348}
2349
2350// A8.8.247  UDF - Undefined (Encoding A1)
2351def UDF : AInoP<(outs), (ins imm0_65535:$imm16), MiscFrm, NoItinerary,
2352                "udf", "\t$imm16", [(int_arm_undefined imm0_65535:$imm16)]> {
2353  bits<16> imm16;
2354  let Inst{31-28} = 0b1110; // AL
2355  let Inst{27-25} = 0b011;
2356  let Inst{24-20} = 0b11111;
2357  let Inst{19-8} = imm16{15-4};
2358  let Inst{7-4} = 0b1111;
2359  let Inst{3-0} = imm16{3-0};
2360}
2361
2362/*
2363 * A5.4 Permanently UNDEFINED instructions.
2364 *
2365 * For most targets use UDF #65006, for which the OS will generate SIGTRAP.
2366 * Other UDF encodings generate SIGILL.
2367 *
2368 * NaCl's OS instead chooses an ARM UDF encoding that's also a UDF in Thumb.
2369 * Encoding A1:
2370 *  1110 0111 1111 iiii iiii iiii 1111 iiii
2371 * Encoding T1:
2372 *  1101 1110 iiii iiii
2373 * It uses the following encoding:
2374 *  1110 0111 1111 1110 1101 1110 1111 0000
2375 *  - In ARM: UDF #60896;
2376 *  - In Thumb: UDF #254 followed by a branch-to-self.
2377 */
2378let isBarrier = 1, isTerminator = 1 in
2379def TRAPNaCl : AXI<(outs), (ins), MiscFrm, NoItinerary,
2380               "trap", [(trap)]>,
2381           Requires<[IsARM,UseNaClTrap]> {
2382  let Inst = 0xe7fedef0;
2383}
2384let isBarrier = 1, isTerminator = 1 in
2385def TRAP : AXI<(outs), (ins), MiscFrm, NoItinerary,
2386               "trap", [(trap)]>,
2387           Requires<[IsARM,DontUseNaClTrap]> {
2388  let Inst = 0xe7ffdefe;
2389}
2390
2391def : Pat<(debugtrap), (BKPT 0)>, Requires<[IsARM, HasV5T]>;
2392def : Pat<(debugtrap), (UDF 254)>, Requires<[IsARM, NoV5T]>;
2393
2394// Address computation and loads and stores in PIC mode.
2395let isNotDuplicable = 1 in {
2396def PICADD  : ARMPseudoInst<(outs GPR:$dst), (ins GPR:$a, pclabel:$cp, pred:$p),
2397                            4, IIC_iALUr,
2398                            [(set GPR:$dst, (ARMpic_add GPR:$a, imm:$cp))]>,
2399                            Sched<[WriteALU, ReadALU]>;
2400
2401let AddedComplexity = 10 in {
2402def PICLDR  : ARMPseudoInst<(outs GPR:$dst), (ins addrmodepc:$addr, pred:$p),
2403                            4, IIC_iLoad_r,
2404                            [(set GPR:$dst, (load addrmodepc:$addr))]>;
2405
2406def PICLDRH : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
2407                            4, IIC_iLoad_bh_r,
2408                            [(set GPR:$Rt, (zextloadi16 addrmodepc:$addr))]>;
2409
2410def PICLDRB : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
2411                            4, IIC_iLoad_bh_r,
2412                            [(set GPR:$Rt, (zextloadi8 addrmodepc:$addr))]>;
2413
2414def PICLDRSH : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
2415                            4, IIC_iLoad_bh_r,
2416                            [(set GPR:$Rt, (sextloadi16 addrmodepc:$addr))]>;
2417
2418def PICLDRSB : ARMPseudoInst<(outs GPR:$Rt), (ins addrmodepc:$addr, pred:$p),
2419                            4, IIC_iLoad_bh_r,
2420                            [(set GPR:$Rt, (sextloadi8 addrmodepc:$addr))]>;
2421}
2422let AddedComplexity = 10 in {
2423def PICSTR  : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
2424      4, IIC_iStore_r, [(store GPR:$src, addrmodepc:$addr)]>;
2425
2426def PICSTRH : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
2427      4, IIC_iStore_bh_r, [(truncstorei16 GPR:$src,
2428                                                   addrmodepc:$addr)]>;
2429
2430def PICSTRB : ARMPseudoInst<(outs), (ins GPR:$src, addrmodepc:$addr, pred:$p),
2431      4, IIC_iStore_bh_r, [(truncstorei8 GPR:$src, addrmodepc:$addr)]>;
2432}
2433} // isNotDuplicable = 1
2434
2435
2436// LEApcrel - Load a pc-relative address into a register without offending the
2437// assembler.
2438let hasSideEffects = 0, isReMaterializable = 1 in
2439// The 'adr' mnemonic encodes differently if the label is before or after
2440// the instruction. The {24-21} opcode bits are set by the fixup, as we don't
2441// know until then which form of the instruction will be used.
2442def ADR : AI1<{0,?,?,0}, (outs GPR:$Rd), (ins adrlabel:$label),
2443                 MiscFrm, IIC_iALUi, "adr", "\t$Rd, $label", []>,
2444                 Sched<[WriteALU, ReadALU]> {
2445  bits<4> Rd;
2446  bits<14> label;
2447  let Inst{27-25} = 0b001;
2448  let Inst{24} = 0;
2449  let Inst{23-22} = label{13-12};
2450  let Inst{21} = 0;
2451  let Inst{20} = 0;
2452  let Inst{19-16} = 0b1111;
2453  let Inst{15-12} = Rd;
2454  let Inst{11-0} = label{11-0};
2455}
2456
2457let hasSideEffects = 1 in {
2458def LEApcrel : ARMPseudoInst<(outs GPR:$Rd), (ins i32imm:$label, pred:$p),
2459                    4, IIC_iALUi, []>, Sched<[WriteALU, ReadALU]>;
2460
2461def LEApcrelJT : ARMPseudoInst<(outs GPR:$Rd),
2462                      (ins i32imm:$label, pred:$p),
2463                      4, IIC_iALUi, []>, Sched<[WriteALU, ReadALU]>;
2464}
2465
2466//===----------------------------------------------------------------------===//
2467//  Control Flow Instructions.
2468//
2469
2470let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
2471  // ARMV4T and above
2472  def BX_RET : AI<(outs), (ins), BrMiscFrm, IIC_Br,
2473                  "bx", "\tlr", [(ARMretglue)]>,
2474               Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> {
2475    let Inst{27-0}  = 0b0001001011111111111100011110;
2476  }
2477
2478  // ARMV4 only
2479  def MOVPCLR : AI<(outs), (ins), BrMiscFrm, IIC_Br,
2480                  "mov", "\tpc, lr", [(ARMretglue)]>,
2481               Requires<[IsARM, NoV4T]>, Sched<[WriteBr]> {
2482    let Inst{27-0} = 0b0001101000001111000000001110;
2483  }
2484
2485  // Exception return: N.b. doesn't set CPSR as far as we're concerned (it sets
2486  // the user-space one).
2487  def SUBS_PC_LR : ARMPseudoInst<(outs), (ins i32imm:$offset, pred:$p),
2488                                 4, IIC_Br,
2489                                 [(ARMintretglue imm:$offset)]>;
2490}
2491
2492// Indirect branches
2493let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
2494  // ARMV4T and above
2495  def BX : AXI<(outs), (ins GPR:$dst), BrMiscFrm, IIC_Br, "bx\t$dst",
2496                  [(brind GPR:$dst)]>,
2497              Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> {
2498    bits<4> dst;
2499    let Inst{31-4} = 0b1110000100101111111111110001;
2500    let Inst{3-0}  = dst;
2501  }
2502
2503  def BX_pred : AI<(outs), (ins GPR:$dst), BrMiscFrm, IIC_Br,
2504                  "bx", "\t$dst", [/* pattern left blank */]>,
2505              Requires<[IsARM, HasV4T]>, Sched<[WriteBr]> {
2506    bits<4> dst;
2507    let Inst{27-4} = 0b000100101111111111110001;
2508    let Inst{3-0}  = dst;
2509  }
2510}
2511
2512// SP is marked as a use to prevent stack-pointer assignments that appear
2513// immediately before calls from potentially appearing dead.
2514let isCall = 1,
2515  // FIXME:  Do we really need a non-predicated version? If so, it should
2516  // at least be a pseudo instruction expanding to the predicated version
2517  // at MC lowering time.
2518  Defs = [LR], Uses = [SP] in {
2519  def BL  : ABXI<0b1011, (outs), (ins arm_bl_target:$func),
2520                IIC_Br, "bl\t$func",
2521                [(ARMcall tglobaladdr:$func)]>,
2522            Requires<[IsARM]>, Sched<[WriteBrL]> {
2523    let Inst{31-28} = 0b1110;
2524    bits<24> func;
2525    let Inst{23-0} = func;
2526    let DecoderMethod = "DecodeBranchImmInstruction";
2527  }
2528
2529  def BL_pred : ABI<0b1011, (outs), (ins arm_bl_target:$func),
2530                   IIC_Br, "bl", "\t$func",
2531                   [(ARMcall_pred tglobaladdr:$func)]>,
2532                Requires<[IsARM]>, Sched<[WriteBrL]> {
2533    bits<24> func;
2534    let Inst{23-0} = func;
2535    let DecoderMethod = "DecodeBranchImmInstruction";
2536  }
2537
2538  // ARMv5T and above
2539  def BLX : AXI<(outs), (ins GPR:$func), BrMiscFrm, IIC_Br, "blx\t$func", []>,
2540            Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> {
2541    bits<4> func;
2542    let Inst{31-4} = 0b1110000100101111111111110011;
2543    let Inst{3-0}  = func;
2544  }
2545  def BLX_noip :  ARMPseudoExpand<(outs), (ins GPRnoip:$func),
2546                   4, IIC_Br, [], (BLX GPR:$func)>,
2547                  Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]>;
2548
2549
2550  def BLX_pred : AI<(outs), (ins GPR:$func), BrMiscFrm,
2551                    IIC_Br, "blx", "\t$func", []>,
2552                 Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> {
2553    bits<4> func;
2554    let Inst{27-4} = 0b000100101111111111110011;
2555    let Inst{3-0}  = func;
2556  }
2557  def BLX_pred_noip :  ARMPseudoExpand<(outs), (ins GPRnoip:$func),
2558                   4, IIC_Br, [],
2559                   (BLX_pred GPR:$func, (ops 14, zero_reg))>,
2560                   Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]>;
2561
2562
2563  // ARMv4T
2564  // Note: Restrict $func to the tGPR regclass to prevent it being in LR.
2565  def BX_CALL : ARMPseudoInst<(outs), (ins tGPR:$func),
2566                   8, IIC_Br, [(ARMcall_nolink tGPR:$func)]>,
2567                   Requires<[IsARM, HasV4T]>, Sched<[WriteBr]>;
2568
2569  // ARMv4
2570  def BMOVPCRX_CALL : ARMPseudoInst<(outs), (ins tGPR:$func),
2571                   8, IIC_Br, [(ARMcall_nolink tGPR:$func)]>,
2572                   Requires<[IsARM, NoV4T]>, Sched<[WriteBr]>;
2573
2574  // mov lr, pc; b if callee is marked noreturn to avoid confusing the
2575  // return stack predictor.
2576  def BMOVPCB_CALL : ARMPseudoInst<(outs), (ins arm_bl_target:$func),
2577                               8, IIC_Br, [(ARMcall_nolink tglobaladdr:$func)]>,
2578                      Requires<[IsARM]>, Sched<[WriteBr]>;
2579
2580  // push lr before the call
2581  def BL_PUSHLR : ARMPseudoInst<(outs), (ins GPRlr:$ra, arm_bl_target:$func),
2582                  4, IIC_Br,
2583                  []>,
2584             Requires<[IsARM]>, Sched<[WriteBr]>;
2585}
2586
2587def : ARMPat<(ARMcall GPR:$func), (BLX $func)>,
2588      Requires<[IsARM, HasV5T, NoSLSBLRMitigation]>;
2589def : ARMPat<(ARMcall GPRnoip:$func), (BLX_noip $func)>,
2590      Requires<[IsARM, HasV5T, SLSBLRMitigation]>;
2591def : ARMPat<(ARMcall_pred GPR:$func), (BLX_pred $func)>,
2592      Requires<[IsARM, HasV5T, NoSLSBLRMitigation]>;
2593def : ARMPat<(ARMcall_pred GPRnoip:$func), (BLX_pred_noip $func)>,
2594      Requires<[IsARM, HasV5T, SLSBLRMitigation]>;
2595
2596
2597let isBranch = 1, isTerminator = 1 in {
2598  // FIXME: should be able to write a pattern for ARMBrcond, but can't use
2599  // a two-value operand where a dag node expects two operands. :(
2600  def Bcc : ABI<0b1010, (outs), (ins arm_br_target:$target),
2601               IIC_Br, "b", "\t$target",
2602               [/*(ARMbrcond bb:$target, imm:$cc, CCR:$ccr)*/]>,
2603               Sched<[WriteBr]>  {
2604    bits<24> target;
2605    let Inst{23-0} = target;
2606    let DecoderMethod = "DecodeBranchImmInstruction";
2607  }
2608
2609  let isBarrier = 1 in {
2610    // B is "predicable" since it's just a Bcc with an 'always' condition.
2611    let isPredicable = 1 in
2612    // FIXME: We shouldn't need this pseudo at all. Just using Bcc directly
2613    // should be sufficient.
2614    // FIXME: Is B really a Barrier? That doesn't seem right.
2615    def B : ARMPseudoExpand<(outs), (ins arm_br_target:$target), 4, IIC_Br,
2616                [(br bb:$target)], (Bcc arm_br_target:$target,
2617                (ops 14, zero_reg))>,
2618                Sched<[WriteBr]>;
2619
2620    let Size = 4, isNotDuplicable = 1, isIndirectBranch = 1 in {
2621    def BR_JTr : ARMPseudoInst<(outs),
2622                      (ins GPR:$target, i32imm:$jt),
2623                      0, IIC_Br,
2624                      [(ARMbrjt GPR:$target, tjumptable:$jt)]>,
2625                      Sched<[WriteBr]>;
2626    def BR_JTm_i12 : ARMPseudoInst<(outs),
2627                     (ins addrmode_imm12:$target, i32imm:$jt),
2628                     0, IIC_Br,
2629                     [(ARMbrjt (i32 (load addrmode_imm12:$target)),
2630                               tjumptable:$jt)]>, Sched<[WriteBrTbl]>;
2631    def BR_JTm_rs : ARMPseudoInst<(outs),
2632                     (ins ldst_so_reg:$target, i32imm:$jt),
2633                     0, IIC_Br,
2634                     [(ARMbrjt (i32 (load ldst_so_reg:$target)),
2635                               tjumptable:$jt)]>, Sched<[WriteBrTbl]>;
2636    def BR_JTadd : ARMPseudoInst<(outs),
2637                   (ins GPR:$target, GPR:$idx, i32imm:$jt),
2638                   0, IIC_Br,
2639                   [(ARMbrjt (add GPR:$target, GPR:$idx), tjumptable:$jt)]>,
2640                   Sched<[WriteBrTbl]>;
2641    } // isNotDuplicable = 1, isIndirectBranch = 1
2642  } // isBarrier = 1
2643
2644}
2645
2646// BLX (immediate)
2647def BLXi : AXI<(outs), (ins arm_blx_target:$target), BrMiscFrm, NoItinerary,
2648               "blx\t$target", []>,
2649           Requires<[IsARM, HasV5T]>, Sched<[WriteBrL]> {
2650  let Inst{31-25} = 0b1111101;
2651  bits<25> target;
2652  let Inst{23-0} = target{24-1};
2653  let Inst{24} = target{0};
2654  let isCall = 1;
2655}
2656
2657// Branch and Exchange Jazelle
2658def BXJ : ABI<0b0001, (outs), (ins GPR:$func), NoItinerary, "bxj", "\t$func",
2659              [/* pattern left blank */]>, Sched<[WriteBr]> {
2660  bits<4> func;
2661  let Inst{23-20} = 0b0010;
2662  let Inst{19-8} = 0xfff;
2663  let Inst{7-4} = 0b0010;
2664  let Inst{3-0} = func;
2665  let isBranch = 1;
2666  let isIndirectBranch = 1;
2667}
2668
2669// Tail calls.
2670
2671let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in {
2672  def TCRETURNdi : PseudoInst<(outs), (ins i32imm:$dst, i32imm:$SPDiff), IIC_Br, []>,
2673                   Sched<[WriteBr]>;
2674
2675  def TCRETURNri : PseudoInst<(outs), (ins tcGPR:$dst, i32imm:$SPDiff), IIC_Br, []>,
2676                   Sched<[WriteBr]>;
2677
2678  def TAILJMPd : ARMPseudoExpand<(outs), (ins arm_br_target:$dst),
2679                                 4, IIC_Br, [],
2680                                 (Bcc arm_br_target:$dst, (ops 14, zero_reg))>,
2681                                 Requires<[IsARM]>, Sched<[WriteBr]>;
2682
2683  def TAILJMPr : ARMPseudoExpand<(outs), (ins tcGPR:$dst),
2684                                 4, IIC_Br, [],
2685                                 (BX GPR:$dst)>, Sched<[WriteBr]>,
2686                                 Requires<[IsARM, HasV4T]>;
2687}
2688
2689// Secure Monitor Call is a system instruction.
2690def SMC : ABI<0b0001, (outs), (ins imm0_15:$opt), NoItinerary, "smc", "\t$opt",
2691              []>, Requires<[IsARM, HasTrustZone]> {
2692  bits<4> opt;
2693  let Inst{23-4} = 0b01100000000000000111;
2694  let Inst{3-0} = opt;
2695}
2696def : MnemonicAlias<"smi", "smc">;
2697
2698// Supervisor Call (Software Interrupt)
2699let isCall = 1, Uses = [SP] in {
2700def SVC : ABI<0b1111, (outs), (ins imm24b:$svc), IIC_Br, "svc", "\t$svc", []>,
2701          Sched<[WriteBr]> {
2702  bits<24> svc;
2703  let Inst{23-0} = svc;
2704}
2705}
2706
2707// Store Return State
2708class SRSI<bit wb, string asm>
2709  : XI<(outs), (ins imm0_31:$mode), AddrModeNone, 4, IndexModeNone, BrFrm,
2710       NoItinerary, asm, "", []> {
2711  bits<5> mode;
2712  let Inst{31-28} = 0b1111;
2713  let Inst{27-25} = 0b100;
2714  let Inst{22} = 1;
2715  let Inst{21} = wb;
2716  let Inst{20} = 0;
2717  let Inst{19-16} = 0b1101;  // SP
2718  let Inst{15-5} = 0b00000101000;
2719  let Inst{4-0} = mode;
2720}
2721
2722def SRSDA : SRSI<0, "srsda\tsp, $mode"> {
2723  let Inst{24-23} = 0;
2724}
2725def SRSDA_UPD : SRSI<1, "srsda\tsp!, $mode"> {
2726  let Inst{24-23} = 0;
2727}
2728def SRSDB : SRSI<0, "srsdb\tsp, $mode"> {
2729  let Inst{24-23} = 0b10;
2730}
2731def SRSDB_UPD : SRSI<1, "srsdb\tsp!, $mode"> {
2732  let Inst{24-23} = 0b10;
2733}
2734def SRSIA : SRSI<0, "srsia\tsp, $mode"> {
2735  let Inst{24-23} = 0b01;
2736}
2737def SRSIA_UPD : SRSI<1, "srsia\tsp!, $mode"> {
2738  let Inst{24-23} = 0b01;
2739}
2740def SRSIB : SRSI<0, "srsib\tsp, $mode"> {
2741  let Inst{24-23} = 0b11;
2742}
2743def SRSIB_UPD : SRSI<1, "srsib\tsp!, $mode"> {
2744  let Inst{24-23} = 0b11;
2745}
2746
2747def : ARMInstAlias<"srsda $mode", (SRSDA imm0_31:$mode)>;
2748def : ARMInstAlias<"srsda $mode!", (SRSDA_UPD imm0_31:$mode)>;
2749
2750def : ARMInstAlias<"srsdb $mode", (SRSDB imm0_31:$mode)>;
2751def : ARMInstAlias<"srsdb $mode!", (SRSDB_UPD imm0_31:$mode)>;
2752
2753def : ARMInstAlias<"srsia $mode", (SRSIA imm0_31:$mode)>;
2754def : ARMInstAlias<"srsia $mode!", (SRSIA_UPD imm0_31:$mode)>;
2755
2756def : ARMInstAlias<"srsib $mode", (SRSIB imm0_31:$mode)>;
2757def : ARMInstAlias<"srsib $mode!", (SRSIB_UPD imm0_31:$mode)>;
2758
2759// Return From Exception
2760class RFEI<bit wb, string asm>
2761  : XI<(outs), (ins GPR:$Rn), AddrModeNone, 4, IndexModeNone, BrFrm,
2762       NoItinerary, asm, "", []> {
2763  bits<4> Rn;
2764  let Inst{31-28} = 0b1111;
2765  let Inst{27-25} = 0b100;
2766  let Inst{22} = 0;
2767  let Inst{21} = wb;
2768  let Inst{20} = 1;
2769  let Inst{19-16} = Rn;
2770  let Inst{15-0} = 0xa00;
2771}
2772
2773def RFEDA : RFEI<0, "rfeda\t$Rn"> {
2774  let Inst{24-23} = 0;
2775}
2776def RFEDA_UPD : RFEI<1, "rfeda\t$Rn!"> {
2777  let Inst{24-23} = 0;
2778}
2779def RFEDB : RFEI<0, "rfedb\t$Rn"> {
2780  let Inst{24-23} = 0b10;
2781}
2782def RFEDB_UPD : RFEI<1, "rfedb\t$Rn!"> {
2783  let Inst{24-23} = 0b10;
2784}
2785def RFEIA : RFEI<0, "rfeia\t$Rn"> {
2786  let Inst{24-23} = 0b01;
2787}
2788def RFEIA_UPD : RFEI<1, "rfeia\t$Rn!"> {
2789  let Inst{24-23} = 0b01;
2790}
2791def RFEIB : RFEI<0, "rfeib\t$Rn"> {
2792  let Inst{24-23} = 0b11;
2793}
2794def RFEIB_UPD : RFEI<1, "rfeib\t$Rn!"> {
2795  let Inst{24-23} = 0b11;
2796}
2797
2798// Hypervisor Call is a system instruction
2799let isCall = 1 in {
2800def HVC : AInoP< (outs), (ins imm0_65535:$imm), BrFrm, NoItinerary,
2801                "hvc", "\t$imm", []>,
2802          Requires<[IsARM, HasVirtualization]> {
2803  bits<16> imm;
2804
2805  // Even though HVC isn't predicable, it's encoding includes a condition field.
2806  // The instruction is undefined if the condition field is 0xf otherwise it is
2807  // unpredictable if it isn't condition AL (0xe).
2808  let Inst{31-28} = 0b1110;
2809  let Unpredictable{31-28} = 0b1111;
2810  let Inst{27-24} = 0b0001;
2811  let Inst{23-20} = 0b0100;
2812  let Inst{19-8} = imm{15-4};
2813  let Inst{7-4} = 0b0111;
2814  let Inst{3-0} = imm{3-0};
2815}
2816}
2817
2818// Return from exception in Hypervisor mode.
2819let isReturn = 1, isBarrier = 1, isTerminator = 1, Defs = [PC] in
2820def ERET : ABI<0b0001, (outs), (ins), NoItinerary, "eret", "", []>,
2821    Requires<[IsARM, HasVirtualization]> {
2822    let Inst{23-0} = 0b011000000000000001101110;
2823}
2824
2825//===----------------------------------------------------------------------===//
2826//  Load / Store Instructions.
2827//
2828
2829// Load
2830
2831
2832defm LDR  : AI_ldr1<0, "ldr", IIC_iLoad_r, IIC_iLoad_si, load>;
2833defm LDRB : AI_ldr1nopc<1, "ldrb", IIC_iLoad_bh_r, IIC_iLoad_bh_si,
2834                        zextloadi8>;
2835defm STR  : AI_str1<0, "str", IIC_iStore_r, IIC_iStore_si, store>;
2836defm STRB : AI_str1nopc<1, "strb", IIC_iStore_bh_r, IIC_iStore_bh_si,
2837                        truncstorei8>;
2838
2839// Special LDR for loads from non-pc-relative constpools.
2840let canFoldAsLoad = 1, mayLoad = 1, hasSideEffects = 0,
2841    isReMaterializable = 1, isCodeGenOnly = 1 in
2842def LDRcp : AI2ldst<0b010, 1, 0, (outs GPR:$Rt), (ins addrmode_imm12:$addr),
2843                 AddrMode_i12, LdFrm, IIC_iLoad_r, "ldr", "\t$Rt, $addr",
2844                 []> {
2845  bits<4> Rt;
2846  bits<17> addr;
2847  let Inst{23}    = addr{12};     // U (add = ('U' == 1))
2848  let Inst{19-16} = 0b1111;
2849  let Inst{15-12} = Rt;
2850  let Inst{11-0}  = addr{11-0};   // imm12
2851}
2852
2853// Loads with zero extension
2854def LDRH  : AI3ld<0b1011, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm,
2855                  IIC_iLoad_bh_r, "ldrh", "\t$Rt, $addr",
2856                  [(set GPR:$Rt, (zextloadi16 addrmode3:$addr))]>;
2857
2858// Loads with sign extension
2859def LDRSH : AI3ld<0b1111, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm,
2860                   IIC_iLoad_bh_r, "ldrsh", "\t$Rt, $addr",
2861                   [(set GPR:$Rt, (sextloadi16 addrmode3:$addr))]>;
2862
2863def LDRSB : AI3ld<0b1101, 1, (outs GPR:$Rt), (ins addrmode3:$addr), LdMiscFrm,
2864                   IIC_iLoad_bh_r, "ldrsb", "\t$Rt, $addr",
2865                   [(set GPR:$Rt, (sextloadi8 addrmode3:$addr))]>;
2866
2867let mayLoad = 1, hasSideEffects = 0, hasExtraDefRegAllocReq = 1 in {
2868  // Load doubleword
2869  def LDRD : AI3ld<0b1101, 0, (outs GPR:$Rt, GPR:$Rt2), (ins addrmode3:$addr),
2870                   LdMiscFrm, IIC_iLoad_d_r, "ldrd", "\t$Rt, $Rt2, $addr", []>,
2871             Requires<[IsARM, HasV5TE]>;
2872}
2873
2874let mayLoad = 1, hasSideEffects = 0, hasNoSchedulingInfo = 1 in {
2875def LOADDUAL : ARMPseudoInst<(outs GPRPairOp:$Rt), (ins addrmode3:$addr),
2876                             64, IIC_iLoad_d_r, []>,
2877               Requires<[IsARM, HasV5TE]> {
2878  let AM = AddrMode3;
2879}
2880}
2881
2882def LDA : AIldracq<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr),
2883                    NoItinerary, "lda", "\t$Rt, $addr", []>;
2884def LDAB : AIldracq<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr),
2885                    NoItinerary, "ldab", "\t$Rt, $addr", []>;
2886def LDAH : AIldracq<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr),
2887                    NoItinerary, "ldah", "\t$Rt, $addr", []>;
2888
2889// Indexed loads
2890multiclass AI2_ldridx<bit isByte, string opc,
2891                      InstrItinClass iii, InstrItinClass iir> {
2892  def _PRE_IMM  : AI2ldstidx<1, isByte, 1, (outs GPR:$Rt, GPR:$Rn_wb),
2893                      (ins addrmode_imm12_pre:$addr), IndexModePre, LdFrm, iii,
2894                      opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> {
2895    bits<17> addr;
2896    let Inst{25} = 0;
2897    let Inst{23} = addr{12};
2898    let Inst{19-16} = addr{16-13};
2899    let Inst{11-0} = addr{11-0};
2900    let DecoderMethod = "DecodeLDRPreImm";
2901  }
2902
2903  def _PRE_REG  : AI2ldstidx<1, isByte, 1, (outs GPR:$Rt, GPR:$Rn_wb),
2904                      (ins ldst_so_reg:$addr), IndexModePre, LdFrm, iir,
2905                      opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> {
2906    bits<17> addr;
2907    let Inst{25} = 1;
2908    let Inst{23} = addr{12};
2909    let Inst{19-16} = addr{16-13};
2910    let Inst{11-0} = addr{11-0};
2911    let Inst{4} = 0;
2912    let DecoderMethod = "DecodeLDRPreReg";
2913  }
2914
2915  def _POST_REG : AI2ldstidx<1, isByte, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2916                       (ins addr_offset_none:$addr, am2offset_reg:$offset),
2917                       IndexModePost, LdFrm, iir,
2918                       opc, "\t$Rt, $addr, $offset",
2919                       "$addr.base = $Rn_wb", []> {
2920     // {12}     isAdd
2921     // {11-0}   imm12/Rm
2922     bits<14> offset;
2923     bits<4> addr;
2924     let Inst{25} = 1;
2925     let Inst{23} = offset{12};
2926     let Inst{19-16} = addr;
2927     let Inst{11-0} = offset{11-0};
2928     let Inst{4} = 0;
2929
2930    let DecoderMethod = "DecodeAddrMode2IdxInstruction";
2931   }
2932
2933   def _POST_IMM : AI2ldstidx<1, isByte, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2934                       (ins addr_offset_none:$addr, am2offset_imm:$offset),
2935                      IndexModePost, LdFrm, iii,
2936                      opc, "\t$Rt, $addr, $offset",
2937                      "$addr.base = $Rn_wb", []> {
2938    // {12}     isAdd
2939    // {11-0}   imm12/Rm
2940    bits<14> offset;
2941    bits<4> addr;
2942    let Inst{25} = 0;
2943    let Inst{23} = offset{12};
2944    let Inst{19-16} = addr;
2945    let Inst{11-0} = offset{11-0};
2946
2947    let DecoderMethod = "DecodeAddrMode2IdxInstruction";
2948  }
2949
2950}
2951
2952let mayLoad = 1, hasSideEffects = 0 in {
2953// FIXME: for LDR_PRE_REG etc. the itinerary should be either IIC_iLoad_ru or
2954// IIC_iLoad_siu depending on whether it the offset register is shifted.
2955defm LDR  : AI2_ldridx<0, "ldr", IIC_iLoad_iu, IIC_iLoad_ru>;
2956defm LDRB : AI2_ldridx<1, "ldrb", IIC_iLoad_bh_iu, IIC_iLoad_bh_ru>;
2957}
2958
2959multiclass AI3_ldridx<bits<4> op, string opc, InstrItinClass itin> {
2960  def _PRE  : AI3ldstidx<op, 1, 1, (outs GPR:$Rt, GPR:$Rn_wb),
2961                        (ins addrmode3_pre:$addr), IndexModePre,
2962                        LdMiscFrm, itin,
2963                        opc, "\t$Rt, $addr!", "$addr.base = $Rn_wb", []> {
2964    bits<14> addr;
2965    let Inst{23}    = addr{8};      // U bit
2966    let Inst{22}    = addr{13};     // 1 == imm8, 0 == Rm
2967    let Inst{19-16} = addr{12-9};   // Rn
2968    let Inst{11-8}  = addr{7-4};    // imm7_4/zero
2969    let Inst{3-0}   = addr{3-0};    // imm3_0/Rm
2970    let DecoderMethod = "DecodeAddrMode3Instruction";
2971  }
2972  def _POST : AI3ldstidx<op, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
2973                        (ins addr_offset_none:$addr, am3offset:$offset),
2974                        IndexModePost, LdMiscFrm, itin,
2975                        opc, "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb",
2976                        []> {
2977    bits<10> offset;
2978    bits<4> addr;
2979    let Inst{23}    = offset{8};      // U bit
2980    let Inst{22}    = offset{9};      // 1 == imm8, 0 == Rm
2981    let Inst{19-16} = addr;
2982    let Inst{11-8}  = offset{7-4};    // imm7_4/zero
2983    let Inst{3-0}   = offset{3-0};    // imm3_0/Rm
2984    let DecoderMethod = "DecodeAddrMode3Instruction";
2985  }
2986}
2987
2988let mayLoad = 1, hasSideEffects = 0 in {
2989defm LDRH  : AI3_ldridx<0b1011, "ldrh", IIC_iLoad_bh_ru>;
2990defm LDRSH : AI3_ldridx<0b1111, "ldrsh", IIC_iLoad_bh_ru>;
2991defm LDRSB : AI3_ldridx<0b1101, "ldrsb", IIC_iLoad_bh_ru>;
2992let hasExtraDefRegAllocReq = 1 in {
2993def LDRD_PRE : AI3ldstidx<0b1101, 0, 1, (outs GPR:$Rt, GPR:$Rt2, GPR:$Rn_wb),
2994                          (ins addrmode3_pre:$addr), IndexModePre,
2995                          LdMiscFrm, IIC_iLoad_d_ru,
2996                          "ldrd", "\t$Rt, $Rt2, $addr!",
2997                          "$addr.base = $Rn_wb", []> {
2998  bits<14> addr;
2999  let Inst{23}    = addr{8};      // U bit
3000  let Inst{22}    = addr{13};     // 1 == imm8, 0 == Rm
3001  let Inst{19-16} = addr{12-9};   // Rn
3002  let Inst{11-8}  = addr{7-4};    // imm7_4/zero
3003  let Inst{3-0}   = addr{3-0};    // imm3_0/Rm
3004  let DecoderMethod = "DecodeAddrMode3Instruction";
3005}
3006def LDRD_POST: AI3ldstidx<0b1101, 0, 0, (outs GPR:$Rt, GPR:$Rt2, GPR:$Rn_wb),
3007                          (ins addr_offset_none:$addr, am3offset:$offset),
3008                          IndexModePost, LdMiscFrm, IIC_iLoad_d_ru,
3009                          "ldrd", "\t$Rt, $Rt2, $addr, $offset",
3010                          "$addr.base = $Rn_wb", []> {
3011  bits<10> offset;
3012  bits<4> addr;
3013  let Inst{23}    = offset{8};      // U bit
3014  let Inst{22}    = offset{9};      // 1 == imm8, 0 == Rm
3015  let Inst{19-16} = addr;
3016  let Inst{11-8}  = offset{7-4};    // imm7_4/zero
3017  let Inst{3-0}   = offset{3-0};    // imm3_0/Rm
3018  let DecoderMethod = "DecodeAddrMode3Instruction";
3019}
3020} // hasExtraDefRegAllocReq = 1
3021} // mayLoad = 1, hasSideEffects = 0
3022
3023// LDRT, LDRBT, LDRSBT, LDRHT, LDRSHT.
3024let mayLoad = 1, hasSideEffects = 0 in {
3025def LDRT_POST_REG : AI2ldstidx<1, 0, 0, (outs GPR:$Rt, GPR:$Rn_wb),
3026                    (ins addr_offset_none:$addr, am2offset_reg:$offset),
3027                    IndexModePost, LdFrm, IIC_iLoad_ru,
3028                    "ldrt", "\t$Rt, $addr, $offset",
3029                    "$addr.base = $Rn_wb", []> {
3030  // {12}     isAdd
3031  // {11-0}   imm12/Rm
3032  bits<14> offset;
3033  bits<4> addr;
3034  let Inst{25} = 1;
3035  let Inst{23} = offset{12};
3036  let Inst{21} = 1; // overwrite
3037  let Inst{19-16} = addr;
3038  let Inst{11-5} = offset{11-5};
3039  let Inst{4} = 0;
3040  let Inst{3-0} = offset{3-0};
3041  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3042}
3043
3044def LDRT_POST_IMM
3045  : AI2ldstidx<1, 0, 0, (outs GPR:$Rt, GPR:$Rn_wb),
3046               (ins addr_offset_none:$addr, am2offset_imm:$offset),
3047               IndexModePost, LdFrm, IIC_iLoad_ru,
3048               "ldrt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
3049  // {12}     isAdd
3050  // {11-0}   imm12/Rm
3051  bits<14> offset;
3052  bits<4> addr;
3053  let Inst{25} = 0;
3054  let Inst{23} = offset{12};
3055  let Inst{21} = 1; // overwrite
3056  let Inst{19-16} = addr;
3057  let Inst{11-0} = offset{11-0};
3058  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3059}
3060
3061def LDRBT_POST_REG : AI2ldstidx<1, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
3062                     (ins addr_offset_none:$addr, am2offset_reg:$offset),
3063                     IndexModePost, LdFrm, IIC_iLoad_bh_ru,
3064                     "ldrbt", "\t$Rt, $addr, $offset",
3065                     "$addr.base = $Rn_wb", []> {
3066  // {12}     isAdd
3067  // {11-0}   imm12/Rm
3068  bits<14> offset;
3069  bits<4> addr;
3070  let Inst{25} = 1;
3071  let Inst{23} = offset{12};
3072  let Inst{21} = 1; // overwrite
3073  let Inst{19-16} = addr;
3074  let Inst{11-5} = offset{11-5};
3075  let Inst{4} = 0;
3076  let Inst{3-0} = offset{3-0};
3077  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3078}
3079
3080def LDRBT_POST_IMM
3081  : AI2ldstidx<1, 1, 0, (outs GPR:$Rt, GPR:$Rn_wb),
3082               (ins addr_offset_none:$addr, am2offset_imm:$offset),
3083               IndexModePost, LdFrm, IIC_iLoad_bh_ru,
3084               "ldrbt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
3085  // {12}     isAdd
3086  // {11-0}   imm12/Rm
3087  bits<14> offset;
3088  bits<4> addr;
3089  let Inst{25} = 0;
3090  let Inst{23} = offset{12};
3091  let Inst{21} = 1; // overwrite
3092  let Inst{19-16} = addr;
3093  let Inst{11-0} = offset{11-0};
3094  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3095}
3096
3097multiclass AI3ldrT<bits<4> op, string opc> {
3098  def i : AI3ldstidxT<op, 1, (outs GPR:$Rt, GPR:$base_wb),
3099                      (ins addr_offset_none:$addr, postidx_imm8:$offset),
3100                      IndexModePost, LdMiscFrm, IIC_iLoad_bh_ru, opc,
3101                      "\t$Rt, $addr, $offset", "$addr.base = $base_wb", []> {
3102    bits<9> offset;
3103    let Inst{23} = offset{8};
3104    let Inst{22} = 1;
3105    let Inst{11-8} = offset{7-4};
3106    let Inst{3-0} = offset{3-0};
3107  }
3108  def r : AI3ldstidxT<op, 1, (outs GPRnopc:$Rt, GPRnopc:$base_wb),
3109                      (ins addr_offset_none:$addr, postidx_reg:$Rm),
3110                      IndexModePost, LdMiscFrm, IIC_iLoad_bh_ru, opc,
3111                      "\t$Rt, $addr, $Rm", "$addr.base = $base_wb", []> {
3112    bits<5> Rm;
3113    let Inst{23} = Rm{4};
3114    let Inst{22} = 0;
3115    let Inst{11-8} = 0;
3116    let Unpredictable{11-8} = 0b1111;
3117    let Inst{3-0} = Rm{3-0};
3118    let DecoderMethod = "DecodeLDR";
3119  }
3120
3121  def ii : ARMAsmPseudo<!strconcat(opc, "${p} $Rt, $addr"),
3122                        (ins addr_offset_none:$addr, pred:$p), (outs GPR:$Rt)>;
3123}
3124
3125defm LDRSBT : AI3ldrT<0b1101, "ldrsbt">;
3126defm LDRHT  : AI3ldrT<0b1011, "ldrht">;
3127defm LDRSHT : AI3ldrT<0b1111, "ldrsht">;
3128}
3129
3130def LDRT_POST
3131  : ARMAsmPseudo<"ldrt${q} $Rt, $addr", (ins addr_offset_none:$addr, pred:$q),
3132                 (outs GPR:$Rt)>;
3133
3134def LDRBT_POST
3135  : ARMAsmPseudo<"ldrbt${q} $Rt, $addr", (ins addr_offset_none:$addr, pred:$q),
3136                 (outs GPR:$Rt)>;
3137
3138// Pseudo instruction ldr Rt, =immediate
3139def LDRConstPool
3140  : ARMAsmPseudo<"ldr${q} $Rt, $immediate",
3141                 (ins const_pool_asm_imm:$immediate, pred:$q),
3142                 (outs GPR:$Rt)>;
3143
3144// Store
3145
3146// Stores with truncate
3147def STRH : AI3str<0b1011, (outs), (ins GPR:$Rt, addrmode3:$addr), StMiscFrm,
3148               IIC_iStore_bh_r, "strh", "\t$Rt, $addr",
3149               [(truncstorei16 GPR:$Rt, addrmode3:$addr)]>;
3150
3151// Store doubleword
3152let mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1 in {
3153  def STRD : AI3str<0b1111, (outs), (ins GPR:$Rt, GPR:$Rt2, addrmode3:$addr),
3154                    StMiscFrm, IIC_iStore_d_r, "strd", "\t$Rt, $Rt2, $addr", []>,
3155             Requires<[IsARM, HasV5TE]> {
3156    let Inst{21} = 0;
3157  }
3158}
3159
3160let mayStore = 1, hasSideEffects = 0, hasNoSchedulingInfo = 1 in {
3161def STOREDUAL : ARMPseudoInst<(outs), (ins GPRPairOp:$Rt, addrmode3:$addr),
3162                              64, IIC_iStore_d_r, []>,
3163                Requires<[IsARM, HasV5TE]> {
3164  let AM = AddrMode3;
3165}
3166}
3167
3168// Indexed stores
3169multiclass AI2_stridx<bit isByte, string opc,
3170                      InstrItinClass iii, InstrItinClass iir> {
3171  def _PRE_IMM : AI2ldstidx<0, isByte, 1, (outs GPR:$Rn_wb),
3172                            (ins GPR:$Rt, addrmode_imm12_pre:$addr), IndexModePre,
3173                            StFrm, iii,
3174                            opc, "\t$Rt, $addr!",
3175                            "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
3176    bits<17> addr;
3177    let Inst{25} = 0;
3178    let Inst{23}    = addr{12};     // U (add = ('U' == 1))
3179    let Inst{19-16} = addr{16-13};  // Rn
3180    let Inst{11-0}  = addr{11-0};   // imm12
3181    let DecoderMethod = "DecodeSTRPreImm";
3182  }
3183
3184  def _PRE_REG  : AI2ldstidx<0, isByte, 1, (outs GPR:$Rn_wb),
3185                      (ins GPR:$Rt, ldst_so_reg:$addr),
3186                      IndexModePre, StFrm, iir,
3187                      opc, "\t$Rt, $addr!",
3188                      "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
3189    bits<17> addr;
3190    let Inst{25} = 1;
3191    let Inst{23}    = addr{12};    // U (add = ('U' == 1))
3192    let Inst{19-16} = addr{16-13}; // Rn
3193    let Inst{11-0}  = addr{11-0};
3194    let Inst{4}     = 0;           // Inst{4} = 0
3195    let DecoderMethod = "DecodeSTRPreReg";
3196  }
3197  def _POST_REG : AI2ldstidx<0, isByte, 0, (outs GPR:$Rn_wb),
3198                (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset),
3199                IndexModePost, StFrm, iir,
3200                opc, "\t$Rt, $addr, $offset",
3201                "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
3202     // {12}     isAdd
3203     // {11-0}   imm12/Rm
3204     bits<14> offset;
3205     bits<4> addr;
3206     let Inst{25} = 1;
3207     let Inst{23} = offset{12};
3208     let Inst{19-16} = addr;
3209     let Inst{11-0} = offset{11-0};
3210     let Inst{4} = 0;
3211
3212    let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3213   }
3214
3215   def _POST_IMM : AI2ldstidx<0, isByte, 0, (outs GPR:$Rn_wb),
3216                (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset),
3217                IndexModePost, StFrm, iii,
3218                opc, "\t$Rt, $addr, $offset",
3219                "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
3220    // {12}     isAdd
3221    // {11-0}   imm12/Rm
3222    bits<14> offset;
3223    bits<4> addr;
3224    let Inst{25} = 0;
3225    let Inst{23} = offset{12};
3226    let Inst{19-16} = addr;
3227    let Inst{11-0} = offset{11-0};
3228
3229    let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3230  }
3231}
3232
3233let mayStore = 1, hasSideEffects = 0 in {
3234// FIXME: for STR_PRE_REG etc. the itinerary should be either IIC_iStore_ru or
3235// IIC_iStore_siu depending on whether it the offset register is shifted.
3236defm STR  : AI2_stridx<0, "str", IIC_iStore_iu, IIC_iStore_ru>;
3237defm STRB : AI2_stridx<1, "strb", IIC_iStore_bh_iu, IIC_iStore_bh_ru>;
3238}
3239
3240def : ARMPat<(post_store GPR:$Rt, addr_offset_none:$addr,
3241                         am2offset_reg:$offset),
3242             (STR_POST_REG GPR:$Rt, addr_offset_none:$addr,
3243                           am2offset_reg:$offset)>;
3244def : ARMPat<(post_store GPR:$Rt, addr_offset_none:$addr,
3245                         am2offset_imm:$offset),
3246             (STR_POST_IMM GPR:$Rt, addr_offset_none:$addr,
3247                           am2offset_imm:$offset)>;
3248def : ARMPat<(post_truncsti8 GPR:$Rt, addr_offset_none:$addr,
3249                             am2offset_reg:$offset),
3250             (STRB_POST_REG GPR:$Rt, addr_offset_none:$addr,
3251                            am2offset_reg:$offset)>;
3252def : ARMPat<(post_truncsti8 GPR:$Rt, addr_offset_none:$addr,
3253                             am2offset_imm:$offset),
3254             (STRB_POST_IMM GPR:$Rt, addr_offset_none:$addr,
3255                            am2offset_imm:$offset)>;
3256
3257// Pseudo-instructions for pattern matching the pre-indexed stores. We can't
3258// put the patterns on the instruction definitions directly as ISel wants
3259// the address base and offset to be separate operands, not a single
3260// complex operand like we represent the instructions themselves. The
3261// pseudos map between the two.
3262let usesCustomInserter = 1,
3263    Constraints = "$Rn = $Rn_wb,@earlyclobber $Rn_wb" in {
3264def STRi_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
3265               (ins GPR:$Rt, GPR:$Rn, am2offset_imm:$offset, pred:$p),
3266               4, IIC_iStore_ru,
3267            [(set GPR:$Rn_wb,
3268                  (pre_store GPR:$Rt, GPR:$Rn, am2offset_imm:$offset))]>;
3269def STRr_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
3270               (ins GPR:$Rt, GPR:$Rn, am2offset_reg:$offset, pred:$p),
3271               4, IIC_iStore_ru,
3272            [(set GPR:$Rn_wb,
3273                  (pre_store GPR:$Rt, GPR:$Rn, am2offset_reg:$offset))]>;
3274def STRBi_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
3275               (ins GPR:$Rt, GPR:$Rn, am2offset_imm:$offset, pred:$p),
3276               4, IIC_iStore_ru,
3277            [(set GPR:$Rn_wb,
3278                  (pre_truncsti8 GPR:$Rt, GPR:$Rn, am2offset_imm:$offset))]>;
3279def STRBr_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
3280               (ins GPR:$Rt, GPR:$Rn, am2offset_reg:$offset, pred:$p),
3281               4, IIC_iStore_ru,
3282            [(set GPR:$Rn_wb,
3283                  (pre_truncsti8 GPR:$Rt, GPR:$Rn, am2offset_reg:$offset))]>;
3284def STRH_preidx: ARMPseudoInst<(outs GPR:$Rn_wb),
3285               (ins GPR:$Rt, GPR:$Rn, am3offset:$offset, pred:$p),
3286               4, IIC_iStore_ru,
3287            [(set GPR:$Rn_wb,
3288                  (pre_truncsti16 GPR:$Rt, GPR:$Rn, am3offset:$offset))]>;
3289}
3290
3291
3292
3293def STRH_PRE  : AI3ldstidx<0b1011, 0, 1, (outs GPR:$Rn_wb),
3294                           (ins GPR:$Rt, addrmode3_pre:$addr), IndexModePre,
3295                           StMiscFrm, IIC_iStore_bh_ru,
3296                           "strh", "\t$Rt, $addr!",
3297                           "$addr.base = $Rn_wb,@earlyclobber $Rn_wb", []> {
3298  bits<14> addr;
3299  let Inst{23}    = addr{8};      // U bit
3300  let Inst{22}    = addr{13};     // 1 == imm8, 0 == Rm
3301  let Inst{19-16} = addr{12-9};   // Rn
3302  let Inst{11-8}  = addr{7-4};    // imm7_4/zero
3303  let Inst{3-0}   = addr{3-0};    // imm3_0/Rm
3304  let DecoderMethod = "DecodeAddrMode3Instruction";
3305}
3306
3307def STRH_POST : AI3ldstidx<0b1011, 0, 0, (outs GPR:$Rn_wb),
3308                       (ins GPR:$Rt, addr_offset_none:$addr, am3offset:$offset),
3309                       IndexModePost, StMiscFrm, IIC_iStore_bh_ru,
3310                       "strh", "\t$Rt, $addr, $offset",
3311                       "$addr.base = $Rn_wb,@earlyclobber $Rn_wb",
3312                   [(set GPR:$Rn_wb, (post_truncsti16 GPR:$Rt,
3313                                                      addr_offset_none:$addr,
3314                                                      am3offset:$offset))]> {
3315  bits<10> offset;
3316  bits<4> addr;
3317  let Inst{23}    = offset{8};      // U bit
3318  let Inst{22}    = offset{9};      // 1 == imm8, 0 == Rm
3319  let Inst{19-16} = addr;
3320  let Inst{11-8}  = offset{7-4};    // imm7_4/zero
3321  let Inst{3-0}   = offset{3-0};    // imm3_0/Rm
3322  let DecoderMethod = "DecodeAddrMode3Instruction";
3323}
3324
3325let mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1 in {
3326def STRD_PRE : AI3ldstidx<0b1111, 0, 1, (outs GPR:$Rn_wb),
3327                          (ins GPR:$Rt, GPR:$Rt2, addrmode3_pre:$addr),
3328                          IndexModePre, StMiscFrm, IIC_iStore_d_ru,
3329                          "strd", "\t$Rt, $Rt2, $addr!",
3330                          "$addr.base = $Rn_wb", []> {
3331  bits<14> addr;
3332  let Inst{23}    = addr{8};      // U bit
3333  let Inst{22}    = addr{13};     // 1 == imm8, 0 == Rm
3334  let Inst{19-16} = addr{12-9};   // Rn
3335  let Inst{11-8}  = addr{7-4};    // imm7_4/zero
3336  let Inst{3-0}   = addr{3-0};    // imm3_0/Rm
3337  let DecoderMethod = "DecodeAddrMode3Instruction";
3338}
3339
3340def STRD_POST: AI3ldstidx<0b1111, 0, 0, (outs GPR:$Rn_wb),
3341                          (ins GPR:$Rt, GPR:$Rt2, addr_offset_none:$addr,
3342                               am3offset:$offset),
3343                          IndexModePost, StMiscFrm, IIC_iStore_d_ru,
3344                          "strd", "\t$Rt, $Rt2, $addr, $offset",
3345                          "$addr.base = $Rn_wb", []> {
3346  bits<10> offset;
3347  bits<4> addr;
3348  let Inst{23}    = offset{8};      // U bit
3349  let Inst{22}    = offset{9};      // 1 == imm8, 0 == Rm
3350  let Inst{19-16} = addr;
3351  let Inst{11-8}  = offset{7-4};    // imm7_4/zero
3352  let Inst{3-0}   = offset{3-0};    // imm3_0/Rm
3353  let DecoderMethod = "DecodeAddrMode3Instruction";
3354}
3355} // mayStore = 1, hasSideEffects = 0, hasExtraSrcRegAllocReq = 1
3356
3357// STRT, STRBT, and STRHT
3358
3359def STRBT_POST_REG : AI2ldstidx<0, 1, 0, (outs GPR:$Rn_wb),
3360                   (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset),
3361                   IndexModePost, StFrm, IIC_iStore_bh_ru,
3362                   "strbt", "\t$Rt, $addr, $offset",
3363                   "$addr.base = $Rn_wb", []> {
3364  // {12}     isAdd
3365  // {11-0}   imm12/Rm
3366  bits<14> offset;
3367  bits<4> addr;
3368  let Inst{25} = 1;
3369  let Inst{23} = offset{12};
3370  let Inst{21} = 1; // overwrite
3371  let Inst{19-16} = addr;
3372  let Inst{11-5} = offset{11-5};
3373  let Inst{4} = 0;
3374  let Inst{3-0} = offset{3-0};
3375  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3376}
3377
3378def STRBT_POST_IMM
3379  : AI2ldstidx<0, 1, 0, (outs GPR:$Rn_wb),
3380               (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset),
3381               IndexModePost, StFrm, IIC_iStore_bh_ru,
3382               "strbt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
3383  // {12}     isAdd
3384  // {11-0}   imm12/Rm
3385  bits<14> offset;
3386  bits<4> addr;
3387  let Inst{25} = 0;
3388  let Inst{23} = offset{12};
3389  let Inst{21} = 1; // overwrite
3390  let Inst{19-16} = addr;
3391  let Inst{11-0} = offset{11-0};
3392  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3393}
3394
3395def STRBT_POST
3396  : ARMAsmPseudo<"strbt${q} $Rt, $addr",
3397                 (ins GPR:$Rt, addr_offset_none:$addr, pred:$q)>;
3398
3399let mayStore = 1, hasSideEffects = 0 in {
3400def STRT_POST_REG : AI2ldstidx<0, 0, 0, (outs GPR:$Rn_wb),
3401                   (ins GPR:$Rt, addr_offset_none:$addr, am2offset_reg:$offset),
3402                   IndexModePost, StFrm, IIC_iStore_ru,
3403                   "strt", "\t$Rt, $addr, $offset",
3404                   "$addr.base = $Rn_wb", []> {
3405  // {12}     isAdd
3406  // {11-0}   imm12/Rm
3407  bits<14> offset;
3408  bits<4> addr;
3409  let Inst{25} = 1;
3410  let Inst{23} = offset{12};
3411  let Inst{21} = 1; // overwrite
3412  let Inst{19-16} = addr;
3413  let Inst{11-5} = offset{11-5};
3414  let Inst{4} = 0;
3415  let Inst{3-0} = offset{3-0};
3416  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3417}
3418
3419def STRT_POST_IMM
3420  : AI2ldstidx<0, 0, 0, (outs GPR:$Rn_wb),
3421               (ins GPR:$Rt, addr_offset_none:$addr, am2offset_imm:$offset),
3422               IndexModePost, StFrm, IIC_iStore_ru,
3423               "strt", "\t$Rt, $addr, $offset", "$addr.base = $Rn_wb", []> {
3424  // {12}     isAdd
3425  // {11-0}   imm12/Rm
3426  bits<14> offset;
3427  bits<4> addr;
3428  let Inst{25} = 0;
3429  let Inst{23} = offset{12};
3430  let Inst{21} = 1; // overwrite
3431  let Inst{19-16} = addr;
3432  let Inst{11-0} = offset{11-0};
3433  let DecoderMethod = "DecodeAddrMode2IdxInstruction";
3434}
3435}
3436
3437def STRT_POST
3438  : ARMAsmPseudo<"strt${q} $Rt, $addr",
3439                 (ins GPR:$Rt, addr_offset_none:$addr, pred:$q)>;
3440
3441multiclass AI3strT<bits<4> op, string opc> {
3442  def i : AI3ldstidxT<op, 0, (outs GPR:$base_wb),
3443                    (ins GPR:$Rt, addr_offset_none:$addr, postidx_imm8:$offset),
3444                    IndexModePost, StMiscFrm, IIC_iStore_bh_ru, opc,
3445                    "\t$Rt, $addr, $offset", "$addr.base = $base_wb", []> {
3446    bits<9> offset;
3447    let Inst{23} = offset{8};
3448    let Inst{22} = 1;
3449    let Inst{11-8} = offset{7-4};
3450    let Inst{3-0} = offset{3-0};
3451  }
3452  def r : AI3ldstidxT<op, 0, (outs GPR:$base_wb),
3453                      (ins GPR:$Rt, addr_offset_none:$addr, postidx_reg:$Rm),
3454                      IndexModePost, StMiscFrm, IIC_iStore_bh_ru, opc,
3455                      "\t$Rt, $addr, $Rm", "$addr.base = $base_wb", []> {
3456    bits<5> Rm;
3457    let Inst{23} = Rm{4};
3458    let Inst{22} = 0;
3459    let Inst{11-8} = 0;
3460    let Inst{3-0} = Rm{3-0};
3461  }
3462}
3463
3464
3465defm STRHT : AI3strT<0b1011, "strht">;
3466
3467def STL : AIstrrel<0b00, (outs), (ins GPR:$Rt, addr_offset_none:$addr),
3468                   NoItinerary, "stl", "\t$Rt, $addr", []>;
3469def STLB : AIstrrel<0b10, (outs), (ins GPR:$Rt, addr_offset_none:$addr),
3470                    NoItinerary, "stlb", "\t$Rt, $addr", []>;
3471def STLH : AIstrrel<0b11, (outs), (ins GPR:$Rt, addr_offset_none:$addr),
3472                    NoItinerary, "stlh", "\t$Rt, $addr", []>;
3473
3474//===----------------------------------------------------------------------===//
3475//  Load / store multiple Instructions.
3476//
3477
3478multiclass arm_ldst_mult<string asm, string sfx, bit L_bit, bit P_bit, Format f,
3479                         InstrItinClass itin, InstrItinClass itin_upd> {
3480  // IA is the default, so no need for an explicit suffix on the
3481  // mnemonic here. Without it is the canonical spelling.
3482  def IA :
3483    AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3484         IndexModeNone, f, itin,
3485         !strconcat(asm, "${p}\t$Rn, $regs", sfx), "", []> {
3486    let Inst{24-23} = 0b01;       // Increment After
3487    let Inst{22}    = P_bit;
3488    let Inst{21}    = 0;          // No writeback
3489    let Inst{20}    = L_bit;
3490  }
3491  def IA_UPD :
3492    AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3493         IndexModeUpd, f, itin_upd,
3494         !strconcat(asm, "${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
3495    let Inst{24-23} = 0b01;       // Increment After
3496    let Inst{22}    = P_bit;
3497    let Inst{21}    = 1;          // Writeback
3498    let Inst{20}    = L_bit;
3499
3500    let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
3501  }
3502  def DA :
3503    AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3504         IndexModeNone, f, itin,
3505         !strconcat(asm, "da${p}\t$Rn, $regs", sfx), "", []> {
3506    let Inst{24-23} = 0b00;       // Decrement After
3507    let Inst{22}    = P_bit;
3508    let Inst{21}    = 0;          // No writeback
3509    let Inst{20}    = L_bit;
3510  }
3511  def DA_UPD :
3512    AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3513         IndexModeUpd, f, itin_upd,
3514         !strconcat(asm, "da${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
3515    let Inst{24-23} = 0b00;       // Decrement After
3516    let Inst{22}    = P_bit;
3517    let Inst{21}    = 1;          // Writeback
3518    let Inst{20}    = L_bit;
3519
3520    let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
3521  }
3522  def DB :
3523    AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3524         IndexModeNone, f, itin,
3525         !strconcat(asm, "db${p}\t$Rn, $regs", sfx), "", []> {
3526    let Inst{24-23} = 0b10;       // Decrement Before
3527    let Inst{22}    = P_bit;
3528    let Inst{21}    = 0;          // No writeback
3529    let Inst{20}    = L_bit;
3530  }
3531  def DB_UPD :
3532    AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3533         IndexModeUpd, f, itin_upd,
3534         !strconcat(asm, "db${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
3535    let Inst{24-23} = 0b10;       // Decrement Before
3536    let Inst{22}    = P_bit;
3537    let Inst{21}    = 1;          // Writeback
3538    let Inst{20}    = L_bit;
3539
3540    let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
3541  }
3542  def IB :
3543    AXI4<(outs), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3544         IndexModeNone, f, itin,
3545         !strconcat(asm, "ib${p}\t$Rn, $regs", sfx), "", []> {
3546    let Inst{24-23} = 0b11;       // Increment Before
3547    let Inst{22}    = P_bit;
3548    let Inst{21}    = 0;          // No writeback
3549    let Inst{20}    = L_bit;
3550  }
3551  def IB_UPD :
3552    AXI4<(outs GPR:$wb), (ins GPR:$Rn, pred:$p, reglist:$regs, variable_ops),
3553         IndexModeUpd, f, itin_upd,
3554         !strconcat(asm, "ib${p}\t$Rn!, $regs", sfx), "$Rn = $wb", []> {
3555    let Inst{24-23} = 0b11;       // Increment Before
3556    let Inst{22}    = P_bit;
3557    let Inst{21}    = 1;          // Writeback
3558    let Inst{20}    = L_bit;
3559
3560    let DecoderMethod = "DecodeMemMultipleWritebackInstruction";
3561  }
3562}
3563
3564let hasSideEffects = 0 in {
3565
3566let mayLoad = 1, hasExtraDefRegAllocReq = 1, variadicOpsAreDefs = 1 in
3567defm LDM : arm_ldst_mult<"ldm", "", 1, 0, LdStMulFrm, IIC_iLoad_m,
3568                         IIC_iLoad_mu>, ComplexDeprecationPredicate<"ARMLoad">;
3569
3570let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
3571defm STM : arm_ldst_mult<"stm", "", 0, 0, LdStMulFrm, IIC_iStore_m,
3572                         IIC_iStore_mu>,
3573           ComplexDeprecationPredicate<"ARMStore">;
3574
3575} // hasSideEffects
3576
3577// FIXME: remove when we have a way to marking a MI with these properties.
3578// FIXME: Should pc be an implicit operand like PICADD, etc?
3579let isReturn = 1, isTerminator = 1, isBarrier = 1, mayLoad = 1,
3580    hasExtraDefRegAllocReq = 1, isCodeGenOnly = 1 in
3581def LDMIA_RET : ARMPseudoExpand<(outs GPR:$wb), (ins GPR:$Rn, pred:$p,
3582                                                 reglist:$regs, variable_ops),
3583                     4, IIC_iLoad_mBr, [],
3584                     (LDMIA_UPD GPR:$wb, GPR:$Rn, pred:$p, reglist:$regs)>,
3585      RegConstraint<"$Rn = $wb">;
3586
3587let mayLoad = 1, hasExtraDefRegAllocReq = 1 in
3588defm sysLDM : arm_ldst_mult<"ldm", " ^", 1, 1, LdStMulFrm, IIC_iLoad_m,
3589                               IIC_iLoad_mu>;
3590
3591let mayStore = 1, hasExtraSrcRegAllocReq = 1 in
3592defm sysSTM : arm_ldst_mult<"stm", " ^", 0, 1, LdStMulFrm, IIC_iStore_m,
3593                               IIC_iStore_mu>;
3594
3595
3596
3597//===----------------------------------------------------------------------===//
3598//  Move Instructions.
3599//
3600
3601let hasSideEffects = 0, isMoveReg = 1 in
3602def MOVr : AsI1<0b1101, (outs GPR:$Rd), (ins GPR:$Rm), DPFrm, IIC_iMOVr,
3603                "mov", "\t$Rd, $Rm", []>, UnaryDP, Sched<[WriteALU]> {
3604  bits<4> Rd;
3605  bits<4> Rm;
3606
3607  let Inst{19-16} = 0b0000;
3608  let Inst{11-4} = 0b00000000;
3609  let Inst{25} = 0;
3610  let Inst{3-0} = Rm;
3611  let Inst{15-12} = Rd;
3612}
3613
3614// A version for the smaller set of tail call registers.
3615let hasSideEffects = 0 in
3616def MOVr_TC : AsI1<0b1101, (outs tcGPR:$Rd), (ins tcGPR:$Rm), DPFrm,
3617                IIC_iMOVr, "mov", "\t$Rd, $Rm", []>, UnaryDP, Sched<[WriteALU]> {
3618  bits<4> Rd;
3619  bits<4> Rm;
3620
3621  let Inst{11-4} = 0b00000000;
3622  let Inst{25} = 0;
3623  let Inst{3-0} = Rm;
3624  let Inst{15-12} = Rd;
3625}
3626
3627def MOVsr : AsI1<0b1101, (outs GPRnopc:$Rd), (ins shift_so_reg_reg:$src),
3628                DPSoRegRegFrm, IIC_iMOVsr,
3629                "mov", "\t$Rd, $src",
3630                [(set GPRnopc:$Rd, shift_so_reg_reg:$src)]>, UnaryDP,
3631                Sched<[WriteALU]> {
3632  bits<4> Rd;
3633  bits<12> src;
3634  let Inst{15-12} = Rd;
3635  let Inst{19-16} = 0b0000;
3636  let Inst{11-8} = src{11-8};
3637  let Inst{7} = 0;
3638  let Inst{6-5} = src{6-5};
3639  let Inst{4} = 1;
3640  let Inst{3-0} = src{3-0};
3641  let Inst{25} = 0;
3642}
3643
3644def MOVsi : AsI1<0b1101, (outs GPR:$Rd), (ins shift_so_reg_imm:$src),
3645                DPSoRegImmFrm, IIC_iMOVsr,
3646                "mov", "\t$Rd, $src", [(set GPR:$Rd, shift_so_reg_imm:$src)]>,
3647                UnaryDP, Sched<[WriteALU]> {
3648  bits<4> Rd;
3649  bits<12> src;
3650  let Inst{15-12} = Rd;
3651  let Inst{19-16} = 0b0000;
3652  let Inst{11-5} = src{11-5};
3653  let Inst{4} = 0;
3654  let Inst{3-0} = src{3-0};
3655  let Inst{25} = 0;
3656}
3657
3658let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
3659def MOVi : AsI1<0b1101, (outs GPR:$Rd), (ins mod_imm:$imm), DPFrm, IIC_iMOVi,
3660                "mov", "\t$Rd, $imm", [(set GPR:$Rd, mod_imm:$imm)]>, UnaryDP,
3661                Sched<[WriteALU]> {
3662  bits<4> Rd;
3663  bits<12> imm;
3664  let Inst{25} = 1;
3665  let Inst{15-12} = Rd;
3666  let Inst{19-16} = 0b0000;
3667  let Inst{11-0} = imm;
3668}
3669
3670let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
3671def MOVi16 : AI1<0b1000, (outs GPR:$Rd), (ins imm0_65535_expr:$imm),
3672                 DPFrm, IIC_iMOVi,
3673                 "movw", "\t$Rd, $imm",
3674                 [(set GPR:$Rd, imm0_65535:$imm)]>,
3675                 Requires<[IsARM, HasV6T2]>, UnaryDP, Sched<[WriteALU]> {
3676  bits<4> Rd;
3677  bits<16> imm;
3678  let Inst{15-12} = Rd;
3679  let Inst{11-0}  = imm{11-0};
3680  let Inst{19-16} = imm{15-12};
3681  let Inst{20} = 0;
3682  let Inst{25} = 1;
3683  let DecoderMethod = "DecodeArmMOVTWInstruction";
3684}
3685
3686def : InstAlias<"mov${p} $Rd, $imm",
3687                (MOVi16 GPR:$Rd, imm0_65535_expr:$imm, pred:$p), 0>,
3688        Requires<[IsARM, HasV6T2]>;
3689
3690// This gets lowered to a single 4-byte instructions
3691let Size = 4 in
3692def MOVi16_ga_pcrel : PseudoInst<(outs GPR:$Rd),
3693                                (ins i32imm:$addr, pclabel:$id), IIC_iMOVi, []>,
3694                      Sched<[WriteALU]>;
3695
3696let Constraints = "$src = $Rd" in {
3697def MOVTi16 : AI1<0b1010, (outs GPRnopc:$Rd),
3698                  (ins GPR:$src, imm0_65535_expr:$imm),
3699                  DPFrm, IIC_iMOVi,
3700                  "movt", "\t$Rd, $imm",
3701                  [(set GPRnopc:$Rd,
3702                        (or (and GPR:$src, 0xffff),
3703                            lo16AllZero:$imm))]>, UnaryDP,
3704                  Requires<[IsARM, HasV6T2]>, Sched<[WriteALU]> {
3705  bits<4> Rd;
3706  bits<16> imm;
3707  let Inst{15-12} = Rd;
3708  let Inst{11-0}  = imm{11-0};
3709  let Inst{19-16} = imm{15-12};
3710  let Inst{20} = 0;
3711  let Inst{25} = 1;
3712  let DecoderMethod = "DecodeArmMOVTWInstruction";
3713}
3714
3715// This gets lowered to a single 4-byte instructions
3716let Size = 4 in
3717def MOVTi16_ga_pcrel : PseudoInst<(outs GPR:$Rd),
3718                      (ins GPR:$src, i32imm:$addr, pclabel:$id), IIC_iMOVi, []>,
3719                      Sched<[WriteALU]>;
3720
3721} // Constraints
3722
3723def : ARMPat<(or GPR:$src, 0xffff0000), (MOVTi16 GPR:$src, 0xffff)>,
3724      Requires<[IsARM, HasV6T2]>;
3725
3726let Uses = [CPSR] in
3727def RRX: PseudoInst<(outs GPR:$Rd), (ins GPR:$Rm), IIC_iMOVsi,
3728                    [(set GPR:$Rd, (ARMrrx GPR:$Rm))]>, UnaryDP,
3729                    Requires<[IsARM]>, Sched<[WriteALU]>;
3730
3731// These aren't really mov instructions, but we have to define them this way
3732// due to glue operands.
3733
3734let Defs = [CPSR] in {
3735def MOVsrl_glue : PseudoInst<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi,
3736                      [(set GPR:$dst, (ARMsrl_glue GPR:$src))]>, UnaryDP,
3737                      Sched<[WriteALU]>, Requires<[IsARM]>;
3738def MOVsra_glue : PseudoInst<(outs GPR:$dst), (ins GPR:$src), IIC_iMOVsi,
3739                      [(set GPR:$dst, (ARMsra_glue GPR:$src))]>, UnaryDP,
3740                      Sched<[WriteALU]>, Requires<[IsARM]>;
3741}
3742
3743//===----------------------------------------------------------------------===//
3744//  Extend Instructions.
3745//
3746
3747// Sign extenders
3748
3749def SXTB  : AI_ext_rrot<0b01101010,
3750                         "sxtb", UnOpFrag<(sext_inreg node:$Src, i8)>>;
3751def SXTH  : AI_ext_rrot<0b01101011,
3752                         "sxth", UnOpFrag<(sext_inreg node:$Src, i16)>>;
3753
3754def SXTAB : AI_exta_rrot<0b01101010,
3755               "sxtab", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS, i8))>>;
3756def SXTAH : AI_exta_rrot<0b01101011,
3757               "sxtah", BinOpFrag<(add node:$LHS, (sext_inreg node:$RHS,i16))>>;
3758
3759def : ARMV6Pat<(add rGPR:$Rn, (sext_inreg (srl rGPR:$Rm, rot_imm:$rot), i8)),
3760               (SXTAB rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>;
3761def : ARMV6Pat<(add rGPR:$Rn, (sext_inreg (srl rGPR:$Rm, imm8_or_16:$rot),
3762                                          i16)),
3763               (SXTAH rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>;
3764
3765def SXTB16  : AI_ext_rrot_np<0b01101000, "sxtb16">;
3766def : ARMV6Pat<(int_arm_sxtb16 GPR:$Src),
3767               (SXTB16 GPR:$Src, 0)>;
3768def : ARMV6Pat<(int_arm_sxtb16 (rotr GPR:$Src, rot_imm:$rot)),
3769               (SXTB16 GPR:$Src, rot_imm:$rot)>;
3770
3771def SXTAB16 : AI_exta_rrot_np<0b01101000, "sxtab16">;
3772def : ARMV6Pat<(int_arm_sxtab16 GPR:$LHS, GPR:$RHS),
3773               (SXTAB16 GPR:$LHS, GPR:$RHS, 0)>;
3774def : ARMV6Pat<(int_arm_sxtab16 GPR:$LHS, (rotr GPR:$RHS, rot_imm:$rot)),
3775               (SXTAB16 GPR:$LHS, GPR:$RHS, rot_imm:$rot)>;
3776
3777// Zero extenders
3778
3779let AddedComplexity = 16 in {
3780def UXTB   : AI_ext_rrot<0b01101110,
3781                          "uxtb"  , UnOpFrag<(and node:$Src, 0x000000FF)>>;
3782def UXTH   : AI_ext_rrot<0b01101111,
3783                          "uxth"  , UnOpFrag<(and node:$Src, 0x0000FFFF)>>;
3784def UXTB16 : AI_ext_rrot<0b01101100,
3785                          "uxtb16", UnOpFrag<(and node:$Src, 0x00FF00FF)>>;
3786
3787// FIXME: This pattern incorrectly assumes the shl operator is a rotate.
3788//        The transformation should probably be done as a combiner action
3789//        instead so we can include a check for masking back in the upper
3790//        eight bits of the source into the lower eight bits of the result.
3791//def : ARMV6Pat<(and (shl GPR:$Src, (i32 8)), 0xFF00FF),
3792//               (UXTB16r_rot GPR:$Src, 3)>;
3793def : ARMV6Pat<(and (srl GPR:$Src, (i32 8)), 0xFF00FF),
3794               (UXTB16 GPR:$Src, 1)>;
3795def : ARMV6Pat<(int_arm_uxtb16 GPR:$Src),
3796               (UXTB16 GPR:$Src, 0)>;
3797def : ARMV6Pat<(int_arm_uxtb16 (rotr GPR:$Src, rot_imm:$rot)),
3798               (UXTB16 GPR:$Src, rot_imm:$rot)>;
3799
3800def UXTAB : AI_exta_rrot<0b01101110, "uxtab",
3801                        BinOpFrag<(add node:$LHS, (and node:$RHS, 0x00FF))>>;
3802def UXTAH : AI_exta_rrot<0b01101111, "uxtah",
3803                        BinOpFrag<(add node:$LHS, (and node:$RHS, 0xFFFF))>>;
3804
3805def : ARMV6Pat<(add rGPR:$Rn, (and (srl rGPR:$Rm, rot_imm:$rot), 0xFF)),
3806               (UXTAB rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>;
3807def : ARMV6Pat<(add rGPR:$Rn, (and (srl rGPR:$Rm, imm8_or_16:$rot), 0xFFFF)),
3808               (UXTAH rGPR:$Rn, rGPR:$Rm, rot_imm:$rot)>;
3809}
3810
3811// This isn't safe in general, the add is two 16-bit units, not a 32-bit add.
3812def UXTAB16 : AI_exta_rrot_np<0b01101100, "uxtab16">;
3813def : ARMV6Pat<(int_arm_uxtab16 GPR:$LHS, GPR:$RHS),
3814               (UXTAB16 GPR:$LHS, GPR:$RHS, 0)>;
3815def : ARMV6Pat<(int_arm_uxtab16 GPR:$LHS, (rotr GPR:$RHS, rot_imm:$rot)),
3816               (UXTAB16 GPR:$LHS, GPR:$RHS, rot_imm:$rot)>;
3817
3818
3819def SBFX  : I<(outs GPRnopc:$Rd),
3820              (ins GPRnopc:$Rn, imm0_31:$lsb, imm1_32:$width),
3821               AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
3822               "sbfx", "\t$Rd, $Rn, $lsb, $width", "", []>,
3823               Requires<[IsARM, HasV6T2]> {
3824  bits<4> Rd;
3825  bits<4> Rn;
3826  bits<5> lsb;
3827  bits<5> width;
3828  let Inst{27-21} = 0b0111101;
3829  let Inst{6-4}   = 0b101;
3830  let Inst{20-16} = width;
3831  let Inst{15-12} = Rd;
3832  let Inst{11-7}  = lsb;
3833  let Inst{3-0}   = Rn;
3834}
3835
3836def UBFX  : I<(outs GPRnopc:$Rd),
3837              (ins GPRnopc:$Rn, imm0_31:$lsb, imm1_32:$width),
3838               AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
3839               "ubfx", "\t$Rd, $Rn, $lsb, $width", "", []>,
3840               Requires<[IsARM, HasV6T2]> {
3841  bits<4> Rd;
3842  bits<4> Rn;
3843  bits<5> lsb;
3844  bits<5> width;
3845  let Inst{27-21} = 0b0111111;
3846  let Inst{6-4}   = 0b101;
3847  let Inst{20-16} = width;
3848  let Inst{15-12} = Rd;
3849  let Inst{11-7}  = lsb;
3850  let Inst{3-0}   = Rn;
3851}
3852
3853//===----------------------------------------------------------------------===//
3854//  Arithmetic Instructions.
3855//
3856
3857let isAdd = 1 in
3858defm ADD  : AsI1_bin_irs<0b0100, "add",
3859                         IIC_iALUi, IIC_iALUr, IIC_iALUsr, add, 1>;
3860defm SUB  : AsI1_bin_irs<0b0010, "sub",
3861                         IIC_iALUi, IIC_iALUr, IIC_iALUsr, sub>;
3862
3863// ADD and SUB with 's' bit set.
3864//
3865// Currently, ADDS/SUBS are pseudo opcodes that exist only in the
3866// selection DAG. They are "lowered" to real ADD/SUB opcodes by
3867// AdjustInstrPostInstrSelection where we determine whether or not to
3868// set the "s" bit based on CPSR liveness.
3869//
3870// FIXME: Eliminate ADDS/SUBS pseudo opcodes after adding tablegen
3871// support for an optional CPSR definition that corresponds to the DAG
3872// node's second value. We can then eliminate the implicit def of CPSR.
3873let isAdd = 1 in
3874defm ADDS : AsI1_bin_s_irs<IIC_iALUi, IIC_iALUr, IIC_iALUsr, ARMaddc, 1>;
3875defm SUBS : AsI1_bin_s_irs<IIC_iALUi, IIC_iALUr, IIC_iALUsr, ARMsubc>;
3876
3877def : ARMPat<(ARMsubs GPR:$Rn, mod_imm:$imm), (SUBSri $Rn, mod_imm:$imm)>;
3878def : ARMPat<(ARMsubs GPR:$Rn, GPR:$Rm), (SUBSrr $Rn, $Rm)>;
3879def : ARMPat<(ARMsubs GPR:$Rn, so_reg_imm:$shift),
3880             (SUBSrsi $Rn, so_reg_imm:$shift)>;
3881def : ARMPat<(ARMsubs GPR:$Rn, so_reg_reg:$shift),
3882             (SUBSrsr $Rn, so_reg_reg:$shift)>;
3883
3884
3885let isAdd = 1 in
3886defm ADC : AI1_adde_sube_irs<0b0101, "adc", ARMadde, 1>;
3887defm SBC : AI1_adde_sube_irs<0b0110, "sbc", ARMsube>;
3888
3889defm RSB  : AsI1_rbin_irs<0b0011, "rsb",
3890                          IIC_iALUi, IIC_iALUr, IIC_iALUsr,
3891                          sub>;
3892
3893// FIXME: Eliminate them if we can write def : Pat patterns which defines
3894// CPSR and the implicit def of CPSR is not needed.
3895defm RSBS : AsI1_rbin_s_is<IIC_iALUi, IIC_iALUsr, ARMsubc>;
3896
3897defm RSC : AI1_rsc_irs<0b0111, "rsc", ARMsube>;
3898
3899// (sub X, imm) gets canonicalized to (add X, -imm).  Match this form.
3900// The assume-no-carry-in form uses the negation of the input since add/sub
3901// assume opposite meanings of the carry flag (i.e., carry == !borrow).
3902// See the definition of AddWithCarry() in the ARM ARM A2.2.1 for the gory
3903// details.
3904def : ARMPat<(add     GPR:$src, mod_imm_neg:$imm),
3905             (SUBri   GPR:$src, mod_imm_neg:$imm)>;
3906def : ARMPat<(ARMaddc GPR:$src, mod_imm_neg:$imm),
3907             (SUBSri  GPR:$src, mod_imm_neg:$imm)>;
3908
3909def : ARMPat<(add     GPR:$src, imm0_65535_neg:$imm),
3910             (SUBrr   GPR:$src, (MOVi16 (imm_neg_XFORM imm:$imm)))>,
3911             Requires<[IsARM, HasV6T2]>;
3912def : ARMPat<(ARMaddc GPR:$src, imm0_65535_neg:$imm),
3913             (SUBSrr  GPR:$src, (MOVi16 (imm_neg_XFORM imm:$imm)))>,
3914             Requires<[IsARM, HasV6T2]>;
3915
3916// The with-carry-in form matches bitwise not instead of the negation.
3917// Effectively, the inverse interpretation of the carry flag already accounts
3918// for part of the negation.
3919def : ARMPat<(ARMadde GPR:$src, mod_imm_not:$imm, CPSR),
3920             (SBCri   GPR:$src, mod_imm_not:$imm)>;
3921def : ARMPat<(ARMadde GPR:$src, imm0_65535_neg:$imm, CPSR),
3922             (SBCrr   GPR:$src, (MOVi16 (imm_not_XFORM imm:$imm)))>,
3923             Requires<[IsARM, HasV6T2]>;
3924
3925// Note: These are implemented in C++ code, because they have to generate
3926// ADD/SUBrs instructions, which use a complex pattern that a xform function
3927// cannot produce.
3928// (mul X, 2^n+1) -> (add (X << n), X)
3929// (mul X, 2^n-1) -> (rsb X, (X << n))
3930
3931// ARM Arithmetic Instruction
3932// GPR:$dst = GPR:$a op GPR:$b
3933class AAI<bits<8> op27_20, bits<8> op11_4, string opc,
3934          list<dag> pattern = [],
3935          dag iops = (ins GPRnopc:$Rn, GPRnopc:$Rm),
3936          string asm = "\t$Rd, $Rn, $Rm">
3937  : AI<(outs GPRnopc:$Rd), iops, DPFrm, IIC_iALUr, opc, asm, pattern>,
3938    Sched<[WriteALU, ReadALU, ReadALU]> {
3939  bits<4> Rn;
3940  bits<4> Rd;
3941  bits<4> Rm;
3942  let Inst{27-20} = op27_20;
3943  let Inst{11-4} = op11_4;
3944  let Inst{19-16} = Rn;
3945  let Inst{15-12} = Rd;
3946  let Inst{3-0}   = Rm;
3947
3948  let Unpredictable{11-8} = 0b1111;
3949}
3950
3951// Wrappers around the AAI class
3952class AAIRevOpr<bits<8> op27_20, bits<8> op11_4, string opc,
3953                list<dag> pattern = []>
3954  : AAI<op27_20, op11_4, opc,
3955        pattern,
3956        (ins GPRnopc:$Rm, GPRnopc:$Rn),
3957        "\t$Rd, $Rm, $Rn">;
3958
3959class AAIIntrinsic<bits<8> op27_20, bits<8> op11_4, string opc,
3960                 Intrinsic intrinsic>
3961  : AAI<op27_20, op11_4, opc,
3962        [(set GPRnopc:$Rd, (intrinsic GPRnopc:$Rn, GPRnopc:$Rm))]>;
3963
3964// Saturating add/subtract
3965let hasSideEffects = 1 in {
3966def QADD8   : AAIIntrinsic<0b01100010, 0b11111001, "qadd8", int_arm_qadd8>;
3967def QADD16  : AAIIntrinsic<0b01100010, 0b11110001, "qadd16", int_arm_qadd16>;
3968def QSUB16  : AAIIntrinsic<0b01100010, 0b11110111, "qsub16", int_arm_qsub16>;
3969def QSUB8   : AAIIntrinsic<0b01100010, 0b11111111, "qsub8", int_arm_qsub8>;
3970
3971def QDADD   : AAIRevOpr<0b00010100, 0b00000101, "qdadd",
3972              [(set GPRnopc:$Rd, (int_arm_qadd GPRnopc:$Rm,
3973                                  (int_arm_qadd GPRnopc:$Rn, GPRnopc:$Rn)))]>;
3974def QDSUB   : AAIRevOpr<0b00010110, 0b00000101, "qdsub",
3975              [(set GPRnopc:$Rd, (int_arm_qsub GPRnopc:$Rm,
3976                                  (int_arm_qadd GPRnopc:$Rn, GPRnopc:$Rn)))]>;
3977def QSUB    : AAIRevOpr<0b00010010, 0b00000101, "qsub",
3978              [(set GPRnopc:$Rd, (int_arm_qsub GPRnopc:$Rm, GPRnopc:$Rn))]>;
3979let DecoderMethod = "DecodeQADDInstruction" in
3980  def QADD    : AAIRevOpr<0b00010000, 0b00000101, "qadd",
3981                [(set GPRnopc:$Rd, (int_arm_qadd GPRnopc:$Rm, GPRnopc:$Rn))]>;
3982}
3983
3984def : ARMV5TEPat<(saddsat GPR:$a, GPR:$b),
3985                 (QADD GPR:$a, GPR:$b)>;
3986def : ARMV5TEPat<(ssubsat GPR:$a, GPR:$b),
3987                 (QSUB GPR:$a, GPR:$b)>;
3988def : ARMV5TEPat<(saddsat rGPR:$Rm, (saddsat rGPR:$Rn, rGPR:$Rn)),
3989                 (QDADD rGPR:$Rm, rGPR:$Rn)>;
3990def : ARMV5TEPat<(ssubsat rGPR:$Rm, (saddsat rGPR:$Rn, rGPR:$Rn)),
3991                 (QDSUB rGPR:$Rm, rGPR:$Rn)>;
3992
3993def : ARMV6Pat<(ARMqadd8b rGPR:$Rm, rGPR:$Rn),
3994               (QADD8 rGPR:$Rm, rGPR:$Rn)>;
3995def : ARMV6Pat<(ARMqsub8b rGPR:$Rm, rGPR:$Rn),
3996               (QSUB8 rGPR:$Rm, rGPR:$Rn)>;
3997def : ARMV6Pat<(ARMqadd16b rGPR:$Rm, rGPR:$Rn),
3998               (QADD16 rGPR:$Rm, rGPR:$Rn)>;
3999def : ARMV6Pat<(ARMqsub16b rGPR:$Rm, rGPR:$Rn),
4000               (QSUB16 rGPR:$Rm, rGPR:$Rn)>;
4001
4002def UQADD16 : AAIIntrinsic<0b01100110, 0b11110001, "uqadd16", int_arm_uqadd16>;
4003def UQADD8  : AAIIntrinsic<0b01100110, 0b11111001, "uqadd8", int_arm_uqadd8>;
4004def UQSUB16 : AAIIntrinsic<0b01100110, 0b11110111, "uqsub16", int_arm_uqsub16>;
4005def UQSUB8  : AAIIntrinsic<0b01100110, 0b11111111, "uqsub8", int_arm_uqsub8>;
4006def QASX    : AAIIntrinsic<0b01100010, 0b11110011, "qasx", int_arm_qasx>;
4007def QSAX    : AAIIntrinsic<0b01100010, 0b11110101, "qsax", int_arm_qsax>;
4008def UQASX   : AAIIntrinsic<0b01100110, 0b11110011, "uqasx", int_arm_uqasx>;
4009def UQSAX   : AAIIntrinsic<0b01100110, 0b11110101, "uqsax", int_arm_uqsax>;
4010
4011def : ARMV6Pat<(ARMuqadd8b rGPR:$Rm, rGPR:$Rn),
4012               (UQADD8 rGPR:$Rm, rGPR:$Rn)>;
4013def : ARMV6Pat<(ARMuqsub8b rGPR:$Rm, rGPR:$Rn),
4014               (UQSUB8 rGPR:$Rm, rGPR:$Rn)>;
4015def : ARMV6Pat<(ARMuqadd16b rGPR:$Rm, rGPR:$Rn),
4016               (UQADD16 rGPR:$Rm, rGPR:$Rn)>;
4017def : ARMV6Pat<(ARMuqsub16b rGPR:$Rm, rGPR:$Rn),
4018               (UQSUB16 rGPR:$Rm, rGPR:$Rn)>;
4019
4020
4021// Signed/Unsigned add/subtract
4022
4023def SASX   : AAIIntrinsic<0b01100001, 0b11110011, "sasx", int_arm_sasx>;
4024def SADD16 : AAIIntrinsic<0b01100001, 0b11110001, "sadd16", int_arm_sadd16>;
4025def SADD8  : AAIIntrinsic<0b01100001, 0b11111001, "sadd8", int_arm_sadd8>;
4026def SSAX   : AAIIntrinsic<0b01100001, 0b11110101, "ssax", int_arm_ssax>;
4027def SSUB16 : AAIIntrinsic<0b01100001, 0b11110111, "ssub16", int_arm_ssub16>;
4028def SSUB8  : AAIIntrinsic<0b01100001, 0b11111111, "ssub8", int_arm_ssub8>;
4029def UASX   : AAIIntrinsic<0b01100101, 0b11110011, "uasx", int_arm_uasx>;
4030def UADD16 : AAIIntrinsic<0b01100101, 0b11110001, "uadd16", int_arm_uadd16>;
4031def UADD8  : AAIIntrinsic<0b01100101, 0b11111001, "uadd8", int_arm_uadd8>;
4032def USAX   : AAIIntrinsic<0b01100101, 0b11110101, "usax", int_arm_usax>;
4033def USUB16 : AAIIntrinsic<0b01100101, 0b11110111, "usub16", int_arm_usub16>;
4034def USUB8  : AAIIntrinsic<0b01100101, 0b11111111, "usub8", int_arm_usub8>;
4035
4036// Signed/Unsigned halving add/subtract
4037
4038def SHASX   : AAIIntrinsic<0b01100011, 0b11110011, "shasx", int_arm_shasx>;
4039def SHADD16 : AAIIntrinsic<0b01100011, 0b11110001, "shadd16", int_arm_shadd16>;
4040def SHADD8  : AAIIntrinsic<0b01100011, 0b11111001, "shadd8", int_arm_shadd8>;
4041def SHSAX   : AAIIntrinsic<0b01100011, 0b11110101, "shsax", int_arm_shsax>;
4042def SHSUB16 : AAIIntrinsic<0b01100011, 0b11110111, "shsub16", int_arm_shsub16>;
4043def SHSUB8  : AAIIntrinsic<0b01100011, 0b11111111, "shsub8", int_arm_shsub8>;
4044def UHASX   : AAIIntrinsic<0b01100111, 0b11110011, "uhasx", int_arm_uhasx>;
4045def UHADD16 : AAIIntrinsic<0b01100111, 0b11110001, "uhadd16", int_arm_uhadd16>;
4046def UHADD8  : AAIIntrinsic<0b01100111, 0b11111001, "uhadd8", int_arm_uhadd8>;
4047def UHSAX   : AAIIntrinsic<0b01100111, 0b11110101, "uhsax", int_arm_uhsax>;
4048def UHSUB16 : AAIIntrinsic<0b01100111, 0b11110111, "uhsub16", int_arm_uhsub16>;
4049def UHSUB8  : AAIIntrinsic<0b01100111, 0b11111111, "uhsub8", int_arm_uhsub8>;
4050
4051// Unsigned Sum of Absolute Differences [and Accumulate].
4052
4053def USAD8  : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4054                MulFrm /* for convenience */, NoItinerary, "usad8",
4055                "\t$Rd, $Rn, $Rm",
4056             [(set GPR:$Rd, (int_arm_usad8 GPR:$Rn, GPR:$Rm))]>,
4057             Requires<[IsARM, HasV6]>, Sched<[WriteALU, ReadALU, ReadALU]> {
4058  bits<4> Rd;
4059  bits<4> Rn;
4060  bits<4> Rm;
4061  let Inst{27-20} = 0b01111000;
4062  let Inst{15-12} = 0b1111;
4063  let Inst{7-4} = 0b0001;
4064  let Inst{19-16} = Rd;
4065  let Inst{11-8} = Rm;
4066  let Inst{3-0} = Rn;
4067}
4068def USADA8 : AI<(outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
4069                MulFrm /* for convenience */, NoItinerary, "usada8",
4070                "\t$Rd, $Rn, $Rm, $Ra",
4071             [(set GPR:$Rd, (int_arm_usada8 GPR:$Rn, GPR:$Rm, GPR:$Ra))]>,
4072             Requires<[IsARM, HasV6]>, Sched<[WriteALU, ReadALU, ReadALU]>{
4073  bits<4> Rd;
4074  bits<4> Rn;
4075  bits<4> Rm;
4076  bits<4> Ra;
4077  let Inst{27-20} = 0b01111000;
4078  let Inst{7-4} = 0b0001;
4079  let Inst{19-16} = Rd;
4080  let Inst{15-12} = Ra;
4081  let Inst{11-8} = Rm;
4082  let Inst{3-0} = Rn;
4083}
4084
4085// Signed/Unsigned saturate
4086def SSAT : AI<(outs GPRnopc:$Rd),
4087              (ins imm1_32:$sat_imm, GPRnopc:$Rn, shift_imm:$sh),
4088              SatFrm, NoItinerary, "ssat", "\t$Rd, $sat_imm, $Rn$sh", []>,
4089              Requires<[IsARM,HasV6]>{
4090  bits<4> Rd;
4091  bits<5> sat_imm;
4092  bits<4> Rn;
4093  bits<8> sh;
4094  let Inst{27-21} = 0b0110101;
4095  let Inst{5-4} = 0b01;
4096  let Inst{20-16} = sat_imm;
4097  let Inst{15-12} = Rd;
4098  let Inst{11-7} = sh{4-0};
4099  let Inst{6} = sh{5};
4100  let Inst{3-0} = Rn;
4101}
4102
4103def SSAT16 : AI<(outs GPRnopc:$Rd),
4104                (ins imm1_16:$sat_imm, GPRnopc:$Rn), SatFrm,
4105                NoItinerary, "ssat16", "\t$Rd, $sat_imm, $Rn", []>,
4106                Requires<[IsARM,HasV6]>{
4107  bits<4> Rd;
4108  bits<4> sat_imm;
4109  bits<4> Rn;
4110  let Inst{27-20} = 0b01101010;
4111  let Inst{11-4} = 0b11110011;
4112  let Inst{15-12} = Rd;
4113  let Inst{19-16} = sat_imm;
4114  let Inst{3-0} = Rn;
4115}
4116
4117def USAT : AI<(outs GPRnopc:$Rd),
4118              (ins imm0_31:$sat_imm, GPRnopc:$Rn, shift_imm:$sh),
4119              SatFrm, NoItinerary, "usat", "\t$Rd, $sat_imm, $Rn$sh", []>,
4120              Requires<[IsARM,HasV6]> {
4121  bits<4> Rd;
4122  bits<5> sat_imm;
4123  bits<4> Rn;
4124  bits<8> sh;
4125  let Inst{27-21} = 0b0110111;
4126  let Inst{5-4} = 0b01;
4127  let Inst{15-12} = Rd;
4128  let Inst{11-7} = sh{4-0};
4129  let Inst{6} = sh{5};
4130  let Inst{20-16} = sat_imm;
4131  let Inst{3-0} = Rn;
4132}
4133
4134def USAT16 : AI<(outs GPRnopc:$Rd),
4135                (ins imm0_15:$sat_imm, GPRnopc:$Rn), SatFrm,
4136                NoItinerary, "usat16", "\t$Rd, $sat_imm, $Rn", []>,
4137                Requires<[IsARM,HasV6]>{
4138  bits<4> Rd;
4139  bits<4> sat_imm;
4140  bits<4> Rn;
4141  let Inst{27-20} = 0b01101110;
4142  let Inst{11-4} = 0b11110011;
4143  let Inst{15-12} = Rd;
4144  let Inst{19-16} = sat_imm;
4145  let Inst{3-0} = Rn;
4146}
4147
4148def : ARMV6Pat<(int_arm_ssat GPRnopc:$a, imm1_32:$pos),
4149               (SSAT imm1_32:$pos, GPRnopc:$a, 0)>;
4150def : ARMV6Pat<(int_arm_usat GPRnopc:$a, imm0_31:$pos),
4151               (USAT imm0_31:$pos, GPRnopc:$a, 0)>;
4152def : ARMPat<(ARMssat GPRnopc:$Rn, imm0_31:$imm),
4153             (SSAT imm0_31:$imm, GPRnopc:$Rn, 0)>;
4154def : ARMPat<(ARMusat GPRnopc:$Rn, imm0_31:$imm),
4155             (USAT imm0_31:$imm, GPRnopc:$Rn, 0)>;
4156def : ARMV6Pat<(int_arm_ssat16 GPRnopc:$a, imm1_16:$pos),
4157               (SSAT16 imm1_16:$pos, GPRnopc:$a)>;
4158def : ARMV6Pat<(int_arm_usat16 GPRnopc:$a, imm0_15:$pos),
4159               (USAT16 imm0_15:$pos, GPRnopc:$a)>;
4160def : ARMV6Pat<(int_arm_ssat (shl GPRnopc:$a, imm0_31:$shft), imm1_32:$pos),
4161               (SSAT imm1_32:$pos, GPRnopc:$a, imm0_31:$shft)>;
4162def : ARMV6Pat<(int_arm_ssat (sra GPRnopc:$a, asr_imm:$shft), imm1_32:$pos),
4163               (SSAT imm1_32:$pos, GPRnopc:$a, asr_imm:$shft)>;
4164def : ARMV6Pat<(int_arm_usat (shl GPRnopc:$a, imm0_31:$shft), imm0_31:$pos),
4165               (USAT imm0_31:$pos, GPRnopc:$a, imm0_31:$shft)>;
4166def : ARMV6Pat<(int_arm_usat (sra GPRnopc:$a, asr_imm:$shft), imm0_31:$pos),
4167               (USAT imm0_31:$pos, GPRnopc:$a, asr_imm:$shft)>;
4168def : ARMPat<(ARMssat (shl GPRnopc:$Rn, imm0_31:$shft), imm0_31:$pos),
4169               (SSAT imm0_31:$pos, GPRnopc:$Rn, imm0_31:$shft)>;
4170def : ARMPat<(ARMssat (sra GPRnopc:$Rn, asr_imm:$shft), imm0_31:$pos),
4171               (SSAT imm0_31:$pos, GPRnopc:$Rn, asr_imm:$shft)>;
4172def : ARMPat<(ARMusat (shl GPRnopc:$Rn, imm0_31:$shft), imm0_31:$pos),
4173               (USAT imm0_31:$pos, GPRnopc:$Rn, imm0_31:$shft)>;
4174def : ARMPat<(ARMusat (sra GPRnopc:$Rn, asr_imm:$shft), imm0_31:$pos),
4175               (USAT imm0_31:$pos, GPRnopc:$Rn, asr_imm:$shft)>;
4176
4177
4178//===----------------------------------------------------------------------===//
4179//  Bitwise Instructions.
4180//
4181
4182defm AND   : AsI1_bin_irs<0b0000, "and",
4183                          IIC_iBITi, IIC_iBITr, IIC_iBITsr, and, 1>;
4184defm ORR   : AsI1_bin_irs<0b1100, "orr",
4185                          IIC_iBITi, IIC_iBITr, IIC_iBITsr, or, 1>;
4186defm EOR   : AsI1_bin_irs<0b0001, "eor",
4187                          IIC_iBITi, IIC_iBITr, IIC_iBITsr, xor, 1>;
4188defm BIC   : AsI1_bin_irs<0b1110, "bic",
4189                          IIC_iBITi, IIC_iBITr, IIC_iBITsr,
4190                          BinOpFrag<(and node:$LHS, (not node:$RHS))>>;
4191
4192// FIXME: bf_inv_mask_imm should be two operands, the lsb and the msb, just
4193// like in the actual instruction encoding. The complexity of mapping the mask
4194// to the lsb/msb pair should be handled by ISel, not encapsulated in the
4195// instruction description.
4196def BFC    : I<(outs GPR:$Rd), (ins GPR:$src, bf_inv_mask_imm:$imm),
4197               AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
4198               "bfc", "\t$Rd, $imm", "$src = $Rd",
4199               [(set GPR:$Rd, (and GPR:$src, bf_inv_mask_imm:$imm))]>,
4200               Requires<[IsARM, HasV6T2]> {
4201  bits<4> Rd;
4202  bits<10> imm;
4203  let Inst{27-21} = 0b0111110;
4204  let Inst{6-0}   = 0b0011111;
4205  let Inst{15-12} = Rd;
4206  let Inst{11-7}  = imm{4-0}; // lsb
4207  let Inst{20-16} = imm{9-5}; // msb
4208}
4209
4210// A8.6.18  BFI - Bitfield insert (Encoding A1)
4211def BFI:I<(outs GPRnopc:$Rd), (ins GPRnopc:$src, GPR:$Rn, bf_inv_mask_imm:$imm),
4212          AddrMode1, 4, IndexModeNone, DPFrm, IIC_iUNAsi,
4213          "bfi", "\t$Rd, $Rn, $imm", "$src = $Rd",
4214          [(set GPRnopc:$Rd, (ARMbfi GPRnopc:$src, GPR:$Rn,
4215                           bf_inv_mask_imm:$imm))]>,
4216          Requires<[IsARM, HasV6T2]> {
4217  bits<4> Rd;
4218  bits<4> Rn;
4219  bits<10> imm;
4220  let Inst{27-21} = 0b0111110;
4221  let Inst{6-4}   = 0b001; // Rn: Inst{3-0} != 15
4222  let Inst{15-12} = Rd;
4223  let Inst{11-7}  = imm{4-0}; // lsb
4224  let Inst{20-16} = imm{9-5}; // width
4225  let Inst{3-0}   = Rn;
4226}
4227
4228def  MVNr  : AsI1<0b1111, (outs GPR:$Rd), (ins GPR:$Rm), DPFrm, IIC_iMVNr,
4229                  "mvn", "\t$Rd, $Rm",
4230                  [(set GPR:$Rd, (not GPR:$Rm))]>, UnaryDP, Sched<[WriteALU]> {
4231  bits<4> Rd;
4232  bits<4> Rm;
4233  let Inst{25} = 0;
4234  let Inst{19-16} = 0b0000;
4235  let Inst{11-4} = 0b00000000;
4236  let Inst{15-12} = Rd;
4237  let Inst{3-0} = Rm;
4238
4239  let Unpredictable{19-16} = 0b1111;
4240}
4241def  MVNsi  : AsI1<0b1111, (outs GPR:$Rd), (ins so_reg_imm:$shift),
4242                  DPSoRegImmFrm, IIC_iMVNsr, "mvn", "\t$Rd, $shift",
4243                  [(set GPR:$Rd, (not so_reg_imm:$shift))]>, UnaryDP,
4244                  Sched<[WriteALU]> {
4245  bits<4> Rd;
4246  bits<12> shift;
4247  let Inst{25} = 0;
4248  let Inst{19-16} = 0b0000;
4249  let Inst{15-12} = Rd;
4250  let Inst{11-5} = shift{11-5};
4251  let Inst{4} = 0;
4252  let Inst{3-0} = shift{3-0};
4253
4254  let Unpredictable{19-16} = 0b1111;
4255}
4256def  MVNsr  : AsI1<0b1111, (outs GPRnopc:$Rd), (ins so_reg_reg:$shift),
4257                  DPSoRegRegFrm, IIC_iMVNsr, "mvn", "\t$Rd, $shift",
4258                  [(set GPRnopc:$Rd, (not so_reg_reg:$shift))]>, UnaryDP,
4259                  Sched<[WriteALU]> {
4260  bits<4> Rd;
4261  bits<12> shift;
4262  let Inst{25} = 0;
4263  let Inst{19-16} = 0b0000;
4264  let Inst{15-12} = Rd;
4265  let Inst{11-8} = shift{11-8};
4266  let Inst{7} = 0;
4267  let Inst{6-5} = shift{6-5};
4268  let Inst{4} = 1;
4269  let Inst{3-0} = shift{3-0};
4270
4271  let Unpredictable{19-16} = 0b1111;
4272}
4273let isReMaterializable = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in
4274def  MVNi  : AsI1<0b1111, (outs GPR:$Rd), (ins mod_imm:$imm), DPFrm,
4275                  IIC_iMVNi, "mvn", "\t$Rd, $imm",
4276                  [(set GPR:$Rd, mod_imm_not:$imm)]>,UnaryDP, Sched<[WriteALU]> {
4277  bits<4> Rd;
4278  bits<12> imm;
4279  let Inst{25} = 1;
4280  let Inst{19-16} = 0b0000;
4281  let Inst{15-12} = Rd;
4282  let Inst{11-0} = imm;
4283}
4284
4285let AddedComplexity = 1 in
4286def : ARMPat<(and   GPR:$src, mod_imm_not:$imm),
4287             (BICri GPR:$src, mod_imm_not:$imm)>;
4288
4289//===----------------------------------------------------------------------===//
4290//  Multiply Instructions.
4291//
4292class AsMul1I32<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
4293             string opc, string asm, list<dag> pattern>
4294  : AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> {
4295  bits<4> Rd;
4296  bits<4> Rm;
4297  bits<4> Rn;
4298  let Inst{19-16} = Rd;
4299  let Inst{11-8}  = Rm;
4300  let Inst{3-0}   = Rn;
4301}
4302class AsMul1I64<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
4303             string opc, string asm, list<dag> pattern>
4304  : AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> {
4305  bits<4> RdLo;
4306  bits<4> RdHi;
4307  bits<4> Rm;
4308  bits<4> Rn;
4309  let Inst{19-16} = RdHi;
4310  let Inst{15-12} = RdLo;
4311  let Inst{11-8}  = Rm;
4312  let Inst{3-0}   = Rn;
4313}
4314class AsMla1I64<bits<7> opcod, dag oops, dag iops, InstrItinClass itin,
4315             string opc, string asm, list<dag> pattern>
4316  : AsMul1I<opcod, oops, iops, itin, opc, asm, pattern> {
4317  bits<4> RdLo;
4318  bits<4> RdHi;
4319  bits<4> Rm;
4320  bits<4> Rn;
4321  let Inst{19-16} = RdHi;
4322  let Inst{15-12} = RdLo;
4323  let Inst{11-8}  = Rm;
4324  let Inst{3-0}   = Rn;
4325}
4326
4327// FIXME: The v5 pseudos are only necessary for the additional Constraint
4328//        property. Remove them when it's possible to add those properties
4329//        on an individual MachineInstr, not just an instruction description.
4330let isCommutable = 1, TwoOperandAliasConstraint = "$Rn = $Rd" in {
4331def MUL : AsMul1I32<0b0000000, (outs GPRnopc:$Rd),
4332                    (ins GPRnopc:$Rn, GPRnopc:$Rm),
4333                    IIC_iMUL32, "mul", "\t$Rd, $Rn, $Rm",
4334                  [(set GPRnopc:$Rd, (mul GPRnopc:$Rn, GPRnopc:$Rm))]>,
4335                  Requires<[IsARM, HasV6]>,
4336         Sched<[WriteMUL32, ReadMUL, ReadMUL]> {
4337  let Inst{15-12} = 0b0000;
4338  let Unpredictable{15-12} = 0b1111;
4339}
4340
4341let Constraints = "@earlyclobber $Rd" in
4342def MULv5: ARMPseudoExpand<(outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm,
4343                                                    pred:$p, cc_out:$s),
4344                           4, IIC_iMUL32,
4345               [(set GPRnopc:$Rd, (mul GPRnopc:$Rn, GPRnopc:$Rm))],
4346               (MUL GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, cc_out:$s)>,
4347               Requires<[IsARM, NoV6, UseMulOps]>,
4348           Sched<[WriteMUL32, ReadMUL, ReadMUL]>;
4349}
4350
4351def MLA  : AsMul1I32<0b0000001, (outs GPRnopc:$Rd),
4352                     (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra),
4353                     IIC_iMAC32, "mla", "\t$Rd, $Rn, $Rm, $Ra",
4354        [(set GPRnopc:$Rd, (add (mul GPRnopc:$Rn, GPRnopc:$Rm), GPRnopc:$Ra))]>,
4355                     Requires<[IsARM, HasV6, UseMulOps]>,
4356        Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]> {
4357  bits<4> Ra;
4358  let Inst{15-12} = Ra;
4359}
4360
4361let Constraints = "@earlyclobber $Rd" in
4362def MLAv5: ARMPseudoExpand<(outs GPRnopc:$Rd),
4363                           (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra,
4364                            pred:$p, cc_out:$s), 4, IIC_iMAC32,
4365         [(set GPRnopc:$Rd, (add (mul GPRnopc:$Rn, GPRnopc:$Rm), GPRnopc:$Ra))],
4366  (MLA GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra, pred:$p, cc_out:$s)>,
4367                           Requires<[IsARM, NoV6]>,
4368           Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4369
4370def MLS  : AMul1I<0b0000011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
4371                   IIC_iMAC32, "mls", "\t$Rd, $Rn, $Rm, $Ra",
4372                   [(set GPR:$Rd, (sub GPR:$Ra, (mul GPR:$Rn, GPR:$Rm)))]>,
4373                   Requires<[IsARM, HasV6T2, UseMulOps]>,
4374          Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]> {
4375  bits<4> Rd;
4376  bits<4> Rm;
4377  bits<4> Rn;
4378  bits<4> Ra;
4379  let Inst{19-16} = Rd;
4380  let Inst{15-12} = Ra;
4381  let Inst{11-8}  = Rm;
4382  let Inst{3-0}   = Rn;
4383}
4384
4385// Extra precision multiplies with low / high results
4386let hasSideEffects = 0 in {
4387let isCommutable = 1 in {
4388def SMULL : AsMul1I64<0b0000110, (outs GPR:$RdLo, GPR:$RdHi),
4389                                 (ins GPR:$Rn, GPR:$Rm), IIC_iMUL64,
4390                    "smull", "\t$RdLo, $RdHi, $Rn, $Rm",
4391                    [(set GPR:$RdLo, GPR:$RdHi,
4392                          (smullohi GPR:$Rn, GPR:$Rm))]>,
4393                    Requires<[IsARM, HasV6]>,
4394           Sched<[WriteMUL64Lo, WriteMUL64Hi, ReadMUL, ReadMUL]>;
4395
4396def UMULL : AsMul1I64<0b0000100, (outs GPR:$RdLo, GPR:$RdHi),
4397                                 (ins GPR:$Rn, GPR:$Rm), IIC_iMUL64,
4398                    "umull", "\t$RdLo, $RdHi, $Rn, $Rm",
4399                    [(set GPR:$RdLo, GPR:$RdHi,
4400                          (umullohi GPR:$Rn, GPR:$Rm))]>,
4401                    Requires<[IsARM, HasV6]>,
4402           Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL]>;
4403
4404let Constraints = "@earlyclobber $RdLo,@earlyclobber $RdHi" in {
4405def SMULLv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
4406                            (ins GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s),
4407                            4, IIC_iMUL64,
4408                            [(set GPR:$RdLo, GPR:$RdHi,
4409                                  (smullohi GPR:$Rn, GPR:$Rm))],
4410          (SMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>,
4411                           Requires<[IsARM, NoV6]>,
4412              Sched<[WriteMUL64Lo, WriteMUL64Hi, ReadMUL, ReadMUL]>;
4413
4414def UMULLv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
4415                            (ins GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s),
4416                            4, IIC_iMUL64,
4417                            [(set GPR:$RdLo, GPR:$RdHi,
4418                                  (umullohi GPR:$Rn, GPR:$Rm))],
4419          (UMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s)>,
4420                           Requires<[IsARM, NoV6]>,
4421             Sched<[WriteMUL64Lo, WriteMUL64Hi, ReadMUL, ReadMUL]>;
4422}
4423}
4424
4425// Multiply + accumulate
4426def SMLAL : AsMla1I64<0b0000111, (outs GPR:$RdLo, GPR:$RdHi),
4427                        (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi), IIC_iMAC64,
4428                    "smlal", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
4429         RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]>,
4430           Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4431def UMLAL : AsMla1I64<0b0000101, (outs GPR:$RdLo, GPR:$RdHi),
4432                        (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi), IIC_iMAC64,
4433                    "umlal", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
4434         RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]>,
4435            Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4436
4437def UMAAL : AMul1I <0b0000010, (outs GPR:$RdLo, GPR:$RdHi),
4438                               (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
4439                               IIC_iMAC64,
4440                    "umaal", "\t$RdLo, $RdHi, $Rn, $Rm", []>,
4441         RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">, Requires<[IsARM, HasV6]>,
4442            Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]> {
4443  bits<4> RdLo;
4444  bits<4> RdHi;
4445  bits<4> Rm;
4446  bits<4> Rn;
4447  let Inst{19-16} = RdHi;
4448  let Inst{15-12} = RdLo;
4449  let Inst{11-8}  = Rm;
4450  let Inst{3-0}   = Rn;
4451}
4452
4453let Constraints =
4454    "@earlyclobber $RdLo,@earlyclobber $RdHi,$RLo = $RdLo,$RHi = $RdHi" in {
4455def SMLALv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
4456                (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi, pred:$p, cc_out:$s),
4457                              4, IIC_iMAC64, [],
4458             (SMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi,
4459                           pred:$p, cc_out:$s)>,
4460                           Requires<[IsARM, NoV6]>,
4461              Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4462def UMLALv5 : ARMPseudoExpand<(outs GPR:$RdLo, GPR:$RdHi),
4463                (ins GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi, pred:$p, cc_out:$s),
4464                              4, IIC_iMAC64, [],
4465             (UMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi,
4466                           pred:$p, cc_out:$s)>,
4467                           Requires<[IsARM, NoV6]>,
4468              Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4469}
4470
4471} // hasSideEffects
4472
4473// Most significant word multiply
4474def SMMUL : AMul2I <0b0111010, 0b0001, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4475               IIC_iMUL32, "smmul", "\t$Rd, $Rn, $Rm",
4476               [(set GPR:$Rd, (mulhs GPR:$Rn, GPR:$Rm))]>,
4477            Requires<[IsARM, HasV6]>,
4478            Sched<[WriteMUL32, ReadMUL, ReadMUL]> {
4479  let Inst{15-12} = 0b1111;
4480}
4481
4482def SMMULR : AMul2I <0b0111010, 0b0011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4483               IIC_iMUL32, "smmulr", "\t$Rd, $Rn, $Rm",
4484               [(set GPR:$Rd, (ARMsmmlar GPR:$Rn, GPR:$Rm, (i32 0)))]>,
4485            Requires<[IsARM, HasV6]>,
4486             Sched<[WriteMUL32, ReadMUL, ReadMUL]>  {
4487  let Inst{15-12} = 0b1111;
4488}
4489
4490def SMMLA : AMul2Ia <0b0111010, 0b0001, (outs GPR:$Rd),
4491               (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
4492               IIC_iMAC32, "smmla", "\t$Rd, $Rn, $Rm, $Ra",
4493               [(set GPR:$Rd, (add (mulhs GPR:$Rn, GPR:$Rm), GPR:$Ra))]>,
4494            Requires<[IsARM, HasV6, UseMulOps]>,
4495            Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4496
4497def SMMLAR : AMul2Ia <0b0111010, 0b0011, (outs GPR:$Rd),
4498               (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
4499               IIC_iMAC32, "smmlar", "\t$Rd, $Rn, $Rm, $Ra",
4500               [(set GPR:$Rd, (ARMsmmlar GPR:$Rn, GPR:$Rm, GPR:$Ra))]>,
4501            Requires<[IsARM, HasV6]>,
4502             Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4503
4504def SMMLS : AMul2Ia <0b0111010, 0b1101, (outs GPR:$Rd),
4505               (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
4506               IIC_iMAC32, "smmls", "\t$Rd, $Rn, $Rm, $Ra", []>,
4507            Requires<[IsARM, HasV6, UseMulOps]>,
4508            Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4509
4510def SMMLSR : AMul2Ia <0b0111010, 0b1111, (outs GPR:$Rd),
4511               (ins GPR:$Rn, GPR:$Rm, GPR:$Ra),
4512               IIC_iMAC32, "smmlsr", "\t$Rd, $Rn, $Rm, $Ra",
4513               [(set GPR:$Rd, (ARMsmmlsr GPR:$Rn, GPR:$Rm, GPR:$Ra))]>,
4514            Requires<[IsARM, HasV6]>,
4515             Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4516
4517multiclass AI_smul<string opc> {
4518  def BB : AMulxyI<0b0001011, 0b00, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4519              IIC_iMUL16, !strconcat(opc, "bb"), "\t$Rd, $Rn, $Rm",
4520              [(set GPR:$Rd, (bb_mul GPR:$Rn, GPR:$Rm))]>,
4521           Requires<[IsARM, HasV5TE]>,
4522           Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4523
4524  def BT : AMulxyI<0b0001011, 0b10, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4525              IIC_iMUL16, !strconcat(opc, "bt"), "\t$Rd, $Rn, $Rm",
4526              [(set GPR:$Rd, (bt_mul GPR:$Rn, GPR:$Rm))]>,
4527           Requires<[IsARM, HasV5TE]>,
4528           Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4529
4530  def TB : AMulxyI<0b0001011, 0b01, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4531              IIC_iMUL16, !strconcat(opc, "tb"), "\t$Rd, $Rn, $Rm",
4532              [(set GPR:$Rd, (tb_mul GPR:$Rn, GPR:$Rm))]>,
4533           Requires<[IsARM, HasV5TE]>,
4534           Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4535
4536  def TT : AMulxyI<0b0001011, 0b11, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4537              IIC_iMUL16, !strconcat(opc, "tt"), "\t$Rd, $Rn, $Rm",
4538              [(set GPR:$Rd, (tt_mul GPR:$Rn, GPR:$Rm))]>,
4539            Requires<[IsARM, HasV5TE]>,
4540           Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4541
4542  def WB : AMulxyI<0b0001001, 0b01, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4543              IIC_iMUL16, !strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm",
4544              [(set GPR:$Rd, (ARMsmulwb GPR:$Rn, GPR:$Rm))]>,
4545           Requires<[IsARM, HasV5TE]>,
4546           Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4547
4548  def WT : AMulxyI<0b0001001, 0b11, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm),
4549              IIC_iMUL16, !strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm",
4550              [(set GPR:$Rd, (ARMsmulwt GPR:$Rn, GPR:$Rm))]>,
4551            Requires<[IsARM, HasV5TE]>,
4552           Sched<[WriteMUL16, ReadMUL, ReadMUL]>;
4553}
4554
4555
4556multiclass AI_smla<string opc> {
4557  let DecoderMethod = "DecodeSMLAInstruction" in {
4558  def BB : AMulxyIa<0b0001000, 0b00, (outs GPRnopc:$Rd),
4559              (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4560              IIC_iMAC16, !strconcat(opc, "bb"), "\t$Rd, $Rn, $Rm, $Ra",
4561              [(set GPRnopc:$Rd, (add GPR:$Ra,
4562                                      (bb_mul GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4563           Requires<[IsARM, HasV5TE, UseMulOps]>,
4564           Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4565
4566  def BT : AMulxyIa<0b0001000, 0b10, (outs GPRnopc:$Rd),
4567              (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4568              IIC_iMAC16, !strconcat(opc, "bt"), "\t$Rd, $Rn, $Rm, $Ra",
4569              [(set GPRnopc:$Rd, (add GPR:$Ra,
4570                                      (bt_mul GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4571           Requires<[IsARM, HasV5TE, UseMulOps]>,
4572           Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4573
4574  def TB : AMulxyIa<0b0001000, 0b01, (outs GPRnopc:$Rd),
4575              (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4576              IIC_iMAC16, !strconcat(opc, "tb"), "\t$Rd, $Rn, $Rm, $Ra",
4577              [(set GPRnopc:$Rd, (add GPR:$Ra,
4578                                      (tb_mul GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4579           Requires<[IsARM, HasV5TE, UseMulOps]>,
4580           Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4581
4582  def TT : AMulxyIa<0b0001000, 0b11, (outs GPRnopc:$Rd),
4583              (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4584              IIC_iMAC16, !strconcat(opc, "tt"), "\t$Rd, $Rn, $Rm, $Ra",
4585             [(set GPRnopc:$Rd, (add GPR:$Ra,
4586                                     (tt_mul GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4587            Requires<[IsARM, HasV5TE, UseMulOps]>,
4588            Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4589
4590  def WB : AMulxyIa<0b0001001, 0b00, (outs GPRnopc:$Rd),
4591              (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4592              IIC_iMAC16, !strconcat(opc, "wb"), "\t$Rd, $Rn, $Rm, $Ra",
4593              [(set GPRnopc:$Rd,
4594                    (add GPR:$Ra, (ARMsmulwb GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4595           Requires<[IsARM, HasV5TE, UseMulOps]>,
4596           Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4597
4598  def WT : AMulxyIa<0b0001001, 0b10, (outs GPRnopc:$Rd),
4599              (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4600              IIC_iMAC16, !strconcat(opc, "wt"), "\t$Rd, $Rn, $Rm, $Ra",
4601              [(set GPRnopc:$Rd,
4602                    (add GPR:$Ra, (ARMsmulwt GPRnopc:$Rn, GPRnopc:$Rm)))]>,
4603            Requires<[IsARM, HasV5TE, UseMulOps]>,
4604            Sched<[WriteMAC16, ReadMUL, ReadMUL, ReadMAC]>;
4605  }
4606}
4607
4608defm SMUL : AI_smul<"smul">;
4609defm SMLA : AI_smla<"smla">;
4610
4611// Halfword multiply accumulate long: SMLAL<x><y>.
4612class SMLAL<bits<2> opc1, string asm>
4613 : AMulxyI64<0b0001010, opc1,
4614        (outs GPRnopc:$RdLo, GPRnopc:$RdHi),
4615        (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4616        IIC_iMAC64, asm, "\t$RdLo, $RdHi, $Rn, $Rm", []>,
4617        RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">,
4618        Requires<[IsARM, HasV5TE]>,
4619        Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4620
4621def SMLALBB : SMLAL<0b00, "smlalbb">;
4622def SMLALBT : SMLAL<0b10, "smlalbt">;
4623def SMLALTB : SMLAL<0b01, "smlaltb">;
4624def SMLALTT : SMLAL<0b11, "smlaltt">;
4625
4626def : ARMV5TEPat<(ARMsmlalbb GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
4627                 (SMLALBB $Rn, $Rm, $RLo, $RHi)>;
4628def : ARMV5TEPat<(ARMsmlalbt GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
4629                 (SMLALBT $Rn, $Rm, $RLo, $RHi)>;
4630def : ARMV5TEPat<(ARMsmlaltb GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
4631                 (SMLALTB $Rn, $Rm, $RLo, $RHi)>;
4632def : ARMV5TEPat<(ARMsmlaltt GPR:$Rn, GPR:$Rm, GPR:$RLo, GPR:$RHi),
4633                 (SMLALTT $Rn, $Rm, $RLo, $RHi)>;
4634
4635// Helper class for AI_smld.
4636class AMulDualIbase<bit long, bit sub, bit swap, dag oops, dag iops,
4637                    InstrItinClass itin, string opc, string asm>
4638  : AI<oops, iops, MulFrm, itin, opc, asm, []>,
4639       Requires<[IsARM, HasV6]> {
4640  bits<4> Rn;
4641  bits<4> Rm;
4642  let Inst{27-23} = 0b01110;
4643  let Inst{22}    = long;
4644  let Inst{21-20} = 0b00;
4645  let Inst{11-8}  = Rm;
4646  let Inst{7}     = 0;
4647  let Inst{6}     = sub;
4648  let Inst{5}     = swap;
4649  let Inst{4}     = 1;
4650  let Inst{3-0}   = Rn;
4651}
4652class AMulDualI<bit long, bit sub, bit swap, dag oops, dag iops,
4653                InstrItinClass itin, string opc, string asm>
4654  : AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> {
4655  bits<4> Rd;
4656  let Inst{15-12} = 0b1111;
4657  let Inst{19-16} = Rd;
4658}
4659class AMulDualIa<bit long, bit sub, bit swap, dag oops, dag iops,
4660                InstrItinClass itin, string opc, string asm>
4661  : AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> {
4662  bits<4> Ra;
4663  bits<4> Rd;
4664  let Inst{19-16} = Rd;
4665  let Inst{15-12} = Ra;
4666}
4667class AMulDualI64<bit long, bit sub, bit swap, dag oops, dag iops,
4668                  InstrItinClass itin, string opc, string asm>
4669  : AMulDualIbase<long, sub, swap, oops, iops, itin, opc, asm> {
4670  bits<4> RdLo;
4671  bits<4> RdHi;
4672  let Inst{19-16} = RdHi;
4673  let Inst{15-12} = RdLo;
4674}
4675
4676multiclass AI_smld<bit sub, string opc> {
4677
4678  def D : AMulDualIa<0, sub, 0, (outs GPRnopc:$Rd),
4679                  (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4680                  NoItinerary, !strconcat(opc, "d"), "\t$Rd, $Rn, $Rm, $Ra">,
4681          Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4682
4683  def DX: AMulDualIa<0, sub, 1, (outs GPRnopc:$Rd),
4684                  (ins GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4685                  NoItinerary, !strconcat(opc, "dx"), "\t$Rd, $Rn, $Rm, $Ra">,
4686          Sched<[WriteMAC32, ReadMUL, ReadMUL, ReadMAC]>;
4687
4688  def LD: AMulDualI64<1, sub, 0, (outs GPRnopc:$RdLo, GPRnopc:$RdHi),
4689                  (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4690                  NoItinerary,
4691                  !strconcat(opc, "ld"), "\t$RdLo, $RdHi, $Rn, $Rm">,
4692                  RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">,
4693          Sched<[WriteMAC64Lo, WriteMAC64Hi, ReadMUL, ReadMUL, ReadMAC, ReadMAC]>;
4694
4695  def LDX : AMulDualI64<1, sub, 1, (outs GPRnopc:$RdLo, GPRnopc:$RdHi),
4696                  (ins GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4697                  NoItinerary,
4698                  !strconcat(opc, "ldx"),"\t$RdLo, $RdHi, $Rn, $Rm">,
4699                  RegConstraint<"$RLo = $RdLo, $RHi = $RdHi">,
4700             Sched<[WriteMUL64Lo, WriteMUL64Hi, ReadMUL, ReadMUL]>;
4701}
4702
4703defm SMLA : AI_smld<0, "smla">;
4704defm SMLS : AI_smld<1, "smls">;
4705
4706def : ARMV6Pat<(int_arm_smlad GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4707               (SMLAD GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra)>;
4708def : ARMV6Pat<(int_arm_smladx GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4709               (SMLADX GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra)>;
4710def : ARMV6Pat<(int_arm_smlsd GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4711               (SMLSD GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra)>;
4712def : ARMV6Pat<(int_arm_smlsdx GPRnopc:$Rn, GPRnopc:$Rm, GPR:$Ra),
4713               (SMLSDX GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra)>;
4714def : ARMV6Pat<(ARMSmlald GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4715               (SMLALD GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi)>;
4716def : ARMV6Pat<(ARMSmlaldx GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4717               (SMLALDX GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi)>;
4718def : ARMV6Pat<(ARMSmlsld GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4719               (SMLSLD GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi)>;
4720def : ARMV6Pat<(ARMSmlsldx GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi),
4721               (SMLSLDX GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$RLo, GPRnopc:$RHi)>;
4722
4723multiclass AI_sdml<bit sub, string opc> {
4724
4725  def D:AMulDualI<0, sub, 0, (outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm),
4726                  NoItinerary, !strconcat(opc, "d"), "\t$Rd, $Rn, $Rm">,
4727        Sched<[WriteMUL32, ReadMUL, ReadMUL]>;
4728  def DX:AMulDualI<0, sub, 1, (outs GPRnopc:$Rd),(ins GPRnopc:$Rn, GPRnopc:$Rm),
4729                  NoItinerary, !strconcat(opc, "dx"), "\t$Rd, $Rn, $Rm">,
4730         Sched<[WriteMUL32, ReadMUL, ReadMUL]>;
4731}
4732
4733defm SMUA : AI_sdml<0, "smua">;
4734defm SMUS : AI_sdml<1, "smus">;
4735
4736def : ARMV6Pat<(int_arm_smuad GPRnopc:$Rn, GPRnopc:$Rm),
4737               (SMUAD GPRnopc:$Rn, GPRnopc:$Rm)>;
4738def : ARMV6Pat<(int_arm_smuadx GPRnopc:$Rn, GPRnopc:$Rm),
4739               (SMUADX GPRnopc:$Rn, GPRnopc:$Rm)>;
4740def : ARMV6Pat<(int_arm_smusd GPRnopc:$Rn, GPRnopc:$Rm),
4741               (SMUSD GPRnopc:$Rn, GPRnopc:$Rm)>;
4742def : ARMV6Pat<(int_arm_smusdx GPRnopc:$Rn, GPRnopc:$Rm),
4743               (SMUSDX GPRnopc:$Rn, GPRnopc:$Rm)>;
4744
4745//===----------------------------------------------------------------------===//
4746//  Division Instructions (ARMv7-A with virtualization extension)
4747//
4748def SDIV : ADivA1I<0b001, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iDIV,
4749                   "sdiv", "\t$Rd, $Rn, $Rm",
4750                   [(set GPR:$Rd, (sdiv GPR:$Rn, GPR:$Rm))]>,
4751           Requires<[IsARM, HasDivideInARM]>,
4752           Sched<[WriteDIV]>;
4753
4754def UDIV : ADivA1I<0b011, (outs GPR:$Rd), (ins GPR:$Rn, GPR:$Rm), IIC_iDIV,
4755                   "udiv", "\t$Rd, $Rn, $Rm",
4756                   [(set GPR:$Rd, (udiv GPR:$Rn, GPR:$Rm))]>,
4757           Requires<[IsARM, HasDivideInARM]>,
4758           Sched<[WriteDIV]>;
4759
4760//===----------------------------------------------------------------------===//
4761//  Misc. Arithmetic Instructions.
4762//
4763
4764def CLZ  : AMiscA1I<0b00010110, 0b0001, (outs GPR:$Rd), (ins GPR:$Rm),
4765              IIC_iUNAr, "clz", "\t$Rd, $Rm",
4766              [(set GPR:$Rd, (ctlz GPR:$Rm))]>, Requires<[IsARM, HasV5T]>,
4767           Sched<[WriteALU]>;
4768
4769def RBIT : AMiscA1I<0b01101111, 0b0011, (outs GPR:$Rd), (ins GPR:$Rm),
4770              IIC_iUNAr, "rbit", "\t$Rd, $Rm",
4771              [(set GPR:$Rd, (bitreverse GPR:$Rm))]>,
4772           Requires<[IsARM, HasV6T2]>,
4773           Sched<[WriteALU]>;
4774
4775def REV  : AMiscA1I<0b01101011, 0b0011, (outs GPR:$Rd), (ins GPR:$Rm),
4776              IIC_iUNAr, "rev", "\t$Rd, $Rm",
4777              [(set GPR:$Rd, (bswap GPR:$Rm))]>, Requires<[IsARM, HasV6]>,
4778           Sched<[WriteALU]>;
4779
4780let AddedComplexity = 5 in
4781def REV16 : AMiscA1I<0b01101011, 0b1011, (outs GPR:$Rd), (ins GPR:$Rm),
4782               IIC_iUNAr, "rev16", "\t$Rd, $Rm",
4783               [(set GPR:$Rd, (rotr (bswap GPR:$Rm), (i32 16)))]>,
4784               Requires<[IsARM, HasV6]>,
4785           Sched<[WriteALU]>;
4786
4787def : ARMV6Pat<(srl (bswap (extloadi16 addrmode3:$addr)), (i32 16)),
4788              (REV16 (LDRH addrmode3:$addr))>;
4789def : ARMV6Pat<(truncstorei16 (srl (bswap GPR:$Rn), (i32 16)), addrmode3:$addr),
4790               (STRH (REV16 GPR:$Rn), addrmode3:$addr)>;
4791def : ARMV6Pat<(srl (bswap top16Zero:$Rn), (i32 16)),
4792               (REV16 GPR:$Rn)>;
4793
4794let AddedComplexity = 5 in
4795def REVSH : AMiscA1I<0b01101111, 0b1011, (outs GPR:$Rd), (ins GPR:$Rm),
4796               IIC_iUNAr, "revsh", "\t$Rd, $Rm",
4797               [(set GPR:$Rd, (sra (bswap GPR:$Rm), (i32 16)))]>,
4798               Requires<[IsARM, HasV6]>,
4799           Sched<[WriteALU]>;
4800
4801def : ARMV6Pat<(or (sra (shl GPR:$Rm, (i32 24)), (i32 16)),
4802                   (and (srl GPR:$Rm, (i32 8)), 0xFF)),
4803               (REVSH GPR:$Rm)>;
4804
4805def PKHBT : APKHI<0b01101000, 0, (outs GPRnopc:$Rd),
4806                              (ins GPRnopc:$Rn, GPRnopc:$Rm, pkh_lsl_amt:$sh),
4807               IIC_iALUsi, "pkhbt", "\t$Rd, $Rn, $Rm$sh",
4808               [(set GPRnopc:$Rd, (or (and GPRnopc:$Rn, 0xFFFF),
4809                                      (and (shl GPRnopc:$Rm, pkh_lsl_amt:$sh),
4810                                           0xFFFF0000)))]>,
4811               Requires<[IsARM, HasV6]>,
4812           Sched<[WriteALUsi, ReadALU]>;
4813
4814// Alternate cases for PKHBT where identities eliminate some nodes.
4815def : ARMV6Pat<(or (and GPRnopc:$Rn, 0xFFFF), (and GPRnopc:$Rm, 0xFFFF0000)),
4816               (PKHBT GPRnopc:$Rn, GPRnopc:$Rm, 0)>;
4817def : ARMV6Pat<(or (and GPRnopc:$Rn, 0xFFFF), (shl GPRnopc:$Rm, imm16_31:$sh)),
4818               (PKHBT GPRnopc:$Rn, GPRnopc:$Rm, imm16_31:$sh)>;
4819
4820// Note: Shifts of 1-15 bits will be transformed to srl instead of sra and
4821// will match the pattern below.
4822def PKHTB : APKHI<0b01101000, 1, (outs GPRnopc:$Rd),
4823                              (ins GPRnopc:$Rn, GPRnopc:$Rm, pkh_asr_amt:$sh),
4824               IIC_iBITsi, "pkhtb", "\t$Rd, $Rn, $Rm$sh",
4825               [(set GPRnopc:$Rd, (or (and GPRnopc:$Rn, 0xFFFF0000),
4826                                      (and (sra GPRnopc:$Rm, pkh_asr_amt:$sh),
4827                                           0xFFFF)))]>,
4828               Requires<[IsARM, HasV6]>,
4829           Sched<[WriteALUsi, ReadALU]>;
4830
4831// Alternate cases for PKHTB where identities eliminate some nodes.  Note that
4832// a shift amount of 0 is *not legal* here, it is PKHBT instead.
4833// We also can not replace a srl (17..31) by an arithmetic shift we would use in
4834// pkhtb src1, src2, asr (17..31).
4835def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000),
4836                   (srl GPRnopc:$src2, imm16:$sh)),
4837               (PKHTB GPRnopc:$src1, GPRnopc:$src2, imm16:$sh)>;
4838def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000),
4839                   (sra GPRnopc:$src2, imm16_31:$sh)),
4840               (PKHTB GPRnopc:$src1, GPRnopc:$src2, imm16_31:$sh)>;
4841def : ARMV6Pat<(or (and GPRnopc:$src1, 0xFFFF0000),
4842                   (and (srl GPRnopc:$src2, imm1_15:$sh), 0xFFFF)),
4843               (PKHTB GPRnopc:$src1, GPRnopc:$src2, imm1_15:$sh)>;
4844
4845//===----------------------------------------------------------------------===//
4846// CRC Instructions
4847//
4848// Polynomials:
4849// + CRC32{B,H,W}       0x04C11DB7
4850// + CRC32C{B,H,W}      0x1EDC6F41
4851//
4852
4853class AI_crc32<bit C, bits<2> sz, string suffix, SDPatternOperator builtin>
4854  : AInoP<(outs GPRnopc:$Rd), (ins GPRnopc:$Rn, GPRnopc:$Rm), MiscFrm, NoItinerary,
4855               !strconcat("crc32", suffix), "\t$Rd, $Rn, $Rm",
4856               [(set GPRnopc:$Rd, (builtin GPRnopc:$Rn, GPRnopc:$Rm))]>,
4857               Requires<[IsARM, HasCRC]> {
4858  bits<4> Rd;
4859  bits<4> Rn;
4860  bits<4> Rm;
4861
4862  let Inst{31-28} = 0b1110;
4863  let Inst{27-23} = 0b00010;
4864  let Inst{22-21} = sz;
4865  let Inst{20}    = 0;
4866  let Inst{19-16} = Rn;
4867  let Inst{15-12} = Rd;
4868  let Inst{11-10} = 0b00;
4869  let Inst{9}     = C;
4870  let Inst{8}     = 0;
4871  let Inst{7-4}   = 0b0100;
4872  let Inst{3-0}   = Rm;
4873
4874  let Unpredictable{11-8} = 0b1101;
4875}
4876
4877def CRC32B  : AI_crc32<0, 0b00, "b", int_arm_crc32b>;
4878def CRC32CB : AI_crc32<1, 0b00, "cb", int_arm_crc32cb>;
4879def CRC32H  : AI_crc32<0, 0b01, "h", int_arm_crc32h>;
4880def CRC32CH : AI_crc32<1, 0b01, "ch", int_arm_crc32ch>;
4881def CRC32W  : AI_crc32<0, 0b10, "w", int_arm_crc32w>;
4882def CRC32CW : AI_crc32<1, 0b10, "cw", int_arm_crc32cw>;
4883
4884//===----------------------------------------------------------------------===//
4885// ARMv8.1a Privilege Access Never extension
4886//
4887// SETPAN #imm1
4888
4889def SETPAN : AInoP<(outs), (ins imm0_1:$imm), MiscFrm, NoItinerary, "setpan",
4890                "\t$imm", []>, Requires<[IsARM, HasV8, HasV8_1a]> {
4891  bits<1> imm;
4892
4893  let Inst{31-28} = 0b1111;
4894  let Inst{27-20} = 0b00010001;
4895  let Inst{19-16} = 0b0000;
4896  let Inst{15-10} = 0b000000;
4897  let Inst{9} = imm;
4898  let Inst{8} = 0b0;
4899  let Inst{7-4} = 0b0000;
4900  let Inst{3-0} = 0b0000;
4901
4902  let Unpredictable{19-16} = 0b1111;
4903  let Unpredictable{15-10} = 0b111111;
4904  let Unpredictable{8} = 0b1;
4905  let Unpredictable{3-0} = 0b1111;
4906}
4907
4908//===----------------------------------------------------------------------===//
4909//  Comparison Instructions...
4910//
4911
4912defm CMP  : AI1_cmp_irs<0b1010, "cmp",
4913                        IIC_iCMPi, IIC_iCMPr, IIC_iCMPsr, ARMcmp>;
4914
4915// ARMcmpZ can re-use the above instruction definitions.
4916def : ARMPat<(ARMcmpZ GPR:$src, mod_imm:$imm),
4917             (CMPri   GPR:$src, mod_imm:$imm)>;
4918def : ARMPat<(ARMcmpZ GPR:$src, GPR:$rhs),
4919             (CMPrr   GPR:$src, GPR:$rhs)>;
4920def : ARMPat<(ARMcmpZ GPR:$src, so_reg_imm:$rhs),
4921             (CMPrsi   GPR:$src, so_reg_imm:$rhs)>;
4922def : ARMPat<(ARMcmpZ GPR:$src, so_reg_reg:$rhs),
4923             (CMPrsr   GPR:$src, so_reg_reg:$rhs)>;
4924// Following patterns aimed to prevent usage of CMPrsi and CMPrsr for a comparison
4925// with zero. Usage of CMPri in these cases helps to replace cmp with S-versions of
4926// shift instructions during peephole optimizations pass.
4927def : ARMPat<(ARMcmpZ so_reg_imm:$rhs, 0),
4928             (CMPri (MOVsi so_reg_imm:$rhs), 0)>;
4929def : ARMPat<(ARMcmpZ so_reg_reg:$rhs, 0),
4930             (CMPri (MOVsr so_reg_reg:$rhs), 0)>;
4931
4932// CMN register-integer
4933let isCompare = 1, Defs = [CPSR] in {
4934def CMNri : AI1<0b1011, (outs), (ins GPR:$Rn, mod_imm:$imm), DPFrm, IIC_iCMPi,
4935                "cmn", "\t$Rn, $imm",
4936                [(ARMcmn GPR:$Rn, mod_imm:$imm)]>,
4937                Sched<[WriteCMP, ReadALU]> {
4938  bits<4> Rn;
4939  bits<12> imm;
4940  let Inst{25} = 1;
4941  let Inst{20} = 1;
4942  let Inst{19-16} = Rn;
4943  let Inst{15-12} = 0b0000;
4944  let Inst{11-0} = imm;
4945
4946  let Unpredictable{15-12} = 0b1111;
4947}
4948
4949// CMN register-register/shift
4950def CMNzrr : AI1<0b1011, (outs), (ins GPR:$Rn, GPR:$Rm), DPFrm, IIC_iCMPr,
4951                 "cmn", "\t$Rn, $Rm",
4952                 [(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>
4953                   GPR:$Rn, GPR:$Rm)]>, Sched<[WriteCMP, ReadALU, ReadALU]> {
4954  bits<4> Rn;
4955  bits<4> Rm;
4956  let isCommutable = 1;
4957  let Inst{25} = 0;
4958  let Inst{20} = 1;
4959  let Inst{19-16} = Rn;
4960  let Inst{15-12} = 0b0000;
4961  let Inst{11-4} = 0b00000000;
4962  let Inst{3-0} = Rm;
4963
4964  let Unpredictable{15-12} = 0b1111;
4965}
4966
4967def CMNzrsi : AI1<0b1011, (outs),
4968                  (ins GPR:$Rn, so_reg_imm:$shift), DPSoRegImmFrm, IIC_iCMPsr,
4969                  "cmn", "\t$Rn, $shift",
4970                  [(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>
4971                    GPR:$Rn, so_reg_imm:$shift)]>,
4972                    Sched<[WriteCMPsi, ReadALU]> {
4973  bits<4> Rn;
4974  bits<12> shift;
4975  let Inst{25} = 0;
4976  let Inst{20} = 1;
4977  let Inst{19-16} = Rn;
4978  let Inst{15-12} = 0b0000;
4979  let Inst{11-5} = shift{11-5};
4980  let Inst{4} = 0;
4981  let Inst{3-0} = shift{3-0};
4982
4983  let Unpredictable{15-12} = 0b1111;
4984}
4985
4986def CMNzrsr : AI1<0b1011, (outs),
4987                  (ins GPRnopc:$Rn, so_reg_reg:$shift), DPSoRegRegFrm, IIC_iCMPsr,
4988                  "cmn", "\t$Rn, $shift",
4989                  [(BinOpFrag<(ARMcmpZ node:$LHS,(ineg node:$RHS))>
4990                    GPRnopc:$Rn, so_reg_reg:$shift)]>,
4991                    Sched<[WriteCMPsr, ReadALU]> {
4992  bits<4> Rn;
4993  bits<12> shift;
4994  let Inst{25} = 0;
4995  let Inst{20} = 1;
4996  let Inst{19-16} = Rn;
4997  let Inst{15-12} = 0b0000;
4998  let Inst{11-8} = shift{11-8};
4999  let Inst{7} = 0;
5000  let Inst{6-5} = shift{6-5};
5001  let Inst{4} = 1;
5002  let Inst{3-0} = shift{3-0};
5003
5004  let Unpredictable{15-12} = 0b1111;
5005}
5006
5007}
5008
5009def : ARMPat<(ARMcmp  GPR:$src, mod_imm_neg:$imm),
5010             (CMNri   GPR:$src, mod_imm_neg:$imm)>;
5011
5012def : ARMPat<(ARMcmpZ GPR:$src, mod_imm_neg:$imm),
5013             (CMNri   GPR:$src, mod_imm_neg:$imm)>;
5014
5015// Note that TST/TEQ don't set all the same flags that CMP does!
5016defm TST  : AI1_cmp_irs<0b1000, "tst",
5017                        IIC_iTSTi, IIC_iTSTr, IIC_iTSTsr,
5018                      BinOpFrag<(ARMcmpZ (and_su node:$LHS, node:$RHS), 0)>, 1,
5019                      "DecodeTSTInstruction">;
5020defm TEQ  : AI1_cmp_irs<0b1001, "teq",
5021                        IIC_iTSTi, IIC_iTSTr, IIC_iTSTsr,
5022                      BinOpFrag<(ARMcmpZ (xor_su node:$LHS, node:$RHS), 0)>, 1>;
5023
5024// Pseudo i64 compares for some floating point compares.
5025let usesCustomInserter = 1, isBranch = 1, isTerminator = 1,
5026    Defs = [CPSR] in {
5027def BCCi64 : PseudoInst<(outs),
5028    (ins i32imm:$cc, GPR:$lhs1, GPR:$lhs2, GPR:$rhs1, GPR:$rhs2, brtarget:$dst),
5029     IIC_Br,
5030    [(ARMBcci64 imm:$cc, GPR:$lhs1, GPR:$lhs2, GPR:$rhs1, GPR:$rhs2, bb:$dst)]>,
5031    Sched<[WriteBr]>;
5032
5033def BCCZi64 : PseudoInst<(outs),
5034     (ins i32imm:$cc, GPR:$lhs1, GPR:$lhs2, brtarget:$dst), IIC_Br,
5035    [(ARMBcci64 imm:$cc, GPR:$lhs1, GPR:$lhs2, 0, 0, bb:$dst)]>,
5036    Sched<[WriteBr]>;
5037} // usesCustomInserter
5038
5039
5040// Conditional moves
5041let hasSideEffects = 0 in {
5042
5043let isCommutable = 1, isSelect = 1 in
5044def MOVCCr : ARMPseudoInst<(outs GPR:$Rd),
5045                           (ins GPR:$false, GPR:$Rm, cmovpred:$p),
5046                           4, IIC_iCMOVr,
5047                           [(set GPR:$Rd, (ARMcmov GPR:$false, GPR:$Rm,
5048                                                   cmovpred:$p))]>,
5049             RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
5050
5051def MOVCCsi : ARMPseudoInst<(outs GPR:$Rd),
5052                            (ins GPR:$false, so_reg_imm:$shift, cmovpred:$p),
5053                            4, IIC_iCMOVsr,
5054                            [(set GPR:$Rd,
5055                                  (ARMcmov GPR:$false, so_reg_imm:$shift,
5056                                           cmovpred:$p))]>,
5057      RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
5058def MOVCCsr : ARMPseudoInst<(outs GPR:$Rd),
5059                            (ins GPR:$false, so_reg_reg:$shift, cmovpred:$p),
5060                           4, IIC_iCMOVsr,
5061  [(set GPR:$Rd, (ARMcmov GPR:$false, so_reg_reg:$shift,
5062                            cmovpred:$p))]>,
5063      RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
5064
5065
5066let isMoveImm = 1 in
5067def MOVCCi16
5068    : ARMPseudoInst<(outs GPR:$Rd),
5069                    (ins GPR:$false, imm0_65535_expr:$imm, cmovpred:$p),
5070                    4, IIC_iMOVi,
5071                    [(set GPR:$Rd, (ARMcmov GPR:$false, imm0_65535:$imm,
5072                                            cmovpred:$p))]>,
5073      RegConstraint<"$false = $Rd">, Requires<[IsARM, HasV6T2]>,
5074      Sched<[WriteALU]>;
5075
5076let isMoveImm = 1 in
5077def MOVCCi : ARMPseudoInst<(outs GPR:$Rd),
5078                           (ins GPR:$false, mod_imm:$imm, cmovpred:$p),
5079                           4, IIC_iCMOVi,
5080                           [(set GPR:$Rd, (ARMcmov GPR:$false, mod_imm:$imm,
5081                                                   cmovpred:$p))]>,
5082      RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
5083
5084// Two instruction predicate mov immediate.
5085let isMoveImm = 1 in
5086def MOVCCi32imm
5087    : ARMPseudoInst<(outs GPR:$Rd),
5088                    (ins GPR:$false, i32imm:$src, cmovpred:$p),
5089                    8, IIC_iCMOVix2,
5090                    [(set GPR:$Rd, (ARMcmov GPR:$false, imm:$src,
5091                                            cmovpred:$p))]>,
5092      RegConstraint<"$false = $Rd">, Requires<[IsARM, HasV6T2]>;
5093
5094let isMoveImm = 1 in
5095def MVNCCi : ARMPseudoInst<(outs GPR:$Rd),
5096                           (ins GPR:$false, mod_imm:$imm, cmovpred:$p),
5097                           4, IIC_iCMOVi,
5098                           [(set GPR:$Rd, (ARMcmov GPR:$false, mod_imm_not:$imm,
5099                                                   cmovpred:$p))]>,
5100                RegConstraint<"$false = $Rd">, Sched<[WriteALU]>;
5101
5102} // hasSideEffects
5103
5104
5105//===----------------------------------------------------------------------===//
5106// Atomic operations intrinsics
5107//
5108
5109def MemBarrierOptOperand : AsmOperandClass {
5110  let Name = "MemBarrierOpt";
5111  let ParserMethod = "parseMemBarrierOptOperand";
5112}
5113def memb_opt : Operand<i32> {
5114  let PrintMethod = "printMemBOption";
5115  let ParserMatchClass = MemBarrierOptOperand;
5116  let DecoderMethod = "DecodeMemBarrierOption";
5117}
5118
5119def InstSyncBarrierOptOperand : AsmOperandClass {
5120  let Name = "InstSyncBarrierOpt";
5121  let ParserMethod = "parseInstSyncBarrierOptOperand";
5122}
5123def instsyncb_opt : Operand<i32> {
5124  let PrintMethod = "printInstSyncBOption";
5125  let ParserMatchClass = InstSyncBarrierOptOperand;
5126  let DecoderMethod = "DecodeInstSyncBarrierOption";
5127}
5128
5129def TraceSyncBarrierOptOperand : AsmOperandClass {
5130  let Name = "TraceSyncBarrierOpt";
5131  let ParserMethod = "parseTraceSyncBarrierOptOperand";
5132}
5133def tsb_opt : Operand<i32> {
5134  let PrintMethod = "printTraceSyncBOption";
5135  let ParserMatchClass = TraceSyncBarrierOptOperand;
5136}
5137
5138// Memory barriers protect the atomic sequences
5139let hasSideEffects = 1 in {
5140def DMB : AInoP<(outs), (ins memb_opt:$opt), MiscFrm, NoItinerary,
5141                "dmb", "\t$opt", [(int_arm_dmb (i32 imm0_15:$opt))]>,
5142                Requires<[IsARM, HasDB]> {
5143  bits<4> opt;
5144  let Inst{31-4} = 0xf57ff05;
5145  let Inst{3-0} = opt;
5146}
5147
5148def DSB : AInoP<(outs), (ins memb_opt:$opt), MiscFrm, NoItinerary,
5149                "dsb", "\t$opt", [(int_arm_dsb (i32 imm0_15:$opt))]>,
5150                Requires<[IsARM, HasDB]> {
5151  bits<4> opt;
5152  let Inst{31-4} = 0xf57ff04;
5153  let Inst{3-0} = opt;
5154}
5155
5156// ISB has only full system option
5157def ISB : AInoP<(outs), (ins instsyncb_opt:$opt), MiscFrm, NoItinerary,
5158                "isb", "\t$opt", [(int_arm_isb (i32 imm0_15:$opt))]>,
5159                Requires<[IsARM, HasDB]> {
5160  bits<4> opt;
5161  let Inst{31-4} = 0xf57ff06;
5162  let Inst{3-0} = opt;
5163}
5164
5165let hasNoSchedulingInfo = 1 in
5166def TSB : AInoP<(outs), (ins tsb_opt:$opt), MiscFrm, NoItinerary,
5167                "tsb", "\t$opt", []>, Requires<[IsARM, HasV8_4a]> {
5168  let Inst{31-0} = 0xe320f012;
5169  let DecoderMethod = "DecodeTSBInstruction";
5170}
5171
5172}
5173
5174// Armv8.5-A speculation barrier
5175def SB : AInoP<(outs), (ins), MiscFrm, NoItinerary, "sb", "", []>,
5176         Requires<[IsARM, HasSB]>, Sched<[]> {
5177  let Inst{31-0} = 0xf57ff070;
5178  let Unpredictable = 0x000fff0f;
5179  let hasSideEffects = 1;
5180}
5181
5182let usesCustomInserter = 1, Defs = [CPSR], hasNoSchedulingInfo = 1 in {
5183  // Pseudo instruction that combines movs + predicated rsbmi
5184  // to implement integer ABS
5185  def ABS : ARMPseudoInst<(outs GPR:$dst), (ins GPR:$src), 8, NoItinerary, []>;
5186}
5187
5188let usesCustomInserter = 1, Defs = [CPSR], hasNoSchedulingInfo = 1 in {
5189    def COPY_STRUCT_BYVAL_I32 : PseudoInst<
5190      (outs), (ins GPR:$dst, GPR:$src, i32imm:$size, i32imm:$alignment),
5191      NoItinerary,
5192      [(ARMcopystructbyval GPR:$dst, GPR:$src, imm:$size, imm:$alignment)]>;
5193}
5194
5195let hasPostISelHook = 1, Constraints = "$newdst = $dst, $newsrc = $src" in {
5196    // %newsrc, %newdst = MEMCPY %dst, %src, N, ...N scratch regs...
5197    // Copies N registers worth of memory from address %src to address %dst
5198    // and returns the incremented addresses.  N scratch register will
5199    // be attached for the copy to use.
5200    def MEMCPY : PseudoInst<
5201      (outs GPR:$newdst, GPR:$newsrc),
5202      (ins GPR:$dst, GPR:$src, i32imm:$nreg, variable_ops),
5203      NoItinerary,
5204      [(set GPR:$newdst, GPR:$newsrc,
5205            (ARMmemcopy GPR:$dst, GPR:$src, imm:$nreg))]>;
5206}
5207
5208def ldrex_1 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{
5209  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
5210}]>;
5211
5212def ldrex_2 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{
5213  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
5214}]>;
5215
5216def ldrex_4 : PatFrag<(ops node:$ptr), (int_arm_ldrex node:$ptr), [{
5217  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
5218}]>;
5219
5220def strex_1 : PatFrag<(ops node:$val, node:$ptr),
5221                      (int_arm_strex node:$val, node:$ptr), [{
5222  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
5223}]>;
5224
5225def strex_2 : PatFrag<(ops node:$val, node:$ptr),
5226                      (int_arm_strex node:$val, node:$ptr), [{
5227  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
5228}]>;
5229
5230def strex_4 : PatFrag<(ops node:$val, node:$ptr),
5231                      (int_arm_strex node:$val, node:$ptr), [{
5232  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
5233}]>;
5234
5235def ldaex_1 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{
5236  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
5237}]>;
5238
5239def ldaex_2 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{
5240  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
5241}]>;
5242
5243def ldaex_4 : PatFrag<(ops node:$ptr), (int_arm_ldaex node:$ptr), [{
5244  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
5245}]>;
5246
5247def stlex_1 : PatFrag<(ops node:$val, node:$ptr),
5248                      (int_arm_stlex node:$val, node:$ptr), [{
5249  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
5250}]>;
5251
5252def stlex_2 : PatFrag<(ops node:$val, node:$ptr),
5253                      (int_arm_stlex node:$val, node:$ptr), [{
5254  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
5255}]>;
5256
5257def stlex_4 : PatFrag<(ops node:$val, node:$ptr),
5258                      (int_arm_stlex node:$val, node:$ptr), [{
5259  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
5260}]>;
5261
5262let mayLoad = 1 in {
5263def LDREXB : AIldrex<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr),
5264                     NoItinerary, "ldrexb", "\t$Rt, $addr",
5265                     [(set GPR:$Rt, (ldrex_1 addr_offset_none:$addr))]>;
5266def LDREXH : AIldrex<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr),
5267                     NoItinerary, "ldrexh", "\t$Rt, $addr",
5268                     [(set GPR:$Rt, (ldrex_2 addr_offset_none:$addr))]>;
5269def LDREX  : AIldrex<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr),
5270                     NoItinerary, "ldrex", "\t$Rt, $addr",
5271                     [(set GPR:$Rt, (ldrex_4 addr_offset_none:$addr))]>;
5272let hasExtraDefRegAllocReq = 1 in
5273def LDREXD : AIldrex<0b01, (outs GPRPairOp:$Rt),(ins addr_offset_none:$addr),
5274                      NoItinerary, "ldrexd", "\t$Rt, $addr", []> {
5275  let DecoderMethod = "DecodeDoubleRegLoad";
5276}
5277
5278def LDAEXB : AIldaex<0b10, (outs GPR:$Rt), (ins addr_offset_none:$addr),
5279                     NoItinerary, "ldaexb", "\t$Rt, $addr",
5280                     [(set GPR:$Rt, (ldaex_1 addr_offset_none:$addr))]>;
5281def LDAEXH : AIldaex<0b11, (outs GPR:$Rt), (ins addr_offset_none:$addr),
5282                     NoItinerary, "ldaexh", "\t$Rt, $addr",
5283                    [(set GPR:$Rt, (ldaex_2 addr_offset_none:$addr))]>;
5284def LDAEX  : AIldaex<0b00, (outs GPR:$Rt), (ins addr_offset_none:$addr),
5285                     NoItinerary, "ldaex", "\t$Rt, $addr",
5286                    [(set GPR:$Rt, (ldaex_4 addr_offset_none:$addr))]>;
5287let hasExtraDefRegAllocReq = 1 in
5288def LDAEXD : AIldaex<0b01, (outs GPRPairOp:$Rt),(ins addr_offset_none:$addr),
5289                      NoItinerary, "ldaexd", "\t$Rt, $addr", []> {
5290  let DecoderMethod = "DecodeDoubleRegLoad";
5291}
5292}
5293
5294let mayStore = 1, Constraints = "@earlyclobber $Rd" in {
5295def STREXB: AIstrex<0b10, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5296                    NoItinerary, "strexb", "\t$Rd, $Rt, $addr",
5297                    [(set GPR:$Rd, (strex_1 GPR:$Rt,
5298                                            addr_offset_none:$addr))]>;
5299def STREXH: AIstrex<0b11, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5300                    NoItinerary, "strexh", "\t$Rd, $Rt, $addr",
5301                    [(set GPR:$Rd, (strex_2 GPR:$Rt,
5302                                            addr_offset_none:$addr))]>;
5303def STREX : AIstrex<0b00, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5304                    NoItinerary, "strex", "\t$Rd, $Rt, $addr",
5305                    [(set GPR:$Rd, (strex_4 GPR:$Rt,
5306                                            addr_offset_none:$addr))]>;
5307let hasExtraSrcRegAllocReq = 1 in
5308def STREXD : AIstrex<0b01, (outs GPR:$Rd),
5309                    (ins GPRPairOp:$Rt, addr_offset_none:$addr),
5310                    NoItinerary, "strexd", "\t$Rd, $Rt, $addr", []> {
5311  let DecoderMethod = "DecodeDoubleRegStore";
5312}
5313def STLEXB: AIstlex<0b10, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5314                    NoItinerary, "stlexb", "\t$Rd, $Rt, $addr",
5315                    [(set GPR:$Rd,
5316                          (stlex_1 GPR:$Rt, addr_offset_none:$addr))]>;
5317def STLEXH: AIstlex<0b11, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5318                    NoItinerary, "stlexh", "\t$Rd, $Rt, $addr",
5319                    [(set GPR:$Rd,
5320                          (stlex_2 GPR:$Rt, addr_offset_none:$addr))]>;
5321def STLEX : AIstlex<0b00, (outs GPR:$Rd), (ins GPR:$Rt, addr_offset_none:$addr),
5322                    NoItinerary, "stlex", "\t$Rd, $Rt, $addr",
5323                    [(set GPR:$Rd,
5324                          (stlex_4 GPR:$Rt, addr_offset_none:$addr))]>;
5325let hasExtraSrcRegAllocReq = 1 in
5326def STLEXD : AIstlex<0b01, (outs GPR:$Rd),
5327                    (ins GPRPairOp:$Rt, addr_offset_none:$addr),
5328                    NoItinerary, "stlexd", "\t$Rd, $Rt, $addr", []> {
5329  let DecoderMethod = "DecodeDoubleRegStore";
5330}
5331}
5332
5333def CLREX : AXI<(outs), (ins), MiscFrm, NoItinerary, "clrex",
5334                [(int_arm_clrex)]>,
5335            Requires<[IsARM, HasV6K]>  {
5336  let Inst{31-0} = 0b11110101011111111111000000011111;
5337}
5338
5339def : ARMPat<(strex_1 (and GPR:$Rt, 0xff), addr_offset_none:$addr),
5340             (STREXB GPR:$Rt, addr_offset_none:$addr)>;
5341def : ARMPat<(strex_2 (and GPR:$Rt, 0xffff), addr_offset_none:$addr),
5342             (STREXH GPR:$Rt, addr_offset_none:$addr)>;
5343
5344def : ARMPat<(stlex_1 (and GPR:$Rt, 0xff), addr_offset_none:$addr),
5345             (STLEXB GPR:$Rt, addr_offset_none:$addr)>;
5346def : ARMPat<(stlex_2 (and GPR:$Rt, 0xffff), addr_offset_none:$addr),
5347             (STLEXH GPR:$Rt, addr_offset_none:$addr)>;
5348
5349class acquiring_load<PatFrag base>
5350  : PatFrag<(ops node:$ptr), (base node:$ptr), [{
5351  AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getSuccessOrdering();
5352  return isAcquireOrStronger(Ordering);
5353}]>;
5354
5355def atomic_load_acquire_8  : acquiring_load<atomic_load_8>;
5356def atomic_load_acquire_16 : acquiring_load<atomic_load_16>;
5357def atomic_load_acquire_32 : acquiring_load<atomic_load_32>;
5358
5359class releasing_store<PatFrag base>
5360  : PatFrag<(ops node:$ptr, node:$val), (base node:$val, node:$ptr), [{
5361  AtomicOrdering Ordering = cast<AtomicSDNode>(N)->getSuccessOrdering();
5362  return isReleaseOrStronger(Ordering);
5363}]>;
5364
5365def atomic_store_release_8  : releasing_store<atomic_store_8>;
5366def atomic_store_release_16 : releasing_store<atomic_store_16>;
5367def atomic_store_release_32 : releasing_store<atomic_store_32>;
5368
5369let AddedComplexity = 8 in {
5370  def : ARMPat<(atomic_load_acquire_8 addr_offset_none:$addr),  (LDAB addr_offset_none:$addr)>;
5371  def : ARMPat<(atomic_load_acquire_16 addr_offset_none:$addr), (LDAH addr_offset_none:$addr)>;
5372  def : ARMPat<(atomic_load_acquire_32 addr_offset_none:$addr), (LDA  addr_offset_none:$addr)>;
5373  def : ARMPat<(atomic_store_release_8 addr_offset_none:$addr, GPR:$val),  (STLB GPR:$val, addr_offset_none:$addr)>;
5374  def : ARMPat<(atomic_store_release_16 addr_offset_none:$addr, GPR:$val), (STLH GPR:$val, addr_offset_none:$addr)>;
5375  def : ARMPat<(atomic_store_release_32 addr_offset_none:$addr, GPR:$val), (STL  GPR:$val, addr_offset_none:$addr)>;
5376}
5377
5378// SWP/SWPB are deprecated in V6/V7 and optional in v7VE.
5379// FIXME Use InstAlias to generate LDREX/STREX pairs instead.
5380let mayLoad = 1, mayStore = 1 in {
5381def SWP : AIswp<0, (outs GPRnopc:$Rt),
5382                (ins GPRnopc:$Rt2, addr_offset_none:$addr), "swp", []>,
5383                Requires<[IsARM,PreV8]>;
5384def SWPB: AIswp<1, (outs GPRnopc:$Rt),
5385                (ins GPRnopc:$Rt2, addr_offset_none:$addr), "swpb", []>,
5386                Requires<[IsARM,PreV8]>;
5387}
5388
5389//===----------------------------------------------------------------------===//
5390// Coprocessor Instructions.
5391//
5392
5393def CDP : ABI<0b1110, (outs), (ins p_imm:$cop, imm0_15:$opc1,
5394            c_imm:$CRd, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2),
5395            NoItinerary, "cdp", "\t$cop, $opc1, $CRd, $CRn, $CRm, $opc2",
5396            [(int_arm_cdp timm:$cop, timm:$opc1, timm:$CRd, timm:$CRn,
5397                          timm:$CRm, timm:$opc2)]>,
5398            Requires<[IsARM,PreV8]> {
5399  bits<4> opc1;
5400  bits<4> CRn;
5401  bits<4> CRd;
5402  bits<4> cop;
5403  bits<3> opc2;
5404  bits<4> CRm;
5405
5406  let Inst{3-0}   = CRm;
5407  let Inst{4}     = 0;
5408  let Inst{7-5}   = opc2;
5409  let Inst{11-8}  = cop;
5410  let Inst{15-12} = CRd;
5411  let Inst{19-16} = CRn;
5412  let Inst{23-20} = opc1;
5413
5414  let DecoderNamespace = "CoProc";
5415}
5416
5417def CDP2 : ABXI<0b1110, (outs), (ins p_imm:$cop, imm0_15:$opc1,
5418               c_imm:$CRd, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2),
5419               NoItinerary, "cdp2\t$cop, $opc1, $CRd, $CRn, $CRm, $opc2",
5420               [(int_arm_cdp2 timm:$cop, timm:$opc1, timm:$CRd, timm:$CRn,
5421                              timm:$CRm, timm:$opc2)]>,
5422               Requires<[IsARM,PreV8]> {
5423  let Inst{31-28} = 0b1111;
5424  bits<4> opc1;
5425  bits<4> CRn;
5426  bits<4> CRd;
5427  bits<4> cop;
5428  bits<3> opc2;
5429  bits<4> CRm;
5430
5431  let Inst{3-0}   = CRm;
5432  let Inst{4}     = 0;
5433  let Inst{7-5}   = opc2;
5434  let Inst{11-8}  = cop;
5435  let Inst{15-12} = CRd;
5436  let Inst{19-16} = CRn;
5437  let Inst{23-20} = opc1;
5438
5439  let DecoderNamespace = "CoProc";
5440}
5441
5442class ACI<dag oops, dag iops, string opc, string asm,
5443            list<dag> pattern, IndexMode im = IndexModeNone,
5444            AddrMode am = AddrModeNone>
5445  : I<oops, iops, am, 4, im, BrFrm, NoItinerary,
5446      opc, asm, "", pattern> {
5447  let Inst{27-25} = 0b110;
5448}
5449class ACInoP<dag oops, dag iops, string opc, string asm,
5450          list<dag> pattern, IndexMode im = IndexModeNone,
5451          AddrMode am = AddrModeNone>
5452  : InoP<oops, iops, am, 4, im, BrFrm, NoItinerary,
5453         opc, asm, "", pattern> {
5454  let Inst{31-28} = 0b1111;
5455  let Inst{27-25} = 0b110;
5456}
5457
5458let DecoderNamespace = "CoProc" in {
5459multiclass LdStCop<bit load, bit Dbit, string asm, list<dag> pattern> {
5460  def _OFFSET : ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5:$addr),
5461                    asm, "\t$cop, $CRd, $addr", pattern, IndexModeNone,
5462                    AddrMode5> {
5463    bits<13> addr;
5464    bits<4> cop;
5465    bits<4> CRd;
5466    let Inst{24} = 1; // P = 1
5467    let Inst{23} = addr{8};
5468    let Inst{22} = Dbit;
5469    let Inst{21} = 0; // W = 0
5470    let Inst{20} = load;
5471    let Inst{19-16} = addr{12-9};
5472    let Inst{15-12} = CRd;
5473    let Inst{11-8} = cop;
5474    let Inst{7-0} = addr{7-0};
5475    let DecoderMethod = "DecodeCopMemInstruction";
5476  }
5477  def _PRE : ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5_pre:$addr),
5478                 asm, "\t$cop, $CRd, $addr!", [], IndexModePre> {
5479    bits<13> addr;
5480    bits<4> cop;
5481    bits<4> CRd;
5482    let Inst{24} = 1; // P = 1
5483    let Inst{23} = addr{8};
5484    let Inst{22} = Dbit;
5485    let Inst{21} = 1; // W = 1
5486    let Inst{20} = load;
5487    let Inst{19-16} = addr{12-9};
5488    let Inst{15-12} = CRd;
5489    let Inst{11-8} = cop;
5490    let Inst{7-0} = addr{7-0};
5491    let DecoderMethod = "DecodeCopMemInstruction";
5492  }
5493  def _POST: ACI<(outs), (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
5494                              postidx_imm8s4:$offset),
5495                 asm, "\t$cop, $CRd, $addr, $offset", [], IndexModePost> {
5496    bits<9> offset;
5497    bits<4> addr;
5498    bits<4> cop;
5499    bits<4> CRd;
5500    let Inst{24} = 0; // P = 0
5501    let Inst{23} = offset{8};
5502    let Inst{22} = Dbit;
5503    let Inst{21} = 1; // W = 1
5504    let Inst{20} = load;
5505    let Inst{19-16} = addr;
5506    let Inst{15-12} = CRd;
5507    let Inst{11-8} = cop;
5508    let Inst{7-0} = offset{7-0};
5509    let DecoderMethod = "DecodeCopMemInstruction";
5510  }
5511  def _OPTION : ACI<(outs),
5512                    (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
5513                         coproc_option_imm:$option),
5514      asm, "\t$cop, $CRd, $addr, $option", []> {
5515    bits<8> option;
5516    bits<4> addr;
5517    bits<4> cop;
5518    bits<4> CRd;
5519    let Inst{24} = 0; // P = 0
5520    let Inst{23} = 1; // U = 1
5521    let Inst{22} = Dbit;
5522    let Inst{21} = 0; // W = 0
5523    let Inst{20} = load;
5524    let Inst{19-16} = addr;
5525    let Inst{15-12} = CRd;
5526    let Inst{11-8} = cop;
5527    let Inst{7-0} = option;
5528    let DecoderMethod = "DecodeCopMemInstruction";
5529  }
5530}
5531multiclass LdSt2Cop<bit load, bit Dbit, string asm, list<dag> pattern> {
5532  def _OFFSET : ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5:$addr),
5533                       asm, "\t$cop, $CRd, $addr", pattern, IndexModeNone,
5534                       AddrMode5> {
5535    bits<13> addr;
5536    bits<4> cop;
5537    bits<4> CRd;
5538    let Inst{24} = 1; // P = 1
5539    let Inst{23} = addr{8};
5540    let Inst{22} = Dbit;
5541    let Inst{21} = 0; // W = 0
5542    let Inst{20} = load;
5543    let Inst{19-16} = addr{12-9};
5544    let Inst{15-12} = CRd;
5545    let Inst{11-8} = cop;
5546    let Inst{7-0} = addr{7-0};
5547    let DecoderMethod = "DecodeCopMemInstruction";
5548  }
5549  def _PRE : ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addrmode5_pre:$addr),
5550                    asm, "\t$cop, $CRd, $addr!", [], IndexModePre> {
5551    bits<13> addr;
5552    bits<4> cop;
5553    bits<4> CRd;
5554    let Inst{24} = 1; // P = 1
5555    let Inst{23} = addr{8};
5556    let Inst{22} = Dbit;
5557    let Inst{21} = 1; // W = 1
5558    let Inst{20} = load;
5559    let Inst{19-16} = addr{12-9};
5560    let Inst{15-12} = CRd;
5561    let Inst{11-8} = cop;
5562    let Inst{7-0} = addr{7-0};
5563    let DecoderMethod = "DecodeCopMemInstruction";
5564  }
5565  def _POST: ACInoP<(outs), (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
5566                                 postidx_imm8s4:$offset),
5567                 asm, "\t$cop, $CRd, $addr, $offset", [], IndexModePost> {
5568    bits<9> offset;
5569    bits<4> addr;
5570    bits<4> cop;
5571    bits<4> CRd;
5572    let Inst{24} = 0; // P = 0
5573    let Inst{23} = offset{8};
5574    let Inst{22} = Dbit;
5575    let Inst{21} = 1; // W = 1
5576    let Inst{20} = load;
5577    let Inst{19-16} = addr;
5578    let Inst{15-12} = CRd;
5579    let Inst{11-8} = cop;
5580    let Inst{7-0} = offset{7-0};
5581    let DecoderMethod = "DecodeCopMemInstruction";
5582  }
5583  def _OPTION : ACInoP<(outs),
5584                       (ins p_imm:$cop, c_imm:$CRd, addr_offset_none:$addr,
5585                            coproc_option_imm:$option),
5586      asm, "\t$cop, $CRd, $addr, $option", []> {
5587    bits<8> option;
5588    bits<4> addr;
5589    bits<4> cop;
5590    bits<4> CRd;
5591    let Inst{24} = 0; // P = 0
5592    let Inst{23} = 1; // U = 1
5593    let Inst{22} = Dbit;
5594    let Inst{21} = 0; // W = 0
5595    let Inst{20} = load;
5596    let Inst{19-16} = addr;
5597    let Inst{15-12} = CRd;
5598    let Inst{11-8} = cop;
5599    let Inst{7-0} = option;
5600    let DecoderMethod = "DecodeCopMemInstruction";
5601  }
5602}
5603
5604defm LDC   : LdStCop <1, 0, "ldc", [(int_arm_ldc timm:$cop, timm:$CRd, addrmode5:$addr)]>;
5605defm LDCL  : LdStCop <1, 1, "ldcl", [(int_arm_ldcl timm:$cop, timm:$CRd, addrmode5:$addr)]>;
5606defm LDC2  : LdSt2Cop<1, 0, "ldc2", [(int_arm_ldc2 timm:$cop, timm:$CRd, addrmode5:$addr)]>, Requires<[IsARM,PreV8]>;
5607defm LDC2L : LdSt2Cop<1, 1, "ldc2l", [(int_arm_ldc2l timm:$cop, timm:$CRd, addrmode5:$addr)]>, Requires<[IsARM,PreV8]>;
5608
5609defm STC   : LdStCop <0, 0, "stc", [(int_arm_stc timm:$cop, timm:$CRd, addrmode5:$addr)]>;
5610defm STCL  : LdStCop <0, 1, "stcl", [(int_arm_stcl timm:$cop, timm:$CRd, addrmode5:$addr)]>;
5611defm STC2  : LdSt2Cop<0, 0, "stc2", [(int_arm_stc2 timm:$cop, timm:$CRd, addrmode5:$addr)]>, Requires<[IsARM,PreV8]>;
5612defm STC2L : LdSt2Cop<0, 1, "stc2l", [(int_arm_stc2l timm:$cop, timm:$CRd, addrmode5:$addr)]>, Requires<[IsARM,PreV8]>;
5613
5614} // DecoderNamespace = "CoProc"
5615
5616//===----------------------------------------------------------------------===//
5617// Move between coprocessor and ARM core register.
5618//
5619
5620class MovRCopro<string opc, bit direction, dag oops, dag iops,
5621                list<dag> pattern>
5622  : ABI<0b1110, oops, iops, NoItinerary, opc,
5623        "\t$cop, $opc1, $Rt, $CRn, $CRm, $opc2", pattern> {
5624  let Inst{20} = direction;
5625  let Inst{4} = 1;
5626
5627  bits<4> Rt;
5628  bits<4> cop;
5629  bits<3> opc1;
5630  bits<3> opc2;
5631  bits<4> CRm;
5632  bits<4> CRn;
5633
5634  let Inst{15-12} = Rt;
5635  let Inst{11-8}  = cop;
5636  let Inst{23-21} = opc1;
5637  let Inst{7-5}   = opc2;
5638  let Inst{3-0}   = CRm;
5639  let Inst{19-16} = CRn;
5640
5641  let DecoderNamespace = "CoProc";
5642}
5643
5644def MCR : MovRCopro<"mcr", 0 /* from ARM core register to coprocessor */,
5645                    (outs),
5646                    (ins p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
5647                         c_imm:$CRm, imm0_7:$opc2),
5648                    [(int_arm_mcr timm:$cop, timm:$opc1, GPR:$Rt, timm:$CRn,
5649                                  timm:$CRm, timm:$opc2)]>,
5650                    ComplexDeprecationPredicate<"MCR">;
5651def : ARMInstAlias<"mcr${p} $cop, $opc1, $Rt, $CRn, $CRm",
5652                   (MCR p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
5653                        c_imm:$CRm, 0, pred:$p)>;
5654def MRC : MovRCopro<"mrc", 1 /* from coprocessor to ARM core register */,
5655                    (outs GPRwithAPSR:$Rt),
5656                    (ins p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm,
5657                         imm0_7:$opc2), []>,
5658                    ComplexDeprecationPredicate<"MRC">;
5659def : ARMInstAlias<"mrc${p} $cop, $opc1, $Rt, $CRn, $CRm",
5660                   (MRC GPRwithAPSR:$Rt, p_imm:$cop, imm0_7:$opc1, c_imm:$CRn,
5661                        c_imm:$CRm, 0, pred:$p)>;
5662
5663def : ARMPat<(int_arm_mrc timm:$cop, timm:$opc1, timm:$CRn, timm:$CRm, timm:$opc2),
5664             (MRC p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2)>;
5665
5666class MovRCopro2<string opc, bit direction, dag oops, dag iops,
5667                 list<dag> pattern>
5668  : ABXI<0b1110, oops, iops, NoItinerary,
5669         !strconcat(opc, "\t$cop, $opc1, $Rt, $CRn, $CRm, $opc2"), pattern> {
5670  let Inst{31-24} = 0b11111110;
5671  let Inst{20} = direction;
5672  let Inst{4} = 1;
5673
5674  bits<4> Rt;
5675  bits<4> cop;
5676  bits<3> opc1;
5677  bits<3> opc2;
5678  bits<4> CRm;
5679  bits<4> CRn;
5680
5681  let Inst{15-12} = Rt;
5682  let Inst{11-8}  = cop;
5683  let Inst{23-21} = opc1;
5684  let Inst{7-5}   = opc2;
5685  let Inst{3-0}   = CRm;
5686  let Inst{19-16} = CRn;
5687
5688  let DecoderNamespace = "CoProc";
5689}
5690
5691def MCR2 : MovRCopro2<"mcr2", 0 /* from ARM core register to coprocessor */,
5692                      (outs),
5693                      (ins p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
5694                           c_imm:$CRm, imm0_7:$opc2),
5695                      [(int_arm_mcr2 timm:$cop, timm:$opc1, GPR:$Rt, timm:$CRn,
5696                                     timm:$CRm, timm:$opc2)]>,
5697                      Requires<[IsARM,PreV8]>;
5698def : ARMInstAlias<"mcr2 $cop, $opc1, $Rt, $CRn, $CRm",
5699                   (MCR2 p_imm:$cop, imm0_7:$opc1, GPR:$Rt, c_imm:$CRn,
5700                         c_imm:$CRm, 0)>;
5701def MRC2 : MovRCopro2<"mrc2", 1 /* from coprocessor to ARM core register */,
5702                      (outs GPRwithAPSR:$Rt),
5703                      (ins p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm,
5704                           imm0_7:$opc2), []>,
5705                      Requires<[IsARM,PreV8]>;
5706def : ARMInstAlias<"mrc2 $cop, $opc1, $Rt, $CRn, $CRm",
5707                   (MRC2 GPRwithAPSR:$Rt, p_imm:$cop, imm0_7:$opc1, c_imm:$CRn,
5708                         c_imm:$CRm, 0)>;
5709
5710def : ARMV5TPat<(int_arm_mrc2 timm:$cop, timm:$opc1, timm:$CRn,
5711                              timm:$CRm, timm:$opc2),
5712                (MRC2 p_imm:$cop, imm0_7:$opc1, c_imm:$CRn, c_imm:$CRm, imm0_7:$opc2)>;
5713
5714class MovRRCopro<string opc, bit direction, dag oops, dag iops, list<dag>
5715                 pattern = []>
5716  : ABI<0b1100, oops, iops, NoItinerary, opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm",
5717        pattern> {
5718
5719  let Inst{23-21} = 0b010;
5720  let Inst{20} = direction;
5721
5722  bits<4> Rt;
5723  bits<4> Rt2;
5724  bits<4> cop;
5725  bits<4> opc1;
5726  bits<4> CRm;
5727
5728  let Inst{15-12} = Rt;
5729  let Inst{19-16} = Rt2;
5730  let Inst{11-8}  = cop;
5731  let Inst{7-4}   = opc1;
5732  let Inst{3-0}   = CRm;
5733}
5734
5735def MCRR : MovRRCopro<"mcrr", 0 /* from ARM core register to coprocessor */,
5736                      (outs), (ins p_imm:$cop, imm0_15:$opc1, GPRnopc:$Rt,
5737                      GPRnopc:$Rt2, c_imm:$CRm),
5738                      [(int_arm_mcrr timm:$cop, timm:$opc1, GPRnopc:$Rt,
5739                                     GPRnopc:$Rt2, timm:$CRm)]>;
5740def MRRC : MovRRCopro<"mrrc", 1 /* from coprocessor to ARM core register */,
5741                      (outs GPRnopc:$Rt, GPRnopc:$Rt2),
5742                      (ins p_imm:$cop, imm0_15:$opc1, c_imm:$CRm), []>;
5743
5744class MovRRCopro2<string opc, bit direction, dag oops, dag iops,
5745                  list<dag> pattern = []>
5746  : ABXI<0b1100, oops, iops, NoItinerary,
5747         !strconcat(opc, "\t$cop, $opc1, $Rt, $Rt2, $CRm"), pattern>,
5748    Requires<[IsARM,PreV8]> {
5749  let Inst{31-28} = 0b1111;
5750  let Inst{23-21} = 0b010;
5751  let Inst{20} = direction;
5752
5753  bits<4> Rt;
5754  bits<4> Rt2;
5755  bits<4> cop;
5756  bits<4> opc1;
5757  bits<4> CRm;
5758
5759  let Inst{15-12} = Rt;
5760  let Inst{19-16} = Rt2;
5761  let Inst{11-8}  = cop;
5762  let Inst{7-4}   = opc1;
5763  let Inst{3-0}   = CRm;
5764
5765  let DecoderMethod = "DecoderForMRRC2AndMCRR2";
5766}
5767
5768def MCRR2 : MovRRCopro2<"mcrr2", 0 /* from ARM core register to coprocessor */,
5769                        (outs), (ins p_imm:$cop, imm0_15:$opc1, GPRnopc:$Rt,
5770                        GPRnopc:$Rt2, c_imm:$CRm),
5771                        [(int_arm_mcrr2 timm:$cop, timm:$opc1, GPRnopc:$Rt,
5772                                        GPRnopc:$Rt2, timm:$CRm)]>;
5773
5774def MRRC2 : MovRRCopro2<"mrrc2", 1 /* from coprocessor to ARM core register */,
5775                       (outs GPRnopc:$Rt, GPRnopc:$Rt2),
5776                       (ins p_imm:$cop, imm0_15:$opc1, c_imm:$CRm), []>;
5777
5778//===----------------------------------------------------------------------===//
5779// Move between special register and ARM core register
5780//
5781
5782// Move to ARM core register from Special Register
5783def MRS : ABI<0b0001, (outs GPRnopc:$Rd), (ins), NoItinerary,
5784              "mrs", "\t$Rd, apsr", []> {
5785  bits<4> Rd;
5786  let Inst{23-16} = 0b00001111;
5787  let Unpredictable{19-17} = 0b111;
5788
5789  let Inst{15-12} = Rd;
5790
5791  let Inst{11-0} = 0b000000000000;
5792  let Unpredictable{11-0} = 0b110100001111;
5793}
5794
5795def : InstAlias<"mrs${p} $Rd, cpsr", (MRS GPRnopc:$Rd, pred:$p), 0>,
5796         Requires<[IsARM]>;
5797
5798// The MRSsys instruction is the MRS instruction from the ARM ARM,
5799// section B9.3.9, with the R bit set to 1.
5800def MRSsys : ABI<0b0001, (outs GPRnopc:$Rd), (ins), NoItinerary,
5801                 "mrs", "\t$Rd, spsr", []> {
5802  bits<4> Rd;
5803  let Inst{23-16} = 0b01001111;
5804  let Unpredictable{19-16} = 0b1111;
5805
5806  let Inst{15-12} = Rd;
5807
5808  let Inst{11-0} = 0b000000000000;
5809  let Unpredictable{11-0} = 0b110100001111;
5810}
5811
5812// However, the MRS (banked register) system instruction (ARMv7VE) *does* have a
5813// separate encoding (distinguished by bit 5.
5814def MRSbanked : ABI<0b0001, (outs GPRnopc:$Rd), (ins banked_reg:$banked),
5815                    NoItinerary, "mrs", "\t$Rd, $banked", []>,
5816                Requires<[IsARM, HasVirtualization]> {
5817  bits<6> banked;
5818  bits<4> Rd;
5819
5820  let Inst{23} = 0;
5821  let Inst{22} = banked{5}; // R bit
5822  let Inst{21-20} = 0b00;
5823  let Inst{19-16} = banked{3-0};
5824  let Inst{15-12} = Rd;
5825  let Inst{11-9} = 0b001;
5826  let Inst{8} = banked{4};
5827  let Inst{7-0} = 0b00000000;
5828}
5829
5830// Move from ARM core register to Special Register
5831//
5832// No need to have both system and application versions of MSR (immediate) or
5833// MSR (register), the encodings are the same and the assembly parser has no way
5834// to distinguish between them. The mask operand contains the special register
5835// (R Bit) in bit 4 and bits 3-0 contains the mask with the fields to be
5836// accessed in the special register.
5837let Defs = [CPSR] in
5838def MSR : ABI<0b0001, (outs), (ins msr_mask:$mask, GPR:$Rn), NoItinerary,
5839              "msr", "\t$mask, $Rn", []> {
5840  bits<5> mask;
5841  bits<4> Rn;
5842
5843  let Inst{23} = 0;
5844  let Inst{22} = mask{4}; // R bit
5845  let Inst{21-20} = 0b10;
5846  let Inst{19-16} = mask{3-0};
5847  let Inst{15-12} = 0b1111;
5848  let Inst{11-4} = 0b00000000;
5849  let Inst{3-0} = Rn;
5850}
5851
5852let Defs = [CPSR] in
5853def MSRi : ABI<0b0011, (outs), (ins msr_mask:$mask,  mod_imm:$imm), NoItinerary,
5854               "msr", "\t$mask, $imm", []> {
5855  bits<5> mask;
5856  bits<12> imm;
5857
5858  let Inst{23} = 0;
5859  let Inst{22} = mask{4}; // R bit
5860  let Inst{21-20} = 0b10;
5861  let Inst{19-16} = mask{3-0};
5862  let Inst{15-12} = 0b1111;
5863  let Inst{11-0} = imm;
5864}
5865
5866// However, the MSR (banked register) system instruction (ARMv7VE) *does* have a
5867// separate encoding (distinguished by bit 5.
5868def MSRbanked : ABI<0b0001, (outs), (ins banked_reg:$banked, GPRnopc:$Rn),
5869                    NoItinerary, "msr", "\t$banked, $Rn", []>,
5870                Requires<[IsARM, HasVirtualization]> {
5871  bits<6> banked;
5872  bits<4> Rn;
5873
5874  let Inst{23} = 0;
5875  let Inst{22} = banked{5}; // R bit
5876  let Inst{21-20} = 0b10;
5877  let Inst{19-16} = banked{3-0};
5878  let Inst{15-12} = 0b1111;
5879  let Inst{11-9} = 0b001;
5880  let Inst{8} = banked{4};
5881  let Inst{7-4} = 0b0000;
5882  let Inst{3-0} = Rn;
5883}
5884
5885// Dynamic stack allocation yields a _chkstk for Windows targets.  These calls
5886// are needed to probe the stack when allocating more than
5887// 4k bytes in one go. Touching the stack at 4K increments is necessary to
5888// ensure that the guard pages used by the OS virtual memory manager are
5889// allocated in correct sequence.
5890// The main point of having separate instruction are extra unmodelled effects
5891// (compared to ordinary calls) like stack pointer change.
5892
5893def win__chkstk : SDNode<"ARMISD::WIN__CHKSTK", SDTNone,
5894                      [SDNPHasChain, SDNPSideEffect]>;
5895let usesCustomInserter = 1, Uses = [R4], Defs = [R4, SP], hasNoSchedulingInfo = 1 in
5896  def WIN__CHKSTK : PseudoInst<(outs), (ins), NoItinerary, [(win__chkstk)]>;
5897
5898def win__dbzchk : SDNode<"ARMISD::WIN__DBZCHK", SDT_WIN__DBZCHK,
5899                         [SDNPHasChain, SDNPSideEffect, SDNPOutGlue]>;
5900let usesCustomInserter = 1, Defs = [CPSR], hasNoSchedulingInfo = 1 in
5901  def WIN__DBZCHK : PseudoInst<(outs), (ins tGPR:$divisor), NoItinerary,
5902                               [(win__dbzchk tGPR:$divisor)]>;
5903
5904//===----------------------------------------------------------------------===//
5905// TLS Instructions
5906//
5907
5908// __aeabi_read_tp preserves the registers r1-r3.
5909// This is a pseudo inst so that we can get the encoding right,
5910// complete with fixup for the aeabi_read_tp function.
5911// TPsoft is valid for ARM mode only, in case of Thumb mode a tTPsoft pattern
5912// is defined in "ARMInstrThumb.td".
5913let isCall = 1,
5914  Defs = [R0, R12, LR, CPSR], Uses = [SP] in {
5915  def TPsoft : ARMPseudoInst<(outs), (ins), 4, IIC_Br,
5916               [(set R0, ARMthread_pointer)]>, Sched<[WriteBr]>,
5917               Requires<[IsARM, IsReadTPSoft]>;
5918}
5919
5920// Reading thread pointer from coprocessor register
5921def : ARMPat<(ARMthread_pointer), (MRC 15, 0, 13, 0, 2)>,
5922      Requires<[IsARM, IsReadTPTPIDRURW]>;
5923def : ARMPat<(ARMthread_pointer), (MRC 15, 0, 13, 0, 3)>,
5924      Requires<[IsARM, IsReadTPTPIDRURO]>;
5925def : ARMPat<(ARMthread_pointer), (MRC 15, 0, 13, 0, 4)>,
5926      Requires<[IsARM, IsReadTPTPIDRPRW]>;
5927
5928//===----------------------------------------------------------------------===//
5929// SJLJ Exception handling intrinsics
5930//   eh_sjlj_setjmp() is an instruction sequence to store the return
5931//   address and save #0 in R0 for the non-longjmp case.
5932//   Since by its nature we may be coming from some other function to get
5933//   here, and we're using the stack frame for the containing function to
5934//   save/restore registers, we can't keep anything live in regs across
5935//   the eh_sjlj_setjmp(), else it will almost certainly have been tromped upon
5936//   when we get here from a longjmp(). We force everything out of registers
5937//   except for our own input by listing the relevant registers in Defs. By
5938//   doing so, we also cause the prologue/epilogue code to actively preserve
5939//   all of the callee-saved registers, which is exactly what we want.
5940//   A constant value is passed in $val, and we use the location as a scratch.
5941//
5942// These are pseudo-instructions and are lowered to individual MC-insts, so
5943// no encoding information is necessary.
5944// This gets lowered to an instruction sequence of 20 bytes
5945let Defs =
5946  [ R0,  R1,  R2,  R3,  R4,  R5,  R6,  R7,  R8,  R9,  R10, R11, R12, LR, CPSR,
5947    Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15 ],
5948  hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1, Size = 20 in {
5949  def Int_eh_sjlj_setjmp : PseudoInst<(outs), (ins GPR:$src, GPR:$val),
5950                               NoItinerary,
5951                         [(set R0, (ARMeh_sjlj_setjmp GPR:$src, GPR:$val))]>,
5952                           Requires<[IsARM, HasVFP2]>;
5953}
5954
5955// This gets lowered to an instruction sequence of 20 bytes
5956let Defs =
5957  [ R0,  R1,  R2,  R3,  R4,  R5,  R6,  R7,  R8,  R9,  R10, R11, R12, LR, CPSR ],
5958  hasSideEffects = 1, isBarrier = 1, usesCustomInserter = 1, Size = 20 in {
5959  def Int_eh_sjlj_setjmp_nofp : PseudoInst<(outs), (ins GPR:$src, GPR:$val),
5960                                   NoItinerary,
5961                         [(set R0, (ARMeh_sjlj_setjmp GPR:$src, GPR:$val))]>,
5962                                Requires<[IsARM, NoVFP]>;
5963}
5964
5965// This gets lowered to an instruction sequence of 16 bytes
5966// FIXME: Non-IOS version(s)
5967let isBarrier = 1, hasSideEffects = 1, isTerminator = 1, Size = 16,
5968    Defs = [ R7, LR, SP ] in {
5969def Int_eh_sjlj_longjmp : PseudoInst<(outs), (ins GPR:$src, GPR:$scratch),
5970                             NoItinerary,
5971                         [(ARMeh_sjlj_longjmp GPR:$src, GPR:$scratch)]>,
5972                                Requires<[IsARM]>;
5973}
5974
5975let isBarrier = 1, hasSideEffects = 1, usesCustomInserter = 1 in
5976def Int_eh_sjlj_setup_dispatch : PseudoInst<(outs), (ins), NoItinerary,
5977            [(ARMeh_sjlj_setup_dispatch)]>;
5978
5979// eh.sjlj.dispatchsetup pseudo-instruction.
5980// This pseudo is used for both ARM and Thumb. Any differences are handled when
5981// the pseudo is expanded (which happens before any passes that need the
5982// instruction size).
5983let isBarrier = 1 in
5984def Int_eh_sjlj_dispatchsetup : PseudoInst<(outs), (ins), NoItinerary, []>;
5985
5986
5987//===----------------------------------------------------------------------===//
5988// Non-Instruction Patterns
5989//
5990
5991// ARMv4 indirect branch using (MOVr PC, dst)
5992let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in
5993  def MOVPCRX : ARMPseudoExpand<(outs), (ins GPR:$dst),
5994                    4, IIC_Br, [(brind GPR:$dst)],
5995                    (MOVr PC, GPR:$dst, (ops 14, zero_reg), zero_reg)>,
5996                  Requires<[IsARM, NoV4T]>, Sched<[WriteBr]>;
5997
5998let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in
5999  def TAILJMPr4 : ARMPseudoExpand<(outs), (ins GPR:$dst),
6000                    4, IIC_Br, [],
6001                    (MOVr PC, GPR:$dst, (ops 14, zero_reg), zero_reg)>,
6002                  Requires<[IsARM, NoV4T]>, Sched<[WriteBr]>;
6003
6004// Large immediate handling.
6005
6006// 32-bit immediate using two piece mod_imms or movw + movt.
6007// This is a single pseudo instruction, the benefit is that it can be remat'd
6008// as a single unit instead of having to handle reg inputs.
6009// FIXME: Remove this when we can do generalized remat.
6010let isReMaterializable = 1, isMoveImm = 1, Size = 8 in
6011def MOVi32imm : PseudoInst<(outs GPR:$dst), (ins i32imm:$src), IIC_iMOVix2,
6012                           [(set GPR:$dst, (arm_i32imm:$src))]>,
6013                           Requires<[IsARM]>;
6014
6015def LDRLIT_ga_abs : PseudoInst<(outs GPR:$dst), (ins i32imm:$src), IIC_iLoad_i,
6016                               [(set GPR:$dst, (ARMWrapper tglobaladdr:$src))]>,
6017                    Requires<[IsARM, DontUseMovt]>;
6018
6019// Pseudo instruction that combines movw + movt + add pc (if PIC).
6020// It also makes it possible to rematerialize the instructions.
6021// FIXME: Remove this when we can do generalized remat and when machine licm
6022// can properly the instructions.
6023let isReMaterializable = 1 in {
6024def MOV_ga_pcrel : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
6025                              IIC_iMOVix2addpc,
6026                        [(set GPR:$dst, (ARMWrapperPIC tglobaladdr:$addr))]>,
6027                        Requires<[IsARM, UseMovtInPic]>;
6028
6029def LDRLIT_ga_pcrel : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
6030                                 IIC_iLoadiALU,
6031                                 [(set GPR:$dst,
6032                                       (ARMWrapperPIC tglobaladdr:$addr))]>,
6033                      Requires<[IsARM, DontUseMovtInPic]>;
6034
6035let AddedComplexity = 10 in
6036def LDRLIT_ga_pcrel_ldr : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
6037                              NoItinerary,
6038                              [(set GPR:$dst,
6039                                    (load (ARMWrapperPIC tglobaladdr:$addr)))]>,
6040                          Requires<[IsARM, DontUseMovtInPic]>;
6041
6042let AddedComplexity = 10 in
6043def MOV_ga_pcrel_ldr : PseudoInst<(outs GPR:$dst), (ins i32imm:$addr),
6044                                IIC_iMOVix2ld,
6045                    [(set GPR:$dst, (load (ARMWrapperPIC tglobaladdr:$addr)))]>,
6046                    Requires<[IsARM, UseMovtInPic]>;
6047} // isReMaterializable
6048
6049// The many different faces of TLS access.
6050def : ARMPat<(ARMWrapper tglobaltlsaddr :$dst),
6051             (MOVi32imm tglobaltlsaddr :$dst)>,
6052      Requires<[IsARM, UseMovt]>;
6053
6054def : Pat<(ARMWrapper tglobaltlsaddr:$src),
6055          (LDRLIT_ga_abs tglobaltlsaddr:$src)>,
6056      Requires<[IsARM, DontUseMovt]>;
6057
6058def : Pat<(ARMWrapperPIC tglobaltlsaddr:$addr),
6059          (MOV_ga_pcrel tglobaltlsaddr:$addr)>, Requires<[IsARM, UseMovtInPic]>;
6060
6061def : Pat<(ARMWrapperPIC tglobaltlsaddr:$addr),
6062          (LDRLIT_ga_pcrel tglobaltlsaddr:$addr)>,
6063      Requires<[IsARM, DontUseMovtInPic]>;
6064let AddedComplexity = 10 in
6065def : Pat<(load (ARMWrapperPIC tglobaltlsaddr:$addr)),
6066          (MOV_ga_pcrel_ldr tglobaltlsaddr:$addr)>,
6067      Requires<[IsARM, UseMovtInPic]>;
6068
6069
6070// ConstantPool, GlobalAddress, and JumpTable
6071def : ARMPat<(ARMWrapper  tconstpool  :$dst), (LEApcrel tconstpool  :$dst)>;
6072def : ARMPat<(ARMWrapper  tglobaladdr :$dst), (MOVi32imm tglobaladdr :$dst)>,
6073            Requires<[IsARM, UseMovt]>;
6074def : ARMPat<(ARMWrapper texternalsym :$dst), (MOVi32imm texternalsym :$dst)>,
6075            Requires<[IsARM, UseMovt]>;
6076def : ARMPat<(ARMWrapperJT tjumptable:$dst),
6077             (LEApcrelJT tjumptable:$dst)>;
6078
6079// TODO: add,sub,and, 3-instr forms?
6080
6081// Tail calls. These patterns also apply to Thumb mode.
6082def : Pat<(ARMtcret tcGPR:$dst, (i32 timm:$SPDiff)),
6083          (TCRETURNri tcGPR:$dst, timm:$SPDiff)>;
6084def : Pat<(ARMtcret (i32 tglobaladdr:$dst), (i32 timm:$SPDiff)),
6085          (TCRETURNdi texternalsym:$dst, (i32 timm:$SPDiff))>;
6086def : Pat<(ARMtcret (i32 texternalsym:$dst), (i32 timm:$SPDiff)),
6087          (TCRETURNdi texternalsym:$dst, i32imm:$SPDiff)>;
6088
6089// Direct calls
6090def : ARMPat<(ARMcall texternalsym:$func), (BL texternalsym:$func)>;
6091def : ARMPat<(ARMcall_nolink texternalsym:$func),
6092             (BMOVPCB_CALL texternalsym:$func)>;
6093
6094// zextload i1 -> zextload i8
6095def : ARMPat<(zextloadi1 addrmode_imm12:$addr), (LDRBi12 addrmode_imm12:$addr)>;
6096def : ARMPat<(zextloadi1 ldst_so_reg:$addr),    (LDRBrs ldst_so_reg:$addr)>;
6097
6098// extload -> zextload
6099def : ARMPat<(extloadi1 addrmode_imm12:$addr),  (LDRBi12 addrmode_imm12:$addr)>;
6100def : ARMPat<(extloadi1 ldst_so_reg:$addr),     (LDRBrs ldst_so_reg:$addr)>;
6101def : ARMPat<(extloadi8 addrmode_imm12:$addr),  (LDRBi12 addrmode_imm12:$addr)>;
6102def : ARMPat<(extloadi8 ldst_so_reg:$addr),     (LDRBrs ldst_so_reg:$addr)>;
6103
6104def : ARMPat<(extloadi16 addrmode3:$addr),  (LDRH addrmode3:$addr)>;
6105
6106def : ARMPat<(extloadi8  addrmodepc:$addr), (PICLDRB addrmodepc:$addr)>;
6107def : ARMPat<(extloadi16 addrmodepc:$addr), (PICLDRH addrmodepc:$addr)>;
6108
6109// smul* and smla*
6110def : ARMV5TEPat<(mul sext_16_node:$a, sext_16_node:$b),
6111                 (SMULBB GPR:$a, GPR:$b)>;
6112def : ARMV5TEPat<(mul sext_16_node:$a, (sext_bottom_16 GPR:$b)),
6113                 (SMULBB GPR:$a, GPR:$b)>;
6114def : ARMV5TEPat<(mul sext_16_node:$a, (sext_top_16 GPR:$b)),
6115                 (SMULBT GPR:$a, GPR:$b)>;
6116def : ARMV5TEPat<(mul (sext_top_16 GPR:$a), sext_16_node:$b),
6117                 (SMULTB GPR:$a, GPR:$b)>;
6118def : ARMV5MOPat<(add GPR:$acc, (mul sext_16_node:$a, sext_16_node:$b)),
6119                 (SMLABB GPR:$a, GPR:$b, GPR:$acc)>;
6120def : ARMV5MOPat<(add GPR:$acc, (mul sext_16_node:$a, (sext_bottom_16 GPR:$b))),
6121                 (SMLABB GPR:$a, GPR:$b, GPR:$acc)>;
6122def : ARMV5MOPat<(add GPR:$acc, (mul sext_16_node:$a, (sext_top_16 GPR:$b))),
6123                 (SMLABT GPR:$a, GPR:$b, GPR:$acc)>;
6124def : ARMV5MOPat<(add GPR:$acc, (mul (sext_top_16 GPR:$a), sext_16_node:$b)),
6125                 (SMLATB GPR:$a, GPR:$b, GPR:$acc)>;
6126
6127def : ARMV5TEPat<(int_arm_smulbb GPR:$a, GPR:$b),
6128                 (SMULBB GPR:$a, GPR:$b)>;
6129def : ARMV5TEPat<(int_arm_smulbt GPR:$a, GPR:$b),
6130                 (SMULBT GPR:$a, GPR:$b)>;
6131def : ARMV5TEPat<(int_arm_smultb GPR:$a, GPR:$b),
6132                 (SMULTB GPR:$a, GPR:$b)>;
6133def : ARMV5TEPat<(int_arm_smultt GPR:$a, GPR:$b),
6134                 (SMULTT GPR:$a, GPR:$b)>;
6135def : ARMV5TEPat<(int_arm_smulwb GPR:$a, GPR:$b),
6136                 (SMULWB GPR:$a, GPR:$b)>;
6137def : ARMV5TEPat<(int_arm_smulwt GPR:$a, GPR:$b),
6138                 (SMULWT GPR:$a, GPR:$b)>;
6139
6140def : ARMV5TEPat<(int_arm_smlabb GPR:$a, GPR:$b, GPR:$acc),
6141                 (SMLABB GPR:$a, GPR:$b, GPR:$acc)>;
6142def : ARMV5TEPat<(int_arm_smlabt GPR:$a, GPR:$b, GPR:$acc),
6143                 (SMLABT GPR:$a, GPR:$b, GPR:$acc)>;
6144def : ARMV5TEPat<(int_arm_smlatb GPR:$a, GPR:$b, GPR:$acc),
6145                 (SMLATB GPR:$a, GPR:$b, GPR:$acc)>;
6146def : ARMV5TEPat<(int_arm_smlatt GPR:$a, GPR:$b, GPR:$acc),
6147                 (SMLATT GPR:$a, GPR:$b, GPR:$acc)>;
6148def : ARMV5TEPat<(int_arm_smlawb GPR:$a, GPR:$b, GPR:$acc),
6149                 (SMLAWB GPR:$a, GPR:$b, GPR:$acc)>;
6150def : ARMV5TEPat<(int_arm_smlawt GPR:$a, GPR:$b, GPR:$acc),
6151                 (SMLAWT GPR:$a, GPR:$b, GPR:$acc)>;
6152
6153// Pre-v7 uses MCR for synchronization barriers.
6154def : ARMPat<(ARMMemBarrierMCR GPR:$zero), (MCR 15, 0, GPR:$zero, 7, 10, 5)>,
6155         Requires<[IsARM, HasV6]>;
6156
6157// SXT/UXT with no rotate
6158let AddedComplexity = 16 in {
6159def : ARMV6Pat<(and GPR:$Src, 0x000000FF), (UXTB GPR:$Src, 0)>;
6160def : ARMV6Pat<(and GPR:$Src, 0x0000FFFF), (UXTH GPR:$Src, 0)>;
6161def : ARMV6Pat<(and GPR:$Src, 0x00FF00FF), (UXTB16 GPR:$Src, 0)>;
6162def : ARMV6Pat<(add GPR:$Rn, (and GPR:$Rm, 0x00FF)),
6163               (UXTAB GPR:$Rn, GPR:$Rm, 0)>;
6164def : ARMV6Pat<(add GPR:$Rn, (and GPR:$Rm, 0xFFFF)),
6165               (UXTAH GPR:$Rn, GPR:$Rm, 0)>;
6166}
6167
6168def : ARMV6Pat<(sext_inreg GPR:$Src, i8),  (SXTB GPR:$Src, 0)>;
6169def : ARMV6Pat<(sext_inreg GPR:$Src, i16), (SXTH GPR:$Src, 0)>;
6170
6171def : ARMV6Pat<(add GPR:$Rn, (sext_inreg GPRnopc:$Rm, i8)),
6172               (SXTAB GPR:$Rn, GPRnopc:$Rm, 0)>;
6173def : ARMV6Pat<(add GPR:$Rn, (sext_inreg GPRnopc:$Rm, i16)),
6174               (SXTAH GPR:$Rn, GPRnopc:$Rm, 0)>;
6175
6176// Atomic load/store patterns
6177def : ARMPat<(atomic_load_8 ldst_so_reg:$src),
6178             (LDRBrs ldst_so_reg:$src)>;
6179def : ARMPat<(atomic_load_8 addrmode_imm12:$src),
6180             (LDRBi12 addrmode_imm12:$src)>;
6181def : ARMPat<(atomic_load_16 addrmode3:$src),
6182             (LDRH addrmode3:$src)>;
6183def : ARMPat<(atomic_load_32 ldst_so_reg:$src),
6184             (LDRrs ldst_so_reg:$src)>;
6185def : ARMPat<(atomic_load_32 addrmode_imm12:$src),
6186             (LDRi12 addrmode_imm12:$src)>;
6187def : ARMPat<(atomic_store_8 GPR:$val, ldst_so_reg:$ptr),
6188             (STRBrs GPR:$val, ldst_so_reg:$ptr)>;
6189def : ARMPat<(atomic_store_8 GPR:$val, addrmode_imm12:$ptr),
6190             (STRBi12 GPR:$val, addrmode_imm12:$ptr)>;
6191def : ARMPat<(atomic_store_16 GPR:$val, addrmode3:$ptr),
6192             (STRH GPR:$val, addrmode3:$ptr)>;
6193def : ARMPat<(atomic_store_32 GPR:$val, ldst_so_reg:$ptr),
6194             (STRrs GPR:$val, ldst_so_reg:$ptr)>;
6195def : ARMPat<(atomic_store_32 GPR:$val, addrmode_imm12:$ptr),
6196             (STRi12 GPR:$val, addrmode_imm12:$ptr)>;
6197
6198
6199//===----------------------------------------------------------------------===//
6200// Thumb Support
6201//
6202
6203include "ARMInstrThumb.td"
6204
6205//===----------------------------------------------------------------------===//
6206// Thumb2 Support
6207//
6208
6209include "ARMInstrThumb2.td"
6210
6211//===----------------------------------------------------------------------===//
6212// Floating Point Support
6213//
6214
6215include "ARMInstrVFP.td"
6216
6217//===----------------------------------------------------------------------===//
6218// Advanced SIMD (NEON) Support
6219//
6220
6221include "ARMInstrNEON.td"
6222
6223//===----------------------------------------------------------------------===//
6224// MVE Support
6225//
6226
6227include "ARMInstrMVE.td"
6228
6229//===----------------------------------------------------------------------===//
6230// CDE (Custom Datapath Extension)
6231//
6232
6233include "ARMInstrCDE.td"
6234
6235//===----------------------------------------------------------------------===//
6236// Assembler aliases
6237//
6238
6239// Memory barriers
6240def : InstAlias<"dmb", (DMB 0xf), 0>, Requires<[IsARM, HasDB]>;
6241def : InstAlias<"dsb", (DSB 0xf), 0>, Requires<[IsARM, HasDB]>;
6242def : InstAlias<"ssbb", (DSB 0x0), 1>, Requires<[IsARM, HasDB]>;
6243def : InstAlias<"pssbb", (DSB 0x4), 1>, Requires<[IsARM, HasDB]>;
6244def : InstAlias<"isb", (ISB 0xf), 0>, Requires<[IsARM, HasDB]>;
6245// Armv8-R 'Data Full Barrier'
6246def : InstAlias<"dfb", (DSB 0xc), 1>, Requires<[IsARM, HasDFB]>;
6247
6248// System instructions
6249def : MnemonicAlias<"swi", "svc">;
6250
6251// Load / Store Multiple
6252def : MnemonicAlias<"ldmfd", "ldm">;
6253def : MnemonicAlias<"ldmia", "ldm">;
6254def : MnemonicAlias<"ldmea", "ldmdb">;
6255def : MnemonicAlias<"stmfd", "stmdb">;
6256def : MnemonicAlias<"stmia", "stm">;
6257def : MnemonicAlias<"stmea", "stm">;
6258
6259// PKHBT/PKHTB with default shift amount. PKHTB is equivalent to PKHBT with the
6260// input operands swapped when the shift amount is zero (i.e., unspecified).
6261def : InstAlias<"pkhbt${p} $Rd, $Rn, $Rm",
6262                (PKHBT GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, 0, pred:$p), 0>,
6263        Requires<[IsARM, HasV6]>;
6264def : InstAlias<"pkhtb${p} $Rd, $Rn, $Rm",
6265                (PKHBT GPRnopc:$Rd, GPRnopc:$Rm, GPRnopc:$Rn, 0, pred:$p), 0>,
6266        Requires<[IsARM, HasV6]>;
6267
6268// PUSH/POP aliases for STM/LDM
6269def : ARMInstAlias<"push${p} $regs", (STMDB_UPD SP, pred:$p, reglist:$regs)>;
6270def : ARMInstAlias<"pop${p} $regs", (LDMIA_UPD SP, pred:$p, reglist:$regs)>;
6271
6272// SSAT/USAT optional shift operand.
6273def : ARMInstAlias<"ssat${p} $Rd, $sat_imm, $Rn",
6274                (SSAT GPRnopc:$Rd, imm1_32:$sat_imm, GPRnopc:$Rn, 0, pred:$p)>;
6275def : ARMInstAlias<"usat${p} $Rd, $sat_imm, $Rn",
6276                (USAT GPRnopc:$Rd, imm0_31:$sat_imm, GPRnopc:$Rn, 0, pred:$p)>;
6277
6278
6279// Extend instruction optional rotate operand.
6280def : ARMInstAlias<"sxtab${p} $Rd, $Rn, $Rm",
6281                (SXTAB GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
6282def : ARMInstAlias<"sxtah${p} $Rd, $Rn, $Rm",
6283                (SXTAH GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
6284def : ARMInstAlias<"sxtab16${p} $Rd, $Rn, $Rm",
6285                (SXTAB16 GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
6286def : ARMInstAlias<"sxtb${p} $Rd, $Rm",
6287                (SXTB GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
6288def : ARMInstAlias<"sxtb16${p} $Rd, $Rm",
6289                (SXTB16 GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
6290def : ARMInstAlias<"sxth${p} $Rd, $Rm",
6291                (SXTH GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
6292
6293def : ARMInstAlias<"uxtab${p} $Rd, $Rn, $Rm",
6294                (UXTAB GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
6295def : ARMInstAlias<"uxtah${p} $Rd, $Rn, $Rm",
6296                (UXTAH GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
6297def : ARMInstAlias<"uxtab16${p} $Rd, $Rn, $Rm",
6298                (UXTAB16 GPRnopc:$Rd, GPR:$Rn, GPRnopc:$Rm, 0, pred:$p)>;
6299def : ARMInstAlias<"uxtb${p} $Rd, $Rm",
6300                (UXTB GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
6301def : ARMInstAlias<"uxtb16${p} $Rd, $Rm",
6302                (UXTB16 GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
6303def : ARMInstAlias<"uxth${p} $Rd, $Rm",
6304                (UXTH GPRnopc:$Rd, GPRnopc:$Rm, 0, pred:$p)>;
6305
6306
6307// RFE aliases
6308def : MnemonicAlias<"rfefa", "rfeda">;
6309def : MnemonicAlias<"rfeea", "rfedb">;
6310def : MnemonicAlias<"rfefd", "rfeia">;
6311def : MnemonicAlias<"rfeed", "rfeib">;
6312def : MnemonicAlias<"rfe", "rfeia">;
6313
6314// SRS aliases
6315def : MnemonicAlias<"srsfa", "srsib">;
6316def : MnemonicAlias<"srsea", "srsia">;
6317def : MnemonicAlias<"srsfd", "srsdb">;
6318def : MnemonicAlias<"srsed", "srsda">;
6319def : MnemonicAlias<"srs", "srsia">;
6320
6321// QSAX == QSUBADDX
6322def : MnemonicAlias<"qsubaddx", "qsax">;
6323// SASX == SADDSUBX
6324def : MnemonicAlias<"saddsubx", "sasx">;
6325// SHASX == SHADDSUBX
6326def : MnemonicAlias<"shaddsubx", "shasx">;
6327// SHSAX == SHSUBADDX
6328def : MnemonicAlias<"shsubaddx", "shsax">;
6329// SSAX == SSUBADDX
6330def : MnemonicAlias<"ssubaddx", "ssax">;
6331// UASX == UADDSUBX
6332def : MnemonicAlias<"uaddsubx", "uasx">;
6333// UHASX == UHADDSUBX
6334def : MnemonicAlias<"uhaddsubx", "uhasx">;
6335// UHSAX == UHSUBADDX
6336def : MnemonicAlias<"uhsubaddx", "uhsax">;
6337// UQASX == UQADDSUBX
6338def : MnemonicAlias<"uqaddsubx", "uqasx">;
6339// UQSAX == UQSUBADDX
6340def : MnemonicAlias<"uqsubaddx", "uqsax">;
6341// USAX == USUBADDX
6342def : MnemonicAlias<"usubaddx", "usax">;
6343
6344// "mov Rd, mod_imm_not" can be handled via "mvn" in assembly, just like
6345// for isel.
6346def : ARMInstSubst<"mov${s}${p} $Rd, $imm",
6347                   (MVNi rGPR:$Rd, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6348def : ARMInstSubst<"mvn${s}${p} $Rd, $imm",
6349                   (MOVi rGPR:$Rd, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6350// Same for AND <--> BIC
6351def : ARMInstSubst<"bic${s}${p} $Rd, $Rn, $imm",
6352                   (ANDri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm,
6353                          pred:$p, cc_out:$s)>;
6354def : ARMInstSubst<"bic${s}${p} $Rdn, $imm",
6355                   (ANDri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm,
6356                          pred:$p, cc_out:$s)>;
6357def : ARMInstSubst<"and${s}${p} $Rd, $Rn, $imm",
6358                   (BICri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm,
6359                          pred:$p, cc_out:$s)>;
6360def : ARMInstSubst<"and${s}${p} $Rdn, $imm",
6361                   (BICri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm,
6362                          pred:$p, cc_out:$s)>;
6363
6364// Likewise, "add Rd, mod_imm_neg" -> sub
6365def : ARMInstSubst<"add${s}${p} $Rd, $Rn, $imm",
6366                 (SUBri GPR:$Rd, GPR:$Rn, mod_imm_neg:$imm, pred:$p, cc_out:$s)>;
6367def : ARMInstSubst<"add${s}${p} $Rd, $imm",
6368                 (SUBri GPR:$Rd, GPR:$Rd, mod_imm_neg:$imm, pred:$p, cc_out:$s)>;
6369// Likewise, "sub Rd, mod_imm_neg" -> add
6370def : ARMInstSubst<"sub${s}${p} $Rd, $Rn, $imm",
6371                 (ADDri GPR:$Rd, GPR:$Rn, mod_imm_neg:$imm, pred:$p, cc_out:$s)>;
6372def : ARMInstSubst<"sub${s}${p} $Rd, $imm",
6373                 (ADDri GPR:$Rd, GPR:$Rd, mod_imm_neg:$imm, pred:$p, cc_out:$s)>;
6374
6375
6376def : ARMInstSubst<"adc${s}${p} $Rd, $Rn, $imm",
6377                 (SBCri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6378def : ARMInstSubst<"adc${s}${p} $Rdn, $imm",
6379                 (SBCri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6380def : ARMInstSubst<"sbc${s}${p} $Rd, $Rn, $imm",
6381                 (ADCri GPR:$Rd, GPR:$Rn, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6382def : ARMInstSubst<"sbc${s}${p} $Rdn, $imm",
6383                 (ADCri GPR:$Rdn, GPR:$Rdn, mod_imm_not:$imm, pred:$p, cc_out:$s)>;
6384
6385// Same for CMP <--> CMN via mod_imm_neg
6386def : ARMInstSubst<"cmp${p} $Rd, $imm",
6387                   (CMNri rGPR:$Rd, mod_imm_neg:$imm, pred:$p)>;
6388def : ARMInstSubst<"cmn${p} $Rd, $imm",
6389                   (CMPri rGPR:$Rd, mod_imm_neg:$imm, pred:$p)>;
6390
6391// The shifter forms of the MOV instruction are aliased to the ASR, LSL,
6392// LSR, ROR, and RRX instructions.
6393// FIXME: We need C++ parser hooks to map the alias to the MOV
6394//        encoding. It seems we should be able to do that sort of thing
6395//        in tblgen, but it could get ugly.
6396let TwoOperandAliasConstraint = "$Rm = $Rd" in {
6397def ASRi : ARMAsmPseudo<"asr${s}${p} $Rd, $Rm, $imm",
6398                        (ins GPR:$Rd, GPR:$Rm, imm0_32:$imm, pred:$p,
6399                             cc_out:$s)>;
6400def LSRi : ARMAsmPseudo<"lsr${s}${p} $Rd, $Rm, $imm",
6401                        (ins GPR:$Rd, GPR:$Rm, imm0_32:$imm, pred:$p,
6402                             cc_out:$s)>;
6403def LSLi : ARMAsmPseudo<"lsl${s}${p} $Rd, $Rm, $imm",
6404                        (ins GPR:$Rd, GPR:$Rm, imm0_31:$imm, pred:$p,
6405                             cc_out:$s)>;
6406def RORi : ARMAsmPseudo<"ror${s}${p} $Rd, $Rm, $imm",
6407                        (ins GPR:$Rd, GPR:$Rm, imm0_31:$imm, pred:$p,
6408                             cc_out:$s)>;
6409}
6410def RRXi : ARMAsmPseudo<"rrx${s}${p} $Rd, $Rm",
6411                        (ins GPR:$Rd, GPR:$Rm, pred:$p, cc_out:$s)>;
6412let TwoOperandAliasConstraint = "$Rn = $Rd" in {
6413def ASRr : ARMAsmPseudo<"asr${s}${p} $Rd, $Rn, $Rm",
6414                        (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
6415                             cc_out:$s)>;
6416def LSRr : ARMAsmPseudo<"lsr${s}${p} $Rd, $Rn, $Rm",
6417                        (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
6418                             cc_out:$s)>;
6419def LSLr : ARMAsmPseudo<"lsl${s}${p} $Rd, $Rn, $Rm",
6420                        (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
6421                             cc_out:$s)>;
6422def RORr : ARMAsmPseudo<"ror${s}${p} $Rd, $Rn, $Rm",
6423                        (ins GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p,
6424                             cc_out:$s)>;
6425}
6426
6427// "neg" is and alias for "rsb rd, rn, #0"
6428def : ARMInstAlias<"neg${s}${p} $Rd, $Rm",
6429                   (RSBri GPR:$Rd, GPR:$Rm, 0, pred:$p, cc_out:$s)>;
6430
6431// Pre-v6, 'mov r0, r0' was used as a NOP encoding.
6432def : InstAlias<"nop${p}", (MOVr R0, R0, pred:$p, zero_reg), 0>,
6433         Requires<[IsARM, NoV6]>;
6434
6435// MUL/UMLAL/SMLAL/UMULL/SMULL are available on all arches, but
6436// the instruction definitions need difference constraints pre-v6.
6437// Use these aliases for the assembly parsing on pre-v6.
6438def : InstAlias<"mul${s}${p} $Rd, $Rn, $Rm",
6439            (MUL GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, pred:$p, cc_out:$s), 0>,
6440         Requires<[IsARM, NoV6]>;
6441def : InstAlias<"mla${s}${p} $Rd, $Rn, $Rm, $Ra",
6442            (MLA GPRnopc:$Rd, GPRnopc:$Rn, GPRnopc:$Rm, GPRnopc:$Ra,
6443             pred:$p, cc_out:$s), 0>,
6444         Requires<[IsARM, NoV6]>;
6445def : InstAlias<"smlal${s}${p} $RdLo, $RdHi, $Rn, $Rm",
6446            (SMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>,
6447         Requires<[IsARM, NoV6]>;
6448def : InstAlias<"umlal${s}${p} $RdLo, $RdHi, $Rn, $Rm",
6449            (UMLAL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>,
6450         Requires<[IsARM, NoV6]>;
6451def : InstAlias<"smull${s}${p} $RdLo, $RdHi, $Rn, $Rm",
6452            (SMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>,
6453         Requires<[IsARM, NoV6]>;
6454def : InstAlias<"umull${s}${p} $RdLo, $RdHi, $Rn, $Rm",
6455            (UMULL GPR:$RdLo, GPR:$RdHi, GPR:$Rn, GPR:$Rm, pred:$p, cc_out:$s), 0>,
6456         Requires<[IsARM, NoV6]>;
6457
6458// 'it' blocks in ARM mode just validate the predicates. The IT itself
6459// is discarded.
6460def ITasm : ARMAsmPseudo<"it$mask $cc", (ins it_pred:$cc, it_mask:$mask)>;
6461
6462let mayLoad = 1, mayStore =1, hasSideEffects = 1, hasNoSchedulingInfo = 1 in
6463def SPACE : PseudoInst<(outs GPR:$Rd), (ins i32imm:$size, GPR:$Rn),
6464                       NoItinerary,
6465                       [(set GPR:$Rd, (int_arm_space timm:$size, GPR:$Rn))]>;
6466
6467// SpeculationBarrierEndBB must only be used after an unconditional control
6468// flow, i.e. after a terminator for which isBarrier is True.
6469let hasSideEffects = 1, isCodeGenOnly = 1, isTerminator = 1, isBarrier = 1 in {
6470  // This gets lowered to a pair of 4-byte instructions
6471  let Size = 8 in
6472  def SpeculationBarrierISBDSBEndBB
6473      : PseudoInst<(outs), (ins), NoItinerary, []>, Sched<[]>;
6474  // This gets lowered to a single 4-byte instructions
6475  let Size = 4 in
6476  def SpeculationBarrierSBEndBB
6477      : PseudoInst<(outs), (ins), NoItinerary, []>, Sched<[]>;
6478}
6479
6480//===----------------------------------
6481// Atomic cmpxchg for -O0
6482//===----------------------------------
6483
6484// The fast register allocator used during -O0 inserts spills to cover any VRegs
6485// live across basic block boundaries. When this happens between an LDXR and an
6486// STXR it can clear the exclusive monitor, causing all cmpxchg attempts to
6487// fail.
6488
6489// Unfortunately, this means we have to have an alternative (expanded
6490// post-regalloc) path for -O0 compilations. Fortunately this path can be
6491// significantly more naive than the standard expansion: we conservatively
6492// assume seq_cst, strong cmpxchg and omit clrex on failure.
6493
6494let Constraints = "@earlyclobber $Rd,@earlyclobber $temp",
6495    mayLoad = 1, mayStore = 1 in {
6496def CMP_SWAP_8 : PseudoInst<(outs GPR:$Rd, GPR:$temp),
6497                            (ins GPR:$addr, GPR:$desired, GPR:$new),
6498                            NoItinerary, []>, Sched<[]>;
6499
6500def CMP_SWAP_16 : PseudoInst<(outs GPR:$Rd, GPR:$temp),
6501                             (ins GPR:$addr, GPR:$desired, GPR:$new),
6502                             NoItinerary, []>, Sched<[]>;
6503
6504def CMP_SWAP_32 : PseudoInst<(outs GPR:$Rd, GPR:$temp),
6505                             (ins GPR:$addr, GPR:$desired, GPR:$new),
6506                             NoItinerary, []>, Sched<[]>;
6507
6508def CMP_SWAP_64 : PseudoInst<(outs GPRPair:$Rd, GPR:$temp),
6509                             (ins GPR:$addr, GPRPair:$desired, GPRPair:$new),
6510                             NoItinerary, []>, Sched<[]>;
6511}
6512
6513def : Pat<(atomic_fence (timm), 0), (MEMBARRIER)>;
6514
6515//===----------------------------------------------------------------------===//
6516// Instructions used for emitting unwind opcodes on Windows.
6517//===----------------------------------------------------------------------===//
6518let isPseudo = 1 in {
6519  def SEH_StackAlloc : PseudoInst<(outs), (ins i32imm:$size, i32imm:$wide), NoItinerary, []>, Sched<[]>;
6520  def SEH_SaveRegs : PseudoInst<(outs), (ins i32imm:$mask, i32imm:$wide), NoItinerary, []>, Sched<[]>;
6521  let isTerminator = 1 in
6522  def SEH_SaveRegs_Ret : PseudoInst<(outs), (ins i32imm:$mask, i32imm:$wide), NoItinerary, []>, Sched<[]>;
6523  def SEH_SaveSP : PseudoInst<(outs), (ins i32imm:$reg), NoItinerary, []>, Sched<[]>;
6524  def SEH_SaveFRegs : PseudoInst<(outs), (ins i32imm:$first, i32imm:$last), NoItinerary, []>, Sched<[]>;
6525  let isTerminator = 1 in
6526  def SEH_SaveLR : PseudoInst<(outs), (ins i32imm:$offst), NoItinerary, []>, Sched<[]>;
6527  def SEH_Nop : PseudoInst<(outs), (ins i32imm:$wide), NoItinerary, []>, Sched<[]>;
6528  let isTerminator = 1 in
6529  def SEH_Nop_Ret : PseudoInst<(outs), (ins i32imm:$wide), NoItinerary, []>, Sched<[]>;
6530  def SEH_PrologEnd : PseudoInst<(outs), (ins), NoItinerary, []>, Sched<[]>;
6531  def SEH_EpilogStart : PseudoInst<(outs), (ins), NoItinerary, []>, Sched<[]>;
6532  let isTerminator = 1 in
6533  def SEH_EpilogEnd : PseudoInst<(outs), (ins), NoItinerary, []>, Sched<[]>;
6534}
6535