xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMISelLowering.cpp (revision d131218534977f1b2ed590380e70d59a3b20b333)
1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that ARM uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMISelLowering.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMCallingConv.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMPerfectShuffle.h"
21 #include "ARMRegisterInfo.h"
22 #include "ARMSelectionDAGInfo.h"
23 #include "ARMSubtarget.h"
24 #include "ARMTargetTransformInfo.h"
25 #include "MCTargetDesc/ARMAddressingModes.h"
26 #include "MCTargetDesc/ARMBaseInfo.h"
27 #include "Utils/ARMBaseInfo.h"
28 #include "llvm/ADT/APFloat.h"
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/BitVector.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/ADT/StringExtras.h"
38 #include "llvm/ADT/StringRef.h"
39 #include "llvm/ADT/StringSwitch.h"
40 #include "llvm/ADT/Triple.h"
41 #include "llvm/ADT/Twine.h"
42 #include "llvm/Analysis/VectorUtils.h"
43 #include "llvm/CodeGen/CallingConvLower.h"
44 #include "llvm/CodeGen/ISDOpcodes.h"
45 #include "llvm/CodeGen/IntrinsicLowering.h"
46 #include "llvm/CodeGen/MachineBasicBlock.h"
47 #include "llvm/CodeGen/MachineConstantPool.h"
48 #include "llvm/CodeGen/MachineFrameInfo.h"
49 #include "llvm/CodeGen/MachineFunction.h"
50 #include "llvm/CodeGen/MachineInstr.h"
51 #include "llvm/CodeGen/MachineInstrBuilder.h"
52 #include "llvm/CodeGen/MachineJumpTableInfo.h"
53 #include "llvm/CodeGen/MachineMemOperand.h"
54 #include "llvm/CodeGen/MachineOperand.h"
55 #include "llvm/CodeGen/MachineRegisterInfo.h"
56 #include "llvm/CodeGen/RuntimeLibcalls.h"
57 #include "llvm/CodeGen/SelectionDAG.h"
58 #include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
59 #include "llvm/CodeGen/SelectionDAGNodes.h"
60 #include "llvm/CodeGen/TargetInstrInfo.h"
61 #include "llvm/CodeGen/TargetLowering.h"
62 #include "llvm/CodeGen/TargetOpcodes.h"
63 #include "llvm/CodeGen/TargetRegisterInfo.h"
64 #include "llvm/CodeGen/TargetSubtargetInfo.h"
65 #include "llvm/CodeGen/ValueTypes.h"
66 #include "llvm/IR/Attributes.h"
67 #include "llvm/IR/CallingConv.h"
68 #include "llvm/IR/Constant.h"
69 #include "llvm/IR/Constants.h"
70 #include "llvm/IR/DataLayout.h"
71 #include "llvm/IR/DebugLoc.h"
72 #include "llvm/IR/DerivedTypes.h"
73 #include "llvm/IR/Function.h"
74 #include "llvm/IR/GlobalAlias.h"
75 #include "llvm/IR/GlobalValue.h"
76 #include "llvm/IR/GlobalVariable.h"
77 #include "llvm/IR/IRBuilder.h"
78 #include "llvm/IR/InlineAsm.h"
79 #include "llvm/IR/Instruction.h"
80 #include "llvm/IR/Instructions.h"
81 #include "llvm/IR/IntrinsicInst.h"
82 #include "llvm/IR/Intrinsics.h"
83 #include "llvm/IR/IntrinsicsARM.h"
84 #include "llvm/IR/Module.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Type.h"
87 #include "llvm/IR/User.h"
88 #include "llvm/IR/Value.h"
89 #include "llvm/MC/MCInstrDesc.h"
90 #include "llvm/MC/MCInstrItineraries.h"
91 #include "llvm/MC/MCRegisterInfo.h"
92 #include "llvm/MC/MCSchedule.h"
93 #include "llvm/Support/AtomicOrdering.h"
94 #include "llvm/Support/BranchProbability.h"
95 #include "llvm/Support/Casting.h"
96 #include "llvm/Support/CodeGen.h"
97 #include "llvm/Support/CommandLine.h"
98 #include "llvm/Support/Compiler.h"
99 #include "llvm/Support/Debug.h"
100 #include "llvm/Support/ErrorHandling.h"
101 #include "llvm/Support/KnownBits.h"
102 #include "llvm/Support/MachineValueType.h"
103 #include "llvm/Support/MathExtras.h"
104 #include "llvm/Support/raw_ostream.h"
105 #include "llvm/Target/TargetMachine.h"
106 #include "llvm/Target/TargetOptions.h"
107 #include <algorithm>
108 #include <cassert>
109 #include <cstdint>
110 #include <cstdlib>
111 #include <iterator>
112 #include <limits>
113 #include <string>
114 #include <tuple>
115 #include <utility>
116 #include <vector>
117 
118 using namespace llvm;
119 using namespace llvm::PatternMatch;
120 
121 #define DEBUG_TYPE "arm-isel"
122 
123 STATISTIC(NumTailCalls, "Number of tail calls");
124 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
125 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
126 STATISTIC(NumConstpoolPromoted,
127   "Number of constants with their storage promoted into constant pools");
128 
129 static cl::opt<bool>
130 ARMInterworking("arm-interworking", cl::Hidden,
131   cl::desc("Enable / disable ARM interworking (for debugging only)"),
132   cl::init(true));
133 
134 static cl::opt<bool> EnableConstpoolPromotion(
135     "arm-promote-constant", cl::Hidden,
136     cl::desc("Enable / disable promotion of unnamed_addr constants into "
137              "constant pools"),
138     cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
139 static cl::opt<unsigned> ConstpoolPromotionMaxSize(
140     "arm-promote-constant-max-size", cl::Hidden,
141     cl::desc("Maximum size of constant to promote into a constant pool"),
142     cl::init(64));
143 static cl::opt<unsigned> ConstpoolPromotionMaxTotal(
144     "arm-promote-constant-max-total", cl::Hidden,
145     cl::desc("Maximum size of ALL constants to promote into a constant pool"),
146     cl::init(128));
147 
148 cl::opt<unsigned>
149 MVEMaxSupportedInterleaveFactor("mve-max-interleave-factor", cl::Hidden,
150   cl::desc("Maximum interleave factor for MVE VLDn to generate."),
151   cl::init(2));
152 
153 // The APCS parameter registers.
154 static const MCPhysReg GPRArgRegs[] = {
155   ARM::R0, ARM::R1, ARM::R2, ARM::R3
156 };
157 
158 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT) {
159   if (VT != PromotedLdStVT) {
160     setOperationAction(ISD::LOAD, VT, Promote);
161     AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
162 
163     setOperationAction(ISD::STORE, VT, Promote);
164     AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
165   }
166 
167   MVT ElemTy = VT.getVectorElementType();
168   if (ElemTy != MVT::f64)
169     setOperationAction(ISD::SETCC, VT, Custom);
170   setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
171   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
172   if (ElemTy == MVT::i32) {
173     setOperationAction(ISD::SINT_TO_FP, VT, Custom);
174     setOperationAction(ISD::UINT_TO_FP, VT, Custom);
175     setOperationAction(ISD::FP_TO_SINT, VT, Custom);
176     setOperationAction(ISD::FP_TO_UINT, VT, Custom);
177   } else {
178     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
179     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
180     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
181     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
182   }
183   setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
184   setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
185   setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
186   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
187   setOperationAction(ISD::SELECT,            VT, Expand);
188   setOperationAction(ISD::SELECT_CC,         VT, Expand);
189   setOperationAction(ISD::VSELECT,           VT, Expand);
190   setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
191   if (VT.isInteger()) {
192     setOperationAction(ISD::SHL, VT, Custom);
193     setOperationAction(ISD::SRA, VT, Custom);
194     setOperationAction(ISD::SRL, VT, Custom);
195   }
196 
197   // Neon does not support vector divide/remainder operations.
198   setOperationAction(ISD::SDIV, VT, Expand);
199   setOperationAction(ISD::UDIV, VT, Expand);
200   setOperationAction(ISD::FDIV, VT, Expand);
201   setOperationAction(ISD::SREM, VT, Expand);
202   setOperationAction(ISD::UREM, VT, Expand);
203   setOperationAction(ISD::FREM, VT, Expand);
204   setOperationAction(ISD::SDIVREM, VT, Expand);
205   setOperationAction(ISD::UDIVREM, VT, Expand);
206 
207   if (!VT.isFloatingPoint() &&
208       VT != MVT::v2i64 && VT != MVT::v1i64)
209     for (auto Opcode : {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
210       setOperationAction(Opcode, VT, Legal);
211   if (!VT.isFloatingPoint())
212     for (auto Opcode : {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT})
213       setOperationAction(Opcode, VT, Legal);
214 }
215 
216 void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
217   addRegisterClass(VT, &ARM::DPRRegClass);
218   addTypeForNEON(VT, MVT::f64);
219 }
220 
221 void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
222   addRegisterClass(VT, &ARM::DPairRegClass);
223   addTypeForNEON(VT, MVT::v2f64);
224 }
225 
226 void ARMTargetLowering::setAllExpand(MVT VT) {
227   for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
228     setOperationAction(Opc, VT, Expand);
229 
230   // We support these really simple operations even on types where all
231   // the actual arithmetic has to be broken down into simpler
232   // operations or turned into library calls.
233   setOperationAction(ISD::BITCAST, VT, Legal);
234   setOperationAction(ISD::LOAD, VT, Legal);
235   setOperationAction(ISD::STORE, VT, Legal);
236   setOperationAction(ISD::UNDEF, VT, Legal);
237 }
238 
239 void ARMTargetLowering::addAllExtLoads(const MVT From, const MVT To,
240                                        LegalizeAction Action) {
241   setLoadExtAction(ISD::EXTLOAD,  From, To, Action);
242   setLoadExtAction(ISD::ZEXTLOAD, From, To, Action);
243   setLoadExtAction(ISD::SEXTLOAD, From, To, Action);
244 }
245 
246 void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP) {
247   const MVT IntTypes[] = { MVT::v16i8, MVT::v8i16, MVT::v4i32 };
248 
249   for (auto VT : IntTypes) {
250     addRegisterClass(VT, &ARM::MQPRRegClass);
251     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
252     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
253     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
254     setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
255     setOperationAction(ISD::SHL, VT, Custom);
256     setOperationAction(ISD::SRA, VT, Custom);
257     setOperationAction(ISD::SRL, VT, Custom);
258     setOperationAction(ISD::SMIN, VT, Legal);
259     setOperationAction(ISD::SMAX, VT, Legal);
260     setOperationAction(ISD::UMIN, VT, Legal);
261     setOperationAction(ISD::UMAX, VT, Legal);
262     setOperationAction(ISD::ABS, VT, Legal);
263     setOperationAction(ISD::SETCC, VT, Custom);
264     setOperationAction(ISD::MLOAD, VT, Custom);
265     setOperationAction(ISD::MSTORE, VT, Legal);
266     setOperationAction(ISD::CTLZ, VT, Legal);
267     setOperationAction(ISD::CTTZ, VT, Custom);
268     setOperationAction(ISD::BITREVERSE, VT, Legal);
269     setOperationAction(ISD::BSWAP, VT, Legal);
270     setOperationAction(ISD::SADDSAT, VT, Legal);
271     setOperationAction(ISD::UADDSAT, VT, Legal);
272     setOperationAction(ISD::SSUBSAT, VT, Legal);
273     setOperationAction(ISD::USUBSAT, VT, Legal);
274     setOperationAction(ISD::ABDS, VT, Legal);
275     setOperationAction(ISD::ABDU, VT, Legal);
276 
277     // No native support for these.
278     setOperationAction(ISD::UDIV, VT, Expand);
279     setOperationAction(ISD::SDIV, VT, Expand);
280     setOperationAction(ISD::UREM, VT, Expand);
281     setOperationAction(ISD::SREM, VT, Expand);
282     setOperationAction(ISD::UDIVREM, VT, Expand);
283     setOperationAction(ISD::SDIVREM, VT, Expand);
284     setOperationAction(ISD::CTPOP, VT, Expand);
285     setOperationAction(ISD::SELECT, VT, Expand);
286     setOperationAction(ISD::SELECT_CC, VT, Expand);
287 
288     // Vector reductions
289     setOperationAction(ISD::VECREDUCE_ADD, VT, Legal);
290     setOperationAction(ISD::VECREDUCE_SMAX, VT, Legal);
291     setOperationAction(ISD::VECREDUCE_UMAX, VT, Legal);
292     setOperationAction(ISD::VECREDUCE_SMIN, VT, Legal);
293     setOperationAction(ISD::VECREDUCE_UMIN, VT, Legal);
294     setOperationAction(ISD::VECREDUCE_MUL, VT, Custom);
295     setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
296     setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
297     setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
298 
299     if (!HasMVEFP) {
300       setOperationAction(ISD::SINT_TO_FP, VT, Expand);
301       setOperationAction(ISD::UINT_TO_FP, VT, Expand);
302       setOperationAction(ISD::FP_TO_SINT, VT, Expand);
303       setOperationAction(ISD::FP_TO_UINT, VT, Expand);
304     } else {
305       setOperationAction(ISD::FP_TO_SINT_SAT, VT, Custom);
306       setOperationAction(ISD::FP_TO_UINT_SAT, VT, Custom);
307     }
308 
309     // Pre and Post inc are supported on loads and stores
310     for (unsigned im = (unsigned)ISD::PRE_INC;
311          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
312       setIndexedLoadAction(im, VT, Legal);
313       setIndexedStoreAction(im, VT, Legal);
314       setIndexedMaskedLoadAction(im, VT, Legal);
315       setIndexedMaskedStoreAction(im, VT, Legal);
316     }
317   }
318 
319   const MVT FloatTypes[] = { MVT::v8f16, MVT::v4f32 };
320   for (auto VT : FloatTypes) {
321     addRegisterClass(VT, &ARM::MQPRRegClass);
322     if (!HasMVEFP)
323       setAllExpand(VT);
324 
325     // These are legal or custom whether we have MVE.fp or not
326     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
327     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
328     setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getVectorElementType(), Custom);
329     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
330     setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
331     setOperationAction(ISD::BUILD_VECTOR, VT.getVectorElementType(), Custom);
332     setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Legal);
333     setOperationAction(ISD::SETCC, VT, Custom);
334     setOperationAction(ISD::MLOAD, VT, Custom);
335     setOperationAction(ISD::MSTORE, VT, Legal);
336     setOperationAction(ISD::SELECT, VT, Expand);
337     setOperationAction(ISD::SELECT_CC, VT, Expand);
338 
339     // Pre and Post inc are supported on loads and stores
340     for (unsigned im = (unsigned)ISD::PRE_INC;
341          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
342       setIndexedLoadAction(im, VT, Legal);
343       setIndexedStoreAction(im, VT, Legal);
344       setIndexedMaskedLoadAction(im, VT, Legal);
345       setIndexedMaskedStoreAction(im, VT, Legal);
346     }
347 
348     if (HasMVEFP) {
349       setOperationAction(ISD::FMINNUM, VT, Legal);
350       setOperationAction(ISD::FMAXNUM, VT, Legal);
351       setOperationAction(ISD::FROUND, VT, Legal);
352       setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
353       setOperationAction(ISD::VECREDUCE_FMUL, VT, Custom);
354       setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
355       setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
356 
357       // No native support for these.
358       setOperationAction(ISD::FDIV, VT, Expand);
359       setOperationAction(ISD::FREM, VT, Expand);
360       setOperationAction(ISD::FSQRT, VT, Expand);
361       setOperationAction(ISD::FSIN, VT, Expand);
362       setOperationAction(ISD::FCOS, VT, Expand);
363       setOperationAction(ISD::FPOW, VT, Expand);
364       setOperationAction(ISD::FLOG, VT, Expand);
365       setOperationAction(ISD::FLOG2, VT, Expand);
366       setOperationAction(ISD::FLOG10, VT, Expand);
367       setOperationAction(ISD::FEXP, VT, Expand);
368       setOperationAction(ISD::FEXP2, VT, Expand);
369       setOperationAction(ISD::FNEARBYINT, VT, Expand);
370     }
371   }
372 
373   // Custom Expand smaller than legal vector reductions to prevent false zero
374   // items being added.
375   setOperationAction(ISD::VECREDUCE_FADD, MVT::v4f16, Custom);
376   setOperationAction(ISD::VECREDUCE_FMUL, MVT::v4f16, Custom);
377   setOperationAction(ISD::VECREDUCE_FMIN, MVT::v4f16, Custom);
378   setOperationAction(ISD::VECREDUCE_FMAX, MVT::v4f16, Custom);
379   setOperationAction(ISD::VECREDUCE_FADD, MVT::v2f16, Custom);
380   setOperationAction(ISD::VECREDUCE_FMUL, MVT::v2f16, Custom);
381   setOperationAction(ISD::VECREDUCE_FMIN, MVT::v2f16, Custom);
382   setOperationAction(ISD::VECREDUCE_FMAX, MVT::v2f16, Custom);
383 
384   // We 'support' these types up to bitcast/load/store level, regardless of
385   // MVE integer-only / float support. Only doing FP data processing on the FP
386   // vector types is inhibited at integer-only level.
387   const MVT LongTypes[] = { MVT::v2i64, MVT::v2f64 };
388   for (auto VT : LongTypes) {
389     addRegisterClass(VT, &ARM::MQPRRegClass);
390     setAllExpand(VT);
391     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
392     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
393     setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
394     setOperationAction(ISD::VSELECT, VT, Legal);
395   }
396   setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
397 
398   // We can do bitwise operations on v2i64 vectors
399   setOperationAction(ISD::AND, MVT::v2i64, Legal);
400   setOperationAction(ISD::OR, MVT::v2i64, Legal);
401   setOperationAction(ISD::XOR, MVT::v2i64, Legal);
402 
403   // It is legal to extload from v4i8 to v4i16 or v4i32.
404   addAllExtLoads(MVT::v8i16, MVT::v8i8, Legal);
405   addAllExtLoads(MVT::v4i32, MVT::v4i16, Legal);
406   addAllExtLoads(MVT::v4i32, MVT::v4i8, Legal);
407 
408   // It is legal to sign extend from v4i8/v4i16 to v4i32 or v8i8 to v8i16.
409   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
410   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
411   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
412   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i8,  Legal);
413   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i16, Legal);
414 
415   // Some truncating stores are legal too.
416   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
417   setTruncStoreAction(MVT::v4i32, MVT::v4i8,  Legal);
418   setTruncStoreAction(MVT::v8i16, MVT::v8i8,  Legal);
419 
420   // Pre and Post inc on these are legal, given the correct extends
421   for (unsigned im = (unsigned)ISD::PRE_INC;
422        im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
423     for (auto VT : {MVT::v8i8, MVT::v4i8, MVT::v4i16}) {
424       setIndexedLoadAction(im, VT, Legal);
425       setIndexedStoreAction(im, VT, Legal);
426       setIndexedMaskedLoadAction(im, VT, Legal);
427       setIndexedMaskedStoreAction(im, VT, Legal);
428     }
429   }
430 
431   // Predicate types
432   const MVT pTypes[] = {MVT::v16i1, MVT::v8i1, MVT::v4i1, MVT::v2i1};
433   for (auto VT : pTypes) {
434     addRegisterClass(VT, &ARM::VCCRRegClass);
435     setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
436     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
437     setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
438     setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
439     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
440     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
441     setOperationAction(ISD::SETCC, VT, Custom);
442     setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
443     setOperationAction(ISD::LOAD, VT, Custom);
444     setOperationAction(ISD::STORE, VT, Custom);
445     setOperationAction(ISD::TRUNCATE, VT, Custom);
446     setOperationAction(ISD::VSELECT, VT, Expand);
447     setOperationAction(ISD::SELECT, VT, Expand);
448   }
449   setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
450   setOperationAction(ISD::TRUNCATE, MVT::v2i1, Expand);
451   setOperationAction(ISD::AND, MVT::v2i1, Expand);
452   setOperationAction(ISD::OR, MVT::v2i1, Expand);
453   setOperationAction(ISD::XOR, MVT::v2i1, Expand);
454   setOperationAction(ISD::SINT_TO_FP, MVT::v2i1, Expand);
455   setOperationAction(ISD::UINT_TO_FP, MVT::v2i1, Expand);
456   setOperationAction(ISD::FP_TO_SINT, MVT::v2i1, Expand);
457   setOperationAction(ISD::FP_TO_UINT, MVT::v2i1, Expand);
458 
459   setOperationAction(ISD::SIGN_EXTEND, MVT::v8i32, Custom);
460   setOperationAction(ISD::SIGN_EXTEND, MVT::v16i16, Custom);
461   setOperationAction(ISD::SIGN_EXTEND, MVT::v16i32, Custom);
462   setOperationAction(ISD::ZERO_EXTEND, MVT::v8i32, Custom);
463   setOperationAction(ISD::ZERO_EXTEND, MVT::v16i16, Custom);
464   setOperationAction(ISD::ZERO_EXTEND, MVT::v16i32, Custom);
465   setOperationAction(ISD::TRUNCATE, MVT::v8i32, Custom);
466   setOperationAction(ISD::TRUNCATE, MVT::v16i16, Custom);
467 }
468 
469 ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
470                                      const ARMSubtarget &STI)
471     : TargetLowering(TM), Subtarget(&STI) {
472   RegInfo = Subtarget->getRegisterInfo();
473   Itins = Subtarget->getInstrItineraryData();
474 
475   setBooleanContents(ZeroOrOneBooleanContent);
476   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
477 
478   if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetIOS() &&
479       !Subtarget->isTargetWatchOS()) {
480     bool IsHFTarget = TM.Options.FloatABIType == FloatABI::Hard;
481     for (int LCID = 0; LCID < RTLIB::UNKNOWN_LIBCALL; ++LCID)
482       setLibcallCallingConv(static_cast<RTLIB::Libcall>(LCID),
483                             IsHFTarget ? CallingConv::ARM_AAPCS_VFP
484                                        : CallingConv::ARM_AAPCS);
485   }
486 
487   if (Subtarget->isTargetMachO()) {
488     // Uses VFP for Thumb libfuncs if available.
489     if (Subtarget->isThumb() && Subtarget->hasVFP2Base() &&
490         Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
491       static const struct {
492         const RTLIB::Libcall Op;
493         const char * const Name;
494         const ISD::CondCode Cond;
495       } LibraryCalls[] = {
496         // Single-precision floating-point arithmetic.
497         { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
498         { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
499         { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
500         { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
501 
502         // Double-precision floating-point arithmetic.
503         { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
504         { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
505         { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
506         { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
507 
508         // Single-precision comparisons.
509         { RTLIB::OEQ_F32, "__eqsf2vfp",    ISD::SETNE },
510         { RTLIB::UNE_F32, "__nesf2vfp",    ISD::SETNE },
511         { RTLIB::OLT_F32, "__ltsf2vfp",    ISD::SETNE },
512         { RTLIB::OLE_F32, "__lesf2vfp",    ISD::SETNE },
513         { RTLIB::OGE_F32, "__gesf2vfp",    ISD::SETNE },
514         { RTLIB::OGT_F32, "__gtsf2vfp",    ISD::SETNE },
515         { RTLIB::UO_F32,  "__unordsf2vfp", ISD::SETNE },
516 
517         // Double-precision comparisons.
518         { RTLIB::OEQ_F64, "__eqdf2vfp",    ISD::SETNE },
519         { RTLIB::UNE_F64, "__nedf2vfp",    ISD::SETNE },
520         { RTLIB::OLT_F64, "__ltdf2vfp",    ISD::SETNE },
521         { RTLIB::OLE_F64, "__ledf2vfp",    ISD::SETNE },
522         { RTLIB::OGE_F64, "__gedf2vfp",    ISD::SETNE },
523         { RTLIB::OGT_F64, "__gtdf2vfp",    ISD::SETNE },
524         { RTLIB::UO_F64,  "__unorddf2vfp", ISD::SETNE },
525 
526         // Floating-point to integer conversions.
527         // i64 conversions are done via library routines even when generating VFP
528         // instructions, so use the same ones.
529         { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp",    ISD::SETCC_INVALID },
530         { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
531         { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp",    ISD::SETCC_INVALID },
532         { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
533 
534         // Conversions between floating types.
535         { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp",  ISD::SETCC_INVALID },
536         { RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp", ISD::SETCC_INVALID },
537 
538         // Integer to floating-point conversions.
539         // i64 conversions are done via library routines even when generating VFP
540         // instructions, so use the same ones.
541         // FIXME: There appears to be some naming inconsistency in ARM libgcc:
542         // e.g., __floatunsidf vs. __floatunssidfvfp.
543         { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp",    ISD::SETCC_INVALID },
544         { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
545         { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp",    ISD::SETCC_INVALID },
546         { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
547       };
548 
549       for (const auto &LC : LibraryCalls) {
550         setLibcallName(LC.Op, LC.Name);
551         if (LC.Cond != ISD::SETCC_INVALID)
552           setCmpLibcallCC(LC.Op, LC.Cond);
553       }
554     }
555   }
556 
557   // These libcalls are not available in 32-bit.
558   setLibcallName(RTLIB::SHL_I128, nullptr);
559   setLibcallName(RTLIB::SRL_I128, nullptr);
560   setLibcallName(RTLIB::SRA_I128, nullptr);
561   setLibcallName(RTLIB::MUL_I128, nullptr);
562   setLibcallName(RTLIB::MULO_I64, nullptr);
563   setLibcallName(RTLIB::MULO_I128, nullptr);
564 
565   // RTLIB
566   if (Subtarget->isAAPCS_ABI() &&
567       (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
568        Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) {
569     static const struct {
570       const RTLIB::Libcall Op;
571       const char * const Name;
572       const CallingConv::ID CC;
573       const ISD::CondCode Cond;
574     } LibraryCalls[] = {
575       // Double-precision floating-point arithmetic helper functions
576       // RTABI chapter 4.1.2, Table 2
577       { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
578       { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
579       { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
580       { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
581 
582       // Double-precision floating-point comparison helper functions
583       // RTABI chapter 4.1.2, Table 3
584       { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
585       { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
586       { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
587       { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
588       { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
589       { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
590       { RTLIB::UO_F64,  "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
591 
592       // Single-precision floating-point arithmetic helper functions
593       // RTABI chapter 4.1.2, Table 4
594       { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
595       { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
596       { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
597       { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
598 
599       // Single-precision floating-point comparison helper functions
600       // RTABI chapter 4.1.2, Table 5
601       { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
602       { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
603       { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
604       { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
605       { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
606       { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
607       { RTLIB::UO_F32,  "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
608 
609       // Floating-point to integer conversions.
610       // RTABI chapter 4.1.2, Table 6
611       { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
612       { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
613       { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
614       { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
615       { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
616       { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
617       { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
618       { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
619 
620       // Conversions between floating types.
621       // RTABI chapter 4.1.2, Table 7
622       { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
623       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
624       { RTLIB::FPEXT_F32_F64,   "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
625 
626       // Integer to floating-point conversions.
627       // RTABI chapter 4.1.2, Table 8
628       { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
629       { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
630       { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
631       { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
632       { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
633       { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
634       { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
635       { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
636 
637       // Long long helper functions
638       // RTABI chapter 4.2, Table 9
639       { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
640       { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
641       { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
642       { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
643 
644       // Integer division functions
645       // RTABI chapter 4.3.1
646       { RTLIB::SDIV_I8,  "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
647       { RTLIB::SDIV_I16, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
648       { RTLIB::SDIV_I32, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
649       { RTLIB::SDIV_I64, "__aeabi_ldivmod",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
650       { RTLIB::UDIV_I8,  "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
651       { RTLIB::UDIV_I16, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
652       { RTLIB::UDIV_I32, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
653       { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
654     };
655 
656     for (const auto &LC : LibraryCalls) {
657       setLibcallName(LC.Op, LC.Name);
658       setLibcallCallingConv(LC.Op, LC.CC);
659       if (LC.Cond != ISD::SETCC_INVALID)
660         setCmpLibcallCC(LC.Op, LC.Cond);
661     }
662 
663     // EABI dependent RTLIB
664     if (TM.Options.EABIVersion == EABI::EABI4 ||
665         TM.Options.EABIVersion == EABI::EABI5) {
666       static const struct {
667         const RTLIB::Libcall Op;
668         const char *const Name;
669         const CallingConv::ID CC;
670         const ISD::CondCode Cond;
671       } MemOpsLibraryCalls[] = {
672         // Memory operations
673         // RTABI chapter 4.3.4
674         { RTLIB::MEMCPY,  "__aeabi_memcpy",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
675         { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
676         { RTLIB::MEMSET,  "__aeabi_memset",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
677       };
678 
679       for (const auto &LC : MemOpsLibraryCalls) {
680         setLibcallName(LC.Op, LC.Name);
681         setLibcallCallingConv(LC.Op, LC.CC);
682         if (LC.Cond != ISD::SETCC_INVALID)
683           setCmpLibcallCC(LC.Op, LC.Cond);
684       }
685     }
686   }
687 
688   if (Subtarget->isTargetWindows()) {
689     static const struct {
690       const RTLIB::Libcall Op;
691       const char * const Name;
692       const CallingConv::ID CC;
693     } LibraryCalls[] = {
694       { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
695       { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
696       { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
697       { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
698       { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
699       { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
700       { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
701       { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
702     };
703 
704     for (const auto &LC : LibraryCalls) {
705       setLibcallName(LC.Op, LC.Name);
706       setLibcallCallingConv(LC.Op, LC.CC);
707     }
708   }
709 
710   // Use divmod compiler-rt calls for iOS 5.0 and later.
711   if (Subtarget->isTargetMachO() &&
712       !(Subtarget->isTargetIOS() &&
713         Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
714     setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
715     setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
716   }
717 
718   // The half <-> float conversion functions are always soft-float on
719   // non-watchos platforms, but are needed for some targets which use a
720   // hard-float calling convention by default.
721   if (!Subtarget->isTargetWatchABI()) {
722     if (Subtarget->isAAPCS_ABI()) {
723       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
724       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
725       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
726     } else {
727       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
728       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
729       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
730     }
731   }
732 
733   // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
734   // a __gnu_ prefix (which is the default).
735   if (Subtarget->isTargetAEABI()) {
736     static const struct {
737       const RTLIB::Libcall Op;
738       const char * const Name;
739       const CallingConv::ID CC;
740     } LibraryCalls[] = {
741       { RTLIB::FPROUND_F32_F16, "__aeabi_f2h", CallingConv::ARM_AAPCS },
742       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS },
743       { RTLIB::FPEXT_F16_F32, "__aeabi_h2f", CallingConv::ARM_AAPCS },
744     };
745 
746     for (const auto &LC : LibraryCalls) {
747       setLibcallName(LC.Op, LC.Name);
748       setLibcallCallingConv(LC.Op, LC.CC);
749     }
750   }
751 
752   if (Subtarget->isThumb1Only())
753     addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
754   else
755     addRegisterClass(MVT::i32, &ARM::GPRRegClass);
756 
757   if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only() &&
758       Subtarget->hasFPRegs()) {
759     addRegisterClass(MVT::f32, &ARM::SPRRegClass);
760     addRegisterClass(MVT::f64, &ARM::DPRRegClass);
761 
762     setOperationAction(ISD::FP_TO_SINT_SAT, MVT::i32, Custom);
763     setOperationAction(ISD::FP_TO_UINT_SAT, MVT::i32, Custom);
764     setOperationAction(ISD::FP_TO_SINT_SAT, MVT::i64, Custom);
765     setOperationAction(ISD::FP_TO_UINT_SAT, MVT::i64, Custom);
766 
767     if (!Subtarget->hasVFP2Base())
768       setAllExpand(MVT::f32);
769     if (!Subtarget->hasFP64())
770       setAllExpand(MVT::f64);
771   }
772 
773   if (Subtarget->hasFullFP16()) {
774     addRegisterClass(MVT::f16, &ARM::HPRRegClass);
775     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
776     setOperationAction(ISD::BITCAST, MVT::f16, Custom);
777 
778     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
779     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
780   }
781 
782   if (Subtarget->hasBF16()) {
783     addRegisterClass(MVT::bf16, &ARM::HPRRegClass);
784     setAllExpand(MVT::bf16);
785     if (!Subtarget->hasFullFP16())
786       setOperationAction(ISD::BITCAST, MVT::bf16, Custom);
787   }
788 
789   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
790     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
791       setTruncStoreAction(VT, InnerVT, Expand);
792       addAllExtLoads(VT, InnerVT, Expand);
793     }
794 
795     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
796     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
797 
798     setOperationAction(ISD::BSWAP, VT, Expand);
799   }
800 
801   setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
802   setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
803 
804   setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
805   setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
806 
807   if (Subtarget->hasMVEIntegerOps())
808     addMVEVectorTypes(Subtarget->hasMVEFloatOps());
809 
810   // Combine low-overhead loop intrinsics so that we can lower i1 types.
811   if (Subtarget->hasLOB()) {
812     setTargetDAGCombine(ISD::BRCOND);
813     setTargetDAGCombine(ISD::BR_CC);
814   }
815 
816   if (Subtarget->hasNEON()) {
817     addDRTypeForNEON(MVT::v2f32);
818     addDRTypeForNEON(MVT::v8i8);
819     addDRTypeForNEON(MVT::v4i16);
820     addDRTypeForNEON(MVT::v2i32);
821     addDRTypeForNEON(MVT::v1i64);
822 
823     addQRTypeForNEON(MVT::v4f32);
824     addQRTypeForNEON(MVT::v2f64);
825     addQRTypeForNEON(MVT::v16i8);
826     addQRTypeForNEON(MVT::v8i16);
827     addQRTypeForNEON(MVT::v4i32);
828     addQRTypeForNEON(MVT::v2i64);
829 
830     if (Subtarget->hasFullFP16()) {
831       addQRTypeForNEON(MVT::v8f16);
832       addDRTypeForNEON(MVT::v4f16);
833     }
834 
835     if (Subtarget->hasBF16()) {
836       addQRTypeForNEON(MVT::v8bf16);
837       addDRTypeForNEON(MVT::v4bf16);
838     }
839   }
840 
841   if (Subtarget->hasMVEIntegerOps() || Subtarget->hasNEON()) {
842     // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
843     // none of Neon, MVE or VFP supports any arithmetic operations on it.
844     setOperationAction(ISD::FADD, MVT::v2f64, Expand);
845     setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
846     setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
847     // FIXME: Code duplication: FDIV and FREM are expanded always, see
848     // ARMTargetLowering::addTypeForNEON method for details.
849     setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
850     setOperationAction(ISD::FREM, MVT::v2f64, Expand);
851     // FIXME: Create unittest.
852     // In another words, find a way when "copysign" appears in DAG with vector
853     // operands.
854     setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
855     // FIXME: Code duplication: SETCC has custom operation action, see
856     // ARMTargetLowering::addTypeForNEON method for details.
857     setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
858     // FIXME: Create unittest for FNEG and for FABS.
859     setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
860     setOperationAction(ISD::FABS, MVT::v2f64, Expand);
861     setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
862     setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
863     setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
864     setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
865     setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
866     setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
867     setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
868     setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
869     setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
870     // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
871     setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
872     setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
873     setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
874     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
875     setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
876     setOperationAction(ISD::FMA, MVT::v2f64, Expand);
877   }
878 
879   if (Subtarget->hasNEON()) {
880     // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
881     // supported for v4f32.
882     setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
883     setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
884     setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
885     setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
886     setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
887     setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
888     setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
889     setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
890     setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
891     setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
892     setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
893     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
894     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
895     setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
896 
897     // Mark v2f32 intrinsics.
898     setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
899     setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
900     setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
901     setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
902     setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
903     setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
904     setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
905     setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
906     setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
907     setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
908     setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
909     setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
910     setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
911     setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
912 
913     // Neon does not support some operations on v1i64 and v2i64 types.
914     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
915     // Custom handling for some quad-vector types to detect VMULL.
916     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
917     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
918     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
919     // Custom handling for some vector types to avoid expensive expansions
920     setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
921     setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
922     setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
923     setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
924     // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
925     // a destination type that is wider than the source, and nor does
926     // it have a FP_TO_[SU]INT instruction with a narrower destination than
927     // source.
928     setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
929     setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom);
930     setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
931     setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
932     setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
933     setOperationAction(ISD::FP_TO_UINT, MVT::v8i16, Custom);
934     setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
935     setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Custom);
936 
937     setOperationAction(ISD::FP_ROUND,   MVT::v2f32, Expand);
938     setOperationAction(ISD::FP_EXTEND,  MVT::v2f64, Expand);
939 
940     // NEON does not have single instruction CTPOP for vectors with element
941     // types wider than 8-bits.  However, custom lowering can leverage the
942     // v8i8/v16i8 vcnt instruction.
943     setOperationAction(ISD::CTPOP,      MVT::v2i32, Custom);
944     setOperationAction(ISD::CTPOP,      MVT::v4i32, Custom);
945     setOperationAction(ISD::CTPOP,      MVT::v4i16, Custom);
946     setOperationAction(ISD::CTPOP,      MVT::v8i16, Custom);
947     setOperationAction(ISD::CTPOP,      MVT::v1i64, Custom);
948     setOperationAction(ISD::CTPOP,      MVT::v2i64, Custom);
949 
950     setOperationAction(ISD::CTLZ,       MVT::v1i64, Expand);
951     setOperationAction(ISD::CTLZ,       MVT::v2i64, Expand);
952 
953     // NEON does not have single instruction CTTZ for vectors.
954     setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
955     setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
956     setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
957     setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
958 
959     setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
960     setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
961     setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
962     setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
963 
964     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
965     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
966     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
967     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
968 
969     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
970     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
971     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
972     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
973 
974     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
975       setOperationAction(ISD::MULHS, VT, Expand);
976       setOperationAction(ISD::MULHU, VT, Expand);
977     }
978 
979     // NEON only has FMA instructions as of VFP4.
980     if (!Subtarget->hasVFP4Base()) {
981       setOperationAction(ISD::FMA, MVT::v2f32, Expand);
982       setOperationAction(ISD::FMA, MVT::v4f32, Expand);
983     }
984 
985     setTargetDAGCombine(ISD::SHL);
986     setTargetDAGCombine(ISD::SRL);
987     setTargetDAGCombine(ISD::SRA);
988     setTargetDAGCombine(ISD::FP_TO_SINT);
989     setTargetDAGCombine(ISD::FP_TO_UINT);
990     setTargetDAGCombine(ISD::FDIV);
991     setTargetDAGCombine(ISD::LOAD);
992 
993     // It is legal to extload from v4i8 to v4i16 or v4i32.
994     for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
995                    MVT::v2i32}) {
996       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
997         setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
998         setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
999         setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
1000       }
1001     }
1002   }
1003 
1004   if (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) {
1005     setTargetDAGCombine(ISD::BUILD_VECTOR);
1006     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1007     setTargetDAGCombine(ISD::INSERT_SUBVECTOR);
1008     setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
1009     setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1010     setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
1011     setTargetDAGCombine(ISD::STORE);
1012     setTargetDAGCombine(ISD::SIGN_EXTEND);
1013     setTargetDAGCombine(ISD::ZERO_EXTEND);
1014     setTargetDAGCombine(ISD::ANY_EXTEND);
1015     setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1016     setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1017     setTargetDAGCombine(ISD::INTRINSIC_VOID);
1018     setTargetDAGCombine(ISD::VECREDUCE_ADD);
1019     setTargetDAGCombine(ISD::ADD);
1020     setTargetDAGCombine(ISD::BITCAST);
1021   }
1022   if (Subtarget->hasMVEIntegerOps()) {
1023     setTargetDAGCombine(ISD::SMIN);
1024     setTargetDAGCombine(ISD::UMIN);
1025     setTargetDAGCombine(ISD::SMAX);
1026     setTargetDAGCombine(ISD::UMAX);
1027     setTargetDAGCombine(ISD::FP_EXTEND);
1028     setTargetDAGCombine(ISD::SELECT);
1029     setTargetDAGCombine(ISD::SELECT_CC);
1030     setTargetDAGCombine(ISD::SETCC);
1031   }
1032   if (Subtarget->hasMVEFloatOps()) {
1033     setTargetDAGCombine(ISD::FADD);
1034   }
1035 
1036   if (!Subtarget->hasFP64()) {
1037     // When targeting a floating-point unit with only single-precision
1038     // operations, f64 is legal for the few double-precision instructions which
1039     // are present However, no double-precision operations other than moves,
1040     // loads and stores are provided by the hardware.
1041     setOperationAction(ISD::FADD,       MVT::f64, Expand);
1042     setOperationAction(ISD::FSUB,       MVT::f64, Expand);
1043     setOperationAction(ISD::FMUL,       MVT::f64, Expand);
1044     setOperationAction(ISD::FMA,        MVT::f64, Expand);
1045     setOperationAction(ISD::FDIV,       MVT::f64, Expand);
1046     setOperationAction(ISD::FREM,       MVT::f64, Expand);
1047     setOperationAction(ISD::FCOPYSIGN,  MVT::f64, Expand);
1048     setOperationAction(ISD::FGETSIGN,   MVT::f64, Expand);
1049     setOperationAction(ISD::FNEG,       MVT::f64, Expand);
1050     setOperationAction(ISD::FABS,       MVT::f64, Expand);
1051     setOperationAction(ISD::FSQRT,      MVT::f64, Expand);
1052     setOperationAction(ISD::FSIN,       MVT::f64, Expand);
1053     setOperationAction(ISD::FCOS,       MVT::f64, Expand);
1054     setOperationAction(ISD::FPOW,       MVT::f64, Expand);
1055     setOperationAction(ISD::FLOG,       MVT::f64, Expand);
1056     setOperationAction(ISD::FLOG2,      MVT::f64, Expand);
1057     setOperationAction(ISD::FLOG10,     MVT::f64, Expand);
1058     setOperationAction(ISD::FEXP,       MVT::f64, Expand);
1059     setOperationAction(ISD::FEXP2,      MVT::f64, Expand);
1060     setOperationAction(ISD::FCEIL,      MVT::f64, Expand);
1061     setOperationAction(ISD::FTRUNC,     MVT::f64, Expand);
1062     setOperationAction(ISD::FRINT,      MVT::f64, Expand);
1063     setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
1064     setOperationAction(ISD::FFLOOR,     MVT::f64, Expand);
1065     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
1066     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
1067     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
1068     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
1069     setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
1070     setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
1071     setOperationAction(ISD::FP_ROUND,   MVT::f32, Custom);
1072     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
1073     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
1074     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::f64, Custom);
1075     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::f64, Custom);
1076     setOperationAction(ISD::STRICT_FP_ROUND,   MVT::f32, Custom);
1077   }
1078 
1079   if (!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) {
1080     setOperationAction(ISD::FP_EXTEND,  MVT::f64, Custom);
1081     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Custom);
1082     if (Subtarget->hasFullFP16()) {
1083       setOperationAction(ISD::FP_ROUND,  MVT::f16, Custom);
1084       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Custom);
1085     }
1086   }
1087 
1088   if (!Subtarget->hasFP16()) {
1089     setOperationAction(ISD::FP_EXTEND,  MVT::f32, Custom);
1090     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Custom);
1091   }
1092 
1093   computeRegisterProperties(Subtarget->getRegisterInfo());
1094 
1095   // ARM does not have floating-point extending loads.
1096   for (MVT VT : MVT::fp_valuetypes()) {
1097     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1098     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
1099   }
1100 
1101   // ... or truncating stores
1102   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1103   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
1104   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
1105 
1106   // ARM does not have i1 sign extending load.
1107   for (MVT VT : MVT::integer_valuetypes())
1108     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
1109 
1110   // ARM supports all 4 flavors of integer indexed load / store.
1111   if (!Subtarget->isThumb1Only()) {
1112     for (unsigned im = (unsigned)ISD::PRE_INC;
1113          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
1114       setIndexedLoadAction(im,  MVT::i1,  Legal);
1115       setIndexedLoadAction(im,  MVT::i8,  Legal);
1116       setIndexedLoadAction(im,  MVT::i16, Legal);
1117       setIndexedLoadAction(im,  MVT::i32, Legal);
1118       setIndexedStoreAction(im, MVT::i1,  Legal);
1119       setIndexedStoreAction(im, MVT::i8,  Legal);
1120       setIndexedStoreAction(im, MVT::i16, Legal);
1121       setIndexedStoreAction(im, MVT::i32, Legal);
1122     }
1123   } else {
1124     // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
1125     setIndexedLoadAction(ISD::POST_INC, MVT::i32,  Legal);
1126     setIndexedStoreAction(ISD::POST_INC, MVT::i32,  Legal);
1127   }
1128 
1129   setOperationAction(ISD::SADDO, MVT::i32, Custom);
1130   setOperationAction(ISD::UADDO, MVT::i32, Custom);
1131   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
1132   setOperationAction(ISD::USUBO, MVT::i32, Custom);
1133 
1134   setOperationAction(ISD::ADDCARRY, MVT::i32, Custom);
1135   setOperationAction(ISD::SUBCARRY, MVT::i32, Custom);
1136   if (Subtarget->hasDSP()) {
1137     setOperationAction(ISD::SADDSAT, MVT::i8, Custom);
1138     setOperationAction(ISD::SSUBSAT, MVT::i8, Custom);
1139     setOperationAction(ISD::SADDSAT, MVT::i16, Custom);
1140     setOperationAction(ISD::SSUBSAT, MVT::i16, Custom);
1141     setOperationAction(ISD::UADDSAT, MVT::i8, Custom);
1142     setOperationAction(ISD::USUBSAT, MVT::i8, Custom);
1143     setOperationAction(ISD::UADDSAT, MVT::i16, Custom);
1144     setOperationAction(ISD::USUBSAT, MVT::i16, Custom);
1145   }
1146   if (Subtarget->hasBaseDSP()) {
1147     setOperationAction(ISD::SADDSAT, MVT::i32, Legal);
1148     setOperationAction(ISD::SSUBSAT, MVT::i32, Legal);
1149   }
1150 
1151   // i64 operation support.
1152   setOperationAction(ISD::MUL,     MVT::i64, Expand);
1153   setOperationAction(ISD::MULHU,   MVT::i32, Expand);
1154   if (Subtarget->isThumb1Only()) {
1155     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
1156     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
1157   }
1158   if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
1159       || (Subtarget->isThumb2() && !Subtarget->hasDSP()))
1160     setOperationAction(ISD::MULHS, MVT::i32, Expand);
1161 
1162   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
1163   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
1164   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
1165   setOperationAction(ISD::SRL,       MVT::i64, Custom);
1166   setOperationAction(ISD::SRA,       MVT::i64, Custom);
1167   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
1168   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
1169   setOperationAction(ISD::LOAD, MVT::i64, Custom);
1170   setOperationAction(ISD::STORE, MVT::i64, Custom);
1171 
1172   // MVE lowers 64 bit shifts to lsll and lsrl
1173   // assuming that ISD::SRL and SRA of i64 are already marked custom
1174   if (Subtarget->hasMVEIntegerOps())
1175     setOperationAction(ISD::SHL, MVT::i64, Custom);
1176 
1177   // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
1178   if (Subtarget->isThumb1Only()) {
1179     setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
1180     setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
1181     setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
1182   }
1183 
1184   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
1185     setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
1186 
1187   // ARM does not have ROTL.
1188   setOperationAction(ISD::ROTL, MVT::i32, Expand);
1189   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
1190     setOperationAction(ISD::ROTL, VT, Expand);
1191     setOperationAction(ISD::ROTR, VT, Expand);
1192   }
1193   setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
1194   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
1195   if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) {
1196     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
1197     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, LibCall);
1198   }
1199 
1200   // @llvm.readcyclecounter requires the Performance Monitors extension.
1201   // Default to the 0 expansion on unsupported platforms.
1202   // FIXME: Technically there are older ARM CPUs that have
1203   // implementation-specific ways of obtaining this information.
1204   if (Subtarget->hasPerfMon())
1205     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
1206 
1207   // Only ARMv6 has BSWAP.
1208   if (!Subtarget->hasV6Ops())
1209     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
1210 
1211   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
1212                                         : Subtarget->hasDivideInARMMode();
1213   if (!hasDivide) {
1214     // These are expanded into libcalls if the cpu doesn't have HW divider.
1215     setOperationAction(ISD::SDIV,  MVT::i32, LibCall);
1216     setOperationAction(ISD::UDIV,  MVT::i32, LibCall);
1217   }
1218 
1219   if (Subtarget->isTargetWindows() && !Subtarget->hasDivideInThumbMode()) {
1220     setOperationAction(ISD::SDIV, MVT::i32, Custom);
1221     setOperationAction(ISD::UDIV, MVT::i32, Custom);
1222 
1223     setOperationAction(ISD::SDIV, MVT::i64, Custom);
1224     setOperationAction(ISD::UDIV, MVT::i64, Custom);
1225   }
1226 
1227   setOperationAction(ISD::SREM,  MVT::i32, Expand);
1228   setOperationAction(ISD::UREM,  MVT::i32, Expand);
1229 
1230   // Register based DivRem for AEABI (RTABI 4.2)
1231   if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
1232       Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
1233       Subtarget->isTargetWindows()) {
1234     setOperationAction(ISD::SREM, MVT::i64, Custom);
1235     setOperationAction(ISD::UREM, MVT::i64, Custom);
1236     HasStandaloneRem = false;
1237 
1238     if (Subtarget->isTargetWindows()) {
1239       const struct {
1240         const RTLIB::Libcall Op;
1241         const char * const Name;
1242         const CallingConv::ID CC;
1243       } LibraryCalls[] = {
1244         { RTLIB::SDIVREM_I8, "__rt_sdiv", CallingConv::ARM_AAPCS },
1245         { RTLIB::SDIVREM_I16, "__rt_sdiv", CallingConv::ARM_AAPCS },
1246         { RTLIB::SDIVREM_I32, "__rt_sdiv", CallingConv::ARM_AAPCS },
1247         { RTLIB::SDIVREM_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS },
1248 
1249         { RTLIB::UDIVREM_I8, "__rt_udiv", CallingConv::ARM_AAPCS },
1250         { RTLIB::UDIVREM_I16, "__rt_udiv", CallingConv::ARM_AAPCS },
1251         { RTLIB::UDIVREM_I32, "__rt_udiv", CallingConv::ARM_AAPCS },
1252         { RTLIB::UDIVREM_I64, "__rt_udiv64", CallingConv::ARM_AAPCS },
1253       };
1254 
1255       for (const auto &LC : LibraryCalls) {
1256         setLibcallName(LC.Op, LC.Name);
1257         setLibcallCallingConv(LC.Op, LC.CC);
1258       }
1259     } else {
1260       const struct {
1261         const RTLIB::Libcall Op;
1262         const char * const Name;
1263         const CallingConv::ID CC;
1264       } LibraryCalls[] = {
1265         { RTLIB::SDIVREM_I8, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1266         { RTLIB::SDIVREM_I16, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1267         { RTLIB::SDIVREM_I32, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1268         { RTLIB::SDIVREM_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS },
1269 
1270         { RTLIB::UDIVREM_I8, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1271         { RTLIB::UDIVREM_I16, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1272         { RTLIB::UDIVREM_I32, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1273         { RTLIB::UDIVREM_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS },
1274       };
1275 
1276       for (const auto &LC : LibraryCalls) {
1277         setLibcallName(LC.Op, LC.Name);
1278         setLibcallCallingConv(LC.Op, LC.CC);
1279       }
1280     }
1281 
1282     setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
1283     setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
1284     setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
1285     setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
1286   } else {
1287     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
1288     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
1289   }
1290 
1291   if (Subtarget->getTargetTriple().isOSMSVCRT()) {
1292     // MSVCRT doesn't have powi; fall back to pow
1293     setLibcallName(RTLIB::POWI_F32, nullptr);
1294     setLibcallName(RTLIB::POWI_F64, nullptr);
1295   }
1296 
1297   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
1298   setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
1299   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
1300   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
1301 
1302   setOperationAction(ISD::TRAP, MVT::Other, Legal);
1303   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
1304 
1305   // Use the default implementation.
1306   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
1307   setOperationAction(ISD::VAARG,              MVT::Other, Expand);
1308   setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
1309   setOperationAction(ISD::VAEND,              MVT::Other, Expand);
1310   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
1311   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
1312 
1313   if (Subtarget->isTargetWindows())
1314     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1315   else
1316     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
1317 
1318   // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
1319   // the default expansion.
1320   InsertFencesForAtomic = false;
1321   if (Subtarget->hasAnyDataBarrier() &&
1322       (!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
1323     // ATOMIC_FENCE needs custom lowering; the others should have been expanded
1324     // to ldrex/strex loops already.
1325     setOperationAction(ISD::ATOMIC_FENCE,     MVT::Other, Custom);
1326     if (!Subtarget->isThumb() || !Subtarget->isMClass())
1327       setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
1328 
1329     // On v8, we have particularly efficient implementations of atomic fences
1330     // if they can be combined with nearby atomic loads and stores.
1331     if (!Subtarget->hasAcquireRelease() ||
1332         getTargetMachine().getOptLevel() == 0) {
1333       // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
1334       InsertFencesForAtomic = true;
1335     }
1336   } else {
1337     // If there's anything we can use as a barrier, go through custom lowering
1338     // for ATOMIC_FENCE.
1339     // If target has DMB in thumb, Fences can be inserted.
1340     if (Subtarget->hasDataBarrier())
1341       InsertFencesForAtomic = true;
1342 
1343     setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other,
1344                        Subtarget->hasAnyDataBarrier() ? Custom : Expand);
1345 
1346     // Set them all for expansion, which will force libcalls.
1347     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
1348     setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
1349     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
1350     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
1351     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
1352     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
1353     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
1354     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
1355     setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
1356     setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
1357     setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
1358     setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
1359     // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1360     // Unordered/Monotonic case.
1361     if (!InsertFencesForAtomic) {
1362       setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
1363       setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
1364     }
1365   }
1366 
1367   setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
1368 
1369   // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1370   if (!Subtarget->hasV6Ops()) {
1371     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
1372     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
1373   }
1374   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1375 
1376   if (!Subtarget->useSoftFloat() && Subtarget->hasFPRegs() &&
1377       !Subtarget->isThumb1Only()) {
1378     // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1379     // iff target supports vfp2.
1380     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1381     setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
1382     setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
1383   }
1384 
1385   // We want to custom lower some of our intrinsics.
1386   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1387   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
1388   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
1389   setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
1390   if (Subtarget->useSjLjEH())
1391     setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
1392 
1393   setOperationAction(ISD::SETCC,     MVT::i32, Expand);
1394   setOperationAction(ISD::SETCC,     MVT::f32, Expand);
1395   setOperationAction(ISD::SETCC,     MVT::f64, Expand);
1396   setOperationAction(ISD::SELECT,    MVT::i32, Custom);
1397   setOperationAction(ISD::SELECT,    MVT::f32, Custom);
1398   setOperationAction(ISD::SELECT,    MVT::f64, Custom);
1399   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1400   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
1401   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
1402   if (Subtarget->hasFullFP16()) {
1403     setOperationAction(ISD::SETCC,     MVT::f16, Expand);
1404     setOperationAction(ISD::SELECT,    MVT::f16, Custom);
1405     setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
1406   }
1407 
1408   setOperationAction(ISD::SETCCCARRY, MVT::i32, Custom);
1409 
1410   setOperationAction(ISD::BRCOND,    MVT::Other, Custom);
1411   setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
1412   if (Subtarget->hasFullFP16())
1413       setOperationAction(ISD::BR_CC, MVT::f16,   Custom);
1414   setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
1415   setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
1416   setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
1417 
1418   // We don't support sin/cos/fmod/copysign/pow
1419   setOperationAction(ISD::FSIN,      MVT::f64, Expand);
1420   setOperationAction(ISD::FSIN,      MVT::f32, Expand);
1421   setOperationAction(ISD::FCOS,      MVT::f32, Expand);
1422   setOperationAction(ISD::FCOS,      MVT::f64, Expand);
1423   setOperationAction(ISD::FSINCOS,   MVT::f64, Expand);
1424   setOperationAction(ISD::FSINCOS,   MVT::f32, Expand);
1425   setOperationAction(ISD::FREM,      MVT::f64, Expand);
1426   setOperationAction(ISD::FREM,      MVT::f32, Expand);
1427   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2Base() &&
1428       !Subtarget->isThumb1Only()) {
1429     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
1430     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
1431   }
1432   setOperationAction(ISD::FPOW,      MVT::f64, Expand);
1433   setOperationAction(ISD::FPOW,      MVT::f32, Expand);
1434 
1435   if (!Subtarget->hasVFP4Base()) {
1436     setOperationAction(ISD::FMA, MVT::f64, Expand);
1437     setOperationAction(ISD::FMA, MVT::f32, Expand);
1438   }
1439 
1440   // Various VFP goodness
1441   if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
1442     // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1443     if (!Subtarget->hasFPARMv8Base() || !Subtarget->hasFP64()) {
1444       setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
1445       setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
1446     }
1447 
1448     // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1449     if (!Subtarget->hasFP16()) {
1450       setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
1451       setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
1452     }
1453 
1454     // Strict floating-point comparisons need custom lowering.
1455     setOperationAction(ISD::STRICT_FSETCC,  MVT::f16, Custom);
1456     setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Custom);
1457     setOperationAction(ISD::STRICT_FSETCC,  MVT::f32, Custom);
1458     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Custom);
1459     setOperationAction(ISD::STRICT_FSETCC,  MVT::f64, Custom);
1460     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Custom);
1461   }
1462 
1463   // Use __sincos_stret if available.
1464   if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
1465       getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
1466     setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1467     setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1468   }
1469 
1470   // FP-ARMv8 implements a lot of rounding-like FP operations.
1471   if (Subtarget->hasFPARMv8Base()) {
1472     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
1473     setOperationAction(ISD::FCEIL, MVT::f32, Legal);
1474     setOperationAction(ISD::FROUND, MVT::f32, Legal);
1475     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
1476     setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
1477     setOperationAction(ISD::FRINT, MVT::f32, Legal);
1478     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1479     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1480     if (Subtarget->hasNEON()) {
1481       setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
1482       setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
1483       setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1484       setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1485     }
1486 
1487     if (Subtarget->hasFP64()) {
1488       setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
1489       setOperationAction(ISD::FCEIL, MVT::f64, Legal);
1490       setOperationAction(ISD::FROUND, MVT::f64, Legal);
1491       setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
1492       setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
1493       setOperationAction(ISD::FRINT, MVT::f64, Legal);
1494       setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1495       setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1496     }
1497   }
1498 
1499   // FP16 often need to be promoted to call lib functions
1500   if (Subtarget->hasFullFP16()) {
1501     setOperationAction(ISD::FREM, MVT::f16, Promote);
1502     setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
1503     setOperationAction(ISD::FSIN, MVT::f16, Promote);
1504     setOperationAction(ISD::FCOS, MVT::f16, Promote);
1505     setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
1506     setOperationAction(ISD::FPOWI, MVT::f16, Promote);
1507     setOperationAction(ISD::FPOW, MVT::f16, Promote);
1508     setOperationAction(ISD::FEXP, MVT::f16, Promote);
1509     setOperationAction(ISD::FEXP2, MVT::f16, Promote);
1510     setOperationAction(ISD::FLOG, MVT::f16, Promote);
1511     setOperationAction(ISD::FLOG10, MVT::f16, Promote);
1512     setOperationAction(ISD::FLOG2, MVT::f16, Promote);
1513 
1514     setOperationAction(ISD::FROUND, MVT::f16, Legal);
1515   }
1516 
1517   if (Subtarget->hasNEON()) {
1518     // vmin and vmax aren't available in a scalar form, so we can use
1519     // a NEON instruction with an undef lane instead.  This has a performance
1520     // penalty on some cores, so we don't do this unless we have been
1521     // asked to by the core tuning model.
1522     if (Subtarget->useNEONForSinglePrecisionFP()) {
1523       setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
1524       setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
1525       setOperationAction(ISD::FMINIMUM, MVT::f16, Legal);
1526       setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal);
1527     }
1528     setOperationAction(ISD::FMINIMUM, MVT::v2f32, Legal);
1529     setOperationAction(ISD::FMAXIMUM, MVT::v2f32, Legal);
1530     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
1531     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
1532 
1533     if (Subtarget->hasFullFP16()) {
1534       setOperationAction(ISD::FMINNUM, MVT::v4f16, Legal);
1535       setOperationAction(ISD::FMAXNUM, MVT::v4f16, Legal);
1536       setOperationAction(ISD::FMINNUM, MVT::v8f16, Legal);
1537       setOperationAction(ISD::FMAXNUM, MVT::v8f16, Legal);
1538 
1539       setOperationAction(ISD::FMINIMUM, MVT::v4f16, Legal);
1540       setOperationAction(ISD::FMAXIMUM, MVT::v4f16, Legal);
1541       setOperationAction(ISD::FMINIMUM, MVT::v8f16, Legal);
1542       setOperationAction(ISD::FMAXIMUM, MVT::v8f16, Legal);
1543     }
1544   }
1545 
1546   // We have target-specific dag combine patterns for the following nodes:
1547   // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
1548   setTargetDAGCombine(ISD::ADD);
1549   setTargetDAGCombine(ISD::SUB);
1550   setTargetDAGCombine(ISD::MUL);
1551   setTargetDAGCombine(ISD::AND);
1552   setTargetDAGCombine(ISD::OR);
1553   setTargetDAGCombine(ISD::XOR);
1554 
1555   if (Subtarget->hasMVEIntegerOps())
1556     setTargetDAGCombine(ISD::VSELECT);
1557 
1558   if (Subtarget->hasV6Ops())
1559     setTargetDAGCombine(ISD::SRL);
1560   if (Subtarget->isThumb1Only())
1561     setTargetDAGCombine(ISD::SHL);
1562 
1563   setStackPointerRegisterToSaveRestore(ARM::SP);
1564 
1565   if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
1566       !Subtarget->hasVFP2Base() || Subtarget->hasMinSize())
1567     setSchedulingPreference(Sched::RegPressure);
1568   else
1569     setSchedulingPreference(Sched::Hybrid);
1570 
1571   //// temporary - rewrite interface to use type
1572   MaxStoresPerMemset = 8;
1573   MaxStoresPerMemsetOptSize = 4;
1574   MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
1575   MaxStoresPerMemcpyOptSize = 2;
1576   MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
1577   MaxStoresPerMemmoveOptSize = 2;
1578 
1579   // On ARM arguments smaller than 4 bytes are extended, so all arguments
1580   // are at least 4 bytes aligned.
1581   setMinStackArgumentAlignment(Align(4));
1582 
1583   // Prefer likely predicted branches to selects on out-of-order cores.
1584   PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();
1585 
1586   setPrefLoopAlignment(Align(1ULL << Subtarget->getPrefLoopLogAlignment()));
1587 
1588   setMinFunctionAlignment(Subtarget->isThumb() ? Align(2) : Align(4));
1589 
1590   if (Subtarget->isThumb() || Subtarget->isThumb2())
1591     setTargetDAGCombine(ISD::ABS);
1592 }
1593 
1594 bool ARMTargetLowering::useSoftFloat() const {
1595   return Subtarget->useSoftFloat();
1596 }
1597 
1598 // FIXME: It might make sense to define the representative register class as the
1599 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1600 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1601 // SPR's representative would be DPR_VFP2. This should work well if register
1602 // pressure tracking were modified such that a register use would increment the
1603 // pressure of the register class's representative and all of it's super
1604 // classes' representatives transitively. We have not implemented this because
1605 // of the difficulty prior to coalescing of modeling operand register classes
1606 // due to the common occurrence of cross class copies and subregister insertions
1607 // and extractions.
1608 std::pair<const TargetRegisterClass *, uint8_t>
1609 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
1610                                            MVT VT) const {
1611   const TargetRegisterClass *RRC = nullptr;
1612   uint8_t Cost = 1;
1613   switch (VT.SimpleTy) {
1614   default:
1615     return TargetLowering::findRepresentativeClass(TRI, VT);
1616   // Use DPR as representative register class for all floating point
1617   // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1618   // the cost is 1 for both f32 and f64.
1619   case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
1620   case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
1621     RRC = &ARM::DPRRegClass;
1622     // When NEON is used for SP, only half of the register file is available
1623     // because operations that define both SP and DP results will be constrained
1624     // to the VFP2 class (D0-D15). We currently model this constraint prior to
1625     // coalescing by double-counting the SP regs. See the FIXME above.
1626     if (Subtarget->useNEONForSinglePrecisionFP())
1627       Cost = 2;
1628     break;
1629   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1630   case MVT::v4f32: case MVT::v2f64:
1631     RRC = &ARM::DPRRegClass;
1632     Cost = 2;
1633     break;
1634   case MVT::v4i64:
1635     RRC = &ARM::DPRRegClass;
1636     Cost = 4;
1637     break;
1638   case MVT::v8i64:
1639     RRC = &ARM::DPRRegClass;
1640     Cost = 8;
1641     break;
1642   }
1643   return std::make_pair(RRC, Cost);
1644 }
1645 
1646 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
1647 #define MAKE_CASE(V)                                                           \
1648   case V:                                                                      \
1649     return #V;
1650   switch ((ARMISD::NodeType)Opcode) {
1651   case ARMISD::FIRST_NUMBER:
1652     break;
1653     MAKE_CASE(ARMISD::Wrapper)
1654     MAKE_CASE(ARMISD::WrapperPIC)
1655     MAKE_CASE(ARMISD::WrapperJT)
1656     MAKE_CASE(ARMISD::COPY_STRUCT_BYVAL)
1657     MAKE_CASE(ARMISD::CALL)
1658     MAKE_CASE(ARMISD::CALL_PRED)
1659     MAKE_CASE(ARMISD::CALL_NOLINK)
1660     MAKE_CASE(ARMISD::tSECALL)
1661     MAKE_CASE(ARMISD::t2CALL_BTI)
1662     MAKE_CASE(ARMISD::BRCOND)
1663     MAKE_CASE(ARMISD::BR_JT)
1664     MAKE_CASE(ARMISD::BR2_JT)
1665     MAKE_CASE(ARMISD::RET_FLAG)
1666     MAKE_CASE(ARMISD::SERET_FLAG)
1667     MAKE_CASE(ARMISD::INTRET_FLAG)
1668     MAKE_CASE(ARMISD::PIC_ADD)
1669     MAKE_CASE(ARMISD::CMP)
1670     MAKE_CASE(ARMISD::CMN)
1671     MAKE_CASE(ARMISD::CMPZ)
1672     MAKE_CASE(ARMISD::CMPFP)
1673     MAKE_CASE(ARMISD::CMPFPE)
1674     MAKE_CASE(ARMISD::CMPFPw0)
1675     MAKE_CASE(ARMISD::CMPFPEw0)
1676     MAKE_CASE(ARMISD::BCC_i64)
1677     MAKE_CASE(ARMISD::FMSTAT)
1678     MAKE_CASE(ARMISD::CMOV)
1679     MAKE_CASE(ARMISD::SUBS)
1680     MAKE_CASE(ARMISD::SSAT)
1681     MAKE_CASE(ARMISD::USAT)
1682     MAKE_CASE(ARMISD::ASRL)
1683     MAKE_CASE(ARMISD::LSRL)
1684     MAKE_CASE(ARMISD::LSLL)
1685     MAKE_CASE(ARMISD::SRL_FLAG)
1686     MAKE_CASE(ARMISD::SRA_FLAG)
1687     MAKE_CASE(ARMISD::RRX)
1688     MAKE_CASE(ARMISD::ADDC)
1689     MAKE_CASE(ARMISD::ADDE)
1690     MAKE_CASE(ARMISD::SUBC)
1691     MAKE_CASE(ARMISD::SUBE)
1692     MAKE_CASE(ARMISD::LSLS)
1693     MAKE_CASE(ARMISD::VMOVRRD)
1694     MAKE_CASE(ARMISD::VMOVDRR)
1695     MAKE_CASE(ARMISD::VMOVhr)
1696     MAKE_CASE(ARMISD::VMOVrh)
1697     MAKE_CASE(ARMISD::VMOVSR)
1698     MAKE_CASE(ARMISD::EH_SJLJ_SETJMP)
1699     MAKE_CASE(ARMISD::EH_SJLJ_LONGJMP)
1700     MAKE_CASE(ARMISD::EH_SJLJ_SETUP_DISPATCH)
1701     MAKE_CASE(ARMISD::TC_RETURN)
1702     MAKE_CASE(ARMISD::THREAD_POINTER)
1703     MAKE_CASE(ARMISD::DYN_ALLOC)
1704     MAKE_CASE(ARMISD::MEMBARRIER_MCR)
1705     MAKE_CASE(ARMISD::PRELOAD)
1706     MAKE_CASE(ARMISD::LDRD)
1707     MAKE_CASE(ARMISD::STRD)
1708     MAKE_CASE(ARMISD::WIN__CHKSTK)
1709     MAKE_CASE(ARMISD::WIN__DBZCHK)
1710     MAKE_CASE(ARMISD::PREDICATE_CAST)
1711     MAKE_CASE(ARMISD::VECTOR_REG_CAST)
1712     MAKE_CASE(ARMISD::MVESEXT)
1713     MAKE_CASE(ARMISD::MVEZEXT)
1714     MAKE_CASE(ARMISD::MVETRUNC)
1715     MAKE_CASE(ARMISD::VCMP)
1716     MAKE_CASE(ARMISD::VCMPZ)
1717     MAKE_CASE(ARMISD::VTST)
1718     MAKE_CASE(ARMISD::VSHLs)
1719     MAKE_CASE(ARMISD::VSHLu)
1720     MAKE_CASE(ARMISD::VSHLIMM)
1721     MAKE_CASE(ARMISD::VSHRsIMM)
1722     MAKE_CASE(ARMISD::VSHRuIMM)
1723     MAKE_CASE(ARMISD::VRSHRsIMM)
1724     MAKE_CASE(ARMISD::VRSHRuIMM)
1725     MAKE_CASE(ARMISD::VRSHRNIMM)
1726     MAKE_CASE(ARMISD::VQSHLsIMM)
1727     MAKE_CASE(ARMISD::VQSHLuIMM)
1728     MAKE_CASE(ARMISD::VQSHLsuIMM)
1729     MAKE_CASE(ARMISD::VQSHRNsIMM)
1730     MAKE_CASE(ARMISD::VQSHRNuIMM)
1731     MAKE_CASE(ARMISD::VQSHRNsuIMM)
1732     MAKE_CASE(ARMISD::VQRSHRNsIMM)
1733     MAKE_CASE(ARMISD::VQRSHRNuIMM)
1734     MAKE_CASE(ARMISD::VQRSHRNsuIMM)
1735     MAKE_CASE(ARMISD::VSLIIMM)
1736     MAKE_CASE(ARMISD::VSRIIMM)
1737     MAKE_CASE(ARMISD::VGETLANEu)
1738     MAKE_CASE(ARMISD::VGETLANEs)
1739     MAKE_CASE(ARMISD::VMOVIMM)
1740     MAKE_CASE(ARMISD::VMVNIMM)
1741     MAKE_CASE(ARMISD::VMOVFPIMM)
1742     MAKE_CASE(ARMISD::VDUP)
1743     MAKE_CASE(ARMISD::VDUPLANE)
1744     MAKE_CASE(ARMISD::VEXT)
1745     MAKE_CASE(ARMISD::VREV64)
1746     MAKE_CASE(ARMISD::VREV32)
1747     MAKE_CASE(ARMISD::VREV16)
1748     MAKE_CASE(ARMISD::VZIP)
1749     MAKE_CASE(ARMISD::VUZP)
1750     MAKE_CASE(ARMISD::VTRN)
1751     MAKE_CASE(ARMISD::VTBL1)
1752     MAKE_CASE(ARMISD::VTBL2)
1753     MAKE_CASE(ARMISD::VMOVN)
1754     MAKE_CASE(ARMISD::VQMOVNs)
1755     MAKE_CASE(ARMISD::VQMOVNu)
1756     MAKE_CASE(ARMISD::VCVTN)
1757     MAKE_CASE(ARMISD::VCVTL)
1758     MAKE_CASE(ARMISD::VIDUP)
1759     MAKE_CASE(ARMISD::VMULLs)
1760     MAKE_CASE(ARMISD::VMULLu)
1761     MAKE_CASE(ARMISD::VQDMULH)
1762     MAKE_CASE(ARMISD::VADDVs)
1763     MAKE_CASE(ARMISD::VADDVu)
1764     MAKE_CASE(ARMISD::VADDVps)
1765     MAKE_CASE(ARMISD::VADDVpu)
1766     MAKE_CASE(ARMISD::VADDLVs)
1767     MAKE_CASE(ARMISD::VADDLVu)
1768     MAKE_CASE(ARMISD::VADDLVAs)
1769     MAKE_CASE(ARMISD::VADDLVAu)
1770     MAKE_CASE(ARMISD::VADDLVps)
1771     MAKE_CASE(ARMISD::VADDLVpu)
1772     MAKE_CASE(ARMISD::VADDLVAps)
1773     MAKE_CASE(ARMISD::VADDLVApu)
1774     MAKE_CASE(ARMISD::VMLAVs)
1775     MAKE_CASE(ARMISD::VMLAVu)
1776     MAKE_CASE(ARMISD::VMLAVps)
1777     MAKE_CASE(ARMISD::VMLAVpu)
1778     MAKE_CASE(ARMISD::VMLALVs)
1779     MAKE_CASE(ARMISD::VMLALVu)
1780     MAKE_CASE(ARMISD::VMLALVps)
1781     MAKE_CASE(ARMISD::VMLALVpu)
1782     MAKE_CASE(ARMISD::VMLALVAs)
1783     MAKE_CASE(ARMISD::VMLALVAu)
1784     MAKE_CASE(ARMISD::VMLALVAps)
1785     MAKE_CASE(ARMISD::VMLALVApu)
1786     MAKE_CASE(ARMISD::VMINVu)
1787     MAKE_CASE(ARMISD::VMINVs)
1788     MAKE_CASE(ARMISD::VMAXVu)
1789     MAKE_CASE(ARMISD::VMAXVs)
1790     MAKE_CASE(ARMISD::UMAAL)
1791     MAKE_CASE(ARMISD::UMLAL)
1792     MAKE_CASE(ARMISD::SMLAL)
1793     MAKE_CASE(ARMISD::SMLALBB)
1794     MAKE_CASE(ARMISD::SMLALBT)
1795     MAKE_CASE(ARMISD::SMLALTB)
1796     MAKE_CASE(ARMISD::SMLALTT)
1797     MAKE_CASE(ARMISD::SMULWB)
1798     MAKE_CASE(ARMISD::SMULWT)
1799     MAKE_CASE(ARMISD::SMLALD)
1800     MAKE_CASE(ARMISD::SMLALDX)
1801     MAKE_CASE(ARMISD::SMLSLD)
1802     MAKE_CASE(ARMISD::SMLSLDX)
1803     MAKE_CASE(ARMISD::SMMLAR)
1804     MAKE_CASE(ARMISD::SMMLSR)
1805     MAKE_CASE(ARMISD::QADD16b)
1806     MAKE_CASE(ARMISD::QSUB16b)
1807     MAKE_CASE(ARMISD::QADD8b)
1808     MAKE_CASE(ARMISD::QSUB8b)
1809     MAKE_CASE(ARMISD::UQADD16b)
1810     MAKE_CASE(ARMISD::UQSUB16b)
1811     MAKE_CASE(ARMISD::UQADD8b)
1812     MAKE_CASE(ARMISD::UQSUB8b)
1813     MAKE_CASE(ARMISD::BUILD_VECTOR)
1814     MAKE_CASE(ARMISD::BFI)
1815     MAKE_CASE(ARMISD::VORRIMM)
1816     MAKE_CASE(ARMISD::VBICIMM)
1817     MAKE_CASE(ARMISD::VBSP)
1818     MAKE_CASE(ARMISD::MEMCPY)
1819     MAKE_CASE(ARMISD::VLD1DUP)
1820     MAKE_CASE(ARMISD::VLD2DUP)
1821     MAKE_CASE(ARMISD::VLD3DUP)
1822     MAKE_CASE(ARMISD::VLD4DUP)
1823     MAKE_CASE(ARMISD::VLD1_UPD)
1824     MAKE_CASE(ARMISD::VLD2_UPD)
1825     MAKE_CASE(ARMISD::VLD3_UPD)
1826     MAKE_CASE(ARMISD::VLD4_UPD)
1827     MAKE_CASE(ARMISD::VLD1x2_UPD)
1828     MAKE_CASE(ARMISD::VLD1x3_UPD)
1829     MAKE_CASE(ARMISD::VLD1x4_UPD)
1830     MAKE_CASE(ARMISD::VLD2LN_UPD)
1831     MAKE_CASE(ARMISD::VLD3LN_UPD)
1832     MAKE_CASE(ARMISD::VLD4LN_UPD)
1833     MAKE_CASE(ARMISD::VLD1DUP_UPD)
1834     MAKE_CASE(ARMISD::VLD2DUP_UPD)
1835     MAKE_CASE(ARMISD::VLD3DUP_UPD)
1836     MAKE_CASE(ARMISD::VLD4DUP_UPD)
1837     MAKE_CASE(ARMISD::VST1_UPD)
1838     MAKE_CASE(ARMISD::VST2_UPD)
1839     MAKE_CASE(ARMISD::VST3_UPD)
1840     MAKE_CASE(ARMISD::VST4_UPD)
1841     MAKE_CASE(ARMISD::VST1x2_UPD)
1842     MAKE_CASE(ARMISD::VST1x3_UPD)
1843     MAKE_CASE(ARMISD::VST1x4_UPD)
1844     MAKE_CASE(ARMISD::VST2LN_UPD)
1845     MAKE_CASE(ARMISD::VST3LN_UPD)
1846     MAKE_CASE(ARMISD::VST4LN_UPD)
1847     MAKE_CASE(ARMISD::WLS)
1848     MAKE_CASE(ARMISD::WLSSETUP)
1849     MAKE_CASE(ARMISD::LE)
1850     MAKE_CASE(ARMISD::LOOP_DEC)
1851     MAKE_CASE(ARMISD::CSINV)
1852     MAKE_CASE(ARMISD::CSNEG)
1853     MAKE_CASE(ARMISD::CSINC)
1854     MAKE_CASE(ARMISD::MEMCPYLOOP)
1855     MAKE_CASE(ARMISD::MEMSETLOOP)
1856 #undef MAKE_CASE
1857   }
1858   return nullptr;
1859 }
1860 
1861 EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1862                                           EVT VT) const {
1863   if (!VT.isVector())
1864     return getPointerTy(DL);
1865 
1866   // MVE has a predicate register.
1867   if ((Subtarget->hasMVEIntegerOps() &&
1868        (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
1869         VT == MVT::v16i8)) ||
1870       (Subtarget->hasMVEFloatOps() &&
1871        (VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16)))
1872     return MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1873   return VT.changeVectorElementTypeToInteger();
1874 }
1875 
1876 /// getRegClassFor - Return the register class that should be used for the
1877 /// specified value type.
1878 const TargetRegisterClass *
1879 ARMTargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
1880   (void)isDivergent;
1881   // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1882   // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1883   // load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive
1884   // MVE Q registers.
1885   if (Subtarget->hasNEON()) {
1886     if (VT == MVT::v4i64)
1887       return &ARM::QQPRRegClass;
1888     if (VT == MVT::v8i64)
1889       return &ARM::QQQQPRRegClass;
1890   }
1891   if (Subtarget->hasMVEIntegerOps()) {
1892     if (VT == MVT::v4i64)
1893       return &ARM::MQQPRRegClass;
1894     if (VT == MVT::v8i64)
1895       return &ARM::MQQQQPRRegClass;
1896   }
1897   return TargetLowering::getRegClassFor(VT);
1898 }
1899 
1900 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1901 // source/dest is aligned and the copy size is large enough. We therefore want
1902 // to align such objects passed to memory intrinsics.
1903 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
1904                                                unsigned &PrefAlign) const {
1905   if (!isa<MemIntrinsic>(CI))
1906     return false;
1907   MinSize = 8;
1908   // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1909   // cycle faster than 4-byte aligned LDM.
1910   PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4);
1911   return true;
1912 }
1913 
1914 // Create a fast isel object.
1915 FastISel *
1916 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1917                                   const TargetLibraryInfo *libInfo) const {
1918   return ARM::createFastISel(funcInfo, libInfo);
1919 }
1920 
1921 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1922   unsigned NumVals = N->getNumValues();
1923   if (!NumVals)
1924     return Sched::RegPressure;
1925 
1926   for (unsigned i = 0; i != NumVals; ++i) {
1927     EVT VT = N->getValueType(i);
1928     if (VT == MVT::Glue || VT == MVT::Other)
1929       continue;
1930     if (VT.isFloatingPoint() || VT.isVector())
1931       return Sched::ILP;
1932   }
1933 
1934   if (!N->isMachineOpcode())
1935     return Sched::RegPressure;
1936 
1937   // Load are scheduled for latency even if there instruction itinerary
1938   // is not available.
1939   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1940   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1941 
1942   if (MCID.getNumDefs() == 0)
1943     return Sched::RegPressure;
1944   if (!Itins->isEmpty() &&
1945       Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1946     return Sched::ILP;
1947 
1948   return Sched::RegPressure;
1949 }
1950 
1951 //===----------------------------------------------------------------------===//
1952 // Lowering Code
1953 //===----------------------------------------------------------------------===//
1954 
1955 static bool isSRL16(const SDValue &Op) {
1956   if (Op.getOpcode() != ISD::SRL)
1957     return false;
1958   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1959     return Const->getZExtValue() == 16;
1960   return false;
1961 }
1962 
1963 static bool isSRA16(const SDValue &Op) {
1964   if (Op.getOpcode() != ISD::SRA)
1965     return false;
1966   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1967     return Const->getZExtValue() == 16;
1968   return false;
1969 }
1970 
1971 static bool isSHL16(const SDValue &Op) {
1972   if (Op.getOpcode() != ISD::SHL)
1973     return false;
1974   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1975     return Const->getZExtValue() == 16;
1976   return false;
1977 }
1978 
1979 // Check for a signed 16-bit value. We special case SRA because it makes it
1980 // more simple when also looking for SRAs that aren't sign extending a
1981 // smaller value. Without the check, we'd need to take extra care with
1982 // checking order for some operations.
1983 static bool isS16(const SDValue &Op, SelectionDAG &DAG) {
1984   if (isSRA16(Op))
1985     return isSHL16(Op.getOperand(0));
1986   return DAG.ComputeNumSignBits(Op) == 17;
1987 }
1988 
1989 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1990 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1991   switch (CC) {
1992   default: llvm_unreachable("Unknown condition code!");
1993   case ISD::SETNE:  return ARMCC::NE;
1994   case ISD::SETEQ:  return ARMCC::EQ;
1995   case ISD::SETGT:  return ARMCC::GT;
1996   case ISD::SETGE:  return ARMCC::GE;
1997   case ISD::SETLT:  return ARMCC::LT;
1998   case ISD::SETLE:  return ARMCC::LE;
1999   case ISD::SETUGT: return ARMCC::HI;
2000   case ISD::SETUGE: return ARMCC::HS;
2001   case ISD::SETULT: return ARMCC::LO;
2002   case ISD::SETULE: return ARMCC::LS;
2003   }
2004 }
2005 
2006 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
2007 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
2008                         ARMCC::CondCodes &CondCode2) {
2009   CondCode2 = ARMCC::AL;
2010   switch (CC) {
2011   default: llvm_unreachable("Unknown FP condition!");
2012   case ISD::SETEQ:
2013   case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
2014   case ISD::SETGT:
2015   case ISD::SETOGT: CondCode = ARMCC::GT; break;
2016   case ISD::SETGE:
2017   case ISD::SETOGE: CondCode = ARMCC::GE; break;
2018   case ISD::SETOLT: CondCode = ARMCC::MI; break;
2019   case ISD::SETOLE: CondCode = ARMCC::LS; break;
2020   case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
2021   case ISD::SETO:   CondCode = ARMCC::VC; break;
2022   case ISD::SETUO:  CondCode = ARMCC::VS; break;
2023   case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
2024   case ISD::SETUGT: CondCode = ARMCC::HI; break;
2025   case ISD::SETUGE: CondCode = ARMCC::PL; break;
2026   case ISD::SETLT:
2027   case ISD::SETULT: CondCode = ARMCC::LT; break;
2028   case ISD::SETLE:
2029   case ISD::SETULE: CondCode = ARMCC::LE; break;
2030   case ISD::SETNE:
2031   case ISD::SETUNE: CondCode = ARMCC::NE; break;
2032   }
2033 }
2034 
2035 //===----------------------------------------------------------------------===//
2036 //                      Calling Convention Implementation
2037 //===----------------------------------------------------------------------===//
2038 
2039 /// getEffectiveCallingConv - Get the effective calling convention, taking into
2040 /// account presence of floating point hardware and calling convention
2041 /// limitations, such as support for variadic functions.
2042 CallingConv::ID
2043 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
2044                                            bool isVarArg) const {
2045   switch (CC) {
2046   default:
2047     report_fatal_error("Unsupported calling convention");
2048   case CallingConv::ARM_AAPCS:
2049   case CallingConv::ARM_APCS:
2050   case CallingConv::GHC:
2051   case CallingConv::CFGuard_Check:
2052     return CC;
2053   case CallingConv::PreserveMost:
2054     return CallingConv::PreserveMost;
2055   case CallingConv::ARM_AAPCS_VFP:
2056   case CallingConv::Swift:
2057   case CallingConv::SwiftTail:
2058     return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
2059   case CallingConv::C:
2060   case CallingConv::Tail:
2061     if (!Subtarget->isAAPCS_ABI())
2062       return CallingConv::ARM_APCS;
2063     else if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() &&
2064              getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
2065              !isVarArg)
2066       return CallingConv::ARM_AAPCS_VFP;
2067     else
2068       return CallingConv::ARM_AAPCS;
2069   case CallingConv::Fast:
2070   case CallingConv::CXX_FAST_TLS:
2071     if (!Subtarget->isAAPCS_ABI()) {
2072       if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() && !isVarArg)
2073         return CallingConv::Fast;
2074       return CallingConv::ARM_APCS;
2075     } else if (Subtarget->hasVFP2Base() &&
2076                !Subtarget->isThumb1Only() && !isVarArg)
2077       return CallingConv::ARM_AAPCS_VFP;
2078     else
2079       return CallingConv::ARM_AAPCS;
2080   }
2081 }
2082 
2083 CCAssignFn *ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
2084                                                  bool isVarArg) const {
2085   return CCAssignFnForNode(CC, false, isVarArg);
2086 }
2087 
2088 CCAssignFn *ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
2089                                                    bool isVarArg) const {
2090   return CCAssignFnForNode(CC, true, isVarArg);
2091 }
2092 
2093 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
2094 /// CallingConvention.
2095 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
2096                                                  bool Return,
2097                                                  bool isVarArg) const {
2098   switch (getEffectiveCallingConv(CC, isVarArg)) {
2099   default:
2100     report_fatal_error("Unsupported calling convention");
2101   case CallingConv::ARM_APCS:
2102     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
2103   case CallingConv::ARM_AAPCS:
2104     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
2105   case CallingConv::ARM_AAPCS_VFP:
2106     return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
2107   case CallingConv::Fast:
2108     return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
2109   case CallingConv::GHC:
2110     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
2111   case CallingConv::PreserveMost:
2112     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
2113   case CallingConv::CFGuard_Check:
2114     return (Return ? RetCC_ARM_AAPCS : CC_ARM_Win32_CFGuard_Check);
2115   }
2116 }
2117 
2118 SDValue ARMTargetLowering::MoveToHPR(const SDLoc &dl, SelectionDAG &DAG,
2119                                      MVT LocVT, MVT ValVT, SDValue Val) const {
2120   Val = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocVT.getSizeInBits()),
2121                     Val);
2122   if (Subtarget->hasFullFP16()) {
2123     Val = DAG.getNode(ARMISD::VMOVhr, dl, ValVT, Val);
2124   } else {
2125     Val = DAG.getNode(ISD::TRUNCATE, dl,
2126                       MVT::getIntegerVT(ValVT.getSizeInBits()), Val);
2127     Val = DAG.getNode(ISD::BITCAST, dl, ValVT, Val);
2128   }
2129   return Val;
2130 }
2131 
2132 SDValue ARMTargetLowering::MoveFromHPR(const SDLoc &dl, SelectionDAG &DAG,
2133                                        MVT LocVT, MVT ValVT,
2134                                        SDValue Val) const {
2135   if (Subtarget->hasFullFP16()) {
2136     Val = DAG.getNode(ARMISD::VMOVrh, dl,
2137                       MVT::getIntegerVT(LocVT.getSizeInBits()), Val);
2138   } else {
2139     Val = DAG.getNode(ISD::BITCAST, dl,
2140                       MVT::getIntegerVT(ValVT.getSizeInBits()), Val);
2141     Val = DAG.getNode(ISD::ZERO_EXTEND, dl,
2142                       MVT::getIntegerVT(LocVT.getSizeInBits()), Val);
2143   }
2144   return DAG.getNode(ISD::BITCAST, dl, LocVT, Val);
2145 }
2146 
2147 /// LowerCallResult - Lower the result values of a call into the
2148 /// appropriate copies out of appropriate physical registers.
2149 SDValue ARMTargetLowering::LowerCallResult(
2150     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
2151     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
2152     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
2153     SDValue ThisVal) const {
2154   // Assign locations to each value returned by this call.
2155   SmallVector<CCValAssign, 16> RVLocs;
2156   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2157                  *DAG.getContext());
2158   CCInfo.AnalyzeCallResult(Ins, CCAssignFnForReturn(CallConv, isVarArg));
2159 
2160   // Copy all of the result registers out of their specified physreg.
2161   for (unsigned i = 0; i != RVLocs.size(); ++i) {
2162     CCValAssign VA = RVLocs[i];
2163 
2164     // Pass 'this' value directly from the argument to return value, to avoid
2165     // reg unit interference
2166     if (i == 0 && isThisReturn) {
2167       assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
2168              "unexpected return calling convention register assignment");
2169       InVals.push_back(ThisVal);
2170       continue;
2171     }
2172 
2173     SDValue Val;
2174     if (VA.needsCustom() &&
2175         (VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2f64)) {
2176       // Handle f64 or half of a v2f64.
2177       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
2178                                       InFlag);
2179       Chain = Lo.getValue(1);
2180       InFlag = Lo.getValue(2);
2181       VA = RVLocs[++i]; // skip ahead to next loc
2182       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
2183                                       InFlag);
2184       Chain = Hi.getValue(1);
2185       InFlag = Hi.getValue(2);
2186       if (!Subtarget->isLittle())
2187         std::swap (Lo, Hi);
2188       Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
2189 
2190       if (VA.getLocVT() == MVT::v2f64) {
2191         SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2192         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
2193                           DAG.getConstant(0, dl, MVT::i32));
2194 
2195         VA = RVLocs[++i]; // skip ahead to next loc
2196         Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
2197         Chain = Lo.getValue(1);
2198         InFlag = Lo.getValue(2);
2199         VA = RVLocs[++i]; // skip ahead to next loc
2200         Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
2201         Chain = Hi.getValue(1);
2202         InFlag = Hi.getValue(2);
2203         if (!Subtarget->isLittle())
2204           std::swap (Lo, Hi);
2205         Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
2206         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
2207                           DAG.getConstant(1, dl, MVT::i32));
2208       }
2209     } else {
2210       Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
2211                                InFlag);
2212       Chain = Val.getValue(1);
2213       InFlag = Val.getValue(2);
2214     }
2215 
2216     switch (VA.getLocInfo()) {
2217     default: llvm_unreachable("Unknown loc info!");
2218     case CCValAssign::Full: break;
2219     case CCValAssign::BCvt:
2220       Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
2221       break;
2222     }
2223 
2224     // f16 arguments have their size extended to 4 bytes and passed as if they
2225     // had been copied to the LSBs of a 32-bit register.
2226     // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
2227     if (VA.needsCustom() &&
2228         (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16))
2229       Val = MoveToHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Val);
2230 
2231     InVals.push_back(Val);
2232   }
2233 
2234   return Chain;
2235 }
2236 
2237 std::pair<SDValue, MachinePointerInfo> ARMTargetLowering::computeAddrForCallArg(
2238     const SDLoc &dl, SelectionDAG &DAG, const CCValAssign &VA, SDValue StackPtr,
2239     bool IsTailCall, int SPDiff) const {
2240   SDValue DstAddr;
2241   MachinePointerInfo DstInfo;
2242   int32_t Offset = VA.getLocMemOffset();
2243   MachineFunction &MF = DAG.getMachineFunction();
2244 
2245   if (IsTailCall) {
2246         Offset += SPDiff;
2247         auto PtrVT = getPointerTy(DAG.getDataLayout());
2248         int Size = VA.getLocVT().getFixedSizeInBits() / 8;
2249         int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true);
2250         DstAddr = DAG.getFrameIndex(FI, PtrVT);
2251         DstInfo =
2252             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
2253   } else {
2254         SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl);
2255         DstAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
2256                               StackPtr, PtrOff);
2257         DstInfo =
2258             MachinePointerInfo::getStack(DAG.getMachineFunction(), Offset);
2259   }
2260 
2261   return std::make_pair(DstAddr, DstInfo);
2262 }
2263 
2264 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG,
2265                                          SDValue Chain, SDValue &Arg,
2266                                          RegsToPassVector &RegsToPass,
2267                                          CCValAssign &VA, CCValAssign &NextVA,
2268                                          SDValue &StackPtr,
2269                                          SmallVectorImpl<SDValue> &MemOpChains,
2270                                          bool IsTailCall,
2271                                          int SPDiff) const {
2272   SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2273                               DAG.getVTList(MVT::i32, MVT::i32), Arg);
2274   unsigned id = Subtarget->isLittle() ? 0 : 1;
2275   RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
2276 
2277   if (NextVA.isRegLoc())
2278     RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
2279   else {
2280     assert(NextVA.isMemLoc());
2281     if (!StackPtr.getNode())
2282       StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
2283                                     getPointerTy(DAG.getDataLayout()));
2284 
2285     SDValue DstAddr;
2286     MachinePointerInfo DstInfo;
2287     std::tie(DstAddr, DstInfo) =
2288         computeAddrForCallArg(dl, DAG, NextVA, StackPtr, IsTailCall, SPDiff);
2289     MemOpChains.push_back(
2290         DAG.getStore(Chain, dl, fmrrd.getValue(1 - id), DstAddr, DstInfo));
2291   }
2292 }
2293 
2294 static bool canGuaranteeTCO(CallingConv::ID CC, bool GuaranteeTailCalls) {
2295   return (CC == CallingConv::Fast && GuaranteeTailCalls) ||
2296          CC == CallingConv::Tail || CC == CallingConv::SwiftTail;
2297 }
2298 
2299 /// LowerCall - Lowering a call into a callseq_start <-
2300 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
2301 /// nodes.
2302 SDValue
2303 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2304                              SmallVectorImpl<SDValue> &InVals) const {
2305   SelectionDAG &DAG                     = CLI.DAG;
2306   SDLoc &dl                             = CLI.DL;
2307   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2308   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2309   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2310   SDValue Chain                         = CLI.Chain;
2311   SDValue Callee                        = CLI.Callee;
2312   bool &isTailCall                      = CLI.IsTailCall;
2313   CallingConv::ID CallConv              = CLI.CallConv;
2314   bool doesNotRet                       = CLI.DoesNotReturn;
2315   bool isVarArg                         = CLI.IsVarArg;
2316 
2317   MachineFunction &MF = DAG.getMachineFunction();
2318   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2319   MachineFunction::CallSiteInfo CSInfo;
2320   bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
2321   bool isThisReturn = false;
2322   bool isCmseNSCall   = false;
2323   bool isSibCall = false;
2324   bool PreferIndirect = false;
2325   bool GuardWithBTI = false;
2326 
2327   // Lower 'returns_twice' calls to a pseudo-instruction.
2328   if (CLI.CB && CLI.CB->getAttributes().hasFnAttr(Attribute::ReturnsTwice) &&
2329       !Subtarget->getNoBTIAtReturnTwice())
2330     GuardWithBTI = AFI->branchTargetEnforcement();
2331 
2332   // Determine whether this is a non-secure function call.
2333   if (CLI.CB && CLI.CB->getAttributes().hasFnAttr("cmse_nonsecure_call"))
2334     isCmseNSCall = true;
2335 
2336   // Disable tail calls if they're not supported.
2337   if (!Subtarget->supportsTailCall())
2338     isTailCall = false;
2339 
2340   // For both the non-secure calls and the returns from a CMSE entry function,
2341   // the function needs to do some extra work afte r the call, or before the
2342   // return, respectively, thus it cannot end with atail call
2343   if (isCmseNSCall || AFI->isCmseNSEntryFunction())
2344     isTailCall = false;
2345 
2346   if (isa<GlobalAddressSDNode>(Callee)) {
2347     // If we're optimizing for minimum size and the function is called three or
2348     // more times in this block, we can improve codesize by calling indirectly
2349     // as BLXr has a 16-bit encoding.
2350     auto *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
2351     if (CLI.CB) {
2352       auto *BB = CLI.CB->getParent();
2353       PreferIndirect = Subtarget->isThumb() && Subtarget->hasMinSize() &&
2354                        count_if(GV->users(), [&BB](const User *U) {
2355                          return isa<Instruction>(U) &&
2356                                 cast<Instruction>(U)->getParent() == BB;
2357                        }) > 2;
2358     }
2359   }
2360   if (isTailCall) {
2361     // Check if it's really possible to do a tail call.
2362     isTailCall = IsEligibleForTailCallOptimization(
2363         Callee, CallConv, isVarArg, isStructRet,
2364         MF.getFunction().hasStructRetAttr(), Outs, OutVals, Ins, DAG,
2365         PreferIndirect);
2366 
2367     if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt &&
2368         CallConv != CallingConv::Tail && CallConv != CallingConv::SwiftTail)
2369       isSibCall = true;
2370 
2371     // We don't support GuaranteedTailCallOpt for ARM, only automatically
2372     // detected sibcalls.
2373     if (isTailCall)
2374       ++NumTailCalls;
2375   }
2376 
2377   if (!isTailCall && CLI.CB && CLI.CB->isMustTailCall())
2378     report_fatal_error("failed to perform tail call elimination on a call "
2379                        "site marked musttail");
2380   // Analyze operands of the call, assigning locations to each operand.
2381   SmallVector<CCValAssign, 16> ArgLocs;
2382   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2383                  *DAG.getContext());
2384   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CallConv, isVarArg));
2385 
2386   // Get a count of how many bytes are to be pushed on the stack.
2387   unsigned NumBytes = CCInfo.getNextStackOffset();
2388 
2389   // SPDiff is the byte offset of the call's argument area from the callee's.
2390   // Stores to callee stack arguments will be placed in FixedStackSlots offset
2391   // by this amount for a tail call. In a sibling call it must be 0 because the
2392   // caller will deallocate the entire stack and the callee still expects its
2393   // arguments to begin at SP+0. Completely unused for non-tail calls.
2394   int SPDiff = 0;
2395 
2396   if (isTailCall && !isSibCall) {
2397     auto FuncInfo = MF.getInfo<ARMFunctionInfo>();
2398     unsigned NumReusableBytes = FuncInfo->getArgumentStackSize();
2399 
2400     // Since callee will pop argument stack as a tail call, we must keep the
2401     // popped size 16-byte aligned.
2402     Align StackAlign = DAG.getDataLayout().getStackAlignment();
2403     NumBytes = alignTo(NumBytes, StackAlign);
2404 
2405     // SPDiff will be negative if this tail call requires more space than we
2406     // would automatically have in our incoming argument space. Positive if we
2407     // can actually shrink the stack.
2408     SPDiff = NumReusableBytes - NumBytes;
2409 
2410     // If this call requires more stack than we have available from
2411     // LowerFormalArguments, tell FrameLowering to reserve space for it.
2412     if (SPDiff < 0 && AFI->getArgRegsSaveSize() < (unsigned)-SPDiff)
2413       AFI->setArgRegsSaveSize(-SPDiff);
2414   }
2415 
2416   if (isSibCall) {
2417     // For sibling tail calls, memory operands are available in our caller's stack.
2418     NumBytes = 0;
2419   } else {
2420     // Adjust the stack pointer for the new arguments...
2421     // These operations are automatically eliminated by the prolog/epilog pass
2422     Chain = DAG.getCALLSEQ_START(Chain, isTailCall ? 0 : NumBytes, 0, dl);
2423   }
2424 
2425   SDValue StackPtr =
2426       DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
2427 
2428   RegsToPassVector RegsToPass;
2429   SmallVector<SDValue, 8> MemOpChains;
2430 
2431   // During a tail call, stores to the argument area must happen after all of
2432   // the function's incoming arguments have been loaded because they may alias.
2433   // This is done by folding in a TokenFactor from LowerFormalArguments, but
2434   // there's no point in doing so repeatedly so this tracks whether that's
2435   // happened yet.
2436   bool AfterFormalArgLoads = false;
2437 
2438   // Walk the register/memloc assignments, inserting copies/loads.  In the case
2439   // of tail call optimization, arguments are handled later.
2440   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2441        i != e;
2442        ++i, ++realArgIdx) {
2443     CCValAssign &VA = ArgLocs[i];
2444     SDValue Arg = OutVals[realArgIdx];
2445     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2446     bool isByVal = Flags.isByVal();
2447 
2448     // Promote the value if needed.
2449     switch (VA.getLocInfo()) {
2450     default: llvm_unreachable("Unknown loc info!");
2451     case CCValAssign::Full: break;
2452     case CCValAssign::SExt:
2453       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
2454       break;
2455     case CCValAssign::ZExt:
2456       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
2457       break;
2458     case CCValAssign::AExt:
2459       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
2460       break;
2461     case CCValAssign::BCvt:
2462       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2463       break;
2464     }
2465 
2466     if (isTailCall && VA.isMemLoc() && !AfterFormalArgLoads) {
2467       Chain = DAG.getStackArgumentTokenFactor(Chain);
2468       AfterFormalArgLoads = true;
2469     }
2470 
2471     // f16 arguments have their size extended to 4 bytes and passed as if they
2472     // had been copied to the LSBs of a 32-bit register.
2473     // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
2474     if (VA.needsCustom() &&
2475         (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16)) {
2476       Arg = MoveFromHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Arg);
2477     } else {
2478       // f16 arguments could have been extended prior to argument lowering.
2479       // Mask them arguments if this is a CMSE nonsecure call.
2480       auto ArgVT = Outs[realArgIdx].ArgVT;
2481       if (isCmseNSCall && (ArgVT == MVT::f16)) {
2482         auto LocBits = VA.getLocVT().getSizeInBits();
2483         auto MaskValue = APInt::getLowBitsSet(LocBits, ArgVT.getSizeInBits());
2484         SDValue Mask =
2485             DAG.getConstant(MaskValue, dl, MVT::getIntegerVT(LocBits));
2486         Arg = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocBits), Arg);
2487         Arg = DAG.getNode(ISD::AND, dl, MVT::getIntegerVT(LocBits), Arg, Mask);
2488         Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2489       }
2490     }
2491 
2492     // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
2493     if (VA.needsCustom() && VA.getLocVT() == MVT::v2f64) {
2494       SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2495                                 DAG.getConstant(0, dl, MVT::i32));
2496       SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2497                                 DAG.getConstant(1, dl, MVT::i32));
2498 
2499       PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass, VA, ArgLocs[++i],
2500                        StackPtr, MemOpChains, isTailCall, SPDiff);
2501 
2502       VA = ArgLocs[++i]; // skip ahead to next loc
2503       if (VA.isRegLoc()) {
2504         PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass, VA, ArgLocs[++i],
2505                          StackPtr, MemOpChains, isTailCall, SPDiff);
2506       } else {
2507         assert(VA.isMemLoc());
2508         SDValue DstAddr;
2509         MachinePointerInfo DstInfo;
2510         std::tie(DstAddr, DstInfo) =
2511             computeAddrForCallArg(dl, DAG, VA, StackPtr, isTailCall, SPDiff);
2512         MemOpChains.push_back(DAG.getStore(Chain, dl, Op1, DstAddr, DstInfo));
2513       }
2514     } else if (VA.needsCustom() && VA.getLocVT() == MVT::f64) {
2515       PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
2516                        StackPtr, MemOpChains, isTailCall, SPDiff);
2517     } else if (VA.isRegLoc()) {
2518       if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
2519           Outs[0].VT == MVT::i32) {
2520         assert(VA.getLocVT() == MVT::i32 &&
2521                "unexpected calling convention register assignment");
2522         assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
2523                "unexpected use of 'returned'");
2524         isThisReturn = true;
2525       }
2526       const TargetOptions &Options = DAG.getTarget().Options;
2527       if (Options.EmitCallSiteInfo)
2528         CSInfo.emplace_back(VA.getLocReg(), i);
2529       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2530     } else if (isByVal) {
2531       assert(VA.isMemLoc());
2532       unsigned offset = 0;
2533 
2534       // True if this byval aggregate will be split between registers
2535       // and memory.
2536       unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
2537       unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
2538 
2539       if (CurByValIdx < ByValArgsCount) {
2540 
2541         unsigned RegBegin, RegEnd;
2542         CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
2543 
2544         EVT PtrVT =
2545             DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2546         unsigned int i, j;
2547         for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
2548           SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
2549           SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
2550           SDValue Load =
2551               DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo(),
2552                           DAG.InferPtrAlign(AddArg));
2553           MemOpChains.push_back(Load.getValue(1));
2554           RegsToPass.push_back(std::make_pair(j, Load));
2555         }
2556 
2557         // If parameter size outsides register area, "offset" value
2558         // helps us to calculate stack slot for remained part properly.
2559         offset = RegEnd - RegBegin;
2560 
2561         CCInfo.nextInRegsParam();
2562       }
2563 
2564       if (Flags.getByValSize() > 4*offset) {
2565         auto PtrVT = getPointerTy(DAG.getDataLayout());
2566         SDValue Dst;
2567         MachinePointerInfo DstInfo;
2568         std::tie(Dst, DstInfo) =
2569             computeAddrForCallArg(dl, DAG, VA, StackPtr, isTailCall, SPDiff);
2570         SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
2571         SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
2572         SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
2573                                            MVT::i32);
2574         SDValue AlignNode =
2575             DAG.getConstant(Flags.getNonZeroByValAlign().value(), dl, MVT::i32);
2576 
2577         SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2578         SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
2579         MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
2580                                           Ops));
2581       }
2582     } else {
2583       assert(VA.isMemLoc());
2584       SDValue DstAddr;
2585       MachinePointerInfo DstInfo;
2586       std::tie(DstAddr, DstInfo) =
2587           computeAddrForCallArg(dl, DAG, VA, StackPtr, isTailCall, SPDiff);
2588 
2589       SDValue Store = DAG.getStore(Chain, dl, Arg, DstAddr, DstInfo);
2590       MemOpChains.push_back(Store);
2591     }
2592   }
2593 
2594   if (!MemOpChains.empty())
2595     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
2596 
2597   // Build a sequence of copy-to-reg nodes chained together with token chain
2598   // and flag operands which copy the outgoing args into the appropriate regs.
2599   SDValue InFlag;
2600   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2601     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2602                              RegsToPass[i].second, InFlag);
2603     InFlag = Chain.getValue(1);
2604   }
2605 
2606   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2607   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2608   // node so that legalize doesn't hack it.
2609   bool isDirect = false;
2610 
2611   const TargetMachine &TM = getTargetMachine();
2612   const Module *Mod = MF.getFunction().getParent();
2613   const GlobalValue *GV = nullptr;
2614   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2615     GV = G->getGlobal();
2616   bool isStub =
2617       !TM.shouldAssumeDSOLocal(*Mod, GV) && Subtarget->isTargetMachO();
2618 
2619   bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
2620   bool isLocalARMFunc = false;
2621   auto PtrVt = getPointerTy(DAG.getDataLayout());
2622 
2623   if (Subtarget->genLongCalls()) {
2624     assert((!isPositionIndependent() || Subtarget->isTargetWindows()) &&
2625            "long-calls codegen is not position independent!");
2626     // Handle a global address or an external symbol. If it's not one of
2627     // those, the target's already in a register, so we don't need to do
2628     // anything extra.
2629     if (isa<GlobalAddressSDNode>(Callee)) {
2630       // Create a constant pool entry for the callee address
2631       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2632       ARMConstantPoolValue *CPV =
2633         ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
2634 
2635       // Get the address of the callee into a register
2636       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4));
2637       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2638       Callee = DAG.getLoad(
2639           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2640           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2641     } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
2642       const char *Sym = S->getSymbol();
2643 
2644       // Create a constant pool entry for the callee address
2645       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2646       ARMConstantPoolValue *CPV =
2647         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2648                                       ARMPCLabelIndex, 0);
2649       // Get the address of the callee into a register
2650       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4));
2651       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2652       Callee = DAG.getLoad(
2653           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2654           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2655     }
2656   } else if (isa<GlobalAddressSDNode>(Callee)) {
2657     if (!PreferIndirect) {
2658       isDirect = true;
2659       bool isDef = GV->isStrongDefinitionForLinker();
2660 
2661       // ARM call to a local ARM function is predicable.
2662       isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
2663       // tBX takes a register source operand.
2664       if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2665         assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
2666         Callee = DAG.getNode(
2667             ARMISD::WrapperPIC, dl, PtrVt,
2668             DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY));
2669         Callee = DAG.getLoad(
2670             PtrVt, dl, DAG.getEntryNode(), Callee,
2671             MachinePointerInfo::getGOT(DAG.getMachineFunction()), MaybeAlign(),
2672             MachineMemOperand::MODereferenceable |
2673                 MachineMemOperand::MOInvariant);
2674       } else if (Subtarget->isTargetCOFF()) {
2675         assert(Subtarget->isTargetWindows() &&
2676                "Windows is the only supported COFF target");
2677         unsigned TargetFlags = ARMII::MO_NO_FLAG;
2678         if (GV->hasDLLImportStorageClass())
2679           TargetFlags = ARMII::MO_DLLIMPORT;
2680         else if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
2681           TargetFlags = ARMII::MO_COFFSTUB;
2682         Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*offset=*/0,
2683                                             TargetFlags);
2684         if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
2685           Callee =
2686               DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
2687                           DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
2688                           MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2689       } else {
2690         Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, 0);
2691       }
2692     }
2693   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2694     isDirect = true;
2695     // tBX takes a register source operand.
2696     const char *Sym = S->getSymbol();
2697     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2698       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2699       ARMConstantPoolValue *CPV =
2700         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2701                                       ARMPCLabelIndex, 4);
2702       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4));
2703       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2704       Callee = DAG.getLoad(
2705           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2706           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2707       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2708       Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
2709     } else {
2710       Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0);
2711     }
2712   }
2713 
2714   if (isCmseNSCall) {
2715     assert(!isARMFunc && !isDirect &&
2716            "Cannot handle call to ARM function or direct call");
2717     if (NumBytes > 0) {
2718       DiagnosticInfoUnsupported Diag(DAG.getMachineFunction().getFunction(),
2719                                      "call to non-secure function would "
2720                                      "require passing arguments on stack",
2721                                      dl.getDebugLoc());
2722       DAG.getContext()->diagnose(Diag);
2723     }
2724     if (isStructRet) {
2725       DiagnosticInfoUnsupported Diag(
2726           DAG.getMachineFunction().getFunction(),
2727           "call to non-secure function would return value through pointer",
2728           dl.getDebugLoc());
2729       DAG.getContext()->diagnose(Diag);
2730     }
2731   }
2732 
2733   // FIXME: handle tail calls differently.
2734   unsigned CallOpc;
2735   if (Subtarget->isThumb()) {
2736     if (GuardWithBTI)
2737       CallOpc = ARMISD::t2CALL_BTI;
2738     else if (isCmseNSCall)
2739       CallOpc = ARMISD::tSECALL;
2740     else if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
2741       CallOpc = ARMISD::CALL_NOLINK;
2742     else
2743       CallOpc = ARMISD::CALL;
2744   } else {
2745     if (!isDirect && !Subtarget->hasV5TOps())
2746       CallOpc = ARMISD::CALL_NOLINK;
2747     else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() &&
2748              // Emit regular call when code size is the priority
2749              !Subtarget->hasMinSize())
2750       // "mov lr, pc; b _foo" to avoid confusing the RSP
2751       CallOpc = ARMISD::CALL_NOLINK;
2752     else
2753       CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
2754   }
2755 
2756   // We don't usually want to end the call-sequence here because we would tidy
2757   // the frame up *after* the call, however in the ABI-changing tail-call case
2758   // we've carefully laid out the parameters so that when sp is reset they'll be
2759   // in the correct location.
2760   if (isTailCall && !isSibCall) {
2761     Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
2762                                DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
2763     InFlag = Chain.getValue(1);
2764   }
2765 
2766   std::vector<SDValue> Ops;
2767   Ops.push_back(Chain);
2768   Ops.push_back(Callee);
2769 
2770   if (isTailCall) {
2771     Ops.push_back(DAG.getTargetConstant(SPDiff, dl, MVT::i32));
2772   }
2773 
2774   // Add argument registers to the end of the list so that they are known live
2775   // into the call.
2776   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2777     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2778                                   RegsToPass[i].second.getValueType()));
2779 
2780   // Add a register mask operand representing the call-preserved registers.
2781   if (!isTailCall) {
2782     const uint32_t *Mask;
2783     const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
2784     if (isThisReturn) {
2785       // For 'this' returns, use the R0-preserving mask if applicable
2786       Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
2787       if (!Mask) {
2788         // Set isThisReturn to false if the calling convention is not one that
2789         // allows 'returned' to be modeled in this way, so LowerCallResult does
2790         // not try to pass 'this' straight through
2791         isThisReturn = false;
2792         Mask = ARI->getCallPreservedMask(MF, CallConv);
2793       }
2794     } else
2795       Mask = ARI->getCallPreservedMask(MF, CallConv);
2796 
2797     assert(Mask && "Missing call preserved mask for calling convention");
2798     Ops.push_back(DAG.getRegisterMask(Mask));
2799   }
2800 
2801   if (InFlag.getNode())
2802     Ops.push_back(InFlag);
2803 
2804   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2805   if (isTailCall) {
2806     MF.getFrameInfo().setHasTailCall();
2807     SDValue Ret = DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
2808     DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo));
2809     return Ret;
2810   }
2811 
2812   // Returns a chain and a flag for retval copy to use.
2813   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
2814   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
2815   InFlag = Chain.getValue(1);
2816   DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo));
2817 
2818   // If we're guaranteeing tail-calls will be honoured, the callee must
2819   // pop its own argument stack on return. But this call is *not* a tail call so
2820   // we need to undo that after it returns to restore the status-quo.
2821   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
2822   uint64_t CalleePopBytes =
2823       canGuaranteeTCO(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : -1ULL;
2824 
2825   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
2826                              DAG.getIntPtrConstant(CalleePopBytes, dl, true),
2827                              InFlag, dl);
2828   if (!Ins.empty())
2829     InFlag = Chain.getValue(1);
2830 
2831   // Handle result values, copying them out of physregs into vregs that we
2832   // return.
2833   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
2834                          InVals, isThisReturn,
2835                          isThisReturn ? OutVals[0] : SDValue());
2836 }
2837 
2838 /// HandleByVal - Every parameter *after* a byval parameter is passed
2839 /// on the stack.  Remember the next parameter register to allocate,
2840 /// and then confiscate the rest of the parameter registers to insure
2841 /// this.
2842 void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
2843                                     Align Alignment) const {
2844   // Byval (as with any stack) slots are always at least 4 byte aligned.
2845   Alignment = std::max(Alignment, Align(4));
2846 
2847   unsigned Reg = State->AllocateReg(GPRArgRegs);
2848   if (!Reg)
2849     return;
2850 
2851   unsigned AlignInRegs = Alignment.value() / 4;
2852   unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
2853   for (unsigned i = 0; i < Waste; ++i)
2854     Reg = State->AllocateReg(GPRArgRegs);
2855 
2856   if (!Reg)
2857     return;
2858 
2859   unsigned Excess = 4 * (ARM::R4 - Reg);
2860 
2861   // Special case when NSAA != SP and parameter size greater than size of
2862   // all remained GPR regs. In that case we can't split parameter, we must
2863   // send it to stack. We also must set NCRN to R4, so waste all
2864   // remained registers.
2865   const unsigned NSAAOffset = State->getNextStackOffset();
2866   if (NSAAOffset != 0 && Size > Excess) {
2867     while (State->AllocateReg(GPRArgRegs))
2868       ;
2869     return;
2870   }
2871 
2872   // First register for byval parameter is the first register that wasn't
2873   // allocated before this method call, so it would be "reg".
2874   // If parameter is small enough to be saved in range [reg, r4), then
2875   // the end (first after last) register would be reg + param-size-in-regs,
2876   // else parameter would be splitted between registers and stack,
2877   // end register would be r4 in this case.
2878   unsigned ByValRegBegin = Reg;
2879   unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
2880   State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
2881   // Note, first register is allocated in the beginning of function already,
2882   // allocate remained amount of registers we need.
2883   for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
2884     State->AllocateReg(GPRArgRegs);
2885   // A byval parameter that is split between registers and memory needs its
2886   // size truncated here.
2887   // In the case where the entire structure fits in registers, we set the
2888   // size in memory to zero.
2889   Size = std::max<int>(Size - Excess, 0);
2890 }
2891 
2892 /// MatchingStackOffset - Return true if the given stack call argument is
2893 /// already available in the same position (relatively) of the caller's
2894 /// incoming argument stack.
2895 static
2896 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2897                          MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
2898                          const TargetInstrInfo *TII) {
2899   unsigned Bytes = Arg.getValueSizeInBits() / 8;
2900   int FI = std::numeric_limits<int>::max();
2901   if (Arg.getOpcode() == ISD::CopyFromReg) {
2902     Register VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2903     if (!Register::isVirtualRegister(VR))
2904       return false;
2905     MachineInstr *Def = MRI->getVRegDef(VR);
2906     if (!Def)
2907       return false;
2908     if (!Flags.isByVal()) {
2909       if (!TII->isLoadFromStackSlot(*Def, FI))
2910         return false;
2911     } else {
2912       return false;
2913     }
2914   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2915     if (Flags.isByVal())
2916       // ByVal argument is passed in as a pointer but it's now being
2917       // dereferenced. e.g.
2918       // define @foo(%struct.X* %A) {
2919       //   tail call @bar(%struct.X* byval %A)
2920       // }
2921       return false;
2922     SDValue Ptr = Ld->getBasePtr();
2923     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2924     if (!FINode)
2925       return false;
2926     FI = FINode->getIndex();
2927   } else
2928     return false;
2929 
2930   assert(FI != std::numeric_limits<int>::max());
2931   if (!MFI.isFixedObjectIndex(FI))
2932     return false;
2933   return Offset == MFI.getObjectOffset(FI) && Bytes == MFI.getObjectSize(FI);
2934 }
2935 
2936 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2937 /// for tail call optimization. Targets which want to do tail call
2938 /// optimization should implement this function.
2939 bool ARMTargetLowering::IsEligibleForTailCallOptimization(
2940     SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
2941     bool isCalleeStructRet, bool isCallerStructRet,
2942     const SmallVectorImpl<ISD::OutputArg> &Outs,
2943     const SmallVectorImpl<SDValue> &OutVals,
2944     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG,
2945     const bool isIndirect) const {
2946   MachineFunction &MF = DAG.getMachineFunction();
2947   const Function &CallerF = MF.getFunction();
2948   CallingConv::ID CallerCC = CallerF.getCallingConv();
2949 
2950   assert(Subtarget->supportsTailCall());
2951 
2952   // Indirect tail calls cannot be optimized for Thumb1 if the args
2953   // to the call take up r0-r3. The reason is that there are no legal registers
2954   // left to hold the pointer to the function to be called.
2955   // Similarly, if the function uses return address sign and authentication,
2956   // r12 is needed to hold the PAC and is not available to hold the callee
2957   // address.
2958   if (Outs.size() >= 4 &&
2959       (!isa<GlobalAddressSDNode>(Callee.getNode()) || isIndirect)) {
2960     if (Subtarget->isThumb1Only())
2961       return false;
2962     // Conservatively assume the function spills LR.
2963     if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress(true))
2964       return false;
2965   }
2966 
2967   // Look for obvious safe cases to perform tail call optimization that do not
2968   // require ABI changes. This is what gcc calls sibcall.
2969 
2970   // Exception-handling functions need a special set of instructions to indicate
2971   // a return to the hardware. Tail-calling another function would probably
2972   // break this.
2973   if (CallerF.hasFnAttribute("interrupt"))
2974     return false;
2975 
2976   if (canGuaranteeTCO(CalleeCC, getTargetMachine().Options.GuaranteedTailCallOpt))
2977     return CalleeCC == CallerCC;
2978 
2979   // Also avoid sibcall optimization if either caller or callee uses struct
2980   // return semantics.
2981   if (isCalleeStructRet || isCallerStructRet)
2982     return false;
2983 
2984   // Externally-defined functions with weak linkage should not be
2985   // tail-called on ARM when the OS does not support dynamic
2986   // pre-emption of symbols, as the AAELF spec requires normal calls
2987   // to undefined weak functions to be replaced with a NOP or jump to the
2988   // next instruction. The behaviour of branch instructions in this
2989   // situation (as used for tail calls) is implementation-defined, so we
2990   // cannot rely on the linker replacing the tail call with a return.
2991   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2992     const GlobalValue *GV = G->getGlobal();
2993     const Triple &TT = getTargetMachine().getTargetTriple();
2994     if (GV->hasExternalWeakLinkage() &&
2995         (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
2996       return false;
2997   }
2998 
2999   // Check that the call results are passed in the same way.
3000   LLVMContext &C = *DAG.getContext();
3001   if (!CCState::resultsCompatible(
3002           getEffectiveCallingConv(CalleeCC, isVarArg),
3003           getEffectiveCallingConv(CallerCC, CallerF.isVarArg()), MF, C, Ins,
3004           CCAssignFnForReturn(CalleeCC, isVarArg),
3005           CCAssignFnForReturn(CallerCC, CallerF.isVarArg())))
3006     return false;
3007   // The callee has to preserve all registers the caller needs to preserve.
3008   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
3009   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
3010   if (CalleeCC != CallerCC) {
3011     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
3012     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
3013       return false;
3014   }
3015 
3016   // If Caller's vararg or byval argument has been split between registers and
3017   // stack, do not perform tail call, since part of the argument is in caller's
3018   // local frame.
3019   const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
3020   if (AFI_Caller->getArgRegsSaveSize())
3021     return false;
3022 
3023   // If the callee takes no arguments then go on to check the results of the
3024   // call.
3025   if (!Outs.empty()) {
3026     // Check if stack adjustment is needed. For now, do not do this if any
3027     // argument is passed on the stack.
3028     SmallVector<CCValAssign, 16> ArgLocs;
3029     CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
3030     CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
3031     if (CCInfo.getNextStackOffset()) {
3032       // Check if the arguments are already laid out in the right way as
3033       // the caller's fixed stack objects.
3034       MachineFrameInfo &MFI = MF.getFrameInfo();
3035       const MachineRegisterInfo *MRI = &MF.getRegInfo();
3036       const TargetInstrInfo *TII = Subtarget->getInstrInfo();
3037       for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
3038            i != e;
3039            ++i, ++realArgIdx) {
3040         CCValAssign &VA = ArgLocs[i];
3041         EVT RegVT = VA.getLocVT();
3042         SDValue Arg = OutVals[realArgIdx];
3043         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
3044         if (VA.getLocInfo() == CCValAssign::Indirect)
3045           return false;
3046         if (VA.needsCustom() && (RegVT == MVT::f64 || RegVT == MVT::v2f64)) {
3047           // f64 and vector types are split into multiple registers or
3048           // register/stack-slot combinations.  The types will not match
3049           // the registers; give up on memory f64 refs until we figure
3050           // out what to do about this.
3051           if (!VA.isRegLoc())
3052             return false;
3053           if (!ArgLocs[++i].isRegLoc())
3054             return false;
3055           if (RegVT == MVT::v2f64) {
3056             if (!ArgLocs[++i].isRegLoc())
3057               return false;
3058             if (!ArgLocs[++i].isRegLoc())
3059               return false;
3060           }
3061         } else if (!VA.isRegLoc()) {
3062           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
3063                                    MFI, MRI, TII))
3064             return false;
3065         }
3066       }
3067     }
3068 
3069     const MachineRegisterInfo &MRI = MF.getRegInfo();
3070     if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
3071       return false;
3072   }
3073 
3074   return true;
3075 }
3076 
3077 bool
3078 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
3079                                   MachineFunction &MF, bool isVarArg,
3080                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
3081                                   LLVMContext &Context) const {
3082   SmallVector<CCValAssign, 16> RVLocs;
3083   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
3084   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
3085 }
3086 
3087 static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
3088                                     const SDLoc &DL, SelectionDAG &DAG) {
3089   const MachineFunction &MF = DAG.getMachineFunction();
3090   const Function &F = MF.getFunction();
3091 
3092   StringRef IntKind = F.getFnAttribute("interrupt").getValueAsString();
3093 
3094   // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
3095   // version of the "preferred return address". These offsets affect the return
3096   // instruction if this is a return from PL1 without hypervisor extensions.
3097   //    IRQ/FIQ: +4     "subs pc, lr, #4"
3098   //    SWI:     0      "subs pc, lr, #0"
3099   //    ABORT:   +4     "subs pc, lr, #4"
3100   //    UNDEF:   +4/+2  "subs pc, lr, #0"
3101   // UNDEF varies depending on where the exception came from ARM or Thumb
3102   // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
3103 
3104   int64_t LROffset;
3105   if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
3106       IntKind == "ABORT")
3107     LROffset = 4;
3108   else if (IntKind == "SWI" || IntKind == "UNDEF")
3109     LROffset = 0;
3110   else
3111     report_fatal_error("Unsupported interrupt attribute. If present, value "
3112                        "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
3113 
3114   RetOps.insert(RetOps.begin() + 1,
3115                 DAG.getConstant(LROffset, DL, MVT::i32, false));
3116 
3117   return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
3118 }
3119 
3120 SDValue
3121 ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
3122                                bool isVarArg,
3123                                const SmallVectorImpl<ISD::OutputArg> &Outs,
3124                                const SmallVectorImpl<SDValue> &OutVals,
3125                                const SDLoc &dl, SelectionDAG &DAG) const {
3126   // CCValAssign - represent the assignment of the return value to a location.
3127   SmallVector<CCValAssign, 16> RVLocs;
3128 
3129   // CCState - Info about the registers and stack slots.
3130   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
3131                  *DAG.getContext());
3132 
3133   // Analyze outgoing return values.
3134   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
3135 
3136   SDValue Flag;
3137   SmallVector<SDValue, 4> RetOps;
3138   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
3139   bool isLittleEndian = Subtarget->isLittle();
3140 
3141   MachineFunction &MF = DAG.getMachineFunction();
3142   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3143   AFI->setReturnRegsCount(RVLocs.size());
3144 
3145  // Report error if cmse entry function returns structure through first ptr arg.
3146   if (AFI->isCmseNSEntryFunction() && MF.getFunction().hasStructRetAttr()) {
3147     // Note: using an empty SDLoc(), as the first line of the function is a
3148     // better place to report than the last line.
3149     DiagnosticInfoUnsupported Diag(
3150         DAG.getMachineFunction().getFunction(),
3151         "secure entry function would return value through pointer",
3152         SDLoc().getDebugLoc());
3153     DAG.getContext()->diagnose(Diag);
3154   }
3155 
3156   // Copy the result values into the output registers.
3157   for (unsigned i = 0, realRVLocIdx = 0;
3158        i != RVLocs.size();
3159        ++i, ++realRVLocIdx) {
3160     CCValAssign &VA = RVLocs[i];
3161     assert(VA.isRegLoc() && "Can only return in registers!");
3162 
3163     SDValue Arg = OutVals[realRVLocIdx];
3164     bool ReturnF16 = false;
3165 
3166     if (Subtarget->hasFullFP16() && Subtarget->isTargetHardFloat()) {
3167       // Half-precision return values can be returned like this:
3168       //
3169       // t11 f16 = fadd ...
3170       // t12: i16 = bitcast t11
3171       //   t13: i32 = zero_extend t12
3172       // t14: f32 = bitcast t13  <~~~~~~~ Arg
3173       //
3174       // to avoid code generation for bitcasts, we simply set Arg to the node
3175       // that produces the f16 value, t11 in this case.
3176       //
3177       if (Arg.getValueType() == MVT::f32 && Arg.getOpcode() == ISD::BITCAST) {
3178         SDValue ZE = Arg.getOperand(0);
3179         if (ZE.getOpcode() == ISD::ZERO_EXTEND && ZE.getValueType() == MVT::i32) {
3180           SDValue BC = ZE.getOperand(0);
3181           if (BC.getOpcode() == ISD::BITCAST && BC.getValueType() == MVT::i16) {
3182             Arg = BC.getOperand(0);
3183             ReturnF16 = true;
3184           }
3185         }
3186       }
3187     }
3188 
3189     switch (VA.getLocInfo()) {
3190     default: llvm_unreachable("Unknown loc info!");
3191     case CCValAssign::Full: break;
3192     case CCValAssign::BCvt:
3193       if (!ReturnF16)
3194         Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
3195       break;
3196     }
3197 
3198     // Mask f16 arguments if this is a CMSE nonsecure entry.
3199     auto RetVT = Outs[realRVLocIdx].ArgVT;
3200     if (AFI->isCmseNSEntryFunction() && (RetVT == MVT::f16)) {
3201       if (VA.needsCustom() && VA.getValVT() == MVT::f16) {
3202         Arg = MoveFromHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Arg);
3203       } else {
3204         auto LocBits = VA.getLocVT().getSizeInBits();
3205         auto MaskValue = APInt::getLowBitsSet(LocBits, RetVT.getSizeInBits());
3206         SDValue Mask =
3207             DAG.getConstant(MaskValue, dl, MVT::getIntegerVT(LocBits));
3208         Arg = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocBits), Arg);
3209         Arg = DAG.getNode(ISD::AND, dl, MVT::getIntegerVT(LocBits), Arg, Mask);
3210         Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
3211       }
3212     }
3213 
3214     if (VA.needsCustom() &&
3215         (VA.getLocVT() == MVT::v2f64 || VA.getLocVT() == MVT::f64)) {
3216       if (VA.getLocVT() == MVT::v2f64) {
3217         // Extract the first half and return it in two registers.
3218         SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
3219                                    DAG.getConstant(0, dl, MVT::i32));
3220         SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
3221                                        DAG.getVTList(MVT::i32, MVT::i32), Half);
3222 
3223         Chain =
3224             DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3225                              HalfGPRs.getValue(isLittleEndian ? 0 : 1), Flag);
3226         Flag = Chain.getValue(1);
3227         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3228         VA = RVLocs[++i]; // skip ahead to next loc
3229         Chain =
3230             DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3231                              HalfGPRs.getValue(isLittleEndian ? 1 : 0), Flag);
3232         Flag = Chain.getValue(1);
3233         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3234         VA = RVLocs[++i]; // skip ahead to next loc
3235 
3236         // Extract the 2nd half and fall through to handle it as an f64 value.
3237         Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
3238                           DAG.getConstant(1, dl, MVT::i32));
3239       }
3240       // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
3241       // available.
3242       SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
3243                                   DAG.getVTList(MVT::i32, MVT::i32), Arg);
3244       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3245                                fmrrd.getValue(isLittleEndian ? 0 : 1), Flag);
3246       Flag = Chain.getValue(1);
3247       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3248       VA = RVLocs[++i]; // skip ahead to next loc
3249       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3250                                fmrrd.getValue(isLittleEndian ? 1 : 0), Flag);
3251     } else
3252       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
3253 
3254     // Guarantee that all emitted copies are
3255     // stuck together, avoiding something bad.
3256     Flag = Chain.getValue(1);
3257     RetOps.push_back(DAG.getRegister(
3258         VA.getLocReg(), ReturnF16 ? Arg.getValueType() : VA.getLocVT()));
3259   }
3260   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
3261   const MCPhysReg *I =
3262       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
3263   if (I) {
3264     for (; *I; ++I) {
3265       if (ARM::GPRRegClass.contains(*I))
3266         RetOps.push_back(DAG.getRegister(*I, MVT::i32));
3267       else if (ARM::DPRRegClass.contains(*I))
3268         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
3269       else
3270         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
3271     }
3272   }
3273 
3274   // Update chain and glue.
3275   RetOps[0] = Chain;
3276   if (Flag.getNode())
3277     RetOps.push_back(Flag);
3278 
3279   // CPUs which aren't M-class use a special sequence to return from
3280   // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
3281   // though we use "subs pc, lr, #N").
3282   //
3283   // M-class CPUs actually use a normal return sequence with a special
3284   // (hardware-provided) value in LR, so the normal code path works.
3285   if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
3286       !Subtarget->isMClass()) {
3287     if (Subtarget->isThumb1Only())
3288       report_fatal_error("interrupt attribute is not supported in Thumb1");
3289     return LowerInterruptReturn(RetOps, dl, DAG);
3290   }
3291 
3292   ARMISD::NodeType RetNode = AFI->isCmseNSEntryFunction() ? ARMISD::SERET_FLAG :
3293                                                             ARMISD::RET_FLAG;
3294   return DAG.getNode(RetNode, dl, MVT::Other, RetOps);
3295 }
3296 
3297 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
3298   if (N->getNumValues() != 1)
3299     return false;
3300   if (!N->hasNUsesOfValue(1, 0))
3301     return false;
3302 
3303   SDValue TCChain = Chain;
3304   SDNode *Copy = *N->use_begin();
3305   if (Copy->getOpcode() == ISD::CopyToReg) {
3306     // If the copy has a glue operand, we conservatively assume it isn't safe to
3307     // perform a tail call.
3308     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
3309       return false;
3310     TCChain = Copy->getOperand(0);
3311   } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
3312     SDNode *VMov = Copy;
3313     // f64 returned in a pair of GPRs.
3314     SmallPtrSet<SDNode*, 2> Copies;
3315     for (SDNode *U : VMov->uses()) {
3316       if (U->getOpcode() != ISD::CopyToReg)
3317         return false;
3318       Copies.insert(U);
3319     }
3320     if (Copies.size() > 2)
3321       return false;
3322 
3323     for (SDNode *U : VMov->uses()) {
3324       SDValue UseChain = U->getOperand(0);
3325       if (Copies.count(UseChain.getNode()))
3326         // Second CopyToReg
3327         Copy = U;
3328       else {
3329         // We are at the top of this chain.
3330         // If the copy has a glue operand, we conservatively assume it
3331         // isn't safe to perform a tail call.
3332         if (U->getOperand(U->getNumOperands() - 1).getValueType() == MVT::Glue)
3333           return false;
3334         // First CopyToReg
3335         TCChain = UseChain;
3336       }
3337     }
3338   } else if (Copy->getOpcode() == ISD::BITCAST) {
3339     // f32 returned in a single GPR.
3340     if (!Copy->hasOneUse())
3341       return false;
3342     Copy = *Copy->use_begin();
3343     if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
3344       return false;
3345     // If the copy has a glue operand, we conservatively assume it isn't safe to
3346     // perform a tail call.
3347     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
3348       return false;
3349     TCChain = Copy->getOperand(0);
3350   } else {
3351     return false;
3352   }
3353 
3354   bool HasRet = false;
3355   for (const SDNode *U : Copy->uses()) {
3356     if (U->getOpcode() != ARMISD::RET_FLAG &&
3357         U->getOpcode() != ARMISD::INTRET_FLAG)
3358       return false;
3359     HasRet = true;
3360   }
3361 
3362   if (!HasRet)
3363     return false;
3364 
3365   Chain = TCChain;
3366   return true;
3367 }
3368 
3369 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
3370   if (!Subtarget->supportsTailCall())
3371     return false;
3372 
3373   if (!CI->isTailCall())
3374     return false;
3375 
3376   return true;
3377 }
3378 
3379 // Trying to write a 64 bit value so need to split into two 32 bit values first,
3380 // and pass the lower and high parts through.
3381 static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
3382   SDLoc DL(Op);
3383   SDValue WriteValue = Op->getOperand(2);
3384 
3385   // This function is only supposed to be called for i64 type argument.
3386   assert(WriteValue.getValueType() == MVT::i64
3387           && "LowerWRITE_REGISTER called for non-i64 type argument.");
3388 
3389   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
3390                            DAG.getConstant(0, DL, MVT::i32));
3391   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
3392                            DAG.getConstant(1, DL, MVT::i32));
3393   SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
3394   return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
3395 }
3396 
3397 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3398 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
3399 // one of the above mentioned nodes. It has to be wrapped because otherwise
3400 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3401 // be used to form addressing mode. These wrapped nodes will be selected
3402 // into MOVi.
3403 SDValue ARMTargetLowering::LowerConstantPool(SDValue Op,
3404                                              SelectionDAG &DAG) const {
3405   EVT PtrVT = Op.getValueType();
3406   // FIXME there is no actual debug info here
3407   SDLoc dl(Op);
3408   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3409   SDValue Res;
3410 
3411   // When generating execute-only code Constant Pools must be promoted to the
3412   // global data section. It's a bit ugly that we can't share them across basic
3413   // blocks, but this way we guarantee that execute-only behaves correct with
3414   // position-independent addressing modes.
3415   if (Subtarget->genExecuteOnly()) {
3416     auto AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
3417     auto T = const_cast<Type*>(CP->getType());
3418     auto C = const_cast<Constant*>(CP->getConstVal());
3419     auto M = const_cast<Module*>(DAG.getMachineFunction().
3420                                  getFunction().getParent());
3421     auto GV = new GlobalVariable(
3422                     *M, T, /*isConstant=*/true, GlobalVariable::InternalLinkage, C,
3423                     Twine(DAG.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
3424                     Twine(DAG.getMachineFunction().getFunctionNumber()) + "_" +
3425                     Twine(AFI->createPICLabelUId())
3426                   );
3427     SDValue GA = DAG.getTargetGlobalAddress(dyn_cast<GlobalValue>(GV),
3428                                             dl, PtrVT);
3429     return LowerGlobalAddress(GA, DAG);
3430   }
3431 
3432   if (CP->isMachineConstantPoolEntry())
3433     Res =
3434         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
3435   else
3436     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign());
3437   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
3438 }
3439 
3440 unsigned ARMTargetLowering::getJumpTableEncoding() const {
3441   return MachineJumpTableInfo::EK_Inline;
3442 }
3443 
3444 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
3445                                              SelectionDAG &DAG) const {
3446   MachineFunction &MF = DAG.getMachineFunction();
3447   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3448   unsigned ARMPCLabelIndex = 0;
3449   SDLoc DL(Op);
3450   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3451   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
3452   SDValue CPAddr;
3453   bool IsPositionIndependent = isPositionIndependent() || Subtarget->isROPI();
3454   if (!IsPositionIndependent) {
3455     CPAddr = DAG.getTargetConstantPool(BA, PtrVT, Align(4));
3456   } else {
3457     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
3458     ARMPCLabelIndex = AFI->createPICLabelUId();
3459     ARMConstantPoolValue *CPV =
3460       ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
3461                                       ARMCP::CPBlockAddress, PCAdj);
3462     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3463   }
3464   CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
3465   SDValue Result = DAG.getLoad(
3466       PtrVT, DL, DAG.getEntryNode(), CPAddr,
3467       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3468   if (!IsPositionIndependent)
3469     return Result;
3470   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
3471   return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
3472 }
3473 
3474 /// Convert a TLS address reference into the correct sequence of loads
3475 /// and calls to compute the variable's address for Darwin, and return an
3476 /// SDValue containing the final node.
3477 
3478 /// Darwin only has one TLS scheme which must be capable of dealing with the
3479 /// fully general situation, in the worst case. This means:
3480 ///     + "extern __thread" declaration.
3481 ///     + Defined in a possibly unknown dynamic library.
3482 ///
3483 /// The general system is that each __thread variable has a [3 x i32] descriptor
3484 /// which contains information used by the runtime to calculate the address. The
3485 /// only part of this the compiler needs to know about is the first word, which
3486 /// contains a function pointer that must be called with the address of the
3487 /// entire descriptor in "r0".
3488 ///
3489 /// Since this descriptor may be in a different unit, in general access must
3490 /// proceed along the usual ARM rules. A common sequence to produce is:
3491 ///
3492 ///     movw rT1, :lower16:_var$non_lazy_ptr
3493 ///     movt rT1, :upper16:_var$non_lazy_ptr
3494 ///     ldr r0, [rT1]
3495 ///     ldr rT2, [r0]
3496 ///     blx rT2
3497 ///     [...address now in r0...]
3498 SDValue
3499 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
3500                                                SelectionDAG &DAG) const {
3501   assert(Subtarget->isTargetDarwin() &&
3502          "This function expects a Darwin target");
3503   SDLoc DL(Op);
3504 
3505   // First step is to get the address of the actua global symbol. This is where
3506   // the TLS descriptor lives.
3507   SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);
3508 
3509   // The first entry in the descriptor is a function pointer that we must call
3510   // to obtain the address of the variable.
3511   SDValue Chain = DAG.getEntryNode();
3512   SDValue FuncTLVGet = DAG.getLoad(
3513       MVT::i32, DL, Chain, DescAddr,
3514       MachinePointerInfo::getGOT(DAG.getMachineFunction()), Align(4),
3515       MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable |
3516           MachineMemOperand::MOInvariant);
3517   Chain = FuncTLVGet.getValue(1);
3518 
3519   MachineFunction &F = DAG.getMachineFunction();
3520   MachineFrameInfo &MFI = F.getFrameInfo();
3521   MFI.setAdjustsStack(true);
3522 
3523   // TLS calls preserve all registers except those that absolutely must be
3524   // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
3525   // silly).
3526   auto TRI =
3527       getTargetMachine().getSubtargetImpl(F.getFunction())->getRegisterInfo();
3528   auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
3529   const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());
3530 
3531   // Finally, we can make the call. This is just a degenerate version of a
3532   // normal AArch64 call node: r0 takes the address of the descriptor, and
3533   // returns the address of the variable in this thread.
3534   Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
3535   Chain =
3536       DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
3537                   Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
3538                   DAG.getRegisterMask(Mask), Chain.getValue(1));
3539   return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
3540 }
3541 
3542 SDValue
3543 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
3544                                                 SelectionDAG &DAG) const {
3545   assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
3546 
3547   SDValue Chain = DAG.getEntryNode();
3548   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3549   SDLoc DL(Op);
3550 
3551   // Load the current TEB (thread environment block)
3552   SDValue Ops[] = {Chain,
3553                    DAG.getTargetConstant(Intrinsic::arm_mrc, DL, MVT::i32),
3554                    DAG.getTargetConstant(15, DL, MVT::i32),
3555                    DAG.getTargetConstant(0, DL, MVT::i32),
3556                    DAG.getTargetConstant(13, DL, MVT::i32),
3557                    DAG.getTargetConstant(0, DL, MVT::i32),
3558                    DAG.getTargetConstant(2, DL, MVT::i32)};
3559   SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
3560                                    DAG.getVTList(MVT::i32, MVT::Other), Ops);
3561 
3562   SDValue TEB = CurrentTEB.getValue(0);
3563   Chain = CurrentTEB.getValue(1);
3564 
3565   // Load the ThreadLocalStoragePointer from the TEB
3566   // A pointer to the TLS array is located at offset 0x2c from the TEB.
3567   SDValue TLSArray =
3568       DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
3569   TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
3570 
3571   // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
3572   // offset into the TLSArray.
3573 
3574   // Load the TLS index from the C runtime
3575   SDValue TLSIndex =
3576       DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
3577   TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
3578   TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo());
3579 
3580   SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
3581                               DAG.getConstant(2, DL, MVT::i32));
3582   SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
3583                             DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
3584                             MachinePointerInfo());
3585 
3586   // Get the offset of the start of the .tls section (section base)
3587   const auto *GA = cast<GlobalAddressSDNode>(Op);
3588   auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL);
3589   SDValue Offset = DAG.getLoad(
3590       PtrVT, DL, Chain,
3591       DAG.getNode(ARMISD::Wrapper, DL, MVT::i32,
3592                   DAG.getTargetConstantPool(CPV, PtrVT, Align(4))),
3593       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3594 
3595   return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset);
3596 }
3597 
3598 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
3599 SDValue
3600 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
3601                                                  SelectionDAG &DAG) const {
3602   SDLoc dl(GA);
3603   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3604   unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
3605   MachineFunction &MF = DAG.getMachineFunction();
3606   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3607   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3608   ARMConstantPoolValue *CPV =
3609     ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
3610                                     ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
3611   SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3612   Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
3613   Argument = DAG.getLoad(
3614       PtrVT, dl, DAG.getEntryNode(), Argument,
3615       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3616   SDValue Chain = Argument.getValue(1);
3617 
3618   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3619   Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
3620 
3621   // call __tls_get_addr.
3622   ArgListTy Args;
3623   ArgListEntry Entry;
3624   Entry.Node = Argument;
3625   Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
3626   Args.push_back(Entry);
3627 
3628   // FIXME: is there useful debug info available here?
3629   TargetLowering::CallLoweringInfo CLI(DAG);
3630   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3631       CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
3632       DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args));
3633 
3634   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3635   return CallResult.first;
3636 }
3637 
3638 // Lower ISD::GlobalTLSAddress using the "initial exec" or
3639 // "local exec" model.
3640 SDValue
3641 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
3642                                         SelectionDAG &DAG,
3643                                         TLSModel::Model model) const {
3644   const GlobalValue *GV = GA->getGlobal();
3645   SDLoc dl(GA);
3646   SDValue Offset;
3647   SDValue Chain = DAG.getEntryNode();
3648   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3649   // Get the Thread Pointer
3650   SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
3651 
3652   if (model == TLSModel::InitialExec) {
3653     MachineFunction &MF = DAG.getMachineFunction();
3654     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3655     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3656     // Initial exec model.
3657     unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
3658     ARMConstantPoolValue *CPV =
3659       ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
3660                                       ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
3661                                       true);
3662     Offset = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3663     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
3664     Offset = DAG.getLoad(
3665         PtrVT, dl, Chain, Offset,
3666         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3667     Chain = Offset.getValue(1);
3668 
3669     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3670     Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
3671 
3672     Offset = DAG.getLoad(
3673         PtrVT, dl, Chain, Offset,
3674         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3675   } else {
3676     // local exec model
3677     assert(model == TLSModel::LocalExec);
3678     ARMConstantPoolValue *CPV =
3679       ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
3680     Offset = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3681     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
3682     Offset = DAG.getLoad(
3683         PtrVT, dl, Chain, Offset,
3684         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3685   }
3686 
3687   // The address of the thread local variable is the add of the thread
3688   // pointer with the offset of the variable.
3689   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
3690 }
3691 
3692 SDValue
3693 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
3694   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3695   if (DAG.getTarget().useEmulatedTLS())
3696     return LowerToTLSEmulatedModel(GA, DAG);
3697 
3698   if (Subtarget->isTargetDarwin())
3699     return LowerGlobalTLSAddressDarwin(Op, DAG);
3700 
3701   if (Subtarget->isTargetWindows())
3702     return LowerGlobalTLSAddressWindows(Op, DAG);
3703 
3704   // TODO: implement the "local dynamic" model
3705   assert(Subtarget->isTargetELF() && "Only ELF implemented here");
3706   TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
3707 
3708   switch (model) {
3709     case TLSModel::GeneralDynamic:
3710     case TLSModel::LocalDynamic:
3711       return LowerToTLSGeneralDynamicModel(GA, DAG);
3712     case TLSModel::InitialExec:
3713     case TLSModel::LocalExec:
3714       return LowerToTLSExecModels(GA, DAG, model);
3715   }
3716   llvm_unreachable("bogus TLS model");
3717 }
3718 
3719 /// Return true if all users of V are within function F, looking through
3720 /// ConstantExprs.
3721 static bool allUsersAreInFunction(const Value *V, const Function *F) {
3722   SmallVector<const User*,4> Worklist(V->users());
3723   while (!Worklist.empty()) {
3724     auto *U = Worklist.pop_back_val();
3725     if (isa<ConstantExpr>(U)) {
3726       append_range(Worklist, U->users());
3727       continue;
3728     }
3729 
3730     auto *I = dyn_cast<Instruction>(U);
3731     if (!I || I->getParent()->getParent() != F)
3732       return false;
3733   }
3734   return true;
3735 }
3736 
3737 static SDValue promoteToConstantPool(const ARMTargetLowering *TLI,
3738                                      const GlobalValue *GV, SelectionDAG &DAG,
3739                                      EVT PtrVT, const SDLoc &dl) {
3740   // If we're creating a pool entry for a constant global with unnamed address,
3741   // and the global is small enough, we can emit it inline into the constant pool
3742   // to save ourselves an indirection.
3743   //
3744   // This is a win if the constant is only used in one function (so it doesn't
3745   // need to be duplicated) or duplicating the constant wouldn't increase code
3746   // size (implying the constant is no larger than 4 bytes).
3747   const Function &F = DAG.getMachineFunction().getFunction();
3748 
3749   // We rely on this decision to inline being idemopotent and unrelated to the
3750   // use-site. We know that if we inline a variable at one use site, we'll
3751   // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3752   // doesn't know about this optimization, so bail out if it's enabled else
3753   // we could decide to inline here (and thus never emit the GV) but require
3754   // the GV from fast-isel generated code.
3755   if (!EnableConstpoolPromotion ||
3756       DAG.getMachineFunction().getTarget().Options.EnableFastISel)
3757       return SDValue();
3758 
3759   auto *GVar = dyn_cast<GlobalVariable>(GV);
3760   if (!GVar || !GVar->hasInitializer() ||
3761       !GVar->isConstant() || !GVar->hasGlobalUnnamedAddr() ||
3762       !GVar->hasLocalLinkage())
3763     return SDValue();
3764 
3765   // If we inline a value that contains relocations, we move the relocations
3766   // from .data to .text. This is not allowed in position-independent code.
3767   auto *Init = GVar->getInitializer();
3768   if ((TLI->isPositionIndependent() || TLI->getSubtarget()->isROPI()) &&
3769       Init->needsDynamicRelocation())
3770     return SDValue();
3771 
3772   // The constant islands pass can only really deal with alignment requests
3773   // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3774   // any type wanting greater alignment requirements than 4 bytes. We also
3775   // can only promote constants that are multiples of 4 bytes in size or
3776   // are paddable to a multiple of 4. Currently we only try and pad constants
3777   // that are strings for simplicity.
3778   auto *CDAInit = dyn_cast<ConstantDataArray>(Init);
3779   unsigned Size = DAG.getDataLayout().getTypeAllocSize(Init->getType());
3780   Align PrefAlign = DAG.getDataLayout().getPreferredAlign(GVar);
3781   unsigned RequiredPadding = 4 - (Size % 4);
3782   bool PaddingPossible =
3783     RequiredPadding == 4 || (CDAInit && CDAInit->isString());
3784   if (!PaddingPossible || PrefAlign > 4 || Size > ConstpoolPromotionMaxSize ||
3785       Size == 0)
3786     return SDValue();
3787 
3788   unsigned PaddedSize = Size + ((RequiredPadding == 4) ? 0 : RequiredPadding);
3789   MachineFunction &MF = DAG.getMachineFunction();
3790   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3791 
3792   // We can't bloat the constant pool too much, else the ConstantIslands pass
3793   // may fail to converge. If we haven't promoted this global yet (it may have
3794   // multiple uses), and promoting it would increase the constant pool size (Sz
3795   // > 4), ensure we have space to do so up to MaxTotal.
3796   if (!AFI->getGlobalsPromotedToConstantPool().count(GVar) && Size > 4)
3797     if (AFI->getPromotedConstpoolIncrease() + PaddedSize - 4 >=
3798         ConstpoolPromotionMaxTotal)
3799       return SDValue();
3800 
3801   // This is only valid if all users are in a single function; we can't clone
3802   // the constant in general. The LLVM IR unnamed_addr allows merging
3803   // constants, but not cloning them.
3804   //
3805   // We could potentially allow cloning if we could prove all uses of the
3806   // constant in the current function don't care about the address, like
3807   // printf format strings. But that isn't implemented for now.
3808   if (!allUsersAreInFunction(GVar, &F))
3809     return SDValue();
3810 
3811   // We're going to inline this global. Pad it out if needed.
3812   if (RequiredPadding != 4) {
3813     StringRef S = CDAInit->getAsString();
3814 
3815     SmallVector<uint8_t,16> V(S.size());
3816     std::copy(S.bytes_begin(), S.bytes_end(), V.begin());
3817     while (RequiredPadding--)
3818       V.push_back(0);
3819     Init = ConstantDataArray::get(*DAG.getContext(), V);
3820   }
3821 
3822   auto CPVal = ARMConstantPoolConstant::Create(GVar, Init);
3823   SDValue CPAddr = DAG.getTargetConstantPool(CPVal, PtrVT, Align(4));
3824   if (!AFI->getGlobalsPromotedToConstantPool().count(GVar)) {
3825     AFI->markGlobalAsPromotedToConstantPool(GVar);
3826     AFI->setPromotedConstpoolIncrease(AFI->getPromotedConstpoolIncrease() +
3827                                       PaddedSize - 4);
3828   }
3829   ++NumConstpoolPromoted;
3830   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3831 }
3832 
3833 bool ARMTargetLowering::isReadOnly(const GlobalValue *GV) const {
3834   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
3835     if (!(GV = GA->getAliaseeObject()))
3836       return false;
3837   if (const auto *V = dyn_cast<GlobalVariable>(GV))
3838     return V->isConstant();
3839   return isa<Function>(GV);
3840 }
3841 
3842 SDValue ARMTargetLowering::LowerGlobalAddress(SDValue Op,
3843                                               SelectionDAG &DAG) const {
3844   switch (Subtarget->getTargetTriple().getObjectFormat()) {
3845   default: llvm_unreachable("unknown object format");
3846   case Triple::COFF:
3847     return LowerGlobalAddressWindows(Op, DAG);
3848   case Triple::ELF:
3849     return LowerGlobalAddressELF(Op, DAG);
3850   case Triple::MachO:
3851     return LowerGlobalAddressDarwin(Op, DAG);
3852   }
3853 }
3854 
3855 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
3856                                                  SelectionDAG &DAG) const {
3857   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3858   SDLoc dl(Op);
3859   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3860   const TargetMachine &TM = getTargetMachine();
3861   bool IsRO = isReadOnly(GV);
3862 
3863   // promoteToConstantPool only if not generating XO text section
3864   if (TM.shouldAssumeDSOLocal(*GV->getParent(), GV) && !Subtarget->genExecuteOnly())
3865     if (SDValue V = promoteToConstantPool(this, GV, DAG, PtrVT, dl))
3866       return V;
3867 
3868   if (isPositionIndependent()) {
3869     bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
3870     SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3871                                            UseGOT_PREL ? ARMII::MO_GOT : 0);
3872     SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3873     if (UseGOT_PREL)
3874       Result =
3875           DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3876                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3877     return Result;
3878   } else if (Subtarget->isROPI() && IsRO) {
3879     // PC-relative.
3880     SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
3881     SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3882     return Result;
3883   } else if (Subtarget->isRWPI() && !IsRO) {
3884     // SB-relative.
3885     SDValue RelAddr;
3886     if (Subtarget->useMovt()) {
3887       ++NumMovwMovt;
3888       SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_SBREL);
3889       RelAddr = DAG.getNode(ARMISD::Wrapper, dl, PtrVT, G);
3890     } else { // use literal pool for address constant
3891       ARMConstantPoolValue *CPV =
3892         ARMConstantPoolConstant::Create(GV, ARMCP::SBREL);
3893       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3894       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3895       RelAddr = DAG.getLoad(
3896           PtrVT, dl, DAG.getEntryNode(), CPAddr,
3897           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3898     }
3899     SDValue SB = DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::R9, PtrVT);
3900     SDValue Result = DAG.getNode(ISD::ADD, dl, PtrVT, SB, RelAddr);
3901     return Result;
3902   }
3903 
3904   // If we have T2 ops, we can materialize the address directly via movt/movw
3905   // pair. This is always cheaper.
3906   if (Subtarget->useMovt()) {
3907     ++NumMovwMovt;
3908     // FIXME: Once remat is capable of dealing with instructions with register
3909     // operands, expand this into two nodes.
3910     return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
3911                        DAG.getTargetGlobalAddress(GV, dl, PtrVT));
3912   } else {
3913     SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, Align(4));
3914     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3915     return DAG.getLoad(
3916         PtrVT, dl, DAG.getEntryNode(), CPAddr,
3917         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3918   }
3919 }
3920 
3921 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
3922                                                     SelectionDAG &DAG) const {
3923   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3924          "ROPI/RWPI not currently supported for Darwin");
3925   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3926   SDLoc dl(Op);
3927   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3928 
3929   if (Subtarget->useMovt())
3930     ++NumMovwMovt;
3931 
3932   // FIXME: Once remat is capable of dealing with instructions with register
3933   // operands, expand this into multiple nodes
3934   unsigned Wrapper =
3935       isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper;
3936 
3937   SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
3938   SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
3939 
3940   if (Subtarget->isGVIndirectSymbol(GV))
3941     Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3942                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3943   return Result;
3944 }
3945 
3946 SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
3947                                                      SelectionDAG &DAG) const {
3948   assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
3949   assert(Subtarget->useMovt() &&
3950          "Windows on ARM expects to use movw/movt");
3951   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3952          "ROPI/RWPI not currently supported for Windows");
3953 
3954   const TargetMachine &TM = getTargetMachine();
3955   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3956   ARMII::TOF TargetFlags = ARMII::MO_NO_FLAG;
3957   if (GV->hasDLLImportStorageClass())
3958     TargetFlags = ARMII::MO_DLLIMPORT;
3959   else if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
3960     TargetFlags = ARMII::MO_COFFSTUB;
3961   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3962   SDValue Result;
3963   SDLoc DL(Op);
3964 
3965   ++NumMovwMovt;
3966 
3967   // FIXME: Once remat is capable of dealing with instructions with register
3968   // operands, expand this into two nodes.
3969   Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
3970                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*offset=*/0,
3971                                                   TargetFlags));
3972   if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
3973     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3974                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3975   return Result;
3976 }
3977 
3978 SDValue
3979 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
3980   SDLoc dl(Op);
3981   SDValue Val = DAG.getConstant(0, dl, MVT::i32);
3982   return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
3983                      DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
3984                      Op.getOperand(1), Val);
3985 }
3986 
3987 SDValue
3988 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
3989   SDLoc dl(Op);
3990   return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
3991                      Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
3992 }
3993 
3994 SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
3995                                                       SelectionDAG &DAG) const {
3996   SDLoc dl(Op);
3997   return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
3998                      Op.getOperand(0));
3999 }
4000 
4001 SDValue ARMTargetLowering::LowerINTRINSIC_VOID(
4002     SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget) const {
4003   unsigned IntNo =
4004       cast<ConstantSDNode>(
4005           Op.getOperand(Op.getOperand(0).getValueType() == MVT::Other))
4006           ->getZExtValue();
4007   switch (IntNo) {
4008     default:
4009       return SDValue();  // Don't custom lower most intrinsics.
4010     case Intrinsic::arm_gnu_eabi_mcount: {
4011       MachineFunction &MF = DAG.getMachineFunction();
4012       EVT PtrVT = getPointerTy(DAG.getDataLayout());
4013       SDLoc dl(Op);
4014       SDValue Chain = Op.getOperand(0);
4015       // call "\01__gnu_mcount_nc"
4016       const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
4017       const uint32_t *Mask =
4018           ARI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
4019       assert(Mask && "Missing call preserved mask for calling convention");
4020       // Mark LR an implicit live-in.
4021       Register Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
4022       SDValue ReturnAddress =
4023           DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, PtrVT);
4024       constexpr EVT ResultTys[] = {MVT::Other, MVT::Glue};
4025       SDValue Callee =
4026           DAG.getTargetExternalSymbol("\01__gnu_mcount_nc", PtrVT, 0);
4027       SDValue RegisterMask = DAG.getRegisterMask(Mask);
4028       if (Subtarget->isThumb())
4029         return SDValue(
4030             DAG.getMachineNode(
4031                 ARM::tBL_PUSHLR, dl, ResultTys,
4032                 {ReturnAddress, DAG.getTargetConstant(ARMCC::AL, dl, PtrVT),
4033                  DAG.getRegister(0, PtrVT), Callee, RegisterMask, Chain}),
4034             0);
4035       return SDValue(
4036           DAG.getMachineNode(ARM::BL_PUSHLR, dl, ResultTys,
4037                              {ReturnAddress, Callee, RegisterMask, Chain}),
4038           0);
4039     }
4040   }
4041 }
4042 
4043 SDValue
4044 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
4045                                           const ARMSubtarget *Subtarget) const {
4046   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4047   SDLoc dl(Op);
4048   switch (IntNo) {
4049   default: return SDValue();    // Don't custom lower most intrinsics.
4050   case Intrinsic::thread_pointer: {
4051     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4052     return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
4053   }
4054   case Intrinsic::arm_cls: {
4055     const SDValue &Operand = Op.getOperand(1);
4056     const EVT VTy = Op.getValueType();
4057     SDValue SRA =
4058         DAG.getNode(ISD::SRA, dl, VTy, Operand, DAG.getConstant(31, dl, VTy));
4059     SDValue XOR = DAG.getNode(ISD::XOR, dl, VTy, SRA, Operand);
4060     SDValue SHL =
4061         DAG.getNode(ISD::SHL, dl, VTy, XOR, DAG.getConstant(1, dl, VTy));
4062     SDValue OR =
4063         DAG.getNode(ISD::OR, dl, VTy, SHL, DAG.getConstant(1, dl, VTy));
4064     SDValue Result = DAG.getNode(ISD::CTLZ, dl, VTy, OR);
4065     return Result;
4066   }
4067   case Intrinsic::arm_cls64: {
4068     // cls(x) = if cls(hi(x)) != 31 then cls(hi(x))
4069     //          else 31 + clz(if hi(x) == 0 then lo(x) else not(lo(x)))
4070     const SDValue &Operand = Op.getOperand(1);
4071     const EVT VTy = Op.getValueType();
4072 
4073     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VTy, Operand,
4074                              DAG.getConstant(1, dl, VTy));
4075     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VTy, Operand,
4076                              DAG.getConstant(0, dl, VTy));
4077     SDValue Constant0 = DAG.getConstant(0, dl, VTy);
4078     SDValue Constant1 = DAG.getConstant(1, dl, VTy);
4079     SDValue Constant31 = DAG.getConstant(31, dl, VTy);
4080     SDValue SRAHi = DAG.getNode(ISD::SRA, dl, VTy, Hi, Constant31);
4081     SDValue XORHi = DAG.getNode(ISD::XOR, dl, VTy, SRAHi, Hi);
4082     SDValue SHLHi = DAG.getNode(ISD::SHL, dl, VTy, XORHi, Constant1);
4083     SDValue ORHi = DAG.getNode(ISD::OR, dl, VTy, SHLHi, Constant1);
4084     SDValue CLSHi = DAG.getNode(ISD::CTLZ, dl, VTy, ORHi);
4085     SDValue CheckLo =
4086         DAG.getSetCC(dl, MVT::i1, CLSHi, Constant31, ISD::CondCode::SETEQ);
4087     SDValue HiIsZero =
4088         DAG.getSetCC(dl, MVT::i1, Hi, Constant0, ISD::CondCode::SETEQ);
4089     SDValue AdjustedLo =
4090         DAG.getSelect(dl, VTy, HiIsZero, Lo, DAG.getNOT(dl, Lo, VTy));
4091     SDValue CLZAdjustedLo = DAG.getNode(ISD::CTLZ, dl, VTy, AdjustedLo);
4092     SDValue Result =
4093         DAG.getSelect(dl, VTy, CheckLo,
4094                       DAG.getNode(ISD::ADD, dl, VTy, CLZAdjustedLo, Constant31), CLSHi);
4095     return Result;
4096   }
4097   case Intrinsic::eh_sjlj_lsda: {
4098     MachineFunction &MF = DAG.getMachineFunction();
4099     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4100     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
4101     EVT PtrVT = getPointerTy(DAG.getDataLayout());
4102     SDValue CPAddr;
4103     bool IsPositionIndependent = isPositionIndependent();
4104     unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
4105     ARMConstantPoolValue *CPV =
4106       ARMConstantPoolConstant::Create(&MF.getFunction(), ARMPCLabelIndex,
4107                                       ARMCP::CPLSDA, PCAdj);
4108     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
4109     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
4110     SDValue Result = DAG.getLoad(
4111         PtrVT, dl, DAG.getEntryNode(), CPAddr,
4112         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
4113 
4114     if (IsPositionIndependent) {
4115       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
4116       Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
4117     }
4118     return Result;
4119   }
4120   case Intrinsic::arm_neon_vabs:
4121     return DAG.getNode(ISD::ABS, SDLoc(Op), Op.getValueType(),
4122                         Op.getOperand(1));
4123   case Intrinsic::arm_neon_vmulls:
4124   case Intrinsic::arm_neon_vmullu: {
4125     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
4126       ? ARMISD::VMULLs : ARMISD::VMULLu;
4127     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
4128                        Op.getOperand(1), Op.getOperand(2));
4129   }
4130   case Intrinsic::arm_neon_vminnm:
4131   case Intrinsic::arm_neon_vmaxnm: {
4132     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
4133       ? ISD::FMINNUM : ISD::FMAXNUM;
4134     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
4135                        Op.getOperand(1), Op.getOperand(2));
4136   }
4137   case Intrinsic::arm_neon_vminu:
4138   case Intrinsic::arm_neon_vmaxu: {
4139     if (Op.getValueType().isFloatingPoint())
4140       return SDValue();
4141     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
4142       ? ISD::UMIN : ISD::UMAX;
4143     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
4144                          Op.getOperand(1), Op.getOperand(2));
4145   }
4146   case Intrinsic::arm_neon_vmins:
4147   case Intrinsic::arm_neon_vmaxs: {
4148     // v{min,max}s is overloaded between signed integers and floats.
4149     if (!Op.getValueType().isFloatingPoint()) {
4150       unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
4151         ? ISD::SMIN : ISD::SMAX;
4152       return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
4153                          Op.getOperand(1), Op.getOperand(2));
4154     }
4155     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
4156       ? ISD::FMINIMUM : ISD::FMAXIMUM;
4157     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
4158                        Op.getOperand(1), Op.getOperand(2));
4159   }
4160   case Intrinsic::arm_neon_vtbl1:
4161     return DAG.getNode(ARMISD::VTBL1, SDLoc(Op), Op.getValueType(),
4162                        Op.getOperand(1), Op.getOperand(2));
4163   case Intrinsic::arm_neon_vtbl2:
4164     return DAG.getNode(ARMISD::VTBL2, SDLoc(Op), Op.getValueType(),
4165                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4166   case Intrinsic::arm_mve_pred_i2v:
4167   case Intrinsic::arm_mve_pred_v2i:
4168     return DAG.getNode(ARMISD::PREDICATE_CAST, SDLoc(Op), Op.getValueType(),
4169                        Op.getOperand(1));
4170   case Intrinsic::arm_mve_vreinterpretq:
4171     return DAG.getNode(ARMISD::VECTOR_REG_CAST, SDLoc(Op), Op.getValueType(),
4172                        Op.getOperand(1));
4173   case Intrinsic::arm_mve_lsll:
4174     return DAG.getNode(ARMISD::LSLL, SDLoc(Op), Op->getVTList(),
4175                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4176   case Intrinsic::arm_mve_asrl:
4177     return DAG.getNode(ARMISD::ASRL, SDLoc(Op), Op->getVTList(),
4178                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4179   }
4180 }
4181 
4182 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
4183                                  const ARMSubtarget *Subtarget) {
4184   SDLoc dl(Op);
4185   ConstantSDNode *SSIDNode = cast<ConstantSDNode>(Op.getOperand(2));
4186   auto SSID = static_cast<SyncScope::ID>(SSIDNode->getZExtValue());
4187   if (SSID == SyncScope::SingleThread)
4188     return Op;
4189 
4190   if (!Subtarget->hasDataBarrier()) {
4191     // Some ARMv6 cpus can support data barriers with an mcr instruction.
4192     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
4193     // here.
4194     assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
4195            "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
4196     return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
4197                        DAG.getConstant(0, dl, MVT::i32));
4198   }
4199 
4200   ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
4201   AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
4202   ARM_MB::MemBOpt Domain = ARM_MB::ISH;
4203   if (Subtarget->isMClass()) {
4204     // Only a full system barrier exists in the M-class architectures.
4205     Domain = ARM_MB::SY;
4206   } else if (Subtarget->preferISHSTBarriers() &&
4207              Ord == AtomicOrdering::Release) {
4208     // Swift happens to implement ISHST barriers in a way that's compatible with
4209     // Release semantics but weaker than ISH so we'd be fools not to use
4210     // it. Beware: other processors probably don't!
4211     Domain = ARM_MB::ISHST;
4212   }
4213 
4214   return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
4215                      DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
4216                      DAG.getConstant(Domain, dl, MVT::i32));
4217 }
4218 
4219 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
4220                              const ARMSubtarget *Subtarget) {
4221   // ARM pre v5TE and Thumb1 does not have preload instructions.
4222   if (!(Subtarget->isThumb2() ||
4223         (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
4224     // Just preserve the chain.
4225     return Op.getOperand(0);
4226 
4227   SDLoc dl(Op);
4228   unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
4229   if (!isRead &&
4230       (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
4231     // ARMv7 with MP extension has PLDW.
4232     return Op.getOperand(0);
4233 
4234   unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4235   if (Subtarget->isThumb()) {
4236     // Invert the bits.
4237     isRead = ~isRead & 1;
4238     isData = ~isData & 1;
4239   }
4240 
4241   return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
4242                      Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
4243                      DAG.getConstant(isData, dl, MVT::i32));
4244 }
4245 
4246 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
4247   MachineFunction &MF = DAG.getMachineFunction();
4248   ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
4249 
4250   // vastart just stores the address of the VarArgsFrameIndex slot into the
4251   // memory location argument.
4252   SDLoc dl(Op);
4253   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4254   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4255   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4256   return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
4257                       MachinePointerInfo(SV));
4258 }
4259 
4260 SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA,
4261                                                 CCValAssign &NextVA,
4262                                                 SDValue &Root,
4263                                                 SelectionDAG &DAG,
4264                                                 const SDLoc &dl) const {
4265   MachineFunction &MF = DAG.getMachineFunction();
4266   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4267 
4268   const TargetRegisterClass *RC;
4269   if (AFI->isThumb1OnlyFunction())
4270     RC = &ARM::tGPRRegClass;
4271   else
4272     RC = &ARM::GPRRegClass;
4273 
4274   // Transform the arguments stored in physical registers into virtual ones.
4275   Register Reg = MF.addLiveIn(VA.getLocReg(), RC);
4276   SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
4277 
4278   SDValue ArgValue2;
4279   if (NextVA.isMemLoc()) {
4280     MachineFrameInfo &MFI = MF.getFrameInfo();
4281     int FI = MFI.CreateFixedObject(4, NextVA.getLocMemOffset(), true);
4282 
4283     // Create load node to retrieve arguments from the stack.
4284     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
4285     ArgValue2 = DAG.getLoad(
4286         MVT::i32, dl, Root, FIN,
4287         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
4288   } else {
4289     Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
4290     ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
4291   }
4292   if (!Subtarget->isLittle())
4293     std::swap (ArgValue, ArgValue2);
4294   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
4295 }
4296 
4297 // The remaining GPRs hold either the beginning of variable-argument
4298 // data, or the beginning of an aggregate passed by value (usually
4299 // byval).  Either way, we allocate stack slots adjacent to the data
4300 // provided by our caller, and store the unallocated registers there.
4301 // If this is a variadic function, the va_list pointer will begin with
4302 // these values; otherwise, this reassembles a (byval) structure that
4303 // was split between registers and memory.
4304 // Return: The frame index registers were stored into.
4305 int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
4306                                       const SDLoc &dl, SDValue &Chain,
4307                                       const Value *OrigArg,
4308                                       unsigned InRegsParamRecordIdx,
4309                                       int ArgOffset, unsigned ArgSize) const {
4310   // Currently, two use-cases possible:
4311   // Case #1. Non-var-args function, and we meet first byval parameter.
4312   //          Setup first unallocated register as first byval register;
4313   //          eat all remained registers
4314   //          (these two actions are performed by HandleByVal method).
4315   //          Then, here, we initialize stack frame with
4316   //          "store-reg" instructions.
4317   // Case #2. Var-args function, that doesn't contain byval parameters.
4318   //          The same: eat all remained unallocated registers,
4319   //          initialize stack frame.
4320 
4321   MachineFunction &MF = DAG.getMachineFunction();
4322   MachineFrameInfo &MFI = MF.getFrameInfo();
4323   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4324   unsigned RBegin, REnd;
4325   if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
4326     CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
4327   } else {
4328     unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
4329     RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
4330     REnd = ARM::R4;
4331   }
4332 
4333   if (REnd != RBegin)
4334     ArgOffset = -4 * (ARM::R4 - RBegin);
4335 
4336   auto PtrVT = getPointerTy(DAG.getDataLayout());
4337   int FrameIndex = MFI.CreateFixedObject(ArgSize, ArgOffset, false);
4338   SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
4339 
4340   SmallVector<SDValue, 4> MemOps;
4341   const TargetRegisterClass *RC =
4342       AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
4343 
4344   for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
4345     Register VReg = MF.addLiveIn(Reg, RC);
4346     SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4347     SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4348                                  MachinePointerInfo(OrigArg, 4 * i));
4349     MemOps.push_back(Store);
4350     FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
4351   }
4352 
4353   if (!MemOps.empty())
4354     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4355   return FrameIndex;
4356 }
4357 
4358 // Setup stack frame, the va_list pointer will start from.
4359 void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
4360                                              const SDLoc &dl, SDValue &Chain,
4361                                              unsigned ArgOffset,
4362                                              unsigned TotalArgRegsSaveSize,
4363                                              bool ForceMutable) const {
4364   MachineFunction &MF = DAG.getMachineFunction();
4365   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4366 
4367   // Try to store any remaining integer argument regs
4368   // to their spots on the stack so that they may be loaded by dereferencing
4369   // the result of va_next.
4370   // If there is no regs to be stored, just point address after last
4371   // argument passed via stack.
4372   int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
4373                                   CCInfo.getInRegsParamsCount(),
4374                                   CCInfo.getNextStackOffset(),
4375                                   std::max(4U, TotalArgRegsSaveSize));
4376   AFI->setVarArgsFrameIndex(FrameIndex);
4377 }
4378 
4379 bool ARMTargetLowering::splitValueIntoRegisterParts(
4380     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
4381     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
4382   bool IsABIRegCopy = CC.hasValue();
4383   EVT ValueVT = Val.getValueType();
4384   if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) &&
4385       PartVT == MVT::f32) {
4386     unsigned ValueBits = ValueVT.getSizeInBits();
4387     unsigned PartBits = PartVT.getSizeInBits();
4388     Val = DAG.getNode(ISD::BITCAST, DL, MVT::getIntegerVT(ValueBits), Val);
4389     Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::getIntegerVT(PartBits), Val);
4390     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
4391     Parts[0] = Val;
4392     return true;
4393   }
4394   return false;
4395 }
4396 
4397 SDValue ARMTargetLowering::joinRegisterPartsIntoValue(
4398     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
4399     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
4400   bool IsABIRegCopy = CC.hasValue();
4401   if (IsABIRegCopy && (ValueVT == MVT::f16 || ValueVT == MVT::bf16) &&
4402       PartVT == MVT::f32) {
4403     unsigned ValueBits = ValueVT.getSizeInBits();
4404     unsigned PartBits = PartVT.getSizeInBits();
4405     SDValue Val = Parts[0];
4406 
4407     Val = DAG.getNode(ISD::BITCAST, DL, MVT::getIntegerVT(PartBits), Val);
4408     Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::getIntegerVT(ValueBits), Val);
4409     Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
4410     return Val;
4411   }
4412   return SDValue();
4413 }
4414 
4415 SDValue ARMTargetLowering::LowerFormalArguments(
4416     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4417     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4418     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4419   MachineFunction &MF = DAG.getMachineFunction();
4420   MachineFrameInfo &MFI = MF.getFrameInfo();
4421 
4422   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4423 
4424   // Assign locations to all of the incoming arguments.
4425   SmallVector<CCValAssign, 16> ArgLocs;
4426   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
4427                  *DAG.getContext());
4428   CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
4429 
4430   SmallVector<SDValue, 16> ArgValues;
4431   SDValue ArgValue;
4432   Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
4433   unsigned CurArgIdx = 0;
4434 
4435   // Initially ArgRegsSaveSize is zero.
4436   // Then we increase this value each time we meet byval parameter.
4437   // We also increase this value in case of varargs function.
4438   AFI->setArgRegsSaveSize(0);
4439 
4440   // Calculate the amount of stack space that we need to allocate to store
4441   // byval and variadic arguments that are passed in registers.
4442   // We need to know this before we allocate the first byval or variadic
4443   // argument, as they will be allocated a stack slot below the CFA (Canonical
4444   // Frame Address, the stack pointer at entry to the function).
4445   unsigned ArgRegBegin = ARM::R4;
4446   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4447     if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
4448       break;
4449 
4450     CCValAssign &VA = ArgLocs[i];
4451     unsigned Index = VA.getValNo();
4452     ISD::ArgFlagsTy Flags = Ins[Index].Flags;
4453     if (!Flags.isByVal())
4454       continue;
4455 
4456     assert(VA.isMemLoc() && "unexpected byval pointer in reg");
4457     unsigned RBegin, REnd;
4458     CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
4459     ArgRegBegin = std::min(ArgRegBegin, RBegin);
4460 
4461     CCInfo.nextInRegsParam();
4462   }
4463   CCInfo.rewindByValRegsInfo();
4464 
4465   int lastInsIndex = -1;
4466   if (isVarArg && MFI.hasVAStart()) {
4467     unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
4468     if (RegIdx != array_lengthof(GPRArgRegs))
4469       ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
4470   }
4471 
4472   unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
4473   AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
4474   auto PtrVT = getPointerTy(DAG.getDataLayout());
4475 
4476   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4477     CCValAssign &VA = ArgLocs[i];
4478     if (Ins[VA.getValNo()].isOrigArg()) {
4479       std::advance(CurOrigArg,
4480                    Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
4481       CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
4482     }
4483     // Arguments stored in registers.
4484     if (VA.isRegLoc()) {
4485       EVT RegVT = VA.getLocVT();
4486 
4487       if (VA.needsCustom() && VA.getLocVT() == MVT::v2f64) {
4488         // f64 and vector types are split up into multiple registers or
4489         // combinations of registers and stack slots.
4490         SDValue ArgValue1 =
4491             GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
4492         VA = ArgLocs[++i]; // skip ahead to next loc
4493         SDValue ArgValue2;
4494         if (VA.isMemLoc()) {
4495           int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), true);
4496           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4497           ArgValue2 = DAG.getLoad(
4498               MVT::f64, dl, Chain, FIN,
4499               MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
4500         } else {
4501           ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
4502         }
4503         ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
4504         ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, ArgValue,
4505                                ArgValue1, DAG.getIntPtrConstant(0, dl));
4506         ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, ArgValue,
4507                                ArgValue2, DAG.getIntPtrConstant(1, dl));
4508       } else if (VA.needsCustom() && VA.getLocVT() == MVT::f64) {
4509         ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
4510       } else {
4511         const TargetRegisterClass *RC;
4512 
4513         if (RegVT == MVT::f16 || RegVT == MVT::bf16)
4514           RC = &ARM::HPRRegClass;
4515         else if (RegVT == MVT::f32)
4516           RC = &ARM::SPRRegClass;
4517         else if (RegVT == MVT::f64 || RegVT == MVT::v4f16 ||
4518                  RegVT == MVT::v4bf16)
4519           RC = &ARM::DPRRegClass;
4520         else if (RegVT == MVT::v2f64 || RegVT == MVT::v8f16 ||
4521                  RegVT == MVT::v8bf16)
4522           RC = &ARM::QPRRegClass;
4523         else if (RegVT == MVT::i32)
4524           RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
4525                                            : &ARM::GPRRegClass;
4526         else
4527           llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
4528 
4529         // Transform the arguments in physical registers into virtual ones.
4530         Register Reg = MF.addLiveIn(VA.getLocReg(), RC);
4531         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
4532 
4533         // If this value is passed in r0 and has the returned attribute (e.g.
4534         // C++ 'structors), record this fact for later use.
4535         if (VA.getLocReg() == ARM::R0 && Ins[VA.getValNo()].Flags.isReturned()) {
4536           AFI->setPreservesR0();
4537         }
4538       }
4539 
4540       // If this is an 8 or 16-bit value, it is really passed promoted
4541       // to 32 bits.  Insert an assert[sz]ext to capture this, then
4542       // truncate to the right size.
4543       switch (VA.getLocInfo()) {
4544       default: llvm_unreachable("Unknown loc info!");
4545       case CCValAssign::Full: break;
4546       case CCValAssign::BCvt:
4547         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
4548         break;
4549       case CCValAssign::SExt:
4550         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
4551                                DAG.getValueType(VA.getValVT()));
4552         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
4553         break;
4554       case CCValAssign::ZExt:
4555         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
4556                                DAG.getValueType(VA.getValVT()));
4557         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
4558         break;
4559       }
4560 
4561       // f16 arguments have their size extended to 4 bytes and passed as if they
4562       // had been copied to the LSBs of a 32-bit register.
4563       // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
4564       if (VA.needsCustom() &&
4565           (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16))
4566         ArgValue = MoveToHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), ArgValue);
4567 
4568       InVals.push_back(ArgValue);
4569     } else { // VA.isRegLoc()
4570       // Only arguments passed on the stack should make it here.
4571       assert(VA.isMemLoc());
4572       assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
4573 
4574       int index = VA.getValNo();
4575 
4576       // Some Ins[] entries become multiple ArgLoc[] entries.
4577       // Process them only once.
4578       if (index != lastInsIndex)
4579         {
4580           ISD::ArgFlagsTy Flags = Ins[index].Flags;
4581           // FIXME: For now, all byval parameter objects are marked mutable.
4582           // This can be changed with more analysis.
4583           // In case of tail call optimization mark all arguments mutable.
4584           // Since they could be overwritten by lowering of arguments in case of
4585           // a tail call.
4586           if (Flags.isByVal()) {
4587             assert(Ins[index].isOrigArg() &&
4588                    "Byval arguments cannot be implicit");
4589             unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
4590 
4591             int FrameIndex = StoreByValRegs(
4592                 CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
4593                 VA.getLocMemOffset(), Flags.getByValSize());
4594             InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
4595             CCInfo.nextInRegsParam();
4596           } else {
4597             unsigned FIOffset = VA.getLocMemOffset();
4598             int FI = MFI.CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
4599                                            FIOffset, true);
4600 
4601             // Create load nodes to retrieve arguments from the stack.
4602             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4603             InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
4604                                          MachinePointerInfo::getFixedStack(
4605                                              DAG.getMachineFunction(), FI)));
4606           }
4607           lastInsIndex = index;
4608         }
4609     }
4610   }
4611 
4612   // varargs
4613   if (isVarArg && MFI.hasVAStart()) {
4614     VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getNextStackOffset(),
4615                          TotalArgRegsSaveSize);
4616     if (AFI->isCmseNSEntryFunction()) {
4617       DiagnosticInfoUnsupported Diag(
4618           DAG.getMachineFunction().getFunction(),
4619           "secure entry function must not be variadic", dl.getDebugLoc());
4620       DAG.getContext()->diagnose(Diag);
4621     }
4622   }
4623 
4624   unsigned StackArgSize = CCInfo.getNextStackOffset();
4625   bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
4626   if (canGuaranteeTCO(CallConv, TailCallOpt)) {
4627     // The only way to guarantee a tail call is if the callee restores its
4628     // argument area, but it must also keep the stack aligned when doing so.
4629     const DataLayout &DL = DAG.getDataLayout();
4630     StackArgSize = alignTo(StackArgSize, DL.getStackAlignment());
4631 
4632     AFI->setArgumentStackToRestore(StackArgSize);
4633   }
4634   AFI->setArgumentStackSize(StackArgSize);
4635 
4636   if (CCInfo.getNextStackOffset() > 0 && AFI->isCmseNSEntryFunction()) {
4637     DiagnosticInfoUnsupported Diag(
4638         DAG.getMachineFunction().getFunction(),
4639         "secure entry function requires arguments on stack", dl.getDebugLoc());
4640     DAG.getContext()->diagnose(Diag);
4641   }
4642 
4643   return Chain;
4644 }
4645 
4646 /// isFloatingPointZero - Return true if this is +0.0.
4647 static bool isFloatingPointZero(SDValue Op) {
4648   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
4649     return CFP->getValueAPF().isPosZero();
4650   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
4651     // Maybe this has already been legalized into the constant pool?
4652     if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
4653       SDValue WrapperOp = Op.getOperand(1).getOperand(0);
4654       if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
4655         if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
4656           return CFP->getValueAPF().isPosZero();
4657     }
4658   } else if (Op->getOpcode() == ISD::BITCAST &&
4659              Op->getValueType(0) == MVT::f64) {
4660     // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
4661     // created by LowerConstantFP().
4662     SDValue BitcastOp = Op->getOperand(0);
4663     if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
4664         isNullConstant(BitcastOp->getOperand(0)))
4665       return true;
4666   }
4667   return false;
4668 }
4669 
4670 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
4671 /// the given operands.
4672 SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
4673                                      SDValue &ARMcc, SelectionDAG &DAG,
4674                                      const SDLoc &dl) const {
4675   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
4676     unsigned C = RHSC->getZExtValue();
4677     if (!isLegalICmpImmediate((int32_t)C)) {
4678       // Constant does not fit, try adjusting it by one.
4679       switch (CC) {
4680       default: break;
4681       case ISD::SETLT:
4682       case ISD::SETGE:
4683         if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
4684           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
4685           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
4686         }
4687         break;
4688       case ISD::SETULT:
4689       case ISD::SETUGE:
4690         if (C != 0 && isLegalICmpImmediate(C-1)) {
4691           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
4692           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
4693         }
4694         break;
4695       case ISD::SETLE:
4696       case ISD::SETGT:
4697         if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
4698           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
4699           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
4700         }
4701         break;
4702       case ISD::SETULE:
4703       case ISD::SETUGT:
4704         if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
4705           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4706           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
4707         }
4708         break;
4709       }
4710     }
4711   } else if ((ARM_AM::getShiftOpcForNode(LHS.getOpcode()) != ARM_AM::no_shift) &&
4712              (ARM_AM::getShiftOpcForNode(RHS.getOpcode()) == ARM_AM::no_shift)) {
4713     // In ARM and Thumb-2, the compare instructions can shift their second
4714     // operand.
4715     CC = ISD::getSetCCSwappedOperands(CC);
4716     std::swap(LHS, RHS);
4717   }
4718 
4719   // Thumb1 has very limited immediate modes, so turning an "and" into a
4720   // shift can save multiple instructions.
4721   //
4722   // If we have (x & C1), and C1 is an appropriate mask, we can transform it
4723   // into "((x << n) >> n)".  But that isn't necessarily profitable on its
4724   // own. If it's the operand to an unsigned comparison with an immediate,
4725   // we can eliminate one of the shifts: we transform
4726   // "((x << n) >> n) == C2" to "(x << n) == (C2 << n)".
4727   //
4728   // We avoid transforming cases which aren't profitable due to encoding
4729   // details:
4730   //
4731   // 1. C2 fits into the immediate field of a cmp, and the transformed version
4732   // would not; in that case, we're essentially trading one immediate load for
4733   // another.
4734   // 2. C1 is 255 or 65535, so we can use uxtb or uxth.
4735   // 3. C2 is zero; we have other code for this special case.
4736   //
4737   // FIXME: Figure out profitability for Thumb2; we usually can't save an
4738   // instruction, since the AND is always one instruction anyway, but we could
4739   // use narrow instructions in some cases.
4740   if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::AND &&
4741       LHS->hasOneUse() && isa<ConstantSDNode>(LHS.getOperand(1)) &&
4742       LHS.getValueType() == MVT::i32 && isa<ConstantSDNode>(RHS) &&
4743       !isSignedIntSetCC(CC)) {
4744     unsigned Mask = cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue();
4745     auto *RHSC = cast<ConstantSDNode>(RHS.getNode());
4746     uint64_t RHSV = RHSC->getZExtValue();
4747     if (isMask_32(Mask) && (RHSV & ~Mask) == 0 && Mask != 255 && Mask != 65535) {
4748       unsigned ShiftBits = countLeadingZeros(Mask);
4749       if (RHSV && (RHSV > 255 || (RHSV << ShiftBits) <= 255)) {
4750         SDValue ShiftAmt = DAG.getConstant(ShiftBits, dl, MVT::i32);
4751         LHS = DAG.getNode(ISD::SHL, dl, MVT::i32, LHS.getOperand(0), ShiftAmt);
4752         RHS = DAG.getConstant(RHSV << ShiftBits, dl, MVT::i32);
4753       }
4754     }
4755   }
4756 
4757   // The specific comparison "(x<<c) > 0x80000000U" can be optimized to a
4758   // single "lsls x, c+1".  The shift sets the "C" and "Z" flags the same
4759   // way a cmp would.
4760   // FIXME: Add support for ARM/Thumb2; this would need isel patterns, and
4761   // some tweaks to the heuristics for the previous and->shift transform.
4762   // FIXME: Optimize cases where the LHS isn't a shift.
4763   if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::SHL &&
4764       isa<ConstantSDNode>(RHS) &&
4765       cast<ConstantSDNode>(RHS)->getZExtValue() == 0x80000000U &&
4766       CC == ISD::SETUGT && isa<ConstantSDNode>(LHS.getOperand(1)) &&
4767       cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() < 31) {
4768     unsigned ShiftAmt =
4769       cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() + 1;
4770     SDValue Shift = DAG.getNode(ARMISD::LSLS, dl,
4771                                 DAG.getVTList(MVT::i32, MVT::i32),
4772                                 LHS.getOperand(0),
4773                                 DAG.getConstant(ShiftAmt, dl, MVT::i32));
4774     SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
4775                                      Shift.getValue(1), SDValue());
4776     ARMcc = DAG.getConstant(ARMCC::HI, dl, MVT::i32);
4777     return Chain.getValue(1);
4778   }
4779 
4780   ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4781 
4782   // If the RHS is a constant zero then the V (overflow) flag will never be
4783   // set. This can allow us to simplify GE to PL or LT to MI, which can be
4784   // simpler for other passes (like the peephole optimiser) to deal with.
4785   if (isNullConstant(RHS)) {
4786     switch (CondCode) {
4787       default: break;
4788       case ARMCC::GE:
4789         CondCode = ARMCC::PL;
4790         break;
4791       case ARMCC::LT:
4792         CondCode = ARMCC::MI;
4793         break;
4794     }
4795   }
4796 
4797   ARMISD::NodeType CompareType;
4798   switch (CondCode) {
4799   default:
4800     CompareType = ARMISD::CMP;
4801     break;
4802   case ARMCC::EQ:
4803   case ARMCC::NE:
4804     // Uses only Z Flag
4805     CompareType = ARMISD::CMPZ;
4806     break;
4807   }
4808   ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4809   return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
4810 }
4811 
4812 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
4813 SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS,
4814                                      SelectionDAG &DAG, const SDLoc &dl,
4815                                      bool Signaling) const {
4816   assert(Subtarget->hasFP64() || RHS.getValueType() != MVT::f64);
4817   SDValue Cmp;
4818   if (!isFloatingPointZero(RHS))
4819     Cmp = DAG.getNode(Signaling ? ARMISD::CMPFPE : ARMISD::CMPFP,
4820                       dl, MVT::Glue, LHS, RHS);
4821   else
4822     Cmp = DAG.getNode(Signaling ? ARMISD::CMPFPEw0 : ARMISD::CMPFPw0,
4823                       dl, MVT::Glue, LHS);
4824   return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
4825 }
4826 
4827 /// duplicateCmp - Glue values can have only one use, so this function
4828 /// duplicates a comparison node.
4829 SDValue
4830 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
4831   unsigned Opc = Cmp.getOpcode();
4832   SDLoc DL(Cmp);
4833   if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
4834     return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
4835 
4836   assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
4837   Cmp = Cmp.getOperand(0);
4838   Opc = Cmp.getOpcode();
4839   if (Opc == ARMISD::CMPFP)
4840     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
4841   else {
4842     assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
4843     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
4844   }
4845   return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
4846 }
4847 
4848 // This function returns three things: the arithmetic computation itself
4849 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc).  The
4850 // comparison and the condition code define the case in which the arithmetic
4851 // computation *does not* overflow.
4852 std::pair<SDValue, SDValue>
4853 ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
4854                                  SDValue &ARMcc) const {
4855   assert(Op.getValueType() == MVT::i32 &&  "Unsupported value type");
4856 
4857   SDValue Value, OverflowCmp;
4858   SDValue LHS = Op.getOperand(0);
4859   SDValue RHS = Op.getOperand(1);
4860   SDLoc dl(Op);
4861 
4862   // FIXME: We are currently always generating CMPs because we don't support
4863   // generating CMN through the backend. This is not as good as the natural
4864   // CMP case because it causes a register dependency and cannot be folded
4865   // later.
4866 
4867   switch (Op.getOpcode()) {
4868   default:
4869     llvm_unreachable("Unknown overflow instruction!");
4870   case ISD::SADDO:
4871     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
4872     Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
4873     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
4874     break;
4875   case ISD::UADDO:
4876     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
4877     // We use ADDC here to correspond to its use in LowerUnsignedALUO.
4878     // We do not use it in the USUBO case as Value may not be used.
4879     Value = DAG.getNode(ARMISD::ADDC, dl,
4880                         DAG.getVTList(Op.getValueType(), MVT::i32), LHS, RHS)
4881                 .getValue(0);
4882     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
4883     break;
4884   case ISD::SSUBO:
4885     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
4886     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
4887     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
4888     break;
4889   case ISD::USUBO:
4890     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
4891     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
4892     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
4893     break;
4894   case ISD::UMULO:
4895     // We generate a UMUL_LOHI and then check if the high word is 0.
4896     ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4897     Value = DAG.getNode(ISD::UMUL_LOHI, dl,
4898                         DAG.getVTList(Op.getValueType(), Op.getValueType()),
4899                         LHS, RHS);
4900     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4901                               DAG.getConstant(0, dl, MVT::i32));
4902     Value = Value.getValue(0); // We only want the low 32 bits for the result.
4903     break;
4904   case ISD::SMULO:
4905     // We generate a SMUL_LOHI and then check if all the bits of the high word
4906     // are the same as the sign bit of the low word.
4907     ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4908     Value = DAG.getNode(ISD::SMUL_LOHI, dl,
4909                         DAG.getVTList(Op.getValueType(), Op.getValueType()),
4910                         LHS, RHS);
4911     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4912                               DAG.getNode(ISD::SRA, dl, Op.getValueType(),
4913                                           Value.getValue(0),
4914                                           DAG.getConstant(31, dl, MVT::i32)));
4915     Value = Value.getValue(0); // We only want the low 32 bits for the result.
4916     break;
4917   } // switch (...)
4918 
4919   return std::make_pair(Value, OverflowCmp);
4920 }
4921 
4922 SDValue
4923 ARMTargetLowering::LowerSignedALUO(SDValue Op, SelectionDAG &DAG) const {
4924   // Let legalize expand this if it isn't a legal type yet.
4925   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4926     return SDValue();
4927 
4928   SDValue Value, OverflowCmp;
4929   SDValue ARMcc;
4930   std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
4931   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4932   SDLoc dl(Op);
4933   // We use 0 and 1 as false and true values.
4934   SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
4935   SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
4936   EVT VT = Op.getValueType();
4937 
4938   SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
4939                                  ARMcc, CCR, OverflowCmp);
4940 
4941   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
4942   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
4943 }
4944 
4945 static SDValue ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,
4946                                               SelectionDAG &DAG) {
4947   SDLoc DL(BoolCarry);
4948   EVT CarryVT = BoolCarry.getValueType();
4949 
4950   // This converts the boolean value carry into the carry flag by doing
4951   // ARMISD::SUBC Carry, 1
4952   SDValue Carry = DAG.getNode(ARMISD::SUBC, DL,
4953                               DAG.getVTList(CarryVT, MVT::i32),
4954                               BoolCarry, DAG.getConstant(1, DL, CarryVT));
4955   return Carry.getValue(1);
4956 }
4957 
4958 static SDValue ConvertCarryFlagToBooleanCarry(SDValue Flags, EVT VT,
4959                                               SelectionDAG &DAG) {
4960   SDLoc DL(Flags);
4961 
4962   // Now convert the carry flag into a boolean carry. We do this
4963   // using ARMISD:ADDE 0, 0, Carry
4964   return DAG.getNode(ARMISD::ADDE, DL, DAG.getVTList(VT, MVT::i32),
4965                      DAG.getConstant(0, DL, MVT::i32),
4966                      DAG.getConstant(0, DL, MVT::i32), Flags);
4967 }
4968 
4969 SDValue ARMTargetLowering::LowerUnsignedALUO(SDValue Op,
4970                                              SelectionDAG &DAG) const {
4971   // Let legalize expand this if it isn't a legal type yet.
4972   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4973     return SDValue();
4974 
4975   SDValue LHS = Op.getOperand(0);
4976   SDValue RHS = Op.getOperand(1);
4977   SDLoc dl(Op);
4978 
4979   EVT VT = Op.getValueType();
4980   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4981   SDValue Value;
4982   SDValue Overflow;
4983   switch (Op.getOpcode()) {
4984   default:
4985     llvm_unreachable("Unknown overflow instruction!");
4986   case ISD::UADDO:
4987     Value = DAG.getNode(ARMISD::ADDC, dl, VTs, LHS, RHS);
4988     // Convert the carry flag into a boolean value.
4989     Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
4990     break;
4991   case ISD::USUBO: {
4992     Value = DAG.getNode(ARMISD::SUBC, dl, VTs, LHS, RHS);
4993     // Convert the carry flag into a boolean value.
4994     Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
4995     // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
4996     // value. So compute 1 - C.
4997     Overflow = DAG.getNode(ISD::SUB, dl, MVT::i32,
4998                            DAG.getConstant(1, dl, MVT::i32), Overflow);
4999     break;
5000   }
5001   }
5002 
5003   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
5004 }
5005 
5006 static SDValue LowerADDSUBSAT(SDValue Op, SelectionDAG &DAG,
5007                               const ARMSubtarget *Subtarget) {
5008   EVT VT = Op.getValueType();
5009   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
5010     return SDValue();
5011   if (!VT.isSimple())
5012     return SDValue();
5013 
5014   unsigned NewOpcode;
5015   switch (VT.getSimpleVT().SimpleTy) {
5016   default:
5017     return SDValue();
5018   case MVT::i8:
5019     switch (Op->getOpcode()) {
5020     case ISD::UADDSAT:
5021       NewOpcode = ARMISD::UQADD8b;
5022       break;
5023     case ISD::SADDSAT:
5024       NewOpcode = ARMISD::QADD8b;
5025       break;
5026     case ISD::USUBSAT:
5027       NewOpcode = ARMISD::UQSUB8b;
5028       break;
5029     case ISD::SSUBSAT:
5030       NewOpcode = ARMISD::QSUB8b;
5031       break;
5032     }
5033     break;
5034   case MVT::i16:
5035     switch (Op->getOpcode()) {
5036     case ISD::UADDSAT:
5037       NewOpcode = ARMISD::UQADD16b;
5038       break;
5039     case ISD::SADDSAT:
5040       NewOpcode = ARMISD::QADD16b;
5041       break;
5042     case ISD::USUBSAT:
5043       NewOpcode = ARMISD::UQSUB16b;
5044       break;
5045     case ISD::SSUBSAT:
5046       NewOpcode = ARMISD::QSUB16b;
5047       break;
5048     }
5049     break;
5050   }
5051 
5052   SDLoc dl(Op);
5053   SDValue Add =
5054       DAG.getNode(NewOpcode, dl, MVT::i32,
5055                   DAG.getSExtOrTrunc(Op->getOperand(0), dl, MVT::i32),
5056                   DAG.getSExtOrTrunc(Op->getOperand(1), dl, MVT::i32));
5057   return DAG.getNode(ISD::TRUNCATE, dl, VT, Add);
5058 }
5059 
5060 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
5061   SDValue Cond = Op.getOperand(0);
5062   SDValue SelectTrue = Op.getOperand(1);
5063   SDValue SelectFalse = Op.getOperand(2);
5064   SDLoc dl(Op);
5065   unsigned Opc = Cond.getOpcode();
5066 
5067   if (Cond.getResNo() == 1 &&
5068       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
5069        Opc == ISD::USUBO)) {
5070     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
5071       return SDValue();
5072 
5073     SDValue Value, OverflowCmp;
5074     SDValue ARMcc;
5075     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
5076     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5077     EVT VT = Op.getValueType();
5078 
5079     return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
5080                    OverflowCmp, DAG);
5081   }
5082 
5083   // Convert:
5084   //
5085   //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
5086   //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
5087   //
5088   if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
5089     const ConstantSDNode *CMOVTrue =
5090       dyn_cast<ConstantSDNode>(Cond.getOperand(0));
5091     const ConstantSDNode *CMOVFalse =
5092       dyn_cast<ConstantSDNode>(Cond.getOperand(1));
5093 
5094     if (CMOVTrue && CMOVFalse) {
5095       unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
5096       unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
5097 
5098       SDValue True;
5099       SDValue False;
5100       if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
5101         True = SelectTrue;
5102         False = SelectFalse;
5103       } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
5104         True = SelectFalse;
5105         False = SelectTrue;
5106       }
5107 
5108       if (True.getNode() && False.getNode()) {
5109         EVT VT = Op.getValueType();
5110         SDValue ARMcc = Cond.getOperand(2);
5111         SDValue CCR = Cond.getOperand(3);
5112         SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
5113         assert(True.getValueType() == VT);
5114         return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
5115       }
5116     }
5117   }
5118 
5119   // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
5120   // undefined bits before doing a full-word comparison with zero.
5121   Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
5122                      DAG.getConstant(1, dl, Cond.getValueType()));
5123 
5124   return DAG.getSelectCC(dl, Cond,
5125                          DAG.getConstant(0, dl, Cond.getValueType()),
5126                          SelectTrue, SelectFalse, ISD::SETNE);
5127 }
5128 
5129 static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
5130                                  bool &swpCmpOps, bool &swpVselOps) {
5131   // Start by selecting the GE condition code for opcodes that return true for
5132   // 'equality'
5133   if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
5134       CC == ISD::SETULE || CC == ISD::SETGE  || CC == ISD::SETLE)
5135     CondCode = ARMCC::GE;
5136 
5137   // and GT for opcodes that return false for 'equality'.
5138   else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
5139            CC == ISD::SETULT || CC == ISD::SETGT  || CC == ISD::SETLT)
5140     CondCode = ARMCC::GT;
5141 
5142   // Since we are constrained to GE/GT, if the opcode contains 'less', we need
5143   // to swap the compare operands.
5144   if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
5145       CC == ISD::SETULT || CC == ISD::SETLE  || CC == ISD::SETLT)
5146     swpCmpOps = true;
5147 
5148   // Both GT and GE are ordered comparisons, and return false for 'unordered'.
5149   // If we have an unordered opcode, we need to swap the operands to the VSEL
5150   // instruction (effectively negating the condition).
5151   //
5152   // This also has the effect of swapping which one of 'less' or 'greater'
5153   // returns true, so we also swap the compare operands. It also switches
5154   // whether we return true for 'equality', so we compensate by picking the
5155   // opposite condition code to our original choice.
5156   if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
5157       CC == ISD::SETUGT) {
5158     swpCmpOps = !swpCmpOps;
5159     swpVselOps = !swpVselOps;
5160     CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
5161   }
5162 
5163   // 'ordered' is 'anything but unordered', so use the VS condition code and
5164   // swap the VSEL operands.
5165   if (CC == ISD::SETO) {
5166     CondCode = ARMCC::VS;
5167     swpVselOps = true;
5168   }
5169 
5170   // 'unordered or not equal' is 'anything but equal', so use the EQ condition
5171   // code and swap the VSEL operands. Also do this if we don't care about the
5172   // unordered case.
5173   if (CC == ISD::SETUNE || CC == ISD::SETNE) {
5174     CondCode = ARMCC::EQ;
5175     swpVselOps = true;
5176   }
5177 }
5178 
5179 SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal,
5180                                    SDValue TrueVal, SDValue ARMcc, SDValue CCR,
5181                                    SDValue Cmp, SelectionDAG &DAG) const {
5182   if (!Subtarget->hasFP64() && VT == MVT::f64) {
5183     FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
5184                            DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
5185     TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
5186                           DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
5187 
5188     SDValue TrueLow = TrueVal.getValue(0);
5189     SDValue TrueHigh = TrueVal.getValue(1);
5190     SDValue FalseLow = FalseVal.getValue(0);
5191     SDValue FalseHigh = FalseVal.getValue(1);
5192 
5193     SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
5194                               ARMcc, CCR, Cmp);
5195     SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
5196                                ARMcc, CCR, duplicateCmp(Cmp, DAG));
5197 
5198     return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
5199   } else {
5200     return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
5201                        Cmp);
5202   }
5203 }
5204 
5205 static bool isGTorGE(ISD::CondCode CC) {
5206   return CC == ISD::SETGT || CC == ISD::SETGE;
5207 }
5208 
5209 static bool isLTorLE(ISD::CondCode CC) {
5210   return CC == ISD::SETLT || CC == ISD::SETLE;
5211 }
5212 
5213 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
5214 // All of these conditions (and their <= and >= counterparts) will do:
5215 //          x < k ? k : x
5216 //          x > k ? x : k
5217 //          k < x ? x : k
5218 //          k > x ? k : x
5219 static bool isLowerSaturate(const SDValue LHS, const SDValue RHS,
5220                             const SDValue TrueVal, const SDValue FalseVal,
5221                             const ISD::CondCode CC, const SDValue K) {
5222   return (isGTorGE(CC) &&
5223           ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) ||
5224          (isLTorLE(CC) &&
5225           ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal)));
5226 }
5227 
5228 // Check if two chained conditionals could be converted into SSAT or USAT.
5229 //
5230 // SSAT can replace a set of two conditional selectors that bound a number to an
5231 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
5232 //
5233 //     x < -k ? -k : (x > k ? k : x)
5234 //     x < -k ? -k : (x < k ? x : k)
5235 //     x > -k ? (x > k ? k : x) : -k
5236 //     x < k ? (x < -k ? -k : x) : k
5237 //     etc.
5238 //
5239 // LLVM canonicalizes these to either a min(max()) or a max(min())
5240 // pattern. This function tries to match one of these and will return a SSAT
5241 // node if successful.
5242 //
5243 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1
5244 // is a power of 2.
5245 static SDValue LowerSaturatingConditional(SDValue Op, SelectionDAG &DAG) {
5246   EVT VT = Op.getValueType();
5247   SDValue V1 = Op.getOperand(0);
5248   SDValue K1 = Op.getOperand(1);
5249   SDValue TrueVal1 = Op.getOperand(2);
5250   SDValue FalseVal1 = Op.getOperand(3);
5251   ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get();
5252 
5253   const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1;
5254   if (Op2.getOpcode() != ISD::SELECT_CC)
5255     return SDValue();
5256 
5257   SDValue V2 = Op2.getOperand(0);
5258   SDValue K2 = Op2.getOperand(1);
5259   SDValue TrueVal2 = Op2.getOperand(2);
5260   SDValue FalseVal2 = Op2.getOperand(3);
5261   ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get();
5262 
5263   SDValue V1Tmp = V1;
5264   SDValue V2Tmp = V2;
5265 
5266   // Check that the registers and the constants match a max(min()) or min(max())
5267   // pattern
5268   if (V1Tmp != TrueVal1 || V2Tmp != TrueVal2 || K1 != FalseVal1 ||
5269       K2 != FalseVal2 ||
5270       !((isGTorGE(CC1) && isLTorLE(CC2)) || (isLTorLE(CC1) && isGTorGE(CC2))))
5271     return SDValue();
5272 
5273   // Check that the constant in the lower-bound check is
5274   // the opposite of the constant in the upper-bound check
5275   // in 1's complement.
5276   if (!isa<ConstantSDNode>(K1) || !isa<ConstantSDNode>(K2))
5277     return SDValue();
5278 
5279   int64_t Val1 = cast<ConstantSDNode>(K1)->getSExtValue();
5280   int64_t Val2 = cast<ConstantSDNode>(K2)->getSExtValue();
5281   int64_t PosVal = std::max(Val1, Val2);
5282   int64_t NegVal = std::min(Val1, Val2);
5283 
5284   if (!((Val1 > Val2 && isLTorLE(CC1)) || (Val1 < Val2 && isLTorLE(CC2))) ||
5285       !isPowerOf2_64(PosVal + 1))
5286     return SDValue();
5287 
5288   // Handle the difference between USAT (unsigned) and SSAT (signed)
5289   // saturation
5290   // At this point, PosVal is guaranteed to be positive
5291   uint64_t K = PosVal;
5292   SDLoc dl(Op);
5293   if (Val1 == ~Val2)
5294     return DAG.getNode(ARMISD::SSAT, dl, VT, V2Tmp,
5295                        DAG.getConstant(countTrailingOnes(K), dl, VT));
5296   if (NegVal == 0)
5297     return DAG.getNode(ARMISD::USAT, dl, VT, V2Tmp,
5298                        DAG.getConstant(countTrailingOnes(K), dl, VT));
5299 
5300   return SDValue();
5301 }
5302 
5303 // Check if a condition of the type x < k ? k : x can be converted into a
5304 // bit operation instead of conditional moves.
5305 // Currently this is allowed given:
5306 // - The conditions and values match up
5307 // - k is 0 or -1 (all ones)
5308 // This function will not check the last condition, thats up to the caller
5309 // It returns true if the transformation can be made, and in such case
5310 // returns x in V, and k in SatK.
5311 static bool isLowerSaturatingConditional(const SDValue &Op, SDValue &V,
5312                                          SDValue &SatK)
5313 {
5314   SDValue LHS = Op.getOperand(0);
5315   SDValue RHS = Op.getOperand(1);
5316   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
5317   SDValue TrueVal = Op.getOperand(2);
5318   SDValue FalseVal = Op.getOperand(3);
5319 
5320   SDValue *K = isa<ConstantSDNode>(LHS) ? &LHS : isa<ConstantSDNode>(RHS)
5321                                                ? &RHS
5322                                                : nullptr;
5323 
5324   // No constant operation in comparison, early out
5325   if (!K)
5326     return false;
5327 
5328   SDValue KTmp = isa<ConstantSDNode>(TrueVal) ? TrueVal : FalseVal;
5329   V = (KTmp == TrueVal) ? FalseVal : TrueVal;
5330   SDValue VTmp = (K && *K == LHS) ? RHS : LHS;
5331 
5332   // If the constant on left and right side, or variable on left and right,
5333   // does not match, early out
5334   if (*K != KTmp || V != VTmp)
5335     return false;
5336 
5337   if (isLowerSaturate(LHS, RHS, TrueVal, FalseVal, CC, *K)) {
5338     SatK = *K;
5339     return true;
5340   }
5341 
5342   return false;
5343 }
5344 
5345 bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT) const {
5346   if (VT == MVT::f32)
5347     return !Subtarget->hasVFP2Base();
5348   if (VT == MVT::f64)
5349     return !Subtarget->hasFP64();
5350   if (VT == MVT::f16)
5351     return !Subtarget->hasFullFP16();
5352   return false;
5353 }
5354 
5355 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
5356   EVT VT = Op.getValueType();
5357   SDLoc dl(Op);
5358 
5359   // Try to convert two saturating conditional selects into a single SSAT
5360   if ((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->isThumb2())
5361     if (SDValue SatValue = LowerSaturatingConditional(Op, DAG))
5362       return SatValue;
5363 
5364   // Try to convert expressions of the form x < k ? k : x (and similar forms)
5365   // into more efficient bit operations, which is possible when k is 0 or -1
5366   // On ARM and Thumb-2 which have flexible operand 2 this will result in
5367   // single instructions. On Thumb the shift and the bit operation will be two
5368   // instructions.
5369   // Only allow this transformation on full-width (32-bit) operations
5370   SDValue LowerSatConstant;
5371   SDValue SatValue;
5372   if (VT == MVT::i32 &&
5373       isLowerSaturatingConditional(Op, SatValue, LowerSatConstant)) {
5374     SDValue ShiftV = DAG.getNode(ISD::SRA, dl, VT, SatValue,
5375                                  DAG.getConstant(31, dl, VT));
5376     if (isNullConstant(LowerSatConstant)) {
5377       SDValue NotShiftV = DAG.getNode(ISD::XOR, dl, VT, ShiftV,
5378                                       DAG.getAllOnesConstant(dl, VT));
5379       return DAG.getNode(ISD::AND, dl, VT, SatValue, NotShiftV);
5380     } else if (isAllOnesConstant(LowerSatConstant))
5381       return DAG.getNode(ISD::OR, dl, VT, SatValue, ShiftV);
5382   }
5383 
5384   SDValue LHS = Op.getOperand(0);
5385   SDValue RHS = Op.getOperand(1);
5386   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
5387   SDValue TrueVal = Op.getOperand(2);
5388   SDValue FalseVal = Op.getOperand(3);
5389   ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FalseVal);
5390   ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TrueVal);
5391 
5392   if (Subtarget->hasV8_1MMainlineOps() && CFVal && CTVal &&
5393       LHS.getValueType() == MVT::i32 && RHS.getValueType() == MVT::i32) {
5394     unsigned TVal = CTVal->getZExtValue();
5395     unsigned FVal = CFVal->getZExtValue();
5396     unsigned Opcode = 0;
5397 
5398     if (TVal == ~FVal) {
5399       Opcode = ARMISD::CSINV;
5400     } else if (TVal == ~FVal + 1) {
5401       Opcode = ARMISD::CSNEG;
5402     } else if (TVal + 1 == FVal) {
5403       Opcode = ARMISD::CSINC;
5404     } else if (TVal == FVal + 1) {
5405       Opcode = ARMISD::CSINC;
5406       std::swap(TrueVal, FalseVal);
5407       std::swap(TVal, FVal);
5408       CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5409     }
5410 
5411     if (Opcode) {
5412       // If one of the constants is cheaper than another, materialise the
5413       // cheaper one and let the csel generate the other.
5414       if (Opcode != ARMISD::CSINC &&
5415           HasLowerConstantMaterializationCost(FVal, TVal, Subtarget)) {
5416         std::swap(TrueVal, FalseVal);
5417         std::swap(TVal, FVal);
5418         CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5419       }
5420 
5421       // Attempt to use ZR checking TVal is 0, possibly inverting the condition
5422       // to get there. CSINC not is invertable like the other two (~(~a) == a,
5423       // -(-a) == a, but (a+1)+1 != a).
5424       if (FVal == 0 && Opcode != ARMISD::CSINC) {
5425         std::swap(TrueVal, FalseVal);
5426         std::swap(TVal, FVal);
5427         CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5428       }
5429 
5430       // Drops F's value because we can get it by inverting/negating TVal.
5431       FalseVal = TrueVal;
5432 
5433       SDValue ARMcc;
5434       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5435       EVT VT = TrueVal.getValueType();
5436       return DAG.getNode(Opcode, dl, VT, TrueVal, FalseVal, ARMcc, Cmp);
5437     }
5438   }
5439 
5440   if (isUnsupportedFloatingType(LHS.getValueType())) {
5441     DAG.getTargetLoweringInfo().softenSetCCOperands(
5442         DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS);
5443 
5444     // If softenSetCCOperands only returned one value, we should compare it to
5445     // zero.
5446     if (!RHS.getNode()) {
5447       RHS = DAG.getConstant(0, dl, LHS.getValueType());
5448       CC = ISD::SETNE;
5449     }
5450   }
5451 
5452   if (LHS.getValueType() == MVT::i32) {
5453     // Try to generate VSEL on ARMv8.
5454     // The VSEL instruction can't use all the usual ARM condition
5455     // codes: it only has two bits to select the condition code, so it's
5456     // constrained to use only GE, GT, VS and EQ.
5457     //
5458     // To implement all the various ISD::SETXXX opcodes, we sometimes need to
5459     // swap the operands of the previous compare instruction (effectively
5460     // inverting the compare condition, swapping 'less' and 'greater') and
5461     // sometimes need to swap the operands to the VSEL (which inverts the
5462     // condition in the sense of firing whenever the previous condition didn't)
5463     if (Subtarget->hasFPARMv8Base() && (TrueVal.getValueType() == MVT::f16 ||
5464                                         TrueVal.getValueType() == MVT::f32 ||
5465                                         TrueVal.getValueType() == MVT::f64)) {
5466       ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
5467       if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
5468           CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
5469         CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5470         std::swap(TrueVal, FalseVal);
5471       }
5472     }
5473 
5474     SDValue ARMcc;
5475     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5476     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5477     // Choose GE over PL, which vsel does now support
5478     if (cast<ConstantSDNode>(ARMcc)->getZExtValue() == ARMCC::PL)
5479       ARMcc = DAG.getConstant(ARMCC::GE, dl, MVT::i32);
5480     return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
5481   }
5482 
5483   ARMCC::CondCodes CondCode, CondCode2;
5484   FPCCToARMCC(CC, CondCode, CondCode2);
5485 
5486   // Normalize the fp compare. If RHS is zero we prefer to keep it there so we
5487   // match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we
5488   // must use VSEL (limited condition codes), due to not having conditional f16
5489   // moves.
5490   if (Subtarget->hasFPARMv8Base() &&
5491       !(isFloatingPointZero(RHS) && TrueVal.getValueType() != MVT::f16) &&
5492       (TrueVal.getValueType() == MVT::f16 ||
5493        TrueVal.getValueType() == MVT::f32 ||
5494        TrueVal.getValueType() == MVT::f64)) {
5495     bool swpCmpOps = false;
5496     bool swpVselOps = false;
5497     checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
5498 
5499     if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
5500         CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
5501       if (swpCmpOps)
5502         std::swap(LHS, RHS);
5503       if (swpVselOps)
5504         std::swap(TrueVal, FalseVal);
5505     }
5506   }
5507 
5508   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5509   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
5510   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5511   SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
5512   if (CondCode2 != ARMCC::AL) {
5513     SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
5514     // FIXME: Needs another CMP because flag can have but one use.
5515     SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
5516     Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
5517   }
5518   return Result;
5519 }
5520 
5521 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
5522 /// to morph to an integer compare sequence.
5523 static bool canChangeToInt(SDValue Op, bool &SeenZero,
5524                            const ARMSubtarget *Subtarget) {
5525   SDNode *N = Op.getNode();
5526   if (!N->hasOneUse())
5527     // Otherwise it requires moving the value from fp to integer registers.
5528     return false;
5529   if (!N->getNumValues())
5530     return false;
5531   EVT VT = Op.getValueType();
5532   if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
5533     // f32 case is generally profitable. f64 case only makes sense when vcmpe +
5534     // vmrs are very slow, e.g. cortex-a8.
5535     return false;
5536 
5537   if (isFloatingPointZero(Op)) {
5538     SeenZero = true;
5539     return true;
5540   }
5541   return ISD::isNormalLoad(N);
5542 }
5543 
5544 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
5545   if (isFloatingPointZero(Op))
5546     return DAG.getConstant(0, SDLoc(Op), MVT::i32);
5547 
5548   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
5549     return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(),
5550                        Ld->getPointerInfo(), Ld->getAlignment(),
5551                        Ld->getMemOperand()->getFlags());
5552 
5553   llvm_unreachable("Unknown VFP cmp argument!");
5554 }
5555 
5556 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
5557                            SDValue &RetVal1, SDValue &RetVal2) {
5558   SDLoc dl(Op);
5559 
5560   if (isFloatingPointZero(Op)) {
5561     RetVal1 = DAG.getConstant(0, dl, MVT::i32);
5562     RetVal2 = DAG.getConstant(0, dl, MVT::i32);
5563     return;
5564   }
5565 
5566   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
5567     SDValue Ptr = Ld->getBasePtr();
5568     RetVal1 =
5569         DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
5570                     Ld->getAlignment(), Ld->getMemOperand()->getFlags());
5571 
5572     EVT PtrType = Ptr.getValueType();
5573     unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
5574     SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
5575                                  PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
5576     RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr,
5577                           Ld->getPointerInfo().getWithOffset(4), NewAlign,
5578                           Ld->getMemOperand()->getFlags());
5579     return;
5580   }
5581 
5582   llvm_unreachable("Unknown VFP cmp argument!");
5583 }
5584 
5585 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
5586 /// f32 and even f64 comparisons to integer ones.
5587 SDValue
5588 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
5589   SDValue Chain = Op.getOperand(0);
5590   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
5591   SDValue LHS = Op.getOperand(2);
5592   SDValue RHS = Op.getOperand(3);
5593   SDValue Dest = Op.getOperand(4);
5594   SDLoc dl(Op);
5595 
5596   bool LHSSeenZero = false;
5597   bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
5598   bool RHSSeenZero = false;
5599   bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
5600   if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
5601     // If unsafe fp math optimization is enabled and there are no other uses of
5602     // the CMP operands, and the condition code is EQ or NE, we can optimize it
5603     // to an integer comparison.
5604     if (CC == ISD::SETOEQ)
5605       CC = ISD::SETEQ;
5606     else if (CC == ISD::SETUNE)
5607       CC = ISD::SETNE;
5608 
5609     SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
5610     SDValue ARMcc;
5611     if (LHS.getValueType() == MVT::f32) {
5612       LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
5613                         bitcastf32Toi32(LHS, DAG), Mask);
5614       RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
5615                         bitcastf32Toi32(RHS, DAG), Mask);
5616       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5617       SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5618       return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
5619                          Chain, Dest, ARMcc, CCR, Cmp);
5620     }
5621 
5622     SDValue LHS1, LHS2;
5623     SDValue RHS1, RHS2;
5624     expandf64Toi32(LHS, DAG, LHS1, LHS2);
5625     expandf64Toi32(RHS, DAG, RHS1, RHS2);
5626     LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
5627     RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
5628     ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
5629     ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5630     SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
5631     SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
5632     return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
5633   }
5634 
5635   return SDValue();
5636 }
5637 
5638 SDValue ARMTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
5639   SDValue Chain = Op.getOperand(0);
5640   SDValue Cond = Op.getOperand(1);
5641   SDValue Dest = Op.getOperand(2);
5642   SDLoc dl(Op);
5643 
5644   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5645   // instruction.
5646   unsigned Opc = Cond.getOpcode();
5647   bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
5648                       !Subtarget->isThumb1Only();
5649   if (Cond.getResNo() == 1 &&
5650       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
5651        Opc == ISD::USUBO || OptimizeMul)) {
5652     // Only lower legal XALUO ops.
5653     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
5654       return SDValue();
5655 
5656     // The actual operation with overflow check.
5657     SDValue Value, OverflowCmp;
5658     SDValue ARMcc;
5659     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
5660 
5661     // Reverse the condition code.
5662     ARMCC::CondCodes CondCode =
5663         (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
5664     CondCode = ARMCC::getOppositeCondition(CondCode);
5665     ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
5666     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5667 
5668     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
5669                        OverflowCmp);
5670   }
5671 
5672   return SDValue();
5673 }
5674 
5675 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
5676   SDValue Chain = Op.getOperand(0);
5677   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
5678   SDValue LHS = Op.getOperand(2);
5679   SDValue RHS = Op.getOperand(3);
5680   SDValue Dest = Op.getOperand(4);
5681   SDLoc dl(Op);
5682 
5683   if (isUnsupportedFloatingType(LHS.getValueType())) {
5684     DAG.getTargetLoweringInfo().softenSetCCOperands(
5685         DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS);
5686 
5687     // If softenSetCCOperands only returned one value, we should compare it to
5688     // zero.
5689     if (!RHS.getNode()) {
5690       RHS = DAG.getConstant(0, dl, LHS.getValueType());
5691       CC = ISD::SETNE;
5692     }
5693   }
5694 
5695   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5696   // instruction.
5697   unsigned Opc = LHS.getOpcode();
5698   bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
5699                       !Subtarget->isThumb1Only();
5700   if (LHS.getResNo() == 1 && (isOneConstant(RHS) || isNullConstant(RHS)) &&
5701       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
5702        Opc == ISD::USUBO || OptimizeMul) &&
5703       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5704     // Only lower legal XALUO ops.
5705     if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
5706       return SDValue();
5707 
5708     // The actual operation with overflow check.
5709     SDValue Value, OverflowCmp;
5710     SDValue ARMcc;
5711     std::tie(Value, OverflowCmp) = getARMXALUOOp(LHS.getValue(0), DAG, ARMcc);
5712 
5713     if ((CC == ISD::SETNE) != isOneConstant(RHS)) {
5714       // Reverse the condition code.
5715       ARMCC::CondCodes CondCode =
5716           (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
5717       CondCode = ARMCC::getOppositeCondition(CondCode);
5718       ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
5719     }
5720     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5721 
5722     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
5723                        OverflowCmp);
5724   }
5725 
5726   if (LHS.getValueType() == MVT::i32) {
5727     SDValue ARMcc;
5728     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5729     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5730     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
5731                        Chain, Dest, ARMcc, CCR, Cmp);
5732   }
5733 
5734   if (getTargetMachine().Options.UnsafeFPMath &&
5735       (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
5736        CC == ISD::SETNE || CC == ISD::SETUNE)) {
5737     if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
5738       return Result;
5739   }
5740 
5741   ARMCC::CondCodes CondCode, CondCode2;
5742   FPCCToARMCC(CC, CondCode, CondCode2);
5743 
5744   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5745   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
5746   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5747   SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
5748   SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
5749   SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
5750   if (CondCode2 != ARMCC::AL) {
5751     ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
5752     SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
5753     Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
5754   }
5755   return Res;
5756 }
5757 
5758 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
5759   SDValue Chain = Op.getOperand(0);
5760   SDValue Table = Op.getOperand(1);
5761   SDValue Index = Op.getOperand(2);
5762   SDLoc dl(Op);
5763 
5764   EVT PTy = getPointerTy(DAG.getDataLayout());
5765   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
5766   SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
5767   Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
5768   Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
5769   SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Index);
5770   if (Subtarget->isThumb2() || (Subtarget->hasV8MBaselineOps() && Subtarget->isThumb())) {
5771     // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
5772     // which does another jump to the destination. This also makes it easier
5773     // to translate it to TBB / TBH later (Thumb2 only).
5774     // FIXME: This might not work if the function is extremely large.
5775     return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
5776                        Addr, Op.getOperand(2), JTI);
5777   }
5778   if (isPositionIndependent() || Subtarget->isROPI()) {
5779     Addr =
5780         DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
5781                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
5782     Chain = Addr.getValue(1);
5783     Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Addr);
5784     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
5785   } else {
5786     Addr =
5787         DAG.getLoad(PTy, dl, Chain, Addr,
5788                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
5789     Chain = Addr.getValue(1);
5790     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
5791   }
5792 }
5793 
5794 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
5795   EVT VT = Op.getValueType();
5796   SDLoc dl(Op);
5797 
5798   if (Op.getValueType().getVectorElementType() == MVT::i32) {
5799     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
5800       return Op;
5801     return DAG.UnrollVectorOp(Op.getNode());
5802   }
5803 
5804   const bool HasFullFP16 =
5805     static_cast<const ARMSubtarget&>(DAG.getSubtarget()).hasFullFP16();
5806 
5807   EVT NewTy;
5808   const EVT OpTy = Op.getOperand(0).getValueType();
5809   if (OpTy == MVT::v4f32)
5810     NewTy = MVT::v4i32;
5811   else if (OpTy == MVT::v4f16 && HasFullFP16)
5812     NewTy = MVT::v4i16;
5813   else if (OpTy == MVT::v8f16 && HasFullFP16)
5814     NewTy = MVT::v8i16;
5815   else
5816     llvm_unreachable("Invalid type for custom lowering!");
5817 
5818   if (VT != MVT::v4i16 && VT != MVT::v8i16)
5819     return DAG.UnrollVectorOp(Op.getNode());
5820 
5821   Op = DAG.getNode(Op.getOpcode(), dl, NewTy, Op.getOperand(0));
5822   return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
5823 }
5824 
5825 SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
5826   EVT VT = Op.getValueType();
5827   if (VT.isVector())
5828     return LowerVectorFP_TO_INT(Op, DAG);
5829 
5830   bool IsStrict = Op->isStrictFPOpcode();
5831   SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
5832 
5833   if (isUnsupportedFloatingType(SrcVal.getValueType())) {
5834     RTLIB::Libcall LC;
5835     if (Op.getOpcode() == ISD::FP_TO_SINT ||
5836         Op.getOpcode() == ISD::STRICT_FP_TO_SINT)
5837       LC = RTLIB::getFPTOSINT(SrcVal.getValueType(),
5838                               Op.getValueType());
5839     else
5840       LC = RTLIB::getFPTOUINT(SrcVal.getValueType(),
5841                               Op.getValueType());
5842     SDLoc Loc(Op);
5843     MakeLibCallOptions CallOptions;
5844     SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
5845     SDValue Result;
5846     std::tie(Result, Chain) = makeLibCall(DAG, LC, Op.getValueType(), SrcVal,
5847                                           CallOptions, Loc, Chain);
5848     return IsStrict ? DAG.getMergeValues({Result, Chain}, Loc) : Result;
5849   }
5850 
5851   // FIXME: Remove this when we have strict fp instruction selection patterns
5852   if (IsStrict) {
5853     SDLoc Loc(Op);
5854     SDValue Result =
5855         DAG.getNode(Op.getOpcode() == ISD::STRICT_FP_TO_SINT ? ISD::FP_TO_SINT
5856                                                              : ISD::FP_TO_UINT,
5857                     Loc, Op.getValueType(), SrcVal);
5858     return DAG.getMergeValues({Result, Op.getOperand(0)}, Loc);
5859   }
5860 
5861   return Op;
5862 }
5863 
5864 static SDValue LowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
5865                                   const ARMSubtarget *Subtarget) {
5866   EVT VT = Op.getValueType();
5867   EVT ToVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
5868   EVT FromVT = Op.getOperand(0).getValueType();
5869 
5870   if (VT == MVT::i32 && ToVT == MVT::i32 && FromVT == MVT::f32)
5871     return Op;
5872   if (VT == MVT::i32 && ToVT == MVT::i32 && FromVT == MVT::f64 &&
5873       Subtarget->hasFP64())
5874     return Op;
5875   if (VT == MVT::i32 && ToVT == MVT::i32 && FromVT == MVT::f16 &&
5876       Subtarget->hasFullFP16())
5877     return Op;
5878   if (VT == MVT::v4i32 && ToVT == MVT::i32 && FromVT == MVT::v4f32 &&
5879       Subtarget->hasMVEFloatOps())
5880     return Op;
5881   if (VT == MVT::v8i16 && ToVT == MVT::i16 && FromVT == MVT::v8f16 &&
5882       Subtarget->hasMVEFloatOps())
5883     return Op;
5884 
5885   if (FromVT != MVT::v4f32 && FromVT != MVT::v8f16)
5886     return SDValue();
5887 
5888   SDLoc DL(Op);
5889   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
5890   unsigned BW = ToVT.getScalarSizeInBits() - IsSigned;
5891   SDValue CVT = DAG.getNode(Op.getOpcode(), DL, VT, Op.getOperand(0),
5892                             DAG.getValueType(VT.getScalarType()));
5893   SDValue Max = DAG.getNode(IsSigned ? ISD::SMIN : ISD::UMIN, DL, VT, CVT,
5894                             DAG.getConstant((1 << BW) - 1, DL, VT));
5895   if (IsSigned)
5896     Max = DAG.getNode(ISD::SMAX, DL, VT, Max,
5897                       DAG.getConstant(-(1 << BW), DL, VT));
5898   return Max;
5899 }
5900 
5901 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5902   EVT VT = Op.getValueType();
5903   SDLoc dl(Op);
5904 
5905   if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
5906     if (VT.getVectorElementType() == MVT::f32)
5907       return Op;
5908     return DAG.UnrollVectorOp(Op.getNode());
5909   }
5910 
5911   assert((Op.getOperand(0).getValueType() == MVT::v4i16 ||
5912           Op.getOperand(0).getValueType() == MVT::v8i16) &&
5913          "Invalid type for custom lowering!");
5914 
5915   const bool HasFullFP16 =
5916     static_cast<const ARMSubtarget&>(DAG.getSubtarget()).hasFullFP16();
5917 
5918   EVT DestVecType;
5919   if (VT == MVT::v4f32)
5920     DestVecType = MVT::v4i32;
5921   else if (VT == MVT::v4f16 && HasFullFP16)
5922     DestVecType = MVT::v4i16;
5923   else if (VT == MVT::v8f16 && HasFullFP16)
5924     DestVecType = MVT::v8i16;
5925   else
5926     return DAG.UnrollVectorOp(Op.getNode());
5927 
5928   unsigned CastOpc;
5929   unsigned Opc;
5930   switch (Op.getOpcode()) {
5931   default: llvm_unreachable("Invalid opcode!");
5932   case ISD::SINT_TO_FP:
5933     CastOpc = ISD::SIGN_EXTEND;
5934     Opc = ISD::SINT_TO_FP;
5935     break;
5936   case ISD::UINT_TO_FP:
5937     CastOpc = ISD::ZERO_EXTEND;
5938     Opc = ISD::UINT_TO_FP;
5939     break;
5940   }
5941 
5942   Op = DAG.getNode(CastOpc, dl, DestVecType, Op.getOperand(0));
5943   return DAG.getNode(Opc, dl, VT, Op);
5944 }
5945 
5946 SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
5947   EVT VT = Op.getValueType();
5948   if (VT.isVector())
5949     return LowerVectorINT_TO_FP(Op, DAG);
5950   if (isUnsupportedFloatingType(VT)) {
5951     RTLIB::Libcall LC;
5952     if (Op.getOpcode() == ISD::SINT_TO_FP)
5953       LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
5954                               Op.getValueType());
5955     else
5956       LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
5957                               Op.getValueType());
5958     MakeLibCallOptions CallOptions;
5959     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
5960                        CallOptions, SDLoc(Op)).first;
5961   }
5962 
5963   return Op;
5964 }
5965 
5966 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
5967   // Implement fcopysign with a fabs and a conditional fneg.
5968   SDValue Tmp0 = Op.getOperand(0);
5969   SDValue Tmp1 = Op.getOperand(1);
5970   SDLoc dl(Op);
5971   EVT VT = Op.getValueType();
5972   EVT SrcVT = Tmp1.getValueType();
5973   bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
5974     Tmp0.getOpcode() == ARMISD::VMOVDRR;
5975   bool UseNEON = !InGPR && Subtarget->hasNEON();
5976 
5977   if (UseNEON) {
5978     // Use VBSL to copy the sign bit.
5979     unsigned EncodedVal = ARM_AM::createVMOVModImm(0x6, 0x80);
5980     SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
5981                                DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
5982     EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
5983     if (VT == MVT::f64)
5984       Mask = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT,
5985                          DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
5986                          DAG.getConstant(32, dl, MVT::i32));
5987     else /*if (VT == MVT::f32)*/
5988       Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
5989     if (SrcVT == MVT::f32) {
5990       Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
5991       if (VT == MVT::f64)
5992         Tmp1 = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT,
5993                            DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
5994                            DAG.getConstant(32, dl, MVT::i32));
5995     } else if (VT == MVT::f32)
5996       Tmp1 = DAG.getNode(ARMISD::VSHRuIMM, dl, MVT::v1i64,
5997                          DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
5998                          DAG.getConstant(32, dl, MVT::i32));
5999     Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
6000     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
6001 
6002     SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff),
6003                                             dl, MVT::i32);
6004     AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
6005     SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
6006                                   DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
6007 
6008     SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
6009                               DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
6010                               DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
6011     if (VT == MVT::f32) {
6012       Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
6013       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
6014                         DAG.getConstant(0, dl, MVT::i32));
6015     } else {
6016       Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
6017     }
6018 
6019     return Res;
6020   }
6021 
6022   // Bitcast operand 1 to i32.
6023   if (SrcVT == MVT::f64)
6024     Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
6025                        Tmp1).getValue(1);
6026   Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
6027 
6028   // Or in the signbit with integer operations.
6029   SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
6030   SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
6031   Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
6032   if (VT == MVT::f32) {
6033     Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
6034                        DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
6035     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
6036                        DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
6037   }
6038 
6039   // f64: Or the high part with signbit and then combine two parts.
6040   Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
6041                      Tmp0);
6042   SDValue Lo = Tmp0.getValue(0);
6043   SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
6044   Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
6045   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
6046 }
6047 
6048 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
6049   MachineFunction &MF = DAG.getMachineFunction();
6050   MachineFrameInfo &MFI = MF.getFrameInfo();
6051   MFI.setReturnAddressIsTaken(true);
6052 
6053   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
6054     return SDValue();
6055 
6056   EVT VT = Op.getValueType();
6057   SDLoc dl(Op);
6058   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6059   if (Depth) {
6060     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
6061     SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
6062     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
6063                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
6064                        MachinePointerInfo());
6065   }
6066 
6067   // Return LR, which contains the return address. Mark it an implicit live-in.
6068   Register Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
6069   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
6070 }
6071 
6072 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
6073   const ARMBaseRegisterInfo &ARI =
6074     *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
6075   MachineFunction &MF = DAG.getMachineFunction();
6076   MachineFrameInfo &MFI = MF.getFrameInfo();
6077   MFI.setFrameAddressIsTaken(true);
6078 
6079   EVT VT = Op.getValueType();
6080   SDLoc dl(Op);  // FIXME probably not meaningful
6081   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6082   Register FrameReg = ARI.getFrameRegister(MF);
6083   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
6084   while (Depth--)
6085     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
6086                             MachinePointerInfo());
6087   return FrameAddr;
6088 }
6089 
6090 // FIXME? Maybe this could be a TableGen attribute on some registers and
6091 // this table could be generated automatically from RegInfo.
6092 Register ARMTargetLowering::getRegisterByName(const char* RegName, LLT VT,
6093                                               const MachineFunction &MF) const {
6094   Register Reg = StringSwitch<unsigned>(RegName)
6095                        .Case("sp", ARM::SP)
6096                        .Default(0);
6097   if (Reg)
6098     return Reg;
6099   report_fatal_error(Twine("Invalid register name \""
6100                               + StringRef(RegName)  + "\"."));
6101 }
6102 
6103 // Result is 64 bit value so split into two 32 bit values and return as a
6104 // pair of values.
6105 static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
6106                                 SelectionDAG &DAG) {
6107   SDLoc DL(N);
6108 
6109   // This function is only supposed to be called for i64 type destination.
6110   assert(N->getValueType(0) == MVT::i64
6111           && "ExpandREAD_REGISTER called for non-i64 type result.");
6112 
6113   SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
6114                              DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
6115                              N->getOperand(0),
6116                              N->getOperand(1));
6117 
6118   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
6119                     Read.getValue(1)));
6120   Results.push_back(Read.getOperand(0));
6121 }
6122 
6123 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
6124 /// When \p DstVT, the destination type of \p BC, is on the vector
6125 /// register bank and the source of bitcast, \p Op, operates on the same bank,
6126 /// it might be possible to combine them, such that everything stays on the
6127 /// vector register bank.
6128 /// \p return The node that would replace \p BT, if the combine
6129 /// is possible.
6130 static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
6131                                                 SelectionDAG &DAG) {
6132   SDValue Op = BC->getOperand(0);
6133   EVT DstVT = BC->getValueType(0);
6134 
6135   // The only vector instruction that can produce a scalar (remember,
6136   // since the bitcast was about to be turned into VMOVDRR, the source
6137   // type is i64) from a vector is EXTRACT_VECTOR_ELT.
6138   // Moreover, we can do this combine only if there is one use.
6139   // Finally, if the destination type is not a vector, there is not
6140   // much point on forcing everything on the vector bank.
6141   if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
6142       !Op.hasOneUse())
6143     return SDValue();
6144 
6145   // If the index is not constant, we will introduce an additional
6146   // multiply that will stick.
6147   // Give up in that case.
6148   ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
6149   if (!Index)
6150     return SDValue();
6151   unsigned DstNumElt = DstVT.getVectorNumElements();
6152 
6153   // Compute the new index.
6154   const APInt &APIntIndex = Index->getAPIntValue();
6155   APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
6156   NewIndex *= APIntIndex;
6157   // Check if the new constant index fits into i32.
6158   if (NewIndex.getBitWidth() > 32)
6159     return SDValue();
6160 
6161   // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
6162   // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
6163   SDLoc dl(Op);
6164   SDValue ExtractSrc = Op.getOperand(0);
6165   EVT VecVT = EVT::getVectorVT(
6166       *DAG.getContext(), DstVT.getScalarType(),
6167       ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
6168   SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
6169   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
6170                      DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
6171 }
6172 
6173 /// ExpandBITCAST - If the target supports VFP, this function is called to
6174 /// expand a bit convert where either the source or destination type is i64 to
6175 /// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
6176 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
6177 /// vectors), since the legalizer won't know what to do with that.
6178 SDValue ARMTargetLowering::ExpandBITCAST(SDNode *N, SelectionDAG &DAG,
6179                                          const ARMSubtarget *Subtarget) const {
6180   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6181   SDLoc dl(N);
6182   SDValue Op = N->getOperand(0);
6183 
6184   // This function is only supposed to be called for i16 and i64 types, either
6185   // as the source or destination of the bit convert.
6186   EVT SrcVT = Op.getValueType();
6187   EVT DstVT = N->getValueType(0);
6188 
6189   if ((SrcVT == MVT::i16 || SrcVT == MVT::i32) &&
6190       (DstVT == MVT::f16 || DstVT == MVT::bf16))
6191     return MoveToHPR(SDLoc(N), DAG, MVT::i32, DstVT.getSimpleVT(),
6192                      DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), MVT::i32, Op));
6193 
6194   if ((DstVT == MVT::i16 || DstVT == MVT::i32) &&
6195       (SrcVT == MVT::f16 || SrcVT == MVT::bf16))
6196     return DAG.getNode(
6197         ISD::TRUNCATE, SDLoc(N), DstVT,
6198         MoveFromHPR(SDLoc(N), DAG, MVT::i32, SrcVT.getSimpleVT(), Op));
6199 
6200   if (!(SrcVT == MVT::i64 || DstVT == MVT::i64))
6201     return SDValue();
6202 
6203   // Turn i64->f64 into VMOVDRR.
6204   if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
6205     // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
6206     // if we can combine the bitcast with its source.
6207     if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
6208       return Val;
6209 
6210     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
6211                              DAG.getConstant(0, dl, MVT::i32));
6212     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
6213                              DAG.getConstant(1, dl, MVT::i32));
6214     return DAG.getNode(ISD::BITCAST, dl, DstVT,
6215                        DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
6216   }
6217 
6218   // Turn f64->i64 into VMOVRRD.
6219   if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
6220     SDValue Cvt;
6221     if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
6222         SrcVT.getVectorNumElements() > 1)
6223       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
6224                         DAG.getVTList(MVT::i32, MVT::i32),
6225                         DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
6226     else
6227       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
6228                         DAG.getVTList(MVT::i32, MVT::i32), Op);
6229     // Merge the pieces into a single i64 value.
6230     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
6231   }
6232 
6233   return SDValue();
6234 }
6235 
6236 /// getZeroVector - Returns a vector of specified type with all zero elements.
6237 /// Zero vectors are used to represent vector negation and in those cases
6238 /// will be implemented with the NEON VNEG instruction.  However, VNEG does
6239 /// not support i64 elements, so sometimes the zero vectors will need to be
6240 /// explicitly constructed.  Regardless, use a canonical VMOV to create the
6241 /// zero vector.
6242 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
6243   assert(VT.isVector() && "Expected a vector type");
6244   // The canonical modified immediate encoding of a zero vector is....0!
6245   SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
6246   EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
6247   SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
6248   return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
6249 }
6250 
6251 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
6252 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
6253 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
6254                                                 SelectionDAG &DAG) const {
6255   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6256   EVT VT = Op.getValueType();
6257   unsigned VTBits = VT.getSizeInBits();
6258   SDLoc dl(Op);
6259   SDValue ShOpLo = Op.getOperand(0);
6260   SDValue ShOpHi = Op.getOperand(1);
6261   SDValue ShAmt  = Op.getOperand(2);
6262   SDValue ARMcc;
6263   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
6264   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
6265 
6266   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
6267 
6268   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
6269                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
6270   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
6271   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
6272                                    DAG.getConstant(VTBits, dl, MVT::i32));
6273   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
6274   SDValue LoSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
6275   SDValue LoBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
6276   SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
6277                             ISD::SETGE, ARMcc, DAG, dl);
6278   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, LoBigShift,
6279                            ARMcc, CCR, CmpLo);
6280 
6281   SDValue HiSmallShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
6282   SDValue HiBigShift = Opc == ISD::SRA
6283                            ? DAG.getNode(Opc, dl, VT, ShOpHi,
6284                                          DAG.getConstant(VTBits - 1, dl, VT))
6285                            : DAG.getConstant(0, dl, VT);
6286   SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
6287                             ISD::SETGE, ARMcc, DAG, dl);
6288   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
6289                            ARMcc, CCR, CmpHi);
6290 
6291   SDValue Ops[2] = { Lo, Hi };
6292   return DAG.getMergeValues(Ops, dl);
6293 }
6294 
6295 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
6296 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
6297 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
6298                                                SelectionDAG &DAG) const {
6299   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
6300   EVT VT = Op.getValueType();
6301   unsigned VTBits = VT.getSizeInBits();
6302   SDLoc dl(Op);
6303   SDValue ShOpLo = Op.getOperand(0);
6304   SDValue ShOpHi = Op.getOperand(1);
6305   SDValue ShAmt  = Op.getOperand(2);
6306   SDValue ARMcc;
6307   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
6308 
6309   assert(Op.getOpcode() == ISD::SHL_PARTS);
6310   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
6311                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
6312   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
6313   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
6314   SDValue HiSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
6315 
6316   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
6317                                    DAG.getConstant(VTBits, dl, MVT::i32));
6318   SDValue HiBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
6319   SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
6320                             ISD::SETGE, ARMcc, DAG, dl);
6321   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
6322                            ARMcc, CCR, CmpHi);
6323 
6324   SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
6325                           ISD::SETGE, ARMcc, DAG, dl);
6326   SDValue LoSmallShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
6327   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift,
6328                            DAG.getConstant(0, dl, VT), ARMcc, CCR, CmpLo);
6329 
6330   SDValue Ops[2] = { Lo, Hi };
6331   return DAG.getMergeValues(Ops, dl);
6332 }
6333 
6334 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
6335                                             SelectionDAG &DAG) const {
6336   // The rounding mode is in bits 23:22 of the FPSCR.
6337   // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
6338   // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
6339   // so that the shift + and get folded into a bitfield extract.
6340   SDLoc dl(Op);
6341   SDValue Chain = Op.getOperand(0);
6342   SDValue Ops[] = {Chain,
6343                    DAG.getConstant(Intrinsic::arm_get_fpscr, dl, MVT::i32)};
6344 
6345   SDValue FPSCR =
6346       DAG.getNode(ISD::INTRINSIC_W_CHAIN, dl, {MVT::i32, MVT::Other}, Ops);
6347   Chain = FPSCR.getValue(1);
6348   SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
6349                                   DAG.getConstant(1U << 22, dl, MVT::i32));
6350   SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
6351                               DAG.getConstant(22, dl, MVT::i32));
6352   SDValue And = DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
6353                             DAG.getConstant(3, dl, MVT::i32));
6354   return DAG.getMergeValues({And, Chain}, dl);
6355 }
6356 
6357 SDValue ARMTargetLowering::LowerSET_ROUNDING(SDValue Op,
6358                                              SelectionDAG &DAG) const {
6359   SDLoc DL(Op);
6360   SDValue Chain = Op->getOperand(0);
6361   SDValue RMValue = Op->getOperand(1);
6362 
6363   // The rounding mode is in bits 23:22 of the FPSCR.
6364   // The llvm.set.rounding argument value to ARM rounding mode value mapping
6365   // is 0->3, 1->0, 2->1, 3->2. The formula we use to implement this is
6366   // ((arg - 1) & 3) << 22).
6367   //
6368   // It is expected that the argument of llvm.set.rounding is within the
6369   // segment [0, 3], so NearestTiesToAway (4) is not handled here. It is
6370   // responsibility of the code generated llvm.set.rounding to ensure this
6371   // condition.
6372 
6373   // Calculate new value of FPSCR[23:22].
6374   RMValue = DAG.getNode(ISD::SUB, DL, MVT::i32, RMValue,
6375                         DAG.getConstant(1, DL, MVT::i32));
6376   RMValue = DAG.getNode(ISD::AND, DL, MVT::i32, RMValue,
6377                         DAG.getConstant(0x3, DL, MVT::i32));
6378   RMValue = DAG.getNode(ISD::SHL, DL, MVT::i32, RMValue,
6379                         DAG.getConstant(ARM::RoundingBitsPos, DL, MVT::i32));
6380 
6381   // Get current value of FPSCR.
6382   SDValue Ops[] = {Chain,
6383                    DAG.getConstant(Intrinsic::arm_get_fpscr, DL, MVT::i32)};
6384   SDValue FPSCR =
6385       DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, {MVT::i32, MVT::Other}, Ops);
6386   Chain = FPSCR.getValue(1);
6387   FPSCR = FPSCR.getValue(0);
6388 
6389   // Put new rounding mode into FPSCR[23:22].
6390   const unsigned RMMask = ~(ARM::Rounding::rmMask << ARM::RoundingBitsPos);
6391   FPSCR = DAG.getNode(ISD::AND, DL, MVT::i32, FPSCR,
6392                       DAG.getConstant(RMMask, DL, MVT::i32));
6393   FPSCR = DAG.getNode(ISD::OR, DL, MVT::i32, FPSCR, RMValue);
6394   SDValue Ops2[] = {
6395       Chain, DAG.getConstant(Intrinsic::arm_set_fpscr, DL, MVT::i32), FPSCR};
6396   return DAG.getNode(ISD::INTRINSIC_VOID, DL, MVT::Other, Ops2);
6397 }
6398 
6399 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
6400                          const ARMSubtarget *ST) {
6401   SDLoc dl(N);
6402   EVT VT = N->getValueType(0);
6403   if (VT.isVector() && ST->hasNEON()) {
6404 
6405     // Compute the least significant set bit: LSB = X & -X
6406     SDValue X = N->getOperand(0);
6407     SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
6408     SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
6409 
6410     EVT ElemTy = VT.getVectorElementType();
6411 
6412     if (ElemTy == MVT::i8) {
6413       // Compute with: cttz(x) = ctpop(lsb - 1)
6414       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
6415                                 DAG.getTargetConstant(1, dl, ElemTy));
6416       SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
6417       return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
6418     }
6419 
6420     if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
6421         (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
6422       // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
6423       unsigned NumBits = ElemTy.getSizeInBits();
6424       SDValue WidthMinus1 =
6425           DAG.getNode(ARMISD::VMOVIMM, dl, VT,
6426                       DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
6427       SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
6428       return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
6429     }
6430 
6431     // Compute with: cttz(x) = ctpop(lsb - 1)
6432 
6433     // Compute LSB - 1.
6434     SDValue Bits;
6435     if (ElemTy == MVT::i64) {
6436       // Load constant 0xffff'ffff'ffff'ffff to register.
6437       SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
6438                                DAG.getTargetConstant(0x1eff, dl, MVT::i32));
6439       Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
6440     } else {
6441       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
6442                                 DAG.getTargetConstant(1, dl, ElemTy));
6443       Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
6444     }
6445     return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
6446   }
6447 
6448   if (!ST->hasV6T2Ops())
6449     return SDValue();
6450 
6451   SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
6452   return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
6453 }
6454 
6455 static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
6456                           const ARMSubtarget *ST) {
6457   EVT VT = N->getValueType(0);
6458   SDLoc DL(N);
6459 
6460   assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
6461   assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 ||
6462           VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) &&
6463          "Unexpected type for custom ctpop lowering");
6464 
6465   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6466   EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
6467   SDValue Res = DAG.getBitcast(VT8Bit, N->getOperand(0));
6468   Res = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Res);
6469 
6470   // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
6471   unsigned EltSize = 8;
6472   unsigned NumElts = VT.is64BitVector() ? 8 : 16;
6473   while (EltSize != VT.getScalarSizeInBits()) {
6474     SmallVector<SDValue, 8> Ops;
6475     Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddlu, DL,
6476                                   TLI.getPointerTy(DAG.getDataLayout())));
6477     Ops.push_back(Res);
6478 
6479     EltSize *= 2;
6480     NumElts /= 2;
6481     MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts);
6482     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, WidenVT, Ops);
6483   }
6484 
6485   return Res;
6486 }
6487 
6488 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
6489 /// operand of a vector shift operation, where all the elements of the
6490 /// build_vector must have the same constant integer value.
6491 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6492   // Ignore bit_converts.
6493   while (Op.getOpcode() == ISD::BITCAST)
6494     Op = Op.getOperand(0);
6495   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6496   APInt SplatBits, SplatUndef;
6497   unsigned SplatBitSize;
6498   bool HasAnyUndefs;
6499   if (!BVN ||
6500       !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
6501                             ElementBits) ||
6502       SplatBitSize > ElementBits)
6503     return false;
6504   Cnt = SplatBits.getSExtValue();
6505   return true;
6506 }
6507 
6508 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
6509 /// operand of a vector shift left operation.  That value must be in the range:
6510 ///   0 <= Value < ElementBits for a left shift; or
6511 ///   0 <= Value <= ElementBits for a long left shift.
6512 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6513   assert(VT.isVector() && "vector shift count is not a vector type");
6514   int64_t ElementBits = VT.getScalarSizeInBits();
6515   if (!getVShiftImm(Op, ElementBits, Cnt))
6516     return false;
6517   return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
6518 }
6519 
6520 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
6521 /// operand of a vector shift right operation.  For a shift opcode, the value
6522 /// is positive, but for an intrinsic the value count must be negative. The
6523 /// absolute value must be in the range:
6524 ///   1 <= |Value| <= ElementBits for a right shift; or
6525 ///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
6526 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
6527                          int64_t &Cnt) {
6528   assert(VT.isVector() && "vector shift count is not a vector type");
6529   int64_t ElementBits = VT.getScalarSizeInBits();
6530   if (!getVShiftImm(Op, ElementBits, Cnt))
6531     return false;
6532   if (!isIntrinsic)
6533     return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
6534   if (Cnt >= -(isNarrow ? ElementBits / 2 : ElementBits) && Cnt <= -1) {
6535     Cnt = -Cnt;
6536     return true;
6537   }
6538   return false;
6539 }
6540 
6541 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
6542                           const ARMSubtarget *ST) {
6543   EVT VT = N->getValueType(0);
6544   SDLoc dl(N);
6545   int64_t Cnt;
6546 
6547   if (!VT.isVector())
6548     return SDValue();
6549 
6550   // We essentially have two forms here. Shift by an immediate and shift by a
6551   // vector register (there are also shift by a gpr, but that is just handled
6552   // with a tablegen pattern). We cannot easily match shift by an immediate in
6553   // tablegen so we do that here and generate a VSHLIMM/VSHRsIMM/VSHRuIMM.
6554   // For shifting by a vector, we don't have VSHR, only VSHL (which can be
6555   // signed or unsigned, and a negative shift indicates a shift right).
6556   if (N->getOpcode() == ISD::SHL) {
6557     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
6558       return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0),
6559                          DAG.getConstant(Cnt, dl, MVT::i32));
6560     return DAG.getNode(ARMISD::VSHLu, dl, VT, N->getOperand(0),
6561                        N->getOperand(1));
6562   }
6563 
6564   assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
6565          "unexpected vector shift opcode");
6566 
6567   if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
6568     unsigned VShiftOpc =
6569         (N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM);
6570     return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
6571                        DAG.getConstant(Cnt, dl, MVT::i32));
6572   }
6573 
6574   // Other right shifts we don't have operations for (we use a shift left by a
6575   // negative number).
6576   EVT ShiftVT = N->getOperand(1).getValueType();
6577   SDValue NegatedCount = DAG.getNode(
6578       ISD::SUB, dl, ShiftVT, getZeroVector(ShiftVT, DAG, dl), N->getOperand(1));
6579   unsigned VShiftOpc =
6580       (N->getOpcode() == ISD::SRA ? ARMISD::VSHLs : ARMISD::VSHLu);
6581   return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0), NegatedCount);
6582 }
6583 
6584 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
6585                                 const ARMSubtarget *ST) {
6586   EVT VT = N->getValueType(0);
6587   SDLoc dl(N);
6588 
6589   // We can get here for a node like i32 = ISD::SHL i32, i64
6590   if (VT != MVT::i64)
6591     return SDValue();
6592 
6593   assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA ||
6594           N->getOpcode() == ISD::SHL) &&
6595          "Unknown shift to lower!");
6596 
6597   unsigned ShOpc = N->getOpcode();
6598   if (ST->hasMVEIntegerOps()) {
6599     SDValue ShAmt = N->getOperand(1);
6600     unsigned ShPartsOpc = ARMISD::LSLL;
6601     ConstantSDNode *Con = dyn_cast<ConstantSDNode>(ShAmt);
6602 
6603     // If the shift amount is greater than 32 or has a greater bitwidth than 64
6604     // then do the default optimisation
6605     if (ShAmt->getValueType(0).getSizeInBits() > 64 ||
6606         (Con && (Con->getZExtValue() == 0 || Con->getZExtValue() >= 32)))
6607       return SDValue();
6608 
6609     // Extract the lower 32 bits of the shift amount if it's not an i32
6610     if (ShAmt->getValueType(0) != MVT::i32)
6611       ShAmt = DAG.getZExtOrTrunc(ShAmt, dl, MVT::i32);
6612 
6613     if (ShOpc == ISD::SRL) {
6614       if (!Con)
6615         // There is no t2LSRLr instruction so negate and perform an lsll if the
6616         // shift amount is in a register, emulating a right shift.
6617         ShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
6618                             DAG.getConstant(0, dl, MVT::i32), ShAmt);
6619       else
6620         // Else generate an lsrl on the immediate shift amount
6621         ShPartsOpc = ARMISD::LSRL;
6622     } else if (ShOpc == ISD::SRA)
6623       ShPartsOpc = ARMISD::ASRL;
6624 
6625     // Lower 32 bits of the destination/source
6626     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
6627                              DAG.getConstant(0, dl, MVT::i32));
6628     // Upper 32 bits of the destination/source
6629     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
6630                              DAG.getConstant(1, dl, MVT::i32));
6631 
6632     // Generate the shift operation as computed above
6633     Lo = DAG.getNode(ShPartsOpc, dl, DAG.getVTList(MVT::i32, MVT::i32), Lo, Hi,
6634                      ShAmt);
6635     // The upper 32 bits come from the second return value of lsll
6636     Hi = SDValue(Lo.getNode(), 1);
6637     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6638   }
6639 
6640   // We only lower SRA, SRL of 1 here, all others use generic lowering.
6641   if (!isOneConstant(N->getOperand(1)) || N->getOpcode() == ISD::SHL)
6642     return SDValue();
6643 
6644   // If we are in thumb mode, we don't have RRX.
6645   if (ST->isThumb1Only())
6646     return SDValue();
6647 
6648   // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
6649   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
6650                            DAG.getConstant(0, dl, MVT::i32));
6651   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
6652                            DAG.getConstant(1, dl, MVT::i32));
6653 
6654   // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
6655   // captures the result into a carry flag.
6656   unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
6657   Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
6658 
6659   // The low part is an ARMISD::RRX operand, which shifts the carry in.
6660   Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
6661 
6662   // Merge the pieces into a single i64 value.
6663  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6664 }
6665 
6666 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG,
6667                            const ARMSubtarget *ST) {
6668   bool Invert = false;
6669   bool Swap = false;
6670   unsigned Opc = ARMCC::AL;
6671 
6672   SDValue Op0 = Op.getOperand(0);
6673   SDValue Op1 = Op.getOperand(1);
6674   SDValue CC = Op.getOperand(2);
6675   EVT VT = Op.getValueType();
6676   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
6677   SDLoc dl(Op);
6678 
6679   EVT CmpVT;
6680   if (ST->hasNEON())
6681     CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
6682   else {
6683     assert(ST->hasMVEIntegerOps() &&
6684            "No hardware support for integer vector comparison!");
6685 
6686     if (Op.getValueType().getVectorElementType() != MVT::i1)
6687       return SDValue();
6688 
6689     // Make sure we expand floating point setcc to scalar if we do not have
6690     // mve.fp, so that we can handle them from there.
6691     if (Op0.getValueType().isFloatingPoint() && !ST->hasMVEFloatOps())
6692       return SDValue();
6693 
6694     CmpVT = VT;
6695   }
6696 
6697   if (Op0.getValueType().getVectorElementType() == MVT::i64 &&
6698       (SetCCOpcode == ISD::SETEQ || SetCCOpcode == ISD::SETNE)) {
6699     // Special-case integer 64-bit equality comparisons. They aren't legal,
6700     // but they can be lowered with a few vector instructions.
6701     unsigned CmpElements = CmpVT.getVectorNumElements() * 2;
6702     EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, CmpElements);
6703     SDValue CastOp0 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op0);
6704     SDValue CastOp1 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op1);
6705     SDValue Cmp = DAG.getNode(ISD::SETCC, dl, SplitVT, CastOp0, CastOp1,
6706                               DAG.getCondCode(ISD::SETEQ));
6707     SDValue Reversed = DAG.getNode(ARMISD::VREV64, dl, SplitVT, Cmp);
6708     SDValue Merged = DAG.getNode(ISD::AND, dl, SplitVT, Cmp, Reversed);
6709     Merged = DAG.getNode(ISD::BITCAST, dl, CmpVT, Merged);
6710     if (SetCCOpcode == ISD::SETNE)
6711       Merged = DAG.getNOT(dl, Merged, CmpVT);
6712     Merged = DAG.getSExtOrTrunc(Merged, dl, VT);
6713     return Merged;
6714   }
6715 
6716   if (CmpVT.getVectorElementType() == MVT::i64)
6717     // 64-bit comparisons are not legal in general.
6718     return SDValue();
6719 
6720   if (Op1.getValueType().isFloatingPoint()) {
6721     switch (SetCCOpcode) {
6722     default: llvm_unreachable("Illegal FP comparison");
6723     case ISD::SETUNE:
6724     case ISD::SETNE:
6725       if (ST->hasMVEFloatOps()) {
6726         Opc = ARMCC::NE; break;
6727       } else {
6728         Invert = true; LLVM_FALLTHROUGH;
6729       }
6730     case ISD::SETOEQ:
6731     case ISD::SETEQ:  Opc = ARMCC::EQ; break;
6732     case ISD::SETOLT:
6733     case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
6734     case ISD::SETOGT:
6735     case ISD::SETGT:  Opc = ARMCC::GT; break;
6736     case ISD::SETOLE:
6737     case ISD::SETLE:  Swap = true; LLVM_FALLTHROUGH;
6738     case ISD::SETOGE:
6739     case ISD::SETGE: Opc = ARMCC::GE; break;
6740     case ISD::SETUGE: Swap = true; LLVM_FALLTHROUGH;
6741     case ISD::SETULE: Invert = true; Opc = ARMCC::GT; break;
6742     case ISD::SETUGT: Swap = true; LLVM_FALLTHROUGH;
6743     case ISD::SETULT: Invert = true; Opc = ARMCC::GE; break;
6744     case ISD::SETUEQ: Invert = true; LLVM_FALLTHROUGH;
6745     case ISD::SETONE: {
6746       // Expand this to (OLT | OGT).
6747       SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0,
6748                                    DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6749       SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6750                                    DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6751       SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1);
6752       if (Invert)
6753         Result = DAG.getNOT(dl, Result, VT);
6754       return Result;
6755     }
6756     case ISD::SETUO: Invert = true; LLVM_FALLTHROUGH;
6757     case ISD::SETO: {
6758       // Expand this to (OLT | OGE).
6759       SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0,
6760                                    DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6761       SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6762                                    DAG.getConstant(ARMCC::GE, dl, MVT::i32));
6763       SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1);
6764       if (Invert)
6765         Result = DAG.getNOT(dl, Result, VT);
6766       return Result;
6767     }
6768     }
6769   } else {
6770     // Integer comparisons.
6771     switch (SetCCOpcode) {
6772     default: llvm_unreachable("Illegal integer comparison");
6773     case ISD::SETNE:
6774       if (ST->hasMVEIntegerOps()) {
6775         Opc = ARMCC::NE; break;
6776       } else {
6777         Invert = true; LLVM_FALLTHROUGH;
6778       }
6779     case ISD::SETEQ:  Opc = ARMCC::EQ; break;
6780     case ISD::SETLT:  Swap = true; LLVM_FALLTHROUGH;
6781     case ISD::SETGT:  Opc = ARMCC::GT; break;
6782     case ISD::SETLE:  Swap = true; LLVM_FALLTHROUGH;
6783     case ISD::SETGE:  Opc = ARMCC::GE; break;
6784     case ISD::SETULT: Swap = true; LLVM_FALLTHROUGH;
6785     case ISD::SETUGT: Opc = ARMCC::HI; break;
6786     case ISD::SETULE: Swap = true; LLVM_FALLTHROUGH;
6787     case ISD::SETUGE: Opc = ARMCC::HS; break;
6788     }
6789 
6790     // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
6791     if (ST->hasNEON() && Opc == ARMCC::EQ) {
6792       SDValue AndOp;
6793       if (ISD::isBuildVectorAllZeros(Op1.getNode()))
6794         AndOp = Op0;
6795       else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
6796         AndOp = Op1;
6797 
6798       // Ignore bitconvert.
6799       if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
6800         AndOp = AndOp.getOperand(0);
6801 
6802       if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
6803         Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
6804         Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
6805         SDValue Result = DAG.getNode(ARMISD::VTST, dl, CmpVT, Op0, Op1);
6806         if (!Invert)
6807           Result = DAG.getNOT(dl, Result, VT);
6808         return Result;
6809       }
6810     }
6811   }
6812 
6813   if (Swap)
6814     std::swap(Op0, Op1);
6815 
6816   // If one of the operands is a constant vector zero, attempt to fold the
6817   // comparison to a specialized compare-against-zero form.
6818   SDValue SingleOp;
6819   if (ISD::isBuildVectorAllZeros(Op1.getNode()))
6820     SingleOp = Op0;
6821   else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
6822     if (Opc == ARMCC::GE)
6823       Opc = ARMCC::LE;
6824     else if (Opc == ARMCC::GT)
6825       Opc = ARMCC::LT;
6826     SingleOp = Op1;
6827   }
6828 
6829   SDValue Result;
6830   if (SingleOp.getNode()) {
6831     Result = DAG.getNode(ARMISD::VCMPZ, dl, CmpVT, SingleOp,
6832                          DAG.getConstant(Opc, dl, MVT::i32));
6833   } else {
6834     Result = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6835                          DAG.getConstant(Opc, dl, MVT::i32));
6836   }
6837 
6838   Result = DAG.getSExtOrTrunc(Result, dl, VT);
6839 
6840   if (Invert)
6841     Result = DAG.getNOT(dl, Result, VT);
6842 
6843   return Result;
6844 }
6845 
6846 static SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) {
6847   SDValue LHS = Op.getOperand(0);
6848   SDValue RHS = Op.getOperand(1);
6849   SDValue Carry = Op.getOperand(2);
6850   SDValue Cond = Op.getOperand(3);
6851   SDLoc DL(Op);
6852 
6853   assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
6854 
6855   // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
6856   // have to invert the carry first.
6857   Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
6858                       DAG.getConstant(1, DL, MVT::i32), Carry);
6859   // This converts the boolean value carry into the carry flag.
6860   Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
6861 
6862   SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
6863   SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry);
6864 
6865   SDValue FVal = DAG.getConstant(0, DL, MVT::i32);
6866   SDValue TVal = DAG.getConstant(1, DL, MVT::i32);
6867   SDValue ARMcc = DAG.getConstant(
6868       IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32);
6869   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
6870   SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR,
6871                                    Cmp.getValue(1), SDValue());
6872   return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc,
6873                      CCR, Chain.getValue(1));
6874 }
6875 
6876 /// isVMOVModifiedImm - Check if the specified splat value corresponds to a
6877 /// valid vector constant for a NEON or MVE instruction with a "modified
6878 /// immediate" operand (e.g., VMOV).  If so, return the encoded value.
6879 static SDValue isVMOVModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
6880                                  unsigned SplatBitSize, SelectionDAG &DAG,
6881                                  const SDLoc &dl, EVT &VT, EVT VectorVT,
6882                                  VMOVModImmType type) {
6883   unsigned OpCmode, Imm;
6884   bool is128Bits = VectorVT.is128BitVector();
6885 
6886   // SplatBitSize is set to the smallest size that splats the vector, so a
6887   // zero vector will always have SplatBitSize == 8.  However, NEON modified
6888   // immediate instructions others than VMOV do not support the 8-bit encoding
6889   // of a zero vector, and the default encoding of zero is supposed to be the
6890   // 32-bit version.
6891   if (SplatBits == 0)
6892     SplatBitSize = 32;
6893 
6894   switch (SplatBitSize) {
6895   case 8:
6896     if (type != VMOVModImm)
6897       return SDValue();
6898     // Any 1-byte value is OK.  Op=0, Cmode=1110.
6899     assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
6900     OpCmode = 0xe;
6901     Imm = SplatBits;
6902     VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
6903     break;
6904 
6905   case 16:
6906     // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
6907     VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
6908     if ((SplatBits & ~0xff) == 0) {
6909       // Value = 0x00nn: Op=x, Cmode=100x.
6910       OpCmode = 0x8;
6911       Imm = SplatBits;
6912       break;
6913     }
6914     if ((SplatBits & ~0xff00) == 0) {
6915       // Value = 0xnn00: Op=x, Cmode=101x.
6916       OpCmode = 0xa;
6917       Imm = SplatBits >> 8;
6918       break;
6919     }
6920     return SDValue();
6921 
6922   case 32:
6923     // NEON's 32-bit VMOV supports splat values where:
6924     // * only one byte is nonzero, or
6925     // * the least significant byte is 0xff and the second byte is nonzero, or
6926     // * the least significant 2 bytes are 0xff and the third is nonzero.
6927     VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
6928     if ((SplatBits & ~0xff) == 0) {
6929       // Value = 0x000000nn: Op=x, Cmode=000x.
6930       OpCmode = 0;
6931       Imm = SplatBits;
6932       break;
6933     }
6934     if ((SplatBits & ~0xff00) == 0) {
6935       // Value = 0x0000nn00: Op=x, Cmode=001x.
6936       OpCmode = 0x2;
6937       Imm = SplatBits >> 8;
6938       break;
6939     }
6940     if ((SplatBits & ~0xff0000) == 0) {
6941       // Value = 0x00nn0000: Op=x, Cmode=010x.
6942       OpCmode = 0x4;
6943       Imm = SplatBits >> 16;
6944       break;
6945     }
6946     if ((SplatBits & ~0xff000000) == 0) {
6947       // Value = 0xnn000000: Op=x, Cmode=011x.
6948       OpCmode = 0x6;
6949       Imm = SplatBits >> 24;
6950       break;
6951     }
6952 
6953     // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
6954     if (type == OtherModImm) return SDValue();
6955 
6956     if ((SplatBits & ~0xffff) == 0 &&
6957         ((SplatBits | SplatUndef) & 0xff) == 0xff) {
6958       // Value = 0x0000nnff: Op=x, Cmode=1100.
6959       OpCmode = 0xc;
6960       Imm = SplatBits >> 8;
6961       break;
6962     }
6963 
6964     // cmode == 0b1101 is not supported for MVE VMVN
6965     if (type == MVEVMVNModImm)
6966       return SDValue();
6967 
6968     if ((SplatBits & ~0xffffff) == 0 &&
6969         ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
6970       // Value = 0x00nnffff: Op=x, Cmode=1101.
6971       OpCmode = 0xd;
6972       Imm = SplatBits >> 16;
6973       break;
6974     }
6975 
6976     // Note: there are a few 32-bit splat values (specifically: 00ffff00,
6977     // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
6978     // VMOV.I32.  A (very) minor optimization would be to replicate the value
6979     // and fall through here to test for a valid 64-bit splat.  But, then the
6980     // caller would also need to check and handle the change in size.
6981     return SDValue();
6982 
6983   case 64: {
6984     if (type != VMOVModImm)
6985       return SDValue();
6986     // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
6987     uint64_t BitMask = 0xff;
6988     unsigned ImmMask = 1;
6989     Imm = 0;
6990     for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
6991       if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
6992         Imm |= ImmMask;
6993       } else if ((SplatBits & BitMask) != 0) {
6994         return SDValue();
6995       }
6996       BitMask <<= 8;
6997       ImmMask <<= 1;
6998     }
6999 
7000     if (DAG.getDataLayout().isBigEndian()) {
7001       // Reverse the order of elements within the vector.
7002       unsigned BytesPerElem = VectorVT.getScalarSizeInBits() / 8;
7003       unsigned Mask = (1 << BytesPerElem) - 1;
7004       unsigned NumElems = 8 / BytesPerElem;
7005       unsigned NewImm = 0;
7006       for (unsigned ElemNum = 0; ElemNum < NumElems; ++ElemNum) {
7007         unsigned Elem = ((Imm >> ElemNum * BytesPerElem) & Mask);
7008         NewImm |= Elem << (NumElems - ElemNum - 1) * BytesPerElem;
7009       }
7010       Imm = NewImm;
7011     }
7012 
7013     // Op=1, Cmode=1110.
7014     OpCmode = 0x1e;
7015     VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
7016     break;
7017   }
7018 
7019   default:
7020     llvm_unreachable("unexpected size for isVMOVModifiedImm");
7021   }
7022 
7023   unsigned EncodedVal = ARM_AM::createVMOVModImm(OpCmode, Imm);
7024   return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
7025 }
7026 
7027 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
7028                                            const ARMSubtarget *ST) const {
7029   EVT VT = Op.getValueType();
7030   bool IsDouble = (VT == MVT::f64);
7031   ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
7032   const APFloat &FPVal = CFP->getValueAPF();
7033 
7034   // Prevent floating-point constants from using literal loads
7035   // when execute-only is enabled.
7036   if (ST->genExecuteOnly()) {
7037     // If we can represent the constant as an immediate, don't lower it
7038     if (isFPImmLegal(FPVal, VT))
7039       return Op;
7040     // Otherwise, construct as integer, and move to float register
7041     APInt INTVal = FPVal.bitcastToAPInt();
7042     SDLoc DL(CFP);
7043     switch (VT.getSimpleVT().SimpleTy) {
7044       default:
7045         llvm_unreachable("Unknown floating point type!");
7046         break;
7047       case MVT::f64: {
7048         SDValue Lo = DAG.getConstant(INTVal.trunc(32), DL, MVT::i32);
7049         SDValue Hi = DAG.getConstant(INTVal.lshr(32).trunc(32), DL, MVT::i32);
7050         return DAG.getNode(ARMISD::VMOVDRR, DL, MVT::f64, Lo, Hi);
7051       }
7052       case MVT::f32:
7053           return DAG.getNode(ARMISD::VMOVSR, DL, VT,
7054               DAG.getConstant(INTVal, DL, MVT::i32));
7055     }
7056   }
7057 
7058   if (!ST->hasVFP3Base())
7059     return SDValue();
7060 
7061   // Use the default (constant pool) lowering for double constants when we have
7062   // an SP-only FPU
7063   if (IsDouble && !Subtarget->hasFP64())
7064     return SDValue();
7065 
7066   // Try splatting with a VMOV.f32...
7067   int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
7068 
7069   if (ImmVal != -1) {
7070     if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
7071       // We have code in place to select a valid ConstantFP already, no need to
7072       // do any mangling.
7073       return Op;
7074     }
7075 
7076     // It's a float and we are trying to use NEON operations where
7077     // possible. Lower it to a splat followed by an extract.
7078     SDLoc DL(Op);
7079     SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
7080     SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
7081                                       NewVal);
7082     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
7083                        DAG.getConstant(0, DL, MVT::i32));
7084   }
7085 
7086   // The rest of our options are NEON only, make sure that's allowed before
7087   // proceeding..
7088   if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
7089     return SDValue();
7090 
7091   EVT VMovVT;
7092   uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
7093 
7094   // It wouldn't really be worth bothering for doubles except for one very
7095   // important value, which does happen to match: 0.0. So make sure we don't do
7096   // anything stupid.
7097   if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
7098     return SDValue();
7099 
7100   // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
7101   SDValue NewVal = isVMOVModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
7102                                      VMovVT, VT, VMOVModImm);
7103   if (NewVal != SDValue()) {
7104     SDLoc DL(Op);
7105     SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
7106                                       NewVal);
7107     if (IsDouble)
7108       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
7109 
7110     // It's a float: cast and extract a vector element.
7111     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
7112                                        VecConstant);
7113     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
7114                        DAG.getConstant(0, DL, MVT::i32));
7115   }
7116 
7117   // Finally, try a VMVN.i32
7118   NewVal = isVMOVModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
7119                              VT, VMVNModImm);
7120   if (NewVal != SDValue()) {
7121     SDLoc DL(Op);
7122     SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
7123 
7124     if (IsDouble)
7125       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
7126 
7127     // It's a float: cast and extract a vector element.
7128     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
7129                                        VecConstant);
7130     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
7131                        DAG.getConstant(0, DL, MVT::i32));
7132   }
7133 
7134   return SDValue();
7135 }
7136 
7137 // check if an VEXT instruction can handle the shuffle mask when the
7138 // vector sources of the shuffle are the same.
7139 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
7140   unsigned NumElts = VT.getVectorNumElements();
7141 
7142   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
7143   if (M[0] < 0)
7144     return false;
7145 
7146   Imm = M[0];
7147 
7148   // If this is a VEXT shuffle, the immediate value is the index of the first
7149   // element.  The other shuffle indices must be the successive elements after
7150   // the first one.
7151   unsigned ExpectedElt = Imm;
7152   for (unsigned i = 1; i < NumElts; ++i) {
7153     // Increment the expected index.  If it wraps around, just follow it
7154     // back to index zero and keep going.
7155     ++ExpectedElt;
7156     if (ExpectedElt == NumElts)
7157       ExpectedElt = 0;
7158 
7159     if (M[i] < 0) continue; // ignore UNDEF indices
7160     if (ExpectedElt != static_cast<unsigned>(M[i]))
7161       return false;
7162   }
7163 
7164   return true;
7165 }
7166 
7167 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
7168                        bool &ReverseVEXT, unsigned &Imm) {
7169   unsigned NumElts = VT.getVectorNumElements();
7170   ReverseVEXT = false;
7171 
7172   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
7173   if (M[0] < 0)
7174     return false;
7175 
7176   Imm = M[0];
7177 
7178   // If this is a VEXT shuffle, the immediate value is the index of the first
7179   // element.  The other shuffle indices must be the successive elements after
7180   // the first one.
7181   unsigned ExpectedElt = Imm;
7182   for (unsigned i = 1; i < NumElts; ++i) {
7183     // Increment the expected index.  If it wraps around, it may still be
7184     // a VEXT but the source vectors must be swapped.
7185     ExpectedElt += 1;
7186     if (ExpectedElt == NumElts * 2) {
7187       ExpectedElt = 0;
7188       ReverseVEXT = true;
7189     }
7190 
7191     if (M[i] < 0) continue; // ignore UNDEF indices
7192     if (ExpectedElt != static_cast<unsigned>(M[i]))
7193       return false;
7194   }
7195 
7196   // Adjust the index value if the source operands will be swapped.
7197   if (ReverseVEXT)
7198     Imm -= NumElts;
7199 
7200   return true;
7201 }
7202 
7203 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
7204   // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
7205   // range, then 0 is placed into the resulting vector. So pretty much any mask
7206   // of 8 elements can work here.
7207   return VT == MVT::v8i8 && M.size() == 8;
7208 }
7209 
7210 static unsigned SelectPairHalf(unsigned Elements, ArrayRef<int> Mask,
7211                                unsigned Index) {
7212   if (Mask.size() == Elements * 2)
7213     return Index / Elements;
7214   return Mask[Index] == 0 ? 0 : 1;
7215 }
7216 
7217 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
7218 // checking that pairs of elements in the shuffle mask represent the same index
7219 // in each vector, incrementing the expected index by 2 at each step.
7220 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
7221 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
7222 //  v2={e,f,g,h}
7223 // WhichResult gives the offset for each element in the mask based on which
7224 // of the two results it belongs to.
7225 //
7226 // The transpose can be represented either as:
7227 // result1 = shufflevector v1, v2, result1_shuffle_mask
7228 // result2 = shufflevector v1, v2, result2_shuffle_mask
7229 // where v1/v2 and the shuffle masks have the same number of elements
7230 // (here WhichResult (see below) indicates which result is being checked)
7231 //
7232 // or as:
7233 // results = shufflevector v1, v2, shuffle_mask
7234 // where both results are returned in one vector and the shuffle mask has twice
7235 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
7236 // want to check the low half and high half of the shuffle mask as if it were
7237 // the other case
7238 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
7239   unsigned EltSz = VT.getScalarSizeInBits();
7240   if (EltSz == 64)
7241     return false;
7242 
7243   unsigned NumElts = VT.getVectorNumElements();
7244   if (M.size() != NumElts && M.size() != NumElts*2)
7245     return false;
7246 
7247   // If the mask is twice as long as the input vector then we need to check the
7248   // upper and lower parts of the mask with a matching value for WhichResult
7249   // FIXME: A mask with only even values will be rejected in case the first
7250   // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
7251   // M[0] is used to determine WhichResult
7252   for (unsigned i = 0; i < M.size(); i += NumElts) {
7253     WhichResult = SelectPairHalf(NumElts, M, i);
7254     for (unsigned j = 0; j < NumElts; j += 2) {
7255       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
7256           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
7257         return false;
7258     }
7259   }
7260 
7261   if (M.size() == NumElts*2)
7262     WhichResult = 0;
7263 
7264   return true;
7265 }
7266 
7267 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
7268 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
7269 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
7270 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
7271   unsigned EltSz = VT.getScalarSizeInBits();
7272   if (EltSz == 64)
7273     return false;
7274 
7275   unsigned NumElts = VT.getVectorNumElements();
7276   if (M.size() != NumElts && M.size() != NumElts*2)
7277     return false;
7278 
7279   for (unsigned i = 0; i < M.size(); i += NumElts) {
7280     WhichResult = SelectPairHalf(NumElts, M, i);
7281     for (unsigned j = 0; j < NumElts; j += 2) {
7282       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
7283           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
7284         return false;
7285     }
7286   }
7287 
7288   if (M.size() == NumElts*2)
7289     WhichResult = 0;
7290 
7291   return true;
7292 }
7293 
7294 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
7295 // that the mask elements are either all even and in steps of size 2 or all odd
7296 // and in steps of size 2.
7297 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
7298 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
7299 //  v2={e,f,g,h}
7300 // Requires similar checks to that of isVTRNMask with
7301 // respect the how results are returned.
7302 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
7303   unsigned EltSz = VT.getScalarSizeInBits();
7304   if (EltSz == 64)
7305     return false;
7306 
7307   unsigned NumElts = VT.getVectorNumElements();
7308   if (M.size() != NumElts && M.size() != NumElts*2)
7309     return false;
7310 
7311   for (unsigned i = 0; i < M.size(); i += NumElts) {
7312     WhichResult = SelectPairHalf(NumElts, M, i);
7313     for (unsigned j = 0; j < NumElts; ++j) {
7314       if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
7315         return false;
7316     }
7317   }
7318 
7319   if (M.size() == NumElts*2)
7320     WhichResult = 0;
7321 
7322   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7323   if (VT.is64BitVector() && EltSz == 32)
7324     return false;
7325 
7326   return true;
7327 }
7328 
7329 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
7330 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
7331 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
7332 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
7333   unsigned EltSz = VT.getScalarSizeInBits();
7334   if (EltSz == 64)
7335     return false;
7336 
7337   unsigned NumElts = VT.getVectorNumElements();
7338   if (M.size() != NumElts && M.size() != NumElts*2)
7339     return false;
7340 
7341   unsigned Half = NumElts / 2;
7342   for (unsigned i = 0; i < M.size(); i += NumElts) {
7343     WhichResult = SelectPairHalf(NumElts, M, i);
7344     for (unsigned j = 0; j < NumElts; j += Half) {
7345       unsigned Idx = WhichResult;
7346       for (unsigned k = 0; k < Half; ++k) {
7347         int MIdx = M[i + j + k];
7348         if (MIdx >= 0 && (unsigned) MIdx != Idx)
7349           return false;
7350         Idx += 2;
7351       }
7352     }
7353   }
7354 
7355   if (M.size() == NumElts*2)
7356     WhichResult = 0;
7357 
7358   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7359   if (VT.is64BitVector() && EltSz == 32)
7360     return false;
7361 
7362   return true;
7363 }
7364 
7365 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
7366 // that pairs of elements of the shufflemask represent the same index in each
7367 // vector incrementing sequentially through the vectors.
7368 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
7369 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
7370 //  v2={e,f,g,h}
7371 // Requires similar checks to that of isVTRNMask with respect the how results
7372 // are returned.
7373 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
7374   unsigned EltSz = VT.getScalarSizeInBits();
7375   if (EltSz == 64)
7376     return false;
7377 
7378   unsigned NumElts = VT.getVectorNumElements();
7379   if (M.size() != NumElts && M.size() != NumElts*2)
7380     return false;
7381 
7382   for (unsigned i = 0; i < M.size(); i += NumElts) {
7383     WhichResult = SelectPairHalf(NumElts, M, i);
7384     unsigned Idx = WhichResult * NumElts / 2;
7385     for (unsigned j = 0; j < NumElts; j += 2) {
7386       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
7387           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
7388         return false;
7389       Idx += 1;
7390     }
7391   }
7392 
7393   if (M.size() == NumElts*2)
7394     WhichResult = 0;
7395 
7396   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7397   if (VT.is64BitVector() && EltSz == 32)
7398     return false;
7399 
7400   return true;
7401 }
7402 
7403 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
7404 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
7405 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
7406 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
7407   unsigned EltSz = VT.getScalarSizeInBits();
7408   if (EltSz == 64)
7409     return false;
7410 
7411   unsigned NumElts = VT.getVectorNumElements();
7412   if (M.size() != NumElts && M.size() != NumElts*2)
7413     return false;
7414 
7415   for (unsigned i = 0; i < M.size(); i += NumElts) {
7416     WhichResult = SelectPairHalf(NumElts, M, i);
7417     unsigned Idx = WhichResult * NumElts / 2;
7418     for (unsigned j = 0; j < NumElts; j += 2) {
7419       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
7420           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
7421         return false;
7422       Idx += 1;
7423     }
7424   }
7425 
7426   if (M.size() == NumElts*2)
7427     WhichResult = 0;
7428 
7429   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
7430   if (VT.is64BitVector() && EltSz == 32)
7431     return false;
7432 
7433   return true;
7434 }
7435 
7436 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
7437 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
7438 static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
7439                                            unsigned &WhichResult,
7440                                            bool &isV_UNDEF) {
7441   isV_UNDEF = false;
7442   if (isVTRNMask(ShuffleMask, VT, WhichResult))
7443     return ARMISD::VTRN;
7444   if (isVUZPMask(ShuffleMask, VT, WhichResult))
7445     return ARMISD::VUZP;
7446   if (isVZIPMask(ShuffleMask, VT, WhichResult))
7447     return ARMISD::VZIP;
7448 
7449   isV_UNDEF = true;
7450   if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
7451     return ARMISD::VTRN;
7452   if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
7453     return ARMISD::VUZP;
7454   if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
7455     return ARMISD::VZIP;
7456 
7457   return 0;
7458 }
7459 
7460 /// \return true if this is a reverse operation on an vector.
7461 static bool isReverseMask(ArrayRef<int> M, EVT VT) {
7462   unsigned NumElts = VT.getVectorNumElements();
7463   // Make sure the mask has the right size.
7464   if (NumElts != M.size())
7465       return false;
7466 
7467   // Look for <15, ..., 3, -1, 1, 0>.
7468   for (unsigned i = 0; i != NumElts; ++i)
7469     if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
7470       return false;
7471 
7472   return true;
7473 }
7474 
7475 static bool isVMOVNMask(ArrayRef<int> M, EVT VT, bool Top, bool SingleSource) {
7476   unsigned NumElts = VT.getVectorNumElements();
7477   // Make sure the mask has the right size.
7478   if (NumElts != M.size() || (VT != MVT::v8i16 && VT != MVT::v16i8))
7479     return false;
7480 
7481   // If Top
7482   //   Look for <0, N, 2, N+2, 4, N+4, ..>.
7483   //   This inserts Input2 into Input1
7484   // else if not Top
7485   //   Look for <0, N+1, 2, N+3, 4, N+5, ..>
7486   //   This inserts Input1 into Input2
7487   unsigned Offset = Top ? 0 : 1;
7488   unsigned N = SingleSource ? 0 : NumElts;
7489   for (unsigned i = 0; i < NumElts; i += 2) {
7490     if (M[i] >= 0 && M[i] != (int)i)
7491       return false;
7492     if (M[i + 1] >= 0 && M[i + 1] != (int)(N + i + Offset))
7493       return false;
7494   }
7495 
7496   return true;
7497 }
7498 
7499 static bool isVMOVNTruncMask(ArrayRef<int> M, EVT ToVT, bool rev) {
7500   unsigned NumElts = ToVT.getVectorNumElements();
7501   if (NumElts != M.size())
7502     return false;
7503 
7504   // Test if the Trunc can be convertable to a VMOVN with this shuffle. We are
7505   // looking for patterns of:
7506   // !rev: 0 N/2 1 N/2+1 2 N/2+2 ...
7507   //  rev: N/2 0 N/2+1 1 N/2+2 2 ...
7508 
7509   unsigned Off0 = rev ? NumElts / 2 : 0;
7510   unsigned Off1 = rev ? 0 : NumElts / 2;
7511   for (unsigned i = 0; i < NumElts; i += 2) {
7512     if (M[i] >= 0 && M[i] != (int)(Off0 + i / 2))
7513       return false;
7514     if (M[i + 1] >= 0 && M[i + 1] != (int)(Off1 + i / 2))
7515       return false;
7516   }
7517 
7518   return true;
7519 }
7520 
7521 // Reconstruct an MVE VCVT from a BuildVector of scalar fptrunc, all extracted
7522 // from a pair of inputs. For example:
7523 // BUILDVECTOR(FP_ROUND(EXTRACT_ELT(X, 0),
7524 //             FP_ROUND(EXTRACT_ELT(Y, 0),
7525 //             FP_ROUND(EXTRACT_ELT(X, 1),
7526 //             FP_ROUND(EXTRACT_ELT(Y, 1), ...)
7527 static SDValue LowerBuildVectorOfFPTrunc(SDValue BV, SelectionDAG &DAG,
7528                                          const ARMSubtarget *ST) {
7529   assert(BV.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
7530   if (!ST->hasMVEFloatOps())
7531     return SDValue();
7532 
7533   SDLoc dl(BV);
7534   EVT VT = BV.getValueType();
7535   if (VT != MVT::v8f16)
7536     return SDValue();
7537 
7538   // We are looking for a buildvector of fptrunc elements, where all the
7539   // elements are interleavingly extracted from two sources. Check the first two
7540   // items are valid enough and extract some info from them (they are checked
7541   // properly in the loop below).
7542   if (BV.getOperand(0).getOpcode() != ISD::FP_ROUND ||
7543       BV.getOperand(0).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
7544       BV.getOperand(0).getOperand(0).getConstantOperandVal(1) != 0)
7545     return SDValue();
7546   if (BV.getOperand(1).getOpcode() != ISD::FP_ROUND ||
7547       BV.getOperand(1).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
7548       BV.getOperand(1).getOperand(0).getConstantOperandVal(1) != 0)
7549     return SDValue();
7550   SDValue Op0 = BV.getOperand(0).getOperand(0).getOperand(0);
7551   SDValue Op1 = BV.getOperand(1).getOperand(0).getOperand(0);
7552   if (Op0.getValueType() != MVT::v4f32 || Op1.getValueType() != MVT::v4f32)
7553     return SDValue();
7554 
7555   // Check all the values in the BuildVector line up with our expectations.
7556   for (unsigned i = 1; i < 4; i++) {
7557     auto Check = [](SDValue Trunc, SDValue Op, unsigned Idx) {
7558       return Trunc.getOpcode() == ISD::FP_ROUND &&
7559              Trunc.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7560              Trunc.getOperand(0).getOperand(0) == Op &&
7561              Trunc.getOperand(0).getConstantOperandVal(1) == Idx;
7562     };
7563     if (!Check(BV.getOperand(i * 2 + 0), Op0, i))
7564       return SDValue();
7565     if (!Check(BV.getOperand(i * 2 + 1), Op1, i))
7566       return SDValue();
7567   }
7568 
7569   SDValue N1 = DAG.getNode(ARMISD::VCVTN, dl, VT, DAG.getUNDEF(VT), Op0,
7570                            DAG.getConstant(0, dl, MVT::i32));
7571   return DAG.getNode(ARMISD::VCVTN, dl, VT, N1, Op1,
7572                      DAG.getConstant(1, dl, MVT::i32));
7573 }
7574 
7575 // Reconstruct an MVE VCVT from a BuildVector of scalar fpext, all extracted
7576 // from a single input on alternating lanes. For example:
7577 // BUILDVECTOR(FP_ROUND(EXTRACT_ELT(X, 0),
7578 //             FP_ROUND(EXTRACT_ELT(X, 2),
7579 //             FP_ROUND(EXTRACT_ELT(X, 4), ...)
7580 static SDValue LowerBuildVectorOfFPExt(SDValue BV, SelectionDAG &DAG,
7581                                        const ARMSubtarget *ST) {
7582   assert(BV.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
7583   if (!ST->hasMVEFloatOps())
7584     return SDValue();
7585 
7586   SDLoc dl(BV);
7587   EVT VT = BV.getValueType();
7588   if (VT != MVT::v4f32)
7589     return SDValue();
7590 
7591   // We are looking for a buildvector of fptext elements, where all the
7592   // elements are alternating lanes from a single source. For example <0,2,4,6>
7593   // or <1,3,5,7>. Check the first two items are valid enough and extract some
7594   // info from them (they are checked properly in the loop below).
7595   if (BV.getOperand(0).getOpcode() != ISD::FP_EXTEND ||
7596       BV.getOperand(0).getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT)
7597     return SDValue();
7598   SDValue Op0 = BV.getOperand(0).getOperand(0).getOperand(0);
7599   int Offset = BV.getOperand(0).getOperand(0).getConstantOperandVal(1);
7600   if (Op0.getValueType() != MVT::v8f16 || (Offset != 0 && Offset != 1))
7601     return SDValue();
7602 
7603   // Check all the values in the BuildVector line up with our expectations.
7604   for (unsigned i = 1; i < 4; i++) {
7605     auto Check = [](SDValue Trunc, SDValue Op, unsigned Idx) {
7606       return Trunc.getOpcode() == ISD::FP_EXTEND &&
7607              Trunc.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7608              Trunc.getOperand(0).getOperand(0) == Op &&
7609              Trunc.getOperand(0).getConstantOperandVal(1) == Idx;
7610     };
7611     if (!Check(BV.getOperand(i), Op0, 2 * i + Offset))
7612       return SDValue();
7613   }
7614 
7615   return DAG.getNode(ARMISD::VCVTL, dl, VT, Op0,
7616                      DAG.getConstant(Offset, dl, MVT::i32));
7617 }
7618 
7619 // If N is an integer constant that can be moved into a register in one
7620 // instruction, return an SDValue of such a constant (will become a MOV
7621 // instruction).  Otherwise return null.
7622 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
7623                                      const ARMSubtarget *ST, const SDLoc &dl) {
7624   uint64_t Val;
7625   if (!isa<ConstantSDNode>(N))
7626     return SDValue();
7627   Val = cast<ConstantSDNode>(N)->getZExtValue();
7628 
7629   if (ST->isThumb1Only()) {
7630     if (Val <= 255 || ~Val <= 255)
7631       return DAG.getConstant(Val, dl, MVT::i32);
7632   } else {
7633     if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
7634       return DAG.getConstant(Val, dl, MVT::i32);
7635   }
7636   return SDValue();
7637 }
7638 
7639 static SDValue LowerBUILD_VECTOR_i1(SDValue Op, SelectionDAG &DAG,
7640                                     const ARMSubtarget *ST) {
7641   SDLoc dl(Op);
7642   EVT VT = Op.getValueType();
7643 
7644   assert(ST->hasMVEIntegerOps() && "LowerBUILD_VECTOR_i1 called without MVE!");
7645 
7646   unsigned NumElts = VT.getVectorNumElements();
7647   unsigned BoolMask;
7648   unsigned BitsPerBool;
7649   if (NumElts == 2) {
7650     BitsPerBool = 8;
7651     BoolMask = 0xff;
7652   } else if (NumElts == 4) {
7653     BitsPerBool = 4;
7654     BoolMask = 0xf;
7655   } else if (NumElts == 8) {
7656     BitsPerBool = 2;
7657     BoolMask = 0x3;
7658   } else if (NumElts == 16) {
7659     BitsPerBool = 1;
7660     BoolMask = 0x1;
7661   } else
7662     return SDValue();
7663 
7664   // If this is a single value copied into all lanes (a splat), we can just sign
7665   // extend that single value
7666   SDValue FirstOp = Op.getOperand(0);
7667   if (!isa<ConstantSDNode>(FirstOp) &&
7668       std::all_of(std::next(Op->op_begin()), Op->op_end(),
7669                   [&FirstOp](SDUse &U) {
7670                     return U.get().isUndef() || U.get() == FirstOp;
7671                   })) {
7672     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i32, FirstOp,
7673                               DAG.getValueType(MVT::i1));
7674     return DAG.getNode(ARMISD::PREDICATE_CAST, dl, Op.getValueType(), Ext);
7675   }
7676 
7677   // First create base with bits set where known
7678   unsigned Bits32 = 0;
7679   for (unsigned i = 0; i < NumElts; ++i) {
7680     SDValue V = Op.getOperand(i);
7681     if (!isa<ConstantSDNode>(V) && !V.isUndef())
7682       continue;
7683     bool BitSet = V.isUndef() ? false : cast<ConstantSDNode>(V)->getZExtValue();
7684     if (BitSet)
7685       Bits32 |= BoolMask << (i * BitsPerBool);
7686   }
7687 
7688   // Add in unknown nodes
7689   SDValue Base = DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT,
7690                              DAG.getConstant(Bits32, dl, MVT::i32));
7691   for (unsigned i = 0; i < NumElts; ++i) {
7692     SDValue V = Op.getOperand(i);
7693     if (isa<ConstantSDNode>(V) || V.isUndef())
7694       continue;
7695     Base = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Base, V,
7696                        DAG.getConstant(i, dl, MVT::i32));
7697   }
7698 
7699   return Base;
7700 }
7701 
7702 static SDValue LowerBUILD_VECTORToVIDUP(SDValue Op, SelectionDAG &DAG,
7703                                         const ARMSubtarget *ST) {
7704   if (!ST->hasMVEIntegerOps())
7705     return SDValue();
7706 
7707   // We are looking for a buildvector where each element is Op[0] + i*N
7708   EVT VT = Op.getValueType();
7709   SDValue Op0 = Op.getOperand(0);
7710   unsigned NumElts = VT.getVectorNumElements();
7711 
7712   // Get the increment value from operand 1
7713   SDValue Op1 = Op.getOperand(1);
7714   if (Op1.getOpcode() != ISD::ADD || Op1.getOperand(0) != Op0 ||
7715       !isa<ConstantSDNode>(Op1.getOperand(1)))
7716     return SDValue();
7717   unsigned N = Op1.getConstantOperandVal(1);
7718   if (N != 1 && N != 2 && N != 4 && N != 8)
7719     return SDValue();
7720 
7721   // Check that each other operand matches
7722   for (unsigned I = 2; I < NumElts; I++) {
7723     SDValue OpI = Op.getOperand(I);
7724     if (OpI.getOpcode() != ISD::ADD || OpI.getOperand(0) != Op0 ||
7725         !isa<ConstantSDNode>(OpI.getOperand(1)) ||
7726         OpI.getConstantOperandVal(1) != I * N)
7727       return SDValue();
7728   }
7729 
7730   SDLoc DL(Op);
7731   return DAG.getNode(ARMISD::VIDUP, DL, DAG.getVTList(VT, MVT::i32), Op0,
7732                      DAG.getConstant(N, DL, MVT::i32));
7733 }
7734 
7735 // Returns true if the operation N can be treated as qr instruction variant at
7736 // operand Op.
7737 static bool IsQRMVEInstruction(const SDNode *N, const SDNode *Op) {
7738   switch (N->getOpcode()) {
7739   case ISD::ADD:
7740   case ISD::MUL:
7741   case ISD::SADDSAT:
7742   case ISD::UADDSAT:
7743     return true;
7744   case ISD::SUB:
7745   case ISD::SSUBSAT:
7746   case ISD::USUBSAT:
7747     return N->getOperand(1).getNode() == Op;
7748   case ISD::INTRINSIC_WO_CHAIN:
7749     switch (N->getConstantOperandVal(0)) {
7750     case Intrinsic::arm_mve_add_predicated:
7751     case Intrinsic::arm_mve_mul_predicated:
7752     case Intrinsic::arm_mve_qadd_predicated:
7753     case Intrinsic::arm_mve_vhadd:
7754     case Intrinsic::arm_mve_hadd_predicated:
7755     case Intrinsic::arm_mve_vqdmulh:
7756     case Intrinsic::arm_mve_qdmulh_predicated:
7757     case Intrinsic::arm_mve_vqrdmulh:
7758     case Intrinsic::arm_mve_qrdmulh_predicated:
7759     case Intrinsic::arm_mve_vqdmull:
7760     case Intrinsic::arm_mve_vqdmull_predicated:
7761       return true;
7762     case Intrinsic::arm_mve_sub_predicated:
7763     case Intrinsic::arm_mve_qsub_predicated:
7764     case Intrinsic::arm_mve_vhsub:
7765     case Intrinsic::arm_mve_hsub_predicated:
7766       return N->getOperand(2).getNode() == Op;
7767     default:
7768       return false;
7769     }
7770   default:
7771     return false;
7772   }
7773 }
7774 
7775 // If this is a case we can't handle, return null and let the default
7776 // expansion code take care of it.
7777 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
7778                                              const ARMSubtarget *ST) const {
7779   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
7780   SDLoc dl(Op);
7781   EVT VT = Op.getValueType();
7782 
7783   if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
7784     return LowerBUILD_VECTOR_i1(Op, DAG, ST);
7785 
7786   if (SDValue R = LowerBUILD_VECTORToVIDUP(Op, DAG, ST))
7787     return R;
7788 
7789   APInt SplatBits, SplatUndef;
7790   unsigned SplatBitSize;
7791   bool HasAnyUndefs;
7792   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
7793     if (SplatUndef.isAllOnes())
7794       return DAG.getUNDEF(VT);
7795 
7796     // If all the users of this constant splat are qr instruction variants,
7797     // generate a vdup of the constant.
7798     if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == SplatBitSize &&
7799         (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32) &&
7800         all_of(BVN->uses(),
7801                [BVN](const SDNode *U) { return IsQRMVEInstruction(U, BVN); })) {
7802       EVT DupVT = SplatBitSize == 32   ? MVT::v4i32
7803                   : SplatBitSize == 16 ? MVT::v8i16
7804                                        : MVT::v16i8;
7805       SDValue Const = DAG.getConstant(SplatBits.getZExtValue(), dl, MVT::i32);
7806       SDValue VDup = DAG.getNode(ARMISD::VDUP, dl, DupVT, Const);
7807       return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, VDup);
7808     }
7809 
7810     if ((ST->hasNEON() && SplatBitSize <= 64) ||
7811         (ST->hasMVEIntegerOps() && SplatBitSize <= 64)) {
7812       // Check if an immediate VMOV works.
7813       EVT VmovVT;
7814       SDValue Val =
7815           isVMOVModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
7816                             SplatBitSize, DAG, dl, VmovVT, VT, VMOVModImm);
7817 
7818       if (Val.getNode()) {
7819         SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
7820         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
7821       }
7822 
7823       // Try an immediate VMVN.
7824       uint64_t NegatedImm = (~SplatBits).getZExtValue();
7825       Val = isVMOVModifiedImm(
7826           NegatedImm, SplatUndef.getZExtValue(), SplatBitSize, DAG, dl, VmovVT,
7827           VT, ST->hasMVEIntegerOps() ? MVEVMVNModImm : VMVNModImm);
7828       if (Val.getNode()) {
7829         SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
7830         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
7831       }
7832 
7833       // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
7834       if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
7835         int ImmVal = ARM_AM::getFP32Imm(SplatBits);
7836         if (ImmVal != -1) {
7837           SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
7838           return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
7839         }
7840       }
7841 
7842       // If we are under MVE, generate a VDUP(constant), bitcast to the original
7843       // type.
7844       if (ST->hasMVEIntegerOps() &&
7845           (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32)) {
7846         EVT DupVT = SplatBitSize == 32   ? MVT::v4i32
7847                     : SplatBitSize == 16 ? MVT::v8i16
7848                                          : MVT::v16i8;
7849         SDValue Const = DAG.getConstant(SplatBits.getZExtValue(), dl, MVT::i32);
7850         SDValue VDup = DAG.getNode(ARMISD::VDUP, dl, DupVT, Const);
7851         return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, VDup);
7852       }
7853     }
7854   }
7855 
7856   // Scan through the operands to see if only one value is used.
7857   //
7858   // As an optimisation, even if more than one value is used it may be more
7859   // profitable to splat with one value then change some lanes.
7860   //
7861   // Heuristically we decide to do this if the vector has a "dominant" value,
7862   // defined as splatted to more than half of the lanes.
7863   unsigned NumElts = VT.getVectorNumElements();
7864   bool isOnlyLowElement = true;
7865   bool usesOnlyOneValue = true;
7866   bool hasDominantValue = false;
7867   bool isConstant = true;
7868 
7869   // Map of the number of times a particular SDValue appears in the
7870   // element list.
7871   DenseMap<SDValue, unsigned> ValueCounts;
7872   SDValue Value;
7873   for (unsigned i = 0; i < NumElts; ++i) {
7874     SDValue V = Op.getOperand(i);
7875     if (V.isUndef())
7876       continue;
7877     if (i > 0)
7878       isOnlyLowElement = false;
7879     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
7880       isConstant = false;
7881 
7882     ValueCounts.insert(std::make_pair(V, 0));
7883     unsigned &Count = ValueCounts[V];
7884 
7885     // Is this value dominant? (takes up more than half of the lanes)
7886     if (++Count > (NumElts / 2)) {
7887       hasDominantValue = true;
7888       Value = V;
7889     }
7890   }
7891   if (ValueCounts.size() != 1)
7892     usesOnlyOneValue = false;
7893   if (!Value.getNode() && !ValueCounts.empty())
7894     Value = ValueCounts.begin()->first;
7895 
7896   if (ValueCounts.empty())
7897     return DAG.getUNDEF(VT);
7898 
7899   // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
7900   // Keep going if we are hitting this case.
7901   if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
7902     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
7903 
7904   unsigned EltSize = VT.getScalarSizeInBits();
7905 
7906   // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
7907   // i32 and try again.
7908   if (hasDominantValue && EltSize <= 32) {
7909     if (!isConstant) {
7910       SDValue N;
7911 
7912       // If we are VDUPing a value that comes directly from a vector, that will
7913       // cause an unnecessary move to and from a GPR, where instead we could
7914       // just use VDUPLANE. We can only do this if the lane being extracted
7915       // is at a constant index, as the VDUP from lane instructions only have
7916       // constant-index forms.
7917       ConstantSDNode *constIndex;
7918       if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7919           (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
7920         // We need to create a new undef vector to use for the VDUPLANE if the
7921         // size of the vector from which we get the value is different than the
7922         // size of the vector that we need to create. We will insert the element
7923         // such that the register coalescer will remove unnecessary copies.
7924         if (VT != Value->getOperand(0).getValueType()) {
7925           unsigned index = constIndex->getAPIntValue().getLimitedValue() %
7926                              VT.getVectorNumElements();
7927           N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
7928                  DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
7929                         Value, DAG.getConstant(index, dl, MVT::i32)),
7930                            DAG.getConstant(index, dl, MVT::i32));
7931         } else
7932           N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
7933                         Value->getOperand(0), Value->getOperand(1));
7934       } else
7935         N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
7936 
7937       if (!usesOnlyOneValue) {
7938         // The dominant value was splatted as 'N', but we now have to insert
7939         // all differing elements.
7940         for (unsigned I = 0; I < NumElts; ++I) {
7941           if (Op.getOperand(I) == Value)
7942             continue;
7943           SmallVector<SDValue, 3> Ops;
7944           Ops.push_back(N);
7945           Ops.push_back(Op.getOperand(I));
7946           Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
7947           N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
7948         }
7949       }
7950       return N;
7951     }
7952     if (VT.getVectorElementType().isFloatingPoint()) {
7953       SmallVector<SDValue, 8> Ops;
7954       MVT FVT = VT.getVectorElementType().getSimpleVT();
7955       assert(FVT == MVT::f32 || FVT == MVT::f16);
7956       MVT IVT = (FVT == MVT::f32) ? MVT::i32 : MVT::i16;
7957       for (unsigned i = 0; i < NumElts; ++i)
7958         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, IVT,
7959                                   Op.getOperand(i)));
7960       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), IVT, NumElts);
7961       SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
7962       Val = LowerBUILD_VECTOR(Val, DAG, ST);
7963       if (Val.getNode())
7964         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
7965     }
7966     if (usesOnlyOneValue) {
7967       SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
7968       if (isConstant && Val.getNode())
7969         return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
7970     }
7971   }
7972 
7973   // If all elements are constants and the case above didn't get hit, fall back
7974   // to the default expansion, which will generate a load from the constant
7975   // pool.
7976   if (isConstant)
7977     return SDValue();
7978 
7979   // Reconstruct the BUILDVECTOR to one of the legal shuffles (such as vext and
7980   // vmovn). Empirical tests suggest this is rarely worth it for vectors of
7981   // length <= 2.
7982   if (NumElts >= 4)
7983     if (SDValue shuffle = ReconstructShuffle(Op, DAG))
7984       return shuffle;
7985 
7986   // Attempt to turn a buildvector of scalar fptrunc's or fpext's back into
7987   // VCVT's
7988   if (SDValue VCVT = LowerBuildVectorOfFPTrunc(Op, DAG, Subtarget))
7989     return VCVT;
7990   if (SDValue VCVT = LowerBuildVectorOfFPExt(Op, DAG, Subtarget))
7991     return VCVT;
7992 
7993   if (ST->hasNEON() && VT.is128BitVector() && VT != MVT::v2f64 && VT != MVT::v4f32) {
7994     // If we haven't found an efficient lowering, try splitting a 128-bit vector
7995     // into two 64-bit vectors; we might discover a better way to lower it.
7996     SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElts);
7997     EVT ExtVT = VT.getVectorElementType();
7998     EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElts / 2);
7999     SDValue Lower =
8000         DAG.getBuildVector(HVT, dl, makeArrayRef(&Ops[0], NumElts / 2));
8001     if (Lower.getOpcode() == ISD::BUILD_VECTOR)
8002       Lower = LowerBUILD_VECTOR(Lower, DAG, ST);
8003     SDValue Upper = DAG.getBuildVector(
8004         HVT, dl, makeArrayRef(&Ops[NumElts / 2], NumElts / 2));
8005     if (Upper.getOpcode() == ISD::BUILD_VECTOR)
8006       Upper = LowerBUILD_VECTOR(Upper, DAG, ST);
8007     if (Lower && Upper)
8008       return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lower, Upper);
8009   }
8010 
8011   // Vectors with 32- or 64-bit elements can be built by directly assigning
8012   // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
8013   // will be legalized.
8014   if (EltSize >= 32) {
8015     // Do the expansion with floating-point types, since that is what the VFP
8016     // registers are defined to use, and since i64 is not legal.
8017     EVT EltVT = EVT::getFloatingPointVT(EltSize);
8018     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
8019     SmallVector<SDValue, 8> Ops;
8020     for (unsigned i = 0; i < NumElts; ++i)
8021       Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
8022     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
8023     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
8024   }
8025 
8026   // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
8027   // know the default expansion would otherwise fall back on something even
8028   // worse. For a vector with one or two non-undef values, that's
8029   // scalar_to_vector for the elements followed by a shuffle (provided the
8030   // shuffle is valid for the target) and materialization element by element
8031   // on the stack followed by a load for everything else.
8032   if (!isConstant && !usesOnlyOneValue) {
8033     SDValue Vec = DAG.getUNDEF(VT);
8034     for (unsigned i = 0 ; i < NumElts; ++i) {
8035       SDValue V = Op.getOperand(i);
8036       if (V.isUndef())
8037         continue;
8038       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
8039       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
8040     }
8041     return Vec;
8042   }
8043 
8044   return SDValue();
8045 }
8046 
8047 // Gather data to see if the operation can be modelled as a
8048 // shuffle in combination with VEXTs.
8049 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
8050                                               SelectionDAG &DAG) const {
8051   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
8052   SDLoc dl(Op);
8053   EVT VT = Op.getValueType();
8054   unsigned NumElts = VT.getVectorNumElements();
8055 
8056   struct ShuffleSourceInfo {
8057     SDValue Vec;
8058     unsigned MinElt = std::numeric_limits<unsigned>::max();
8059     unsigned MaxElt = 0;
8060 
8061     // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
8062     // be compatible with the shuffle we intend to construct. As a result
8063     // ShuffleVec will be some sliding window into the original Vec.
8064     SDValue ShuffleVec;
8065 
8066     // Code should guarantee that element i in Vec starts at element "WindowBase
8067     // + i * WindowScale in ShuffleVec".
8068     int WindowBase = 0;
8069     int WindowScale = 1;
8070 
8071     ShuffleSourceInfo(SDValue Vec) : Vec(Vec), ShuffleVec(Vec) {}
8072 
8073     bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
8074   };
8075 
8076   // First gather all vectors used as an immediate source for this BUILD_VECTOR
8077   // node.
8078   SmallVector<ShuffleSourceInfo, 2> Sources;
8079   for (unsigned i = 0; i < NumElts; ++i) {
8080     SDValue V = Op.getOperand(i);
8081     if (V.isUndef())
8082       continue;
8083     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
8084       // A shuffle can only come from building a vector from various
8085       // elements of other vectors.
8086       return SDValue();
8087     } else if (!isa<ConstantSDNode>(V.getOperand(1))) {
8088       // Furthermore, shuffles require a constant mask, whereas extractelts
8089       // accept variable indices.
8090       return SDValue();
8091     }
8092 
8093     // Add this element source to the list if it's not already there.
8094     SDValue SourceVec = V.getOperand(0);
8095     auto Source = llvm::find(Sources, SourceVec);
8096     if (Source == Sources.end())
8097       Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
8098 
8099     // Update the minimum and maximum lane number seen.
8100     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
8101     Source->MinElt = std::min(Source->MinElt, EltNo);
8102     Source->MaxElt = std::max(Source->MaxElt, EltNo);
8103   }
8104 
8105   // Currently only do something sane when at most two source vectors
8106   // are involved.
8107   if (Sources.size() > 2)
8108     return SDValue();
8109 
8110   // Find out the smallest element size among result and two sources, and use
8111   // it as element size to build the shuffle_vector.
8112   EVT SmallestEltTy = VT.getVectorElementType();
8113   for (auto &Source : Sources) {
8114     EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
8115     if (SrcEltTy.bitsLT(SmallestEltTy))
8116       SmallestEltTy = SrcEltTy;
8117   }
8118   unsigned ResMultiplier =
8119       VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
8120   NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
8121   EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
8122 
8123   // If the source vector is too wide or too narrow, we may nevertheless be able
8124   // to construct a compatible shuffle either by concatenating it with UNDEF or
8125   // extracting a suitable range of elements.
8126   for (auto &Src : Sources) {
8127     EVT SrcVT = Src.ShuffleVec.getValueType();
8128 
8129     uint64_t SrcVTSize = SrcVT.getFixedSizeInBits();
8130     uint64_t VTSize = VT.getFixedSizeInBits();
8131     if (SrcVTSize == VTSize)
8132       continue;
8133 
8134     // This stage of the search produces a source with the same element type as
8135     // the original, but with a total width matching the BUILD_VECTOR output.
8136     EVT EltVT = SrcVT.getVectorElementType();
8137     unsigned NumSrcElts = VTSize / EltVT.getFixedSizeInBits();
8138     EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
8139 
8140     if (SrcVTSize < VTSize) {
8141       if (2 * SrcVTSize != VTSize)
8142         return SDValue();
8143       // We can pad out the smaller vector for free, so if it's part of a
8144       // shuffle...
8145       Src.ShuffleVec =
8146           DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
8147                       DAG.getUNDEF(Src.ShuffleVec.getValueType()));
8148       continue;
8149     }
8150 
8151     if (SrcVTSize != 2 * VTSize)
8152       return SDValue();
8153 
8154     if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
8155       // Span too large for a VEXT to cope
8156       return SDValue();
8157     }
8158 
8159     if (Src.MinElt >= NumSrcElts) {
8160       // The extraction can just take the second half
8161       Src.ShuffleVec =
8162           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
8163                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
8164       Src.WindowBase = -NumSrcElts;
8165     } else if (Src.MaxElt < NumSrcElts) {
8166       // The extraction can just take the first half
8167       Src.ShuffleVec =
8168           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
8169                       DAG.getConstant(0, dl, MVT::i32));
8170     } else {
8171       // An actual VEXT is needed
8172       SDValue VEXTSrc1 =
8173           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
8174                       DAG.getConstant(0, dl, MVT::i32));
8175       SDValue VEXTSrc2 =
8176           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
8177                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
8178 
8179       Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
8180                                    VEXTSrc2,
8181                                    DAG.getConstant(Src.MinElt, dl, MVT::i32));
8182       Src.WindowBase = -Src.MinElt;
8183     }
8184   }
8185 
8186   // Another possible incompatibility occurs from the vector element types. We
8187   // can fix this by bitcasting the source vectors to the same type we intend
8188   // for the shuffle.
8189   for (auto &Src : Sources) {
8190     EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
8191     if (SrcEltTy == SmallestEltTy)
8192       continue;
8193     assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
8194     Src.ShuffleVec = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, ShuffleVT, Src.ShuffleVec);
8195     Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
8196     Src.WindowBase *= Src.WindowScale;
8197   }
8198 
8199   // Final check before we try to actually produce a shuffle.
8200   LLVM_DEBUG(for (auto Src
8201                   : Sources)
8202                  assert(Src.ShuffleVec.getValueType() == ShuffleVT););
8203 
8204   // The stars all align, our next step is to produce the mask for the shuffle.
8205   SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
8206   int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
8207   for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
8208     SDValue Entry = Op.getOperand(i);
8209     if (Entry.isUndef())
8210       continue;
8211 
8212     auto Src = llvm::find(Sources, Entry.getOperand(0));
8213     int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
8214 
8215     // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
8216     // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
8217     // segment.
8218     EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
8219     int BitsDefined = std::min(OrigEltTy.getScalarSizeInBits(),
8220                                VT.getScalarSizeInBits());
8221     int LanesDefined = BitsDefined / BitsPerShuffleLane;
8222 
8223     // This source is expected to fill ResMultiplier lanes of the final shuffle,
8224     // starting at the appropriate offset.
8225     int *LaneMask = &Mask[i * ResMultiplier];
8226 
8227     int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
8228     ExtractBase += NumElts * (Src - Sources.begin());
8229     for (int j = 0; j < LanesDefined; ++j)
8230       LaneMask[j] = ExtractBase + j;
8231   }
8232 
8233 
8234   // We can't handle more than two sources. This should have already
8235   // been checked before this point.
8236   assert(Sources.size() <= 2 && "Too many sources!");
8237 
8238   SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
8239   for (unsigned i = 0; i < Sources.size(); ++i)
8240     ShuffleOps[i] = Sources[i].ShuffleVec;
8241 
8242   SDValue Shuffle = buildLegalVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
8243                                             ShuffleOps[1], Mask, DAG);
8244   if (!Shuffle)
8245     return SDValue();
8246   return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, Shuffle);
8247 }
8248 
8249 enum ShuffleOpCodes {
8250   OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
8251   OP_VREV,
8252   OP_VDUP0,
8253   OP_VDUP1,
8254   OP_VDUP2,
8255   OP_VDUP3,
8256   OP_VEXT1,
8257   OP_VEXT2,
8258   OP_VEXT3,
8259   OP_VUZPL, // VUZP, left result
8260   OP_VUZPR, // VUZP, right result
8261   OP_VZIPL, // VZIP, left result
8262   OP_VZIPR, // VZIP, right result
8263   OP_VTRNL, // VTRN, left result
8264   OP_VTRNR  // VTRN, right result
8265 };
8266 
8267 static bool isLegalMVEShuffleOp(unsigned PFEntry) {
8268   unsigned OpNum = (PFEntry >> 26) & 0x0F;
8269   switch (OpNum) {
8270   case OP_COPY:
8271   case OP_VREV:
8272   case OP_VDUP0:
8273   case OP_VDUP1:
8274   case OP_VDUP2:
8275   case OP_VDUP3:
8276     return true;
8277   }
8278   return false;
8279 }
8280 
8281 /// isShuffleMaskLegal - Targets can use this to indicate that they only
8282 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
8283 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
8284 /// are assumed to be legal.
8285 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
8286   if (VT.getVectorNumElements() == 4 &&
8287       (VT.is128BitVector() || VT.is64BitVector())) {
8288     unsigned PFIndexes[4];
8289     for (unsigned i = 0; i != 4; ++i) {
8290       if (M[i] < 0)
8291         PFIndexes[i] = 8;
8292       else
8293         PFIndexes[i] = M[i];
8294     }
8295 
8296     // Compute the index in the perfect shuffle table.
8297     unsigned PFTableIndex =
8298       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
8299     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
8300     unsigned Cost = (PFEntry >> 30);
8301 
8302     if (Cost <= 4 && (Subtarget->hasNEON() || isLegalMVEShuffleOp(PFEntry)))
8303       return true;
8304   }
8305 
8306   bool ReverseVEXT, isV_UNDEF;
8307   unsigned Imm, WhichResult;
8308 
8309   unsigned EltSize = VT.getScalarSizeInBits();
8310   if (EltSize >= 32 ||
8311       ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
8312       ShuffleVectorInst::isIdentityMask(M) ||
8313       isVREVMask(M, VT, 64) ||
8314       isVREVMask(M, VT, 32) ||
8315       isVREVMask(M, VT, 16))
8316     return true;
8317   else if (Subtarget->hasNEON() &&
8318            (isVEXTMask(M, VT, ReverseVEXT, Imm) ||
8319             isVTBLMask(M, VT) ||
8320             isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF)))
8321     return true;
8322   else if ((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
8323            isReverseMask(M, VT))
8324     return true;
8325   else if (Subtarget->hasMVEIntegerOps() &&
8326            (isVMOVNMask(M, VT, true, false) ||
8327             isVMOVNMask(M, VT, false, false) || isVMOVNMask(M, VT, true, true)))
8328     return true;
8329   else
8330     return false;
8331 }
8332 
8333 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
8334 /// the specified operations to build the shuffle.
8335 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
8336                                       SDValue RHS, SelectionDAG &DAG,
8337                                       const SDLoc &dl) {
8338   unsigned OpNum = (PFEntry >> 26) & 0x0F;
8339   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8340   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
8341 
8342   if (OpNum == OP_COPY) {
8343     if (LHSID == (1*9+2)*9+3) return LHS;
8344     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
8345     return RHS;
8346   }
8347 
8348   SDValue OpLHS, OpRHS;
8349   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
8350   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
8351   EVT VT = OpLHS.getValueType();
8352 
8353   switch (OpNum) {
8354   default: llvm_unreachable("Unknown shuffle opcode!");
8355   case OP_VREV:
8356     // VREV divides the vector in half and swaps within the half.
8357     if (VT.getVectorElementType() == MVT::i32 ||
8358         VT.getVectorElementType() == MVT::f32)
8359       return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
8360     // vrev <4 x i16> -> VREV32
8361     if (VT.getVectorElementType() == MVT::i16 ||
8362         VT.getVectorElementType() == MVT::f16)
8363       return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
8364     // vrev <4 x i8> -> VREV16
8365     assert(VT.getVectorElementType() == MVT::i8);
8366     return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
8367   case OP_VDUP0:
8368   case OP_VDUP1:
8369   case OP_VDUP2:
8370   case OP_VDUP3:
8371     return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
8372                        OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
8373   case OP_VEXT1:
8374   case OP_VEXT2:
8375   case OP_VEXT3:
8376     return DAG.getNode(ARMISD::VEXT, dl, VT,
8377                        OpLHS, OpRHS,
8378                        DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
8379   case OP_VUZPL:
8380   case OP_VUZPR:
8381     return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
8382                        OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
8383   case OP_VZIPL:
8384   case OP_VZIPR:
8385     return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
8386                        OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
8387   case OP_VTRNL:
8388   case OP_VTRNR:
8389     return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
8390                        OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
8391   }
8392 }
8393 
8394 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
8395                                        ArrayRef<int> ShuffleMask,
8396                                        SelectionDAG &DAG) {
8397   // Check to see if we can use the VTBL instruction.
8398   SDValue V1 = Op.getOperand(0);
8399   SDValue V2 = Op.getOperand(1);
8400   SDLoc DL(Op);
8401 
8402   SmallVector<SDValue, 8> VTBLMask;
8403   for (int I : ShuffleMask)
8404     VTBLMask.push_back(DAG.getConstant(I, DL, MVT::i32));
8405 
8406   if (V2.getNode()->isUndef())
8407     return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
8408                        DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
8409 
8410   return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
8411                      DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
8412 }
8413 
8414 static SDValue LowerReverse_VECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
8415   SDLoc DL(Op);
8416   EVT VT = Op.getValueType();
8417 
8418   assert((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
8419          "Expect an v8i16/v16i8 type");
8420   SDValue OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, Op.getOperand(0));
8421   // For a v16i8 type: After the VREV, we have got <7, ..., 0, 15, ..., 8>. Now,
8422   // extract the first 8 bytes into the top double word and the last 8 bytes
8423   // into the bottom double word, through a new vector shuffle that will be
8424   // turned into a VEXT on Neon, or a couple of VMOVDs on MVE.
8425   std::vector<int> NewMask;
8426   for (unsigned i = 0; i < VT.getVectorNumElements() / 2; i++)
8427     NewMask.push_back(VT.getVectorNumElements() / 2 + i);
8428   for (unsigned i = 0; i < VT.getVectorNumElements() / 2; i++)
8429     NewMask.push_back(i);
8430   return DAG.getVectorShuffle(VT, DL, OpLHS, OpLHS, NewMask);
8431 }
8432 
8433 static EVT getVectorTyFromPredicateVector(EVT VT) {
8434   switch (VT.getSimpleVT().SimpleTy) {
8435   case MVT::v2i1:
8436     return MVT::v2f64;
8437   case MVT::v4i1:
8438     return MVT::v4i32;
8439   case MVT::v8i1:
8440     return MVT::v8i16;
8441   case MVT::v16i1:
8442     return MVT::v16i8;
8443   default:
8444     llvm_unreachable("Unexpected vector predicate type");
8445   }
8446 }
8447 
8448 static SDValue PromoteMVEPredVector(SDLoc dl, SDValue Pred, EVT VT,
8449                                     SelectionDAG &DAG) {
8450   // Converting from boolean predicates to integers involves creating a vector
8451   // of all ones or all zeroes and selecting the lanes based upon the real
8452   // predicate.
8453   SDValue AllOnes =
8454       DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff), dl, MVT::i32);
8455   AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllOnes);
8456 
8457   SDValue AllZeroes =
8458       DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0x0), dl, MVT::i32);
8459   AllZeroes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllZeroes);
8460 
8461   // Get full vector type from predicate type
8462   EVT NewVT = getVectorTyFromPredicateVector(VT);
8463 
8464   SDValue RecastV1;
8465   // If the real predicate is an v8i1 or v4i1 (not v16i1) then we need to recast
8466   // this to a v16i1. This cannot be done with an ordinary bitcast because the
8467   // sizes are not the same. We have to use a MVE specific PREDICATE_CAST node,
8468   // since we know in hardware the sizes are really the same.
8469   if (VT != MVT::v16i1)
8470     RecastV1 = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v16i1, Pred);
8471   else
8472     RecastV1 = Pred;
8473 
8474   // Select either all ones or zeroes depending upon the real predicate bits.
8475   SDValue PredAsVector =
8476       DAG.getNode(ISD::VSELECT, dl, MVT::v16i8, RecastV1, AllOnes, AllZeroes);
8477 
8478   // Recast our new predicate-as-integer v16i8 vector into something
8479   // appropriate for the shuffle, i.e. v4i32 for a real v4i1 predicate.
8480   return DAG.getNode(ISD::BITCAST, dl, NewVT, PredAsVector);
8481 }
8482 
8483 static SDValue LowerVECTOR_SHUFFLE_i1(SDValue Op, SelectionDAG &DAG,
8484                                       const ARMSubtarget *ST) {
8485   EVT VT = Op.getValueType();
8486   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
8487   ArrayRef<int> ShuffleMask = SVN->getMask();
8488 
8489   assert(ST->hasMVEIntegerOps() &&
8490          "No support for vector shuffle of boolean predicates");
8491 
8492   SDValue V1 = Op.getOperand(0);
8493   SDLoc dl(Op);
8494   if (isReverseMask(ShuffleMask, VT)) {
8495     SDValue cast = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, V1);
8496     SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, cast);
8497     SDValue srl = DAG.getNode(ISD::SRL, dl, MVT::i32, rbit,
8498                               DAG.getConstant(16, dl, MVT::i32));
8499     return DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, srl);
8500   }
8501 
8502   // Until we can come up with optimised cases for every single vector
8503   // shuffle in existence we have chosen the least painful strategy. This is
8504   // to essentially promote the boolean predicate to a 8-bit integer, where
8505   // each predicate represents a byte. Then we fall back on a normal integer
8506   // vector shuffle and convert the result back into a predicate vector. In
8507   // many cases the generated code might be even better than scalar code
8508   // operating on bits. Just imagine trying to shuffle 8 arbitrary 2-bit
8509   // fields in a register into 8 other arbitrary 2-bit fields!
8510   SDValue PredAsVector = PromoteMVEPredVector(dl, V1, VT, DAG);
8511   EVT NewVT = PredAsVector.getValueType();
8512 
8513   // Do the shuffle!
8514   SDValue Shuffled = DAG.getVectorShuffle(NewVT, dl, PredAsVector,
8515                                           DAG.getUNDEF(NewVT), ShuffleMask);
8516 
8517   // Now return the result of comparing the shuffled vector with zero,
8518   // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1. For a v2i1
8519   // we convert to a v4i1 compare to fill in the two halves of the i64 as i32s.
8520   if (VT == MVT::v2i1) {
8521     SDValue BC = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Shuffled);
8522     SDValue Cmp = DAG.getNode(ARMISD::VCMPZ, dl, MVT::v4i1, BC,
8523                               DAG.getConstant(ARMCC::NE, dl, MVT::i32));
8524     return DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v2i1, Cmp);
8525   }
8526   return DAG.getNode(ARMISD::VCMPZ, dl, VT, Shuffled,
8527                      DAG.getConstant(ARMCC::NE, dl, MVT::i32));
8528 }
8529 
8530 static SDValue LowerVECTOR_SHUFFLEUsingMovs(SDValue Op,
8531                                             ArrayRef<int> ShuffleMask,
8532                                             SelectionDAG &DAG) {
8533   // Attempt to lower the vector shuffle using as many whole register movs as
8534   // possible. This is useful for types smaller than 32bits, which would
8535   // often otherwise become a series for grp movs.
8536   SDLoc dl(Op);
8537   EVT VT = Op.getValueType();
8538   if (VT.getScalarSizeInBits() >= 32)
8539     return SDValue();
8540 
8541   assert((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
8542          "Unexpected vector type");
8543   int NumElts = VT.getVectorNumElements();
8544   int QuarterSize = NumElts / 4;
8545   // The four final parts of the vector, as i32's
8546   SDValue Parts[4];
8547 
8548   // Look for full lane vmovs like <0,1,2,3> or <u,5,6,7> etc, (but not
8549   // <u,u,u,u>), returning the vmov lane index
8550   auto getMovIdx = [](ArrayRef<int> ShuffleMask, int Start, int Length) {
8551     // Detect which mov lane this would be from the first non-undef element.
8552     int MovIdx = -1;
8553     for (int i = 0; i < Length; i++) {
8554       if (ShuffleMask[Start + i] >= 0) {
8555         if (ShuffleMask[Start + i] % Length != i)
8556           return -1;
8557         MovIdx = ShuffleMask[Start + i] / Length;
8558         break;
8559       }
8560     }
8561     // If all items are undef, leave this for other combines
8562     if (MovIdx == -1)
8563       return -1;
8564     // Check the remaining values are the correct part of the same mov
8565     for (int i = 1; i < Length; i++) {
8566       if (ShuffleMask[Start + i] >= 0 &&
8567           (ShuffleMask[Start + i] / Length != MovIdx ||
8568            ShuffleMask[Start + i] % Length != i))
8569         return -1;
8570     }
8571     return MovIdx;
8572   };
8573 
8574   for (int Part = 0; Part < 4; ++Part) {
8575     // Does this part look like a mov
8576     int Elt = getMovIdx(ShuffleMask, Part * QuarterSize, QuarterSize);
8577     if (Elt != -1) {
8578       SDValue Input = Op->getOperand(0);
8579       if (Elt >= 4) {
8580         Input = Op->getOperand(1);
8581         Elt -= 4;
8582       }
8583       SDValue BitCast = DAG.getBitcast(MVT::v4f32, Input);
8584       Parts[Part] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, BitCast,
8585                                 DAG.getConstant(Elt, dl, MVT::i32));
8586     }
8587   }
8588 
8589   // Nothing interesting found, just return
8590   if (!Parts[0] && !Parts[1] && !Parts[2] && !Parts[3])
8591     return SDValue();
8592 
8593   // The other parts need to be built with the old shuffle vector, cast to a
8594   // v4i32 and extract_vector_elts
8595   if (!Parts[0] || !Parts[1] || !Parts[2] || !Parts[3]) {
8596     SmallVector<int, 16> NewShuffleMask;
8597     for (int Part = 0; Part < 4; ++Part)
8598       for (int i = 0; i < QuarterSize; i++)
8599         NewShuffleMask.push_back(
8600             Parts[Part] ? -1 : ShuffleMask[Part * QuarterSize + i]);
8601     SDValue NewShuffle = DAG.getVectorShuffle(
8602         VT, dl, Op->getOperand(0), Op->getOperand(1), NewShuffleMask);
8603     SDValue BitCast = DAG.getBitcast(MVT::v4f32, NewShuffle);
8604 
8605     for (int Part = 0; Part < 4; ++Part)
8606       if (!Parts[Part])
8607         Parts[Part] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32,
8608                                   BitCast, DAG.getConstant(Part, dl, MVT::i32));
8609   }
8610   // Build a vector out of the various parts and bitcast it back to the original
8611   // type.
8612   SDValue NewVec = DAG.getNode(ARMISD::BUILD_VECTOR, dl, MVT::v4f32, Parts);
8613   return DAG.getBitcast(VT, NewVec);
8614 }
8615 
8616 static SDValue LowerVECTOR_SHUFFLEUsingOneOff(SDValue Op,
8617                                               ArrayRef<int> ShuffleMask,
8618                                               SelectionDAG &DAG) {
8619   SDValue V1 = Op.getOperand(0);
8620   SDValue V2 = Op.getOperand(1);
8621   EVT VT = Op.getValueType();
8622   unsigned NumElts = VT.getVectorNumElements();
8623 
8624   // An One-Off Identity mask is one that is mostly an identity mask from as
8625   // single source but contains a single element out-of-place, either from a
8626   // different vector or from another position in the same vector. As opposed to
8627   // lowering this via a ARMISD::BUILD_VECTOR we can generate an extract/insert
8628   // pair directly.
8629   auto isOneOffIdentityMask = [](ArrayRef<int> Mask, EVT VT, int BaseOffset,
8630                                  int &OffElement) {
8631     OffElement = -1;
8632     int NonUndef = 0;
8633     for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
8634       if (Mask[i] == -1)
8635         continue;
8636       NonUndef++;
8637       if (Mask[i] != i + BaseOffset) {
8638         if (OffElement == -1)
8639           OffElement = i;
8640         else
8641           return false;
8642       }
8643     }
8644     return NonUndef > 2 && OffElement != -1;
8645   };
8646   int OffElement;
8647   SDValue VInput;
8648   if (isOneOffIdentityMask(ShuffleMask, VT, 0, OffElement))
8649     VInput = V1;
8650   else if (isOneOffIdentityMask(ShuffleMask, VT, NumElts, OffElement))
8651     VInput = V2;
8652   else
8653     return SDValue();
8654 
8655   SDLoc dl(Op);
8656   EVT SVT = VT.getScalarType() == MVT::i8 || VT.getScalarType() == MVT::i16
8657                 ? MVT::i32
8658                 : VT.getScalarType();
8659   SDValue Elt = DAG.getNode(
8660       ISD::EXTRACT_VECTOR_ELT, dl, SVT,
8661       ShuffleMask[OffElement] < (int)NumElts ? V1 : V2,
8662       DAG.getVectorIdxConstant(ShuffleMask[OffElement] % NumElts, dl));
8663   return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, VInput, Elt,
8664                      DAG.getVectorIdxConstant(OffElement % NumElts, dl));
8665 }
8666 
8667 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
8668                                    const ARMSubtarget *ST) {
8669   SDValue V1 = Op.getOperand(0);
8670   SDValue V2 = Op.getOperand(1);
8671   SDLoc dl(Op);
8672   EVT VT = Op.getValueType();
8673   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
8674   unsigned EltSize = VT.getScalarSizeInBits();
8675 
8676   if (ST->hasMVEIntegerOps() && EltSize == 1)
8677     return LowerVECTOR_SHUFFLE_i1(Op, DAG, ST);
8678 
8679   // Convert shuffles that are directly supported on NEON to target-specific
8680   // DAG nodes, instead of keeping them as shuffles and matching them again
8681   // during code selection.  This is more efficient and avoids the possibility
8682   // of inconsistencies between legalization and selection.
8683   // FIXME: floating-point vectors should be canonicalized to integer vectors
8684   // of the same time so that they get CSEd properly.
8685   ArrayRef<int> ShuffleMask = SVN->getMask();
8686 
8687   if (EltSize <= 32) {
8688     if (SVN->isSplat()) {
8689       int Lane = SVN->getSplatIndex();
8690       // If this is undef splat, generate it via "just" vdup, if possible.
8691       if (Lane == -1) Lane = 0;
8692 
8693       // Test if V1 is a SCALAR_TO_VECTOR.
8694       if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
8695         return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
8696       }
8697       // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
8698       // (and probably will turn into a SCALAR_TO_VECTOR once legalization
8699       // reaches it).
8700       if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
8701           !isa<ConstantSDNode>(V1.getOperand(0))) {
8702         bool IsScalarToVector = true;
8703         for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
8704           if (!V1.getOperand(i).isUndef()) {
8705             IsScalarToVector = false;
8706             break;
8707           }
8708         if (IsScalarToVector)
8709           return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
8710       }
8711       return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
8712                          DAG.getConstant(Lane, dl, MVT::i32));
8713     }
8714 
8715     bool ReverseVEXT = false;
8716     unsigned Imm = 0;
8717     if (ST->hasNEON() && isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
8718       if (ReverseVEXT)
8719         std::swap(V1, V2);
8720       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
8721                          DAG.getConstant(Imm, dl, MVT::i32));
8722     }
8723 
8724     if (isVREVMask(ShuffleMask, VT, 64))
8725       return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
8726     if (isVREVMask(ShuffleMask, VT, 32))
8727       return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
8728     if (isVREVMask(ShuffleMask, VT, 16))
8729       return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
8730 
8731     if (ST->hasNEON() && V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
8732       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
8733                          DAG.getConstant(Imm, dl, MVT::i32));
8734     }
8735 
8736     // Check for Neon shuffles that modify both input vectors in place.
8737     // If both results are used, i.e., if there are two shuffles with the same
8738     // source operands and with masks corresponding to both results of one of
8739     // these operations, DAG memoization will ensure that a single node is
8740     // used for both shuffles.
8741     unsigned WhichResult = 0;
8742     bool isV_UNDEF = false;
8743     if (ST->hasNEON()) {
8744       if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
8745               ShuffleMask, VT, WhichResult, isV_UNDEF)) {
8746         if (isV_UNDEF)
8747           V2 = V1;
8748         return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
8749             .getValue(WhichResult);
8750       }
8751     }
8752     if (ST->hasMVEIntegerOps()) {
8753       if (isVMOVNMask(ShuffleMask, VT, false, false))
8754         return DAG.getNode(ARMISD::VMOVN, dl, VT, V2, V1,
8755                            DAG.getConstant(0, dl, MVT::i32));
8756       if (isVMOVNMask(ShuffleMask, VT, true, false))
8757         return DAG.getNode(ARMISD::VMOVN, dl, VT, V1, V2,
8758                            DAG.getConstant(1, dl, MVT::i32));
8759       if (isVMOVNMask(ShuffleMask, VT, true, true))
8760         return DAG.getNode(ARMISD::VMOVN, dl, VT, V1, V1,
8761                            DAG.getConstant(1, dl, MVT::i32));
8762     }
8763 
8764     // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
8765     // shuffles that produce a result larger than their operands with:
8766     //   shuffle(concat(v1, undef), concat(v2, undef))
8767     // ->
8768     //   shuffle(concat(v1, v2), undef)
8769     // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
8770     //
8771     // This is useful in the general case, but there are special cases where
8772     // native shuffles produce larger results: the two-result ops.
8773     //
8774     // Look through the concat when lowering them:
8775     //   shuffle(concat(v1, v2), undef)
8776     // ->
8777     //   concat(VZIP(v1, v2):0, :1)
8778     //
8779     if (ST->hasNEON() && V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) {
8780       SDValue SubV1 = V1->getOperand(0);
8781       SDValue SubV2 = V1->getOperand(1);
8782       EVT SubVT = SubV1.getValueType();
8783 
8784       // We expect these to have been canonicalized to -1.
8785       assert(llvm::all_of(ShuffleMask, [&](int i) {
8786         return i < (int)VT.getVectorNumElements();
8787       }) && "Unexpected shuffle index into UNDEF operand!");
8788 
8789       if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
8790               ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
8791         if (isV_UNDEF)
8792           SubV2 = SubV1;
8793         assert((WhichResult == 0) &&
8794                "In-place shuffle of concat can only have one result!");
8795         SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
8796                                   SubV1, SubV2);
8797         return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
8798                            Res.getValue(1));
8799       }
8800     }
8801   }
8802 
8803   if (ST->hasMVEIntegerOps() && EltSize <= 32)
8804     if (SDValue V = LowerVECTOR_SHUFFLEUsingOneOff(Op, ShuffleMask, DAG))
8805       return V;
8806 
8807   // If the shuffle is not directly supported and it has 4 elements, use
8808   // the PerfectShuffle-generated table to synthesize it from other shuffles.
8809   unsigned NumElts = VT.getVectorNumElements();
8810   if (NumElts == 4) {
8811     unsigned PFIndexes[4];
8812     for (unsigned i = 0; i != 4; ++i) {
8813       if (ShuffleMask[i] < 0)
8814         PFIndexes[i] = 8;
8815       else
8816         PFIndexes[i] = ShuffleMask[i];
8817     }
8818 
8819     // Compute the index in the perfect shuffle table.
8820     unsigned PFTableIndex =
8821       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
8822     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
8823     unsigned Cost = (PFEntry >> 30);
8824 
8825     if (Cost <= 4) {
8826       if (ST->hasNEON())
8827         return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8828       else if (isLegalMVEShuffleOp(PFEntry)) {
8829         unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8830         unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
8831         unsigned PFEntryLHS = PerfectShuffleTable[LHSID];
8832         unsigned PFEntryRHS = PerfectShuffleTable[RHSID];
8833         if (isLegalMVEShuffleOp(PFEntryLHS) && isLegalMVEShuffleOp(PFEntryRHS))
8834           return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8835       }
8836     }
8837   }
8838 
8839   // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
8840   if (EltSize >= 32) {
8841     // Do the expansion with floating-point types, since that is what the VFP
8842     // registers are defined to use, and since i64 is not legal.
8843     EVT EltVT = EVT::getFloatingPointVT(EltSize);
8844     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
8845     V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
8846     V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
8847     SmallVector<SDValue, 8> Ops;
8848     for (unsigned i = 0; i < NumElts; ++i) {
8849       if (ShuffleMask[i] < 0)
8850         Ops.push_back(DAG.getUNDEF(EltVT));
8851       else
8852         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
8853                                   ShuffleMask[i] < (int)NumElts ? V1 : V2,
8854                                   DAG.getConstant(ShuffleMask[i] & (NumElts-1),
8855                                                   dl, MVT::i32)));
8856     }
8857     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
8858     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
8859   }
8860 
8861   if ((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
8862       isReverseMask(ShuffleMask, VT))
8863     return LowerReverse_VECTOR_SHUFFLE(Op, DAG);
8864 
8865   if (ST->hasNEON() && VT == MVT::v8i8)
8866     if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG))
8867       return NewOp;
8868 
8869   if (ST->hasMVEIntegerOps())
8870     if (SDValue NewOp = LowerVECTOR_SHUFFLEUsingMovs(Op, ShuffleMask, DAG))
8871       return NewOp;
8872 
8873   return SDValue();
8874 }
8875 
8876 static SDValue LowerINSERT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG,
8877                                          const ARMSubtarget *ST) {
8878   EVT VecVT = Op.getOperand(0).getValueType();
8879   SDLoc dl(Op);
8880 
8881   assert(ST->hasMVEIntegerOps() &&
8882          "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
8883 
8884   SDValue Conv =
8885       DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0));
8886   unsigned Lane = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
8887   unsigned LaneWidth =
8888       getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8;
8889   unsigned Mask = ((1 << LaneWidth) - 1) << Lane * LaneWidth;
8890   SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i32,
8891                             Op.getOperand(1), DAG.getValueType(MVT::i1));
8892   SDValue BFI = DAG.getNode(ARMISD::BFI, dl, MVT::i32, Conv, Ext,
8893                             DAG.getConstant(~Mask, dl, MVT::i32));
8894   return DAG.getNode(ARMISD::PREDICATE_CAST, dl, Op.getValueType(), BFI);
8895 }
8896 
8897 SDValue ARMTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
8898                                                   SelectionDAG &DAG) const {
8899   // INSERT_VECTOR_ELT is legal only for immediate indexes.
8900   SDValue Lane = Op.getOperand(2);
8901   if (!isa<ConstantSDNode>(Lane))
8902     return SDValue();
8903 
8904   SDValue Elt = Op.getOperand(1);
8905   EVT EltVT = Elt.getValueType();
8906 
8907   if (Subtarget->hasMVEIntegerOps() &&
8908       Op.getValueType().getScalarSizeInBits() == 1)
8909     return LowerINSERT_VECTOR_ELT_i1(Op, DAG, Subtarget);
8910 
8911   if (getTypeAction(*DAG.getContext(), EltVT) ==
8912       TargetLowering::TypePromoteFloat) {
8913     // INSERT_VECTOR_ELT doesn't want f16 operands promoting to f32,
8914     // but the type system will try to do that if we don't intervene.
8915     // Reinterpret any such vector-element insertion as one with the
8916     // corresponding integer types.
8917 
8918     SDLoc dl(Op);
8919 
8920     EVT IEltVT = MVT::getIntegerVT(EltVT.getScalarSizeInBits());
8921     assert(getTypeAction(*DAG.getContext(), IEltVT) !=
8922            TargetLowering::TypePromoteFloat);
8923 
8924     SDValue VecIn = Op.getOperand(0);
8925     EVT VecVT = VecIn.getValueType();
8926     EVT IVecVT = EVT::getVectorVT(*DAG.getContext(), IEltVT,
8927                                   VecVT.getVectorNumElements());
8928 
8929     SDValue IElt = DAG.getNode(ISD::BITCAST, dl, IEltVT, Elt);
8930     SDValue IVecIn = DAG.getNode(ISD::BITCAST, dl, IVecVT, VecIn);
8931     SDValue IVecOut = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, IVecVT,
8932                                   IVecIn, IElt, Lane);
8933     return DAG.getNode(ISD::BITCAST, dl, VecVT, IVecOut);
8934   }
8935 
8936   return Op;
8937 }
8938 
8939 static SDValue LowerEXTRACT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG,
8940                                           const ARMSubtarget *ST) {
8941   EVT VecVT = Op.getOperand(0).getValueType();
8942   SDLoc dl(Op);
8943 
8944   assert(ST->hasMVEIntegerOps() &&
8945          "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
8946 
8947   SDValue Conv =
8948       DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0));
8949   unsigned Lane = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
8950   unsigned LaneWidth =
8951       getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8;
8952   SDValue Shift = DAG.getNode(ISD::SRL, dl, MVT::i32, Conv,
8953                               DAG.getConstant(Lane * LaneWidth, dl, MVT::i32));
8954   return Shift;
8955 }
8956 
8957 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG,
8958                                        const ARMSubtarget *ST) {
8959   // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
8960   SDValue Lane = Op.getOperand(1);
8961   if (!isa<ConstantSDNode>(Lane))
8962     return SDValue();
8963 
8964   SDValue Vec = Op.getOperand(0);
8965   EVT VT = Vec.getValueType();
8966 
8967   if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
8968     return LowerEXTRACT_VECTOR_ELT_i1(Op, DAG, ST);
8969 
8970   if (Op.getValueType() == MVT::i32 && Vec.getScalarValueSizeInBits() < 32) {
8971     SDLoc dl(Op);
8972     return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
8973   }
8974 
8975   return Op;
8976 }
8977 
8978 static SDValue LowerCONCAT_VECTORS_i1(SDValue Op, SelectionDAG &DAG,
8979                                       const ARMSubtarget *ST) {
8980   SDLoc dl(Op);
8981   assert(Op.getValueType().getScalarSizeInBits() == 1 &&
8982          "Unexpected custom CONCAT_VECTORS lowering");
8983   assert(isPowerOf2_32(Op.getNumOperands()) &&
8984          "Unexpected custom CONCAT_VECTORS lowering");
8985   assert(ST->hasMVEIntegerOps() &&
8986          "CONCAT_VECTORS lowering only supported for MVE");
8987 
8988   auto ConcatPair = [&](SDValue V1, SDValue V2) {
8989     EVT Op1VT = V1.getValueType();
8990     EVT Op2VT = V2.getValueType();
8991     assert(Op1VT == Op2VT && "Operand types don't match!");
8992     EVT VT = Op1VT.getDoubleNumVectorElementsVT(*DAG.getContext());
8993 
8994     SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG);
8995     SDValue NewV2 = PromoteMVEPredVector(dl, V2, Op2VT, DAG);
8996 
8997     // We now have Op1 + Op2 promoted to vectors of integers, where v8i1 gets
8998     // promoted to v8i16, etc.
8999     MVT ElType =
9000         getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT();
9001     unsigned NumElts = 2 * Op1VT.getVectorNumElements();
9002 
9003     // Extract the vector elements from Op1 and Op2 one by one and truncate them
9004     // to be the right size for the destination. For example, if Op1 is v4i1
9005     // then the promoted vector is v4i32. The result of concatentation gives a
9006     // v8i1, which when promoted is v8i16. That means each i32 element from Op1
9007     // needs truncating to i16 and inserting in the result.
9008     EVT ConcatVT = MVT::getVectorVT(ElType, NumElts);
9009     SDValue ConVec = DAG.getNode(ISD::UNDEF, dl, ConcatVT);
9010     auto ExtractInto = [&DAG, &dl](SDValue NewV, SDValue ConVec, unsigned &j) {
9011       EVT NewVT = NewV.getValueType();
9012       EVT ConcatVT = ConVec.getValueType();
9013       for (unsigned i = 0, e = NewVT.getVectorNumElements(); i < e; i++, j++) {
9014         SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV,
9015                                   DAG.getIntPtrConstant(i, dl));
9016         ConVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ConcatVT, ConVec, Elt,
9017                              DAG.getConstant(j, dl, MVT::i32));
9018       }
9019       return ConVec;
9020     };
9021     unsigned j = 0;
9022     ConVec = ExtractInto(NewV1, ConVec, j);
9023     ConVec = ExtractInto(NewV2, ConVec, j);
9024 
9025     // Now return the result of comparing the subvector with zero, which will
9026     // generate a real predicate, i.e. v4i1, v8i1 or v16i1. For a v2i1 we
9027     // convert to a v4i1 compare to fill in the two halves of the i64 as i32s.
9028     if (VT == MVT::v2i1) {
9029       SDValue BC = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, ConVec);
9030       SDValue Cmp = DAG.getNode(ARMISD::VCMPZ, dl, MVT::v4i1, BC,
9031                                 DAG.getConstant(ARMCC::NE, dl, MVT::i32));
9032       return DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v2i1, Cmp);
9033     }
9034     return DAG.getNode(ARMISD::VCMPZ, dl, VT, ConVec,
9035                        DAG.getConstant(ARMCC::NE, dl, MVT::i32));
9036   };
9037 
9038   // Concat each pair of subvectors and pack into the lower half of the array.
9039   SmallVector<SDValue> ConcatOps(Op->op_begin(), Op->op_end());
9040   while (ConcatOps.size() > 1) {
9041     for (unsigned I = 0, E = ConcatOps.size(); I != E; I += 2) {
9042       SDValue V1 = ConcatOps[I];
9043       SDValue V2 = ConcatOps[I + 1];
9044       ConcatOps[I / 2] = ConcatPair(V1, V2);
9045     }
9046     ConcatOps.resize(ConcatOps.size() / 2);
9047   }
9048   return ConcatOps[0];
9049 }
9050 
9051 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG,
9052                                    const ARMSubtarget *ST) {
9053   EVT VT = Op->getValueType(0);
9054   if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
9055     return LowerCONCAT_VECTORS_i1(Op, DAG, ST);
9056 
9057   // The only time a CONCAT_VECTORS operation can have legal types is when
9058   // two 64-bit vectors are concatenated to a 128-bit vector.
9059   assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
9060          "unexpected CONCAT_VECTORS");
9061   SDLoc dl(Op);
9062   SDValue Val = DAG.getUNDEF(MVT::v2f64);
9063   SDValue Op0 = Op.getOperand(0);
9064   SDValue Op1 = Op.getOperand(1);
9065   if (!Op0.isUndef())
9066     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
9067                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
9068                       DAG.getIntPtrConstant(0, dl));
9069   if (!Op1.isUndef())
9070     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
9071                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
9072                       DAG.getIntPtrConstant(1, dl));
9073   return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
9074 }
9075 
9076 static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG,
9077                                       const ARMSubtarget *ST) {
9078   SDValue V1 = Op.getOperand(0);
9079   SDValue V2 = Op.getOperand(1);
9080   SDLoc dl(Op);
9081   EVT VT = Op.getValueType();
9082   EVT Op1VT = V1.getValueType();
9083   unsigned NumElts = VT.getVectorNumElements();
9084   unsigned Index = cast<ConstantSDNode>(V2)->getZExtValue();
9085 
9086   assert(VT.getScalarSizeInBits() == 1 &&
9087          "Unexpected custom EXTRACT_SUBVECTOR lowering");
9088   assert(ST->hasMVEIntegerOps() &&
9089          "EXTRACT_SUBVECTOR lowering only supported for MVE");
9090 
9091   SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG);
9092 
9093   // We now have Op1 promoted to a vector of integers, where v8i1 gets
9094   // promoted to v8i16, etc.
9095 
9096   MVT ElType = getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT();
9097 
9098   if (NumElts == 2) {
9099     EVT SubVT = MVT::v4i32;
9100     SDValue SubVec = DAG.getNode(ISD::UNDEF, dl, SubVT);
9101     for (unsigned i = Index, j = 0; i < (Index + NumElts); i++, j += 2) {
9102       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV1,
9103                                 DAG.getIntPtrConstant(i, dl));
9104       SubVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubVT, SubVec, Elt,
9105                            DAG.getConstant(j, dl, MVT::i32));
9106       SubVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubVT, SubVec, Elt,
9107                            DAG.getConstant(j + 1, dl, MVT::i32));
9108     }
9109     SDValue Cmp = DAG.getNode(ARMISD::VCMPZ, dl, MVT::v4i1, SubVec,
9110                               DAG.getConstant(ARMCC::NE, dl, MVT::i32));
9111     return DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v2i1, Cmp);
9112   }
9113 
9114   EVT SubVT = MVT::getVectorVT(ElType, NumElts);
9115   SDValue SubVec = DAG.getNode(ISD::UNDEF, dl, SubVT);
9116   for (unsigned i = Index, j = 0; i < (Index + NumElts); i++, j++) {
9117     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV1,
9118                               DAG.getIntPtrConstant(i, dl));
9119     SubVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubVT, SubVec, Elt,
9120                          DAG.getConstant(j, dl, MVT::i32));
9121   }
9122 
9123   // Now return the result of comparing the subvector with zero,
9124   // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
9125   return DAG.getNode(ARMISD::VCMPZ, dl, VT, SubVec,
9126                      DAG.getConstant(ARMCC::NE, dl, MVT::i32));
9127 }
9128 
9129 // Turn a truncate into a predicate (an i1 vector) into icmp(and(x, 1), 0).
9130 static SDValue LowerTruncatei1(SDNode *N, SelectionDAG &DAG,
9131                                const ARMSubtarget *ST) {
9132   assert(ST->hasMVEIntegerOps() && "Expected MVE!");
9133   EVT VT = N->getValueType(0);
9134   assert((VT == MVT::v16i1 || VT == MVT::v8i1 || VT == MVT::v4i1) &&
9135          "Expected a vector i1 type!");
9136   SDValue Op = N->getOperand(0);
9137   EVT FromVT = Op.getValueType();
9138   SDLoc DL(N);
9139 
9140   SDValue And =
9141       DAG.getNode(ISD::AND, DL, FromVT, Op, DAG.getConstant(1, DL, FromVT));
9142   return DAG.getNode(ISD::SETCC, DL, VT, And, DAG.getConstant(0, DL, FromVT),
9143                      DAG.getCondCode(ISD::SETNE));
9144 }
9145 
9146 static SDValue LowerTruncate(SDNode *N, SelectionDAG &DAG,
9147                              const ARMSubtarget *Subtarget) {
9148   if (!Subtarget->hasMVEIntegerOps())
9149     return SDValue();
9150 
9151   EVT ToVT = N->getValueType(0);
9152   if (ToVT.getScalarType() == MVT::i1)
9153     return LowerTruncatei1(N, DAG, Subtarget);
9154 
9155   // MVE does not have a single instruction to perform the truncation of a v4i32
9156   // into the lower half of a v8i16, in the same way that a NEON vmovn would.
9157   // Most of the instructions in MVE follow the 'Beats' system, where moving
9158   // values from different lanes is usually something that the instructions
9159   // avoid.
9160   //
9161   // Instead it has top/bottom instructions such as VMOVLT/B and VMOVNT/B,
9162   // which take a the top/bottom half of a larger lane and extend it (or do the
9163   // opposite, truncating into the top/bottom lane from a larger lane). Note
9164   // that because of the way we widen lanes, a v4i16 is really a v4i32 using the
9165   // bottom 16bits from each vector lane. This works really well with T/B
9166   // instructions, but that doesn't extend to v8i32->v8i16 where the lanes need
9167   // to move order.
9168   //
9169   // But truncates and sext/zext are always going to be fairly common from llvm.
9170   // We have several options for how to deal with them:
9171   // - Wherever possible combine them into an instruction that makes them
9172   //   "free". This includes loads/stores, which can perform the trunc as part
9173   //   of the memory operation. Or certain shuffles that can be turned into
9174   //   VMOVN/VMOVL.
9175   // - Lane Interleaving to transform blocks surrounded by ext/trunc. So
9176   //   trunc(mul(sext(a), sext(b))) may become
9177   //   VMOVNT(VMUL(VMOVLB(a), VMOVLB(b)), VMUL(VMOVLT(a), VMOVLT(b))). (Which in
9178   //   this case can use VMULL). This is performed in the
9179   //   MVELaneInterleavingPass.
9180   // - Otherwise we have an option. By default we would expand the
9181   //   zext/sext/trunc into a series of lane extract/inserts going via GPR
9182   //   registers. One for each vector lane in the vector. This can obviously be
9183   //   very expensive.
9184   // - The other option is to use the fact that loads/store can extend/truncate
9185   //   to turn a trunc into two truncating stack stores and a stack reload. This
9186   //   becomes 3 back-to-back memory operations, but at least that is less than
9187   //   all the insert/extracts.
9188   //
9189   // In order to do the last, we convert certain trunc's into MVETRUNC, which
9190   // are either optimized where they can be, or eventually lowered into stack
9191   // stores/loads. This prevents us from splitting a v8i16 trunc into two stores
9192   // two early, where other instructions would be better, and stops us from
9193   // having to reconstruct multiple buildvector shuffles into loads/stores.
9194   if (ToVT != MVT::v8i16 && ToVT != MVT::v16i8)
9195     return SDValue();
9196   EVT FromVT = N->getOperand(0).getValueType();
9197   if (FromVT != MVT::v8i32 && FromVT != MVT::v16i16)
9198     return SDValue();
9199 
9200   SDValue Lo, Hi;
9201   std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0);
9202   SDLoc DL(N);
9203   return DAG.getNode(ARMISD::MVETRUNC, DL, ToVT, Lo, Hi);
9204 }
9205 
9206 static SDValue LowerVectorExtend(SDNode *N, SelectionDAG &DAG,
9207                                  const ARMSubtarget *Subtarget) {
9208   if (!Subtarget->hasMVEIntegerOps())
9209     return SDValue();
9210 
9211   // See LowerTruncate above for an explanation of MVEEXT/MVETRUNC.
9212 
9213   EVT ToVT = N->getValueType(0);
9214   if (ToVT != MVT::v16i32 && ToVT != MVT::v8i32 && ToVT != MVT::v16i16)
9215     return SDValue();
9216   SDValue Op = N->getOperand(0);
9217   EVT FromVT = Op.getValueType();
9218   if (FromVT != MVT::v8i16 && FromVT != MVT::v16i8)
9219     return SDValue();
9220 
9221   SDLoc DL(N);
9222   EVT ExtVT = ToVT.getHalfNumVectorElementsVT(*DAG.getContext());
9223   if (ToVT.getScalarType() == MVT::i32 && FromVT.getScalarType() == MVT::i8)
9224     ExtVT = MVT::v8i16;
9225 
9226   unsigned Opcode =
9227       N->getOpcode() == ISD::SIGN_EXTEND ? ARMISD::MVESEXT : ARMISD::MVEZEXT;
9228   SDValue Ext = DAG.getNode(Opcode, DL, DAG.getVTList(ExtVT, ExtVT), Op);
9229   SDValue Ext1 = Ext.getValue(1);
9230 
9231   if (ToVT.getScalarType() == MVT::i32 && FromVT.getScalarType() == MVT::i8) {
9232     Ext = DAG.getNode(N->getOpcode(), DL, MVT::v8i32, Ext);
9233     Ext1 = DAG.getNode(N->getOpcode(), DL, MVT::v8i32, Ext1);
9234   }
9235 
9236   return DAG.getNode(ISD::CONCAT_VECTORS, DL, ToVT, Ext, Ext1);
9237 }
9238 
9239 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
9240 /// element has been zero/sign-extended, depending on the isSigned parameter,
9241 /// from an integer type half its size.
9242 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
9243                                    bool isSigned) {
9244   // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
9245   EVT VT = N->getValueType(0);
9246   if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
9247     SDNode *BVN = N->getOperand(0).getNode();
9248     if (BVN->getValueType(0) != MVT::v4i32 ||
9249         BVN->getOpcode() != ISD::BUILD_VECTOR)
9250       return false;
9251     unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9252     unsigned HiElt = 1 - LoElt;
9253     ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
9254     ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
9255     ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
9256     ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
9257     if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
9258       return false;
9259     if (isSigned) {
9260       if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
9261           Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
9262         return true;
9263     } else {
9264       if (Hi0->isZero() && Hi1->isZero())
9265         return true;
9266     }
9267     return false;
9268   }
9269 
9270   if (N->getOpcode() != ISD::BUILD_VECTOR)
9271     return false;
9272 
9273   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
9274     SDNode *Elt = N->getOperand(i).getNode();
9275     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
9276       unsigned EltSize = VT.getScalarSizeInBits();
9277       unsigned HalfSize = EltSize / 2;
9278       if (isSigned) {
9279         if (!isIntN(HalfSize, C->getSExtValue()))
9280           return false;
9281       } else {
9282         if (!isUIntN(HalfSize, C->getZExtValue()))
9283           return false;
9284       }
9285       continue;
9286     }
9287     return false;
9288   }
9289 
9290   return true;
9291 }
9292 
9293 /// isSignExtended - Check if a node is a vector value that is sign-extended
9294 /// or a constant BUILD_VECTOR with sign-extended elements.
9295 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
9296   if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
9297     return true;
9298   if (isExtendedBUILD_VECTOR(N, DAG, true))
9299     return true;
9300   return false;
9301 }
9302 
9303 /// isZeroExtended - Check if a node is a vector value that is zero-extended (or
9304 /// any-extended) or a constant BUILD_VECTOR with zero-extended elements.
9305 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
9306   if (N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::ANY_EXTEND ||
9307       ISD::isZEXTLoad(N))
9308     return true;
9309   if (isExtendedBUILD_VECTOR(N, DAG, false))
9310     return true;
9311   return false;
9312 }
9313 
9314 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
9315   if (OrigVT.getSizeInBits() >= 64)
9316     return OrigVT;
9317 
9318   assert(OrigVT.isSimple() && "Expecting a simple value type");
9319 
9320   MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
9321   switch (OrigSimpleTy) {
9322   default: llvm_unreachable("Unexpected Vector Type");
9323   case MVT::v2i8:
9324   case MVT::v2i16:
9325      return MVT::v2i32;
9326   case MVT::v4i8:
9327     return  MVT::v4i16;
9328   }
9329 }
9330 
9331 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
9332 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
9333 /// We insert the required extension here to get the vector to fill a D register.
9334 static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
9335                                             const EVT &OrigTy,
9336                                             const EVT &ExtTy,
9337                                             unsigned ExtOpcode) {
9338   // The vector originally had a size of OrigTy. It was then extended to ExtTy.
9339   // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
9340   // 64-bits we need to insert a new extension so that it will be 64-bits.
9341   assert(ExtTy.is128BitVector() && "Unexpected extension size");
9342   if (OrigTy.getSizeInBits() >= 64)
9343     return N;
9344 
9345   // Must extend size to at least 64 bits to be used as an operand for VMULL.
9346   EVT NewVT = getExtensionTo64Bits(OrigTy);
9347 
9348   return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
9349 }
9350 
9351 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
9352 /// does not do any sign/zero extension. If the original vector is less
9353 /// than 64 bits, an appropriate extension will be added after the load to
9354 /// reach a total size of 64 bits. We have to add the extension separately
9355 /// because ARM does not have a sign/zero extending load for vectors.
9356 static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
9357   EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
9358 
9359   // The load already has the right type.
9360   if (ExtendedTy == LD->getMemoryVT())
9361     return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
9362                        LD->getBasePtr(), LD->getPointerInfo(),
9363                        LD->getAlignment(), LD->getMemOperand()->getFlags());
9364 
9365   // We need to create a zextload/sextload. We cannot just create a load
9366   // followed by a zext/zext node because LowerMUL is also run during normal
9367   // operation legalization where we can't create illegal types.
9368   return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
9369                         LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
9370                         LD->getMemoryVT(), LD->getAlignment(),
9371                         LD->getMemOperand()->getFlags());
9372 }
9373 
9374 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
9375 /// ANY_EXTEND, extending load, or BUILD_VECTOR with extended elements, return
9376 /// the unextended value. The unextended vector should be 64 bits so that it can
9377 /// be used as an operand to a VMULL instruction. If the original vector size
9378 /// before extension is less than 64 bits we add a an extension to resize
9379 /// the vector to 64 bits.
9380 static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
9381   if (N->getOpcode() == ISD::SIGN_EXTEND ||
9382       N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::ANY_EXTEND)
9383     return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
9384                                         N->getOperand(0)->getValueType(0),
9385                                         N->getValueType(0),
9386                                         N->getOpcode());
9387 
9388   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
9389     assert((ISD::isSEXTLoad(LD) || ISD::isZEXTLoad(LD)) &&
9390            "Expected extending load");
9391 
9392     SDValue newLoad = SkipLoadExtensionForVMULL(LD, DAG);
9393     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), newLoad.getValue(1));
9394     unsigned Opcode = ISD::isSEXTLoad(LD) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
9395     SDValue extLoad =
9396         DAG.getNode(Opcode, SDLoc(newLoad), LD->getValueType(0), newLoad);
9397     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 0), extLoad);
9398 
9399     return newLoad;
9400   }
9401 
9402   // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
9403   // have been legalized as a BITCAST from v4i32.
9404   if (N->getOpcode() == ISD::BITCAST) {
9405     SDNode *BVN = N->getOperand(0).getNode();
9406     assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
9407            BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
9408     unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9409     return DAG.getBuildVector(
9410         MVT::v2i32, SDLoc(N),
9411         {BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)});
9412   }
9413   // Construct a new BUILD_VECTOR with elements truncated to half the size.
9414   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
9415   EVT VT = N->getValueType(0);
9416   unsigned EltSize = VT.getScalarSizeInBits() / 2;
9417   unsigned NumElts = VT.getVectorNumElements();
9418   MVT TruncVT = MVT::getIntegerVT(EltSize);
9419   SmallVector<SDValue, 8> Ops;
9420   SDLoc dl(N);
9421   for (unsigned i = 0; i != NumElts; ++i) {
9422     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
9423     const APInt &CInt = C->getAPIntValue();
9424     // Element types smaller than 32 bits are not legal, so use i32 elements.
9425     // The values are implicitly truncated so sext vs. zext doesn't matter.
9426     Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
9427   }
9428   return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
9429 }
9430 
9431 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
9432   unsigned Opcode = N->getOpcode();
9433   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
9434     SDNode *N0 = N->getOperand(0).getNode();
9435     SDNode *N1 = N->getOperand(1).getNode();
9436     return N0->hasOneUse() && N1->hasOneUse() &&
9437       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
9438   }
9439   return false;
9440 }
9441 
9442 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
9443   unsigned Opcode = N->getOpcode();
9444   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
9445     SDNode *N0 = N->getOperand(0).getNode();
9446     SDNode *N1 = N->getOperand(1).getNode();
9447     return N0->hasOneUse() && N1->hasOneUse() &&
9448       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
9449   }
9450   return false;
9451 }
9452 
9453 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
9454   // Multiplications are only custom-lowered for 128-bit vectors so that
9455   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
9456   EVT VT = Op.getValueType();
9457   assert(VT.is128BitVector() && VT.isInteger() &&
9458          "unexpected type for custom-lowering ISD::MUL");
9459   SDNode *N0 = Op.getOperand(0).getNode();
9460   SDNode *N1 = Op.getOperand(1).getNode();
9461   unsigned NewOpc = 0;
9462   bool isMLA = false;
9463   bool isN0SExt = isSignExtended(N0, DAG);
9464   bool isN1SExt = isSignExtended(N1, DAG);
9465   if (isN0SExt && isN1SExt)
9466     NewOpc = ARMISD::VMULLs;
9467   else {
9468     bool isN0ZExt = isZeroExtended(N0, DAG);
9469     bool isN1ZExt = isZeroExtended(N1, DAG);
9470     if (isN0ZExt && isN1ZExt)
9471       NewOpc = ARMISD::VMULLu;
9472     else if (isN1SExt || isN1ZExt) {
9473       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
9474       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
9475       if (isN1SExt && isAddSubSExt(N0, DAG)) {
9476         NewOpc = ARMISD::VMULLs;
9477         isMLA = true;
9478       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
9479         NewOpc = ARMISD::VMULLu;
9480         isMLA = true;
9481       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
9482         std::swap(N0, N1);
9483         NewOpc = ARMISD::VMULLu;
9484         isMLA = true;
9485       }
9486     }
9487 
9488     if (!NewOpc) {
9489       if (VT == MVT::v2i64)
9490         // Fall through to expand this.  It is not legal.
9491         return SDValue();
9492       else
9493         // Other vector multiplications are legal.
9494         return Op;
9495     }
9496   }
9497 
9498   // Legalize to a VMULL instruction.
9499   SDLoc DL(Op);
9500   SDValue Op0;
9501   SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
9502   if (!isMLA) {
9503     Op0 = SkipExtensionForVMULL(N0, DAG);
9504     assert(Op0.getValueType().is64BitVector() &&
9505            Op1.getValueType().is64BitVector() &&
9506            "unexpected types for extended operands to VMULL");
9507     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
9508   }
9509 
9510   // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
9511   // isel lowering to take advantage of no-stall back to back vmul + vmla.
9512   //   vmull q0, d4, d6
9513   //   vmlal q0, d5, d6
9514   // is faster than
9515   //   vaddl q0, d4, d5
9516   //   vmovl q1, d6
9517   //   vmul  q0, q0, q1
9518   SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
9519   SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
9520   EVT Op1VT = Op1.getValueType();
9521   return DAG.getNode(N0->getOpcode(), DL, VT,
9522                      DAG.getNode(NewOpc, DL, VT,
9523                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
9524                      DAG.getNode(NewOpc, DL, VT,
9525                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
9526 }
9527 
9528 static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl,
9529                               SelectionDAG &DAG) {
9530   // TODO: Should this propagate fast-math-flags?
9531 
9532   // Convert to float
9533   // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
9534   // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
9535   X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
9536   Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
9537   X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
9538   Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
9539   // Get reciprocal estimate.
9540   // float4 recip = vrecpeq_f32(yf);
9541   Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9542                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
9543                    Y);
9544   // Because char has a smaller range than uchar, we can actually get away
9545   // without any newton steps.  This requires that we use a weird bias
9546   // of 0xb000, however (again, this has been exhaustively tested).
9547   // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
9548   X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
9549   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
9550   Y = DAG.getConstant(0xb000, dl, MVT::v4i32);
9551   X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
9552   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
9553   // Convert back to short.
9554   X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
9555   X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
9556   return X;
9557 }
9558 
9559 static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl,
9560                                SelectionDAG &DAG) {
9561   // TODO: Should this propagate fast-math-flags?
9562 
9563   SDValue N2;
9564   // Convert to float.
9565   // float4 yf = vcvt_f32_s32(vmovl_s16(y));
9566   // float4 xf = vcvt_f32_s32(vmovl_s16(x));
9567   N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
9568   N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
9569   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
9570   N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
9571 
9572   // Use reciprocal estimate and one refinement step.
9573   // float4 recip = vrecpeq_f32(yf);
9574   // recip *= vrecpsq_f32(yf, recip);
9575   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9576                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
9577                    N1);
9578   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9579                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
9580                    N1, N2);
9581   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
9582   // Because short has a smaller range than ushort, we can actually get away
9583   // with only a single newton step.  This requires that we use a weird bias
9584   // of 89, however (again, this has been exhaustively tested).
9585   // float4 result = as_float4(as_int4(xf*recip) + 0x89);
9586   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
9587   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
9588   N1 = DAG.getConstant(0x89, dl, MVT::v4i32);
9589   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
9590   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
9591   // Convert back to integer and return.
9592   // return vmovn_s32(vcvt_s32_f32(result));
9593   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
9594   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
9595   return N0;
9596 }
9597 
9598 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG,
9599                          const ARMSubtarget *ST) {
9600   EVT VT = Op.getValueType();
9601   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
9602          "unexpected type for custom-lowering ISD::SDIV");
9603 
9604   SDLoc dl(Op);
9605   SDValue N0 = Op.getOperand(0);
9606   SDValue N1 = Op.getOperand(1);
9607   SDValue N2, N3;
9608 
9609   if (VT == MVT::v8i8) {
9610     N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
9611     N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
9612 
9613     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
9614                      DAG.getIntPtrConstant(4, dl));
9615     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
9616                      DAG.getIntPtrConstant(4, dl));
9617     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
9618                      DAG.getIntPtrConstant(0, dl));
9619     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
9620                      DAG.getIntPtrConstant(0, dl));
9621 
9622     N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
9623     N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
9624 
9625     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
9626     N0 = LowerCONCAT_VECTORS(N0, DAG, ST);
9627 
9628     N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
9629     return N0;
9630   }
9631   return LowerSDIV_v4i16(N0, N1, dl, DAG);
9632 }
9633 
9634 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG,
9635                          const ARMSubtarget *ST) {
9636   // TODO: Should this propagate fast-math-flags?
9637   EVT VT = Op.getValueType();
9638   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
9639          "unexpected type for custom-lowering ISD::UDIV");
9640 
9641   SDLoc dl(Op);
9642   SDValue N0 = Op.getOperand(0);
9643   SDValue N1 = Op.getOperand(1);
9644   SDValue N2, N3;
9645 
9646   if (VT == MVT::v8i8) {
9647     N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
9648     N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
9649 
9650     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
9651                      DAG.getIntPtrConstant(4, dl));
9652     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
9653                      DAG.getIntPtrConstant(4, dl));
9654     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
9655                      DAG.getIntPtrConstant(0, dl));
9656     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
9657                      DAG.getIntPtrConstant(0, dl));
9658 
9659     N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
9660     N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
9661 
9662     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
9663     N0 = LowerCONCAT_VECTORS(N0, DAG, ST);
9664 
9665     N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
9666                      DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
9667                                      MVT::i32),
9668                      N0);
9669     return N0;
9670   }
9671 
9672   // v4i16 sdiv ... Convert to float.
9673   // float4 yf = vcvt_f32_s32(vmovl_u16(y));
9674   // float4 xf = vcvt_f32_s32(vmovl_u16(x));
9675   N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
9676   N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
9677   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
9678   SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
9679 
9680   // Use reciprocal estimate and two refinement steps.
9681   // float4 recip = vrecpeq_f32(yf);
9682   // recip *= vrecpsq_f32(yf, recip);
9683   // recip *= vrecpsq_f32(yf, recip);
9684   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9685                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
9686                    BN1);
9687   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9688                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
9689                    BN1, N2);
9690   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
9691   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
9692                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
9693                    BN1, N2);
9694   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
9695   // Simply multiplying by the reciprocal estimate can leave us a few ulps
9696   // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
9697   // and that it will never cause us to return an answer too large).
9698   // float4 result = as_float4(as_int4(xf*recip) + 2);
9699   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
9700   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
9701   N1 = DAG.getConstant(2, dl, MVT::v4i32);
9702   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
9703   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
9704   // Convert back to integer and return.
9705   // return vmovn_u32(vcvt_s32_f32(result));
9706   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
9707   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
9708   return N0;
9709 }
9710 
9711 static SDValue LowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) {
9712   SDNode *N = Op.getNode();
9713   EVT VT = N->getValueType(0);
9714   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
9715 
9716   SDValue Carry = Op.getOperand(2);
9717 
9718   SDLoc DL(Op);
9719 
9720   SDValue Result;
9721   if (Op.getOpcode() == ISD::ADDCARRY) {
9722     // This converts the boolean value carry into the carry flag.
9723     Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
9724 
9725     // Do the addition proper using the carry flag we wanted.
9726     Result = DAG.getNode(ARMISD::ADDE, DL, VTs, Op.getOperand(0),
9727                          Op.getOperand(1), Carry);
9728 
9729     // Now convert the carry flag into a boolean value.
9730     Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
9731   } else {
9732     // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
9733     // have to invert the carry first.
9734     Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
9735                         DAG.getConstant(1, DL, MVT::i32), Carry);
9736     // This converts the boolean value carry into the carry flag.
9737     Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
9738 
9739     // Do the subtraction proper using the carry flag we wanted.
9740     Result = DAG.getNode(ARMISD::SUBE, DL, VTs, Op.getOperand(0),
9741                          Op.getOperand(1), Carry);
9742 
9743     // Now convert the carry flag into a boolean value.
9744     Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
9745     // But the carry returned by ARMISD::SUBE is not a borrow as expected
9746     // by ISD::SUBCARRY, so compute 1 - C.
9747     Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
9748                         DAG.getConstant(1, DL, MVT::i32), Carry);
9749   }
9750 
9751   // Return both values.
9752   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Carry);
9753 }
9754 
9755 SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
9756   assert(Subtarget->isTargetDarwin());
9757 
9758   // For iOS, we want to call an alternative entry point: __sincos_stret,
9759   // return values are passed via sret.
9760   SDLoc dl(Op);
9761   SDValue Arg = Op.getOperand(0);
9762   EVT ArgVT = Arg.getValueType();
9763   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9764   auto PtrVT = getPointerTy(DAG.getDataLayout());
9765 
9766   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9767   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9768 
9769   // Pair of floats / doubles used to pass the result.
9770   Type *RetTy = StructType::get(ArgTy, ArgTy);
9771   auto &DL = DAG.getDataLayout();
9772 
9773   ArgListTy Args;
9774   bool ShouldUseSRet = Subtarget->isAPCS_ABI();
9775   SDValue SRet;
9776   if (ShouldUseSRet) {
9777     // Create stack object for sret.
9778     const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
9779     const Align StackAlign = DL.getPrefTypeAlign(RetTy);
9780     int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
9781     SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
9782 
9783     ArgListEntry Entry;
9784     Entry.Node = SRet;
9785     Entry.Ty = RetTy->getPointerTo();
9786     Entry.IsSExt = false;
9787     Entry.IsZExt = false;
9788     Entry.IsSRet = true;
9789     Args.push_back(Entry);
9790     RetTy = Type::getVoidTy(*DAG.getContext());
9791   }
9792 
9793   ArgListEntry Entry;
9794   Entry.Node = Arg;
9795   Entry.Ty = ArgTy;
9796   Entry.IsSExt = false;
9797   Entry.IsZExt = false;
9798   Args.push_back(Entry);
9799 
9800   RTLIB::Libcall LC =
9801       (ArgVT == MVT::f64) ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32;
9802   const char *LibcallName = getLibcallName(LC);
9803   CallingConv::ID CC = getLibcallCallingConv(LC);
9804   SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
9805 
9806   TargetLowering::CallLoweringInfo CLI(DAG);
9807   CLI.setDebugLoc(dl)
9808       .setChain(DAG.getEntryNode())
9809       .setCallee(CC, RetTy, Callee, std::move(Args))
9810       .setDiscardResult(ShouldUseSRet);
9811   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
9812 
9813   if (!ShouldUseSRet)
9814     return CallResult.first;
9815 
9816   SDValue LoadSin =
9817       DAG.getLoad(ArgVT, dl, CallResult.second, SRet, MachinePointerInfo());
9818 
9819   // Address of cos field.
9820   SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
9821                             DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
9822   SDValue LoadCos =
9823       DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, MachinePointerInfo());
9824 
9825   SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
9826   return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
9827                      LoadSin.getValue(0), LoadCos.getValue(0));
9828 }
9829 
9830 SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
9831                                                   bool Signed,
9832                                                   SDValue &Chain) const {
9833   EVT VT = Op.getValueType();
9834   assert((VT == MVT::i32 || VT == MVT::i64) &&
9835          "unexpected type for custom lowering DIV");
9836   SDLoc dl(Op);
9837 
9838   const auto &DL = DAG.getDataLayout();
9839   const auto &TLI = DAG.getTargetLoweringInfo();
9840 
9841   const char *Name = nullptr;
9842   if (Signed)
9843     Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
9844   else
9845     Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
9846 
9847   SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
9848 
9849   ARMTargetLowering::ArgListTy Args;
9850 
9851   for (auto AI : {1, 0}) {
9852     ArgListEntry Arg;
9853     Arg.Node = Op.getOperand(AI);
9854     Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
9855     Args.push_back(Arg);
9856   }
9857 
9858   CallLoweringInfo CLI(DAG);
9859   CLI.setDebugLoc(dl)
9860     .setChain(Chain)
9861     .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
9862                ES, std::move(Args));
9863 
9864   return LowerCallTo(CLI).first;
9865 }
9866 
9867 // This is a code size optimisation: return the original SDIV node to
9868 // DAGCombiner when we don't want to expand SDIV into a sequence of
9869 // instructions, and an empty node otherwise which will cause the
9870 // SDIV to be expanded in DAGCombine.
9871 SDValue
9872 ARMTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
9873                                  SelectionDAG &DAG,
9874                                  SmallVectorImpl<SDNode *> &Created) const {
9875   // TODO: Support SREM
9876   if (N->getOpcode() != ISD::SDIV)
9877     return SDValue();
9878 
9879   const auto &ST = static_cast<const ARMSubtarget&>(DAG.getSubtarget());
9880   const bool MinSize = ST.hasMinSize();
9881   const bool HasDivide = ST.isThumb() ? ST.hasDivideInThumbMode()
9882                                       : ST.hasDivideInARMMode();
9883 
9884   // Don't touch vector types; rewriting this may lead to scalarizing
9885   // the int divs.
9886   if (N->getOperand(0).getValueType().isVector())
9887     return SDValue();
9888 
9889   // Bail if MinSize is not set, and also for both ARM and Thumb mode we need
9890   // hwdiv support for this to be really profitable.
9891   if (!(MinSize && HasDivide))
9892     return SDValue();
9893 
9894   // ARM mode is a bit simpler than Thumb: we can handle large power
9895   // of 2 immediates with 1 mov instruction; no further checks required,
9896   // just return the sdiv node.
9897   if (!ST.isThumb())
9898     return SDValue(N, 0);
9899 
9900   // In Thumb mode, immediates larger than 128 need a wide 4-byte MOV,
9901   // and thus lose the code size benefits of a MOVS that requires only 2.
9902   // TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here,
9903   // but as it's doing exactly this, it's not worth the trouble to get TTI.
9904   if (Divisor.sgt(128))
9905     return SDValue();
9906 
9907   return SDValue(N, 0);
9908 }
9909 
9910 SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
9911                                             bool Signed) const {
9912   assert(Op.getValueType() == MVT::i32 &&
9913          "unexpected type for custom lowering DIV");
9914   SDLoc dl(Op);
9915 
9916   SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
9917                                DAG.getEntryNode(), Op.getOperand(1));
9918 
9919   return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
9920 }
9921 
9922 static SDValue WinDBZCheckDenominator(SelectionDAG &DAG, SDNode *N, SDValue InChain) {
9923   SDLoc DL(N);
9924   SDValue Op = N->getOperand(1);
9925   if (N->getValueType(0) == MVT::i32)
9926     return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, Op);
9927   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
9928                            DAG.getConstant(0, DL, MVT::i32));
9929   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
9930                            DAG.getConstant(1, DL, MVT::i32));
9931   return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain,
9932                      DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi));
9933 }
9934 
9935 void ARMTargetLowering::ExpandDIV_Windows(
9936     SDValue Op, SelectionDAG &DAG, bool Signed,
9937     SmallVectorImpl<SDValue> &Results) const {
9938   const auto &DL = DAG.getDataLayout();
9939   const auto &TLI = DAG.getTargetLoweringInfo();
9940 
9941   assert(Op.getValueType() == MVT::i64 &&
9942          "unexpected type for custom lowering DIV");
9943   SDLoc dl(Op);
9944 
9945   SDValue DBZCHK = WinDBZCheckDenominator(DAG, Op.getNode(), DAG.getEntryNode());
9946 
9947   SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
9948 
9949   SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
9950   SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
9951                               DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
9952   Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
9953 
9954   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lower, Upper));
9955 }
9956 
9957 static SDValue LowerPredicateLoad(SDValue Op, SelectionDAG &DAG) {
9958   LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
9959   EVT MemVT = LD->getMemoryVT();
9960   assert((MemVT == MVT::v2i1 || MemVT == MVT::v4i1 || MemVT == MVT::v8i1 ||
9961           MemVT == MVT::v16i1) &&
9962          "Expected a predicate type!");
9963   assert(MemVT == Op.getValueType());
9964   assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
9965          "Expected a non-extending load");
9966   assert(LD->isUnindexed() && "Expected a unindexed load");
9967 
9968   // The basic MVE VLDR on a v2i1/v4i1/v8i1 actually loads the entire 16bit
9969   // predicate, with the "v4i1" bits spread out over the 16 bits loaded. We
9970   // need to make sure that 8/4/2 bits are actually loaded into the correct
9971   // place, which means loading the value and then shuffling the values into
9972   // the bottom bits of the predicate.
9973   // Equally, VLDR for an v16i1 will actually load 32bits (so will be incorrect
9974   // for BE).
9975   // Speaking of BE, apparently the rest of llvm will assume a reverse order to
9976   // a natural VMSR(load), so needs to be reversed.
9977 
9978   SDLoc dl(Op);
9979   SDValue Load = DAG.getExtLoad(
9980       ISD::EXTLOAD, dl, MVT::i32, LD->getChain(), LD->getBasePtr(),
9981       EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()),
9982       LD->getMemOperand());
9983   SDValue Val = Load;
9984   if (DAG.getDataLayout().isBigEndian())
9985     Val = DAG.getNode(ISD::SRL, dl, MVT::i32,
9986                       DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, Load),
9987                       DAG.getConstant(32 - MemVT.getSizeInBits(), dl, MVT::i32));
9988   SDValue Pred = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v16i1, Val);
9989   if (MemVT != MVT::v16i1)
9990     Pred = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MemVT, Pred,
9991                        DAG.getConstant(0, dl, MVT::i32));
9992   return DAG.getMergeValues({Pred, Load.getValue(1)}, dl);
9993 }
9994 
9995 void ARMTargetLowering::LowerLOAD(SDNode *N, SmallVectorImpl<SDValue> &Results,
9996                                   SelectionDAG &DAG) const {
9997   LoadSDNode *LD = cast<LoadSDNode>(N);
9998   EVT MemVT = LD->getMemoryVT();
9999   assert(LD->isUnindexed() && "Loads should be unindexed at this point.");
10000 
10001   if (MemVT == MVT::i64 && Subtarget->hasV5TEOps() &&
10002       !Subtarget->isThumb1Only() && LD->isVolatile()) {
10003     SDLoc dl(N);
10004     SDValue Result = DAG.getMemIntrinsicNode(
10005         ARMISD::LDRD, dl, DAG.getVTList({MVT::i32, MVT::i32, MVT::Other}),
10006         {LD->getChain(), LD->getBasePtr()}, MemVT, LD->getMemOperand());
10007     SDValue Lo = Result.getValue(DAG.getDataLayout().isLittleEndian() ? 0 : 1);
10008     SDValue Hi = Result.getValue(DAG.getDataLayout().isLittleEndian() ? 1 : 0);
10009     SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
10010     Results.append({Pair, Result.getValue(2)});
10011   }
10012 }
10013 
10014 static SDValue LowerPredicateStore(SDValue Op, SelectionDAG &DAG) {
10015   StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
10016   EVT MemVT = ST->getMemoryVT();
10017   assert((MemVT == MVT::v2i1 || MemVT == MVT::v4i1 || MemVT == MVT::v8i1 ||
10018           MemVT == MVT::v16i1) &&
10019          "Expected a predicate type!");
10020   assert(MemVT == ST->getValue().getValueType());
10021   assert(!ST->isTruncatingStore() && "Expected a non-extending store");
10022   assert(ST->isUnindexed() && "Expected a unindexed store");
10023 
10024   // Only store the v2i1 or v4i1 or v8i1 worth of bits, via a buildvector with
10025   // top bits unset and a scalar store.
10026   SDLoc dl(Op);
10027   SDValue Build = ST->getValue();
10028   if (MemVT != MVT::v16i1) {
10029     SmallVector<SDValue, 16> Ops;
10030     for (unsigned I = 0; I < MemVT.getVectorNumElements(); I++) {
10031       unsigned Elt = DAG.getDataLayout().isBigEndian()
10032                          ? MemVT.getVectorNumElements() - I - 1
10033                          : I;
10034       Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, Build,
10035                                 DAG.getConstant(Elt, dl, MVT::i32)));
10036     }
10037     for (unsigned I = MemVT.getVectorNumElements(); I < 16; I++)
10038       Ops.push_back(DAG.getUNDEF(MVT::i32));
10039     Build = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i1, Ops);
10040   }
10041   SDValue GRP = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Build);
10042   if (MemVT == MVT::v16i1 && DAG.getDataLayout().isBigEndian())
10043     GRP = DAG.getNode(ISD::SRL, dl, MVT::i32,
10044                       DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, GRP),
10045                       DAG.getConstant(16, dl, MVT::i32));
10046   return DAG.getTruncStore(
10047       ST->getChain(), dl, GRP, ST->getBasePtr(),
10048       EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()),
10049       ST->getMemOperand());
10050 }
10051 
10052 static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG,
10053                           const ARMSubtarget *Subtarget) {
10054   StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
10055   EVT MemVT = ST->getMemoryVT();
10056   assert(ST->isUnindexed() && "Stores should be unindexed at this point.");
10057 
10058   if (MemVT == MVT::i64 && Subtarget->hasV5TEOps() &&
10059       !Subtarget->isThumb1Only() && ST->isVolatile()) {
10060     SDNode *N = Op.getNode();
10061     SDLoc dl(N);
10062 
10063     SDValue Lo = DAG.getNode(
10064         ISD::EXTRACT_ELEMENT, dl, MVT::i32, ST->getValue(),
10065         DAG.getTargetConstant(DAG.getDataLayout().isLittleEndian() ? 0 : 1, dl,
10066                               MVT::i32));
10067     SDValue Hi = DAG.getNode(
10068         ISD::EXTRACT_ELEMENT, dl, MVT::i32, ST->getValue(),
10069         DAG.getTargetConstant(DAG.getDataLayout().isLittleEndian() ? 1 : 0, dl,
10070                               MVT::i32));
10071 
10072     return DAG.getMemIntrinsicNode(ARMISD::STRD, dl, DAG.getVTList(MVT::Other),
10073                                    {ST->getChain(), Lo, Hi, ST->getBasePtr()},
10074                                    MemVT, ST->getMemOperand());
10075   } else if (Subtarget->hasMVEIntegerOps() &&
10076              ((MemVT == MVT::v2i1 || MemVT == MVT::v4i1 || MemVT == MVT::v8i1 ||
10077                MemVT == MVT::v16i1))) {
10078     return LowerPredicateStore(Op, DAG);
10079   }
10080 
10081   return SDValue();
10082 }
10083 
10084 static bool isZeroVector(SDValue N) {
10085   return (ISD::isBuildVectorAllZeros(N.getNode()) ||
10086           (N->getOpcode() == ARMISD::VMOVIMM &&
10087            isNullConstant(N->getOperand(0))));
10088 }
10089 
10090 static SDValue LowerMLOAD(SDValue Op, SelectionDAG &DAG) {
10091   MaskedLoadSDNode *N = cast<MaskedLoadSDNode>(Op.getNode());
10092   MVT VT = Op.getSimpleValueType();
10093   SDValue Mask = N->getMask();
10094   SDValue PassThru = N->getPassThru();
10095   SDLoc dl(Op);
10096 
10097   if (isZeroVector(PassThru))
10098     return Op;
10099 
10100   // MVE Masked loads use zero as the passthru value. Here we convert undef to
10101   // zero too, and other values are lowered to a select.
10102   SDValue ZeroVec = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
10103                                 DAG.getTargetConstant(0, dl, MVT::i32));
10104   SDValue NewLoad = DAG.getMaskedLoad(
10105       VT, dl, N->getChain(), N->getBasePtr(), N->getOffset(), Mask, ZeroVec,
10106       N->getMemoryVT(), N->getMemOperand(), N->getAddressingMode(),
10107       N->getExtensionType(), N->isExpandingLoad());
10108   SDValue Combo = NewLoad;
10109   bool PassThruIsCastZero = (PassThru.getOpcode() == ISD::BITCAST ||
10110                              PassThru.getOpcode() == ARMISD::VECTOR_REG_CAST) &&
10111                             isZeroVector(PassThru->getOperand(0));
10112   if (!PassThru.isUndef() && !PassThruIsCastZero)
10113     Combo = DAG.getNode(ISD::VSELECT, dl, VT, Mask, NewLoad, PassThru);
10114   return DAG.getMergeValues({Combo, NewLoad.getValue(1)}, dl);
10115 }
10116 
10117 static SDValue LowerVecReduce(SDValue Op, SelectionDAG &DAG,
10118                               const ARMSubtarget *ST) {
10119   if (!ST->hasMVEIntegerOps())
10120     return SDValue();
10121 
10122   SDLoc dl(Op);
10123   unsigned BaseOpcode = 0;
10124   switch (Op->getOpcode()) {
10125   default: llvm_unreachable("Expected VECREDUCE opcode");
10126   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
10127   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
10128   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
10129   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
10130   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
10131   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
10132   case ISD::VECREDUCE_FMAX: BaseOpcode = ISD::FMAXNUM; break;
10133   case ISD::VECREDUCE_FMIN: BaseOpcode = ISD::FMINNUM; break;
10134   }
10135 
10136   SDValue Op0 = Op->getOperand(0);
10137   EVT VT = Op0.getValueType();
10138   EVT EltVT = VT.getVectorElementType();
10139   unsigned NumElts = VT.getVectorNumElements();
10140   unsigned NumActiveLanes = NumElts;
10141 
10142   assert((NumActiveLanes == 16 || NumActiveLanes == 8 || NumActiveLanes == 4 ||
10143           NumActiveLanes == 2) &&
10144          "Only expected a power 2 vector size");
10145 
10146   // Use Mul(X, Rev(X)) until 4 items remain. Going down to 4 vector elements
10147   // allows us to easily extract vector elements from the lanes.
10148   while (NumActiveLanes > 4) {
10149     unsigned RevOpcode = NumActiveLanes == 16 ? ARMISD::VREV16 : ARMISD::VREV32;
10150     SDValue Rev = DAG.getNode(RevOpcode, dl, VT, Op0);
10151     Op0 = DAG.getNode(BaseOpcode, dl, VT, Op0, Rev);
10152     NumActiveLanes /= 2;
10153   }
10154 
10155   SDValue Res;
10156   if (NumActiveLanes == 4) {
10157     // The remaining 4 elements are summed sequentially
10158     SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10159                               DAG.getConstant(0 * NumElts / 4, dl, MVT::i32));
10160     SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10161                               DAG.getConstant(1 * NumElts / 4, dl, MVT::i32));
10162     SDValue Ext2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10163                               DAG.getConstant(2 * NumElts / 4, dl, MVT::i32));
10164     SDValue Ext3 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10165                               DAG.getConstant(3 * NumElts / 4, dl, MVT::i32));
10166     SDValue Res0 = DAG.getNode(BaseOpcode, dl, EltVT, Ext0, Ext1, Op->getFlags());
10167     SDValue Res1 = DAG.getNode(BaseOpcode, dl, EltVT, Ext2, Ext3, Op->getFlags());
10168     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res0, Res1, Op->getFlags());
10169   } else {
10170     SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10171                               DAG.getConstant(0, dl, MVT::i32));
10172     SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0,
10173                               DAG.getConstant(1, dl, MVT::i32));
10174     Res = DAG.getNode(BaseOpcode, dl, EltVT, Ext0, Ext1, Op->getFlags());
10175   }
10176 
10177   // Result type may be wider than element type.
10178   if (EltVT != Op->getValueType(0))
10179     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Op->getValueType(0), Res);
10180   return Res;
10181 }
10182 
10183 static SDValue LowerVecReduceF(SDValue Op, SelectionDAG &DAG,
10184                                const ARMSubtarget *ST) {
10185   if (!ST->hasMVEFloatOps())
10186     return SDValue();
10187   return LowerVecReduce(Op, DAG, ST);
10188 }
10189 
10190 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
10191   if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getSuccessOrdering()))
10192     // Acquire/Release load/store is not legal for targets without a dmb or
10193     // equivalent available.
10194     return SDValue();
10195 
10196   // Monotonic load/store is legal for all targets.
10197   return Op;
10198 }
10199 
10200 static void ReplaceREADCYCLECOUNTER(SDNode *N,
10201                                     SmallVectorImpl<SDValue> &Results,
10202                                     SelectionDAG &DAG,
10203                                     const ARMSubtarget *Subtarget) {
10204   SDLoc DL(N);
10205   // Under Power Management extensions, the cycle-count is:
10206   //    mrc p15, #0, <Rt>, c9, c13, #0
10207   SDValue Ops[] = { N->getOperand(0), // Chain
10208                     DAG.getTargetConstant(Intrinsic::arm_mrc, DL, MVT::i32),
10209                     DAG.getTargetConstant(15, DL, MVT::i32),
10210                     DAG.getTargetConstant(0, DL, MVT::i32),
10211                     DAG.getTargetConstant(9, DL, MVT::i32),
10212                     DAG.getTargetConstant(13, DL, MVT::i32),
10213                     DAG.getTargetConstant(0, DL, MVT::i32)
10214   };
10215 
10216   SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
10217                                  DAG.getVTList(MVT::i32, MVT::Other), Ops);
10218   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
10219                                 DAG.getConstant(0, DL, MVT::i32)));
10220   Results.push_back(Cycles32.getValue(1));
10221 }
10222 
10223 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
10224   SDLoc dl(V.getNode());
10225   SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i32);
10226   SDValue VHi = DAG.getAnyExtOrTrunc(
10227       DAG.getNode(ISD::SRL, dl, MVT::i64, V, DAG.getConstant(32, dl, MVT::i32)),
10228       dl, MVT::i32);
10229   bool isBigEndian = DAG.getDataLayout().isBigEndian();
10230   if (isBigEndian)
10231     std::swap (VLo, VHi);
10232   SDValue RegClass =
10233       DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
10234   SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32);
10235   SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32);
10236   const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
10237   return SDValue(
10238       DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
10239 }
10240 
10241 static void ReplaceCMP_SWAP_64Results(SDNode *N,
10242                                        SmallVectorImpl<SDValue> & Results,
10243                                        SelectionDAG &DAG) {
10244   assert(N->getValueType(0) == MVT::i64 &&
10245          "AtomicCmpSwap on types less than 64 should be legal");
10246   SDValue Ops[] = {N->getOperand(1),
10247                    createGPRPairNode(DAG, N->getOperand(2)),
10248                    createGPRPairNode(DAG, N->getOperand(3)),
10249                    N->getOperand(0)};
10250   SDNode *CmpSwap = DAG.getMachineNode(
10251       ARM::CMP_SWAP_64, SDLoc(N),
10252       DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops);
10253 
10254   MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
10255   DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
10256 
10257   bool isBigEndian = DAG.getDataLayout().isBigEndian();
10258 
10259   SDValue Lo =
10260       DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_1 : ARM::gsub_0,
10261                                  SDLoc(N), MVT::i32, SDValue(CmpSwap, 0));
10262   SDValue Hi =
10263       DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_0 : ARM::gsub_1,
10264                                  SDLoc(N), MVT::i32, SDValue(CmpSwap, 0));
10265   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i64, Lo, Hi));
10266   Results.push_back(SDValue(CmpSwap, 2));
10267 }
10268 
10269 SDValue ARMTargetLowering::LowerFSETCC(SDValue Op, SelectionDAG &DAG) const {
10270   SDLoc dl(Op);
10271   EVT VT = Op.getValueType();
10272   SDValue Chain = Op.getOperand(0);
10273   SDValue LHS = Op.getOperand(1);
10274   SDValue RHS = Op.getOperand(2);
10275   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
10276   bool IsSignaling = Op.getOpcode() == ISD::STRICT_FSETCCS;
10277 
10278   // If we don't have instructions of this float type then soften to a libcall
10279   // and use SETCC instead.
10280   if (isUnsupportedFloatingType(LHS.getValueType())) {
10281     DAG.getTargetLoweringInfo().softenSetCCOperands(
10282       DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS, Chain, IsSignaling);
10283     if (!RHS.getNode()) {
10284       RHS = DAG.getConstant(0, dl, LHS.getValueType());
10285       CC = ISD::SETNE;
10286     }
10287     SDValue Result = DAG.getNode(ISD::SETCC, dl, VT, LHS, RHS,
10288                                  DAG.getCondCode(CC));
10289     return DAG.getMergeValues({Result, Chain}, dl);
10290   }
10291 
10292   ARMCC::CondCodes CondCode, CondCode2;
10293   FPCCToARMCC(CC, CondCode, CondCode2);
10294 
10295   // FIXME: Chain is not handled correctly here. Currently the FPSCR is implicit
10296   // in CMPFP and CMPFPE, but instead it should be made explicit by these
10297   // instructions using a chain instead of glue. This would also fix the problem
10298   // here (and also in LowerSELECT_CC) where we generate two comparisons when
10299   // CondCode2 != AL.
10300   SDValue True = DAG.getConstant(1, dl, VT);
10301   SDValue False =  DAG.getConstant(0, dl, VT);
10302   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
10303   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
10304   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, IsSignaling);
10305   SDValue Result = getCMOV(dl, VT, False, True, ARMcc, CCR, Cmp, DAG);
10306   if (CondCode2 != ARMCC::AL) {
10307     ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
10308     Cmp = getVFPCmp(LHS, RHS, DAG, dl, IsSignaling);
10309     Result = getCMOV(dl, VT, Result, True, ARMcc, CCR, Cmp, DAG);
10310   }
10311   return DAG.getMergeValues({Result, Chain}, dl);
10312 }
10313 
10314 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10315   LLVM_DEBUG(dbgs() << "Lowering node: "; Op.dump());
10316   switch (Op.getOpcode()) {
10317   default: llvm_unreachable("Don't know how to custom lower this!");
10318   case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
10319   case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
10320   case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
10321   case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
10322   case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
10323   case ISD::SELECT:        return LowerSELECT(Op, DAG);
10324   case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
10325   case ISD::BRCOND:        return LowerBRCOND(Op, DAG);
10326   case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
10327   case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
10328   case ISD::VASTART:       return LowerVASTART(Op, DAG);
10329   case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
10330   case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
10331   case ISD::SINT_TO_FP:
10332   case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
10333   case ISD::STRICT_FP_TO_SINT:
10334   case ISD::STRICT_FP_TO_UINT:
10335   case ISD::FP_TO_SINT:
10336   case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
10337   case ISD::FP_TO_SINT_SAT:
10338   case ISD::FP_TO_UINT_SAT: return LowerFP_TO_INT_SAT(Op, DAG, Subtarget);
10339   case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
10340   case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
10341   case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
10342   case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
10343   case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
10344   case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
10345   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG, Subtarget);
10346   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
10347                                                                Subtarget);
10348   case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG, Subtarget);
10349   case ISD::SHL:
10350   case ISD::SRL:
10351   case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
10352   case ISD::SREM:          return LowerREM(Op.getNode(), DAG);
10353   case ISD::UREM:          return LowerREM(Op.getNode(), DAG);
10354   case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
10355   case ISD::SRL_PARTS:
10356   case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
10357   case ISD::CTTZ:
10358   case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
10359   case ISD::CTPOP:         return LowerCTPOP(Op.getNode(), DAG, Subtarget);
10360   case ISD::SETCC:         return LowerVSETCC(Op, DAG, Subtarget);
10361   case ISD::SETCCCARRY:    return LowerSETCCCARRY(Op, DAG);
10362   case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
10363   case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
10364   case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
10365   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG, Subtarget);
10366   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
10367   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG, Subtarget);
10368   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG, Subtarget);
10369   case ISD::TRUNCATE:      return LowerTruncate(Op.getNode(), DAG, Subtarget);
10370   case ISD::SIGN_EXTEND:
10371   case ISD::ZERO_EXTEND:   return LowerVectorExtend(Op.getNode(), DAG, Subtarget);
10372   case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
10373   case ISD::SET_ROUNDING:  return LowerSET_ROUNDING(Op, DAG);
10374   case ISD::MUL:           return LowerMUL(Op, DAG);
10375   case ISD::SDIV:
10376     if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
10377       return LowerDIV_Windows(Op, DAG, /* Signed */ true);
10378     return LowerSDIV(Op, DAG, Subtarget);
10379   case ISD::UDIV:
10380     if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
10381       return LowerDIV_Windows(Op, DAG, /* Signed */ false);
10382     return LowerUDIV(Op, DAG, Subtarget);
10383   case ISD::ADDCARRY:
10384   case ISD::SUBCARRY:      return LowerADDSUBCARRY(Op, DAG);
10385   case ISD::SADDO:
10386   case ISD::SSUBO:
10387     return LowerSignedALUO(Op, DAG);
10388   case ISD::UADDO:
10389   case ISD::USUBO:
10390     return LowerUnsignedALUO(Op, DAG);
10391   case ISD::SADDSAT:
10392   case ISD::SSUBSAT:
10393   case ISD::UADDSAT:
10394   case ISD::USUBSAT:
10395     return LowerADDSUBSAT(Op, DAG, Subtarget);
10396   case ISD::LOAD:
10397     return LowerPredicateLoad(Op, DAG);
10398   case ISD::STORE:
10399     return LowerSTORE(Op, DAG, Subtarget);
10400   case ISD::MLOAD:
10401     return LowerMLOAD(Op, DAG);
10402   case ISD::VECREDUCE_MUL:
10403   case ISD::VECREDUCE_AND:
10404   case ISD::VECREDUCE_OR:
10405   case ISD::VECREDUCE_XOR:
10406     return LowerVecReduce(Op, DAG, Subtarget);
10407   case ISD::VECREDUCE_FADD:
10408   case ISD::VECREDUCE_FMUL:
10409   case ISD::VECREDUCE_FMIN:
10410   case ISD::VECREDUCE_FMAX:
10411     return LowerVecReduceF(Op, DAG, Subtarget);
10412   case ISD::ATOMIC_LOAD:
10413   case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
10414   case ISD::FSINCOS:       return LowerFSINCOS(Op, DAG);
10415   case ISD::SDIVREM:
10416   case ISD::UDIVREM:       return LowerDivRem(Op, DAG);
10417   case ISD::DYNAMIC_STACKALLOC:
10418     if (Subtarget->isTargetWindows())
10419       return LowerDYNAMIC_STACKALLOC(Op, DAG);
10420     llvm_unreachable("Don't know how to custom lower this!");
10421   case ISD::STRICT_FP_ROUND:
10422   case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
10423   case ISD::STRICT_FP_EXTEND:
10424   case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
10425   case ISD::STRICT_FSETCC:
10426   case ISD::STRICT_FSETCCS: return LowerFSETCC(Op, DAG);
10427   case ARMISD::WIN__DBZCHK: return SDValue();
10428   }
10429 }
10430 
10431 static void ReplaceLongIntrinsic(SDNode *N, SmallVectorImpl<SDValue> &Results,
10432                                  SelectionDAG &DAG) {
10433   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
10434   unsigned Opc = 0;
10435   if (IntNo == Intrinsic::arm_smlald)
10436     Opc = ARMISD::SMLALD;
10437   else if (IntNo == Intrinsic::arm_smlaldx)
10438     Opc = ARMISD::SMLALDX;
10439   else if (IntNo == Intrinsic::arm_smlsld)
10440     Opc = ARMISD::SMLSLD;
10441   else if (IntNo == Intrinsic::arm_smlsldx)
10442     Opc = ARMISD::SMLSLDX;
10443   else
10444     return;
10445 
10446   SDLoc dl(N);
10447   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10448                            N->getOperand(3),
10449                            DAG.getConstant(0, dl, MVT::i32));
10450   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10451                            N->getOperand(3),
10452                            DAG.getConstant(1, dl, MVT::i32));
10453 
10454   SDValue LongMul = DAG.getNode(Opc, dl,
10455                                 DAG.getVTList(MVT::i32, MVT::i32),
10456                                 N->getOperand(1), N->getOperand(2),
10457                                 Lo, Hi);
10458   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64,
10459                                 LongMul.getValue(0), LongMul.getValue(1)));
10460 }
10461 
10462 /// ReplaceNodeResults - Replace the results of node with an illegal result
10463 /// type with new values built out of custom code.
10464 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
10465                                            SmallVectorImpl<SDValue> &Results,
10466                                            SelectionDAG &DAG) const {
10467   SDValue Res;
10468   switch (N->getOpcode()) {
10469   default:
10470     llvm_unreachable("Don't know how to custom expand this!");
10471   case ISD::READ_REGISTER:
10472     ExpandREAD_REGISTER(N, Results, DAG);
10473     break;
10474   case ISD::BITCAST:
10475     Res = ExpandBITCAST(N, DAG, Subtarget);
10476     break;
10477   case ISD::SRL:
10478   case ISD::SRA:
10479   case ISD::SHL:
10480     Res = Expand64BitShift(N, DAG, Subtarget);
10481     break;
10482   case ISD::SREM:
10483   case ISD::UREM:
10484     Res = LowerREM(N, DAG);
10485     break;
10486   case ISD::SDIVREM:
10487   case ISD::UDIVREM:
10488     Res = LowerDivRem(SDValue(N, 0), DAG);
10489     assert(Res.getNumOperands() == 2 && "DivRem needs two values");
10490     Results.push_back(Res.getValue(0));
10491     Results.push_back(Res.getValue(1));
10492     return;
10493   case ISD::SADDSAT:
10494   case ISD::SSUBSAT:
10495   case ISD::UADDSAT:
10496   case ISD::USUBSAT:
10497     Res = LowerADDSUBSAT(SDValue(N, 0), DAG, Subtarget);
10498     break;
10499   case ISD::READCYCLECOUNTER:
10500     ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
10501     return;
10502   case ISD::UDIV:
10503   case ISD::SDIV:
10504     assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
10505     return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
10506                              Results);
10507   case ISD::ATOMIC_CMP_SWAP:
10508     ReplaceCMP_SWAP_64Results(N, Results, DAG);
10509     return;
10510   case ISD::INTRINSIC_WO_CHAIN:
10511     return ReplaceLongIntrinsic(N, Results, DAG);
10512   case ISD::ABS:
10513      lowerABS(N, Results, DAG);
10514      return ;
10515   case ISD::LOAD:
10516     LowerLOAD(N, Results, DAG);
10517     break;
10518   case ISD::TRUNCATE:
10519     Res = LowerTruncate(N, DAG, Subtarget);
10520     break;
10521   case ISD::SIGN_EXTEND:
10522   case ISD::ZERO_EXTEND:
10523     Res = LowerVectorExtend(N, DAG, Subtarget);
10524     break;
10525   case ISD::FP_TO_SINT_SAT:
10526   case ISD::FP_TO_UINT_SAT:
10527     Res = LowerFP_TO_INT_SAT(SDValue(N, 0), DAG, Subtarget);
10528     break;
10529   }
10530   if (Res.getNode())
10531     Results.push_back(Res);
10532 }
10533 
10534 //===----------------------------------------------------------------------===//
10535 //                           ARM Scheduler Hooks
10536 //===----------------------------------------------------------------------===//
10537 
10538 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
10539 /// registers the function context.
10540 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
10541                                                MachineBasicBlock *MBB,
10542                                                MachineBasicBlock *DispatchBB,
10543                                                int FI) const {
10544   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
10545          "ROPI/RWPI not currently supported with SjLj");
10546   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10547   DebugLoc dl = MI.getDebugLoc();
10548   MachineFunction *MF = MBB->getParent();
10549   MachineRegisterInfo *MRI = &MF->getRegInfo();
10550   MachineConstantPool *MCP = MF->getConstantPool();
10551   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
10552   const Function &F = MF->getFunction();
10553 
10554   bool isThumb = Subtarget->isThumb();
10555   bool isThumb2 = Subtarget->isThumb2();
10556 
10557   unsigned PCLabelId = AFI->createPICLabelUId();
10558   unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
10559   ARMConstantPoolValue *CPV =
10560     ARMConstantPoolMBB::Create(F.getContext(), DispatchBB, PCLabelId, PCAdj);
10561   unsigned CPI = MCP->getConstantPoolIndex(CPV, Align(4));
10562 
10563   const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
10564                                            : &ARM::GPRRegClass;
10565 
10566   // Grab constant pool and fixed stack memory operands.
10567   MachineMemOperand *CPMMO =
10568       MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
10569                                MachineMemOperand::MOLoad, 4, Align(4));
10570 
10571   MachineMemOperand *FIMMOSt =
10572       MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
10573                                MachineMemOperand::MOStore, 4, Align(4));
10574 
10575   // Load the address of the dispatch MBB into the jump buffer.
10576   if (isThumb2) {
10577     // Incoming value: jbuf
10578     //   ldr.n  r5, LCPI1_1
10579     //   orr    r5, r5, #1
10580     //   add    r5, pc
10581     //   str    r5, [$jbuf, #+4] ; &jbuf[1]
10582     Register NewVReg1 = MRI->createVirtualRegister(TRC);
10583     BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
10584         .addConstantPoolIndex(CPI)
10585         .addMemOperand(CPMMO)
10586         .add(predOps(ARMCC::AL));
10587     // Set the low bit because of thumb mode.
10588     Register NewVReg2 = MRI->createVirtualRegister(TRC);
10589     BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
10590         .addReg(NewVReg1, RegState::Kill)
10591         .addImm(0x01)
10592         .add(predOps(ARMCC::AL))
10593         .add(condCodeOp());
10594     Register NewVReg3 = MRI->createVirtualRegister(TRC);
10595     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
10596       .addReg(NewVReg2, RegState::Kill)
10597       .addImm(PCLabelId);
10598     BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
10599         .addReg(NewVReg3, RegState::Kill)
10600         .addFrameIndex(FI)
10601         .addImm(36) // &jbuf[1] :: pc
10602         .addMemOperand(FIMMOSt)
10603         .add(predOps(ARMCC::AL));
10604   } else if (isThumb) {
10605     // Incoming value: jbuf
10606     //   ldr.n  r1, LCPI1_4
10607     //   add    r1, pc
10608     //   mov    r2, #1
10609     //   orrs   r1, r2
10610     //   add    r2, $jbuf, #+4 ; &jbuf[1]
10611     //   str    r1, [r2]
10612     Register NewVReg1 = MRI->createVirtualRegister(TRC);
10613     BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
10614         .addConstantPoolIndex(CPI)
10615         .addMemOperand(CPMMO)
10616         .add(predOps(ARMCC::AL));
10617     Register NewVReg2 = MRI->createVirtualRegister(TRC);
10618     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
10619       .addReg(NewVReg1, RegState::Kill)
10620       .addImm(PCLabelId);
10621     // Set the low bit because of thumb mode.
10622     Register NewVReg3 = MRI->createVirtualRegister(TRC);
10623     BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
10624         .addReg(ARM::CPSR, RegState::Define)
10625         .addImm(1)
10626         .add(predOps(ARMCC::AL));
10627     Register NewVReg4 = MRI->createVirtualRegister(TRC);
10628     BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
10629         .addReg(ARM::CPSR, RegState::Define)
10630         .addReg(NewVReg2, RegState::Kill)
10631         .addReg(NewVReg3, RegState::Kill)
10632         .add(predOps(ARMCC::AL));
10633     Register NewVReg5 = MRI->createVirtualRegister(TRC);
10634     BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
10635             .addFrameIndex(FI)
10636             .addImm(36); // &jbuf[1] :: pc
10637     BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
10638         .addReg(NewVReg4, RegState::Kill)
10639         .addReg(NewVReg5, RegState::Kill)
10640         .addImm(0)
10641         .addMemOperand(FIMMOSt)
10642         .add(predOps(ARMCC::AL));
10643   } else {
10644     // Incoming value: jbuf
10645     //   ldr  r1, LCPI1_1
10646     //   add  r1, pc, r1
10647     //   str  r1, [$jbuf, #+4] ; &jbuf[1]
10648     Register NewVReg1 = MRI->createVirtualRegister(TRC);
10649     BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
10650         .addConstantPoolIndex(CPI)
10651         .addImm(0)
10652         .addMemOperand(CPMMO)
10653         .add(predOps(ARMCC::AL));
10654     Register NewVReg2 = MRI->createVirtualRegister(TRC);
10655     BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
10656         .addReg(NewVReg1, RegState::Kill)
10657         .addImm(PCLabelId)
10658         .add(predOps(ARMCC::AL));
10659     BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
10660         .addReg(NewVReg2, RegState::Kill)
10661         .addFrameIndex(FI)
10662         .addImm(36) // &jbuf[1] :: pc
10663         .addMemOperand(FIMMOSt)
10664         .add(predOps(ARMCC::AL));
10665   }
10666 }
10667 
10668 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
10669                                               MachineBasicBlock *MBB) const {
10670   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10671   DebugLoc dl = MI.getDebugLoc();
10672   MachineFunction *MF = MBB->getParent();
10673   MachineRegisterInfo *MRI = &MF->getRegInfo();
10674   MachineFrameInfo &MFI = MF->getFrameInfo();
10675   int FI = MFI.getFunctionContextIndex();
10676 
10677   const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
10678                                                         : &ARM::GPRnopcRegClass;
10679 
10680   // Get a mapping of the call site numbers to all of the landing pads they're
10681   // associated with.
10682   DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2>> CallSiteNumToLPad;
10683   unsigned MaxCSNum = 0;
10684   for (MachineBasicBlock &BB : *MF) {
10685     if (!BB.isEHPad())
10686       continue;
10687 
10688     // FIXME: We should assert that the EH_LABEL is the first MI in the landing
10689     // pad.
10690     for (MachineInstr &II : BB) {
10691       if (!II.isEHLabel())
10692         continue;
10693 
10694       MCSymbol *Sym = II.getOperand(0).getMCSymbol();
10695       if (!MF->hasCallSiteLandingPad(Sym)) continue;
10696 
10697       SmallVectorImpl<unsigned> &CallSiteIdxs = MF->getCallSiteLandingPad(Sym);
10698       for (unsigned Idx : CallSiteIdxs) {
10699         CallSiteNumToLPad[Idx].push_back(&BB);
10700         MaxCSNum = std::max(MaxCSNum, Idx);
10701       }
10702       break;
10703     }
10704   }
10705 
10706   // Get an ordered list of the machine basic blocks for the jump table.
10707   std::vector<MachineBasicBlock*> LPadList;
10708   SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs;
10709   LPadList.reserve(CallSiteNumToLPad.size());
10710   for (unsigned I = 1; I <= MaxCSNum; ++I) {
10711     SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
10712     for (MachineBasicBlock *MBB : MBBList) {
10713       LPadList.push_back(MBB);
10714       InvokeBBs.insert(MBB->pred_begin(), MBB->pred_end());
10715     }
10716   }
10717 
10718   assert(!LPadList.empty() &&
10719          "No landing pad destinations for the dispatch jump table!");
10720 
10721   // Create the jump table and associated information.
10722   MachineJumpTableInfo *JTI =
10723     MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
10724   unsigned MJTI = JTI->createJumpTableIndex(LPadList);
10725 
10726   // Create the MBBs for the dispatch code.
10727 
10728   // Shove the dispatch's address into the return slot in the function context.
10729   MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
10730   DispatchBB->setIsEHPad();
10731 
10732   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
10733   unsigned trap_opcode;
10734   if (Subtarget->isThumb())
10735     trap_opcode = ARM::tTRAP;
10736   else
10737     trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
10738 
10739   BuildMI(TrapBB, dl, TII->get(trap_opcode));
10740   DispatchBB->addSuccessor(TrapBB);
10741 
10742   MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
10743   DispatchBB->addSuccessor(DispContBB);
10744 
10745   // Insert and MBBs.
10746   MF->insert(MF->end(), DispatchBB);
10747   MF->insert(MF->end(), DispContBB);
10748   MF->insert(MF->end(), TrapBB);
10749 
10750   // Insert code into the entry block that creates and registers the function
10751   // context.
10752   SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
10753 
10754   MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
10755       MachinePointerInfo::getFixedStack(*MF, FI),
10756       MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, Align(4));
10757 
10758   MachineInstrBuilder MIB;
10759   MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
10760 
10761   const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
10762   const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
10763 
10764   // Add a register mask with no preserved registers.  This results in all
10765   // registers being marked as clobbered. This can't work if the dispatch block
10766   // is in a Thumb1 function and is linked with ARM code which uses the FP
10767   // registers, as there is no way to preserve the FP registers in Thumb1 mode.
10768   MIB.addRegMask(RI.getSjLjDispatchPreservedMask(*MF));
10769 
10770   bool IsPositionIndependent = isPositionIndependent();
10771   unsigned NumLPads = LPadList.size();
10772   if (Subtarget->isThumb2()) {
10773     Register NewVReg1 = MRI->createVirtualRegister(TRC);
10774     BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
10775         .addFrameIndex(FI)
10776         .addImm(4)
10777         .addMemOperand(FIMMOLd)
10778         .add(predOps(ARMCC::AL));
10779 
10780     if (NumLPads < 256) {
10781       BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
10782           .addReg(NewVReg1)
10783           .addImm(LPadList.size())
10784           .add(predOps(ARMCC::AL));
10785     } else {
10786       Register VReg1 = MRI->createVirtualRegister(TRC);
10787       BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
10788           .addImm(NumLPads & 0xFFFF)
10789           .add(predOps(ARMCC::AL));
10790 
10791       unsigned VReg2 = VReg1;
10792       if ((NumLPads & 0xFFFF0000) != 0) {
10793         VReg2 = MRI->createVirtualRegister(TRC);
10794         BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
10795             .addReg(VReg1)
10796             .addImm(NumLPads >> 16)
10797             .add(predOps(ARMCC::AL));
10798       }
10799 
10800       BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
10801           .addReg(NewVReg1)
10802           .addReg(VReg2)
10803           .add(predOps(ARMCC::AL));
10804     }
10805 
10806     BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
10807       .addMBB(TrapBB)
10808       .addImm(ARMCC::HI)
10809       .addReg(ARM::CPSR);
10810 
10811     Register NewVReg3 = MRI->createVirtualRegister(TRC);
10812     BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT), NewVReg3)
10813         .addJumpTableIndex(MJTI)
10814         .add(predOps(ARMCC::AL));
10815 
10816     Register NewVReg4 = MRI->createVirtualRegister(TRC);
10817     BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
10818         .addReg(NewVReg3, RegState::Kill)
10819         .addReg(NewVReg1)
10820         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
10821         .add(predOps(ARMCC::AL))
10822         .add(condCodeOp());
10823 
10824     BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
10825       .addReg(NewVReg4, RegState::Kill)
10826       .addReg(NewVReg1)
10827       .addJumpTableIndex(MJTI);
10828   } else if (Subtarget->isThumb()) {
10829     Register NewVReg1 = MRI->createVirtualRegister(TRC);
10830     BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
10831         .addFrameIndex(FI)
10832         .addImm(1)
10833         .addMemOperand(FIMMOLd)
10834         .add(predOps(ARMCC::AL));
10835 
10836     if (NumLPads < 256) {
10837       BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
10838           .addReg(NewVReg1)
10839           .addImm(NumLPads)
10840           .add(predOps(ARMCC::AL));
10841     } else {
10842       MachineConstantPool *ConstantPool = MF->getConstantPool();
10843       Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
10844       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
10845 
10846       // MachineConstantPool wants an explicit alignment.
10847       Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty);
10848       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment);
10849 
10850       Register VReg1 = MRI->createVirtualRegister(TRC);
10851       BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
10852           .addReg(VReg1, RegState::Define)
10853           .addConstantPoolIndex(Idx)
10854           .add(predOps(ARMCC::AL));
10855       BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
10856           .addReg(NewVReg1)
10857           .addReg(VReg1)
10858           .add(predOps(ARMCC::AL));
10859     }
10860 
10861     BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
10862       .addMBB(TrapBB)
10863       .addImm(ARMCC::HI)
10864       .addReg(ARM::CPSR);
10865 
10866     Register NewVReg2 = MRI->createVirtualRegister(TRC);
10867     BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
10868         .addReg(ARM::CPSR, RegState::Define)
10869         .addReg(NewVReg1)
10870         .addImm(2)
10871         .add(predOps(ARMCC::AL));
10872 
10873     Register NewVReg3 = MRI->createVirtualRegister(TRC);
10874     BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
10875         .addJumpTableIndex(MJTI)
10876         .add(predOps(ARMCC::AL));
10877 
10878     Register NewVReg4 = MRI->createVirtualRegister(TRC);
10879     BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
10880         .addReg(ARM::CPSR, RegState::Define)
10881         .addReg(NewVReg2, RegState::Kill)
10882         .addReg(NewVReg3)
10883         .add(predOps(ARMCC::AL));
10884 
10885     MachineMemOperand *JTMMOLd =
10886         MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(*MF),
10887                                  MachineMemOperand::MOLoad, 4, Align(4));
10888 
10889     Register NewVReg5 = MRI->createVirtualRegister(TRC);
10890     BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
10891         .addReg(NewVReg4, RegState::Kill)
10892         .addImm(0)
10893         .addMemOperand(JTMMOLd)
10894         .add(predOps(ARMCC::AL));
10895 
10896     unsigned NewVReg6 = NewVReg5;
10897     if (IsPositionIndependent) {
10898       NewVReg6 = MRI->createVirtualRegister(TRC);
10899       BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
10900           .addReg(ARM::CPSR, RegState::Define)
10901           .addReg(NewVReg5, RegState::Kill)
10902           .addReg(NewVReg3)
10903           .add(predOps(ARMCC::AL));
10904     }
10905 
10906     BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
10907       .addReg(NewVReg6, RegState::Kill)
10908       .addJumpTableIndex(MJTI);
10909   } else {
10910     Register NewVReg1 = MRI->createVirtualRegister(TRC);
10911     BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
10912         .addFrameIndex(FI)
10913         .addImm(4)
10914         .addMemOperand(FIMMOLd)
10915         .add(predOps(ARMCC::AL));
10916 
10917     if (NumLPads < 256) {
10918       BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
10919           .addReg(NewVReg1)
10920           .addImm(NumLPads)
10921           .add(predOps(ARMCC::AL));
10922     } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
10923       Register VReg1 = MRI->createVirtualRegister(TRC);
10924       BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
10925           .addImm(NumLPads & 0xFFFF)
10926           .add(predOps(ARMCC::AL));
10927 
10928       unsigned VReg2 = VReg1;
10929       if ((NumLPads & 0xFFFF0000) != 0) {
10930         VReg2 = MRI->createVirtualRegister(TRC);
10931         BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
10932             .addReg(VReg1)
10933             .addImm(NumLPads >> 16)
10934             .add(predOps(ARMCC::AL));
10935       }
10936 
10937       BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
10938           .addReg(NewVReg1)
10939           .addReg(VReg2)
10940           .add(predOps(ARMCC::AL));
10941     } else {
10942       MachineConstantPool *ConstantPool = MF->getConstantPool();
10943       Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
10944       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
10945 
10946       // MachineConstantPool wants an explicit alignment.
10947       Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty);
10948       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment);
10949 
10950       Register VReg1 = MRI->createVirtualRegister(TRC);
10951       BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
10952           .addReg(VReg1, RegState::Define)
10953           .addConstantPoolIndex(Idx)
10954           .addImm(0)
10955           .add(predOps(ARMCC::AL));
10956       BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
10957           .addReg(NewVReg1)
10958           .addReg(VReg1, RegState::Kill)
10959           .add(predOps(ARMCC::AL));
10960     }
10961 
10962     BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
10963       .addMBB(TrapBB)
10964       .addImm(ARMCC::HI)
10965       .addReg(ARM::CPSR);
10966 
10967     Register NewVReg3 = MRI->createVirtualRegister(TRC);
10968     BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
10969         .addReg(NewVReg1)
10970         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
10971         .add(predOps(ARMCC::AL))
10972         .add(condCodeOp());
10973     Register NewVReg4 = MRI->createVirtualRegister(TRC);
10974     BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
10975         .addJumpTableIndex(MJTI)
10976         .add(predOps(ARMCC::AL));
10977 
10978     MachineMemOperand *JTMMOLd =
10979         MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(*MF),
10980                                  MachineMemOperand::MOLoad, 4, Align(4));
10981     Register NewVReg5 = MRI->createVirtualRegister(TRC);
10982     BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
10983         .addReg(NewVReg3, RegState::Kill)
10984         .addReg(NewVReg4)
10985         .addImm(0)
10986         .addMemOperand(JTMMOLd)
10987         .add(predOps(ARMCC::AL));
10988 
10989     if (IsPositionIndependent) {
10990       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
10991         .addReg(NewVReg5, RegState::Kill)
10992         .addReg(NewVReg4)
10993         .addJumpTableIndex(MJTI);
10994     } else {
10995       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
10996         .addReg(NewVReg5, RegState::Kill)
10997         .addJumpTableIndex(MJTI);
10998     }
10999   }
11000 
11001   // Add the jump table entries as successors to the MBB.
11002   SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
11003   for (MachineBasicBlock *CurMBB : LPadList) {
11004     if (SeenMBBs.insert(CurMBB).second)
11005       DispContBB->addSuccessor(CurMBB);
11006   }
11007 
11008   // N.B. the order the invoke BBs are processed in doesn't matter here.
11009   const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
11010   SmallVector<MachineBasicBlock*, 64> MBBLPads;
11011   for (MachineBasicBlock *BB : InvokeBBs) {
11012 
11013     // Remove the landing pad successor from the invoke block and replace it
11014     // with the new dispatch block.
11015     SmallVector<MachineBasicBlock*, 4> Successors(BB->successors());
11016     while (!Successors.empty()) {
11017       MachineBasicBlock *SMBB = Successors.pop_back_val();
11018       if (SMBB->isEHPad()) {
11019         BB->removeSuccessor(SMBB);
11020         MBBLPads.push_back(SMBB);
11021       }
11022     }
11023 
11024     BB->addSuccessor(DispatchBB, BranchProbability::getZero());
11025     BB->normalizeSuccProbs();
11026 
11027     // Find the invoke call and mark all of the callee-saved registers as
11028     // 'implicit defined' so that they're spilled. This prevents code from
11029     // moving instructions to before the EH block, where they will never be
11030     // executed.
11031     for (MachineBasicBlock::reverse_iterator
11032            II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
11033       if (!II->isCall()) continue;
11034 
11035       DenseMap<unsigned, bool> DefRegs;
11036       for (MachineInstr::mop_iterator
11037              OI = II->operands_begin(), OE = II->operands_end();
11038            OI != OE; ++OI) {
11039         if (!OI->isReg()) continue;
11040         DefRegs[OI->getReg()] = true;
11041       }
11042 
11043       MachineInstrBuilder MIB(*MF, &*II);
11044 
11045       for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
11046         unsigned Reg = SavedRegs[i];
11047         if (Subtarget->isThumb2() &&
11048             !ARM::tGPRRegClass.contains(Reg) &&
11049             !ARM::hGPRRegClass.contains(Reg))
11050           continue;
11051         if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
11052           continue;
11053         if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
11054           continue;
11055         if (!DefRegs[Reg])
11056           MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
11057       }
11058 
11059       break;
11060     }
11061   }
11062 
11063   // Mark all former landing pads as non-landing pads. The dispatch is the only
11064   // landing pad now.
11065   for (MachineBasicBlock *MBBLPad : MBBLPads)
11066     MBBLPad->setIsEHPad(false);
11067 
11068   // The instruction is gone now.
11069   MI.eraseFromParent();
11070 }
11071 
11072 static
11073 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
11074   for (MachineBasicBlock *S : MBB->successors())
11075     if (S != Succ)
11076       return S;
11077   llvm_unreachable("Expecting a BB with two successors!");
11078 }
11079 
11080 /// Return the load opcode for a given load size. If load size >= 8,
11081 /// neon opcode will be returned.
11082 static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
11083   if (LdSize >= 8)
11084     return LdSize == 16 ? ARM::VLD1q32wb_fixed
11085                         : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
11086   if (IsThumb1)
11087     return LdSize == 4 ? ARM::tLDRi
11088                        : LdSize == 2 ? ARM::tLDRHi
11089                                      : LdSize == 1 ? ARM::tLDRBi : 0;
11090   if (IsThumb2)
11091     return LdSize == 4 ? ARM::t2LDR_POST
11092                        : LdSize == 2 ? ARM::t2LDRH_POST
11093                                      : LdSize == 1 ? ARM::t2LDRB_POST : 0;
11094   return LdSize == 4 ? ARM::LDR_POST_IMM
11095                      : LdSize == 2 ? ARM::LDRH_POST
11096                                    : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
11097 }
11098 
11099 /// Return the store opcode for a given store size. If store size >= 8,
11100 /// neon opcode will be returned.
11101 static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
11102   if (StSize >= 8)
11103     return StSize == 16 ? ARM::VST1q32wb_fixed
11104                         : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
11105   if (IsThumb1)
11106     return StSize == 4 ? ARM::tSTRi
11107                        : StSize == 2 ? ARM::tSTRHi
11108                                      : StSize == 1 ? ARM::tSTRBi : 0;
11109   if (IsThumb2)
11110     return StSize == 4 ? ARM::t2STR_POST
11111                        : StSize == 2 ? ARM::t2STRH_POST
11112                                      : StSize == 1 ? ARM::t2STRB_POST : 0;
11113   return StSize == 4 ? ARM::STR_POST_IMM
11114                      : StSize == 2 ? ARM::STRH_POST
11115                                    : StSize == 1 ? ARM::STRB_POST_IMM : 0;
11116 }
11117 
11118 /// Emit a post-increment load operation with given size. The instructions
11119 /// will be added to BB at Pos.
11120 static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
11121                        const TargetInstrInfo *TII, const DebugLoc &dl,
11122                        unsigned LdSize, unsigned Data, unsigned AddrIn,
11123                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
11124   unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
11125   assert(LdOpc != 0 && "Should have a load opcode");
11126   if (LdSize >= 8) {
11127     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
11128         .addReg(AddrOut, RegState::Define)
11129         .addReg(AddrIn)
11130         .addImm(0)
11131         .add(predOps(ARMCC::AL));
11132   } else if (IsThumb1) {
11133     // load + update AddrIn
11134     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
11135         .addReg(AddrIn)
11136         .addImm(0)
11137         .add(predOps(ARMCC::AL));
11138     BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
11139         .add(t1CondCodeOp())
11140         .addReg(AddrIn)
11141         .addImm(LdSize)
11142         .add(predOps(ARMCC::AL));
11143   } else if (IsThumb2) {
11144     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
11145         .addReg(AddrOut, RegState::Define)
11146         .addReg(AddrIn)
11147         .addImm(LdSize)
11148         .add(predOps(ARMCC::AL));
11149   } else { // arm
11150     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
11151         .addReg(AddrOut, RegState::Define)
11152         .addReg(AddrIn)
11153         .addReg(0)
11154         .addImm(LdSize)
11155         .add(predOps(ARMCC::AL));
11156   }
11157 }
11158 
11159 /// Emit a post-increment store operation with given size. The instructions
11160 /// will be added to BB at Pos.
11161 static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
11162                        const TargetInstrInfo *TII, const DebugLoc &dl,
11163                        unsigned StSize, unsigned Data, unsigned AddrIn,
11164                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
11165   unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
11166   assert(StOpc != 0 && "Should have a store opcode");
11167   if (StSize >= 8) {
11168     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
11169         .addReg(AddrIn)
11170         .addImm(0)
11171         .addReg(Data)
11172         .add(predOps(ARMCC::AL));
11173   } else if (IsThumb1) {
11174     // store + update AddrIn
11175     BuildMI(*BB, Pos, dl, TII->get(StOpc))
11176         .addReg(Data)
11177         .addReg(AddrIn)
11178         .addImm(0)
11179         .add(predOps(ARMCC::AL));
11180     BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
11181         .add(t1CondCodeOp())
11182         .addReg(AddrIn)
11183         .addImm(StSize)
11184         .add(predOps(ARMCC::AL));
11185   } else if (IsThumb2) {
11186     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
11187         .addReg(Data)
11188         .addReg(AddrIn)
11189         .addImm(StSize)
11190         .add(predOps(ARMCC::AL));
11191   } else { // arm
11192     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
11193         .addReg(Data)
11194         .addReg(AddrIn)
11195         .addReg(0)
11196         .addImm(StSize)
11197         .add(predOps(ARMCC::AL));
11198   }
11199 }
11200 
11201 MachineBasicBlock *
11202 ARMTargetLowering::EmitStructByval(MachineInstr &MI,
11203                                    MachineBasicBlock *BB) const {
11204   // This pseudo instruction has 3 operands: dst, src, size
11205   // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
11206   // Otherwise, we will generate unrolled scalar copies.
11207   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
11208   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11209   MachineFunction::iterator It = ++BB->getIterator();
11210 
11211   Register dest = MI.getOperand(0).getReg();
11212   Register src = MI.getOperand(1).getReg();
11213   unsigned SizeVal = MI.getOperand(2).getImm();
11214   unsigned Alignment = MI.getOperand(3).getImm();
11215   DebugLoc dl = MI.getDebugLoc();
11216 
11217   MachineFunction *MF = BB->getParent();
11218   MachineRegisterInfo &MRI = MF->getRegInfo();
11219   unsigned UnitSize = 0;
11220   const TargetRegisterClass *TRC = nullptr;
11221   const TargetRegisterClass *VecTRC = nullptr;
11222 
11223   bool IsThumb1 = Subtarget->isThumb1Only();
11224   bool IsThumb2 = Subtarget->isThumb2();
11225   bool IsThumb = Subtarget->isThumb();
11226 
11227   if (Alignment & 1) {
11228     UnitSize = 1;
11229   } else if (Alignment & 2) {
11230     UnitSize = 2;
11231   } else {
11232     // Check whether we can use NEON instructions.
11233     if (!MF->getFunction().hasFnAttribute(Attribute::NoImplicitFloat) &&
11234         Subtarget->hasNEON()) {
11235       if ((Alignment % 16 == 0) && SizeVal >= 16)
11236         UnitSize = 16;
11237       else if ((Alignment % 8 == 0) && SizeVal >= 8)
11238         UnitSize = 8;
11239     }
11240     // Can't use NEON instructions.
11241     if (UnitSize == 0)
11242       UnitSize = 4;
11243   }
11244 
11245   // Select the correct opcode and register class for unit size load/store
11246   bool IsNeon = UnitSize >= 8;
11247   TRC = IsThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
11248   if (IsNeon)
11249     VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
11250                             : UnitSize == 8 ? &ARM::DPRRegClass
11251                                             : nullptr;
11252 
11253   unsigned BytesLeft = SizeVal % UnitSize;
11254   unsigned LoopSize = SizeVal - BytesLeft;
11255 
11256   if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
11257     // Use LDR and STR to copy.
11258     // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
11259     // [destOut] = STR_POST(scratch, destIn, UnitSize)
11260     unsigned srcIn = src;
11261     unsigned destIn = dest;
11262     for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
11263       Register srcOut = MRI.createVirtualRegister(TRC);
11264       Register destOut = MRI.createVirtualRegister(TRC);
11265       Register scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
11266       emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
11267                  IsThumb1, IsThumb2);
11268       emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
11269                  IsThumb1, IsThumb2);
11270       srcIn = srcOut;
11271       destIn = destOut;
11272     }
11273 
11274     // Handle the leftover bytes with LDRB and STRB.
11275     // [scratch, srcOut] = LDRB_POST(srcIn, 1)
11276     // [destOut] = STRB_POST(scratch, destIn, 1)
11277     for (unsigned i = 0; i < BytesLeft; i++) {
11278       Register srcOut = MRI.createVirtualRegister(TRC);
11279       Register destOut = MRI.createVirtualRegister(TRC);
11280       Register scratch = MRI.createVirtualRegister(TRC);
11281       emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
11282                  IsThumb1, IsThumb2);
11283       emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
11284                  IsThumb1, IsThumb2);
11285       srcIn = srcOut;
11286       destIn = destOut;
11287     }
11288     MI.eraseFromParent(); // The instruction is gone now.
11289     return BB;
11290   }
11291 
11292   // Expand the pseudo op to a loop.
11293   // thisMBB:
11294   //   ...
11295   //   movw varEnd, # --> with thumb2
11296   //   movt varEnd, #
11297   //   ldrcp varEnd, idx --> without thumb2
11298   //   fallthrough --> loopMBB
11299   // loopMBB:
11300   //   PHI varPhi, varEnd, varLoop
11301   //   PHI srcPhi, src, srcLoop
11302   //   PHI destPhi, dst, destLoop
11303   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
11304   //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
11305   //   subs varLoop, varPhi, #UnitSize
11306   //   bne loopMBB
11307   //   fallthrough --> exitMBB
11308   // exitMBB:
11309   //   epilogue to handle left-over bytes
11310   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
11311   //   [destOut] = STRB_POST(scratch, destLoop, 1)
11312   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11313   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11314   MF->insert(It, loopMBB);
11315   MF->insert(It, exitMBB);
11316 
11317   // Transfer the remainder of BB and its successor edges to exitMBB.
11318   exitMBB->splice(exitMBB->begin(), BB,
11319                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11320   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11321 
11322   // Load an immediate to varEnd.
11323   Register varEnd = MRI.createVirtualRegister(TRC);
11324   if (Subtarget->useMovt()) {
11325     unsigned Vtmp = varEnd;
11326     if ((LoopSize & 0xFFFF0000) != 0)
11327       Vtmp = MRI.createVirtualRegister(TRC);
11328     BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVi16 : ARM::MOVi16), Vtmp)
11329         .addImm(LoopSize & 0xFFFF)
11330         .add(predOps(ARMCC::AL));
11331 
11332     if ((LoopSize & 0xFFFF0000) != 0)
11333       BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVTi16 : ARM::MOVTi16), varEnd)
11334           .addReg(Vtmp)
11335           .addImm(LoopSize >> 16)
11336           .add(predOps(ARMCC::AL));
11337   } else {
11338     MachineConstantPool *ConstantPool = MF->getConstantPool();
11339     Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
11340     const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
11341 
11342     // MachineConstantPool wants an explicit alignment.
11343     Align Alignment = MF->getDataLayout().getPrefTypeAlign(Int32Ty);
11344     unsigned Idx = ConstantPool->getConstantPoolIndex(C, Alignment);
11345     MachineMemOperand *CPMMO =
11346         MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
11347                                  MachineMemOperand::MOLoad, 4, Align(4));
11348 
11349     if (IsThumb)
11350       BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci))
11351           .addReg(varEnd, RegState::Define)
11352           .addConstantPoolIndex(Idx)
11353           .add(predOps(ARMCC::AL))
11354           .addMemOperand(CPMMO);
11355     else
11356       BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp))
11357           .addReg(varEnd, RegState::Define)
11358           .addConstantPoolIndex(Idx)
11359           .addImm(0)
11360           .add(predOps(ARMCC::AL))
11361           .addMemOperand(CPMMO);
11362   }
11363   BB->addSuccessor(loopMBB);
11364 
11365   // Generate the loop body:
11366   //   varPhi = PHI(varLoop, varEnd)
11367   //   srcPhi = PHI(srcLoop, src)
11368   //   destPhi = PHI(destLoop, dst)
11369   MachineBasicBlock *entryBB = BB;
11370   BB = loopMBB;
11371   Register varLoop = MRI.createVirtualRegister(TRC);
11372   Register varPhi = MRI.createVirtualRegister(TRC);
11373   Register srcLoop = MRI.createVirtualRegister(TRC);
11374   Register srcPhi = MRI.createVirtualRegister(TRC);
11375   Register destLoop = MRI.createVirtualRegister(TRC);
11376   Register destPhi = MRI.createVirtualRegister(TRC);
11377 
11378   BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
11379     .addReg(varLoop).addMBB(loopMBB)
11380     .addReg(varEnd).addMBB(entryBB);
11381   BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
11382     .addReg(srcLoop).addMBB(loopMBB)
11383     .addReg(src).addMBB(entryBB);
11384   BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
11385     .addReg(destLoop).addMBB(loopMBB)
11386     .addReg(dest).addMBB(entryBB);
11387 
11388   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
11389   //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
11390   Register scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
11391   emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
11392              IsThumb1, IsThumb2);
11393   emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
11394              IsThumb1, IsThumb2);
11395 
11396   // Decrement loop variable by UnitSize.
11397   if (IsThumb1) {
11398     BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop)
11399         .add(t1CondCodeOp())
11400         .addReg(varPhi)
11401         .addImm(UnitSize)
11402         .add(predOps(ARMCC::AL));
11403   } else {
11404     MachineInstrBuilder MIB =
11405         BuildMI(*BB, BB->end(), dl,
11406                 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
11407     MIB.addReg(varPhi)
11408         .addImm(UnitSize)
11409         .add(predOps(ARMCC::AL))
11410         .add(condCodeOp());
11411     MIB->getOperand(5).setReg(ARM::CPSR);
11412     MIB->getOperand(5).setIsDef(true);
11413   }
11414   BuildMI(*BB, BB->end(), dl,
11415           TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
11416       .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
11417 
11418   // loopMBB can loop back to loopMBB or fall through to exitMBB.
11419   BB->addSuccessor(loopMBB);
11420   BB->addSuccessor(exitMBB);
11421 
11422   // Add epilogue to handle BytesLeft.
11423   BB = exitMBB;
11424   auto StartOfExit = exitMBB->begin();
11425 
11426   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
11427   //   [destOut] = STRB_POST(scratch, destLoop, 1)
11428   unsigned srcIn = srcLoop;
11429   unsigned destIn = destLoop;
11430   for (unsigned i = 0; i < BytesLeft; i++) {
11431     Register srcOut = MRI.createVirtualRegister(TRC);
11432     Register destOut = MRI.createVirtualRegister(TRC);
11433     Register scratch = MRI.createVirtualRegister(TRC);
11434     emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
11435                IsThumb1, IsThumb2);
11436     emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
11437                IsThumb1, IsThumb2);
11438     srcIn = srcOut;
11439     destIn = destOut;
11440   }
11441 
11442   MI.eraseFromParent(); // The instruction is gone now.
11443   return BB;
11444 }
11445 
11446 MachineBasicBlock *
11447 ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI,
11448                                        MachineBasicBlock *MBB) const {
11449   const TargetMachine &TM = getTargetMachine();
11450   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
11451   DebugLoc DL = MI.getDebugLoc();
11452 
11453   assert(Subtarget->isTargetWindows() &&
11454          "__chkstk is only supported on Windows");
11455   assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
11456 
11457   // __chkstk takes the number of words to allocate on the stack in R4, and
11458   // returns the stack adjustment in number of bytes in R4.  This will not
11459   // clober any other registers (other than the obvious lr).
11460   //
11461   // Although, technically, IP should be considered a register which may be
11462   // clobbered, the call itself will not touch it.  Windows on ARM is a pure
11463   // thumb-2 environment, so there is no interworking required.  As a result, we
11464   // do not expect a veneer to be emitted by the linker, clobbering IP.
11465   //
11466   // Each module receives its own copy of __chkstk, so no import thunk is
11467   // required, again, ensuring that IP is not clobbered.
11468   //
11469   // Finally, although some linkers may theoretically provide a trampoline for
11470   // out of range calls (which is quite common due to a 32M range limitation of
11471   // branches for Thumb), we can generate the long-call version via
11472   // -mcmodel=large, alleviating the need for the trampoline which may clobber
11473   // IP.
11474 
11475   switch (TM.getCodeModel()) {
11476   case CodeModel::Tiny:
11477     llvm_unreachable("Tiny code model not available on ARM.");
11478   case CodeModel::Small:
11479   case CodeModel::Medium:
11480   case CodeModel::Kernel:
11481     BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
11482         .add(predOps(ARMCC::AL))
11483         .addExternalSymbol("__chkstk")
11484         .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
11485         .addReg(ARM::R4, RegState::Implicit | RegState::Define)
11486         .addReg(ARM::R12,
11487                 RegState::Implicit | RegState::Define | RegState::Dead)
11488         .addReg(ARM::CPSR,
11489                 RegState::Implicit | RegState::Define | RegState::Dead);
11490     break;
11491   case CodeModel::Large: {
11492     MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11493     Register Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11494 
11495     BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
11496       .addExternalSymbol("__chkstk");
11497     BuildMI(*MBB, MI, DL, TII.get(gettBLXrOpcode(*MBB->getParent())))
11498         .add(predOps(ARMCC::AL))
11499         .addReg(Reg, RegState::Kill)
11500         .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
11501         .addReg(ARM::R4, RegState::Implicit | RegState::Define)
11502         .addReg(ARM::R12,
11503                 RegState::Implicit | RegState::Define | RegState::Dead)
11504         .addReg(ARM::CPSR,
11505                 RegState::Implicit | RegState::Define | RegState::Dead);
11506     break;
11507   }
11508   }
11509 
11510   BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr), ARM::SP)
11511       .addReg(ARM::SP, RegState::Kill)
11512       .addReg(ARM::R4, RegState::Kill)
11513       .setMIFlags(MachineInstr::FrameSetup)
11514       .add(predOps(ARMCC::AL))
11515       .add(condCodeOp());
11516 
11517   MI.eraseFromParent();
11518   return MBB;
11519 }
11520 
11521 MachineBasicBlock *
11522 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI,
11523                                        MachineBasicBlock *MBB) const {
11524   DebugLoc DL = MI.getDebugLoc();
11525   MachineFunction *MF = MBB->getParent();
11526   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
11527 
11528   MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
11529   MF->insert(++MBB->getIterator(), ContBB);
11530   ContBB->splice(ContBB->begin(), MBB,
11531                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
11532   ContBB->transferSuccessorsAndUpdatePHIs(MBB);
11533   MBB->addSuccessor(ContBB);
11534 
11535   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
11536   BuildMI(TrapBB, DL, TII->get(ARM::t__brkdiv0));
11537   MF->push_back(TrapBB);
11538   MBB->addSuccessor(TrapBB);
11539 
11540   BuildMI(*MBB, MI, DL, TII->get(ARM::tCMPi8))
11541       .addReg(MI.getOperand(0).getReg())
11542       .addImm(0)
11543       .add(predOps(ARMCC::AL));
11544   BuildMI(*MBB, MI, DL, TII->get(ARM::t2Bcc))
11545       .addMBB(TrapBB)
11546       .addImm(ARMCC::EQ)
11547       .addReg(ARM::CPSR);
11548 
11549   MI.eraseFromParent();
11550   return ContBB;
11551 }
11552 
11553 // The CPSR operand of SelectItr might be missing a kill marker
11554 // because there were multiple uses of CPSR, and ISel didn't know
11555 // which to mark. Figure out whether SelectItr should have had a
11556 // kill marker, and set it if it should. Returns the correct kill
11557 // marker value.
11558 static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr,
11559                                    MachineBasicBlock* BB,
11560                                    const TargetRegisterInfo* TRI) {
11561   // Scan forward through BB for a use/def of CPSR.
11562   MachineBasicBlock::iterator miI(std::next(SelectItr));
11563   for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
11564     const MachineInstr& mi = *miI;
11565     if (mi.readsRegister(ARM::CPSR))
11566       return false;
11567     if (mi.definesRegister(ARM::CPSR))
11568       break; // Should have kill-flag - update below.
11569   }
11570 
11571   // If we hit the end of the block, check whether CPSR is live into a
11572   // successor.
11573   if (miI == BB->end()) {
11574     for (MachineBasicBlock *Succ : BB->successors())
11575       if (Succ->isLiveIn(ARM::CPSR))
11576         return false;
11577   }
11578 
11579   // We found a def, or hit the end of the basic block and CPSR wasn't live
11580   // out. SelectMI should have a kill flag on CPSR.
11581   SelectItr->addRegisterKilled(ARM::CPSR, TRI);
11582   return true;
11583 }
11584 
11585 /// Adds logic in loop entry MBB to calculate loop iteration count and adds
11586 /// t2WhileLoopSetup and t2WhileLoopStart to generate WLS loop
11587 static Register genTPEntry(MachineBasicBlock *TpEntry,
11588                            MachineBasicBlock *TpLoopBody,
11589                            MachineBasicBlock *TpExit, Register OpSizeReg,
11590                            const TargetInstrInfo *TII, DebugLoc Dl,
11591                            MachineRegisterInfo &MRI) {
11592   // Calculates loop iteration count = ceil(n/16) = (n + 15) >> 4.
11593   Register AddDestReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11594   BuildMI(TpEntry, Dl, TII->get(ARM::t2ADDri), AddDestReg)
11595       .addUse(OpSizeReg)
11596       .addImm(15)
11597       .add(predOps(ARMCC::AL))
11598       .addReg(0);
11599 
11600   Register LsrDestReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11601   BuildMI(TpEntry, Dl, TII->get(ARM::t2LSRri), LsrDestReg)
11602       .addUse(AddDestReg, RegState::Kill)
11603       .addImm(4)
11604       .add(predOps(ARMCC::AL))
11605       .addReg(0);
11606 
11607   Register TotalIterationsReg = MRI.createVirtualRegister(&ARM::GPRlrRegClass);
11608   BuildMI(TpEntry, Dl, TII->get(ARM::t2WhileLoopSetup), TotalIterationsReg)
11609       .addUse(LsrDestReg, RegState::Kill);
11610 
11611   BuildMI(TpEntry, Dl, TII->get(ARM::t2WhileLoopStart))
11612       .addUse(TotalIterationsReg)
11613       .addMBB(TpExit);
11614 
11615   BuildMI(TpEntry, Dl, TII->get(ARM::t2B))
11616       .addMBB(TpLoopBody)
11617       .add(predOps(ARMCC::AL));
11618 
11619   return TotalIterationsReg;
11620 }
11621 
11622 /// Adds logic in the loopBody MBB to generate MVE_VCTP, t2DoLoopDec and
11623 /// t2DoLoopEnd. These are used by later passes to generate tail predicated
11624 /// loops.
11625 static void genTPLoopBody(MachineBasicBlock *TpLoopBody,
11626                           MachineBasicBlock *TpEntry, MachineBasicBlock *TpExit,
11627                           const TargetInstrInfo *TII, DebugLoc Dl,
11628                           MachineRegisterInfo &MRI, Register OpSrcReg,
11629                           Register OpDestReg, Register ElementCountReg,
11630                           Register TotalIterationsReg, bool IsMemcpy) {
11631   // First insert 4 PHI nodes for: Current pointer to Src (if memcpy), Dest
11632   // array, loop iteration counter, predication counter.
11633 
11634   Register SrcPhiReg, CurrSrcReg;
11635   if (IsMemcpy) {
11636     //  Current position in the src array
11637     SrcPhiReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11638     CurrSrcReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11639     BuildMI(TpLoopBody, Dl, TII->get(ARM::PHI), SrcPhiReg)
11640         .addUse(OpSrcReg)
11641         .addMBB(TpEntry)
11642         .addUse(CurrSrcReg)
11643         .addMBB(TpLoopBody);
11644   }
11645 
11646   // Current position in the dest array
11647   Register DestPhiReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11648   Register CurrDestReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11649   BuildMI(TpLoopBody, Dl, TII->get(ARM::PHI), DestPhiReg)
11650       .addUse(OpDestReg)
11651       .addMBB(TpEntry)
11652       .addUse(CurrDestReg)
11653       .addMBB(TpLoopBody);
11654 
11655   // Current loop counter
11656   Register LoopCounterPhiReg = MRI.createVirtualRegister(&ARM::GPRlrRegClass);
11657   Register RemainingLoopIterationsReg =
11658       MRI.createVirtualRegister(&ARM::GPRlrRegClass);
11659   BuildMI(TpLoopBody, Dl, TII->get(ARM::PHI), LoopCounterPhiReg)
11660       .addUse(TotalIterationsReg)
11661       .addMBB(TpEntry)
11662       .addUse(RemainingLoopIterationsReg)
11663       .addMBB(TpLoopBody);
11664 
11665   // Predication counter
11666   Register PredCounterPhiReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11667   Register RemainingElementsReg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
11668   BuildMI(TpLoopBody, Dl, TII->get(ARM::PHI), PredCounterPhiReg)
11669       .addUse(ElementCountReg)
11670       .addMBB(TpEntry)
11671       .addUse(RemainingElementsReg)
11672       .addMBB(TpLoopBody);
11673 
11674   // Pass predication counter to VCTP
11675   Register VccrReg = MRI.createVirtualRegister(&ARM::VCCRRegClass);
11676   BuildMI(TpLoopBody, Dl, TII->get(ARM::MVE_VCTP8), VccrReg)
11677       .addUse(PredCounterPhiReg)
11678       .addImm(ARMVCC::None)
11679       .addReg(0)
11680       .addReg(0);
11681 
11682   BuildMI(TpLoopBody, Dl, TII->get(ARM::t2SUBri), RemainingElementsReg)
11683       .addUse(PredCounterPhiReg)
11684       .addImm(16)
11685       .add(predOps(ARMCC::AL))
11686       .addReg(0);
11687 
11688   // VLDRB (only if memcpy) and VSTRB instructions, predicated using VPR
11689   Register SrcValueReg;
11690   if (IsMemcpy) {
11691     SrcValueReg = MRI.createVirtualRegister(&ARM::MQPRRegClass);
11692     BuildMI(TpLoopBody, Dl, TII->get(ARM::MVE_VLDRBU8_post))
11693         .addDef(CurrSrcReg)
11694         .addDef(SrcValueReg)
11695         .addReg(SrcPhiReg)
11696         .addImm(16)
11697         .addImm(ARMVCC::Then)
11698         .addUse(VccrReg)
11699         .addReg(0);
11700   } else
11701     SrcValueReg = OpSrcReg;
11702 
11703   BuildMI(TpLoopBody, Dl, TII->get(ARM::MVE_VSTRBU8_post))
11704       .addDef(CurrDestReg)
11705       .addUse(SrcValueReg)
11706       .addReg(DestPhiReg)
11707       .addImm(16)
11708       .addImm(ARMVCC::Then)
11709       .addUse(VccrReg)
11710       .addReg(0);
11711 
11712   // Add the pseudoInstrs for decrementing the loop counter and marking the
11713   // end:t2DoLoopDec and t2DoLoopEnd
11714   BuildMI(TpLoopBody, Dl, TII->get(ARM::t2LoopDec), RemainingLoopIterationsReg)
11715       .addUse(LoopCounterPhiReg)
11716       .addImm(1);
11717 
11718   BuildMI(TpLoopBody, Dl, TII->get(ARM::t2LoopEnd))
11719       .addUse(RemainingLoopIterationsReg)
11720       .addMBB(TpLoopBody);
11721 
11722   BuildMI(TpLoopBody, Dl, TII->get(ARM::t2B))
11723       .addMBB(TpExit)
11724       .add(predOps(ARMCC::AL));
11725 }
11726 
11727 MachineBasicBlock *
11728 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11729                                                MachineBasicBlock *BB) const {
11730   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
11731   DebugLoc dl = MI.getDebugLoc();
11732   bool isThumb2 = Subtarget->isThumb2();
11733   switch (MI.getOpcode()) {
11734   default: {
11735     MI.print(errs());
11736     llvm_unreachable("Unexpected instr type to insert");
11737   }
11738 
11739   // Thumb1 post-indexed loads are really just single-register LDMs.
11740   case ARM::tLDR_postidx: {
11741     MachineOperand Def(MI.getOperand(1));
11742     BuildMI(*BB, MI, dl, TII->get(ARM::tLDMIA_UPD))
11743         .add(Def)  // Rn_wb
11744         .add(MI.getOperand(2))  // Rn
11745         .add(MI.getOperand(3))  // PredImm
11746         .add(MI.getOperand(4))  // PredReg
11747         .add(MI.getOperand(0))  // Rt
11748         .cloneMemRefs(MI);
11749     MI.eraseFromParent();
11750     return BB;
11751   }
11752 
11753   case ARM::MVE_MEMCPYLOOPINST:
11754   case ARM::MVE_MEMSETLOOPINST: {
11755 
11756     // Transformation below expands MVE_MEMCPYLOOPINST/MVE_MEMSETLOOPINST Pseudo
11757     // into a Tail Predicated (TP) Loop. It adds the instructions to calculate
11758     // the iteration count =ceil(size_in_bytes/16)) in the TP entry block and
11759     // adds the relevant instructions in the TP loop Body for generation of a
11760     // WLSTP loop.
11761 
11762     // Below is relevant portion of the CFG after the transformation.
11763     // The Machine Basic Blocks are shown along with branch conditions (in
11764     // brackets). Note that TP entry/exit MBBs depict the entry/exit of this
11765     // portion of the CFG and may not necessarily be the entry/exit of the
11766     // function.
11767 
11768     //             (Relevant) CFG after transformation:
11769     //               TP entry MBB
11770     //                   |
11771     //          |-----------------|
11772     //       (n <= 0)          (n > 0)
11773     //          |                 |
11774     //          |         TP loop Body MBB<--|
11775     //          |                |           |
11776     //           \               |___________|
11777     //            \             /
11778     //              TP exit MBB
11779 
11780     MachineFunction *MF = BB->getParent();
11781     MachineFunctionProperties &Properties = MF->getProperties();
11782     MachineRegisterInfo &MRI = MF->getRegInfo();
11783 
11784     Register OpDestReg = MI.getOperand(0).getReg();
11785     Register OpSrcReg = MI.getOperand(1).getReg();
11786     Register OpSizeReg = MI.getOperand(2).getReg();
11787 
11788     // Allocate the required MBBs and add to parent function.
11789     MachineBasicBlock *TpEntry = BB;
11790     MachineBasicBlock *TpLoopBody = MF->CreateMachineBasicBlock();
11791     MachineBasicBlock *TpExit;
11792 
11793     MF->push_back(TpLoopBody);
11794 
11795     // If any instructions are present in the current block after
11796     // MVE_MEMCPYLOOPINST or MVE_MEMSETLOOPINST, split the current block and
11797     // move the instructions into the newly created exit block. If there are no
11798     // instructions add an explicit branch to the FallThrough block and then
11799     // split.
11800     //
11801     // The split is required for two reasons:
11802     // 1) A terminator(t2WhileLoopStart) will be placed at that site.
11803     // 2) Since a TPLoopBody will be added later, any phis in successive blocks
11804     //    need to be updated. splitAt() already handles this.
11805     TpExit = BB->splitAt(MI, false);
11806     if (TpExit == BB) {
11807       assert(BB->canFallThrough() && "Exit Block must be Fallthrough of the "
11808                                      "block containing memcpy/memset Pseudo");
11809       TpExit = BB->getFallThrough();
11810       BuildMI(BB, dl, TII->get(ARM::t2B))
11811           .addMBB(TpExit)
11812           .add(predOps(ARMCC::AL));
11813       TpExit = BB->splitAt(MI, false);
11814     }
11815 
11816     // Add logic for iteration count
11817     Register TotalIterationsReg =
11818         genTPEntry(TpEntry, TpLoopBody, TpExit, OpSizeReg, TII, dl, MRI);
11819 
11820     // Add the vectorized (and predicated) loads/store instructions
11821     bool IsMemcpy = MI.getOpcode() == ARM::MVE_MEMCPYLOOPINST;
11822     genTPLoopBody(TpLoopBody, TpEntry, TpExit, TII, dl, MRI, OpSrcReg,
11823                   OpDestReg, OpSizeReg, TotalIterationsReg, IsMemcpy);
11824 
11825     // Required to avoid conflict with the MachineVerifier during testing.
11826     Properties.reset(MachineFunctionProperties::Property::NoPHIs);
11827 
11828     // Connect the blocks
11829     TpEntry->addSuccessor(TpLoopBody);
11830     TpLoopBody->addSuccessor(TpLoopBody);
11831     TpLoopBody->addSuccessor(TpExit);
11832 
11833     // Reorder for a more natural layout
11834     TpLoopBody->moveAfter(TpEntry);
11835     TpExit->moveAfter(TpLoopBody);
11836 
11837     // Finally, remove the memcpy Psuedo Instruction
11838     MI.eraseFromParent();
11839 
11840     // Return the exit block as it may contain other instructions requiring a
11841     // custom inserter
11842     return TpExit;
11843   }
11844 
11845   // The Thumb2 pre-indexed stores have the same MI operands, they just
11846   // define them differently in the .td files from the isel patterns, so
11847   // they need pseudos.
11848   case ARM::t2STR_preidx:
11849     MI.setDesc(TII->get(ARM::t2STR_PRE));
11850     return BB;
11851   case ARM::t2STRB_preidx:
11852     MI.setDesc(TII->get(ARM::t2STRB_PRE));
11853     return BB;
11854   case ARM::t2STRH_preidx:
11855     MI.setDesc(TII->get(ARM::t2STRH_PRE));
11856     return BB;
11857 
11858   case ARM::STRi_preidx:
11859   case ARM::STRBi_preidx: {
11860     unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM
11861                                                          : ARM::STRB_PRE_IMM;
11862     // Decode the offset.
11863     unsigned Offset = MI.getOperand(4).getImm();
11864     bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
11865     Offset = ARM_AM::getAM2Offset(Offset);
11866     if (isSub)
11867       Offset = -Offset;
11868 
11869     MachineMemOperand *MMO = *MI.memoperands_begin();
11870     BuildMI(*BB, MI, dl, TII->get(NewOpc))
11871         .add(MI.getOperand(0)) // Rn_wb
11872         .add(MI.getOperand(1)) // Rt
11873         .add(MI.getOperand(2)) // Rn
11874         .addImm(Offset)        // offset (skip GPR==zero_reg)
11875         .add(MI.getOperand(5)) // pred
11876         .add(MI.getOperand(6))
11877         .addMemOperand(MMO);
11878     MI.eraseFromParent();
11879     return BB;
11880   }
11881   case ARM::STRr_preidx:
11882   case ARM::STRBr_preidx:
11883   case ARM::STRH_preidx: {
11884     unsigned NewOpc;
11885     switch (MI.getOpcode()) {
11886     default: llvm_unreachable("unexpected opcode!");
11887     case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
11888     case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
11889     case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
11890     }
11891     MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
11892     for (const MachineOperand &MO : MI.operands())
11893       MIB.add(MO);
11894     MI.eraseFromParent();
11895     return BB;
11896   }
11897 
11898   case ARM::tMOVCCr_pseudo: {
11899     // To "insert" a SELECT_CC instruction, we actually have to insert the
11900     // diamond control-flow pattern.  The incoming instruction knows the
11901     // destination vreg to set, the condition code register to branch on, the
11902     // true/false values to select between, and a branch opcode to use.
11903     const BasicBlock *LLVM_BB = BB->getBasicBlock();
11904     MachineFunction::iterator It = ++BB->getIterator();
11905 
11906     //  thisMBB:
11907     //  ...
11908     //   TrueVal = ...
11909     //   cmpTY ccX, r1, r2
11910     //   bCC copy1MBB
11911     //   fallthrough --> copy0MBB
11912     MachineBasicBlock *thisMBB  = BB;
11913     MachineFunction *F = BB->getParent();
11914     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11915     MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
11916     F->insert(It, copy0MBB);
11917     F->insert(It, sinkMBB);
11918 
11919     // Check whether CPSR is live past the tMOVCCr_pseudo.
11920     const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
11921     if (!MI.killsRegister(ARM::CPSR) &&
11922         !checkAndUpdateCPSRKill(MI, thisMBB, TRI)) {
11923       copy0MBB->addLiveIn(ARM::CPSR);
11924       sinkMBB->addLiveIn(ARM::CPSR);
11925     }
11926 
11927     // Transfer the remainder of BB and its successor edges to sinkMBB.
11928     sinkMBB->splice(sinkMBB->begin(), BB,
11929                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
11930     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11931 
11932     BB->addSuccessor(copy0MBB);
11933     BB->addSuccessor(sinkMBB);
11934 
11935     BuildMI(BB, dl, TII->get(ARM::tBcc))
11936         .addMBB(sinkMBB)
11937         .addImm(MI.getOperand(3).getImm())
11938         .addReg(MI.getOperand(4).getReg());
11939 
11940     //  copy0MBB:
11941     //   %FalseValue = ...
11942     //   # fallthrough to sinkMBB
11943     BB = copy0MBB;
11944 
11945     // Update machine-CFG edges
11946     BB->addSuccessor(sinkMBB);
11947 
11948     //  sinkMBB:
11949     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11950     //  ...
11951     BB = sinkMBB;
11952     BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg())
11953         .addReg(MI.getOperand(1).getReg())
11954         .addMBB(copy0MBB)
11955         .addReg(MI.getOperand(2).getReg())
11956         .addMBB(thisMBB);
11957 
11958     MI.eraseFromParent(); // The pseudo instruction is gone now.
11959     return BB;
11960   }
11961 
11962   case ARM::BCCi64:
11963   case ARM::BCCZi64: {
11964     // If there is an unconditional branch to the other successor, remove it.
11965     BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
11966 
11967     // Compare both parts that make up the double comparison separately for
11968     // equality.
11969     bool RHSisZero = MI.getOpcode() == ARM::BCCZi64;
11970 
11971     Register LHS1 = MI.getOperand(1).getReg();
11972     Register LHS2 = MI.getOperand(2).getReg();
11973     if (RHSisZero) {
11974       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
11975           .addReg(LHS1)
11976           .addImm(0)
11977           .add(predOps(ARMCC::AL));
11978       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
11979         .addReg(LHS2).addImm(0)
11980         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
11981     } else {
11982       Register RHS1 = MI.getOperand(3).getReg();
11983       Register RHS2 = MI.getOperand(4).getReg();
11984       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
11985           .addReg(LHS1)
11986           .addReg(RHS1)
11987           .add(predOps(ARMCC::AL));
11988       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
11989         .addReg(LHS2).addReg(RHS2)
11990         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
11991     }
11992 
11993     MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB();
11994     MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
11995     if (MI.getOperand(0).getImm() == ARMCC::NE)
11996       std::swap(destMBB, exitMBB);
11997 
11998     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
11999       .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
12000     if (isThumb2)
12001       BuildMI(BB, dl, TII->get(ARM::t2B))
12002           .addMBB(exitMBB)
12003           .add(predOps(ARMCC::AL));
12004     else
12005       BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
12006 
12007     MI.eraseFromParent(); // The pseudo instruction is gone now.
12008     return BB;
12009   }
12010 
12011   case ARM::Int_eh_sjlj_setjmp:
12012   case ARM::Int_eh_sjlj_setjmp_nofp:
12013   case ARM::tInt_eh_sjlj_setjmp:
12014   case ARM::t2Int_eh_sjlj_setjmp:
12015   case ARM::t2Int_eh_sjlj_setjmp_nofp:
12016     return BB;
12017 
12018   case ARM::Int_eh_sjlj_setup_dispatch:
12019     EmitSjLjDispatchBlock(MI, BB);
12020     return BB;
12021 
12022   case ARM::ABS:
12023   case ARM::t2ABS: {
12024     // To insert an ABS instruction, we have to insert the
12025     // diamond control-flow pattern.  The incoming instruction knows the
12026     // source vreg to test against 0, the destination vreg to set,
12027     // the condition code register to branch on, the
12028     // true/false values to select between, and a branch opcode to use.
12029     // It transforms
12030     //     V1 = ABS V0
12031     // into
12032     //     V2 = MOVS V0
12033     //     BCC                      (branch to SinkBB if V0 >= 0)
12034     //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
12035     //     SinkBB: V1 = PHI(V2, V3)
12036     const BasicBlock *LLVM_BB = BB->getBasicBlock();
12037     MachineFunction::iterator BBI = ++BB->getIterator();
12038     MachineFunction *Fn = BB->getParent();
12039     MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
12040     MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
12041     Fn->insert(BBI, RSBBB);
12042     Fn->insert(BBI, SinkBB);
12043 
12044     Register ABSSrcReg = MI.getOperand(1).getReg();
12045     Register ABSDstReg = MI.getOperand(0).getReg();
12046     bool ABSSrcKIll = MI.getOperand(1).isKill();
12047     bool isThumb2 = Subtarget->isThumb2();
12048     MachineRegisterInfo &MRI = Fn->getRegInfo();
12049     // In Thumb mode S must not be specified if source register is the SP or
12050     // PC and if destination register is the SP, so restrict register class
12051     Register NewRsbDstReg = MRI.createVirtualRegister(
12052         isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
12053 
12054     // Transfer the remainder of BB and its successor edges to sinkMBB.
12055     SinkBB->splice(SinkBB->begin(), BB,
12056                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
12057     SinkBB->transferSuccessorsAndUpdatePHIs(BB);
12058 
12059     BB->addSuccessor(RSBBB);
12060     BB->addSuccessor(SinkBB);
12061 
12062     // fall through to SinkMBB
12063     RSBBB->addSuccessor(SinkBB);
12064 
12065     // insert a cmp at the end of BB
12066     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
12067         .addReg(ABSSrcReg)
12068         .addImm(0)
12069         .add(predOps(ARMCC::AL));
12070 
12071     // insert a bcc with opposite CC to ARMCC::MI at the end of BB
12072     BuildMI(BB, dl,
12073       TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
12074       .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
12075 
12076     // insert rsbri in RSBBB
12077     // Note: BCC and rsbri will be converted into predicated rsbmi
12078     // by if-conversion pass
12079     BuildMI(*RSBBB, RSBBB->begin(), dl,
12080             TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
12081         .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
12082         .addImm(0)
12083         .add(predOps(ARMCC::AL))
12084         .add(condCodeOp());
12085 
12086     // insert PHI in SinkBB,
12087     // reuse ABSDstReg to not change uses of ABS instruction
12088     BuildMI(*SinkBB, SinkBB->begin(), dl,
12089       TII->get(ARM::PHI), ABSDstReg)
12090       .addReg(NewRsbDstReg).addMBB(RSBBB)
12091       .addReg(ABSSrcReg).addMBB(BB);
12092 
12093     // remove ABS instruction
12094     MI.eraseFromParent();
12095 
12096     // return last added BB
12097     return SinkBB;
12098   }
12099   case ARM::COPY_STRUCT_BYVAL_I32:
12100     ++NumLoopByVals;
12101     return EmitStructByval(MI, BB);
12102   case ARM::WIN__CHKSTK:
12103     return EmitLowered__chkstk(MI, BB);
12104   case ARM::WIN__DBZCHK:
12105     return EmitLowered__dbzchk(MI, BB);
12106   }
12107 }
12108 
12109 /// Attaches vregs to MEMCPY that it will use as scratch registers
12110 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
12111 /// instead of as a custom inserter because we need the use list from the SDNode.
12112 static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
12113                                     MachineInstr &MI, const SDNode *Node) {
12114   bool isThumb1 = Subtarget->isThumb1Only();
12115 
12116   DebugLoc DL = MI.getDebugLoc();
12117   MachineFunction *MF = MI.getParent()->getParent();
12118   MachineRegisterInfo &MRI = MF->getRegInfo();
12119   MachineInstrBuilder MIB(*MF, MI);
12120 
12121   // If the new dst/src is unused mark it as dead.
12122   if (!Node->hasAnyUseOfValue(0)) {
12123     MI.getOperand(0).setIsDead(true);
12124   }
12125   if (!Node->hasAnyUseOfValue(1)) {
12126     MI.getOperand(1).setIsDead(true);
12127   }
12128 
12129   // The MEMCPY both defines and kills the scratch registers.
12130   for (unsigned I = 0; I != MI.getOperand(4).getImm(); ++I) {
12131     Register TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
12132                                                          : &ARM::GPRRegClass);
12133     MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
12134   }
12135 }
12136 
12137 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
12138                                                       SDNode *Node) const {
12139   if (MI.getOpcode() == ARM::MEMCPY) {
12140     attachMEMCPYScratchRegs(Subtarget, MI, Node);
12141     return;
12142   }
12143 
12144   const MCInstrDesc *MCID = &MI.getDesc();
12145   // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
12146   // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
12147   // operand is still set to noreg. If needed, set the optional operand's
12148   // register to CPSR, and remove the redundant implicit def.
12149   //
12150   // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
12151 
12152   // Rename pseudo opcodes.
12153   unsigned NewOpc = convertAddSubFlagsOpcode(MI.getOpcode());
12154   unsigned ccOutIdx;
12155   if (NewOpc) {
12156     const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
12157     MCID = &TII->get(NewOpc);
12158 
12159     assert(MCID->getNumOperands() ==
12160            MI.getDesc().getNumOperands() + 5 - MI.getDesc().getSize()
12161         && "converted opcode should be the same except for cc_out"
12162            " (and, on Thumb1, pred)");
12163 
12164     MI.setDesc(*MCID);
12165 
12166     // Add the optional cc_out operand
12167     MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
12168 
12169     // On Thumb1, move all input operands to the end, then add the predicate
12170     if (Subtarget->isThumb1Only()) {
12171       for (unsigned c = MCID->getNumOperands() - 4; c--;) {
12172         MI.addOperand(MI.getOperand(1));
12173         MI.RemoveOperand(1);
12174       }
12175 
12176       // Restore the ties
12177       for (unsigned i = MI.getNumOperands(); i--;) {
12178         const MachineOperand& op = MI.getOperand(i);
12179         if (op.isReg() && op.isUse()) {
12180           int DefIdx = MCID->getOperandConstraint(i, MCOI::TIED_TO);
12181           if (DefIdx != -1)
12182             MI.tieOperands(DefIdx, i);
12183         }
12184       }
12185 
12186       MI.addOperand(MachineOperand::CreateImm(ARMCC::AL));
12187       MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
12188       ccOutIdx = 1;
12189     } else
12190       ccOutIdx = MCID->getNumOperands() - 1;
12191   } else
12192     ccOutIdx = MCID->getNumOperands() - 1;
12193 
12194   // Any ARM instruction that sets the 's' bit should specify an optional
12195   // "cc_out" operand in the last operand position.
12196   if (!MI.hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
12197     assert(!NewOpc && "Optional cc_out operand required");
12198     return;
12199   }
12200   // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
12201   // since we already have an optional CPSR def.
12202   bool definesCPSR = false;
12203   bool deadCPSR = false;
12204   for (unsigned i = MCID->getNumOperands(), e = MI.getNumOperands(); i != e;
12205        ++i) {
12206     const MachineOperand &MO = MI.getOperand(i);
12207     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
12208       definesCPSR = true;
12209       if (MO.isDead())
12210         deadCPSR = true;
12211       MI.RemoveOperand(i);
12212       break;
12213     }
12214   }
12215   if (!definesCPSR) {
12216     assert(!NewOpc && "Optional cc_out operand required");
12217     return;
12218   }
12219   assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
12220   if (deadCPSR) {
12221     assert(!MI.getOperand(ccOutIdx).getReg() &&
12222            "expect uninitialized optional cc_out operand");
12223     // Thumb1 instructions must have the S bit even if the CPSR is dead.
12224     if (!Subtarget->isThumb1Only())
12225       return;
12226   }
12227 
12228   // If this instruction was defined with an optional CPSR def and its dag node
12229   // had a live implicit CPSR def, then activate the optional CPSR def.
12230   MachineOperand &MO = MI.getOperand(ccOutIdx);
12231   MO.setReg(ARM::CPSR);
12232   MO.setIsDef(true);
12233 }
12234 
12235 //===----------------------------------------------------------------------===//
12236 //                           ARM Optimization Hooks
12237 //===----------------------------------------------------------------------===//
12238 
12239 // Helper function that checks if N is a null or all ones constant.
12240 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
12241   return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
12242 }
12243 
12244 // Return true if N is conditionally 0 or all ones.
12245 // Detects these expressions where cc is an i1 value:
12246 //
12247 //   (select cc 0, y)   [AllOnes=0]
12248 //   (select cc y, 0)   [AllOnes=0]
12249 //   (zext cc)          [AllOnes=0]
12250 //   (sext cc)          [AllOnes=0/1]
12251 //   (select cc -1, y)  [AllOnes=1]
12252 //   (select cc y, -1)  [AllOnes=1]
12253 //
12254 // Invert is set when N is the null/all ones constant when CC is false.
12255 // OtherOp is set to the alternative value of N.
12256 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
12257                                        SDValue &CC, bool &Invert,
12258                                        SDValue &OtherOp,
12259                                        SelectionDAG &DAG) {
12260   switch (N->getOpcode()) {
12261   default: return false;
12262   case ISD::SELECT: {
12263     CC = N->getOperand(0);
12264     SDValue N1 = N->getOperand(1);
12265     SDValue N2 = N->getOperand(2);
12266     if (isZeroOrAllOnes(N1, AllOnes)) {
12267       Invert = false;
12268       OtherOp = N2;
12269       return true;
12270     }
12271     if (isZeroOrAllOnes(N2, AllOnes)) {
12272       Invert = true;
12273       OtherOp = N1;
12274       return true;
12275     }
12276     return false;
12277   }
12278   case ISD::ZERO_EXTEND:
12279     // (zext cc) can never be the all ones value.
12280     if (AllOnes)
12281       return false;
12282     LLVM_FALLTHROUGH;
12283   case ISD::SIGN_EXTEND: {
12284     SDLoc dl(N);
12285     EVT VT = N->getValueType(0);
12286     CC = N->getOperand(0);
12287     if (CC.getValueType() != MVT::i1 || CC.getOpcode() != ISD::SETCC)
12288       return false;
12289     Invert = !AllOnes;
12290     if (AllOnes)
12291       // When looking for an AllOnes constant, N is an sext, and the 'other'
12292       // value is 0.
12293       OtherOp = DAG.getConstant(0, dl, VT);
12294     else if (N->getOpcode() == ISD::ZERO_EXTEND)
12295       // When looking for a 0 constant, N can be zext or sext.
12296       OtherOp = DAG.getConstant(1, dl, VT);
12297     else
12298       OtherOp = DAG.getAllOnesConstant(dl, VT);
12299     return true;
12300   }
12301   }
12302 }
12303 
12304 // Combine a constant select operand into its use:
12305 //
12306 //   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
12307 //   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
12308 //   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
12309 //   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
12310 //   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
12311 //
12312 // The transform is rejected if the select doesn't have a constant operand that
12313 // is null, or all ones when AllOnes is set.
12314 //
12315 // Also recognize sext/zext from i1:
12316 //
12317 //   (add (zext cc), x) -> (select cc (add x, 1), x)
12318 //   (add (sext cc), x) -> (select cc (add x, -1), x)
12319 //
12320 // These transformations eventually create predicated instructions.
12321 //
12322 // @param N       The node to transform.
12323 // @param Slct    The N operand that is a select.
12324 // @param OtherOp The other N operand (x above).
12325 // @param DCI     Context.
12326 // @param AllOnes Require the select constant to be all ones instead of null.
12327 // @returns The new node, or SDValue() on failure.
12328 static
12329 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
12330                             TargetLowering::DAGCombinerInfo &DCI,
12331                             bool AllOnes = false) {
12332   SelectionDAG &DAG = DCI.DAG;
12333   EVT VT = N->getValueType(0);
12334   SDValue NonConstantVal;
12335   SDValue CCOp;
12336   bool SwapSelectOps;
12337   if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
12338                                   NonConstantVal, DAG))
12339     return SDValue();
12340 
12341   // Slct is now know to be the desired identity constant when CC is true.
12342   SDValue TrueVal = OtherOp;
12343   SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
12344                                  OtherOp, NonConstantVal);
12345   // Unless SwapSelectOps says CC should be false.
12346   if (SwapSelectOps)
12347     std::swap(TrueVal, FalseVal);
12348 
12349   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
12350                      CCOp, TrueVal, FalseVal);
12351 }
12352 
12353 // Attempt combineSelectAndUse on each operand of a commutative operator N.
12354 static
12355 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
12356                                        TargetLowering::DAGCombinerInfo &DCI) {
12357   SDValue N0 = N->getOperand(0);
12358   SDValue N1 = N->getOperand(1);
12359   if (N0.getNode()->hasOneUse())
12360     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
12361       return Result;
12362   if (N1.getNode()->hasOneUse())
12363     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
12364       return Result;
12365   return SDValue();
12366 }
12367 
12368 static bool IsVUZPShuffleNode(SDNode *N) {
12369   // VUZP shuffle node.
12370   if (N->getOpcode() == ARMISD::VUZP)
12371     return true;
12372 
12373   // "VUZP" on i32 is an alias for VTRN.
12374   if (N->getOpcode() == ARMISD::VTRN && N->getValueType(0) == MVT::v2i32)
12375     return true;
12376 
12377   return false;
12378 }
12379 
12380 static SDValue AddCombineToVPADD(SDNode *N, SDValue N0, SDValue N1,
12381                                  TargetLowering::DAGCombinerInfo &DCI,
12382                                  const ARMSubtarget *Subtarget) {
12383   // Look for ADD(VUZP.0, VUZP.1).
12384   if (!IsVUZPShuffleNode(N0.getNode()) || N0.getNode() != N1.getNode() ||
12385       N0 == N1)
12386    return SDValue();
12387 
12388   // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
12389   if (!N->getValueType(0).is64BitVector())
12390     return SDValue();
12391 
12392   // Generate vpadd.
12393   SelectionDAG &DAG = DCI.DAG;
12394   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12395   SDLoc dl(N);
12396   SDNode *Unzip = N0.getNode();
12397   EVT VT = N->getValueType(0);
12398 
12399   SmallVector<SDValue, 8> Ops;
12400   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpadd, dl,
12401                                 TLI.getPointerTy(DAG.getDataLayout())));
12402   Ops.push_back(Unzip->getOperand(0));
12403   Ops.push_back(Unzip->getOperand(1));
12404 
12405   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
12406 }
12407 
12408 static SDValue AddCombineVUZPToVPADDL(SDNode *N, SDValue N0, SDValue N1,
12409                                       TargetLowering::DAGCombinerInfo &DCI,
12410                                       const ARMSubtarget *Subtarget) {
12411   // Check for two extended operands.
12412   if (!(N0.getOpcode() == ISD::SIGN_EXTEND &&
12413         N1.getOpcode() == ISD::SIGN_EXTEND) &&
12414       !(N0.getOpcode() == ISD::ZERO_EXTEND &&
12415         N1.getOpcode() == ISD::ZERO_EXTEND))
12416     return SDValue();
12417 
12418   SDValue N00 = N0.getOperand(0);
12419   SDValue N10 = N1.getOperand(0);
12420 
12421   // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
12422   if (!IsVUZPShuffleNode(N00.getNode()) || N00.getNode() != N10.getNode() ||
12423       N00 == N10)
12424     return SDValue();
12425 
12426   // We only recognize Q register paddl here; this can't be reached until
12427   // after type legalization.
12428   if (!N00.getValueType().is64BitVector() ||
12429       !N0.getValueType().is128BitVector())
12430     return SDValue();
12431 
12432   // Generate vpaddl.
12433   SelectionDAG &DAG = DCI.DAG;
12434   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12435   SDLoc dl(N);
12436   EVT VT = N->getValueType(0);
12437 
12438   SmallVector<SDValue, 8> Ops;
12439   // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
12440   unsigned Opcode;
12441   if (N0.getOpcode() == ISD::SIGN_EXTEND)
12442     Opcode = Intrinsic::arm_neon_vpaddls;
12443   else
12444     Opcode = Intrinsic::arm_neon_vpaddlu;
12445   Ops.push_back(DAG.getConstant(Opcode, dl,
12446                                 TLI.getPointerTy(DAG.getDataLayout())));
12447   EVT ElemTy = N00.getValueType().getVectorElementType();
12448   unsigned NumElts = VT.getVectorNumElements();
12449   EVT ConcatVT = EVT::getVectorVT(*DAG.getContext(), ElemTy, NumElts * 2);
12450   SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), ConcatVT,
12451                                N00.getOperand(0), N00.getOperand(1));
12452   Ops.push_back(Concat);
12453 
12454   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
12455 }
12456 
12457 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
12458 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
12459 // much easier to match.
12460 static SDValue
12461 AddCombineBUILD_VECTORToVPADDL(SDNode *N, SDValue N0, SDValue N1,
12462                                TargetLowering::DAGCombinerInfo &DCI,
12463                                const ARMSubtarget *Subtarget) {
12464   // Only perform optimization if after legalize, and if NEON is available. We
12465   // also expected both operands to be BUILD_VECTORs.
12466   if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
12467       || N0.getOpcode() != ISD::BUILD_VECTOR
12468       || N1.getOpcode() != ISD::BUILD_VECTOR)
12469     return SDValue();
12470 
12471   // Check output type since VPADDL operand elements can only be 8, 16, or 32.
12472   EVT VT = N->getValueType(0);
12473   if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
12474     return SDValue();
12475 
12476   // Check that the vector operands are of the right form.
12477   // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
12478   // operands, where N is the size of the formed vector.
12479   // Each EXTRACT_VECTOR should have the same input vector and odd or even
12480   // index such that we have a pair wise add pattern.
12481 
12482   // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
12483   if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12484     return SDValue();
12485   SDValue Vec = N0->getOperand(0)->getOperand(0);
12486   SDNode *V = Vec.getNode();
12487   unsigned nextIndex = 0;
12488 
12489   // For each operands to the ADD which are BUILD_VECTORs,
12490   // check to see if each of their operands are an EXTRACT_VECTOR with
12491   // the same vector and appropriate index.
12492   for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
12493     if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
12494         && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
12495 
12496       SDValue ExtVec0 = N0->getOperand(i);
12497       SDValue ExtVec1 = N1->getOperand(i);
12498 
12499       // First operand is the vector, verify its the same.
12500       if (V != ExtVec0->getOperand(0).getNode() ||
12501           V != ExtVec1->getOperand(0).getNode())
12502         return SDValue();
12503 
12504       // Second is the constant, verify its correct.
12505       ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
12506       ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
12507 
12508       // For the constant, we want to see all the even or all the odd.
12509       if (!C0 || !C1 || C0->getZExtValue() != nextIndex
12510           || C1->getZExtValue() != nextIndex+1)
12511         return SDValue();
12512 
12513       // Increment index.
12514       nextIndex+=2;
12515     } else
12516       return SDValue();
12517   }
12518 
12519   // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
12520   // we're using the entire input vector, otherwise there's a size/legality
12521   // mismatch somewhere.
12522   if (nextIndex != Vec.getValueType().getVectorNumElements() ||
12523       Vec.getValueType().getVectorElementType() == VT.getVectorElementType())
12524     return SDValue();
12525 
12526   // Create VPADDL node.
12527   SelectionDAG &DAG = DCI.DAG;
12528   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12529 
12530   SDLoc dl(N);
12531 
12532   // Build operand list.
12533   SmallVector<SDValue, 8> Ops;
12534   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
12535                                 TLI.getPointerTy(DAG.getDataLayout())));
12536 
12537   // Input is the vector.
12538   Ops.push_back(Vec);
12539 
12540   // Get widened type and narrowed type.
12541   MVT widenType;
12542   unsigned numElem = VT.getVectorNumElements();
12543 
12544   EVT inputLaneType = Vec.getValueType().getVectorElementType();
12545   switch (inputLaneType.getSimpleVT().SimpleTy) {
12546     case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
12547     case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
12548     case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
12549     default:
12550       llvm_unreachable("Invalid vector element type for padd optimization.");
12551   }
12552 
12553   SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
12554   unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
12555   return DAG.getNode(ExtOp, dl, VT, tmp);
12556 }
12557 
12558 static SDValue findMUL_LOHI(SDValue V) {
12559   if (V->getOpcode() == ISD::UMUL_LOHI ||
12560       V->getOpcode() == ISD::SMUL_LOHI)
12561     return V;
12562   return SDValue();
12563 }
12564 
12565 static SDValue AddCombineTo64BitSMLAL16(SDNode *AddcNode, SDNode *AddeNode,
12566                                         TargetLowering::DAGCombinerInfo &DCI,
12567                                         const ARMSubtarget *Subtarget) {
12568   if (!Subtarget->hasBaseDSP())
12569     return SDValue();
12570 
12571   // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
12572   // accumulates the product into a 64-bit value. The 16-bit values will
12573   // be sign extended somehow or SRA'd into 32-bit values
12574   // (addc (adde (mul 16bit, 16bit), lo), hi)
12575   SDValue Mul = AddcNode->getOperand(0);
12576   SDValue Lo = AddcNode->getOperand(1);
12577   if (Mul.getOpcode() != ISD::MUL) {
12578     Lo = AddcNode->getOperand(0);
12579     Mul = AddcNode->getOperand(1);
12580     if (Mul.getOpcode() != ISD::MUL)
12581       return SDValue();
12582   }
12583 
12584   SDValue SRA = AddeNode->getOperand(0);
12585   SDValue Hi = AddeNode->getOperand(1);
12586   if (SRA.getOpcode() != ISD::SRA) {
12587     SRA = AddeNode->getOperand(1);
12588     Hi = AddeNode->getOperand(0);
12589     if (SRA.getOpcode() != ISD::SRA)
12590       return SDValue();
12591   }
12592   if (auto Const = dyn_cast<ConstantSDNode>(SRA.getOperand(1))) {
12593     if (Const->getZExtValue() != 31)
12594       return SDValue();
12595   } else
12596     return SDValue();
12597 
12598   if (SRA.getOperand(0) != Mul)
12599     return SDValue();
12600 
12601   SelectionDAG &DAG = DCI.DAG;
12602   SDLoc dl(AddcNode);
12603   unsigned Opcode = 0;
12604   SDValue Op0;
12605   SDValue Op1;
12606 
12607   if (isS16(Mul.getOperand(0), DAG) && isS16(Mul.getOperand(1), DAG)) {
12608     Opcode = ARMISD::SMLALBB;
12609     Op0 = Mul.getOperand(0);
12610     Op1 = Mul.getOperand(1);
12611   } else if (isS16(Mul.getOperand(0), DAG) && isSRA16(Mul.getOperand(1))) {
12612     Opcode = ARMISD::SMLALBT;
12613     Op0 = Mul.getOperand(0);
12614     Op1 = Mul.getOperand(1).getOperand(0);
12615   } else if (isSRA16(Mul.getOperand(0)) && isS16(Mul.getOperand(1), DAG)) {
12616     Opcode = ARMISD::SMLALTB;
12617     Op0 = Mul.getOperand(0).getOperand(0);
12618     Op1 = Mul.getOperand(1);
12619   } else if (isSRA16(Mul.getOperand(0)) && isSRA16(Mul.getOperand(1))) {
12620     Opcode = ARMISD::SMLALTT;
12621     Op0 = Mul->getOperand(0).getOperand(0);
12622     Op1 = Mul->getOperand(1).getOperand(0);
12623   }
12624 
12625   if (!Op0 || !Op1)
12626     return SDValue();
12627 
12628   SDValue SMLAL = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
12629                               Op0, Op1, Lo, Hi);
12630   // Replace the ADDs' nodes uses by the MLA node's values.
12631   SDValue HiMLALResult(SMLAL.getNode(), 1);
12632   SDValue LoMLALResult(SMLAL.getNode(), 0);
12633 
12634   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
12635   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
12636 
12637   // Return original node to notify the driver to stop replacing.
12638   SDValue resNode(AddcNode, 0);
12639   return resNode;
12640 }
12641 
12642 static SDValue AddCombineTo64bitMLAL(SDNode *AddeSubeNode,
12643                                      TargetLowering::DAGCombinerInfo &DCI,
12644                                      const ARMSubtarget *Subtarget) {
12645   // Look for multiply add opportunities.
12646   // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
12647   // each add nodes consumes a value from ISD::UMUL_LOHI and there is
12648   // a glue link from the first add to the second add.
12649   // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
12650   // a S/UMLAL instruction.
12651   //                  UMUL_LOHI
12652   //                 / :lo    \ :hi
12653   //                V          \          [no multiline comment]
12654   //    loAdd ->  ADDC         |
12655   //                 \ :carry /
12656   //                  V      V
12657   //                    ADDE   <- hiAdd
12658   //
12659   // In the special case where only the higher part of a signed result is used
12660   // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
12661   // a constant with the exact value of 0x80000000, we recognize we are dealing
12662   // with a "rounded multiply and add" (or subtract) and transform it into
12663   // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
12664 
12665   assert((AddeSubeNode->getOpcode() == ARMISD::ADDE ||
12666           AddeSubeNode->getOpcode() == ARMISD::SUBE) &&
12667          "Expect an ADDE or SUBE");
12668 
12669   assert(AddeSubeNode->getNumOperands() == 3 &&
12670          AddeSubeNode->getOperand(2).getValueType() == MVT::i32 &&
12671          "ADDE node has the wrong inputs");
12672 
12673   // Check that we are chained to the right ADDC or SUBC node.
12674   SDNode *AddcSubcNode = AddeSubeNode->getOperand(2).getNode();
12675   if ((AddeSubeNode->getOpcode() == ARMISD::ADDE &&
12676        AddcSubcNode->getOpcode() != ARMISD::ADDC) ||
12677       (AddeSubeNode->getOpcode() == ARMISD::SUBE &&
12678        AddcSubcNode->getOpcode() != ARMISD::SUBC))
12679     return SDValue();
12680 
12681   SDValue AddcSubcOp0 = AddcSubcNode->getOperand(0);
12682   SDValue AddcSubcOp1 = AddcSubcNode->getOperand(1);
12683 
12684   // Check if the two operands are from the same mul_lohi node.
12685   if (AddcSubcOp0.getNode() == AddcSubcOp1.getNode())
12686     return SDValue();
12687 
12688   assert(AddcSubcNode->getNumValues() == 2 &&
12689          AddcSubcNode->getValueType(0) == MVT::i32 &&
12690          "Expect ADDC with two result values. First: i32");
12691 
12692   // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
12693   // maybe a SMLAL which multiplies two 16-bit values.
12694   if (AddeSubeNode->getOpcode() == ARMISD::ADDE &&
12695       AddcSubcOp0->getOpcode() != ISD::UMUL_LOHI &&
12696       AddcSubcOp0->getOpcode() != ISD::SMUL_LOHI &&
12697       AddcSubcOp1->getOpcode() != ISD::UMUL_LOHI &&
12698       AddcSubcOp1->getOpcode() != ISD::SMUL_LOHI)
12699     return AddCombineTo64BitSMLAL16(AddcSubcNode, AddeSubeNode, DCI, Subtarget);
12700 
12701   // Check for the triangle shape.
12702   SDValue AddeSubeOp0 = AddeSubeNode->getOperand(0);
12703   SDValue AddeSubeOp1 = AddeSubeNode->getOperand(1);
12704 
12705   // Make sure that the ADDE/SUBE operands are not coming from the same node.
12706   if (AddeSubeOp0.getNode() == AddeSubeOp1.getNode())
12707     return SDValue();
12708 
12709   // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
12710   bool IsLeftOperandMUL = false;
12711   SDValue MULOp = findMUL_LOHI(AddeSubeOp0);
12712   if (MULOp == SDValue())
12713     MULOp = findMUL_LOHI(AddeSubeOp1);
12714   else
12715     IsLeftOperandMUL = true;
12716   if (MULOp == SDValue())
12717     return SDValue();
12718 
12719   // Figure out the right opcode.
12720   unsigned Opc = MULOp->getOpcode();
12721   unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
12722 
12723   // Figure out the high and low input values to the MLAL node.
12724   SDValue *HiAddSub = nullptr;
12725   SDValue *LoMul = nullptr;
12726   SDValue *LowAddSub = nullptr;
12727 
12728   // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
12729   if ((AddeSubeOp0 != MULOp.getValue(1)) && (AddeSubeOp1 != MULOp.getValue(1)))
12730     return SDValue();
12731 
12732   if (IsLeftOperandMUL)
12733     HiAddSub = &AddeSubeOp1;
12734   else
12735     HiAddSub = &AddeSubeOp0;
12736 
12737   // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
12738   // whose low result is fed to the ADDC/SUBC we are checking.
12739 
12740   if (AddcSubcOp0 == MULOp.getValue(0)) {
12741     LoMul = &AddcSubcOp0;
12742     LowAddSub = &AddcSubcOp1;
12743   }
12744   if (AddcSubcOp1 == MULOp.getValue(0)) {
12745     LoMul = &AddcSubcOp1;
12746     LowAddSub = &AddcSubcOp0;
12747   }
12748 
12749   if (!LoMul)
12750     return SDValue();
12751 
12752   // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
12753   // the replacement below will create a cycle.
12754   if (AddcSubcNode == HiAddSub->getNode() ||
12755       AddcSubcNode->isPredecessorOf(HiAddSub->getNode()))
12756     return SDValue();
12757 
12758   // Create the merged node.
12759   SelectionDAG &DAG = DCI.DAG;
12760 
12761   // Start building operand list.
12762   SmallVector<SDValue, 8> Ops;
12763   Ops.push_back(LoMul->getOperand(0));
12764   Ops.push_back(LoMul->getOperand(1));
12765 
12766   // Check whether we can use SMMLAR, SMMLSR or SMMULR instead.  For this to be
12767   // the case, we must be doing signed multiplication and only use the higher
12768   // part of the result of the MLAL, furthermore the LowAddSub must be a constant
12769   // addition or subtraction with the value of 0x800000.
12770   if (Subtarget->hasV6Ops() && Subtarget->hasDSP() && Subtarget->useMulOps() &&
12771       FinalOpc == ARMISD::SMLAL && !AddeSubeNode->hasAnyUseOfValue(1) &&
12772       LowAddSub->getNode()->getOpcode() == ISD::Constant &&
12773       static_cast<ConstantSDNode *>(LowAddSub->getNode())->getZExtValue() ==
12774           0x80000000) {
12775     Ops.push_back(*HiAddSub);
12776     if (AddcSubcNode->getOpcode() == ARMISD::SUBC) {
12777       FinalOpc = ARMISD::SMMLSR;
12778     } else {
12779       FinalOpc = ARMISD::SMMLAR;
12780     }
12781     SDValue NewNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode), MVT::i32, Ops);
12782     DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), NewNode);
12783 
12784     return SDValue(AddeSubeNode, 0);
12785   } else if (AddcSubcNode->getOpcode() == ARMISD::SUBC)
12786     // SMMLS is generated during instruction selection and the rest of this
12787     // function can not handle the case where AddcSubcNode is a SUBC.
12788     return SDValue();
12789 
12790   // Finish building the operand list for {U/S}MLAL
12791   Ops.push_back(*LowAddSub);
12792   Ops.push_back(*HiAddSub);
12793 
12794   SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode),
12795                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
12796 
12797   // Replace the ADDs' nodes uses by the MLA node's values.
12798   SDValue HiMLALResult(MLALNode.getNode(), 1);
12799   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), HiMLALResult);
12800 
12801   SDValue LoMLALResult(MLALNode.getNode(), 0);
12802   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode, 0), LoMLALResult);
12803 
12804   // Return original node to notify the driver to stop replacing.
12805   return SDValue(AddeSubeNode, 0);
12806 }
12807 
12808 static SDValue AddCombineTo64bitUMAAL(SDNode *AddeNode,
12809                                       TargetLowering::DAGCombinerInfo &DCI,
12810                                       const ARMSubtarget *Subtarget) {
12811   // UMAAL is similar to UMLAL except that it adds two unsigned values.
12812   // While trying to combine for the other MLAL nodes, first search for the
12813   // chance to use UMAAL. Check if Addc uses a node which has already
12814   // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
12815   // as the addend, and it's handled in PerformUMLALCombine.
12816 
12817   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
12818     return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
12819 
12820   // Check that we have a glued ADDC node.
12821   SDNode* AddcNode = AddeNode->getOperand(2).getNode();
12822   if (AddcNode->getOpcode() != ARMISD::ADDC)
12823     return SDValue();
12824 
12825   // Find the converted UMAAL or quit if it doesn't exist.
12826   SDNode *UmlalNode = nullptr;
12827   SDValue AddHi;
12828   if (AddcNode->getOperand(0).getOpcode() == ARMISD::UMLAL) {
12829     UmlalNode = AddcNode->getOperand(0).getNode();
12830     AddHi = AddcNode->getOperand(1);
12831   } else if (AddcNode->getOperand(1).getOpcode() == ARMISD::UMLAL) {
12832     UmlalNode = AddcNode->getOperand(1).getNode();
12833     AddHi = AddcNode->getOperand(0);
12834   } else {
12835     return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
12836   }
12837 
12838   // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
12839   // the ADDC as well as Zero.
12840   if (!isNullConstant(UmlalNode->getOperand(3)))
12841     return SDValue();
12842 
12843   if ((isNullConstant(AddeNode->getOperand(0)) &&
12844        AddeNode->getOperand(1).getNode() == UmlalNode) ||
12845       (AddeNode->getOperand(0).getNode() == UmlalNode &&
12846        isNullConstant(AddeNode->getOperand(1)))) {
12847     SelectionDAG &DAG = DCI.DAG;
12848     SDValue Ops[] = { UmlalNode->getOperand(0), UmlalNode->getOperand(1),
12849                       UmlalNode->getOperand(2), AddHi };
12850     SDValue UMAAL =  DAG.getNode(ARMISD::UMAAL, SDLoc(AddcNode),
12851                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
12852 
12853     // Replace the ADDs' nodes uses by the UMAAL node's values.
12854     DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), SDValue(UMAAL.getNode(), 1));
12855     DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), SDValue(UMAAL.getNode(), 0));
12856 
12857     // Return original node to notify the driver to stop replacing.
12858     return SDValue(AddeNode, 0);
12859   }
12860   return SDValue();
12861 }
12862 
12863 static SDValue PerformUMLALCombine(SDNode *N, SelectionDAG &DAG,
12864                                    const ARMSubtarget *Subtarget) {
12865   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
12866     return SDValue();
12867 
12868   // Check that we have a pair of ADDC and ADDE as operands.
12869   // Both addends of the ADDE must be zero.
12870   SDNode* AddcNode = N->getOperand(2).getNode();
12871   SDNode* AddeNode = N->getOperand(3).getNode();
12872   if ((AddcNode->getOpcode() == ARMISD::ADDC) &&
12873       (AddeNode->getOpcode() == ARMISD::ADDE) &&
12874       isNullConstant(AddeNode->getOperand(0)) &&
12875       isNullConstant(AddeNode->getOperand(1)) &&
12876       (AddeNode->getOperand(2).getNode() == AddcNode))
12877     return DAG.getNode(ARMISD::UMAAL, SDLoc(N),
12878                        DAG.getVTList(MVT::i32, MVT::i32),
12879                        {N->getOperand(0), N->getOperand(1),
12880                         AddcNode->getOperand(0), AddcNode->getOperand(1)});
12881   else
12882     return SDValue();
12883 }
12884 
12885 static SDValue PerformAddcSubcCombine(SDNode *N,
12886                                       TargetLowering::DAGCombinerInfo &DCI,
12887                                       const ARMSubtarget *Subtarget) {
12888   SelectionDAG &DAG(DCI.DAG);
12889 
12890   if (N->getOpcode() == ARMISD::SUBC && N->hasAnyUseOfValue(1)) {
12891     // (SUBC (ADDE 0, 0, C), 1) -> C
12892     SDValue LHS = N->getOperand(0);
12893     SDValue RHS = N->getOperand(1);
12894     if (LHS->getOpcode() == ARMISD::ADDE &&
12895         isNullConstant(LHS->getOperand(0)) &&
12896         isNullConstant(LHS->getOperand(1)) && isOneConstant(RHS)) {
12897       return DCI.CombineTo(N, SDValue(N, 0), LHS->getOperand(2));
12898     }
12899   }
12900 
12901   if (Subtarget->isThumb1Only()) {
12902     SDValue RHS = N->getOperand(1);
12903     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
12904       int32_t imm = C->getSExtValue();
12905       if (imm < 0 && imm > std::numeric_limits<int>::min()) {
12906         SDLoc DL(N);
12907         RHS = DAG.getConstant(-imm, DL, MVT::i32);
12908         unsigned Opcode = (N->getOpcode() == ARMISD::ADDC) ? ARMISD::SUBC
12909                                                            : ARMISD::ADDC;
12910         return DAG.getNode(Opcode, DL, N->getVTList(), N->getOperand(0), RHS);
12911       }
12912     }
12913   }
12914 
12915   return SDValue();
12916 }
12917 
12918 static SDValue PerformAddeSubeCombine(SDNode *N,
12919                                       TargetLowering::DAGCombinerInfo &DCI,
12920                                       const ARMSubtarget *Subtarget) {
12921   if (Subtarget->isThumb1Only()) {
12922     SelectionDAG &DAG = DCI.DAG;
12923     SDValue RHS = N->getOperand(1);
12924     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
12925       int64_t imm = C->getSExtValue();
12926       if (imm < 0) {
12927         SDLoc DL(N);
12928 
12929         // The with-carry-in form matches bitwise not instead of the negation.
12930         // Effectively, the inverse interpretation of the carry flag already
12931         // accounts for part of the negation.
12932         RHS = DAG.getConstant(~imm, DL, MVT::i32);
12933 
12934         unsigned Opcode = (N->getOpcode() == ARMISD::ADDE) ? ARMISD::SUBE
12935                                                            : ARMISD::ADDE;
12936         return DAG.getNode(Opcode, DL, N->getVTList(),
12937                            N->getOperand(0), RHS, N->getOperand(2));
12938       }
12939     }
12940   } else if (N->getOperand(1)->getOpcode() == ISD::SMUL_LOHI) {
12941     return AddCombineTo64bitMLAL(N, DCI, Subtarget);
12942   }
12943   return SDValue();
12944 }
12945 
12946 static SDValue PerformSELECTCombine(SDNode *N,
12947                                     TargetLowering::DAGCombinerInfo &DCI,
12948                                     const ARMSubtarget *Subtarget) {
12949   if (!Subtarget->hasMVEIntegerOps())
12950     return SDValue();
12951 
12952   SDLoc dl(N);
12953   SDValue SetCC;
12954   SDValue LHS;
12955   SDValue RHS;
12956   ISD::CondCode CC;
12957   SDValue TrueVal;
12958   SDValue FalseVal;
12959 
12960   if (N->getOpcode() == ISD::SELECT &&
12961       N->getOperand(0)->getOpcode() == ISD::SETCC) {
12962     SetCC = N->getOperand(0);
12963     LHS = SetCC->getOperand(0);
12964     RHS = SetCC->getOperand(1);
12965     CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
12966     TrueVal = N->getOperand(1);
12967     FalseVal = N->getOperand(2);
12968   } else if (N->getOpcode() == ISD::SELECT_CC) {
12969     LHS = N->getOperand(0);
12970     RHS = N->getOperand(1);
12971     CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
12972     TrueVal = N->getOperand(2);
12973     FalseVal = N->getOperand(3);
12974   } else {
12975     return SDValue();
12976   }
12977 
12978   unsigned int Opcode = 0;
12979   if ((TrueVal->getOpcode() == ISD::VECREDUCE_UMIN ||
12980        FalseVal->getOpcode() == ISD::VECREDUCE_UMIN) &&
12981       (CC == ISD::SETULT || CC == ISD::SETUGT)) {
12982     Opcode = ARMISD::VMINVu;
12983     if (CC == ISD::SETUGT)
12984       std::swap(TrueVal, FalseVal);
12985   } else if ((TrueVal->getOpcode() == ISD::VECREDUCE_SMIN ||
12986               FalseVal->getOpcode() == ISD::VECREDUCE_SMIN) &&
12987              (CC == ISD::SETLT || CC == ISD::SETGT)) {
12988     Opcode = ARMISD::VMINVs;
12989     if (CC == ISD::SETGT)
12990       std::swap(TrueVal, FalseVal);
12991   } else if ((TrueVal->getOpcode() == ISD::VECREDUCE_UMAX ||
12992               FalseVal->getOpcode() == ISD::VECREDUCE_UMAX) &&
12993              (CC == ISD::SETUGT || CC == ISD::SETULT)) {
12994     Opcode = ARMISD::VMAXVu;
12995     if (CC == ISD::SETULT)
12996       std::swap(TrueVal, FalseVal);
12997   } else if ((TrueVal->getOpcode() == ISD::VECREDUCE_SMAX ||
12998               FalseVal->getOpcode() == ISD::VECREDUCE_SMAX) &&
12999              (CC == ISD::SETGT || CC == ISD::SETLT)) {
13000     Opcode = ARMISD::VMAXVs;
13001     if (CC == ISD::SETLT)
13002       std::swap(TrueVal, FalseVal);
13003   } else
13004     return SDValue();
13005 
13006   // Normalise to the right hand side being the vector reduction
13007   switch (TrueVal->getOpcode()) {
13008   case ISD::VECREDUCE_UMIN:
13009   case ISD::VECREDUCE_SMIN:
13010   case ISD::VECREDUCE_UMAX:
13011   case ISD::VECREDUCE_SMAX:
13012     std::swap(LHS, RHS);
13013     std::swap(TrueVal, FalseVal);
13014     break;
13015   }
13016 
13017   EVT VectorType = FalseVal->getOperand(0).getValueType();
13018 
13019   if (VectorType != MVT::v16i8 && VectorType != MVT::v8i16 &&
13020       VectorType != MVT::v4i32)
13021     return SDValue();
13022 
13023   EVT VectorScalarType = VectorType.getVectorElementType();
13024 
13025   // The values being selected must also be the ones being compared
13026   if (TrueVal != LHS || FalseVal != RHS)
13027     return SDValue();
13028 
13029   EVT LeftType = LHS->getValueType(0);
13030   EVT RightType = RHS->getValueType(0);
13031 
13032   // The types must match the reduced type too
13033   if (LeftType != VectorScalarType || RightType != VectorScalarType)
13034     return SDValue();
13035 
13036   // Legalise the scalar to an i32
13037   if (VectorScalarType != MVT::i32)
13038     LHS = DCI.DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
13039 
13040   // Generate the reduction as an i32 for legalisation purposes
13041   auto Reduction =
13042       DCI.DAG.getNode(Opcode, dl, MVT::i32, LHS, RHS->getOperand(0));
13043 
13044   // The result isn't actually an i32 so truncate it back to its original type
13045   if (VectorScalarType != MVT::i32)
13046     Reduction = DCI.DAG.getNode(ISD::TRUNCATE, dl, VectorScalarType, Reduction);
13047 
13048   return Reduction;
13049 }
13050 
13051 // A special combine for the vqdmulh family of instructions. This is one of the
13052 // potential set of patterns that could patch this instruction. The base pattern
13053 // you would expect to be min(max(ashr(mul(mul(sext(x), 2), sext(y)), 16))).
13054 // This matches the different min(max(ashr(mul(mul(sext(x), sext(y)), 2), 16))),
13055 // which llvm will have optimized to min(ashr(mul(sext(x), sext(y)), 15))) as
13056 // the max is unnecessary.
13057 static SDValue PerformVQDMULHCombine(SDNode *N, SelectionDAG &DAG) {
13058   EVT VT = N->getValueType(0);
13059   SDValue Shft;
13060   ConstantSDNode *Clamp;
13061 
13062   if (!VT.isVector() || VT.getScalarSizeInBits() > 64)
13063     return SDValue();
13064 
13065   if (N->getOpcode() == ISD::SMIN) {
13066     Shft = N->getOperand(0);
13067     Clamp = isConstOrConstSplat(N->getOperand(1));
13068   } else if (N->getOpcode() == ISD::VSELECT) {
13069     // Detect a SMIN, which for an i64 node will be a vselect/setcc, not a smin.
13070     SDValue Cmp = N->getOperand(0);
13071     if (Cmp.getOpcode() != ISD::SETCC ||
13072         cast<CondCodeSDNode>(Cmp.getOperand(2))->get() != ISD::SETLT ||
13073         Cmp.getOperand(0) != N->getOperand(1) ||
13074         Cmp.getOperand(1) != N->getOperand(2))
13075       return SDValue();
13076     Shft = N->getOperand(1);
13077     Clamp = isConstOrConstSplat(N->getOperand(2));
13078   } else
13079     return SDValue();
13080 
13081   if (!Clamp)
13082     return SDValue();
13083 
13084   MVT ScalarType;
13085   int ShftAmt = 0;
13086   switch (Clamp->getSExtValue()) {
13087   case (1 << 7) - 1:
13088     ScalarType = MVT::i8;
13089     ShftAmt = 7;
13090     break;
13091   case (1 << 15) - 1:
13092     ScalarType = MVT::i16;
13093     ShftAmt = 15;
13094     break;
13095   case (1ULL << 31) - 1:
13096     ScalarType = MVT::i32;
13097     ShftAmt = 31;
13098     break;
13099   default:
13100     return SDValue();
13101   }
13102 
13103   if (Shft.getOpcode() != ISD::SRA)
13104     return SDValue();
13105   ConstantSDNode *N1 = isConstOrConstSplat(Shft.getOperand(1));
13106   if (!N1 || N1->getSExtValue() != ShftAmt)
13107     return SDValue();
13108 
13109   SDValue Mul = Shft.getOperand(0);
13110   if (Mul.getOpcode() != ISD::MUL)
13111     return SDValue();
13112 
13113   SDValue Ext0 = Mul.getOperand(0);
13114   SDValue Ext1 = Mul.getOperand(1);
13115   if (Ext0.getOpcode() != ISD::SIGN_EXTEND ||
13116       Ext1.getOpcode() != ISD::SIGN_EXTEND)
13117     return SDValue();
13118   EVT VecVT = Ext0.getOperand(0).getValueType();
13119   if (!VecVT.isPow2VectorType() || VecVT.getVectorNumElements() == 1)
13120     return SDValue();
13121   if (Ext1.getOperand(0).getValueType() != VecVT ||
13122       VecVT.getScalarType() != ScalarType ||
13123       VT.getScalarSizeInBits() < ScalarType.getScalarSizeInBits() * 2)
13124     return SDValue();
13125 
13126   SDLoc DL(Mul);
13127   unsigned LegalLanes = 128 / (ShftAmt + 1);
13128   EVT LegalVecVT = MVT::getVectorVT(ScalarType, LegalLanes);
13129   // For types smaller than legal vectors extend to be legal and only use needed
13130   // lanes.
13131   if (VecVT.getSizeInBits() < 128) {
13132     EVT ExtVecVT =
13133         MVT::getVectorVT(MVT::getIntegerVT(128 / VecVT.getVectorNumElements()),
13134                          VecVT.getVectorNumElements());
13135     SDValue Inp0 =
13136         DAG.getNode(ISD::ANY_EXTEND, DL, ExtVecVT, Ext0.getOperand(0));
13137     SDValue Inp1 =
13138         DAG.getNode(ISD::ANY_EXTEND, DL, ExtVecVT, Ext1.getOperand(0));
13139     Inp0 = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, LegalVecVT, Inp0);
13140     Inp1 = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, LegalVecVT, Inp1);
13141     SDValue VQDMULH = DAG.getNode(ARMISD::VQDMULH, DL, LegalVecVT, Inp0, Inp1);
13142     SDValue Trunc = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, ExtVecVT, VQDMULH);
13143     Trunc = DAG.getNode(ISD::TRUNCATE, DL, VecVT, Trunc);
13144     return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Trunc);
13145   }
13146 
13147   // For larger types, split into legal sized chunks.
13148   assert(VecVT.getSizeInBits() % 128 == 0 && "Expected a power2 type");
13149   unsigned NumParts = VecVT.getSizeInBits() / 128;
13150   SmallVector<SDValue> Parts;
13151   for (unsigned I = 0; I < NumParts; ++I) {
13152     SDValue Inp0 =
13153         DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LegalVecVT, Ext0.getOperand(0),
13154                     DAG.getVectorIdxConstant(I * LegalLanes, DL));
13155     SDValue Inp1 =
13156         DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LegalVecVT, Ext1.getOperand(0),
13157                     DAG.getVectorIdxConstant(I * LegalLanes, DL));
13158     SDValue VQDMULH = DAG.getNode(ARMISD::VQDMULH, DL, LegalVecVT, Inp0, Inp1);
13159     Parts.push_back(VQDMULH);
13160   }
13161   return DAG.getNode(ISD::SIGN_EXTEND, DL, VT,
13162                      DAG.getNode(ISD::CONCAT_VECTORS, DL, VecVT, Parts));
13163 }
13164 
13165 static SDValue PerformVSELECTCombine(SDNode *N,
13166                                      TargetLowering::DAGCombinerInfo &DCI,
13167                                      const ARMSubtarget *Subtarget) {
13168   if (!Subtarget->hasMVEIntegerOps())
13169     return SDValue();
13170 
13171   if (SDValue V = PerformVQDMULHCombine(N, DCI.DAG))
13172     return V;
13173 
13174   // Transforms vselect(not(cond), lhs, rhs) into vselect(cond, rhs, lhs).
13175   //
13176   // We need to re-implement this optimization here as the implementation in the
13177   // Target-Independent DAGCombiner does not handle the kind of constant we make
13178   // (it calls isConstOrConstSplat with AllowTruncation set to false - and for
13179   // good reason, allowing truncation there would break other targets).
13180   //
13181   // Currently, this is only done for MVE, as it's the only target that benefits
13182   // from this transformation (e.g. VPNOT+VPSEL becomes a single VPSEL).
13183   if (N->getOperand(0).getOpcode() != ISD::XOR)
13184     return SDValue();
13185   SDValue XOR = N->getOperand(0);
13186 
13187   // Check if the XOR's RHS is either a 1, or a BUILD_VECTOR of 1s.
13188   // It is important to check with truncation allowed as the BUILD_VECTORs we
13189   // generate in those situations will truncate their operands.
13190   ConstantSDNode *Const =
13191       isConstOrConstSplat(XOR->getOperand(1), /*AllowUndefs*/ false,
13192                           /*AllowTruncation*/ true);
13193   if (!Const || !Const->isOne())
13194     return SDValue();
13195 
13196   // Rewrite into vselect(cond, rhs, lhs).
13197   SDValue Cond = XOR->getOperand(0);
13198   SDValue LHS = N->getOperand(1);
13199   SDValue RHS = N->getOperand(2);
13200   EVT Type = N->getValueType(0);
13201   return DCI.DAG.getNode(ISD::VSELECT, SDLoc(N), Type, Cond, RHS, LHS);
13202 }
13203 
13204 // Convert vsetcc([0,1,2,..], splat(n), ult) -> vctp n
13205 static SDValue PerformVSetCCToVCTPCombine(SDNode *N,
13206                                           TargetLowering::DAGCombinerInfo &DCI,
13207                                           const ARMSubtarget *Subtarget) {
13208   SDValue Op0 = N->getOperand(0);
13209   SDValue Op1 = N->getOperand(1);
13210   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13211   EVT VT = N->getValueType(0);
13212 
13213   if (!Subtarget->hasMVEIntegerOps() ||
13214       !DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
13215     return SDValue();
13216 
13217   if (CC == ISD::SETUGE) {
13218     std::swap(Op0, Op1);
13219     CC = ISD::SETULT;
13220   }
13221 
13222   if (CC != ISD::SETULT || VT.getScalarSizeInBits() != 1 ||
13223       Op0.getOpcode() != ISD::BUILD_VECTOR)
13224     return SDValue();
13225 
13226   // Check first operand is BuildVector of 0,1,2,...
13227   for (unsigned I = 0; I < VT.getVectorNumElements(); I++) {
13228     if (!Op0.getOperand(I).isUndef() &&
13229         !(isa<ConstantSDNode>(Op0.getOperand(I)) &&
13230           Op0.getConstantOperandVal(I) == I))
13231       return SDValue();
13232   }
13233 
13234   // The second is a Splat of Op1S
13235   SDValue Op1S = DCI.DAG.getSplatValue(Op1);
13236   if (!Op1S)
13237     return SDValue();
13238 
13239   unsigned Opc;
13240   switch (VT.getVectorNumElements()) {
13241   case 2:
13242     Opc = Intrinsic::arm_mve_vctp64;
13243     break;
13244   case 4:
13245     Opc = Intrinsic::arm_mve_vctp32;
13246     break;
13247   case 8:
13248     Opc = Intrinsic::arm_mve_vctp16;
13249     break;
13250   case 16:
13251     Opc = Intrinsic::arm_mve_vctp8;
13252     break;
13253   default:
13254     return SDValue();
13255   }
13256 
13257   SDLoc DL(N);
13258   return DCI.DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13259                          DCI.DAG.getConstant(Opc, DL, MVT::i32),
13260                          DCI.DAG.getZExtOrTrunc(Op1S, DL, MVT::i32));
13261 }
13262 
13263 static SDValue PerformABSCombine(SDNode *N,
13264                                  TargetLowering::DAGCombinerInfo &DCI,
13265                                  const ARMSubtarget *Subtarget) {
13266   SelectionDAG &DAG = DCI.DAG;
13267   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13268 
13269   if (TLI.isOperationLegal(N->getOpcode(), N->getValueType(0)))
13270     return SDValue();
13271 
13272   return TLI.expandABS(N, DAG);
13273 }
13274 
13275 /// PerformADDECombine - Target-specific dag combine transform from
13276 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
13277 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
13278 static SDValue PerformADDECombine(SDNode *N,
13279                                   TargetLowering::DAGCombinerInfo &DCI,
13280                                   const ARMSubtarget *Subtarget) {
13281   // Only ARM and Thumb2 support UMLAL/SMLAL.
13282   if (Subtarget->isThumb1Only())
13283     return PerformAddeSubeCombine(N, DCI, Subtarget);
13284 
13285   // Only perform the checks after legalize when the pattern is available.
13286   if (DCI.isBeforeLegalize()) return SDValue();
13287 
13288   return AddCombineTo64bitUMAAL(N, DCI, Subtarget);
13289 }
13290 
13291 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
13292 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
13293 /// called with the default operands, and if that fails, with commuted
13294 /// operands.
13295 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
13296                                           TargetLowering::DAGCombinerInfo &DCI,
13297                                           const ARMSubtarget *Subtarget){
13298   // Attempt to create vpadd for this add.
13299   if (SDValue Result = AddCombineToVPADD(N, N0, N1, DCI, Subtarget))
13300     return Result;
13301 
13302   // Attempt to create vpaddl for this add.
13303   if (SDValue Result = AddCombineVUZPToVPADDL(N, N0, N1, DCI, Subtarget))
13304     return Result;
13305   if (SDValue Result = AddCombineBUILD_VECTORToVPADDL(N, N0, N1, DCI,
13306                                                       Subtarget))
13307     return Result;
13308 
13309   // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
13310   if (N0.getNode()->hasOneUse())
13311     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI))
13312       return Result;
13313   return SDValue();
13314 }
13315 
13316 static SDValue TryDistrubutionADDVecReduce(SDNode *N, SelectionDAG &DAG) {
13317   EVT VT = N->getValueType(0);
13318   SDValue N0 = N->getOperand(0);
13319   SDValue N1 = N->getOperand(1);
13320   SDLoc dl(N);
13321 
13322   auto IsVecReduce = [](SDValue Op) {
13323     switch (Op.getOpcode()) {
13324     case ISD::VECREDUCE_ADD:
13325     case ARMISD::VADDVs:
13326     case ARMISD::VADDVu:
13327     case ARMISD::VMLAVs:
13328     case ARMISD::VMLAVu:
13329       return true;
13330     }
13331     return false;
13332   };
13333 
13334   auto DistrubuteAddAddVecReduce = [&](SDValue N0, SDValue N1) {
13335     // Distribute add(X, add(vecreduce(Y), vecreduce(Z))) ->
13336     //   add(add(X, vecreduce(Y)), vecreduce(Z))
13337     // to make better use of vaddva style instructions.
13338     if (VT == MVT::i32 && N1.getOpcode() == ISD::ADD && !IsVecReduce(N0) &&
13339         IsVecReduce(N1.getOperand(0)) && IsVecReduce(N1.getOperand(1)) &&
13340         !isa<ConstantSDNode>(N0)) {
13341       SDValue Add0 = DAG.getNode(ISD::ADD, dl, VT, N0, N1.getOperand(0));
13342       return DAG.getNode(ISD::ADD, dl, VT, Add0, N1.getOperand(1));
13343     }
13344     // And turn add(add(A, reduce(B)), add(C, reduce(D))) ->
13345     //   add(add(add(A, C), reduce(B)), reduce(D))
13346     if (VT == MVT::i32 && N0.getOpcode() == ISD::ADD &&
13347         N1.getOpcode() == ISD::ADD) {
13348       unsigned N0RedOp = 0;
13349       if (!IsVecReduce(N0.getOperand(N0RedOp))) {
13350         N0RedOp = 1;
13351         if (!IsVecReduce(N0.getOperand(N0RedOp)))
13352           return SDValue();
13353       }
13354 
13355       unsigned N1RedOp = 0;
13356       if (!IsVecReduce(N1.getOperand(N1RedOp)))
13357         N1RedOp = 1;
13358       if (!IsVecReduce(N1.getOperand(N1RedOp)))
13359         return SDValue();
13360 
13361       SDValue Add0 = DAG.getNode(ISD::ADD, dl, VT, N0.getOperand(1 - N0RedOp),
13362                                  N1.getOperand(1 - N1RedOp));
13363       SDValue Add1 =
13364           DAG.getNode(ISD::ADD, dl, VT, Add0, N0.getOperand(N0RedOp));
13365       return DAG.getNode(ISD::ADD, dl, VT, Add1, N1.getOperand(N1RedOp));
13366     }
13367     return SDValue();
13368   };
13369   if (SDValue R = DistrubuteAddAddVecReduce(N0, N1))
13370     return R;
13371   if (SDValue R = DistrubuteAddAddVecReduce(N1, N0))
13372     return R;
13373 
13374   // Distribute add(vecreduce(load(Y)), vecreduce(load(Z)))
13375   // Or add(add(X, vecreduce(load(Y))), vecreduce(load(Z)))
13376   // by ascending load offsets. This can help cores prefetch if the order of
13377   // loads is more predictable.
13378   auto DistrubuteVecReduceLoad = [&](SDValue N0, SDValue N1, bool IsForward) {
13379     // Check if two reductions are known to load data where one is before/after
13380     // another. Return negative if N0 loads data before N1, positive if N1 is
13381     // before N0 and 0 otherwise if nothing is known.
13382     auto IsKnownOrderedLoad = [&](SDValue N0, SDValue N1) {
13383       // Look through to the first operand of a MUL, for the VMLA case.
13384       // Currently only looks at the first operand, in the hope they are equal.
13385       if (N0.getOpcode() == ISD::MUL)
13386         N0 = N0.getOperand(0);
13387       if (N1.getOpcode() == ISD::MUL)
13388         N1 = N1.getOperand(0);
13389 
13390       // Return true if the two operands are loads to the same object and the
13391       // offset of the first is known to be less than the offset of the second.
13392       LoadSDNode *Load0 = dyn_cast<LoadSDNode>(N0);
13393       LoadSDNode *Load1 = dyn_cast<LoadSDNode>(N1);
13394       if (!Load0 || !Load1 || Load0->getChain() != Load1->getChain() ||
13395           !Load0->isSimple() || !Load1->isSimple() || Load0->isIndexed() ||
13396           Load1->isIndexed())
13397         return 0;
13398 
13399       auto BaseLocDecomp0 = BaseIndexOffset::match(Load0, DAG);
13400       auto BaseLocDecomp1 = BaseIndexOffset::match(Load1, DAG);
13401 
13402       if (!BaseLocDecomp0.getBase() ||
13403           BaseLocDecomp0.getBase() != BaseLocDecomp1.getBase() ||
13404           !BaseLocDecomp0.hasValidOffset() || !BaseLocDecomp1.hasValidOffset())
13405         return 0;
13406       if (BaseLocDecomp0.getOffset() < BaseLocDecomp1.getOffset())
13407         return -1;
13408       if (BaseLocDecomp0.getOffset() > BaseLocDecomp1.getOffset())
13409         return 1;
13410       return 0;
13411     };
13412 
13413     SDValue X;
13414     if (N0.getOpcode() == ISD::ADD) {
13415       if (IsVecReduce(N0.getOperand(0)) && IsVecReduce(N0.getOperand(1))) {
13416         int IsBefore = IsKnownOrderedLoad(N0.getOperand(0).getOperand(0),
13417                                          N0.getOperand(1).getOperand(0));
13418         if (IsBefore < 0) {
13419           X = N0.getOperand(0);
13420           N0 = N0.getOperand(1);
13421         } else if (IsBefore > 0) {
13422           X = N0.getOperand(1);
13423           N0 = N0.getOperand(0);
13424         } else
13425           return SDValue();
13426       } else if (IsVecReduce(N0.getOperand(0))) {
13427         X = N0.getOperand(1);
13428         N0 = N0.getOperand(0);
13429       } else if (IsVecReduce(N0.getOperand(1))) {
13430         X = N0.getOperand(0);
13431         N0 = N0.getOperand(1);
13432       } else
13433         return SDValue();
13434     } else if (IsForward && IsVecReduce(N0) && IsVecReduce(N1) &&
13435                IsKnownOrderedLoad(N0.getOperand(0), N1.getOperand(0)) < 0) {
13436       // Note this is backward to how you would expect. We create
13437       // add(reduce(load + 16), reduce(load + 0)) so that the
13438       // add(reduce(load+16), X) is combined into VADDVA(X, load+16)), leaving
13439       // the X as VADDV(load + 0)
13440       return DAG.getNode(ISD::ADD, dl, VT, N1, N0);
13441     } else
13442       return SDValue();
13443 
13444     if (!IsVecReduce(N0) || !IsVecReduce(N1))
13445       return SDValue();
13446 
13447     if (IsKnownOrderedLoad(N1.getOperand(0), N0.getOperand(0)) >= 0)
13448       return SDValue();
13449 
13450     // Switch from add(add(X, N0), N1) to add(add(X, N1), N0)
13451     SDValue Add0 = DAG.getNode(ISD::ADD, dl, VT, X, N1);
13452     return DAG.getNode(ISD::ADD, dl, VT, Add0, N0);
13453   };
13454   if (SDValue R = DistrubuteVecReduceLoad(N0, N1, true))
13455     return R;
13456   if (SDValue R = DistrubuteVecReduceLoad(N1, N0, false))
13457     return R;
13458   return SDValue();
13459 }
13460 
13461 static SDValue PerformADDVecReduce(SDNode *N, SelectionDAG &DAG,
13462                                    const ARMSubtarget *Subtarget) {
13463   if (!Subtarget->hasMVEIntegerOps())
13464     return SDValue();
13465 
13466   if (SDValue R = TryDistrubutionADDVecReduce(N, DAG))
13467     return R;
13468 
13469   EVT VT = N->getValueType(0);
13470   SDValue N0 = N->getOperand(0);
13471   SDValue N1 = N->getOperand(1);
13472   SDLoc dl(N);
13473 
13474   if (VT != MVT::i64)
13475     return SDValue();
13476 
13477   // We are looking for a i64 add of a VADDLVx. Due to these being i64's, this
13478   // will look like:
13479   //   t1: i32,i32 = ARMISD::VADDLVs x
13480   //   t2: i64 = build_pair t1, t1:1
13481   //   t3: i64 = add t2, y
13482   // Otherwise we try to push the add up above VADDLVAx, to potentially allow
13483   // the add to be simplified seperately.
13484   // We also need to check for sext / zext and commutitive adds.
13485   auto MakeVecReduce = [&](unsigned Opcode, unsigned OpcodeA, SDValue NA,
13486                            SDValue NB) {
13487     if (NB->getOpcode() != ISD::BUILD_PAIR)
13488       return SDValue();
13489     SDValue VecRed = NB->getOperand(0);
13490     if ((VecRed->getOpcode() != Opcode && VecRed->getOpcode() != OpcodeA) ||
13491         VecRed.getResNo() != 0 ||
13492         NB->getOperand(1) != SDValue(VecRed.getNode(), 1))
13493       return SDValue();
13494 
13495     if (VecRed->getOpcode() == OpcodeA) {
13496       // add(NA, VADDLVA(Inp), Y) -> VADDLVA(add(NA, Inp), Y)
13497       SDValue Inp = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64,
13498                                 VecRed.getOperand(0), VecRed.getOperand(1));
13499       NA = DAG.getNode(ISD::ADD, dl, MVT::i64, Inp, NA);
13500     }
13501 
13502     SmallVector<SDValue, 4> Ops;
13503     Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, NA,
13504                               DAG.getConstant(0, dl, MVT::i32)));
13505     Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, NA,
13506                               DAG.getConstant(1, dl, MVT::i32)));
13507     unsigned S = VecRed->getOpcode() == OpcodeA ? 2 : 0;
13508     for (unsigned I = S, E = VecRed.getNumOperands(); I < E; I++)
13509       Ops.push_back(VecRed->getOperand(I));
13510     SDValue Red =
13511         DAG.getNode(OpcodeA, dl, DAG.getVTList({MVT::i32, MVT::i32}), Ops);
13512     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Red,
13513                        SDValue(Red.getNode(), 1));
13514   };
13515 
13516   if (SDValue M = MakeVecReduce(ARMISD::VADDLVs, ARMISD::VADDLVAs, N0, N1))
13517     return M;
13518   if (SDValue M = MakeVecReduce(ARMISD::VADDLVu, ARMISD::VADDLVAu, N0, N1))
13519     return M;
13520   if (SDValue M = MakeVecReduce(ARMISD::VADDLVs, ARMISD::VADDLVAs, N1, N0))
13521     return M;
13522   if (SDValue M = MakeVecReduce(ARMISD::VADDLVu, ARMISD::VADDLVAu, N1, N0))
13523     return M;
13524   if (SDValue M = MakeVecReduce(ARMISD::VADDLVps, ARMISD::VADDLVAps, N0, N1))
13525     return M;
13526   if (SDValue M = MakeVecReduce(ARMISD::VADDLVpu, ARMISD::VADDLVApu, N0, N1))
13527     return M;
13528   if (SDValue M = MakeVecReduce(ARMISD::VADDLVps, ARMISD::VADDLVAps, N1, N0))
13529     return M;
13530   if (SDValue M = MakeVecReduce(ARMISD::VADDLVpu, ARMISD::VADDLVApu, N1, N0))
13531     return M;
13532   if (SDValue M = MakeVecReduce(ARMISD::VMLALVs, ARMISD::VMLALVAs, N0, N1))
13533     return M;
13534   if (SDValue M = MakeVecReduce(ARMISD::VMLALVu, ARMISD::VMLALVAu, N0, N1))
13535     return M;
13536   if (SDValue M = MakeVecReduce(ARMISD::VMLALVs, ARMISD::VMLALVAs, N1, N0))
13537     return M;
13538   if (SDValue M = MakeVecReduce(ARMISD::VMLALVu, ARMISD::VMLALVAu, N1, N0))
13539     return M;
13540   if (SDValue M = MakeVecReduce(ARMISD::VMLALVps, ARMISD::VMLALVAps, N0, N1))
13541     return M;
13542   if (SDValue M = MakeVecReduce(ARMISD::VMLALVpu, ARMISD::VMLALVApu, N0, N1))
13543     return M;
13544   if (SDValue M = MakeVecReduce(ARMISD::VMLALVps, ARMISD::VMLALVAps, N1, N0))
13545     return M;
13546   if (SDValue M = MakeVecReduce(ARMISD::VMLALVpu, ARMISD::VMLALVApu, N1, N0))
13547     return M;
13548   return SDValue();
13549 }
13550 
13551 bool
13552 ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode *N,
13553                                                  CombineLevel Level) const {
13554   if (Level == BeforeLegalizeTypes)
13555     return true;
13556 
13557   if (N->getOpcode() != ISD::SHL)
13558     return true;
13559 
13560   if (Subtarget->isThumb1Only()) {
13561     // Avoid making expensive immediates by commuting shifts. (This logic
13562     // only applies to Thumb1 because ARM and Thumb2 immediates can be shifted
13563     // for free.)
13564     if (N->getOpcode() != ISD::SHL)
13565       return true;
13566     SDValue N1 = N->getOperand(0);
13567     if (N1->getOpcode() != ISD::ADD && N1->getOpcode() != ISD::AND &&
13568         N1->getOpcode() != ISD::OR && N1->getOpcode() != ISD::XOR)
13569       return true;
13570     if (auto *Const = dyn_cast<ConstantSDNode>(N1->getOperand(1))) {
13571       if (Const->getAPIntValue().ult(256))
13572         return false;
13573       if (N1->getOpcode() == ISD::ADD && Const->getAPIntValue().slt(0) &&
13574           Const->getAPIntValue().sgt(-256))
13575         return false;
13576     }
13577     return true;
13578   }
13579 
13580   // Turn off commute-with-shift transform after legalization, so it doesn't
13581   // conflict with PerformSHLSimplify.  (We could try to detect when
13582   // PerformSHLSimplify would trigger more precisely, but it isn't
13583   // really necessary.)
13584   return false;
13585 }
13586 
13587 bool ARMTargetLowering::shouldFoldConstantShiftPairToMask(
13588     const SDNode *N, CombineLevel Level) const {
13589   if (!Subtarget->isThumb1Only())
13590     return true;
13591 
13592   if (Level == BeforeLegalizeTypes)
13593     return true;
13594 
13595   return false;
13596 }
13597 
13598 bool ARMTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
13599   if (!Subtarget->hasNEON()) {
13600     if (Subtarget->isThumb1Only())
13601       return VT.getScalarSizeInBits() <= 32;
13602     return true;
13603   }
13604   return VT.isScalarInteger();
13605 }
13606 
13607 bool ARMTargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT,
13608                                              EVT VT) const {
13609   if (!isOperationLegalOrCustom(Op, VT) || !FPVT.isSimple())
13610     return false;
13611 
13612   switch (FPVT.getSimpleVT().SimpleTy) {
13613   case MVT::f16:
13614     return Subtarget->hasVFP2Base();
13615   case MVT::f32:
13616     return Subtarget->hasVFP2Base();
13617   case MVT::f64:
13618     return Subtarget->hasFP64();
13619   case MVT::v4f32:
13620   case MVT::v8f16:
13621     return Subtarget->hasMVEFloatOps();
13622   default:
13623     return false;
13624   }
13625 }
13626 
13627 static SDValue PerformSHLSimplify(SDNode *N,
13628                                 TargetLowering::DAGCombinerInfo &DCI,
13629                                 const ARMSubtarget *ST) {
13630   // Allow the generic combiner to identify potential bswaps.
13631   if (DCI.isBeforeLegalize())
13632     return SDValue();
13633 
13634   // DAG combiner will fold:
13635   // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
13636   // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
13637   // Other code patterns that can be also be modified have the following form:
13638   // b + ((a << 1) | 510)
13639   // b + ((a << 1) & 510)
13640   // b + ((a << 1) ^ 510)
13641   // b + ((a << 1) + 510)
13642 
13643   // Many instructions can  perform the shift for free, but it requires both
13644   // the operands to be registers. If c1 << c2 is too large, a mov immediate
13645   // instruction will needed. So, unfold back to the original pattern if:
13646   // - if c1 and c2 are small enough that they don't require mov imms.
13647   // - the user(s) of the node can perform an shl
13648 
13649   // No shifted operands for 16-bit instructions.
13650   if (ST->isThumb() && ST->isThumb1Only())
13651     return SDValue();
13652 
13653   // Check that all the users could perform the shl themselves.
13654   for (auto U : N->uses()) {
13655     switch(U->getOpcode()) {
13656     default:
13657       return SDValue();
13658     case ISD::SUB:
13659     case ISD::ADD:
13660     case ISD::AND:
13661     case ISD::OR:
13662     case ISD::XOR:
13663     case ISD::SETCC:
13664     case ARMISD::CMP:
13665       // Check that the user isn't already using a constant because there
13666       // aren't any instructions that support an immediate operand and a
13667       // shifted operand.
13668       if (isa<ConstantSDNode>(U->getOperand(0)) ||
13669           isa<ConstantSDNode>(U->getOperand(1)))
13670         return SDValue();
13671 
13672       // Check that it's not already using a shift.
13673       if (U->getOperand(0).getOpcode() == ISD::SHL ||
13674           U->getOperand(1).getOpcode() == ISD::SHL)
13675         return SDValue();
13676       break;
13677     }
13678   }
13679 
13680   if (N->getOpcode() != ISD::ADD && N->getOpcode() != ISD::OR &&
13681       N->getOpcode() != ISD::XOR && N->getOpcode() != ISD::AND)
13682     return SDValue();
13683 
13684   if (N->getOperand(0).getOpcode() != ISD::SHL)
13685     return SDValue();
13686 
13687   SDValue SHL = N->getOperand(0);
13688 
13689   auto *C1ShlC2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
13690   auto *C2 = dyn_cast<ConstantSDNode>(SHL.getOperand(1));
13691   if (!C1ShlC2 || !C2)
13692     return SDValue();
13693 
13694   APInt C2Int = C2->getAPIntValue();
13695   APInt C1Int = C1ShlC2->getAPIntValue();
13696 
13697   // Check that performing a lshr will not lose any information.
13698   APInt Mask = APInt::getHighBitsSet(C2Int.getBitWidth(),
13699                                      C2Int.getBitWidth() - C2->getZExtValue());
13700   if ((C1Int & Mask) != C1Int)
13701     return SDValue();
13702 
13703   // Shift the first constant.
13704   C1Int.lshrInPlace(C2Int);
13705 
13706   // The immediates are encoded as an 8-bit value that can be rotated.
13707   auto LargeImm = [](const APInt &Imm) {
13708     unsigned Zeros = Imm.countLeadingZeros() + Imm.countTrailingZeros();
13709     return Imm.getBitWidth() - Zeros > 8;
13710   };
13711 
13712   if (LargeImm(C1Int) || LargeImm(C2Int))
13713     return SDValue();
13714 
13715   SelectionDAG &DAG = DCI.DAG;
13716   SDLoc dl(N);
13717   SDValue X = SHL.getOperand(0);
13718   SDValue BinOp = DAG.getNode(N->getOpcode(), dl, MVT::i32, X,
13719                               DAG.getConstant(C1Int, dl, MVT::i32));
13720   // Shift left to compensate for the lshr of C1Int.
13721   SDValue Res = DAG.getNode(ISD::SHL, dl, MVT::i32, BinOp, SHL.getOperand(1));
13722 
13723   LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL.getOperand(0).dump();
13724              SHL.dump(); N->dump());
13725   LLVM_DEBUG(dbgs() << "Into:\n"; X.dump(); BinOp.dump(); Res.dump());
13726   return Res;
13727 }
13728 
13729 
13730 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
13731 ///
13732 static SDValue PerformADDCombine(SDNode *N,
13733                                  TargetLowering::DAGCombinerInfo &DCI,
13734                                  const ARMSubtarget *Subtarget) {
13735   SDValue N0 = N->getOperand(0);
13736   SDValue N1 = N->getOperand(1);
13737 
13738   // Only works one way, because it needs an immediate operand.
13739   if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
13740     return Result;
13741 
13742   if (SDValue Result = PerformADDVecReduce(N, DCI.DAG, Subtarget))
13743     return Result;
13744 
13745   // First try with the default operand order.
13746   if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget))
13747     return Result;
13748 
13749   // If that didn't work, try again with the operands commuted.
13750   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
13751 }
13752 
13753 // Combine (sub 0, (csinc X, Y, CC)) -> (csinv -X, Y, CC)
13754 //   providing -X is as cheap as X (currently, just a constant).
13755 static SDValue PerformSubCSINCCombine(SDNode *N, SelectionDAG &DAG) {
13756   if (N->getValueType(0) != MVT::i32 || !isNullConstant(N->getOperand(0)))
13757     return SDValue();
13758   SDValue CSINC = N->getOperand(1);
13759   if (CSINC.getOpcode() != ARMISD::CSINC || !CSINC.hasOneUse())
13760     return SDValue();
13761 
13762   ConstantSDNode *X = dyn_cast<ConstantSDNode>(CSINC.getOperand(0));
13763   if (!X)
13764     return SDValue();
13765 
13766   return DAG.getNode(ARMISD::CSINV, SDLoc(N), MVT::i32,
13767                      DAG.getNode(ISD::SUB, SDLoc(N), MVT::i32, N->getOperand(0),
13768                                  CSINC.getOperand(0)),
13769                      CSINC.getOperand(1), CSINC.getOperand(2),
13770                      CSINC.getOperand(3));
13771 }
13772 
13773 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
13774 ///
13775 static SDValue PerformSUBCombine(SDNode *N,
13776                                  TargetLowering::DAGCombinerInfo &DCI,
13777                                  const ARMSubtarget *Subtarget) {
13778   SDValue N0 = N->getOperand(0);
13779   SDValue N1 = N->getOperand(1);
13780 
13781   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
13782   if (N1.getNode()->hasOneUse())
13783     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI))
13784       return Result;
13785 
13786   if (SDValue R = PerformSubCSINCCombine(N, DCI.DAG))
13787     return R;
13788 
13789   if (!Subtarget->hasMVEIntegerOps() || !N->getValueType(0).isVector())
13790     return SDValue();
13791 
13792   // Fold (sub (ARMvmovImm 0), (ARMvdup x)) -> (ARMvdup (sub 0, x))
13793   // so that we can readily pattern match more mve instructions which can use
13794   // a scalar operand.
13795   SDValue VDup = N->getOperand(1);
13796   if (VDup->getOpcode() != ARMISD::VDUP)
13797     return SDValue();
13798 
13799   SDValue VMov = N->getOperand(0);
13800   if (VMov->getOpcode() == ISD::BITCAST)
13801     VMov = VMov->getOperand(0);
13802 
13803   if (VMov->getOpcode() != ARMISD::VMOVIMM || !isZeroVector(VMov))
13804     return SDValue();
13805 
13806   SDLoc dl(N);
13807   SDValue Negate = DCI.DAG.getNode(ISD::SUB, dl, MVT::i32,
13808                                    DCI.DAG.getConstant(0, dl, MVT::i32),
13809                                    VDup->getOperand(0));
13810   return DCI.DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0), Negate);
13811 }
13812 
13813 /// PerformVMULCombine
13814 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
13815 /// special multiplier accumulator forwarding.
13816 ///   vmul d3, d0, d2
13817 ///   vmla d3, d1, d2
13818 /// is faster than
13819 ///   vadd d3, d0, d1
13820 ///   vmul d3, d3, d2
13821 //  However, for (A + B) * (A + B),
13822 //    vadd d2, d0, d1
13823 //    vmul d3, d0, d2
13824 //    vmla d3, d1, d2
13825 //  is slower than
13826 //    vadd d2, d0, d1
13827 //    vmul d3, d2, d2
13828 static SDValue PerformVMULCombine(SDNode *N,
13829                                   TargetLowering::DAGCombinerInfo &DCI,
13830                                   const ARMSubtarget *Subtarget) {
13831   if (!Subtarget->hasVMLxForwarding())
13832     return SDValue();
13833 
13834   SelectionDAG &DAG = DCI.DAG;
13835   SDValue N0 = N->getOperand(0);
13836   SDValue N1 = N->getOperand(1);
13837   unsigned Opcode = N0.getOpcode();
13838   if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
13839       Opcode != ISD::FADD && Opcode != ISD::FSUB) {
13840     Opcode = N1.getOpcode();
13841     if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
13842         Opcode != ISD::FADD && Opcode != ISD::FSUB)
13843       return SDValue();
13844     std::swap(N0, N1);
13845   }
13846 
13847   if (N0 == N1)
13848     return SDValue();
13849 
13850   EVT VT = N->getValueType(0);
13851   SDLoc DL(N);
13852   SDValue N00 = N0->getOperand(0);
13853   SDValue N01 = N0->getOperand(1);
13854   return DAG.getNode(Opcode, DL, VT,
13855                      DAG.getNode(ISD::MUL, DL, VT, N00, N1),
13856                      DAG.getNode(ISD::MUL, DL, VT, N01, N1));
13857 }
13858 
13859 static SDValue PerformMVEVMULLCombine(SDNode *N, SelectionDAG &DAG,
13860                                       const ARMSubtarget *Subtarget) {
13861   EVT VT = N->getValueType(0);
13862   if (VT != MVT::v2i64)
13863     return SDValue();
13864 
13865   SDValue N0 = N->getOperand(0);
13866   SDValue N1 = N->getOperand(1);
13867 
13868   auto IsSignExt = [&](SDValue Op) {
13869     if (Op->getOpcode() != ISD::SIGN_EXTEND_INREG)
13870       return SDValue();
13871     EVT VT = cast<VTSDNode>(Op->getOperand(1))->getVT();
13872     if (VT.getScalarSizeInBits() == 32)
13873       return Op->getOperand(0);
13874     return SDValue();
13875   };
13876   auto IsZeroExt = [&](SDValue Op) {
13877     // Zero extends are a little more awkward. At the point we are matching
13878     // this, we are looking for an AND with a (-1, 0, -1, 0) buildvector mask.
13879     // That might be before of after a bitcast depending on how the and is
13880     // placed. Because this has to look through bitcasts, it is currently only
13881     // supported on LE.
13882     if (!Subtarget->isLittle())
13883       return SDValue();
13884 
13885     SDValue And = Op;
13886     if (And->getOpcode() == ISD::BITCAST)
13887       And = And->getOperand(0);
13888     if (And->getOpcode() != ISD::AND)
13889       return SDValue();
13890     SDValue Mask = And->getOperand(1);
13891     if (Mask->getOpcode() == ISD::BITCAST)
13892       Mask = Mask->getOperand(0);
13893 
13894     if (Mask->getOpcode() != ISD::BUILD_VECTOR ||
13895         Mask.getValueType() != MVT::v4i32)
13896       return SDValue();
13897     if (isAllOnesConstant(Mask->getOperand(0)) &&
13898         isNullConstant(Mask->getOperand(1)) &&
13899         isAllOnesConstant(Mask->getOperand(2)) &&
13900         isNullConstant(Mask->getOperand(3)))
13901       return And->getOperand(0);
13902     return SDValue();
13903   };
13904 
13905   SDLoc dl(N);
13906   if (SDValue Op0 = IsSignExt(N0)) {
13907     if (SDValue Op1 = IsSignExt(N1)) {
13908       SDValue New0a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op0);
13909       SDValue New1a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op1);
13910       return DAG.getNode(ARMISD::VMULLs, dl, VT, New0a, New1a);
13911     }
13912   }
13913   if (SDValue Op0 = IsZeroExt(N0)) {
13914     if (SDValue Op1 = IsZeroExt(N1)) {
13915       SDValue New0a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op0);
13916       SDValue New1a = DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v4i32, Op1);
13917       return DAG.getNode(ARMISD::VMULLu, dl, VT, New0a, New1a);
13918     }
13919   }
13920 
13921   return SDValue();
13922 }
13923 
13924 static SDValue PerformMULCombine(SDNode *N,
13925                                  TargetLowering::DAGCombinerInfo &DCI,
13926                                  const ARMSubtarget *Subtarget) {
13927   SelectionDAG &DAG = DCI.DAG;
13928 
13929   EVT VT = N->getValueType(0);
13930   if (Subtarget->hasMVEIntegerOps() && VT == MVT::v2i64)
13931     return PerformMVEVMULLCombine(N, DAG, Subtarget);
13932 
13933   if (Subtarget->isThumb1Only())
13934     return SDValue();
13935 
13936   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13937     return SDValue();
13938 
13939   if (VT.is64BitVector() || VT.is128BitVector())
13940     return PerformVMULCombine(N, DCI, Subtarget);
13941   if (VT != MVT::i32)
13942     return SDValue();
13943 
13944   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13945   if (!C)
13946     return SDValue();
13947 
13948   int64_t MulAmt = C->getSExtValue();
13949   unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
13950 
13951   ShiftAmt = ShiftAmt & (32 - 1);
13952   SDValue V = N->getOperand(0);
13953   SDLoc DL(N);
13954 
13955   SDValue Res;
13956   MulAmt >>= ShiftAmt;
13957 
13958   if (MulAmt >= 0) {
13959     if (isPowerOf2_32(MulAmt - 1)) {
13960       // (mul x, 2^N + 1) => (add (shl x, N), x)
13961       Res = DAG.getNode(ISD::ADD, DL, VT,
13962                         V,
13963                         DAG.getNode(ISD::SHL, DL, VT,
13964                                     V,
13965                                     DAG.getConstant(Log2_32(MulAmt - 1), DL,
13966                                                     MVT::i32)));
13967     } else if (isPowerOf2_32(MulAmt + 1)) {
13968       // (mul x, 2^N - 1) => (sub (shl x, N), x)
13969       Res = DAG.getNode(ISD::SUB, DL, VT,
13970                         DAG.getNode(ISD::SHL, DL, VT,
13971                                     V,
13972                                     DAG.getConstant(Log2_32(MulAmt + 1), DL,
13973                                                     MVT::i32)),
13974                         V);
13975     } else
13976       return SDValue();
13977   } else {
13978     uint64_t MulAmtAbs = -MulAmt;
13979     if (isPowerOf2_32(MulAmtAbs + 1)) {
13980       // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
13981       Res = DAG.getNode(ISD::SUB, DL, VT,
13982                         V,
13983                         DAG.getNode(ISD::SHL, DL, VT,
13984                                     V,
13985                                     DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
13986                                                     MVT::i32)));
13987     } else if (isPowerOf2_32(MulAmtAbs - 1)) {
13988       // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
13989       Res = DAG.getNode(ISD::ADD, DL, VT,
13990                         V,
13991                         DAG.getNode(ISD::SHL, DL, VT,
13992                                     V,
13993                                     DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
13994                                                     MVT::i32)));
13995       Res = DAG.getNode(ISD::SUB, DL, VT,
13996                         DAG.getConstant(0, DL, MVT::i32), Res);
13997     } else
13998       return SDValue();
13999   }
14000 
14001   if (ShiftAmt != 0)
14002     Res = DAG.getNode(ISD::SHL, DL, VT,
14003                       Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));
14004 
14005   // Do not add new nodes to DAG combiner worklist.
14006   DCI.CombineTo(N, Res, false);
14007   return SDValue();
14008 }
14009 
14010 static SDValue CombineANDShift(SDNode *N,
14011                                TargetLowering::DAGCombinerInfo &DCI,
14012                                const ARMSubtarget *Subtarget) {
14013   // Allow DAGCombine to pattern-match before we touch the canonical form.
14014   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
14015     return SDValue();
14016 
14017   if (N->getValueType(0) != MVT::i32)
14018     return SDValue();
14019 
14020   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
14021   if (!N1C)
14022     return SDValue();
14023 
14024   uint32_t C1 = (uint32_t)N1C->getZExtValue();
14025   // Don't transform uxtb/uxth.
14026   if (C1 == 255 || C1 == 65535)
14027     return SDValue();
14028 
14029   SDNode *N0 = N->getOperand(0).getNode();
14030   if (!N0->hasOneUse())
14031     return SDValue();
14032 
14033   if (N0->getOpcode() != ISD::SHL && N0->getOpcode() != ISD::SRL)
14034     return SDValue();
14035 
14036   bool LeftShift = N0->getOpcode() == ISD::SHL;
14037 
14038   ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
14039   if (!N01C)
14040     return SDValue();
14041 
14042   uint32_t C2 = (uint32_t)N01C->getZExtValue();
14043   if (!C2 || C2 >= 32)
14044     return SDValue();
14045 
14046   // Clear irrelevant bits in the mask.
14047   if (LeftShift)
14048     C1 &= (-1U << C2);
14049   else
14050     C1 &= (-1U >> C2);
14051 
14052   SelectionDAG &DAG = DCI.DAG;
14053   SDLoc DL(N);
14054 
14055   // We have a pattern of the form "(and (shl x, c2) c1)" or
14056   // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
14057   // transform to a pair of shifts, to save materializing c1.
14058 
14059   // First pattern: right shift, then mask off leading bits.
14060   // FIXME: Use demanded bits?
14061   if (!LeftShift && isMask_32(C1)) {
14062     uint32_t C3 = countLeadingZeros(C1);
14063     if (C2 < C3) {
14064       SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
14065                                 DAG.getConstant(C3 - C2, DL, MVT::i32));
14066       return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
14067                          DAG.getConstant(C3, DL, MVT::i32));
14068     }
14069   }
14070 
14071   // First pattern, reversed: left shift, then mask off trailing bits.
14072   if (LeftShift && isMask_32(~C1)) {
14073     uint32_t C3 = countTrailingZeros(C1);
14074     if (C2 < C3) {
14075       SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
14076                                 DAG.getConstant(C3 - C2, DL, MVT::i32));
14077       return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
14078                          DAG.getConstant(C3, DL, MVT::i32));
14079     }
14080   }
14081 
14082   // Second pattern: left shift, then mask off leading bits.
14083   // FIXME: Use demanded bits?
14084   if (LeftShift && isShiftedMask_32(C1)) {
14085     uint32_t Trailing = countTrailingZeros(C1);
14086     uint32_t C3 = countLeadingZeros(C1);
14087     if (Trailing == C2 && C2 + C3 < 32) {
14088       SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
14089                                 DAG.getConstant(C2 + C3, DL, MVT::i32));
14090       return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
14091                         DAG.getConstant(C3, DL, MVT::i32));
14092     }
14093   }
14094 
14095   // Second pattern, reversed: right shift, then mask off trailing bits.
14096   // FIXME: Handle other patterns of known/demanded bits.
14097   if (!LeftShift && isShiftedMask_32(C1)) {
14098     uint32_t Leading = countLeadingZeros(C1);
14099     uint32_t C3 = countTrailingZeros(C1);
14100     if (Leading == C2 && C2 + C3 < 32) {
14101       SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
14102                                 DAG.getConstant(C2 + C3, DL, MVT::i32));
14103       return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
14104                          DAG.getConstant(C3, DL, MVT::i32));
14105     }
14106   }
14107 
14108   // FIXME: Transform "(and (shl x, c2) c1)" ->
14109   // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than
14110   // c1.
14111   return SDValue();
14112 }
14113 
14114 static SDValue PerformANDCombine(SDNode *N,
14115                                  TargetLowering::DAGCombinerInfo &DCI,
14116                                  const ARMSubtarget *Subtarget) {
14117   // Attempt to use immediate-form VBIC
14118   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
14119   SDLoc dl(N);
14120   EVT VT = N->getValueType(0);
14121   SelectionDAG &DAG = DCI.DAG;
14122 
14123   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT) || VT == MVT::v2i1 ||
14124       VT == MVT::v4i1 || VT == MVT::v8i1 || VT == MVT::v16i1)
14125     return SDValue();
14126 
14127   APInt SplatBits, SplatUndef;
14128   unsigned SplatBitSize;
14129   bool HasAnyUndefs;
14130   if (BVN && (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) &&
14131       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
14132     if (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32 ||
14133         SplatBitSize == 64) {
14134       EVT VbicVT;
14135       SDValue Val = isVMOVModifiedImm((~SplatBits).getZExtValue(),
14136                                       SplatUndef.getZExtValue(), SplatBitSize,
14137                                       DAG, dl, VbicVT, VT, OtherModImm);
14138       if (Val.getNode()) {
14139         SDValue Input =
14140           DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
14141         SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
14142         return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
14143       }
14144     }
14145   }
14146 
14147   if (!Subtarget->isThumb1Only()) {
14148     // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
14149     if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI))
14150       return Result;
14151 
14152     if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
14153       return Result;
14154   }
14155 
14156   if (Subtarget->isThumb1Only())
14157     if (SDValue Result = CombineANDShift(N, DCI, Subtarget))
14158       return Result;
14159 
14160   return SDValue();
14161 }
14162 
14163 // Try combining OR nodes to SMULWB, SMULWT.
14164 static SDValue PerformORCombineToSMULWBT(SDNode *OR,
14165                                          TargetLowering::DAGCombinerInfo &DCI,
14166                                          const ARMSubtarget *Subtarget) {
14167   if (!Subtarget->hasV6Ops() ||
14168       (Subtarget->isThumb() &&
14169        (!Subtarget->hasThumb2() || !Subtarget->hasDSP())))
14170     return SDValue();
14171 
14172   SDValue SRL = OR->getOperand(0);
14173   SDValue SHL = OR->getOperand(1);
14174 
14175   if (SRL.getOpcode() != ISD::SRL || SHL.getOpcode() != ISD::SHL) {
14176     SRL = OR->getOperand(1);
14177     SHL = OR->getOperand(0);
14178   }
14179   if (!isSRL16(SRL) || !isSHL16(SHL))
14180     return SDValue();
14181 
14182   // The first operands to the shifts need to be the two results from the
14183   // same smul_lohi node.
14184   if ((SRL.getOperand(0).getNode() != SHL.getOperand(0).getNode()) ||
14185        SRL.getOperand(0).getOpcode() != ISD::SMUL_LOHI)
14186     return SDValue();
14187 
14188   SDNode *SMULLOHI = SRL.getOperand(0).getNode();
14189   if (SRL.getOperand(0) != SDValue(SMULLOHI, 0) ||
14190       SHL.getOperand(0) != SDValue(SMULLOHI, 1))
14191     return SDValue();
14192 
14193   // Now we have:
14194   // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
14195   // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
14196   // For SMUWB the 16-bit value will signed extended somehow.
14197   // For SMULWT only the SRA is required.
14198   // Check both sides of SMUL_LOHI
14199   SDValue OpS16 = SMULLOHI->getOperand(0);
14200   SDValue OpS32 = SMULLOHI->getOperand(1);
14201 
14202   SelectionDAG &DAG = DCI.DAG;
14203   if (!isS16(OpS16, DAG) && !isSRA16(OpS16)) {
14204     OpS16 = OpS32;
14205     OpS32 = SMULLOHI->getOperand(0);
14206   }
14207 
14208   SDLoc dl(OR);
14209   unsigned Opcode = 0;
14210   if (isS16(OpS16, DAG))
14211     Opcode = ARMISD::SMULWB;
14212   else if (isSRA16(OpS16)) {
14213     Opcode = ARMISD::SMULWT;
14214     OpS16 = OpS16->getOperand(0);
14215   }
14216   else
14217     return SDValue();
14218 
14219   SDValue Res = DAG.getNode(Opcode, dl, MVT::i32, OpS32, OpS16);
14220   DAG.ReplaceAllUsesOfValueWith(SDValue(OR, 0), Res);
14221   return SDValue(OR, 0);
14222 }
14223 
14224 static SDValue PerformORCombineToBFI(SDNode *N,
14225                                      TargetLowering::DAGCombinerInfo &DCI,
14226                                      const ARMSubtarget *Subtarget) {
14227   // BFI is only available on V6T2+
14228   if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
14229     return SDValue();
14230 
14231   EVT VT = N->getValueType(0);
14232   SDValue N0 = N->getOperand(0);
14233   SDValue N1 = N->getOperand(1);
14234   SelectionDAG &DAG = DCI.DAG;
14235   SDLoc DL(N);
14236   // 1) or (and A, mask), val => ARMbfi A, val, mask
14237   //      iff (val & mask) == val
14238   //
14239   // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
14240   //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
14241   //          && mask == ~mask2
14242   //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
14243   //          && ~mask == mask2
14244   //  (i.e., copy a bitfield value into another bitfield of the same width)
14245 
14246   if (VT != MVT::i32)
14247     return SDValue();
14248 
14249   SDValue N00 = N0.getOperand(0);
14250 
14251   // The value and the mask need to be constants so we can verify this is
14252   // actually a bitfield set. If the mask is 0xffff, we can do better
14253   // via a movt instruction, so don't use BFI in that case.
14254   SDValue MaskOp = N0.getOperand(1);
14255   ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
14256   if (!MaskC)
14257     return SDValue();
14258   unsigned Mask = MaskC->getZExtValue();
14259   if (Mask == 0xffff)
14260     return SDValue();
14261   SDValue Res;
14262   // Case (1): or (and A, mask), val => ARMbfi A, val, mask
14263   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
14264   if (N1C) {
14265     unsigned Val = N1C->getZExtValue();
14266     if ((Val & ~Mask) != Val)
14267       return SDValue();
14268 
14269     if (ARM::isBitFieldInvertedMask(Mask)) {
14270       Val >>= countTrailingZeros(~Mask);
14271 
14272       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
14273                         DAG.getConstant(Val, DL, MVT::i32),
14274                         DAG.getConstant(Mask, DL, MVT::i32));
14275 
14276       DCI.CombineTo(N, Res, false);
14277       // Return value from the original node to inform the combiner than N is
14278       // now dead.
14279       return SDValue(N, 0);
14280     }
14281   } else if (N1.getOpcode() == ISD::AND) {
14282     // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
14283     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
14284     if (!N11C)
14285       return SDValue();
14286     unsigned Mask2 = N11C->getZExtValue();
14287 
14288     // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
14289     // as is to match.
14290     if (ARM::isBitFieldInvertedMask(Mask) &&
14291         (Mask == ~Mask2)) {
14292       // The pack halfword instruction works better for masks that fit it,
14293       // so use that when it's available.
14294       if (Subtarget->hasDSP() &&
14295           (Mask == 0xffff || Mask == 0xffff0000))
14296         return SDValue();
14297       // 2a
14298       unsigned amt = countTrailingZeros(Mask2);
14299       Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
14300                         DAG.getConstant(amt, DL, MVT::i32));
14301       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
14302                         DAG.getConstant(Mask, DL, MVT::i32));
14303       DCI.CombineTo(N, Res, false);
14304       // Return value from the original node to inform the combiner than N is
14305       // now dead.
14306       return SDValue(N, 0);
14307     } else if (ARM::isBitFieldInvertedMask(~Mask) &&
14308                (~Mask == Mask2)) {
14309       // The pack halfword instruction works better for masks that fit it,
14310       // so use that when it's available.
14311       if (Subtarget->hasDSP() &&
14312           (Mask2 == 0xffff || Mask2 == 0xffff0000))
14313         return SDValue();
14314       // 2b
14315       unsigned lsb = countTrailingZeros(Mask);
14316       Res = DAG.getNode(ISD::SRL, DL, VT, N00,
14317                         DAG.getConstant(lsb, DL, MVT::i32));
14318       Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
14319                         DAG.getConstant(Mask2, DL, MVT::i32));
14320       DCI.CombineTo(N, Res, false);
14321       // Return value from the original node to inform the combiner than N is
14322       // now dead.
14323       return SDValue(N, 0);
14324     }
14325   }
14326 
14327   if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
14328       N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
14329       ARM::isBitFieldInvertedMask(~Mask)) {
14330     // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
14331     // where lsb(mask) == #shamt and masked bits of B are known zero.
14332     SDValue ShAmt = N00.getOperand(1);
14333     unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
14334     unsigned LSB = countTrailingZeros(Mask);
14335     if (ShAmtC != LSB)
14336       return SDValue();
14337 
14338     Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
14339                       DAG.getConstant(~Mask, DL, MVT::i32));
14340 
14341     DCI.CombineTo(N, Res, false);
14342     // Return value from the original node to inform the combiner than N is
14343     // now dead.
14344     return SDValue(N, 0);
14345   }
14346 
14347   return SDValue();
14348 }
14349 
14350 static bool isValidMVECond(unsigned CC, bool IsFloat) {
14351   switch (CC) {
14352   case ARMCC::EQ:
14353   case ARMCC::NE:
14354   case ARMCC::LE:
14355   case ARMCC::GT:
14356   case ARMCC::GE:
14357   case ARMCC::LT:
14358     return true;
14359   case ARMCC::HS:
14360   case ARMCC::HI:
14361     return !IsFloat;
14362   default:
14363     return false;
14364   };
14365 }
14366 
14367 static ARMCC::CondCodes getVCMPCondCode(SDValue N) {
14368   if (N->getOpcode() == ARMISD::VCMP)
14369     return (ARMCC::CondCodes)N->getConstantOperandVal(2);
14370   else if (N->getOpcode() == ARMISD::VCMPZ)
14371     return (ARMCC::CondCodes)N->getConstantOperandVal(1);
14372   else
14373     llvm_unreachable("Not a VCMP/VCMPZ!");
14374 }
14375 
14376 static bool CanInvertMVEVCMP(SDValue N) {
14377   ARMCC::CondCodes CC = ARMCC::getOppositeCondition(getVCMPCondCode(N));
14378   return isValidMVECond(CC, N->getOperand(0).getValueType().isFloatingPoint());
14379 }
14380 
14381 static SDValue PerformORCombine_i1(SDNode *N, SelectionDAG &DAG,
14382                                    const ARMSubtarget *Subtarget) {
14383   // Try to invert "or A, B" -> "and ~A, ~B", as the "and" is easier to chain
14384   // together with predicates
14385   EVT VT = N->getValueType(0);
14386   SDLoc DL(N);
14387   SDValue N0 = N->getOperand(0);
14388   SDValue N1 = N->getOperand(1);
14389 
14390   auto IsFreelyInvertable = [&](SDValue V) {
14391     if (V->getOpcode() == ARMISD::VCMP || V->getOpcode() == ARMISD::VCMPZ)
14392       return CanInvertMVEVCMP(V);
14393     return false;
14394   };
14395 
14396   // At least one operand must be freely invertable.
14397   if (!(IsFreelyInvertable(N0) || IsFreelyInvertable(N1)))
14398     return SDValue();
14399 
14400   SDValue NewN0 = DAG.getLogicalNOT(DL, N0, VT);
14401   SDValue NewN1 = DAG.getLogicalNOT(DL, N1, VT);
14402   SDValue And = DAG.getNode(ISD::AND, DL, VT, NewN0, NewN1);
14403   return DAG.getLogicalNOT(DL, And, VT);
14404 }
14405 
14406 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
14407 static SDValue PerformORCombine(SDNode *N,
14408                                 TargetLowering::DAGCombinerInfo &DCI,
14409                                 const ARMSubtarget *Subtarget) {
14410   // Attempt to use immediate-form VORR
14411   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
14412   SDLoc dl(N);
14413   EVT VT = N->getValueType(0);
14414   SelectionDAG &DAG = DCI.DAG;
14415 
14416   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
14417     return SDValue();
14418 
14419   if (Subtarget->hasMVEIntegerOps() && (VT == MVT::v2i1 || VT == MVT::v4i1 ||
14420                                         VT == MVT::v8i1 || VT == MVT::v16i1))
14421     return PerformORCombine_i1(N, DAG, Subtarget);
14422 
14423   APInt SplatBits, SplatUndef;
14424   unsigned SplatBitSize;
14425   bool HasAnyUndefs;
14426   if (BVN && (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) &&
14427       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
14428     if (SplatBitSize == 8 || SplatBitSize == 16 || SplatBitSize == 32 ||
14429         SplatBitSize == 64) {
14430       EVT VorrVT;
14431       SDValue Val =
14432           isVMOVModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(),
14433                             SplatBitSize, DAG, dl, VorrVT, VT, OtherModImm);
14434       if (Val.getNode()) {
14435         SDValue Input =
14436           DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
14437         SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
14438         return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
14439       }
14440     }
14441   }
14442 
14443   if (!Subtarget->isThumb1Only()) {
14444     // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
14445     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
14446       return Result;
14447     if (SDValue Result = PerformORCombineToSMULWBT(N, DCI, Subtarget))
14448       return Result;
14449   }
14450 
14451   SDValue N0 = N->getOperand(0);
14452   SDValue N1 = N->getOperand(1);
14453 
14454   // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
14455   if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
14456       DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14457 
14458     // The code below optimizes (or (and X, Y), Z).
14459     // The AND operand needs to have a single user to make these optimizations
14460     // profitable.
14461     if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
14462       return SDValue();
14463 
14464     APInt SplatUndef;
14465     unsigned SplatBitSize;
14466     bool HasAnyUndefs;
14467 
14468     APInt SplatBits0, SplatBits1;
14469     BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
14470     BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
14471     // Ensure that the second operand of both ands are constants
14472     if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
14473                                       HasAnyUndefs) && !HasAnyUndefs) {
14474         if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
14475                                           HasAnyUndefs) && !HasAnyUndefs) {
14476             // Ensure that the bit width of the constants are the same and that
14477             // the splat arguments are logical inverses as per the pattern we
14478             // are trying to simplify.
14479             if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
14480                 SplatBits0 == ~SplatBits1) {
14481                 // Canonicalize the vector type to make instruction selection
14482                 // simpler.
14483                 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
14484                 SDValue Result = DAG.getNode(ARMISD::VBSP, dl, CanonicalVT,
14485                                              N0->getOperand(1),
14486                                              N0->getOperand(0),
14487                                              N1->getOperand(0));
14488                 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
14489             }
14490         }
14491     }
14492   }
14493 
14494   // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
14495   // reasonable.
14496   if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
14497     if (SDValue Res = PerformORCombineToBFI(N, DCI, Subtarget))
14498       return Res;
14499   }
14500 
14501   if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
14502     return Result;
14503 
14504   return SDValue();
14505 }
14506 
14507 static SDValue PerformXORCombine(SDNode *N,
14508                                  TargetLowering::DAGCombinerInfo &DCI,
14509                                  const ARMSubtarget *Subtarget) {
14510   EVT VT = N->getValueType(0);
14511   SelectionDAG &DAG = DCI.DAG;
14512 
14513   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
14514     return SDValue();
14515 
14516   if (!Subtarget->isThumb1Only()) {
14517     // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
14518     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
14519       return Result;
14520 
14521     if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
14522       return Result;
14523   }
14524 
14525   if (Subtarget->hasMVEIntegerOps()) {
14526     // fold (xor(vcmp/z, 1)) into a vcmp with the opposite condition.
14527     SDValue N0 = N->getOperand(0);
14528     SDValue N1 = N->getOperand(1);
14529     const TargetLowering *TLI = Subtarget->getTargetLowering();
14530     if (TLI->isConstTrueVal(N1) &&
14531         (N0->getOpcode() == ARMISD::VCMP || N0->getOpcode() == ARMISD::VCMPZ)) {
14532       if (CanInvertMVEVCMP(N0)) {
14533         SDLoc DL(N0);
14534         ARMCC::CondCodes CC = ARMCC::getOppositeCondition(getVCMPCondCode(N0));
14535 
14536         SmallVector<SDValue, 4> Ops;
14537         Ops.push_back(N0->getOperand(0));
14538         if (N0->getOpcode() == ARMISD::VCMP)
14539           Ops.push_back(N0->getOperand(1));
14540         Ops.push_back(DAG.getConstant(CC, DL, MVT::i32));
14541         return DAG.getNode(N0->getOpcode(), DL, N0->getValueType(0), Ops);
14542       }
14543     }
14544   }
14545 
14546   return SDValue();
14547 }
14548 
14549 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
14550 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
14551 // their position in "to" (Rd).
14552 static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
14553   assert(N->getOpcode() == ARMISD::BFI);
14554 
14555   SDValue From = N->getOperand(1);
14556   ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue();
14557   FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation());
14558 
14559   // If the Base came from a SHR #C, we can deduce that it is really testing bit
14560   // #C in the base of the SHR.
14561   if (From->getOpcode() == ISD::SRL &&
14562       isa<ConstantSDNode>(From->getOperand(1))) {
14563     APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue();
14564     assert(Shift.getLimitedValue() < 32 && "Shift too large!");
14565     FromMask <<= Shift.getLimitedValue(31);
14566     From = From->getOperand(0);
14567   }
14568 
14569   return From;
14570 }
14571 
14572 // If A and B contain one contiguous set of bits, does A | B == A . B?
14573 //
14574 // Neither A nor B must be zero.
14575 static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
14576   unsigned LastActiveBitInA =  A.countTrailingZeros();
14577   unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1;
14578   return LastActiveBitInA - 1 == FirstActiveBitInB;
14579 }
14580 
14581 static SDValue FindBFIToCombineWith(SDNode *N) {
14582   // We have a BFI in N. Find a BFI it can combine with, if one exists.
14583   APInt ToMask, FromMask;
14584   SDValue From = ParseBFI(N, ToMask, FromMask);
14585   SDValue To = N->getOperand(0);
14586 
14587   SDValue V = To;
14588   if (V.getOpcode() != ARMISD::BFI)
14589     return SDValue();
14590 
14591   APInt NewToMask, NewFromMask;
14592   SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
14593   if (NewFrom != From)
14594     return SDValue();
14595 
14596   // Do the written bits conflict with any we've seen so far?
14597   if ((NewToMask & ToMask).getBoolValue())
14598     // Conflicting bits.
14599     return SDValue();
14600 
14601   // Are the new bits contiguous when combined with the old bits?
14602   if (BitsProperlyConcatenate(ToMask, NewToMask) &&
14603       BitsProperlyConcatenate(FromMask, NewFromMask))
14604     return V;
14605   if (BitsProperlyConcatenate(NewToMask, ToMask) &&
14606       BitsProperlyConcatenate(NewFromMask, FromMask))
14607     return V;
14608 
14609   return SDValue();
14610 }
14611 
14612 static SDValue PerformBFICombine(SDNode *N, SelectionDAG &DAG) {
14613   SDValue N0 = N->getOperand(0);
14614   SDValue N1 = N->getOperand(1);
14615 
14616   if (N1.getOpcode() == ISD::AND) {
14617     // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
14618     // the bits being cleared by the AND are not demanded by the BFI.
14619     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
14620     if (!N11C)
14621       return SDValue();
14622     unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
14623     unsigned LSB = countTrailingZeros(~InvMask);
14624     unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
14625     assert(Width <
14626                static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
14627            "undefined behavior");
14628     unsigned Mask = (1u << Width) - 1;
14629     unsigned Mask2 = N11C->getZExtValue();
14630     if ((Mask & (~Mask2)) == 0)
14631       return DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
14632                          N->getOperand(0), N1.getOperand(0), N->getOperand(2));
14633     return SDValue();
14634   }
14635 
14636   // Look for another BFI to combine with.
14637   if (SDValue CombineBFI = FindBFIToCombineWith(N)) {
14638     // We've found a BFI.
14639     APInt ToMask1, FromMask1;
14640     SDValue From1 = ParseBFI(N, ToMask1, FromMask1);
14641 
14642     APInt ToMask2, FromMask2;
14643     SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
14644     assert(From1 == From2);
14645     (void)From2;
14646 
14647     // Create a new BFI, combining the two together.
14648     APInt NewFromMask = FromMask1 | FromMask2;
14649     APInt NewToMask = ToMask1 | ToMask2;
14650 
14651     EVT VT = N->getValueType(0);
14652     SDLoc dl(N);
14653 
14654     if (NewFromMask[0] == 0)
14655       From1 = DAG.getNode(
14656           ISD::SRL, dl, VT, From1,
14657           DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT));
14658     return DAG.getNode(ARMISD::BFI, dl, VT, CombineBFI.getOperand(0), From1,
14659                        DAG.getConstant(~NewToMask, dl, VT));
14660   }
14661 
14662   // Reassociate BFI(BFI (A, B, M1), C, M2) to BFI(BFI (A, C, M2), B, M1) so
14663   // that lower bit insertions are performed first, providing that M1 and M2
14664   // do no overlap. This can allow multiple BFI instructions to be combined
14665   // together by the other folds above.
14666   if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
14667     APInt ToMask1 = ~N->getConstantOperandAPInt(2);
14668     APInt ToMask2 = ~N0.getConstantOperandAPInt(2);
14669 
14670     if (!N0.hasOneUse() || (ToMask1 & ToMask2) != 0 ||
14671         ToMask1.countLeadingZeros() < ToMask2.countLeadingZeros())
14672       return SDValue();
14673 
14674     EVT VT = N->getValueType(0);
14675     SDLoc dl(N);
14676     SDValue BFI1 = DAG.getNode(ARMISD::BFI, dl, VT, N0.getOperand(0),
14677                                N->getOperand(1), N->getOperand(2));
14678     return DAG.getNode(ARMISD::BFI, dl, VT, BFI1, N0.getOperand(1),
14679                        N0.getOperand(2));
14680   }
14681 
14682   return SDValue();
14683 }
14684 
14685 // Check that N is CMPZ(CSINC(0, 0, CC, X)),
14686 //              or CMPZ(CMOV(1, 0, CC, $cpsr, X))
14687 // return X if valid.
14688 static SDValue IsCMPZCSINC(SDNode *Cmp, ARMCC::CondCodes &CC) {
14689   if (Cmp->getOpcode() != ARMISD::CMPZ || !isNullConstant(Cmp->getOperand(1)))
14690     return SDValue();
14691   SDValue CSInc = Cmp->getOperand(0);
14692 
14693   // Ignore any `And 1` nodes that may not yet have been removed. We are
14694   // looking for a value that produces 1/0, so these have no effect on the
14695   // code.
14696   while (CSInc.getOpcode() == ISD::AND &&
14697          isa<ConstantSDNode>(CSInc.getOperand(1)) &&
14698          CSInc.getConstantOperandVal(1) == 1 && CSInc->hasOneUse())
14699     CSInc = CSInc.getOperand(0);
14700 
14701   if (CSInc.getOpcode() == ARMISD::CSINC &&
14702       isNullConstant(CSInc.getOperand(0)) &&
14703       isNullConstant(CSInc.getOperand(1)) && CSInc->hasOneUse()) {
14704     CC = (ARMCC::CondCodes)CSInc.getConstantOperandVal(2);
14705     return CSInc.getOperand(3);
14706   }
14707   if (CSInc.getOpcode() == ARMISD::CMOV && isOneConstant(CSInc.getOperand(0)) &&
14708       isNullConstant(CSInc.getOperand(1)) && CSInc->hasOneUse()) {
14709     CC = (ARMCC::CondCodes)CSInc.getConstantOperandVal(2);
14710     return CSInc.getOperand(4);
14711   }
14712   if (CSInc.getOpcode() == ARMISD::CMOV && isOneConstant(CSInc.getOperand(1)) &&
14713       isNullConstant(CSInc.getOperand(0)) && CSInc->hasOneUse()) {
14714     CC = ARMCC::getOppositeCondition(
14715         (ARMCC::CondCodes)CSInc.getConstantOperandVal(2));
14716     return CSInc.getOperand(4);
14717   }
14718   return SDValue();
14719 }
14720 
14721 static SDValue PerformCMPZCombine(SDNode *N, SelectionDAG &DAG) {
14722   // Given CMPZ(CSINC(C, 0, 0, EQ), 0), we can just use C directly. As in
14723   //       t92: glue = ARMISD::CMPZ t74, 0
14724   //     t93: i32 = ARMISD::CSINC 0, 0, 1, t92
14725   //   t96: glue = ARMISD::CMPZ t93, 0
14726   // t114: i32 = ARMISD::CSINV 0, 0, 0, t96
14727   ARMCC::CondCodes Cond;
14728   if (SDValue C = IsCMPZCSINC(N, Cond))
14729     if (Cond == ARMCC::EQ)
14730       return C;
14731   return SDValue();
14732 }
14733 
14734 static SDValue PerformCSETCombine(SDNode *N, SelectionDAG &DAG) {
14735   // Fold away an unneccessary CMPZ/CSINC
14736   // CSXYZ A, B, C1 (CMPZ (CSINC 0, 0, C2, D), 0) ->
14737   // if C1==EQ -> CSXYZ A, B, C2, D
14738   // if C1==NE -> CSXYZ A, B, NOT(C2), D
14739   ARMCC::CondCodes Cond;
14740   if (SDValue C = IsCMPZCSINC(N->getOperand(3).getNode(), Cond)) {
14741     if (N->getConstantOperandVal(2) == ARMCC::EQ)
14742       return DAG.getNode(N->getOpcode(), SDLoc(N), MVT::i32, N->getOperand(0),
14743                          N->getOperand(1),
14744                          DAG.getConstant(Cond, SDLoc(N), MVT::i32), C);
14745     if (N->getConstantOperandVal(2) == ARMCC::NE)
14746       return DAG.getNode(
14747           N->getOpcode(), SDLoc(N), MVT::i32, N->getOperand(0),
14748           N->getOperand(1),
14749           DAG.getConstant(ARMCC::getOppositeCondition(Cond), SDLoc(N), MVT::i32), C);
14750   }
14751   return SDValue();
14752 }
14753 
14754 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
14755 /// ARMISD::VMOVRRD.
14756 static SDValue PerformVMOVRRDCombine(SDNode *N,
14757                                      TargetLowering::DAGCombinerInfo &DCI,
14758                                      const ARMSubtarget *Subtarget) {
14759   // vmovrrd(vmovdrr x, y) -> x,y
14760   SDValue InDouble = N->getOperand(0);
14761   if (InDouble.getOpcode() == ARMISD::VMOVDRR && Subtarget->hasFP64())
14762     return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
14763 
14764   // vmovrrd(load f64) -> (load i32), (load i32)
14765   SDNode *InNode = InDouble.getNode();
14766   if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
14767       InNode->getValueType(0) == MVT::f64 &&
14768       InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
14769       !cast<LoadSDNode>(InNode)->isVolatile()) {
14770     // TODO: Should this be done for non-FrameIndex operands?
14771     LoadSDNode *LD = cast<LoadSDNode>(InNode);
14772 
14773     SelectionDAG &DAG = DCI.DAG;
14774     SDLoc DL(LD);
14775     SDValue BasePtr = LD->getBasePtr();
14776     SDValue NewLD1 =
14777         DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, LD->getPointerInfo(),
14778                     LD->getAlignment(), LD->getMemOperand()->getFlags());
14779 
14780     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
14781                                     DAG.getConstant(4, DL, MVT::i32));
14782 
14783     SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, LD->getChain(), OffsetPtr,
14784                                  LD->getPointerInfo().getWithOffset(4),
14785                                  std::min(4U, LD->getAlignment()),
14786                                  LD->getMemOperand()->getFlags());
14787 
14788     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
14789     if (DCI.DAG.getDataLayout().isBigEndian())
14790       std::swap (NewLD1, NewLD2);
14791     SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
14792     return Result;
14793   }
14794 
14795   // VMOVRRD(extract(..(build_vector(a, b, c, d)))) -> a,b or c,d
14796   // VMOVRRD(extract(insert_vector(insert_vector(.., a, l1), b, l2))) -> a,b
14797   if (InDouble.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
14798       isa<ConstantSDNode>(InDouble.getOperand(1))) {
14799     SDValue BV = InDouble.getOperand(0);
14800     // Look up through any nop bitcasts and vector_reg_casts. bitcasts may
14801     // change lane order under big endian.
14802     bool BVSwap = BV.getOpcode() == ISD::BITCAST;
14803     while (
14804         (BV.getOpcode() == ISD::BITCAST ||
14805          BV.getOpcode() == ARMISD::VECTOR_REG_CAST) &&
14806         (BV.getValueType() == MVT::v2f64 || BV.getValueType() == MVT::v2i64)) {
14807       BVSwap = BV.getOpcode() == ISD::BITCAST;
14808       BV = BV.getOperand(0);
14809     }
14810     if (BV.getValueType() != MVT::v4i32)
14811       return SDValue();
14812 
14813     // Handle buildvectors, pulling out the correct lane depending on
14814     // endianness.
14815     unsigned Offset = InDouble.getConstantOperandVal(1) == 1 ? 2 : 0;
14816     if (BV.getOpcode() == ISD::BUILD_VECTOR) {
14817       SDValue Op0 = BV.getOperand(Offset);
14818       SDValue Op1 = BV.getOperand(Offset + 1);
14819       if (!Subtarget->isLittle() && BVSwap)
14820         std::swap(Op0, Op1);
14821 
14822       return DCI.DAG.getMergeValues({Op0, Op1}, SDLoc(N));
14823     }
14824 
14825     // A chain of insert_vectors, grabbing the correct value of the chain of
14826     // inserts.
14827     SDValue Op0, Op1;
14828     while (BV.getOpcode() == ISD::INSERT_VECTOR_ELT) {
14829       if (isa<ConstantSDNode>(BV.getOperand(2))) {
14830         if (BV.getConstantOperandVal(2) == Offset)
14831           Op0 = BV.getOperand(1);
14832         if (BV.getConstantOperandVal(2) == Offset + 1)
14833           Op1 = BV.getOperand(1);
14834       }
14835       BV = BV.getOperand(0);
14836     }
14837     if (!Subtarget->isLittle() && BVSwap)
14838       std::swap(Op0, Op1);
14839     if (Op0 && Op1)
14840       return DCI.DAG.getMergeValues({Op0, Op1}, SDLoc(N));
14841   }
14842 
14843   return SDValue();
14844 }
14845 
14846 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
14847 /// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
14848 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
14849   // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
14850   SDValue Op0 = N->getOperand(0);
14851   SDValue Op1 = N->getOperand(1);
14852   if (Op0.getOpcode() == ISD::BITCAST)
14853     Op0 = Op0.getOperand(0);
14854   if (Op1.getOpcode() == ISD::BITCAST)
14855     Op1 = Op1.getOperand(0);
14856   if (Op0.getOpcode() == ARMISD::VMOVRRD &&
14857       Op0.getNode() == Op1.getNode() &&
14858       Op0.getResNo() == 0 && Op1.getResNo() == 1)
14859     return DAG.getNode(ISD::BITCAST, SDLoc(N),
14860                        N->getValueType(0), Op0.getOperand(0));
14861   return SDValue();
14862 }
14863 
14864 static SDValue PerformVMOVhrCombine(SDNode *N,
14865                                     TargetLowering::DAGCombinerInfo &DCI) {
14866   SDValue Op0 = N->getOperand(0);
14867 
14868   // VMOVhr (VMOVrh (X)) -> X
14869   if (Op0->getOpcode() == ARMISD::VMOVrh)
14870     return Op0->getOperand(0);
14871 
14872   // FullFP16: half values are passed in S-registers, and we don't
14873   // need any of the bitcast and moves:
14874   //
14875   //     t2: f32,ch = CopyFromReg t0, Register:f32 %0
14876   //   t5: i32 = bitcast t2
14877   // t18: f16 = ARMISD::VMOVhr t5
14878   if (Op0->getOpcode() == ISD::BITCAST) {
14879     SDValue Copy = Op0->getOperand(0);
14880     if (Copy.getValueType() == MVT::f32 &&
14881         Copy->getOpcode() == ISD::CopyFromReg) {
14882       SDValue Ops[] = {Copy->getOperand(0), Copy->getOperand(1)};
14883       SDValue NewCopy =
14884           DCI.DAG.getNode(ISD::CopyFromReg, SDLoc(N), N->getValueType(0), Ops);
14885       return NewCopy;
14886     }
14887   }
14888 
14889   // fold (VMOVhr (load x)) -> (load (f16*)x)
14890   if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(Op0)) {
14891     if (LN0->hasOneUse() && LN0->isUnindexed() &&
14892         LN0->getMemoryVT() == MVT::i16) {
14893       SDValue Load =
14894           DCI.DAG.getLoad(N->getValueType(0), SDLoc(N), LN0->getChain(),
14895                           LN0->getBasePtr(), LN0->getMemOperand());
14896       DCI.DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Load.getValue(0));
14897       DCI.DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), Load.getValue(1));
14898       return Load;
14899     }
14900   }
14901 
14902   // Only the bottom 16 bits of the source register are used.
14903   APInt DemandedMask = APInt::getLowBitsSet(32, 16);
14904   const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo();
14905   if (TLI.SimplifyDemandedBits(Op0, DemandedMask, DCI))
14906     return SDValue(N, 0);
14907 
14908   return SDValue();
14909 }
14910 
14911 static SDValue PerformVMOVrhCombine(SDNode *N, SelectionDAG &DAG) {
14912   SDValue N0 = N->getOperand(0);
14913   EVT VT = N->getValueType(0);
14914 
14915   // fold (VMOVrh (fpconst x)) -> const x
14916   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N0)) {
14917     APFloat V = C->getValueAPF();
14918     return DAG.getConstant(V.bitcastToAPInt().getZExtValue(), SDLoc(N), VT);
14919   }
14920 
14921   // fold (VMOVrh (load x)) -> (zextload (i16*)x)
14922   if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse()) {
14923     LoadSDNode *LN0 = cast<LoadSDNode>(N0);
14924 
14925     SDValue Load =
14926         DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N), VT, LN0->getChain(),
14927                        LN0->getBasePtr(), MVT::i16, LN0->getMemOperand());
14928     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Load.getValue(0));
14929     DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
14930     return Load;
14931   }
14932 
14933   // Fold VMOVrh(extract(x, n)) -> vgetlaneu(x, n)
14934   if (N0->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
14935       isa<ConstantSDNode>(N0->getOperand(1)))
14936     return DAG.getNode(ARMISD::VGETLANEu, SDLoc(N), VT, N0->getOperand(0),
14937                        N0->getOperand(1));
14938 
14939   return SDValue();
14940 }
14941 
14942 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
14943 /// are normal, non-volatile loads.  If so, it is profitable to bitcast an
14944 /// i64 vector to have f64 elements, since the value can then be loaded
14945 /// directly into a VFP register.
14946 static bool hasNormalLoadOperand(SDNode *N) {
14947   unsigned NumElts = N->getValueType(0).getVectorNumElements();
14948   for (unsigned i = 0; i < NumElts; ++i) {
14949     SDNode *Elt = N->getOperand(i).getNode();
14950     if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
14951       return true;
14952   }
14953   return false;
14954 }
14955 
14956 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
14957 /// ISD::BUILD_VECTOR.
14958 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
14959                                           TargetLowering::DAGCombinerInfo &DCI,
14960                                           const ARMSubtarget *Subtarget) {
14961   // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
14962   // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
14963   // into a pair of GPRs, which is fine when the value is used as a scalar,
14964   // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
14965   SelectionDAG &DAG = DCI.DAG;
14966   if (N->getNumOperands() == 2)
14967     if (SDValue RV = PerformVMOVDRRCombine(N, DAG))
14968       return RV;
14969 
14970   // Load i64 elements as f64 values so that type legalization does not split
14971   // them up into i32 values.
14972   EVT VT = N->getValueType(0);
14973   if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
14974     return SDValue();
14975   SDLoc dl(N);
14976   SmallVector<SDValue, 8> Ops;
14977   unsigned NumElts = VT.getVectorNumElements();
14978   for (unsigned i = 0; i < NumElts; ++i) {
14979     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
14980     Ops.push_back(V);
14981     // Make the DAGCombiner fold the bitcast.
14982     DCI.AddToWorklist(V.getNode());
14983   }
14984   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
14985   SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops);
14986   return DAG.getNode(ISD::BITCAST, dl, VT, BV);
14987 }
14988 
14989 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
14990 static SDValue
14991 PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
14992   // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
14993   // At that time, we may have inserted bitcasts from integer to float.
14994   // If these bitcasts have survived DAGCombine, change the lowering of this
14995   // BUILD_VECTOR in something more vector friendly, i.e., that does not
14996   // force to use floating point types.
14997 
14998   // Make sure we can change the type of the vector.
14999   // This is possible iff:
15000   // 1. The vector is only used in a bitcast to a integer type. I.e.,
15001   //    1.1. Vector is used only once.
15002   //    1.2. Use is a bit convert to an integer type.
15003   // 2. The size of its operands are 32-bits (64-bits are not legal).
15004   EVT VT = N->getValueType(0);
15005   EVT EltVT = VT.getVectorElementType();
15006 
15007   // Check 1.1. and 2.
15008   if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
15009     return SDValue();
15010 
15011   // By construction, the input type must be float.
15012   assert(EltVT == MVT::f32 && "Unexpected type!");
15013 
15014   // Check 1.2.
15015   SDNode *Use = *N->use_begin();
15016   if (Use->getOpcode() != ISD::BITCAST ||
15017       Use->getValueType(0).isFloatingPoint())
15018     return SDValue();
15019 
15020   // Check profitability.
15021   // Model is, if more than half of the relevant operands are bitcast from
15022   // i32, turn the build_vector into a sequence of insert_vector_elt.
15023   // Relevant operands are everything that is not statically
15024   // (i.e., at compile time) bitcasted.
15025   unsigned NumOfBitCastedElts = 0;
15026   unsigned NumElts = VT.getVectorNumElements();
15027   unsigned NumOfRelevantElts = NumElts;
15028   for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
15029     SDValue Elt = N->getOperand(Idx);
15030     if (Elt->getOpcode() == ISD::BITCAST) {
15031       // Assume only bit cast to i32 will go away.
15032       if (Elt->getOperand(0).getValueType() == MVT::i32)
15033         ++NumOfBitCastedElts;
15034     } else if (Elt.isUndef() || isa<ConstantSDNode>(Elt))
15035       // Constants are statically casted, thus do not count them as
15036       // relevant operands.
15037       --NumOfRelevantElts;
15038   }
15039 
15040   // Check if more than half of the elements require a non-free bitcast.
15041   if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
15042     return SDValue();
15043 
15044   SelectionDAG &DAG = DCI.DAG;
15045   // Create the new vector type.
15046   EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
15047   // Check if the type is legal.
15048   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15049   if (!TLI.isTypeLegal(VecVT))
15050     return SDValue();
15051 
15052   // Combine:
15053   // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
15054   // => BITCAST INSERT_VECTOR_ELT
15055   //                      (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
15056   //                      (BITCAST EN), N.
15057   SDValue Vec = DAG.getUNDEF(VecVT);
15058   SDLoc dl(N);
15059   for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
15060     SDValue V = N->getOperand(Idx);
15061     if (V.isUndef())
15062       continue;
15063     if (V.getOpcode() == ISD::BITCAST &&
15064         V->getOperand(0).getValueType() == MVT::i32)
15065       // Fold obvious case.
15066       V = V.getOperand(0);
15067     else {
15068       V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
15069       // Make the DAGCombiner fold the bitcasts.
15070       DCI.AddToWorklist(V.getNode());
15071     }
15072     SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
15073     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
15074   }
15075   Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
15076   // Make the DAGCombiner fold the bitcasts.
15077   DCI.AddToWorklist(Vec.getNode());
15078   return Vec;
15079 }
15080 
15081 static SDValue
15082 PerformPREDICATE_CASTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
15083   EVT VT = N->getValueType(0);
15084   SDValue Op = N->getOperand(0);
15085   SDLoc dl(N);
15086 
15087   // PREDICATE_CAST(PREDICATE_CAST(x)) == PREDICATE_CAST(x)
15088   if (Op->getOpcode() == ARMISD::PREDICATE_CAST) {
15089     // If the valuetypes are the same, we can remove the cast entirely.
15090     if (Op->getOperand(0).getValueType() == VT)
15091       return Op->getOperand(0);
15092     return DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, Op->getOperand(0));
15093   }
15094 
15095   // Turn pred_cast(xor x, -1) into xor(pred_cast x, -1), in order to produce
15096   // more VPNOT which might get folded as else predicates.
15097   if (Op.getValueType() == MVT::i32 && isBitwiseNot(Op)) {
15098     SDValue X =
15099         DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, Op->getOperand(0));
15100     SDValue C = DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT,
15101                                 DCI.DAG.getConstant(65535, dl, MVT::i32));
15102     return DCI.DAG.getNode(ISD::XOR, dl, VT, X, C);
15103   }
15104 
15105   // Only the bottom 16 bits of the source register are used.
15106   if (Op.getValueType() == MVT::i32) {
15107     APInt DemandedMask = APInt::getLowBitsSet(32, 16);
15108     const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo();
15109     if (TLI.SimplifyDemandedBits(Op, DemandedMask, DCI))
15110       return SDValue(N, 0);
15111   }
15112   return SDValue();
15113 }
15114 
15115 static SDValue PerformVECTOR_REG_CASTCombine(SDNode *N, SelectionDAG &DAG,
15116                                              const ARMSubtarget *ST) {
15117   EVT VT = N->getValueType(0);
15118   SDValue Op = N->getOperand(0);
15119   SDLoc dl(N);
15120 
15121   // Under Little endian, a VECTOR_REG_CAST is equivalent to a BITCAST
15122   if (ST->isLittle())
15123     return DAG.getNode(ISD::BITCAST, dl, VT, Op);
15124 
15125   // VECTOR_REG_CAST undef -> undef
15126   if (Op.isUndef())
15127     return DAG.getUNDEF(VT);
15128 
15129   // VECTOR_REG_CAST(VECTOR_REG_CAST(x)) == VECTOR_REG_CAST(x)
15130   if (Op->getOpcode() == ARMISD::VECTOR_REG_CAST) {
15131     // If the valuetypes are the same, we can remove the cast entirely.
15132     if (Op->getOperand(0).getValueType() == VT)
15133       return Op->getOperand(0);
15134     return DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, VT, Op->getOperand(0));
15135   }
15136 
15137   return SDValue();
15138 }
15139 
15140 static SDValue PerformVCMPCombine(SDNode *N, SelectionDAG &DAG,
15141                                   const ARMSubtarget *Subtarget) {
15142   if (!Subtarget->hasMVEIntegerOps())
15143     return SDValue();
15144 
15145   EVT VT = N->getValueType(0);
15146   SDValue Op0 = N->getOperand(0);
15147   SDValue Op1 = N->getOperand(1);
15148   ARMCC::CondCodes Cond =
15149       (ARMCC::CondCodes)cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
15150   SDLoc dl(N);
15151 
15152   // vcmp X, 0, cc -> vcmpz X, cc
15153   if (isZeroVector(Op1))
15154     return DAG.getNode(ARMISD::VCMPZ, dl, VT, Op0, N->getOperand(2));
15155 
15156   unsigned SwappedCond = getSwappedCondition(Cond);
15157   if (isValidMVECond(SwappedCond, VT.isFloatingPoint())) {
15158     // vcmp 0, X, cc -> vcmpz X, reversed(cc)
15159     if (isZeroVector(Op0))
15160       return DAG.getNode(ARMISD::VCMPZ, dl, VT, Op1,
15161                          DAG.getConstant(SwappedCond, dl, MVT::i32));
15162     // vcmp vdup(Y), X, cc -> vcmp X, vdup(Y), reversed(cc)
15163     if (Op0->getOpcode() == ARMISD::VDUP && Op1->getOpcode() != ARMISD::VDUP)
15164       return DAG.getNode(ARMISD::VCMP, dl, VT, Op1, Op0,
15165                          DAG.getConstant(SwappedCond, dl, MVT::i32));
15166   }
15167 
15168   return SDValue();
15169 }
15170 
15171 /// PerformInsertEltCombine - Target-specific dag combine xforms for
15172 /// ISD::INSERT_VECTOR_ELT.
15173 static SDValue PerformInsertEltCombine(SDNode *N,
15174                                        TargetLowering::DAGCombinerInfo &DCI) {
15175   // Bitcast an i64 load inserted into a vector to f64.
15176   // Otherwise, the i64 value will be legalized to a pair of i32 values.
15177   EVT VT = N->getValueType(0);
15178   SDNode *Elt = N->getOperand(1).getNode();
15179   if (VT.getVectorElementType() != MVT::i64 ||
15180       !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
15181     return SDValue();
15182 
15183   SelectionDAG &DAG = DCI.DAG;
15184   SDLoc dl(N);
15185   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
15186                                  VT.getVectorNumElements());
15187   SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
15188   SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
15189   // Make the DAGCombiner fold the bitcasts.
15190   DCI.AddToWorklist(Vec.getNode());
15191   DCI.AddToWorklist(V.getNode());
15192   SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
15193                                Vec, V, N->getOperand(2));
15194   return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
15195 }
15196 
15197 // Convert a pair of extracts from the same base vector to a VMOVRRD. Either
15198 // directly or bitcast to an integer if the original is a float vector.
15199 // extract(x, n); extract(x, n+1)  ->  VMOVRRD(extract v2f64 x, n/2)
15200 // bitcast(extract(x, n)); bitcast(extract(x, n+1))  ->  VMOVRRD(extract x, n/2)
15201 static SDValue
15202 PerformExtractEltToVMOVRRD(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
15203   EVT VT = N->getValueType(0);
15204   SDLoc dl(N);
15205 
15206   if (!DCI.isAfterLegalizeDAG() || VT != MVT::i32 ||
15207       !DCI.DAG.getTargetLoweringInfo().isTypeLegal(MVT::f64))
15208     return SDValue();
15209 
15210   SDValue Ext = SDValue(N, 0);
15211   if (Ext.getOpcode() == ISD::BITCAST &&
15212       Ext.getOperand(0).getValueType() == MVT::f32)
15213     Ext = Ext.getOperand(0);
15214   if (Ext.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
15215       !isa<ConstantSDNode>(Ext.getOperand(1)) ||
15216       Ext.getConstantOperandVal(1) % 2 != 0)
15217     return SDValue();
15218   if (Ext->use_size() == 1 &&
15219       (Ext->use_begin()->getOpcode() == ISD::SINT_TO_FP ||
15220        Ext->use_begin()->getOpcode() == ISD::UINT_TO_FP))
15221     return SDValue();
15222 
15223   SDValue Op0 = Ext.getOperand(0);
15224   EVT VecVT = Op0.getValueType();
15225   unsigned ResNo = Op0.getResNo();
15226   unsigned Lane = Ext.getConstantOperandVal(1);
15227   if (VecVT.getVectorNumElements() != 4)
15228     return SDValue();
15229 
15230   // Find another extract, of Lane + 1
15231   auto OtherIt = find_if(Op0->uses(), [&](SDNode *V) {
15232     return V->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
15233            isa<ConstantSDNode>(V->getOperand(1)) &&
15234            V->getConstantOperandVal(1) == Lane + 1 &&
15235            V->getOperand(0).getResNo() == ResNo;
15236   });
15237   if (OtherIt == Op0->uses().end())
15238     return SDValue();
15239 
15240   // For float extracts, we need to be converting to a i32 for both vector
15241   // lanes.
15242   SDValue OtherExt(*OtherIt, 0);
15243   if (OtherExt.getValueType() != MVT::i32) {
15244     if (OtherExt->use_size() != 1 ||
15245         OtherExt->use_begin()->getOpcode() != ISD::BITCAST ||
15246         OtherExt->use_begin()->getValueType(0) != MVT::i32)
15247       return SDValue();
15248     OtherExt = SDValue(*OtherExt->use_begin(), 0);
15249   }
15250 
15251   // Convert the type to a f64 and extract with a VMOVRRD.
15252   SDValue F64 = DCI.DAG.getNode(
15253       ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
15254       DCI.DAG.getNode(ARMISD::VECTOR_REG_CAST, dl, MVT::v2f64, Op0),
15255       DCI.DAG.getConstant(Ext.getConstantOperandVal(1) / 2, dl, MVT::i32));
15256   SDValue VMOVRRD =
15257       DCI.DAG.getNode(ARMISD::VMOVRRD, dl, {MVT::i32, MVT::i32}, F64);
15258 
15259   DCI.CombineTo(OtherExt.getNode(), SDValue(VMOVRRD.getNode(), 1));
15260   return VMOVRRD;
15261 }
15262 
15263 static SDValue PerformExtractEltCombine(SDNode *N,
15264                                         TargetLowering::DAGCombinerInfo &DCI,
15265                                         const ARMSubtarget *ST) {
15266   SDValue Op0 = N->getOperand(0);
15267   EVT VT = N->getValueType(0);
15268   SDLoc dl(N);
15269 
15270   // extract (vdup x) -> x
15271   if (Op0->getOpcode() == ARMISD::VDUP) {
15272     SDValue X = Op0->getOperand(0);
15273     if (VT == MVT::f16 && X.getValueType() == MVT::i32)
15274       return DCI.DAG.getNode(ARMISD::VMOVhr, dl, VT, X);
15275     if (VT == MVT::i32 && X.getValueType() == MVT::f16)
15276       return DCI.DAG.getNode(ARMISD::VMOVrh, dl, VT, X);
15277     if (VT == MVT::f32 && X.getValueType() == MVT::i32)
15278       return DCI.DAG.getNode(ISD::BITCAST, dl, VT, X);
15279 
15280     while (X.getValueType() != VT && X->getOpcode() == ISD::BITCAST)
15281       X = X->getOperand(0);
15282     if (X.getValueType() == VT)
15283       return X;
15284   }
15285 
15286   // extract ARM_BUILD_VECTOR -> x
15287   if (Op0->getOpcode() == ARMISD::BUILD_VECTOR &&
15288       isa<ConstantSDNode>(N->getOperand(1)) &&
15289       N->getConstantOperandVal(1) < Op0.getNumOperands()) {
15290     return Op0.getOperand(N->getConstantOperandVal(1));
15291   }
15292 
15293   // extract(bitcast(BUILD_VECTOR(VMOVDRR(a, b), ..))) -> a or b
15294   if (Op0.getValueType() == MVT::v4i32 &&
15295       isa<ConstantSDNode>(N->getOperand(1)) &&
15296       Op0.getOpcode() == ISD::BITCAST &&
15297       Op0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
15298       Op0.getOperand(0).getValueType() == MVT::v2f64) {
15299     SDValue BV = Op0.getOperand(0);
15300     unsigned Offset = N->getConstantOperandVal(1);
15301     SDValue MOV = BV.getOperand(Offset < 2 ? 0 : 1);
15302     if (MOV.getOpcode() == ARMISD::VMOVDRR)
15303       return MOV.getOperand(ST->isLittle() ? Offset % 2 : 1 - Offset % 2);
15304   }
15305 
15306   // extract x, n; extract x, n+1  ->  VMOVRRD x
15307   if (SDValue R = PerformExtractEltToVMOVRRD(N, DCI))
15308     return R;
15309 
15310   // extract (MVETrunc(x)) -> extract x
15311   if (Op0->getOpcode() == ARMISD::MVETRUNC) {
15312     unsigned Idx = N->getConstantOperandVal(1);
15313     unsigned Vec =
15314         Idx / Op0->getOperand(0).getValueType().getVectorNumElements();
15315     unsigned SubIdx =
15316         Idx % Op0->getOperand(0).getValueType().getVectorNumElements();
15317     return DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Op0.getOperand(Vec),
15318                            DCI.DAG.getConstant(SubIdx, dl, MVT::i32));
15319   }
15320 
15321   return SDValue();
15322 }
15323 
15324 static SDValue PerformSignExtendInregCombine(SDNode *N, SelectionDAG &DAG) {
15325   SDValue Op = N->getOperand(0);
15326   EVT VT = N->getValueType(0);
15327 
15328   // sext_inreg(VGETLANEu) -> VGETLANEs
15329   if (Op.getOpcode() == ARMISD::VGETLANEu &&
15330       cast<VTSDNode>(N->getOperand(1))->getVT() ==
15331           Op.getOperand(0).getValueType().getScalarType())
15332     return DAG.getNode(ARMISD::VGETLANEs, SDLoc(N), VT, Op.getOperand(0),
15333                        Op.getOperand(1));
15334 
15335   return SDValue();
15336 }
15337 
15338 // When lowering complex nodes that we recognize, like VQDMULH and MULH, we
15339 // can end up with shuffle(binop(shuffle, shuffle)), that can be simplified to
15340 // binop as the shuffles cancel out.
15341 static SDValue FlattenVectorShuffle(ShuffleVectorSDNode *N, SelectionDAG &DAG) {
15342   EVT VT = N->getValueType(0);
15343   if (!N->getOperand(1).isUndef() || N->getOperand(0).getValueType() != VT)
15344     return SDValue();
15345   SDValue Op = N->getOperand(0);
15346 
15347   // Looking for binary operators that will have been folded from
15348   // truncates/extends.
15349   switch (Op.getOpcode()) {
15350   case ARMISD::VQDMULH:
15351   case ISD::MULHS:
15352   case ISD::MULHU:
15353   case ISD::ABDS:
15354   case ISD::ABDU:
15355     break;
15356   default:
15357     return SDValue();
15358   }
15359 
15360   ShuffleVectorSDNode *Op0 = dyn_cast<ShuffleVectorSDNode>(Op.getOperand(0));
15361   ShuffleVectorSDNode *Op1 = dyn_cast<ShuffleVectorSDNode>(Op.getOperand(1));
15362   if (!Op0 || !Op1 || !Op0->getOperand(1).isUndef() ||
15363       !Op1->getOperand(1).isUndef() || Op0->getMask() != Op1->getMask() ||
15364       Op0->getOperand(0).getValueType() != VT)
15365     return SDValue();
15366 
15367   // Check the mask turns into an identity shuffle.
15368   ArrayRef<int> NMask = N->getMask();
15369   ArrayRef<int> OpMask = Op0->getMask();
15370   for (int i = 0, e = NMask.size(); i != e; i++) {
15371     if (NMask[i] > 0 && OpMask[NMask[i]] > 0 && OpMask[NMask[i]] != i)
15372       return SDValue();
15373   }
15374 
15375   return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
15376                      Op0->getOperand(0), Op1->getOperand(0));
15377 }
15378 
15379 static SDValue
15380 PerformInsertSubvectorCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
15381   SDValue Vec = N->getOperand(0);
15382   SDValue SubVec = N->getOperand(1);
15383   uint64_t IdxVal = N->getConstantOperandVal(2);
15384   EVT VecVT = Vec.getValueType();
15385   EVT SubVT = SubVec.getValueType();
15386 
15387   // Only do this for legal fixed vector types.
15388   if (!VecVT.isFixedLengthVector() ||
15389       !DCI.DAG.getTargetLoweringInfo().isTypeLegal(VecVT) ||
15390       !DCI.DAG.getTargetLoweringInfo().isTypeLegal(SubVT))
15391     return SDValue();
15392 
15393   // Ignore widening patterns.
15394   if (IdxVal == 0 && Vec.isUndef())
15395     return SDValue();
15396 
15397   // Subvector must be half the width and an "aligned" insertion.
15398   unsigned NumSubElts = SubVT.getVectorNumElements();
15399   if ((SubVT.getSizeInBits() * 2) != VecVT.getSizeInBits() ||
15400       (IdxVal != 0 && IdxVal != NumSubElts))
15401     return SDValue();
15402 
15403   // Fold insert_subvector -> concat_vectors
15404   // insert_subvector(Vec,Sub,lo) -> concat_vectors(Sub,extract(Vec,hi))
15405   // insert_subvector(Vec,Sub,hi) -> concat_vectors(extract(Vec,lo),Sub)
15406   SDLoc DL(N);
15407   SDValue Lo, Hi;
15408   if (IdxVal == 0) {
15409     Lo = SubVec;
15410     Hi = DCI.DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, Vec,
15411                          DCI.DAG.getVectorIdxConstant(NumSubElts, DL));
15412   } else {
15413     Lo = DCI.DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, Vec,
15414                          DCI.DAG.getVectorIdxConstant(0, DL));
15415     Hi = SubVec;
15416   }
15417   return DCI.DAG.getNode(ISD::CONCAT_VECTORS, DL, VecVT, Lo, Hi);
15418 }
15419 
15420 // shuffle(MVETrunc(x, y)) -> VMOVN(x, y)
15421 static SDValue PerformShuffleVMOVNCombine(ShuffleVectorSDNode *N,
15422                                           SelectionDAG &DAG) {
15423   SDValue Trunc = N->getOperand(0);
15424   EVT VT = Trunc.getValueType();
15425   if (Trunc.getOpcode() != ARMISD::MVETRUNC || !N->getOperand(1).isUndef())
15426     return SDValue();
15427 
15428   SDLoc DL(Trunc);
15429   if (isVMOVNTruncMask(N->getMask(), VT, false))
15430     return DAG.getNode(
15431         ARMISD::VMOVN, DL, VT,
15432         DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, Trunc.getOperand(0)),
15433         DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, Trunc.getOperand(1)),
15434         DAG.getConstant(1, DL, MVT::i32));
15435   else if (isVMOVNTruncMask(N->getMask(), VT, true))
15436     return DAG.getNode(
15437         ARMISD::VMOVN, DL, VT,
15438         DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, Trunc.getOperand(1)),
15439         DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, Trunc.getOperand(0)),
15440         DAG.getConstant(1, DL, MVT::i32));
15441   return SDValue();
15442 }
15443 
15444 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
15445 /// ISD::VECTOR_SHUFFLE.
15446 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
15447   if (SDValue R = FlattenVectorShuffle(cast<ShuffleVectorSDNode>(N), DAG))
15448     return R;
15449   if (SDValue R = PerformShuffleVMOVNCombine(cast<ShuffleVectorSDNode>(N), DAG))
15450     return R;
15451 
15452   // The LLVM shufflevector instruction does not require the shuffle mask
15453   // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
15454   // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
15455   // operands do not match the mask length, they are extended by concatenating
15456   // them with undef vectors.  That is probably the right thing for other
15457   // targets, but for NEON it is better to concatenate two double-register
15458   // size vector operands into a single quad-register size vector.  Do that
15459   // transformation here:
15460   //   shuffle(concat(v1, undef), concat(v2, undef)) ->
15461   //   shuffle(concat(v1, v2), undef)
15462   SDValue Op0 = N->getOperand(0);
15463   SDValue Op1 = N->getOperand(1);
15464   if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
15465       Op1.getOpcode() != ISD::CONCAT_VECTORS ||
15466       Op0.getNumOperands() != 2 ||
15467       Op1.getNumOperands() != 2)
15468     return SDValue();
15469   SDValue Concat0Op1 = Op0.getOperand(1);
15470   SDValue Concat1Op1 = Op1.getOperand(1);
15471   if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef())
15472     return SDValue();
15473   // Skip the transformation if any of the types are illegal.
15474   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
15475   EVT VT = N->getValueType(0);
15476   if (!TLI.isTypeLegal(VT) ||
15477       !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
15478       !TLI.isTypeLegal(Concat1Op1.getValueType()))
15479     return SDValue();
15480 
15481   SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
15482                                   Op0.getOperand(0), Op1.getOperand(0));
15483   // Translate the shuffle mask.
15484   SmallVector<int, 16> NewMask;
15485   unsigned NumElts = VT.getVectorNumElements();
15486   unsigned HalfElts = NumElts/2;
15487   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
15488   for (unsigned n = 0; n < NumElts; ++n) {
15489     int MaskElt = SVN->getMaskElt(n);
15490     int NewElt = -1;
15491     if (MaskElt < (int)HalfElts)
15492       NewElt = MaskElt;
15493     else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
15494       NewElt = HalfElts + MaskElt - NumElts;
15495     NewMask.push_back(NewElt);
15496   }
15497   return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
15498                               DAG.getUNDEF(VT), NewMask);
15499 }
15500 
15501 /// Load/store instruction that can be merged with a base address
15502 /// update
15503 struct BaseUpdateTarget {
15504   SDNode *N;
15505   bool isIntrinsic;
15506   bool isStore;
15507   unsigned AddrOpIdx;
15508 };
15509 
15510 struct BaseUpdateUser {
15511   /// Instruction that updates a pointer
15512   SDNode *N;
15513   /// Pointer increment operand
15514   SDValue Inc;
15515   /// Pointer increment value if it is a constant, or 0 otherwise
15516   unsigned ConstInc;
15517 };
15518 
15519 static bool TryCombineBaseUpdate(struct BaseUpdateTarget &Target,
15520                                  struct BaseUpdateUser &User,
15521                                  bool SimpleConstIncOnly,
15522                                  TargetLowering::DAGCombinerInfo &DCI) {
15523   SelectionDAG &DAG = DCI.DAG;
15524   SDNode *N = Target.N;
15525   MemSDNode *MemN = cast<MemSDNode>(N);
15526   SDLoc dl(N);
15527 
15528   // Find the new opcode for the updating load/store.
15529   bool isLoadOp = true;
15530   bool isLaneOp = false;
15531   // Workaround for vst1x and vld1x intrinsics which do not have alignment
15532   // as an operand.
15533   bool hasAlignment = true;
15534   unsigned NewOpc = 0;
15535   unsigned NumVecs = 0;
15536   if (Target.isIntrinsic) {
15537     unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
15538     switch (IntNo) {
15539     default:
15540       llvm_unreachable("unexpected intrinsic for Neon base update");
15541     case Intrinsic::arm_neon_vld1:
15542       NewOpc = ARMISD::VLD1_UPD;
15543       NumVecs = 1;
15544       break;
15545     case Intrinsic::arm_neon_vld2:
15546       NewOpc = ARMISD::VLD2_UPD;
15547       NumVecs = 2;
15548       break;
15549     case Intrinsic::arm_neon_vld3:
15550       NewOpc = ARMISD::VLD3_UPD;
15551       NumVecs = 3;
15552       break;
15553     case Intrinsic::arm_neon_vld4:
15554       NewOpc = ARMISD::VLD4_UPD;
15555       NumVecs = 4;
15556       break;
15557     case Intrinsic::arm_neon_vld1x2:
15558       NewOpc = ARMISD::VLD1x2_UPD;
15559       NumVecs = 2;
15560       hasAlignment = false;
15561       break;
15562     case Intrinsic::arm_neon_vld1x3:
15563       NewOpc = ARMISD::VLD1x3_UPD;
15564       NumVecs = 3;
15565       hasAlignment = false;
15566       break;
15567     case Intrinsic::arm_neon_vld1x4:
15568       NewOpc = ARMISD::VLD1x4_UPD;
15569       NumVecs = 4;
15570       hasAlignment = false;
15571       break;
15572     case Intrinsic::arm_neon_vld2dup:
15573       NewOpc = ARMISD::VLD2DUP_UPD;
15574       NumVecs = 2;
15575       break;
15576     case Intrinsic::arm_neon_vld3dup:
15577       NewOpc = ARMISD::VLD3DUP_UPD;
15578       NumVecs = 3;
15579       break;
15580     case Intrinsic::arm_neon_vld4dup:
15581       NewOpc = ARMISD::VLD4DUP_UPD;
15582       NumVecs = 4;
15583       break;
15584     case Intrinsic::arm_neon_vld2lane:
15585       NewOpc = ARMISD::VLD2LN_UPD;
15586       NumVecs = 2;
15587       isLaneOp = true;
15588       break;
15589     case Intrinsic::arm_neon_vld3lane:
15590       NewOpc = ARMISD::VLD3LN_UPD;
15591       NumVecs = 3;
15592       isLaneOp = true;
15593       break;
15594     case Intrinsic::arm_neon_vld4lane:
15595       NewOpc = ARMISD::VLD4LN_UPD;
15596       NumVecs = 4;
15597       isLaneOp = true;
15598       break;
15599     case Intrinsic::arm_neon_vst1:
15600       NewOpc = ARMISD::VST1_UPD;
15601       NumVecs = 1;
15602       isLoadOp = false;
15603       break;
15604     case Intrinsic::arm_neon_vst2:
15605       NewOpc = ARMISD::VST2_UPD;
15606       NumVecs = 2;
15607       isLoadOp = false;
15608       break;
15609     case Intrinsic::arm_neon_vst3:
15610       NewOpc = ARMISD::VST3_UPD;
15611       NumVecs = 3;
15612       isLoadOp = false;
15613       break;
15614     case Intrinsic::arm_neon_vst4:
15615       NewOpc = ARMISD::VST4_UPD;
15616       NumVecs = 4;
15617       isLoadOp = false;
15618       break;
15619     case Intrinsic::arm_neon_vst2lane:
15620       NewOpc = ARMISD::VST2LN_UPD;
15621       NumVecs = 2;
15622       isLoadOp = false;
15623       isLaneOp = true;
15624       break;
15625     case Intrinsic::arm_neon_vst3lane:
15626       NewOpc = ARMISD::VST3LN_UPD;
15627       NumVecs = 3;
15628       isLoadOp = false;
15629       isLaneOp = true;
15630       break;
15631     case Intrinsic::arm_neon_vst4lane:
15632       NewOpc = ARMISD::VST4LN_UPD;
15633       NumVecs = 4;
15634       isLoadOp = false;
15635       isLaneOp = true;
15636       break;
15637     case Intrinsic::arm_neon_vst1x2:
15638       NewOpc = ARMISD::VST1x2_UPD;
15639       NumVecs = 2;
15640       isLoadOp = false;
15641       hasAlignment = false;
15642       break;
15643     case Intrinsic::arm_neon_vst1x3:
15644       NewOpc = ARMISD::VST1x3_UPD;
15645       NumVecs = 3;
15646       isLoadOp = false;
15647       hasAlignment = false;
15648       break;
15649     case Intrinsic::arm_neon_vst1x4:
15650       NewOpc = ARMISD::VST1x4_UPD;
15651       NumVecs = 4;
15652       isLoadOp = false;
15653       hasAlignment = false;
15654       break;
15655     }
15656   } else {
15657     isLaneOp = true;
15658     switch (N->getOpcode()) {
15659     default:
15660       llvm_unreachable("unexpected opcode for Neon base update");
15661     case ARMISD::VLD1DUP:
15662       NewOpc = ARMISD::VLD1DUP_UPD;
15663       NumVecs = 1;
15664       break;
15665     case ARMISD::VLD2DUP:
15666       NewOpc = ARMISD::VLD2DUP_UPD;
15667       NumVecs = 2;
15668       break;
15669     case ARMISD::VLD3DUP:
15670       NewOpc = ARMISD::VLD3DUP_UPD;
15671       NumVecs = 3;
15672       break;
15673     case ARMISD::VLD4DUP:
15674       NewOpc = ARMISD::VLD4DUP_UPD;
15675       NumVecs = 4;
15676       break;
15677     case ISD::LOAD:
15678       NewOpc = ARMISD::VLD1_UPD;
15679       NumVecs = 1;
15680       isLaneOp = false;
15681       break;
15682     case ISD::STORE:
15683       NewOpc = ARMISD::VST1_UPD;
15684       NumVecs = 1;
15685       isLaneOp = false;
15686       isLoadOp = false;
15687       break;
15688     }
15689   }
15690 
15691   // Find the size of memory referenced by the load/store.
15692   EVT VecTy;
15693   if (isLoadOp) {
15694     VecTy = N->getValueType(0);
15695   } else if (Target.isIntrinsic) {
15696     VecTy = N->getOperand(Target.AddrOpIdx + 1).getValueType();
15697   } else {
15698     assert(Target.isStore &&
15699            "Node has to be a load, a store, or an intrinsic!");
15700     VecTy = N->getOperand(1).getValueType();
15701   }
15702 
15703   bool isVLDDUPOp =
15704       NewOpc == ARMISD::VLD1DUP_UPD || NewOpc == ARMISD::VLD2DUP_UPD ||
15705       NewOpc == ARMISD::VLD3DUP_UPD || NewOpc == ARMISD::VLD4DUP_UPD;
15706 
15707   unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
15708   if (isLaneOp || isVLDDUPOp)
15709     NumBytes /= VecTy.getVectorNumElements();
15710 
15711   if (NumBytes >= 3 * 16 && User.ConstInc != NumBytes) {
15712     // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
15713     // separate instructions that make it harder to use a non-constant update.
15714     return false;
15715   }
15716 
15717   if (SimpleConstIncOnly && User.ConstInc != NumBytes)
15718     return false;
15719 
15720   // OK, we found an ADD we can fold into the base update.
15721   // Now, create a _UPD node, taking care of not breaking alignment.
15722 
15723   EVT AlignedVecTy = VecTy;
15724   unsigned Alignment = MemN->getAlignment();
15725 
15726   // If this is a less-than-standard-aligned load/store, change the type to
15727   // match the standard alignment.
15728   // The alignment is overlooked when selecting _UPD variants; and it's
15729   // easier to introduce bitcasts here than fix that.
15730   // There are 3 ways to get to this base-update combine:
15731   // - intrinsics: they are assumed to be properly aligned (to the standard
15732   //   alignment of the memory type), so we don't need to do anything.
15733   // - ARMISD::VLDx nodes: they are only generated from the aforementioned
15734   //   intrinsics, so, likewise, there's nothing to do.
15735   // - generic load/store instructions: the alignment is specified as an
15736   //   explicit operand, rather than implicitly as the standard alignment
15737   //   of the memory type (like the intrisics).  We need to change the
15738   //   memory type to match the explicit alignment.  That way, we don't
15739   //   generate non-standard-aligned ARMISD::VLDx nodes.
15740   if (isa<LSBaseSDNode>(N)) {
15741     if (Alignment == 0)
15742       Alignment = 1;
15743     if (Alignment < VecTy.getScalarSizeInBits() / 8) {
15744       MVT EltTy = MVT::getIntegerVT(Alignment * 8);
15745       assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
15746       assert(!isLaneOp && "Unexpected generic load/store lane.");
15747       unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
15748       AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
15749     }
15750     // Don't set an explicit alignment on regular load/stores that we want
15751     // to transform to VLD/VST 1_UPD nodes.
15752     // This matches the behavior of regular load/stores, which only get an
15753     // explicit alignment if the MMO alignment is larger than the standard
15754     // alignment of the memory type.
15755     // Intrinsics, however, always get an explicit alignment, set to the
15756     // alignment of the MMO.
15757     Alignment = 1;
15758   }
15759 
15760   // Create the new updating load/store node.
15761   // First, create an SDVTList for the new updating node's results.
15762   EVT Tys[6];
15763   unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
15764   unsigned n;
15765   for (n = 0; n < NumResultVecs; ++n)
15766     Tys[n] = AlignedVecTy;
15767   Tys[n++] = MVT::i32;
15768   Tys[n] = MVT::Other;
15769   SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
15770 
15771   // Then, gather the new node's operands.
15772   SmallVector<SDValue, 8> Ops;
15773   Ops.push_back(N->getOperand(0)); // incoming chain
15774   Ops.push_back(N->getOperand(Target.AddrOpIdx));
15775   Ops.push_back(User.Inc);
15776 
15777   if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
15778     // Try to match the intrinsic's signature
15779     Ops.push_back(StN->getValue());
15780   } else {
15781     // Loads (and of course intrinsics) match the intrinsics' signature,
15782     // so just add all but the alignment operand.
15783     unsigned LastOperand =
15784         hasAlignment ? N->getNumOperands() - 1 : N->getNumOperands();
15785     for (unsigned i = Target.AddrOpIdx + 1; i < LastOperand; ++i)
15786       Ops.push_back(N->getOperand(i));
15787   }
15788 
15789   // For all node types, the alignment operand is always the last one.
15790   Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32));
15791 
15792   // If this is a non-standard-aligned STORE, the penultimate operand is the
15793   // stored value.  Bitcast it to the aligned type.
15794   if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
15795     SDValue &StVal = Ops[Ops.size() - 2];
15796     StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
15797   }
15798 
15799   EVT LoadVT = isLaneOp ? VecTy.getVectorElementType() : AlignedVecTy;
15800   SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, LoadVT,
15801                                          MemN->getMemOperand());
15802 
15803   // Update the uses.
15804   SmallVector<SDValue, 5> NewResults;
15805   for (unsigned i = 0; i < NumResultVecs; ++i)
15806     NewResults.push_back(SDValue(UpdN.getNode(), i));
15807 
15808   // If this is an non-standard-aligned LOAD, the first result is the loaded
15809   // value.  Bitcast it to the expected result type.
15810   if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
15811     SDValue &LdVal = NewResults[0];
15812     LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
15813   }
15814 
15815   NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); // chain
15816   DCI.CombineTo(N, NewResults);
15817   DCI.CombineTo(User.N, SDValue(UpdN.getNode(), NumResultVecs));
15818 
15819   return true;
15820 }
15821 
15822 // If (opcode ptr inc) is and ADD-like instruction, return the
15823 // increment value. Otherwise return 0.
15824 static unsigned getPointerConstIncrement(unsigned Opcode, SDValue Ptr,
15825                                          SDValue Inc, const SelectionDAG &DAG) {
15826   ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode());
15827   if (!CInc)
15828     return 0;
15829 
15830   switch (Opcode) {
15831   case ARMISD::VLD1_UPD:
15832   case ISD::ADD:
15833     return CInc->getZExtValue();
15834   case ISD::OR: {
15835     if (DAG.haveNoCommonBitsSet(Ptr, Inc)) {
15836       // (OR ptr inc) is the same as (ADD ptr inc)
15837       return CInc->getZExtValue();
15838     }
15839     return 0;
15840   }
15841   default:
15842     return 0;
15843   }
15844 }
15845 
15846 static bool findPointerConstIncrement(SDNode *N, SDValue *Ptr, SDValue *CInc) {
15847   switch (N->getOpcode()) {
15848   case ISD::ADD:
15849   case ISD::OR: {
15850     if (isa<ConstantSDNode>(N->getOperand(1))) {
15851       *Ptr = N->getOperand(0);
15852       *CInc = N->getOperand(1);
15853       return true;
15854     }
15855     return false;
15856   }
15857   case ARMISD::VLD1_UPD: {
15858     if (isa<ConstantSDNode>(N->getOperand(2))) {
15859       *Ptr = N->getOperand(1);
15860       *CInc = N->getOperand(2);
15861       return true;
15862     }
15863     return false;
15864   }
15865   default:
15866     return false;
15867   }
15868 }
15869 
15870 static bool isValidBaseUpdate(SDNode *N, SDNode *User) {
15871   // Check that the add is independent of the load/store.
15872   // Otherwise, folding it would create a cycle. Search through Addr
15873   // as well, since the User may not be a direct user of Addr and
15874   // only share a base pointer.
15875   SmallPtrSet<const SDNode *, 32> Visited;
15876   SmallVector<const SDNode *, 16> Worklist;
15877   Worklist.push_back(N);
15878   Worklist.push_back(User);
15879   if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
15880       SDNode::hasPredecessorHelper(User, Visited, Worklist))
15881     return false;
15882   return true;
15883 }
15884 
15885 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
15886 /// NEON load/store intrinsics, and generic vector load/stores, to merge
15887 /// base address updates.
15888 /// For generic load/stores, the memory type is assumed to be a vector.
15889 /// The caller is assumed to have checked legality.
15890 static SDValue CombineBaseUpdate(SDNode *N,
15891                                  TargetLowering::DAGCombinerInfo &DCI) {
15892   const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
15893                             N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
15894   const bool isStore = N->getOpcode() == ISD::STORE;
15895   const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
15896   BaseUpdateTarget Target = {N, isIntrinsic, isStore, AddrOpIdx};
15897 
15898   SDValue Addr = N->getOperand(AddrOpIdx);
15899 
15900   SmallVector<BaseUpdateUser, 8> BaseUpdates;
15901 
15902   // Search for a use of the address operand that is an increment.
15903   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
15904          UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
15905     SDNode *User = *UI;
15906     if (UI.getUse().getResNo() != Addr.getResNo() ||
15907         User->getNumOperands() != 2)
15908       continue;
15909 
15910     SDValue Inc = User->getOperand(UI.getOperandNo() == 1 ? 0 : 1);
15911     unsigned ConstInc =
15912         getPointerConstIncrement(User->getOpcode(), Addr, Inc, DCI.DAG);
15913 
15914     if (ConstInc || User->getOpcode() == ISD::ADD)
15915       BaseUpdates.push_back({User, Inc, ConstInc});
15916   }
15917 
15918   // If the address is a constant pointer increment itself, find
15919   // another constant increment that has the same base operand
15920   SDValue Base;
15921   SDValue CInc;
15922   if (findPointerConstIncrement(Addr.getNode(), &Base, &CInc)) {
15923     unsigned Offset =
15924         getPointerConstIncrement(Addr->getOpcode(), Base, CInc, DCI.DAG);
15925     for (SDNode::use_iterator UI = Base->use_begin(), UE = Base->use_end();
15926          UI != UE; ++UI) {
15927 
15928       SDNode *User = *UI;
15929       if (UI.getUse().getResNo() != Base.getResNo() || User == Addr.getNode() ||
15930           User->getNumOperands() != 2)
15931         continue;
15932 
15933       SDValue UserInc = User->getOperand(UI.getOperandNo() == 0 ? 1 : 0);
15934       unsigned UserOffset =
15935           getPointerConstIncrement(User->getOpcode(), Base, UserInc, DCI.DAG);
15936 
15937       if (!UserOffset || UserOffset <= Offset)
15938         continue;
15939 
15940       unsigned NewConstInc = UserOffset - Offset;
15941       SDValue NewInc = DCI.DAG.getConstant(NewConstInc, SDLoc(N), MVT::i32);
15942       BaseUpdates.push_back({User, NewInc, NewConstInc});
15943     }
15944   }
15945 
15946   // Try to fold the load/store with an update that matches memory
15947   // access size. This should work well for sequential loads.
15948   //
15949   // Filter out invalid updates as well.
15950   unsigned NumValidUpd = BaseUpdates.size();
15951   for (unsigned I = 0; I < NumValidUpd;) {
15952     BaseUpdateUser &User = BaseUpdates[I];
15953     if (!isValidBaseUpdate(N, User.N)) {
15954       --NumValidUpd;
15955       std::swap(BaseUpdates[I], BaseUpdates[NumValidUpd]);
15956       continue;
15957     }
15958 
15959     if (TryCombineBaseUpdate(Target, User, /*SimpleConstIncOnly=*/true, DCI))
15960       return SDValue();
15961     ++I;
15962   }
15963   BaseUpdates.resize(NumValidUpd);
15964 
15965   // Try to fold with other users. Non-constant updates are considered
15966   // first, and constant updates are sorted to not break a sequence of
15967   // strided accesses (if there is any).
15968   std::sort(BaseUpdates.begin(), BaseUpdates.end(),
15969             [](BaseUpdateUser &LHS, BaseUpdateUser &RHS) {
15970               return LHS.ConstInc < RHS.ConstInc;
15971             });
15972   for (BaseUpdateUser &User : BaseUpdates) {
15973     if (TryCombineBaseUpdate(Target, User, /*SimpleConstIncOnly=*/false, DCI))
15974       return SDValue();
15975   }
15976   return SDValue();
15977 }
15978 
15979 static SDValue PerformVLDCombine(SDNode *N,
15980                                  TargetLowering::DAGCombinerInfo &DCI) {
15981   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
15982     return SDValue();
15983 
15984   return CombineBaseUpdate(N, DCI);
15985 }
15986 
15987 static SDValue PerformMVEVLDCombine(SDNode *N,
15988                                     TargetLowering::DAGCombinerInfo &DCI) {
15989   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
15990     return SDValue();
15991 
15992   SelectionDAG &DAG = DCI.DAG;
15993   SDValue Addr = N->getOperand(2);
15994   MemSDNode *MemN = cast<MemSDNode>(N);
15995   SDLoc dl(N);
15996 
15997   // For the stores, where there are multiple intrinsics we only actually want
15998   // to post-inc the last of the them.
15999   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
16000   if (IntNo == Intrinsic::arm_mve_vst2q &&
16001       cast<ConstantSDNode>(N->getOperand(5))->getZExtValue() != 1)
16002     return SDValue();
16003   if (IntNo == Intrinsic::arm_mve_vst4q &&
16004       cast<ConstantSDNode>(N->getOperand(7))->getZExtValue() != 3)
16005     return SDValue();
16006 
16007   // Search for a use of the address operand that is an increment.
16008   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
16009                             UE = Addr.getNode()->use_end();
16010        UI != UE; ++UI) {
16011     SDNode *User = *UI;
16012     if (User->getOpcode() != ISD::ADD ||
16013         UI.getUse().getResNo() != Addr.getResNo())
16014       continue;
16015 
16016     // Check that the add is independent of the load/store.  Otherwise, folding
16017     // it would create a cycle. We can avoid searching through Addr as it's a
16018     // predecessor to both.
16019     SmallPtrSet<const SDNode *, 32> Visited;
16020     SmallVector<const SDNode *, 16> Worklist;
16021     Visited.insert(Addr.getNode());
16022     Worklist.push_back(N);
16023     Worklist.push_back(User);
16024     if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
16025         SDNode::hasPredecessorHelper(User, Visited, Worklist))
16026       continue;
16027 
16028     // Find the new opcode for the updating load/store.
16029     bool isLoadOp = true;
16030     unsigned NewOpc = 0;
16031     unsigned NumVecs = 0;
16032     switch (IntNo) {
16033     default:
16034       llvm_unreachable("unexpected intrinsic for MVE VLDn combine");
16035     case Intrinsic::arm_mve_vld2q:
16036       NewOpc = ARMISD::VLD2_UPD;
16037       NumVecs = 2;
16038       break;
16039     case Intrinsic::arm_mve_vld4q:
16040       NewOpc = ARMISD::VLD4_UPD;
16041       NumVecs = 4;
16042       break;
16043     case Intrinsic::arm_mve_vst2q:
16044       NewOpc = ARMISD::VST2_UPD;
16045       NumVecs = 2;
16046       isLoadOp = false;
16047       break;
16048     case Intrinsic::arm_mve_vst4q:
16049       NewOpc = ARMISD::VST4_UPD;
16050       NumVecs = 4;
16051       isLoadOp = false;
16052       break;
16053     }
16054 
16055     // Find the size of memory referenced by the load/store.
16056     EVT VecTy;
16057     if (isLoadOp) {
16058       VecTy = N->getValueType(0);
16059     } else {
16060       VecTy = N->getOperand(3).getValueType();
16061     }
16062 
16063     unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
16064 
16065     // If the increment is a constant, it must match the memory ref size.
16066     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
16067     ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode());
16068     if (!CInc || CInc->getZExtValue() != NumBytes)
16069       continue;
16070 
16071     // Create the new updating load/store node.
16072     // First, create an SDVTList for the new updating node's results.
16073     EVT Tys[6];
16074     unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
16075     unsigned n;
16076     for (n = 0; n < NumResultVecs; ++n)
16077       Tys[n] = VecTy;
16078     Tys[n++] = MVT::i32;
16079     Tys[n] = MVT::Other;
16080     SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2));
16081 
16082     // Then, gather the new node's operands.
16083     SmallVector<SDValue, 8> Ops;
16084     Ops.push_back(N->getOperand(0)); // incoming chain
16085     Ops.push_back(N->getOperand(2)); // ptr
16086     Ops.push_back(Inc);
16087 
16088     for (unsigned i = 3; i < N->getNumOperands(); ++i)
16089       Ops.push_back(N->getOperand(i));
16090 
16091     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, VecTy,
16092                                            MemN->getMemOperand());
16093 
16094     // Update the uses.
16095     SmallVector<SDValue, 5> NewResults;
16096     for (unsigned i = 0; i < NumResultVecs; ++i)
16097       NewResults.push_back(SDValue(UpdN.getNode(), i));
16098 
16099     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); // chain
16100     DCI.CombineTo(N, NewResults);
16101     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
16102 
16103     break;
16104   }
16105 
16106   return SDValue();
16107 }
16108 
16109 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
16110 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
16111 /// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
16112 /// return true.
16113 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
16114   SelectionDAG &DAG = DCI.DAG;
16115   EVT VT = N->getValueType(0);
16116   // vldN-dup instructions only support 64-bit vectors for N > 1.
16117   if (!VT.is64BitVector())
16118     return false;
16119 
16120   // Check if the VDUPLANE operand is a vldN-dup intrinsic.
16121   SDNode *VLD = N->getOperand(0).getNode();
16122   if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
16123     return false;
16124   unsigned NumVecs = 0;
16125   unsigned NewOpc = 0;
16126   unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
16127   if (IntNo == Intrinsic::arm_neon_vld2lane) {
16128     NumVecs = 2;
16129     NewOpc = ARMISD::VLD2DUP;
16130   } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
16131     NumVecs = 3;
16132     NewOpc = ARMISD::VLD3DUP;
16133   } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
16134     NumVecs = 4;
16135     NewOpc = ARMISD::VLD4DUP;
16136   } else {
16137     return false;
16138   }
16139 
16140   // First check that all the vldN-lane uses are VDUPLANEs and that the lane
16141   // numbers match the load.
16142   unsigned VLDLaneNo =
16143     cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
16144   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
16145        UI != UE; ++UI) {
16146     // Ignore uses of the chain result.
16147     if (UI.getUse().getResNo() == NumVecs)
16148       continue;
16149     SDNode *User = *UI;
16150     if (User->getOpcode() != ARMISD::VDUPLANE ||
16151         VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
16152       return false;
16153   }
16154 
16155   // Create the vldN-dup node.
16156   EVT Tys[5];
16157   unsigned n;
16158   for (n = 0; n < NumVecs; ++n)
16159     Tys[n] = VT;
16160   Tys[n] = MVT::Other;
16161   SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
16162   SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
16163   MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
16164   SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
16165                                            Ops, VLDMemInt->getMemoryVT(),
16166                                            VLDMemInt->getMemOperand());
16167 
16168   // Update the uses.
16169   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
16170        UI != UE; ++UI) {
16171     unsigned ResNo = UI.getUse().getResNo();
16172     // Ignore uses of the chain result.
16173     if (ResNo == NumVecs)
16174       continue;
16175     SDNode *User = *UI;
16176     DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
16177   }
16178 
16179   // Now the vldN-lane intrinsic is dead except for its chain result.
16180   // Update uses of the chain.
16181   std::vector<SDValue> VLDDupResults;
16182   for (unsigned n = 0; n < NumVecs; ++n)
16183     VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
16184   VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
16185   DCI.CombineTo(VLD, VLDDupResults);
16186 
16187   return true;
16188 }
16189 
16190 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
16191 /// ARMISD::VDUPLANE.
16192 static SDValue PerformVDUPLANECombine(SDNode *N,
16193                                       TargetLowering::DAGCombinerInfo &DCI,
16194                                       const ARMSubtarget *Subtarget) {
16195   SDValue Op = N->getOperand(0);
16196   EVT VT = N->getValueType(0);
16197 
16198   // On MVE, we just convert the VDUPLANE to a VDUP with an extract.
16199   if (Subtarget->hasMVEIntegerOps()) {
16200     EVT ExtractVT = VT.getVectorElementType();
16201     // We need to ensure we are creating a legal type.
16202     if (!DCI.DAG.getTargetLoweringInfo().isTypeLegal(ExtractVT))
16203       ExtractVT = MVT::i32;
16204     SDValue Extract = DCI.DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), ExtractVT,
16205                               N->getOperand(0), N->getOperand(1));
16206     return DCI.DAG.getNode(ARMISD::VDUP, SDLoc(N), VT, Extract);
16207   }
16208 
16209   // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
16210   // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
16211   if (CombineVLDDUP(N, DCI))
16212     return SDValue(N, 0);
16213 
16214   // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
16215   // redundant.  Ignore bit_converts for now; element sizes are checked below.
16216   while (Op.getOpcode() == ISD::BITCAST)
16217     Op = Op.getOperand(0);
16218   if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
16219     return SDValue();
16220 
16221   // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
16222   unsigned EltSize = Op.getScalarValueSizeInBits();
16223   // The canonical VMOV for a zero vector uses a 32-bit element size.
16224   unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
16225   unsigned EltBits;
16226   if (ARM_AM::decodeVMOVModImm(Imm, EltBits) == 0)
16227     EltSize = 8;
16228   if (EltSize > VT.getScalarSizeInBits())
16229     return SDValue();
16230 
16231   return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
16232 }
16233 
16234 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
16235 static SDValue PerformVDUPCombine(SDNode *N, SelectionDAG &DAG,
16236                                   const ARMSubtarget *Subtarget) {
16237   SDValue Op = N->getOperand(0);
16238   SDLoc dl(N);
16239 
16240   if (Subtarget->hasMVEIntegerOps()) {
16241     // Convert VDUP f32 -> VDUP BITCAST i32 under MVE, as we know the value will
16242     // need to come from a GPR.
16243     if (Op.getValueType() == MVT::f32)
16244       return DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0),
16245                          DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op));
16246     else if (Op.getValueType() == MVT::f16)
16247       return DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0),
16248                          DAG.getNode(ARMISD::VMOVrh, dl, MVT::i32, Op));
16249   }
16250 
16251   if (!Subtarget->hasNEON())
16252     return SDValue();
16253 
16254   // Match VDUP(LOAD) -> VLD1DUP.
16255   // We match this pattern here rather than waiting for isel because the
16256   // transform is only legal for unindexed loads.
16257   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode());
16258   if (LD && Op.hasOneUse() && LD->isUnindexed() &&
16259       LD->getMemoryVT() == N->getValueType(0).getVectorElementType()) {
16260     SDValue Ops[] = {LD->getOperand(0), LD->getOperand(1),
16261                      DAG.getConstant(LD->getAlignment(), SDLoc(N), MVT::i32)};
16262     SDVTList SDTys = DAG.getVTList(N->getValueType(0), MVT::Other);
16263     SDValue VLDDup =
16264         DAG.getMemIntrinsicNode(ARMISD::VLD1DUP, SDLoc(N), SDTys, Ops,
16265                                 LD->getMemoryVT(), LD->getMemOperand());
16266     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), VLDDup.getValue(1));
16267     return VLDDup;
16268   }
16269 
16270   return SDValue();
16271 }
16272 
16273 static SDValue PerformLOADCombine(SDNode *N,
16274                                   TargetLowering::DAGCombinerInfo &DCI,
16275                                   const ARMSubtarget *Subtarget) {
16276   EVT VT = N->getValueType(0);
16277 
16278   // If this is a legal vector load, try to combine it into a VLD1_UPD.
16279   if (Subtarget->hasNEON() && ISD::isNormalLoad(N) && VT.isVector() &&
16280       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
16281     return CombineBaseUpdate(N, DCI);
16282 
16283   return SDValue();
16284 }
16285 
16286 // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
16287 // pack all of the elements in one place.  Next, store to memory in fewer
16288 // chunks.
16289 static SDValue PerformTruncatingStoreCombine(StoreSDNode *St,
16290                                              SelectionDAG &DAG) {
16291   SDValue StVal = St->getValue();
16292   EVT VT = StVal.getValueType();
16293   if (!St->isTruncatingStore() || !VT.isVector())
16294     return SDValue();
16295   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
16296   EVT StVT = St->getMemoryVT();
16297   unsigned NumElems = VT.getVectorNumElements();
16298   assert(StVT != VT && "Cannot truncate to the same type");
16299   unsigned FromEltSz = VT.getScalarSizeInBits();
16300   unsigned ToEltSz = StVT.getScalarSizeInBits();
16301 
16302   // From, To sizes and ElemCount must be pow of two
16303   if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz))
16304     return SDValue();
16305 
16306   // We are going to use the original vector elt for storing.
16307   // Accumulated smaller vector elements must be a multiple of the store size.
16308   if (0 != (NumElems * FromEltSz) % ToEltSz)
16309     return SDValue();
16310 
16311   unsigned SizeRatio = FromEltSz / ToEltSz;
16312   assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
16313 
16314   // Create a type on which we perform the shuffle.
16315   EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
16316                                    NumElems * SizeRatio);
16317   assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
16318 
16319   SDLoc DL(St);
16320   SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
16321   SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
16322   for (unsigned i = 0; i < NumElems; ++i)
16323     ShuffleVec[i] = DAG.getDataLayout().isBigEndian() ? (i + 1) * SizeRatio - 1
16324                                                       : i * SizeRatio;
16325 
16326   // Can't shuffle using an illegal type.
16327   if (!TLI.isTypeLegal(WideVecVT))
16328     return SDValue();
16329 
16330   SDValue Shuff = DAG.getVectorShuffle(
16331       WideVecVT, DL, WideVec, DAG.getUNDEF(WideVec.getValueType()), ShuffleVec);
16332   // At this point all of the data is stored at the bottom of the
16333   // register. We now need to save it to mem.
16334 
16335   // Find the largest store unit
16336   MVT StoreType = MVT::i8;
16337   for (MVT Tp : MVT::integer_valuetypes()) {
16338     if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
16339       StoreType = Tp;
16340   }
16341   // Didn't find a legal store type.
16342   if (!TLI.isTypeLegal(StoreType))
16343     return SDValue();
16344 
16345   // Bitcast the original vector into a vector of store-size units
16346   EVT StoreVecVT =
16347       EVT::getVectorVT(*DAG.getContext(), StoreType,
16348                        VT.getSizeInBits() / EVT(StoreType).getSizeInBits());
16349   assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
16350   SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
16351   SmallVector<SDValue, 8> Chains;
16352   SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
16353                                       TLI.getPointerTy(DAG.getDataLayout()));
16354   SDValue BasePtr = St->getBasePtr();
16355 
16356   // Perform one or more big stores into memory.
16357   unsigned E = (ToEltSz * NumElems) / StoreType.getSizeInBits();
16358   for (unsigned I = 0; I < E; I++) {
16359     SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, StoreType,
16360                                  ShuffWide, DAG.getIntPtrConstant(I, DL));
16361     SDValue Ch =
16362         DAG.getStore(St->getChain(), DL, SubVec, BasePtr, St->getPointerInfo(),
16363                      St->getAlignment(), St->getMemOperand()->getFlags());
16364     BasePtr =
16365         DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, Increment);
16366     Chains.push_back(Ch);
16367   }
16368   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
16369 }
16370 
16371 // Try taking a single vector store from an fpround (which would otherwise turn
16372 // into an expensive buildvector) and splitting it into a series of narrowing
16373 // stores.
16374 static SDValue PerformSplittingToNarrowingStores(StoreSDNode *St,
16375                                                  SelectionDAG &DAG) {
16376   if (!St->isSimple() || St->isTruncatingStore() || !St->isUnindexed())
16377     return SDValue();
16378   SDValue Trunc = St->getValue();
16379   if (Trunc->getOpcode() != ISD::FP_ROUND)
16380     return SDValue();
16381   EVT FromVT = Trunc->getOperand(0).getValueType();
16382   EVT ToVT = Trunc.getValueType();
16383   if (!ToVT.isVector())
16384     return SDValue();
16385   assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements());
16386   EVT ToEltVT = ToVT.getVectorElementType();
16387   EVT FromEltVT = FromVT.getVectorElementType();
16388 
16389   if (FromEltVT != MVT::f32 || ToEltVT != MVT::f16)
16390     return SDValue();
16391 
16392   unsigned NumElements = 4;
16393   if (FromVT.getVectorNumElements() % NumElements != 0)
16394     return SDValue();
16395 
16396   // Test if the Trunc will be convertable to a VMOVN with a shuffle, and if so
16397   // use the VMOVN over splitting the store. We are looking for patterns of:
16398   // !rev: 0 N 1 N+1 2 N+2 ...
16399   //  rev: N 0 N+1 1 N+2 2 ...
16400   // The shuffle may either be a single source (in which case N = NumElts/2) or
16401   // two inputs extended with concat to the same size (in which case N =
16402   // NumElts).
16403   auto isVMOVNShuffle = [&](ShuffleVectorSDNode *SVN, bool Rev) {
16404     ArrayRef<int> M = SVN->getMask();
16405     unsigned NumElts = ToVT.getVectorNumElements();
16406     if (SVN->getOperand(1).isUndef())
16407       NumElts /= 2;
16408 
16409     unsigned Off0 = Rev ? NumElts : 0;
16410     unsigned Off1 = Rev ? 0 : NumElts;
16411 
16412     for (unsigned I = 0; I < NumElts; I += 2) {
16413       if (M[I] >= 0 && M[I] != (int)(Off0 + I / 2))
16414         return false;
16415       if (M[I + 1] >= 0 && M[I + 1] != (int)(Off1 + I / 2))
16416         return false;
16417     }
16418 
16419     return true;
16420   };
16421 
16422   if (auto *Shuffle = dyn_cast<ShuffleVectorSDNode>(Trunc.getOperand(0)))
16423     if (isVMOVNShuffle(Shuffle, false) || isVMOVNShuffle(Shuffle, true))
16424       return SDValue();
16425 
16426   LLVMContext &C = *DAG.getContext();
16427   SDLoc DL(St);
16428   // Details about the old store
16429   SDValue Ch = St->getChain();
16430   SDValue BasePtr = St->getBasePtr();
16431   Align Alignment = St->getOriginalAlign();
16432   MachineMemOperand::Flags MMOFlags = St->getMemOperand()->getFlags();
16433   AAMDNodes AAInfo = St->getAAInfo();
16434 
16435   // We split the store into slices of NumElements. fp16 trunc stores are vcvt
16436   // and then stored as truncating integer stores.
16437   EVT NewFromVT = EVT::getVectorVT(C, FromEltVT, NumElements);
16438   EVT NewToVT = EVT::getVectorVT(
16439       C, EVT::getIntegerVT(C, ToEltVT.getSizeInBits()), NumElements);
16440 
16441   SmallVector<SDValue, 4> Stores;
16442   for (unsigned i = 0; i < FromVT.getVectorNumElements() / NumElements; i++) {
16443     unsigned NewOffset = i * NumElements * ToEltVT.getSizeInBits() / 8;
16444     SDValue NewPtr =
16445         DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::Fixed(NewOffset));
16446 
16447     SDValue Extract =
16448         DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewFromVT, Trunc.getOperand(0),
16449                     DAG.getConstant(i * NumElements, DL, MVT::i32));
16450 
16451     SDValue FPTrunc =
16452         DAG.getNode(ARMISD::VCVTN, DL, MVT::v8f16, DAG.getUNDEF(MVT::v8f16),
16453                     Extract, DAG.getConstant(0, DL, MVT::i32));
16454     Extract = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, MVT::v4i32, FPTrunc);
16455 
16456     SDValue Store = DAG.getTruncStore(
16457         Ch, DL, Extract, NewPtr, St->getPointerInfo().getWithOffset(NewOffset),
16458         NewToVT, Alignment.value(), MMOFlags, AAInfo);
16459     Stores.push_back(Store);
16460   }
16461   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Stores);
16462 }
16463 
16464 // Try taking a single vector store from an MVETRUNC (which would otherwise turn
16465 // into an expensive buildvector) and splitting it into a series of narrowing
16466 // stores.
16467 static SDValue PerformSplittingMVETruncToNarrowingStores(StoreSDNode *St,
16468                                                          SelectionDAG &DAG) {
16469   if (!St->isSimple() || St->isTruncatingStore() || !St->isUnindexed())
16470     return SDValue();
16471   SDValue Trunc = St->getValue();
16472   if (Trunc->getOpcode() != ARMISD::MVETRUNC)
16473     return SDValue();
16474   EVT FromVT = Trunc->getOperand(0).getValueType();
16475   EVT ToVT = Trunc.getValueType();
16476 
16477   LLVMContext &C = *DAG.getContext();
16478   SDLoc DL(St);
16479   // Details about the old store
16480   SDValue Ch = St->getChain();
16481   SDValue BasePtr = St->getBasePtr();
16482   Align Alignment = St->getOriginalAlign();
16483   MachineMemOperand::Flags MMOFlags = St->getMemOperand()->getFlags();
16484   AAMDNodes AAInfo = St->getAAInfo();
16485 
16486   EVT NewToVT = EVT::getVectorVT(C, ToVT.getVectorElementType(),
16487                                  FromVT.getVectorNumElements());
16488 
16489   SmallVector<SDValue, 4> Stores;
16490   for (unsigned i = 0; i < Trunc.getNumOperands(); i++) {
16491     unsigned NewOffset =
16492         i * FromVT.getVectorNumElements() * ToVT.getScalarSizeInBits() / 8;
16493     SDValue NewPtr =
16494         DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::Fixed(NewOffset));
16495 
16496     SDValue Extract = Trunc.getOperand(i);
16497     SDValue Store = DAG.getTruncStore(
16498         Ch, DL, Extract, NewPtr, St->getPointerInfo().getWithOffset(NewOffset),
16499         NewToVT, Alignment.value(), MMOFlags, AAInfo);
16500     Stores.push_back(Store);
16501   }
16502   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Stores);
16503 }
16504 
16505 // Given a floating point store from an extracted vector, with an integer
16506 // VGETLANE that already exists, store the existing VGETLANEu directly. This can
16507 // help reduce fp register pressure, doesn't require the fp extract and allows
16508 // use of more integer post-inc stores not available with vstr.
16509 static SDValue PerformExtractFpToIntStores(StoreSDNode *St, SelectionDAG &DAG) {
16510   if (!St->isSimple() || St->isTruncatingStore() || !St->isUnindexed())
16511     return SDValue();
16512   SDValue Extract = St->getValue();
16513   EVT VT = Extract.getValueType();
16514   // For now only uses f16. This may be useful for f32 too, but that will
16515   // be bitcast(extract), not the VGETLANEu we currently check here.
16516   if (VT != MVT::f16 || Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
16517     return SDValue();
16518 
16519   SDNode *GetLane =
16520       DAG.getNodeIfExists(ARMISD::VGETLANEu, DAG.getVTList(MVT::i32),
16521                           {Extract.getOperand(0), Extract.getOperand(1)});
16522   if (!GetLane)
16523     return SDValue();
16524 
16525   LLVMContext &C = *DAG.getContext();
16526   SDLoc DL(St);
16527   // Create a new integer store to replace the existing floating point version.
16528   SDValue Ch = St->getChain();
16529   SDValue BasePtr = St->getBasePtr();
16530   Align Alignment = St->getOriginalAlign();
16531   MachineMemOperand::Flags MMOFlags = St->getMemOperand()->getFlags();
16532   AAMDNodes AAInfo = St->getAAInfo();
16533   EVT NewToVT = EVT::getIntegerVT(C, VT.getSizeInBits());
16534   SDValue Store = DAG.getTruncStore(Ch, DL, SDValue(GetLane, 0), BasePtr,
16535                                     St->getPointerInfo(), NewToVT,
16536                                     Alignment.value(), MMOFlags, AAInfo);
16537 
16538   return Store;
16539 }
16540 
16541 /// PerformSTORECombine - Target-specific dag combine xforms for
16542 /// ISD::STORE.
16543 static SDValue PerformSTORECombine(SDNode *N,
16544                                    TargetLowering::DAGCombinerInfo &DCI,
16545                                    const ARMSubtarget *Subtarget) {
16546   StoreSDNode *St = cast<StoreSDNode>(N);
16547   if (St->isVolatile())
16548     return SDValue();
16549   SDValue StVal = St->getValue();
16550   EVT VT = StVal.getValueType();
16551 
16552   if (Subtarget->hasNEON())
16553     if (SDValue Store = PerformTruncatingStoreCombine(St, DCI.DAG))
16554       return Store;
16555 
16556   if (Subtarget->hasMVEIntegerOps()) {
16557     if (SDValue NewToken = PerformSplittingToNarrowingStores(St, DCI.DAG))
16558       return NewToken;
16559     if (SDValue NewChain = PerformExtractFpToIntStores(St, DCI.DAG))
16560       return NewChain;
16561     if (SDValue NewToken =
16562             PerformSplittingMVETruncToNarrowingStores(St, DCI.DAG))
16563       return NewToken;
16564   }
16565 
16566   if (!ISD::isNormalStore(St))
16567     return SDValue();
16568 
16569   // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
16570   // ARM stores of arguments in the same cache line.
16571   if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
16572       StVal.getNode()->hasOneUse()) {
16573     SelectionDAG  &DAG = DCI.DAG;
16574     bool isBigEndian = DAG.getDataLayout().isBigEndian();
16575     SDLoc DL(St);
16576     SDValue BasePtr = St->getBasePtr();
16577     SDValue NewST1 = DAG.getStore(
16578         St->getChain(), DL, StVal.getNode()->getOperand(isBigEndian ? 1 : 0),
16579         BasePtr, St->getPointerInfo(), St->getOriginalAlign(),
16580         St->getMemOperand()->getFlags());
16581 
16582     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
16583                                     DAG.getConstant(4, DL, MVT::i32));
16584     return DAG.getStore(NewST1.getValue(0), DL,
16585                         StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
16586                         OffsetPtr, St->getPointerInfo().getWithOffset(4),
16587                         St->getOriginalAlign(),
16588                         St->getMemOperand()->getFlags());
16589   }
16590 
16591   if (StVal.getValueType() == MVT::i64 &&
16592       StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
16593 
16594     // Bitcast an i64 store extracted from a vector to f64.
16595     // Otherwise, the i64 value will be legalized to a pair of i32 values.
16596     SelectionDAG &DAG = DCI.DAG;
16597     SDLoc dl(StVal);
16598     SDValue IntVec = StVal.getOperand(0);
16599     EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
16600                                    IntVec.getValueType().getVectorNumElements());
16601     SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
16602     SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
16603                                  Vec, StVal.getOperand(1));
16604     dl = SDLoc(N);
16605     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
16606     // Make the DAGCombiner fold the bitcasts.
16607     DCI.AddToWorklist(Vec.getNode());
16608     DCI.AddToWorklist(ExtElt.getNode());
16609     DCI.AddToWorklist(V.getNode());
16610     return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
16611                         St->getPointerInfo(), St->getAlignment(),
16612                         St->getMemOperand()->getFlags(), St->getAAInfo());
16613   }
16614 
16615   // If this is a legal vector store, try to combine it into a VST1_UPD.
16616   if (Subtarget->hasNEON() && ISD::isNormalStore(N) && VT.isVector() &&
16617       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
16618     return CombineBaseUpdate(N, DCI);
16619 
16620   return SDValue();
16621 }
16622 
16623 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
16624 /// can replace combinations of VMUL and VCVT (floating-point to integer)
16625 /// when the VMUL has a constant operand that is a power of 2.
16626 ///
16627 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
16628 ///  vmul.f32        d16, d17, d16
16629 ///  vcvt.s32.f32    d16, d16
16630 /// becomes:
16631 ///  vcvt.s32.f32    d16, d16, #3
16632 static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
16633                                   const ARMSubtarget *Subtarget) {
16634   if (!Subtarget->hasNEON())
16635     return SDValue();
16636 
16637   SDValue Op = N->getOperand(0);
16638   if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
16639       Op.getOpcode() != ISD::FMUL)
16640     return SDValue();
16641 
16642   SDValue ConstVec = Op->getOperand(1);
16643   if (!isa<BuildVectorSDNode>(ConstVec))
16644     return SDValue();
16645 
16646   MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
16647   uint32_t FloatBits = FloatTy.getSizeInBits();
16648   MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
16649   uint32_t IntBits = IntTy.getSizeInBits();
16650   unsigned NumLanes = Op.getValueType().getVectorNumElements();
16651   if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
16652     // These instructions only exist converting from f32 to i32. We can handle
16653     // smaller integers by generating an extra truncate, but larger ones would
16654     // be lossy. We also can't handle anything other than 2 or 4 lanes, since
16655     // these intructions only support v2i32/v4i32 types.
16656     return SDValue();
16657   }
16658 
16659   BitVector UndefElements;
16660   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
16661   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
16662   if (C == -1 || C == 0 || C > 32)
16663     return SDValue();
16664 
16665   SDLoc dl(N);
16666   bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
16667   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
16668     Intrinsic::arm_neon_vcvtfp2fxu;
16669   SDValue FixConv = DAG.getNode(
16670       ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
16671       DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
16672       DAG.getConstant(C, dl, MVT::i32));
16673 
16674   if (IntBits < FloatBits)
16675     FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);
16676 
16677   return FixConv;
16678 }
16679 
16680 static SDValue PerformFAddVSelectCombine(SDNode *N, SelectionDAG &DAG,
16681                                          const ARMSubtarget *Subtarget) {
16682   if (!Subtarget->hasMVEFloatOps())
16683     return SDValue();
16684 
16685   // Turn (fadd x, (vselect c, y, -0.0)) into (vselect c, (fadd x, y), x)
16686   // The second form can be more easily turned into a predicated vadd, and
16687   // possibly combined into a fma to become a predicated vfma.
16688   SDValue Op0 = N->getOperand(0);
16689   SDValue Op1 = N->getOperand(1);
16690   EVT VT = N->getValueType(0);
16691   SDLoc DL(N);
16692 
16693   // The identity element for a fadd is -0.0, which these VMOV's represent.
16694   auto isNegativeZeroSplat = [&](SDValue Op) {
16695     if (Op.getOpcode() != ISD::BITCAST ||
16696         Op.getOperand(0).getOpcode() != ARMISD::VMOVIMM)
16697       return false;
16698     if (VT == MVT::v4f32 && Op.getOperand(0).getConstantOperandVal(0) == 1664)
16699       return true;
16700     if (VT == MVT::v8f16 && Op.getOperand(0).getConstantOperandVal(0) == 2688)
16701       return true;
16702     return false;
16703   };
16704 
16705   if (Op0.getOpcode() == ISD::VSELECT && Op1.getOpcode() != ISD::VSELECT)
16706     std::swap(Op0, Op1);
16707 
16708   if (Op1.getOpcode() != ISD::VSELECT ||
16709       !isNegativeZeroSplat(Op1.getOperand(2)))
16710     return SDValue();
16711   SDValue FAdd =
16712       DAG.getNode(ISD::FADD, DL, VT, Op0, Op1.getOperand(1), N->getFlags());
16713   return DAG.getNode(ISD::VSELECT, DL, VT, Op1.getOperand(0), FAdd, Op0);
16714 }
16715 
16716 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
16717 /// can replace combinations of VCVT (integer to floating-point) and VDIV
16718 /// when the VDIV has a constant operand that is a power of 2.
16719 ///
16720 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
16721 ///  vcvt.f32.s32    d16, d16
16722 ///  vdiv.f32        d16, d17, d16
16723 /// becomes:
16724 ///  vcvt.f32.s32    d16, d16, #3
16725 static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG,
16726                                   const ARMSubtarget *Subtarget) {
16727   if (!Subtarget->hasNEON())
16728     return SDValue();
16729 
16730   SDValue Op = N->getOperand(0);
16731   unsigned OpOpcode = Op.getNode()->getOpcode();
16732   if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() ||
16733       (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
16734     return SDValue();
16735 
16736   SDValue ConstVec = N->getOperand(1);
16737   if (!isa<BuildVectorSDNode>(ConstVec))
16738     return SDValue();
16739 
16740   MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
16741   uint32_t FloatBits = FloatTy.getSizeInBits();
16742   MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
16743   uint32_t IntBits = IntTy.getSizeInBits();
16744   unsigned NumLanes = Op.getValueType().getVectorNumElements();
16745   if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
16746     // These instructions only exist converting from i32 to f32. We can handle
16747     // smaller integers by generating an extra extend, but larger ones would
16748     // be lossy. We also can't handle anything other than 2 or 4 lanes, since
16749     // these intructions only support v2i32/v4i32 types.
16750     return SDValue();
16751   }
16752 
16753   BitVector UndefElements;
16754   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
16755   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
16756   if (C == -1 || C == 0 || C > 32)
16757     return SDValue();
16758 
16759   SDLoc dl(N);
16760   bool isSigned = OpOpcode == ISD::SINT_TO_FP;
16761   SDValue ConvInput = Op.getOperand(0);
16762   if (IntBits < FloatBits)
16763     ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
16764                             dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
16765                             ConvInput);
16766 
16767   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
16768     Intrinsic::arm_neon_vcvtfxu2fp;
16769   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
16770                      Op.getValueType(),
16771                      DAG.getConstant(IntrinsicOpcode, dl, MVT::i32),
16772                      ConvInput, DAG.getConstant(C, dl, MVT::i32));
16773 }
16774 
16775 static SDValue PerformVECREDUCE_ADDCombine(SDNode *N, SelectionDAG &DAG,
16776                                            const ARMSubtarget *ST) {
16777   if (!ST->hasMVEIntegerOps())
16778     return SDValue();
16779 
16780   assert(N->getOpcode() == ISD::VECREDUCE_ADD);
16781   EVT ResVT = N->getValueType(0);
16782   SDValue N0 = N->getOperand(0);
16783   SDLoc dl(N);
16784 
16785   // Try to turn vecreduce_add(add(x, y)) into vecreduce(x) + vecreduce(y)
16786   if (ResVT == MVT::i32 && N0.getOpcode() == ISD::ADD &&
16787       (N0.getValueType() == MVT::v4i32 || N0.getValueType() == MVT::v8i16 ||
16788        N0.getValueType() == MVT::v16i8)) {
16789     SDValue Red0 = DAG.getNode(ISD::VECREDUCE_ADD, dl, ResVT, N0.getOperand(0));
16790     SDValue Red1 = DAG.getNode(ISD::VECREDUCE_ADD, dl, ResVT, N0.getOperand(1));
16791     return DAG.getNode(ISD::ADD, dl, ResVT, Red0, Red1);
16792   }
16793 
16794   // We are looking for something that will have illegal types if left alone,
16795   // but that we can convert to a single instruction under MVE. For example
16796   // vecreduce_add(sext(A, v8i32)) => VADDV.s16 A
16797   // or
16798   // vecreduce_add(mul(zext(A, v16i32), zext(B, v16i32))) => VMLADAV.u8 A, B
16799 
16800   // The legal cases are:
16801   //   VADDV u/s 8/16/32
16802   //   VMLAV u/s 8/16/32
16803   //   VADDLV u/s 32
16804   //   VMLALV u/s 16/32
16805 
16806   // If the input vector is smaller than legal (v4i8/v4i16 for example) we can
16807   // extend it and use v4i32 instead.
16808   auto ExtTypeMatches = [](SDValue A, ArrayRef<MVT> ExtTypes) {
16809     EVT AVT = A.getValueType();
16810     return any_of(ExtTypes, [&](MVT Ty) {
16811       return AVT.getVectorNumElements() == Ty.getVectorNumElements() &&
16812              AVT.bitsLE(Ty);
16813     });
16814   };
16815   auto ExtendIfNeeded = [&](SDValue A, unsigned ExtendCode) {
16816     EVT AVT = A.getValueType();
16817     if (!AVT.is128BitVector())
16818       A = DAG.getNode(ExtendCode, dl,
16819                       AVT.changeVectorElementType(MVT::getIntegerVT(
16820                           128 / AVT.getVectorMinNumElements())),
16821                       A);
16822     return A;
16823   };
16824   auto IsVADDV = [&](MVT RetTy, unsigned ExtendCode, ArrayRef<MVT> ExtTypes) {
16825     if (ResVT != RetTy || N0->getOpcode() != ExtendCode)
16826       return SDValue();
16827     SDValue A = N0->getOperand(0);
16828     if (ExtTypeMatches(A, ExtTypes))
16829       return ExtendIfNeeded(A, ExtendCode);
16830     return SDValue();
16831   };
16832   auto IsPredVADDV = [&](MVT RetTy, unsigned ExtendCode,
16833                          ArrayRef<MVT> ExtTypes, SDValue &Mask) {
16834     if (ResVT != RetTy || N0->getOpcode() != ISD::VSELECT ||
16835         !ISD::isBuildVectorAllZeros(N0->getOperand(2).getNode()))
16836       return SDValue();
16837     Mask = N0->getOperand(0);
16838     SDValue Ext = N0->getOperand(1);
16839     if (Ext->getOpcode() != ExtendCode)
16840       return SDValue();
16841     SDValue A = Ext->getOperand(0);
16842     if (ExtTypeMatches(A, ExtTypes))
16843       return ExtendIfNeeded(A, ExtendCode);
16844     return SDValue();
16845   };
16846   auto IsVMLAV = [&](MVT RetTy, unsigned ExtendCode, ArrayRef<MVT> ExtTypes,
16847                      SDValue &A, SDValue &B) {
16848     // For a vmla we are trying to match a larger pattern:
16849     // ExtA = sext/zext A
16850     // ExtB = sext/zext B
16851     // Mul = mul ExtA, ExtB
16852     // vecreduce.add Mul
16853     // There might also be en extra extend between the mul and the addreduce, so
16854     // long as the bitwidth is high enough to make them equivalent (for example
16855     // original v8i16 might be mul at v8i32 and the reduce happens at v8i64).
16856     if (ResVT != RetTy)
16857       return false;
16858     SDValue Mul = N0;
16859     if (Mul->getOpcode() == ExtendCode &&
16860         Mul->getOperand(0).getScalarValueSizeInBits() * 2 >=
16861             ResVT.getScalarSizeInBits())
16862       Mul = Mul->getOperand(0);
16863     if (Mul->getOpcode() != ISD::MUL)
16864       return false;
16865     SDValue ExtA = Mul->getOperand(0);
16866     SDValue ExtB = Mul->getOperand(1);
16867     if (ExtA->getOpcode() != ExtendCode || ExtB->getOpcode() != ExtendCode)
16868       return false;
16869     A = ExtA->getOperand(0);
16870     B = ExtB->getOperand(0);
16871     if (ExtTypeMatches(A, ExtTypes) && ExtTypeMatches(B, ExtTypes)) {
16872       A = ExtendIfNeeded(A, ExtendCode);
16873       B = ExtendIfNeeded(B, ExtendCode);
16874       return true;
16875     }
16876     return false;
16877   };
16878   auto IsPredVMLAV = [&](MVT RetTy, unsigned ExtendCode, ArrayRef<MVT> ExtTypes,
16879                      SDValue &A, SDValue &B, SDValue &Mask) {
16880     // Same as the pattern above with a select for the zero predicated lanes
16881     // ExtA = sext/zext A
16882     // ExtB = sext/zext B
16883     // Mul = mul ExtA, ExtB
16884     // N0 = select Mask, Mul, 0
16885     // vecreduce.add N0
16886     if (ResVT != RetTy || N0->getOpcode() != ISD::VSELECT ||
16887         !ISD::isBuildVectorAllZeros(N0->getOperand(2).getNode()))
16888       return false;
16889     Mask = N0->getOperand(0);
16890     SDValue Mul = N0->getOperand(1);
16891     if (Mul->getOpcode() == ExtendCode &&
16892         Mul->getOperand(0).getScalarValueSizeInBits() * 2 >=
16893             ResVT.getScalarSizeInBits())
16894       Mul = Mul->getOperand(0);
16895     if (Mul->getOpcode() != ISD::MUL)
16896       return false;
16897     SDValue ExtA = Mul->getOperand(0);
16898     SDValue ExtB = Mul->getOperand(1);
16899     if (ExtA->getOpcode() != ExtendCode || ExtB->getOpcode() != ExtendCode)
16900       return false;
16901     A = ExtA->getOperand(0);
16902     B = ExtB->getOperand(0);
16903     if (ExtTypeMatches(A, ExtTypes) && ExtTypeMatches(B, ExtTypes)) {
16904       A = ExtendIfNeeded(A, ExtendCode);
16905       B = ExtendIfNeeded(B, ExtendCode);
16906       return true;
16907     }
16908     return false;
16909   };
16910   auto Create64bitNode = [&](unsigned Opcode, ArrayRef<SDValue> Ops) {
16911     // Split illegal MVT::v16i8->i64 vector reductions into two legal v8i16->i64
16912     // reductions. The operands are extended with MVEEXT, but as they are
16913     // reductions the lane orders do not matter. MVEEXT may be combined with
16914     // loads to produce two extending loads, or else they will be expanded to
16915     // VREV/VMOVL.
16916     EVT VT = Ops[0].getValueType();
16917     if (VT == MVT::v16i8) {
16918       assert((Opcode == ARMISD::VMLALVs || Opcode == ARMISD::VMLALVu) &&
16919              "Unexpected illegal long reduction opcode");
16920       bool IsUnsigned = Opcode == ARMISD::VMLALVu;
16921 
16922       SDValue Ext0 =
16923           DAG.getNode(IsUnsigned ? ARMISD::MVEZEXT : ARMISD::MVESEXT, dl,
16924                       DAG.getVTList(MVT::v8i16, MVT::v8i16), Ops[0]);
16925       SDValue Ext1 =
16926           DAG.getNode(IsUnsigned ? ARMISD::MVEZEXT : ARMISD::MVESEXT, dl,
16927                       DAG.getVTList(MVT::v8i16, MVT::v8i16), Ops[1]);
16928 
16929       SDValue MLA0 = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
16930                                  Ext0, Ext1);
16931       SDValue MLA1 =
16932           DAG.getNode(IsUnsigned ? ARMISD::VMLALVAu : ARMISD::VMLALVAs, dl,
16933                       DAG.getVTList(MVT::i32, MVT::i32), MLA0, MLA0.getValue(1),
16934                       Ext0.getValue(1), Ext1.getValue(1));
16935       return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, MLA1, MLA1.getValue(1));
16936     }
16937     SDValue Node = DAG.getNode(Opcode, dl, {MVT::i32, MVT::i32}, Ops);
16938     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Node,
16939                        SDValue(Node.getNode(), 1));
16940   };
16941 
16942   SDValue A, B;
16943   SDValue Mask;
16944   if (IsVMLAV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B))
16945     return DAG.getNode(ARMISD::VMLAVs, dl, ResVT, A, B);
16946   if (IsVMLAV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B))
16947     return DAG.getNode(ARMISD::VMLAVu, dl, ResVT, A, B);
16948   if (IsVMLAV(MVT::i64, ISD::SIGN_EXTEND, {MVT::v16i8, MVT::v8i16, MVT::v4i32},
16949               A, B))
16950     return Create64bitNode(ARMISD::VMLALVs, {A, B});
16951   if (IsVMLAV(MVT::i64, ISD::ZERO_EXTEND, {MVT::v16i8, MVT::v8i16, MVT::v4i32},
16952               A, B))
16953     return Create64bitNode(ARMISD::VMLALVu, {A, B});
16954   if (IsVMLAV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}, A, B))
16955     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
16956                        DAG.getNode(ARMISD::VMLAVs, dl, MVT::i32, A, B));
16957   if (IsVMLAV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}, A, B))
16958     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
16959                        DAG.getNode(ARMISD::VMLAVu, dl, MVT::i32, A, B));
16960 
16961   if (IsPredVMLAV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B,
16962                   Mask))
16963     return DAG.getNode(ARMISD::VMLAVps, dl, ResVT, A, B, Mask);
16964   if (IsPredVMLAV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}, A, B,
16965                   Mask))
16966     return DAG.getNode(ARMISD::VMLAVpu, dl, ResVT, A, B, Mask);
16967   if (IsPredVMLAV(MVT::i64, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v4i32}, A, B,
16968                   Mask))
16969     return Create64bitNode(ARMISD::VMLALVps, {A, B, Mask});
16970   if (IsPredVMLAV(MVT::i64, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v4i32}, A, B,
16971                   Mask))
16972     return Create64bitNode(ARMISD::VMLALVpu, {A, B, Mask});
16973   if (IsPredVMLAV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}, A, B, Mask))
16974     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
16975                        DAG.getNode(ARMISD::VMLAVps, dl, MVT::i32, A, B, Mask));
16976   if (IsPredVMLAV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}, A, B, Mask))
16977     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
16978                        DAG.getNode(ARMISD::VMLAVpu, dl, MVT::i32, A, B, Mask));
16979 
16980   if (SDValue A = IsVADDV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}))
16981     return DAG.getNode(ARMISD::VADDVs, dl, ResVT, A);
16982   if (SDValue A = IsVADDV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}))
16983     return DAG.getNode(ARMISD::VADDVu, dl, ResVT, A);
16984   if (SDValue A = IsVADDV(MVT::i64, ISD::SIGN_EXTEND, {MVT::v4i32}))
16985     return Create64bitNode(ARMISD::VADDLVs, {A});
16986   if (SDValue A = IsVADDV(MVT::i64, ISD::ZERO_EXTEND, {MVT::v4i32}))
16987     return Create64bitNode(ARMISD::VADDLVu, {A});
16988   if (SDValue A = IsVADDV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}))
16989     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
16990                        DAG.getNode(ARMISD::VADDVs, dl, MVT::i32, A));
16991   if (SDValue A = IsVADDV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}))
16992     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
16993                        DAG.getNode(ARMISD::VADDVu, dl, MVT::i32, A));
16994 
16995   if (SDValue A = IsPredVADDV(MVT::i32, ISD::SIGN_EXTEND, {MVT::v8i16, MVT::v16i8}, Mask))
16996     return DAG.getNode(ARMISD::VADDVps, dl, ResVT, A, Mask);
16997   if (SDValue A = IsPredVADDV(MVT::i32, ISD::ZERO_EXTEND, {MVT::v8i16, MVT::v16i8}, Mask))
16998     return DAG.getNode(ARMISD::VADDVpu, dl, ResVT, A, Mask);
16999   if (SDValue A = IsPredVADDV(MVT::i64, ISD::SIGN_EXTEND, {MVT::v4i32}, Mask))
17000     return Create64bitNode(ARMISD::VADDLVps, {A, Mask});
17001   if (SDValue A = IsPredVADDV(MVT::i64, ISD::ZERO_EXTEND, {MVT::v4i32}, Mask))
17002     return Create64bitNode(ARMISD::VADDLVpu, {A, Mask});
17003   if (SDValue A = IsPredVADDV(MVT::i16, ISD::SIGN_EXTEND, {MVT::v16i8}, Mask))
17004     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17005                        DAG.getNode(ARMISD::VADDVps, dl, MVT::i32, A, Mask));
17006   if (SDValue A = IsPredVADDV(MVT::i16, ISD::ZERO_EXTEND, {MVT::v16i8}, Mask))
17007     return DAG.getNode(ISD::TRUNCATE, dl, ResVT,
17008                        DAG.getNode(ARMISD::VADDVpu, dl, MVT::i32, A, Mask));
17009 
17010   // Some complications. We can get a case where the two inputs of the mul are
17011   // the same, then the output sext will have been helpfully converted to a
17012   // zext. Turn it back.
17013   SDValue Op = N0;
17014   if (Op->getOpcode() == ISD::VSELECT)
17015     Op = Op->getOperand(1);
17016   if (Op->getOpcode() == ISD::ZERO_EXTEND &&
17017       Op->getOperand(0)->getOpcode() == ISD::MUL) {
17018     SDValue Mul = Op->getOperand(0);
17019     if (Mul->getOperand(0) == Mul->getOperand(1) &&
17020         Mul->getOperand(0)->getOpcode() == ISD::SIGN_EXTEND) {
17021       SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, dl, N0->getValueType(0), Mul);
17022       if (Op != N0)
17023         Ext = DAG.getNode(ISD::VSELECT, dl, N0->getValueType(0),
17024                           N0->getOperand(0), Ext, N0->getOperand(2));
17025       return DAG.getNode(ISD::VECREDUCE_ADD, dl, ResVT, Ext);
17026     }
17027   }
17028 
17029   return SDValue();
17030 }
17031 
17032 static SDValue PerformVMOVNCombine(SDNode *N,
17033                                    TargetLowering::DAGCombinerInfo &DCI) {
17034   SDValue Op0 = N->getOperand(0);
17035   SDValue Op1 = N->getOperand(1);
17036   unsigned IsTop = N->getConstantOperandVal(2);
17037 
17038   // VMOVNT a undef -> a
17039   // VMOVNB a undef -> a
17040   // VMOVNB undef a -> a
17041   if (Op1->isUndef())
17042     return Op0;
17043   if (Op0->isUndef() && !IsTop)
17044     return Op1;
17045 
17046   // VMOVNt(c, VQMOVNb(a, b)) => VQMOVNt(c, b)
17047   // VMOVNb(c, VQMOVNb(a, b)) => VQMOVNb(c, b)
17048   if ((Op1->getOpcode() == ARMISD::VQMOVNs ||
17049        Op1->getOpcode() == ARMISD::VQMOVNu) &&
17050       Op1->getConstantOperandVal(2) == 0)
17051     return DCI.DAG.getNode(Op1->getOpcode(), SDLoc(Op1), N->getValueType(0),
17052                            Op0, Op1->getOperand(1), N->getOperand(2));
17053 
17054   // Only the bottom lanes from Qm (Op1) and either the top or bottom lanes from
17055   // Qd (Op0) are demanded from a VMOVN, depending on whether we are inserting
17056   // into the top or bottom lanes.
17057   unsigned NumElts = N->getValueType(0).getVectorNumElements();
17058   APInt Op1DemandedElts = APInt::getSplat(NumElts, APInt::getLowBitsSet(2, 1));
17059   APInt Op0DemandedElts =
17060       IsTop ? Op1DemandedElts
17061             : APInt::getSplat(NumElts, APInt::getHighBitsSet(2, 1));
17062 
17063   APInt KnownUndef, KnownZero;
17064   const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo();
17065   if (TLI.SimplifyDemandedVectorElts(Op0, Op0DemandedElts, KnownUndef,
17066                                      KnownZero, DCI))
17067     return SDValue(N, 0);
17068   if (TLI.SimplifyDemandedVectorElts(Op1, Op1DemandedElts, KnownUndef,
17069                                      KnownZero, DCI))
17070     return SDValue(N, 0);
17071 
17072   return SDValue();
17073 }
17074 
17075 static SDValue PerformVQMOVNCombine(SDNode *N,
17076                                     TargetLowering::DAGCombinerInfo &DCI) {
17077   SDValue Op0 = N->getOperand(0);
17078   unsigned IsTop = N->getConstantOperandVal(2);
17079 
17080   unsigned NumElts = N->getValueType(0).getVectorNumElements();
17081   APInt Op0DemandedElts =
17082       APInt::getSplat(NumElts, IsTop ? APInt::getLowBitsSet(2, 1)
17083                                      : APInt::getHighBitsSet(2, 1));
17084 
17085   APInt KnownUndef, KnownZero;
17086   const TargetLowering &TLI = DCI.DAG.getTargetLoweringInfo();
17087   if (TLI.SimplifyDemandedVectorElts(Op0, Op0DemandedElts, KnownUndef,
17088                                      KnownZero, DCI))
17089     return SDValue(N, 0);
17090   return SDValue();
17091 }
17092 
17093 static SDValue PerformLongShiftCombine(SDNode *N, SelectionDAG &DAG) {
17094   SDLoc DL(N);
17095   SDValue Op0 = N->getOperand(0);
17096   SDValue Op1 = N->getOperand(1);
17097 
17098   // Turn X << -C -> X >> C and viceversa. The negative shifts can come up from
17099   // uses of the intrinsics.
17100   if (auto C = dyn_cast<ConstantSDNode>(N->getOperand(2))) {
17101     int ShiftAmt = C->getSExtValue();
17102     if (ShiftAmt == 0) {
17103       SDValue Merge = DAG.getMergeValues({Op0, Op1}, DL);
17104       DAG.ReplaceAllUsesWith(N, Merge.getNode());
17105       return SDValue();
17106     }
17107 
17108     if (ShiftAmt >= -32 && ShiftAmt < 0) {
17109       unsigned NewOpcode =
17110           N->getOpcode() == ARMISD::LSLL ? ARMISD::LSRL : ARMISD::LSLL;
17111       SDValue NewShift = DAG.getNode(NewOpcode, DL, N->getVTList(), Op0, Op1,
17112                                      DAG.getConstant(-ShiftAmt, DL, MVT::i32));
17113       DAG.ReplaceAllUsesWith(N, NewShift.getNode());
17114       return NewShift;
17115     }
17116   }
17117 
17118   return SDValue();
17119 }
17120 
17121 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
17122 SDValue ARMTargetLowering::PerformIntrinsicCombine(SDNode *N,
17123                                                    DAGCombinerInfo &DCI) const {
17124   SelectionDAG &DAG = DCI.DAG;
17125   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
17126   switch (IntNo) {
17127   default:
17128     // Don't do anything for most intrinsics.
17129     break;
17130 
17131   // Vector shifts: check for immediate versions and lower them.
17132   // Note: This is done during DAG combining instead of DAG legalizing because
17133   // the build_vectors for 64-bit vector element shift counts are generally
17134   // not legal, and it is hard to see their values after they get legalized to
17135   // loads from a constant pool.
17136   case Intrinsic::arm_neon_vshifts:
17137   case Intrinsic::arm_neon_vshiftu:
17138   case Intrinsic::arm_neon_vrshifts:
17139   case Intrinsic::arm_neon_vrshiftu:
17140   case Intrinsic::arm_neon_vrshiftn:
17141   case Intrinsic::arm_neon_vqshifts:
17142   case Intrinsic::arm_neon_vqshiftu:
17143   case Intrinsic::arm_neon_vqshiftsu:
17144   case Intrinsic::arm_neon_vqshiftns:
17145   case Intrinsic::arm_neon_vqshiftnu:
17146   case Intrinsic::arm_neon_vqshiftnsu:
17147   case Intrinsic::arm_neon_vqrshiftns:
17148   case Intrinsic::arm_neon_vqrshiftnu:
17149   case Intrinsic::arm_neon_vqrshiftnsu: {
17150     EVT VT = N->getOperand(1).getValueType();
17151     int64_t Cnt;
17152     unsigned VShiftOpc = 0;
17153 
17154     switch (IntNo) {
17155     case Intrinsic::arm_neon_vshifts:
17156     case Intrinsic::arm_neon_vshiftu:
17157       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
17158         VShiftOpc = ARMISD::VSHLIMM;
17159         break;
17160       }
17161       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
17162         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ? ARMISD::VSHRsIMM
17163                                                           : ARMISD::VSHRuIMM);
17164         break;
17165       }
17166       return SDValue();
17167 
17168     case Intrinsic::arm_neon_vrshifts:
17169     case Intrinsic::arm_neon_vrshiftu:
17170       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
17171         break;
17172       return SDValue();
17173 
17174     case Intrinsic::arm_neon_vqshifts:
17175     case Intrinsic::arm_neon_vqshiftu:
17176       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
17177         break;
17178       return SDValue();
17179 
17180     case Intrinsic::arm_neon_vqshiftsu:
17181       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
17182         break;
17183       llvm_unreachable("invalid shift count for vqshlu intrinsic");
17184 
17185     case Intrinsic::arm_neon_vrshiftn:
17186     case Intrinsic::arm_neon_vqshiftns:
17187     case Intrinsic::arm_neon_vqshiftnu:
17188     case Intrinsic::arm_neon_vqshiftnsu:
17189     case Intrinsic::arm_neon_vqrshiftns:
17190     case Intrinsic::arm_neon_vqrshiftnu:
17191     case Intrinsic::arm_neon_vqrshiftnsu:
17192       // Narrowing shifts require an immediate right shift.
17193       if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
17194         break;
17195       llvm_unreachable("invalid shift count for narrowing vector shift "
17196                        "intrinsic");
17197 
17198     default:
17199       llvm_unreachable("unhandled vector shift");
17200     }
17201 
17202     switch (IntNo) {
17203     case Intrinsic::arm_neon_vshifts:
17204     case Intrinsic::arm_neon_vshiftu:
17205       // Opcode already set above.
17206       break;
17207     case Intrinsic::arm_neon_vrshifts:
17208       VShiftOpc = ARMISD::VRSHRsIMM;
17209       break;
17210     case Intrinsic::arm_neon_vrshiftu:
17211       VShiftOpc = ARMISD::VRSHRuIMM;
17212       break;
17213     case Intrinsic::arm_neon_vrshiftn:
17214       VShiftOpc = ARMISD::VRSHRNIMM;
17215       break;
17216     case Intrinsic::arm_neon_vqshifts:
17217       VShiftOpc = ARMISD::VQSHLsIMM;
17218       break;
17219     case Intrinsic::arm_neon_vqshiftu:
17220       VShiftOpc = ARMISD::VQSHLuIMM;
17221       break;
17222     case Intrinsic::arm_neon_vqshiftsu:
17223       VShiftOpc = ARMISD::VQSHLsuIMM;
17224       break;
17225     case Intrinsic::arm_neon_vqshiftns:
17226       VShiftOpc = ARMISD::VQSHRNsIMM;
17227       break;
17228     case Intrinsic::arm_neon_vqshiftnu:
17229       VShiftOpc = ARMISD::VQSHRNuIMM;
17230       break;
17231     case Intrinsic::arm_neon_vqshiftnsu:
17232       VShiftOpc = ARMISD::VQSHRNsuIMM;
17233       break;
17234     case Intrinsic::arm_neon_vqrshiftns:
17235       VShiftOpc = ARMISD::VQRSHRNsIMM;
17236       break;
17237     case Intrinsic::arm_neon_vqrshiftnu:
17238       VShiftOpc = ARMISD::VQRSHRNuIMM;
17239       break;
17240     case Intrinsic::arm_neon_vqrshiftnsu:
17241       VShiftOpc = ARMISD::VQRSHRNsuIMM;
17242       break;
17243     }
17244 
17245     SDLoc dl(N);
17246     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
17247                        N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
17248   }
17249 
17250   case Intrinsic::arm_neon_vshiftins: {
17251     EVT VT = N->getOperand(1).getValueType();
17252     int64_t Cnt;
17253     unsigned VShiftOpc = 0;
17254 
17255     if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
17256       VShiftOpc = ARMISD::VSLIIMM;
17257     else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
17258       VShiftOpc = ARMISD::VSRIIMM;
17259     else {
17260       llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
17261     }
17262 
17263     SDLoc dl(N);
17264     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
17265                        N->getOperand(1), N->getOperand(2),
17266                        DAG.getConstant(Cnt, dl, MVT::i32));
17267   }
17268 
17269   case Intrinsic::arm_neon_vqrshifts:
17270   case Intrinsic::arm_neon_vqrshiftu:
17271     // No immediate versions of these to check for.
17272     break;
17273 
17274   case Intrinsic::arm_mve_vqdmlah:
17275   case Intrinsic::arm_mve_vqdmlash:
17276   case Intrinsic::arm_mve_vqrdmlah:
17277   case Intrinsic::arm_mve_vqrdmlash:
17278   case Intrinsic::arm_mve_vmla_n_predicated:
17279   case Intrinsic::arm_mve_vmlas_n_predicated:
17280   case Intrinsic::arm_mve_vqdmlah_predicated:
17281   case Intrinsic::arm_mve_vqdmlash_predicated:
17282   case Intrinsic::arm_mve_vqrdmlah_predicated:
17283   case Intrinsic::arm_mve_vqrdmlash_predicated: {
17284     // These intrinsics all take an i32 scalar operand which is narrowed to the
17285     // size of a single lane of the vector type they return. So we don't need
17286     // any bits of that operand above that point, which allows us to eliminate
17287     // uxth/sxth.
17288     unsigned BitWidth = N->getValueType(0).getScalarSizeInBits();
17289     APInt DemandedMask = APInt::getLowBitsSet(32, BitWidth);
17290     if (SimplifyDemandedBits(N->getOperand(3), DemandedMask, DCI))
17291       return SDValue();
17292     break;
17293   }
17294 
17295   case Intrinsic::arm_mve_minv:
17296   case Intrinsic::arm_mve_maxv:
17297   case Intrinsic::arm_mve_minav:
17298   case Intrinsic::arm_mve_maxav:
17299   case Intrinsic::arm_mve_minv_predicated:
17300   case Intrinsic::arm_mve_maxv_predicated:
17301   case Intrinsic::arm_mve_minav_predicated:
17302   case Intrinsic::arm_mve_maxav_predicated: {
17303     // These intrinsics all take an i32 scalar operand which is narrowed to the
17304     // size of a single lane of the vector type they take as the other input.
17305     unsigned BitWidth = N->getOperand(2)->getValueType(0).getScalarSizeInBits();
17306     APInt DemandedMask = APInt::getLowBitsSet(32, BitWidth);
17307     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
17308       return SDValue();
17309     break;
17310   }
17311 
17312   case Intrinsic::arm_mve_addv: {
17313     // Turn this intrinsic straight into the appropriate ARMISD::VADDV node,
17314     // which allow PerformADDVecReduce to turn it into VADDLV when possible.
17315     bool Unsigned = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
17316     unsigned Opc = Unsigned ? ARMISD::VADDVu : ARMISD::VADDVs;
17317     return DAG.getNode(Opc, SDLoc(N), N->getVTList(), N->getOperand(1));
17318   }
17319 
17320   case Intrinsic::arm_mve_addlv:
17321   case Intrinsic::arm_mve_addlv_predicated: {
17322     // Same for these, but ARMISD::VADDLV has to be followed by a BUILD_PAIR
17323     // which recombines the two outputs into an i64
17324     bool Unsigned = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
17325     unsigned Opc = IntNo == Intrinsic::arm_mve_addlv ?
17326                     (Unsigned ? ARMISD::VADDLVu : ARMISD::VADDLVs) :
17327                     (Unsigned ? ARMISD::VADDLVpu : ARMISD::VADDLVps);
17328 
17329     SmallVector<SDValue, 4> Ops;
17330     for (unsigned i = 1, e = N->getNumOperands(); i < e; i++)
17331       if (i != 2)                      // skip the unsigned flag
17332         Ops.push_back(N->getOperand(i));
17333 
17334     SDLoc dl(N);
17335     SDValue val = DAG.getNode(Opc, dl, {MVT::i32, MVT::i32}, Ops);
17336     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, val.getValue(0),
17337                        val.getValue(1));
17338   }
17339   }
17340 
17341   return SDValue();
17342 }
17343 
17344 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
17345 /// lowers them.  As with the vector shift intrinsics, this is done during DAG
17346 /// combining instead of DAG legalizing because the build_vectors for 64-bit
17347 /// vector element shift counts are generally not legal, and it is hard to see
17348 /// their values after they get legalized to loads from a constant pool.
17349 static SDValue PerformShiftCombine(SDNode *N,
17350                                    TargetLowering::DAGCombinerInfo &DCI,
17351                                    const ARMSubtarget *ST) {
17352   SelectionDAG &DAG = DCI.DAG;
17353   EVT VT = N->getValueType(0);
17354 
17355   if (ST->isThumb1Only() && N->getOpcode() == ISD::SHL && VT == MVT::i32 &&
17356       N->getOperand(0)->getOpcode() == ISD::AND &&
17357       N->getOperand(0)->hasOneUse()) {
17358     if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
17359       return SDValue();
17360     // Look for the pattern (shl (and x, AndMask), ShiftAmt). This doesn't
17361     // usually show up because instcombine prefers to canonicalize it to
17362     // (and (shl x, ShiftAmt) (shl AndMask, ShiftAmt)), but the shift can come
17363     // out of GEP lowering in some cases.
17364     SDValue N0 = N->getOperand(0);
17365     ConstantSDNode *ShiftAmtNode = dyn_cast<ConstantSDNode>(N->getOperand(1));
17366     if (!ShiftAmtNode)
17367       return SDValue();
17368     uint32_t ShiftAmt = static_cast<uint32_t>(ShiftAmtNode->getZExtValue());
17369     ConstantSDNode *AndMaskNode = dyn_cast<ConstantSDNode>(N0->getOperand(1));
17370     if (!AndMaskNode)
17371       return SDValue();
17372     uint32_t AndMask = static_cast<uint32_t>(AndMaskNode->getZExtValue());
17373     // Don't transform uxtb/uxth.
17374     if (AndMask == 255 || AndMask == 65535)
17375       return SDValue();
17376     if (isMask_32(AndMask)) {
17377       uint32_t MaskedBits = countLeadingZeros(AndMask);
17378       if (MaskedBits > ShiftAmt) {
17379         SDLoc DL(N);
17380         SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
17381                                   DAG.getConstant(MaskedBits, DL, MVT::i32));
17382         return DAG.getNode(
17383             ISD::SRL, DL, MVT::i32, SHL,
17384             DAG.getConstant(MaskedBits - ShiftAmt, DL, MVT::i32));
17385       }
17386     }
17387   }
17388 
17389   // Nothing to be done for scalar shifts.
17390   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17391   if (!VT.isVector() || !TLI.isTypeLegal(VT))
17392     return SDValue();
17393   if (ST->hasMVEIntegerOps() && VT == MVT::v2i64)
17394     return SDValue();
17395 
17396   int64_t Cnt;
17397 
17398   switch (N->getOpcode()) {
17399   default: llvm_unreachable("unexpected shift opcode");
17400 
17401   case ISD::SHL:
17402     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
17403       SDLoc dl(N);
17404       return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0),
17405                          DAG.getConstant(Cnt, dl, MVT::i32));
17406     }
17407     break;
17408 
17409   case ISD::SRA:
17410   case ISD::SRL:
17411     if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
17412       unsigned VShiftOpc =
17413           (N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM);
17414       SDLoc dl(N);
17415       return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
17416                          DAG.getConstant(Cnt, dl, MVT::i32));
17417     }
17418   }
17419   return SDValue();
17420 }
17421 
17422 // Look for a sign/zero/fpextend extend of a larger than legal load. This can be
17423 // split into multiple extending loads, which are simpler to deal with than an
17424 // arbitrary extend. For fp extends we use an integer extending load and a VCVTL
17425 // to convert the type to an f32.
17426 static SDValue PerformSplittingToWideningLoad(SDNode *N, SelectionDAG &DAG) {
17427   SDValue N0 = N->getOperand(0);
17428   if (N0.getOpcode() != ISD::LOAD)
17429     return SDValue();
17430   LoadSDNode *LD = cast<LoadSDNode>(N0.getNode());
17431   if (!LD->isSimple() || !N0.hasOneUse() || LD->isIndexed() ||
17432       LD->getExtensionType() != ISD::NON_EXTLOAD)
17433     return SDValue();
17434   EVT FromVT = LD->getValueType(0);
17435   EVT ToVT = N->getValueType(0);
17436   if (!ToVT.isVector())
17437     return SDValue();
17438   assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements());
17439   EVT ToEltVT = ToVT.getVectorElementType();
17440   EVT FromEltVT = FromVT.getVectorElementType();
17441 
17442   unsigned NumElements = 0;
17443   if (ToEltVT == MVT::i32 && FromEltVT == MVT::i8)
17444     NumElements = 4;
17445   if (ToEltVT == MVT::f32 && FromEltVT == MVT::f16)
17446     NumElements = 4;
17447   if (NumElements == 0 ||
17448       (FromEltVT != MVT::f16 && FromVT.getVectorNumElements() == NumElements) ||
17449       FromVT.getVectorNumElements() % NumElements != 0 ||
17450       !isPowerOf2_32(NumElements))
17451     return SDValue();
17452 
17453   LLVMContext &C = *DAG.getContext();
17454   SDLoc DL(LD);
17455   // Details about the old load
17456   SDValue Ch = LD->getChain();
17457   SDValue BasePtr = LD->getBasePtr();
17458   Align Alignment = LD->getOriginalAlign();
17459   MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
17460   AAMDNodes AAInfo = LD->getAAInfo();
17461 
17462   ISD::LoadExtType NewExtType =
17463       N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
17464   SDValue Offset = DAG.getUNDEF(BasePtr.getValueType());
17465   EVT NewFromVT = EVT::getVectorVT(
17466       C, EVT::getIntegerVT(C, FromEltVT.getScalarSizeInBits()), NumElements);
17467   EVT NewToVT = EVT::getVectorVT(
17468       C, EVT::getIntegerVT(C, ToEltVT.getScalarSizeInBits()), NumElements);
17469 
17470   SmallVector<SDValue, 4> Loads;
17471   SmallVector<SDValue, 4> Chains;
17472   for (unsigned i = 0; i < FromVT.getVectorNumElements() / NumElements; i++) {
17473     unsigned NewOffset = (i * NewFromVT.getSizeInBits()) / 8;
17474     SDValue NewPtr =
17475         DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::Fixed(NewOffset));
17476 
17477     SDValue NewLoad =
17478         DAG.getLoad(ISD::UNINDEXED, NewExtType, NewToVT, DL, Ch, NewPtr, Offset,
17479                     LD->getPointerInfo().getWithOffset(NewOffset), NewFromVT,
17480                     Alignment, MMOFlags, AAInfo);
17481     Loads.push_back(NewLoad);
17482     Chains.push_back(SDValue(NewLoad.getNode(), 1));
17483   }
17484 
17485   // Float truncs need to extended with VCVTB's into their floating point types.
17486   if (FromEltVT == MVT::f16) {
17487     SmallVector<SDValue, 4> Extends;
17488 
17489     for (unsigned i = 0; i < Loads.size(); i++) {
17490       SDValue LoadBC =
17491           DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, MVT::v8f16, Loads[i]);
17492       SDValue FPExt = DAG.getNode(ARMISD::VCVTL, DL, MVT::v4f32, LoadBC,
17493                                   DAG.getConstant(0, DL, MVT::i32));
17494       Extends.push_back(FPExt);
17495     }
17496 
17497     Loads = Extends;
17498   }
17499 
17500   SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
17501   DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewChain);
17502   return DAG.getNode(ISD::CONCAT_VECTORS, DL, ToVT, Loads);
17503 }
17504 
17505 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
17506 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
17507 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
17508                                     const ARMSubtarget *ST) {
17509   SDValue N0 = N->getOperand(0);
17510 
17511   // Check for sign- and zero-extensions of vector extract operations of 8- and
17512   // 16-bit vector elements. NEON and MVE support these directly. They are
17513   // handled during DAG combining because type legalization will promote them
17514   // to 32-bit types and it is messy to recognize the operations after that.
17515   if ((ST->hasNEON() || ST->hasMVEIntegerOps()) &&
17516       N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
17517     SDValue Vec = N0.getOperand(0);
17518     SDValue Lane = N0.getOperand(1);
17519     EVT VT = N->getValueType(0);
17520     EVT EltVT = N0.getValueType();
17521     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
17522 
17523     if (VT == MVT::i32 &&
17524         (EltVT == MVT::i8 || EltVT == MVT::i16) &&
17525         TLI.isTypeLegal(Vec.getValueType()) &&
17526         isa<ConstantSDNode>(Lane)) {
17527 
17528       unsigned Opc = 0;
17529       switch (N->getOpcode()) {
17530       default: llvm_unreachable("unexpected opcode");
17531       case ISD::SIGN_EXTEND:
17532         Opc = ARMISD::VGETLANEs;
17533         break;
17534       case ISD::ZERO_EXTEND:
17535       case ISD::ANY_EXTEND:
17536         Opc = ARMISD::VGETLANEu;
17537         break;
17538       }
17539       return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
17540     }
17541   }
17542 
17543   if (ST->hasMVEIntegerOps())
17544     if (SDValue NewLoad = PerformSplittingToWideningLoad(N, DAG))
17545       return NewLoad;
17546 
17547   return SDValue();
17548 }
17549 
17550 static SDValue PerformFPExtendCombine(SDNode *N, SelectionDAG &DAG,
17551                                       const ARMSubtarget *ST) {
17552   if (ST->hasMVEFloatOps())
17553     if (SDValue NewLoad = PerformSplittingToWideningLoad(N, DAG))
17554       return NewLoad;
17555 
17556   return SDValue();
17557 }
17558 
17559 /// PerformMinMaxCombine - Target-specific DAG combining for creating truncating
17560 /// saturates.
17561 static SDValue PerformMinMaxCombine(SDNode *N, SelectionDAG &DAG,
17562                                     const ARMSubtarget *ST) {
17563   EVT VT = N->getValueType(0);
17564   SDValue N0 = N->getOperand(0);
17565   if (!ST->hasMVEIntegerOps())
17566     return SDValue();
17567 
17568   if (SDValue V = PerformVQDMULHCombine(N, DAG))
17569     return V;
17570 
17571   if (VT != MVT::v4i32 && VT != MVT::v8i16)
17572     return SDValue();
17573 
17574   auto IsSignedSaturate = [&](SDNode *Min, SDNode *Max) {
17575     // Check one is a smin and the other is a smax
17576     if (Min->getOpcode() != ISD::SMIN)
17577       std::swap(Min, Max);
17578     if (Min->getOpcode() != ISD::SMIN || Max->getOpcode() != ISD::SMAX)
17579       return false;
17580 
17581     APInt SaturateC;
17582     if (VT == MVT::v4i32)
17583       SaturateC = APInt(32, (1 << 15) - 1, true);
17584     else //if (VT == MVT::v8i16)
17585       SaturateC = APInt(16, (1 << 7) - 1, true);
17586 
17587     APInt MinC, MaxC;
17588     if (!ISD::isConstantSplatVector(Min->getOperand(1).getNode(), MinC) ||
17589         MinC != SaturateC)
17590       return false;
17591     if (!ISD::isConstantSplatVector(Max->getOperand(1).getNode(), MaxC) ||
17592         MaxC != ~SaturateC)
17593       return false;
17594     return true;
17595   };
17596 
17597   if (IsSignedSaturate(N, N0.getNode())) {
17598     SDLoc DL(N);
17599     MVT ExtVT, HalfVT;
17600     if (VT == MVT::v4i32) {
17601       HalfVT = MVT::v8i16;
17602       ExtVT = MVT::v4i16;
17603     } else { // if (VT == MVT::v8i16)
17604       HalfVT = MVT::v16i8;
17605       ExtVT = MVT::v8i8;
17606     }
17607 
17608     // Create a VQMOVNB with undef top lanes, then signed extended into the top
17609     // half. That extend will hopefully be removed if only the bottom bits are
17610     // demanded (though a truncating store, for example).
17611     SDValue VQMOVN =
17612         DAG.getNode(ARMISD::VQMOVNs, DL, HalfVT, DAG.getUNDEF(HalfVT),
17613                     N0->getOperand(0), DAG.getConstant(0, DL, MVT::i32));
17614     SDValue Bitcast = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, VQMOVN);
17615     return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Bitcast,
17616                        DAG.getValueType(ExtVT));
17617   }
17618 
17619   auto IsUnsignedSaturate = [&](SDNode *Min) {
17620     // For unsigned, we just need to check for <= 0xffff
17621     if (Min->getOpcode() != ISD::UMIN)
17622       return false;
17623 
17624     APInt SaturateC;
17625     if (VT == MVT::v4i32)
17626       SaturateC = APInt(32, (1 << 16) - 1, true);
17627     else //if (VT == MVT::v8i16)
17628       SaturateC = APInt(16, (1 << 8) - 1, true);
17629 
17630     APInt MinC;
17631     if (!ISD::isConstantSplatVector(Min->getOperand(1).getNode(), MinC) ||
17632         MinC != SaturateC)
17633       return false;
17634     return true;
17635   };
17636 
17637   if (IsUnsignedSaturate(N)) {
17638     SDLoc DL(N);
17639     MVT HalfVT;
17640     unsigned ExtConst;
17641     if (VT == MVT::v4i32) {
17642       HalfVT = MVT::v8i16;
17643       ExtConst = 0x0000FFFF;
17644     } else { //if (VT == MVT::v8i16)
17645       HalfVT = MVT::v16i8;
17646       ExtConst = 0x00FF;
17647     }
17648 
17649     // Create a VQMOVNB with undef top lanes, then ZExt into the top half with
17650     // an AND. That extend will hopefully be removed if only the bottom bits are
17651     // demanded (though a truncating store, for example).
17652     SDValue VQMOVN =
17653         DAG.getNode(ARMISD::VQMOVNu, DL, HalfVT, DAG.getUNDEF(HalfVT), N0,
17654                     DAG.getConstant(0, DL, MVT::i32));
17655     SDValue Bitcast = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, VQMOVN);
17656     return DAG.getNode(ISD::AND, DL, VT, Bitcast,
17657                        DAG.getConstant(ExtConst, DL, VT));
17658   }
17659 
17660   return SDValue();
17661 }
17662 
17663 static const APInt *isPowerOf2Constant(SDValue V) {
17664   ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
17665   if (!C)
17666     return nullptr;
17667   const APInt *CV = &C->getAPIntValue();
17668   return CV->isPowerOf2() ? CV : nullptr;
17669 }
17670 
17671 SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
17672   // If we have a CMOV, OR and AND combination such as:
17673   //   if (x & CN)
17674   //     y |= CM;
17675   //
17676   // And:
17677   //   * CN is a single bit;
17678   //   * All bits covered by CM are known zero in y
17679   //
17680   // Then we can convert this into a sequence of BFI instructions. This will
17681   // always be a win if CM is a single bit, will always be no worse than the
17682   // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
17683   // three bits (due to the extra IT instruction).
17684 
17685   SDValue Op0 = CMOV->getOperand(0);
17686   SDValue Op1 = CMOV->getOperand(1);
17687   auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2));
17688   auto CC = CCNode->getAPIntValue().getLimitedValue();
17689   SDValue CmpZ = CMOV->getOperand(4);
17690 
17691   // The compare must be against zero.
17692   if (!isNullConstant(CmpZ->getOperand(1)))
17693     return SDValue();
17694 
17695   assert(CmpZ->getOpcode() == ARMISD::CMPZ);
17696   SDValue And = CmpZ->getOperand(0);
17697   if (And->getOpcode() != ISD::AND)
17698     return SDValue();
17699   const APInt *AndC = isPowerOf2Constant(And->getOperand(1));
17700   if (!AndC)
17701     return SDValue();
17702   SDValue X = And->getOperand(0);
17703 
17704   if (CC == ARMCC::EQ) {
17705     // We're performing an "equal to zero" compare. Swap the operands so we
17706     // canonicalize on a "not equal to zero" compare.
17707     std::swap(Op0, Op1);
17708   } else {
17709     assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
17710   }
17711 
17712   if (Op1->getOpcode() != ISD::OR)
17713     return SDValue();
17714 
17715   ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
17716   if (!OrC)
17717     return SDValue();
17718   SDValue Y = Op1->getOperand(0);
17719 
17720   if (Op0 != Y)
17721     return SDValue();
17722 
17723   // Now, is it profitable to continue?
17724   APInt OrCI = OrC->getAPIntValue();
17725   unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
17726   if (OrCI.countPopulation() > Heuristic)
17727     return SDValue();
17728 
17729   // Lastly, can we determine that the bits defined by OrCI
17730   // are zero in Y?
17731   KnownBits Known = DAG.computeKnownBits(Y);
17732   if ((OrCI & Known.Zero) != OrCI)
17733     return SDValue();
17734 
17735   // OK, we can do the combine.
17736   SDValue V = Y;
17737   SDLoc dl(X);
17738   EVT VT = X.getValueType();
17739   unsigned BitInX = AndC->logBase2();
17740 
17741   if (BitInX != 0) {
17742     // We must shift X first.
17743     X = DAG.getNode(ISD::SRL, dl, VT, X,
17744                     DAG.getConstant(BitInX, dl, VT));
17745   }
17746 
17747   for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
17748        BitInY < NumActiveBits; ++BitInY) {
17749     if (OrCI[BitInY] == 0)
17750       continue;
17751     APInt Mask(VT.getSizeInBits(), 0);
17752     Mask.setBit(BitInY);
17753     V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
17754                     // Confusingly, the operand is an *inverted* mask.
17755                     DAG.getConstant(~Mask, dl, VT));
17756   }
17757 
17758   return V;
17759 }
17760 
17761 // Given N, the value controlling the conditional branch, search for the loop
17762 // intrinsic, returning it, along with how the value is used. We need to handle
17763 // patterns such as the following:
17764 // (brcond (xor (setcc (loop.decrement), 0, ne), 1), exit)
17765 // (brcond (setcc (loop.decrement), 0, eq), exit)
17766 // (brcond (setcc (loop.decrement), 0, ne), header)
17767 static SDValue SearchLoopIntrinsic(SDValue N, ISD::CondCode &CC, int &Imm,
17768                                    bool &Negate) {
17769   switch (N->getOpcode()) {
17770   default:
17771     break;
17772   case ISD::XOR: {
17773     if (!isa<ConstantSDNode>(N.getOperand(1)))
17774       return SDValue();
17775     if (!cast<ConstantSDNode>(N.getOperand(1))->isOne())
17776       return SDValue();
17777     Negate = !Negate;
17778     return SearchLoopIntrinsic(N.getOperand(0), CC, Imm, Negate);
17779   }
17780   case ISD::SETCC: {
17781     auto *Const = dyn_cast<ConstantSDNode>(N.getOperand(1));
17782     if (!Const)
17783       return SDValue();
17784     if (Const->isZero())
17785       Imm = 0;
17786     else if (Const->isOne())
17787       Imm = 1;
17788     else
17789       return SDValue();
17790     CC = cast<CondCodeSDNode>(N.getOperand(2))->get();
17791     return SearchLoopIntrinsic(N->getOperand(0), CC, Imm, Negate);
17792   }
17793   case ISD::INTRINSIC_W_CHAIN: {
17794     unsigned IntOp = cast<ConstantSDNode>(N.getOperand(1))->getZExtValue();
17795     if (IntOp != Intrinsic::test_start_loop_iterations &&
17796         IntOp != Intrinsic::loop_decrement_reg)
17797       return SDValue();
17798     return N;
17799   }
17800   }
17801   return SDValue();
17802 }
17803 
17804 static SDValue PerformHWLoopCombine(SDNode *N,
17805                                     TargetLowering::DAGCombinerInfo &DCI,
17806                                     const ARMSubtarget *ST) {
17807 
17808   // The hwloop intrinsics that we're interested are used for control-flow,
17809   // either for entering or exiting the loop:
17810   // - test.start.loop.iterations will test whether its operand is zero. If it
17811   //   is zero, the proceeding branch should not enter the loop.
17812   // - loop.decrement.reg also tests whether its operand is zero. If it is
17813   //   zero, the proceeding branch should not branch back to the beginning of
17814   //   the loop.
17815   // So here, we need to check that how the brcond is using the result of each
17816   // of the intrinsics to ensure that we're branching to the right place at the
17817   // right time.
17818 
17819   ISD::CondCode CC;
17820   SDValue Cond;
17821   int Imm = 1;
17822   bool Negate = false;
17823   SDValue Chain = N->getOperand(0);
17824   SDValue Dest;
17825 
17826   if (N->getOpcode() == ISD::BRCOND) {
17827     CC = ISD::SETEQ;
17828     Cond = N->getOperand(1);
17829     Dest = N->getOperand(2);
17830   } else {
17831     assert(N->getOpcode() == ISD::BR_CC && "Expected BRCOND or BR_CC!");
17832     CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
17833     Cond = N->getOperand(2);
17834     Dest = N->getOperand(4);
17835     if (auto *Const = dyn_cast<ConstantSDNode>(N->getOperand(3))) {
17836       if (!Const->isOne() && !Const->isZero())
17837         return SDValue();
17838       Imm = Const->getZExtValue();
17839     } else
17840       return SDValue();
17841   }
17842 
17843   SDValue Int = SearchLoopIntrinsic(Cond, CC, Imm, Negate);
17844   if (!Int)
17845     return SDValue();
17846 
17847   if (Negate)
17848     CC = ISD::getSetCCInverse(CC, /* Integer inverse */ MVT::i32);
17849 
17850   auto IsTrueIfZero = [](ISD::CondCode CC, int Imm) {
17851     return (CC == ISD::SETEQ && Imm == 0) ||
17852            (CC == ISD::SETNE && Imm == 1) ||
17853            (CC == ISD::SETLT && Imm == 1) ||
17854            (CC == ISD::SETULT && Imm == 1);
17855   };
17856 
17857   auto IsFalseIfZero = [](ISD::CondCode CC, int Imm) {
17858     return (CC == ISD::SETEQ && Imm == 1) ||
17859            (CC == ISD::SETNE && Imm == 0) ||
17860            (CC == ISD::SETGT && Imm == 0) ||
17861            (CC == ISD::SETUGT && Imm == 0) ||
17862            (CC == ISD::SETGE && Imm == 1) ||
17863            (CC == ISD::SETUGE && Imm == 1);
17864   };
17865 
17866   assert((IsTrueIfZero(CC, Imm) || IsFalseIfZero(CC, Imm)) &&
17867          "unsupported condition");
17868 
17869   SDLoc dl(Int);
17870   SelectionDAG &DAG = DCI.DAG;
17871   SDValue Elements = Int.getOperand(2);
17872   unsigned IntOp = cast<ConstantSDNode>(Int->getOperand(1))->getZExtValue();
17873   assert((N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BR)
17874           && "expected single br user");
17875   SDNode *Br = *N->use_begin();
17876   SDValue OtherTarget = Br->getOperand(1);
17877 
17878   // Update the unconditional branch to branch to the given Dest.
17879   auto UpdateUncondBr = [](SDNode *Br, SDValue Dest, SelectionDAG &DAG) {
17880     SDValue NewBrOps[] = { Br->getOperand(0), Dest };
17881     SDValue NewBr = DAG.getNode(ISD::BR, SDLoc(Br), MVT::Other, NewBrOps);
17882     DAG.ReplaceAllUsesOfValueWith(SDValue(Br, 0), NewBr);
17883   };
17884 
17885   if (IntOp == Intrinsic::test_start_loop_iterations) {
17886     SDValue Res;
17887     SDValue Setup = DAG.getNode(ARMISD::WLSSETUP, dl, MVT::i32, Elements);
17888     // We expect this 'instruction' to branch when the counter is zero.
17889     if (IsTrueIfZero(CC, Imm)) {
17890       SDValue Ops[] = {Chain, Setup, Dest};
17891       Res = DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops);
17892     } else {
17893       // The logic is the reverse of what we need for WLS, so find the other
17894       // basic block target: the target of the proceeding br.
17895       UpdateUncondBr(Br, Dest, DAG);
17896 
17897       SDValue Ops[] = {Chain, Setup, OtherTarget};
17898       Res = DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops);
17899     }
17900     // Update LR count to the new value
17901     DAG.ReplaceAllUsesOfValueWith(Int.getValue(0), Setup);
17902     // Update chain
17903     DAG.ReplaceAllUsesOfValueWith(Int.getValue(2), Int.getOperand(0));
17904     return Res;
17905   } else {
17906     SDValue Size = DAG.getTargetConstant(
17907       cast<ConstantSDNode>(Int.getOperand(3))->getZExtValue(), dl, MVT::i32);
17908     SDValue Args[] = { Int.getOperand(0), Elements, Size, };
17909     SDValue LoopDec = DAG.getNode(ARMISD::LOOP_DEC, dl,
17910                                   DAG.getVTList(MVT::i32, MVT::Other), Args);
17911     DAG.ReplaceAllUsesWith(Int.getNode(), LoopDec.getNode());
17912 
17913     // We expect this instruction to branch when the count is not zero.
17914     SDValue Target = IsFalseIfZero(CC, Imm) ? Dest : OtherTarget;
17915 
17916     // Update the unconditional branch to target the loop preheader if we've
17917     // found the condition has been reversed.
17918     if (Target == OtherTarget)
17919       UpdateUncondBr(Br, Dest, DAG);
17920 
17921     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
17922                         SDValue(LoopDec.getNode(), 1), Chain);
17923 
17924     SDValue EndArgs[] = { Chain, SDValue(LoopDec.getNode(), 0), Target };
17925     return DAG.getNode(ARMISD::LE, dl, MVT::Other, EndArgs);
17926   }
17927   return SDValue();
17928 }
17929 
17930 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
17931 SDValue
17932 ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const {
17933   SDValue Cmp = N->getOperand(4);
17934   if (Cmp.getOpcode() != ARMISD::CMPZ)
17935     // Only looking at NE cases.
17936     return SDValue();
17937 
17938   EVT VT = N->getValueType(0);
17939   SDLoc dl(N);
17940   SDValue LHS = Cmp.getOperand(0);
17941   SDValue RHS = Cmp.getOperand(1);
17942   SDValue Chain = N->getOperand(0);
17943   SDValue BB = N->getOperand(1);
17944   SDValue ARMcc = N->getOperand(2);
17945   ARMCC::CondCodes CC =
17946     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
17947 
17948   // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
17949   // -> (brcond Chain BB CC CPSR Cmp)
17950   if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() &&
17951       LHS->getOperand(0)->getOpcode() == ARMISD::CMOV &&
17952       LHS->getOperand(0)->hasOneUse()) {
17953     auto *LHS00C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(0));
17954     auto *LHS01C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(1));
17955     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
17956     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
17957     if ((LHS00C && LHS00C->getZExtValue() == 0) &&
17958         (LHS01C && LHS01C->getZExtValue() == 1) &&
17959         (LHS1C && LHS1C->getZExtValue() == 1) &&
17960         (RHSC && RHSC->getZExtValue() == 0)) {
17961       return DAG.getNode(
17962           ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2),
17963           LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4));
17964     }
17965   }
17966 
17967   return SDValue();
17968 }
17969 
17970 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
17971 SDValue
17972 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
17973   SDValue Cmp = N->getOperand(4);
17974   if (Cmp.getOpcode() != ARMISD::CMPZ)
17975     // Only looking at EQ and NE cases.
17976     return SDValue();
17977 
17978   EVT VT = N->getValueType(0);
17979   SDLoc dl(N);
17980   SDValue LHS = Cmp.getOperand(0);
17981   SDValue RHS = Cmp.getOperand(1);
17982   SDValue FalseVal = N->getOperand(0);
17983   SDValue TrueVal = N->getOperand(1);
17984   SDValue ARMcc = N->getOperand(2);
17985   ARMCC::CondCodes CC =
17986     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
17987 
17988   // BFI is only available on V6T2+.
17989   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
17990     SDValue R = PerformCMOVToBFICombine(N, DAG);
17991     if (R)
17992       return R;
17993   }
17994 
17995   // Simplify
17996   //   mov     r1, r0
17997   //   cmp     r1, x
17998   //   mov     r0, y
17999   //   moveq   r0, x
18000   // to
18001   //   cmp     r0, x
18002   //   movne   r0, y
18003   //
18004   //   mov     r1, r0
18005   //   cmp     r1, x
18006   //   mov     r0, x
18007   //   movne   r0, y
18008   // to
18009   //   cmp     r0, x
18010   //   movne   r0, y
18011   /// FIXME: Turn this into a target neutral optimization?
18012   SDValue Res;
18013   if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
18014     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
18015                       N->getOperand(3), Cmp);
18016   } else if (CC == ARMCC::EQ && TrueVal == RHS) {
18017     SDValue ARMcc;
18018     SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
18019     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
18020                       N->getOperand(3), NewCmp);
18021   }
18022 
18023   // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
18024   // -> (cmov F T CC CPSR Cmp)
18025   if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse()) {
18026     auto *LHS0C = dyn_cast<ConstantSDNode>(LHS->getOperand(0));
18027     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
18028     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
18029     if ((LHS0C && LHS0C->getZExtValue() == 0) &&
18030         (LHS1C && LHS1C->getZExtValue() == 1) &&
18031         (RHSC && RHSC->getZExtValue() == 0)) {
18032       return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
18033                          LHS->getOperand(2), LHS->getOperand(3),
18034                          LHS->getOperand(4));
18035     }
18036   }
18037 
18038   if (!VT.isInteger())
18039       return SDValue();
18040 
18041   // Fold away an unneccessary CMPZ/CMOV
18042   // CMOV A, B, C1, $cpsr, (CMPZ (CMOV 1, 0, C2, D), 0) ->
18043   // if C1==EQ -> CMOV A, B, C2, $cpsr, D
18044   // if C1==NE -> CMOV A, B, NOT(C2), $cpsr, D
18045   if (N->getConstantOperandVal(2) == ARMCC::EQ ||
18046       N->getConstantOperandVal(2) == ARMCC::NE) {
18047     ARMCC::CondCodes Cond;
18048     if (SDValue C = IsCMPZCSINC(N->getOperand(4).getNode(), Cond)) {
18049       if (N->getConstantOperandVal(2) == ARMCC::NE)
18050         Cond = ARMCC::getOppositeCondition(Cond);
18051       return DAG.getNode(N->getOpcode(), SDLoc(N), MVT::i32, N->getOperand(0),
18052                          N->getOperand(1),
18053                          DAG.getTargetConstant(Cond, SDLoc(N), MVT::i32),
18054                          N->getOperand(3), C);
18055     }
18056   }
18057 
18058   // Materialize a boolean comparison for integers so we can avoid branching.
18059   if (isNullConstant(FalseVal)) {
18060     if (CC == ARMCC::EQ && isOneConstant(TrueVal)) {
18061       if (!Subtarget->isThumb1Only() && Subtarget->hasV5TOps()) {
18062         // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
18063         // right 5 bits will make that 32 be 1, otherwise it will be 0.
18064         // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
18065         SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
18066         Res = DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::CTLZ, dl, VT, Sub),
18067                           DAG.getConstant(5, dl, MVT::i32));
18068       } else {
18069         // CMOV 0, 1, ==, (CMPZ x, y) ->
18070         //     (ADDCARRY (SUB x, y), t:0, t:1)
18071         // where t = (SUBCARRY 0, (SUB x, y), 0)
18072         //
18073         // The SUBCARRY computes 0 - (x - y) and this will give a borrow when
18074         // x != y. In other words, a carry C == 1 when x == y, C == 0
18075         // otherwise.
18076         // The final ADDCARRY computes
18077         //     x - y + (0 - (x - y)) + C == C
18078         SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
18079         SDVTList VTs = DAG.getVTList(VT, MVT::i32);
18080         SDValue Neg = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, Sub);
18081         // ISD::SUBCARRY returns a borrow but we want the carry here
18082         // actually.
18083         SDValue Carry =
18084             DAG.getNode(ISD::SUB, dl, MVT::i32,
18085                         DAG.getConstant(1, dl, MVT::i32), Neg.getValue(1));
18086         Res = DAG.getNode(ISD::ADDCARRY, dl, VTs, Sub, Neg, Carry);
18087       }
18088     } else if (CC == ARMCC::NE && !isNullConstant(RHS) &&
18089                (!Subtarget->isThumb1Only() || isPowerOf2Constant(TrueVal))) {
18090       // This seems pointless but will allow us to combine it further below.
18091       // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
18092       SDValue Sub =
18093           DAG.getNode(ARMISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
18094       SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
18095                                           Sub.getValue(1), SDValue());
18096       Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, TrueVal, ARMcc,
18097                         N->getOperand(3), CPSRGlue.getValue(1));
18098       FalseVal = Sub;
18099     }
18100   } else if (isNullConstant(TrueVal)) {
18101     if (CC == ARMCC::EQ && !isNullConstant(RHS) &&
18102         (!Subtarget->isThumb1Only() || isPowerOf2Constant(FalseVal))) {
18103       // This seems pointless but will allow us to combine it further below
18104       // Note that we change == for != as this is the dual for the case above.
18105       // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
18106       SDValue Sub =
18107           DAG.getNode(ARMISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
18108       SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
18109                                           Sub.getValue(1), SDValue());
18110       Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, FalseVal,
18111                         DAG.getConstant(ARMCC::NE, dl, MVT::i32),
18112                         N->getOperand(3), CPSRGlue.getValue(1));
18113       FalseVal = Sub;
18114     }
18115   }
18116 
18117   // On Thumb1, the DAG above may be further combined if z is a power of 2
18118   // (z == 2 ^ K).
18119   // CMOV (SUBS x, y), z, !=, (SUBS x, y):1 ->
18120   // t1 = (USUBO (SUB x, y), 1)
18121   // t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
18122   // Result = if K != 0 then (SHL t2:0, K) else t2:0
18123   //
18124   // This also handles the special case of comparing against zero; it's
18125   // essentially, the same pattern, except there's no SUBS:
18126   // CMOV x, z, !=, (CMPZ x, 0) ->
18127   // t1 = (USUBO x, 1)
18128   // t2 = (SUBCARRY x, t1:0, t1:1)
18129   // Result = if K != 0 then (SHL t2:0, K) else t2:0
18130   const APInt *TrueConst;
18131   if (Subtarget->isThumb1Only() && CC == ARMCC::NE &&
18132       ((FalseVal.getOpcode() == ARMISD::SUBS &&
18133         FalseVal.getOperand(0) == LHS && FalseVal.getOperand(1) == RHS) ||
18134        (FalseVal == LHS && isNullConstant(RHS))) &&
18135       (TrueConst = isPowerOf2Constant(TrueVal))) {
18136     SDVTList VTs = DAG.getVTList(VT, MVT::i32);
18137     unsigned ShiftAmount = TrueConst->logBase2();
18138     if (ShiftAmount)
18139       TrueVal = DAG.getConstant(1, dl, VT);
18140     SDValue Subc = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, TrueVal);
18141     Res = DAG.getNode(ISD::SUBCARRY, dl, VTs, FalseVal, Subc, Subc.getValue(1));
18142 
18143     if (ShiftAmount)
18144       Res = DAG.getNode(ISD::SHL, dl, VT, Res,
18145                         DAG.getConstant(ShiftAmount, dl, MVT::i32));
18146   }
18147 
18148   if (Res.getNode()) {
18149     KnownBits Known = DAG.computeKnownBits(SDValue(N,0));
18150     // Capture demanded bits information that would be otherwise lost.
18151     if (Known.Zero == 0xfffffffe)
18152       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
18153                         DAG.getValueType(MVT::i1));
18154     else if (Known.Zero == 0xffffff00)
18155       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
18156                         DAG.getValueType(MVT::i8));
18157     else if (Known.Zero == 0xffff0000)
18158       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
18159                         DAG.getValueType(MVT::i16));
18160   }
18161 
18162   return Res;
18163 }
18164 
18165 static SDValue PerformBITCASTCombine(SDNode *N,
18166                                      TargetLowering::DAGCombinerInfo &DCI,
18167                                      const ARMSubtarget *ST) {
18168   SelectionDAG &DAG = DCI.DAG;
18169   SDValue Src = N->getOperand(0);
18170   EVT DstVT = N->getValueType(0);
18171 
18172   // Convert v4f32 bitcast (v4i32 vdup (i32)) -> v4f32 vdup (i32) under MVE.
18173   if (ST->hasMVEIntegerOps() && Src.getOpcode() == ARMISD::VDUP) {
18174     EVT SrcVT = Src.getValueType();
18175     if (SrcVT.getScalarSizeInBits() == DstVT.getScalarSizeInBits())
18176       return DAG.getNode(ARMISD::VDUP, SDLoc(N), DstVT, Src.getOperand(0));
18177   }
18178 
18179   // We may have a bitcast of something that has already had this bitcast
18180   // combine performed on it, so skip past any VECTOR_REG_CASTs.
18181   while (Src.getOpcode() == ARMISD::VECTOR_REG_CAST)
18182     Src = Src.getOperand(0);
18183 
18184   // Bitcast from element-wise VMOV or VMVN doesn't need VREV if the VREV that
18185   // would be generated is at least the width of the element type.
18186   EVT SrcVT = Src.getValueType();
18187   if ((Src.getOpcode() == ARMISD::VMOVIMM ||
18188        Src.getOpcode() == ARMISD::VMVNIMM ||
18189        Src.getOpcode() == ARMISD::VMOVFPIMM) &&
18190       SrcVT.getScalarSizeInBits() <= DstVT.getScalarSizeInBits() &&
18191       DAG.getDataLayout().isBigEndian())
18192     return DAG.getNode(ARMISD::VECTOR_REG_CAST, SDLoc(N), DstVT, Src);
18193 
18194   // bitcast(extract(x, n)); bitcast(extract(x, n+1))  ->  VMOVRRD x
18195   if (SDValue R = PerformExtractEltToVMOVRRD(N, DCI))
18196     return R;
18197 
18198   return SDValue();
18199 }
18200 
18201 // Some combines for the MVETrunc truncations legalizer helper. Also lowers the
18202 // node into stack operations after legalizeOps.
18203 SDValue ARMTargetLowering::PerformMVETruncCombine(
18204     SDNode *N, TargetLowering::DAGCombinerInfo &DCI) const {
18205   SelectionDAG &DAG = DCI.DAG;
18206   EVT VT = N->getValueType(0);
18207   SDLoc DL(N);
18208 
18209   // MVETrunc(Undef, Undef) -> Undef
18210   if (all_of(N->ops(), [](SDValue Op) { return Op.isUndef(); }))
18211     return DAG.getUNDEF(VT);
18212 
18213   // MVETrunc(MVETrunc a b, MVETrunc c, d) -> MVETrunc
18214   if (N->getNumOperands() == 2 &&
18215       N->getOperand(0).getOpcode() == ARMISD::MVETRUNC &&
18216       N->getOperand(1).getOpcode() == ARMISD::MVETRUNC)
18217     return DAG.getNode(ARMISD::MVETRUNC, DL, VT, N->getOperand(0).getOperand(0),
18218                        N->getOperand(0).getOperand(1),
18219                        N->getOperand(1).getOperand(0),
18220                        N->getOperand(1).getOperand(1));
18221 
18222   // MVETrunc(shuffle, shuffle) -> VMOVN
18223   if (N->getNumOperands() == 2 &&
18224       N->getOperand(0).getOpcode() == ISD::VECTOR_SHUFFLE &&
18225       N->getOperand(1).getOpcode() == ISD::VECTOR_SHUFFLE) {
18226     auto *S0 = cast<ShuffleVectorSDNode>(N->getOperand(0).getNode());
18227     auto *S1 = cast<ShuffleVectorSDNode>(N->getOperand(1).getNode());
18228 
18229     if (S0->getOperand(0) == S1->getOperand(0) &&
18230         S0->getOperand(1) == S1->getOperand(1)) {
18231       // Construct complete shuffle mask
18232       SmallVector<int, 8> Mask(S0->getMask().begin(), S0->getMask().end());
18233       Mask.append(S1->getMask().begin(), S1->getMask().end());
18234 
18235       if (isVMOVNTruncMask(Mask, VT, false))
18236         return DAG.getNode(
18237             ARMISD::VMOVN, DL, VT,
18238             DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, S0->getOperand(0)),
18239             DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, S0->getOperand(1)),
18240             DAG.getConstant(1, DL, MVT::i32));
18241       if (isVMOVNTruncMask(Mask, VT, true))
18242         return DAG.getNode(
18243             ARMISD::VMOVN, DL, VT,
18244             DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, S0->getOperand(1)),
18245             DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, S0->getOperand(0)),
18246             DAG.getConstant(1, DL, MVT::i32));
18247     }
18248   }
18249 
18250   // For MVETrunc of a buildvector or shuffle, it can be beneficial to lower the
18251   // truncate to a buildvector to allow the generic optimisations to kick in.
18252   if (all_of(N->ops(), [](SDValue Op) {
18253         return Op.getOpcode() == ISD::BUILD_VECTOR ||
18254                Op.getOpcode() == ISD::VECTOR_SHUFFLE ||
18255                (Op.getOpcode() == ISD::BITCAST &&
18256                 Op.getOperand(0).getOpcode() == ISD::BUILD_VECTOR);
18257       })) {
18258     SmallVector<SDValue, 8> Extracts;
18259     for (unsigned Op = 0; Op < N->getNumOperands(); Op++) {
18260       SDValue O = N->getOperand(Op);
18261       for (unsigned i = 0; i < O.getValueType().getVectorNumElements(); i++) {
18262         SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, O,
18263                                   DAG.getConstant(i, DL, MVT::i32));
18264         Extracts.push_back(Ext);
18265       }
18266     }
18267     return DAG.getBuildVector(VT, DL, Extracts);
18268   }
18269 
18270   // If we are late in the legalization process and nothing has optimised
18271   // the trunc to anything better, lower it to a stack store and reload,
18272   // performing the truncation whilst keeping the lanes in the correct order:
18273   //   VSTRH.32 a, stack; VSTRH.32 b, stack+8; VLDRW.32 stack;
18274   if (!DCI.isAfterLegalizeDAG())
18275     return SDValue();
18276 
18277   SDValue StackPtr = DAG.CreateStackTemporary(TypeSize::Fixed(16), Align(4));
18278   int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
18279   int NumIns = N->getNumOperands();
18280   assert((NumIns == 2 || NumIns == 4) &&
18281          "Expected 2 or 4 inputs to an MVETrunc");
18282   EVT StoreVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
18283   if (N->getNumOperands() == 4)
18284     StoreVT = StoreVT.getHalfNumVectorElementsVT(*DAG.getContext());
18285 
18286   SmallVector<SDValue> Chains;
18287   for (int I = 0; I < NumIns; I++) {
18288     SDValue Ptr = DAG.getNode(
18289         ISD::ADD, DL, StackPtr.getValueType(), StackPtr,
18290         DAG.getConstant(I * 16 / NumIns, DL, StackPtr.getValueType()));
18291     MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(
18292         DAG.getMachineFunction(), SPFI, I * 16 / NumIns);
18293     SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), DL, N->getOperand(I),
18294                                    Ptr, MPI, StoreVT, Align(4));
18295     Chains.push_back(Ch);
18296   }
18297 
18298   SDValue Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
18299   MachinePointerInfo MPI =
18300       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI, 0);
18301   return DAG.getLoad(VT, DL, Chain, StackPtr, MPI, Align(4));
18302 }
18303 
18304 // Take a MVEEXT(load x) and split that into (extload x, extload x+8)
18305 static SDValue PerformSplittingMVEEXTToWideningLoad(SDNode *N,
18306                                                     SelectionDAG &DAG) {
18307   SDValue N0 = N->getOperand(0);
18308   LoadSDNode *LD = dyn_cast<LoadSDNode>(N0.getNode());
18309   if (!LD || !LD->isSimple() || !N0.hasOneUse() || LD->isIndexed())
18310     return SDValue();
18311 
18312   EVT FromVT = LD->getMemoryVT();
18313   EVT ToVT = N->getValueType(0);
18314   if (!ToVT.isVector())
18315     return SDValue();
18316   assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements() * 2);
18317   EVT ToEltVT = ToVT.getVectorElementType();
18318   EVT FromEltVT = FromVT.getVectorElementType();
18319 
18320   unsigned NumElements = 0;
18321   if (ToEltVT == MVT::i32 && (FromEltVT == MVT::i16 || FromEltVT == MVT::i8))
18322     NumElements = 4;
18323   if (ToEltVT == MVT::i16 && FromEltVT == MVT::i8)
18324     NumElements = 8;
18325   assert(NumElements != 0);
18326 
18327   ISD::LoadExtType NewExtType =
18328       N->getOpcode() == ARMISD::MVESEXT ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
18329   if (LD->getExtensionType() != ISD::NON_EXTLOAD &&
18330       LD->getExtensionType() != ISD::EXTLOAD &&
18331       LD->getExtensionType() != NewExtType)
18332     return SDValue();
18333 
18334   LLVMContext &C = *DAG.getContext();
18335   SDLoc DL(LD);
18336   // Details about the old load
18337   SDValue Ch = LD->getChain();
18338   SDValue BasePtr = LD->getBasePtr();
18339   Align Alignment = LD->getOriginalAlign();
18340   MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
18341   AAMDNodes AAInfo = LD->getAAInfo();
18342 
18343   SDValue Offset = DAG.getUNDEF(BasePtr.getValueType());
18344   EVT NewFromVT = EVT::getVectorVT(
18345       C, EVT::getIntegerVT(C, FromEltVT.getScalarSizeInBits()), NumElements);
18346   EVT NewToVT = EVT::getVectorVT(
18347       C, EVT::getIntegerVT(C, ToEltVT.getScalarSizeInBits()), NumElements);
18348 
18349   SmallVector<SDValue, 4> Loads;
18350   SmallVector<SDValue, 4> Chains;
18351   for (unsigned i = 0; i < FromVT.getVectorNumElements() / NumElements; i++) {
18352     unsigned NewOffset = (i * NewFromVT.getSizeInBits()) / 8;
18353     SDValue NewPtr =
18354         DAG.getObjectPtrOffset(DL, BasePtr, TypeSize::Fixed(NewOffset));
18355 
18356     SDValue NewLoad =
18357         DAG.getLoad(ISD::UNINDEXED, NewExtType, NewToVT, DL, Ch, NewPtr, Offset,
18358                     LD->getPointerInfo().getWithOffset(NewOffset), NewFromVT,
18359                     Alignment, MMOFlags, AAInfo);
18360     Loads.push_back(NewLoad);
18361     Chains.push_back(SDValue(NewLoad.getNode(), 1));
18362   }
18363 
18364   SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
18365   DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewChain);
18366   return DAG.getMergeValues(Loads, DL);
18367 }
18368 
18369 // Perform combines for MVEEXT. If it has not be optimized to anything better
18370 // before lowering, it gets converted to stack store and extloads performing the
18371 // extend whilst still keeping the same lane ordering.
18372 SDValue ARMTargetLowering::PerformMVEExtCombine(
18373     SDNode *N, TargetLowering::DAGCombinerInfo &DCI) const {
18374   SelectionDAG &DAG = DCI.DAG;
18375   EVT VT = N->getValueType(0);
18376   SDLoc DL(N);
18377   assert(N->getNumValues() == 2 && "Expected MVEEXT with 2 elements");
18378   assert((VT == MVT::v4i32 || VT == MVT::v8i16) && "Unexpected MVEEXT type");
18379 
18380   EVT ExtVT = N->getOperand(0).getValueType().getHalfNumVectorElementsVT(
18381       *DAG.getContext());
18382   auto Extend = [&](SDValue V) {
18383     SDValue VVT = DAG.getNode(ARMISD::VECTOR_REG_CAST, DL, VT, V);
18384     return N->getOpcode() == ARMISD::MVESEXT
18385                ? DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, VVT,
18386                              DAG.getValueType(ExtVT))
18387                : DAG.getZeroExtendInReg(VVT, DL, ExtVT);
18388   };
18389 
18390   // MVEEXT(VDUP) -> SIGN_EXTEND_INREG(VDUP)
18391   if (N->getOperand(0).getOpcode() == ARMISD::VDUP) {
18392     SDValue Ext = Extend(N->getOperand(0));
18393     return DAG.getMergeValues({Ext, Ext}, DL);
18394   }
18395 
18396   // MVEEXT(shuffle) -> SIGN_EXTEND_INREG/ZERO_EXTEND_INREG
18397   if (auto *SVN = dyn_cast<ShuffleVectorSDNode>(N->getOperand(0))) {
18398     ArrayRef<int> Mask = SVN->getMask();
18399     assert(Mask.size() == 2 * VT.getVectorNumElements());
18400     assert(Mask.size() == SVN->getValueType(0).getVectorNumElements());
18401     unsigned Rev = VT == MVT::v4i32 ? ARMISD::VREV32 : ARMISD::VREV16;
18402     SDValue Op0 = SVN->getOperand(0);
18403     SDValue Op1 = SVN->getOperand(1);
18404 
18405     auto CheckInregMask = [&](int Start, int Offset) {
18406       for (int Idx = 0, E = VT.getVectorNumElements(); Idx < E; ++Idx)
18407         if (Mask[Start + Idx] >= 0 && Mask[Start + Idx] != Idx * 2 + Offset)
18408           return false;
18409       return true;
18410     };
18411     SDValue V0 = SDValue(N, 0);
18412     SDValue V1 = SDValue(N, 1);
18413     if (CheckInregMask(0, 0))
18414       V0 = Extend(Op0);
18415     else if (CheckInregMask(0, 1))
18416       V0 = Extend(DAG.getNode(Rev, DL, SVN->getValueType(0), Op0));
18417     else if (CheckInregMask(0, Mask.size()))
18418       V0 = Extend(Op1);
18419     else if (CheckInregMask(0, Mask.size() + 1))
18420       V0 = Extend(DAG.getNode(Rev, DL, SVN->getValueType(0), Op1));
18421 
18422     if (CheckInregMask(VT.getVectorNumElements(), Mask.size()))
18423       V1 = Extend(Op1);
18424     else if (CheckInregMask(VT.getVectorNumElements(), Mask.size() + 1))
18425       V1 = Extend(DAG.getNode(Rev, DL, SVN->getValueType(0), Op1));
18426     else if (CheckInregMask(VT.getVectorNumElements(), 0))
18427       V1 = Extend(Op0);
18428     else if (CheckInregMask(VT.getVectorNumElements(), 1))
18429       V1 = Extend(DAG.getNode(Rev, DL, SVN->getValueType(0), Op0));
18430 
18431     if (V0.getNode() != N || V1.getNode() != N)
18432       return DAG.getMergeValues({V0, V1}, DL);
18433   }
18434 
18435   // MVEEXT(load) -> extload, extload
18436   if (N->getOperand(0)->getOpcode() == ISD::LOAD)
18437     if (SDValue L = PerformSplittingMVEEXTToWideningLoad(N, DAG))
18438       return L;
18439 
18440   if (!DCI.isAfterLegalizeDAG())
18441     return SDValue();
18442 
18443   // Lower to a stack store and reload:
18444   //  VSTRW.32 a, stack; VLDRH.32 stack; VLDRH.32 stack+8;
18445   SDValue StackPtr = DAG.CreateStackTemporary(TypeSize::Fixed(16), Align(4));
18446   int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
18447   int NumOuts = N->getNumValues();
18448   assert((NumOuts == 2 || NumOuts == 4) &&
18449          "Expected 2 or 4 outputs to an MVEEXT");
18450   EVT LoadVT = N->getOperand(0).getValueType().getHalfNumVectorElementsVT(
18451       *DAG.getContext());
18452   if (N->getNumOperands() == 4)
18453     LoadVT = LoadVT.getHalfNumVectorElementsVT(*DAG.getContext());
18454 
18455   MachinePointerInfo MPI =
18456       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI, 0);
18457   SDValue Chain = DAG.getStore(DAG.getEntryNode(), DL, N->getOperand(0),
18458                                StackPtr, MPI, Align(4));
18459 
18460   SmallVector<SDValue> Loads;
18461   for (int I = 0; I < NumOuts; I++) {
18462     SDValue Ptr = DAG.getNode(
18463         ISD::ADD, DL, StackPtr.getValueType(), StackPtr,
18464         DAG.getConstant(I * 16 / NumOuts, DL, StackPtr.getValueType()));
18465     MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(
18466         DAG.getMachineFunction(), SPFI, I * 16 / NumOuts);
18467     SDValue Load = DAG.getExtLoad(
18468         N->getOpcode() == ARMISD::MVESEXT ? ISD::SEXTLOAD : ISD::ZEXTLOAD, DL,
18469         VT, Chain, Ptr, MPI, LoadVT, Align(4));
18470     Loads.push_back(Load);
18471   }
18472 
18473   return DAG.getMergeValues(Loads, DL);
18474 }
18475 
18476 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
18477                                              DAGCombinerInfo &DCI) const {
18478   switch (N->getOpcode()) {
18479   default: break;
18480   case ISD::SELECT_CC:
18481   case ISD::SELECT:     return PerformSELECTCombine(N, DCI, Subtarget);
18482   case ISD::VSELECT:    return PerformVSELECTCombine(N, DCI, Subtarget);
18483   case ISD::SETCC:      return PerformVSetCCToVCTPCombine(N, DCI, Subtarget);
18484   case ISD::ABS:        return PerformABSCombine(N, DCI, Subtarget);
18485   case ARMISD::ADDE:    return PerformADDECombine(N, DCI, Subtarget);
18486   case ARMISD::UMLAL:   return PerformUMLALCombine(N, DCI.DAG, Subtarget);
18487   case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
18488   case ISD::SUB:        return PerformSUBCombine(N, DCI, Subtarget);
18489   case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
18490   case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
18491   case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
18492   case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
18493   case ISD::BRCOND:
18494   case ISD::BR_CC:      return PerformHWLoopCombine(N, DCI, Subtarget);
18495   case ARMISD::ADDC:
18496   case ARMISD::SUBC:    return PerformAddcSubcCombine(N, DCI, Subtarget);
18497   case ARMISD::SUBE:    return PerformAddeSubeCombine(N, DCI, Subtarget);
18498   case ARMISD::BFI:     return PerformBFICombine(N, DCI.DAG);
18499   case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
18500   case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
18501   case ARMISD::VMOVhr:  return PerformVMOVhrCombine(N, DCI);
18502   case ARMISD::VMOVrh:  return PerformVMOVrhCombine(N, DCI.DAG);
18503   case ISD::STORE:      return PerformSTORECombine(N, DCI, Subtarget);
18504   case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
18505   case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
18506   case ISD::EXTRACT_VECTOR_ELT:
18507     return PerformExtractEltCombine(N, DCI, Subtarget);
18508   case ISD::SIGN_EXTEND_INREG: return PerformSignExtendInregCombine(N, DCI.DAG);
18509   case ISD::INSERT_SUBVECTOR: return PerformInsertSubvectorCombine(N, DCI);
18510   case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
18511   case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI, Subtarget);
18512   case ARMISD::VDUP: return PerformVDUPCombine(N, DCI.DAG, Subtarget);
18513   case ISD::FP_TO_SINT:
18514   case ISD::FP_TO_UINT:
18515     return PerformVCVTCombine(N, DCI.DAG, Subtarget);
18516   case ISD::FADD:
18517     return PerformFAddVSelectCombine(N, DCI.DAG, Subtarget);
18518   case ISD::FDIV:
18519     return PerformVDIVCombine(N, DCI.DAG, Subtarget);
18520   case ISD::INTRINSIC_WO_CHAIN:
18521     return PerformIntrinsicCombine(N, DCI);
18522   case ISD::SHL:
18523   case ISD::SRA:
18524   case ISD::SRL:
18525     return PerformShiftCombine(N, DCI, Subtarget);
18526   case ISD::SIGN_EXTEND:
18527   case ISD::ZERO_EXTEND:
18528   case ISD::ANY_EXTEND:
18529     return PerformExtendCombine(N, DCI.DAG, Subtarget);
18530   case ISD::FP_EXTEND:
18531     return PerformFPExtendCombine(N, DCI.DAG, Subtarget);
18532   case ISD::SMIN:
18533   case ISD::UMIN:
18534   case ISD::SMAX:
18535   case ISD::UMAX:
18536     return PerformMinMaxCombine(N, DCI.DAG, Subtarget);
18537   case ARMISD::CMOV:
18538     return PerformCMOVCombine(N, DCI.DAG);
18539   case ARMISD::BRCOND:
18540     return PerformBRCONDCombine(N, DCI.DAG);
18541   case ARMISD::CMPZ:
18542     return PerformCMPZCombine(N, DCI.DAG);
18543   case ARMISD::CSINC:
18544   case ARMISD::CSINV:
18545   case ARMISD::CSNEG:
18546     return PerformCSETCombine(N, DCI.DAG);
18547   case ISD::LOAD:
18548     return PerformLOADCombine(N, DCI, Subtarget);
18549   case ARMISD::VLD1DUP:
18550   case ARMISD::VLD2DUP:
18551   case ARMISD::VLD3DUP:
18552   case ARMISD::VLD4DUP:
18553     return PerformVLDCombine(N, DCI);
18554   case ARMISD::BUILD_VECTOR:
18555     return PerformARMBUILD_VECTORCombine(N, DCI);
18556   case ISD::BITCAST:
18557     return PerformBITCASTCombine(N, DCI, Subtarget);
18558   case ARMISD::PREDICATE_CAST:
18559     return PerformPREDICATE_CASTCombine(N, DCI);
18560   case ARMISD::VECTOR_REG_CAST:
18561     return PerformVECTOR_REG_CASTCombine(N, DCI.DAG, Subtarget);
18562   case ARMISD::MVETRUNC:
18563     return PerformMVETruncCombine(N, DCI);
18564   case ARMISD::MVESEXT:
18565   case ARMISD::MVEZEXT:
18566     return PerformMVEExtCombine(N, DCI);
18567   case ARMISD::VCMP:
18568     return PerformVCMPCombine(N, DCI.DAG, Subtarget);
18569   case ISD::VECREDUCE_ADD:
18570     return PerformVECREDUCE_ADDCombine(N, DCI.DAG, Subtarget);
18571   case ARMISD::VMOVN:
18572     return PerformVMOVNCombine(N, DCI);
18573   case ARMISD::VQMOVNs:
18574   case ARMISD::VQMOVNu:
18575     return PerformVQMOVNCombine(N, DCI);
18576   case ARMISD::ASRL:
18577   case ARMISD::LSRL:
18578   case ARMISD::LSLL:
18579     return PerformLongShiftCombine(N, DCI.DAG);
18580   case ARMISD::SMULWB: {
18581     unsigned BitWidth = N->getValueType(0).getSizeInBits();
18582     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
18583     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
18584       return SDValue();
18585     break;
18586   }
18587   case ARMISD::SMULWT: {
18588     unsigned BitWidth = N->getValueType(0).getSizeInBits();
18589     APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
18590     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
18591       return SDValue();
18592     break;
18593   }
18594   case ARMISD::SMLALBB:
18595   case ARMISD::QADD16b:
18596   case ARMISD::QSUB16b:
18597   case ARMISD::UQADD16b:
18598   case ARMISD::UQSUB16b: {
18599     unsigned BitWidth = N->getValueType(0).getSizeInBits();
18600     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
18601     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
18602         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
18603       return SDValue();
18604     break;
18605   }
18606   case ARMISD::SMLALBT: {
18607     unsigned LowWidth = N->getOperand(0).getValueType().getSizeInBits();
18608     APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
18609     unsigned HighWidth = N->getOperand(1).getValueType().getSizeInBits();
18610     APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
18611     if ((SimplifyDemandedBits(N->getOperand(0), LowMask, DCI)) ||
18612         (SimplifyDemandedBits(N->getOperand(1), HighMask, DCI)))
18613       return SDValue();
18614     break;
18615   }
18616   case ARMISD::SMLALTB: {
18617     unsigned HighWidth = N->getOperand(0).getValueType().getSizeInBits();
18618     APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
18619     unsigned LowWidth = N->getOperand(1).getValueType().getSizeInBits();
18620     APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
18621     if ((SimplifyDemandedBits(N->getOperand(0), HighMask, DCI)) ||
18622         (SimplifyDemandedBits(N->getOperand(1), LowMask, DCI)))
18623       return SDValue();
18624     break;
18625   }
18626   case ARMISD::SMLALTT: {
18627     unsigned BitWidth = N->getValueType(0).getSizeInBits();
18628     APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
18629     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
18630         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
18631       return SDValue();
18632     break;
18633   }
18634   case ARMISD::QADD8b:
18635   case ARMISD::QSUB8b:
18636   case ARMISD::UQADD8b:
18637   case ARMISD::UQSUB8b: {
18638     unsigned BitWidth = N->getValueType(0).getSizeInBits();
18639     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
18640     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
18641         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
18642       return SDValue();
18643     break;
18644   }
18645   case ISD::INTRINSIC_VOID:
18646   case ISD::INTRINSIC_W_CHAIN:
18647     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
18648     case Intrinsic::arm_neon_vld1:
18649     case Intrinsic::arm_neon_vld1x2:
18650     case Intrinsic::arm_neon_vld1x3:
18651     case Intrinsic::arm_neon_vld1x4:
18652     case Intrinsic::arm_neon_vld2:
18653     case Intrinsic::arm_neon_vld3:
18654     case Intrinsic::arm_neon_vld4:
18655     case Intrinsic::arm_neon_vld2lane:
18656     case Intrinsic::arm_neon_vld3lane:
18657     case Intrinsic::arm_neon_vld4lane:
18658     case Intrinsic::arm_neon_vld2dup:
18659     case Intrinsic::arm_neon_vld3dup:
18660     case Intrinsic::arm_neon_vld4dup:
18661     case Intrinsic::arm_neon_vst1:
18662     case Intrinsic::arm_neon_vst1x2:
18663     case Intrinsic::arm_neon_vst1x3:
18664     case Intrinsic::arm_neon_vst1x4:
18665     case Intrinsic::arm_neon_vst2:
18666     case Intrinsic::arm_neon_vst3:
18667     case Intrinsic::arm_neon_vst4:
18668     case Intrinsic::arm_neon_vst2lane:
18669     case Intrinsic::arm_neon_vst3lane:
18670     case Intrinsic::arm_neon_vst4lane:
18671       return PerformVLDCombine(N, DCI);
18672     case Intrinsic::arm_mve_vld2q:
18673     case Intrinsic::arm_mve_vld4q:
18674     case Intrinsic::arm_mve_vst2q:
18675     case Intrinsic::arm_mve_vst4q:
18676       return PerformMVEVLDCombine(N, DCI);
18677     default: break;
18678     }
18679     break;
18680   }
18681   return SDValue();
18682 }
18683 
18684 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
18685                                                           EVT VT) const {
18686   return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
18687 }
18688 
18689 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned,
18690                                                        Align Alignment,
18691                                                        MachineMemOperand::Flags,
18692                                                        bool *Fast) const {
18693   // Depends what it gets converted into if the type is weird.
18694   if (!VT.isSimple())
18695     return false;
18696 
18697   // The AllowsUnaligned flag models the SCTLR.A setting in ARM cpus
18698   bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
18699   auto Ty = VT.getSimpleVT().SimpleTy;
18700 
18701   if (Ty == MVT::i8 || Ty == MVT::i16 || Ty == MVT::i32) {
18702     // Unaligned access can use (for example) LRDB, LRDH, LDR
18703     if (AllowsUnaligned) {
18704       if (Fast)
18705         *Fast = Subtarget->hasV7Ops();
18706       return true;
18707     }
18708   }
18709 
18710   if (Ty == MVT::f64 || Ty == MVT::v2f64) {
18711     // For any little-endian targets with neon, we can support unaligned ld/st
18712     // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
18713     // A big-endian target may also explicitly support unaligned accesses
18714     if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
18715       if (Fast)
18716         *Fast = true;
18717       return true;
18718     }
18719   }
18720 
18721   if (!Subtarget->hasMVEIntegerOps())
18722     return false;
18723 
18724   // These are for predicates
18725   if ((Ty == MVT::v16i1 || Ty == MVT::v8i1 || Ty == MVT::v4i1 ||
18726        Ty == MVT::v2i1)) {
18727     if (Fast)
18728       *Fast = true;
18729     return true;
18730   }
18731 
18732   // These are for truncated stores/narrowing loads. They are fine so long as
18733   // the alignment is at least the size of the item being loaded
18734   if ((Ty == MVT::v4i8 || Ty == MVT::v8i8 || Ty == MVT::v4i16) &&
18735       Alignment >= VT.getScalarSizeInBits() / 8) {
18736     if (Fast)
18737       *Fast = true;
18738     return true;
18739   }
18740 
18741   // In little-endian MVE, the store instructions VSTRB.U8, VSTRH.U16 and
18742   // VSTRW.U32 all store the vector register in exactly the same format, and
18743   // differ only in the range of their immediate offset field and the required
18744   // alignment. So there is always a store that can be used, regardless of
18745   // actual type.
18746   //
18747   // For big endian, that is not the case. But can still emit a (VSTRB.U8;
18748   // VREV64.8) pair and get the same effect. This will likely be better than
18749   // aligning the vector through the stack.
18750   if (Ty == MVT::v16i8 || Ty == MVT::v8i16 || Ty == MVT::v8f16 ||
18751       Ty == MVT::v4i32 || Ty == MVT::v4f32 || Ty == MVT::v2i64 ||
18752       Ty == MVT::v2f64) {
18753     if (Fast)
18754       *Fast = true;
18755     return true;
18756   }
18757 
18758   return false;
18759 }
18760 
18761 
18762 EVT ARMTargetLowering::getOptimalMemOpType(
18763     const MemOp &Op, const AttributeList &FuncAttributes) const {
18764   // See if we can use NEON instructions for this...
18765   if ((Op.isMemcpy() || Op.isZeroMemset()) && Subtarget->hasNEON() &&
18766       !FuncAttributes.hasFnAttr(Attribute::NoImplicitFloat)) {
18767     bool Fast;
18768     if (Op.size() >= 16 &&
18769         (Op.isAligned(Align(16)) ||
18770          (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, Align(1),
18771                                          MachineMemOperand::MONone, &Fast) &&
18772           Fast))) {
18773       return MVT::v2f64;
18774     } else if (Op.size() >= 8 &&
18775                (Op.isAligned(Align(8)) ||
18776                 (allowsMisalignedMemoryAccesses(
18777                      MVT::f64, 0, Align(1), MachineMemOperand::MONone, &Fast) &&
18778                  Fast))) {
18779       return MVT::f64;
18780     }
18781   }
18782 
18783   // Let the target-independent logic figure it out.
18784   return MVT::Other;
18785 }
18786 
18787 // 64-bit integers are split into their high and low parts and held in two
18788 // different registers, so the trunc is free since the low register can just
18789 // be used.
18790 bool ARMTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
18791   if (!SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
18792     return false;
18793   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
18794   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
18795   return (SrcBits == 64 && DestBits == 32);
18796 }
18797 
18798 bool ARMTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
18799   if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() ||
18800       !DstVT.isInteger())
18801     return false;
18802   unsigned SrcBits = SrcVT.getSizeInBits();
18803   unsigned DestBits = DstVT.getSizeInBits();
18804   return (SrcBits == 64 && DestBits == 32);
18805 }
18806 
18807 bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
18808   if (Val.getOpcode() != ISD::LOAD)
18809     return false;
18810 
18811   EVT VT1 = Val.getValueType();
18812   if (!VT1.isSimple() || !VT1.isInteger() ||
18813       !VT2.isSimple() || !VT2.isInteger())
18814     return false;
18815 
18816   switch (VT1.getSimpleVT().SimpleTy) {
18817   default: break;
18818   case MVT::i1:
18819   case MVT::i8:
18820   case MVT::i16:
18821     // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
18822     return true;
18823   }
18824 
18825   return false;
18826 }
18827 
18828 bool ARMTargetLowering::isFNegFree(EVT VT) const {
18829   if (!VT.isSimple())
18830     return false;
18831 
18832   // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
18833   // negate values directly (fneg is free). So, we don't want to let the DAG
18834   // combiner rewrite fneg into xors and some other instructions.  For f16 and
18835   // FullFP16 argument passing, some bitcast nodes may be introduced,
18836   // triggering this DAG combine rewrite, so we are avoiding that with this.
18837   switch (VT.getSimpleVT().SimpleTy) {
18838   default: break;
18839   case MVT::f16:
18840     return Subtarget->hasFullFP16();
18841   }
18842 
18843   return false;
18844 }
18845 
18846 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
18847 /// of the vector elements.
18848 static bool areExtractExts(Value *Ext1, Value *Ext2) {
18849   auto areExtDoubled = [](Instruction *Ext) {
18850     return Ext->getType()->getScalarSizeInBits() ==
18851            2 * Ext->getOperand(0)->getType()->getScalarSizeInBits();
18852   };
18853 
18854   if (!match(Ext1, m_ZExtOrSExt(m_Value())) ||
18855       !match(Ext2, m_ZExtOrSExt(m_Value())) ||
18856       !areExtDoubled(cast<Instruction>(Ext1)) ||
18857       !areExtDoubled(cast<Instruction>(Ext2)))
18858     return false;
18859 
18860   return true;
18861 }
18862 
18863 /// Check if sinking \p I's operands to I's basic block is profitable, because
18864 /// the operands can be folded into a target instruction, e.g.
18865 /// sext/zext can be folded into vsubl.
18866 bool ARMTargetLowering::shouldSinkOperands(Instruction *I,
18867                                            SmallVectorImpl<Use *> &Ops) const {
18868   if (!I->getType()->isVectorTy())
18869     return false;
18870 
18871   if (Subtarget->hasNEON()) {
18872     switch (I->getOpcode()) {
18873     case Instruction::Sub:
18874     case Instruction::Add: {
18875       if (!areExtractExts(I->getOperand(0), I->getOperand(1)))
18876         return false;
18877       Ops.push_back(&I->getOperandUse(0));
18878       Ops.push_back(&I->getOperandUse(1));
18879       return true;
18880     }
18881     default:
18882       return false;
18883     }
18884   }
18885 
18886   if (!Subtarget->hasMVEIntegerOps())
18887     return false;
18888 
18889   auto IsFMSMul = [&](Instruction *I) {
18890     if (!I->hasOneUse())
18891       return false;
18892     auto *Sub = cast<Instruction>(*I->users().begin());
18893     return Sub->getOpcode() == Instruction::FSub && Sub->getOperand(1) == I;
18894   };
18895   auto IsFMS = [&](Instruction *I) {
18896     if (match(I->getOperand(0), m_FNeg(m_Value())) ||
18897         match(I->getOperand(1), m_FNeg(m_Value())))
18898       return true;
18899     return false;
18900   };
18901 
18902   auto IsSinker = [&](Instruction *I, int Operand) {
18903     switch (I->getOpcode()) {
18904     case Instruction::Add:
18905     case Instruction::Mul:
18906     case Instruction::FAdd:
18907     case Instruction::ICmp:
18908     case Instruction::FCmp:
18909       return true;
18910     case Instruction::FMul:
18911       return !IsFMSMul(I);
18912     case Instruction::Sub:
18913     case Instruction::FSub:
18914     case Instruction::Shl:
18915     case Instruction::LShr:
18916     case Instruction::AShr:
18917       return Operand == 1;
18918     case Instruction::Call:
18919       if (auto *II = dyn_cast<IntrinsicInst>(I)) {
18920         switch (II->getIntrinsicID()) {
18921         case Intrinsic::fma:
18922           return !IsFMS(I);
18923         case Intrinsic::sadd_sat:
18924         case Intrinsic::uadd_sat:
18925         case Intrinsic::arm_mve_add_predicated:
18926         case Intrinsic::arm_mve_mul_predicated:
18927         case Intrinsic::arm_mve_qadd_predicated:
18928         case Intrinsic::arm_mve_vhadd:
18929         case Intrinsic::arm_mve_hadd_predicated:
18930         case Intrinsic::arm_mve_vqdmull:
18931         case Intrinsic::arm_mve_vqdmull_predicated:
18932         case Intrinsic::arm_mve_vqdmulh:
18933         case Intrinsic::arm_mve_qdmulh_predicated:
18934         case Intrinsic::arm_mve_vqrdmulh:
18935         case Intrinsic::arm_mve_qrdmulh_predicated:
18936         case Intrinsic::arm_mve_fma_predicated:
18937           return true;
18938         case Intrinsic::ssub_sat:
18939         case Intrinsic::usub_sat:
18940         case Intrinsic::arm_mve_sub_predicated:
18941         case Intrinsic::arm_mve_qsub_predicated:
18942         case Intrinsic::arm_mve_hsub_predicated:
18943         case Intrinsic::arm_mve_vhsub:
18944           return Operand == 1;
18945         default:
18946           return false;
18947         }
18948       }
18949       return false;
18950     default:
18951       return false;
18952     }
18953   };
18954 
18955   for (auto OpIdx : enumerate(I->operands())) {
18956     Instruction *Op = dyn_cast<Instruction>(OpIdx.value().get());
18957     // Make sure we are not already sinking this operand
18958     if (!Op || any_of(Ops, [&](Use *U) { return U->get() == Op; }))
18959       continue;
18960 
18961     Instruction *Shuffle = Op;
18962     if (Shuffle->getOpcode() == Instruction::BitCast)
18963       Shuffle = dyn_cast<Instruction>(Shuffle->getOperand(0));
18964     // We are looking for a splat that can be sunk.
18965     if (!Shuffle ||
18966         !match(Shuffle, m_Shuffle(
18967                             m_InsertElt(m_Undef(), m_Value(), m_ZeroInt()),
18968                             m_Undef(), m_ZeroMask())))
18969       continue;
18970     if (!IsSinker(I, OpIdx.index()))
18971       continue;
18972 
18973     // All uses of the shuffle should be sunk to avoid duplicating it across gpr
18974     // and vector registers
18975     for (Use &U : Op->uses()) {
18976       Instruction *Insn = cast<Instruction>(U.getUser());
18977       if (!IsSinker(Insn, U.getOperandNo()))
18978         return false;
18979     }
18980 
18981     Ops.push_back(&Shuffle->getOperandUse(0));
18982     if (Shuffle != Op)
18983       Ops.push_back(&Op->getOperandUse(0));
18984     Ops.push_back(&OpIdx.value());
18985   }
18986   return true;
18987 }
18988 
18989 Type *ARMTargetLowering::shouldConvertSplatType(ShuffleVectorInst *SVI) const {
18990   if (!Subtarget->hasMVEIntegerOps())
18991     return nullptr;
18992   Type *SVIType = SVI->getType();
18993   Type *ScalarType = SVIType->getScalarType();
18994 
18995   if (ScalarType->isFloatTy())
18996     return Type::getInt32Ty(SVIType->getContext());
18997   if (ScalarType->isHalfTy())
18998     return Type::getInt16Ty(SVIType->getContext());
18999   return nullptr;
19000 }
19001 
19002 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
19003   EVT VT = ExtVal.getValueType();
19004 
19005   if (!isTypeLegal(VT))
19006     return false;
19007 
19008   if (auto *Ld = dyn_cast<MaskedLoadSDNode>(ExtVal.getOperand(0))) {
19009     if (Ld->isExpandingLoad())
19010       return false;
19011   }
19012 
19013   if (Subtarget->hasMVEIntegerOps())
19014     return true;
19015 
19016   // Don't create a loadext if we can fold the extension into a wide/long
19017   // instruction.
19018   // If there's more than one user instruction, the loadext is desirable no
19019   // matter what.  There can be two uses by the same instruction.
19020   if (ExtVal->use_empty() ||
19021       !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
19022     return true;
19023 
19024   SDNode *U = *ExtVal->use_begin();
19025   if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
19026        U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHLIMM))
19027     return false;
19028 
19029   return true;
19030 }
19031 
19032 bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
19033   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
19034     return false;
19035 
19036   if (!isTypeLegal(EVT::getEVT(Ty1)))
19037     return false;
19038 
19039   assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
19040 
19041   // Assuming the caller doesn't have a zeroext or signext return parameter,
19042   // truncation all the way down to i1 is valid.
19043   return true;
19044 }
19045 
19046 InstructionCost ARMTargetLowering::getScalingFactorCost(const DataLayout &DL,
19047                                                         const AddrMode &AM,
19048                                                         Type *Ty,
19049                                                         unsigned AS) const {
19050   if (isLegalAddressingMode(DL, AM, Ty, AS)) {
19051     if (Subtarget->hasFPAO())
19052       return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster
19053     return 0;
19054   }
19055   return -1;
19056 }
19057 
19058 /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
19059 /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
19060 /// expanded to FMAs when this method returns true, otherwise fmuladd is
19061 /// expanded to fmul + fadd.
19062 ///
19063 /// ARM supports both fused and unfused multiply-add operations; we already
19064 /// lower a pair of fmul and fadd to the latter so it's not clear that there
19065 /// would be a gain or that the gain would be worthwhile enough to risk
19066 /// correctness bugs.
19067 ///
19068 /// For MVE, we set this to true as it helps simplify the need for some
19069 /// patterns (and we don't have the non-fused floating point instruction).
19070 bool ARMTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
19071                                                    EVT VT) const {
19072   if (!VT.isSimple())
19073     return false;
19074 
19075   switch (VT.getSimpleVT().SimpleTy) {
19076   case MVT::v4f32:
19077   case MVT::v8f16:
19078     return Subtarget->hasMVEFloatOps();
19079   case MVT::f16:
19080     return Subtarget->useFPVFMx16();
19081   case MVT::f32:
19082     return Subtarget->useFPVFMx();
19083   case MVT::f64:
19084     return Subtarget->useFPVFMx64();
19085   default:
19086     break;
19087   }
19088 
19089   return false;
19090 }
19091 
19092 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
19093   if (V < 0)
19094     return false;
19095 
19096   unsigned Scale = 1;
19097   switch (VT.getSimpleVT().SimpleTy) {
19098   case MVT::i1:
19099   case MVT::i8:
19100     // Scale == 1;
19101     break;
19102   case MVT::i16:
19103     // Scale == 2;
19104     Scale = 2;
19105     break;
19106   default:
19107     // On thumb1 we load most things (i32, i64, floats, etc) with a LDR
19108     // Scale == 4;
19109     Scale = 4;
19110     break;
19111   }
19112 
19113   if ((V & (Scale - 1)) != 0)
19114     return false;
19115   return isUInt<5>(V / Scale);
19116 }
19117 
19118 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
19119                                       const ARMSubtarget *Subtarget) {
19120   if (!VT.isInteger() && !VT.isFloatingPoint())
19121     return false;
19122   if (VT.isVector() && Subtarget->hasNEON())
19123     return false;
19124   if (VT.isVector() && VT.isFloatingPoint() && Subtarget->hasMVEIntegerOps() &&
19125       !Subtarget->hasMVEFloatOps())
19126     return false;
19127 
19128   bool IsNeg = false;
19129   if (V < 0) {
19130     IsNeg = true;
19131     V = -V;
19132   }
19133 
19134   unsigned NumBytes = std::max((unsigned)VT.getSizeInBits() / 8, 1U);
19135 
19136   // MVE: size * imm7
19137   if (VT.isVector() && Subtarget->hasMVEIntegerOps()) {
19138     switch (VT.getSimpleVT().getVectorElementType().SimpleTy) {
19139     case MVT::i32:
19140     case MVT::f32:
19141       return isShiftedUInt<7,2>(V);
19142     case MVT::i16:
19143     case MVT::f16:
19144       return isShiftedUInt<7,1>(V);
19145     case MVT::i8:
19146       return isUInt<7>(V);
19147     default:
19148       return false;
19149     }
19150   }
19151 
19152   // half VLDR: 2 * imm8
19153   if (VT.isFloatingPoint() && NumBytes == 2 && Subtarget->hasFPRegs16())
19154     return isShiftedUInt<8, 1>(V);
19155   // VLDR and LDRD: 4 * imm8
19156   if ((VT.isFloatingPoint() && Subtarget->hasVFP2Base()) || NumBytes == 8)
19157     return isShiftedUInt<8, 2>(V);
19158 
19159   if (NumBytes == 1 || NumBytes == 2 || NumBytes == 4) {
19160     // + imm12 or - imm8
19161     if (IsNeg)
19162       return isUInt<8>(V);
19163     return isUInt<12>(V);
19164   }
19165 
19166   return false;
19167 }
19168 
19169 /// isLegalAddressImmediate - Return true if the integer value can be used
19170 /// as the offset of the target addressing mode for load / store of the
19171 /// given type.
19172 static bool isLegalAddressImmediate(int64_t V, EVT VT,
19173                                     const ARMSubtarget *Subtarget) {
19174   if (V == 0)
19175     return true;
19176 
19177   if (!VT.isSimple())
19178     return false;
19179 
19180   if (Subtarget->isThumb1Only())
19181     return isLegalT1AddressImmediate(V, VT);
19182   else if (Subtarget->isThumb2())
19183     return isLegalT2AddressImmediate(V, VT, Subtarget);
19184 
19185   // ARM mode.
19186   if (V < 0)
19187     V = - V;
19188   switch (VT.getSimpleVT().SimpleTy) {
19189   default: return false;
19190   case MVT::i1:
19191   case MVT::i8:
19192   case MVT::i32:
19193     // +- imm12
19194     return isUInt<12>(V);
19195   case MVT::i16:
19196     // +- imm8
19197     return isUInt<8>(V);
19198   case MVT::f32:
19199   case MVT::f64:
19200     if (!Subtarget->hasVFP2Base()) // FIXME: NEON?
19201       return false;
19202     return isShiftedUInt<8, 2>(V);
19203   }
19204 }
19205 
19206 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
19207                                                       EVT VT) const {
19208   int Scale = AM.Scale;
19209   if (Scale < 0)
19210     return false;
19211 
19212   switch (VT.getSimpleVT().SimpleTy) {
19213   default: return false;
19214   case MVT::i1:
19215   case MVT::i8:
19216   case MVT::i16:
19217   case MVT::i32:
19218     if (Scale == 1)
19219       return true;
19220     // r + r << imm
19221     Scale = Scale & ~1;
19222     return Scale == 2 || Scale == 4 || Scale == 8;
19223   case MVT::i64:
19224     // FIXME: What are we trying to model here? ldrd doesn't have an r + r
19225     // version in Thumb mode.
19226     // r + r
19227     if (Scale == 1)
19228       return true;
19229     // r * 2 (this can be lowered to r + r).
19230     if (!AM.HasBaseReg && Scale == 2)
19231       return true;
19232     return false;
19233   case MVT::isVoid:
19234     // Note, we allow "void" uses (basically, uses that aren't loads or
19235     // stores), because arm allows folding a scale into many arithmetic
19236     // operations.  This should be made more precise and revisited later.
19237 
19238     // Allow r << imm, but the imm has to be a multiple of two.
19239     if (Scale & 1) return false;
19240     return isPowerOf2_32(Scale);
19241   }
19242 }
19243 
19244 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode &AM,
19245                                                       EVT VT) const {
19246   const int Scale = AM.Scale;
19247 
19248   // Negative scales are not supported in Thumb1.
19249   if (Scale < 0)
19250     return false;
19251 
19252   // Thumb1 addressing modes do not support register scaling excepting the
19253   // following cases:
19254   // 1. Scale == 1 means no scaling.
19255   // 2. Scale == 2 this can be lowered to r + r if there is no base register.
19256   return (Scale == 1) || (!AM.HasBaseReg && Scale == 2);
19257 }
19258 
19259 /// isLegalAddressingMode - Return true if the addressing mode represented
19260 /// by AM is legal for this target, for a load/store of the specified type.
19261 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
19262                                               const AddrMode &AM, Type *Ty,
19263                                               unsigned AS, Instruction *I) const {
19264   EVT VT = getValueType(DL, Ty, true);
19265   if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
19266     return false;
19267 
19268   // Can never fold addr of global into load/store.
19269   if (AM.BaseGV)
19270     return false;
19271 
19272   switch (AM.Scale) {
19273   case 0:  // no scale reg, must be "r+i" or "r", or "i".
19274     break;
19275   default:
19276     // ARM doesn't support any R+R*scale+imm addr modes.
19277     if (AM.BaseOffs)
19278       return false;
19279 
19280     if (!VT.isSimple())
19281       return false;
19282 
19283     if (Subtarget->isThumb1Only())
19284       return isLegalT1ScaledAddressingMode(AM, VT);
19285 
19286     if (Subtarget->isThumb2())
19287       return isLegalT2ScaledAddressingMode(AM, VT);
19288 
19289     int Scale = AM.Scale;
19290     switch (VT.getSimpleVT().SimpleTy) {
19291     default: return false;
19292     case MVT::i1:
19293     case MVT::i8:
19294     case MVT::i32:
19295       if (Scale < 0) Scale = -Scale;
19296       if (Scale == 1)
19297         return true;
19298       // r + r << imm
19299       return isPowerOf2_32(Scale & ~1);
19300     case MVT::i16:
19301     case MVT::i64:
19302       // r +/- r
19303       if (Scale == 1 || (AM.HasBaseReg && Scale == -1))
19304         return true;
19305       // r * 2 (this can be lowered to r + r).
19306       if (!AM.HasBaseReg && Scale == 2)
19307         return true;
19308       return false;
19309 
19310     case MVT::isVoid:
19311       // Note, we allow "void" uses (basically, uses that aren't loads or
19312       // stores), because arm allows folding a scale into many arithmetic
19313       // operations.  This should be made more precise and revisited later.
19314 
19315       // Allow r << imm, but the imm has to be a multiple of two.
19316       if (Scale & 1) return false;
19317       return isPowerOf2_32(Scale);
19318     }
19319   }
19320   return true;
19321 }
19322 
19323 /// isLegalICmpImmediate - Return true if the specified immediate is legal
19324 /// icmp immediate, that is the target has icmp instructions which can compare
19325 /// a register against the immediate without having to materialize the
19326 /// immediate into a register.
19327 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
19328   // Thumb2 and ARM modes can use cmn for negative immediates.
19329   if (!Subtarget->isThumb())
19330     return ARM_AM::getSOImmVal((uint32_t)Imm) != -1 ||
19331            ARM_AM::getSOImmVal(-(uint32_t)Imm) != -1;
19332   if (Subtarget->isThumb2())
19333     return ARM_AM::getT2SOImmVal((uint32_t)Imm) != -1 ||
19334            ARM_AM::getT2SOImmVal(-(uint32_t)Imm) != -1;
19335   // Thumb1 doesn't have cmn, and only 8-bit immediates.
19336   return Imm >= 0 && Imm <= 255;
19337 }
19338 
19339 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
19340 /// *or sub* immediate, that is the target has add or sub instructions which can
19341 /// add a register with the immediate without having to materialize the
19342 /// immediate into a register.
19343 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
19344   // Same encoding for add/sub, just flip the sign.
19345   int64_t AbsImm = std::abs(Imm);
19346   if (!Subtarget->isThumb())
19347     return ARM_AM::getSOImmVal(AbsImm) != -1;
19348   if (Subtarget->isThumb2())
19349     return ARM_AM::getT2SOImmVal(AbsImm) != -1;
19350   // Thumb1 only has 8-bit unsigned immediate.
19351   return AbsImm >= 0 && AbsImm <= 255;
19352 }
19353 
19354 // Return false to prevent folding
19355 // (mul (add r, c0), c1) -> (add (mul r, c1), c0*c1) in DAGCombine,
19356 // if the folding leads to worse code.
19357 bool ARMTargetLowering::isMulAddWithConstProfitable(
19358     const SDValue &AddNode, const SDValue &ConstNode) const {
19359   // Let the DAGCombiner decide for vector types and large types.
19360   const EVT VT = AddNode.getValueType();
19361   if (VT.isVector() || VT.getScalarSizeInBits() > 32)
19362     return true;
19363 
19364   // It is worse if c0 is legal add immediate, while c1*c0 is not
19365   // and has to be composed by at least two instructions.
19366   const ConstantSDNode *C0Node = cast<ConstantSDNode>(AddNode.getOperand(1));
19367   const ConstantSDNode *C1Node = cast<ConstantSDNode>(ConstNode);
19368   const int64_t C0 = C0Node->getSExtValue();
19369   APInt CA = C0Node->getAPIntValue() * C1Node->getAPIntValue();
19370   if (!isLegalAddImmediate(C0) || isLegalAddImmediate(CA.getSExtValue()))
19371     return true;
19372   if (ConstantMaterializationCost((unsigned)CA.getZExtValue(), Subtarget) > 1)
19373     return false;
19374 
19375   // Default to true and let the DAGCombiner decide.
19376   return true;
19377 }
19378 
19379 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
19380                                       bool isSEXTLoad, SDValue &Base,
19381                                       SDValue &Offset, bool &isInc,
19382                                       SelectionDAG &DAG) {
19383   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
19384     return false;
19385 
19386   if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
19387     // AddressingMode 3
19388     Base = Ptr->getOperand(0);
19389     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
19390       int RHSC = (int)RHS->getZExtValue();
19391       if (RHSC < 0 && RHSC > -256) {
19392         assert(Ptr->getOpcode() == ISD::ADD);
19393         isInc = false;
19394         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
19395         return true;
19396       }
19397     }
19398     isInc = (Ptr->getOpcode() == ISD::ADD);
19399     Offset = Ptr->getOperand(1);
19400     return true;
19401   } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
19402     // AddressingMode 2
19403     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
19404       int RHSC = (int)RHS->getZExtValue();
19405       if (RHSC < 0 && RHSC > -0x1000) {
19406         assert(Ptr->getOpcode() == ISD::ADD);
19407         isInc = false;
19408         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
19409         Base = Ptr->getOperand(0);
19410         return true;
19411       }
19412     }
19413 
19414     if (Ptr->getOpcode() == ISD::ADD) {
19415       isInc = true;
19416       ARM_AM::ShiftOpc ShOpcVal=
19417         ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
19418       if (ShOpcVal != ARM_AM::no_shift) {
19419         Base = Ptr->getOperand(1);
19420         Offset = Ptr->getOperand(0);
19421       } else {
19422         Base = Ptr->getOperand(0);
19423         Offset = Ptr->getOperand(1);
19424       }
19425       return true;
19426     }
19427 
19428     isInc = (Ptr->getOpcode() == ISD::ADD);
19429     Base = Ptr->getOperand(0);
19430     Offset = Ptr->getOperand(1);
19431     return true;
19432   }
19433 
19434   // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
19435   return false;
19436 }
19437 
19438 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
19439                                      bool isSEXTLoad, SDValue &Base,
19440                                      SDValue &Offset, bool &isInc,
19441                                      SelectionDAG &DAG) {
19442   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
19443     return false;
19444 
19445   Base = Ptr->getOperand(0);
19446   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
19447     int RHSC = (int)RHS->getZExtValue();
19448     if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
19449       assert(Ptr->getOpcode() == ISD::ADD);
19450       isInc = false;
19451       Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
19452       return true;
19453     } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
19454       isInc = Ptr->getOpcode() == ISD::ADD;
19455       Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
19456       return true;
19457     }
19458   }
19459 
19460   return false;
19461 }
19462 
19463 static bool getMVEIndexedAddressParts(SDNode *Ptr, EVT VT, Align Alignment,
19464                                       bool isSEXTLoad, bool IsMasked, bool isLE,
19465                                       SDValue &Base, SDValue &Offset,
19466                                       bool &isInc, SelectionDAG &DAG) {
19467   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
19468     return false;
19469   if (!isa<ConstantSDNode>(Ptr->getOperand(1)))
19470     return false;
19471 
19472   // We allow LE non-masked loads to change the type (for example use a vldrb.8
19473   // as opposed to a vldrw.32). This can allow extra addressing modes or
19474   // alignments for what is otherwise an equivalent instruction.
19475   bool CanChangeType = isLE && !IsMasked;
19476 
19477   ConstantSDNode *RHS = cast<ConstantSDNode>(Ptr->getOperand(1));
19478   int RHSC = (int)RHS->getZExtValue();
19479 
19480   auto IsInRange = [&](int RHSC, int Limit, int Scale) {
19481     if (RHSC < 0 && RHSC > -Limit * Scale && RHSC % Scale == 0) {
19482       assert(Ptr->getOpcode() == ISD::ADD);
19483       isInc = false;
19484       Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
19485       return true;
19486     } else if (RHSC > 0 && RHSC < Limit * Scale && RHSC % Scale == 0) {
19487       isInc = Ptr->getOpcode() == ISD::ADD;
19488       Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
19489       return true;
19490     }
19491     return false;
19492   };
19493 
19494   // Try to find a matching instruction based on s/zext, Alignment, Offset and
19495   // (in BE/masked) type.
19496   Base = Ptr->getOperand(0);
19497   if (VT == MVT::v4i16) {
19498     if (Alignment >= 2 && IsInRange(RHSC, 0x80, 2))
19499       return true;
19500   } else if (VT == MVT::v4i8 || VT == MVT::v8i8) {
19501     if (IsInRange(RHSC, 0x80, 1))
19502       return true;
19503   } else if (Alignment >= 4 &&
19504              (CanChangeType || VT == MVT::v4i32 || VT == MVT::v4f32) &&
19505              IsInRange(RHSC, 0x80, 4))
19506     return true;
19507   else if (Alignment >= 2 &&
19508            (CanChangeType || VT == MVT::v8i16 || VT == MVT::v8f16) &&
19509            IsInRange(RHSC, 0x80, 2))
19510     return true;
19511   else if ((CanChangeType || VT == MVT::v16i8) && IsInRange(RHSC, 0x80, 1))
19512     return true;
19513   return false;
19514 }
19515 
19516 /// getPreIndexedAddressParts - returns true by value, base pointer and
19517 /// offset pointer and addressing mode by reference if the node's address
19518 /// can be legally represented as pre-indexed load / store address.
19519 bool
19520 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
19521                                              SDValue &Offset,
19522                                              ISD::MemIndexedMode &AM,
19523                                              SelectionDAG &DAG) const {
19524   if (Subtarget->isThumb1Only())
19525     return false;
19526 
19527   EVT VT;
19528   SDValue Ptr;
19529   Align Alignment;
19530   bool isSEXTLoad = false;
19531   bool IsMasked = false;
19532   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
19533     Ptr = LD->getBasePtr();
19534     VT = LD->getMemoryVT();
19535     Alignment = LD->getAlign();
19536     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
19537   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
19538     Ptr = ST->getBasePtr();
19539     VT = ST->getMemoryVT();
19540     Alignment = ST->getAlign();
19541   } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) {
19542     Ptr = LD->getBasePtr();
19543     VT = LD->getMemoryVT();
19544     Alignment = LD->getAlign();
19545     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
19546     IsMasked = true;
19547   } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) {
19548     Ptr = ST->getBasePtr();
19549     VT = ST->getMemoryVT();
19550     Alignment = ST->getAlign();
19551     IsMasked = true;
19552   } else
19553     return false;
19554 
19555   bool isInc;
19556   bool isLegal = false;
19557   if (VT.isVector())
19558     isLegal = Subtarget->hasMVEIntegerOps() &&
19559               getMVEIndexedAddressParts(
19560                   Ptr.getNode(), VT, Alignment, isSEXTLoad, IsMasked,
19561                   Subtarget->isLittle(), Base, Offset, isInc, DAG);
19562   else {
19563     if (Subtarget->isThumb2())
19564       isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
19565                                          Offset, isInc, DAG);
19566     else
19567       isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
19568                                           Offset, isInc, DAG);
19569   }
19570   if (!isLegal)
19571     return false;
19572 
19573   AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
19574   return true;
19575 }
19576 
19577 /// getPostIndexedAddressParts - returns true by value, base pointer and
19578 /// offset pointer and addressing mode by reference if this node can be
19579 /// combined with a load / store to form a post-indexed load / store.
19580 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
19581                                                    SDValue &Base,
19582                                                    SDValue &Offset,
19583                                                    ISD::MemIndexedMode &AM,
19584                                                    SelectionDAG &DAG) const {
19585   EVT VT;
19586   SDValue Ptr;
19587   Align Alignment;
19588   bool isSEXTLoad = false, isNonExt;
19589   bool IsMasked = false;
19590   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
19591     VT = LD->getMemoryVT();
19592     Ptr = LD->getBasePtr();
19593     Alignment = LD->getAlign();
19594     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
19595     isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
19596   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
19597     VT = ST->getMemoryVT();
19598     Ptr = ST->getBasePtr();
19599     Alignment = ST->getAlign();
19600     isNonExt = !ST->isTruncatingStore();
19601   } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) {
19602     VT = LD->getMemoryVT();
19603     Ptr = LD->getBasePtr();
19604     Alignment = LD->getAlign();
19605     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
19606     isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
19607     IsMasked = true;
19608   } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) {
19609     VT = ST->getMemoryVT();
19610     Ptr = ST->getBasePtr();
19611     Alignment = ST->getAlign();
19612     isNonExt = !ST->isTruncatingStore();
19613     IsMasked = true;
19614   } else
19615     return false;
19616 
19617   if (Subtarget->isThumb1Only()) {
19618     // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
19619     // must be non-extending/truncating, i32, with an offset of 4.
19620     assert(Op->getValueType(0) == MVT::i32 && "Non-i32 post-inc op?!");
19621     if (Op->getOpcode() != ISD::ADD || !isNonExt)
19622       return false;
19623     auto *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1));
19624     if (!RHS || RHS->getZExtValue() != 4)
19625       return false;
19626     if (Alignment < Align(4))
19627       return false;
19628 
19629     Offset = Op->getOperand(1);
19630     Base = Op->getOperand(0);
19631     AM = ISD::POST_INC;
19632     return true;
19633   }
19634 
19635   bool isInc;
19636   bool isLegal = false;
19637   if (VT.isVector())
19638     isLegal = Subtarget->hasMVEIntegerOps() &&
19639               getMVEIndexedAddressParts(Op, VT, Alignment, isSEXTLoad, IsMasked,
19640                                         Subtarget->isLittle(), Base, Offset,
19641                                         isInc, DAG);
19642   else {
19643     if (Subtarget->isThumb2())
19644       isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
19645                                          isInc, DAG);
19646     else
19647       isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
19648                                           isInc, DAG);
19649   }
19650   if (!isLegal)
19651     return false;
19652 
19653   if (Ptr != Base) {
19654     // Swap base ptr and offset to catch more post-index load / store when
19655     // it's legal. In Thumb2 mode, offset must be an immediate.
19656     if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
19657         !Subtarget->isThumb2())
19658       std::swap(Base, Offset);
19659 
19660     // Post-indexed load / store update the base pointer.
19661     if (Ptr != Base)
19662       return false;
19663   }
19664 
19665   AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
19666   return true;
19667 }
19668 
19669 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
19670                                                       KnownBits &Known,
19671                                                       const APInt &DemandedElts,
19672                                                       const SelectionDAG &DAG,
19673                                                       unsigned Depth) const {
19674   unsigned BitWidth = Known.getBitWidth();
19675   Known.resetAll();
19676   switch (Op.getOpcode()) {
19677   default: break;
19678   case ARMISD::ADDC:
19679   case ARMISD::ADDE:
19680   case ARMISD::SUBC:
19681   case ARMISD::SUBE:
19682     // Special cases when we convert a carry to a boolean.
19683     if (Op.getResNo() == 0) {
19684       SDValue LHS = Op.getOperand(0);
19685       SDValue RHS = Op.getOperand(1);
19686       // (ADDE 0, 0, C) will give us a single bit.
19687       if (Op->getOpcode() == ARMISD::ADDE && isNullConstant(LHS) &&
19688           isNullConstant(RHS)) {
19689         Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
19690         return;
19691       }
19692     }
19693     break;
19694   case ARMISD::CMOV: {
19695     // Bits are known zero/one if known on the LHS and RHS.
19696     Known = DAG.computeKnownBits(Op.getOperand(0), Depth+1);
19697     if (Known.isUnknown())
19698       return;
19699 
19700     KnownBits KnownRHS = DAG.computeKnownBits(Op.getOperand(1), Depth+1);
19701     Known = KnownBits::commonBits(Known, KnownRHS);
19702     return;
19703   }
19704   case ISD::INTRINSIC_W_CHAIN: {
19705     ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
19706     Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
19707     switch (IntID) {
19708     default: return;
19709     case Intrinsic::arm_ldaex:
19710     case Intrinsic::arm_ldrex: {
19711       EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
19712       unsigned MemBits = VT.getScalarSizeInBits();
19713       Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
19714       return;
19715     }
19716     }
19717   }
19718   case ARMISD::BFI: {
19719     // Conservatively, we can recurse down the first operand
19720     // and just mask out all affected bits.
19721     Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
19722 
19723     // The operand to BFI is already a mask suitable for removing the bits it
19724     // sets.
19725     ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2));
19726     const APInt &Mask = CI->getAPIntValue();
19727     Known.Zero &= Mask;
19728     Known.One &= Mask;
19729     return;
19730   }
19731   case ARMISD::VGETLANEs:
19732   case ARMISD::VGETLANEu: {
19733     const SDValue &SrcSV = Op.getOperand(0);
19734     EVT VecVT = SrcSV.getValueType();
19735     assert(VecVT.isVector() && "VGETLANE expected a vector type");
19736     const unsigned NumSrcElts = VecVT.getVectorNumElements();
19737     ConstantSDNode *Pos = cast<ConstantSDNode>(Op.getOperand(1).getNode());
19738     assert(Pos->getAPIntValue().ult(NumSrcElts) &&
19739            "VGETLANE index out of bounds");
19740     unsigned Idx = Pos->getZExtValue();
19741     APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
19742     Known = DAG.computeKnownBits(SrcSV, DemandedElt, Depth + 1);
19743 
19744     EVT VT = Op.getValueType();
19745     const unsigned DstSz = VT.getScalarSizeInBits();
19746     const unsigned SrcSz = VecVT.getVectorElementType().getSizeInBits();
19747     (void)SrcSz;
19748     assert(SrcSz == Known.getBitWidth());
19749     assert(DstSz > SrcSz);
19750     if (Op.getOpcode() == ARMISD::VGETLANEs)
19751       Known = Known.sext(DstSz);
19752     else {
19753       Known = Known.zext(DstSz);
19754     }
19755     assert(DstSz == Known.getBitWidth());
19756     break;
19757   }
19758   case ARMISD::VMOVrh: {
19759     KnownBits KnownOp = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
19760     assert(KnownOp.getBitWidth() == 16);
19761     Known = KnownOp.zext(32);
19762     break;
19763   }
19764   case ARMISD::CSINC:
19765   case ARMISD::CSINV:
19766   case ARMISD::CSNEG: {
19767     KnownBits KnownOp0 = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
19768     KnownBits KnownOp1 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1);
19769 
19770     // The result is either:
19771     // CSINC: KnownOp0 or KnownOp1 + 1
19772     // CSINV: KnownOp0 or ~KnownOp1
19773     // CSNEG: KnownOp0 or KnownOp1 * -1
19774     if (Op.getOpcode() == ARMISD::CSINC)
19775       KnownOp1 = KnownBits::computeForAddSub(
19776           true, false, KnownOp1, KnownBits::makeConstant(APInt(32, 1)));
19777     else if (Op.getOpcode() == ARMISD::CSINV)
19778       std::swap(KnownOp1.Zero, KnownOp1.One);
19779     else if (Op.getOpcode() == ARMISD::CSNEG)
19780       KnownOp1 = KnownBits::mul(
19781           KnownOp1, KnownBits::makeConstant(APInt(32, -1)));
19782 
19783     Known = KnownBits::commonBits(KnownOp0, KnownOp1);
19784     break;
19785   }
19786   }
19787 }
19788 
19789 bool ARMTargetLowering::targetShrinkDemandedConstant(
19790     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
19791     TargetLoweringOpt &TLO) const {
19792   // Delay optimization, so we don't have to deal with illegal types, or block
19793   // optimizations.
19794   if (!TLO.LegalOps)
19795     return false;
19796 
19797   // Only optimize AND for now.
19798   if (Op.getOpcode() != ISD::AND)
19799     return false;
19800 
19801   EVT VT = Op.getValueType();
19802 
19803   // Ignore vectors.
19804   if (VT.isVector())
19805     return false;
19806 
19807   assert(VT == MVT::i32 && "Unexpected integer type");
19808 
19809   // Make sure the RHS really is a constant.
19810   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
19811   if (!C)
19812     return false;
19813 
19814   unsigned Mask = C->getZExtValue();
19815 
19816   unsigned Demanded = DemandedBits.getZExtValue();
19817   unsigned ShrunkMask = Mask & Demanded;
19818   unsigned ExpandedMask = Mask | ~Demanded;
19819 
19820   // If the mask is all zeros, let the target-independent code replace the
19821   // result with zero.
19822   if (ShrunkMask == 0)
19823     return false;
19824 
19825   // If the mask is all ones, erase the AND. (Currently, the target-independent
19826   // code won't do this, so we have to do it explicitly to avoid an infinite
19827   // loop in obscure cases.)
19828   if (ExpandedMask == ~0U)
19829     return TLO.CombineTo(Op, Op.getOperand(0));
19830 
19831   auto IsLegalMask = [ShrunkMask, ExpandedMask](unsigned Mask) -> bool {
19832     return (ShrunkMask & Mask) == ShrunkMask && (~ExpandedMask & Mask) == 0;
19833   };
19834   auto UseMask = [Mask, Op, VT, &TLO](unsigned NewMask) -> bool {
19835     if (NewMask == Mask)
19836       return true;
19837     SDLoc DL(Op);
19838     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
19839     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
19840     return TLO.CombineTo(Op, NewOp);
19841   };
19842 
19843   // Prefer uxtb mask.
19844   if (IsLegalMask(0xFF))
19845     return UseMask(0xFF);
19846 
19847   // Prefer uxth mask.
19848   if (IsLegalMask(0xFFFF))
19849     return UseMask(0xFFFF);
19850 
19851   // [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2.
19852   // FIXME: Prefer a contiguous sequence of bits for other optimizations.
19853   if (ShrunkMask < 256)
19854     return UseMask(ShrunkMask);
19855 
19856   // [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2.
19857   // FIXME: Prefer a contiguous sequence of bits for other optimizations.
19858   if ((int)ExpandedMask <= -2 && (int)ExpandedMask >= -256)
19859     return UseMask(ExpandedMask);
19860 
19861   // Potential improvements:
19862   //
19863   // We could try to recognize lsls+lsrs or lsrs+lsls pairs here.
19864   // We could try to prefer Thumb1 immediates which can be lowered to a
19865   // two-instruction sequence.
19866   // We could try to recognize more legal ARM/Thumb2 immediates here.
19867 
19868   return false;
19869 }
19870 
19871 bool ARMTargetLowering::SimplifyDemandedBitsForTargetNode(
19872     SDValue Op, const APInt &OriginalDemandedBits,
19873     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
19874     unsigned Depth) const {
19875   unsigned Opc = Op.getOpcode();
19876 
19877   switch (Opc) {
19878   case ARMISD::ASRL:
19879   case ARMISD::LSRL: {
19880     // If this is result 0 and the other result is unused, see if the demand
19881     // bits allow us to shrink this long shift into a standard small shift in
19882     // the opposite direction.
19883     if (Op.getResNo() == 0 && !Op->hasAnyUseOfValue(1) &&
19884         isa<ConstantSDNode>(Op->getOperand(2))) {
19885       unsigned ShAmt = Op->getConstantOperandVal(2);
19886       if (ShAmt < 32 && OriginalDemandedBits.isSubsetOf(APInt::getAllOnes(32)
19887                                                         << (32 - ShAmt)))
19888         return TLO.CombineTo(
19889             Op, TLO.DAG.getNode(
19890                     ISD::SHL, SDLoc(Op), MVT::i32, Op.getOperand(1),
19891                     TLO.DAG.getConstant(32 - ShAmt, SDLoc(Op), MVT::i32)));
19892     }
19893     break;
19894   }
19895   }
19896 
19897   return TargetLowering::SimplifyDemandedBitsForTargetNode(
19898       Op, OriginalDemandedBits, OriginalDemandedElts, Known, TLO, Depth);
19899 }
19900 
19901 //===----------------------------------------------------------------------===//
19902 //                           ARM Inline Assembly Support
19903 //===----------------------------------------------------------------------===//
19904 
19905 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
19906   // Looking for "rev" which is V6+.
19907   if (!Subtarget->hasV6Ops())
19908     return false;
19909 
19910   InlineAsm *IA = cast<InlineAsm>(CI->getCalledOperand());
19911   std::string AsmStr = IA->getAsmString();
19912   SmallVector<StringRef, 4> AsmPieces;
19913   SplitString(AsmStr, AsmPieces, ";\n");
19914 
19915   switch (AsmPieces.size()) {
19916   default: return false;
19917   case 1:
19918     AsmStr = std::string(AsmPieces[0]);
19919     AsmPieces.clear();
19920     SplitString(AsmStr, AsmPieces, " \t,");
19921 
19922     // rev $0, $1
19923     if (AsmPieces.size() == 3 &&
19924         AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
19925         IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
19926       IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
19927       if (Ty && Ty->getBitWidth() == 32)
19928         return IntrinsicLowering::LowerToByteSwap(CI);
19929     }
19930     break;
19931   }
19932 
19933   return false;
19934 }
19935 
19936 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const {
19937   // At this point, we have to lower this constraint to something else, so we
19938   // lower it to an "r" or "w". However, by doing this we will force the result
19939   // to be in register, while the X constraint is much more permissive.
19940   //
19941   // Although we are correct (we are free to emit anything, without
19942   // constraints), we might break use cases that would expect us to be more
19943   // efficient and emit something else.
19944   if (!Subtarget->hasVFP2Base())
19945     return "r";
19946   if (ConstraintVT.isFloatingPoint())
19947     return "w";
19948   if (ConstraintVT.isVector() && Subtarget->hasNEON() &&
19949      (ConstraintVT.getSizeInBits() == 64 ||
19950       ConstraintVT.getSizeInBits() == 128))
19951     return "w";
19952 
19953   return "r";
19954 }
19955 
19956 /// getConstraintType - Given a constraint letter, return the type of
19957 /// constraint it is for this target.
19958 ARMTargetLowering::ConstraintType
19959 ARMTargetLowering::getConstraintType(StringRef Constraint) const {
19960   unsigned S = Constraint.size();
19961   if (S == 1) {
19962     switch (Constraint[0]) {
19963     default:  break;
19964     case 'l': return C_RegisterClass;
19965     case 'w': return C_RegisterClass;
19966     case 'h': return C_RegisterClass;
19967     case 'x': return C_RegisterClass;
19968     case 't': return C_RegisterClass;
19969     case 'j': return C_Immediate; // Constant for movw.
19970     // An address with a single base register. Due to the way we
19971     // currently handle addresses it is the same as an 'r' memory constraint.
19972     case 'Q': return C_Memory;
19973     }
19974   } else if (S == 2) {
19975     switch (Constraint[0]) {
19976     default: break;
19977     case 'T': return C_RegisterClass;
19978     // All 'U+' constraints are addresses.
19979     case 'U': return C_Memory;
19980     }
19981   }
19982   return TargetLowering::getConstraintType(Constraint);
19983 }
19984 
19985 /// Examine constraint type and operand type and determine a weight value.
19986 /// This object must already have been set up with the operand type
19987 /// and the current alternative constraint selected.
19988 TargetLowering::ConstraintWeight
19989 ARMTargetLowering::getSingleConstraintMatchWeight(
19990     AsmOperandInfo &info, const char *constraint) const {
19991   ConstraintWeight weight = CW_Invalid;
19992   Value *CallOperandVal = info.CallOperandVal;
19993     // If we don't have a value, we can't do a match,
19994     // but allow it at the lowest weight.
19995   if (!CallOperandVal)
19996     return CW_Default;
19997   Type *type = CallOperandVal->getType();
19998   // Look at the constraint type.
19999   switch (*constraint) {
20000   default:
20001     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
20002     break;
20003   case 'l':
20004     if (type->isIntegerTy()) {
20005       if (Subtarget->isThumb())
20006         weight = CW_SpecificReg;
20007       else
20008         weight = CW_Register;
20009     }
20010     break;
20011   case 'w':
20012     if (type->isFloatingPointTy())
20013       weight = CW_Register;
20014     break;
20015   }
20016   return weight;
20017 }
20018 
20019 using RCPair = std::pair<unsigned, const TargetRegisterClass *>;
20020 
20021 RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
20022     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
20023   switch (Constraint.size()) {
20024   case 1:
20025     // GCC ARM Constraint Letters
20026     switch (Constraint[0]) {
20027     case 'l': // Low regs or general regs.
20028       if (Subtarget->isThumb())
20029         return RCPair(0U, &ARM::tGPRRegClass);
20030       return RCPair(0U, &ARM::GPRRegClass);
20031     case 'h': // High regs or no regs.
20032       if (Subtarget->isThumb())
20033         return RCPair(0U, &ARM::hGPRRegClass);
20034       break;
20035     case 'r':
20036       if (Subtarget->isThumb1Only())
20037         return RCPair(0U, &ARM::tGPRRegClass);
20038       return RCPair(0U, &ARM::GPRRegClass);
20039     case 'w':
20040       if (VT == MVT::Other)
20041         break;
20042       if (VT == MVT::f32)
20043         return RCPair(0U, &ARM::SPRRegClass);
20044       if (VT.getSizeInBits() == 64)
20045         return RCPair(0U, &ARM::DPRRegClass);
20046       if (VT.getSizeInBits() == 128)
20047         return RCPair(0U, &ARM::QPRRegClass);
20048       break;
20049     case 'x':
20050       if (VT == MVT::Other)
20051         break;
20052       if (VT == MVT::f32)
20053         return RCPair(0U, &ARM::SPR_8RegClass);
20054       if (VT.getSizeInBits() == 64)
20055         return RCPair(0U, &ARM::DPR_8RegClass);
20056       if (VT.getSizeInBits() == 128)
20057         return RCPair(0U, &ARM::QPR_8RegClass);
20058       break;
20059     case 't':
20060       if (VT == MVT::Other)
20061         break;
20062       if (VT == MVT::f32 || VT == MVT::i32)
20063         return RCPair(0U, &ARM::SPRRegClass);
20064       if (VT.getSizeInBits() == 64)
20065         return RCPair(0U, &ARM::DPR_VFP2RegClass);
20066       if (VT.getSizeInBits() == 128)
20067         return RCPair(0U, &ARM::QPR_VFP2RegClass);
20068       break;
20069     }
20070     break;
20071 
20072   case 2:
20073     if (Constraint[0] == 'T') {
20074       switch (Constraint[1]) {
20075       default:
20076         break;
20077       case 'e':
20078         return RCPair(0U, &ARM::tGPREvenRegClass);
20079       case 'o':
20080         return RCPair(0U, &ARM::tGPROddRegClass);
20081       }
20082     }
20083     break;
20084 
20085   default:
20086     break;
20087   }
20088 
20089   if (StringRef("{cc}").equals_insensitive(Constraint))
20090     return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
20091 
20092   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
20093 }
20094 
20095 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
20096 /// vector.  If it is invalid, don't add anything to Ops.
20097 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
20098                                                      std::string &Constraint,
20099                                                      std::vector<SDValue>&Ops,
20100                                                      SelectionDAG &DAG) const {
20101   SDValue Result;
20102 
20103   // Currently only support length 1 constraints.
20104   if (Constraint.length() != 1) return;
20105 
20106   char ConstraintLetter = Constraint[0];
20107   switch (ConstraintLetter) {
20108   default: break;
20109   case 'j':
20110   case 'I': case 'J': case 'K': case 'L':
20111   case 'M': case 'N': case 'O':
20112     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
20113     if (!C)
20114       return;
20115 
20116     int64_t CVal64 = C->getSExtValue();
20117     int CVal = (int) CVal64;
20118     // None of these constraints allow values larger than 32 bits.  Check
20119     // that the value fits in an int.
20120     if (CVal != CVal64)
20121       return;
20122 
20123     switch (ConstraintLetter) {
20124       case 'j':
20125         // Constant suitable for movw, must be between 0 and
20126         // 65535.
20127         if (Subtarget->hasV6T2Ops() || (Subtarget->hasV8MBaselineOps()))
20128           if (CVal >= 0 && CVal <= 65535)
20129             break;
20130         return;
20131       case 'I':
20132         if (Subtarget->isThumb1Only()) {
20133           // This must be a constant between 0 and 255, for ADD
20134           // immediates.
20135           if (CVal >= 0 && CVal <= 255)
20136             break;
20137         } else if (Subtarget->isThumb2()) {
20138           // A constant that can be used as an immediate value in a
20139           // data-processing instruction.
20140           if (ARM_AM::getT2SOImmVal(CVal) != -1)
20141             break;
20142         } else {
20143           // A constant that can be used as an immediate value in a
20144           // data-processing instruction.
20145           if (ARM_AM::getSOImmVal(CVal) != -1)
20146             break;
20147         }
20148         return;
20149 
20150       case 'J':
20151         if (Subtarget->isThumb1Only()) {
20152           // This must be a constant between -255 and -1, for negated ADD
20153           // immediates. This can be used in GCC with an "n" modifier that
20154           // prints the negated value, for use with SUB instructions. It is
20155           // not useful otherwise but is implemented for compatibility.
20156           if (CVal >= -255 && CVal <= -1)
20157             break;
20158         } else {
20159           // This must be a constant between -4095 and 4095. It is not clear
20160           // what this constraint is intended for. Implemented for
20161           // compatibility with GCC.
20162           if (CVal >= -4095 && CVal <= 4095)
20163             break;
20164         }
20165         return;
20166 
20167       case 'K':
20168         if (Subtarget->isThumb1Only()) {
20169           // A 32-bit value where only one byte has a nonzero value. Exclude
20170           // zero to match GCC. This constraint is used by GCC internally for
20171           // constants that can be loaded with a move/shift combination.
20172           // It is not useful otherwise but is implemented for compatibility.
20173           if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
20174             break;
20175         } else if (Subtarget->isThumb2()) {
20176           // A constant whose bitwise inverse can be used as an immediate
20177           // value in a data-processing instruction. This can be used in GCC
20178           // with a "B" modifier that prints the inverted value, for use with
20179           // BIC and MVN instructions. It is not useful otherwise but is
20180           // implemented for compatibility.
20181           if (ARM_AM::getT2SOImmVal(~CVal) != -1)
20182             break;
20183         } else {
20184           // A constant whose bitwise inverse can be used as an immediate
20185           // value in a data-processing instruction. This can be used in GCC
20186           // with a "B" modifier that prints the inverted value, for use with
20187           // BIC and MVN instructions. It is not useful otherwise but is
20188           // implemented for compatibility.
20189           if (ARM_AM::getSOImmVal(~CVal) != -1)
20190             break;
20191         }
20192         return;
20193 
20194       case 'L':
20195         if (Subtarget->isThumb1Only()) {
20196           // This must be a constant between -7 and 7,
20197           // for 3-operand ADD/SUB immediate instructions.
20198           if (CVal >= -7 && CVal < 7)
20199             break;
20200         } else if (Subtarget->isThumb2()) {
20201           // A constant whose negation can be used as an immediate value in a
20202           // data-processing instruction. This can be used in GCC with an "n"
20203           // modifier that prints the negated value, for use with SUB
20204           // instructions. It is not useful otherwise but is implemented for
20205           // compatibility.
20206           if (ARM_AM::getT2SOImmVal(-CVal) != -1)
20207             break;
20208         } else {
20209           // A constant whose negation can be used as an immediate value in a
20210           // data-processing instruction. This can be used in GCC with an "n"
20211           // modifier that prints the negated value, for use with SUB
20212           // instructions. It is not useful otherwise but is implemented for
20213           // compatibility.
20214           if (ARM_AM::getSOImmVal(-CVal) != -1)
20215             break;
20216         }
20217         return;
20218 
20219       case 'M':
20220         if (Subtarget->isThumb1Only()) {
20221           // This must be a multiple of 4 between 0 and 1020, for
20222           // ADD sp + immediate.
20223           if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
20224             break;
20225         } else {
20226           // A power of two or a constant between 0 and 32.  This is used in
20227           // GCC for the shift amount on shifted register operands, but it is
20228           // useful in general for any shift amounts.
20229           if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
20230             break;
20231         }
20232         return;
20233 
20234       case 'N':
20235         if (Subtarget->isThumb1Only()) {
20236           // This must be a constant between 0 and 31, for shift amounts.
20237           if (CVal >= 0 && CVal <= 31)
20238             break;
20239         }
20240         return;
20241 
20242       case 'O':
20243         if (Subtarget->isThumb1Only()) {
20244           // This must be a multiple of 4 between -508 and 508, for
20245           // ADD/SUB sp = sp + immediate.
20246           if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
20247             break;
20248         }
20249         return;
20250     }
20251     Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType());
20252     break;
20253   }
20254 
20255   if (Result.getNode()) {
20256     Ops.push_back(Result);
20257     return;
20258   }
20259   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
20260 }
20261 
20262 static RTLIB::Libcall getDivRemLibcall(
20263     const SDNode *N, MVT::SimpleValueType SVT) {
20264   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
20265           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
20266          "Unhandled Opcode in getDivRemLibcall");
20267   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
20268                   N->getOpcode() == ISD::SREM;
20269   RTLIB::Libcall LC;
20270   switch (SVT) {
20271   default: llvm_unreachable("Unexpected request for libcall!");
20272   case MVT::i8:  LC = isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
20273   case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
20274   case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
20275   case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
20276   }
20277   return LC;
20278 }
20279 
20280 static TargetLowering::ArgListTy getDivRemArgList(
20281     const SDNode *N, LLVMContext *Context, const ARMSubtarget *Subtarget) {
20282   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
20283           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
20284          "Unhandled Opcode in getDivRemArgList");
20285   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
20286                   N->getOpcode() == ISD::SREM;
20287   TargetLowering::ArgListTy Args;
20288   TargetLowering::ArgListEntry Entry;
20289   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
20290     EVT ArgVT = N->getOperand(i).getValueType();
20291     Type *ArgTy = ArgVT.getTypeForEVT(*Context);
20292     Entry.Node = N->getOperand(i);
20293     Entry.Ty = ArgTy;
20294     Entry.IsSExt = isSigned;
20295     Entry.IsZExt = !isSigned;
20296     Args.push_back(Entry);
20297   }
20298   if (Subtarget->isTargetWindows() && Args.size() >= 2)
20299     std::swap(Args[0], Args[1]);
20300   return Args;
20301 }
20302 
20303 SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
20304   assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
20305           Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
20306           Subtarget->isTargetWindows()) &&
20307          "Register-based DivRem lowering only");
20308   unsigned Opcode = Op->getOpcode();
20309   assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
20310          "Invalid opcode for Div/Rem lowering");
20311   bool isSigned = (Opcode == ISD::SDIVREM);
20312   EVT VT = Op->getValueType(0);
20313   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
20314   SDLoc dl(Op);
20315 
20316   // If the target has hardware divide, use divide + multiply + subtract:
20317   //     div = a / b
20318   //     rem = a - b * div
20319   //     return {div, rem}
20320   // This should be lowered into UDIV/SDIV + MLS later on.
20321   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
20322                                         : Subtarget->hasDivideInARMMode();
20323   if (hasDivide && Op->getValueType(0).isSimple() &&
20324       Op->getSimpleValueType(0) == MVT::i32) {
20325     unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
20326     const SDValue Dividend = Op->getOperand(0);
20327     const SDValue Divisor = Op->getOperand(1);
20328     SDValue Div = DAG.getNode(DivOpcode, dl, VT, Dividend, Divisor);
20329     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Div, Divisor);
20330     SDValue Rem = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
20331 
20332     SDValue Values[2] = {Div, Rem};
20333     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VT, VT), Values);
20334   }
20335 
20336   RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
20337                                        VT.getSimpleVT().SimpleTy);
20338   SDValue InChain = DAG.getEntryNode();
20339 
20340   TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
20341                                                     DAG.getContext(),
20342                                                     Subtarget);
20343 
20344   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
20345                                          getPointerTy(DAG.getDataLayout()));
20346 
20347   Type *RetTy = StructType::get(Ty, Ty);
20348 
20349   if (Subtarget->isTargetWindows())
20350     InChain = WinDBZCheckDenominator(DAG, Op.getNode(), InChain);
20351 
20352   TargetLowering::CallLoweringInfo CLI(DAG);
20353   CLI.setDebugLoc(dl).setChain(InChain)
20354     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
20355     .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
20356 
20357   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
20358   return CallInfo.first;
20359 }
20360 
20361 // Lowers REM using divmod helpers
20362 // see RTABI section 4.2/4.3
20363 SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
20364   // Build return types (div and rem)
20365   std::vector<Type*> RetTyParams;
20366   Type *RetTyElement;
20367 
20368   switch (N->getValueType(0).getSimpleVT().SimpleTy) {
20369   default: llvm_unreachable("Unexpected request for libcall!");
20370   case MVT::i8:   RetTyElement = Type::getInt8Ty(*DAG.getContext());  break;
20371   case MVT::i16:  RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
20372   case MVT::i32:  RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
20373   case MVT::i64:  RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
20374   }
20375 
20376   RetTyParams.push_back(RetTyElement);
20377   RetTyParams.push_back(RetTyElement);
20378   ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
20379   Type *RetTy = StructType::get(*DAG.getContext(), ret);
20380 
20381   RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
20382                                                              SimpleTy);
20383   SDValue InChain = DAG.getEntryNode();
20384   TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext(),
20385                                                     Subtarget);
20386   bool isSigned = N->getOpcode() == ISD::SREM;
20387   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
20388                                          getPointerTy(DAG.getDataLayout()));
20389 
20390   if (Subtarget->isTargetWindows())
20391     InChain = WinDBZCheckDenominator(DAG, N, InChain);
20392 
20393   // Lower call
20394   CallLoweringInfo CLI(DAG);
20395   CLI.setChain(InChain)
20396      .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args))
20397      .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
20398   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
20399 
20400   // Return second (rem) result operand (first contains div)
20401   SDNode *ResNode = CallResult.first.getNode();
20402   assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
20403   return ResNode->getOperand(1);
20404 }
20405 
20406 SDValue
20407 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
20408   assert(Subtarget->isTargetWindows() && "unsupported target platform");
20409   SDLoc DL(Op);
20410 
20411   // Get the inputs.
20412   SDValue Chain = Op.getOperand(0);
20413   SDValue Size  = Op.getOperand(1);
20414 
20415   if (DAG.getMachineFunction().getFunction().hasFnAttribute(
20416           "no-stack-arg-probe")) {
20417     MaybeAlign Align =
20418         cast<ConstantSDNode>(Op.getOperand(2))->getMaybeAlignValue();
20419     SDValue SP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
20420     Chain = SP.getValue(1);
20421     SP = DAG.getNode(ISD::SUB, DL, MVT::i32, SP, Size);
20422     if (Align)
20423       SP =
20424           DAG.getNode(ISD::AND, DL, MVT::i32, SP.getValue(0),
20425                       DAG.getConstant(-(uint64_t)Align->value(), DL, MVT::i32));
20426     Chain = DAG.getCopyToReg(Chain, DL, ARM::SP, SP);
20427     SDValue Ops[2] = { SP, Chain };
20428     return DAG.getMergeValues(Ops, DL);
20429   }
20430 
20431   SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
20432                               DAG.getConstant(2, DL, MVT::i32));
20433 
20434   SDValue Flag;
20435   Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
20436   Flag = Chain.getValue(1);
20437 
20438   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
20439   Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
20440 
20441   SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
20442   Chain = NewSP.getValue(1);
20443 
20444   SDValue Ops[2] = { NewSP, Chain };
20445   return DAG.getMergeValues(Ops, DL);
20446 }
20447 
20448 SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
20449   bool IsStrict = Op->isStrictFPOpcode();
20450   SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
20451   const unsigned DstSz = Op.getValueType().getSizeInBits();
20452   const unsigned SrcSz = SrcVal.getValueType().getSizeInBits();
20453   assert(DstSz > SrcSz && DstSz <= 64 && SrcSz >= 16 &&
20454          "Unexpected type for custom-lowering FP_EXTEND");
20455 
20456   assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) &&
20457          "With both FP DP and 16, any FP conversion is legal!");
20458 
20459   assert(!(DstSz == 32 && Subtarget->hasFP16()) &&
20460          "With FP16, 16 to 32 conversion is legal!");
20461 
20462   // Converting from 32 -> 64 is valid if we have FP64.
20463   if (SrcSz == 32 && DstSz == 64 && Subtarget->hasFP64()) {
20464     // FIXME: Remove this when we have strict fp instruction selection patterns
20465     if (IsStrict) {
20466       SDLoc Loc(Op);
20467       SDValue Result = DAG.getNode(ISD::FP_EXTEND,
20468                                    Loc, Op.getValueType(), SrcVal);
20469       return DAG.getMergeValues({Result, Op.getOperand(0)}, Loc);
20470     }
20471     return Op;
20472   }
20473 
20474   // Either we are converting from 16 -> 64, without FP16 and/or
20475   // FP.double-precision or without Armv8-fp. So we must do it in two
20476   // steps.
20477   // Or we are converting from 32 -> 64 without fp.double-precision or 16 -> 32
20478   // without FP16. So we must do a function call.
20479   SDLoc Loc(Op);
20480   RTLIB::Libcall LC;
20481   MakeLibCallOptions CallOptions;
20482   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
20483   for (unsigned Sz = SrcSz; Sz <= 32 && Sz < DstSz; Sz *= 2) {
20484     bool Supported = (Sz == 16 ? Subtarget->hasFP16() : Subtarget->hasFP64());
20485     MVT SrcVT = (Sz == 16 ? MVT::f16 : MVT::f32);
20486     MVT DstVT = (Sz == 16 ? MVT::f32 : MVT::f64);
20487     if (Supported) {
20488       if (IsStrict) {
20489         SrcVal = DAG.getNode(ISD::STRICT_FP_EXTEND, Loc,
20490                              {DstVT, MVT::Other}, {Chain, SrcVal});
20491         Chain = SrcVal.getValue(1);
20492       } else {
20493         SrcVal = DAG.getNode(ISD::FP_EXTEND, Loc, DstVT, SrcVal);
20494       }
20495     } else {
20496       LC = RTLIB::getFPEXT(SrcVT, DstVT);
20497       assert(LC != RTLIB::UNKNOWN_LIBCALL &&
20498              "Unexpected type for custom-lowering FP_EXTEND");
20499       std::tie(SrcVal, Chain) = makeLibCall(DAG, LC, DstVT, SrcVal, CallOptions,
20500                                             Loc, Chain);
20501     }
20502   }
20503 
20504   return IsStrict ? DAG.getMergeValues({SrcVal, Chain}, Loc) : SrcVal;
20505 }
20506 
20507 SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
20508   bool IsStrict = Op->isStrictFPOpcode();
20509 
20510   SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
20511   EVT SrcVT = SrcVal.getValueType();
20512   EVT DstVT = Op.getValueType();
20513   const unsigned DstSz = Op.getValueType().getSizeInBits();
20514   const unsigned SrcSz = SrcVT.getSizeInBits();
20515   (void)DstSz;
20516   assert(DstSz < SrcSz && SrcSz <= 64 && DstSz >= 16 &&
20517          "Unexpected type for custom-lowering FP_ROUND");
20518 
20519   assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) &&
20520          "With both FP DP and 16, any FP conversion is legal!");
20521 
20522   SDLoc Loc(Op);
20523 
20524   // Instruction from 32 -> 16 if hasFP16 is valid
20525   if (SrcSz == 32 && Subtarget->hasFP16())
20526     return Op;
20527 
20528   // Lib call from 32 -> 16 / 64 -> [32, 16]
20529   RTLIB::Libcall LC = RTLIB::getFPROUND(SrcVT, DstVT);
20530   assert(LC != RTLIB::UNKNOWN_LIBCALL &&
20531          "Unexpected type for custom-lowering FP_ROUND");
20532   MakeLibCallOptions CallOptions;
20533   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
20534   SDValue Result;
20535   std::tie(Result, Chain) = makeLibCall(DAG, LC, DstVT, SrcVal, CallOptions,
20536                                         Loc, Chain);
20537   return IsStrict ? DAG.getMergeValues({Result, Chain}, Loc) : Result;
20538 }
20539 
20540 void ARMTargetLowering::lowerABS(SDNode *N, SmallVectorImpl<SDValue> &Results,
20541                                  SelectionDAG &DAG) const {
20542   assert(N->getValueType(0) == MVT::i64 && "Unexpected type (!= i64) on ABS.");
20543   MVT HalfT = MVT::i32;
20544   SDLoc dl(N);
20545   SDValue Hi, Lo, Tmp;
20546 
20547   if (!isOperationLegalOrCustom(ISD::ADDCARRY, HalfT) ||
20548       !isOperationLegalOrCustom(ISD::UADDO, HalfT))
20549     return ;
20550 
20551   unsigned OpTypeBits = HalfT.getScalarSizeInBits();
20552   SDVTList VTList = DAG.getVTList(HalfT, MVT::i1);
20553 
20554   Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(0),
20555                    DAG.getConstant(0, dl, HalfT));
20556   Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(0),
20557                    DAG.getConstant(1, dl, HalfT));
20558 
20559   Tmp = DAG.getNode(ISD::SRA, dl, HalfT, Hi,
20560                     DAG.getConstant(OpTypeBits - 1, dl,
20561                     getShiftAmountTy(HalfT, DAG.getDataLayout())));
20562   Lo = DAG.getNode(ISD::UADDO, dl, VTList, Tmp, Lo);
20563   Hi = DAG.getNode(ISD::ADDCARRY, dl, VTList, Tmp, Hi,
20564                    SDValue(Lo.getNode(), 1));
20565   Hi = DAG.getNode(ISD::XOR, dl, HalfT, Tmp, Hi);
20566   Lo = DAG.getNode(ISD::XOR, dl, HalfT, Tmp, Lo);
20567 
20568   Results.push_back(Lo);
20569   Results.push_back(Hi);
20570 }
20571 
20572 bool
20573 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
20574   // The ARM target isn't yet aware of offsets.
20575   return false;
20576 }
20577 
20578 bool ARM::isBitFieldInvertedMask(unsigned v) {
20579   if (v == 0xffffffff)
20580     return false;
20581 
20582   // there can be 1's on either or both "outsides", all the "inside"
20583   // bits must be 0's
20584   return isShiftedMask_32(~v);
20585 }
20586 
20587 /// isFPImmLegal - Returns true if the target can instruction select the
20588 /// specified FP immediate natively. If false, the legalizer will
20589 /// materialize the FP immediate as a load from a constant pool.
20590 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
20591                                      bool ForCodeSize) const {
20592   if (!Subtarget->hasVFP3Base())
20593     return false;
20594   if (VT == MVT::f16 && Subtarget->hasFullFP16())
20595     return ARM_AM::getFP16Imm(Imm) != -1;
20596   if (VT == MVT::f32 && Subtarget->hasFullFP16() &&
20597       ARM_AM::getFP32FP16Imm(Imm) != -1)
20598     return true;
20599   if (VT == MVT::f32)
20600     return ARM_AM::getFP32Imm(Imm) != -1;
20601   if (VT == MVT::f64 && Subtarget->hasFP64())
20602     return ARM_AM::getFP64Imm(Imm) != -1;
20603   return false;
20604 }
20605 
20606 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
20607 /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
20608 /// specified in the intrinsic calls.
20609 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
20610                                            const CallInst &I,
20611                                            MachineFunction &MF,
20612                                            unsigned Intrinsic) const {
20613   switch (Intrinsic) {
20614   case Intrinsic::arm_neon_vld1:
20615   case Intrinsic::arm_neon_vld2:
20616   case Intrinsic::arm_neon_vld3:
20617   case Intrinsic::arm_neon_vld4:
20618   case Intrinsic::arm_neon_vld2lane:
20619   case Intrinsic::arm_neon_vld3lane:
20620   case Intrinsic::arm_neon_vld4lane:
20621   case Intrinsic::arm_neon_vld2dup:
20622   case Intrinsic::arm_neon_vld3dup:
20623   case Intrinsic::arm_neon_vld4dup: {
20624     Info.opc = ISD::INTRINSIC_W_CHAIN;
20625     // Conservatively set memVT to the entire set of vectors loaded.
20626     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
20627     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
20628     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
20629     Info.ptrVal = I.getArgOperand(0);
20630     Info.offset = 0;
20631     Value *AlignArg = I.getArgOperand(I.arg_size() - 1);
20632     Info.align = cast<ConstantInt>(AlignArg)->getMaybeAlignValue();
20633     // volatile loads with NEON intrinsics not supported
20634     Info.flags = MachineMemOperand::MOLoad;
20635     return true;
20636   }
20637   case Intrinsic::arm_neon_vld1x2:
20638   case Intrinsic::arm_neon_vld1x3:
20639   case Intrinsic::arm_neon_vld1x4: {
20640     Info.opc = ISD::INTRINSIC_W_CHAIN;
20641     // Conservatively set memVT to the entire set of vectors loaded.
20642     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
20643     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
20644     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
20645     Info.ptrVal = I.getArgOperand(I.arg_size() - 1);
20646     Info.offset = 0;
20647     Info.align.reset();
20648     // volatile loads with NEON intrinsics not supported
20649     Info.flags = MachineMemOperand::MOLoad;
20650     return true;
20651   }
20652   case Intrinsic::arm_neon_vst1:
20653   case Intrinsic::arm_neon_vst2:
20654   case Intrinsic::arm_neon_vst3:
20655   case Intrinsic::arm_neon_vst4:
20656   case Intrinsic::arm_neon_vst2lane:
20657   case Intrinsic::arm_neon_vst3lane:
20658   case Intrinsic::arm_neon_vst4lane: {
20659     Info.opc = ISD::INTRINSIC_VOID;
20660     // Conservatively set memVT to the entire set of vectors stored.
20661     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
20662     unsigned NumElts = 0;
20663     for (unsigned ArgI = 1, ArgE = I.arg_size(); ArgI < ArgE; ++ArgI) {
20664       Type *ArgTy = I.getArgOperand(ArgI)->getType();
20665       if (!ArgTy->isVectorTy())
20666         break;
20667       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
20668     }
20669     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
20670     Info.ptrVal = I.getArgOperand(0);
20671     Info.offset = 0;
20672     Value *AlignArg = I.getArgOperand(I.arg_size() - 1);
20673     Info.align = cast<ConstantInt>(AlignArg)->getMaybeAlignValue();
20674     // volatile stores with NEON intrinsics not supported
20675     Info.flags = MachineMemOperand::MOStore;
20676     return true;
20677   }
20678   case Intrinsic::arm_neon_vst1x2:
20679   case Intrinsic::arm_neon_vst1x3:
20680   case Intrinsic::arm_neon_vst1x4: {
20681     Info.opc = ISD::INTRINSIC_VOID;
20682     // Conservatively set memVT to the entire set of vectors stored.
20683     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
20684     unsigned NumElts = 0;
20685     for (unsigned ArgI = 1, ArgE = I.arg_size(); ArgI < ArgE; ++ArgI) {
20686       Type *ArgTy = I.getArgOperand(ArgI)->getType();
20687       if (!ArgTy->isVectorTy())
20688         break;
20689       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
20690     }
20691     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
20692     Info.ptrVal = I.getArgOperand(0);
20693     Info.offset = 0;
20694     Info.align.reset();
20695     // volatile stores with NEON intrinsics not supported
20696     Info.flags = MachineMemOperand::MOStore;
20697     return true;
20698   }
20699   case Intrinsic::arm_mve_vld2q:
20700   case Intrinsic::arm_mve_vld4q: {
20701     Info.opc = ISD::INTRINSIC_W_CHAIN;
20702     // Conservatively set memVT to the entire set of vectors loaded.
20703     Type *VecTy = cast<StructType>(I.getType())->getElementType(1);
20704     unsigned Factor = Intrinsic == Intrinsic::arm_mve_vld2q ? 2 : 4;
20705     Info.memVT = EVT::getVectorVT(VecTy->getContext(), MVT::i64, Factor * 2);
20706     Info.ptrVal = I.getArgOperand(0);
20707     Info.offset = 0;
20708     Info.align = Align(VecTy->getScalarSizeInBits() / 8);
20709     // volatile loads with MVE intrinsics not supported
20710     Info.flags = MachineMemOperand::MOLoad;
20711     return true;
20712   }
20713   case Intrinsic::arm_mve_vst2q:
20714   case Intrinsic::arm_mve_vst4q: {
20715     Info.opc = ISD::INTRINSIC_VOID;
20716     // Conservatively set memVT to the entire set of vectors stored.
20717     Type *VecTy = I.getArgOperand(1)->getType();
20718     unsigned Factor = Intrinsic == Intrinsic::arm_mve_vst2q ? 2 : 4;
20719     Info.memVT = EVT::getVectorVT(VecTy->getContext(), MVT::i64, Factor * 2);
20720     Info.ptrVal = I.getArgOperand(0);
20721     Info.offset = 0;
20722     Info.align = Align(VecTy->getScalarSizeInBits() / 8);
20723     // volatile stores with MVE intrinsics not supported
20724     Info.flags = MachineMemOperand::MOStore;
20725     return true;
20726   }
20727   case Intrinsic::arm_mve_vldr_gather_base:
20728   case Intrinsic::arm_mve_vldr_gather_base_predicated: {
20729     Info.opc = ISD::INTRINSIC_W_CHAIN;
20730     Info.ptrVal = nullptr;
20731     Info.memVT = MVT::getVT(I.getType());
20732     Info.align = Align(1);
20733     Info.flags |= MachineMemOperand::MOLoad;
20734     return true;
20735   }
20736   case Intrinsic::arm_mve_vldr_gather_base_wb:
20737   case Intrinsic::arm_mve_vldr_gather_base_wb_predicated: {
20738     Info.opc = ISD::INTRINSIC_W_CHAIN;
20739     Info.ptrVal = nullptr;
20740     Info.memVT = MVT::getVT(I.getType()->getContainedType(0));
20741     Info.align = Align(1);
20742     Info.flags |= MachineMemOperand::MOLoad;
20743     return true;
20744   }
20745   case Intrinsic::arm_mve_vldr_gather_offset:
20746   case Intrinsic::arm_mve_vldr_gather_offset_predicated: {
20747     Info.opc = ISD::INTRINSIC_W_CHAIN;
20748     Info.ptrVal = nullptr;
20749     MVT DataVT = MVT::getVT(I.getType());
20750     unsigned MemSize = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
20751     Info.memVT = MVT::getVectorVT(MVT::getIntegerVT(MemSize),
20752                                   DataVT.getVectorNumElements());
20753     Info.align = Align(1);
20754     Info.flags |= MachineMemOperand::MOLoad;
20755     return true;
20756   }
20757   case Intrinsic::arm_mve_vstr_scatter_base:
20758   case Intrinsic::arm_mve_vstr_scatter_base_predicated: {
20759     Info.opc = ISD::INTRINSIC_VOID;
20760     Info.ptrVal = nullptr;
20761     Info.memVT = MVT::getVT(I.getArgOperand(2)->getType());
20762     Info.align = Align(1);
20763     Info.flags |= MachineMemOperand::MOStore;
20764     return true;
20765   }
20766   case Intrinsic::arm_mve_vstr_scatter_base_wb:
20767   case Intrinsic::arm_mve_vstr_scatter_base_wb_predicated: {
20768     Info.opc = ISD::INTRINSIC_W_CHAIN;
20769     Info.ptrVal = nullptr;
20770     Info.memVT = MVT::getVT(I.getArgOperand(2)->getType());
20771     Info.align = Align(1);
20772     Info.flags |= MachineMemOperand::MOStore;
20773     return true;
20774   }
20775   case Intrinsic::arm_mve_vstr_scatter_offset:
20776   case Intrinsic::arm_mve_vstr_scatter_offset_predicated: {
20777     Info.opc = ISD::INTRINSIC_VOID;
20778     Info.ptrVal = nullptr;
20779     MVT DataVT = MVT::getVT(I.getArgOperand(2)->getType());
20780     unsigned MemSize = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
20781     Info.memVT = MVT::getVectorVT(MVT::getIntegerVT(MemSize),
20782                                   DataVT.getVectorNumElements());
20783     Info.align = Align(1);
20784     Info.flags |= MachineMemOperand::MOStore;
20785     return true;
20786   }
20787   case Intrinsic::arm_ldaex:
20788   case Intrinsic::arm_ldrex: {
20789     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
20790     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
20791     Info.opc = ISD::INTRINSIC_W_CHAIN;
20792     Info.memVT = MVT::getVT(PtrTy->getPointerElementType());
20793     Info.ptrVal = I.getArgOperand(0);
20794     Info.offset = 0;
20795     Info.align = DL.getABITypeAlign(PtrTy->getPointerElementType());
20796     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
20797     return true;
20798   }
20799   case Intrinsic::arm_stlex:
20800   case Intrinsic::arm_strex: {
20801     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
20802     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
20803     Info.opc = ISD::INTRINSIC_W_CHAIN;
20804     Info.memVT = MVT::getVT(PtrTy->getPointerElementType());
20805     Info.ptrVal = I.getArgOperand(1);
20806     Info.offset = 0;
20807     Info.align = DL.getABITypeAlign(PtrTy->getPointerElementType());
20808     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
20809     return true;
20810   }
20811   case Intrinsic::arm_stlexd:
20812   case Intrinsic::arm_strexd:
20813     Info.opc = ISD::INTRINSIC_W_CHAIN;
20814     Info.memVT = MVT::i64;
20815     Info.ptrVal = I.getArgOperand(2);
20816     Info.offset = 0;
20817     Info.align = Align(8);
20818     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
20819     return true;
20820 
20821   case Intrinsic::arm_ldaexd:
20822   case Intrinsic::arm_ldrexd:
20823     Info.opc = ISD::INTRINSIC_W_CHAIN;
20824     Info.memVT = MVT::i64;
20825     Info.ptrVal = I.getArgOperand(0);
20826     Info.offset = 0;
20827     Info.align = Align(8);
20828     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
20829     return true;
20830 
20831   default:
20832     break;
20833   }
20834 
20835   return false;
20836 }
20837 
20838 /// Returns true if it is beneficial to convert a load of a constant
20839 /// to just the constant itself.
20840 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
20841                                                           Type *Ty) const {
20842   assert(Ty->isIntegerTy());
20843 
20844   unsigned Bits = Ty->getPrimitiveSizeInBits();
20845   if (Bits == 0 || Bits > 32)
20846     return false;
20847   return true;
20848 }
20849 
20850 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
20851                                                 unsigned Index) const {
20852   if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
20853     return false;
20854 
20855   return (Index == 0 || Index == ResVT.getVectorNumElements());
20856 }
20857 
20858 Instruction *ARMTargetLowering::makeDMB(IRBuilderBase &Builder,
20859                                         ARM_MB::MemBOpt Domain) const {
20860   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
20861 
20862   // First, if the target has no DMB, see what fallback we can use.
20863   if (!Subtarget->hasDataBarrier()) {
20864     // Some ARMv6 cpus can support data barriers with an mcr instruction.
20865     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
20866     // here.
20867     if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
20868       Function *MCR = Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
20869       Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
20870                         Builder.getInt32(0), Builder.getInt32(7),
20871                         Builder.getInt32(10), Builder.getInt32(5)};
20872       return Builder.CreateCall(MCR, args);
20873     } else {
20874       // Instead of using barriers, atomic accesses on these subtargets use
20875       // libcalls.
20876       llvm_unreachable("makeDMB on a target so old that it has no barriers");
20877     }
20878   } else {
20879     Function *DMB = Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
20880     // Only a full system barrier exists in the M-class architectures.
20881     Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
20882     Constant *CDomain = Builder.getInt32(Domain);
20883     return Builder.CreateCall(DMB, CDomain);
20884   }
20885 }
20886 
20887 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
20888 Instruction *ARMTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
20889                                                  Instruction *Inst,
20890                                                  AtomicOrdering Ord) const {
20891   switch (Ord) {
20892   case AtomicOrdering::NotAtomic:
20893   case AtomicOrdering::Unordered:
20894     llvm_unreachable("Invalid fence: unordered/non-atomic");
20895   case AtomicOrdering::Monotonic:
20896   case AtomicOrdering::Acquire:
20897     return nullptr; // Nothing to do
20898   case AtomicOrdering::SequentiallyConsistent:
20899     if (!Inst->hasAtomicStore())
20900       return nullptr; // Nothing to do
20901     LLVM_FALLTHROUGH;
20902   case AtomicOrdering::Release:
20903   case AtomicOrdering::AcquireRelease:
20904     if (Subtarget->preferISHSTBarriers())
20905       return makeDMB(Builder, ARM_MB::ISHST);
20906     // FIXME: add a comment with a link to documentation justifying this.
20907     else
20908       return makeDMB(Builder, ARM_MB::ISH);
20909   }
20910   llvm_unreachable("Unknown fence ordering in emitLeadingFence");
20911 }
20912 
20913 Instruction *ARMTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
20914                                                   Instruction *Inst,
20915                                                   AtomicOrdering Ord) const {
20916   switch (Ord) {
20917   case AtomicOrdering::NotAtomic:
20918   case AtomicOrdering::Unordered:
20919     llvm_unreachable("Invalid fence: unordered/not-atomic");
20920   case AtomicOrdering::Monotonic:
20921   case AtomicOrdering::Release:
20922     return nullptr; // Nothing to do
20923   case AtomicOrdering::Acquire:
20924   case AtomicOrdering::AcquireRelease:
20925   case AtomicOrdering::SequentiallyConsistent:
20926     return makeDMB(Builder, ARM_MB::ISH);
20927   }
20928   llvm_unreachable("Unknown fence ordering in emitTrailingFence");
20929 }
20930 
20931 // Loads and stores less than 64-bits are already atomic; ones above that
20932 // are doomed anyway, so defer to the default libcall and blame the OS when
20933 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
20934 // anything for those.
20935 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
20936   unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
20937   return (Size == 64) && !Subtarget->isMClass();
20938 }
20939 
20940 // Loads and stores less than 64-bits are already atomic; ones above that
20941 // are doomed anyway, so defer to the default libcall and blame the OS when
20942 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
20943 // anything for those.
20944 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
20945 // guarantee, see DDI0406C ARM architecture reference manual,
20946 // sections A8.8.72-74 LDRD)
20947 TargetLowering::AtomicExpansionKind
20948 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
20949   unsigned Size = LI->getType()->getPrimitiveSizeInBits();
20950   return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly
20951                                                   : AtomicExpansionKind::None;
20952 }
20953 
20954 // For the real atomic operations, we have ldrex/strex up to 32 bits,
20955 // and up to 64 bits on the non-M profiles
20956 TargetLowering::AtomicExpansionKind
20957 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
20958   if (AI->isFloatingPointOperation())
20959     return AtomicExpansionKind::CmpXChg;
20960 
20961   // At -O0, fast-regalloc cannot cope with the live vregs necessary to
20962   // implement atomicrmw without spilling. If the target address is also on the
20963   // stack and close enough to the spill slot, this can lead to a situation
20964   // where the monitor always gets cleared and the atomic operation can never
20965   // succeed. So at -O0 lower this operation to a CAS loop.
20966   if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
20967     return AtomicExpansionKind::CmpXChg;
20968 
20969   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
20970   bool hasAtomicRMW = !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
20971   return (Size <= (Subtarget->isMClass() ? 32U : 64U) && hasAtomicRMW)
20972              ? AtomicExpansionKind::LLSC
20973              : AtomicExpansionKind::None;
20974 }
20975 
20976 // Similar to shouldExpandAtomicRMWInIR, ldrex/strex can be used  up to 32
20977 // bits, and up to 64 bits on the non-M profiles.
20978 TargetLowering::AtomicExpansionKind
20979 ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
20980   // At -O0, fast-regalloc cannot cope with the live vregs necessary to
20981   // implement cmpxchg without spilling. If the address being exchanged is also
20982   // on the stack and close enough to the spill slot, this can lead to a
20983   // situation where the monitor always gets cleared and the atomic operation
20984   // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
20985   unsigned Size = AI->getOperand(1)->getType()->getPrimitiveSizeInBits();
20986   bool HasAtomicCmpXchg =
20987       !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
20988   if (getTargetMachine().getOptLevel() != 0 && HasAtomicCmpXchg &&
20989       Size <= (Subtarget->isMClass() ? 32U : 64U))
20990     return AtomicExpansionKind::LLSC;
20991   return AtomicExpansionKind::None;
20992 }
20993 
20994 bool ARMTargetLowering::shouldInsertFencesForAtomic(
20995     const Instruction *I) const {
20996   return InsertFencesForAtomic;
20997 }
20998 
20999 bool ARMTargetLowering::useLoadStackGuardNode() const { return true; }
21000 
21001 void ARMTargetLowering::insertSSPDeclarations(Module &M) const {
21002   if (!Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
21003     return TargetLowering::insertSSPDeclarations(M);
21004 
21005   // MSVC CRT has a global variable holding security cookie.
21006   M.getOrInsertGlobal("__security_cookie",
21007                       Type::getInt8PtrTy(M.getContext()));
21008 
21009   // MSVC CRT has a function to validate security cookie.
21010   FunctionCallee SecurityCheckCookie = M.getOrInsertFunction(
21011       "__security_check_cookie", Type::getVoidTy(M.getContext()),
21012       Type::getInt8PtrTy(M.getContext()));
21013   if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee()))
21014     F->addParamAttr(0, Attribute::AttrKind::InReg);
21015 }
21016 
21017 Value *ARMTargetLowering::getSDagStackGuard(const Module &M) const {
21018   // MSVC CRT has a global variable holding security cookie.
21019   if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
21020     return M.getGlobalVariable("__security_cookie");
21021   return TargetLowering::getSDagStackGuard(M);
21022 }
21023 
21024 Function *ARMTargetLowering::getSSPStackGuardCheck(const Module &M) const {
21025   // MSVC CRT has a function to validate security cookie.
21026   if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
21027     return M.getFunction("__security_check_cookie");
21028   return TargetLowering::getSSPStackGuardCheck(M);
21029 }
21030 
21031 bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
21032                                                   unsigned &Cost) const {
21033   // If we do not have NEON, vector types are not natively supported.
21034   if (!Subtarget->hasNEON())
21035     return false;
21036 
21037   // Floating point values and vector values map to the same register file.
21038   // Therefore, although we could do a store extract of a vector type, this is
21039   // better to leave at float as we have more freedom in the addressing mode for
21040   // those.
21041   if (VectorTy->isFPOrFPVectorTy())
21042     return false;
21043 
21044   // If the index is unknown at compile time, this is very expensive to lower
21045   // and it is not possible to combine the store with the extract.
21046   if (!isa<ConstantInt>(Idx))
21047     return false;
21048 
21049   assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
21050   unsigned BitWidth = VectorTy->getPrimitiveSizeInBits().getFixedSize();
21051   // We can do a store + vector extract on any vector that fits perfectly in a D
21052   // or Q register.
21053   if (BitWidth == 64 || BitWidth == 128) {
21054     Cost = 0;
21055     return true;
21056   }
21057   return false;
21058 }
21059 
21060 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
21061   return Subtarget->hasV6T2Ops();
21062 }
21063 
21064 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
21065   return Subtarget->hasV6T2Ops();
21066 }
21067 
21068 bool ARMTargetLowering::shouldExpandShift(SelectionDAG &DAG, SDNode *N) const {
21069   return !Subtarget->hasMinSize() || Subtarget->isTargetWindows();
21070 }
21071 
21072 Value *ARMTargetLowering::emitLoadLinked(IRBuilderBase &Builder, Type *ValueTy,
21073                                          Value *Addr,
21074                                          AtomicOrdering Ord) const {
21075   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
21076   bool IsAcquire = isAcquireOrStronger(Ord);
21077 
21078   // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
21079   // intrinsic must return {i32, i32} and we have to recombine them into a
21080   // single i64 here.
21081   if (ValueTy->getPrimitiveSizeInBits() == 64) {
21082     Intrinsic::ID Int =
21083         IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
21084     Function *Ldrex = Intrinsic::getDeclaration(M, Int);
21085 
21086     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
21087     Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
21088 
21089     Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
21090     Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
21091     if (!Subtarget->isLittle())
21092       std::swap (Lo, Hi);
21093     Lo = Builder.CreateZExt(Lo, ValueTy, "lo64");
21094     Hi = Builder.CreateZExt(Hi, ValueTy, "hi64");
21095     return Builder.CreateOr(
21096         Lo, Builder.CreateShl(Hi, ConstantInt::get(ValueTy, 32)), "val64");
21097   }
21098 
21099   Type *Tys[] = { Addr->getType() };
21100   Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
21101   Function *Ldrex = Intrinsic::getDeclaration(M, Int, Tys);
21102 
21103   return Builder.CreateTruncOrBitCast(Builder.CreateCall(Ldrex, Addr), ValueTy);
21104 }
21105 
21106 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
21107     IRBuilderBase &Builder) const {
21108   if (!Subtarget->hasV7Ops())
21109     return;
21110   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
21111   Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::arm_clrex));
21112 }
21113 
21114 Value *ARMTargetLowering::emitStoreConditional(IRBuilderBase &Builder,
21115                                                Value *Val, Value *Addr,
21116                                                AtomicOrdering Ord) const {
21117   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
21118   bool IsRelease = isReleaseOrStronger(Ord);
21119 
21120   // Since the intrinsics must have legal type, the i64 intrinsics take two
21121   // parameters: "i32, i32". We must marshal Val into the appropriate form
21122   // before the call.
21123   if (Val->getType()->getPrimitiveSizeInBits() == 64) {
21124     Intrinsic::ID Int =
21125         IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
21126     Function *Strex = Intrinsic::getDeclaration(M, Int);
21127     Type *Int32Ty = Type::getInt32Ty(M->getContext());
21128 
21129     Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
21130     Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
21131     if (!Subtarget->isLittle())
21132       std::swap(Lo, Hi);
21133     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
21134     return Builder.CreateCall(Strex, {Lo, Hi, Addr});
21135   }
21136 
21137   Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
21138   Type *Tys[] = { Addr->getType() };
21139   Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
21140 
21141   return Builder.CreateCall(
21142       Strex, {Builder.CreateZExtOrBitCast(
21143                   Val, Strex->getFunctionType()->getParamType(0)),
21144               Addr});
21145 }
21146 
21147 
21148 bool ARMTargetLowering::alignLoopsWithOptSize() const {
21149   return Subtarget->isMClass();
21150 }
21151 
21152 /// A helper function for determining the number of interleaved accesses we
21153 /// will generate when lowering accesses of the given type.
21154 unsigned
21155 ARMTargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
21156                                              const DataLayout &DL) const {
21157   return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
21158 }
21159 
21160 bool ARMTargetLowering::isLegalInterleavedAccessType(
21161     unsigned Factor, FixedVectorType *VecTy, Align Alignment,
21162     const DataLayout &DL) const {
21163 
21164   unsigned VecSize = DL.getTypeSizeInBits(VecTy);
21165   unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
21166 
21167   if (!Subtarget->hasNEON() && !Subtarget->hasMVEIntegerOps())
21168     return false;
21169 
21170   // Ensure the vector doesn't have f16 elements. Even though we could do an
21171   // i16 vldN, we can't hold the f16 vectors and will end up converting via
21172   // f32.
21173   if (Subtarget->hasNEON() && VecTy->getElementType()->isHalfTy())
21174     return false;
21175   if (Subtarget->hasMVEIntegerOps() && Factor == 3)
21176     return false;
21177 
21178   // Ensure the number of vector elements is greater than 1.
21179   if (VecTy->getNumElements() < 2)
21180     return false;
21181 
21182   // Ensure the element type is legal.
21183   if (ElSize != 8 && ElSize != 16 && ElSize != 32)
21184     return false;
21185   // And the alignment if high enough under MVE.
21186   if (Subtarget->hasMVEIntegerOps() && Alignment < ElSize / 8)
21187     return false;
21188 
21189   // Ensure the total vector size is 64 or a multiple of 128. Types larger than
21190   // 128 will be split into multiple interleaved accesses.
21191   if (Subtarget->hasNEON() && VecSize == 64)
21192     return true;
21193   return VecSize % 128 == 0;
21194 }
21195 
21196 unsigned ARMTargetLowering::getMaxSupportedInterleaveFactor() const {
21197   if (Subtarget->hasNEON())
21198     return 4;
21199   if (Subtarget->hasMVEIntegerOps())
21200     return MVEMaxSupportedInterleaveFactor;
21201   return TargetLoweringBase::getMaxSupportedInterleaveFactor();
21202 }
21203 
21204 /// Lower an interleaved load into a vldN intrinsic.
21205 ///
21206 /// E.g. Lower an interleaved load (Factor = 2):
21207 ///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
21208 ///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
21209 ///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
21210 ///
21211 ///      Into:
21212 ///        %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
21213 ///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
21214 ///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
21215 bool ARMTargetLowering::lowerInterleavedLoad(
21216     LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
21217     ArrayRef<unsigned> Indices, unsigned Factor) const {
21218   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
21219          "Invalid interleave factor");
21220   assert(!Shuffles.empty() && "Empty shufflevector input");
21221   assert(Shuffles.size() == Indices.size() &&
21222          "Unmatched number of shufflevectors and indices");
21223 
21224   auto *VecTy = cast<FixedVectorType>(Shuffles[0]->getType());
21225   Type *EltTy = VecTy->getElementType();
21226 
21227   const DataLayout &DL = LI->getModule()->getDataLayout();
21228   Align Alignment = LI->getAlign();
21229 
21230   // Skip if we do not have NEON and skip illegal vector types. We can
21231   // "legalize" wide vector types into multiple interleaved accesses as long as
21232   // the vector types are divisible by 128.
21233   if (!isLegalInterleavedAccessType(Factor, VecTy, Alignment, DL))
21234     return false;
21235 
21236   unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
21237 
21238   // A pointer vector can not be the return type of the ldN intrinsics. Need to
21239   // load integer vectors first and then convert to pointer vectors.
21240   if (EltTy->isPointerTy())
21241     VecTy = FixedVectorType::get(DL.getIntPtrType(EltTy), VecTy);
21242 
21243   IRBuilder<> Builder(LI);
21244 
21245   // The base address of the load.
21246   Value *BaseAddr = LI->getPointerOperand();
21247 
21248   if (NumLoads > 1) {
21249     // If we're going to generate more than one load, reset the sub-vector type
21250     // to something legal.
21251     VecTy = FixedVectorType::get(VecTy->getElementType(),
21252                                  VecTy->getNumElements() / NumLoads);
21253 
21254     // We will compute the pointer operand of each load from the original base
21255     // address using GEPs. Cast the base address to a pointer to the scalar
21256     // element type.
21257     BaseAddr = Builder.CreateBitCast(
21258         BaseAddr,
21259         VecTy->getElementType()->getPointerTo(LI->getPointerAddressSpace()));
21260   }
21261 
21262   assert(isTypeLegal(EVT::getEVT(VecTy)) && "Illegal vldN vector type!");
21263 
21264   auto createLoadIntrinsic = [&](Value *BaseAddr) {
21265     if (Subtarget->hasNEON()) {
21266       Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace());
21267       Type *Tys[] = {VecTy, Int8Ptr};
21268       static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
21269                                                 Intrinsic::arm_neon_vld3,
21270                                                 Intrinsic::arm_neon_vld4};
21271       Function *VldnFunc =
21272           Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
21273 
21274       SmallVector<Value *, 2> Ops;
21275       Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
21276       Ops.push_back(Builder.getInt32(LI->getAlignment()));
21277 
21278       return Builder.CreateCall(VldnFunc, Ops, "vldN");
21279     } else {
21280       assert((Factor == 2 || Factor == 4) &&
21281              "expected interleave factor of 2 or 4 for MVE");
21282       Intrinsic::ID LoadInts =
21283           Factor == 2 ? Intrinsic::arm_mve_vld2q : Intrinsic::arm_mve_vld4q;
21284       Type *VecEltTy =
21285           VecTy->getElementType()->getPointerTo(LI->getPointerAddressSpace());
21286       Type *Tys[] = {VecTy, VecEltTy};
21287       Function *VldnFunc =
21288           Intrinsic::getDeclaration(LI->getModule(), LoadInts, Tys);
21289 
21290       SmallVector<Value *, 2> Ops;
21291       Ops.push_back(Builder.CreateBitCast(BaseAddr, VecEltTy));
21292       return Builder.CreateCall(VldnFunc, Ops, "vldN");
21293     }
21294   };
21295 
21296   // Holds sub-vectors extracted from the load intrinsic return values. The
21297   // sub-vectors are associated with the shufflevector instructions they will
21298   // replace.
21299   DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
21300 
21301   for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
21302     // If we're generating more than one load, compute the base address of
21303     // subsequent loads as an offset from the previous.
21304     if (LoadCount > 0)
21305       BaseAddr = Builder.CreateConstGEP1_32(VecTy->getElementType(), BaseAddr,
21306                                             VecTy->getNumElements() * Factor);
21307 
21308     CallInst *VldN = createLoadIntrinsic(BaseAddr);
21309 
21310     // Replace uses of each shufflevector with the corresponding vector loaded
21311     // by ldN.
21312     for (unsigned i = 0; i < Shuffles.size(); i++) {
21313       ShuffleVectorInst *SV = Shuffles[i];
21314       unsigned Index = Indices[i];
21315 
21316       Value *SubVec = Builder.CreateExtractValue(VldN, Index);
21317 
21318       // Convert the integer vector to pointer vector if the element is pointer.
21319       if (EltTy->isPointerTy())
21320         SubVec = Builder.CreateIntToPtr(
21321             SubVec,
21322             FixedVectorType::get(SV->getType()->getElementType(), VecTy));
21323 
21324       SubVecs[SV].push_back(SubVec);
21325     }
21326   }
21327 
21328   // Replace uses of the shufflevector instructions with the sub-vectors
21329   // returned by the load intrinsic. If a shufflevector instruction is
21330   // associated with more than one sub-vector, those sub-vectors will be
21331   // concatenated into a single wide vector.
21332   for (ShuffleVectorInst *SVI : Shuffles) {
21333     auto &SubVec = SubVecs[SVI];
21334     auto *WideVec =
21335         SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
21336     SVI->replaceAllUsesWith(WideVec);
21337   }
21338 
21339   return true;
21340 }
21341 
21342 /// Lower an interleaved store into a vstN intrinsic.
21343 ///
21344 /// E.g. Lower an interleaved store (Factor = 3):
21345 ///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
21346 ///                                  <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
21347 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
21348 ///
21349 ///      Into:
21350 ///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
21351 ///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
21352 ///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
21353 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
21354 ///
21355 /// Note that the new shufflevectors will be removed and we'll only generate one
21356 /// vst3 instruction in CodeGen.
21357 ///
21358 /// Example for a more general valid mask (Factor 3). Lower:
21359 ///        %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
21360 ///                 <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
21361 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr
21362 ///
21363 ///      Into:
21364 ///        %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
21365 ///        %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
21366 ///        %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
21367 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
21368 bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
21369                                               ShuffleVectorInst *SVI,
21370                                               unsigned Factor) const {
21371   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
21372          "Invalid interleave factor");
21373 
21374   auto *VecTy = cast<FixedVectorType>(SVI->getType());
21375   assert(VecTy->getNumElements() % Factor == 0 && "Invalid interleaved store");
21376 
21377   unsigned LaneLen = VecTy->getNumElements() / Factor;
21378   Type *EltTy = VecTy->getElementType();
21379   auto *SubVecTy = FixedVectorType::get(EltTy, LaneLen);
21380 
21381   const DataLayout &DL = SI->getModule()->getDataLayout();
21382   Align Alignment = SI->getAlign();
21383 
21384   // Skip if we do not have NEON and skip illegal vector types. We can
21385   // "legalize" wide vector types into multiple interleaved accesses as long as
21386   // the vector types are divisible by 128.
21387   if (!isLegalInterleavedAccessType(Factor, SubVecTy, Alignment, DL))
21388     return false;
21389 
21390   unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
21391 
21392   Value *Op0 = SVI->getOperand(0);
21393   Value *Op1 = SVI->getOperand(1);
21394   IRBuilder<> Builder(SI);
21395 
21396   // StN intrinsics don't support pointer vectors as arguments. Convert pointer
21397   // vectors to integer vectors.
21398   if (EltTy->isPointerTy()) {
21399     Type *IntTy = DL.getIntPtrType(EltTy);
21400 
21401     // Convert to the corresponding integer vector.
21402     auto *IntVecTy =
21403         FixedVectorType::get(IntTy, cast<FixedVectorType>(Op0->getType()));
21404     Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
21405     Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
21406 
21407     SubVecTy = FixedVectorType::get(IntTy, LaneLen);
21408   }
21409 
21410   // The base address of the store.
21411   Value *BaseAddr = SI->getPointerOperand();
21412 
21413   if (NumStores > 1) {
21414     // If we're going to generate more than one store, reset the lane length
21415     // and sub-vector type to something legal.
21416     LaneLen /= NumStores;
21417     SubVecTy = FixedVectorType::get(SubVecTy->getElementType(), LaneLen);
21418 
21419     // We will compute the pointer operand of each store from the original base
21420     // address using GEPs. Cast the base address to a pointer to the scalar
21421     // element type.
21422     BaseAddr = Builder.CreateBitCast(
21423         BaseAddr,
21424         SubVecTy->getElementType()->getPointerTo(SI->getPointerAddressSpace()));
21425   }
21426 
21427   assert(isTypeLegal(EVT::getEVT(SubVecTy)) && "Illegal vstN vector type!");
21428 
21429   auto Mask = SVI->getShuffleMask();
21430 
21431   auto createStoreIntrinsic = [&](Value *BaseAddr,
21432                                   SmallVectorImpl<Value *> &Shuffles) {
21433     if (Subtarget->hasNEON()) {
21434       static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
21435                                                  Intrinsic::arm_neon_vst3,
21436                                                  Intrinsic::arm_neon_vst4};
21437       Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace());
21438       Type *Tys[] = {Int8Ptr, SubVecTy};
21439 
21440       Function *VstNFunc = Intrinsic::getDeclaration(
21441           SI->getModule(), StoreInts[Factor - 2], Tys);
21442 
21443       SmallVector<Value *, 6> Ops;
21444       Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
21445       append_range(Ops, Shuffles);
21446       Ops.push_back(Builder.getInt32(SI->getAlignment()));
21447       Builder.CreateCall(VstNFunc, Ops);
21448     } else {
21449       assert((Factor == 2 || Factor == 4) &&
21450              "expected interleave factor of 2 or 4 for MVE");
21451       Intrinsic::ID StoreInts =
21452           Factor == 2 ? Intrinsic::arm_mve_vst2q : Intrinsic::arm_mve_vst4q;
21453       Type *EltPtrTy = SubVecTy->getElementType()->getPointerTo(
21454           SI->getPointerAddressSpace());
21455       Type *Tys[] = {EltPtrTy, SubVecTy};
21456       Function *VstNFunc =
21457           Intrinsic::getDeclaration(SI->getModule(), StoreInts, Tys);
21458 
21459       SmallVector<Value *, 6> Ops;
21460       Ops.push_back(Builder.CreateBitCast(BaseAddr, EltPtrTy));
21461       append_range(Ops, Shuffles);
21462       for (unsigned F = 0; F < Factor; F++) {
21463         Ops.push_back(Builder.getInt32(F));
21464         Builder.CreateCall(VstNFunc, Ops);
21465         Ops.pop_back();
21466       }
21467     }
21468   };
21469 
21470   for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
21471     // If we generating more than one store, we compute the base address of
21472     // subsequent stores as an offset from the previous.
21473     if (StoreCount > 0)
21474       BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getElementType(),
21475                                             BaseAddr, LaneLen * Factor);
21476 
21477     SmallVector<Value *, 4> Shuffles;
21478 
21479     // Split the shufflevector operands into sub vectors for the new vstN call.
21480     for (unsigned i = 0; i < Factor; i++) {
21481       unsigned IdxI = StoreCount * LaneLen * Factor + i;
21482       if (Mask[IdxI] >= 0) {
21483         Shuffles.push_back(Builder.CreateShuffleVector(
21484             Op0, Op1, createSequentialMask(Mask[IdxI], LaneLen, 0)));
21485       } else {
21486         unsigned StartMask = 0;
21487         for (unsigned j = 1; j < LaneLen; j++) {
21488           unsigned IdxJ = StoreCount * LaneLen * Factor + j;
21489           if (Mask[IdxJ * Factor + IdxI] >= 0) {
21490             StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
21491             break;
21492           }
21493         }
21494         // Note: If all elements in a chunk are undefs, StartMask=0!
21495         // Note: Filling undef gaps with random elements is ok, since
21496         // those elements were being written anyway (with undefs).
21497         // In the case of all undefs we're defaulting to using elems from 0
21498         // Note: StartMask cannot be negative, it's checked in
21499         // isReInterleaveMask
21500         Shuffles.push_back(Builder.CreateShuffleVector(
21501             Op0, Op1, createSequentialMask(StartMask, LaneLen, 0)));
21502       }
21503     }
21504 
21505     createStoreIntrinsic(BaseAddr, Shuffles);
21506   }
21507   return true;
21508 }
21509 
21510 enum HABaseType {
21511   HA_UNKNOWN = 0,
21512   HA_FLOAT,
21513   HA_DOUBLE,
21514   HA_VECT64,
21515   HA_VECT128
21516 };
21517 
21518 static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
21519                                    uint64_t &Members) {
21520   if (auto *ST = dyn_cast<StructType>(Ty)) {
21521     for (unsigned i = 0; i < ST->getNumElements(); ++i) {
21522       uint64_t SubMembers = 0;
21523       if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
21524         return false;
21525       Members += SubMembers;
21526     }
21527   } else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
21528     uint64_t SubMembers = 0;
21529     if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
21530       return false;
21531     Members += SubMembers * AT->getNumElements();
21532   } else if (Ty->isFloatTy()) {
21533     if (Base != HA_UNKNOWN && Base != HA_FLOAT)
21534       return false;
21535     Members = 1;
21536     Base = HA_FLOAT;
21537   } else if (Ty->isDoubleTy()) {
21538     if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
21539       return false;
21540     Members = 1;
21541     Base = HA_DOUBLE;
21542   } else if (auto *VT = dyn_cast<VectorType>(Ty)) {
21543     Members = 1;
21544     switch (Base) {
21545     case HA_FLOAT:
21546     case HA_DOUBLE:
21547       return false;
21548     case HA_VECT64:
21549       return VT->getPrimitiveSizeInBits().getFixedSize() == 64;
21550     case HA_VECT128:
21551       return VT->getPrimitiveSizeInBits().getFixedSize() == 128;
21552     case HA_UNKNOWN:
21553       switch (VT->getPrimitiveSizeInBits().getFixedSize()) {
21554       case 64:
21555         Base = HA_VECT64;
21556         return true;
21557       case 128:
21558         Base = HA_VECT128;
21559         return true;
21560       default:
21561         return false;
21562       }
21563     }
21564   }
21565 
21566   return (Members > 0 && Members <= 4);
21567 }
21568 
21569 /// Return the correct alignment for the current calling convention.
21570 Align ARMTargetLowering::getABIAlignmentForCallingConv(
21571     Type *ArgTy, const DataLayout &DL) const {
21572   const Align ABITypeAlign = DL.getABITypeAlign(ArgTy);
21573   if (!ArgTy->isVectorTy())
21574     return ABITypeAlign;
21575 
21576   // Avoid over-aligning vector parameters. It would require realigning the
21577   // stack and waste space for no real benefit.
21578   return std::min(ABITypeAlign, DL.getStackAlignment());
21579 }
21580 
21581 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
21582 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
21583 /// passing according to AAPCS rules.
21584 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
21585     Type *Ty, CallingConv::ID CallConv, bool isVarArg,
21586     const DataLayout &DL) const {
21587   if (getEffectiveCallingConv(CallConv, isVarArg) !=
21588       CallingConv::ARM_AAPCS_VFP)
21589     return false;
21590 
21591   HABaseType Base = HA_UNKNOWN;
21592   uint64_t Members = 0;
21593   bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
21594   LLVM_DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
21595 
21596   bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
21597   return IsHA || IsIntArray;
21598 }
21599 
21600 Register ARMTargetLowering::getExceptionPointerRegister(
21601     const Constant *PersonalityFn) const {
21602   // Platforms which do not use SjLj EH may return values in these registers
21603   // via the personality function.
21604   return Subtarget->useSjLjEH() ? Register() : ARM::R0;
21605 }
21606 
21607 Register ARMTargetLowering::getExceptionSelectorRegister(
21608     const Constant *PersonalityFn) const {
21609   // Platforms which do not use SjLj EH may return values in these registers
21610   // via the personality function.
21611   return Subtarget->useSjLjEH() ? Register() : ARM::R1;
21612 }
21613 
21614 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
21615   // Update IsSplitCSR in ARMFunctionInfo.
21616   ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>();
21617   AFI->setIsSplitCSR(true);
21618 }
21619 
21620 void ARMTargetLowering::insertCopiesSplitCSR(
21621     MachineBasicBlock *Entry,
21622     const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
21623   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
21624   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
21625   if (!IStart)
21626     return;
21627 
21628   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
21629   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
21630   MachineBasicBlock::iterator MBBI = Entry->begin();
21631   for (const MCPhysReg *I = IStart; *I; ++I) {
21632     const TargetRegisterClass *RC = nullptr;
21633     if (ARM::GPRRegClass.contains(*I))
21634       RC = &ARM::GPRRegClass;
21635     else if (ARM::DPRRegClass.contains(*I))
21636       RC = &ARM::DPRRegClass;
21637     else
21638       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
21639 
21640     Register NewVR = MRI->createVirtualRegister(RC);
21641     // Create copy from CSR to a virtual register.
21642     // FIXME: this currently does not emit CFI pseudo-instructions, it works
21643     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
21644     // nounwind. If we want to generalize this later, we may need to emit
21645     // CFI pseudo-instructions.
21646     assert(Entry->getParent()->getFunction().hasFnAttribute(
21647                Attribute::NoUnwind) &&
21648            "Function should be nounwind in insertCopiesSplitCSR!");
21649     Entry->addLiveIn(*I);
21650     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
21651         .addReg(*I);
21652 
21653     // Insert the copy-back instructions right before the terminator.
21654     for (auto *Exit : Exits)
21655       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
21656               TII->get(TargetOpcode::COPY), *I)
21657           .addReg(NewVR);
21658   }
21659 }
21660 
21661 void ARMTargetLowering::finalizeLowering(MachineFunction &MF) const {
21662   MF.getFrameInfo().computeMaxCallFrameSize(MF);
21663   TargetLoweringBase::finalizeLowering(MF);
21664 }
21665