xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMISelLowering.cpp (revision 0b37c1590418417c894529d371800dfac71ef887)
1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that ARM uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARMISelLowering.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMCallingConv.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMPerfectShuffle.h"
21 #include "ARMRegisterInfo.h"
22 #include "ARMSelectionDAGInfo.h"
23 #include "ARMSubtarget.h"
24 #include "MCTargetDesc/ARMAddressingModes.h"
25 #include "MCTargetDesc/ARMBaseInfo.h"
26 #include "Utils/ARMBaseInfo.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/BitVector.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringExtras.h"
37 #include "llvm/ADT/StringRef.h"
38 #include "llvm/ADT/StringSwitch.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/VectorUtils.h"
42 #include "llvm/CodeGen/CallingConvLower.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/IntrinsicLowering.h"
45 #include "llvm/CodeGen/MachineBasicBlock.h"
46 #include "llvm/CodeGen/MachineConstantPool.h"
47 #include "llvm/CodeGen/MachineFrameInfo.h"
48 #include "llvm/CodeGen/MachineFunction.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineInstrBuilder.h"
51 #include "llvm/CodeGen/MachineJumpTableInfo.h"
52 #include "llvm/CodeGen/MachineMemOperand.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineRegisterInfo.h"
55 #include "llvm/CodeGen/RuntimeLibcalls.h"
56 #include "llvm/CodeGen/SelectionDAG.h"
57 #include "llvm/CodeGen/SelectionDAGNodes.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GlobalAlias.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InlineAsm.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/IntrinsicsARM.h"
82 #include "llvm/IR/Module.h"
83 #include "llvm/IR/PatternMatch.h"
84 #include "llvm/IR/Type.h"
85 #include "llvm/IR/User.h"
86 #include "llvm/IR/Value.h"
87 #include "llvm/MC/MCInstrDesc.h"
88 #include "llvm/MC/MCInstrItineraries.h"
89 #include "llvm/MC/MCRegisterInfo.h"
90 #include "llvm/MC/MCSchedule.h"
91 #include "llvm/Support/AtomicOrdering.h"
92 #include "llvm/Support/BranchProbability.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CodeGen.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/ErrorHandling.h"
99 #include "llvm/Support/KnownBits.h"
100 #include "llvm/Support/MachineValueType.h"
101 #include "llvm/Support/MathExtras.h"
102 #include "llvm/Support/raw_ostream.h"
103 #include "llvm/Target/TargetMachine.h"
104 #include "llvm/Target/TargetOptions.h"
105 #include <algorithm>
106 #include <cassert>
107 #include <cstdint>
108 #include <cstdlib>
109 #include <iterator>
110 #include <limits>
111 #include <string>
112 #include <tuple>
113 #include <utility>
114 #include <vector>
115 
116 using namespace llvm;
117 using namespace llvm::PatternMatch;
118 
119 #define DEBUG_TYPE "arm-isel"
120 
121 STATISTIC(NumTailCalls, "Number of tail calls");
122 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
123 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
124 STATISTIC(NumConstpoolPromoted,
125   "Number of constants with their storage promoted into constant pools");
126 
127 static cl::opt<bool>
128 ARMInterworking("arm-interworking", cl::Hidden,
129   cl::desc("Enable / disable ARM interworking (for debugging only)"),
130   cl::init(true));
131 
132 static cl::opt<bool> EnableConstpoolPromotion(
133     "arm-promote-constant", cl::Hidden,
134     cl::desc("Enable / disable promotion of unnamed_addr constants into "
135              "constant pools"),
136     cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
137 static cl::opt<unsigned> ConstpoolPromotionMaxSize(
138     "arm-promote-constant-max-size", cl::Hidden,
139     cl::desc("Maximum size of constant to promote into a constant pool"),
140     cl::init(64));
141 static cl::opt<unsigned> ConstpoolPromotionMaxTotal(
142     "arm-promote-constant-max-total", cl::Hidden,
143     cl::desc("Maximum size of ALL constants to promote into a constant pool"),
144     cl::init(128));
145 
146 static cl::opt<unsigned>
147 MVEMaxSupportedInterleaveFactor("mve-max-interleave-factor", cl::Hidden,
148   cl::desc("Maximum interleave factor for MVE VLDn to generate."),
149   cl::init(2));
150 
151 // The APCS parameter registers.
152 static const MCPhysReg GPRArgRegs[] = {
153   ARM::R0, ARM::R1, ARM::R2, ARM::R3
154 };
155 
156 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
157                                        MVT PromotedBitwiseVT) {
158   if (VT != PromotedLdStVT) {
159     setOperationAction(ISD::LOAD, VT, Promote);
160     AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
161 
162     setOperationAction(ISD::STORE, VT, Promote);
163     AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
164   }
165 
166   MVT ElemTy = VT.getVectorElementType();
167   if (ElemTy != MVT::f64)
168     setOperationAction(ISD::SETCC, VT, Custom);
169   setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
170   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
171   if (ElemTy == MVT::i32) {
172     setOperationAction(ISD::SINT_TO_FP, VT, Custom);
173     setOperationAction(ISD::UINT_TO_FP, VT, Custom);
174     setOperationAction(ISD::FP_TO_SINT, VT, Custom);
175     setOperationAction(ISD::FP_TO_UINT, VT, Custom);
176   } else {
177     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
178     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
179     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
180     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
181   }
182   setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
183   setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
184   setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
185   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
186   setOperationAction(ISD::SELECT,            VT, Expand);
187   setOperationAction(ISD::SELECT_CC,         VT, Expand);
188   setOperationAction(ISD::VSELECT,           VT, Expand);
189   setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
190   if (VT.isInteger()) {
191     setOperationAction(ISD::SHL, VT, Custom);
192     setOperationAction(ISD::SRA, VT, Custom);
193     setOperationAction(ISD::SRL, VT, Custom);
194   }
195 
196   // Promote all bit-wise operations.
197   if (VT.isInteger() && VT != PromotedBitwiseVT) {
198     setOperationAction(ISD::AND, VT, Promote);
199     AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
200     setOperationAction(ISD::OR,  VT, Promote);
201     AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
202     setOperationAction(ISD::XOR, VT, Promote);
203     AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
204   }
205 
206   // Neon does not support vector divide/remainder operations.
207   setOperationAction(ISD::SDIV, VT, Expand);
208   setOperationAction(ISD::UDIV, VT, Expand);
209   setOperationAction(ISD::FDIV, VT, Expand);
210   setOperationAction(ISD::SREM, VT, Expand);
211   setOperationAction(ISD::UREM, VT, Expand);
212   setOperationAction(ISD::FREM, VT, Expand);
213 
214   if (!VT.isFloatingPoint() &&
215       VT != MVT::v2i64 && VT != MVT::v1i64)
216     for (auto Opcode : {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
217       setOperationAction(Opcode, VT, Legal);
218   if (!VT.isFloatingPoint())
219     for (auto Opcode : {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT})
220       setOperationAction(Opcode, VT, Legal);
221 }
222 
223 void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
224   addRegisterClass(VT, &ARM::DPRRegClass);
225   addTypeForNEON(VT, MVT::f64, MVT::v2i32);
226 }
227 
228 void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
229   addRegisterClass(VT, &ARM::DPairRegClass);
230   addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
231 }
232 
233 void ARMTargetLowering::setAllExpand(MVT VT) {
234   for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
235     setOperationAction(Opc, VT, Expand);
236 
237   // We support these really simple operations even on types where all
238   // the actual arithmetic has to be broken down into simpler
239   // operations or turned into library calls.
240   setOperationAction(ISD::BITCAST, VT, Legal);
241   setOperationAction(ISD::LOAD, VT, Legal);
242   setOperationAction(ISD::STORE, VT, Legal);
243   setOperationAction(ISD::UNDEF, VT, Legal);
244 }
245 
246 void ARMTargetLowering::addAllExtLoads(const MVT From, const MVT To,
247                                        LegalizeAction Action) {
248   setLoadExtAction(ISD::EXTLOAD,  From, To, Action);
249   setLoadExtAction(ISD::ZEXTLOAD, From, To, Action);
250   setLoadExtAction(ISD::SEXTLOAD, From, To, Action);
251 }
252 
253 void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP) {
254   const MVT IntTypes[] = { MVT::v16i8, MVT::v8i16, MVT::v4i32 };
255 
256   for (auto VT : IntTypes) {
257     addRegisterClass(VT, &ARM::MQPRRegClass);
258     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
259     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
260     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
261     setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
262     setOperationAction(ISD::SHL, VT, Custom);
263     setOperationAction(ISD::SRA, VT, Custom);
264     setOperationAction(ISD::SRL, VT, Custom);
265     setOperationAction(ISD::SMIN, VT, Legal);
266     setOperationAction(ISD::SMAX, VT, Legal);
267     setOperationAction(ISD::UMIN, VT, Legal);
268     setOperationAction(ISD::UMAX, VT, Legal);
269     setOperationAction(ISD::ABS, VT, Legal);
270     setOperationAction(ISD::SETCC, VT, Custom);
271     setOperationAction(ISD::MLOAD, VT, Custom);
272     setOperationAction(ISD::MSTORE, VT, Legal);
273     setOperationAction(ISD::CTLZ, VT, Legal);
274     setOperationAction(ISD::CTTZ, VT, Custom);
275     setOperationAction(ISD::BITREVERSE, VT, Legal);
276     setOperationAction(ISD::BSWAP, VT, Legal);
277     setOperationAction(ISD::SADDSAT, VT, Legal);
278     setOperationAction(ISD::UADDSAT, VT, Legal);
279     setOperationAction(ISD::SSUBSAT, VT, Legal);
280     setOperationAction(ISD::USUBSAT, VT, Legal);
281 
282     // No native support for these.
283     setOperationAction(ISD::UDIV, VT, Expand);
284     setOperationAction(ISD::SDIV, VT, Expand);
285     setOperationAction(ISD::UREM, VT, Expand);
286     setOperationAction(ISD::SREM, VT, Expand);
287     setOperationAction(ISD::CTPOP, VT, Expand);
288 
289     // Vector reductions
290     setOperationAction(ISD::VECREDUCE_ADD, VT, Legal);
291     setOperationAction(ISD::VECREDUCE_SMAX, VT, Legal);
292     setOperationAction(ISD::VECREDUCE_UMAX, VT, Legal);
293     setOperationAction(ISD::VECREDUCE_SMIN, VT, Legal);
294     setOperationAction(ISD::VECREDUCE_UMIN, VT, Legal);
295 
296     if (!HasMVEFP) {
297       setOperationAction(ISD::SINT_TO_FP, VT, Expand);
298       setOperationAction(ISD::UINT_TO_FP, VT, Expand);
299       setOperationAction(ISD::FP_TO_SINT, VT, Expand);
300       setOperationAction(ISD::FP_TO_UINT, VT, Expand);
301     }
302 
303     // Pre and Post inc are supported on loads and stores
304     for (unsigned im = (unsigned)ISD::PRE_INC;
305          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
306       setIndexedLoadAction(im, VT, Legal);
307       setIndexedStoreAction(im, VT, Legal);
308       setIndexedMaskedLoadAction(im, VT, Legal);
309       setIndexedMaskedStoreAction(im, VT, Legal);
310     }
311   }
312 
313   const MVT FloatTypes[] = { MVT::v8f16, MVT::v4f32 };
314   for (auto VT : FloatTypes) {
315     addRegisterClass(VT, &ARM::MQPRRegClass);
316     if (!HasMVEFP)
317       setAllExpand(VT);
318 
319     // These are legal or custom whether we have MVE.fp or not
320     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
321     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
322     setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getVectorElementType(), Custom);
323     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
324     setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
325     setOperationAction(ISD::BUILD_VECTOR, VT.getVectorElementType(), Custom);
326     setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Legal);
327     setOperationAction(ISD::SETCC, VT, Custom);
328     setOperationAction(ISD::MLOAD, VT, Custom);
329     setOperationAction(ISD::MSTORE, VT, Legal);
330 
331     // Pre and Post inc are supported on loads and stores
332     for (unsigned im = (unsigned)ISD::PRE_INC;
333          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
334       setIndexedLoadAction(im, VT, Legal);
335       setIndexedStoreAction(im, VT, Legal);
336       setIndexedMaskedLoadAction(im, VT, Legal);
337       setIndexedMaskedStoreAction(im, VT, Legal);
338     }
339 
340     if (HasMVEFP) {
341       setOperationAction(ISD::FMINNUM, VT, Legal);
342       setOperationAction(ISD::FMAXNUM, VT, Legal);
343       setOperationAction(ISD::FROUND, VT, Legal);
344 
345       // No native support for these.
346       setOperationAction(ISD::FDIV, VT, Expand);
347       setOperationAction(ISD::FREM, VT, Expand);
348       setOperationAction(ISD::FSQRT, VT, Expand);
349       setOperationAction(ISD::FSIN, VT, Expand);
350       setOperationAction(ISD::FCOS, VT, Expand);
351       setOperationAction(ISD::FPOW, VT, Expand);
352       setOperationAction(ISD::FLOG, VT, Expand);
353       setOperationAction(ISD::FLOG2, VT, Expand);
354       setOperationAction(ISD::FLOG10, VT, Expand);
355       setOperationAction(ISD::FEXP, VT, Expand);
356       setOperationAction(ISD::FEXP2, VT, Expand);
357       setOperationAction(ISD::FNEARBYINT, VT, Expand);
358     }
359   }
360 
361   // We 'support' these types up to bitcast/load/store level, regardless of
362   // MVE integer-only / float support. Only doing FP data processing on the FP
363   // vector types is inhibited at integer-only level.
364   const MVT LongTypes[] = { MVT::v2i64, MVT::v2f64 };
365   for (auto VT : LongTypes) {
366     addRegisterClass(VT, &ARM::MQPRRegClass);
367     setAllExpand(VT);
368     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
369     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
370     setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
371   }
372   // We can do bitwise operations on v2i64 vectors
373   setOperationAction(ISD::AND, MVT::v2i64, Legal);
374   setOperationAction(ISD::OR, MVT::v2i64, Legal);
375   setOperationAction(ISD::XOR, MVT::v2i64, Legal);
376 
377   // It is legal to extload from v4i8 to v4i16 or v4i32.
378   addAllExtLoads(MVT::v8i16, MVT::v8i8, Legal);
379   addAllExtLoads(MVT::v4i32, MVT::v4i16, Legal);
380   addAllExtLoads(MVT::v4i32, MVT::v4i8, Legal);
381 
382   // It is legal to sign extend from v4i8/v4i16 to v4i32 or v8i8 to v8i16.
383   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
384   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
385   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
386   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i8,  Legal);
387   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i16, Legal);
388 
389   // Some truncating stores are legal too.
390   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
391   setTruncStoreAction(MVT::v4i32, MVT::v4i8,  Legal);
392   setTruncStoreAction(MVT::v8i16, MVT::v8i8,  Legal);
393 
394   // Pre and Post inc on these are legal, given the correct extends
395   for (unsigned im = (unsigned)ISD::PRE_INC;
396        im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
397     for (auto VT : {MVT::v8i8, MVT::v4i8, MVT::v4i16}) {
398       setIndexedLoadAction(im, VT, Legal);
399       setIndexedStoreAction(im, VT, Legal);
400       setIndexedMaskedLoadAction(im, VT, Legal);
401       setIndexedMaskedStoreAction(im, VT, Legal);
402     }
403   }
404 
405   // Predicate types
406   const MVT pTypes[] = {MVT::v16i1, MVT::v8i1, MVT::v4i1};
407   for (auto VT : pTypes) {
408     addRegisterClass(VT, &ARM::VCCRRegClass);
409     setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
410     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
411     setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
412     setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
413     setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
414     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
415     setOperationAction(ISD::SETCC, VT, Custom);
416     setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
417     setOperationAction(ISD::LOAD, VT, Custom);
418     setOperationAction(ISD::STORE, VT, Custom);
419   }
420 }
421 
422 ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
423                                      const ARMSubtarget &STI)
424     : TargetLowering(TM), Subtarget(&STI) {
425   RegInfo = Subtarget->getRegisterInfo();
426   Itins = Subtarget->getInstrItineraryData();
427 
428   setBooleanContents(ZeroOrOneBooleanContent);
429   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
430 
431   if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetIOS() &&
432       !Subtarget->isTargetWatchOS()) {
433     bool IsHFTarget = TM.Options.FloatABIType == FloatABI::Hard;
434     for (int LCID = 0; LCID < RTLIB::UNKNOWN_LIBCALL; ++LCID)
435       setLibcallCallingConv(static_cast<RTLIB::Libcall>(LCID),
436                             IsHFTarget ? CallingConv::ARM_AAPCS_VFP
437                                        : CallingConv::ARM_AAPCS);
438   }
439 
440   if (Subtarget->isTargetMachO()) {
441     // Uses VFP for Thumb libfuncs if available.
442     if (Subtarget->isThumb() && Subtarget->hasVFP2Base() &&
443         Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
444       static const struct {
445         const RTLIB::Libcall Op;
446         const char * const Name;
447         const ISD::CondCode Cond;
448       } LibraryCalls[] = {
449         // Single-precision floating-point arithmetic.
450         { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
451         { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
452         { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
453         { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
454 
455         // Double-precision floating-point arithmetic.
456         { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
457         { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
458         { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
459         { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
460 
461         // Single-precision comparisons.
462         { RTLIB::OEQ_F32, "__eqsf2vfp",    ISD::SETNE },
463         { RTLIB::UNE_F32, "__nesf2vfp",    ISD::SETNE },
464         { RTLIB::OLT_F32, "__ltsf2vfp",    ISD::SETNE },
465         { RTLIB::OLE_F32, "__lesf2vfp",    ISD::SETNE },
466         { RTLIB::OGE_F32, "__gesf2vfp",    ISD::SETNE },
467         { RTLIB::OGT_F32, "__gtsf2vfp",    ISD::SETNE },
468         { RTLIB::UO_F32,  "__unordsf2vfp", ISD::SETNE },
469 
470         // Double-precision comparisons.
471         { RTLIB::OEQ_F64, "__eqdf2vfp",    ISD::SETNE },
472         { RTLIB::UNE_F64, "__nedf2vfp",    ISD::SETNE },
473         { RTLIB::OLT_F64, "__ltdf2vfp",    ISD::SETNE },
474         { RTLIB::OLE_F64, "__ledf2vfp",    ISD::SETNE },
475         { RTLIB::OGE_F64, "__gedf2vfp",    ISD::SETNE },
476         { RTLIB::OGT_F64, "__gtdf2vfp",    ISD::SETNE },
477         { RTLIB::UO_F64,  "__unorddf2vfp", ISD::SETNE },
478 
479         // Floating-point to integer conversions.
480         // i64 conversions are done via library routines even when generating VFP
481         // instructions, so use the same ones.
482         { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp",    ISD::SETCC_INVALID },
483         { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
484         { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp",    ISD::SETCC_INVALID },
485         { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
486 
487         // Conversions between floating types.
488         { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp",  ISD::SETCC_INVALID },
489         { RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp", ISD::SETCC_INVALID },
490 
491         // Integer to floating-point conversions.
492         // i64 conversions are done via library routines even when generating VFP
493         // instructions, so use the same ones.
494         // FIXME: There appears to be some naming inconsistency in ARM libgcc:
495         // e.g., __floatunsidf vs. __floatunssidfvfp.
496         { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp",    ISD::SETCC_INVALID },
497         { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
498         { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp",    ISD::SETCC_INVALID },
499         { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
500       };
501 
502       for (const auto &LC : LibraryCalls) {
503         setLibcallName(LC.Op, LC.Name);
504         if (LC.Cond != ISD::SETCC_INVALID)
505           setCmpLibcallCC(LC.Op, LC.Cond);
506       }
507     }
508   }
509 
510   // These libcalls are not available in 32-bit.
511   setLibcallName(RTLIB::SHL_I128, nullptr);
512   setLibcallName(RTLIB::SRL_I128, nullptr);
513   setLibcallName(RTLIB::SRA_I128, nullptr);
514 
515   // RTLIB
516   if (Subtarget->isAAPCS_ABI() &&
517       (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
518        Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) {
519     static const struct {
520       const RTLIB::Libcall Op;
521       const char * const Name;
522       const CallingConv::ID CC;
523       const ISD::CondCode Cond;
524     } LibraryCalls[] = {
525       // Double-precision floating-point arithmetic helper functions
526       // RTABI chapter 4.1.2, Table 2
527       { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
528       { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
529       { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
530       { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
531 
532       // Double-precision floating-point comparison helper functions
533       // RTABI chapter 4.1.2, Table 3
534       { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
535       { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
536       { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
537       { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
538       { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
539       { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
540       { RTLIB::UO_F64,  "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
541 
542       // Single-precision floating-point arithmetic helper functions
543       // RTABI chapter 4.1.2, Table 4
544       { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
545       { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
546       { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
547       { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
548 
549       // Single-precision floating-point comparison helper functions
550       // RTABI chapter 4.1.2, Table 5
551       { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
552       { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
553       { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
554       { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
555       { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
556       { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
557       { RTLIB::UO_F32,  "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
558 
559       // Floating-point to integer conversions.
560       // RTABI chapter 4.1.2, Table 6
561       { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
562       { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
563       { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
564       { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
565       { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
566       { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
567       { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
568       { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
569 
570       // Conversions between floating types.
571       // RTABI chapter 4.1.2, Table 7
572       { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
573       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
574       { RTLIB::FPEXT_F32_F64,   "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
575 
576       // Integer to floating-point conversions.
577       // RTABI chapter 4.1.2, Table 8
578       { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
579       { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
580       { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
581       { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
582       { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
583       { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
584       { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
585       { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
586 
587       // Long long helper functions
588       // RTABI chapter 4.2, Table 9
589       { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
590       { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
591       { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
592       { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
593 
594       // Integer division functions
595       // RTABI chapter 4.3.1
596       { RTLIB::SDIV_I8,  "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
597       { RTLIB::SDIV_I16, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
598       { RTLIB::SDIV_I32, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
599       { RTLIB::SDIV_I64, "__aeabi_ldivmod",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
600       { RTLIB::UDIV_I8,  "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
601       { RTLIB::UDIV_I16, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
602       { RTLIB::UDIV_I32, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
603       { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
604     };
605 
606     for (const auto &LC : LibraryCalls) {
607       setLibcallName(LC.Op, LC.Name);
608       setLibcallCallingConv(LC.Op, LC.CC);
609       if (LC.Cond != ISD::SETCC_INVALID)
610         setCmpLibcallCC(LC.Op, LC.Cond);
611     }
612 
613     // EABI dependent RTLIB
614     if (TM.Options.EABIVersion == EABI::EABI4 ||
615         TM.Options.EABIVersion == EABI::EABI5) {
616       static const struct {
617         const RTLIB::Libcall Op;
618         const char *const Name;
619         const CallingConv::ID CC;
620         const ISD::CondCode Cond;
621       } MemOpsLibraryCalls[] = {
622         // Memory operations
623         // RTABI chapter 4.3.4
624         { RTLIB::MEMCPY,  "__aeabi_memcpy",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
625         { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
626         { RTLIB::MEMSET,  "__aeabi_memset",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
627       };
628 
629       for (const auto &LC : MemOpsLibraryCalls) {
630         setLibcallName(LC.Op, LC.Name);
631         setLibcallCallingConv(LC.Op, LC.CC);
632         if (LC.Cond != ISD::SETCC_INVALID)
633           setCmpLibcallCC(LC.Op, LC.Cond);
634       }
635     }
636   }
637 
638   if (Subtarget->isTargetWindows()) {
639     static const struct {
640       const RTLIB::Libcall Op;
641       const char * const Name;
642       const CallingConv::ID CC;
643     } LibraryCalls[] = {
644       { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
645       { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
646       { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
647       { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
648       { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
649       { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
650       { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
651       { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
652     };
653 
654     for (const auto &LC : LibraryCalls) {
655       setLibcallName(LC.Op, LC.Name);
656       setLibcallCallingConv(LC.Op, LC.CC);
657     }
658   }
659 
660   // Use divmod compiler-rt calls for iOS 5.0 and later.
661   if (Subtarget->isTargetMachO() &&
662       !(Subtarget->isTargetIOS() &&
663         Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
664     setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
665     setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
666   }
667 
668   // The half <-> float conversion functions are always soft-float on
669   // non-watchos platforms, but are needed for some targets which use a
670   // hard-float calling convention by default.
671   if (!Subtarget->isTargetWatchABI()) {
672     if (Subtarget->isAAPCS_ABI()) {
673       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
674       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
675       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
676     } else {
677       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
678       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
679       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
680     }
681   }
682 
683   // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
684   // a __gnu_ prefix (which is the default).
685   if (Subtarget->isTargetAEABI()) {
686     static const struct {
687       const RTLIB::Libcall Op;
688       const char * const Name;
689       const CallingConv::ID CC;
690     } LibraryCalls[] = {
691       { RTLIB::FPROUND_F32_F16, "__aeabi_f2h", CallingConv::ARM_AAPCS },
692       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS },
693       { RTLIB::FPEXT_F16_F32, "__aeabi_h2f", CallingConv::ARM_AAPCS },
694     };
695 
696     for (const auto &LC : LibraryCalls) {
697       setLibcallName(LC.Op, LC.Name);
698       setLibcallCallingConv(LC.Op, LC.CC);
699     }
700   }
701 
702   if (Subtarget->isThumb1Only())
703     addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
704   else
705     addRegisterClass(MVT::i32, &ARM::GPRRegClass);
706 
707   if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only() &&
708       Subtarget->hasFPRegs()) {
709     addRegisterClass(MVT::f32, &ARM::SPRRegClass);
710     addRegisterClass(MVT::f64, &ARM::DPRRegClass);
711     if (!Subtarget->hasVFP2Base())
712       setAllExpand(MVT::f32);
713     if (!Subtarget->hasFP64())
714       setAllExpand(MVT::f64);
715   }
716 
717   if (Subtarget->hasFullFP16()) {
718     addRegisterClass(MVT::f16, &ARM::HPRRegClass);
719     setOperationAction(ISD::BITCAST, MVT::i16, Custom);
720     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
721     setOperationAction(ISD::BITCAST, MVT::f16, Custom);
722 
723     setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
724     setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
725   }
726 
727   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
728     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
729       setTruncStoreAction(VT, InnerVT, Expand);
730       addAllExtLoads(VT, InnerVT, Expand);
731     }
732 
733     setOperationAction(ISD::MULHS, VT, Expand);
734     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
735     setOperationAction(ISD::MULHU, VT, Expand);
736     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
737 
738     setOperationAction(ISD::BSWAP, VT, Expand);
739   }
740 
741   setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
742   setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
743 
744   setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
745   setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
746 
747   if (Subtarget->hasMVEIntegerOps())
748     addMVEVectorTypes(Subtarget->hasMVEFloatOps());
749 
750   // Combine low-overhead loop intrinsics so that we can lower i1 types.
751   if (Subtarget->hasLOB()) {
752     setTargetDAGCombine(ISD::BRCOND);
753     setTargetDAGCombine(ISD::BR_CC);
754   }
755 
756   if (Subtarget->hasNEON()) {
757     addDRTypeForNEON(MVT::v2f32);
758     addDRTypeForNEON(MVT::v8i8);
759     addDRTypeForNEON(MVT::v4i16);
760     addDRTypeForNEON(MVT::v2i32);
761     addDRTypeForNEON(MVT::v1i64);
762 
763     addQRTypeForNEON(MVT::v4f32);
764     addQRTypeForNEON(MVT::v2f64);
765     addQRTypeForNEON(MVT::v16i8);
766     addQRTypeForNEON(MVT::v8i16);
767     addQRTypeForNEON(MVT::v4i32);
768     addQRTypeForNEON(MVT::v2i64);
769 
770     if (Subtarget->hasFullFP16()) {
771       addQRTypeForNEON(MVT::v8f16);
772       addDRTypeForNEON(MVT::v4f16);
773     }
774   }
775 
776   if (Subtarget->hasMVEIntegerOps() || Subtarget->hasNEON()) {
777     // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
778     // none of Neon, MVE or VFP supports any arithmetic operations on it.
779     setOperationAction(ISD::FADD, MVT::v2f64, Expand);
780     setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
781     setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
782     // FIXME: Code duplication: FDIV and FREM are expanded always, see
783     // ARMTargetLowering::addTypeForNEON method for details.
784     setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
785     setOperationAction(ISD::FREM, MVT::v2f64, Expand);
786     // FIXME: Create unittest.
787     // In another words, find a way when "copysign" appears in DAG with vector
788     // operands.
789     setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
790     // FIXME: Code duplication: SETCC has custom operation action, see
791     // ARMTargetLowering::addTypeForNEON method for details.
792     setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
793     // FIXME: Create unittest for FNEG and for FABS.
794     setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
795     setOperationAction(ISD::FABS, MVT::v2f64, Expand);
796     setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
797     setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
798     setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
799     setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
800     setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
801     setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
802     setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
803     setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
804     setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
805     // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
806     setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
807     setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
808     setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
809     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
810     setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
811     setOperationAction(ISD::FMA, MVT::v2f64, Expand);
812   }
813 
814   if (Subtarget->hasNEON()) {
815     // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
816     // supported for v4f32.
817     setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
818     setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
819     setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
820     setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
821     setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
822     setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
823     setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
824     setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
825     setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
826     setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
827     setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
828     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
829     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
830     setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
831 
832     // Mark v2f32 intrinsics.
833     setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
834     setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
835     setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
836     setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
837     setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
838     setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
839     setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
840     setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
841     setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
842     setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
843     setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
844     setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
845     setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
846     setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
847 
848     // Neon does not support some operations on v1i64 and v2i64 types.
849     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
850     // Custom handling for some quad-vector types to detect VMULL.
851     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
852     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
853     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
854     // Custom handling for some vector types to avoid expensive expansions
855     setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
856     setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
857     setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
858     setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
859     // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
860     // a destination type that is wider than the source, and nor does
861     // it have a FP_TO_[SU]INT instruction with a narrower destination than
862     // source.
863     setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
864     setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom);
865     setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
866     setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
867     setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
868     setOperationAction(ISD::FP_TO_UINT, MVT::v8i16, Custom);
869     setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
870     setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Custom);
871 
872     setOperationAction(ISD::FP_ROUND,   MVT::v2f32, Expand);
873     setOperationAction(ISD::FP_EXTEND,  MVT::v2f64, Expand);
874 
875     // NEON does not have single instruction CTPOP for vectors with element
876     // types wider than 8-bits.  However, custom lowering can leverage the
877     // v8i8/v16i8 vcnt instruction.
878     setOperationAction(ISD::CTPOP,      MVT::v2i32, Custom);
879     setOperationAction(ISD::CTPOP,      MVT::v4i32, Custom);
880     setOperationAction(ISD::CTPOP,      MVT::v4i16, Custom);
881     setOperationAction(ISD::CTPOP,      MVT::v8i16, Custom);
882     setOperationAction(ISD::CTPOP,      MVT::v1i64, Custom);
883     setOperationAction(ISD::CTPOP,      MVT::v2i64, Custom);
884 
885     setOperationAction(ISD::CTLZ,       MVT::v1i64, Expand);
886     setOperationAction(ISD::CTLZ,       MVT::v2i64, Expand);
887 
888     // NEON does not have single instruction CTTZ for vectors.
889     setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
890     setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
891     setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
892     setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
893 
894     setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
895     setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
896     setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
897     setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
898 
899     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
900     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
901     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
902     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
903 
904     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
905     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
906     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
907     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
908 
909     // NEON only has FMA instructions as of VFP4.
910     if (!Subtarget->hasVFP4Base()) {
911       setOperationAction(ISD::FMA, MVT::v2f32, Expand);
912       setOperationAction(ISD::FMA, MVT::v4f32, Expand);
913     }
914 
915     setTargetDAGCombine(ISD::INTRINSIC_VOID);
916     setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
917     setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
918     setTargetDAGCombine(ISD::SHL);
919     setTargetDAGCombine(ISD::SRL);
920     setTargetDAGCombine(ISD::SRA);
921     setTargetDAGCombine(ISD::FP_TO_SINT);
922     setTargetDAGCombine(ISD::FP_TO_UINT);
923     setTargetDAGCombine(ISD::FDIV);
924     setTargetDAGCombine(ISD::LOAD);
925 
926     // It is legal to extload from v4i8 to v4i16 or v4i32.
927     for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
928                    MVT::v2i32}) {
929       for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
930         setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
931         setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
932         setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
933       }
934     }
935   }
936 
937   if (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) {
938     setTargetDAGCombine(ISD::BUILD_VECTOR);
939     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
940     setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
941     setTargetDAGCombine(ISD::STORE);
942     setTargetDAGCombine(ISD::SIGN_EXTEND);
943     setTargetDAGCombine(ISD::ZERO_EXTEND);
944     setTargetDAGCombine(ISD::ANY_EXTEND);
945   }
946 
947   if (!Subtarget->hasFP64()) {
948     // When targeting a floating-point unit with only single-precision
949     // operations, f64 is legal for the few double-precision instructions which
950     // are present However, no double-precision operations other than moves,
951     // loads and stores are provided by the hardware.
952     setOperationAction(ISD::FADD,       MVT::f64, Expand);
953     setOperationAction(ISD::FSUB,       MVT::f64, Expand);
954     setOperationAction(ISD::FMUL,       MVT::f64, Expand);
955     setOperationAction(ISD::FMA,        MVT::f64, Expand);
956     setOperationAction(ISD::FDIV,       MVT::f64, Expand);
957     setOperationAction(ISD::FREM,       MVT::f64, Expand);
958     setOperationAction(ISD::FCOPYSIGN,  MVT::f64, Expand);
959     setOperationAction(ISD::FGETSIGN,   MVT::f64, Expand);
960     setOperationAction(ISD::FNEG,       MVT::f64, Expand);
961     setOperationAction(ISD::FABS,       MVT::f64, Expand);
962     setOperationAction(ISD::FSQRT,      MVT::f64, Expand);
963     setOperationAction(ISD::FSIN,       MVT::f64, Expand);
964     setOperationAction(ISD::FCOS,       MVT::f64, Expand);
965     setOperationAction(ISD::FPOW,       MVT::f64, Expand);
966     setOperationAction(ISD::FLOG,       MVT::f64, Expand);
967     setOperationAction(ISD::FLOG2,      MVT::f64, Expand);
968     setOperationAction(ISD::FLOG10,     MVT::f64, Expand);
969     setOperationAction(ISD::FEXP,       MVT::f64, Expand);
970     setOperationAction(ISD::FEXP2,      MVT::f64, Expand);
971     setOperationAction(ISD::FCEIL,      MVT::f64, Expand);
972     setOperationAction(ISD::FTRUNC,     MVT::f64, Expand);
973     setOperationAction(ISD::FRINT,      MVT::f64, Expand);
974     setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
975     setOperationAction(ISD::FFLOOR,     MVT::f64, Expand);
976     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
977     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
978     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
979     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
980     setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
981     setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
982     setOperationAction(ISD::FP_ROUND,   MVT::f32, Custom);
983     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
984     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
985     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::f64, Custom);
986     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::f64, Custom);
987     setOperationAction(ISD::STRICT_FP_ROUND,   MVT::f32, Custom);
988   }
989 
990   if (!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) {
991     setOperationAction(ISD::FP_EXTEND,  MVT::f64, Custom);
992     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Custom);
993     if (Subtarget->hasFullFP16()) {
994       setOperationAction(ISD::FP_ROUND,  MVT::f16, Custom);
995       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Custom);
996     }
997   }
998 
999   if (!Subtarget->hasFP16()) {
1000     setOperationAction(ISD::FP_EXTEND,  MVT::f32, Custom);
1001     setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Custom);
1002   }
1003 
1004   computeRegisterProperties(Subtarget->getRegisterInfo());
1005 
1006   // ARM does not have floating-point extending loads.
1007   for (MVT VT : MVT::fp_valuetypes()) {
1008     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1009     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
1010   }
1011 
1012   // ... or truncating stores
1013   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1014   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
1015   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
1016 
1017   // ARM does not have i1 sign extending load.
1018   for (MVT VT : MVT::integer_valuetypes())
1019     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
1020 
1021   // ARM supports all 4 flavors of integer indexed load / store.
1022   if (!Subtarget->isThumb1Only()) {
1023     for (unsigned im = (unsigned)ISD::PRE_INC;
1024          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
1025       setIndexedLoadAction(im,  MVT::i1,  Legal);
1026       setIndexedLoadAction(im,  MVT::i8,  Legal);
1027       setIndexedLoadAction(im,  MVT::i16, Legal);
1028       setIndexedLoadAction(im,  MVT::i32, Legal);
1029       setIndexedStoreAction(im, MVT::i1,  Legal);
1030       setIndexedStoreAction(im, MVT::i8,  Legal);
1031       setIndexedStoreAction(im, MVT::i16, Legal);
1032       setIndexedStoreAction(im, MVT::i32, Legal);
1033     }
1034   } else {
1035     // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
1036     setIndexedLoadAction(ISD::POST_INC, MVT::i32,  Legal);
1037     setIndexedStoreAction(ISD::POST_INC, MVT::i32,  Legal);
1038   }
1039 
1040   setOperationAction(ISD::SADDO, MVT::i32, Custom);
1041   setOperationAction(ISD::UADDO, MVT::i32, Custom);
1042   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
1043   setOperationAction(ISD::USUBO, MVT::i32, Custom);
1044 
1045   setOperationAction(ISD::ADDCARRY, MVT::i32, Custom);
1046   setOperationAction(ISD::SUBCARRY, MVT::i32, Custom);
1047   if (Subtarget->hasDSP()) {
1048     setOperationAction(ISD::SADDSAT, MVT::i8, Custom);
1049     setOperationAction(ISD::SSUBSAT, MVT::i8, Custom);
1050     setOperationAction(ISD::SADDSAT, MVT::i16, Custom);
1051     setOperationAction(ISD::SSUBSAT, MVT::i16, Custom);
1052   }
1053   if (Subtarget->hasBaseDSP()) {
1054     setOperationAction(ISD::SADDSAT, MVT::i32, Legal);
1055     setOperationAction(ISD::SSUBSAT, MVT::i32, Legal);
1056   }
1057 
1058   // i64 operation support.
1059   setOperationAction(ISD::MUL,     MVT::i64, Expand);
1060   setOperationAction(ISD::MULHU,   MVT::i32, Expand);
1061   if (Subtarget->isThumb1Only()) {
1062     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
1063     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
1064   }
1065   if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
1066       || (Subtarget->isThumb2() && !Subtarget->hasDSP()))
1067     setOperationAction(ISD::MULHS, MVT::i32, Expand);
1068 
1069   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
1070   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
1071   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
1072   setOperationAction(ISD::SRL,       MVT::i64, Custom);
1073   setOperationAction(ISD::SRA,       MVT::i64, Custom);
1074   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
1075   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
1076   setOperationAction(ISD::LOAD, MVT::i64, Custom);
1077   setOperationAction(ISD::STORE, MVT::i64, Custom);
1078 
1079   // MVE lowers 64 bit shifts to lsll and lsrl
1080   // assuming that ISD::SRL and SRA of i64 are already marked custom
1081   if (Subtarget->hasMVEIntegerOps())
1082     setOperationAction(ISD::SHL, MVT::i64, Custom);
1083 
1084   // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
1085   if (Subtarget->isThumb1Only()) {
1086     setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
1087     setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
1088     setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
1089   }
1090 
1091   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
1092     setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
1093 
1094   // ARM does not have ROTL.
1095   setOperationAction(ISD::ROTL, MVT::i32, Expand);
1096   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
1097     setOperationAction(ISD::ROTL, VT, Expand);
1098     setOperationAction(ISD::ROTR, VT, Expand);
1099   }
1100   setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
1101   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
1102   if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) {
1103     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
1104     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, LibCall);
1105   }
1106 
1107   // @llvm.readcyclecounter requires the Performance Monitors extension.
1108   // Default to the 0 expansion on unsupported platforms.
1109   // FIXME: Technically there are older ARM CPUs that have
1110   // implementation-specific ways of obtaining this information.
1111   if (Subtarget->hasPerfMon())
1112     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
1113 
1114   // Only ARMv6 has BSWAP.
1115   if (!Subtarget->hasV6Ops())
1116     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
1117 
1118   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
1119                                         : Subtarget->hasDivideInARMMode();
1120   if (!hasDivide) {
1121     // These are expanded into libcalls if the cpu doesn't have HW divider.
1122     setOperationAction(ISD::SDIV,  MVT::i32, LibCall);
1123     setOperationAction(ISD::UDIV,  MVT::i32, LibCall);
1124   }
1125 
1126   if (Subtarget->isTargetWindows() && !Subtarget->hasDivideInThumbMode()) {
1127     setOperationAction(ISD::SDIV, MVT::i32, Custom);
1128     setOperationAction(ISD::UDIV, MVT::i32, Custom);
1129 
1130     setOperationAction(ISD::SDIV, MVT::i64, Custom);
1131     setOperationAction(ISD::UDIV, MVT::i64, Custom);
1132   }
1133 
1134   setOperationAction(ISD::SREM,  MVT::i32, Expand);
1135   setOperationAction(ISD::UREM,  MVT::i32, Expand);
1136 
1137   // Register based DivRem for AEABI (RTABI 4.2)
1138   if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
1139       Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
1140       Subtarget->isTargetWindows()) {
1141     setOperationAction(ISD::SREM, MVT::i64, Custom);
1142     setOperationAction(ISD::UREM, MVT::i64, Custom);
1143     HasStandaloneRem = false;
1144 
1145     if (Subtarget->isTargetWindows()) {
1146       const struct {
1147         const RTLIB::Libcall Op;
1148         const char * const Name;
1149         const CallingConv::ID CC;
1150       } LibraryCalls[] = {
1151         { RTLIB::SDIVREM_I8, "__rt_sdiv", CallingConv::ARM_AAPCS },
1152         { RTLIB::SDIVREM_I16, "__rt_sdiv", CallingConv::ARM_AAPCS },
1153         { RTLIB::SDIVREM_I32, "__rt_sdiv", CallingConv::ARM_AAPCS },
1154         { RTLIB::SDIVREM_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS },
1155 
1156         { RTLIB::UDIVREM_I8, "__rt_udiv", CallingConv::ARM_AAPCS },
1157         { RTLIB::UDIVREM_I16, "__rt_udiv", CallingConv::ARM_AAPCS },
1158         { RTLIB::UDIVREM_I32, "__rt_udiv", CallingConv::ARM_AAPCS },
1159         { RTLIB::UDIVREM_I64, "__rt_udiv64", CallingConv::ARM_AAPCS },
1160       };
1161 
1162       for (const auto &LC : LibraryCalls) {
1163         setLibcallName(LC.Op, LC.Name);
1164         setLibcallCallingConv(LC.Op, LC.CC);
1165       }
1166     } else {
1167       const struct {
1168         const RTLIB::Libcall Op;
1169         const char * const Name;
1170         const CallingConv::ID CC;
1171       } LibraryCalls[] = {
1172         { RTLIB::SDIVREM_I8, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1173         { RTLIB::SDIVREM_I16, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1174         { RTLIB::SDIVREM_I32, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1175         { RTLIB::SDIVREM_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS },
1176 
1177         { RTLIB::UDIVREM_I8, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1178         { RTLIB::UDIVREM_I16, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1179         { RTLIB::UDIVREM_I32, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1180         { RTLIB::UDIVREM_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS },
1181       };
1182 
1183       for (const auto &LC : LibraryCalls) {
1184         setLibcallName(LC.Op, LC.Name);
1185         setLibcallCallingConv(LC.Op, LC.CC);
1186       }
1187     }
1188 
1189     setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
1190     setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
1191     setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
1192     setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
1193   } else {
1194     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
1195     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
1196   }
1197 
1198   if (Subtarget->getTargetTriple().isOSMSVCRT()) {
1199     // MSVCRT doesn't have powi; fall back to pow
1200     setLibcallName(RTLIB::POWI_F32, nullptr);
1201     setLibcallName(RTLIB::POWI_F64, nullptr);
1202   }
1203 
1204   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
1205   setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
1206   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
1207   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
1208 
1209   setOperationAction(ISD::TRAP, MVT::Other, Legal);
1210   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
1211 
1212   // Use the default implementation.
1213   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
1214   setOperationAction(ISD::VAARG,              MVT::Other, Expand);
1215   setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
1216   setOperationAction(ISD::VAEND,              MVT::Other, Expand);
1217   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
1218   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
1219 
1220   if (Subtarget->isTargetWindows())
1221     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1222   else
1223     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
1224 
1225   // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
1226   // the default expansion.
1227   InsertFencesForAtomic = false;
1228   if (Subtarget->hasAnyDataBarrier() &&
1229       (!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
1230     // ATOMIC_FENCE needs custom lowering; the others should have been expanded
1231     // to ldrex/strex loops already.
1232     setOperationAction(ISD::ATOMIC_FENCE,     MVT::Other, Custom);
1233     if (!Subtarget->isThumb() || !Subtarget->isMClass())
1234       setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
1235 
1236     // On v8, we have particularly efficient implementations of atomic fences
1237     // if they can be combined with nearby atomic loads and stores.
1238     if (!Subtarget->hasAcquireRelease() ||
1239         getTargetMachine().getOptLevel() == 0) {
1240       // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
1241       InsertFencesForAtomic = true;
1242     }
1243   } else {
1244     // If there's anything we can use as a barrier, go through custom lowering
1245     // for ATOMIC_FENCE.
1246     // If target has DMB in thumb, Fences can be inserted.
1247     if (Subtarget->hasDataBarrier())
1248       InsertFencesForAtomic = true;
1249 
1250     setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other,
1251                        Subtarget->hasAnyDataBarrier() ? Custom : Expand);
1252 
1253     // Set them all for expansion, which will force libcalls.
1254     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
1255     setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
1256     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
1257     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
1258     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
1259     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
1260     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
1261     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
1262     setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
1263     setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
1264     setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
1265     setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
1266     // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1267     // Unordered/Monotonic case.
1268     if (!InsertFencesForAtomic) {
1269       setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
1270       setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
1271     }
1272   }
1273 
1274   setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
1275 
1276   // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1277   if (!Subtarget->hasV6Ops()) {
1278     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
1279     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
1280   }
1281   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1282 
1283   if (!Subtarget->useSoftFloat() && Subtarget->hasFPRegs() &&
1284       !Subtarget->isThumb1Only()) {
1285     // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1286     // iff target supports vfp2.
1287     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1288     setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
1289   }
1290 
1291   // We want to custom lower some of our intrinsics.
1292   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1293   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
1294   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
1295   setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
1296   if (Subtarget->useSjLjEH())
1297     setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
1298 
1299   setOperationAction(ISD::SETCC,     MVT::i32, Expand);
1300   setOperationAction(ISD::SETCC,     MVT::f32, Expand);
1301   setOperationAction(ISD::SETCC,     MVT::f64, Expand);
1302   setOperationAction(ISD::SELECT,    MVT::i32, Custom);
1303   setOperationAction(ISD::SELECT,    MVT::f32, Custom);
1304   setOperationAction(ISD::SELECT,    MVT::f64, Custom);
1305   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1306   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
1307   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
1308   if (Subtarget->hasFullFP16()) {
1309     setOperationAction(ISD::SETCC,     MVT::f16, Expand);
1310     setOperationAction(ISD::SELECT,    MVT::f16, Custom);
1311     setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
1312   }
1313 
1314   setOperationAction(ISD::SETCCCARRY, MVT::i32, Custom);
1315 
1316   setOperationAction(ISD::BRCOND,    MVT::Other, Custom);
1317   setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
1318   if (Subtarget->hasFullFP16())
1319       setOperationAction(ISD::BR_CC, MVT::f16,   Custom);
1320   setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
1321   setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
1322   setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
1323 
1324   // We don't support sin/cos/fmod/copysign/pow
1325   setOperationAction(ISD::FSIN,      MVT::f64, Expand);
1326   setOperationAction(ISD::FSIN,      MVT::f32, Expand);
1327   setOperationAction(ISD::FCOS,      MVT::f32, Expand);
1328   setOperationAction(ISD::FCOS,      MVT::f64, Expand);
1329   setOperationAction(ISD::FSINCOS,   MVT::f64, Expand);
1330   setOperationAction(ISD::FSINCOS,   MVT::f32, Expand);
1331   setOperationAction(ISD::FREM,      MVT::f64, Expand);
1332   setOperationAction(ISD::FREM,      MVT::f32, Expand);
1333   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2Base() &&
1334       !Subtarget->isThumb1Only()) {
1335     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
1336     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
1337   }
1338   setOperationAction(ISD::FPOW,      MVT::f64, Expand);
1339   setOperationAction(ISD::FPOW,      MVT::f32, Expand);
1340 
1341   if (!Subtarget->hasVFP4Base()) {
1342     setOperationAction(ISD::FMA, MVT::f64, Expand);
1343     setOperationAction(ISD::FMA, MVT::f32, Expand);
1344   }
1345 
1346   // Various VFP goodness
1347   if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
1348     // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1349     if (!Subtarget->hasFPARMv8Base() || !Subtarget->hasFP64()) {
1350       setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
1351       setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
1352     }
1353 
1354     // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1355     if (!Subtarget->hasFP16()) {
1356       setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
1357       setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
1358     }
1359   }
1360 
1361   // Use __sincos_stret if available.
1362   if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
1363       getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
1364     setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1365     setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1366   }
1367 
1368   // FP-ARMv8 implements a lot of rounding-like FP operations.
1369   if (Subtarget->hasFPARMv8Base()) {
1370     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
1371     setOperationAction(ISD::FCEIL, MVT::f32, Legal);
1372     setOperationAction(ISD::FROUND, MVT::f32, Legal);
1373     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
1374     setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
1375     setOperationAction(ISD::FRINT, MVT::f32, Legal);
1376     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1377     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1378     if (Subtarget->hasNEON()) {
1379       setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
1380       setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
1381       setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1382       setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1383     }
1384 
1385     if (Subtarget->hasFP64()) {
1386       setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
1387       setOperationAction(ISD::FCEIL, MVT::f64, Legal);
1388       setOperationAction(ISD::FROUND, MVT::f64, Legal);
1389       setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
1390       setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
1391       setOperationAction(ISD::FRINT, MVT::f64, Legal);
1392       setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1393       setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1394     }
1395   }
1396 
1397   // FP16 often need to be promoted to call lib functions
1398   if (Subtarget->hasFullFP16()) {
1399     setOperationAction(ISD::FREM, MVT::f16, Promote);
1400     setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
1401     setOperationAction(ISD::FSIN, MVT::f16, Promote);
1402     setOperationAction(ISD::FCOS, MVT::f16, Promote);
1403     setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
1404     setOperationAction(ISD::FPOWI, MVT::f16, Promote);
1405     setOperationAction(ISD::FPOW, MVT::f16, Promote);
1406     setOperationAction(ISD::FEXP, MVT::f16, Promote);
1407     setOperationAction(ISD::FEXP2, MVT::f16, Promote);
1408     setOperationAction(ISD::FLOG, MVT::f16, Promote);
1409     setOperationAction(ISD::FLOG10, MVT::f16, Promote);
1410     setOperationAction(ISD::FLOG2, MVT::f16, Promote);
1411 
1412     setOperationAction(ISD::FROUND, MVT::f16, Legal);
1413   }
1414 
1415   if (Subtarget->hasNEON()) {
1416     // vmin and vmax aren't available in a scalar form, so we use
1417     // a NEON instruction with an undef lane instead.
1418     setOperationAction(ISD::FMINIMUM, MVT::f16, Legal);
1419     setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal);
1420     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
1421     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
1422     setOperationAction(ISD::FMINIMUM, MVT::v2f32, Legal);
1423     setOperationAction(ISD::FMAXIMUM, MVT::v2f32, Legal);
1424     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
1425     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
1426 
1427     if (Subtarget->hasFullFP16()) {
1428       setOperationAction(ISD::FMINNUM, MVT::v4f16, Legal);
1429       setOperationAction(ISD::FMAXNUM, MVT::v4f16, Legal);
1430       setOperationAction(ISD::FMINNUM, MVT::v8f16, Legal);
1431       setOperationAction(ISD::FMAXNUM, MVT::v8f16, Legal);
1432 
1433       setOperationAction(ISD::FMINIMUM, MVT::v4f16, Legal);
1434       setOperationAction(ISD::FMAXIMUM, MVT::v4f16, Legal);
1435       setOperationAction(ISD::FMINIMUM, MVT::v8f16, Legal);
1436       setOperationAction(ISD::FMAXIMUM, MVT::v8f16, Legal);
1437     }
1438   }
1439 
1440   // We have target-specific dag combine patterns for the following nodes:
1441   // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
1442   setTargetDAGCombine(ISD::ADD);
1443   setTargetDAGCombine(ISD::SUB);
1444   setTargetDAGCombine(ISD::MUL);
1445   setTargetDAGCombine(ISD::AND);
1446   setTargetDAGCombine(ISD::OR);
1447   setTargetDAGCombine(ISD::XOR);
1448 
1449   if (Subtarget->hasV6Ops())
1450     setTargetDAGCombine(ISD::SRL);
1451   if (Subtarget->isThumb1Only())
1452     setTargetDAGCombine(ISD::SHL);
1453 
1454   setStackPointerRegisterToSaveRestore(ARM::SP);
1455 
1456   if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
1457       !Subtarget->hasVFP2Base() || Subtarget->hasMinSize())
1458     setSchedulingPreference(Sched::RegPressure);
1459   else
1460     setSchedulingPreference(Sched::Hybrid);
1461 
1462   //// temporary - rewrite interface to use type
1463   MaxStoresPerMemset = 8;
1464   MaxStoresPerMemsetOptSize = 4;
1465   MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
1466   MaxStoresPerMemcpyOptSize = 2;
1467   MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
1468   MaxStoresPerMemmoveOptSize = 2;
1469 
1470   // On ARM arguments smaller than 4 bytes are extended, so all arguments
1471   // are at least 4 bytes aligned.
1472   setMinStackArgumentAlignment(Align(4));
1473 
1474   // Prefer likely predicted branches to selects on out-of-order cores.
1475   PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();
1476 
1477   setPrefLoopAlignment(Align(1ULL << Subtarget->getPrefLoopLogAlignment()));
1478 
1479   setMinFunctionAlignment(Subtarget->isThumb() ? Align(2) : Align(4));
1480 
1481   if (Subtarget->isThumb() || Subtarget->isThumb2())
1482     setTargetDAGCombine(ISD::ABS);
1483 }
1484 
1485 bool ARMTargetLowering::useSoftFloat() const {
1486   return Subtarget->useSoftFloat();
1487 }
1488 
1489 // FIXME: It might make sense to define the representative register class as the
1490 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1491 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1492 // SPR's representative would be DPR_VFP2. This should work well if register
1493 // pressure tracking were modified such that a register use would increment the
1494 // pressure of the register class's representative and all of it's super
1495 // classes' representatives transitively. We have not implemented this because
1496 // of the difficulty prior to coalescing of modeling operand register classes
1497 // due to the common occurrence of cross class copies and subregister insertions
1498 // and extractions.
1499 std::pair<const TargetRegisterClass *, uint8_t>
1500 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
1501                                            MVT VT) const {
1502   const TargetRegisterClass *RRC = nullptr;
1503   uint8_t Cost = 1;
1504   switch (VT.SimpleTy) {
1505   default:
1506     return TargetLowering::findRepresentativeClass(TRI, VT);
1507   // Use DPR as representative register class for all floating point
1508   // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1509   // the cost is 1 for both f32 and f64.
1510   case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
1511   case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
1512     RRC = &ARM::DPRRegClass;
1513     // When NEON is used for SP, only half of the register file is available
1514     // because operations that define both SP and DP results will be constrained
1515     // to the VFP2 class (D0-D15). We currently model this constraint prior to
1516     // coalescing by double-counting the SP regs. See the FIXME above.
1517     if (Subtarget->useNEONForSinglePrecisionFP())
1518       Cost = 2;
1519     break;
1520   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1521   case MVT::v4f32: case MVT::v2f64:
1522     RRC = &ARM::DPRRegClass;
1523     Cost = 2;
1524     break;
1525   case MVT::v4i64:
1526     RRC = &ARM::DPRRegClass;
1527     Cost = 4;
1528     break;
1529   case MVT::v8i64:
1530     RRC = &ARM::DPRRegClass;
1531     Cost = 8;
1532     break;
1533   }
1534   return std::make_pair(RRC, Cost);
1535 }
1536 
1537 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
1538   switch ((ARMISD::NodeType)Opcode) {
1539   case ARMISD::FIRST_NUMBER:  break;
1540   case ARMISD::Wrapper:       return "ARMISD::Wrapper";
1541   case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
1542   case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
1543   case ARMISD::COPY_STRUCT_BYVAL: return "ARMISD::COPY_STRUCT_BYVAL";
1544   case ARMISD::CALL:          return "ARMISD::CALL";
1545   case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
1546   case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
1547   case ARMISD::BRCOND:        return "ARMISD::BRCOND";
1548   case ARMISD::BR_JT:         return "ARMISD::BR_JT";
1549   case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
1550   case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
1551   case ARMISD::INTRET_FLAG:   return "ARMISD::INTRET_FLAG";
1552   case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
1553   case ARMISD::CMP:           return "ARMISD::CMP";
1554   case ARMISD::CMN:           return "ARMISD::CMN";
1555   case ARMISD::CMPZ:          return "ARMISD::CMPZ";
1556   case ARMISD::CMPFP:         return "ARMISD::CMPFP";
1557   case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
1558   case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
1559   case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
1560 
1561   case ARMISD::CMOV:          return "ARMISD::CMOV";
1562   case ARMISD::SUBS:          return "ARMISD::SUBS";
1563 
1564   case ARMISD::SSAT:          return "ARMISD::SSAT";
1565   case ARMISD::USAT:          return "ARMISD::USAT";
1566 
1567   case ARMISD::ASRL:          return "ARMISD::ASRL";
1568   case ARMISD::LSRL:          return "ARMISD::LSRL";
1569   case ARMISD::LSLL:          return "ARMISD::LSLL";
1570 
1571   case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
1572   case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
1573   case ARMISD::RRX:           return "ARMISD::RRX";
1574 
1575   case ARMISD::ADDC:          return "ARMISD::ADDC";
1576   case ARMISD::ADDE:          return "ARMISD::ADDE";
1577   case ARMISD::SUBC:          return "ARMISD::SUBC";
1578   case ARMISD::SUBE:          return "ARMISD::SUBE";
1579   case ARMISD::LSLS:          return "ARMISD::LSLS";
1580 
1581   case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
1582   case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
1583   case ARMISD::VMOVhr:        return "ARMISD::VMOVhr";
1584   case ARMISD::VMOVrh:        return "ARMISD::VMOVrh";
1585   case ARMISD::VMOVSR:        return "ARMISD::VMOVSR";
1586 
1587   case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
1588   case ARMISD::EH_SJLJ_LONGJMP: return "ARMISD::EH_SJLJ_LONGJMP";
1589   case ARMISD::EH_SJLJ_SETUP_DISPATCH: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
1590 
1591   case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
1592 
1593   case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
1594 
1595   case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
1596 
1597   case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
1598 
1599   case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
1600 
1601   case ARMISD::LDRD:          return "ARMISD::LDRD";
1602   case ARMISD::STRD:          return "ARMISD::STRD";
1603 
1604   case ARMISD::WIN__CHKSTK:   return "ARMISD::WIN__CHKSTK";
1605   case ARMISD::WIN__DBZCHK:   return "ARMISD::WIN__DBZCHK";
1606 
1607   case ARMISD::PREDICATE_CAST: return "ARMISD::PREDICATE_CAST";
1608   case ARMISD::VCMP:          return "ARMISD::VCMP";
1609   case ARMISD::VCMPZ:         return "ARMISD::VCMPZ";
1610   case ARMISD::VTST:          return "ARMISD::VTST";
1611 
1612   case ARMISD::VSHLs:         return "ARMISD::VSHLs";
1613   case ARMISD::VSHLu:         return "ARMISD::VSHLu";
1614   case ARMISD::VSHLIMM:       return "ARMISD::VSHLIMM";
1615   case ARMISD::VSHRsIMM:      return "ARMISD::VSHRsIMM";
1616   case ARMISD::VSHRuIMM:      return "ARMISD::VSHRuIMM";
1617   case ARMISD::VRSHRsIMM:     return "ARMISD::VRSHRsIMM";
1618   case ARMISD::VRSHRuIMM:     return "ARMISD::VRSHRuIMM";
1619   case ARMISD::VRSHRNIMM:     return "ARMISD::VRSHRNIMM";
1620   case ARMISD::VQSHLsIMM:     return "ARMISD::VQSHLsIMM";
1621   case ARMISD::VQSHLuIMM:     return "ARMISD::VQSHLuIMM";
1622   case ARMISD::VQSHLsuIMM:    return "ARMISD::VQSHLsuIMM";
1623   case ARMISD::VQSHRNsIMM:    return "ARMISD::VQSHRNsIMM";
1624   case ARMISD::VQSHRNuIMM:    return "ARMISD::VQSHRNuIMM";
1625   case ARMISD::VQSHRNsuIMM:   return "ARMISD::VQSHRNsuIMM";
1626   case ARMISD::VQRSHRNsIMM:   return "ARMISD::VQRSHRNsIMM";
1627   case ARMISD::VQRSHRNuIMM:   return "ARMISD::VQRSHRNuIMM";
1628   case ARMISD::VQRSHRNsuIMM:  return "ARMISD::VQRSHRNsuIMM";
1629   case ARMISD::VSLIIMM:       return "ARMISD::VSLIIMM";
1630   case ARMISD::VSRIIMM:       return "ARMISD::VSRIIMM";
1631   case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
1632   case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
1633   case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
1634   case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
1635   case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
1636   case ARMISD::VDUP:          return "ARMISD::VDUP";
1637   case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
1638   case ARMISD::VEXT:          return "ARMISD::VEXT";
1639   case ARMISD::VREV64:        return "ARMISD::VREV64";
1640   case ARMISD::VREV32:        return "ARMISD::VREV32";
1641   case ARMISD::VREV16:        return "ARMISD::VREV16";
1642   case ARMISD::VZIP:          return "ARMISD::VZIP";
1643   case ARMISD::VUZP:          return "ARMISD::VUZP";
1644   case ARMISD::VTRN:          return "ARMISD::VTRN";
1645   case ARMISD::VTBL1:         return "ARMISD::VTBL1";
1646   case ARMISD::VTBL2:         return "ARMISD::VTBL2";
1647   case ARMISD::VMOVN:         return "ARMISD::VMOVN";
1648   case ARMISD::VMULLs:        return "ARMISD::VMULLs";
1649   case ARMISD::VMULLu:        return "ARMISD::VMULLu";
1650   case ARMISD::UMAAL:         return "ARMISD::UMAAL";
1651   case ARMISD::UMLAL:         return "ARMISD::UMLAL";
1652   case ARMISD::SMLAL:         return "ARMISD::SMLAL";
1653   case ARMISD::SMLALBB:       return "ARMISD::SMLALBB";
1654   case ARMISD::SMLALBT:       return "ARMISD::SMLALBT";
1655   case ARMISD::SMLALTB:       return "ARMISD::SMLALTB";
1656   case ARMISD::SMLALTT:       return "ARMISD::SMLALTT";
1657   case ARMISD::SMULWB:        return "ARMISD::SMULWB";
1658   case ARMISD::SMULWT:        return "ARMISD::SMULWT";
1659   case ARMISD::SMLALD:        return "ARMISD::SMLALD";
1660   case ARMISD::SMLALDX:       return "ARMISD::SMLALDX";
1661   case ARMISD::SMLSLD:        return "ARMISD::SMLSLD";
1662   case ARMISD::SMLSLDX:       return "ARMISD::SMLSLDX";
1663   case ARMISD::SMMLAR:        return "ARMISD::SMMLAR";
1664   case ARMISD::SMMLSR:        return "ARMISD::SMMLSR";
1665   case ARMISD::QADD16b:       return "ARMISD::QADD16b";
1666   case ARMISD::QSUB16b:       return "ARMISD::QSUB16b";
1667   case ARMISD::QADD8b:        return "ARMISD::QADD8b";
1668   case ARMISD::QSUB8b:        return "ARMISD::QSUB8b";
1669   case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
1670   case ARMISD::BFI:           return "ARMISD::BFI";
1671   case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
1672   case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
1673   case ARMISD::VBSL:          return "ARMISD::VBSL";
1674   case ARMISD::MEMCPY:        return "ARMISD::MEMCPY";
1675   case ARMISD::VLD1DUP:       return "ARMISD::VLD1DUP";
1676   case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
1677   case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
1678   case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
1679   case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
1680   case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
1681   case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
1682   case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
1683   case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
1684   case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
1685   case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
1686   case ARMISD::VLD1DUP_UPD:   return "ARMISD::VLD1DUP_UPD";
1687   case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
1688   case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
1689   case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
1690   case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
1691   case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
1692   case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
1693   case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
1694   case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
1695   case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
1696   case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
1697   case ARMISD::WLS:           return "ARMISD::WLS";
1698   case ARMISD::LE:            return "ARMISD::LE";
1699   case ARMISD::LOOP_DEC:      return "ARMISD::LOOP_DEC";
1700   case ARMISD::CSINV:         return "ARMISD::CSINV";
1701   case ARMISD::CSNEG:         return "ARMISD::CSNEG";
1702   case ARMISD::CSINC:         return "ARMISD::CSINC";
1703   }
1704   return nullptr;
1705 }
1706 
1707 EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1708                                           EVT VT) const {
1709   if (!VT.isVector())
1710     return getPointerTy(DL);
1711 
1712   // MVE has a predicate register.
1713   if (Subtarget->hasMVEIntegerOps() &&
1714       (VT == MVT::v4i32 || VT == MVT::v8i16 || VT == MVT::v16i8))
1715     return MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1716   return VT.changeVectorElementTypeToInteger();
1717 }
1718 
1719 /// getRegClassFor - Return the register class that should be used for the
1720 /// specified value type.
1721 const TargetRegisterClass *
1722 ARMTargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
1723   (void)isDivergent;
1724   // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1725   // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1726   // load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive
1727   // MVE Q registers.
1728   if (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) {
1729     if (VT == MVT::v4i64)
1730       return &ARM::QQPRRegClass;
1731     if (VT == MVT::v8i64)
1732       return &ARM::QQQQPRRegClass;
1733   }
1734   return TargetLowering::getRegClassFor(VT);
1735 }
1736 
1737 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1738 // source/dest is aligned and the copy size is large enough. We therefore want
1739 // to align such objects passed to memory intrinsics.
1740 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
1741                                                unsigned &PrefAlign) const {
1742   if (!isa<MemIntrinsic>(CI))
1743     return false;
1744   MinSize = 8;
1745   // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1746   // cycle faster than 4-byte aligned LDM.
1747   PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4);
1748   return true;
1749 }
1750 
1751 // Create a fast isel object.
1752 FastISel *
1753 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1754                                   const TargetLibraryInfo *libInfo) const {
1755   return ARM::createFastISel(funcInfo, libInfo);
1756 }
1757 
1758 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1759   unsigned NumVals = N->getNumValues();
1760   if (!NumVals)
1761     return Sched::RegPressure;
1762 
1763   for (unsigned i = 0; i != NumVals; ++i) {
1764     EVT VT = N->getValueType(i);
1765     if (VT == MVT::Glue || VT == MVT::Other)
1766       continue;
1767     if (VT.isFloatingPoint() || VT.isVector())
1768       return Sched::ILP;
1769   }
1770 
1771   if (!N->isMachineOpcode())
1772     return Sched::RegPressure;
1773 
1774   // Load are scheduled for latency even if there instruction itinerary
1775   // is not available.
1776   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1777   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1778 
1779   if (MCID.getNumDefs() == 0)
1780     return Sched::RegPressure;
1781   if (!Itins->isEmpty() &&
1782       Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1783     return Sched::ILP;
1784 
1785   return Sched::RegPressure;
1786 }
1787 
1788 //===----------------------------------------------------------------------===//
1789 // Lowering Code
1790 //===----------------------------------------------------------------------===//
1791 
1792 static bool isSRL16(const SDValue &Op) {
1793   if (Op.getOpcode() != ISD::SRL)
1794     return false;
1795   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1796     return Const->getZExtValue() == 16;
1797   return false;
1798 }
1799 
1800 static bool isSRA16(const SDValue &Op) {
1801   if (Op.getOpcode() != ISD::SRA)
1802     return false;
1803   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1804     return Const->getZExtValue() == 16;
1805   return false;
1806 }
1807 
1808 static bool isSHL16(const SDValue &Op) {
1809   if (Op.getOpcode() != ISD::SHL)
1810     return false;
1811   if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1812     return Const->getZExtValue() == 16;
1813   return false;
1814 }
1815 
1816 // Check for a signed 16-bit value. We special case SRA because it makes it
1817 // more simple when also looking for SRAs that aren't sign extending a
1818 // smaller value. Without the check, we'd need to take extra care with
1819 // checking order for some operations.
1820 static bool isS16(const SDValue &Op, SelectionDAG &DAG) {
1821   if (isSRA16(Op))
1822     return isSHL16(Op.getOperand(0));
1823   return DAG.ComputeNumSignBits(Op) == 17;
1824 }
1825 
1826 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
1827 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1828   switch (CC) {
1829   default: llvm_unreachable("Unknown condition code!");
1830   case ISD::SETNE:  return ARMCC::NE;
1831   case ISD::SETEQ:  return ARMCC::EQ;
1832   case ISD::SETGT:  return ARMCC::GT;
1833   case ISD::SETGE:  return ARMCC::GE;
1834   case ISD::SETLT:  return ARMCC::LT;
1835   case ISD::SETLE:  return ARMCC::LE;
1836   case ISD::SETUGT: return ARMCC::HI;
1837   case ISD::SETUGE: return ARMCC::HS;
1838   case ISD::SETULT: return ARMCC::LO;
1839   case ISD::SETULE: return ARMCC::LS;
1840   }
1841 }
1842 
1843 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
1844 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1845                         ARMCC::CondCodes &CondCode2) {
1846   CondCode2 = ARMCC::AL;
1847   switch (CC) {
1848   default: llvm_unreachable("Unknown FP condition!");
1849   case ISD::SETEQ:
1850   case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1851   case ISD::SETGT:
1852   case ISD::SETOGT: CondCode = ARMCC::GT; break;
1853   case ISD::SETGE:
1854   case ISD::SETOGE: CondCode = ARMCC::GE; break;
1855   case ISD::SETOLT: CondCode = ARMCC::MI; break;
1856   case ISD::SETOLE: CondCode = ARMCC::LS; break;
1857   case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1858   case ISD::SETO:   CondCode = ARMCC::VC; break;
1859   case ISD::SETUO:  CondCode = ARMCC::VS; break;
1860   case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1861   case ISD::SETUGT: CondCode = ARMCC::HI; break;
1862   case ISD::SETUGE: CondCode = ARMCC::PL; break;
1863   case ISD::SETLT:
1864   case ISD::SETULT: CondCode = ARMCC::LT; break;
1865   case ISD::SETLE:
1866   case ISD::SETULE: CondCode = ARMCC::LE; break;
1867   case ISD::SETNE:
1868   case ISD::SETUNE: CondCode = ARMCC::NE; break;
1869   }
1870 }
1871 
1872 //===----------------------------------------------------------------------===//
1873 //                      Calling Convention Implementation
1874 //===----------------------------------------------------------------------===//
1875 
1876 /// getEffectiveCallingConv - Get the effective calling convention, taking into
1877 /// account presence of floating point hardware and calling convention
1878 /// limitations, such as support for variadic functions.
1879 CallingConv::ID
1880 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
1881                                            bool isVarArg) const {
1882   switch (CC) {
1883   default:
1884     report_fatal_error("Unsupported calling convention");
1885   case CallingConv::ARM_AAPCS:
1886   case CallingConv::ARM_APCS:
1887   case CallingConv::GHC:
1888   case CallingConv::CFGuard_Check:
1889     return CC;
1890   case CallingConv::PreserveMost:
1891     return CallingConv::PreserveMost;
1892   case CallingConv::ARM_AAPCS_VFP:
1893   case CallingConv::Swift:
1894     return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
1895   case CallingConv::C:
1896     if (!Subtarget->isAAPCS_ABI())
1897       return CallingConv::ARM_APCS;
1898     else if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() &&
1899              getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1900              !isVarArg)
1901       return CallingConv::ARM_AAPCS_VFP;
1902     else
1903       return CallingConv::ARM_AAPCS;
1904   case CallingConv::Fast:
1905   case CallingConv::CXX_FAST_TLS:
1906     if (!Subtarget->isAAPCS_ABI()) {
1907       if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() && !isVarArg)
1908         return CallingConv::Fast;
1909       return CallingConv::ARM_APCS;
1910     } else if (Subtarget->hasVFP2Base() &&
1911                !Subtarget->isThumb1Only() && !isVarArg)
1912       return CallingConv::ARM_AAPCS_VFP;
1913     else
1914       return CallingConv::ARM_AAPCS;
1915   }
1916 }
1917 
1918 CCAssignFn *ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1919                                                  bool isVarArg) const {
1920   return CCAssignFnForNode(CC, false, isVarArg);
1921 }
1922 
1923 CCAssignFn *ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1924                                                    bool isVarArg) const {
1925   return CCAssignFnForNode(CC, true, isVarArg);
1926 }
1927 
1928 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
1929 /// CallingConvention.
1930 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1931                                                  bool Return,
1932                                                  bool isVarArg) const {
1933   switch (getEffectiveCallingConv(CC, isVarArg)) {
1934   default:
1935     report_fatal_error("Unsupported calling convention");
1936   case CallingConv::ARM_APCS:
1937     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1938   case CallingConv::ARM_AAPCS:
1939     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1940   case CallingConv::ARM_AAPCS_VFP:
1941     return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1942   case CallingConv::Fast:
1943     return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1944   case CallingConv::GHC:
1945     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
1946   case CallingConv::PreserveMost:
1947     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1948   case CallingConv::CFGuard_Check:
1949     return (Return ? RetCC_ARM_AAPCS : CC_ARM_Win32_CFGuard_Check);
1950   }
1951 }
1952 
1953 /// LowerCallResult - Lower the result values of a call into the
1954 /// appropriate copies out of appropriate physical registers.
1955 SDValue ARMTargetLowering::LowerCallResult(
1956     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
1957     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1958     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
1959     SDValue ThisVal) const {
1960   // Assign locations to each value returned by this call.
1961   SmallVector<CCValAssign, 16> RVLocs;
1962   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1963                  *DAG.getContext());
1964   CCInfo.AnalyzeCallResult(Ins, CCAssignFnForReturn(CallConv, isVarArg));
1965 
1966   // Copy all of the result registers out of their specified physreg.
1967   for (unsigned i = 0; i != RVLocs.size(); ++i) {
1968     CCValAssign VA = RVLocs[i];
1969 
1970     // Pass 'this' value directly from the argument to return value, to avoid
1971     // reg unit interference
1972     if (i == 0 && isThisReturn) {
1973       assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
1974              "unexpected return calling convention register assignment");
1975       InVals.push_back(ThisVal);
1976       continue;
1977     }
1978 
1979     SDValue Val;
1980     if (VA.needsCustom()) {
1981       // Handle f64 or half of a v2f64.
1982       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1983                                       InFlag);
1984       Chain = Lo.getValue(1);
1985       InFlag = Lo.getValue(2);
1986       VA = RVLocs[++i]; // skip ahead to next loc
1987       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1988                                       InFlag);
1989       Chain = Hi.getValue(1);
1990       InFlag = Hi.getValue(2);
1991       if (!Subtarget->isLittle())
1992         std::swap (Lo, Hi);
1993       Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1994 
1995       if (VA.getLocVT() == MVT::v2f64) {
1996         SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1997         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1998                           DAG.getConstant(0, dl, MVT::i32));
1999 
2000         VA = RVLocs[++i]; // skip ahead to next loc
2001         Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
2002         Chain = Lo.getValue(1);
2003         InFlag = Lo.getValue(2);
2004         VA = RVLocs[++i]; // skip ahead to next loc
2005         Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
2006         Chain = Hi.getValue(1);
2007         InFlag = Hi.getValue(2);
2008         if (!Subtarget->isLittle())
2009           std::swap (Lo, Hi);
2010         Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
2011         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
2012                           DAG.getConstant(1, dl, MVT::i32));
2013       }
2014     } else {
2015       Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
2016                                InFlag);
2017       Chain = Val.getValue(1);
2018       InFlag = Val.getValue(2);
2019     }
2020 
2021     switch (VA.getLocInfo()) {
2022     default: llvm_unreachable("Unknown loc info!");
2023     case CCValAssign::Full: break;
2024     case CCValAssign::BCvt:
2025       Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
2026       break;
2027     }
2028 
2029     InVals.push_back(Val);
2030   }
2031 
2032   return Chain;
2033 }
2034 
2035 /// LowerMemOpCallTo - Store the argument to the stack.
2036 SDValue ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
2037                                             SDValue Arg, const SDLoc &dl,
2038                                             SelectionDAG &DAG,
2039                                             const CCValAssign &VA,
2040                                             ISD::ArgFlagsTy Flags) const {
2041   unsigned LocMemOffset = VA.getLocMemOffset();
2042   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
2043   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
2044                        StackPtr, PtrOff);
2045   return DAG.getStore(
2046       Chain, dl, Arg, PtrOff,
2047       MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset));
2048 }
2049 
2050 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG,
2051                                          SDValue Chain, SDValue &Arg,
2052                                          RegsToPassVector &RegsToPass,
2053                                          CCValAssign &VA, CCValAssign &NextVA,
2054                                          SDValue &StackPtr,
2055                                          SmallVectorImpl<SDValue> &MemOpChains,
2056                                          ISD::ArgFlagsTy Flags) const {
2057   SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2058                               DAG.getVTList(MVT::i32, MVT::i32), Arg);
2059   unsigned id = Subtarget->isLittle() ? 0 : 1;
2060   RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
2061 
2062   if (NextVA.isRegLoc())
2063     RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
2064   else {
2065     assert(NextVA.isMemLoc());
2066     if (!StackPtr.getNode())
2067       StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
2068                                     getPointerTy(DAG.getDataLayout()));
2069 
2070     MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
2071                                            dl, DAG, NextVA,
2072                                            Flags));
2073   }
2074 }
2075 
2076 /// LowerCall - Lowering a call into a callseq_start <-
2077 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
2078 /// nodes.
2079 SDValue
2080 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2081                              SmallVectorImpl<SDValue> &InVals) const {
2082   SelectionDAG &DAG                     = CLI.DAG;
2083   SDLoc &dl                             = CLI.DL;
2084   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2085   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
2086   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
2087   SDValue Chain                         = CLI.Chain;
2088   SDValue Callee                        = CLI.Callee;
2089   bool &isTailCall                      = CLI.IsTailCall;
2090   CallingConv::ID CallConv              = CLI.CallConv;
2091   bool doesNotRet                       = CLI.DoesNotReturn;
2092   bool isVarArg                         = CLI.IsVarArg;
2093 
2094   MachineFunction &MF = DAG.getMachineFunction();
2095   MachineFunction::CallSiteInfo CSInfo;
2096   bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
2097   bool isThisReturn = false;
2098   bool PreferIndirect = false;
2099 
2100   // Disable tail calls if they're not supported.
2101   if (!Subtarget->supportsTailCall())
2102     isTailCall = false;
2103 
2104   if (isa<GlobalAddressSDNode>(Callee)) {
2105     // If we're optimizing for minimum size and the function is called three or
2106     // more times in this block, we can improve codesize by calling indirectly
2107     // as BLXr has a 16-bit encoding.
2108     auto *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
2109     if (CLI.CS) {
2110       auto *BB = CLI.CS.getParent();
2111       PreferIndirect = Subtarget->isThumb() && Subtarget->hasMinSize() &&
2112                        count_if(GV->users(), [&BB](const User *U) {
2113                          return isa<Instruction>(U) &&
2114                                 cast<Instruction>(U)->getParent() == BB;
2115                        }) > 2;
2116     }
2117   }
2118   if (isTailCall) {
2119     // Check if it's really possible to do a tail call.
2120     isTailCall = IsEligibleForTailCallOptimization(
2121         Callee, CallConv, isVarArg, isStructRet,
2122         MF.getFunction().hasStructRetAttr(), Outs, OutVals, Ins, DAG,
2123         PreferIndirect);
2124     if (!isTailCall && CLI.CS && CLI.CS.isMustTailCall())
2125       report_fatal_error("failed to perform tail call elimination on a call "
2126                          "site marked musttail");
2127     // We don't support GuaranteedTailCallOpt for ARM, only automatically
2128     // detected sibcalls.
2129     if (isTailCall)
2130       ++NumTailCalls;
2131   }
2132 
2133   // Analyze operands of the call, assigning locations to each operand.
2134   SmallVector<CCValAssign, 16> ArgLocs;
2135   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2136                  *DAG.getContext());
2137   CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CallConv, isVarArg));
2138 
2139   // Get a count of how many bytes are to be pushed on the stack.
2140   unsigned NumBytes = CCInfo.getNextStackOffset();
2141 
2142   if (isTailCall) {
2143     // For tail calls, memory operands are available in our caller's stack.
2144     NumBytes = 0;
2145   } else {
2146     // Adjust the stack pointer for the new arguments...
2147     // These operations are automatically eliminated by the prolog/epilog pass
2148     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
2149   }
2150 
2151   SDValue StackPtr =
2152       DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
2153 
2154   RegsToPassVector RegsToPass;
2155   SmallVector<SDValue, 8> MemOpChains;
2156 
2157   // Walk the register/memloc assignments, inserting copies/loads.  In the case
2158   // of tail call optimization, arguments are handled later.
2159   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2160        i != e;
2161        ++i, ++realArgIdx) {
2162     CCValAssign &VA = ArgLocs[i];
2163     SDValue Arg = OutVals[realArgIdx];
2164     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2165     bool isByVal = Flags.isByVal();
2166 
2167     // Promote the value if needed.
2168     switch (VA.getLocInfo()) {
2169     default: llvm_unreachable("Unknown loc info!");
2170     case CCValAssign::Full: break;
2171     case CCValAssign::SExt:
2172       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
2173       break;
2174     case CCValAssign::ZExt:
2175       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
2176       break;
2177     case CCValAssign::AExt:
2178       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
2179       break;
2180     case CCValAssign::BCvt:
2181       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2182       break;
2183     }
2184 
2185     // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
2186     if (VA.needsCustom()) {
2187       if (VA.getLocVT() == MVT::v2f64) {
2188         SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2189                                   DAG.getConstant(0, dl, MVT::i32));
2190         SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2191                                   DAG.getConstant(1, dl, MVT::i32));
2192 
2193         PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
2194                          VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
2195 
2196         VA = ArgLocs[++i]; // skip ahead to next loc
2197         if (VA.isRegLoc()) {
2198           PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
2199                            VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
2200         } else {
2201           assert(VA.isMemLoc());
2202 
2203           MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
2204                                                  dl, DAG, VA, Flags));
2205         }
2206       } else {
2207         PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
2208                          StackPtr, MemOpChains, Flags);
2209       }
2210     } else if (VA.isRegLoc()) {
2211       if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
2212           Outs[0].VT == MVT::i32) {
2213         assert(VA.getLocVT() == MVT::i32 &&
2214                "unexpected calling convention register assignment");
2215         assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
2216                "unexpected use of 'returned'");
2217         isThisReturn = true;
2218       }
2219       const TargetOptions &Options = DAG.getTarget().Options;
2220       if (Options.EnableDebugEntryValues)
2221         CSInfo.emplace_back(VA.getLocReg(), i);
2222       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2223     } else if (isByVal) {
2224       assert(VA.isMemLoc());
2225       unsigned offset = 0;
2226 
2227       // True if this byval aggregate will be split between registers
2228       // and memory.
2229       unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
2230       unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
2231 
2232       if (CurByValIdx < ByValArgsCount) {
2233 
2234         unsigned RegBegin, RegEnd;
2235         CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
2236 
2237         EVT PtrVT =
2238             DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2239         unsigned int i, j;
2240         for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
2241           SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
2242           SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
2243           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
2244                                      MachinePointerInfo(),
2245                                      DAG.InferPtrAlignment(AddArg));
2246           MemOpChains.push_back(Load.getValue(1));
2247           RegsToPass.push_back(std::make_pair(j, Load));
2248         }
2249 
2250         // If parameter size outsides register area, "offset" value
2251         // helps us to calculate stack slot for remained part properly.
2252         offset = RegEnd - RegBegin;
2253 
2254         CCInfo.nextInRegsParam();
2255       }
2256 
2257       if (Flags.getByValSize() > 4*offset) {
2258         auto PtrVT = getPointerTy(DAG.getDataLayout());
2259         unsigned LocMemOffset = VA.getLocMemOffset();
2260         SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
2261         SDValue Dst = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, StkPtrOff);
2262         SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
2263         SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
2264         SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
2265                                            MVT::i32);
2266         SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), dl,
2267                                             MVT::i32);
2268 
2269         SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2270         SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
2271         MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
2272                                           Ops));
2273       }
2274     } else if (!isTailCall) {
2275       assert(VA.isMemLoc());
2276 
2277       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2278                                              dl, DAG, VA, Flags));
2279     }
2280   }
2281 
2282   if (!MemOpChains.empty())
2283     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
2284 
2285   // Build a sequence of copy-to-reg nodes chained together with token chain
2286   // and flag operands which copy the outgoing args into the appropriate regs.
2287   SDValue InFlag;
2288   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2289     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2290                              RegsToPass[i].second, InFlag);
2291     InFlag = Chain.getValue(1);
2292   }
2293 
2294   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2295   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2296   // node so that legalize doesn't hack it.
2297   bool isDirect = false;
2298 
2299   const TargetMachine &TM = getTargetMachine();
2300   const Module *Mod = MF.getFunction().getParent();
2301   const GlobalValue *GV = nullptr;
2302   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2303     GV = G->getGlobal();
2304   bool isStub =
2305       !TM.shouldAssumeDSOLocal(*Mod, GV) && Subtarget->isTargetMachO();
2306 
2307   bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
2308   bool isLocalARMFunc = false;
2309   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2310   auto PtrVt = getPointerTy(DAG.getDataLayout());
2311 
2312   if (Subtarget->genLongCalls()) {
2313     assert((!isPositionIndependent() || Subtarget->isTargetWindows()) &&
2314            "long-calls codegen is not position independent!");
2315     // Handle a global address or an external symbol. If it's not one of
2316     // those, the target's already in a register, so we don't need to do
2317     // anything extra.
2318     if (isa<GlobalAddressSDNode>(Callee)) {
2319       // Create a constant pool entry for the callee address
2320       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2321       ARMConstantPoolValue *CPV =
2322         ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
2323 
2324       // Get the address of the callee into a register
2325       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2326       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2327       Callee = DAG.getLoad(
2328           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2329           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2330     } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
2331       const char *Sym = S->getSymbol();
2332 
2333       // Create a constant pool entry for the callee address
2334       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2335       ARMConstantPoolValue *CPV =
2336         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2337                                       ARMPCLabelIndex, 0);
2338       // Get the address of the callee into a register
2339       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2340       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2341       Callee = DAG.getLoad(
2342           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2343           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2344     }
2345   } else if (isa<GlobalAddressSDNode>(Callee)) {
2346     if (!PreferIndirect) {
2347       isDirect = true;
2348       bool isDef = GV->isStrongDefinitionForLinker();
2349 
2350       // ARM call to a local ARM function is predicable.
2351       isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
2352       // tBX takes a register source operand.
2353       if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2354         assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
2355         Callee = DAG.getNode(
2356             ARMISD::WrapperPIC, dl, PtrVt,
2357             DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY));
2358         Callee = DAG.getLoad(
2359             PtrVt, dl, DAG.getEntryNode(), Callee,
2360             MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2361             /* Alignment = */ 0, MachineMemOperand::MODereferenceable |
2362                                      MachineMemOperand::MOInvariant);
2363       } else if (Subtarget->isTargetCOFF()) {
2364         assert(Subtarget->isTargetWindows() &&
2365                "Windows is the only supported COFF target");
2366         unsigned TargetFlags = ARMII::MO_NO_FLAG;
2367         if (GV->hasDLLImportStorageClass())
2368           TargetFlags = ARMII::MO_DLLIMPORT;
2369         else if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
2370           TargetFlags = ARMII::MO_COFFSTUB;
2371         Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*offset=*/0,
2372                                             TargetFlags);
2373         if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
2374           Callee =
2375               DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
2376                           DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
2377                           MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2378       } else {
2379         Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, 0);
2380       }
2381     }
2382   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2383     isDirect = true;
2384     // tBX takes a register source operand.
2385     const char *Sym = S->getSymbol();
2386     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2387       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2388       ARMConstantPoolValue *CPV =
2389         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2390                                       ARMPCLabelIndex, 4);
2391       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2392       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2393       Callee = DAG.getLoad(
2394           PtrVt, dl, DAG.getEntryNode(), CPAddr,
2395           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2396       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2397       Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
2398     } else {
2399       Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0);
2400     }
2401   }
2402 
2403   // FIXME: handle tail calls differently.
2404   unsigned CallOpc;
2405   if (Subtarget->isThumb()) {
2406     if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
2407       CallOpc = ARMISD::CALL_NOLINK;
2408     else
2409       CallOpc = ARMISD::CALL;
2410   } else {
2411     if (!isDirect && !Subtarget->hasV5TOps())
2412       CallOpc = ARMISD::CALL_NOLINK;
2413     else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() &&
2414              // Emit regular call when code size is the priority
2415              !Subtarget->hasMinSize())
2416       // "mov lr, pc; b _foo" to avoid confusing the RSP
2417       CallOpc = ARMISD::CALL_NOLINK;
2418     else
2419       CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
2420   }
2421 
2422   std::vector<SDValue> Ops;
2423   Ops.push_back(Chain);
2424   Ops.push_back(Callee);
2425 
2426   // Add argument registers to the end of the list so that they are known live
2427   // into the call.
2428   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2429     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2430                                   RegsToPass[i].second.getValueType()));
2431 
2432   // Add a register mask operand representing the call-preserved registers.
2433   if (!isTailCall) {
2434     const uint32_t *Mask;
2435     const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
2436     if (isThisReturn) {
2437       // For 'this' returns, use the R0-preserving mask if applicable
2438       Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
2439       if (!Mask) {
2440         // Set isThisReturn to false if the calling convention is not one that
2441         // allows 'returned' to be modeled in this way, so LowerCallResult does
2442         // not try to pass 'this' straight through
2443         isThisReturn = false;
2444         Mask = ARI->getCallPreservedMask(MF, CallConv);
2445       }
2446     } else
2447       Mask = ARI->getCallPreservedMask(MF, CallConv);
2448 
2449     assert(Mask && "Missing call preserved mask for calling convention");
2450     Ops.push_back(DAG.getRegisterMask(Mask));
2451   }
2452 
2453   if (InFlag.getNode())
2454     Ops.push_back(InFlag);
2455 
2456   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2457   if (isTailCall) {
2458     MF.getFrameInfo().setHasTailCall();
2459     SDValue Ret = DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
2460     DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo));
2461     return Ret;
2462   }
2463 
2464   // Returns a chain and a flag for retval copy to use.
2465   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
2466   InFlag = Chain.getValue(1);
2467   DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo));
2468 
2469   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
2470                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
2471   if (!Ins.empty())
2472     InFlag = Chain.getValue(1);
2473 
2474   // Handle result values, copying them out of physregs into vregs that we
2475   // return.
2476   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
2477                          InVals, isThisReturn,
2478                          isThisReturn ? OutVals[0] : SDValue());
2479 }
2480 
2481 /// HandleByVal - Every parameter *after* a byval parameter is passed
2482 /// on the stack.  Remember the next parameter register to allocate,
2483 /// and then confiscate the rest of the parameter registers to insure
2484 /// this.
2485 void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
2486                                     unsigned Align) const {
2487   // Byval (as with any stack) slots are always at least 4 byte aligned.
2488   Align = std::max(Align, 4U);
2489 
2490   unsigned Reg = State->AllocateReg(GPRArgRegs);
2491   if (!Reg)
2492     return;
2493 
2494   unsigned AlignInRegs = Align / 4;
2495   unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
2496   for (unsigned i = 0; i < Waste; ++i)
2497     Reg = State->AllocateReg(GPRArgRegs);
2498 
2499   if (!Reg)
2500     return;
2501 
2502   unsigned Excess = 4 * (ARM::R4 - Reg);
2503 
2504   // Special case when NSAA != SP and parameter size greater than size of
2505   // all remained GPR regs. In that case we can't split parameter, we must
2506   // send it to stack. We also must set NCRN to R4, so waste all
2507   // remained registers.
2508   const unsigned NSAAOffset = State->getNextStackOffset();
2509   if (NSAAOffset != 0 && Size > Excess) {
2510     while (State->AllocateReg(GPRArgRegs))
2511       ;
2512     return;
2513   }
2514 
2515   // First register for byval parameter is the first register that wasn't
2516   // allocated before this method call, so it would be "reg".
2517   // If parameter is small enough to be saved in range [reg, r4), then
2518   // the end (first after last) register would be reg + param-size-in-regs,
2519   // else parameter would be splitted between registers and stack,
2520   // end register would be r4 in this case.
2521   unsigned ByValRegBegin = Reg;
2522   unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
2523   State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
2524   // Note, first register is allocated in the beginning of function already,
2525   // allocate remained amount of registers we need.
2526   for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
2527     State->AllocateReg(GPRArgRegs);
2528   // A byval parameter that is split between registers and memory needs its
2529   // size truncated here.
2530   // In the case where the entire structure fits in registers, we set the
2531   // size in memory to zero.
2532   Size = std::max<int>(Size - Excess, 0);
2533 }
2534 
2535 /// MatchingStackOffset - Return true if the given stack call argument is
2536 /// already available in the same position (relatively) of the caller's
2537 /// incoming argument stack.
2538 static
2539 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2540                          MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
2541                          const TargetInstrInfo *TII) {
2542   unsigned Bytes = Arg.getValueSizeInBits() / 8;
2543   int FI = std::numeric_limits<int>::max();
2544   if (Arg.getOpcode() == ISD::CopyFromReg) {
2545     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2546     if (!Register::isVirtualRegister(VR))
2547       return false;
2548     MachineInstr *Def = MRI->getVRegDef(VR);
2549     if (!Def)
2550       return false;
2551     if (!Flags.isByVal()) {
2552       if (!TII->isLoadFromStackSlot(*Def, FI))
2553         return false;
2554     } else {
2555       return false;
2556     }
2557   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2558     if (Flags.isByVal())
2559       // ByVal argument is passed in as a pointer but it's now being
2560       // dereferenced. e.g.
2561       // define @foo(%struct.X* %A) {
2562       //   tail call @bar(%struct.X* byval %A)
2563       // }
2564       return false;
2565     SDValue Ptr = Ld->getBasePtr();
2566     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2567     if (!FINode)
2568       return false;
2569     FI = FINode->getIndex();
2570   } else
2571     return false;
2572 
2573   assert(FI != std::numeric_limits<int>::max());
2574   if (!MFI.isFixedObjectIndex(FI))
2575     return false;
2576   return Offset == MFI.getObjectOffset(FI) && Bytes == MFI.getObjectSize(FI);
2577 }
2578 
2579 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2580 /// for tail call optimization. Targets which want to do tail call
2581 /// optimization should implement this function.
2582 bool ARMTargetLowering::IsEligibleForTailCallOptimization(
2583     SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
2584     bool isCalleeStructRet, bool isCallerStructRet,
2585     const SmallVectorImpl<ISD::OutputArg> &Outs,
2586     const SmallVectorImpl<SDValue> &OutVals,
2587     const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG,
2588     const bool isIndirect) const {
2589   MachineFunction &MF = DAG.getMachineFunction();
2590   const Function &CallerF = MF.getFunction();
2591   CallingConv::ID CallerCC = CallerF.getCallingConv();
2592 
2593   assert(Subtarget->supportsTailCall());
2594 
2595   // Indirect tail calls cannot be optimized for Thumb1 if the args
2596   // to the call take up r0-r3. The reason is that there are no legal registers
2597   // left to hold the pointer to the function to be called.
2598   if (Subtarget->isThumb1Only() && Outs.size() >= 4 &&
2599       (!isa<GlobalAddressSDNode>(Callee.getNode()) || isIndirect))
2600     return false;
2601 
2602   // Look for obvious safe cases to perform tail call optimization that do not
2603   // require ABI changes. This is what gcc calls sibcall.
2604 
2605   // Exception-handling functions need a special set of instructions to indicate
2606   // a return to the hardware. Tail-calling another function would probably
2607   // break this.
2608   if (CallerF.hasFnAttribute("interrupt"))
2609     return false;
2610 
2611   // Also avoid sibcall optimization if either caller or callee uses struct
2612   // return semantics.
2613   if (isCalleeStructRet || isCallerStructRet)
2614     return false;
2615 
2616   // Externally-defined functions with weak linkage should not be
2617   // tail-called on ARM when the OS does not support dynamic
2618   // pre-emption of symbols, as the AAELF spec requires normal calls
2619   // to undefined weak functions to be replaced with a NOP or jump to the
2620   // next instruction. The behaviour of branch instructions in this
2621   // situation (as used for tail calls) is implementation-defined, so we
2622   // cannot rely on the linker replacing the tail call with a return.
2623   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2624     const GlobalValue *GV = G->getGlobal();
2625     const Triple &TT = getTargetMachine().getTargetTriple();
2626     if (GV->hasExternalWeakLinkage() &&
2627         (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
2628       return false;
2629   }
2630 
2631   // Check that the call results are passed in the same way.
2632   LLVMContext &C = *DAG.getContext();
2633   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
2634                                   CCAssignFnForReturn(CalleeCC, isVarArg),
2635                                   CCAssignFnForReturn(CallerCC, isVarArg)))
2636     return false;
2637   // The callee has to preserve all registers the caller needs to preserve.
2638   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2639   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2640   if (CalleeCC != CallerCC) {
2641     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2642     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2643       return false;
2644   }
2645 
2646   // If Caller's vararg or byval argument has been split between registers and
2647   // stack, do not perform tail call, since part of the argument is in caller's
2648   // local frame.
2649   const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
2650   if (AFI_Caller->getArgRegsSaveSize())
2651     return false;
2652 
2653   // If the callee takes no arguments then go on to check the results of the
2654   // call.
2655   if (!Outs.empty()) {
2656     // Check if stack adjustment is needed. For now, do not do this if any
2657     // argument is passed on the stack.
2658     SmallVector<CCValAssign, 16> ArgLocs;
2659     CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
2660     CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2661     if (CCInfo.getNextStackOffset()) {
2662       // Check if the arguments are already laid out in the right way as
2663       // the caller's fixed stack objects.
2664       MachineFrameInfo &MFI = MF.getFrameInfo();
2665       const MachineRegisterInfo *MRI = &MF.getRegInfo();
2666       const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2667       for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2668            i != e;
2669            ++i, ++realArgIdx) {
2670         CCValAssign &VA = ArgLocs[i];
2671         EVT RegVT = VA.getLocVT();
2672         SDValue Arg = OutVals[realArgIdx];
2673         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2674         if (VA.getLocInfo() == CCValAssign::Indirect)
2675           return false;
2676         if (VA.needsCustom()) {
2677           // f64 and vector types are split into multiple registers or
2678           // register/stack-slot combinations.  The types will not match
2679           // the registers; give up on memory f64 refs until we figure
2680           // out what to do about this.
2681           if (!VA.isRegLoc())
2682             return false;
2683           if (!ArgLocs[++i].isRegLoc())
2684             return false;
2685           if (RegVT == MVT::v2f64) {
2686             if (!ArgLocs[++i].isRegLoc())
2687               return false;
2688             if (!ArgLocs[++i].isRegLoc())
2689               return false;
2690           }
2691         } else if (!VA.isRegLoc()) {
2692           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2693                                    MFI, MRI, TII))
2694             return false;
2695         }
2696       }
2697     }
2698 
2699     const MachineRegisterInfo &MRI = MF.getRegInfo();
2700     if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
2701       return false;
2702   }
2703 
2704   return true;
2705 }
2706 
2707 bool
2708 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2709                                   MachineFunction &MF, bool isVarArg,
2710                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2711                                   LLVMContext &Context) const {
2712   SmallVector<CCValAssign, 16> RVLocs;
2713   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
2714   return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2715 }
2716 
2717 static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
2718                                     const SDLoc &DL, SelectionDAG &DAG) {
2719   const MachineFunction &MF = DAG.getMachineFunction();
2720   const Function &F = MF.getFunction();
2721 
2722   StringRef IntKind = F.getFnAttribute("interrupt").getValueAsString();
2723 
2724   // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2725   // version of the "preferred return address". These offsets affect the return
2726   // instruction if this is a return from PL1 without hypervisor extensions.
2727   //    IRQ/FIQ: +4     "subs pc, lr, #4"
2728   //    SWI:     0      "subs pc, lr, #0"
2729   //    ABORT:   +4     "subs pc, lr, #4"
2730   //    UNDEF:   +4/+2  "subs pc, lr, #0"
2731   // UNDEF varies depending on where the exception came from ARM or Thumb
2732   // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2733 
2734   int64_t LROffset;
2735   if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
2736       IntKind == "ABORT")
2737     LROffset = 4;
2738   else if (IntKind == "SWI" || IntKind == "UNDEF")
2739     LROffset = 0;
2740   else
2741     report_fatal_error("Unsupported interrupt attribute. If present, value "
2742                        "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2743 
2744   RetOps.insert(RetOps.begin() + 1,
2745                 DAG.getConstant(LROffset, DL, MVT::i32, false));
2746 
2747   return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
2748 }
2749 
2750 SDValue
2751 ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2752                                bool isVarArg,
2753                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2754                                const SmallVectorImpl<SDValue> &OutVals,
2755                                const SDLoc &dl, SelectionDAG &DAG) const {
2756   // CCValAssign - represent the assignment of the return value to a location.
2757   SmallVector<CCValAssign, 16> RVLocs;
2758 
2759   // CCState - Info about the registers and stack slots.
2760   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2761                  *DAG.getContext());
2762 
2763   // Analyze outgoing return values.
2764   CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2765 
2766   SDValue Flag;
2767   SmallVector<SDValue, 4> RetOps;
2768   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2769   bool isLittleEndian = Subtarget->isLittle();
2770 
2771   MachineFunction &MF = DAG.getMachineFunction();
2772   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2773   AFI->setReturnRegsCount(RVLocs.size());
2774 
2775   // Copy the result values into the output registers.
2776   for (unsigned i = 0, realRVLocIdx = 0;
2777        i != RVLocs.size();
2778        ++i, ++realRVLocIdx) {
2779     CCValAssign &VA = RVLocs[i];
2780     assert(VA.isRegLoc() && "Can only return in registers!");
2781 
2782     SDValue Arg = OutVals[realRVLocIdx];
2783     bool ReturnF16 = false;
2784 
2785     if (Subtarget->hasFullFP16() && Subtarget->isTargetHardFloat()) {
2786       // Half-precision return values can be returned like this:
2787       //
2788       // t11 f16 = fadd ...
2789       // t12: i16 = bitcast t11
2790       //   t13: i32 = zero_extend t12
2791       // t14: f32 = bitcast t13  <~~~~~~~ Arg
2792       //
2793       // to avoid code generation for bitcasts, we simply set Arg to the node
2794       // that produces the f16 value, t11 in this case.
2795       //
2796       if (Arg.getValueType() == MVT::f32 && Arg.getOpcode() == ISD::BITCAST) {
2797         SDValue ZE = Arg.getOperand(0);
2798         if (ZE.getOpcode() == ISD::ZERO_EXTEND && ZE.getValueType() == MVT::i32) {
2799           SDValue BC = ZE.getOperand(0);
2800           if (BC.getOpcode() == ISD::BITCAST && BC.getValueType() == MVT::i16) {
2801             Arg = BC.getOperand(0);
2802             ReturnF16 = true;
2803           }
2804         }
2805       }
2806     }
2807 
2808     switch (VA.getLocInfo()) {
2809     default: llvm_unreachable("Unknown loc info!");
2810     case CCValAssign::Full: break;
2811     case CCValAssign::BCvt:
2812       if (!ReturnF16)
2813         Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2814       break;
2815     }
2816 
2817     if (VA.needsCustom()) {
2818       if (VA.getLocVT() == MVT::v2f64) {
2819         // Extract the first half and return it in two registers.
2820         SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2821                                    DAG.getConstant(0, dl, MVT::i32));
2822         SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
2823                                        DAG.getVTList(MVT::i32, MVT::i32), Half);
2824 
2825         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2826                                  HalfGPRs.getValue(isLittleEndian ? 0 : 1),
2827                                  Flag);
2828         Flag = Chain.getValue(1);
2829         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2830         VA = RVLocs[++i]; // skip ahead to next loc
2831         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2832                                  HalfGPRs.getValue(isLittleEndian ? 1 : 0),
2833                                  Flag);
2834         Flag = Chain.getValue(1);
2835         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2836         VA = RVLocs[++i]; // skip ahead to next loc
2837 
2838         // Extract the 2nd half and fall through to handle it as an f64 value.
2839         Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2840                           DAG.getConstant(1, dl, MVT::i32));
2841       }
2842       // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
2843       // available.
2844       SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2845                                   DAG.getVTList(MVT::i32, MVT::i32), Arg);
2846       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2847                                fmrrd.getValue(isLittleEndian ? 0 : 1),
2848                                Flag);
2849       Flag = Chain.getValue(1);
2850       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2851       VA = RVLocs[++i]; // skip ahead to next loc
2852       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2853                                fmrrd.getValue(isLittleEndian ? 1 : 0),
2854                                Flag);
2855     } else
2856       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
2857 
2858     // Guarantee that all emitted copies are
2859     // stuck together, avoiding something bad.
2860     Flag = Chain.getValue(1);
2861     RetOps.push_back(DAG.getRegister(VA.getLocReg(),
2862                                      ReturnF16 ? MVT::f16 : VA.getLocVT()));
2863   }
2864   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2865   const MCPhysReg *I =
2866       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2867   if (I) {
2868     for (; *I; ++I) {
2869       if (ARM::GPRRegClass.contains(*I))
2870         RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2871       else if (ARM::DPRRegClass.contains(*I))
2872         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
2873       else
2874         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2875     }
2876   }
2877 
2878   // Update chain and glue.
2879   RetOps[0] = Chain;
2880   if (Flag.getNode())
2881     RetOps.push_back(Flag);
2882 
2883   // CPUs which aren't M-class use a special sequence to return from
2884   // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2885   // though we use "subs pc, lr, #N").
2886   //
2887   // M-class CPUs actually use a normal return sequence with a special
2888   // (hardware-provided) value in LR, so the normal code path works.
2889   if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
2890       !Subtarget->isMClass()) {
2891     if (Subtarget->isThumb1Only())
2892       report_fatal_error("interrupt attribute is not supported in Thumb1");
2893     return LowerInterruptReturn(RetOps, dl, DAG);
2894   }
2895 
2896   return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps);
2897 }
2898 
2899 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
2900   if (N->getNumValues() != 1)
2901     return false;
2902   if (!N->hasNUsesOfValue(1, 0))
2903     return false;
2904 
2905   SDValue TCChain = Chain;
2906   SDNode *Copy = *N->use_begin();
2907   if (Copy->getOpcode() == ISD::CopyToReg) {
2908     // If the copy has a glue operand, we conservatively assume it isn't safe to
2909     // perform a tail call.
2910     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2911       return false;
2912     TCChain = Copy->getOperand(0);
2913   } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
2914     SDNode *VMov = Copy;
2915     // f64 returned in a pair of GPRs.
2916     SmallPtrSet<SDNode*, 2> Copies;
2917     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2918          UI != UE; ++UI) {
2919       if (UI->getOpcode() != ISD::CopyToReg)
2920         return false;
2921       Copies.insert(*UI);
2922     }
2923     if (Copies.size() > 2)
2924       return false;
2925 
2926     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2927          UI != UE; ++UI) {
2928       SDValue UseChain = UI->getOperand(0);
2929       if (Copies.count(UseChain.getNode()))
2930         // Second CopyToReg
2931         Copy = *UI;
2932       else {
2933         // We are at the top of this chain.
2934         // If the copy has a glue operand, we conservatively assume it
2935         // isn't safe to perform a tail call.
2936         if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue)
2937           return false;
2938         // First CopyToReg
2939         TCChain = UseChain;
2940       }
2941     }
2942   } else if (Copy->getOpcode() == ISD::BITCAST) {
2943     // f32 returned in a single GPR.
2944     if (!Copy->hasOneUse())
2945       return false;
2946     Copy = *Copy->use_begin();
2947     if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
2948       return false;
2949     // If the copy has a glue operand, we conservatively assume it isn't safe to
2950     // perform a tail call.
2951     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2952       return false;
2953     TCChain = Copy->getOperand(0);
2954   } else {
2955     return false;
2956   }
2957 
2958   bool HasRet = false;
2959   for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2960        UI != UE; ++UI) {
2961     if (UI->getOpcode() != ARMISD::RET_FLAG &&
2962         UI->getOpcode() != ARMISD::INTRET_FLAG)
2963       return false;
2964     HasRet = true;
2965   }
2966 
2967   if (!HasRet)
2968     return false;
2969 
2970   Chain = TCChain;
2971   return true;
2972 }
2973 
2974 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2975   if (!Subtarget->supportsTailCall())
2976     return false;
2977 
2978   if (!CI->isTailCall())
2979     return false;
2980 
2981   return true;
2982 }
2983 
2984 // Trying to write a 64 bit value so need to split into two 32 bit values first,
2985 // and pass the lower and high parts through.
2986 static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
2987   SDLoc DL(Op);
2988   SDValue WriteValue = Op->getOperand(2);
2989 
2990   // This function is only supposed to be called for i64 type argument.
2991   assert(WriteValue.getValueType() == MVT::i64
2992           && "LowerWRITE_REGISTER called for non-i64 type argument.");
2993 
2994   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
2995                            DAG.getConstant(0, DL, MVT::i32));
2996   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
2997                            DAG.getConstant(1, DL, MVT::i32));
2998   SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
2999   return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
3000 }
3001 
3002 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3003 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
3004 // one of the above mentioned nodes. It has to be wrapped because otherwise
3005 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3006 // be used to form addressing mode. These wrapped nodes will be selected
3007 // into MOVi.
3008 SDValue ARMTargetLowering::LowerConstantPool(SDValue Op,
3009                                              SelectionDAG &DAG) const {
3010   EVT PtrVT = Op.getValueType();
3011   // FIXME there is no actual debug info here
3012   SDLoc dl(Op);
3013   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3014   SDValue Res;
3015 
3016   // When generating execute-only code Constant Pools must be promoted to the
3017   // global data section. It's a bit ugly that we can't share them across basic
3018   // blocks, but this way we guarantee that execute-only behaves correct with
3019   // position-independent addressing modes.
3020   if (Subtarget->genExecuteOnly()) {
3021     auto AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
3022     auto T = const_cast<Type*>(CP->getType());
3023     auto C = const_cast<Constant*>(CP->getConstVal());
3024     auto M = const_cast<Module*>(DAG.getMachineFunction().
3025                                  getFunction().getParent());
3026     auto GV = new GlobalVariable(
3027                     *M, T, /*isConstant=*/true, GlobalVariable::InternalLinkage, C,
3028                     Twine(DAG.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
3029                     Twine(DAG.getMachineFunction().getFunctionNumber()) + "_" +
3030                     Twine(AFI->createPICLabelUId())
3031                   );
3032     SDValue GA = DAG.getTargetGlobalAddress(dyn_cast<GlobalValue>(GV),
3033                                             dl, PtrVT);
3034     return LowerGlobalAddress(GA, DAG);
3035   }
3036 
3037   if (CP->isMachineConstantPoolEntry())
3038     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
3039                                     CP->getAlignment());
3040   else
3041     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
3042                                     CP->getAlignment());
3043   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
3044 }
3045 
3046 unsigned ARMTargetLowering::getJumpTableEncoding() const {
3047   return MachineJumpTableInfo::EK_Inline;
3048 }
3049 
3050 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
3051                                              SelectionDAG &DAG) const {
3052   MachineFunction &MF = DAG.getMachineFunction();
3053   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3054   unsigned ARMPCLabelIndex = 0;
3055   SDLoc DL(Op);
3056   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3057   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
3058   SDValue CPAddr;
3059   bool IsPositionIndependent = isPositionIndependent() || Subtarget->isROPI();
3060   if (!IsPositionIndependent) {
3061     CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
3062   } else {
3063     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
3064     ARMPCLabelIndex = AFI->createPICLabelUId();
3065     ARMConstantPoolValue *CPV =
3066       ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
3067                                       ARMCP::CPBlockAddress, PCAdj);
3068     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3069   }
3070   CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
3071   SDValue Result = DAG.getLoad(
3072       PtrVT, DL, DAG.getEntryNode(), CPAddr,
3073       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3074   if (!IsPositionIndependent)
3075     return Result;
3076   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
3077   return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
3078 }
3079 
3080 /// Convert a TLS address reference into the correct sequence of loads
3081 /// and calls to compute the variable's address for Darwin, and return an
3082 /// SDValue containing the final node.
3083 
3084 /// Darwin only has one TLS scheme which must be capable of dealing with the
3085 /// fully general situation, in the worst case. This means:
3086 ///     + "extern __thread" declaration.
3087 ///     + Defined in a possibly unknown dynamic library.
3088 ///
3089 /// The general system is that each __thread variable has a [3 x i32] descriptor
3090 /// which contains information used by the runtime to calculate the address. The
3091 /// only part of this the compiler needs to know about is the first word, which
3092 /// contains a function pointer that must be called with the address of the
3093 /// entire descriptor in "r0".
3094 ///
3095 /// Since this descriptor may be in a different unit, in general access must
3096 /// proceed along the usual ARM rules. A common sequence to produce is:
3097 ///
3098 ///     movw rT1, :lower16:_var$non_lazy_ptr
3099 ///     movt rT1, :upper16:_var$non_lazy_ptr
3100 ///     ldr r0, [rT1]
3101 ///     ldr rT2, [r0]
3102 ///     blx rT2
3103 ///     [...address now in r0...]
3104 SDValue
3105 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
3106                                                SelectionDAG &DAG) const {
3107   assert(Subtarget->isTargetDarwin() &&
3108          "This function expects a Darwin target");
3109   SDLoc DL(Op);
3110 
3111   // First step is to get the address of the actua global symbol. This is where
3112   // the TLS descriptor lives.
3113   SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);
3114 
3115   // The first entry in the descriptor is a function pointer that we must call
3116   // to obtain the address of the variable.
3117   SDValue Chain = DAG.getEntryNode();
3118   SDValue FuncTLVGet = DAG.getLoad(
3119       MVT::i32, DL, Chain, DescAddr,
3120       MachinePointerInfo::getGOT(DAG.getMachineFunction()),
3121       /* Alignment = */ 4,
3122       MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable |
3123           MachineMemOperand::MOInvariant);
3124   Chain = FuncTLVGet.getValue(1);
3125 
3126   MachineFunction &F = DAG.getMachineFunction();
3127   MachineFrameInfo &MFI = F.getFrameInfo();
3128   MFI.setAdjustsStack(true);
3129 
3130   // TLS calls preserve all registers except those that absolutely must be
3131   // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
3132   // silly).
3133   auto TRI =
3134       getTargetMachine().getSubtargetImpl(F.getFunction())->getRegisterInfo();
3135   auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
3136   const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());
3137 
3138   // Finally, we can make the call. This is just a degenerate version of a
3139   // normal AArch64 call node: r0 takes the address of the descriptor, and
3140   // returns the address of the variable in this thread.
3141   Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
3142   Chain =
3143       DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
3144                   Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
3145                   DAG.getRegisterMask(Mask), Chain.getValue(1));
3146   return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
3147 }
3148 
3149 SDValue
3150 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
3151                                                 SelectionDAG &DAG) const {
3152   assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
3153 
3154   SDValue Chain = DAG.getEntryNode();
3155   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3156   SDLoc DL(Op);
3157 
3158   // Load the current TEB (thread environment block)
3159   SDValue Ops[] = {Chain,
3160                    DAG.getTargetConstant(Intrinsic::arm_mrc, DL, MVT::i32),
3161                    DAG.getTargetConstant(15, DL, MVT::i32),
3162                    DAG.getTargetConstant(0, DL, MVT::i32),
3163                    DAG.getTargetConstant(13, DL, MVT::i32),
3164                    DAG.getTargetConstant(0, DL, MVT::i32),
3165                    DAG.getTargetConstant(2, DL, MVT::i32)};
3166   SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
3167                                    DAG.getVTList(MVT::i32, MVT::Other), Ops);
3168 
3169   SDValue TEB = CurrentTEB.getValue(0);
3170   Chain = CurrentTEB.getValue(1);
3171 
3172   // Load the ThreadLocalStoragePointer from the TEB
3173   // A pointer to the TLS array is located at offset 0x2c from the TEB.
3174   SDValue TLSArray =
3175       DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
3176   TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
3177 
3178   // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
3179   // offset into the TLSArray.
3180 
3181   // Load the TLS index from the C runtime
3182   SDValue TLSIndex =
3183       DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
3184   TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
3185   TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo());
3186 
3187   SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
3188                               DAG.getConstant(2, DL, MVT::i32));
3189   SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
3190                             DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
3191                             MachinePointerInfo());
3192 
3193   // Get the offset of the start of the .tls section (section base)
3194   const auto *GA = cast<GlobalAddressSDNode>(Op);
3195   auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL);
3196   SDValue Offset = DAG.getLoad(
3197       PtrVT, DL, Chain, DAG.getNode(ARMISD::Wrapper, DL, MVT::i32,
3198                                     DAG.getTargetConstantPool(CPV, PtrVT, 4)),
3199       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3200 
3201   return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset);
3202 }
3203 
3204 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
3205 SDValue
3206 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
3207                                                  SelectionDAG &DAG) const {
3208   SDLoc dl(GA);
3209   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3210   unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
3211   MachineFunction &MF = DAG.getMachineFunction();
3212   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3213   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3214   ARMConstantPoolValue *CPV =
3215     ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
3216                                     ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
3217   SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3218   Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
3219   Argument = DAG.getLoad(
3220       PtrVT, dl, DAG.getEntryNode(), Argument,
3221       MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3222   SDValue Chain = Argument.getValue(1);
3223 
3224   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3225   Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
3226 
3227   // call __tls_get_addr.
3228   ArgListTy Args;
3229   ArgListEntry Entry;
3230   Entry.Node = Argument;
3231   Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
3232   Args.push_back(Entry);
3233 
3234   // FIXME: is there useful debug info available here?
3235   TargetLowering::CallLoweringInfo CLI(DAG);
3236   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3237       CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
3238       DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args));
3239 
3240   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3241   return CallResult.first;
3242 }
3243 
3244 // Lower ISD::GlobalTLSAddress using the "initial exec" or
3245 // "local exec" model.
3246 SDValue
3247 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
3248                                         SelectionDAG &DAG,
3249                                         TLSModel::Model model) const {
3250   const GlobalValue *GV = GA->getGlobal();
3251   SDLoc dl(GA);
3252   SDValue Offset;
3253   SDValue Chain = DAG.getEntryNode();
3254   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3255   // Get the Thread Pointer
3256   SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
3257 
3258   if (model == TLSModel::InitialExec) {
3259     MachineFunction &MF = DAG.getMachineFunction();
3260     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3261     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3262     // Initial exec model.
3263     unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
3264     ARMConstantPoolValue *CPV =
3265       ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
3266                                       ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
3267                                       true);
3268     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3269     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
3270     Offset = DAG.getLoad(
3271         PtrVT, dl, Chain, Offset,
3272         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3273     Chain = Offset.getValue(1);
3274 
3275     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3276     Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
3277 
3278     Offset = DAG.getLoad(
3279         PtrVT, dl, Chain, Offset,
3280         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3281   } else {
3282     // local exec model
3283     assert(model == TLSModel::LocalExec);
3284     ARMConstantPoolValue *CPV =
3285       ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
3286     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3287     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
3288     Offset = DAG.getLoad(
3289         PtrVT, dl, Chain, Offset,
3290         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3291   }
3292 
3293   // The address of the thread local variable is the add of the thread
3294   // pointer with the offset of the variable.
3295   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
3296 }
3297 
3298 SDValue
3299 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
3300   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3301   if (DAG.getTarget().useEmulatedTLS())
3302     return LowerToTLSEmulatedModel(GA, DAG);
3303 
3304   if (Subtarget->isTargetDarwin())
3305     return LowerGlobalTLSAddressDarwin(Op, DAG);
3306 
3307   if (Subtarget->isTargetWindows())
3308     return LowerGlobalTLSAddressWindows(Op, DAG);
3309 
3310   // TODO: implement the "local dynamic" model
3311   assert(Subtarget->isTargetELF() && "Only ELF implemented here");
3312   TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
3313 
3314   switch (model) {
3315     case TLSModel::GeneralDynamic:
3316     case TLSModel::LocalDynamic:
3317       return LowerToTLSGeneralDynamicModel(GA, DAG);
3318     case TLSModel::InitialExec:
3319     case TLSModel::LocalExec:
3320       return LowerToTLSExecModels(GA, DAG, model);
3321   }
3322   llvm_unreachable("bogus TLS model");
3323 }
3324 
3325 /// Return true if all users of V are within function F, looking through
3326 /// ConstantExprs.
3327 static bool allUsersAreInFunction(const Value *V, const Function *F) {
3328   SmallVector<const User*,4> Worklist;
3329   for (auto *U : V->users())
3330     Worklist.push_back(U);
3331   while (!Worklist.empty()) {
3332     auto *U = Worklist.pop_back_val();
3333     if (isa<ConstantExpr>(U)) {
3334       for (auto *UU : U->users())
3335         Worklist.push_back(UU);
3336       continue;
3337     }
3338 
3339     auto *I = dyn_cast<Instruction>(U);
3340     if (!I || I->getParent()->getParent() != F)
3341       return false;
3342   }
3343   return true;
3344 }
3345 
3346 static SDValue promoteToConstantPool(const ARMTargetLowering *TLI,
3347                                      const GlobalValue *GV, SelectionDAG &DAG,
3348                                      EVT PtrVT, const SDLoc &dl) {
3349   // If we're creating a pool entry for a constant global with unnamed address,
3350   // and the global is small enough, we can emit it inline into the constant pool
3351   // to save ourselves an indirection.
3352   //
3353   // This is a win if the constant is only used in one function (so it doesn't
3354   // need to be duplicated) or duplicating the constant wouldn't increase code
3355   // size (implying the constant is no larger than 4 bytes).
3356   const Function &F = DAG.getMachineFunction().getFunction();
3357 
3358   // We rely on this decision to inline being idemopotent and unrelated to the
3359   // use-site. We know that if we inline a variable at one use site, we'll
3360   // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3361   // doesn't know about this optimization, so bail out if it's enabled else
3362   // we could decide to inline here (and thus never emit the GV) but require
3363   // the GV from fast-isel generated code.
3364   if (!EnableConstpoolPromotion ||
3365       DAG.getMachineFunction().getTarget().Options.EnableFastISel)
3366       return SDValue();
3367 
3368   auto *GVar = dyn_cast<GlobalVariable>(GV);
3369   if (!GVar || !GVar->hasInitializer() ||
3370       !GVar->isConstant() || !GVar->hasGlobalUnnamedAddr() ||
3371       !GVar->hasLocalLinkage())
3372     return SDValue();
3373 
3374   // If we inline a value that contains relocations, we move the relocations
3375   // from .data to .text. This is not allowed in position-independent code.
3376   auto *Init = GVar->getInitializer();
3377   if ((TLI->isPositionIndependent() || TLI->getSubtarget()->isROPI()) &&
3378       Init->needsRelocation())
3379     return SDValue();
3380 
3381   // The constant islands pass can only really deal with alignment requests
3382   // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3383   // any type wanting greater alignment requirements than 4 bytes. We also
3384   // can only promote constants that are multiples of 4 bytes in size or
3385   // are paddable to a multiple of 4. Currently we only try and pad constants
3386   // that are strings for simplicity.
3387   auto *CDAInit = dyn_cast<ConstantDataArray>(Init);
3388   unsigned Size = DAG.getDataLayout().getTypeAllocSize(Init->getType());
3389   unsigned Align = DAG.getDataLayout().getPreferredAlignment(GVar);
3390   unsigned RequiredPadding = 4 - (Size % 4);
3391   bool PaddingPossible =
3392     RequiredPadding == 4 || (CDAInit && CDAInit->isString());
3393   if (!PaddingPossible || Align > 4 || Size > ConstpoolPromotionMaxSize ||
3394       Size == 0)
3395     return SDValue();
3396 
3397   unsigned PaddedSize = Size + ((RequiredPadding == 4) ? 0 : RequiredPadding);
3398   MachineFunction &MF = DAG.getMachineFunction();
3399   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3400 
3401   // We can't bloat the constant pool too much, else the ConstantIslands pass
3402   // may fail to converge. If we haven't promoted this global yet (it may have
3403   // multiple uses), and promoting it would increase the constant pool size (Sz
3404   // > 4), ensure we have space to do so up to MaxTotal.
3405   if (!AFI->getGlobalsPromotedToConstantPool().count(GVar) && Size > 4)
3406     if (AFI->getPromotedConstpoolIncrease() + PaddedSize - 4 >=
3407         ConstpoolPromotionMaxTotal)
3408       return SDValue();
3409 
3410   // This is only valid if all users are in a single function; we can't clone
3411   // the constant in general. The LLVM IR unnamed_addr allows merging
3412   // constants, but not cloning them.
3413   //
3414   // We could potentially allow cloning if we could prove all uses of the
3415   // constant in the current function don't care about the address, like
3416   // printf format strings. But that isn't implemented for now.
3417   if (!allUsersAreInFunction(GVar, &F))
3418     return SDValue();
3419 
3420   // We're going to inline this global. Pad it out if needed.
3421   if (RequiredPadding != 4) {
3422     StringRef S = CDAInit->getAsString();
3423 
3424     SmallVector<uint8_t,16> V(S.size());
3425     std::copy(S.bytes_begin(), S.bytes_end(), V.begin());
3426     while (RequiredPadding--)
3427       V.push_back(0);
3428     Init = ConstantDataArray::get(*DAG.getContext(), V);
3429   }
3430 
3431   auto CPVal = ARMConstantPoolConstant::Create(GVar, Init);
3432   SDValue CPAddr =
3433     DAG.getTargetConstantPool(CPVal, PtrVT, /*Align=*/4);
3434   if (!AFI->getGlobalsPromotedToConstantPool().count(GVar)) {
3435     AFI->markGlobalAsPromotedToConstantPool(GVar);
3436     AFI->setPromotedConstpoolIncrease(AFI->getPromotedConstpoolIncrease() +
3437                                       PaddedSize - 4);
3438   }
3439   ++NumConstpoolPromoted;
3440   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3441 }
3442 
3443 bool ARMTargetLowering::isReadOnly(const GlobalValue *GV) const {
3444   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
3445     if (!(GV = GA->getBaseObject()))
3446       return false;
3447   if (const auto *V = dyn_cast<GlobalVariable>(GV))
3448     return V->isConstant();
3449   return isa<Function>(GV);
3450 }
3451 
3452 SDValue ARMTargetLowering::LowerGlobalAddress(SDValue Op,
3453                                               SelectionDAG &DAG) const {
3454   switch (Subtarget->getTargetTriple().getObjectFormat()) {
3455   default: llvm_unreachable("unknown object format");
3456   case Triple::COFF:
3457     return LowerGlobalAddressWindows(Op, DAG);
3458   case Triple::ELF:
3459     return LowerGlobalAddressELF(Op, DAG);
3460   case Triple::MachO:
3461     return LowerGlobalAddressDarwin(Op, DAG);
3462   }
3463 }
3464 
3465 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
3466                                                  SelectionDAG &DAG) const {
3467   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3468   SDLoc dl(Op);
3469   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3470   const TargetMachine &TM = getTargetMachine();
3471   bool IsRO = isReadOnly(GV);
3472 
3473   // promoteToConstantPool only if not generating XO text section
3474   if (TM.shouldAssumeDSOLocal(*GV->getParent(), GV) && !Subtarget->genExecuteOnly())
3475     if (SDValue V = promoteToConstantPool(this, GV, DAG, PtrVT, dl))
3476       return V;
3477 
3478   if (isPositionIndependent()) {
3479     bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
3480     SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3481                                            UseGOT_PREL ? ARMII::MO_GOT : 0);
3482     SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3483     if (UseGOT_PREL)
3484       Result =
3485           DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3486                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3487     return Result;
3488   } else if (Subtarget->isROPI() && IsRO) {
3489     // PC-relative.
3490     SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
3491     SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3492     return Result;
3493   } else if (Subtarget->isRWPI() && !IsRO) {
3494     // SB-relative.
3495     SDValue RelAddr;
3496     if (Subtarget->useMovt()) {
3497       ++NumMovwMovt;
3498       SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_SBREL);
3499       RelAddr = DAG.getNode(ARMISD::Wrapper, dl, PtrVT, G);
3500     } else { // use literal pool for address constant
3501       ARMConstantPoolValue *CPV =
3502         ARMConstantPoolConstant::Create(GV, ARMCP::SBREL);
3503       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3504       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3505       RelAddr = DAG.getLoad(
3506           PtrVT, dl, DAG.getEntryNode(), CPAddr,
3507           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3508     }
3509     SDValue SB = DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::R9, PtrVT);
3510     SDValue Result = DAG.getNode(ISD::ADD, dl, PtrVT, SB, RelAddr);
3511     return Result;
3512   }
3513 
3514   // If we have T2 ops, we can materialize the address directly via movt/movw
3515   // pair. This is always cheaper.
3516   if (Subtarget->useMovt()) {
3517     ++NumMovwMovt;
3518     // FIXME: Once remat is capable of dealing with instructions with register
3519     // operands, expand this into two nodes.
3520     return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
3521                        DAG.getTargetGlobalAddress(GV, dl, PtrVT));
3522   } else {
3523     SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
3524     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3525     return DAG.getLoad(
3526         PtrVT, dl, DAG.getEntryNode(), CPAddr,
3527         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3528   }
3529 }
3530 
3531 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
3532                                                     SelectionDAG &DAG) const {
3533   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3534          "ROPI/RWPI not currently supported for Darwin");
3535   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3536   SDLoc dl(Op);
3537   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3538 
3539   if (Subtarget->useMovt())
3540     ++NumMovwMovt;
3541 
3542   // FIXME: Once remat is capable of dealing with instructions with register
3543   // operands, expand this into multiple nodes
3544   unsigned Wrapper =
3545       isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper;
3546 
3547   SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
3548   SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
3549 
3550   if (Subtarget->isGVIndirectSymbol(GV))
3551     Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3552                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3553   return Result;
3554 }
3555 
3556 SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
3557                                                      SelectionDAG &DAG) const {
3558   assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
3559   assert(Subtarget->useMovt() &&
3560          "Windows on ARM expects to use movw/movt");
3561   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3562          "ROPI/RWPI not currently supported for Windows");
3563 
3564   const TargetMachine &TM = getTargetMachine();
3565   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3566   ARMII::TOF TargetFlags = ARMII::MO_NO_FLAG;
3567   if (GV->hasDLLImportStorageClass())
3568     TargetFlags = ARMII::MO_DLLIMPORT;
3569   else if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
3570     TargetFlags = ARMII::MO_COFFSTUB;
3571   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3572   SDValue Result;
3573   SDLoc DL(Op);
3574 
3575   ++NumMovwMovt;
3576 
3577   // FIXME: Once remat is capable of dealing with instructions with register
3578   // operands, expand this into two nodes.
3579   Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
3580                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*offset=*/0,
3581                                                   TargetFlags));
3582   if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
3583     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3584                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3585   return Result;
3586 }
3587 
3588 SDValue
3589 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
3590   SDLoc dl(Op);
3591   SDValue Val = DAG.getConstant(0, dl, MVT::i32);
3592   return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
3593                      DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
3594                      Op.getOperand(1), Val);
3595 }
3596 
3597 SDValue
3598 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
3599   SDLoc dl(Op);
3600   return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
3601                      Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
3602 }
3603 
3604 SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
3605                                                       SelectionDAG &DAG) const {
3606   SDLoc dl(Op);
3607   return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
3608                      Op.getOperand(0));
3609 }
3610 
3611 SDValue ARMTargetLowering::LowerINTRINSIC_VOID(
3612     SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget) const {
3613   unsigned IntNo =
3614       cast<ConstantSDNode>(
3615           Op.getOperand(Op.getOperand(0).getValueType() == MVT::Other))
3616           ->getZExtValue();
3617   switch (IntNo) {
3618     default:
3619       return SDValue();  // Don't custom lower most intrinsics.
3620     case Intrinsic::arm_gnu_eabi_mcount: {
3621       MachineFunction &MF = DAG.getMachineFunction();
3622       EVT PtrVT = getPointerTy(DAG.getDataLayout());
3623       SDLoc dl(Op);
3624       SDValue Chain = Op.getOperand(0);
3625       // call "\01__gnu_mcount_nc"
3626       const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
3627       const uint32_t *Mask =
3628           ARI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3629       assert(Mask && "Missing call preserved mask for calling convention");
3630       // Mark LR an implicit live-in.
3631       unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3632       SDValue ReturnAddress =
3633           DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, PtrVT);
3634       std::vector<EVT> ResultTys = {MVT::Other, MVT::Glue};
3635       SDValue Callee =
3636           DAG.getTargetExternalSymbol("\01__gnu_mcount_nc", PtrVT, 0);
3637       SDValue RegisterMask = DAG.getRegisterMask(Mask);
3638       if (Subtarget->isThumb())
3639         return SDValue(
3640             DAG.getMachineNode(
3641                 ARM::tBL_PUSHLR, dl, ResultTys,
3642                 {ReturnAddress, DAG.getTargetConstant(ARMCC::AL, dl, PtrVT),
3643                  DAG.getRegister(0, PtrVT), Callee, RegisterMask, Chain}),
3644             0);
3645       return SDValue(
3646           DAG.getMachineNode(ARM::BL_PUSHLR, dl, ResultTys,
3647                              {ReturnAddress, Callee, RegisterMask, Chain}),
3648           0);
3649     }
3650   }
3651 }
3652 
3653 SDValue
3654 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
3655                                           const ARMSubtarget *Subtarget) const {
3656   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3657   SDLoc dl(Op);
3658   switch (IntNo) {
3659   default: return SDValue();    // Don't custom lower most intrinsics.
3660   case Intrinsic::thread_pointer: {
3661     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3662     return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
3663   }
3664   case Intrinsic::arm_cls: {
3665     const SDValue &Operand = Op.getOperand(1);
3666     const EVT VTy = Op.getValueType();
3667     SDValue SRA =
3668         DAG.getNode(ISD::SRA, dl, VTy, Operand, DAG.getConstant(31, dl, VTy));
3669     SDValue XOR = DAG.getNode(ISD::XOR, dl, VTy, SRA, Operand);
3670     SDValue SHL =
3671         DAG.getNode(ISD::SHL, dl, VTy, XOR, DAG.getConstant(1, dl, VTy));
3672     SDValue OR =
3673         DAG.getNode(ISD::OR, dl, VTy, SHL, DAG.getConstant(1, dl, VTy));
3674     SDValue Result = DAG.getNode(ISD::CTLZ, dl, VTy, OR);
3675     return Result;
3676   }
3677   case Intrinsic::arm_cls64: {
3678     // cls(x) = if cls(hi(x)) != 31 then cls(hi(x))
3679     //          else 31 + clz(if hi(x) == 0 then lo(x) else not(lo(x)))
3680     const SDValue &Operand = Op.getOperand(1);
3681     const EVT VTy = Op.getValueType();
3682 
3683     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VTy, Operand,
3684                              DAG.getConstant(1, dl, VTy));
3685     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VTy, Operand,
3686                              DAG.getConstant(0, dl, VTy));
3687     SDValue Constant0 = DAG.getConstant(0, dl, VTy);
3688     SDValue Constant1 = DAG.getConstant(1, dl, VTy);
3689     SDValue Constant31 = DAG.getConstant(31, dl, VTy);
3690     SDValue SRAHi = DAG.getNode(ISD::SRA, dl, VTy, Hi, Constant31);
3691     SDValue XORHi = DAG.getNode(ISD::XOR, dl, VTy, SRAHi, Hi);
3692     SDValue SHLHi = DAG.getNode(ISD::SHL, dl, VTy, XORHi, Constant1);
3693     SDValue ORHi = DAG.getNode(ISD::OR, dl, VTy, SHLHi, Constant1);
3694     SDValue CLSHi = DAG.getNode(ISD::CTLZ, dl, VTy, ORHi);
3695     SDValue CheckLo =
3696         DAG.getSetCC(dl, MVT::i1, CLSHi, Constant31, ISD::CondCode::SETEQ);
3697     SDValue HiIsZero =
3698         DAG.getSetCC(dl, MVT::i1, Hi, Constant0, ISD::CondCode::SETEQ);
3699     SDValue AdjustedLo =
3700         DAG.getSelect(dl, VTy, HiIsZero, Lo, DAG.getNOT(dl, Lo, VTy));
3701     SDValue CLZAdjustedLo = DAG.getNode(ISD::CTLZ, dl, VTy, AdjustedLo);
3702     SDValue Result =
3703         DAG.getSelect(dl, VTy, CheckLo,
3704                       DAG.getNode(ISD::ADD, dl, VTy, CLZAdjustedLo, Constant31), CLSHi);
3705     return Result;
3706   }
3707   case Intrinsic::eh_sjlj_lsda: {
3708     MachineFunction &MF = DAG.getMachineFunction();
3709     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3710     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3711     EVT PtrVT = getPointerTy(DAG.getDataLayout());
3712     SDValue CPAddr;
3713     bool IsPositionIndependent = isPositionIndependent();
3714     unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
3715     ARMConstantPoolValue *CPV =
3716       ARMConstantPoolConstant::Create(&MF.getFunction(), ARMPCLabelIndex,
3717                                       ARMCP::CPLSDA, PCAdj);
3718     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3719     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3720     SDValue Result = DAG.getLoad(
3721         PtrVT, dl, DAG.getEntryNode(), CPAddr,
3722         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3723 
3724     if (IsPositionIndependent) {
3725       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3726       Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
3727     }
3728     return Result;
3729   }
3730   case Intrinsic::arm_neon_vabs:
3731     return DAG.getNode(ISD::ABS, SDLoc(Op), Op.getValueType(),
3732                         Op.getOperand(1));
3733   case Intrinsic::arm_neon_vmulls:
3734   case Intrinsic::arm_neon_vmullu: {
3735     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
3736       ? ARMISD::VMULLs : ARMISD::VMULLu;
3737     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3738                        Op.getOperand(1), Op.getOperand(2));
3739   }
3740   case Intrinsic::arm_neon_vminnm:
3741   case Intrinsic::arm_neon_vmaxnm: {
3742     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
3743       ? ISD::FMINNUM : ISD::FMAXNUM;
3744     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3745                        Op.getOperand(1), Op.getOperand(2));
3746   }
3747   case Intrinsic::arm_neon_vminu:
3748   case Intrinsic::arm_neon_vmaxu: {
3749     if (Op.getValueType().isFloatingPoint())
3750       return SDValue();
3751     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
3752       ? ISD::UMIN : ISD::UMAX;
3753     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3754                          Op.getOperand(1), Op.getOperand(2));
3755   }
3756   case Intrinsic::arm_neon_vmins:
3757   case Intrinsic::arm_neon_vmaxs: {
3758     // v{min,max}s is overloaded between signed integers and floats.
3759     if (!Op.getValueType().isFloatingPoint()) {
3760       unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
3761         ? ISD::SMIN : ISD::SMAX;
3762       return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3763                          Op.getOperand(1), Op.getOperand(2));
3764     }
3765     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
3766       ? ISD::FMINIMUM : ISD::FMAXIMUM;
3767     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3768                        Op.getOperand(1), Op.getOperand(2));
3769   }
3770   case Intrinsic::arm_neon_vtbl1:
3771     return DAG.getNode(ARMISD::VTBL1, SDLoc(Op), Op.getValueType(),
3772                        Op.getOperand(1), Op.getOperand(2));
3773   case Intrinsic::arm_neon_vtbl2:
3774     return DAG.getNode(ARMISD::VTBL2, SDLoc(Op), Op.getValueType(),
3775                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3776   case Intrinsic::arm_mve_pred_i2v:
3777   case Intrinsic::arm_mve_pred_v2i:
3778     return DAG.getNode(ARMISD::PREDICATE_CAST, SDLoc(Op), Op.getValueType(),
3779                        Op.getOperand(1));
3780   }
3781 }
3782 
3783 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
3784                                  const ARMSubtarget *Subtarget) {
3785   SDLoc dl(Op);
3786   ConstantSDNode *SSIDNode = cast<ConstantSDNode>(Op.getOperand(2));
3787   auto SSID = static_cast<SyncScope::ID>(SSIDNode->getZExtValue());
3788   if (SSID == SyncScope::SingleThread)
3789     return Op;
3790 
3791   if (!Subtarget->hasDataBarrier()) {
3792     // Some ARMv6 cpus can support data barriers with an mcr instruction.
3793     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
3794     // here.
3795     assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
3796            "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
3797     return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
3798                        DAG.getConstant(0, dl, MVT::i32));
3799   }
3800 
3801   ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
3802   AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
3803   ARM_MB::MemBOpt Domain = ARM_MB::ISH;
3804   if (Subtarget->isMClass()) {
3805     // Only a full system barrier exists in the M-class architectures.
3806     Domain = ARM_MB::SY;
3807   } else if (Subtarget->preferISHSTBarriers() &&
3808              Ord == AtomicOrdering::Release) {
3809     // Swift happens to implement ISHST barriers in a way that's compatible with
3810     // Release semantics but weaker than ISH so we'd be fools not to use
3811     // it. Beware: other processors probably don't!
3812     Domain = ARM_MB::ISHST;
3813   }
3814 
3815   return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
3816                      DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
3817                      DAG.getConstant(Domain, dl, MVT::i32));
3818 }
3819 
3820 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
3821                              const ARMSubtarget *Subtarget) {
3822   // ARM pre v5TE and Thumb1 does not have preload instructions.
3823   if (!(Subtarget->isThumb2() ||
3824         (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
3825     // Just preserve the chain.
3826     return Op.getOperand(0);
3827 
3828   SDLoc dl(Op);
3829   unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
3830   if (!isRead &&
3831       (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
3832     // ARMv7 with MP extension has PLDW.
3833     return Op.getOperand(0);
3834 
3835   unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3836   if (Subtarget->isThumb()) {
3837     // Invert the bits.
3838     isRead = ~isRead & 1;
3839     isData = ~isData & 1;
3840   }
3841 
3842   return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
3843                      Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
3844                      DAG.getConstant(isData, dl, MVT::i32));
3845 }
3846 
3847 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
3848   MachineFunction &MF = DAG.getMachineFunction();
3849   ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
3850 
3851   // vastart just stores the address of the VarArgsFrameIndex slot into the
3852   // memory location argument.
3853   SDLoc dl(Op);
3854   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
3855   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3856   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3857   return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3858                       MachinePointerInfo(SV));
3859 }
3860 
3861 SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA,
3862                                                 CCValAssign &NextVA,
3863                                                 SDValue &Root,
3864                                                 SelectionDAG &DAG,
3865                                                 const SDLoc &dl) const {
3866   MachineFunction &MF = DAG.getMachineFunction();
3867   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3868 
3869   const TargetRegisterClass *RC;
3870   if (AFI->isThumb1OnlyFunction())
3871     RC = &ARM::tGPRRegClass;
3872   else
3873     RC = &ARM::GPRRegClass;
3874 
3875   // Transform the arguments stored in physical registers into virtual ones.
3876   unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3877   SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
3878 
3879   SDValue ArgValue2;
3880   if (NextVA.isMemLoc()) {
3881     MachineFrameInfo &MFI = MF.getFrameInfo();
3882     int FI = MFI.CreateFixedObject(4, NextVA.getLocMemOffset(), true);
3883 
3884     // Create load node to retrieve arguments from the stack.
3885     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3886     ArgValue2 = DAG.getLoad(
3887         MVT::i32, dl, Root, FIN,
3888         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
3889   } else {
3890     Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
3891     ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
3892   }
3893   if (!Subtarget->isLittle())
3894     std::swap (ArgValue, ArgValue2);
3895   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
3896 }
3897 
3898 // The remaining GPRs hold either the beginning of variable-argument
3899 // data, or the beginning of an aggregate passed by value (usually
3900 // byval).  Either way, we allocate stack slots adjacent to the data
3901 // provided by our caller, and store the unallocated registers there.
3902 // If this is a variadic function, the va_list pointer will begin with
3903 // these values; otherwise, this reassembles a (byval) structure that
3904 // was split between registers and memory.
3905 // Return: The frame index registers were stored into.
3906 int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
3907                                       const SDLoc &dl, SDValue &Chain,
3908                                       const Value *OrigArg,
3909                                       unsigned InRegsParamRecordIdx,
3910                                       int ArgOffset, unsigned ArgSize) const {
3911   // Currently, two use-cases possible:
3912   // Case #1. Non-var-args function, and we meet first byval parameter.
3913   //          Setup first unallocated register as first byval register;
3914   //          eat all remained registers
3915   //          (these two actions are performed by HandleByVal method).
3916   //          Then, here, we initialize stack frame with
3917   //          "store-reg" instructions.
3918   // Case #2. Var-args function, that doesn't contain byval parameters.
3919   //          The same: eat all remained unallocated registers,
3920   //          initialize stack frame.
3921 
3922   MachineFunction &MF = DAG.getMachineFunction();
3923   MachineFrameInfo &MFI = MF.getFrameInfo();
3924   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3925   unsigned RBegin, REnd;
3926   if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
3927     CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
3928   } else {
3929     unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
3930     RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
3931     REnd = ARM::R4;
3932   }
3933 
3934   if (REnd != RBegin)
3935     ArgOffset = -4 * (ARM::R4 - RBegin);
3936 
3937   auto PtrVT = getPointerTy(DAG.getDataLayout());
3938   int FrameIndex = MFI.CreateFixedObject(ArgSize, ArgOffset, false);
3939   SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
3940 
3941   SmallVector<SDValue, 4> MemOps;
3942   const TargetRegisterClass *RC =
3943       AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
3944 
3945   for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
3946     unsigned VReg = MF.addLiveIn(Reg, RC);
3947     SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
3948     SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3949                                  MachinePointerInfo(OrigArg, 4 * i));
3950     MemOps.push_back(Store);
3951     FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
3952   }
3953 
3954   if (!MemOps.empty())
3955     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3956   return FrameIndex;
3957 }
3958 
3959 // Setup stack frame, the va_list pointer will start from.
3960 void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
3961                                              const SDLoc &dl, SDValue &Chain,
3962                                              unsigned ArgOffset,
3963                                              unsigned TotalArgRegsSaveSize,
3964                                              bool ForceMutable) const {
3965   MachineFunction &MF = DAG.getMachineFunction();
3966   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3967 
3968   // Try to store any remaining integer argument regs
3969   // to their spots on the stack so that they may be loaded by dereferencing
3970   // the result of va_next.
3971   // If there is no regs to be stored, just point address after last
3972   // argument passed via stack.
3973   int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
3974                                   CCInfo.getInRegsParamsCount(),
3975                                   CCInfo.getNextStackOffset(),
3976                                   std::max(4U, TotalArgRegsSaveSize));
3977   AFI->setVarArgsFrameIndex(FrameIndex);
3978 }
3979 
3980 SDValue ARMTargetLowering::LowerFormalArguments(
3981     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3982     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3983     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3984   MachineFunction &MF = DAG.getMachineFunction();
3985   MachineFrameInfo &MFI = MF.getFrameInfo();
3986 
3987   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3988 
3989   // Assign locations to all of the incoming arguments.
3990   SmallVector<CCValAssign, 16> ArgLocs;
3991   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3992                  *DAG.getContext());
3993   CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
3994 
3995   SmallVector<SDValue, 16> ArgValues;
3996   SDValue ArgValue;
3997   Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
3998   unsigned CurArgIdx = 0;
3999 
4000   // Initially ArgRegsSaveSize is zero.
4001   // Then we increase this value each time we meet byval parameter.
4002   // We also increase this value in case of varargs function.
4003   AFI->setArgRegsSaveSize(0);
4004 
4005   // Calculate the amount of stack space that we need to allocate to store
4006   // byval and variadic arguments that are passed in registers.
4007   // We need to know this before we allocate the first byval or variadic
4008   // argument, as they will be allocated a stack slot below the CFA (Canonical
4009   // Frame Address, the stack pointer at entry to the function).
4010   unsigned ArgRegBegin = ARM::R4;
4011   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4012     if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
4013       break;
4014 
4015     CCValAssign &VA = ArgLocs[i];
4016     unsigned Index = VA.getValNo();
4017     ISD::ArgFlagsTy Flags = Ins[Index].Flags;
4018     if (!Flags.isByVal())
4019       continue;
4020 
4021     assert(VA.isMemLoc() && "unexpected byval pointer in reg");
4022     unsigned RBegin, REnd;
4023     CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
4024     ArgRegBegin = std::min(ArgRegBegin, RBegin);
4025 
4026     CCInfo.nextInRegsParam();
4027   }
4028   CCInfo.rewindByValRegsInfo();
4029 
4030   int lastInsIndex = -1;
4031   if (isVarArg && MFI.hasVAStart()) {
4032     unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
4033     if (RegIdx != array_lengthof(GPRArgRegs))
4034       ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
4035   }
4036 
4037   unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
4038   AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
4039   auto PtrVT = getPointerTy(DAG.getDataLayout());
4040 
4041   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4042     CCValAssign &VA = ArgLocs[i];
4043     if (Ins[VA.getValNo()].isOrigArg()) {
4044       std::advance(CurOrigArg,
4045                    Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
4046       CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
4047     }
4048     // Arguments stored in registers.
4049     if (VA.isRegLoc()) {
4050       EVT RegVT = VA.getLocVT();
4051 
4052       if (VA.needsCustom()) {
4053         // f64 and vector types are split up into multiple registers or
4054         // combinations of registers and stack slots.
4055         if (VA.getLocVT() == MVT::v2f64) {
4056           SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
4057                                                    Chain, DAG, dl);
4058           VA = ArgLocs[++i]; // skip ahead to next loc
4059           SDValue ArgValue2;
4060           if (VA.isMemLoc()) {
4061             int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), true);
4062             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4063             ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
4064                                     MachinePointerInfo::getFixedStack(
4065                                         DAG.getMachineFunction(), FI));
4066           } else {
4067             ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
4068                                              Chain, DAG, dl);
4069           }
4070           ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
4071           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
4072                                  ArgValue, ArgValue1,
4073                                  DAG.getIntPtrConstant(0, dl));
4074           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
4075                                  ArgValue, ArgValue2,
4076                                  DAG.getIntPtrConstant(1, dl));
4077         } else
4078           ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
4079       } else {
4080         const TargetRegisterClass *RC;
4081 
4082 
4083         if (RegVT == MVT::f16)
4084           RC = &ARM::HPRRegClass;
4085         else if (RegVT == MVT::f32)
4086           RC = &ARM::SPRRegClass;
4087         else if (RegVT == MVT::f64 || RegVT == MVT::v4f16)
4088           RC = &ARM::DPRRegClass;
4089         else if (RegVT == MVT::v2f64 || RegVT == MVT::v8f16)
4090           RC = &ARM::QPRRegClass;
4091         else if (RegVT == MVT::i32)
4092           RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
4093                                            : &ARM::GPRRegClass;
4094         else
4095           llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
4096 
4097         // Transform the arguments in physical registers into virtual ones.
4098         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
4099         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
4100 
4101         // If this value is passed in r0 and has the returned attribute (e.g.
4102         // C++ 'structors), record this fact for later use.
4103         if (VA.getLocReg() == ARM::R0 && Ins[VA.getValNo()].Flags.isReturned()) {
4104           AFI->setPreservesR0();
4105         }
4106       }
4107 
4108       // If this is an 8 or 16-bit value, it is really passed promoted
4109       // to 32 bits.  Insert an assert[sz]ext to capture this, then
4110       // truncate to the right size.
4111       switch (VA.getLocInfo()) {
4112       default: llvm_unreachable("Unknown loc info!");
4113       case CCValAssign::Full: break;
4114       case CCValAssign::BCvt:
4115         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
4116         break;
4117       case CCValAssign::SExt:
4118         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
4119                                DAG.getValueType(VA.getValVT()));
4120         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
4121         break;
4122       case CCValAssign::ZExt:
4123         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
4124                                DAG.getValueType(VA.getValVT()));
4125         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
4126         break;
4127       }
4128 
4129       InVals.push_back(ArgValue);
4130     } else { // VA.isRegLoc()
4131       // sanity check
4132       assert(VA.isMemLoc());
4133       assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
4134 
4135       int index = VA.getValNo();
4136 
4137       // Some Ins[] entries become multiple ArgLoc[] entries.
4138       // Process them only once.
4139       if (index != lastInsIndex)
4140         {
4141           ISD::ArgFlagsTy Flags = Ins[index].Flags;
4142           // FIXME: For now, all byval parameter objects are marked mutable.
4143           // This can be changed with more analysis.
4144           // In case of tail call optimization mark all arguments mutable.
4145           // Since they could be overwritten by lowering of arguments in case of
4146           // a tail call.
4147           if (Flags.isByVal()) {
4148             assert(Ins[index].isOrigArg() &&
4149                    "Byval arguments cannot be implicit");
4150             unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
4151 
4152             int FrameIndex = StoreByValRegs(
4153                 CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
4154                 VA.getLocMemOffset(), Flags.getByValSize());
4155             InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
4156             CCInfo.nextInRegsParam();
4157           } else {
4158             unsigned FIOffset = VA.getLocMemOffset();
4159             int FI = MFI.CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
4160                                            FIOffset, true);
4161 
4162             // Create load nodes to retrieve arguments from the stack.
4163             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4164             InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
4165                                          MachinePointerInfo::getFixedStack(
4166                                              DAG.getMachineFunction(), FI)));
4167           }
4168           lastInsIndex = index;
4169         }
4170     }
4171   }
4172 
4173   // varargs
4174   if (isVarArg && MFI.hasVAStart())
4175     VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
4176                          CCInfo.getNextStackOffset(),
4177                          TotalArgRegsSaveSize);
4178 
4179   AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
4180 
4181   return Chain;
4182 }
4183 
4184 /// isFloatingPointZero - Return true if this is +0.0.
4185 static bool isFloatingPointZero(SDValue Op) {
4186   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
4187     return CFP->getValueAPF().isPosZero();
4188   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
4189     // Maybe this has already been legalized into the constant pool?
4190     if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
4191       SDValue WrapperOp = Op.getOperand(1).getOperand(0);
4192       if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
4193         if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
4194           return CFP->getValueAPF().isPosZero();
4195     }
4196   } else if (Op->getOpcode() == ISD::BITCAST &&
4197              Op->getValueType(0) == MVT::f64) {
4198     // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
4199     // created by LowerConstantFP().
4200     SDValue BitcastOp = Op->getOperand(0);
4201     if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
4202         isNullConstant(BitcastOp->getOperand(0)))
4203       return true;
4204   }
4205   return false;
4206 }
4207 
4208 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
4209 /// the given operands.
4210 SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
4211                                      SDValue &ARMcc, SelectionDAG &DAG,
4212                                      const SDLoc &dl) const {
4213   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
4214     unsigned C = RHSC->getZExtValue();
4215     if (!isLegalICmpImmediate((int32_t)C)) {
4216       // Constant does not fit, try adjusting it by one.
4217       switch (CC) {
4218       default: break;
4219       case ISD::SETLT:
4220       case ISD::SETGE:
4221         if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
4222           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
4223           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
4224         }
4225         break;
4226       case ISD::SETULT:
4227       case ISD::SETUGE:
4228         if (C != 0 && isLegalICmpImmediate(C-1)) {
4229           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
4230           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
4231         }
4232         break;
4233       case ISD::SETLE:
4234       case ISD::SETGT:
4235         if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
4236           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
4237           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
4238         }
4239         break;
4240       case ISD::SETULE:
4241       case ISD::SETUGT:
4242         if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
4243           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4244           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
4245         }
4246         break;
4247       }
4248     }
4249   } else if ((ARM_AM::getShiftOpcForNode(LHS.getOpcode()) != ARM_AM::no_shift) &&
4250              (ARM_AM::getShiftOpcForNode(RHS.getOpcode()) == ARM_AM::no_shift)) {
4251     // In ARM and Thumb-2, the compare instructions can shift their second
4252     // operand.
4253     CC = ISD::getSetCCSwappedOperands(CC);
4254     std::swap(LHS, RHS);
4255   }
4256 
4257   // Thumb1 has very limited immediate modes, so turning an "and" into a
4258   // shift can save multiple instructions.
4259   //
4260   // If we have (x & C1), and C1 is an appropriate mask, we can transform it
4261   // into "((x << n) >> n)".  But that isn't necessarily profitable on its
4262   // own. If it's the operand to an unsigned comparison with an immediate,
4263   // we can eliminate one of the shifts: we transform
4264   // "((x << n) >> n) == C2" to "(x << n) == (C2 << n)".
4265   //
4266   // We avoid transforming cases which aren't profitable due to encoding
4267   // details:
4268   //
4269   // 1. C2 fits into the immediate field of a cmp, and the transformed version
4270   // would not; in that case, we're essentially trading one immediate load for
4271   // another.
4272   // 2. C1 is 255 or 65535, so we can use uxtb or uxth.
4273   // 3. C2 is zero; we have other code for this special case.
4274   //
4275   // FIXME: Figure out profitability for Thumb2; we usually can't save an
4276   // instruction, since the AND is always one instruction anyway, but we could
4277   // use narrow instructions in some cases.
4278   if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::AND &&
4279       LHS->hasOneUse() && isa<ConstantSDNode>(LHS.getOperand(1)) &&
4280       LHS.getValueType() == MVT::i32 && isa<ConstantSDNode>(RHS) &&
4281       !isSignedIntSetCC(CC)) {
4282     unsigned Mask = cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue();
4283     auto *RHSC = cast<ConstantSDNode>(RHS.getNode());
4284     uint64_t RHSV = RHSC->getZExtValue();
4285     if (isMask_32(Mask) && (RHSV & ~Mask) == 0 && Mask != 255 && Mask != 65535) {
4286       unsigned ShiftBits = countLeadingZeros(Mask);
4287       if (RHSV && (RHSV > 255 || (RHSV << ShiftBits) <= 255)) {
4288         SDValue ShiftAmt = DAG.getConstant(ShiftBits, dl, MVT::i32);
4289         LHS = DAG.getNode(ISD::SHL, dl, MVT::i32, LHS.getOperand(0), ShiftAmt);
4290         RHS = DAG.getConstant(RHSV << ShiftBits, dl, MVT::i32);
4291       }
4292     }
4293   }
4294 
4295   // The specific comparison "(x<<c) > 0x80000000U" can be optimized to a
4296   // single "lsls x, c+1".  The shift sets the "C" and "Z" flags the same
4297   // way a cmp would.
4298   // FIXME: Add support for ARM/Thumb2; this would need isel patterns, and
4299   // some tweaks to the heuristics for the previous and->shift transform.
4300   // FIXME: Optimize cases where the LHS isn't a shift.
4301   if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::SHL &&
4302       isa<ConstantSDNode>(RHS) &&
4303       cast<ConstantSDNode>(RHS)->getZExtValue() == 0x80000000U &&
4304       CC == ISD::SETUGT && isa<ConstantSDNode>(LHS.getOperand(1)) &&
4305       cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() < 31) {
4306     unsigned ShiftAmt =
4307       cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() + 1;
4308     SDValue Shift = DAG.getNode(ARMISD::LSLS, dl,
4309                                 DAG.getVTList(MVT::i32, MVT::i32),
4310                                 LHS.getOperand(0),
4311                                 DAG.getConstant(ShiftAmt, dl, MVT::i32));
4312     SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
4313                                      Shift.getValue(1), SDValue());
4314     ARMcc = DAG.getConstant(ARMCC::HI, dl, MVT::i32);
4315     return Chain.getValue(1);
4316   }
4317 
4318   ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4319 
4320   // If the RHS is a constant zero then the V (overflow) flag will never be
4321   // set. This can allow us to simplify GE to PL or LT to MI, which can be
4322   // simpler for other passes (like the peephole optimiser) to deal with.
4323   if (isNullConstant(RHS)) {
4324     switch (CondCode) {
4325       default: break;
4326       case ARMCC::GE:
4327         CondCode = ARMCC::PL;
4328         break;
4329       case ARMCC::LT:
4330         CondCode = ARMCC::MI;
4331         break;
4332     }
4333   }
4334 
4335   ARMISD::NodeType CompareType;
4336   switch (CondCode) {
4337   default:
4338     CompareType = ARMISD::CMP;
4339     break;
4340   case ARMCC::EQ:
4341   case ARMCC::NE:
4342     // Uses only Z Flag
4343     CompareType = ARMISD::CMPZ;
4344     break;
4345   }
4346   ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4347   return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
4348 }
4349 
4350 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
4351 SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS,
4352                                      SelectionDAG &DAG, const SDLoc &dl) const {
4353   assert(Subtarget->hasFP64() || RHS.getValueType() != MVT::f64);
4354   SDValue Cmp;
4355   if (!isFloatingPointZero(RHS))
4356     Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
4357   else
4358     Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
4359   return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
4360 }
4361 
4362 /// duplicateCmp - Glue values can have only one use, so this function
4363 /// duplicates a comparison node.
4364 SDValue
4365 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
4366   unsigned Opc = Cmp.getOpcode();
4367   SDLoc DL(Cmp);
4368   if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
4369     return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
4370 
4371   assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
4372   Cmp = Cmp.getOperand(0);
4373   Opc = Cmp.getOpcode();
4374   if (Opc == ARMISD::CMPFP)
4375     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
4376   else {
4377     assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
4378     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
4379   }
4380   return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
4381 }
4382 
4383 // This function returns three things: the arithmetic computation itself
4384 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc).  The
4385 // comparison and the condition code define the case in which the arithmetic
4386 // computation *does not* overflow.
4387 std::pair<SDValue, SDValue>
4388 ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
4389                                  SDValue &ARMcc) const {
4390   assert(Op.getValueType() == MVT::i32 &&  "Unsupported value type");
4391 
4392   SDValue Value, OverflowCmp;
4393   SDValue LHS = Op.getOperand(0);
4394   SDValue RHS = Op.getOperand(1);
4395   SDLoc dl(Op);
4396 
4397   // FIXME: We are currently always generating CMPs because we don't support
4398   // generating CMN through the backend. This is not as good as the natural
4399   // CMP case because it causes a register dependency and cannot be folded
4400   // later.
4401 
4402   switch (Op.getOpcode()) {
4403   default:
4404     llvm_unreachable("Unknown overflow instruction!");
4405   case ISD::SADDO:
4406     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
4407     Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
4408     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
4409     break;
4410   case ISD::UADDO:
4411     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
4412     // We use ADDC here to correspond to its use in LowerUnsignedALUO.
4413     // We do not use it in the USUBO case as Value may not be used.
4414     Value = DAG.getNode(ARMISD::ADDC, dl,
4415                         DAG.getVTList(Op.getValueType(), MVT::i32), LHS, RHS)
4416                 .getValue(0);
4417     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
4418     break;
4419   case ISD::SSUBO:
4420     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
4421     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
4422     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
4423     break;
4424   case ISD::USUBO:
4425     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
4426     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
4427     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
4428     break;
4429   case ISD::UMULO:
4430     // We generate a UMUL_LOHI and then check if the high word is 0.
4431     ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4432     Value = DAG.getNode(ISD::UMUL_LOHI, dl,
4433                         DAG.getVTList(Op.getValueType(), Op.getValueType()),
4434                         LHS, RHS);
4435     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4436                               DAG.getConstant(0, dl, MVT::i32));
4437     Value = Value.getValue(0); // We only want the low 32 bits for the result.
4438     break;
4439   case ISD::SMULO:
4440     // We generate a SMUL_LOHI and then check if all the bits of the high word
4441     // are the same as the sign bit of the low word.
4442     ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4443     Value = DAG.getNode(ISD::SMUL_LOHI, dl,
4444                         DAG.getVTList(Op.getValueType(), Op.getValueType()),
4445                         LHS, RHS);
4446     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4447                               DAG.getNode(ISD::SRA, dl, Op.getValueType(),
4448                                           Value.getValue(0),
4449                                           DAG.getConstant(31, dl, MVT::i32)));
4450     Value = Value.getValue(0); // We only want the low 32 bits for the result.
4451     break;
4452   } // switch (...)
4453 
4454   return std::make_pair(Value, OverflowCmp);
4455 }
4456 
4457 SDValue
4458 ARMTargetLowering::LowerSignedALUO(SDValue Op, SelectionDAG &DAG) const {
4459   // Let legalize expand this if it isn't a legal type yet.
4460   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4461     return SDValue();
4462 
4463   SDValue Value, OverflowCmp;
4464   SDValue ARMcc;
4465   std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
4466   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4467   SDLoc dl(Op);
4468   // We use 0 and 1 as false and true values.
4469   SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
4470   SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
4471   EVT VT = Op.getValueType();
4472 
4473   SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
4474                                  ARMcc, CCR, OverflowCmp);
4475 
4476   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
4477   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
4478 }
4479 
4480 static SDValue ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,
4481                                               SelectionDAG &DAG) {
4482   SDLoc DL(BoolCarry);
4483   EVT CarryVT = BoolCarry.getValueType();
4484 
4485   // This converts the boolean value carry into the carry flag by doing
4486   // ARMISD::SUBC Carry, 1
4487   SDValue Carry = DAG.getNode(ARMISD::SUBC, DL,
4488                               DAG.getVTList(CarryVT, MVT::i32),
4489                               BoolCarry, DAG.getConstant(1, DL, CarryVT));
4490   return Carry.getValue(1);
4491 }
4492 
4493 static SDValue ConvertCarryFlagToBooleanCarry(SDValue Flags, EVT VT,
4494                                               SelectionDAG &DAG) {
4495   SDLoc DL(Flags);
4496 
4497   // Now convert the carry flag into a boolean carry. We do this
4498   // using ARMISD:ADDE 0, 0, Carry
4499   return DAG.getNode(ARMISD::ADDE, DL, DAG.getVTList(VT, MVT::i32),
4500                      DAG.getConstant(0, DL, MVT::i32),
4501                      DAG.getConstant(0, DL, MVT::i32), Flags);
4502 }
4503 
4504 SDValue ARMTargetLowering::LowerUnsignedALUO(SDValue Op,
4505                                              SelectionDAG &DAG) const {
4506   // Let legalize expand this if it isn't a legal type yet.
4507   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4508     return SDValue();
4509 
4510   SDValue LHS = Op.getOperand(0);
4511   SDValue RHS = Op.getOperand(1);
4512   SDLoc dl(Op);
4513 
4514   EVT VT = Op.getValueType();
4515   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4516   SDValue Value;
4517   SDValue Overflow;
4518   switch (Op.getOpcode()) {
4519   default:
4520     llvm_unreachable("Unknown overflow instruction!");
4521   case ISD::UADDO:
4522     Value = DAG.getNode(ARMISD::ADDC, dl, VTs, LHS, RHS);
4523     // Convert the carry flag into a boolean value.
4524     Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
4525     break;
4526   case ISD::USUBO: {
4527     Value = DAG.getNode(ARMISD::SUBC, dl, VTs, LHS, RHS);
4528     // Convert the carry flag into a boolean value.
4529     Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
4530     // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
4531     // value. So compute 1 - C.
4532     Overflow = DAG.getNode(ISD::SUB, dl, MVT::i32,
4533                            DAG.getConstant(1, dl, MVT::i32), Overflow);
4534     break;
4535   }
4536   }
4537 
4538   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
4539 }
4540 
4541 static SDValue LowerSADDSUBSAT(SDValue Op, SelectionDAG &DAG,
4542                                const ARMSubtarget *Subtarget) {
4543   EVT VT = Op.getValueType();
4544   if (!Subtarget->hasDSP())
4545     return SDValue();
4546   if (!VT.isSimple())
4547     return SDValue();
4548 
4549   unsigned NewOpcode;
4550   bool IsAdd = Op->getOpcode() == ISD::SADDSAT;
4551   switch (VT.getSimpleVT().SimpleTy) {
4552   default:
4553     return SDValue();
4554   case MVT::i8:
4555     NewOpcode = IsAdd ? ARMISD::QADD8b : ARMISD::QSUB8b;
4556     break;
4557   case MVT::i16:
4558     NewOpcode = IsAdd ? ARMISD::QADD16b : ARMISD::QSUB16b;
4559     break;
4560   }
4561 
4562   SDLoc dl(Op);
4563   SDValue Add =
4564       DAG.getNode(NewOpcode, dl, MVT::i32,
4565                   DAG.getSExtOrTrunc(Op->getOperand(0), dl, MVT::i32),
4566                   DAG.getSExtOrTrunc(Op->getOperand(1), dl, MVT::i32));
4567   return DAG.getNode(ISD::TRUNCATE, dl, VT, Add);
4568 }
4569 
4570 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
4571   SDValue Cond = Op.getOperand(0);
4572   SDValue SelectTrue = Op.getOperand(1);
4573   SDValue SelectFalse = Op.getOperand(2);
4574   SDLoc dl(Op);
4575   unsigned Opc = Cond.getOpcode();
4576 
4577   if (Cond.getResNo() == 1 &&
4578       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4579        Opc == ISD::USUBO)) {
4580     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
4581       return SDValue();
4582 
4583     SDValue Value, OverflowCmp;
4584     SDValue ARMcc;
4585     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
4586     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4587     EVT VT = Op.getValueType();
4588 
4589     return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
4590                    OverflowCmp, DAG);
4591   }
4592 
4593   // Convert:
4594   //
4595   //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
4596   //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
4597   //
4598   if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
4599     const ConstantSDNode *CMOVTrue =
4600       dyn_cast<ConstantSDNode>(Cond.getOperand(0));
4601     const ConstantSDNode *CMOVFalse =
4602       dyn_cast<ConstantSDNode>(Cond.getOperand(1));
4603 
4604     if (CMOVTrue && CMOVFalse) {
4605       unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
4606       unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
4607 
4608       SDValue True;
4609       SDValue False;
4610       if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
4611         True = SelectTrue;
4612         False = SelectFalse;
4613       } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
4614         True = SelectFalse;
4615         False = SelectTrue;
4616       }
4617 
4618       if (True.getNode() && False.getNode()) {
4619         EVT VT = Op.getValueType();
4620         SDValue ARMcc = Cond.getOperand(2);
4621         SDValue CCR = Cond.getOperand(3);
4622         SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
4623         assert(True.getValueType() == VT);
4624         return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
4625       }
4626     }
4627   }
4628 
4629   // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
4630   // undefined bits before doing a full-word comparison with zero.
4631   Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
4632                      DAG.getConstant(1, dl, Cond.getValueType()));
4633 
4634   return DAG.getSelectCC(dl, Cond,
4635                          DAG.getConstant(0, dl, Cond.getValueType()),
4636                          SelectTrue, SelectFalse, ISD::SETNE);
4637 }
4638 
4639 static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
4640                                  bool &swpCmpOps, bool &swpVselOps) {
4641   // Start by selecting the GE condition code for opcodes that return true for
4642   // 'equality'
4643   if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
4644       CC == ISD::SETULE || CC == ISD::SETGE  || CC == ISD::SETLE)
4645     CondCode = ARMCC::GE;
4646 
4647   // and GT for opcodes that return false for 'equality'.
4648   else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
4649            CC == ISD::SETULT || CC == ISD::SETGT  || CC == ISD::SETLT)
4650     CondCode = ARMCC::GT;
4651 
4652   // Since we are constrained to GE/GT, if the opcode contains 'less', we need
4653   // to swap the compare operands.
4654   if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
4655       CC == ISD::SETULT || CC == ISD::SETLE  || CC == ISD::SETLT)
4656     swpCmpOps = true;
4657 
4658   // Both GT and GE are ordered comparisons, and return false for 'unordered'.
4659   // If we have an unordered opcode, we need to swap the operands to the VSEL
4660   // instruction (effectively negating the condition).
4661   //
4662   // This also has the effect of swapping which one of 'less' or 'greater'
4663   // returns true, so we also swap the compare operands. It also switches
4664   // whether we return true for 'equality', so we compensate by picking the
4665   // opposite condition code to our original choice.
4666   if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
4667       CC == ISD::SETUGT) {
4668     swpCmpOps = !swpCmpOps;
4669     swpVselOps = !swpVselOps;
4670     CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
4671   }
4672 
4673   // 'ordered' is 'anything but unordered', so use the VS condition code and
4674   // swap the VSEL operands.
4675   if (CC == ISD::SETO) {
4676     CondCode = ARMCC::VS;
4677     swpVselOps = true;
4678   }
4679 
4680   // 'unordered or not equal' is 'anything but equal', so use the EQ condition
4681   // code and swap the VSEL operands. Also do this if we don't care about the
4682   // unordered case.
4683   if (CC == ISD::SETUNE || CC == ISD::SETNE) {
4684     CondCode = ARMCC::EQ;
4685     swpVselOps = true;
4686   }
4687 }
4688 
4689 SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal,
4690                                    SDValue TrueVal, SDValue ARMcc, SDValue CCR,
4691                                    SDValue Cmp, SelectionDAG &DAG) const {
4692   if (!Subtarget->hasFP64() && VT == MVT::f64) {
4693     FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
4694                            DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
4695     TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
4696                           DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
4697 
4698     SDValue TrueLow = TrueVal.getValue(0);
4699     SDValue TrueHigh = TrueVal.getValue(1);
4700     SDValue FalseLow = FalseVal.getValue(0);
4701     SDValue FalseHigh = FalseVal.getValue(1);
4702 
4703     SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
4704                               ARMcc, CCR, Cmp);
4705     SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
4706                                ARMcc, CCR, duplicateCmp(Cmp, DAG));
4707 
4708     return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
4709   } else {
4710     return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
4711                        Cmp);
4712   }
4713 }
4714 
4715 static bool isGTorGE(ISD::CondCode CC) {
4716   return CC == ISD::SETGT || CC == ISD::SETGE;
4717 }
4718 
4719 static bool isLTorLE(ISD::CondCode CC) {
4720   return CC == ISD::SETLT || CC == ISD::SETLE;
4721 }
4722 
4723 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
4724 // All of these conditions (and their <= and >= counterparts) will do:
4725 //          x < k ? k : x
4726 //          x > k ? x : k
4727 //          k < x ? x : k
4728 //          k > x ? k : x
4729 static bool isLowerSaturate(const SDValue LHS, const SDValue RHS,
4730                             const SDValue TrueVal, const SDValue FalseVal,
4731                             const ISD::CondCode CC, const SDValue K) {
4732   return (isGTorGE(CC) &&
4733           ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) ||
4734          (isLTorLE(CC) &&
4735           ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal)));
4736 }
4737 
4738 // Similar to isLowerSaturate(), but checks for upper-saturating conditions.
4739 static bool isUpperSaturate(const SDValue LHS, const SDValue RHS,
4740                             const SDValue TrueVal, const SDValue FalseVal,
4741                             const ISD::CondCode CC, const SDValue K) {
4742   return (isGTorGE(CC) &&
4743           ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal))) ||
4744          (isLTorLE(CC) &&
4745           ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal)));
4746 }
4747 
4748 // Check if two chained conditionals could be converted into SSAT or USAT.
4749 //
4750 // SSAT can replace a set of two conditional selectors that bound a number to an
4751 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
4752 //
4753 //     x < -k ? -k : (x > k ? k : x)
4754 //     x < -k ? -k : (x < k ? x : k)
4755 //     x > -k ? (x > k ? k : x) : -k
4756 //     x < k ? (x < -k ? -k : x) : k
4757 //     etc.
4758 //
4759 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 is
4760 // a power of 2.
4761 //
4762 // It returns true if the conversion can be done, false otherwise.
4763 // Additionally, the variable is returned in parameter V, the constant in K and
4764 // usat is set to true if the conditional represents an unsigned saturation
4765 static bool isSaturatingConditional(const SDValue &Op, SDValue &V,
4766                                     uint64_t &K, bool &usat) {
4767   SDValue LHS1 = Op.getOperand(0);
4768   SDValue RHS1 = Op.getOperand(1);
4769   SDValue TrueVal1 = Op.getOperand(2);
4770   SDValue FalseVal1 = Op.getOperand(3);
4771   ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4772 
4773   const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1;
4774   if (Op2.getOpcode() != ISD::SELECT_CC)
4775     return false;
4776 
4777   SDValue LHS2 = Op2.getOperand(0);
4778   SDValue RHS2 = Op2.getOperand(1);
4779   SDValue TrueVal2 = Op2.getOperand(2);
4780   SDValue FalseVal2 = Op2.getOperand(3);
4781   ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get();
4782 
4783   // Find out which are the constants and which are the variables
4784   // in each conditional
4785   SDValue *K1 = isa<ConstantSDNode>(LHS1) ? &LHS1 : isa<ConstantSDNode>(RHS1)
4786                                                         ? &RHS1
4787                                                         : nullptr;
4788   SDValue *K2 = isa<ConstantSDNode>(LHS2) ? &LHS2 : isa<ConstantSDNode>(RHS2)
4789                                                         ? &RHS2
4790                                                         : nullptr;
4791   SDValue K2Tmp = isa<ConstantSDNode>(TrueVal2) ? TrueVal2 : FalseVal2;
4792   SDValue V1Tmp = (K1 && *K1 == LHS1) ? RHS1 : LHS1;
4793   SDValue V2Tmp = (K2 && *K2 == LHS2) ? RHS2 : LHS2;
4794   SDValue V2 = (K2Tmp == TrueVal2) ? FalseVal2 : TrueVal2;
4795 
4796   // We must detect cases where the original operations worked with 16- or
4797   // 8-bit values. In such case, V2Tmp != V2 because the comparison operations
4798   // must work with sign-extended values but the select operations return
4799   // the original non-extended value.
4800   SDValue V2TmpReg = V2Tmp;
4801   if (V2Tmp->getOpcode() == ISD::SIGN_EXTEND_INREG)
4802     V2TmpReg = V2Tmp->getOperand(0);
4803 
4804   // Check that the registers and the constants have the correct values
4805   // in both conditionals
4806   if (!K1 || !K2 || *K1 == Op2 || *K2 != K2Tmp || V1Tmp != V2Tmp ||
4807       V2TmpReg != V2)
4808     return false;
4809 
4810   // Figure out which conditional is saturating the lower/upper bound.
4811   const SDValue *LowerCheckOp =
4812       isLowerSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
4813           ? &Op
4814           : isLowerSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2)
4815                 ? &Op2
4816                 : nullptr;
4817   const SDValue *UpperCheckOp =
4818       isUpperSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
4819           ? &Op
4820           : isUpperSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2)
4821                 ? &Op2
4822                 : nullptr;
4823 
4824   if (!UpperCheckOp || !LowerCheckOp || LowerCheckOp == UpperCheckOp)
4825     return false;
4826 
4827   // Check that the constant in the lower-bound check is
4828   // the opposite of the constant in the upper-bound check
4829   // in 1's complement.
4830   int64_t Val1 = cast<ConstantSDNode>(*K1)->getSExtValue();
4831   int64_t Val2 = cast<ConstantSDNode>(*K2)->getSExtValue();
4832   int64_t PosVal = std::max(Val1, Val2);
4833   int64_t NegVal = std::min(Val1, Val2);
4834 
4835   if (((Val1 > Val2 && UpperCheckOp == &Op) ||
4836        (Val1 < Val2 && UpperCheckOp == &Op2)) &&
4837       isPowerOf2_64(PosVal + 1)) {
4838 
4839     // Handle the difference between USAT (unsigned) and SSAT (signed) saturation
4840     if (Val1 == ~Val2)
4841       usat = false;
4842     else if (NegVal == 0)
4843       usat = true;
4844     else
4845       return false;
4846 
4847     V = V2;
4848     K = (uint64_t)PosVal; // At this point, PosVal is guaranteed to be positive
4849 
4850     return true;
4851   }
4852 
4853   return false;
4854 }
4855 
4856 // Check if a condition of the type x < k ? k : x can be converted into a
4857 // bit operation instead of conditional moves.
4858 // Currently this is allowed given:
4859 // - The conditions and values match up
4860 // - k is 0 or -1 (all ones)
4861 // This function will not check the last condition, thats up to the caller
4862 // It returns true if the transformation can be made, and in such case
4863 // returns x in V, and k in SatK.
4864 static bool isLowerSaturatingConditional(const SDValue &Op, SDValue &V,
4865                                          SDValue &SatK)
4866 {
4867   SDValue LHS = Op.getOperand(0);
4868   SDValue RHS = Op.getOperand(1);
4869   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4870   SDValue TrueVal = Op.getOperand(2);
4871   SDValue FalseVal = Op.getOperand(3);
4872 
4873   SDValue *K = isa<ConstantSDNode>(LHS) ? &LHS : isa<ConstantSDNode>(RHS)
4874                                                ? &RHS
4875                                                : nullptr;
4876 
4877   // No constant operation in comparison, early out
4878   if (!K)
4879     return false;
4880 
4881   SDValue KTmp = isa<ConstantSDNode>(TrueVal) ? TrueVal : FalseVal;
4882   V = (KTmp == TrueVal) ? FalseVal : TrueVal;
4883   SDValue VTmp = (K && *K == LHS) ? RHS : LHS;
4884 
4885   // If the constant on left and right side, or variable on left and right,
4886   // does not match, early out
4887   if (*K != KTmp || V != VTmp)
4888     return false;
4889 
4890   if (isLowerSaturate(LHS, RHS, TrueVal, FalseVal, CC, *K)) {
4891     SatK = *K;
4892     return true;
4893   }
4894 
4895   return false;
4896 }
4897 
4898 bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT) const {
4899   if (VT == MVT::f32)
4900     return !Subtarget->hasVFP2Base();
4901   if (VT == MVT::f64)
4902     return !Subtarget->hasFP64();
4903   if (VT == MVT::f16)
4904     return !Subtarget->hasFullFP16();
4905   return false;
4906 }
4907 
4908 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
4909   EVT VT = Op.getValueType();
4910   SDLoc dl(Op);
4911 
4912   // Try to convert two saturating conditional selects into a single SSAT
4913   SDValue SatValue;
4914   uint64_t SatConstant;
4915   bool SatUSat;
4916   if (((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->isThumb2()) &&
4917       isSaturatingConditional(Op, SatValue, SatConstant, SatUSat)) {
4918     if (SatUSat)
4919       return DAG.getNode(ARMISD::USAT, dl, VT, SatValue,
4920                          DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
4921     else
4922       return DAG.getNode(ARMISD::SSAT, dl, VT, SatValue,
4923                          DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
4924   }
4925 
4926   // Try to convert expressions of the form x < k ? k : x (and similar forms)
4927   // into more efficient bit operations, which is possible when k is 0 or -1
4928   // On ARM and Thumb-2 which have flexible operand 2 this will result in
4929   // single instructions. On Thumb the shift and the bit operation will be two
4930   // instructions.
4931   // Only allow this transformation on full-width (32-bit) operations
4932   SDValue LowerSatConstant;
4933   if (VT == MVT::i32 &&
4934       isLowerSaturatingConditional(Op, SatValue, LowerSatConstant)) {
4935     SDValue ShiftV = DAG.getNode(ISD::SRA, dl, VT, SatValue,
4936                                  DAG.getConstant(31, dl, VT));
4937     if (isNullConstant(LowerSatConstant)) {
4938       SDValue NotShiftV = DAG.getNode(ISD::XOR, dl, VT, ShiftV,
4939                                       DAG.getAllOnesConstant(dl, VT));
4940       return DAG.getNode(ISD::AND, dl, VT, SatValue, NotShiftV);
4941     } else if (isAllOnesConstant(LowerSatConstant))
4942       return DAG.getNode(ISD::OR, dl, VT, SatValue, ShiftV);
4943   }
4944 
4945   SDValue LHS = Op.getOperand(0);
4946   SDValue RHS = Op.getOperand(1);
4947   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4948   SDValue TrueVal = Op.getOperand(2);
4949   SDValue FalseVal = Op.getOperand(3);
4950   ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FalseVal);
4951   ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TrueVal);
4952 
4953   if (Subtarget->hasV8_1MMainlineOps() && CFVal && CTVal &&
4954       LHS.getValueType() == MVT::i32 && RHS.getValueType() == MVT::i32) {
4955     unsigned TVal = CTVal->getZExtValue();
4956     unsigned FVal = CFVal->getZExtValue();
4957     unsigned Opcode = 0;
4958 
4959     if (TVal == ~FVal) {
4960       Opcode = ARMISD::CSINV;
4961     } else if (TVal == ~FVal + 1) {
4962       Opcode = ARMISD::CSNEG;
4963     } else if (TVal + 1 == FVal) {
4964       Opcode = ARMISD::CSINC;
4965     } else if (TVal == FVal + 1) {
4966       Opcode = ARMISD::CSINC;
4967       std::swap(TrueVal, FalseVal);
4968       std::swap(TVal, FVal);
4969       CC = ISD::getSetCCInverse(CC, LHS.getValueType());
4970     }
4971 
4972     if (Opcode) {
4973       // If one of the constants is cheaper than another, materialise the
4974       // cheaper one and let the csel generate the other.
4975       if (Opcode != ARMISD::CSINC &&
4976           HasLowerConstantMaterializationCost(FVal, TVal, Subtarget)) {
4977         std::swap(TrueVal, FalseVal);
4978         std::swap(TVal, FVal);
4979         CC = ISD::getSetCCInverse(CC, LHS.getValueType());
4980       }
4981 
4982       // Attempt to use ZR checking TVal is 0, possibly inverting the condition
4983       // to get there. CSINC not is invertable like the other two (~(~a) == a,
4984       // -(-a) == a, but (a+1)+1 != a).
4985       if (FVal == 0 && Opcode != ARMISD::CSINC) {
4986         std::swap(TrueVal, FalseVal);
4987         std::swap(TVal, FVal);
4988         CC = ISD::getSetCCInverse(CC, LHS.getValueType());
4989       }
4990       if (TVal == 0)
4991         TrueVal = DAG.getRegister(ARM::ZR, MVT::i32);
4992 
4993       // Drops F's value because we can get it by inverting/negating TVal.
4994       FalseVal = TrueVal;
4995 
4996       SDValue ARMcc;
4997       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4998       EVT VT = TrueVal.getValueType();
4999       return DAG.getNode(Opcode, dl, VT, TrueVal, FalseVal, ARMcc, Cmp);
5000     }
5001   }
5002 
5003   if (isUnsupportedFloatingType(LHS.getValueType())) {
5004     DAG.getTargetLoweringInfo().softenSetCCOperands(
5005         DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS);
5006 
5007     // If softenSetCCOperands only returned one value, we should compare it to
5008     // zero.
5009     if (!RHS.getNode()) {
5010       RHS = DAG.getConstant(0, dl, LHS.getValueType());
5011       CC = ISD::SETNE;
5012     }
5013   }
5014 
5015   if (LHS.getValueType() == MVT::i32) {
5016     // Try to generate VSEL on ARMv8.
5017     // The VSEL instruction can't use all the usual ARM condition
5018     // codes: it only has two bits to select the condition code, so it's
5019     // constrained to use only GE, GT, VS and EQ.
5020     //
5021     // To implement all the various ISD::SETXXX opcodes, we sometimes need to
5022     // swap the operands of the previous compare instruction (effectively
5023     // inverting the compare condition, swapping 'less' and 'greater') and
5024     // sometimes need to swap the operands to the VSEL (which inverts the
5025     // condition in the sense of firing whenever the previous condition didn't)
5026     if (Subtarget->hasFPARMv8Base() && (TrueVal.getValueType() == MVT::f16 ||
5027                                         TrueVal.getValueType() == MVT::f32 ||
5028                                         TrueVal.getValueType() == MVT::f64)) {
5029       ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
5030       if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
5031           CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
5032         CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5033         std::swap(TrueVal, FalseVal);
5034       }
5035     }
5036 
5037     SDValue ARMcc;
5038     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5039     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5040     // Choose GE over PL, which vsel does now support
5041     if (cast<ConstantSDNode>(ARMcc)->getZExtValue() == ARMCC::PL)
5042       ARMcc = DAG.getConstant(ARMCC::GE, dl, MVT::i32);
5043     return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
5044   }
5045 
5046   ARMCC::CondCodes CondCode, CondCode2;
5047   FPCCToARMCC(CC, CondCode, CondCode2);
5048 
5049   // Normalize the fp compare. If RHS is zero we prefer to keep it there so we
5050   // match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we
5051   // must use VSEL (limited condition codes), due to not having conditional f16
5052   // moves.
5053   if (Subtarget->hasFPARMv8Base() &&
5054       !(isFloatingPointZero(RHS) && TrueVal.getValueType() != MVT::f16) &&
5055       (TrueVal.getValueType() == MVT::f16 ||
5056        TrueVal.getValueType() == MVT::f32 ||
5057        TrueVal.getValueType() == MVT::f64)) {
5058     bool swpCmpOps = false;
5059     bool swpVselOps = false;
5060     checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
5061 
5062     if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
5063         CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
5064       if (swpCmpOps)
5065         std::swap(LHS, RHS);
5066       if (swpVselOps)
5067         std::swap(TrueVal, FalseVal);
5068     }
5069   }
5070 
5071   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5072   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
5073   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5074   SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
5075   if (CondCode2 != ARMCC::AL) {
5076     SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
5077     // FIXME: Needs another CMP because flag can have but one use.
5078     SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
5079     Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
5080   }
5081   return Result;
5082 }
5083 
5084 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
5085 /// to morph to an integer compare sequence.
5086 static bool canChangeToInt(SDValue Op, bool &SeenZero,
5087                            const ARMSubtarget *Subtarget) {
5088   SDNode *N = Op.getNode();
5089   if (!N->hasOneUse())
5090     // Otherwise it requires moving the value from fp to integer registers.
5091     return false;
5092   if (!N->getNumValues())
5093     return false;
5094   EVT VT = Op.getValueType();
5095   if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
5096     // f32 case is generally profitable. f64 case only makes sense when vcmpe +
5097     // vmrs are very slow, e.g. cortex-a8.
5098     return false;
5099 
5100   if (isFloatingPointZero(Op)) {
5101     SeenZero = true;
5102     return true;
5103   }
5104   return ISD::isNormalLoad(N);
5105 }
5106 
5107 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
5108   if (isFloatingPointZero(Op))
5109     return DAG.getConstant(0, SDLoc(Op), MVT::i32);
5110 
5111   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
5112     return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(),
5113                        Ld->getPointerInfo(), Ld->getAlignment(),
5114                        Ld->getMemOperand()->getFlags());
5115 
5116   llvm_unreachable("Unknown VFP cmp argument!");
5117 }
5118 
5119 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
5120                            SDValue &RetVal1, SDValue &RetVal2) {
5121   SDLoc dl(Op);
5122 
5123   if (isFloatingPointZero(Op)) {
5124     RetVal1 = DAG.getConstant(0, dl, MVT::i32);
5125     RetVal2 = DAG.getConstant(0, dl, MVT::i32);
5126     return;
5127   }
5128 
5129   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
5130     SDValue Ptr = Ld->getBasePtr();
5131     RetVal1 =
5132         DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
5133                     Ld->getAlignment(), Ld->getMemOperand()->getFlags());
5134 
5135     EVT PtrType = Ptr.getValueType();
5136     unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
5137     SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
5138                                  PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
5139     RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr,
5140                           Ld->getPointerInfo().getWithOffset(4), NewAlign,
5141                           Ld->getMemOperand()->getFlags());
5142     return;
5143   }
5144 
5145   llvm_unreachable("Unknown VFP cmp argument!");
5146 }
5147 
5148 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
5149 /// f32 and even f64 comparisons to integer ones.
5150 SDValue
5151 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
5152   SDValue Chain = Op.getOperand(0);
5153   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
5154   SDValue LHS = Op.getOperand(2);
5155   SDValue RHS = Op.getOperand(3);
5156   SDValue Dest = Op.getOperand(4);
5157   SDLoc dl(Op);
5158 
5159   bool LHSSeenZero = false;
5160   bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
5161   bool RHSSeenZero = false;
5162   bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
5163   if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
5164     // If unsafe fp math optimization is enabled and there are no other uses of
5165     // the CMP operands, and the condition code is EQ or NE, we can optimize it
5166     // to an integer comparison.
5167     if (CC == ISD::SETOEQ)
5168       CC = ISD::SETEQ;
5169     else if (CC == ISD::SETUNE)
5170       CC = ISD::SETNE;
5171 
5172     SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
5173     SDValue ARMcc;
5174     if (LHS.getValueType() == MVT::f32) {
5175       LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
5176                         bitcastf32Toi32(LHS, DAG), Mask);
5177       RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
5178                         bitcastf32Toi32(RHS, DAG), Mask);
5179       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5180       SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5181       return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
5182                          Chain, Dest, ARMcc, CCR, Cmp);
5183     }
5184 
5185     SDValue LHS1, LHS2;
5186     SDValue RHS1, RHS2;
5187     expandf64Toi32(LHS, DAG, LHS1, LHS2);
5188     expandf64Toi32(RHS, DAG, RHS1, RHS2);
5189     LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
5190     RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
5191     ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
5192     ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5193     SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
5194     SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
5195     return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
5196   }
5197 
5198   return SDValue();
5199 }
5200 
5201 SDValue ARMTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
5202   SDValue Chain = Op.getOperand(0);
5203   SDValue Cond = Op.getOperand(1);
5204   SDValue Dest = Op.getOperand(2);
5205   SDLoc dl(Op);
5206 
5207   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5208   // instruction.
5209   unsigned Opc = Cond.getOpcode();
5210   bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
5211                       !Subtarget->isThumb1Only();
5212   if (Cond.getResNo() == 1 &&
5213       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
5214        Opc == ISD::USUBO || OptimizeMul)) {
5215     // Only lower legal XALUO ops.
5216     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
5217       return SDValue();
5218 
5219     // The actual operation with overflow check.
5220     SDValue Value, OverflowCmp;
5221     SDValue ARMcc;
5222     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
5223 
5224     // Reverse the condition code.
5225     ARMCC::CondCodes CondCode =
5226         (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
5227     CondCode = ARMCC::getOppositeCondition(CondCode);
5228     ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
5229     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5230 
5231     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
5232                        OverflowCmp);
5233   }
5234 
5235   return SDValue();
5236 }
5237 
5238 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
5239   SDValue Chain = Op.getOperand(0);
5240   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
5241   SDValue LHS = Op.getOperand(2);
5242   SDValue RHS = Op.getOperand(3);
5243   SDValue Dest = Op.getOperand(4);
5244   SDLoc dl(Op);
5245 
5246   if (isUnsupportedFloatingType(LHS.getValueType())) {
5247     DAG.getTargetLoweringInfo().softenSetCCOperands(
5248         DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS);
5249 
5250     // If softenSetCCOperands only returned one value, we should compare it to
5251     // zero.
5252     if (!RHS.getNode()) {
5253       RHS = DAG.getConstant(0, dl, LHS.getValueType());
5254       CC = ISD::SETNE;
5255     }
5256   }
5257 
5258   // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5259   // instruction.
5260   unsigned Opc = LHS.getOpcode();
5261   bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
5262                       !Subtarget->isThumb1Only();
5263   if (LHS.getResNo() == 1 && (isOneConstant(RHS) || isNullConstant(RHS)) &&
5264       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
5265        Opc == ISD::USUBO || OptimizeMul) &&
5266       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5267     // Only lower legal XALUO ops.
5268     if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
5269       return SDValue();
5270 
5271     // The actual operation with overflow check.
5272     SDValue Value, OverflowCmp;
5273     SDValue ARMcc;
5274     std::tie(Value, OverflowCmp) = getARMXALUOOp(LHS.getValue(0), DAG, ARMcc);
5275 
5276     if ((CC == ISD::SETNE) != isOneConstant(RHS)) {
5277       // Reverse the condition code.
5278       ARMCC::CondCodes CondCode =
5279           (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
5280       CondCode = ARMCC::getOppositeCondition(CondCode);
5281       ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
5282     }
5283     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5284 
5285     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
5286                        OverflowCmp);
5287   }
5288 
5289   if (LHS.getValueType() == MVT::i32) {
5290     SDValue ARMcc;
5291     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5292     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5293     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
5294                        Chain, Dest, ARMcc, CCR, Cmp);
5295   }
5296 
5297   if (getTargetMachine().Options.UnsafeFPMath &&
5298       (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
5299        CC == ISD::SETNE || CC == ISD::SETUNE)) {
5300     if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
5301       return Result;
5302   }
5303 
5304   ARMCC::CondCodes CondCode, CondCode2;
5305   FPCCToARMCC(CC, CondCode, CondCode2);
5306 
5307   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5308   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
5309   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5310   SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
5311   SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
5312   SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
5313   if (CondCode2 != ARMCC::AL) {
5314     ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
5315     SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
5316     Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
5317   }
5318   return Res;
5319 }
5320 
5321 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
5322   SDValue Chain = Op.getOperand(0);
5323   SDValue Table = Op.getOperand(1);
5324   SDValue Index = Op.getOperand(2);
5325   SDLoc dl(Op);
5326 
5327   EVT PTy = getPointerTy(DAG.getDataLayout());
5328   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
5329   SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
5330   Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
5331   Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
5332   SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Index);
5333   if (Subtarget->isThumb2() || (Subtarget->hasV8MBaselineOps() && Subtarget->isThumb())) {
5334     // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
5335     // which does another jump to the destination. This also makes it easier
5336     // to translate it to TBB / TBH later (Thumb2 only).
5337     // FIXME: This might not work if the function is extremely large.
5338     return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
5339                        Addr, Op.getOperand(2), JTI);
5340   }
5341   if (isPositionIndependent() || Subtarget->isROPI()) {
5342     Addr =
5343         DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
5344                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
5345     Chain = Addr.getValue(1);
5346     Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Addr);
5347     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
5348   } else {
5349     Addr =
5350         DAG.getLoad(PTy, dl, Chain, Addr,
5351                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
5352     Chain = Addr.getValue(1);
5353     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
5354   }
5355 }
5356 
5357 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
5358   EVT VT = Op.getValueType();
5359   SDLoc dl(Op);
5360 
5361   if (Op.getValueType().getVectorElementType() == MVT::i32) {
5362     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
5363       return Op;
5364     return DAG.UnrollVectorOp(Op.getNode());
5365   }
5366 
5367   const bool HasFullFP16 =
5368     static_cast<const ARMSubtarget&>(DAG.getSubtarget()).hasFullFP16();
5369 
5370   EVT NewTy;
5371   const EVT OpTy = Op.getOperand(0).getValueType();
5372   if (OpTy == MVT::v4f32)
5373     NewTy = MVT::v4i32;
5374   else if (OpTy == MVT::v4f16 && HasFullFP16)
5375     NewTy = MVT::v4i16;
5376   else if (OpTy == MVT::v8f16 && HasFullFP16)
5377     NewTy = MVT::v8i16;
5378   else
5379     llvm_unreachable("Invalid type for custom lowering!");
5380 
5381   if (VT != MVT::v4i16 && VT != MVT::v8i16)
5382     return DAG.UnrollVectorOp(Op.getNode());
5383 
5384   Op = DAG.getNode(Op.getOpcode(), dl, NewTy, Op.getOperand(0));
5385   return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
5386 }
5387 
5388 SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
5389   EVT VT = Op.getValueType();
5390   if (VT.isVector())
5391     return LowerVectorFP_TO_INT(Op, DAG);
5392 
5393   bool IsStrict = Op->isStrictFPOpcode();
5394   SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
5395 
5396   if (isUnsupportedFloatingType(SrcVal.getValueType())) {
5397     RTLIB::Libcall LC;
5398     if (Op.getOpcode() == ISD::FP_TO_SINT ||
5399         Op.getOpcode() == ISD::STRICT_FP_TO_SINT)
5400       LC = RTLIB::getFPTOSINT(SrcVal.getValueType(),
5401                               Op.getValueType());
5402     else
5403       LC = RTLIB::getFPTOUINT(SrcVal.getValueType(),
5404                               Op.getValueType());
5405     SDLoc Loc(Op);
5406     MakeLibCallOptions CallOptions;
5407     SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
5408     SDValue Result;
5409     std::tie(Result, Chain) = makeLibCall(DAG, LC, Op.getValueType(), SrcVal,
5410                                           CallOptions, Loc, Chain);
5411     return IsStrict ? DAG.getMergeValues({Result, Chain}, Loc) : Result;
5412   }
5413 
5414   // FIXME: Remove this when we have strict fp instruction selection patterns
5415   if (IsStrict) {
5416     DAG.mutateStrictFPToFP(Op.getNode());
5417   }
5418 
5419   return Op;
5420 }
5421 
5422 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5423   EVT VT = Op.getValueType();
5424   SDLoc dl(Op);
5425 
5426   if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
5427     if (VT.getVectorElementType() == MVT::f32)
5428       return Op;
5429     return DAG.UnrollVectorOp(Op.getNode());
5430   }
5431 
5432   assert((Op.getOperand(0).getValueType() == MVT::v4i16 ||
5433           Op.getOperand(0).getValueType() == MVT::v8i16) &&
5434          "Invalid type for custom lowering!");
5435 
5436   const bool HasFullFP16 =
5437     static_cast<const ARMSubtarget&>(DAG.getSubtarget()).hasFullFP16();
5438 
5439   EVT DestVecType;
5440   if (VT == MVT::v4f32)
5441     DestVecType = MVT::v4i32;
5442   else if (VT == MVT::v4f16 && HasFullFP16)
5443     DestVecType = MVT::v4i16;
5444   else if (VT == MVT::v8f16 && HasFullFP16)
5445     DestVecType = MVT::v8i16;
5446   else
5447     return DAG.UnrollVectorOp(Op.getNode());
5448 
5449   unsigned CastOpc;
5450   unsigned Opc;
5451   switch (Op.getOpcode()) {
5452   default: llvm_unreachable("Invalid opcode!");
5453   case ISD::SINT_TO_FP:
5454     CastOpc = ISD::SIGN_EXTEND;
5455     Opc = ISD::SINT_TO_FP;
5456     break;
5457   case ISD::UINT_TO_FP:
5458     CastOpc = ISD::ZERO_EXTEND;
5459     Opc = ISD::UINT_TO_FP;
5460     break;
5461   }
5462 
5463   Op = DAG.getNode(CastOpc, dl, DestVecType, Op.getOperand(0));
5464   return DAG.getNode(Opc, dl, VT, Op);
5465 }
5466 
5467 SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
5468   EVT VT = Op.getValueType();
5469   if (VT.isVector())
5470     return LowerVectorINT_TO_FP(Op, DAG);
5471   if (isUnsupportedFloatingType(VT)) {
5472     RTLIB::Libcall LC;
5473     if (Op.getOpcode() == ISD::SINT_TO_FP)
5474       LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
5475                               Op.getValueType());
5476     else
5477       LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
5478                               Op.getValueType());
5479     MakeLibCallOptions CallOptions;
5480     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
5481                        CallOptions, SDLoc(Op)).first;
5482   }
5483 
5484   return Op;
5485 }
5486 
5487 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
5488   // Implement fcopysign with a fabs and a conditional fneg.
5489   SDValue Tmp0 = Op.getOperand(0);
5490   SDValue Tmp1 = Op.getOperand(1);
5491   SDLoc dl(Op);
5492   EVT VT = Op.getValueType();
5493   EVT SrcVT = Tmp1.getValueType();
5494   bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
5495     Tmp0.getOpcode() == ARMISD::VMOVDRR;
5496   bool UseNEON = !InGPR && Subtarget->hasNEON();
5497 
5498   if (UseNEON) {
5499     // Use VBSL to copy the sign bit.
5500     unsigned EncodedVal = ARM_AM::createVMOVModImm(0x6, 0x80);
5501     SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
5502                                DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
5503     EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
5504     if (VT == MVT::f64)
5505       Mask = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT,
5506                          DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
5507                          DAG.getConstant(32, dl, MVT::i32));
5508     else /*if (VT == MVT::f32)*/
5509       Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
5510     if (SrcVT == MVT::f32) {
5511       Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
5512       if (VT == MVT::f64)
5513         Tmp1 = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT,
5514                            DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
5515                            DAG.getConstant(32, dl, MVT::i32));
5516     } else if (VT == MVT::f32)
5517       Tmp1 = DAG.getNode(ARMISD::VSHRuIMM, dl, MVT::v1i64,
5518                          DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
5519                          DAG.getConstant(32, dl, MVT::i32));
5520     Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
5521     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
5522 
5523     SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff),
5524                                             dl, MVT::i32);
5525     AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
5526     SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
5527                                   DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
5528 
5529     SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
5530                               DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
5531                               DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
5532     if (VT == MVT::f32) {
5533       Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
5534       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
5535                         DAG.getConstant(0, dl, MVT::i32));
5536     } else {
5537       Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
5538     }
5539 
5540     return Res;
5541   }
5542 
5543   // Bitcast operand 1 to i32.
5544   if (SrcVT == MVT::f64)
5545     Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
5546                        Tmp1).getValue(1);
5547   Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
5548 
5549   // Or in the signbit with integer operations.
5550   SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
5551   SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
5552   Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
5553   if (VT == MVT::f32) {
5554     Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
5555                        DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
5556     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5557                        DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
5558   }
5559 
5560   // f64: Or the high part with signbit and then combine two parts.
5561   Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
5562                      Tmp0);
5563   SDValue Lo = Tmp0.getValue(0);
5564   SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
5565   Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
5566   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
5567 }
5568 
5569 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
5570   MachineFunction &MF = DAG.getMachineFunction();
5571   MachineFrameInfo &MFI = MF.getFrameInfo();
5572   MFI.setReturnAddressIsTaken(true);
5573 
5574   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
5575     return SDValue();
5576 
5577   EVT VT = Op.getValueType();
5578   SDLoc dl(Op);
5579   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5580   if (Depth) {
5581     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5582     SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
5583     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
5584                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
5585                        MachinePointerInfo());
5586   }
5587 
5588   // Return LR, which contains the return address. Mark it an implicit live-in.
5589   unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
5590   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
5591 }
5592 
5593 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
5594   const ARMBaseRegisterInfo &ARI =
5595     *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
5596   MachineFunction &MF = DAG.getMachineFunction();
5597   MachineFrameInfo &MFI = MF.getFrameInfo();
5598   MFI.setFrameAddressIsTaken(true);
5599 
5600   EVT VT = Op.getValueType();
5601   SDLoc dl(Op);  // FIXME probably not meaningful
5602   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5603   Register FrameReg = ARI.getFrameRegister(MF);
5604   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
5605   while (Depth--)
5606     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
5607                             MachinePointerInfo());
5608   return FrameAddr;
5609 }
5610 
5611 // FIXME? Maybe this could be a TableGen attribute on some registers and
5612 // this table could be generated automatically from RegInfo.
5613 Register ARMTargetLowering::getRegisterByName(const char* RegName, LLT VT,
5614                                               const MachineFunction &MF) const {
5615   Register Reg = StringSwitch<unsigned>(RegName)
5616                        .Case("sp", ARM::SP)
5617                        .Default(0);
5618   if (Reg)
5619     return Reg;
5620   report_fatal_error(Twine("Invalid register name \""
5621                               + StringRef(RegName)  + "\"."));
5622 }
5623 
5624 // Result is 64 bit value so split into two 32 bit values and return as a
5625 // pair of values.
5626 static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
5627                                 SelectionDAG &DAG) {
5628   SDLoc DL(N);
5629 
5630   // This function is only supposed to be called for i64 type destination.
5631   assert(N->getValueType(0) == MVT::i64
5632           && "ExpandREAD_REGISTER called for non-i64 type result.");
5633 
5634   SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
5635                              DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
5636                              N->getOperand(0),
5637                              N->getOperand(1));
5638 
5639   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
5640                     Read.getValue(1)));
5641   Results.push_back(Read.getOperand(0));
5642 }
5643 
5644 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
5645 /// When \p DstVT, the destination type of \p BC, is on the vector
5646 /// register bank and the source of bitcast, \p Op, operates on the same bank,
5647 /// it might be possible to combine them, such that everything stays on the
5648 /// vector register bank.
5649 /// \p return The node that would replace \p BT, if the combine
5650 /// is possible.
5651 static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
5652                                                 SelectionDAG &DAG) {
5653   SDValue Op = BC->getOperand(0);
5654   EVT DstVT = BC->getValueType(0);
5655 
5656   // The only vector instruction that can produce a scalar (remember,
5657   // since the bitcast was about to be turned into VMOVDRR, the source
5658   // type is i64) from a vector is EXTRACT_VECTOR_ELT.
5659   // Moreover, we can do this combine only if there is one use.
5660   // Finally, if the destination type is not a vector, there is not
5661   // much point on forcing everything on the vector bank.
5662   if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5663       !Op.hasOneUse())
5664     return SDValue();
5665 
5666   // If the index is not constant, we will introduce an additional
5667   // multiply that will stick.
5668   // Give up in that case.
5669   ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5670   if (!Index)
5671     return SDValue();
5672   unsigned DstNumElt = DstVT.getVectorNumElements();
5673 
5674   // Compute the new index.
5675   const APInt &APIntIndex = Index->getAPIntValue();
5676   APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
5677   NewIndex *= APIntIndex;
5678   // Check if the new constant index fits into i32.
5679   if (NewIndex.getBitWidth() > 32)
5680     return SDValue();
5681 
5682   // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
5683   // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
5684   SDLoc dl(Op);
5685   SDValue ExtractSrc = Op.getOperand(0);
5686   EVT VecVT = EVT::getVectorVT(
5687       *DAG.getContext(), DstVT.getScalarType(),
5688       ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
5689   SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
5690   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
5691                      DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
5692 }
5693 
5694 /// ExpandBITCAST - If the target supports VFP, this function is called to
5695 /// expand a bit convert where either the source or destination type is i64 to
5696 /// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
5697 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
5698 /// vectors), since the legalizer won't know what to do with that.
5699 static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG,
5700                              const ARMSubtarget *Subtarget) {
5701   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5702   SDLoc dl(N);
5703   SDValue Op = N->getOperand(0);
5704 
5705   // This function is only supposed to be called for i64 types, either as the
5706   // source or destination of the bit convert.
5707   EVT SrcVT = Op.getValueType();
5708   EVT DstVT = N->getValueType(0);
5709   const bool HasFullFP16 = Subtarget->hasFullFP16();
5710 
5711   if (SrcVT == MVT::f32 && DstVT == MVT::i32) {
5712      // FullFP16: half values are passed in S-registers, and we don't
5713      // need any of the bitcast and moves:
5714      //
5715      // t2: f32,ch = CopyFromReg t0, Register:f32 %0
5716      //   t5: i32 = bitcast t2
5717      // t18: f16 = ARMISD::VMOVhr t5
5718      if (Op.getOpcode() != ISD::CopyFromReg ||
5719          Op.getValueType() != MVT::f32)
5720        return SDValue();
5721 
5722      auto Move = N->use_begin();
5723      if (Move->getOpcode() != ARMISD::VMOVhr)
5724        return SDValue();
5725 
5726      SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
5727      SDValue Copy = DAG.getNode(ISD::CopyFromReg, SDLoc(Op), MVT::f16, Ops);
5728      DAG.ReplaceAllUsesWith(*Move, &Copy);
5729      return Copy;
5730   }
5731 
5732   if (SrcVT == MVT::i16 && DstVT == MVT::f16) {
5733     if (!HasFullFP16)
5734       return SDValue();
5735     // SoftFP: read half-precision arguments:
5736     //
5737     // t2: i32,ch = ...
5738     //        t7: i16 = truncate t2 <~~~~ Op
5739     //      t8: f16 = bitcast t7    <~~~~ N
5740     //
5741     if (Op.getOperand(0).getValueType() == MVT::i32)
5742       return DAG.getNode(ARMISD::VMOVhr, SDLoc(Op),
5743                          MVT::f16, Op.getOperand(0));
5744 
5745     return SDValue();
5746   }
5747 
5748   // Half-precision return values
5749   if (SrcVT == MVT::f16 && DstVT == MVT::i16) {
5750     if (!HasFullFP16)
5751       return SDValue();
5752     //
5753     //          t11: f16 = fadd t8, t10
5754     //        t12: i16 = bitcast t11       <~~~ SDNode N
5755     //      t13: i32 = zero_extend t12
5756     //    t16: ch,glue = CopyToReg t0, Register:i32 %r0, t13
5757     //  t17: ch = ARMISD::RET_FLAG t16, Register:i32 %r0, t16:1
5758     //
5759     // transform this into:
5760     //
5761     //    t20: i32 = ARMISD::VMOVrh t11
5762     //  t16: ch,glue = CopyToReg t0, Register:i32 %r0, t20
5763     //
5764     auto ZeroExtend = N->use_begin();
5765     if (N->use_size() != 1 || ZeroExtend->getOpcode() != ISD::ZERO_EXTEND ||
5766         ZeroExtend->getValueType(0) != MVT::i32)
5767       return SDValue();
5768 
5769     auto Copy = ZeroExtend->use_begin();
5770     if (Copy->getOpcode() == ISD::CopyToReg &&
5771         Copy->use_begin()->getOpcode() == ARMISD::RET_FLAG) {
5772       SDValue Cvt = DAG.getNode(ARMISD::VMOVrh, SDLoc(Op), MVT::i32, Op);
5773       DAG.ReplaceAllUsesWith(*ZeroExtend, &Cvt);
5774       return Cvt;
5775     }
5776     return SDValue();
5777   }
5778 
5779   if (!(SrcVT == MVT::i64 || DstVT == MVT::i64))
5780     return SDValue();
5781 
5782   // Turn i64->f64 into VMOVDRR.
5783   if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
5784     // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
5785     // if we can combine the bitcast with its source.
5786     if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
5787       return Val;
5788 
5789     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
5790                              DAG.getConstant(0, dl, MVT::i32));
5791     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
5792                              DAG.getConstant(1, dl, MVT::i32));
5793     return DAG.getNode(ISD::BITCAST, dl, DstVT,
5794                        DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
5795   }
5796 
5797   // Turn f64->i64 into VMOVRRD.
5798   if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
5799     SDValue Cvt;
5800     if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
5801         SrcVT.getVectorNumElements() > 1)
5802       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
5803                         DAG.getVTList(MVT::i32, MVT::i32),
5804                         DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
5805     else
5806       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
5807                         DAG.getVTList(MVT::i32, MVT::i32), Op);
5808     // Merge the pieces into a single i64 value.
5809     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
5810   }
5811 
5812   return SDValue();
5813 }
5814 
5815 /// getZeroVector - Returns a vector of specified type with all zero elements.
5816 /// Zero vectors are used to represent vector negation and in those cases
5817 /// will be implemented with the NEON VNEG instruction.  However, VNEG does
5818 /// not support i64 elements, so sometimes the zero vectors will need to be
5819 /// explicitly constructed.  Regardless, use a canonical VMOV to create the
5820 /// zero vector.
5821 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
5822   assert(VT.isVector() && "Expected a vector type");
5823   // The canonical modified immediate encoding of a zero vector is....0!
5824   SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
5825   EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
5826   SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
5827   return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
5828 }
5829 
5830 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5831 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5832 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
5833                                                 SelectionDAG &DAG) const {
5834   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5835   EVT VT = Op.getValueType();
5836   unsigned VTBits = VT.getSizeInBits();
5837   SDLoc dl(Op);
5838   SDValue ShOpLo = Op.getOperand(0);
5839   SDValue ShOpHi = Op.getOperand(1);
5840   SDValue ShAmt  = Op.getOperand(2);
5841   SDValue ARMcc;
5842   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5843   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
5844 
5845   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
5846 
5847   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
5848                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
5849   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
5850   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
5851                                    DAG.getConstant(VTBits, dl, MVT::i32));
5852   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
5853   SDValue LoSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
5854   SDValue LoBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
5855   SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5856                             ISD::SETGE, ARMcc, DAG, dl);
5857   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, LoBigShift,
5858                            ARMcc, CCR, CmpLo);
5859 
5860   SDValue HiSmallShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
5861   SDValue HiBigShift = Opc == ISD::SRA
5862                            ? DAG.getNode(Opc, dl, VT, ShOpHi,
5863                                          DAG.getConstant(VTBits - 1, dl, VT))
5864                            : DAG.getConstant(0, dl, VT);
5865   SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5866                             ISD::SETGE, ARMcc, DAG, dl);
5867   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
5868                            ARMcc, CCR, CmpHi);
5869 
5870   SDValue Ops[2] = { Lo, Hi };
5871   return DAG.getMergeValues(Ops, dl);
5872 }
5873 
5874 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5875 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
5876 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
5877                                                SelectionDAG &DAG) const {
5878   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5879   EVT VT = Op.getValueType();
5880   unsigned VTBits = VT.getSizeInBits();
5881   SDLoc dl(Op);
5882   SDValue ShOpLo = Op.getOperand(0);
5883   SDValue ShOpHi = Op.getOperand(1);
5884   SDValue ShAmt  = Op.getOperand(2);
5885   SDValue ARMcc;
5886   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5887 
5888   assert(Op.getOpcode() == ISD::SHL_PARTS);
5889   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
5890                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
5891   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
5892   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
5893   SDValue HiSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
5894 
5895   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
5896                                    DAG.getConstant(VTBits, dl, MVT::i32));
5897   SDValue HiBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
5898   SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5899                             ISD::SETGE, ARMcc, DAG, dl);
5900   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
5901                            ARMcc, CCR, CmpHi);
5902 
5903   SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5904                           ISD::SETGE, ARMcc, DAG, dl);
5905   SDValue LoSmallShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5906   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift,
5907                            DAG.getConstant(0, dl, VT), ARMcc, CCR, CmpLo);
5908 
5909   SDValue Ops[2] = { Lo, Hi };
5910   return DAG.getMergeValues(Ops, dl);
5911 }
5912 
5913 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
5914                                             SelectionDAG &DAG) const {
5915   // The rounding mode is in bits 23:22 of the FPSCR.
5916   // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
5917   // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
5918   // so that the shift + and get folded into a bitfield extract.
5919   SDLoc dl(Op);
5920   SDValue Ops[] = { DAG.getEntryNode(),
5921                     DAG.getConstant(Intrinsic::arm_get_fpscr, dl, MVT::i32) };
5922 
5923   SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_W_CHAIN, dl, MVT::i32, Ops);
5924   SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
5925                                   DAG.getConstant(1U << 22, dl, MVT::i32));
5926   SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
5927                               DAG.getConstant(22, dl, MVT::i32));
5928   return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
5929                      DAG.getConstant(3, dl, MVT::i32));
5930 }
5931 
5932 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
5933                          const ARMSubtarget *ST) {
5934   SDLoc dl(N);
5935   EVT VT = N->getValueType(0);
5936   if (VT.isVector() && ST->hasNEON()) {
5937 
5938     // Compute the least significant set bit: LSB = X & -X
5939     SDValue X = N->getOperand(0);
5940     SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
5941     SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
5942 
5943     EVT ElemTy = VT.getVectorElementType();
5944 
5945     if (ElemTy == MVT::i8) {
5946       // Compute with: cttz(x) = ctpop(lsb - 1)
5947       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5948                                 DAG.getTargetConstant(1, dl, ElemTy));
5949       SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
5950       return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
5951     }
5952 
5953     if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
5954         (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
5955       // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
5956       unsigned NumBits = ElemTy.getSizeInBits();
5957       SDValue WidthMinus1 =
5958           DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5959                       DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
5960       SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
5961       return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
5962     }
5963 
5964     // Compute with: cttz(x) = ctpop(lsb - 1)
5965 
5966     // Compute LSB - 1.
5967     SDValue Bits;
5968     if (ElemTy == MVT::i64) {
5969       // Load constant 0xffff'ffff'ffff'ffff to register.
5970       SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5971                                DAG.getTargetConstant(0x1eff, dl, MVT::i32));
5972       Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
5973     } else {
5974       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5975                                 DAG.getTargetConstant(1, dl, ElemTy));
5976       Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
5977     }
5978     return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
5979   }
5980 
5981   if (!ST->hasV6T2Ops())
5982     return SDValue();
5983 
5984   SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
5985   return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
5986 }
5987 
5988 static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
5989                           const ARMSubtarget *ST) {
5990   EVT VT = N->getValueType(0);
5991   SDLoc DL(N);
5992 
5993   assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
5994   assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 ||
5995           VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) &&
5996          "Unexpected type for custom ctpop lowering");
5997 
5998   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5999   EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
6000   SDValue Res = DAG.getBitcast(VT8Bit, N->getOperand(0));
6001   Res = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Res);
6002 
6003   // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
6004   unsigned EltSize = 8;
6005   unsigned NumElts = VT.is64BitVector() ? 8 : 16;
6006   while (EltSize != VT.getScalarSizeInBits()) {
6007     SmallVector<SDValue, 8> Ops;
6008     Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddlu, DL,
6009                                   TLI.getPointerTy(DAG.getDataLayout())));
6010     Ops.push_back(Res);
6011 
6012     EltSize *= 2;
6013     NumElts /= 2;
6014     MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts);
6015     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, WidenVT, Ops);
6016   }
6017 
6018   return Res;
6019 }
6020 
6021 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
6022 /// operand of a vector shift operation, where all the elements of the
6023 /// build_vector must have the same constant integer value.
6024 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6025   // Ignore bit_converts.
6026   while (Op.getOpcode() == ISD::BITCAST)
6027     Op = Op.getOperand(0);
6028   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6029   APInt SplatBits, SplatUndef;
6030   unsigned SplatBitSize;
6031   bool HasAnyUndefs;
6032   if (!BVN ||
6033       !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
6034                             ElementBits) ||
6035       SplatBitSize > ElementBits)
6036     return false;
6037   Cnt = SplatBits.getSExtValue();
6038   return true;
6039 }
6040 
6041 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
6042 /// operand of a vector shift left operation.  That value must be in the range:
6043 ///   0 <= Value < ElementBits for a left shift; or
6044 ///   0 <= Value <= ElementBits for a long left shift.
6045 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6046   assert(VT.isVector() && "vector shift count is not a vector type");
6047   int64_t ElementBits = VT.getScalarSizeInBits();
6048   if (!getVShiftImm(Op, ElementBits, Cnt))
6049     return false;
6050   return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
6051 }
6052 
6053 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
6054 /// operand of a vector shift right operation.  For a shift opcode, the value
6055 /// is positive, but for an intrinsic the value count must be negative. The
6056 /// absolute value must be in the range:
6057 ///   1 <= |Value| <= ElementBits for a right shift; or
6058 ///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
6059 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
6060                          int64_t &Cnt) {
6061   assert(VT.isVector() && "vector shift count is not a vector type");
6062   int64_t ElementBits = VT.getScalarSizeInBits();
6063   if (!getVShiftImm(Op, ElementBits, Cnt))
6064     return false;
6065   if (!isIntrinsic)
6066     return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
6067   if (Cnt >= -(isNarrow ? ElementBits / 2 : ElementBits) && Cnt <= -1) {
6068     Cnt = -Cnt;
6069     return true;
6070   }
6071   return false;
6072 }
6073 
6074 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
6075                           const ARMSubtarget *ST) {
6076   EVT VT = N->getValueType(0);
6077   SDLoc dl(N);
6078   int64_t Cnt;
6079 
6080   if (!VT.isVector())
6081     return SDValue();
6082 
6083   // We essentially have two forms here. Shift by an immediate and shift by a
6084   // vector register (there are also shift by a gpr, but that is just handled
6085   // with a tablegen pattern). We cannot easily match shift by an immediate in
6086   // tablegen so we do that here and generate a VSHLIMM/VSHRsIMM/VSHRuIMM.
6087   // For shifting by a vector, we don't have VSHR, only VSHL (which can be
6088   // signed or unsigned, and a negative shift indicates a shift right).
6089   if (N->getOpcode() == ISD::SHL) {
6090     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
6091       return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0),
6092                          DAG.getConstant(Cnt, dl, MVT::i32));
6093     return DAG.getNode(ARMISD::VSHLu, dl, VT, N->getOperand(0),
6094                        N->getOperand(1));
6095   }
6096 
6097   assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
6098          "unexpected vector shift opcode");
6099 
6100   if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
6101     unsigned VShiftOpc =
6102         (N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM);
6103     return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
6104                        DAG.getConstant(Cnt, dl, MVT::i32));
6105   }
6106 
6107   // Other right shifts we don't have operations for (we use a shift left by a
6108   // negative number).
6109   EVT ShiftVT = N->getOperand(1).getValueType();
6110   SDValue NegatedCount = DAG.getNode(
6111       ISD::SUB, dl, ShiftVT, getZeroVector(ShiftVT, DAG, dl), N->getOperand(1));
6112   unsigned VShiftOpc =
6113       (N->getOpcode() == ISD::SRA ? ARMISD::VSHLs : ARMISD::VSHLu);
6114   return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0), NegatedCount);
6115 }
6116 
6117 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
6118                                 const ARMSubtarget *ST) {
6119   EVT VT = N->getValueType(0);
6120   SDLoc dl(N);
6121 
6122   // We can get here for a node like i32 = ISD::SHL i32, i64
6123   if (VT != MVT::i64)
6124     return SDValue();
6125 
6126   assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA ||
6127           N->getOpcode() == ISD::SHL) &&
6128          "Unknown shift to lower!");
6129 
6130   unsigned ShOpc = N->getOpcode();
6131   if (ST->hasMVEIntegerOps()) {
6132     SDValue ShAmt = N->getOperand(1);
6133     unsigned ShPartsOpc = ARMISD::LSLL;
6134     ConstantSDNode *Con = dyn_cast<ConstantSDNode>(ShAmt);
6135 
6136     // If the shift amount is greater than 32 or has a greater bitwidth than 64
6137     // then do the default optimisation
6138     if (ShAmt->getValueType(0).getSizeInBits() > 64 ||
6139         (Con && (Con->getZExtValue() == 0 || Con->getZExtValue() >= 32)))
6140       return SDValue();
6141 
6142     // Extract the lower 32 bits of the shift amount if it's not an i32
6143     if (ShAmt->getValueType(0) != MVT::i32)
6144       ShAmt = DAG.getZExtOrTrunc(ShAmt, dl, MVT::i32);
6145 
6146     if (ShOpc == ISD::SRL) {
6147       if (!Con)
6148         // There is no t2LSRLr instruction so negate and perform an lsll if the
6149         // shift amount is in a register, emulating a right shift.
6150         ShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
6151                             DAG.getConstant(0, dl, MVT::i32), ShAmt);
6152       else
6153         // Else generate an lsrl on the immediate shift amount
6154         ShPartsOpc = ARMISD::LSRL;
6155     } else if (ShOpc == ISD::SRA)
6156       ShPartsOpc = ARMISD::ASRL;
6157 
6158     // Lower 32 bits of the destination/source
6159     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
6160                              DAG.getConstant(0, dl, MVT::i32));
6161     // Upper 32 bits of the destination/source
6162     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
6163                              DAG.getConstant(1, dl, MVT::i32));
6164 
6165     // Generate the shift operation as computed above
6166     Lo = DAG.getNode(ShPartsOpc, dl, DAG.getVTList(MVT::i32, MVT::i32), Lo, Hi,
6167                      ShAmt);
6168     // The upper 32 bits come from the second return value of lsll
6169     Hi = SDValue(Lo.getNode(), 1);
6170     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6171   }
6172 
6173   // We only lower SRA, SRL of 1 here, all others use generic lowering.
6174   if (!isOneConstant(N->getOperand(1)) || N->getOpcode() == ISD::SHL)
6175     return SDValue();
6176 
6177   // If we are in thumb mode, we don't have RRX.
6178   if (ST->isThumb1Only())
6179     return SDValue();
6180 
6181   // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
6182   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
6183                            DAG.getConstant(0, dl, MVT::i32));
6184   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
6185                            DAG.getConstant(1, dl, MVT::i32));
6186 
6187   // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
6188   // captures the result into a carry flag.
6189   unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
6190   Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
6191 
6192   // The low part is an ARMISD::RRX operand, which shifts the carry in.
6193   Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
6194 
6195   // Merge the pieces into a single i64 value.
6196  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6197 }
6198 
6199 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG,
6200                            const ARMSubtarget *ST) {
6201   bool Invert = false;
6202   bool Swap = false;
6203   unsigned Opc = ARMCC::AL;
6204 
6205   SDValue Op0 = Op.getOperand(0);
6206   SDValue Op1 = Op.getOperand(1);
6207   SDValue CC = Op.getOperand(2);
6208   EVT VT = Op.getValueType();
6209   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
6210   SDLoc dl(Op);
6211 
6212   EVT CmpVT;
6213   if (ST->hasNEON())
6214     CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
6215   else {
6216     assert(ST->hasMVEIntegerOps() &&
6217            "No hardware support for integer vector comparison!");
6218 
6219     if (Op.getValueType().getVectorElementType() != MVT::i1)
6220       return SDValue();
6221 
6222     // Make sure we expand floating point setcc to scalar if we do not have
6223     // mve.fp, so that we can handle them from there.
6224     if (Op0.getValueType().isFloatingPoint() && !ST->hasMVEFloatOps())
6225       return SDValue();
6226 
6227     CmpVT = VT;
6228   }
6229 
6230   if (Op0.getValueType().getVectorElementType() == MVT::i64 &&
6231       (SetCCOpcode == ISD::SETEQ || SetCCOpcode == ISD::SETNE)) {
6232     // Special-case integer 64-bit equality comparisons. They aren't legal,
6233     // but they can be lowered with a few vector instructions.
6234     unsigned CmpElements = CmpVT.getVectorNumElements() * 2;
6235     EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, CmpElements);
6236     SDValue CastOp0 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op0);
6237     SDValue CastOp1 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op1);
6238     SDValue Cmp = DAG.getNode(ISD::SETCC, dl, SplitVT, CastOp0, CastOp1,
6239                               DAG.getCondCode(ISD::SETEQ));
6240     SDValue Reversed = DAG.getNode(ARMISD::VREV64, dl, SplitVT, Cmp);
6241     SDValue Merged = DAG.getNode(ISD::AND, dl, SplitVT, Cmp, Reversed);
6242     Merged = DAG.getNode(ISD::BITCAST, dl, CmpVT, Merged);
6243     if (SetCCOpcode == ISD::SETNE)
6244       Merged = DAG.getNOT(dl, Merged, CmpVT);
6245     Merged = DAG.getSExtOrTrunc(Merged, dl, VT);
6246     return Merged;
6247   }
6248 
6249   if (CmpVT.getVectorElementType() == MVT::i64)
6250     // 64-bit comparisons are not legal in general.
6251     return SDValue();
6252 
6253   if (Op1.getValueType().isFloatingPoint()) {
6254     switch (SetCCOpcode) {
6255     default: llvm_unreachable("Illegal FP comparison");
6256     case ISD::SETUNE:
6257     case ISD::SETNE:
6258       if (ST->hasMVEFloatOps()) {
6259         Opc = ARMCC::NE; break;
6260       } else {
6261         Invert = true; LLVM_FALLTHROUGH;
6262       }
6263     case ISD::SETOEQ:
6264     case ISD::SETEQ:  Opc = ARMCC::EQ; break;
6265     case ISD::SETOLT:
6266     case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
6267     case ISD::SETOGT:
6268     case ISD::SETGT:  Opc = ARMCC::GT; break;
6269     case ISD::SETOLE:
6270     case ISD::SETLE:  Swap = true; LLVM_FALLTHROUGH;
6271     case ISD::SETOGE:
6272     case ISD::SETGE: Opc = ARMCC::GE; break;
6273     case ISD::SETUGE: Swap = true; LLVM_FALLTHROUGH;
6274     case ISD::SETULE: Invert = true; Opc = ARMCC::GT; break;
6275     case ISD::SETUGT: Swap = true; LLVM_FALLTHROUGH;
6276     case ISD::SETULT: Invert = true; Opc = ARMCC::GE; break;
6277     case ISD::SETUEQ: Invert = true; LLVM_FALLTHROUGH;
6278     case ISD::SETONE: {
6279       // Expand this to (OLT | OGT).
6280       SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0,
6281                                    DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6282       SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6283                                    DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6284       SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1);
6285       if (Invert)
6286         Result = DAG.getNOT(dl, Result, VT);
6287       return Result;
6288     }
6289     case ISD::SETUO: Invert = true; LLVM_FALLTHROUGH;
6290     case ISD::SETO: {
6291       // Expand this to (OLT | OGE).
6292       SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0,
6293                                    DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6294       SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6295                                    DAG.getConstant(ARMCC::GE, dl, MVT::i32));
6296       SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1);
6297       if (Invert)
6298         Result = DAG.getNOT(dl, Result, VT);
6299       return Result;
6300     }
6301     }
6302   } else {
6303     // Integer comparisons.
6304     switch (SetCCOpcode) {
6305     default: llvm_unreachable("Illegal integer comparison");
6306     case ISD::SETNE:
6307       if (ST->hasMVEIntegerOps()) {
6308         Opc = ARMCC::NE; break;
6309       } else {
6310         Invert = true; LLVM_FALLTHROUGH;
6311       }
6312     case ISD::SETEQ:  Opc = ARMCC::EQ; break;
6313     case ISD::SETLT:  Swap = true; LLVM_FALLTHROUGH;
6314     case ISD::SETGT:  Opc = ARMCC::GT; break;
6315     case ISD::SETLE:  Swap = true; LLVM_FALLTHROUGH;
6316     case ISD::SETGE:  Opc = ARMCC::GE; break;
6317     case ISD::SETULT: Swap = true; LLVM_FALLTHROUGH;
6318     case ISD::SETUGT: Opc = ARMCC::HI; break;
6319     case ISD::SETULE: Swap = true; LLVM_FALLTHROUGH;
6320     case ISD::SETUGE: Opc = ARMCC::HS; break;
6321     }
6322 
6323     // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
6324     if (ST->hasNEON() && Opc == ARMCC::EQ) {
6325       SDValue AndOp;
6326       if (ISD::isBuildVectorAllZeros(Op1.getNode()))
6327         AndOp = Op0;
6328       else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
6329         AndOp = Op1;
6330 
6331       // Ignore bitconvert.
6332       if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
6333         AndOp = AndOp.getOperand(0);
6334 
6335       if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
6336         Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
6337         Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
6338         SDValue Result = DAG.getNode(ARMISD::VTST, dl, CmpVT, Op0, Op1);
6339         if (!Invert)
6340           Result = DAG.getNOT(dl, Result, VT);
6341         return Result;
6342       }
6343     }
6344   }
6345 
6346   if (Swap)
6347     std::swap(Op0, Op1);
6348 
6349   // If one of the operands is a constant vector zero, attempt to fold the
6350   // comparison to a specialized compare-against-zero form.
6351   SDValue SingleOp;
6352   if (ISD::isBuildVectorAllZeros(Op1.getNode()))
6353     SingleOp = Op0;
6354   else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
6355     if (Opc == ARMCC::GE)
6356       Opc = ARMCC::LE;
6357     else if (Opc == ARMCC::GT)
6358       Opc = ARMCC::LT;
6359     SingleOp = Op1;
6360   }
6361 
6362   SDValue Result;
6363   if (SingleOp.getNode()) {
6364     Result = DAG.getNode(ARMISD::VCMPZ, dl, CmpVT, SingleOp,
6365                          DAG.getConstant(Opc, dl, MVT::i32));
6366   } else {
6367     Result = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6368                          DAG.getConstant(Opc, dl, MVT::i32));
6369   }
6370 
6371   Result = DAG.getSExtOrTrunc(Result, dl, VT);
6372 
6373   if (Invert)
6374     Result = DAG.getNOT(dl, Result, VT);
6375 
6376   return Result;
6377 }
6378 
6379 static SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) {
6380   SDValue LHS = Op.getOperand(0);
6381   SDValue RHS = Op.getOperand(1);
6382   SDValue Carry = Op.getOperand(2);
6383   SDValue Cond = Op.getOperand(3);
6384   SDLoc DL(Op);
6385 
6386   assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
6387 
6388   // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
6389   // have to invert the carry first.
6390   Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
6391                       DAG.getConstant(1, DL, MVT::i32), Carry);
6392   // This converts the boolean value carry into the carry flag.
6393   Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
6394 
6395   SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
6396   SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry);
6397 
6398   SDValue FVal = DAG.getConstant(0, DL, MVT::i32);
6399   SDValue TVal = DAG.getConstant(1, DL, MVT::i32);
6400   SDValue ARMcc = DAG.getConstant(
6401       IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32);
6402   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
6403   SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR,
6404                                    Cmp.getValue(1), SDValue());
6405   return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc,
6406                      CCR, Chain.getValue(1));
6407 }
6408 
6409 /// isVMOVModifiedImm - Check if the specified splat value corresponds to a
6410 /// valid vector constant for a NEON or MVE instruction with a "modified
6411 /// immediate" operand (e.g., VMOV).  If so, return the encoded value.
6412 static SDValue isVMOVModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
6413                                  unsigned SplatBitSize, SelectionDAG &DAG,
6414                                  const SDLoc &dl, EVT &VT, bool is128Bits,
6415                                  VMOVModImmType type) {
6416   unsigned OpCmode, Imm;
6417 
6418   // SplatBitSize is set to the smallest size that splats the vector, so a
6419   // zero vector will always have SplatBitSize == 8.  However, NEON modified
6420   // immediate instructions others than VMOV do not support the 8-bit encoding
6421   // of a zero vector, and the default encoding of zero is supposed to be the
6422   // 32-bit version.
6423   if (SplatBits == 0)
6424     SplatBitSize = 32;
6425 
6426   switch (SplatBitSize) {
6427   case 8:
6428     if (type != VMOVModImm)
6429       return SDValue();
6430     // Any 1-byte value is OK.  Op=0, Cmode=1110.
6431     assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
6432     OpCmode = 0xe;
6433     Imm = SplatBits;
6434     VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
6435     break;
6436 
6437   case 16:
6438     // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
6439     VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
6440     if ((SplatBits & ~0xff) == 0) {
6441       // Value = 0x00nn: Op=x, Cmode=100x.
6442       OpCmode = 0x8;
6443       Imm = SplatBits;
6444       break;
6445     }
6446     if ((SplatBits & ~0xff00) == 0) {
6447       // Value = 0xnn00: Op=x, Cmode=101x.
6448       OpCmode = 0xa;
6449       Imm = SplatBits >> 8;
6450       break;
6451     }
6452     return SDValue();
6453 
6454   case 32:
6455     // NEON's 32-bit VMOV supports splat values where:
6456     // * only one byte is nonzero, or
6457     // * the least significant byte is 0xff and the second byte is nonzero, or
6458     // * the least significant 2 bytes are 0xff and the third is nonzero.
6459     VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
6460     if ((SplatBits & ~0xff) == 0) {
6461       // Value = 0x000000nn: Op=x, Cmode=000x.
6462       OpCmode = 0;
6463       Imm = SplatBits;
6464       break;
6465     }
6466     if ((SplatBits & ~0xff00) == 0) {
6467       // Value = 0x0000nn00: Op=x, Cmode=001x.
6468       OpCmode = 0x2;
6469       Imm = SplatBits >> 8;
6470       break;
6471     }
6472     if ((SplatBits & ~0xff0000) == 0) {
6473       // Value = 0x00nn0000: Op=x, Cmode=010x.
6474       OpCmode = 0x4;
6475       Imm = SplatBits >> 16;
6476       break;
6477     }
6478     if ((SplatBits & ~0xff000000) == 0) {
6479       // Value = 0xnn000000: Op=x, Cmode=011x.
6480       OpCmode = 0x6;
6481       Imm = SplatBits >> 24;
6482       break;
6483     }
6484 
6485     // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
6486     if (type == OtherModImm) return SDValue();
6487 
6488     if ((SplatBits & ~0xffff) == 0 &&
6489         ((SplatBits | SplatUndef) & 0xff) == 0xff) {
6490       // Value = 0x0000nnff: Op=x, Cmode=1100.
6491       OpCmode = 0xc;
6492       Imm = SplatBits >> 8;
6493       break;
6494     }
6495 
6496     // cmode == 0b1101 is not supported for MVE VMVN
6497     if (type == MVEVMVNModImm)
6498       return SDValue();
6499 
6500     if ((SplatBits & ~0xffffff) == 0 &&
6501         ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
6502       // Value = 0x00nnffff: Op=x, Cmode=1101.
6503       OpCmode = 0xd;
6504       Imm = SplatBits >> 16;
6505       break;
6506     }
6507 
6508     // Note: there are a few 32-bit splat values (specifically: 00ffff00,
6509     // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
6510     // VMOV.I32.  A (very) minor optimization would be to replicate the value
6511     // and fall through here to test for a valid 64-bit splat.  But, then the
6512     // caller would also need to check and handle the change in size.
6513     return SDValue();
6514 
6515   case 64: {
6516     if (type != VMOVModImm)
6517       return SDValue();
6518     // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
6519     uint64_t BitMask = 0xff;
6520     uint64_t Val = 0;
6521     unsigned ImmMask = 1;
6522     Imm = 0;
6523     for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
6524       if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
6525         Val |= BitMask;
6526         Imm |= ImmMask;
6527       } else if ((SplatBits & BitMask) != 0) {
6528         return SDValue();
6529       }
6530       BitMask <<= 8;
6531       ImmMask <<= 1;
6532     }
6533 
6534     if (DAG.getDataLayout().isBigEndian())
6535       // swap higher and lower 32 bit word
6536       Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4);
6537 
6538     // Op=1, Cmode=1110.
6539     OpCmode = 0x1e;
6540     VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
6541     break;
6542   }
6543 
6544   default:
6545     llvm_unreachable("unexpected size for isVMOVModifiedImm");
6546   }
6547 
6548   unsigned EncodedVal = ARM_AM::createVMOVModImm(OpCmode, Imm);
6549   return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
6550 }
6551 
6552 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
6553                                            const ARMSubtarget *ST) const {
6554   EVT VT = Op.getValueType();
6555   bool IsDouble = (VT == MVT::f64);
6556   ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
6557   const APFloat &FPVal = CFP->getValueAPF();
6558 
6559   // Prevent floating-point constants from using literal loads
6560   // when execute-only is enabled.
6561   if (ST->genExecuteOnly()) {
6562     // If we can represent the constant as an immediate, don't lower it
6563     if (isFPImmLegal(FPVal, VT))
6564       return Op;
6565     // Otherwise, construct as integer, and move to float register
6566     APInt INTVal = FPVal.bitcastToAPInt();
6567     SDLoc DL(CFP);
6568     switch (VT.getSimpleVT().SimpleTy) {
6569       default:
6570         llvm_unreachable("Unknown floating point type!");
6571         break;
6572       case MVT::f64: {
6573         SDValue Lo = DAG.getConstant(INTVal.trunc(32), DL, MVT::i32);
6574         SDValue Hi = DAG.getConstant(INTVal.lshr(32).trunc(32), DL, MVT::i32);
6575         if (!ST->isLittle())
6576           std::swap(Lo, Hi);
6577         return DAG.getNode(ARMISD::VMOVDRR, DL, MVT::f64, Lo, Hi);
6578       }
6579       case MVT::f32:
6580           return DAG.getNode(ARMISD::VMOVSR, DL, VT,
6581               DAG.getConstant(INTVal, DL, MVT::i32));
6582     }
6583   }
6584 
6585   if (!ST->hasVFP3Base())
6586     return SDValue();
6587 
6588   // Use the default (constant pool) lowering for double constants when we have
6589   // an SP-only FPU
6590   if (IsDouble && !Subtarget->hasFP64())
6591     return SDValue();
6592 
6593   // Try splatting with a VMOV.f32...
6594   int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
6595 
6596   if (ImmVal != -1) {
6597     if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
6598       // We have code in place to select a valid ConstantFP already, no need to
6599       // do any mangling.
6600       return Op;
6601     }
6602 
6603     // It's a float and we are trying to use NEON operations where
6604     // possible. Lower it to a splat followed by an extract.
6605     SDLoc DL(Op);
6606     SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
6607     SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
6608                                       NewVal);
6609     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
6610                        DAG.getConstant(0, DL, MVT::i32));
6611   }
6612 
6613   // The rest of our options are NEON only, make sure that's allowed before
6614   // proceeding..
6615   if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
6616     return SDValue();
6617 
6618   EVT VMovVT;
6619   uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
6620 
6621   // It wouldn't really be worth bothering for doubles except for one very
6622   // important value, which does happen to match: 0.0. So make sure we don't do
6623   // anything stupid.
6624   if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
6625     return SDValue();
6626 
6627   // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
6628   SDValue NewVal = isVMOVModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
6629                                      VMovVT, false, VMOVModImm);
6630   if (NewVal != SDValue()) {
6631     SDLoc DL(Op);
6632     SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
6633                                       NewVal);
6634     if (IsDouble)
6635       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
6636 
6637     // It's a float: cast and extract a vector element.
6638     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
6639                                        VecConstant);
6640     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
6641                        DAG.getConstant(0, DL, MVT::i32));
6642   }
6643 
6644   // Finally, try a VMVN.i32
6645   NewVal = isVMOVModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
6646                              false, VMVNModImm);
6647   if (NewVal != SDValue()) {
6648     SDLoc DL(Op);
6649     SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
6650 
6651     if (IsDouble)
6652       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
6653 
6654     // It's a float: cast and extract a vector element.
6655     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
6656                                        VecConstant);
6657     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
6658                        DAG.getConstant(0, DL, MVT::i32));
6659   }
6660 
6661   return SDValue();
6662 }
6663 
6664 // check if an VEXT instruction can handle the shuffle mask when the
6665 // vector sources of the shuffle are the same.
6666 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
6667   unsigned NumElts = VT.getVectorNumElements();
6668 
6669   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
6670   if (M[0] < 0)
6671     return false;
6672 
6673   Imm = M[0];
6674 
6675   // If this is a VEXT shuffle, the immediate value is the index of the first
6676   // element.  The other shuffle indices must be the successive elements after
6677   // the first one.
6678   unsigned ExpectedElt = Imm;
6679   for (unsigned i = 1; i < NumElts; ++i) {
6680     // Increment the expected index.  If it wraps around, just follow it
6681     // back to index zero and keep going.
6682     ++ExpectedElt;
6683     if (ExpectedElt == NumElts)
6684       ExpectedElt = 0;
6685 
6686     if (M[i] < 0) continue; // ignore UNDEF indices
6687     if (ExpectedElt != static_cast<unsigned>(M[i]))
6688       return false;
6689   }
6690 
6691   return true;
6692 }
6693 
6694 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
6695                        bool &ReverseVEXT, unsigned &Imm) {
6696   unsigned NumElts = VT.getVectorNumElements();
6697   ReverseVEXT = false;
6698 
6699   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
6700   if (M[0] < 0)
6701     return false;
6702 
6703   Imm = M[0];
6704 
6705   // If this is a VEXT shuffle, the immediate value is the index of the first
6706   // element.  The other shuffle indices must be the successive elements after
6707   // the first one.
6708   unsigned ExpectedElt = Imm;
6709   for (unsigned i = 1; i < NumElts; ++i) {
6710     // Increment the expected index.  If it wraps around, it may still be
6711     // a VEXT but the source vectors must be swapped.
6712     ExpectedElt += 1;
6713     if (ExpectedElt == NumElts * 2) {
6714       ExpectedElt = 0;
6715       ReverseVEXT = true;
6716     }
6717 
6718     if (M[i] < 0) continue; // ignore UNDEF indices
6719     if (ExpectedElt != static_cast<unsigned>(M[i]))
6720       return false;
6721   }
6722 
6723   // Adjust the index value if the source operands will be swapped.
6724   if (ReverseVEXT)
6725     Imm -= NumElts;
6726 
6727   return true;
6728 }
6729 
6730 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
6731 /// instruction with the specified blocksize.  (The order of the elements
6732 /// within each block of the vector is reversed.)
6733 static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
6734   assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
6735          "Only possible block sizes for VREV are: 16, 32, 64");
6736 
6737   unsigned EltSz = VT.getScalarSizeInBits();
6738   if (EltSz == 64)
6739     return false;
6740 
6741   unsigned NumElts = VT.getVectorNumElements();
6742   unsigned BlockElts = M[0] + 1;
6743   // If the first shuffle index is UNDEF, be optimistic.
6744   if (M[0] < 0)
6745     BlockElts = BlockSize / EltSz;
6746 
6747   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
6748     return false;
6749 
6750   for (unsigned i = 0; i < NumElts; ++i) {
6751     if (M[i] < 0) continue; // ignore UNDEF indices
6752     if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
6753       return false;
6754   }
6755 
6756   return true;
6757 }
6758 
6759 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
6760   // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
6761   // range, then 0 is placed into the resulting vector. So pretty much any mask
6762   // of 8 elements can work here.
6763   return VT == MVT::v8i8 && M.size() == 8;
6764 }
6765 
6766 static unsigned SelectPairHalf(unsigned Elements, ArrayRef<int> Mask,
6767                                unsigned Index) {
6768   if (Mask.size() == Elements * 2)
6769     return Index / Elements;
6770   return Mask[Index] == 0 ? 0 : 1;
6771 }
6772 
6773 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
6774 // checking that pairs of elements in the shuffle mask represent the same index
6775 // in each vector, incrementing the expected index by 2 at each step.
6776 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
6777 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
6778 //  v2={e,f,g,h}
6779 // WhichResult gives the offset for each element in the mask based on which
6780 // of the two results it belongs to.
6781 //
6782 // The transpose can be represented either as:
6783 // result1 = shufflevector v1, v2, result1_shuffle_mask
6784 // result2 = shufflevector v1, v2, result2_shuffle_mask
6785 // where v1/v2 and the shuffle masks have the same number of elements
6786 // (here WhichResult (see below) indicates which result is being checked)
6787 //
6788 // or as:
6789 // results = shufflevector v1, v2, shuffle_mask
6790 // where both results are returned in one vector and the shuffle mask has twice
6791 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
6792 // want to check the low half and high half of the shuffle mask as if it were
6793 // the other case
6794 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6795   unsigned EltSz = VT.getScalarSizeInBits();
6796   if (EltSz == 64)
6797     return false;
6798 
6799   unsigned NumElts = VT.getVectorNumElements();
6800   if (M.size() != NumElts && M.size() != NumElts*2)
6801     return false;
6802 
6803   // If the mask is twice as long as the input vector then we need to check the
6804   // upper and lower parts of the mask with a matching value for WhichResult
6805   // FIXME: A mask with only even values will be rejected in case the first
6806   // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
6807   // M[0] is used to determine WhichResult
6808   for (unsigned i = 0; i < M.size(); i += NumElts) {
6809     WhichResult = SelectPairHalf(NumElts, M, i);
6810     for (unsigned j = 0; j < NumElts; j += 2) {
6811       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
6812           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
6813         return false;
6814     }
6815   }
6816 
6817   if (M.size() == NumElts*2)
6818     WhichResult = 0;
6819 
6820   return true;
6821 }
6822 
6823 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
6824 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6825 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
6826 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6827   unsigned EltSz = VT.getScalarSizeInBits();
6828   if (EltSz == 64)
6829     return false;
6830 
6831   unsigned NumElts = VT.getVectorNumElements();
6832   if (M.size() != NumElts && M.size() != NumElts*2)
6833     return false;
6834 
6835   for (unsigned i = 0; i < M.size(); i += NumElts) {
6836     WhichResult = SelectPairHalf(NumElts, M, i);
6837     for (unsigned j = 0; j < NumElts; j += 2) {
6838       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
6839           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
6840         return false;
6841     }
6842   }
6843 
6844   if (M.size() == NumElts*2)
6845     WhichResult = 0;
6846 
6847   return true;
6848 }
6849 
6850 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
6851 // that the mask elements are either all even and in steps of size 2 or all odd
6852 // and in steps of size 2.
6853 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
6854 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
6855 //  v2={e,f,g,h}
6856 // Requires similar checks to that of isVTRNMask with
6857 // respect the how results are returned.
6858 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6859   unsigned EltSz = VT.getScalarSizeInBits();
6860   if (EltSz == 64)
6861     return false;
6862 
6863   unsigned NumElts = VT.getVectorNumElements();
6864   if (M.size() != NumElts && M.size() != NumElts*2)
6865     return false;
6866 
6867   for (unsigned i = 0; i < M.size(); i += NumElts) {
6868     WhichResult = SelectPairHalf(NumElts, M, i);
6869     for (unsigned j = 0; j < NumElts; ++j) {
6870       if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
6871         return false;
6872     }
6873   }
6874 
6875   if (M.size() == NumElts*2)
6876     WhichResult = 0;
6877 
6878   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6879   if (VT.is64BitVector() && EltSz == 32)
6880     return false;
6881 
6882   return true;
6883 }
6884 
6885 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
6886 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6887 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
6888 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6889   unsigned EltSz = VT.getScalarSizeInBits();
6890   if (EltSz == 64)
6891     return false;
6892 
6893   unsigned NumElts = VT.getVectorNumElements();
6894   if (M.size() != NumElts && M.size() != NumElts*2)
6895     return false;
6896 
6897   unsigned Half = NumElts / 2;
6898   for (unsigned i = 0; i < M.size(); i += NumElts) {
6899     WhichResult = SelectPairHalf(NumElts, M, i);
6900     for (unsigned j = 0; j < NumElts; j += Half) {
6901       unsigned Idx = WhichResult;
6902       for (unsigned k = 0; k < Half; ++k) {
6903         int MIdx = M[i + j + k];
6904         if (MIdx >= 0 && (unsigned) MIdx != Idx)
6905           return false;
6906         Idx += 2;
6907       }
6908     }
6909   }
6910 
6911   if (M.size() == NumElts*2)
6912     WhichResult = 0;
6913 
6914   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6915   if (VT.is64BitVector() && EltSz == 32)
6916     return false;
6917 
6918   return true;
6919 }
6920 
6921 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
6922 // that pairs of elements of the shufflemask represent the same index in each
6923 // vector incrementing sequentially through the vectors.
6924 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
6925 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
6926 //  v2={e,f,g,h}
6927 // Requires similar checks to that of isVTRNMask with respect the how results
6928 // are returned.
6929 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6930   unsigned EltSz = VT.getScalarSizeInBits();
6931   if (EltSz == 64)
6932     return false;
6933 
6934   unsigned NumElts = VT.getVectorNumElements();
6935   if (M.size() != NumElts && M.size() != NumElts*2)
6936     return false;
6937 
6938   for (unsigned i = 0; i < M.size(); i += NumElts) {
6939     WhichResult = SelectPairHalf(NumElts, M, i);
6940     unsigned Idx = WhichResult * NumElts / 2;
6941     for (unsigned j = 0; j < NumElts; j += 2) {
6942       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
6943           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
6944         return false;
6945       Idx += 1;
6946     }
6947   }
6948 
6949   if (M.size() == NumElts*2)
6950     WhichResult = 0;
6951 
6952   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6953   if (VT.is64BitVector() && EltSz == 32)
6954     return false;
6955 
6956   return true;
6957 }
6958 
6959 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
6960 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6961 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
6962 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6963   unsigned EltSz = VT.getScalarSizeInBits();
6964   if (EltSz == 64)
6965     return false;
6966 
6967   unsigned NumElts = VT.getVectorNumElements();
6968   if (M.size() != NumElts && M.size() != NumElts*2)
6969     return false;
6970 
6971   for (unsigned i = 0; i < M.size(); i += NumElts) {
6972     WhichResult = SelectPairHalf(NumElts, M, i);
6973     unsigned Idx = WhichResult * NumElts / 2;
6974     for (unsigned j = 0; j < NumElts; j += 2) {
6975       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
6976           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
6977         return false;
6978       Idx += 1;
6979     }
6980   }
6981 
6982   if (M.size() == NumElts*2)
6983     WhichResult = 0;
6984 
6985   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6986   if (VT.is64BitVector() && EltSz == 32)
6987     return false;
6988 
6989   return true;
6990 }
6991 
6992 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
6993 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
6994 static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
6995                                            unsigned &WhichResult,
6996                                            bool &isV_UNDEF) {
6997   isV_UNDEF = false;
6998   if (isVTRNMask(ShuffleMask, VT, WhichResult))
6999     return ARMISD::VTRN;
7000   if (isVUZPMask(ShuffleMask, VT, WhichResult))
7001     return ARMISD::VUZP;
7002   if (isVZIPMask(ShuffleMask, VT, WhichResult))
7003     return ARMISD::VZIP;
7004 
7005   isV_UNDEF = true;
7006   if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
7007     return ARMISD::VTRN;
7008   if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
7009     return ARMISD::VUZP;
7010   if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
7011     return ARMISD::VZIP;
7012 
7013   return 0;
7014 }
7015 
7016 /// \return true if this is a reverse operation on an vector.
7017 static bool isReverseMask(ArrayRef<int> M, EVT VT) {
7018   unsigned NumElts = VT.getVectorNumElements();
7019   // Make sure the mask has the right size.
7020   if (NumElts != M.size())
7021       return false;
7022 
7023   // Look for <15, ..., 3, -1, 1, 0>.
7024   for (unsigned i = 0; i != NumElts; ++i)
7025     if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
7026       return false;
7027 
7028   return true;
7029 }
7030 
7031 static bool isVMOVNMask(ArrayRef<int> M, EVT VT, bool Top) {
7032   unsigned NumElts = VT.getVectorNumElements();
7033   // Make sure the mask has the right size.
7034   if (NumElts != M.size() || (VT != MVT::v8i16 && VT != MVT::v16i8))
7035       return false;
7036 
7037   // If Top
7038   //   Look for <0, N, 2, N+2, 4, N+4, ..>.
7039   //   This inserts Input2 into Input1
7040   // else if not Top
7041   //   Look for <0, N+1, 2, N+3, 4, N+5, ..>
7042   //   This inserts Input1 into Input2
7043   unsigned Offset = Top ? 0 : 1;
7044   for (unsigned i = 0; i < NumElts; i+=2) {
7045     if (M[i] >= 0 && M[i] != (int)i)
7046       return false;
7047     if (M[i+1] >= 0 && M[i+1] != (int)(NumElts + i + Offset))
7048       return false;
7049   }
7050 
7051   return true;
7052 }
7053 
7054 // If N is an integer constant that can be moved into a register in one
7055 // instruction, return an SDValue of such a constant (will become a MOV
7056 // instruction).  Otherwise return null.
7057 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
7058                                      const ARMSubtarget *ST, const SDLoc &dl) {
7059   uint64_t Val;
7060   if (!isa<ConstantSDNode>(N))
7061     return SDValue();
7062   Val = cast<ConstantSDNode>(N)->getZExtValue();
7063 
7064   if (ST->isThumb1Only()) {
7065     if (Val <= 255 || ~Val <= 255)
7066       return DAG.getConstant(Val, dl, MVT::i32);
7067   } else {
7068     if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
7069       return DAG.getConstant(Val, dl, MVT::i32);
7070   }
7071   return SDValue();
7072 }
7073 
7074 static SDValue LowerBUILD_VECTOR_i1(SDValue Op, SelectionDAG &DAG,
7075                                     const ARMSubtarget *ST) {
7076   SDLoc dl(Op);
7077   EVT VT = Op.getValueType();
7078 
7079   assert(ST->hasMVEIntegerOps() && "LowerBUILD_VECTOR_i1 called without MVE!");
7080 
7081   unsigned NumElts = VT.getVectorNumElements();
7082   unsigned BoolMask;
7083   unsigned BitsPerBool;
7084   if (NumElts == 4) {
7085     BitsPerBool = 4;
7086     BoolMask = 0xf;
7087   } else if (NumElts == 8) {
7088     BitsPerBool = 2;
7089     BoolMask = 0x3;
7090   } else if (NumElts == 16) {
7091     BitsPerBool = 1;
7092     BoolMask = 0x1;
7093   } else
7094     return SDValue();
7095 
7096   // If this is a single value copied into all lanes (a splat), we can just sign
7097   // extend that single value
7098   SDValue FirstOp = Op.getOperand(0);
7099   if (!isa<ConstantSDNode>(FirstOp) &&
7100       std::all_of(std::next(Op->op_begin()), Op->op_end(),
7101                   [&FirstOp](SDUse &U) {
7102                     return U.get().isUndef() || U.get() == FirstOp;
7103                   })) {
7104     SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i32, FirstOp,
7105                               DAG.getValueType(MVT::i1));
7106     return DAG.getNode(ARMISD::PREDICATE_CAST, dl, Op.getValueType(), Ext);
7107   }
7108 
7109   // First create base with bits set where known
7110   unsigned Bits32 = 0;
7111   for (unsigned i = 0; i < NumElts; ++i) {
7112     SDValue V = Op.getOperand(i);
7113     if (!isa<ConstantSDNode>(V) && !V.isUndef())
7114       continue;
7115     bool BitSet = V.isUndef() ? false : cast<ConstantSDNode>(V)->getZExtValue();
7116     if (BitSet)
7117       Bits32 |= BoolMask << (i * BitsPerBool);
7118   }
7119 
7120   // Add in unknown nodes
7121   SDValue Base = DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT,
7122                              DAG.getConstant(Bits32, dl, MVT::i32));
7123   for (unsigned i = 0; i < NumElts; ++i) {
7124     SDValue V = Op.getOperand(i);
7125     if (isa<ConstantSDNode>(V) || V.isUndef())
7126       continue;
7127     Base = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Base, V,
7128                        DAG.getConstant(i, dl, MVT::i32));
7129   }
7130 
7131   return Base;
7132 }
7133 
7134 // If this is a case we can't handle, return null and let the default
7135 // expansion code take care of it.
7136 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
7137                                              const ARMSubtarget *ST) const {
7138   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
7139   SDLoc dl(Op);
7140   EVT VT = Op.getValueType();
7141 
7142   if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
7143     return LowerBUILD_VECTOR_i1(Op, DAG, ST);
7144 
7145   APInt SplatBits, SplatUndef;
7146   unsigned SplatBitSize;
7147   bool HasAnyUndefs;
7148   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
7149     if (SplatUndef.isAllOnesValue())
7150       return DAG.getUNDEF(VT);
7151 
7152     if ((ST->hasNEON() && SplatBitSize <= 64) ||
7153         (ST->hasMVEIntegerOps() && SplatBitSize <= 32)) {
7154       // Check if an immediate VMOV works.
7155       EVT VmovVT;
7156       SDValue Val = isVMOVModifiedImm(SplatBits.getZExtValue(),
7157                                       SplatUndef.getZExtValue(), SplatBitSize,
7158                                       DAG, dl, VmovVT, VT.is128BitVector(),
7159                                       VMOVModImm);
7160 
7161       if (Val.getNode()) {
7162         SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
7163         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
7164       }
7165 
7166       // Try an immediate VMVN.
7167       uint64_t NegatedImm = (~SplatBits).getZExtValue();
7168       Val = isVMOVModifiedImm(
7169           NegatedImm, SplatUndef.getZExtValue(), SplatBitSize,
7170           DAG, dl, VmovVT, VT.is128BitVector(),
7171           ST->hasMVEIntegerOps() ? MVEVMVNModImm : VMVNModImm);
7172       if (Val.getNode()) {
7173         SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
7174         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
7175       }
7176 
7177       // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
7178       if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
7179         int ImmVal = ARM_AM::getFP32Imm(SplatBits);
7180         if (ImmVal != -1) {
7181           SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
7182           return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
7183         }
7184       }
7185     }
7186   }
7187 
7188   // Scan through the operands to see if only one value is used.
7189   //
7190   // As an optimisation, even if more than one value is used it may be more
7191   // profitable to splat with one value then change some lanes.
7192   //
7193   // Heuristically we decide to do this if the vector has a "dominant" value,
7194   // defined as splatted to more than half of the lanes.
7195   unsigned NumElts = VT.getVectorNumElements();
7196   bool isOnlyLowElement = true;
7197   bool usesOnlyOneValue = true;
7198   bool hasDominantValue = false;
7199   bool isConstant = true;
7200 
7201   // Map of the number of times a particular SDValue appears in the
7202   // element list.
7203   DenseMap<SDValue, unsigned> ValueCounts;
7204   SDValue Value;
7205   for (unsigned i = 0; i < NumElts; ++i) {
7206     SDValue V = Op.getOperand(i);
7207     if (V.isUndef())
7208       continue;
7209     if (i > 0)
7210       isOnlyLowElement = false;
7211     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
7212       isConstant = false;
7213 
7214     ValueCounts.insert(std::make_pair(V, 0));
7215     unsigned &Count = ValueCounts[V];
7216 
7217     // Is this value dominant? (takes up more than half of the lanes)
7218     if (++Count > (NumElts / 2)) {
7219       hasDominantValue = true;
7220       Value = V;
7221     }
7222   }
7223   if (ValueCounts.size() != 1)
7224     usesOnlyOneValue = false;
7225   if (!Value.getNode() && !ValueCounts.empty())
7226     Value = ValueCounts.begin()->first;
7227 
7228   if (ValueCounts.empty())
7229     return DAG.getUNDEF(VT);
7230 
7231   // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
7232   // Keep going if we are hitting this case.
7233   if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
7234     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
7235 
7236   unsigned EltSize = VT.getScalarSizeInBits();
7237 
7238   // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
7239   // i32 and try again.
7240   if (hasDominantValue && EltSize <= 32) {
7241     if (!isConstant) {
7242       SDValue N;
7243 
7244       // If we are VDUPing a value that comes directly from a vector, that will
7245       // cause an unnecessary move to and from a GPR, where instead we could
7246       // just use VDUPLANE. We can only do this if the lane being extracted
7247       // is at a constant index, as the VDUP from lane instructions only have
7248       // constant-index forms.
7249       ConstantSDNode *constIndex;
7250       if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7251           (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
7252         // We need to create a new undef vector to use for the VDUPLANE if the
7253         // size of the vector from which we get the value is different than the
7254         // size of the vector that we need to create. We will insert the element
7255         // such that the register coalescer will remove unnecessary copies.
7256         if (VT != Value->getOperand(0).getValueType()) {
7257           unsigned index = constIndex->getAPIntValue().getLimitedValue() %
7258                              VT.getVectorNumElements();
7259           N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
7260                  DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
7261                         Value, DAG.getConstant(index, dl, MVT::i32)),
7262                            DAG.getConstant(index, dl, MVT::i32));
7263         } else
7264           N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
7265                         Value->getOperand(0), Value->getOperand(1));
7266       } else
7267         N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
7268 
7269       if (!usesOnlyOneValue) {
7270         // The dominant value was splatted as 'N', but we now have to insert
7271         // all differing elements.
7272         for (unsigned I = 0; I < NumElts; ++I) {
7273           if (Op.getOperand(I) == Value)
7274             continue;
7275           SmallVector<SDValue, 3> Ops;
7276           Ops.push_back(N);
7277           Ops.push_back(Op.getOperand(I));
7278           Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
7279           N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
7280         }
7281       }
7282       return N;
7283     }
7284     if (VT.getVectorElementType().isFloatingPoint()) {
7285       SmallVector<SDValue, 8> Ops;
7286       MVT FVT = VT.getVectorElementType().getSimpleVT();
7287       assert(FVT == MVT::f32 || FVT == MVT::f16);
7288       MVT IVT = (FVT == MVT::f32) ? MVT::i32 : MVT::i16;
7289       for (unsigned i = 0; i < NumElts; ++i)
7290         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, IVT,
7291                                   Op.getOperand(i)));
7292       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), IVT, NumElts);
7293       SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
7294       Val = LowerBUILD_VECTOR(Val, DAG, ST);
7295       if (Val.getNode())
7296         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
7297     }
7298     if (usesOnlyOneValue) {
7299       SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
7300       if (isConstant && Val.getNode())
7301         return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
7302     }
7303   }
7304 
7305   // If all elements are constants and the case above didn't get hit, fall back
7306   // to the default expansion, which will generate a load from the constant
7307   // pool.
7308   if (isConstant)
7309     return SDValue();
7310 
7311   // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
7312   if (NumElts >= 4) {
7313     SDValue shuffle = ReconstructShuffle(Op, DAG);
7314     if (shuffle != SDValue())
7315       return shuffle;
7316   }
7317 
7318   if (ST->hasNEON() && VT.is128BitVector() && VT != MVT::v2f64 && VT != MVT::v4f32) {
7319     // If we haven't found an efficient lowering, try splitting a 128-bit vector
7320     // into two 64-bit vectors; we might discover a better way to lower it.
7321     SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElts);
7322     EVT ExtVT = VT.getVectorElementType();
7323     EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElts / 2);
7324     SDValue Lower =
7325         DAG.getBuildVector(HVT, dl, makeArrayRef(&Ops[0], NumElts / 2));
7326     if (Lower.getOpcode() == ISD::BUILD_VECTOR)
7327       Lower = LowerBUILD_VECTOR(Lower, DAG, ST);
7328     SDValue Upper = DAG.getBuildVector(
7329         HVT, dl, makeArrayRef(&Ops[NumElts / 2], NumElts / 2));
7330     if (Upper.getOpcode() == ISD::BUILD_VECTOR)
7331       Upper = LowerBUILD_VECTOR(Upper, DAG, ST);
7332     if (Lower && Upper)
7333       return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lower, Upper);
7334   }
7335 
7336   // Vectors with 32- or 64-bit elements can be built by directly assigning
7337   // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
7338   // will be legalized.
7339   if (EltSize >= 32) {
7340     // Do the expansion with floating-point types, since that is what the VFP
7341     // registers are defined to use, and since i64 is not legal.
7342     EVT EltVT = EVT::getFloatingPointVT(EltSize);
7343     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
7344     SmallVector<SDValue, 8> Ops;
7345     for (unsigned i = 0; i < NumElts; ++i)
7346       Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
7347     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
7348     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
7349   }
7350 
7351   // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
7352   // know the default expansion would otherwise fall back on something even
7353   // worse. For a vector with one or two non-undef values, that's
7354   // scalar_to_vector for the elements followed by a shuffle (provided the
7355   // shuffle is valid for the target) and materialization element by element
7356   // on the stack followed by a load for everything else.
7357   if (!isConstant && !usesOnlyOneValue) {
7358     SDValue Vec = DAG.getUNDEF(VT);
7359     for (unsigned i = 0 ; i < NumElts; ++i) {
7360       SDValue V = Op.getOperand(i);
7361       if (V.isUndef())
7362         continue;
7363       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
7364       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
7365     }
7366     return Vec;
7367   }
7368 
7369   return SDValue();
7370 }
7371 
7372 // Gather data to see if the operation can be modelled as a
7373 // shuffle in combination with VEXTs.
7374 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
7375                                               SelectionDAG &DAG) const {
7376   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
7377   SDLoc dl(Op);
7378   EVT VT = Op.getValueType();
7379   unsigned NumElts = VT.getVectorNumElements();
7380 
7381   struct ShuffleSourceInfo {
7382     SDValue Vec;
7383     unsigned MinElt = std::numeric_limits<unsigned>::max();
7384     unsigned MaxElt = 0;
7385 
7386     // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
7387     // be compatible with the shuffle we intend to construct. As a result
7388     // ShuffleVec will be some sliding window into the original Vec.
7389     SDValue ShuffleVec;
7390 
7391     // Code should guarantee that element i in Vec starts at element "WindowBase
7392     // + i * WindowScale in ShuffleVec".
7393     int WindowBase = 0;
7394     int WindowScale = 1;
7395 
7396     ShuffleSourceInfo(SDValue Vec) : Vec(Vec), ShuffleVec(Vec) {}
7397 
7398     bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
7399   };
7400 
7401   // First gather all vectors used as an immediate source for this BUILD_VECTOR
7402   // node.
7403   SmallVector<ShuffleSourceInfo, 2> Sources;
7404   for (unsigned i = 0; i < NumElts; ++i) {
7405     SDValue V = Op.getOperand(i);
7406     if (V.isUndef())
7407       continue;
7408     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
7409       // A shuffle can only come from building a vector from various
7410       // elements of other vectors.
7411       return SDValue();
7412     } else if (!isa<ConstantSDNode>(V.getOperand(1))) {
7413       // Furthermore, shuffles require a constant mask, whereas extractelts
7414       // accept variable indices.
7415       return SDValue();
7416     }
7417 
7418     // Add this element source to the list if it's not already there.
7419     SDValue SourceVec = V.getOperand(0);
7420     auto Source = llvm::find(Sources, SourceVec);
7421     if (Source == Sources.end())
7422       Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
7423 
7424     // Update the minimum and maximum lane number seen.
7425     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
7426     Source->MinElt = std::min(Source->MinElt, EltNo);
7427     Source->MaxElt = std::max(Source->MaxElt, EltNo);
7428   }
7429 
7430   // Currently only do something sane when at most two source vectors
7431   // are involved.
7432   if (Sources.size() > 2)
7433     return SDValue();
7434 
7435   // Find out the smallest element size among result and two sources, and use
7436   // it as element size to build the shuffle_vector.
7437   EVT SmallestEltTy = VT.getVectorElementType();
7438   for (auto &Source : Sources) {
7439     EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
7440     if (SrcEltTy.bitsLT(SmallestEltTy))
7441       SmallestEltTy = SrcEltTy;
7442   }
7443   unsigned ResMultiplier =
7444       VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
7445   NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
7446   EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
7447 
7448   // If the source vector is too wide or too narrow, we may nevertheless be able
7449   // to construct a compatible shuffle either by concatenating it with UNDEF or
7450   // extracting a suitable range of elements.
7451   for (auto &Src : Sources) {
7452     EVT SrcVT = Src.ShuffleVec.getValueType();
7453 
7454     if (SrcVT.getSizeInBits() == VT.getSizeInBits())
7455       continue;
7456 
7457     // This stage of the search produces a source with the same element type as
7458     // the original, but with a total width matching the BUILD_VECTOR output.
7459     EVT EltVT = SrcVT.getVectorElementType();
7460     unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
7461     EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
7462 
7463     if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
7464       if (2 * SrcVT.getSizeInBits() != VT.getSizeInBits())
7465         return SDValue();
7466       // We can pad out the smaller vector for free, so if it's part of a
7467       // shuffle...
7468       Src.ShuffleVec =
7469           DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
7470                       DAG.getUNDEF(Src.ShuffleVec.getValueType()));
7471       continue;
7472     }
7473 
7474     if (SrcVT.getSizeInBits() != 2 * VT.getSizeInBits())
7475       return SDValue();
7476 
7477     if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
7478       // Span too large for a VEXT to cope
7479       return SDValue();
7480     }
7481 
7482     if (Src.MinElt >= NumSrcElts) {
7483       // The extraction can just take the second half
7484       Src.ShuffleVec =
7485           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
7486                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
7487       Src.WindowBase = -NumSrcElts;
7488     } else if (Src.MaxElt < NumSrcElts) {
7489       // The extraction can just take the first half
7490       Src.ShuffleVec =
7491           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
7492                       DAG.getConstant(0, dl, MVT::i32));
7493     } else {
7494       // An actual VEXT is needed
7495       SDValue VEXTSrc1 =
7496           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
7497                       DAG.getConstant(0, dl, MVT::i32));
7498       SDValue VEXTSrc2 =
7499           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
7500                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
7501 
7502       Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
7503                                    VEXTSrc2,
7504                                    DAG.getConstant(Src.MinElt, dl, MVT::i32));
7505       Src.WindowBase = -Src.MinElt;
7506     }
7507   }
7508 
7509   // Another possible incompatibility occurs from the vector element types. We
7510   // can fix this by bitcasting the source vectors to the same type we intend
7511   // for the shuffle.
7512   for (auto &Src : Sources) {
7513     EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
7514     if (SrcEltTy == SmallestEltTy)
7515       continue;
7516     assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
7517     Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
7518     Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
7519     Src.WindowBase *= Src.WindowScale;
7520   }
7521 
7522   // Final sanity check before we try to actually produce a shuffle.
7523   LLVM_DEBUG(for (auto Src
7524                   : Sources)
7525                  assert(Src.ShuffleVec.getValueType() == ShuffleVT););
7526 
7527   // The stars all align, our next step is to produce the mask for the shuffle.
7528   SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
7529   int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
7530   for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
7531     SDValue Entry = Op.getOperand(i);
7532     if (Entry.isUndef())
7533       continue;
7534 
7535     auto Src = llvm::find(Sources, Entry.getOperand(0));
7536     int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
7537 
7538     // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
7539     // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
7540     // segment.
7541     EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
7542     int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
7543                                VT.getScalarSizeInBits());
7544     int LanesDefined = BitsDefined / BitsPerShuffleLane;
7545 
7546     // This source is expected to fill ResMultiplier lanes of the final shuffle,
7547     // starting at the appropriate offset.
7548     int *LaneMask = &Mask[i * ResMultiplier];
7549 
7550     int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
7551     ExtractBase += NumElts * (Src - Sources.begin());
7552     for (int j = 0; j < LanesDefined; ++j)
7553       LaneMask[j] = ExtractBase + j;
7554   }
7555 
7556 
7557   // We can't handle more than two sources. This should have already
7558   // been checked before this point.
7559   assert(Sources.size() <= 2 && "Too many sources!");
7560 
7561   SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
7562   for (unsigned i = 0; i < Sources.size(); ++i)
7563     ShuffleOps[i] = Sources[i].ShuffleVec;
7564 
7565   SDValue Shuffle = buildLegalVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
7566                                             ShuffleOps[1], Mask, DAG);
7567   if (!Shuffle)
7568     return SDValue();
7569   return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
7570 }
7571 
7572 enum ShuffleOpCodes {
7573   OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7574   OP_VREV,
7575   OP_VDUP0,
7576   OP_VDUP1,
7577   OP_VDUP2,
7578   OP_VDUP3,
7579   OP_VEXT1,
7580   OP_VEXT2,
7581   OP_VEXT3,
7582   OP_VUZPL, // VUZP, left result
7583   OP_VUZPR, // VUZP, right result
7584   OP_VZIPL, // VZIP, left result
7585   OP_VZIPR, // VZIP, right result
7586   OP_VTRNL, // VTRN, left result
7587   OP_VTRNR  // VTRN, right result
7588 };
7589 
7590 static bool isLegalMVEShuffleOp(unsigned PFEntry) {
7591   unsigned OpNum = (PFEntry >> 26) & 0x0F;
7592   switch (OpNum) {
7593   case OP_COPY:
7594   case OP_VREV:
7595   case OP_VDUP0:
7596   case OP_VDUP1:
7597   case OP_VDUP2:
7598   case OP_VDUP3:
7599     return true;
7600   }
7601   return false;
7602 }
7603 
7604 /// isShuffleMaskLegal - Targets can use this to indicate that they only
7605 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7606 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7607 /// are assumed to be legal.
7608 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
7609   if (VT.getVectorNumElements() == 4 &&
7610       (VT.is128BitVector() || VT.is64BitVector())) {
7611     unsigned PFIndexes[4];
7612     for (unsigned i = 0; i != 4; ++i) {
7613       if (M[i] < 0)
7614         PFIndexes[i] = 8;
7615       else
7616         PFIndexes[i] = M[i];
7617     }
7618 
7619     // Compute the index in the perfect shuffle table.
7620     unsigned PFTableIndex =
7621       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
7622     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7623     unsigned Cost = (PFEntry >> 30);
7624 
7625     if (Cost <= 4 && (Subtarget->hasNEON() || isLegalMVEShuffleOp(PFEntry)))
7626       return true;
7627   }
7628 
7629   bool ReverseVEXT, isV_UNDEF;
7630   unsigned Imm, WhichResult;
7631 
7632   unsigned EltSize = VT.getScalarSizeInBits();
7633   if (EltSize >= 32 ||
7634       ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
7635       ShuffleVectorInst::isIdentityMask(M) ||
7636       isVREVMask(M, VT, 64) ||
7637       isVREVMask(M, VT, 32) ||
7638       isVREVMask(M, VT, 16))
7639     return true;
7640   else if (Subtarget->hasNEON() &&
7641            (isVEXTMask(M, VT, ReverseVEXT, Imm) ||
7642             isVTBLMask(M, VT) ||
7643             isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF)))
7644     return true;
7645   else if (Subtarget->hasNEON() && (VT == MVT::v8i16 || VT == MVT::v16i8) &&
7646            isReverseMask(M, VT))
7647     return true;
7648   else if (Subtarget->hasMVEIntegerOps() &&
7649            (isVMOVNMask(M, VT, 0) || isVMOVNMask(M, VT, 1)))
7650     return true;
7651   else
7652     return false;
7653 }
7654 
7655 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7656 /// the specified operations to build the shuffle.
7657 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
7658                                       SDValue RHS, SelectionDAG &DAG,
7659                                       const SDLoc &dl) {
7660   unsigned OpNum = (PFEntry >> 26) & 0x0F;
7661   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
7662   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
7663 
7664   if (OpNum == OP_COPY) {
7665     if (LHSID == (1*9+2)*9+3) return LHS;
7666     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7667     return RHS;
7668   }
7669 
7670   SDValue OpLHS, OpRHS;
7671   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
7672   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
7673   EVT VT = OpLHS.getValueType();
7674 
7675   switch (OpNum) {
7676   default: llvm_unreachable("Unknown shuffle opcode!");
7677   case OP_VREV:
7678     // VREV divides the vector in half and swaps within the half.
7679     if (VT.getVectorElementType() == MVT::i32 ||
7680         VT.getVectorElementType() == MVT::f32)
7681       return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
7682     // vrev <4 x i16> -> VREV32
7683     if (VT.getVectorElementType() == MVT::i16)
7684       return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
7685     // vrev <4 x i8> -> VREV16
7686     assert(VT.getVectorElementType() == MVT::i8);
7687     return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
7688   case OP_VDUP0:
7689   case OP_VDUP1:
7690   case OP_VDUP2:
7691   case OP_VDUP3:
7692     return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
7693                        OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
7694   case OP_VEXT1:
7695   case OP_VEXT2:
7696   case OP_VEXT3:
7697     return DAG.getNode(ARMISD::VEXT, dl, VT,
7698                        OpLHS, OpRHS,
7699                        DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
7700   case OP_VUZPL:
7701   case OP_VUZPR:
7702     return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
7703                        OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
7704   case OP_VZIPL:
7705   case OP_VZIPR:
7706     return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
7707                        OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
7708   case OP_VTRNL:
7709   case OP_VTRNR:
7710     return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
7711                        OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
7712   }
7713 }
7714 
7715 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
7716                                        ArrayRef<int> ShuffleMask,
7717                                        SelectionDAG &DAG) {
7718   // Check to see if we can use the VTBL instruction.
7719   SDValue V1 = Op.getOperand(0);
7720   SDValue V2 = Op.getOperand(1);
7721   SDLoc DL(Op);
7722 
7723   SmallVector<SDValue, 8> VTBLMask;
7724   for (ArrayRef<int>::iterator
7725          I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
7726     VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32));
7727 
7728   if (V2.getNode()->isUndef())
7729     return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
7730                        DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
7731 
7732   return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
7733                      DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
7734 }
7735 
7736 static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
7737                                                       SelectionDAG &DAG) {
7738   SDLoc DL(Op);
7739   SDValue OpLHS = Op.getOperand(0);
7740   EVT VT = OpLHS.getValueType();
7741 
7742   assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
7743          "Expect an v8i16/v16i8 type");
7744   OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
7745   // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
7746   // extract the first 8 bytes into the top double word and the last 8 bytes
7747   // into the bottom double word. The v8i16 case is similar.
7748   unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
7749   return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
7750                      DAG.getConstant(ExtractNum, DL, MVT::i32));
7751 }
7752 
7753 static EVT getVectorTyFromPredicateVector(EVT VT) {
7754   switch (VT.getSimpleVT().SimpleTy) {
7755   case MVT::v4i1:
7756     return MVT::v4i32;
7757   case MVT::v8i1:
7758     return MVT::v8i16;
7759   case MVT::v16i1:
7760     return MVT::v16i8;
7761   default:
7762     llvm_unreachable("Unexpected vector predicate type");
7763   }
7764 }
7765 
7766 static SDValue PromoteMVEPredVector(SDLoc dl, SDValue Pred, EVT VT,
7767                                     SelectionDAG &DAG) {
7768   // Converting from boolean predicates to integers involves creating a vector
7769   // of all ones or all zeroes and selecting the lanes based upon the real
7770   // predicate.
7771   SDValue AllOnes =
7772       DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff), dl, MVT::i32);
7773   AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllOnes);
7774 
7775   SDValue AllZeroes =
7776       DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0x0), dl, MVT::i32);
7777   AllZeroes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllZeroes);
7778 
7779   // Get full vector type from predicate type
7780   EVT NewVT = getVectorTyFromPredicateVector(VT);
7781 
7782   SDValue RecastV1;
7783   // If the real predicate is an v8i1 or v4i1 (not v16i1) then we need to recast
7784   // this to a v16i1. This cannot be done with an ordinary bitcast because the
7785   // sizes are not the same. We have to use a MVE specific PREDICATE_CAST node,
7786   // since we know in hardware the sizes are really the same.
7787   if (VT != MVT::v16i1)
7788     RecastV1 = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v16i1, Pred);
7789   else
7790     RecastV1 = Pred;
7791 
7792   // Select either all ones or zeroes depending upon the real predicate bits.
7793   SDValue PredAsVector =
7794       DAG.getNode(ISD::VSELECT, dl, MVT::v16i8, RecastV1, AllOnes, AllZeroes);
7795 
7796   // Recast our new predicate-as-integer v16i8 vector into something
7797   // appropriate for the shuffle, i.e. v4i32 for a real v4i1 predicate.
7798   return DAG.getNode(ISD::BITCAST, dl, NewVT, PredAsVector);
7799 }
7800 
7801 static SDValue LowerVECTOR_SHUFFLE_i1(SDValue Op, SelectionDAG &DAG,
7802                                       const ARMSubtarget *ST) {
7803   EVT VT = Op.getValueType();
7804   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
7805   ArrayRef<int> ShuffleMask = SVN->getMask();
7806 
7807   assert(ST->hasMVEIntegerOps() &&
7808          "No support for vector shuffle of boolean predicates");
7809 
7810   SDValue V1 = Op.getOperand(0);
7811   SDLoc dl(Op);
7812   if (isReverseMask(ShuffleMask, VT)) {
7813     SDValue cast = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, V1);
7814     SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, cast);
7815     SDValue srl = DAG.getNode(ISD::SRL, dl, MVT::i32, rbit,
7816                               DAG.getConstant(16, dl, MVT::i32));
7817     return DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, srl);
7818   }
7819 
7820   // Until we can come up with optimised cases for every single vector
7821   // shuffle in existence we have chosen the least painful strategy. This is
7822   // to essentially promote the boolean predicate to a 8-bit integer, where
7823   // each predicate represents a byte. Then we fall back on a normal integer
7824   // vector shuffle and convert the result back into a predicate vector. In
7825   // many cases the generated code might be even better than scalar code
7826   // operating on bits. Just imagine trying to shuffle 8 arbitrary 2-bit
7827   // fields in a register into 8 other arbitrary 2-bit fields!
7828   SDValue PredAsVector = PromoteMVEPredVector(dl, V1, VT, DAG);
7829   EVT NewVT = PredAsVector.getValueType();
7830 
7831   // Do the shuffle!
7832   SDValue Shuffled = DAG.getVectorShuffle(NewVT, dl, PredAsVector,
7833                                           DAG.getUNDEF(NewVT), ShuffleMask);
7834 
7835   // Now return the result of comparing the shuffled vector with zero,
7836   // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
7837   return DAG.getNode(ARMISD::VCMPZ, dl, VT, Shuffled,
7838                      DAG.getConstant(ARMCC::NE, dl, MVT::i32));
7839 }
7840 
7841 static SDValue LowerVECTOR_SHUFFLEUsingMovs(SDValue Op,
7842                                             ArrayRef<int> ShuffleMask,
7843                                             SelectionDAG &DAG) {
7844   // Attempt to lower the vector shuffle using as many whole register movs as
7845   // possible. This is useful for types smaller than 32bits, which would
7846   // often otherwise become a series for grp movs.
7847   SDLoc dl(Op);
7848   EVT VT = Op.getValueType();
7849   if (VT.getScalarSizeInBits() >= 32)
7850     return SDValue();
7851 
7852   assert((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
7853          "Unexpected vector type");
7854   int NumElts = VT.getVectorNumElements();
7855   int QuarterSize = NumElts / 4;
7856   // The four final parts of the vector, as i32's
7857   SDValue Parts[4];
7858 
7859   // Look for full lane vmovs like <0,1,2,3> or <u,5,6,7> etc, (but not
7860   // <u,u,u,u>), returning the vmov lane index
7861   auto getMovIdx = [](ArrayRef<int> ShuffleMask, int Start, int Length) {
7862     // Detect which mov lane this would be from the first non-undef element.
7863     int MovIdx = -1;
7864     for (int i = 0; i < Length; i++) {
7865       if (ShuffleMask[Start + i] >= 0) {
7866         if (ShuffleMask[Start + i] % Length != i)
7867           return -1;
7868         MovIdx = ShuffleMask[Start + i] / Length;
7869         break;
7870       }
7871     }
7872     // If all items are undef, leave this for other combines
7873     if (MovIdx == -1)
7874       return -1;
7875     // Check the remaining values are the correct part of the same mov
7876     for (int i = 1; i < Length; i++) {
7877       if (ShuffleMask[Start + i] >= 0 &&
7878           (ShuffleMask[Start + i] / Length != MovIdx ||
7879            ShuffleMask[Start + i] % Length != i))
7880         return -1;
7881     }
7882     return MovIdx;
7883   };
7884 
7885   for (int Part = 0; Part < 4; ++Part) {
7886     // Does this part look like a mov
7887     int Elt = getMovIdx(ShuffleMask, Part * QuarterSize, QuarterSize);
7888     if (Elt != -1) {
7889       SDValue Input = Op->getOperand(0);
7890       if (Elt >= 4) {
7891         Input = Op->getOperand(1);
7892         Elt -= 4;
7893       }
7894       SDValue BitCast = DAG.getBitcast(MVT::v4i32, Input);
7895       Parts[Part] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, BitCast,
7896                                 DAG.getConstant(Elt, dl, MVT::i32));
7897     }
7898   }
7899 
7900   // Nothing interesting found, just return
7901   if (!Parts[0] && !Parts[1] && !Parts[2] && !Parts[3])
7902     return SDValue();
7903 
7904   // The other parts need to be built with the old shuffle vector, cast to a
7905   // v4i32 and extract_vector_elts
7906   if (!Parts[0] || !Parts[1] || !Parts[2] || !Parts[3]) {
7907     SmallVector<int, 16> NewShuffleMask;
7908     for (int Part = 0; Part < 4; ++Part)
7909       for (int i = 0; i < QuarterSize; i++)
7910         NewShuffleMask.push_back(
7911             Parts[Part] ? -1 : ShuffleMask[Part * QuarterSize + i]);
7912     SDValue NewShuffle = DAG.getVectorShuffle(
7913         VT, dl, Op->getOperand(0), Op->getOperand(1), NewShuffleMask);
7914     SDValue BitCast = DAG.getBitcast(MVT::v4i32, NewShuffle);
7915 
7916     for (int Part = 0; Part < 4; ++Part)
7917       if (!Parts[Part])
7918         Parts[Part] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7919                                   BitCast, DAG.getConstant(Part, dl, MVT::i32));
7920   }
7921   // Build a vector out of the various parts and bitcast it back to the original
7922   // type.
7923   SDValue NewVec = DAG.getBuildVector(MVT::v4i32, dl, Parts);
7924   return DAG.getBitcast(VT, NewVec);
7925 }
7926 
7927 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
7928                                    const ARMSubtarget *ST) {
7929   SDValue V1 = Op.getOperand(0);
7930   SDValue V2 = Op.getOperand(1);
7931   SDLoc dl(Op);
7932   EVT VT = Op.getValueType();
7933   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
7934   unsigned EltSize = VT.getScalarSizeInBits();
7935 
7936   if (ST->hasMVEIntegerOps() && EltSize == 1)
7937     return LowerVECTOR_SHUFFLE_i1(Op, DAG, ST);
7938 
7939   // Convert shuffles that are directly supported on NEON to target-specific
7940   // DAG nodes, instead of keeping them as shuffles and matching them again
7941   // during code selection.  This is more efficient and avoids the possibility
7942   // of inconsistencies between legalization and selection.
7943   // FIXME: floating-point vectors should be canonicalized to integer vectors
7944   // of the same time so that they get CSEd properly.
7945   ArrayRef<int> ShuffleMask = SVN->getMask();
7946 
7947   if (EltSize <= 32) {
7948     if (SVN->isSplat()) {
7949       int Lane = SVN->getSplatIndex();
7950       // If this is undef splat, generate it via "just" vdup, if possible.
7951       if (Lane == -1) Lane = 0;
7952 
7953       // Test if V1 is a SCALAR_TO_VECTOR.
7954       if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
7955         return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
7956       }
7957       // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
7958       // (and probably will turn into a SCALAR_TO_VECTOR once legalization
7959       // reaches it).
7960       if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
7961           !isa<ConstantSDNode>(V1.getOperand(0))) {
7962         bool IsScalarToVector = true;
7963         for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
7964           if (!V1.getOperand(i).isUndef()) {
7965             IsScalarToVector = false;
7966             break;
7967           }
7968         if (IsScalarToVector)
7969           return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
7970       }
7971       return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
7972                          DAG.getConstant(Lane, dl, MVT::i32));
7973     }
7974 
7975     bool ReverseVEXT = false;
7976     unsigned Imm = 0;
7977     if (ST->hasNEON() && isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
7978       if (ReverseVEXT)
7979         std::swap(V1, V2);
7980       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
7981                          DAG.getConstant(Imm, dl, MVT::i32));
7982     }
7983 
7984     if (isVREVMask(ShuffleMask, VT, 64))
7985       return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
7986     if (isVREVMask(ShuffleMask, VT, 32))
7987       return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
7988     if (isVREVMask(ShuffleMask, VT, 16))
7989       return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
7990 
7991     if (ST->hasNEON() && V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
7992       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
7993                          DAG.getConstant(Imm, dl, MVT::i32));
7994     }
7995 
7996     // Check for Neon shuffles that modify both input vectors in place.
7997     // If both results are used, i.e., if there are two shuffles with the same
7998     // source operands and with masks corresponding to both results of one of
7999     // these operations, DAG memoization will ensure that a single node is
8000     // used for both shuffles.
8001     unsigned WhichResult = 0;
8002     bool isV_UNDEF = false;
8003     if (ST->hasNEON()) {
8004       if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
8005               ShuffleMask, VT, WhichResult, isV_UNDEF)) {
8006         if (isV_UNDEF)
8007           V2 = V1;
8008         return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
8009             .getValue(WhichResult);
8010       }
8011     }
8012     if (ST->hasMVEIntegerOps()) {
8013       if (isVMOVNMask(ShuffleMask, VT, 0))
8014         return DAG.getNode(ARMISD::VMOVN, dl, VT, V2, V1,
8015                            DAG.getConstant(0, dl, MVT::i32));
8016       if (isVMOVNMask(ShuffleMask, VT, 1))
8017         return DAG.getNode(ARMISD::VMOVN, dl, VT, V1, V2,
8018                            DAG.getConstant(1, dl, MVT::i32));
8019     }
8020 
8021     // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
8022     // shuffles that produce a result larger than their operands with:
8023     //   shuffle(concat(v1, undef), concat(v2, undef))
8024     // ->
8025     //   shuffle(concat(v1, v2), undef)
8026     // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
8027     //
8028     // This is useful in the general case, but there are special cases where
8029     // native shuffles produce larger results: the two-result ops.
8030     //
8031     // Look through the concat when lowering them:
8032     //   shuffle(concat(v1, v2), undef)
8033     // ->
8034     //   concat(VZIP(v1, v2):0, :1)
8035     //
8036     if (ST->hasNEON() && V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) {
8037       SDValue SubV1 = V1->getOperand(0);
8038       SDValue SubV2 = V1->getOperand(1);
8039       EVT SubVT = SubV1.getValueType();
8040 
8041       // We expect these to have been canonicalized to -1.
8042       assert(llvm::all_of(ShuffleMask, [&](int i) {
8043         return i < (int)VT.getVectorNumElements();
8044       }) && "Unexpected shuffle index into UNDEF operand!");
8045 
8046       if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
8047               ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
8048         if (isV_UNDEF)
8049           SubV2 = SubV1;
8050         assert((WhichResult == 0) &&
8051                "In-place shuffle of concat can only have one result!");
8052         SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
8053                                   SubV1, SubV2);
8054         return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
8055                            Res.getValue(1));
8056       }
8057     }
8058   }
8059 
8060   // If the shuffle is not directly supported and it has 4 elements, use
8061   // the PerfectShuffle-generated table to synthesize it from other shuffles.
8062   unsigned NumElts = VT.getVectorNumElements();
8063   if (NumElts == 4) {
8064     unsigned PFIndexes[4];
8065     for (unsigned i = 0; i != 4; ++i) {
8066       if (ShuffleMask[i] < 0)
8067         PFIndexes[i] = 8;
8068       else
8069         PFIndexes[i] = ShuffleMask[i];
8070     }
8071 
8072     // Compute the index in the perfect shuffle table.
8073     unsigned PFTableIndex =
8074       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
8075     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
8076     unsigned Cost = (PFEntry >> 30);
8077 
8078     if (Cost <= 4) {
8079       if (ST->hasNEON())
8080         return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8081       else if (isLegalMVEShuffleOp(PFEntry)) {
8082         unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8083         unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
8084         unsigned PFEntryLHS = PerfectShuffleTable[LHSID];
8085         unsigned PFEntryRHS = PerfectShuffleTable[RHSID];
8086         if (isLegalMVEShuffleOp(PFEntryLHS) && isLegalMVEShuffleOp(PFEntryRHS))
8087           return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8088       }
8089     }
8090   }
8091 
8092   // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
8093   if (EltSize >= 32) {
8094     // Do the expansion with floating-point types, since that is what the VFP
8095     // registers are defined to use, and since i64 is not legal.
8096     EVT EltVT = EVT::getFloatingPointVT(EltSize);
8097     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
8098     V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
8099     V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
8100     SmallVector<SDValue, 8> Ops;
8101     for (unsigned i = 0; i < NumElts; ++i) {
8102       if (ShuffleMask[i] < 0)
8103         Ops.push_back(DAG.getUNDEF(EltVT));
8104       else
8105         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
8106                                   ShuffleMask[i] < (int)NumElts ? V1 : V2,
8107                                   DAG.getConstant(ShuffleMask[i] & (NumElts-1),
8108                                                   dl, MVT::i32)));
8109     }
8110     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
8111     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
8112   }
8113 
8114   if (ST->hasNEON() && (VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
8115     return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
8116 
8117   if (ST->hasNEON() && VT == MVT::v8i8)
8118     if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG))
8119       return NewOp;
8120 
8121   if (ST->hasMVEIntegerOps())
8122     if (SDValue NewOp = LowerVECTOR_SHUFFLEUsingMovs(Op, ShuffleMask, DAG))
8123       return NewOp;
8124 
8125   return SDValue();
8126 }
8127 
8128 static SDValue LowerINSERT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG,
8129                                          const ARMSubtarget *ST) {
8130   EVT VecVT = Op.getOperand(0).getValueType();
8131   SDLoc dl(Op);
8132 
8133   assert(ST->hasMVEIntegerOps() &&
8134          "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
8135 
8136   SDValue Conv =
8137       DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0));
8138   unsigned Lane = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
8139   unsigned LaneWidth =
8140       getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8;
8141   unsigned Mask = ((1 << LaneWidth) - 1) << Lane * LaneWidth;
8142   SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i32,
8143                             Op.getOperand(1), DAG.getValueType(MVT::i1));
8144   SDValue BFI = DAG.getNode(ARMISD::BFI, dl, MVT::i32, Conv, Ext,
8145                             DAG.getConstant(~Mask, dl, MVT::i32));
8146   return DAG.getNode(ARMISD::PREDICATE_CAST, dl, Op.getValueType(), BFI);
8147 }
8148 
8149 SDValue ARMTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
8150                                                   SelectionDAG &DAG) const {
8151   // INSERT_VECTOR_ELT is legal only for immediate indexes.
8152   SDValue Lane = Op.getOperand(2);
8153   if (!isa<ConstantSDNode>(Lane))
8154     return SDValue();
8155 
8156   SDValue Elt = Op.getOperand(1);
8157   EVT EltVT = Elt.getValueType();
8158 
8159   if (Subtarget->hasMVEIntegerOps() &&
8160       Op.getValueType().getScalarSizeInBits() == 1)
8161     return LowerINSERT_VECTOR_ELT_i1(Op, DAG, Subtarget);
8162 
8163   if (getTypeAction(*DAG.getContext(), EltVT) ==
8164       TargetLowering::TypePromoteFloat) {
8165     // INSERT_VECTOR_ELT doesn't want f16 operands promoting to f32,
8166     // but the type system will try to do that if we don't intervene.
8167     // Reinterpret any such vector-element insertion as one with the
8168     // corresponding integer types.
8169 
8170     SDLoc dl(Op);
8171 
8172     EVT IEltVT = MVT::getIntegerVT(EltVT.getScalarSizeInBits());
8173     assert(getTypeAction(*DAG.getContext(), IEltVT) !=
8174            TargetLowering::TypePromoteFloat);
8175 
8176     SDValue VecIn = Op.getOperand(0);
8177     EVT VecVT = VecIn.getValueType();
8178     EVT IVecVT = EVT::getVectorVT(*DAG.getContext(), IEltVT,
8179                                   VecVT.getVectorNumElements());
8180 
8181     SDValue IElt = DAG.getNode(ISD::BITCAST, dl, IEltVT, Elt);
8182     SDValue IVecIn = DAG.getNode(ISD::BITCAST, dl, IVecVT, VecIn);
8183     SDValue IVecOut = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, IVecVT,
8184                                   IVecIn, IElt, Lane);
8185     return DAG.getNode(ISD::BITCAST, dl, VecVT, IVecOut);
8186   }
8187 
8188   return Op;
8189 }
8190 
8191 static SDValue LowerEXTRACT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG,
8192                                           const ARMSubtarget *ST) {
8193   EVT VecVT = Op.getOperand(0).getValueType();
8194   SDLoc dl(Op);
8195 
8196   assert(ST->hasMVEIntegerOps() &&
8197          "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
8198 
8199   SDValue Conv =
8200       DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0));
8201   unsigned Lane = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
8202   unsigned LaneWidth =
8203       getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8;
8204   SDValue Shift = DAG.getNode(ISD::SRL, dl, MVT::i32, Conv,
8205                               DAG.getConstant(Lane * LaneWidth, dl, MVT::i32));
8206   return Shift;
8207 }
8208 
8209 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG,
8210                                        const ARMSubtarget *ST) {
8211   // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
8212   SDValue Lane = Op.getOperand(1);
8213   if (!isa<ConstantSDNode>(Lane))
8214     return SDValue();
8215 
8216   SDValue Vec = Op.getOperand(0);
8217   EVT VT = Vec.getValueType();
8218 
8219   if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
8220     return LowerEXTRACT_VECTOR_ELT_i1(Op, DAG, ST);
8221 
8222   if (Op.getValueType() == MVT::i32 && Vec.getScalarValueSizeInBits() < 32) {
8223     SDLoc dl(Op);
8224     return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
8225   }
8226 
8227   return Op;
8228 }
8229 
8230 static SDValue LowerCONCAT_VECTORS_i1(SDValue Op, SelectionDAG &DAG,
8231                                       const ARMSubtarget *ST) {
8232   SDValue V1 = Op.getOperand(0);
8233   SDValue V2 = Op.getOperand(1);
8234   SDLoc dl(Op);
8235   EVT VT = Op.getValueType();
8236   EVT Op1VT = V1.getValueType();
8237   EVT Op2VT = V2.getValueType();
8238   unsigned NumElts = VT.getVectorNumElements();
8239 
8240   assert(Op1VT == Op2VT && "Operand types don't match!");
8241   assert(VT.getScalarSizeInBits() == 1 &&
8242          "Unexpected custom CONCAT_VECTORS lowering");
8243   assert(ST->hasMVEIntegerOps() &&
8244          "CONCAT_VECTORS lowering only supported for MVE");
8245 
8246   SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG);
8247   SDValue NewV2 = PromoteMVEPredVector(dl, V2, Op2VT, DAG);
8248 
8249   // We now have Op1 + Op2 promoted to vectors of integers, where v8i1 gets
8250   // promoted to v8i16, etc.
8251 
8252   MVT ElType = getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT();
8253 
8254   // Extract the vector elements from Op1 and Op2 one by one and truncate them
8255   // to be the right size for the destination. For example, if Op1 is v4i1 then
8256   // the promoted vector is v4i32. The result of concatentation gives a v8i1,
8257   // which when promoted is v8i16. That means each i32 element from Op1 needs
8258   // truncating to i16 and inserting in the result.
8259   EVT ConcatVT = MVT::getVectorVT(ElType, NumElts);
8260   SDValue ConVec = DAG.getNode(ISD::UNDEF, dl, ConcatVT);
8261   auto ExractInto = [&DAG, &dl](SDValue NewV, SDValue ConVec, unsigned &j) {
8262     EVT NewVT = NewV.getValueType();
8263     EVT ConcatVT = ConVec.getValueType();
8264     for (unsigned i = 0, e = NewVT.getVectorNumElements(); i < e; i++, j++) {
8265       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV,
8266                                 DAG.getIntPtrConstant(i, dl));
8267       ConVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ConcatVT, ConVec, Elt,
8268                            DAG.getConstant(j, dl, MVT::i32));
8269     }
8270     return ConVec;
8271   };
8272   unsigned j = 0;
8273   ConVec = ExractInto(NewV1, ConVec, j);
8274   ConVec = ExractInto(NewV2, ConVec, j);
8275 
8276   // Now return the result of comparing the subvector with zero,
8277   // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
8278   return DAG.getNode(ARMISD::VCMPZ, dl, VT, ConVec,
8279                      DAG.getConstant(ARMCC::NE, dl, MVT::i32));
8280 }
8281 
8282 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG,
8283                                    const ARMSubtarget *ST) {
8284   EVT VT = Op->getValueType(0);
8285   if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
8286     return LowerCONCAT_VECTORS_i1(Op, DAG, ST);
8287 
8288   // The only time a CONCAT_VECTORS operation can have legal types is when
8289   // two 64-bit vectors are concatenated to a 128-bit vector.
8290   assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
8291          "unexpected CONCAT_VECTORS");
8292   SDLoc dl(Op);
8293   SDValue Val = DAG.getUNDEF(MVT::v2f64);
8294   SDValue Op0 = Op.getOperand(0);
8295   SDValue Op1 = Op.getOperand(1);
8296   if (!Op0.isUndef())
8297     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
8298                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
8299                       DAG.getIntPtrConstant(0, dl));
8300   if (!Op1.isUndef())
8301     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
8302                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
8303                       DAG.getIntPtrConstant(1, dl));
8304   return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
8305 }
8306 
8307 static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG,
8308                                       const ARMSubtarget *ST) {
8309   SDValue V1 = Op.getOperand(0);
8310   SDValue V2 = Op.getOperand(1);
8311   SDLoc dl(Op);
8312   EVT VT = Op.getValueType();
8313   EVT Op1VT = V1.getValueType();
8314   unsigned NumElts = VT.getVectorNumElements();
8315   unsigned Index = cast<ConstantSDNode>(V2)->getZExtValue();
8316 
8317   assert(VT.getScalarSizeInBits() == 1 &&
8318          "Unexpected custom EXTRACT_SUBVECTOR lowering");
8319   assert(ST->hasMVEIntegerOps() &&
8320          "EXTRACT_SUBVECTOR lowering only supported for MVE");
8321 
8322   SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG);
8323 
8324   // We now have Op1 promoted to a vector of integers, where v8i1 gets
8325   // promoted to v8i16, etc.
8326 
8327   MVT ElType = getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT();
8328 
8329   EVT SubVT = MVT::getVectorVT(ElType, NumElts);
8330   SDValue SubVec = DAG.getNode(ISD::UNDEF, dl, SubVT);
8331   for (unsigned i = Index, j = 0; i < (Index + NumElts); i++, j++) {
8332     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV1,
8333                               DAG.getIntPtrConstant(i, dl));
8334     SubVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubVT, SubVec, Elt,
8335                          DAG.getConstant(j, dl, MVT::i32));
8336   }
8337 
8338   // Now return the result of comparing the subvector with zero,
8339   // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
8340   return DAG.getNode(ARMISD::VCMPZ, dl, VT, SubVec,
8341                      DAG.getConstant(ARMCC::NE, dl, MVT::i32));
8342 }
8343 
8344 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
8345 /// element has been zero/sign-extended, depending on the isSigned parameter,
8346 /// from an integer type half its size.
8347 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
8348                                    bool isSigned) {
8349   // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
8350   EVT VT = N->getValueType(0);
8351   if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
8352     SDNode *BVN = N->getOperand(0).getNode();
8353     if (BVN->getValueType(0) != MVT::v4i32 ||
8354         BVN->getOpcode() != ISD::BUILD_VECTOR)
8355       return false;
8356     unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
8357     unsigned HiElt = 1 - LoElt;
8358     ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
8359     ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
8360     ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
8361     ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
8362     if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
8363       return false;
8364     if (isSigned) {
8365       if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
8366           Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
8367         return true;
8368     } else {
8369       if (Hi0->isNullValue() && Hi1->isNullValue())
8370         return true;
8371     }
8372     return false;
8373   }
8374 
8375   if (N->getOpcode() != ISD::BUILD_VECTOR)
8376     return false;
8377 
8378   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
8379     SDNode *Elt = N->getOperand(i).getNode();
8380     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
8381       unsigned EltSize = VT.getScalarSizeInBits();
8382       unsigned HalfSize = EltSize / 2;
8383       if (isSigned) {
8384         if (!isIntN(HalfSize, C->getSExtValue()))
8385           return false;
8386       } else {
8387         if (!isUIntN(HalfSize, C->getZExtValue()))
8388           return false;
8389       }
8390       continue;
8391     }
8392     return false;
8393   }
8394 
8395   return true;
8396 }
8397 
8398 /// isSignExtended - Check if a node is a vector value that is sign-extended
8399 /// or a constant BUILD_VECTOR with sign-extended elements.
8400 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
8401   if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
8402     return true;
8403   if (isExtendedBUILD_VECTOR(N, DAG, true))
8404     return true;
8405   return false;
8406 }
8407 
8408 /// isZeroExtended - Check if a node is a vector value that is zero-extended
8409 /// or a constant BUILD_VECTOR with zero-extended elements.
8410 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
8411   if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
8412     return true;
8413   if (isExtendedBUILD_VECTOR(N, DAG, false))
8414     return true;
8415   return false;
8416 }
8417 
8418 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
8419   if (OrigVT.getSizeInBits() >= 64)
8420     return OrigVT;
8421 
8422   assert(OrigVT.isSimple() && "Expecting a simple value type");
8423 
8424   MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
8425   switch (OrigSimpleTy) {
8426   default: llvm_unreachable("Unexpected Vector Type");
8427   case MVT::v2i8:
8428   case MVT::v2i16:
8429      return MVT::v2i32;
8430   case MVT::v4i8:
8431     return  MVT::v4i16;
8432   }
8433 }
8434 
8435 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
8436 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
8437 /// We insert the required extension here to get the vector to fill a D register.
8438 static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
8439                                             const EVT &OrigTy,
8440                                             const EVT &ExtTy,
8441                                             unsigned ExtOpcode) {
8442   // The vector originally had a size of OrigTy. It was then extended to ExtTy.
8443   // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
8444   // 64-bits we need to insert a new extension so that it will be 64-bits.
8445   assert(ExtTy.is128BitVector() && "Unexpected extension size");
8446   if (OrigTy.getSizeInBits() >= 64)
8447     return N;
8448 
8449   // Must extend size to at least 64 bits to be used as an operand for VMULL.
8450   EVT NewVT = getExtensionTo64Bits(OrigTy);
8451 
8452   return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
8453 }
8454 
8455 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
8456 /// does not do any sign/zero extension. If the original vector is less
8457 /// than 64 bits, an appropriate extension will be added after the load to
8458 /// reach a total size of 64 bits. We have to add the extension separately
8459 /// because ARM does not have a sign/zero extending load for vectors.
8460 static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
8461   EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
8462 
8463   // The load already has the right type.
8464   if (ExtendedTy == LD->getMemoryVT())
8465     return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
8466                        LD->getBasePtr(), LD->getPointerInfo(),
8467                        LD->getAlignment(), LD->getMemOperand()->getFlags());
8468 
8469   // We need to create a zextload/sextload. We cannot just create a load
8470   // followed by a zext/zext node because LowerMUL is also run during normal
8471   // operation legalization where we can't create illegal types.
8472   return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
8473                         LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
8474                         LD->getMemoryVT(), LD->getAlignment(),
8475                         LD->getMemOperand()->getFlags());
8476 }
8477 
8478 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
8479 /// extending load, or BUILD_VECTOR with extended elements, return the
8480 /// unextended value. The unextended vector should be 64 bits so that it can
8481 /// be used as an operand to a VMULL instruction. If the original vector size
8482 /// before extension is less than 64 bits we add a an extension to resize
8483 /// the vector to 64 bits.
8484 static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
8485   if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
8486     return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
8487                                         N->getOperand(0)->getValueType(0),
8488                                         N->getValueType(0),
8489                                         N->getOpcode());
8490 
8491   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8492     assert((ISD::isSEXTLoad(LD) || ISD::isZEXTLoad(LD)) &&
8493            "Expected extending load");
8494 
8495     SDValue newLoad = SkipLoadExtensionForVMULL(LD, DAG);
8496     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), newLoad.getValue(1));
8497     unsigned Opcode = ISD::isSEXTLoad(LD) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
8498     SDValue extLoad =
8499         DAG.getNode(Opcode, SDLoc(newLoad), LD->getValueType(0), newLoad);
8500     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 0), extLoad);
8501 
8502     return newLoad;
8503   }
8504 
8505   // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
8506   // have been legalized as a BITCAST from v4i32.
8507   if (N->getOpcode() == ISD::BITCAST) {
8508     SDNode *BVN = N->getOperand(0).getNode();
8509     assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
8510            BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
8511     unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
8512     return DAG.getBuildVector(
8513         MVT::v2i32, SDLoc(N),
8514         {BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)});
8515   }
8516   // Construct a new BUILD_VECTOR with elements truncated to half the size.
8517   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
8518   EVT VT = N->getValueType(0);
8519   unsigned EltSize = VT.getScalarSizeInBits() / 2;
8520   unsigned NumElts = VT.getVectorNumElements();
8521   MVT TruncVT = MVT::getIntegerVT(EltSize);
8522   SmallVector<SDValue, 8> Ops;
8523   SDLoc dl(N);
8524   for (unsigned i = 0; i != NumElts; ++i) {
8525     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
8526     const APInt &CInt = C->getAPIntValue();
8527     // Element types smaller than 32 bits are not legal, so use i32 elements.
8528     // The values are implicitly truncated so sext vs. zext doesn't matter.
8529     Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
8530   }
8531   return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
8532 }
8533 
8534 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
8535   unsigned Opcode = N->getOpcode();
8536   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
8537     SDNode *N0 = N->getOperand(0).getNode();
8538     SDNode *N1 = N->getOperand(1).getNode();
8539     return N0->hasOneUse() && N1->hasOneUse() &&
8540       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
8541   }
8542   return false;
8543 }
8544 
8545 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
8546   unsigned Opcode = N->getOpcode();
8547   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
8548     SDNode *N0 = N->getOperand(0).getNode();
8549     SDNode *N1 = N->getOperand(1).getNode();
8550     return N0->hasOneUse() && N1->hasOneUse() &&
8551       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
8552   }
8553   return false;
8554 }
8555 
8556 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
8557   // Multiplications are only custom-lowered for 128-bit vectors so that
8558   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
8559   EVT VT = Op.getValueType();
8560   assert(VT.is128BitVector() && VT.isInteger() &&
8561          "unexpected type for custom-lowering ISD::MUL");
8562   SDNode *N0 = Op.getOperand(0).getNode();
8563   SDNode *N1 = Op.getOperand(1).getNode();
8564   unsigned NewOpc = 0;
8565   bool isMLA = false;
8566   bool isN0SExt = isSignExtended(N0, DAG);
8567   bool isN1SExt = isSignExtended(N1, DAG);
8568   if (isN0SExt && isN1SExt)
8569     NewOpc = ARMISD::VMULLs;
8570   else {
8571     bool isN0ZExt = isZeroExtended(N0, DAG);
8572     bool isN1ZExt = isZeroExtended(N1, DAG);
8573     if (isN0ZExt && isN1ZExt)
8574       NewOpc = ARMISD::VMULLu;
8575     else if (isN1SExt || isN1ZExt) {
8576       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
8577       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
8578       if (isN1SExt && isAddSubSExt(N0, DAG)) {
8579         NewOpc = ARMISD::VMULLs;
8580         isMLA = true;
8581       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
8582         NewOpc = ARMISD::VMULLu;
8583         isMLA = true;
8584       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
8585         std::swap(N0, N1);
8586         NewOpc = ARMISD::VMULLu;
8587         isMLA = true;
8588       }
8589     }
8590 
8591     if (!NewOpc) {
8592       if (VT == MVT::v2i64)
8593         // Fall through to expand this.  It is not legal.
8594         return SDValue();
8595       else
8596         // Other vector multiplications are legal.
8597         return Op;
8598     }
8599   }
8600 
8601   // Legalize to a VMULL instruction.
8602   SDLoc DL(Op);
8603   SDValue Op0;
8604   SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
8605   if (!isMLA) {
8606     Op0 = SkipExtensionForVMULL(N0, DAG);
8607     assert(Op0.getValueType().is64BitVector() &&
8608            Op1.getValueType().is64BitVector() &&
8609            "unexpected types for extended operands to VMULL");
8610     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
8611   }
8612 
8613   // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
8614   // isel lowering to take advantage of no-stall back to back vmul + vmla.
8615   //   vmull q0, d4, d6
8616   //   vmlal q0, d5, d6
8617   // is faster than
8618   //   vaddl q0, d4, d5
8619   //   vmovl q1, d6
8620   //   vmul  q0, q0, q1
8621   SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
8622   SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
8623   EVT Op1VT = Op1.getValueType();
8624   return DAG.getNode(N0->getOpcode(), DL, VT,
8625                      DAG.getNode(NewOpc, DL, VT,
8626                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
8627                      DAG.getNode(NewOpc, DL, VT,
8628                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
8629 }
8630 
8631 static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl,
8632                               SelectionDAG &DAG) {
8633   // TODO: Should this propagate fast-math-flags?
8634 
8635   // Convert to float
8636   // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
8637   // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
8638   X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
8639   Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
8640   X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
8641   Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
8642   // Get reciprocal estimate.
8643   // float4 recip = vrecpeq_f32(yf);
8644   Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
8645                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
8646                    Y);
8647   // Because char has a smaller range than uchar, we can actually get away
8648   // without any newton steps.  This requires that we use a weird bias
8649   // of 0xb000, however (again, this has been exhaustively tested).
8650   // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
8651   X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
8652   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
8653   Y = DAG.getConstant(0xb000, dl, MVT::v4i32);
8654   X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
8655   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
8656   // Convert back to short.
8657   X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
8658   X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
8659   return X;
8660 }
8661 
8662 static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl,
8663                                SelectionDAG &DAG) {
8664   // TODO: Should this propagate fast-math-flags?
8665 
8666   SDValue N2;
8667   // Convert to float.
8668   // float4 yf = vcvt_f32_s32(vmovl_s16(y));
8669   // float4 xf = vcvt_f32_s32(vmovl_s16(x));
8670   N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
8671   N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
8672   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
8673   N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
8674 
8675   // Use reciprocal estimate and one refinement step.
8676   // float4 recip = vrecpeq_f32(yf);
8677   // recip *= vrecpsq_f32(yf, recip);
8678   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
8679                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
8680                    N1);
8681   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
8682                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
8683                    N1, N2);
8684   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
8685   // Because short has a smaller range than ushort, we can actually get away
8686   // with only a single newton step.  This requires that we use a weird bias
8687   // of 89, however (again, this has been exhaustively tested).
8688   // float4 result = as_float4(as_int4(xf*recip) + 0x89);
8689   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
8690   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
8691   N1 = DAG.getConstant(0x89, dl, MVT::v4i32);
8692   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
8693   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
8694   // Convert back to integer and return.
8695   // return vmovn_s32(vcvt_s32_f32(result));
8696   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
8697   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
8698   return N0;
8699 }
8700 
8701 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG,
8702                          const ARMSubtarget *ST) {
8703   EVT VT = Op.getValueType();
8704   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
8705          "unexpected type for custom-lowering ISD::SDIV");
8706 
8707   SDLoc dl(Op);
8708   SDValue N0 = Op.getOperand(0);
8709   SDValue N1 = Op.getOperand(1);
8710   SDValue N2, N3;
8711 
8712   if (VT == MVT::v8i8) {
8713     N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
8714     N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
8715 
8716     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
8717                      DAG.getIntPtrConstant(4, dl));
8718     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
8719                      DAG.getIntPtrConstant(4, dl));
8720     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
8721                      DAG.getIntPtrConstant(0, dl));
8722     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
8723                      DAG.getIntPtrConstant(0, dl));
8724 
8725     N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
8726     N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
8727 
8728     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
8729     N0 = LowerCONCAT_VECTORS(N0, DAG, ST);
8730 
8731     N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
8732     return N0;
8733   }
8734   return LowerSDIV_v4i16(N0, N1, dl, DAG);
8735 }
8736 
8737 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG,
8738                          const ARMSubtarget *ST) {
8739   // TODO: Should this propagate fast-math-flags?
8740   EVT VT = Op.getValueType();
8741   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
8742          "unexpected type for custom-lowering ISD::UDIV");
8743 
8744   SDLoc dl(Op);
8745   SDValue N0 = Op.getOperand(0);
8746   SDValue N1 = Op.getOperand(1);
8747   SDValue N2, N3;
8748 
8749   if (VT == MVT::v8i8) {
8750     N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
8751     N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
8752 
8753     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
8754                      DAG.getIntPtrConstant(4, dl));
8755     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
8756                      DAG.getIntPtrConstant(4, dl));
8757     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
8758                      DAG.getIntPtrConstant(0, dl));
8759     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
8760                      DAG.getIntPtrConstant(0, dl));
8761 
8762     N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
8763     N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
8764 
8765     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
8766     N0 = LowerCONCAT_VECTORS(N0, DAG, ST);
8767 
8768     N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
8769                      DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
8770                                      MVT::i32),
8771                      N0);
8772     return N0;
8773   }
8774 
8775   // v4i16 sdiv ... Convert to float.
8776   // float4 yf = vcvt_f32_s32(vmovl_u16(y));
8777   // float4 xf = vcvt_f32_s32(vmovl_u16(x));
8778   N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
8779   N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
8780   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
8781   SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
8782 
8783   // Use reciprocal estimate and two refinement steps.
8784   // float4 recip = vrecpeq_f32(yf);
8785   // recip *= vrecpsq_f32(yf, recip);
8786   // recip *= vrecpsq_f32(yf, recip);
8787   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
8788                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
8789                    BN1);
8790   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
8791                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
8792                    BN1, N2);
8793   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
8794   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
8795                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
8796                    BN1, N2);
8797   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
8798   // Simply multiplying by the reciprocal estimate can leave us a few ulps
8799   // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
8800   // and that it will never cause us to return an answer too large).
8801   // float4 result = as_float4(as_int4(xf*recip) + 2);
8802   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
8803   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
8804   N1 = DAG.getConstant(2, dl, MVT::v4i32);
8805   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
8806   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
8807   // Convert back to integer and return.
8808   // return vmovn_u32(vcvt_s32_f32(result));
8809   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
8810   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
8811   return N0;
8812 }
8813 
8814 static SDValue LowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) {
8815   SDNode *N = Op.getNode();
8816   EVT VT = N->getValueType(0);
8817   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
8818 
8819   SDValue Carry = Op.getOperand(2);
8820 
8821   SDLoc DL(Op);
8822 
8823   SDValue Result;
8824   if (Op.getOpcode() == ISD::ADDCARRY) {
8825     // This converts the boolean value carry into the carry flag.
8826     Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
8827 
8828     // Do the addition proper using the carry flag we wanted.
8829     Result = DAG.getNode(ARMISD::ADDE, DL, VTs, Op.getOperand(0),
8830                          Op.getOperand(1), Carry);
8831 
8832     // Now convert the carry flag into a boolean value.
8833     Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
8834   } else {
8835     // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
8836     // have to invert the carry first.
8837     Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
8838                         DAG.getConstant(1, DL, MVT::i32), Carry);
8839     // This converts the boolean value carry into the carry flag.
8840     Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
8841 
8842     // Do the subtraction proper using the carry flag we wanted.
8843     Result = DAG.getNode(ARMISD::SUBE, DL, VTs, Op.getOperand(0),
8844                          Op.getOperand(1), Carry);
8845 
8846     // Now convert the carry flag into a boolean value.
8847     Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
8848     // But the carry returned by ARMISD::SUBE is not a borrow as expected
8849     // by ISD::SUBCARRY, so compute 1 - C.
8850     Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
8851                         DAG.getConstant(1, DL, MVT::i32), Carry);
8852   }
8853 
8854   // Return both values.
8855   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Carry);
8856 }
8857 
8858 SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
8859   assert(Subtarget->isTargetDarwin());
8860 
8861   // For iOS, we want to call an alternative entry point: __sincos_stret,
8862   // return values are passed via sret.
8863   SDLoc dl(Op);
8864   SDValue Arg = Op.getOperand(0);
8865   EVT ArgVT = Arg.getValueType();
8866   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
8867   auto PtrVT = getPointerTy(DAG.getDataLayout());
8868 
8869   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8870   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8871 
8872   // Pair of floats / doubles used to pass the result.
8873   Type *RetTy = StructType::get(ArgTy, ArgTy);
8874   auto &DL = DAG.getDataLayout();
8875 
8876   ArgListTy Args;
8877   bool ShouldUseSRet = Subtarget->isAPCS_ABI();
8878   SDValue SRet;
8879   if (ShouldUseSRet) {
8880     // Create stack object for sret.
8881     const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
8882     const unsigned StackAlign = DL.getPrefTypeAlignment(RetTy);
8883     int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
8884     SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
8885 
8886     ArgListEntry Entry;
8887     Entry.Node = SRet;
8888     Entry.Ty = RetTy->getPointerTo();
8889     Entry.IsSExt = false;
8890     Entry.IsZExt = false;
8891     Entry.IsSRet = true;
8892     Args.push_back(Entry);
8893     RetTy = Type::getVoidTy(*DAG.getContext());
8894   }
8895 
8896   ArgListEntry Entry;
8897   Entry.Node = Arg;
8898   Entry.Ty = ArgTy;
8899   Entry.IsSExt = false;
8900   Entry.IsZExt = false;
8901   Args.push_back(Entry);
8902 
8903   RTLIB::Libcall LC =
8904       (ArgVT == MVT::f64) ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32;
8905   const char *LibcallName = getLibcallName(LC);
8906   CallingConv::ID CC = getLibcallCallingConv(LC);
8907   SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
8908 
8909   TargetLowering::CallLoweringInfo CLI(DAG);
8910   CLI.setDebugLoc(dl)
8911       .setChain(DAG.getEntryNode())
8912       .setCallee(CC, RetTy, Callee, std::move(Args))
8913       .setDiscardResult(ShouldUseSRet);
8914   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
8915 
8916   if (!ShouldUseSRet)
8917     return CallResult.first;
8918 
8919   SDValue LoadSin =
8920       DAG.getLoad(ArgVT, dl, CallResult.second, SRet, MachinePointerInfo());
8921 
8922   // Address of cos field.
8923   SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
8924                             DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
8925   SDValue LoadCos =
8926       DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, MachinePointerInfo());
8927 
8928   SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
8929   return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
8930                      LoadSin.getValue(0), LoadCos.getValue(0));
8931 }
8932 
8933 SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
8934                                                   bool Signed,
8935                                                   SDValue &Chain) const {
8936   EVT VT = Op.getValueType();
8937   assert((VT == MVT::i32 || VT == MVT::i64) &&
8938          "unexpected type for custom lowering DIV");
8939   SDLoc dl(Op);
8940 
8941   const auto &DL = DAG.getDataLayout();
8942   const auto &TLI = DAG.getTargetLoweringInfo();
8943 
8944   const char *Name = nullptr;
8945   if (Signed)
8946     Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
8947   else
8948     Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
8949 
8950   SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
8951 
8952   ARMTargetLowering::ArgListTy Args;
8953 
8954   for (auto AI : {1, 0}) {
8955     ArgListEntry Arg;
8956     Arg.Node = Op.getOperand(AI);
8957     Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
8958     Args.push_back(Arg);
8959   }
8960 
8961   CallLoweringInfo CLI(DAG);
8962   CLI.setDebugLoc(dl)
8963     .setChain(Chain)
8964     .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
8965                ES, std::move(Args));
8966 
8967   return LowerCallTo(CLI).first;
8968 }
8969 
8970 // This is a code size optimisation: return the original SDIV node to
8971 // DAGCombiner when we don't want to expand SDIV into a sequence of
8972 // instructions, and an empty node otherwise which will cause the
8973 // SDIV to be expanded in DAGCombine.
8974 SDValue
8975 ARMTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
8976                                  SelectionDAG &DAG,
8977                                  SmallVectorImpl<SDNode *> &Created) const {
8978   // TODO: Support SREM
8979   if (N->getOpcode() != ISD::SDIV)
8980     return SDValue();
8981 
8982   const auto &ST = static_cast<const ARMSubtarget&>(DAG.getSubtarget());
8983   const bool MinSize = ST.hasMinSize();
8984   const bool HasDivide = ST.isThumb() ? ST.hasDivideInThumbMode()
8985                                       : ST.hasDivideInARMMode();
8986 
8987   // Don't touch vector types; rewriting this may lead to scalarizing
8988   // the int divs.
8989   if (N->getOperand(0).getValueType().isVector())
8990     return SDValue();
8991 
8992   // Bail if MinSize is not set, and also for both ARM and Thumb mode we need
8993   // hwdiv support for this to be really profitable.
8994   if (!(MinSize && HasDivide))
8995     return SDValue();
8996 
8997   // ARM mode is a bit simpler than Thumb: we can handle large power
8998   // of 2 immediates with 1 mov instruction; no further checks required,
8999   // just return the sdiv node.
9000   if (!ST.isThumb())
9001     return SDValue(N, 0);
9002 
9003   // In Thumb mode, immediates larger than 128 need a wide 4-byte MOV,
9004   // and thus lose the code size benefits of a MOVS that requires only 2.
9005   // TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here,
9006   // but as it's doing exactly this, it's not worth the trouble to get TTI.
9007   if (Divisor.sgt(128))
9008     return SDValue();
9009 
9010   return SDValue(N, 0);
9011 }
9012 
9013 SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
9014                                             bool Signed) const {
9015   assert(Op.getValueType() == MVT::i32 &&
9016          "unexpected type for custom lowering DIV");
9017   SDLoc dl(Op);
9018 
9019   SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
9020                                DAG.getEntryNode(), Op.getOperand(1));
9021 
9022   return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
9023 }
9024 
9025 static SDValue WinDBZCheckDenominator(SelectionDAG &DAG, SDNode *N, SDValue InChain) {
9026   SDLoc DL(N);
9027   SDValue Op = N->getOperand(1);
9028   if (N->getValueType(0) == MVT::i32)
9029     return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, Op);
9030   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
9031                            DAG.getConstant(0, DL, MVT::i32));
9032   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
9033                            DAG.getConstant(1, DL, MVT::i32));
9034   return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain,
9035                      DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi));
9036 }
9037 
9038 void ARMTargetLowering::ExpandDIV_Windows(
9039     SDValue Op, SelectionDAG &DAG, bool Signed,
9040     SmallVectorImpl<SDValue> &Results) const {
9041   const auto &DL = DAG.getDataLayout();
9042   const auto &TLI = DAG.getTargetLoweringInfo();
9043 
9044   assert(Op.getValueType() == MVT::i64 &&
9045          "unexpected type for custom lowering DIV");
9046   SDLoc dl(Op);
9047 
9048   SDValue DBZCHK = WinDBZCheckDenominator(DAG, Op.getNode(), DAG.getEntryNode());
9049 
9050   SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
9051 
9052   SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
9053   SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
9054                               DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
9055   Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
9056 
9057   Results.push_back(Lower);
9058   Results.push_back(Upper);
9059 }
9060 
9061 static SDValue LowerPredicateLoad(SDValue Op, SelectionDAG &DAG) {
9062   LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
9063   EVT MemVT = LD->getMemoryVT();
9064   assert((MemVT == MVT::v4i1 || MemVT == MVT::v8i1 || MemVT == MVT::v16i1) &&
9065          "Expected a predicate type!");
9066   assert(MemVT == Op.getValueType());
9067   assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
9068          "Expected a non-extending load");
9069   assert(LD->isUnindexed() && "Expected a unindexed load");
9070 
9071   // The basic MVE VLDR on a v4i1/v8i1 actually loads the entire 16bit
9072   // predicate, with the "v4i1" bits spread out over the 16 bits loaded. We
9073   // need to make sure that 8/4 bits are actually loaded into the correct
9074   // place, which means loading the value and then shuffling the values into
9075   // the bottom bits of the predicate.
9076   // Equally, VLDR for an v16i1 will actually load 32bits (so will be incorrect
9077   // for BE).
9078 
9079   SDLoc dl(Op);
9080   SDValue Load = DAG.getExtLoad(
9081       ISD::EXTLOAD, dl, MVT::i32, LD->getChain(), LD->getBasePtr(),
9082       EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()),
9083       LD->getMemOperand());
9084   SDValue Pred = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v16i1, Load);
9085   if (MemVT != MVT::v16i1)
9086     Pred = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MemVT, Pred,
9087                        DAG.getConstant(0, dl, MVT::i32));
9088   return DAG.getMergeValues({Pred, Load.getValue(1)}, dl);
9089 }
9090 
9091 void ARMTargetLowering::LowerLOAD(SDNode *N, SmallVectorImpl<SDValue> &Results,
9092                                   SelectionDAG &DAG) const {
9093   LoadSDNode *LD = cast<LoadSDNode>(N);
9094   EVT MemVT = LD->getMemoryVT();
9095   assert(LD->isUnindexed() && "Loads should be unindexed at this point.");
9096 
9097   if (MemVT == MVT::i64 && Subtarget->hasV5TEOps() &&
9098       !Subtarget->isThumb1Only() && LD->isVolatile()) {
9099     SDLoc dl(N);
9100     SDValue Result = DAG.getMemIntrinsicNode(
9101         ARMISD::LDRD, dl, DAG.getVTList({MVT::i32, MVT::i32, MVT::Other}),
9102         {LD->getChain(), LD->getBasePtr()}, MemVT, LD->getMemOperand());
9103     SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64,
9104                                Result.getValue(0), Result.getValue(1));
9105     Results.append({Pair, Result.getValue(2)});
9106   }
9107 }
9108 
9109 static SDValue LowerPredicateStore(SDValue Op, SelectionDAG &DAG) {
9110   StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
9111   EVT MemVT = ST->getMemoryVT();
9112   assert((MemVT == MVT::v4i1 || MemVT == MVT::v8i1 || MemVT == MVT::v16i1) &&
9113          "Expected a predicate type!");
9114   assert(MemVT == ST->getValue().getValueType());
9115   assert(!ST->isTruncatingStore() && "Expected a non-extending store");
9116   assert(ST->isUnindexed() && "Expected a unindexed store");
9117 
9118   // Only store the v4i1 or v8i1 worth of bits, via a buildvector with top bits
9119   // unset and a scalar store.
9120   SDLoc dl(Op);
9121   SDValue Build = ST->getValue();
9122   if (MemVT != MVT::v16i1) {
9123     SmallVector<SDValue, 16> Ops;
9124     for (unsigned I = 0; I < MemVT.getVectorNumElements(); I++)
9125       Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, Build,
9126                                 DAG.getConstant(I, dl, MVT::i32)));
9127     for (unsigned I = MemVT.getVectorNumElements(); I < 16; I++)
9128       Ops.push_back(DAG.getUNDEF(MVT::i32));
9129     Build = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i1, Ops);
9130   }
9131   SDValue GRP = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Build);
9132   return DAG.getTruncStore(
9133       ST->getChain(), dl, GRP, ST->getBasePtr(),
9134       EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()),
9135       ST->getMemOperand());
9136 }
9137 
9138 static SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG,
9139                           const ARMSubtarget *Subtarget) {
9140   StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
9141   EVT MemVT = ST->getMemoryVT();
9142   assert(ST->isUnindexed() && "Stores should be unindexed at this point.");
9143 
9144   if (MemVT == MVT::i64 && Subtarget->hasV5TEOps() &&
9145       !Subtarget->isThumb1Only() && ST->isVolatile()) {
9146     SDNode *N = Op.getNode();
9147     SDLoc dl(N);
9148 
9149     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, ST->getValue(),
9150                              DAG.getTargetConstant(0, dl, MVT::i32));
9151     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, ST->getValue(),
9152                              DAG.getTargetConstant(1, dl, MVT::i32));
9153 
9154     return DAG.getMemIntrinsicNode(ARMISD::STRD, dl, DAG.getVTList(MVT::Other),
9155                                    {ST->getChain(), Lo, Hi, ST->getBasePtr()},
9156                                    MemVT, ST->getMemOperand());
9157   } else if (Subtarget->hasMVEIntegerOps() &&
9158              ((MemVT == MVT::v4i1 || MemVT == MVT::v8i1 ||
9159                MemVT == MVT::v16i1))) {
9160     return LowerPredicateStore(Op, DAG);
9161   }
9162 
9163   return SDValue();
9164 }
9165 
9166 static bool isZeroVector(SDValue N) {
9167   return (ISD::isBuildVectorAllZeros(N.getNode()) ||
9168           (N->getOpcode() == ARMISD::VMOVIMM &&
9169            isNullConstant(N->getOperand(0))));
9170 }
9171 
9172 static SDValue LowerMLOAD(SDValue Op, SelectionDAG &DAG) {
9173   MaskedLoadSDNode *N = cast<MaskedLoadSDNode>(Op.getNode());
9174   MVT VT = Op.getSimpleValueType();
9175   SDValue Mask = N->getMask();
9176   SDValue PassThru = N->getPassThru();
9177   SDLoc dl(Op);
9178 
9179   if (isZeroVector(PassThru))
9180     return Op;
9181 
9182   // MVE Masked loads use zero as the passthru value. Here we convert undef to
9183   // zero too, and other values are lowered to a select.
9184   SDValue ZeroVec = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
9185                                 DAG.getTargetConstant(0, dl, MVT::i32));
9186   SDValue NewLoad = DAG.getMaskedLoad(
9187       VT, dl, N->getChain(), N->getBasePtr(), N->getOffset(), Mask, ZeroVec,
9188       N->getMemoryVT(), N->getMemOperand(), N->getAddressingMode(),
9189       N->getExtensionType(), N->isExpandingLoad());
9190   SDValue Combo = NewLoad;
9191   if (!PassThru.isUndef() &&
9192       (PassThru.getOpcode() != ISD::BITCAST ||
9193        !isZeroVector(PassThru->getOperand(0))))
9194     Combo = DAG.getNode(ISD::VSELECT, dl, VT, Mask, NewLoad, PassThru);
9195   return DAG.getMergeValues({Combo, NewLoad.getValue(1)}, dl);
9196 }
9197 
9198 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
9199   if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering()))
9200     // Acquire/Release load/store is not legal for targets without a dmb or
9201     // equivalent available.
9202     return SDValue();
9203 
9204   // Monotonic load/store is legal for all targets.
9205   return Op;
9206 }
9207 
9208 static void ReplaceREADCYCLECOUNTER(SDNode *N,
9209                                     SmallVectorImpl<SDValue> &Results,
9210                                     SelectionDAG &DAG,
9211                                     const ARMSubtarget *Subtarget) {
9212   SDLoc DL(N);
9213   // Under Power Management extensions, the cycle-count is:
9214   //    mrc p15, #0, <Rt>, c9, c13, #0
9215   SDValue Ops[] = { N->getOperand(0), // Chain
9216                     DAG.getTargetConstant(Intrinsic::arm_mrc, DL, MVT::i32),
9217                     DAG.getTargetConstant(15, DL, MVT::i32),
9218                     DAG.getTargetConstant(0, DL, MVT::i32),
9219                     DAG.getTargetConstant(9, DL, MVT::i32),
9220                     DAG.getTargetConstant(13, DL, MVT::i32),
9221                     DAG.getTargetConstant(0, DL, MVT::i32)
9222   };
9223 
9224   SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
9225                                  DAG.getVTList(MVT::i32, MVT::Other), Ops);
9226   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
9227                                 DAG.getConstant(0, DL, MVT::i32)));
9228   Results.push_back(Cycles32.getValue(1));
9229 }
9230 
9231 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
9232   SDLoc dl(V.getNode());
9233   SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i32);
9234   SDValue VHi = DAG.getAnyExtOrTrunc(
9235       DAG.getNode(ISD::SRL, dl, MVT::i64, V, DAG.getConstant(32, dl, MVT::i32)),
9236       dl, MVT::i32);
9237   bool isBigEndian = DAG.getDataLayout().isBigEndian();
9238   if (isBigEndian)
9239     std::swap (VLo, VHi);
9240   SDValue RegClass =
9241       DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
9242   SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32);
9243   SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32);
9244   const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
9245   return SDValue(
9246       DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
9247 }
9248 
9249 static void ReplaceCMP_SWAP_64Results(SDNode *N,
9250                                        SmallVectorImpl<SDValue> & Results,
9251                                        SelectionDAG &DAG) {
9252   assert(N->getValueType(0) == MVT::i64 &&
9253          "AtomicCmpSwap on types less than 64 should be legal");
9254   SDValue Ops[] = {N->getOperand(1),
9255                    createGPRPairNode(DAG, N->getOperand(2)),
9256                    createGPRPairNode(DAG, N->getOperand(3)),
9257                    N->getOperand(0)};
9258   SDNode *CmpSwap = DAG.getMachineNode(
9259       ARM::CMP_SWAP_64, SDLoc(N),
9260       DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops);
9261 
9262   MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
9263   DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
9264 
9265   bool isBigEndian = DAG.getDataLayout().isBigEndian();
9266 
9267   Results.push_back(
9268       DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_1 : ARM::gsub_0,
9269                                  SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)));
9270   Results.push_back(
9271       DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_0 : ARM::gsub_1,
9272                                  SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)));
9273   Results.push_back(SDValue(CmpSwap, 2));
9274 }
9275 
9276 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9277   LLVM_DEBUG(dbgs() << "Lowering node: "; Op.dump());
9278   switch (Op.getOpcode()) {
9279   default: llvm_unreachable("Don't know how to custom lower this!");
9280   case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
9281   case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
9282   case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
9283   case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
9284   case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
9285   case ISD::SELECT:        return LowerSELECT(Op, DAG);
9286   case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
9287   case ISD::BRCOND:        return LowerBRCOND(Op, DAG);
9288   case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
9289   case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
9290   case ISD::VASTART:       return LowerVASTART(Op, DAG);
9291   case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
9292   case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
9293   case ISD::SINT_TO_FP:
9294   case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
9295   case ISD::STRICT_FP_TO_SINT:
9296   case ISD::STRICT_FP_TO_UINT:
9297   case ISD::FP_TO_SINT:
9298   case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
9299   case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
9300   case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
9301   case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
9302   case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
9303   case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
9304   case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
9305   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG, Subtarget);
9306   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
9307                                                                Subtarget);
9308   case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG, Subtarget);
9309   case ISD::SHL:
9310   case ISD::SRL:
9311   case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
9312   case ISD::SREM:          return LowerREM(Op.getNode(), DAG);
9313   case ISD::UREM:          return LowerREM(Op.getNode(), DAG);
9314   case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
9315   case ISD::SRL_PARTS:
9316   case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
9317   case ISD::CTTZ:
9318   case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
9319   case ISD::CTPOP:         return LowerCTPOP(Op.getNode(), DAG, Subtarget);
9320   case ISD::SETCC:         return LowerVSETCC(Op, DAG, Subtarget);
9321   case ISD::SETCCCARRY:    return LowerSETCCCARRY(Op, DAG);
9322   case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
9323   case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
9324   case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
9325   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG, Subtarget);
9326   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
9327   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG, Subtarget);
9328   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG, Subtarget);
9329   case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
9330   case ISD::MUL:           return LowerMUL(Op, DAG);
9331   case ISD::SDIV:
9332     if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
9333       return LowerDIV_Windows(Op, DAG, /* Signed */ true);
9334     return LowerSDIV(Op, DAG, Subtarget);
9335   case ISD::UDIV:
9336     if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
9337       return LowerDIV_Windows(Op, DAG, /* Signed */ false);
9338     return LowerUDIV(Op, DAG, Subtarget);
9339   case ISD::ADDCARRY:
9340   case ISD::SUBCARRY:      return LowerADDSUBCARRY(Op, DAG);
9341   case ISD::SADDO:
9342   case ISD::SSUBO:
9343     return LowerSignedALUO(Op, DAG);
9344   case ISD::UADDO:
9345   case ISD::USUBO:
9346     return LowerUnsignedALUO(Op, DAG);
9347   case ISD::SADDSAT:
9348   case ISD::SSUBSAT:
9349     return LowerSADDSUBSAT(Op, DAG, Subtarget);
9350   case ISD::LOAD:
9351     return LowerPredicateLoad(Op, DAG);
9352   case ISD::STORE:
9353     return LowerSTORE(Op, DAG, Subtarget);
9354   case ISD::MLOAD:
9355     return LowerMLOAD(Op, DAG);
9356   case ISD::ATOMIC_LOAD:
9357   case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
9358   case ISD::FSINCOS:       return LowerFSINCOS(Op, DAG);
9359   case ISD::SDIVREM:
9360   case ISD::UDIVREM:       return LowerDivRem(Op, DAG);
9361   case ISD::DYNAMIC_STACKALLOC:
9362     if (Subtarget->isTargetWindows())
9363       return LowerDYNAMIC_STACKALLOC(Op, DAG);
9364     llvm_unreachable("Don't know how to custom lower this!");
9365   case ISD::STRICT_FP_ROUND:
9366   case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
9367   case ISD::STRICT_FP_EXTEND:
9368   case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
9369   case ARMISD::WIN__DBZCHK: return SDValue();
9370   }
9371 }
9372 
9373 static void ReplaceLongIntrinsic(SDNode *N, SmallVectorImpl<SDValue> &Results,
9374                                  SelectionDAG &DAG) {
9375   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
9376   unsigned Opc = 0;
9377   if (IntNo == Intrinsic::arm_smlald)
9378     Opc = ARMISD::SMLALD;
9379   else if (IntNo == Intrinsic::arm_smlaldx)
9380     Opc = ARMISD::SMLALDX;
9381   else if (IntNo == Intrinsic::arm_smlsld)
9382     Opc = ARMISD::SMLSLD;
9383   else if (IntNo == Intrinsic::arm_smlsldx)
9384     Opc = ARMISD::SMLSLDX;
9385   else
9386     return;
9387 
9388   SDLoc dl(N);
9389   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9390                            N->getOperand(3),
9391                            DAG.getConstant(0, dl, MVT::i32));
9392   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9393                            N->getOperand(3),
9394                            DAG.getConstant(1, dl, MVT::i32));
9395 
9396   SDValue LongMul = DAG.getNode(Opc, dl,
9397                                 DAG.getVTList(MVT::i32, MVT::i32),
9398                                 N->getOperand(1), N->getOperand(2),
9399                                 Lo, Hi);
9400   Results.push_back(LongMul.getValue(0));
9401   Results.push_back(LongMul.getValue(1));
9402 }
9403 
9404 /// ReplaceNodeResults - Replace the results of node with an illegal result
9405 /// type with new values built out of custom code.
9406 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
9407                                            SmallVectorImpl<SDValue> &Results,
9408                                            SelectionDAG &DAG) const {
9409   SDValue Res;
9410   switch (N->getOpcode()) {
9411   default:
9412     llvm_unreachable("Don't know how to custom expand this!");
9413   case ISD::READ_REGISTER:
9414     ExpandREAD_REGISTER(N, Results, DAG);
9415     break;
9416   case ISD::BITCAST:
9417     Res = ExpandBITCAST(N, DAG, Subtarget);
9418     break;
9419   case ISD::SRL:
9420   case ISD::SRA:
9421   case ISD::SHL:
9422     Res = Expand64BitShift(N, DAG, Subtarget);
9423     break;
9424   case ISD::SREM:
9425   case ISD::UREM:
9426     Res = LowerREM(N, DAG);
9427     break;
9428   case ISD::SDIVREM:
9429   case ISD::UDIVREM:
9430     Res = LowerDivRem(SDValue(N, 0), DAG);
9431     assert(Res.getNumOperands() == 2 && "DivRem needs two values");
9432     Results.push_back(Res.getValue(0));
9433     Results.push_back(Res.getValue(1));
9434     return;
9435   case ISD::SADDSAT:
9436   case ISD::SSUBSAT:
9437     Res = LowerSADDSUBSAT(SDValue(N, 0), DAG, Subtarget);
9438     break;
9439   case ISD::READCYCLECOUNTER:
9440     ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
9441     return;
9442   case ISD::UDIV:
9443   case ISD::SDIV:
9444     assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
9445     return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
9446                              Results);
9447   case ISD::ATOMIC_CMP_SWAP:
9448     ReplaceCMP_SWAP_64Results(N, Results, DAG);
9449     return;
9450   case ISD::INTRINSIC_WO_CHAIN:
9451     return ReplaceLongIntrinsic(N, Results, DAG);
9452   case ISD::ABS:
9453      lowerABS(N, Results, DAG);
9454      return ;
9455   case ISD::LOAD:
9456     LowerLOAD(N, Results, DAG);
9457     break;
9458   }
9459   if (Res.getNode())
9460     Results.push_back(Res);
9461 }
9462 
9463 //===----------------------------------------------------------------------===//
9464 //                           ARM Scheduler Hooks
9465 //===----------------------------------------------------------------------===//
9466 
9467 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
9468 /// registers the function context.
9469 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
9470                                                MachineBasicBlock *MBB,
9471                                                MachineBasicBlock *DispatchBB,
9472                                                int FI) const {
9473   assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
9474          "ROPI/RWPI not currently supported with SjLj");
9475   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
9476   DebugLoc dl = MI.getDebugLoc();
9477   MachineFunction *MF = MBB->getParent();
9478   MachineRegisterInfo *MRI = &MF->getRegInfo();
9479   MachineConstantPool *MCP = MF->getConstantPool();
9480   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
9481   const Function &F = MF->getFunction();
9482 
9483   bool isThumb = Subtarget->isThumb();
9484   bool isThumb2 = Subtarget->isThumb2();
9485 
9486   unsigned PCLabelId = AFI->createPICLabelUId();
9487   unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
9488   ARMConstantPoolValue *CPV =
9489     ARMConstantPoolMBB::Create(F.getContext(), DispatchBB, PCLabelId, PCAdj);
9490   unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
9491 
9492   const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
9493                                            : &ARM::GPRRegClass;
9494 
9495   // Grab constant pool and fixed stack memory operands.
9496   MachineMemOperand *CPMMO =
9497       MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
9498                                MachineMemOperand::MOLoad, 4, 4);
9499 
9500   MachineMemOperand *FIMMOSt =
9501       MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
9502                                MachineMemOperand::MOStore, 4, 4);
9503 
9504   // Load the address of the dispatch MBB into the jump buffer.
9505   if (isThumb2) {
9506     // Incoming value: jbuf
9507     //   ldr.n  r5, LCPI1_1
9508     //   orr    r5, r5, #1
9509     //   add    r5, pc
9510     //   str    r5, [$jbuf, #+4] ; &jbuf[1]
9511     Register NewVReg1 = MRI->createVirtualRegister(TRC);
9512     BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
9513         .addConstantPoolIndex(CPI)
9514         .addMemOperand(CPMMO)
9515         .add(predOps(ARMCC::AL));
9516     // Set the low bit because of thumb mode.
9517     Register NewVReg2 = MRI->createVirtualRegister(TRC);
9518     BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
9519         .addReg(NewVReg1, RegState::Kill)
9520         .addImm(0x01)
9521         .add(predOps(ARMCC::AL))
9522         .add(condCodeOp());
9523     Register NewVReg3 = MRI->createVirtualRegister(TRC);
9524     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
9525       .addReg(NewVReg2, RegState::Kill)
9526       .addImm(PCLabelId);
9527     BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
9528         .addReg(NewVReg3, RegState::Kill)
9529         .addFrameIndex(FI)
9530         .addImm(36) // &jbuf[1] :: pc
9531         .addMemOperand(FIMMOSt)
9532         .add(predOps(ARMCC::AL));
9533   } else if (isThumb) {
9534     // Incoming value: jbuf
9535     //   ldr.n  r1, LCPI1_4
9536     //   add    r1, pc
9537     //   mov    r2, #1
9538     //   orrs   r1, r2
9539     //   add    r2, $jbuf, #+4 ; &jbuf[1]
9540     //   str    r1, [r2]
9541     Register NewVReg1 = MRI->createVirtualRegister(TRC);
9542     BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
9543         .addConstantPoolIndex(CPI)
9544         .addMemOperand(CPMMO)
9545         .add(predOps(ARMCC::AL));
9546     Register NewVReg2 = MRI->createVirtualRegister(TRC);
9547     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
9548       .addReg(NewVReg1, RegState::Kill)
9549       .addImm(PCLabelId);
9550     // Set the low bit because of thumb mode.
9551     Register NewVReg3 = MRI->createVirtualRegister(TRC);
9552     BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
9553         .addReg(ARM::CPSR, RegState::Define)
9554         .addImm(1)
9555         .add(predOps(ARMCC::AL));
9556     Register NewVReg4 = MRI->createVirtualRegister(TRC);
9557     BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
9558         .addReg(ARM::CPSR, RegState::Define)
9559         .addReg(NewVReg2, RegState::Kill)
9560         .addReg(NewVReg3, RegState::Kill)
9561         .add(predOps(ARMCC::AL));
9562     Register NewVReg5 = MRI->createVirtualRegister(TRC);
9563     BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
9564             .addFrameIndex(FI)
9565             .addImm(36); // &jbuf[1] :: pc
9566     BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
9567         .addReg(NewVReg4, RegState::Kill)
9568         .addReg(NewVReg5, RegState::Kill)
9569         .addImm(0)
9570         .addMemOperand(FIMMOSt)
9571         .add(predOps(ARMCC::AL));
9572   } else {
9573     // Incoming value: jbuf
9574     //   ldr  r1, LCPI1_1
9575     //   add  r1, pc, r1
9576     //   str  r1, [$jbuf, #+4] ; &jbuf[1]
9577     Register NewVReg1 = MRI->createVirtualRegister(TRC);
9578     BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
9579         .addConstantPoolIndex(CPI)
9580         .addImm(0)
9581         .addMemOperand(CPMMO)
9582         .add(predOps(ARMCC::AL));
9583     Register NewVReg2 = MRI->createVirtualRegister(TRC);
9584     BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
9585         .addReg(NewVReg1, RegState::Kill)
9586         .addImm(PCLabelId)
9587         .add(predOps(ARMCC::AL));
9588     BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
9589         .addReg(NewVReg2, RegState::Kill)
9590         .addFrameIndex(FI)
9591         .addImm(36) // &jbuf[1] :: pc
9592         .addMemOperand(FIMMOSt)
9593         .add(predOps(ARMCC::AL));
9594   }
9595 }
9596 
9597 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
9598                                               MachineBasicBlock *MBB) const {
9599   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
9600   DebugLoc dl = MI.getDebugLoc();
9601   MachineFunction *MF = MBB->getParent();
9602   MachineRegisterInfo *MRI = &MF->getRegInfo();
9603   MachineFrameInfo &MFI = MF->getFrameInfo();
9604   int FI = MFI.getFunctionContextIndex();
9605 
9606   const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
9607                                                         : &ARM::GPRnopcRegClass;
9608 
9609   // Get a mapping of the call site numbers to all of the landing pads they're
9610   // associated with.
9611   DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2>> CallSiteNumToLPad;
9612   unsigned MaxCSNum = 0;
9613   for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
9614        ++BB) {
9615     if (!BB->isEHPad()) continue;
9616 
9617     // FIXME: We should assert that the EH_LABEL is the first MI in the landing
9618     // pad.
9619     for (MachineBasicBlock::iterator
9620            II = BB->begin(), IE = BB->end(); II != IE; ++II) {
9621       if (!II->isEHLabel()) continue;
9622 
9623       MCSymbol *Sym = II->getOperand(0).getMCSymbol();
9624       if (!MF->hasCallSiteLandingPad(Sym)) continue;
9625 
9626       SmallVectorImpl<unsigned> &CallSiteIdxs = MF->getCallSiteLandingPad(Sym);
9627       for (SmallVectorImpl<unsigned>::iterator
9628              CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
9629            CSI != CSE; ++CSI) {
9630         CallSiteNumToLPad[*CSI].push_back(&*BB);
9631         MaxCSNum = std::max(MaxCSNum, *CSI);
9632       }
9633       break;
9634     }
9635   }
9636 
9637   // Get an ordered list of the machine basic blocks for the jump table.
9638   std::vector<MachineBasicBlock*> LPadList;
9639   SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs;
9640   LPadList.reserve(CallSiteNumToLPad.size());
9641   for (unsigned I = 1; I <= MaxCSNum; ++I) {
9642     SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
9643     for (SmallVectorImpl<MachineBasicBlock*>::iterator
9644            II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
9645       LPadList.push_back(*II);
9646       InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
9647     }
9648   }
9649 
9650   assert(!LPadList.empty() &&
9651          "No landing pad destinations for the dispatch jump table!");
9652 
9653   // Create the jump table and associated information.
9654   MachineJumpTableInfo *JTI =
9655     MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
9656   unsigned MJTI = JTI->createJumpTableIndex(LPadList);
9657 
9658   // Create the MBBs for the dispatch code.
9659 
9660   // Shove the dispatch's address into the return slot in the function context.
9661   MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
9662   DispatchBB->setIsEHPad();
9663 
9664   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
9665   unsigned trap_opcode;
9666   if (Subtarget->isThumb())
9667     trap_opcode = ARM::tTRAP;
9668   else
9669     trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
9670 
9671   BuildMI(TrapBB, dl, TII->get(trap_opcode));
9672   DispatchBB->addSuccessor(TrapBB);
9673 
9674   MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
9675   DispatchBB->addSuccessor(DispContBB);
9676 
9677   // Insert and MBBs.
9678   MF->insert(MF->end(), DispatchBB);
9679   MF->insert(MF->end(), DispContBB);
9680   MF->insert(MF->end(), TrapBB);
9681 
9682   // Insert code into the entry block that creates and registers the function
9683   // context.
9684   SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
9685 
9686   MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
9687       MachinePointerInfo::getFixedStack(*MF, FI),
9688       MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, 4);
9689 
9690   MachineInstrBuilder MIB;
9691   MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
9692 
9693   const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
9694   const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
9695 
9696   // Add a register mask with no preserved registers.  This results in all
9697   // registers being marked as clobbered. This can't work if the dispatch block
9698   // is in a Thumb1 function and is linked with ARM code which uses the FP
9699   // registers, as there is no way to preserve the FP registers in Thumb1 mode.
9700   MIB.addRegMask(RI.getSjLjDispatchPreservedMask(*MF));
9701 
9702   bool IsPositionIndependent = isPositionIndependent();
9703   unsigned NumLPads = LPadList.size();
9704   if (Subtarget->isThumb2()) {
9705     Register NewVReg1 = MRI->createVirtualRegister(TRC);
9706     BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
9707         .addFrameIndex(FI)
9708         .addImm(4)
9709         .addMemOperand(FIMMOLd)
9710         .add(predOps(ARMCC::AL));
9711 
9712     if (NumLPads < 256) {
9713       BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
9714           .addReg(NewVReg1)
9715           .addImm(LPadList.size())
9716           .add(predOps(ARMCC::AL));
9717     } else {
9718       Register VReg1 = MRI->createVirtualRegister(TRC);
9719       BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
9720           .addImm(NumLPads & 0xFFFF)
9721           .add(predOps(ARMCC::AL));
9722 
9723       unsigned VReg2 = VReg1;
9724       if ((NumLPads & 0xFFFF0000) != 0) {
9725         VReg2 = MRI->createVirtualRegister(TRC);
9726         BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
9727             .addReg(VReg1)
9728             .addImm(NumLPads >> 16)
9729             .add(predOps(ARMCC::AL));
9730       }
9731 
9732       BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
9733           .addReg(NewVReg1)
9734           .addReg(VReg2)
9735           .add(predOps(ARMCC::AL));
9736     }
9737 
9738     BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
9739       .addMBB(TrapBB)
9740       .addImm(ARMCC::HI)
9741       .addReg(ARM::CPSR);
9742 
9743     Register NewVReg3 = MRI->createVirtualRegister(TRC);
9744     BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT), NewVReg3)
9745         .addJumpTableIndex(MJTI)
9746         .add(predOps(ARMCC::AL));
9747 
9748     Register NewVReg4 = MRI->createVirtualRegister(TRC);
9749     BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
9750         .addReg(NewVReg3, RegState::Kill)
9751         .addReg(NewVReg1)
9752         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
9753         .add(predOps(ARMCC::AL))
9754         .add(condCodeOp());
9755 
9756     BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
9757       .addReg(NewVReg4, RegState::Kill)
9758       .addReg(NewVReg1)
9759       .addJumpTableIndex(MJTI);
9760   } else if (Subtarget->isThumb()) {
9761     Register NewVReg1 = MRI->createVirtualRegister(TRC);
9762     BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
9763         .addFrameIndex(FI)
9764         .addImm(1)
9765         .addMemOperand(FIMMOLd)
9766         .add(predOps(ARMCC::AL));
9767 
9768     if (NumLPads < 256) {
9769       BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
9770           .addReg(NewVReg1)
9771           .addImm(NumLPads)
9772           .add(predOps(ARMCC::AL));
9773     } else {
9774       MachineConstantPool *ConstantPool = MF->getConstantPool();
9775       Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
9776       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
9777 
9778       // MachineConstantPool wants an explicit alignment.
9779       unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
9780       if (Align == 0)
9781         Align = MF->getDataLayout().getTypeAllocSize(C->getType());
9782       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
9783 
9784       Register VReg1 = MRI->createVirtualRegister(TRC);
9785       BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
9786           .addReg(VReg1, RegState::Define)
9787           .addConstantPoolIndex(Idx)
9788           .add(predOps(ARMCC::AL));
9789       BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
9790           .addReg(NewVReg1)
9791           .addReg(VReg1)
9792           .add(predOps(ARMCC::AL));
9793     }
9794 
9795     BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
9796       .addMBB(TrapBB)
9797       .addImm(ARMCC::HI)
9798       .addReg(ARM::CPSR);
9799 
9800     Register NewVReg2 = MRI->createVirtualRegister(TRC);
9801     BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
9802         .addReg(ARM::CPSR, RegState::Define)
9803         .addReg(NewVReg1)
9804         .addImm(2)
9805         .add(predOps(ARMCC::AL));
9806 
9807     Register NewVReg3 = MRI->createVirtualRegister(TRC);
9808     BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
9809         .addJumpTableIndex(MJTI)
9810         .add(predOps(ARMCC::AL));
9811 
9812     Register NewVReg4 = MRI->createVirtualRegister(TRC);
9813     BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
9814         .addReg(ARM::CPSR, RegState::Define)
9815         .addReg(NewVReg2, RegState::Kill)
9816         .addReg(NewVReg3)
9817         .add(predOps(ARMCC::AL));
9818 
9819     MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
9820         MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
9821 
9822     Register NewVReg5 = MRI->createVirtualRegister(TRC);
9823     BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
9824         .addReg(NewVReg4, RegState::Kill)
9825         .addImm(0)
9826         .addMemOperand(JTMMOLd)
9827         .add(predOps(ARMCC::AL));
9828 
9829     unsigned NewVReg6 = NewVReg5;
9830     if (IsPositionIndependent) {
9831       NewVReg6 = MRI->createVirtualRegister(TRC);
9832       BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
9833           .addReg(ARM::CPSR, RegState::Define)
9834           .addReg(NewVReg5, RegState::Kill)
9835           .addReg(NewVReg3)
9836           .add(predOps(ARMCC::AL));
9837     }
9838 
9839     BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
9840       .addReg(NewVReg6, RegState::Kill)
9841       .addJumpTableIndex(MJTI);
9842   } else {
9843     Register NewVReg1 = MRI->createVirtualRegister(TRC);
9844     BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
9845         .addFrameIndex(FI)
9846         .addImm(4)
9847         .addMemOperand(FIMMOLd)
9848         .add(predOps(ARMCC::AL));
9849 
9850     if (NumLPads < 256) {
9851       BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
9852           .addReg(NewVReg1)
9853           .addImm(NumLPads)
9854           .add(predOps(ARMCC::AL));
9855     } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
9856       Register VReg1 = MRI->createVirtualRegister(TRC);
9857       BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
9858           .addImm(NumLPads & 0xFFFF)
9859           .add(predOps(ARMCC::AL));
9860 
9861       unsigned VReg2 = VReg1;
9862       if ((NumLPads & 0xFFFF0000) != 0) {
9863         VReg2 = MRI->createVirtualRegister(TRC);
9864         BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
9865             .addReg(VReg1)
9866             .addImm(NumLPads >> 16)
9867             .add(predOps(ARMCC::AL));
9868       }
9869 
9870       BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
9871           .addReg(NewVReg1)
9872           .addReg(VReg2)
9873           .add(predOps(ARMCC::AL));
9874     } else {
9875       MachineConstantPool *ConstantPool = MF->getConstantPool();
9876       Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
9877       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
9878 
9879       // MachineConstantPool wants an explicit alignment.
9880       unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
9881       if (Align == 0)
9882         Align = MF->getDataLayout().getTypeAllocSize(C->getType());
9883       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
9884 
9885       Register VReg1 = MRI->createVirtualRegister(TRC);
9886       BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
9887           .addReg(VReg1, RegState::Define)
9888           .addConstantPoolIndex(Idx)
9889           .addImm(0)
9890           .add(predOps(ARMCC::AL));
9891       BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
9892           .addReg(NewVReg1)
9893           .addReg(VReg1, RegState::Kill)
9894           .add(predOps(ARMCC::AL));
9895     }
9896 
9897     BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
9898       .addMBB(TrapBB)
9899       .addImm(ARMCC::HI)
9900       .addReg(ARM::CPSR);
9901 
9902     Register NewVReg3 = MRI->createVirtualRegister(TRC);
9903     BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
9904         .addReg(NewVReg1)
9905         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
9906         .add(predOps(ARMCC::AL))
9907         .add(condCodeOp());
9908     Register NewVReg4 = MRI->createVirtualRegister(TRC);
9909     BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
9910         .addJumpTableIndex(MJTI)
9911         .add(predOps(ARMCC::AL));
9912 
9913     MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
9914         MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
9915     Register NewVReg5 = MRI->createVirtualRegister(TRC);
9916     BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
9917         .addReg(NewVReg3, RegState::Kill)
9918         .addReg(NewVReg4)
9919         .addImm(0)
9920         .addMemOperand(JTMMOLd)
9921         .add(predOps(ARMCC::AL));
9922 
9923     if (IsPositionIndependent) {
9924       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
9925         .addReg(NewVReg5, RegState::Kill)
9926         .addReg(NewVReg4)
9927         .addJumpTableIndex(MJTI);
9928     } else {
9929       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
9930         .addReg(NewVReg5, RegState::Kill)
9931         .addJumpTableIndex(MJTI);
9932     }
9933   }
9934 
9935   // Add the jump table entries as successors to the MBB.
9936   SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
9937   for (std::vector<MachineBasicBlock*>::iterator
9938          I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
9939     MachineBasicBlock *CurMBB = *I;
9940     if (SeenMBBs.insert(CurMBB).second)
9941       DispContBB->addSuccessor(CurMBB);
9942   }
9943 
9944   // N.B. the order the invoke BBs are processed in doesn't matter here.
9945   const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
9946   SmallVector<MachineBasicBlock*, 64> MBBLPads;
9947   for (MachineBasicBlock *BB : InvokeBBs) {
9948 
9949     // Remove the landing pad successor from the invoke block and replace it
9950     // with the new dispatch block.
9951     SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
9952                                                   BB->succ_end());
9953     while (!Successors.empty()) {
9954       MachineBasicBlock *SMBB = Successors.pop_back_val();
9955       if (SMBB->isEHPad()) {
9956         BB->removeSuccessor(SMBB);
9957         MBBLPads.push_back(SMBB);
9958       }
9959     }
9960 
9961     BB->addSuccessor(DispatchBB, BranchProbability::getZero());
9962     BB->normalizeSuccProbs();
9963 
9964     // Find the invoke call and mark all of the callee-saved registers as
9965     // 'implicit defined' so that they're spilled. This prevents code from
9966     // moving instructions to before the EH block, where they will never be
9967     // executed.
9968     for (MachineBasicBlock::reverse_iterator
9969            II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
9970       if (!II->isCall()) continue;
9971 
9972       DenseMap<unsigned, bool> DefRegs;
9973       for (MachineInstr::mop_iterator
9974              OI = II->operands_begin(), OE = II->operands_end();
9975            OI != OE; ++OI) {
9976         if (!OI->isReg()) continue;
9977         DefRegs[OI->getReg()] = true;
9978       }
9979 
9980       MachineInstrBuilder MIB(*MF, &*II);
9981 
9982       for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
9983         unsigned Reg = SavedRegs[i];
9984         if (Subtarget->isThumb2() &&
9985             !ARM::tGPRRegClass.contains(Reg) &&
9986             !ARM::hGPRRegClass.contains(Reg))
9987           continue;
9988         if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
9989           continue;
9990         if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
9991           continue;
9992         if (!DefRegs[Reg])
9993           MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
9994       }
9995 
9996       break;
9997     }
9998   }
9999 
10000   // Mark all former landing pads as non-landing pads. The dispatch is the only
10001   // landing pad now.
10002   for (SmallVectorImpl<MachineBasicBlock*>::iterator
10003          I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
10004     (*I)->setIsEHPad(false);
10005 
10006   // The instruction is gone now.
10007   MI.eraseFromParent();
10008 }
10009 
10010 static
10011 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
10012   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
10013        E = MBB->succ_end(); I != E; ++I)
10014     if (*I != Succ)
10015       return *I;
10016   llvm_unreachable("Expecting a BB with two successors!");
10017 }
10018 
10019 /// Return the load opcode for a given load size. If load size >= 8,
10020 /// neon opcode will be returned.
10021 static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
10022   if (LdSize >= 8)
10023     return LdSize == 16 ? ARM::VLD1q32wb_fixed
10024                         : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
10025   if (IsThumb1)
10026     return LdSize == 4 ? ARM::tLDRi
10027                        : LdSize == 2 ? ARM::tLDRHi
10028                                      : LdSize == 1 ? ARM::tLDRBi : 0;
10029   if (IsThumb2)
10030     return LdSize == 4 ? ARM::t2LDR_POST
10031                        : LdSize == 2 ? ARM::t2LDRH_POST
10032                                      : LdSize == 1 ? ARM::t2LDRB_POST : 0;
10033   return LdSize == 4 ? ARM::LDR_POST_IMM
10034                      : LdSize == 2 ? ARM::LDRH_POST
10035                                    : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
10036 }
10037 
10038 /// Return the store opcode for a given store size. If store size >= 8,
10039 /// neon opcode will be returned.
10040 static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
10041   if (StSize >= 8)
10042     return StSize == 16 ? ARM::VST1q32wb_fixed
10043                         : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
10044   if (IsThumb1)
10045     return StSize == 4 ? ARM::tSTRi
10046                        : StSize == 2 ? ARM::tSTRHi
10047                                      : StSize == 1 ? ARM::tSTRBi : 0;
10048   if (IsThumb2)
10049     return StSize == 4 ? ARM::t2STR_POST
10050                        : StSize == 2 ? ARM::t2STRH_POST
10051                                      : StSize == 1 ? ARM::t2STRB_POST : 0;
10052   return StSize == 4 ? ARM::STR_POST_IMM
10053                      : StSize == 2 ? ARM::STRH_POST
10054                                    : StSize == 1 ? ARM::STRB_POST_IMM : 0;
10055 }
10056 
10057 /// Emit a post-increment load operation with given size. The instructions
10058 /// will be added to BB at Pos.
10059 static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
10060                        const TargetInstrInfo *TII, const DebugLoc &dl,
10061                        unsigned LdSize, unsigned Data, unsigned AddrIn,
10062                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
10063   unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
10064   assert(LdOpc != 0 && "Should have a load opcode");
10065   if (LdSize >= 8) {
10066     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
10067         .addReg(AddrOut, RegState::Define)
10068         .addReg(AddrIn)
10069         .addImm(0)
10070         .add(predOps(ARMCC::AL));
10071   } else if (IsThumb1) {
10072     // load + update AddrIn
10073     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
10074         .addReg(AddrIn)
10075         .addImm(0)
10076         .add(predOps(ARMCC::AL));
10077     BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
10078         .add(t1CondCodeOp())
10079         .addReg(AddrIn)
10080         .addImm(LdSize)
10081         .add(predOps(ARMCC::AL));
10082   } else if (IsThumb2) {
10083     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
10084         .addReg(AddrOut, RegState::Define)
10085         .addReg(AddrIn)
10086         .addImm(LdSize)
10087         .add(predOps(ARMCC::AL));
10088   } else { // arm
10089     BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
10090         .addReg(AddrOut, RegState::Define)
10091         .addReg(AddrIn)
10092         .addReg(0)
10093         .addImm(LdSize)
10094         .add(predOps(ARMCC::AL));
10095   }
10096 }
10097 
10098 /// Emit a post-increment store operation with given size. The instructions
10099 /// will be added to BB at Pos.
10100 static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
10101                        const TargetInstrInfo *TII, const DebugLoc &dl,
10102                        unsigned StSize, unsigned Data, unsigned AddrIn,
10103                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
10104   unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
10105   assert(StOpc != 0 && "Should have a store opcode");
10106   if (StSize >= 8) {
10107     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
10108         .addReg(AddrIn)
10109         .addImm(0)
10110         .addReg(Data)
10111         .add(predOps(ARMCC::AL));
10112   } else if (IsThumb1) {
10113     // store + update AddrIn
10114     BuildMI(*BB, Pos, dl, TII->get(StOpc))
10115         .addReg(Data)
10116         .addReg(AddrIn)
10117         .addImm(0)
10118         .add(predOps(ARMCC::AL));
10119     BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
10120         .add(t1CondCodeOp())
10121         .addReg(AddrIn)
10122         .addImm(StSize)
10123         .add(predOps(ARMCC::AL));
10124   } else if (IsThumb2) {
10125     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
10126         .addReg(Data)
10127         .addReg(AddrIn)
10128         .addImm(StSize)
10129         .add(predOps(ARMCC::AL));
10130   } else { // arm
10131     BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
10132         .addReg(Data)
10133         .addReg(AddrIn)
10134         .addReg(0)
10135         .addImm(StSize)
10136         .add(predOps(ARMCC::AL));
10137   }
10138 }
10139 
10140 MachineBasicBlock *
10141 ARMTargetLowering::EmitStructByval(MachineInstr &MI,
10142                                    MachineBasicBlock *BB) const {
10143   // This pseudo instruction has 3 operands: dst, src, size
10144   // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
10145   // Otherwise, we will generate unrolled scalar copies.
10146   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10147   const BasicBlock *LLVM_BB = BB->getBasicBlock();
10148   MachineFunction::iterator It = ++BB->getIterator();
10149 
10150   Register dest = MI.getOperand(0).getReg();
10151   Register src = MI.getOperand(1).getReg();
10152   unsigned SizeVal = MI.getOperand(2).getImm();
10153   unsigned Align = MI.getOperand(3).getImm();
10154   DebugLoc dl = MI.getDebugLoc();
10155 
10156   MachineFunction *MF = BB->getParent();
10157   MachineRegisterInfo &MRI = MF->getRegInfo();
10158   unsigned UnitSize = 0;
10159   const TargetRegisterClass *TRC = nullptr;
10160   const TargetRegisterClass *VecTRC = nullptr;
10161 
10162   bool IsThumb1 = Subtarget->isThumb1Only();
10163   bool IsThumb2 = Subtarget->isThumb2();
10164   bool IsThumb = Subtarget->isThumb();
10165 
10166   if (Align & 1) {
10167     UnitSize = 1;
10168   } else if (Align & 2) {
10169     UnitSize = 2;
10170   } else {
10171     // Check whether we can use NEON instructions.
10172     if (!MF->getFunction().hasFnAttribute(Attribute::NoImplicitFloat) &&
10173         Subtarget->hasNEON()) {
10174       if ((Align % 16 == 0) && SizeVal >= 16)
10175         UnitSize = 16;
10176       else if ((Align % 8 == 0) && SizeVal >= 8)
10177         UnitSize = 8;
10178     }
10179     // Can't use NEON instructions.
10180     if (UnitSize == 0)
10181       UnitSize = 4;
10182   }
10183 
10184   // Select the correct opcode and register class for unit size load/store
10185   bool IsNeon = UnitSize >= 8;
10186   TRC = IsThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
10187   if (IsNeon)
10188     VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
10189                             : UnitSize == 8 ? &ARM::DPRRegClass
10190                                             : nullptr;
10191 
10192   unsigned BytesLeft = SizeVal % UnitSize;
10193   unsigned LoopSize = SizeVal - BytesLeft;
10194 
10195   if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
10196     // Use LDR and STR to copy.
10197     // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
10198     // [destOut] = STR_POST(scratch, destIn, UnitSize)
10199     unsigned srcIn = src;
10200     unsigned destIn = dest;
10201     for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
10202       Register srcOut = MRI.createVirtualRegister(TRC);
10203       Register destOut = MRI.createVirtualRegister(TRC);
10204       Register scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
10205       emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
10206                  IsThumb1, IsThumb2);
10207       emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
10208                  IsThumb1, IsThumb2);
10209       srcIn = srcOut;
10210       destIn = destOut;
10211     }
10212 
10213     // Handle the leftover bytes with LDRB and STRB.
10214     // [scratch, srcOut] = LDRB_POST(srcIn, 1)
10215     // [destOut] = STRB_POST(scratch, destIn, 1)
10216     for (unsigned i = 0; i < BytesLeft; i++) {
10217       Register srcOut = MRI.createVirtualRegister(TRC);
10218       Register destOut = MRI.createVirtualRegister(TRC);
10219       Register scratch = MRI.createVirtualRegister(TRC);
10220       emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
10221                  IsThumb1, IsThumb2);
10222       emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
10223                  IsThumb1, IsThumb2);
10224       srcIn = srcOut;
10225       destIn = destOut;
10226     }
10227     MI.eraseFromParent(); // The instruction is gone now.
10228     return BB;
10229   }
10230 
10231   // Expand the pseudo op to a loop.
10232   // thisMBB:
10233   //   ...
10234   //   movw varEnd, # --> with thumb2
10235   //   movt varEnd, #
10236   //   ldrcp varEnd, idx --> without thumb2
10237   //   fallthrough --> loopMBB
10238   // loopMBB:
10239   //   PHI varPhi, varEnd, varLoop
10240   //   PHI srcPhi, src, srcLoop
10241   //   PHI destPhi, dst, destLoop
10242   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
10243   //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
10244   //   subs varLoop, varPhi, #UnitSize
10245   //   bne loopMBB
10246   //   fallthrough --> exitMBB
10247   // exitMBB:
10248   //   epilogue to handle left-over bytes
10249   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
10250   //   [destOut] = STRB_POST(scratch, destLoop, 1)
10251   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10252   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10253   MF->insert(It, loopMBB);
10254   MF->insert(It, exitMBB);
10255 
10256   // Transfer the remainder of BB and its successor edges to exitMBB.
10257   exitMBB->splice(exitMBB->begin(), BB,
10258                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
10259   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10260 
10261   // Load an immediate to varEnd.
10262   Register varEnd = MRI.createVirtualRegister(TRC);
10263   if (Subtarget->useMovt()) {
10264     unsigned Vtmp = varEnd;
10265     if ((LoopSize & 0xFFFF0000) != 0)
10266       Vtmp = MRI.createVirtualRegister(TRC);
10267     BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVi16 : ARM::MOVi16), Vtmp)
10268         .addImm(LoopSize & 0xFFFF)
10269         .add(predOps(ARMCC::AL));
10270 
10271     if ((LoopSize & 0xFFFF0000) != 0)
10272       BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVTi16 : ARM::MOVTi16), varEnd)
10273           .addReg(Vtmp)
10274           .addImm(LoopSize >> 16)
10275           .add(predOps(ARMCC::AL));
10276   } else {
10277     MachineConstantPool *ConstantPool = MF->getConstantPool();
10278     Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
10279     const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
10280 
10281     // MachineConstantPool wants an explicit alignment.
10282     unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
10283     if (Align == 0)
10284       Align = MF->getDataLayout().getTypeAllocSize(C->getType());
10285     unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
10286     MachineMemOperand *CPMMO =
10287         MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
10288                                  MachineMemOperand::MOLoad, 4, 4);
10289 
10290     if (IsThumb)
10291       BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci))
10292           .addReg(varEnd, RegState::Define)
10293           .addConstantPoolIndex(Idx)
10294           .add(predOps(ARMCC::AL))
10295           .addMemOperand(CPMMO);
10296     else
10297       BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp))
10298           .addReg(varEnd, RegState::Define)
10299           .addConstantPoolIndex(Idx)
10300           .addImm(0)
10301           .add(predOps(ARMCC::AL))
10302           .addMemOperand(CPMMO);
10303   }
10304   BB->addSuccessor(loopMBB);
10305 
10306   // Generate the loop body:
10307   //   varPhi = PHI(varLoop, varEnd)
10308   //   srcPhi = PHI(srcLoop, src)
10309   //   destPhi = PHI(destLoop, dst)
10310   MachineBasicBlock *entryBB = BB;
10311   BB = loopMBB;
10312   Register varLoop = MRI.createVirtualRegister(TRC);
10313   Register varPhi = MRI.createVirtualRegister(TRC);
10314   Register srcLoop = MRI.createVirtualRegister(TRC);
10315   Register srcPhi = MRI.createVirtualRegister(TRC);
10316   Register destLoop = MRI.createVirtualRegister(TRC);
10317   Register destPhi = MRI.createVirtualRegister(TRC);
10318 
10319   BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
10320     .addReg(varLoop).addMBB(loopMBB)
10321     .addReg(varEnd).addMBB(entryBB);
10322   BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
10323     .addReg(srcLoop).addMBB(loopMBB)
10324     .addReg(src).addMBB(entryBB);
10325   BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
10326     .addReg(destLoop).addMBB(loopMBB)
10327     .addReg(dest).addMBB(entryBB);
10328 
10329   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
10330   //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
10331   Register scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
10332   emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
10333              IsThumb1, IsThumb2);
10334   emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
10335              IsThumb1, IsThumb2);
10336 
10337   // Decrement loop variable by UnitSize.
10338   if (IsThumb1) {
10339     BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop)
10340         .add(t1CondCodeOp())
10341         .addReg(varPhi)
10342         .addImm(UnitSize)
10343         .add(predOps(ARMCC::AL));
10344   } else {
10345     MachineInstrBuilder MIB =
10346         BuildMI(*BB, BB->end(), dl,
10347                 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
10348     MIB.addReg(varPhi)
10349         .addImm(UnitSize)
10350         .add(predOps(ARMCC::AL))
10351         .add(condCodeOp());
10352     MIB->getOperand(5).setReg(ARM::CPSR);
10353     MIB->getOperand(5).setIsDef(true);
10354   }
10355   BuildMI(*BB, BB->end(), dl,
10356           TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
10357       .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
10358 
10359   // loopMBB can loop back to loopMBB or fall through to exitMBB.
10360   BB->addSuccessor(loopMBB);
10361   BB->addSuccessor(exitMBB);
10362 
10363   // Add epilogue to handle BytesLeft.
10364   BB = exitMBB;
10365   auto StartOfExit = exitMBB->begin();
10366 
10367   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
10368   //   [destOut] = STRB_POST(scratch, destLoop, 1)
10369   unsigned srcIn = srcLoop;
10370   unsigned destIn = destLoop;
10371   for (unsigned i = 0; i < BytesLeft; i++) {
10372     Register srcOut = MRI.createVirtualRegister(TRC);
10373     Register destOut = MRI.createVirtualRegister(TRC);
10374     Register scratch = MRI.createVirtualRegister(TRC);
10375     emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
10376                IsThumb1, IsThumb2);
10377     emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
10378                IsThumb1, IsThumb2);
10379     srcIn = srcOut;
10380     destIn = destOut;
10381   }
10382 
10383   MI.eraseFromParent(); // The instruction is gone now.
10384   return BB;
10385 }
10386 
10387 MachineBasicBlock *
10388 ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI,
10389                                        MachineBasicBlock *MBB) const {
10390   const TargetMachine &TM = getTargetMachine();
10391   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
10392   DebugLoc DL = MI.getDebugLoc();
10393 
10394   assert(Subtarget->isTargetWindows() &&
10395          "__chkstk is only supported on Windows");
10396   assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
10397 
10398   // __chkstk takes the number of words to allocate on the stack in R4, and
10399   // returns the stack adjustment in number of bytes in R4.  This will not
10400   // clober any other registers (other than the obvious lr).
10401   //
10402   // Although, technically, IP should be considered a register which may be
10403   // clobbered, the call itself will not touch it.  Windows on ARM is a pure
10404   // thumb-2 environment, so there is no interworking required.  As a result, we
10405   // do not expect a veneer to be emitted by the linker, clobbering IP.
10406   //
10407   // Each module receives its own copy of __chkstk, so no import thunk is
10408   // required, again, ensuring that IP is not clobbered.
10409   //
10410   // Finally, although some linkers may theoretically provide a trampoline for
10411   // out of range calls (which is quite common due to a 32M range limitation of
10412   // branches for Thumb), we can generate the long-call version via
10413   // -mcmodel=large, alleviating the need for the trampoline which may clobber
10414   // IP.
10415 
10416   switch (TM.getCodeModel()) {
10417   case CodeModel::Tiny:
10418     llvm_unreachable("Tiny code model not available on ARM.");
10419   case CodeModel::Small:
10420   case CodeModel::Medium:
10421   case CodeModel::Kernel:
10422     BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
10423         .add(predOps(ARMCC::AL))
10424         .addExternalSymbol("__chkstk")
10425         .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
10426         .addReg(ARM::R4, RegState::Implicit | RegState::Define)
10427         .addReg(ARM::R12,
10428                 RegState::Implicit | RegState::Define | RegState::Dead)
10429         .addReg(ARM::CPSR,
10430                 RegState::Implicit | RegState::Define | RegState::Dead);
10431     break;
10432   case CodeModel::Large: {
10433     MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
10434     Register Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
10435 
10436     BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
10437       .addExternalSymbol("__chkstk");
10438     BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr))
10439         .add(predOps(ARMCC::AL))
10440         .addReg(Reg, RegState::Kill)
10441         .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
10442         .addReg(ARM::R4, RegState::Implicit | RegState::Define)
10443         .addReg(ARM::R12,
10444                 RegState::Implicit | RegState::Define | RegState::Dead)
10445         .addReg(ARM::CPSR,
10446                 RegState::Implicit | RegState::Define | RegState::Dead);
10447     break;
10448   }
10449   }
10450 
10451   BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr), ARM::SP)
10452       .addReg(ARM::SP, RegState::Kill)
10453       .addReg(ARM::R4, RegState::Kill)
10454       .setMIFlags(MachineInstr::FrameSetup)
10455       .add(predOps(ARMCC::AL))
10456       .add(condCodeOp());
10457 
10458   MI.eraseFromParent();
10459   return MBB;
10460 }
10461 
10462 MachineBasicBlock *
10463 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI,
10464                                        MachineBasicBlock *MBB) const {
10465   DebugLoc DL = MI.getDebugLoc();
10466   MachineFunction *MF = MBB->getParent();
10467   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10468 
10469   MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
10470   MF->insert(++MBB->getIterator(), ContBB);
10471   ContBB->splice(ContBB->begin(), MBB,
10472                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
10473   ContBB->transferSuccessorsAndUpdatePHIs(MBB);
10474   MBB->addSuccessor(ContBB);
10475 
10476   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
10477   BuildMI(TrapBB, DL, TII->get(ARM::t__brkdiv0));
10478   MF->push_back(TrapBB);
10479   MBB->addSuccessor(TrapBB);
10480 
10481   BuildMI(*MBB, MI, DL, TII->get(ARM::tCMPi8))
10482       .addReg(MI.getOperand(0).getReg())
10483       .addImm(0)
10484       .add(predOps(ARMCC::AL));
10485   BuildMI(*MBB, MI, DL, TII->get(ARM::t2Bcc))
10486       .addMBB(TrapBB)
10487       .addImm(ARMCC::EQ)
10488       .addReg(ARM::CPSR);
10489 
10490   MI.eraseFromParent();
10491   return ContBB;
10492 }
10493 
10494 // The CPSR operand of SelectItr might be missing a kill marker
10495 // because there were multiple uses of CPSR, and ISel didn't know
10496 // which to mark. Figure out whether SelectItr should have had a
10497 // kill marker, and set it if it should. Returns the correct kill
10498 // marker value.
10499 static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr,
10500                                    MachineBasicBlock* BB,
10501                                    const TargetRegisterInfo* TRI) {
10502   // Scan forward through BB for a use/def of CPSR.
10503   MachineBasicBlock::iterator miI(std::next(SelectItr));
10504   for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
10505     const MachineInstr& mi = *miI;
10506     if (mi.readsRegister(ARM::CPSR))
10507       return false;
10508     if (mi.definesRegister(ARM::CPSR))
10509       break; // Should have kill-flag - update below.
10510   }
10511 
10512   // If we hit the end of the block, check whether CPSR is live into a
10513   // successor.
10514   if (miI == BB->end()) {
10515     for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
10516                                           sEnd = BB->succ_end();
10517          sItr != sEnd; ++sItr) {
10518       MachineBasicBlock* succ = *sItr;
10519       if (succ->isLiveIn(ARM::CPSR))
10520         return false;
10521     }
10522   }
10523 
10524   // We found a def, or hit the end of the basic block and CPSR wasn't live
10525   // out. SelectMI should have a kill flag on CPSR.
10526   SelectItr->addRegisterKilled(ARM::CPSR, TRI);
10527   return true;
10528 }
10529 
10530 MachineBasicBlock *
10531 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
10532                                                MachineBasicBlock *BB) const {
10533   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10534   DebugLoc dl = MI.getDebugLoc();
10535   bool isThumb2 = Subtarget->isThumb2();
10536   switch (MI.getOpcode()) {
10537   default: {
10538     MI.print(errs());
10539     llvm_unreachable("Unexpected instr type to insert");
10540   }
10541 
10542   // Thumb1 post-indexed loads are really just single-register LDMs.
10543   case ARM::tLDR_postidx: {
10544     MachineOperand Def(MI.getOperand(1));
10545     BuildMI(*BB, MI, dl, TII->get(ARM::tLDMIA_UPD))
10546         .add(Def)  // Rn_wb
10547         .add(MI.getOperand(2))  // Rn
10548         .add(MI.getOperand(3))  // PredImm
10549         .add(MI.getOperand(4))  // PredReg
10550         .add(MI.getOperand(0))  // Rt
10551         .cloneMemRefs(MI);
10552     MI.eraseFromParent();
10553     return BB;
10554   }
10555 
10556   // The Thumb2 pre-indexed stores have the same MI operands, they just
10557   // define them differently in the .td files from the isel patterns, so
10558   // they need pseudos.
10559   case ARM::t2STR_preidx:
10560     MI.setDesc(TII->get(ARM::t2STR_PRE));
10561     return BB;
10562   case ARM::t2STRB_preidx:
10563     MI.setDesc(TII->get(ARM::t2STRB_PRE));
10564     return BB;
10565   case ARM::t2STRH_preidx:
10566     MI.setDesc(TII->get(ARM::t2STRH_PRE));
10567     return BB;
10568 
10569   case ARM::STRi_preidx:
10570   case ARM::STRBi_preidx: {
10571     unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM
10572                                                          : ARM::STRB_PRE_IMM;
10573     // Decode the offset.
10574     unsigned Offset = MI.getOperand(4).getImm();
10575     bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
10576     Offset = ARM_AM::getAM2Offset(Offset);
10577     if (isSub)
10578       Offset = -Offset;
10579 
10580     MachineMemOperand *MMO = *MI.memoperands_begin();
10581     BuildMI(*BB, MI, dl, TII->get(NewOpc))
10582         .add(MI.getOperand(0)) // Rn_wb
10583         .add(MI.getOperand(1)) // Rt
10584         .add(MI.getOperand(2)) // Rn
10585         .addImm(Offset)        // offset (skip GPR==zero_reg)
10586         .add(MI.getOperand(5)) // pred
10587         .add(MI.getOperand(6))
10588         .addMemOperand(MMO);
10589     MI.eraseFromParent();
10590     return BB;
10591   }
10592   case ARM::STRr_preidx:
10593   case ARM::STRBr_preidx:
10594   case ARM::STRH_preidx: {
10595     unsigned NewOpc;
10596     switch (MI.getOpcode()) {
10597     default: llvm_unreachable("unexpected opcode!");
10598     case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
10599     case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
10600     case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
10601     }
10602     MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
10603     for (unsigned i = 0; i < MI.getNumOperands(); ++i)
10604       MIB.add(MI.getOperand(i));
10605     MI.eraseFromParent();
10606     return BB;
10607   }
10608 
10609   case ARM::tMOVCCr_pseudo: {
10610     // To "insert" a SELECT_CC instruction, we actually have to insert the
10611     // diamond control-flow pattern.  The incoming instruction knows the
10612     // destination vreg to set, the condition code register to branch on, the
10613     // true/false values to select between, and a branch opcode to use.
10614     const BasicBlock *LLVM_BB = BB->getBasicBlock();
10615     MachineFunction::iterator It = ++BB->getIterator();
10616 
10617     //  thisMBB:
10618     //  ...
10619     //   TrueVal = ...
10620     //   cmpTY ccX, r1, r2
10621     //   bCC copy1MBB
10622     //   fallthrough --> copy0MBB
10623     MachineBasicBlock *thisMBB  = BB;
10624     MachineFunction *F = BB->getParent();
10625     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10626     MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
10627     F->insert(It, copy0MBB);
10628     F->insert(It, sinkMBB);
10629 
10630     // Check whether CPSR is live past the tMOVCCr_pseudo.
10631     const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
10632     if (!MI.killsRegister(ARM::CPSR) &&
10633         !checkAndUpdateCPSRKill(MI, thisMBB, TRI)) {
10634       copy0MBB->addLiveIn(ARM::CPSR);
10635       sinkMBB->addLiveIn(ARM::CPSR);
10636     }
10637 
10638     // Transfer the remainder of BB and its successor edges to sinkMBB.
10639     sinkMBB->splice(sinkMBB->begin(), BB,
10640                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
10641     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10642 
10643     BB->addSuccessor(copy0MBB);
10644     BB->addSuccessor(sinkMBB);
10645 
10646     BuildMI(BB, dl, TII->get(ARM::tBcc))
10647         .addMBB(sinkMBB)
10648         .addImm(MI.getOperand(3).getImm())
10649         .addReg(MI.getOperand(4).getReg());
10650 
10651     //  copy0MBB:
10652     //   %FalseValue = ...
10653     //   # fallthrough to sinkMBB
10654     BB = copy0MBB;
10655 
10656     // Update machine-CFG edges
10657     BB->addSuccessor(sinkMBB);
10658 
10659     //  sinkMBB:
10660     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10661     //  ...
10662     BB = sinkMBB;
10663     BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg())
10664         .addReg(MI.getOperand(1).getReg())
10665         .addMBB(copy0MBB)
10666         .addReg(MI.getOperand(2).getReg())
10667         .addMBB(thisMBB);
10668 
10669     MI.eraseFromParent(); // The pseudo instruction is gone now.
10670     return BB;
10671   }
10672 
10673   case ARM::BCCi64:
10674   case ARM::BCCZi64: {
10675     // If there is an unconditional branch to the other successor, remove it.
10676     BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
10677 
10678     // Compare both parts that make up the double comparison separately for
10679     // equality.
10680     bool RHSisZero = MI.getOpcode() == ARM::BCCZi64;
10681 
10682     Register LHS1 = MI.getOperand(1).getReg();
10683     Register LHS2 = MI.getOperand(2).getReg();
10684     if (RHSisZero) {
10685       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
10686           .addReg(LHS1)
10687           .addImm(0)
10688           .add(predOps(ARMCC::AL));
10689       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
10690         .addReg(LHS2).addImm(0)
10691         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
10692     } else {
10693       Register RHS1 = MI.getOperand(3).getReg();
10694       Register RHS2 = MI.getOperand(4).getReg();
10695       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
10696           .addReg(LHS1)
10697           .addReg(RHS1)
10698           .add(predOps(ARMCC::AL));
10699       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
10700         .addReg(LHS2).addReg(RHS2)
10701         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
10702     }
10703 
10704     MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB();
10705     MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
10706     if (MI.getOperand(0).getImm() == ARMCC::NE)
10707       std::swap(destMBB, exitMBB);
10708 
10709     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
10710       .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
10711     if (isThumb2)
10712       BuildMI(BB, dl, TII->get(ARM::t2B))
10713           .addMBB(exitMBB)
10714           .add(predOps(ARMCC::AL));
10715     else
10716       BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
10717 
10718     MI.eraseFromParent(); // The pseudo instruction is gone now.
10719     return BB;
10720   }
10721 
10722   case ARM::Int_eh_sjlj_setjmp:
10723   case ARM::Int_eh_sjlj_setjmp_nofp:
10724   case ARM::tInt_eh_sjlj_setjmp:
10725   case ARM::t2Int_eh_sjlj_setjmp:
10726   case ARM::t2Int_eh_sjlj_setjmp_nofp:
10727     return BB;
10728 
10729   case ARM::Int_eh_sjlj_setup_dispatch:
10730     EmitSjLjDispatchBlock(MI, BB);
10731     return BB;
10732 
10733   case ARM::ABS:
10734   case ARM::t2ABS: {
10735     // To insert an ABS instruction, we have to insert the
10736     // diamond control-flow pattern.  The incoming instruction knows the
10737     // source vreg to test against 0, the destination vreg to set,
10738     // the condition code register to branch on, the
10739     // true/false values to select between, and a branch opcode to use.
10740     // It transforms
10741     //     V1 = ABS V0
10742     // into
10743     //     V2 = MOVS V0
10744     //     BCC                      (branch to SinkBB if V0 >= 0)
10745     //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
10746     //     SinkBB: V1 = PHI(V2, V3)
10747     const BasicBlock *LLVM_BB = BB->getBasicBlock();
10748     MachineFunction::iterator BBI = ++BB->getIterator();
10749     MachineFunction *Fn = BB->getParent();
10750     MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
10751     MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
10752     Fn->insert(BBI, RSBBB);
10753     Fn->insert(BBI, SinkBB);
10754 
10755     Register ABSSrcReg = MI.getOperand(1).getReg();
10756     Register ABSDstReg = MI.getOperand(0).getReg();
10757     bool ABSSrcKIll = MI.getOperand(1).isKill();
10758     bool isThumb2 = Subtarget->isThumb2();
10759     MachineRegisterInfo &MRI = Fn->getRegInfo();
10760     // In Thumb mode S must not be specified if source register is the SP or
10761     // PC and if destination register is the SP, so restrict register class
10762     Register NewRsbDstReg = MRI.createVirtualRegister(
10763         isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
10764 
10765     // Transfer the remainder of BB and its successor edges to sinkMBB.
10766     SinkBB->splice(SinkBB->begin(), BB,
10767                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
10768     SinkBB->transferSuccessorsAndUpdatePHIs(BB);
10769 
10770     BB->addSuccessor(RSBBB);
10771     BB->addSuccessor(SinkBB);
10772 
10773     // fall through to SinkMBB
10774     RSBBB->addSuccessor(SinkBB);
10775 
10776     // insert a cmp at the end of BB
10777     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
10778         .addReg(ABSSrcReg)
10779         .addImm(0)
10780         .add(predOps(ARMCC::AL));
10781 
10782     // insert a bcc with opposite CC to ARMCC::MI at the end of BB
10783     BuildMI(BB, dl,
10784       TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
10785       .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
10786 
10787     // insert rsbri in RSBBB
10788     // Note: BCC and rsbri will be converted into predicated rsbmi
10789     // by if-conversion pass
10790     BuildMI(*RSBBB, RSBBB->begin(), dl,
10791             TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
10792         .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
10793         .addImm(0)
10794         .add(predOps(ARMCC::AL))
10795         .add(condCodeOp());
10796 
10797     // insert PHI in SinkBB,
10798     // reuse ABSDstReg to not change uses of ABS instruction
10799     BuildMI(*SinkBB, SinkBB->begin(), dl,
10800       TII->get(ARM::PHI), ABSDstReg)
10801       .addReg(NewRsbDstReg).addMBB(RSBBB)
10802       .addReg(ABSSrcReg).addMBB(BB);
10803 
10804     // remove ABS instruction
10805     MI.eraseFromParent();
10806 
10807     // return last added BB
10808     return SinkBB;
10809   }
10810   case ARM::COPY_STRUCT_BYVAL_I32:
10811     ++NumLoopByVals;
10812     return EmitStructByval(MI, BB);
10813   case ARM::WIN__CHKSTK:
10814     return EmitLowered__chkstk(MI, BB);
10815   case ARM::WIN__DBZCHK:
10816     return EmitLowered__dbzchk(MI, BB);
10817   }
10818 }
10819 
10820 /// Attaches vregs to MEMCPY that it will use as scratch registers
10821 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
10822 /// instead of as a custom inserter because we need the use list from the SDNode.
10823 static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
10824                                     MachineInstr &MI, const SDNode *Node) {
10825   bool isThumb1 = Subtarget->isThumb1Only();
10826 
10827   DebugLoc DL = MI.getDebugLoc();
10828   MachineFunction *MF = MI.getParent()->getParent();
10829   MachineRegisterInfo &MRI = MF->getRegInfo();
10830   MachineInstrBuilder MIB(*MF, MI);
10831 
10832   // If the new dst/src is unused mark it as dead.
10833   if (!Node->hasAnyUseOfValue(0)) {
10834     MI.getOperand(0).setIsDead(true);
10835   }
10836   if (!Node->hasAnyUseOfValue(1)) {
10837     MI.getOperand(1).setIsDead(true);
10838   }
10839 
10840   // The MEMCPY both defines and kills the scratch registers.
10841   for (unsigned I = 0; I != MI.getOperand(4).getImm(); ++I) {
10842     Register TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
10843                                                          : &ARM::GPRRegClass);
10844     MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
10845   }
10846 }
10847 
10848 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
10849                                                       SDNode *Node) const {
10850   if (MI.getOpcode() == ARM::MEMCPY) {
10851     attachMEMCPYScratchRegs(Subtarget, MI, Node);
10852     return;
10853   }
10854 
10855   const MCInstrDesc *MCID = &MI.getDesc();
10856   // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
10857   // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
10858   // operand is still set to noreg. If needed, set the optional operand's
10859   // register to CPSR, and remove the redundant implicit def.
10860   //
10861   // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
10862 
10863   // Rename pseudo opcodes.
10864   unsigned NewOpc = convertAddSubFlagsOpcode(MI.getOpcode());
10865   unsigned ccOutIdx;
10866   if (NewOpc) {
10867     const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
10868     MCID = &TII->get(NewOpc);
10869 
10870     assert(MCID->getNumOperands() ==
10871            MI.getDesc().getNumOperands() + 5 - MI.getDesc().getSize()
10872         && "converted opcode should be the same except for cc_out"
10873            " (and, on Thumb1, pred)");
10874 
10875     MI.setDesc(*MCID);
10876 
10877     // Add the optional cc_out operand
10878     MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
10879 
10880     // On Thumb1, move all input operands to the end, then add the predicate
10881     if (Subtarget->isThumb1Only()) {
10882       for (unsigned c = MCID->getNumOperands() - 4; c--;) {
10883         MI.addOperand(MI.getOperand(1));
10884         MI.RemoveOperand(1);
10885       }
10886 
10887       // Restore the ties
10888       for (unsigned i = MI.getNumOperands(); i--;) {
10889         const MachineOperand& op = MI.getOperand(i);
10890         if (op.isReg() && op.isUse()) {
10891           int DefIdx = MCID->getOperandConstraint(i, MCOI::TIED_TO);
10892           if (DefIdx != -1)
10893             MI.tieOperands(DefIdx, i);
10894         }
10895       }
10896 
10897       MI.addOperand(MachineOperand::CreateImm(ARMCC::AL));
10898       MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
10899       ccOutIdx = 1;
10900     } else
10901       ccOutIdx = MCID->getNumOperands() - 1;
10902   } else
10903     ccOutIdx = MCID->getNumOperands() - 1;
10904 
10905   // Any ARM instruction that sets the 's' bit should specify an optional
10906   // "cc_out" operand in the last operand position.
10907   if (!MI.hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
10908     assert(!NewOpc && "Optional cc_out operand required");
10909     return;
10910   }
10911   // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
10912   // since we already have an optional CPSR def.
10913   bool definesCPSR = false;
10914   bool deadCPSR = false;
10915   for (unsigned i = MCID->getNumOperands(), e = MI.getNumOperands(); i != e;
10916        ++i) {
10917     const MachineOperand &MO = MI.getOperand(i);
10918     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
10919       definesCPSR = true;
10920       if (MO.isDead())
10921         deadCPSR = true;
10922       MI.RemoveOperand(i);
10923       break;
10924     }
10925   }
10926   if (!definesCPSR) {
10927     assert(!NewOpc && "Optional cc_out operand required");
10928     return;
10929   }
10930   assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
10931   if (deadCPSR) {
10932     assert(!MI.getOperand(ccOutIdx).getReg() &&
10933            "expect uninitialized optional cc_out operand");
10934     // Thumb1 instructions must have the S bit even if the CPSR is dead.
10935     if (!Subtarget->isThumb1Only())
10936       return;
10937   }
10938 
10939   // If this instruction was defined with an optional CPSR def and its dag node
10940   // had a live implicit CPSR def, then activate the optional CPSR def.
10941   MachineOperand &MO = MI.getOperand(ccOutIdx);
10942   MO.setReg(ARM::CPSR);
10943   MO.setIsDef(true);
10944 }
10945 
10946 //===----------------------------------------------------------------------===//
10947 //                           ARM Optimization Hooks
10948 //===----------------------------------------------------------------------===//
10949 
10950 // Helper function that checks if N is a null or all ones constant.
10951 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
10952   return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
10953 }
10954 
10955 // Return true if N is conditionally 0 or all ones.
10956 // Detects these expressions where cc is an i1 value:
10957 //
10958 //   (select cc 0, y)   [AllOnes=0]
10959 //   (select cc y, 0)   [AllOnes=0]
10960 //   (zext cc)          [AllOnes=0]
10961 //   (sext cc)          [AllOnes=0/1]
10962 //   (select cc -1, y)  [AllOnes=1]
10963 //   (select cc y, -1)  [AllOnes=1]
10964 //
10965 // Invert is set when N is the null/all ones constant when CC is false.
10966 // OtherOp is set to the alternative value of N.
10967 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
10968                                        SDValue &CC, bool &Invert,
10969                                        SDValue &OtherOp,
10970                                        SelectionDAG &DAG) {
10971   switch (N->getOpcode()) {
10972   default: return false;
10973   case ISD::SELECT: {
10974     CC = N->getOperand(0);
10975     SDValue N1 = N->getOperand(1);
10976     SDValue N2 = N->getOperand(2);
10977     if (isZeroOrAllOnes(N1, AllOnes)) {
10978       Invert = false;
10979       OtherOp = N2;
10980       return true;
10981     }
10982     if (isZeroOrAllOnes(N2, AllOnes)) {
10983       Invert = true;
10984       OtherOp = N1;
10985       return true;
10986     }
10987     return false;
10988   }
10989   case ISD::ZERO_EXTEND:
10990     // (zext cc) can never be the all ones value.
10991     if (AllOnes)
10992       return false;
10993     LLVM_FALLTHROUGH;
10994   case ISD::SIGN_EXTEND: {
10995     SDLoc dl(N);
10996     EVT VT = N->getValueType(0);
10997     CC = N->getOperand(0);
10998     if (CC.getValueType() != MVT::i1 || CC.getOpcode() != ISD::SETCC)
10999       return false;
11000     Invert = !AllOnes;
11001     if (AllOnes)
11002       // When looking for an AllOnes constant, N is an sext, and the 'other'
11003       // value is 0.
11004       OtherOp = DAG.getConstant(0, dl, VT);
11005     else if (N->getOpcode() == ISD::ZERO_EXTEND)
11006       // When looking for a 0 constant, N can be zext or sext.
11007       OtherOp = DAG.getConstant(1, dl, VT);
11008     else
11009       OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
11010                                 VT);
11011     return true;
11012   }
11013   }
11014 }
11015 
11016 // Combine a constant select operand into its use:
11017 //
11018 //   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
11019 //   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
11020 //   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
11021 //   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
11022 //   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
11023 //
11024 // The transform is rejected if the select doesn't have a constant operand that
11025 // is null, or all ones when AllOnes is set.
11026 //
11027 // Also recognize sext/zext from i1:
11028 //
11029 //   (add (zext cc), x) -> (select cc (add x, 1), x)
11030 //   (add (sext cc), x) -> (select cc (add x, -1), x)
11031 //
11032 // These transformations eventually create predicated instructions.
11033 //
11034 // @param N       The node to transform.
11035 // @param Slct    The N operand that is a select.
11036 // @param OtherOp The other N operand (x above).
11037 // @param DCI     Context.
11038 // @param AllOnes Require the select constant to be all ones instead of null.
11039 // @returns The new node, or SDValue() on failure.
11040 static
11041 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
11042                             TargetLowering::DAGCombinerInfo &DCI,
11043                             bool AllOnes = false) {
11044   SelectionDAG &DAG = DCI.DAG;
11045   EVT VT = N->getValueType(0);
11046   SDValue NonConstantVal;
11047   SDValue CCOp;
11048   bool SwapSelectOps;
11049   if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
11050                                   NonConstantVal, DAG))
11051     return SDValue();
11052 
11053   // Slct is now know to be the desired identity constant when CC is true.
11054   SDValue TrueVal = OtherOp;
11055   SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
11056                                  OtherOp, NonConstantVal);
11057   // Unless SwapSelectOps says CC should be false.
11058   if (SwapSelectOps)
11059     std::swap(TrueVal, FalseVal);
11060 
11061   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
11062                      CCOp, TrueVal, FalseVal);
11063 }
11064 
11065 // Attempt combineSelectAndUse on each operand of a commutative operator N.
11066 static
11067 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
11068                                        TargetLowering::DAGCombinerInfo &DCI) {
11069   SDValue N0 = N->getOperand(0);
11070   SDValue N1 = N->getOperand(1);
11071   if (N0.getNode()->hasOneUse())
11072     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
11073       return Result;
11074   if (N1.getNode()->hasOneUse())
11075     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
11076       return Result;
11077   return SDValue();
11078 }
11079 
11080 static bool IsVUZPShuffleNode(SDNode *N) {
11081   // VUZP shuffle node.
11082   if (N->getOpcode() == ARMISD::VUZP)
11083     return true;
11084 
11085   // "VUZP" on i32 is an alias for VTRN.
11086   if (N->getOpcode() == ARMISD::VTRN && N->getValueType(0) == MVT::v2i32)
11087     return true;
11088 
11089   return false;
11090 }
11091 
11092 static SDValue AddCombineToVPADD(SDNode *N, SDValue N0, SDValue N1,
11093                                  TargetLowering::DAGCombinerInfo &DCI,
11094                                  const ARMSubtarget *Subtarget) {
11095   // Look for ADD(VUZP.0, VUZP.1).
11096   if (!IsVUZPShuffleNode(N0.getNode()) || N0.getNode() != N1.getNode() ||
11097       N0 == N1)
11098    return SDValue();
11099 
11100   // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
11101   if (!N->getValueType(0).is64BitVector())
11102     return SDValue();
11103 
11104   // Generate vpadd.
11105   SelectionDAG &DAG = DCI.DAG;
11106   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11107   SDLoc dl(N);
11108   SDNode *Unzip = N0.getNode();
11109   EVT VT = N->getValueType(0);
11110 
11111   SmallVector<SDValue, 8> Ops;
11112   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpadd, dl,
11113                                 TLI.getPointerTy(DAG.getDataLayout())));
11114   Ops.push_back(Unzip->getOperand(0));
11115   Ops.push_back(Unzip->getOperand(1));
11116 
11117   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
11118 }
11119 
11120 static SDValue AddCombineVUZPToVPADDL(SDNode *N, SDValue N0, SDValue N1,
11121                                       TargetLowering::DAGCombinerInfo &DCI,
11122                                       const ARMSubtarget *Subtarget) {
11123   // Check for two extended operands.
11124   if (!(N0.getOpcode() == ISD::SIGN_EXTEND &&
11125         N1.getOpcode() == ISD::SIGN_EXTEND) &&
11126       !(N0.getOpcode() == ISD::ZERO_EXTEND &&
11127         N1.getOpcode() == ISD::ZERO_EXTEND))
11128     return SDValue();
11129 
11130   SDValue N00 = N0.getOperand(0);
11131   SDValue N10 = N1.getOperand(0);
11132 
11133   // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
11134   if (!IsVUZPShuffleNode(N00.getNode()) || N00.getNode() != N10.getNode() ||
11135       N00 == N10)
11136     return SDValue();
11137 
11138   // We only recognize Q register paddl here; this can't be reached until
11139   // after type legalization.
11140   if (!N00.getValueType().is64BitVector() ||
11141       !N0.getValueType().is128BitVector())
11142     return SDValue();
11143 
11144   // Generate vpaddl.
11145   SelectionDAG &DAG = DCI.DAG;
11146   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11147   SDLoc dl(N);
11148   EVT VT = N->getValueType(0);
11149 
11150   SmallVector<SDValue, 8> Ops;
11151   // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
11152   unsigned Opcode;
11153   if (N0.getOpcode() == ISD::SIGN_EXTEND)
11154     Opcode = Intrinsic::arm_neon_vpaddls;
11155   else
11156     Opcode = Intrinsic::arm_neon_vpaddlu;
11157   Ops.push_back(DAG.getConstant(Opcode, dl,
11158                                 TLI.getPointerTy(DAG.getDataLayout())));
11159   EVT ElemTy = N00.getValueType().getVectorElementType();
11160   unsigned NumElts = VT.getVectorNumElements();
11161   EVT ConcatVT = EVT::getVectorVT(*DAG.getContext(), ElemTy, NumElts * 2);
11162   SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), ConcatVT,
11163                                N00.getOperand(0), N00.getOperand(1));
11164   Ops.push_back(Concat);
11165 
11166   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
11167 }
11168 
11169 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
11170 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
11171 // much easier to match.
11172 static SDValue
11173 AddCombineBUILD_VECTORToVPADDL(SDNode *N, SDValue N0, SDValue N1,
11174                                TargetLowering::DAGCombinerInfo &DCI,
11175                                const ARMSubtarget *Subtarget) {
11176   // Only perform optimization if after legalize, and if NEON is available. We
11177   // also expected both operands to be BUILD_VECTORs.
11178   if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
11179       || N0.getOpcode() != ISD::BUILD_VECTOR
11180       || N1.getOpcode() != ISD::BUILD_VECTOR)
11181     return SDValue();
11182 
11183   // Check output type since VPADDL operand elements can only be 8, 16, or 32.
11184   EVT VT = N->getValueType(0);
11185   if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
11186     return SDValue();
11187 
11188   // Check that the vector operands are of the right form.
11189   // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
11190   // operands, where N is the size of the formed vector.
11191   // Each EXTRACT_VECTOR should have the same input vector and odd or even
11192   // index such that we have a pair wise add pattern.
11193 
11194   // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
11195   if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11196     return SDValue();
11197   SDValue Vec = N0->getOperand(0)->getOperand(0);
11198   SDNode *V = Vec.getNode();
11199   unsigned nextIndex = 0;
11200 
11201   // For each operands to the ADD which are BUILD_VECTORs,
11202   // check to see if each of their operands are an EXTRACT_VECTOR with
11203   // the same vector and appropriate index.
11204   for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
11205     if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
11206         && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
11207 
11208       SDValue ExtVec0 = N0->getOperand(i);
11209       SDValue ExtVec1 = N1->getOperand(i);
11210 
11211       // First operand is the vector, verify its the same.
11212       if (V != ExtVec0->getOperand(0).getNode() ||
11213           V != ExtVec1->getOperand(0).getNode())
11214         return SDValue();
11215 
11216       // Second is the constant, verify its correct.
11217       ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
11218       ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
11219 
11220       // For the constant, we want to see all the even or all the odd.
11221       if (!C0 || !C1 || C0->getZExtValue() != nextIndex
11222           || C1->getZExtValue() != nextIndex+1)
11223         return SDValue();
11224 
11225       // Increment index.
11226       nextIndex+=2;
11227     } else
11228       return SDValue();
11229   }
11230 
11231   // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
11232   // we're using the entire input vector, otherwise there's a size/legality
11233   // mismatch somewhere.
11234   if (nextIndex != Vec.getValueType().getVectorNumElements() ||
11235       Vec.getValueType().getVectorElementType() == VT.getVectorElementType())
11236     return SDValue();
11237 
11238   // Create VPADDL node.
11239   SelectionDAG &DAG = DCI.DAG;
11240   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11241 
11242   SDLoc dl(N);
11243 
11244   // Build operand list.
11245   SmallVector<SDValue, 8> Ops;
11246   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
11247                                 TLI.getPointerTy(DAG.getDataLayout())));
11248 
11249   // Input is the vector.
11250   Ops.push_back(Vec);
11251 
11252   // Get widened type and narrowed type.
11253   MVT widenType;
11254   unsigned numElem = VT.getVectorNumElements();
11255 
11256   EVT inputLaneType = Vec.getValueType().getVectorElementType();
11257   switch (inputLaneType.getSimpleVT().SimpleTy) {
11258     case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
11259     case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
11260     case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
11261     default:
11262       llvm_unreachable("Invalid vector element type for padd optimization.");
11263   }
11264 
11265   SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
11266   unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
11267   return DAG.getNode(ExtOp, dl, VT, tmp);
11268 }
11269 
11270 static SDValue findMUL_LOHI(SDValue V) {
11271   if (V->getOpcode() == ISD::UMUL_LOHI ||
11272       V->getOpcode() == ISD::SMUL_LOHI)
11273     return V;
11274   return SDValue();
11275 }
11276 
11277 static SDValue AddCombineTo64BitSMLAL16(SDNode *AddcNode, SDNode *AddeNode,
11278                                         TargetLowering::DAGCombinerInfo &DCI,
11279                                         const ARMSubtarget *Subtarget) {
11280   if (!Subtarget->hasBaseDSP())
11281     return SDValue();
11282 
11283   // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
11284   // accumulates the product into a 64-bit value. The 16-bit values will
11285   // be sign extended somehow or SRA'd into 32-bit values
11286   // (addc (adde (mul 16bit, 16bit), lo), hi)
11287   SDValue Mul = AddcNode->getOperand(0);
11288   SDValue Lo = AddcNode->getOperand(1);
11289   if (Mul.getOpcode() != ISD::MUL) {
11290     Lo = AddcNode->getOperand(0);
11291     Mul = AddcNode->getOperand(1);
11292     if (Mul.getOpcode() != ISD::MUL)
11293       return SDValue();
11294   }
11295 
11296   SDValue SRA = AddeNode->getOperand(0);
11297   SDValue Hi = AddeNode->getOperand(1);
11298   if (SRA.getOpcode() != ISD::SRA) {
11299     SRA = AddeNode->getOperand(1);
11300     Hi = AddeNode->getOperand(0);
11301     if (SRA.getOpcode() != ISD::SRA)
11302       return SDValue();
11303   }
11304   if (auto Const = dyn_cast<ConstantSDNode>(SRA.getOperand(1))) {
11305     if (Const->getZExtValue() != 31)
11306       return SDValue();
11307   } else
11308     return SDValue();
11309 
11310   if (SRA.getOperand(0) != Mul)
11311     return SDValue();
11312 
11313   SelectionDAG &DAG = DCI.DAG;
11314   SDLoc dl(AddcNode);
11315   unsigned Opcode = 0;
11316   SDValue Op0;
11317   SDValue Op1;
11318 
11319   if (isS16(Mul.getOperand(0), DAG) && isS16(Mul.getOperand(1), DAG)) {
11320     Opcode = ARMISD::SMLALBB;
11321     Op0 = Mul.getOperand(0);
11322     Op1 = Mul.getOperand(1);
11323   } else if (isS16(Mul.getOperand(0), DAG) && isSRA16(Mul.getOperand(1))) {
11324     Opcode = ARMISD::SMLALBT;
11325     Op0 = Mul.getOperand(0);
11326     Op1 = Mul.getOperand(1).getOperand(0);
11327   } else if (isSRA16(Mul.getOperand(0)) && isS16(Mul.getOperand(1), DAG)) {
11328     Opcode = ARMISD::SMLALTB;
11329     Op0 = Mul.getOperand(0).getOperand(0);
11330     Op1 = Mul.getOperand(1);
11331   } else if (isSRA16(Mul.getOperand(0)) && isSRA16(Mul.getOperand(1))) {
11332     Opcode = ARMISD::SMLALTT;
11333     Op0 = Mul->getOperand(0).getOperand(0);
11334     Op1 = Mul->getOperand(1).getOperand(0);
11335   }
11336 
11337   if (!Op0 || !Op1)
11338     return SDValue();
11339 
11340   SDValue SMLAL = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
11341                               Op0, Op1, Lo, Hi);
11342   // Replace the ADDs' nodes uses by the MLA node's values.
11343   SDValue HiMLALResult(SMLAL.getNode(), 1);
11344   SDValue LoMLALResult(SMLAL.getNode(), 0);
11345 
11346   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
11347   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
11348 
11349   // Return original node to notify the driver to stop replacing.
11350   SDValue resNode(AddcNode, 0);
11351   return resNode;
11352 }
11353 
11354 static SDValue AddCombineTo64bitMLAL(SDNode *AddeSubeNode,
11355                                      TargetLowering::DAGCombinerInfo &DCI,
11356                                      const ARMSubtarget *Subtarget) {
11357   // Look for multiply add opportunities.
11358   // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
11359   // each add nodes consumes a value from ISD::UMUL_LOHI and there is
11360   // a glue link from the first add to the second add.
11361   // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
11362   // a S/UMLAL instruction.
11363   //                  UMUL_LOHI
11364   //                 / :lo    \ :hi
11365   //                V          \          [no multiline comment]
11366   //    loAdd ->  ADDC         |
11367   //                 \ :carry /
11368   //                  V      V
11369   //                    ADDE   <- hiAdd
11370   //
11371   // In the special case where only the higher part of a signed result is used
11372   // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
11373   // a constant with the exact value of 0x80000000, we recognize we are dealing
11374   // with a "rounded multiply and add" (or subtract) and transform it into
11375   // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
11376 
11377   assert((AddeSubeNode->getOpcode() == ARMISD::ADDE ||
11378           AddeSubeNode->getOpcode() == ARMISD::SUBE) &&
11379          "Expect an ADDE or SUBE");
11380 
11381   assert(AddeSubeNode->getNumOperands() == 3 &&
11382          AddeSubeNode->getOperand(2).getValueType() == MVT::i32 &&
11383          "ADDE node has the wrong inputs");
11384 
11385   // Check that we are chained to the right ADDC or SUBC node.
11386   SDNode *AddcSubcNode = AddeSubeNode->getOperand(2).getNode();
11387   if ((AddeSubeNode->getOpcode() == ARMISD::ADDE &&
11388        AddcSubcNode->getOpcode() != ARMISD::ADDC) ||
11389       (AddeSubeNode->getOpcode() == ARMISD::SUBE &&
11390        AddcSubcNode->getOpcode() != ARMISD::SUBC))
11391     return SDValue();
11392 
11393   SDValue AddcSubcOp0 = AddcSubcNode->getOperand(0);
11394   SDValue AddcSubcOp1 = AddcSubcNode->getOperand(1);
11395 
11396   // Check if the two operands are from the same mul_lohi node.
11397   if (AddcSubcOp0.getNode() == AddcSubcOp1.getNode())
11398     return SDValue();
11399 
11400   assert(AddcSubcNode->getNumValues() == 2 &&
11401          AddcSubcNode->getValueType(0) == MVT::i32 &&
11402          "Expect ADDC with two result values. First: i32");
11403 
11404   // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
11405   // maybe a SMLAL which multiplies two 16-bit values.
11406   if (AddeSubeNode->getOpcode() == ARMISD::ADDE &&
11407       AddcSubcOp0->getOpcode() != ISD::UMUL_LOHI &&
11408       AddcSubcOp0->getOpcode() != ISD::SMUL_LOHI &&
11409       AddcSubcOp1->getOpcode() != ISD::UMUL_LOHI &&
11410       AddcSubcOp1->getOpcode() != ISD::SMUL_LOHI)
11411     return AddCombineTo64BitSMLAL16(AddcSubcNode, AddeSubeNode, DCI, Subtarget);
11412 
11413   // Check for the triangle shape.
11414   SDValue AddeSubeOp0 = AddeSubeNode->getOperand(0);
11415   SDValue AddeSubeOp1 = AddeSubeNode->getOperand(1);
11416 
11417   // Make sure that the ADDE/SUBE operands are not coming from the same node.
11418   if (AddeSubeOp0.getNode() == AddeSubeOp1.getNode())
11419     return SDValue();
11420 
11421   // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
11422   bool IsLeftOperandMUL = false;
11423   SDValue MULOp = findMUL_LOHI(AddeSubeOp0);
11424   if (MULOp == SDValue())
11425     MULOp = findMUL_LOHI(AddeSubeOp1);
11426   else
11427     IsLeftOperandMUL = true;
11428   if (MULOp == SDValue())
11429     return SDValue();
11430 
11431   // Figure out the right opcode.
11432   unsigned Opc = MULOp->getOpcode();
11433   unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
11434 
11435   // Figure out the high and low input values to the MLAL node.
11436   SDValue *HiAddSub = nullptr;
11437   SDValue *LoMul = nullptr;
11438   SDValue *LowAddSub = nullptr;
11439 
11440   // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
11441   if ((AddeSubeOp0 != MULOp.getValue(1)) && (AddeSubeOp1 != MULOp.getValue(1)))
11442     return SDValue();
11443 
11444   if (IsLeftOperandMUL)
11445     HiAddSub = &AddeSubeOp1;
11446   else
11447     HiAddSub = &AddeSubeOp0;
11448 
11449   // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
11450   // whose low result is fed to the ADDC/SUBC we are checking.
11451 
11452   if (AddcSubcOp0 == MULOp.getValue(0)) {
11453     LoMul = &AddcSubcOp0;
11454     LowAddSub = &AddcSubcOp1;
11455   }
11456   if (AddcSubcOp1 == MULOp.getValue(0)) {
11457     LoMul = &AddcSubcOp1;
11458     LowAddSub = &AddcSubcOp0;
11459   }
11460 
11461   if (!LoMul)
11462     return SDValue();
11463 
11464   // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
11465   // the replacement below will create a cycle.
11466   if (AddcSubcNode == HiAddSub->getNode() ||
11467       AddcSubcNode->isPredecessorOf(HiAddSub->getNode()))
11468     return SDValue();
11469 
11470   // Create the merged node.
11471   SelectionDAG &DAG = DCI.DAG;
11472 
11473   // Start building operand list.
11474   SmallVector<SDValue, 8> Ops;
11475   Ops.push_back(LoMul->getOperand(0));
11476   Ops.push_back(LoMul->getOperand(1));
11477 
11478   // Check whether we can use SMMLAR, SMMLSR or SMMULR instead.  For this to be
11479   // the case, we must be doing signed multiplication and only use the higher
11480   // part of the result of the MLAL, furthermore the LowAddSub must be a constant
11481   // addition or subtraction with the value of 0x800000.
11482   if (Subtarget->hasV6Ops() && Subtarget->hasDSP() && Subtarget->useMulOps() &&
11483       FinalOpc == ARMISD::SMLAL && !AddeSubeNode->hasAnyUseOfValue(1) &&
11484       LowAddSub->getNode()->getOpcode() == ISD::Constant &&
11485       static_cast<ConstantSDNode *>(LowAddSub->getNode())->getZExtValue() ==
11486           0x80000000) {
11487     Ops.push_back(*HiAddSub);
11488     if (AddcSubcNode->getOpcode() == ARMISD::SUBC) {
11489       FinalOpc = ARMISD::SMMLSR;
11490     } else {
11491       FinalOpc = ARMISD::SMMLAR;
11492     }
11493     SDValue NewNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode), MVT::i32, Ops);
11494     DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), NewNode);
11495 
11496     return SDValue(AddeSubeNode, 0);
11497   } else if (AddcSubcNode->getOpcode() == ARMISD::SUBC)
11498     // SMMLS is generated during instruction selection and the rest of this
11499     // function can not handle the case where AddcSubcNode is a SUBC.
11500     return SDValue();
11501 
11502   // Finish building the operand list for {U/S}MLAL
11503   Ops.push_back(*LowAddSub);
11504   Ops.push_back(*HiAddSub);
11505 
11506   SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode),
11507                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
11508 
11509   // Replace the ADDs' nodes uses by the MLA node's values.
11510   SDValue HiMLALResult(MLALNode.getNode(), 1);
11511   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), HiMLALResult);
11512 
11513   SDValue LoMLALResult(MLALNode.getNode(), 0);
11514   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode, 0), LoMLALResult);
11515 
11516   // Return original node to notify the driver to stop replacing.
11517   return SDValue(AddeSubeNode, 0);
11518 }
11519 
11520 static SDValue AddCombineTo64bitUMAAL(SDNode *AddeNode,
11521                                       TargetLowering::DAGCombinerInfo &DCI,
11522                                       const ARMSubtarget *Subtarget) {
11523   // UMAAL is similar to UMLAL except that it adds two unsigned values.
11524   // While trying to combine for the other MLAL nodes, first search for the
11525   // chance to use UMAAL. Check if Addc uses a node which has already
11526   // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
11527   // as the addend, and it's handled in PerformUMLALCombine.
11528 
11529   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
11530     return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
11531 
11532   // Check that we have a glued ADDC node.
11533   SDNode* AddcNode = AddeNode->getOperand(2).getNode();
11534   if (AddcNode->getOpcode() != ARMISD::ADDC)
11535     return SDValue();
11536 
11537   // Find the converted UMAAL or quit if it doesn't exist.
11538   SDNode *UmlalNode = nullptr;
11539   SDValue AddHi;
11540   if (AddcNode->getOperand(0).getOpcode() == ARMISD::UMLAL) {
11541     UmlalNode = AddcNode->getOperand(0).getNode();
11542     AddHi = AddcNode->getOperand(1);
11543   } else if (AddcNode->getOperand(1).getOpcode() == ARMISD::UMLAL) {
11544     UmlalNode = AddcNode->getOperand(1).getNode();
11545     AddHi = AddcNode->getOperand(0);
11546   } else {
11547     return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
11548   }
11549 
11550   // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
11551   // the ADDC as well as Zero.
11552   if (!isNullConstant(UmlalNode->getOperand(3)))
11553     return SDValue();
11554 
11555   if ((isNullConstant(AddeNode->getOperand(0)) &&
11556        AddeNode->getOperand(1).getNode() == UmlalNode) ||
11557       (AddeNode->getOperand(0).getNode() == UmlalNode &&
11558        isNullConstant(AddeNode->getOperand(1)))) {
11559     SelectionDAG &DAG = DCI.DAG;
11560     SDValue Ops[] = { UmlalNode->getOperand(0), UmlalNode->getOperand(1),
11561                       UmlalNode->getOperand(2), AddHi };
11562     SDValue UMAAL =  DAG.getNode(ARMISD::UMAAL, SDLoc(AddcNode),
11563                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
11564 
11565     // Replace the ADDs' nodes uses by the UMAAL node's values.
11566     DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), SDValue(UMAAL.getNode(), 1));
11567     DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), SDValue(UMAAL.getNode(), 0));
11568 
11569     // Return original node to notify the driver to stop replacing.
11570     return SDValue(AddeNode, 0);
11571   }
11572   return SDValue();
11573 }
11574 
11575 static SDValue PerformUMLALCombine(SDNode *N, SelectionDAG &DAG,
11576                                    const ARMSubtarget *Subtarget) {
11577   if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
11578     return SDValue();
11579 
11580   // Check that we have a pair of ADDC and ADDE as operands.
11581   // Both addends of the ADDE must be zero.
11582   SDNode* AddcNode = N->getOperand(2).getNode();
11583   SDNode* AddeNode = N->getOperand(3).getNode();
11584   if ((AddcNode->getOpcode() == ARMISD::ADDC) &&
11585       (AddeNode->getOpcode() == ARMISD::ADDE) &&
11586       isNullConstant(AddeNode->getOperand(0)) &&
11587       isNullConstant(AddeNode->getOperand(1)) &&
11588       (AddeNode->getOperand(2).getNode() == AddcNode))
11589     return DAG.getNode(ARMISD::UMAAL, SDLoc(N),
11590                        DAG.getVTList(MVT::i32, MVT::i32),
11591                        {N->getOperand(0), N->getOperand(1),
11592                         AddcNode->getOperand(0), AddcNode->getOperand(1)});
11593   else
11594     return SDValue();
11595 }
11596 
11597 static SDValue PerformAddcSubcCombine(SDNode *N,
11598                                       TargetLowering::DAGCombinerInfo &DCI,
11599                                       const ARMSubtarget *Subtarget) {
11600   SelectionDAG &DAG(DCI.DAG);
11601 
11602   if (N->getOpcode() == ARMISD::SUBC) {
11603     // (SUBC (ADDE 0, 0, C), 1) -> C
11604     SDValue LHS = N->getOperand(0);
11605     SDValue RHS = N->getOperand(1);
11606     if (LHS->getOpcode() == ARMISD::ADDE &&
11607         isNullConstant(LHS->getOperand(0)) &&
11608         isNullConstant(LHS->getOperand(1)) && isOneConstant(RHS)) {
11609       return DCI.CombineTo(N, SDValue(N, 0), LHS->getOperand(2));
11610     }
11611   }
11612 
11613   if (Subtarget->isThumb1Only()) {
11614     SDValue RHS = N->getOperand(1);
11615     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
11616       int32_t imm = C->getSExtValue();
11617       if (imm < 0 && imm > std::numeric_limits<int>::min()) {
11618         SDLoc DL(N);
11619         RHS = DAG.getConstant(-imm, DL, MVT::i32);
11620         unsigned Opcode = (N->getOpcode() == ARMISD::ADDC) ? ARMISD::SUBC
11621                                                            : ARMISD::ADDC;
11622         return DAG.getNode(Opcode, DL, N->getVTList(), N->getOperand(0), RHS);
11623       }
11624     }
11625   }
11626 
11627   return SDValue();
11628 }
11629 
11630 static SDValue PerformAddeSubeCombine(SDNode *N,
11631                                       TargetLowering::DAGCombinerInfo &DCI,
11632                                       const ARMSubtarget *Subtarget) {
11633   if (Subtarget->isThumb1Only()) {
11634     SelectionDAG &DAG = DCI.DAG;
11635     SDValue RHS = N->getOperand(1);
11636     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
11637       int64_t imm = C->getSExtValue();
11638       if (imm < 0) {
11639         SDLoc DL(N);
11640 
11641         // The with-carry-in form matches bitwise not instead of the negation.
11642         // Effectively, the inverse interpretation of the carry flag already
11643         // accounts for part of the negation.
11644         RHS = DAG.getConstant(~imm, DL, MVT::i32);
11645 
11646         unsigned Opcode = (N->getOpcode() == ARMISD::ADDE) ? ARMISD::SUBE
11647                                                            : ARMISD::ADDE;
11648         return DAG.getNode(Opcode, DL, N->getVTList(),
11649                            N->getOperand(0), RHS, N->getOperand(2));
11650       }
11651     }
11652   } else if (N->getOperand(1)->getOpcode() == ISD::SMUL_LOHI) {
11653     return AddCombineTo64bitMLAL(N, DCI, Subtarget);
11654   }
11655   return SDValue();
11656 }
11657 
11658 static SDValue PerformABSCombine(SDNode *N,
11659                                   TargetLowering::DAGCombinerInfo &DCI,
11660                                   const ARMSubtarget *Subtarget) {
11661   SDValue res;
11662   SelectionDAG &DAG = DCI.DAG;
11663   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11664 
11665   if (TLI.isOperationLegal(N->getOpcode(), N->getValueType(0)))
11666     return SDValue();
11667 
11668   if (!TLI.expandABS(N, res, DAG))
11669       return SDValue();
11670 
11671   return res;
11672 }
11673 
11674 /// PerformADDECombine - Target-specific dag combine transform from
11675 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
11676 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
11677 static SDValue PerformADDECombine(SDNode *N,
11678                                   TargetLowering::DAGCombinerInfo &DCI,
11679                                   const ARMSubtarget *Subtarget) {
11680   // Only ARM and Thumb2 support UMLAL/SMLAL.
11681   if (Subtarget->isThumb1Only())
11682     return PerformAddeSubeCombine(N, DCI, Subtarget);
11683 
11684   // Only perform the checks after legalize when the pattern is available.
11685   if (DCI.isBeforeLegalize()) return SDValue();
11686 
11687   return AddCombineTo64bitUMAAL(N, DCI, Subtarget);
11688 }
11689 
11690 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
11691 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
11692 /// called with the default operands, and if that fails, with commuted
11693 /// operands.
11694 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
11695                                           TargetLowering::DAGCombinerInfo &DCI,
11696                                           const ARMSubtarget *Subtarget){
11697   // Attempt to create vpadd for this add.
11698   if (SDValue Result = AddCombineToVPADD(N, N0, N1, DCI, Subtarget))
11699     return Result;
11700 
11701   // Attempt to create vpaddl for this add.
11702   if (SDValue Result = AddCombineVUZPToVPADDL(N, N0, N1, DCI, Subtarget))
11703     return Result;
11704   if (SDValue Result = AddCombineBUILD_VECTORToVPADDL(N, N0, N1, DCI,
11705                                                       Subtarget))
11706     return Result;
11707 
11708   // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
11709   if (N0.getNode()->hasOneUse())
11710     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI))
11711       return Result;
11712   return SDValue();
11713 }
11714 
11715 bool
11716 ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode *N,
11717                                                  CombineLevel Level) const {
11718   if (Level == BeforeLegalizeTypes)
11719     return true;
11720 
11721   if (N->getOpcode() != ISD::SHL)
11722     return true;
11723 
11724   if (Subtarget->isThumb1Only()) {
11725     // Avoid making expensive immediates by commuting shifts. (This logic
11726     // only applies to Thumb1 because ARM and Thumb2 immediates can be shifted
11727     // for free.)
11728     if (N->getOpcode() != ISD::SHL)
11729       return true;
11730     SDValue N1 = N->getOperand(0);
11731     if (N1->getOpcode() != ISD::ADD && N1->getOpcode() != ISD::AND &&
11732         N1->getOpcode() != ISD::OR && N1->getOpcode() != ISD::XOR)
11733       return true;
11734     if (auto *Const = dyn_cast<ConstantSDNode>(N1->getOperand(1))) {
11735       if (Const->getAPIntValue().ult(256))
11736         return false;
11737       if (N1->getOpcode() == ISD::ADD && Const->getAPIntValue().slt(0) &&
11738           Const->getAPIntValue().sgt(-256))
11739         return false;
11740     }
11741     return true;
11742   }
11743 
11744   // Turn off commute-with-shift transform after legalization, so it doesn't
11745   // conflict with PerformSHLSimplify.  (We could try to detect when
11746   // PerformSHLSimplify would trigger more precisely, but it isn't
11747   // really necessary.)
11748   return false;
11749 }
11750 
11751 bool ARMTargetLowering::shouldFoldConstantShiftPairToMask(
11752     const SDNode *N, CombineLevel Level) const {
11753   if (!Subtarget->isThumb1Only())
11754     return true;
11755 
11756   if (Level == BeforeLegalizeTypes)
11757     return true;
11758 
11759   return false;
11760 }
11761 
11762 bool ARMTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
11763   if (!Subtarget->hasNEON()) {
11764     if (Subtarget->isThumb1Only())
11765       return VT.getScalarSizeInBits() <= 32;
11766     return true;
11767   }
11768   return VT.isScalarInteger();
11769 }
11770 
11771 static SDValue PerformSHLSimplify(SDNode *N,
11772                                 TargetLowering::DAGCombinerInfo &DCI,
11773                                 const ARMSubtarget *ST) {
11774   // Allow the generic combiner to identify potential bswaps.
11775   if (DCI.isBeforeLegalize())
11776     return SDValue();
11777 
11778   // DAG combiner will fold:
11779   // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
11780   // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
11781   // Other code patterns that can be also be modified have the following form:
11782   // b + ((a << 1) | 510)
11783   // b + ((a << 1) & 510)
11784   // b + ((a << 1) ^ 510)
11785   // b + ((a << 1) + 510)
11786 
11787   // Many instructions can  perform the shift for free, but it requires both
11788   // the operands to be registers. If c1 << c2 is too large, a mov immediate
11789   // instruction will needed. So, unfold back to the original pattern if:
11790   // - if c1 and c2 are small enough that they don't require mov imms.
11791   // - the user(s) of the node can perform an shl
11792 
11793   // No shifted operands for 16-bit instructions.
11794   if (ST->isThumb() && ST->isThumb1Only())
11795     return SDValue();
11796 
11797   // Check that all the users could perform the shl themselves.
11798   for (auto U : N->uses()) {
11799     switch(U->getOpcode()) {
11800     default:
11801       return SDValue();
11802     case ISD::SUB:
11803     case ISD::ADD:
11804     case ISD::AND:
11805     case ISD::OR:
11806     case ISD::XOR:
11807     case ISD::SETCC:
11808     case ARMISD::CMP:
11809       // Check that the user isn't already using a constant because there
11810       // aren't any instructions that support an immediate operand and a
11811       // shifted operand.
11812       if (isa<ConstantSDNode>(U->getOperand(0)) ||
11813           isa<ConstantSDNode>(U->getOperand(1)))
11814         return SDValue();
11815 
11816       // Check that it's not already using a shift.
11817       if (U->getOperand(0).getOpcode() == ISD::SHL ||
11818           U->getOperand(1).getOpcode() == ISD::SHL)
11819         return SDValue();
11820       break;
11821     }
11822   }
11823 
11824   if (N->getOpcode() != ISD::ADD && N->getOpcode() != ISD::OR &&
11825       N->getOpcode() != ISD::XOR && N->getOpcode() != ISD::AND)
11826     return SDValue();
11827 
11828   if (N->getOperand(0).getOpcode() != ISD::SHL)
11829     return SDValue();
11830 
11831   SDValue SHL = N->getOperand(0);
11832 
11833   auto *C1ShlC2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
11834   auto *C2 = dyn_cast<ConstantSDNode>(SHL.getOperand(1));
11835   if (!C1ShlC2 || !C2)
11836     return SDValue();
11837 
11838   APInt C2Int = C2->getAPIntValue();
11839   APInt C1Int = C1ShlC2->getAPIntValue();
11840 
11841   // Check that performing a lshr will not lose any information.
11842   APInt Mask = APInt::getHighBitsSet(C2Int.getBitWidth(),
11843                                      C2Int.getBitWidth() - C2->getZExtValue());
11844   if ((C1Int & Mask) != C1Int)
11845     return SDValue();
11846 
11847   // Shift the first constant.
11848   C1Int.lshrInPlace(C2Int);
11849 
11850   // The immediates are encoded as an 8-bit value that can be rotated.
11851   auto LargeImm = [](const APInt &Imm) {
11852     unsigned Zeros = Imm.countLeadingZeros() + Imm.countTrailingZeros();
11853     return Imm.getBitWidth() - Zeros > 8;
11854   };
11855 
11856   if (LargeImm(C1Int) || LargeImm(C2Int))
11857     return SDValue();
11858 
11859   SelectionDAG &DAG = DCI.DAG;
11860   SDLoc dl(N);
11861   SDValue X = SHL.getOperand(0);
11862   SDValue BinOp = DAG.getNode(N->getOpcode(), dl, MVT::i32, X,
11863                               DAG.getConstant(C1Int, dl, MVT::i32));
11864   // Shift left to compensate for the lshr of C1Int.
11865   SDValue Res = DAG.getNode(ISD::SHL, dl, MVT::i32, BinOp, SHL.getOperand(1));
11866 
11867   LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL.getOperand(0).dump();
11868              SHL.dump(); N->dump());
11869   LLVM_DEBUG(dbgs() << "Into:\n"; X.dump(); BinOp.dump(); Res.dump());
11870   return Res;
11871 }
11872 
11873 
11874 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
11875 ///
11876 static SDValue PerformADDCombine(SDNode *N,
11877                                  TargetLowering::DAGCombinerInfo &DCI,
11878                                  const ARMSubtarget *Subtarget) {
11879   SDValue N0 = N->getOperand(0);
11880   SDValue N1 = N->getOperand(1);
11881 
11882   // Only works one way, because it needs an immediate operand.
11883   if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
11884     return Result;
11885 
11886   // First try with the default operand order.
11887   if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget))
11888     return Result;
11889 
11890   // If that didn't work, try again with the operands commuted.
11891   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
11892 }
11893 
11894 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
11895 ///
11896 static SDValue PerformSUBCombine(SDNode *N,
11897                                  TargetLowering::DAGCombinerInfo &DCI,
11898                                  const ARMSubtarget *Subtarget) {
11899   SDValue N0 = N->getOperand(0);
11900   SDValue N1 = N->getOperand(1);
11901 
11902   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
11903   if (N1.getNode()->hasOneUse())
11904     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI))
11905       return Result;
11906 
11907   if (!Subtarget->hasMVEIntegerOps() || !N->getValueType(0).isVector())
11908     return SDValue();
11909 
11910   // Fold (sub (ARMvmovImm 0), (ARMvdup x)) -> (ARMvdup (sub 0, x))
11911   // so that we can readily pattern match more mve instructions which can use
11912   // a scalar operand.
11913   SDValue VDup = N->getOperand(1);
11914   if (VDup->getOpcode() != ARMISD::VDUP)
11915     return SDValue();
11916 
11917   SDValue VMov = N->getOperand(0);
11918   if (VMov->getOpcode() == ISD::BITCAST)
11919     VMov = VMov->getOperand(0);
11920 
11921   if (VMov->getOpcode() != ARMISD::VMOVIMM || !isZeroVector(VMov))
11922     return SDValue();
11923 
11924   SDLoc dl(N);
11925   SDValue Negate = DCI.DAG.getNode(ISD::SUB, dl, MVT::i32,
11926                                    DCI.DAG.getConstant(0, dl, MVT::i32),
11927                                    VDup->getOperand(0));
11928   return DCI.DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0), Negate);
11929 }
11930 
11931 /// PerformVMULCombine
11932 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
11933 /// special multiplier accumulator forwarding.
11934 ///   vmul d3, d0, d2
11935 ///   vmla d3, d1, d2
11936 /// is faster than
11937 ///   vadd d3, d0, d1
11938 ///   vmul d3, d3, d2
11939 //  However, for (A + B) * (A + B),
11940 //    vadd d2, d0, d1
11941 //    vmul d3, d0, d2
11942 //    vmla d3, d1, d2
11943 //  is slower than
11944 //    vadd d2, d0, d1
11945 //    vmul d3, d2, d2
11946 static SDValue PerformVMULCombine(SDNode *N,
11947                                   TargetLowering::DAGCombinerInfo &DCI,
11948                                   const ARMSubtarget *Subtarget) {
11949   if (!Subtarget->hasVMLxForwarding())
11950     return SDValue();
11951 
11952   SelectionDAG &DAG = DCI.DAG;
11953   SDValue N0 = N->getOperand(0);
11954   SDValue N1 = N->getOperand(1);
11955   unsigned Opcode = N0.getOpcode();
11956   if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
11957       Opcode != ISD::FADD && Opcode != ISD::FSUB) {
11958     Opcode = N1.getOpcode();
11959     if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
11960         Opcode != ISD::FADD && Opcode != ISD::FSUB)
11961       return SDValue();
11962     std::swap(N0, N1);
11963   }
11964 
11965   if (N0 == N1)
11966     return SDValue();
11967 
11968   EVT VT = N->getValueType(0);
11969   SDLoc DL(N);
11970   SDValue N00 = N0->getOperand(0);
11971   SDValue N01 = N0->getOperand(1);
11972   return DAG.getNode(Opcode, DL, VT,
11973                      DAG.getNode(ISD::MUL, DL, VT, N00, N1),
11974                      DAG.getNode(ISD::MUL, DL, VT, N01, N1));
11975 }
11976 
11977 static SDValue PerformMULCombine(SDNode *N,
11978                                  TargetLowering::DAGCombinerInfo &DCI,
11979                                  const ARMSubtarget *Subtarget) {
11980   SelectionDAG &DAG = DCI.DAG;
11981 
11982   if (Subtarget->isThumb1Only())
11983     return SDValue();
11984 
11985   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
11986     return SDValue();
11987 
11988   EVT VT = N->getValueType(0);
11989   if (VT.is64BitVector() || VT.is128BitVector())
11990     return PerformVMULCombine(N, DCI, Subtarget);
11991   if (VT != MVT::i32)
11992     return SDValue();
11993 
11994   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
11995   if (!C)
11996     return SDValue();
11997 
11998   int64_t MulAmt = C->getSExtValue();
11999   unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
12000 
12001   ShiftAmt = ShiftAmt & (32 - 1);
12002   SDValue V = N->getOperand(0);
12003   SDLoc DL(N);
12004 
12005   SDValue Res;
12006   MulAmt >>= ShiftAmt;
12007 
12008   if (MulAmt >= 0) {
12009     if (isPowerOf2_32(MulAmt - 1)) {
12010       // (mul x, 2^N + 1) => (add (shl x, N), x)
12011       Res = DAG.getNode(ISD::ADD, DL, VT,
12012                         V,
12013                         DAG.getNode(ISD::SHL, DL, VT,
12014                                     V,
12015                                     DAG.getConstant(Log2_32(MulAmt - 1), DL,
12016                                                     MVT::i32)));
12017     } else if (isPowerOf2_32(MulAmt + 1)) {
12018       // (mul x, 2^N - 1) => (sub (shl x, N), x)
12019       Res = DAG.getNode(ISD::SUB, DL, VT,
12020                         DAG.getNode(ISD::SHL, DL, VT,
12021                                     V,
12022                                     DAG.getConstant(Log2_32(MulAmt + 1), DL,
12023                                                     MVT::i32)),
12024                         V);
12025     } else
12026       return SDValue();
12027   } else {
12028     uint64_t MulAmtAbs = -MulAmt;
12029     if (isPowerOf2_32(MulAmtAbs + 1)) {
12030       // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
12031       Res = DAG.getNode(ISD::SUB, DL, VT,
12032                         V,
12033                         DAG.getNode(ISD::SHL, DL, VT,
12034                                     V,
12035                                     DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
12036                                                     MVT::i32)));
12037     } else if (isPowerOf2_32(MulAmtAbs - 1)) {
12038       // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
12039       Res = DAG.getNode(ISD::ADD, DL, VT,
12040                         V,
12041                         DAG.getNode(ISD::SHL, DL, VT,
12042                                     V,
12043                                     DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
12044                                                     MVT::i32)));
12045       Res = DAG.getNode(ISD::SUB, DL, VT,
12046                         DAG.getConstant(0, DL, MVT::i32), Res);
12047     } else
12048       return SDValue();
12049   }
12050 
12051   if (ShiftAmt != 0)
12052     Res = DAG.getNode(ISD::SHL, DL, VT,
12053                       Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));
12054 
12055   // Do not add new nodes to DAG combiner worklist.
12056   DCI.CombineTo(N, Res, false);
12057   return SDValue();
12058 }
12059 
12060 static SDValue CombineANDShift(SDNode *N,
12061                                TargetLowering::DAGCombinerInfo &DCI,
12062                                const ARMSubtarget *Subtarget) {
12063   // Allow DAGCombine to pattern-match before we touch the canonical form.
12064   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
12065     return SDValue();
12066 
12067   if (N->getValueType(0) != MVT::i32)
12068     return SDValue();
12069 
12070   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
12071   if (!N1C)
12072     return SDValue();
12073 
12074   uint32_t C1 = (uint32_t)N1C->getZExtValue();
12075   // Don't transform uxtb/uxth.
12076   if (C1 == 255 || C1 == 65535)
12077     return SDValue();
12078 
12079   SDNode *N0 = N->getOperand(0).getNode();
12080   if (!N0->hasOneUse())
12081     return SDValue();
12082 
12083   if (N0->getOpcode() != ISD::SHL && N0->getOpcode() != ISD::SRL)
12084     return SDValue();
12085 
12086   bool LeftShift = N0->getOpcode() == ISD::SHL;
12087 
12088   ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
12089   if (!N01C)
12090     return SDValue();
12091 
12092   uint32_t C2 = (uint32_t)N01C->getZExtValue();
12093   if (!C2 || C2 >= 32)
12094     return SDValue();
12095 
12096   // Clear irrelevant bits in the mask.
12097   if (LeftShift)
12098     C1 &= (-1U << C2);
12099   else
12100     C1 &= (-1U >> C2);
12101 
12102   SelectionDAG &DAG = DCI.DAG;
12103   SDLoc DL(N);
12104 
12105   // We have a pattern of the form "(and (shl x, c2) c1)" or
12106   // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
12107   // transform to a pair of shifts, to save materializing c1.
12108 
12109   // First pattern: right shift, then mask off leading bits.
12110   // FIXME: Use demanded bits?
12111   if (!LeftShift && isMask_32(C1)) {
12112     uint32_t C3 = countLeadingZeros(C1);
12113     if (C2 < C3) {
12114       SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
12115                                 DAG.getConstant(C3 - C2, DL, MVT::i32));
12116       return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
12117                          DAG.getConstant(C3, DL, MVT::i32));
12118     }
12119   }
12120 
12121   // First pattern, reversed: left shift, then mask off trailing bits.
12122   if (LeftShift && isMask_32(~C1)) {
12123     uint32_t C3 = countTrailingZeros(C1);
12124     if (C2 < C3) {
12125       SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
12126                                 DAG.getConstant(C3 - C2, DL, MVT::i32));
12127       return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
12128                          DAG.getConstant(C3, DL, MVT::i32));
12129     }
12130   }
12131 
12132   // Second pattern: left shift, then mask off leading bits.
12133   // FIXME: Use demanded bits?
12134   if (LeftShift && isShiftedMask_32(C1)) {
12135     uint32_t Trailing = countTrailingZeros(C1);
12136     uint32_t C3 = countLeadingZeros(C1);
12137     if (Trailing == C2 && C2 + C3 < 32) {
12138       SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
12139                                 DAG.getConstant(C2 + C3, DL, MVT::i32));
12140       return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
12141                         DAG.getConstant(C3, DL, MVT::i32));
12142     }
12143   }
12144 
12145   // Second pattern, reversed: right shift, then mask off trailing bits.
12146   // FIXME: Handle other patterns of known/demanded bits.
12147   if (!LeftShift && isShiftedMask_32(C1)) {
12148     uint32_t Leading = countLeadingZeros(C1);
12149     uint32_t C3 = countTrailingZeros(C1);
12150     if (Leading == C2 && C2 + C3 < 32) {
12151       SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
12152                                 DAG.getConstant(C2 + C3, DL, MVT::i32));
12153       return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
12154                          DAG.getConstant(C3, DL, MVT::i32));
12155     }
12156   }
12157 
12158   // FIXME: Transform "(and (shl x, c2) c1)" ->
12159   // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than
12160   // c1.
12161   return SDValue();
12162 }
12163 
12164 static SDValue PerformANDCombine(SDNode *N,
12165                                  TargetLowering::DAGCombinerInfo &DCI,
12166                                  const ARMSubtarget *Subtarget) {
12167   // Attempt to use immediate-form VBIC
12168   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
12169   SDLoc dl(N);
12170   EVT VT = N->getValueType(0);
12171   SelectionDAG &DAG = DCI.DAG;
12172 
12173   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
12174     return SDValue();
12175 
12176   APInt SplatBits, SplatUndef;
12177   unsigned SplatBitSize;
12178   bool HasAnyUndefs;
12179   if (BVN && Subtarget->hasNEON() &&
12180       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
12181     if (SplatBitSize <= 64) {
12182       EVT VbicVT;
12183       SDValue Val = isVMOVModifiedImm((~SplatBits).getZExtValue(),
12184                                       SplatUndef.getZExtValue(), SplatBitSize,
12185                                       DAG, dl, VbicVT, VT.is128BitVector(),
12186                                       OtherModImm);
12187       if (Val.getNode()) {
12188         SDValue Input =
12189           DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
12190         SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
12191         return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
12192       }
12193     }
12194   }
12195 
12196   if (!Subtarget->isThumb1Only()) {
12197     // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
12198     if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI))
12199       return Result;
12200 
12201     if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
12202       return Result;
12203   }
12204 
12205   if (Subtarget->isThumb1Only())
12206     if (SDValue Result = CombineANDShift(N, DCI, Subtarget))
12207       return Result;
12208 
12209   return SDValue();
12210 }
12211 
12212 // Try combining OR nodes to SMULWB, SMULWT.
12213 static SDValue PerformORCombineToSMULWBT(SDNode *OR,
12214                                          TargetLowering::DAGCombinerInfo &DCI,
12215                                          const ARMSubtarget *Subtarget) {
12216   if (!Subtarget->hasV6Ops() ||
12217       (Subtarget->isThumb() &&
12218        (!Subtarget->hasThumb2() || !Subtarget->hasDSP())))
12219     return SDValue();
12220 
12221   SDValue SRL = OR->getOperand(0);
12222   SDValue SHL = OR->getOperand(1);
12223 
12224   if (SRL.getOpcode() != ISD::SRL || SHL.getOpcode() != ISD::SHL) {
12225     SRL = OR->getOperand(1);
12226     SHL = OR->getOperand(0);
12227   }
12228   if (!isSRL16(SRL) || !isSHL16(SHL))
12229     return SDValue();
12230 
12231   // The first operands to the shifts need to be the two results from the
12232   // same smul_lohi node.
12233   if ((SRL.getOperand(0).getNode() != SHL.getOperand(0).getNode()) ||
12234        SRL.getOperand(0).getOpcode() != ISD::SMUL_LOHI)
12235     return SDValue();
12236 
12237   SDNode *SMULLOHI = SRL.getOperand(0).getNode();
12238   if (SRL.getOperand(0) != SDValue(SMULLOHI, 0) ||
12239       SHL.getOperand(0) != SDValue(SMULLOHI, 1))
12240     return SDValue();
12241 
12242   // Now we have:
12243   // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
12244   // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
12245   // For SMUWB the 16-bit value will signed extended somehow.
12246   // For SMULWT only the SRA is required.
12247   // Check both sides of SMUL_LOHI
12248   SDValue OpS16 = SMULLOHI->getOperand(0);
12249   SDValue OpS32 = SMULLOHI->getOperand(1);
12250 
12251   SelectionDAG &DAG = DCI.DAG;
12252   if (!isS16(OpS16, DAG) && !isSRA16(OpS16)) {
12253     OpS16 = OpS32;
12254     OpS32 = SMULLOHI->getOperand(0);
12255   }
12256 
12257   SDLoc dl(OR);
12258   unsigned Opcode = 0;
12259   if (isS16(OpS16, DAG))
12260     Opcode = ARMISD::SMULWB;
12261   else if (isSRA16(OpS16)) {
12262     Opcode = ARMISD::SMULWT;
12263     OpS16 = OpS16->getOperand(0);
12264   }
12265   else
12266     return SDValue();
12267 
12268   SDValue Res = DAG.getNode(Opcode, dl, MVT::i32, OpS32, OpS16);
12269   DAG.ReplaceAllUsesOfValueWith(SDValue(OR, 0), Res);
12270   return SDValue(OR, 0);
12271 }
12272 
12273 static SDValue PerformORCombineToBFI(SDNode *N,
12274                                      TargetLowering::DAGCombinerInfo &DCI,
12275                                      const ARMSubtarget *Subtarget) {
12276   // BFI is only available on V6T2+
12277   if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
12278     return SDValue();
12279 
12280   EVT VT = N->getValueType(0);
12281   SDValue N0 = N->getOperand(0);
12282   SDValue N1 = N->getOperand(1);
12283   SelectionDAG &DAG = DCI.DAG;
12284   SDLoc DL(N);
12285   // 1) or (and A, mask), val => ARMbfi A, val, mask
12286   //      iff (val & mask) == val
12287   //
12288   // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
12289   //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
12290   //          && mask == ~mask2
12291   //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
12292   //          && ~mask == mask2
12293   //  (i.e., copy a bitfield value into another bitfield of the same width)
12294 
12295   if (VT != MVT::i32)
12296     return SDValue();
12297 
12298   SDValue N00 = N0.getOperand(0);
12299 
12300   // The value and the mask need to be constants so we can verify this is
12301   // actually a bitfield set. If the mask is 0xffff, we can do better
12302   // via a movt instruction, so don't use BFI in that case.
12303   SDValue MaskOp = N0.getOperand(1);
12304   ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
12305   if (!MaskC)
12306     return SDValue();
12307   unsigned Mask = MaskC->getZExtValue();
12308   if (Mask == 0xffff)
12309     return SDValue();
12310   SDValue Res;
12311   // Case (1): or (and A, mask), val => ARMbfi A, val, mask
12312   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
12313   if (N1C) {
12314     unsigned Val = N1C->getZExtValue();
12315     if ((Val & ~Mask) != Val)
12316       return SDValue();
12317 
12318     if (ARM::isBitFieldInvertedMask(Mask)) {
12319       Val >>= countTrailingZeros(~Mask);
12320 
12321       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
12322                         DAG.getConstant(Val, DL, MVT::i32),
12323                         DAG.getConstant(Mask, DL, MVT::i32));
12324 
12325       DCI.CombineTo(N, Res, false);
12326       // Return value from the original node to inform the combiner than N is
12327       // now dead.
12328       return SDValue(N, 0);
12329     }
12330   } else if (N1.getOpcode() == ISD::AND) {
12331     // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
12332     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
12333     if (!N11C)
12334       return SDValue();
12335     unsigned Mask2 = N11C->getZExtValue();
12336 
12337     // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
12338     // as is to match.
12339     if (ARM::isBitFieldInvertedMask(Mask) &&
12340         (Mask == ~Mask2)) {
12341       // The pack halfword instruction works better for masks that fit it,
12342       // so use that when it's available.
12343       if (Subtarget->hasDSP() &&
12344           (Mask == 0xffff || Mask == 0xffff0000))
12345         return SDValue();
12346       // 2a
12347       unsigned amt = countTrailingZeros(Mask2);
12348       Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
12349                         DAG.getConstant(amt, DL, MVT::i32));
12350       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
12351                         DAG.getConstant(Mask, DL, MVT::i32));
12352       DCI.CombineTo(N, Res, false);
12353       // Return value from the original node to inform the combiner than N is
12354       // now dead.
12355       return SDValue(N, 0);
12356     } else if (ARM::isBitFieldInvertedMask(~Mask) &&
12357                (~Mask == Mask2)) {
12358       // The pack halfword instruction works better for masks that fit it,
12359       // so use that when it's available.
12360       if (Subtarget->hasDSP() &&
12361           (Mask2 == 0xffff || Mask2 == 0xffff0000))
12362         return SDValue();
12363       // 2b
12364       unsigned lsb = countTrailingZeros(Mask);
12365       Res = DAG.getNode(ISD::SRL, DL, VT, N00,
12366                         DAG.getConstant(lsb, DL, MVT::i32));
12367       Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
12368                         DAG.getConstant(Mask2, DL, MVT::i32));
12369       DCI.CombineTo(N, Res, false);
12370       // Return value from the original node to inform the combiner than N is
12371       // now dead.
12372       return SDValue(N, 0);
12373     }
12374   }
12375 
12376   if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
12377       N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
12378       ARM::isBitFieldInvertedMask(~Mask)) {
12379     // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
12380     // where lsb(mask) == #shamt and masked bits of B are known zero.
12381     SDValue ShAmt = N00.getOperand(1);
12382     unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
12383     unsigned LSB = countTrailingZeros(Mask);
12384     if (ShAmtC != LSB)
12385       return SDValue();
12386 
12387     Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
12388                       DAG.getConstant(~Mask, DL, MVT::i32));
12389 
12390     DCI.CombineTo(N, Res, false);
12391     // Return value from the original node to inform the combiner than N is
12392     // now dead.
12393     return SDValue(N, 0);
12394   }
12395 
12396   return SDValue();
12397 }
12398 
12399 static bool isValidMVECond(unsigned CC, bool IsFloat) {
12400   switch (CC) {
12401   case ARMCC::EQ:
12402   case ARMCC::NE:
12403   case ARMCC::LE:
12404   case ARMCC::GT:
12405   case ARMCC::GE:
12406   case ARMCC::LT:
12407     return true;
12408   case ARMCC::HS:
12409   case ARMCC::HI:
12410     return !IsFloat;
12411   default:
12412     return false;
12413   };
12414 }
12415 
12416 static SDValue PerformORCombine_i1(SDNode *N,
12417                                    TargetLowering::DAGCombinerInfo &DCI,
12418                                    const ARMSubtarget *Subtarget) {
12419   // Try to invert "or A, B" -> "and ~A, ~B", as the "and" is easier to chain
12420   // together with predicates
12421   EVT VT = N->getValueType(0);
12422   SDValue N0 = N->getOperand(0);
12423   SDValue N1 = N->getOperand(1);
12424 
12425   ARMCC::CondCodes CondCode0 = ARMCC::AL;
12426   ARMCC::CondCodes CondCode1 = ARMCC::AL;
12427   if (N0->getOpcode() == ARMISD::VCMP)
12428     CondCode0 = (ARMCC::CondCodes)cast<const ConstantSDNode>(N0->getOperand(2))
12429                     ->getZExtValue();
12430   else if (N0->getOpcode() == ARMISD::VCMPZ)
12431     CondCode0 = (ARMCC::CondCodes)cast<const ConstantSDNode>(N0->getOperand(1))
12432                     ->getZExtValue();
12433   if (N1->getOpcode() == ARMISD::VCMP)
12434     CondCode1 = (ARMCC::CondCodes)cast<const ConstantSDNode>(N1->getOperand(2))
12435                     ->getZExtValue();
12436   else if (N1->getOpcode() == ARMISD::VCMPZ)
12437     CondCode1 = (ARMCC::CondCodes)cast<const ConstantSDNode>(N1->getOperand(1))
12438                     ->getZExtValue();
12439 
12440   if (CondCode0 == ARMCC::AL || CondCode1 == ARMCC::AL)
12441     return SDValue();
12442 
12443   unsigned Opposite0 = ARMCC::getOppositeCondition(CondCode0);
12444   unsigned Opposite1 = ARMCC::getOppositeCondition(CondCode1);
12445 
12446   if (!isValidMVECond(Opposite0,
12447                       N0->getOperand(0)->getValueType(0).isFloatingPoint()) ||
12448       !isValidMVECond(Opposite1,
12449                       N1->getOperand(0)->getValueType(0).isFloatingPoint()))
12450     return SDValue();
12451 
12452   SmallVector<SDValue, 4> Ops0;
12453   Ops0.push_back(N0->getOperand(0));
12454   if (N0->getOpcode() == ARMISD::VCMP)
12455     Ops0.push_back(N0->getOperand(1));
12456   Ops0.push_back(DCI.DAG.getConstant(Opposite0, SDLoc(N0), MVT::i32));
12457   SmallVector<SDValue, 4> Ops1;
12458   Ops1.push_back(N1->getOperand(0));
12459   if (N1->getOpcode() == ARMISD::VCMP)
12460     Ops1.push_back(N1->getOperand(1));
12461   Ops1.push_back(DCI.DAG.getConstant(Opposite1, SDLoc(N1), MVT::i32));
12462 
12463   SDValue NewN0 = DCI.DAG.getNode(N0->getOpcode(), SDLoc(N0), VT, Ops0);
12464   SDValue NewN1 = DCI.DAG.getNode(N1->getOpcode(), SDLoc(N1), VT, Ops1);
12465   SDValue And = DCI.DAG.getNode(ISD::AND, SDLoc(N), VT, NewN0, NewN1);
12466   return DCI.DAG.getNode(ISD::XOR, SDLoc(N), VT, And,
12467                          DCI.DAG.getAllOnesConstant(SDLoc(N), VT));
12468 }
12469 
12470 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
12471 static SDValue PerformORCombine(SDNode *N,
12472                                 TargetLowering::DAGCombinerInfo &DCI,
12473                                 const ARMSubtarget *Subtarget) {
12474   // Attempt to use immediate-form VORR
12475   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
12476   SDLoc dl(N);
12477   EVT VT = N->getValueType(0);
12478   SelectionDAG &DAG = DCI.DAG;
12479 
12480   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
12481     return SDValue();
12482 
12483   APInt SplatBits, SplatUndef;
12484   unsigned SplatBitSize;
12485   bool HasAnyUndefs;
12486   if (BVN && Subtarget->hasNEON() &&
12487       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
12488     if (SplatBitSize <= 64) {
12489       EVT VorrVT;
12490       SDValue Val = isVMOVModifiedImm(SplatBits.getZExtValue(),
12491                                       SplatUndef.getZExtValue(), SplatBitSize,
12492                                       DAG, dl, VorrVT, VT.is128BitVector(),
12493                                       OtherModImm);
12494       if (Val.getNode()) {
12495         SDValue Input =
12496           DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
12497         SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
12498         return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
12499       }
12500     }
12501   }
12502 
12503   if (!Subtarget->isThumb1Only()) {
12504     // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
12505     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
12506       return Result;
12507     if (SDValue Result = PerformORCombineToSMULWBT(N, DCI, Subtarget))
12508       return Result;
12509   }
12510 
12511   SDValue N0 = N->getOperand(0);
12512   SDValue N1 = N->getOperand(1);
12513 
12514   // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
12515   if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
12516       DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
12517 
12518     // The code below optimizes (or (and X, Y), Z).
12519     // The AND operand needs to have a single user to make these optimizations
12520     // profitable.
12521     if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
12522       return SDValue();
12523 
12524     APInt SplatUndef;
12525     unsigned SplatBitSize;
12526     bool HasAnyUndefs;
12527 
12528     APInt SplatBits0, SplatBits1;
12529     BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
12530     BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
12531     // Ensure that the second operand of both ands are constants
12532     if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
12533                                       HasAnyUndefs) && !HasAnyUndefs) {
12534         if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
12535                                           HasAnyUndefs) && !HasAnyUndefs) {
12536             // Ensure that the bit width of the constants are the same and that
12537             // the splat arguments are logical inverses as per the pattern we
12538             // are trying to simplify.
12539             if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
12540                 SplatBits0 == ~SplatBits1) {
12541                 // Canonicalize the vector type to make instruction selection
12542                 // simpler.
12543                 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
12544                 SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
12545                                              N0->getOperand(1),
12546                                              N0->getOperand(0),
12547                                              N1->getOperand(0));
12548                 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
12549             }
12550         }
12551     }
12552   }
12553 
12554   if (Subtarget->hasMVEIntegerOps() &&
12555       (VT == MVT::v4i1 || VT == MVT::v8i1 || VT == MVT::v16i1))
12556     return PerformORCombine_i1(N, DCI, Subtarget);
12557 
12558   // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
12559   // reasonable.
12560   if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
12561     if (SDValue Res = PerformORCombineToBFI(N, DCI, Subtarget))
12562       return Res;
12563   }
12564 
12565   if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
12566     return Result;
12567 
12568   return SDValue();
12569 }
12570 
12571 static SDValue PerformXORCombine(SDNode *N,
12572                                  TargetLowering::DAGCombinerInfo &DCI,
12573                                  const ARMSubtarget *Subtarget) {
12574   EVT VT = N->getValueType(0);
12575   SelectionDAG &DAG = DCI.DAG;
12576 
12577   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
12578     return SDValue();
12579 
12580   if (!Subtarget->isThumb1Only()) {
12581     // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
12582     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
12583       return Result;
12584 
12585     if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
12586       return Result;
12587   }
12588 
12589   return SDValue();
12590 }
12591 
12592 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
12593 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
12594 // their position in "to" (Rd).
12595 static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
12596   assert(N->getOpcode() == ARMISD::BFI);
12597 
12598   SDValue From = N->getOperand(1);
12599   ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue();
12600   FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation());
12601 
12602   // If the Base came from a SHR #C, we can deduce that it is really testing bit
12603   // #C in the base of the SHR.
12604   if (From->getOpcode() == ISD::SRL &&
12605       isa<ConstantSDNode>(From->getOperand(1))) {
12606     APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue();
12607     assert(Shift.getLimitedValue() < 32 && "Shift too large!");
12608     FromMask <<= Shift.getLimitedValue(31);
12609     From = From->getOperand(0);
12610   }
12611 
12612   return From;
12613 }
12614 
12615 // If A and B contain one contiguous set of bits, does A | B == A . B?
12616 //
12617 // Neither A nor B must be zero.
12618 static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
12619   unsigned LastActiveBitInA =  A.countTrailingZeros();
12620   unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1;
12621   return LastActiveBitInA - 1 == FirstActiveBitInB;
12622 }
12623 
12624 static SDValue FindBFIToCombineWith(SDNode *N) {
12625   // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
12626   // if one exists.
12627   APInt ToMask, FromMask;
12628   SDValue From = ParseBFI(N, ToMask, FromMask);
12629   SDValue To = N->getOperand(0);
12630 
12631   // Now check for a compatible BFI to merge with. We can pass through BFIs that
12632   // aren't compatible, but not if they set the same bit in their destination as
12633   // we do (or that of any BFI we're going to combine with).
12634   SDValue V = To;
12635   APInt CombinedToMask = ToMask;
12636   while (V.getOpcode() == ARMISD::BFI) {
12637     APInt NewToMask, NewFromMask;
12638     SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
12639     if (NewFrom != From) {
12640       // This BFI has a different base. Keep going.
12641       CombinedToMask |= NewToMask;
12642       V = V.getOperand(0);
12643       continue;
12644     }
12645 
12646     // Do the written bits conflict with any we've seen so far?
12647     if ((NewToMask & CombinedToMask).getBoolValue())
12648       // Conflicting bits - bail out because going further is unsafe.
12649       return SDValue();
12650 
12651     // Are the new bits contiguous when combined with the old bits?
12652     if (BitsProperlyConcatenate(ToMask, NewToMask) &&
12653         BitsProperlyConcatenate(FromMask, NewFromMask))
12654       return V;
12655     if (BitsProperlyConcatenate(NewToMask, ToMask) &&
12656         BitsProperlyConcatenate(NewFromMask, FromMask))
12657       return V;
12658 
12659     // We've seen a write to some bits, so track it.
12660     CombinedToMask |= NewToMask;
12661     // Keep going...
12662     V = V.getOperand(0);
12663   }
12664 
12665   return SDValue();
12666 }
12667 
12668 static SDValue PerformBFICombine(SDNode *N,
12669                                  TargetLowering::DAGCombinerInfo &DCI) {
12670   SDValue N1 = N->getOperand(1);
12671   if (N1.getOpcode() == ISD::AND) {
12672     // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
12673     // the bits being cleared by the AND are not demanded by the BFI.
12674     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
12675     if (!N11C)
12676       return SDValue();
12677     unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
12678     unsigned LSB = countTrailingZeros(~InvMask);
12679     unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
12680     assert(Width <
12681                static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
12682            "undefined behavior");
12683     unsigned Mask = (1u << Width) - 1;
12684     unsigned Mask2 = N11C->getZExtValue();
12685     if ((Mask & (~Mask2)) == 0)
12686       return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
12687                              N->getOperand(0), N1.getOperand(0),
12688                              N->getOperand(2));
12689   } else if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
12690     // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
12691     // Keep track of any consecutive bits set that all come from the same base
12692     // value. We can combine these together into a single BFI.
12693     SDValue CombineBFI = FindBFIToCombineWith(N);
12694     if (CombineBFI == SDValue())
12695       return SDValue();
12696 
12697     // We've found a BFI.
12698     APInt ToMask1, FromMask1;
12699     SDValue From1 = ParseBFI(N, ToMask1, FromMask1);
12700 
12701     APInt ToMask2, FromMask2;
12702     SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
12703     assert(From1 == From2);
12704     (void)From2;
12705 
12706     // First, unlink CombineBFI.
12707     DCI.DAG.ReplaceAllUsesWith(CombineBFI, CombineBFI.getOperand(0));
12708     // Then create a new BFI, combining the two together.
12709     APInt NewFromMask = FromMask1 | FromMask2;
12710     APInt NewToMask = ToMask1 | ToMask2;
12711 
12712     EVT VT = N->getValueType(0);
12713     SDLoc dl(N);
12714 
12715     if (NewFromMask[0] == 0)
12716       From1 = DCI.DAG.getNode(
12717         ISD::SRL, dl, VT, From1,
12718         DCI.DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT));
12719     return DCI.DAG.getNode(ARMISD::BFI, dl, VT, N->getOperand(0), From1,
12720                            DCI.DAG.getConstant(~NewToMask, dl, VT));
12721   }
12722   return SDValue();
12723 }
12724 
12725 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
12726 /// ARMISD::VMOVRRD.
12727 static SDValue PerformVMOVRRDCombine(SDNode *N,
12728                                      TargetLowering::DAGCombinerInfo &DCI,
12729                                      const ARMSubtarget *Subtarget) {
12730   // vmovrrd(vmovdrr x, y) -> x,y
12731   SDValue InDouble = N->getOperand(0);
12732   if (InDouble.getOpcode() == ARMISD::VMOVDRR && Subtarget->hasFP64())
12733     return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
12734 
12735   // vmovrrd(load f64) -> (load i32), (load i32)
12736   SDNode *InNode = InDouble.getNode();
12737   if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
12738       InNode->getValueType(0) == MVT::f64 &&
12739       InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
12740       !cast<LoadSDNode>(InNode)->isVolatile()) {
12741     // TODO: Should this be done for non-FrameIndex operands?
12742     LoadSDNode *LD = cast<LoadSDNode>(InNode);
12743 
12744     SelectionDAG &DAG = DCI.DAG;
12745     SDLoc DL(LD);
12746     SDValue BasePtr = LD->getBasePtr();
12747     SDValue NewLD1 =
12748         DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, LD->getPointerInfo(),
12749                     LD->getAlignment(), LD->getMemOperand()->getFlags());
12750 
12751     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
12752                                     DAG.getConstant(4, DL, MVT::i32));
12753 
12754     SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, LD->getChain(), OffsetPtr,
12755                                  LD->getPointerInfo().getWithOffset(4),
12756                                  std::min(4U, LD->getAlignment()),
12757                                  LD->getMemOperand()->getFlags());
12758 
12759     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
12760     if (DCI.DAG.getDataLayout().isBigEndian())
12761       std::swap (NewLD1, NewLD2);
12762     SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
12763     return Result;
12764   }
12765 
12766   return SDValue();
12767 }
12768 
12769 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
12770 /// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
12771 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
12772   // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
12773   SDValue Op0 = N->getOperand(0);
12774   SDValue Op1 = N->getOperand(1);
12775   if (Op0.getOpcode() == ISD::BITCAST)
12776     Op0 = Op0.getOperand(0);
12777   if (Op1.getOpcode() == ISD::BITCAST)
12778     Op1 = Op1.getOperand(0);
12779   if (Op0.getOpcode() == ARMISD::VMOVRRD &&
12780       Op0.getNode() == Op1.getNode() &&
12781       Op0.getResNo() == 0 && Op1.getResNo() == 1)
12782     return DAG.getNode(ISD::BITCAST, SDLoc(N),
12783                        N->getValueType(0), Op0.getOperand(0));
12784   return SDValue();
12785 }
12786 
12787 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
12788 /// are normal, non-volatile loads.  If so, it is profitable to bitcast an
12789 /// i64 vector to have f64 elements, since the value can then be loaded
12790 /// directly into a VFP register.
12791 static bool hasNormalLoadOperand(SDNode *N) {
12792   unsigned NumElts = N->getValueType(0).getVectorNumElements();
12793   for (unsigned i = 0; i < NumElts; ++i) {
12794     SDNode *Elt = N->getOperand(i).getNode();
12795     if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
12796       return true;
12797   }
12798   return false;
12799 }
12800 
12801 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
12802 /// ISD::BUILD_VECTOR.
12803 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
12804                                           TargetLowering::DAGCombinerInfo &DCI,
12805                                           const ARMSubtarget *Subtarget) {
12806   // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
12807   // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
12808   // into a pair of GPRs, which is fine when the value is used as a scalar,
12809   // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
12810   SelectionDAG &DAG = DCI.DAG;
12811   if (N->getNumOperands() == 2)
12812     if (SDValue RV = PerformVMOVDRRCombine(N, DAG))
12813       return RV;
12814 
12815   // Load i64 elements as f64 values so that type legalization does not split
12816   // them up into i32 values.
12817   EVT VT = N->getValueType(0);
12818   if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
12819     return SDValue();
12820   SDLoc dl(N);
12821   SmallVector<SDValue, 8> Ops;
12822   unsigned NumElts = VT.getVectorNumElements();
12823   for (unsigned i = 0; i < NumElts; ++i) {
12824     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
12825     Ops.push_back(V);
12826     // Make the DAGCombiner fold the bitcast.
12827     DCI.AddToWorklist(V.getNode());
12828   }
12829   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
12830   SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops);
12831   return DAG.getNode(ISD::BITCAST, dl, VT, BV);
12832 }
12833 
12834 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
12835 static SDValue
12836 PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
12837   // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
12838   // At that time, we may have inserted bitcasts from integer to float.
12839   // If these bitcasts have survived DAGCombine, change the lowering of this
12840   // BUILD_VECTOR in something more vector friendly, i.e., that does not
12841   // force to use floating point types.
12842 
12843   // Make sure we can change the type of the vector.
12844   // This is possible iff:
12845   // 1. The vector is only used in a bitcast to a integer type. I.e.,
12846   //    1.1. Vector is used only once.
12847   //    1.2. Use is a bit convert to an integer type.
12848   // 2. The size of its operands are 32-bits (64-bits are not legal).
12849   EVT VT = N->getValueType(0);
12850   EVT EltVT = VT.getVectorElementType();
12851 
12852   // Check 1.1. and 2.
12853   if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
12854     return SDValue();
12855 
12856   // By construction, the input type must be float.
12857   assert(EltVT == MVT::f32 && "Unexpected type!");
12858 
12859   // Check 1.2.
12860   SDNode *Use = *N->use_begin();
12861   if (Use->getOpcode() != ISD::BITCAST ||
12862       Use->getValueType(0).isFloatingPoint())
12863     return SDValue();
12864 
12865   // Check profitability.
12866   // Model is, if more than half of the relevant operands are bitcast from
12867   // i32, turn the build_vector into a sequence of insert_vector_elt.
12868   // Relevant operands are everything that is not statically
12869   // (i.e., at compile time) bitcasted.
12870   unsigned NumOfBitCastedElts = 0;
12871   unsigned NumElts = VT.getVectorNumElements();
12872   unsigned NumOfRelevantElts = NumElts;
12873   for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
12874     SDValue Elt = N->getOperand(Idx);
12875     if (Elt->getOpcode() == ISD::BITCAST) {
12876       // Assume only bit cast to i32 will go away.
12877       if (Elt->getOperand(0).getValueType() == MVT::i32)
12878         ++NumOfBitCastedElts;
12879     } else if (Elt.isUndef() || isa<ConstantSDNode>(Elt))
12880       // Constants are statically casted, thus do not count them as
12881       // relevant operands.
12882       --NumOfRelevantElts;
12883   }
12884 
12885   // Check if more than half of the elements require a non-free bitcast.
12886   if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
12887     return SDValue();
12888 
12889   SelectionDAG &DAG = DCI.DAG;
12890   // Create the new vector type.
12891   EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
12892   // Check if the type is legal.
12893   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12894   if (!TLI.isTypeLegal(VecVT))
12895     return SDValue();
12896 
12897   // Combine:
12898   // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
12899   // => BITCAST INSERT_VECTOR_ELT
12900   //                      (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
12901   //                      (BITCAST EN), N.
12902   SDValue Vec = DAG.getUNDEF(VecVT);
12903   SDLoc dl(N);
12904   for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
12905     SDValue V = N->getOperand(Idx);
12906     if (V.isUndef())
12907       continue;
12908     if (V.getOpcode() == ISD::BITCAST &&
12909         V->getOperand(0).getValueType() == MVT::i32)
12910       // Fold obvious case.
12911       V = V.getOperand(0);
12912     else {
12913       V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
12914       // Make the DAGCombiner fold the bitcasts.
12915       DCI.AddToWorklist(V.getNode());
12916     }
12917     SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
12918     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
12919   }
12920   Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
12921   // Make the DAGCombiner fold the bitcasts.
12922   DCI.AddToWorklist(Vec.getNode());
12923   return Vec;
12924 }
12925 
12926 static SDValue
12927 PerformPREDICATE_CASTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
12928   EVT VT = N->getValueType(0);
12929   SDValue Op = N->getOperand(0);
12930   SDLoc dl(N);
12931 
12932   // PREDICATE_CAST(PREDICATE_CAST(x)) == PREDICATE_CAST(x)
12933   if (Op->getOpcode() == ARMISD::PREDICATE_CAST) {
12934     // If the valuetypes are the same, we can remove the cast entirely.
12935     if (Op->getOperand(0).getValueType() == VT)
12936       return Op->getOperand(0);
12937     return DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl,
12938                            Op->getOperand(0).getValueType(), Op->getOperand(0));
12939   }
12940 
12941   return SDValue();
12942 }
12943 
12944 static SDValue PerformVCMPCombine(SDNode *N,
12945                                   TargetLowering::DAGCombinerInfo &DCI,
12946                                   const ARMSubtarget *Subtarget) {
12947   if (!Subtarget->hasMVEIntegerOps())
12948     return SDValue();
12949 
12950   EVT VT = N->getValueType(0);
12951   SDValue Op0 = N->getOperand(0);
12952   SDValue Op1 = N->getOperand(1);
12953   ARMCC::CondCodes Cond =
12954       (ARMCC::CondCodes)cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
12955   SDLoc dl(N);
12956 
12957   // vcmp X, 0, cc -> vcmpz X, cc
12958   if (isZeroVector(Op1))
12959     return DCI.DAG.getNode(ARMISD::VCMPZ, dl, VT, Op0,
12960                            N->getOperand(2));
12961 
12962   unsigned SwappedCond = getSwappedCondition(Cond);
12963   if (isValidMVECond(SwappedCond, VT.isFloatingPoint())) {
12964     // vcmp 0, X, cc -> vcmpz X, reversed(cc)
12965     if (isZeroVector(Op0))
12966       return DCI.DAG.getNode(ARMISD::VCMPZ, dl, VT, Op1,
12967                              DCI.DAG.getConstant(SwappedCond, dl, MVT::i32));
12968     // vcmp vdup(Y), X, cc -> vcmp X, vdup(Y), reversed(cc)
12969     if (Op0->getOpcode() == ARMISD::VDUP && Op1->getOpcode() != ARMISD::VDUP)
12970       return DCI.DAG.getNode(ARMISD::VCMP, dl, VT, Op1, Op0,
12971                              DCI.DAG.getConstant(SwappedCond, dl, MVT::i32));
12972   }
12973 
12974   return SDValue();
12975 }
12976 
12977 /// PerformInsertEltCombine - Target-specific dag combine xforms for
12978 /// ISD::INSERT_VECTOR_ELT.
12979 static SDValue PerformInsertEltCombine(SDNode *N,
12980                                        TargetLowering::DAGCombinerInfo &DCI) {
12981   // Bitcast an i64 load inserted into a vector to f64.
12982   // Otherwise, the i64 value will be legalized to a pair of i32 values.
12983   EVT VT = N->getValueType(0);
12984   SDNode *Elt = N->getOperand(1).getNode();
12985   if (VT.getVectorElementType() != MVT::i64 ||
12986       !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
12987     return SDValue();
12988 
12989   SelectionDAG &DAG = DCI.DAG;
12990   SDLoc dl(N);
12991   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
12992                                  VT.getVectorNumElements());
12993   SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
12994   SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
12995   // Make the DAGCombiner fold the bitcasts.
12996   DCI.AddToWorklist(Vec.getNode());
12997   DCI.AddToWorklist(V.getNode());
12998   SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
12999                                Vec, V, N->getOperand(2));
13000   return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
13001 }
13002 
13003 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
13004 /// ISD::VECTOR_SHUFFLE.
13005 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
13006   // The LLVM shufflevector instruction does not require the shuffle mask
13007   // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
13008   // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
13009   // operands do not match the mask length, they are extended by concatenating
13010   // them with undef vectors.  That is probably the right thing for other
13011   // targets, but for NEON it is better to concatenate two double-register
13012   // size vector operands into a single quad-register size vector.  Do that
13013   // transformation here:
13014   //   shuffle(concat(v1, undef), concat(v2, undef)) ->
13015   //   shuffle(concat(v1, v2), undef)
13016   SDValue Op0 = N->getOperand(0);
13017   SDValue Op1 = N->getOperand(1);
13018   if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
13019       Op1.getOpcode() != ISD::CONCAT_VECTORS ||
13020       Op0.getNumOperands() != 2 ||
13021       Op1.getNumOperands() != 2)
13022     return SDValue();
13023   SDValue Concat0Op1 = Op0.getOperand(1);
13024   SDValue Concat1Op1 = Op1.getOperand(1);
13025   if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef())
13026     return SDValue();
13027   // Skip the transformation if any of the types are illegal.
13028   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13029   EVT VT = N->getValueType(0);
13030   if (!TLI.isTypeLegal(VT) ||
13031       !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
13032       !TLI.isTypeLegal(Concat1Op1.getValueType()))
13033     return SDValue();
13034 
13035   SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
13036                                   Op0.getOperand(0), Op1.getOperand(0));
13037   // Translate the shuffle mask.
13038   SmallVector<int, 16> NewMask;
13039   unsigned NumElts = VT.getVectorNumElements();
13040   unsigned HalfElts = NumElts/2;
13041   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
13042   for (unsigned n = 0; n < NumElts; ++n) {
13043     int MaskElt = SVN->getMaskElt(n);
13044     int NewElt = -1;
13045     if (MaskElt < (int)HalfElts)
13046       NewElt = MaskElt;
13047     else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
13048       NewElt = HalfElts + MaskElt - NumElts;
13049     NewMask.push_back(NewElt);
13050   }
13051   return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
13052                               DAG.getUNDEF(VT), NewMask);
13053 }
13054 
13055 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
13056 /// NEON load/store intrinsics, and generic vector load/stores, to merge
13057 /// base address updates.
13058 /// For generic load/stores, the memory type is assumed to be a vector.
13059 /// The caller is assumed to have checked legality.
13060 static SDValue CombineBaseUpdate(SDNode *N,
13061                                  TargetLowering::DAGCombinerInfo &DCI) {
13062   SelectionDAG &DAG = DCI.DAG;
13063   const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
13064                             N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
13065   const bool isStore = N->getOpcode() == ISD::STORE;
13066   const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
13067   SDValue Addr = N->getOperand(AddrOpIdx);
13068   MemSDNode *MemN = cast<MemSDNode>(N);
13069   SDLoc dl(N);
13070 
13071   // Search for a use of the address operand that is an increment.
13072   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
13073          UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
13074     SDNode *User = *UI;
13075     if (User->getOpcode() != ISD::ADD ||
13076         UI.getUse().getResNo() != Addr.getResNo())
13077       continue;
13078 
13079     // Check that the add is independent of the load/store.  Otherwise, folding
13080     // it would create a cycle. We can avoid searching through Addr as it's a
13081     // predecessor to both.
13082     SmallPtrSet<const SDNode *, 32> Visited;
13083     SmallVector<const SDNode *, 16> Worklist;
13084     Visited.insert(Addr.getNode());
13085     Worklist.push_back(N);
13086     Worklist.push_back(User);
13087     if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
13088         SDNode::hasPredecessorHelper(User, Visited, Worklist))
13089       continue;
13090 
13091     // Find the new opcode for the updating load/store.
13092     bool isLoadOp = true;
13093     bool isLaneOp = false;
13094     unsigned NewOpc = 0;
13095     unsigned NumVecs = 0;
13096     if (isIntrinsic) {
13097       unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
13098       switch (IntNo) {
13099       default: llvm_unreachable("unexpected intrinsic for Neon base update");
13100       case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
13101         NumVecs = 1; break;
13102       case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
13103         NumVecs = 2; break;
13104       case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
13105         NumVecs = 3; break;
13106       case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
13107         NumVecs = 4; break;
13108       case Intrinsic::arm_neon_vld2dup:
13109       case Intrinsic::arm_neon_vld3dup:
13110       case Intrinsic::arm_neon_vld4dup:
13111         // TODO: Support updating VLDxDUP nodes. For now, we just skip
13112         // combining base updates for such intrinsics.
13113         continue;
13114       case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
13115         NumVecs = 2; isLaneOp = true; break;
13116       case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
13117         NumVecs = 3; isLaneOp = true; break;
13118       case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
13119         NumVecs = 4; isLaneOp = true; break;
13120       case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
13121         NumVecs = 1; isLoadOp = false; break;
13122       case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
13123         NumVecs = 2; isLoadOp = false; break;
13124       case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
13125         NumVecs = 3; isLoadOp = false; break;
13126       case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
13127         NumVecs = 4; isLoadOp = false; break;
13128       case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
13129         NumVecs = 2; isLoadOp = false; isLaneOp = true; break;
13130       case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
13131         NumVecs = 3; isLoadOp = false; isLaneOp = true; break;
13132       case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
13133         NumVecs = 4; isLoadOp = false; isLaneOp = true; break;
13134       }
13135     } else {
13136       isLaneOp = true;
13137       switch (N->getOpcode()) {
13138       default: llvm_unreachable("unexpected opcode for Neon base update");
13139       case ARMISD::VLD1DUP: NewOpc = ARMISD::VLD1DUP_UPD; NumVecs = 1; break;
13140       case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
13141       case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
13142       case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
13143       case ISD::LOAD:       NewOpc = ARMISD::VLD1_UPD;
13144         NumVecs = 1; isLaneOp = false; break;
13145       case ISD::STORE:      NewOpc = ARMISD::VST1_UPD;
13146         NumVecs = 1; isLaneOp = false; isLoadOp = false; break;
13147       }
13148     }
13149 
13150     // Find the size of memory referenced by the load/store.
13151     EVT VecTy;
13152     if (isLoadOp) {
13153       VecTy = N->getValueType(0);
13154     } else if (isIntrinsic) {
13155       VecTy = N->getOperand(AddrOpIdx+1).getValueType();
13156     } else {
13157       assert(isStore && "Node has to be a load, a store, or an intrinsic!");
13158       VecTy = N->getOperand(1).getValueType();
13159     }
13160 
13161     unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
13162     if (isLaneOp)
13163       NumBytes /= VecTy.getVectorNumElements();
13164 
13165     // If the increment is a constant, it must match the memory ref size.
13166     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
13167     ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode());
13168     if (NumBytes >= 3 * 16 && (!CInc || CInc->getZExtValue() != NumBytes)) {
13169       // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
13170       // separate instructions that make it harder to use a non-constant update.
13171       continue;
13172     }
13173 
13174     // OK, we found an ADD we can fold into the base update.
13175     // Now, create a _UPD node, taking care of not breaking alignment.
13176 
13177     EVT AlignedVecTy = VecTy;
13178     unsigned Alignment = MemN->getAlignment();
13179 
13180     // If this is a less-than-standard-aligned load/store, change the type to
13181     // match the standard alignment.
13182     // The alignment is overlooked when selecting _UPD variants; and it's
13183     // easier to introduce bitcasts here than fix that.
13184     // There are 3 ways to get to this base-update combine:
13185     // - intrinsics: they are assumed to be properly aligned (to the standard
13186     //   alignment of the memory type), so we don't need to do anything.
13187     // - ARMISD::VLDx nodes: they are only generated from the aforementioned
13188     //   intrinsics, so, likewise, there's nothing to do.
13189     // - generic load/store instructions: the alignment is specified as an
13190     //   explicit operand, rather than implicitly as the standard alignment
13191     //   of the memory type (like the intrisics).  We need to change the
13192     //   memory type to match the explicit alignment.  That way, we don't
13193     //   generate non-standard-aligned ARMISD::VLDx nodes.
13194     if (isa<LSBaseSDNode>(N)) {
13195       if (Alignment == 0)
13196         Alignment = 1;
13197       if (Alignment < VecTy.getScalarSizeInBits() / 8) {
13198         MVT EltTy = MVT::getIntegerVT(Alignment * 8);
13199         assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
13200         assert(!isLaneOp && "Unexpected generic load/store lane.");
13201         unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
13202         AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
13203       }
13204       // Don't set an explicit alignment on regular load/stores that we want
13205       // to transform to VLD/VST 1_UPD nodes.
13206       // This matches the behavior of regular load/stores, which only get an
13207       // explicit alignment if the MMO alignment is larger than the standard
13208       // alignment of the memory type.
13209       // Intrinsics, however, always get an explicit alignment, set to the
13210       // alignment of the MMO.
13211       Alignment = 1;
13212     }
13213 
13214     // Create the new updating load/store node.
13215     // First, create an SDVTList for the new updating node's results.
13216     EVT Tys[6];
13217     unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
13218     unsigned n;
13219     for (n = 0; n < NumResultVecs; ++n)
13220       Tys[n] = AlignedVecTy;
13221     Tys[n++] = MVT::i32;
13222     Tys[n] = MVT::Other;
13223     SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2));
13224 
13225     // Then, gather the new node's operands.
13226     SmallVector<SDValue, 8> Ops;
13227     Ops.push_back(N->getOperand(0)); // incoming chain
13228     Ops.push_back(N->getOperand(AddrOpIdx));
13229     Ops.push_back(Inc);
13230 
13231     if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
13232       // Try to match the intrinsic's signature
13233       Ops.push_back(StN->getValue());
13234     } else {
13235       // Loads (and of course intrinsics) match the intrinsics' signature,
13236       // so just add all but the alignment operand.
13237       for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i)
13238         Ops.push_back(N->getOperand(i));
13239     }
13240 
13241     // For all node types, the alignment operand is always the last one.
13242     Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32));
13243 
13244     // If this is a non-standard-aligned STORE, the penultimate operand is the
13245     // stored value.  Bitcast it to the aligned type.
13246     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
13247       SDValue &StVal = Ops[Ops.size()-2];
13248       StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
13249     }
13250 
13251     EVT LoadVT = isLaneOp ? VecTy.getVectorElementType() : AlignedVecTy;
13252     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, LoadVT,
13253                                            MemN->getMemOperand());
13254 
13255     // Update the uses.
13256     SmallVector<SDValue, 5> NewResults;
13257     for (unsigned i = 0; i < NumResultVecs; ++i)
13258       NewResults.push_back(SDValue(UpdN.getNode(), i));
13259 
13260     // If this is an non-standard-aligned LOAD, the first result is the loaded
13261     // value.  Bitcast it to the expected result type.
13262     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
13263       SDValue &LdVal = NewResults[0];
13264       LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
13265     }
13266 
13267     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
13268     DCI.CombineTo(N, NewResults);
13269     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
13270 
13271     break;
13272   }
13273   return SDValue();
13274 }
13275 
13276 static SDValue PerformVLDCombine(SDNode *N,
13277                                  TargetLowering::DAGCombinerInfo &DCI) {
13278   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13279     return SDValue();
13280 
13281   return CombineBaseUpdate(N, DCI);
13282 }
13283 
13284 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
13285 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
13286 /// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
13287 /// return true.
13288 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
13289   SelectionDAG &DAG = DCI.DAG;
13290   EVT VT = N->getValueType(0);
13291   // vldN-dup instructions only support 64-bit vectors for N > 1.
13292   if (!VT.is64BitVector())
13293     return false;
13294 
13295   // Check if the VDUPLANE operand is a vldN-dup intrinsic.
13296   SDNode *VLD = N->getOperand(0).getNode();
13297   if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
13298     return false;
13299   unsigned NumVecs = 0;
13300   unsigned NewOpc = 0;
13301   unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
13302   if (IntNo == Intrinsic::arm_neon_vld2lane) {
13303     NumVecs = 2;
13304     NewOpc = ARMISD::VLD2DUP;
13305   } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
13306     NumVecs = 3;
13307     NewOpc = ARMISD::VLD3DUP;
13308   } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
13309     NumVecs = 4;
13310     NewOpc = ARMISD::VLD4DUP;
13311   } else {
13312     return false;
13313   }
13314 
13315   // First check that all the vldN-lane uses are VDUPLANEs and that the lane
13316   // numbers match the load.
13317   unsigned VLDLaneNo =
13318     cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
13319   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
13320        UI != UE; ++UI) {
13321     // Ignore uses of the chain result.
13322     if (UI.getUse().getResNo() == NumVecs)
13323       continue;
13324     SDNode *User = *UI;
13325     if (User->getOpcode() != ARMISD::VDUPLANE ||
13326         VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
13327       return false;
13328   }
13329 
13330   // Create the vldN-dup node.
13331   EVT Tys[5];
13332   unsigned n;
13333   for (n = 0; n < NumVecs; ++n)
13334     Tys[n] = VT;
13335   Tys[n] = MVT::Other;
13336   SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
13337   SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
13338   MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
13339   SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
13340                                            Ops, VLDMemInt->getMemoryVT(),
13341                                            VLDMemInt->getMemOperand());
13342 
13343   // Update the uses.
13344   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
13345        UI != UE; ++UI) {
13346     unsigned ResNo = UI.getUse().getResNo();
13347     // Ignore uses of the chain result.
13348     if (ResNo == NumVecs)
13349       continue;
13350     SDNode *User = *UI;
13351     DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
13352   }
13353 
13354   // Now the vldN-lane intrinsic is dead except for its chain result.
13355   // Update uses of the chain.
13356   std::vector<SDValue> VLDDupResults;
13357   for (unsigned n = 0; n < NumVecs; ++n)
13358     VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
13359   VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
13360   DCI.CombineTo(VLD, VLDDupResults);
13361 
13362   return true;
13363 }
13364 
13365 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
13366 /// ARMISD::VDUPLANE.
13367 static SDValue PerformVDUPLANECombine(SDNode *N,
13368                                       TargetLowering::DAGCombinerInfo &DCI) {
13369   SDValue Op = N->getOperand(0);
13370 
13371   // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
13372   // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
13373   if (CombineVLDDUP(N, DCI))
13374     return SDValue(N, 0);
13375 
13376   // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
13377   // redundant.  Ignore bit_converts for now; element sizes are checked below.
13378   while (Op.getOpcode() == ISD::BITCAST)
13379     Op = Op.getOperand(0);
13380   if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
13381     return SDValue();
13382 
13383   // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
13384   unsigned EltSize = Op.getScalarValueSizeInBits();
13385   // The canonical VMOV for a zero vector uses a 32-bit element size.
13386   unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13387   unsigned EltBits;
13388   if (ARM_AM::decodeVMOVModImm(Imm, EltBits) == 0)
13389     EltSize = 8;
13390   EVT VT = N->getValueType(0);
13391   if (EltSize > VT.getScalarSizeInBits())
13392     return SDValue();
13393 
13394   return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
13395 }
13396 
13397 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
13398 static SDValue PerformVDUPCombine(SDNode *N,
13399                                   TargetLowering::DAGCombinerInfo &DCI,
13400                                   const ARMSubtarget *Subtarget) {
13401   SelectionDAG &DAG = DCI.DAG;
13402   SDValue Op = N->getOperand(0);
13403 
13404   if (!Subtarget->hasNEON())
13405     return SDValue();
13406 
13407   // Match VDUP(LOAD) -> VLD1DUP.
13408   // We match this pattern here rather than waiting for isel because the
13409   // transform is only legal for unindexed loads.
13410   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode());
13411   if (LD && Op.hasOneUse() && LD->isUnindexed() &&
13412       LD->getMemoryVT() == N->getValueType(0).getVectorElementType()) {
13413     SDValue Ops[] = { LD->getOperand(0), LD->getOperand(1),
13414                       DAG.getConstant(LD->getAlignment(), SDLoc(N), MVT::i32) };
13415     SDVTList SDTys = DAG.getVTList(N->getValueType(0), MVT::Other);
13416     SDValue VLDDup = DAG.getMemIntrinsicNode(ARMISD::VLD1DUP, SDLoc(N), SDTys,
13417                                              Ops, LD->getMemoryVT(),
13418                                              LD->getMemOperand());
13419     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), VLDDup.getValue(1));
13420     return VLDDup;
13421   }
13422 
13423   return SDValue();
13424 }
13425 
13426 static SDValue PerformLOADCombine(SDNode *N,
13427                                   TargetLowering::DAGCombinerInfo &DCI) {
13428   EVT VT = N->getValueType(0);
13429 
13430   // If this is a legal vector load, try to combine it into a VLD1_UPD.
13431   if (ISD::isNormalLoad(N) && VT.isVector() &&
13432       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
13433     return CombineBaseUpdate(N, DCI);
13434 
13435   return SDValue();
13436 }
13437 
13438 // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
13439 // pack all of the elements in one place.  Next, store to memory in fewer
13440 // chunks.
13441 static SDValue PerformTruncatingStoreCombine(StoreSDNode *St,
13442                                              SelectionDAG &DAG) {
13443   SDValue StVal = St->getValue();
13444   EVT VT = StVal.getValueType();
13445   if (!St->isTruncatingStore() || !VT.isVector())
13446     return SDValue();
13447   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13448   EVT StVT = St->getMemoryVT();
13449   unsigned NumElems = VT.getVectorNumElements();
13450   assert(StVT != VT && "Cannot truncate to the same type");
13451   unsigned FromEltSz = VT.getScalarSizeInBits();
13452   unsigned ToEltSz = StVT.getScalarSizeInBits();
13453 
13454   // From, To sizes and ElemCount must be pow of two
13455   if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz))
13456     return SDValue();
13457 
13458   // We are going to use the original vector elt for storing.
13459   // Accumulated smaller vector elements must be a multiple of the store size.
13460   if (0 != (NumElems * FromEltSz) % ToEltSz)
13461     return SDValue();
13462 
13463   unsigned SizeRatio = FromEltSz / ToEltSz;
13464   assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
13465 
13466   // Create a type on which we perform the shuffle.
13467   EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
13468                                    NumElems * SizeRatio);
13469   assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
13470 
13471   SDLoc DL(St);
13472   SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
13473   SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
13474   for (unsigned i = 0; i < NumElems; ++i)
13475     ShuffleVec[i] = DAG.getDataLayout().isBigEndian() ? (i + 1) * SizeRatio - 1
13476                                                       : i * SizeRatio;
13477 
13478   // Can't shuffle using an illegal type.
13479   if (!TLI.isTypeLegal(WideVecVT))
13480     return SDValue();
13481 
13482   SDValue Shuff = DAG.getVectorShuffle(
13483       WideVecVT, DL, WideVec, DAG.getUNDEF(WideVec.getValueType()), ShuffleVec);
13484   // At this point all of the data is stored at the bottom of the
13485   // register. We now need to save it to mem.
13486 
13487   // Find the largest store unit
13488   MVT StoreType = MVT::i8;
13489   for (MVT Tp : MVT::integer_valuetypes()) {
13490     if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
13491       StoreType = Tp;
13492   }
13493   // Didn't find a legal store type.
13494   if (!TLI.isTypeLegal(StoreType))
13495     return SDValue();
13496 
13497   // Bitcast the original vector into a vector of store-size units
13498   EVT StoreVecVT =
13499       EVT::getVectorVT(*DAG.getContext(), StoreType,
13500                        VT.getSizeInBits() / EVT(StoreType).getSizeInBits());
13501   assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
13502   SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
13503   SmallVector<SDValue, 8> Chains;
13504   SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
13505                                       TLI.getPointerTy(DAG.getDataLayout()));
13506   SDValue BasePtr = St->getBasePtr();
13507 
13508   // Perform one or more big stores into memory.
13509   unsigned E = (ToEltSz * NumElems) / StoreType.getSizeInBits();
13510   for (unsigned I = 0; I < E; I++) {
13511     SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, StoreType,
13512                                  ShuffWide, DAG.getIntPtrConstant(I, DL));
13513     SDValue Ch =
13514         DAG.getStore(St->getChain(), DL, SubVec, BasePtr, St->getPointerInfo(),
13515                      St->getAlignment(), St->getMemOperand()->getFlags());
13516     BasePtr =
13517         DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, Increment);
13518     Chains.push_back(Ch);
13519   }
13520   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
13521 }
13522 
13523 // Try taking a single vector store from an truncate (which would otherwise turn
13524 // into an expensive buildvector) and splitting it into a series of narrowing
13525 // stores.
13526 static SDValue PerformSplittingToNarrowingStores(StoreSDNode *St,
13527                                                  SelectionDAG &DAG) {
13528   if (!St->isSimple() || St->isTruncatingStore() || !St->isUnindexed())
13529     return SDValue();
13530   SDValue Trunc = St->getValue();
13531   if (Trunc->getOpcode() != ISD::TRUNCATE)
13532     return SDValue();
13533   EVT FromVT = Trunc->getOperand(0).getValueType();
13534   EVT ToVT = Trunc.getValueType();
13535   if (!ToVT.isVector())
13536     return SDValue();
13537   assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements());
13538   EVT ToEltVT = ToVT.getVectorElementType();
13539   EVT FromEltVT = FromVT.getVectorElementType();
13540 
13541   unsigned NumElements = 0;
13542   if (FromEltVT == MVT::i32 && (ToEltVT == MVT::i16 || ToEltVT == MVT::i8))
13543     NumElements = 4;
13544   if (FromEltVT == MVT::i16 && ToEltVT == MVT::i8)
13545     NumElements = 8;
13546   if (NumElements == 0 || FromVT.getVectorNumElements() == NumElements ||
13547       FromVT.getVectorNumElements() % NumElements != 0)
13548     return SDValue();
13549 
13550   SDLoc DL(St);
13551   // Details about the old store
13552   SDValue Ch = St->getChain();
13553   SDValue BasePtr = St->getBasePtr();
13554   unsigned Alignment = St->getOriginalAlignment();
13555   MachineMemOperand::Flags MMOFlags = St->getMemOperand()->getFlags();
13556   AAMDNodes AAInfo = St->getAAInfo();
13557 
13558   EVT NewFromVT = EVT::getVectorVT(*DAG.getContext(), FromEltVT, NumElements);
13559   EVT NewToVT = EVT::getVectorVT(*DAG.getContext(), ToEltVT, NumElements);
13560 
13561   SmallVector<SDValue, 4> Stores;
13562   for (unsigned i = 0; i < FromVT.getVectorNumElements() / NumElements; i++) {
13563     unsigned NewOffset = i * NumElements * ToEltVT.getSizeInBits() / 8;
13564     SDValue NewPtr = DAG.getObjectPtrOffset(DL, BasePtr, NewOffset);
13565 
13566     SDValue Extract =
13567         DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewFromVT, Trunc.getOperand(0),
13568                     DAG.getConstant(i * NumElements, DL, MVT::i32));
13569     SDValue Store = DAG.getTruncStore(
13570         Ch, DL, Extract, NewPtr, St->getPointerInfo().getWithOffset(NewOffset),
13571         NewToVT, Alignment, MMOFlags, AAInfo);
13572     Stores.push_back(Store);
13573   }
13574   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Stores);
13575 }
13576 
13577 /// PerformSTORECombine - Target-specific dag combine xforms for
13578 /// ISD::STORE.
13579 static SDValue PerformSTORECombine(SDNode *N,
13580                                    TargetLowering::DAGCombinerInfo &DCI,
13581                                    const ARMSubtarget *Subtarget) {
13582   StoreSDNode *St = cast<StoreSDNode>(N);
13583   if (St->isVolatile())
13584     return SDValue();
13585   SDValue StVal = St->getValue();
13586   EVT VT = StVal.getValueType();
13587 
13588   if (Subtarget->hasNEON())
13589     if (SDValue Store = PerformTruncatingStoreCombine(St, DCI.DAG))
13590       return Store;
13591 
13592   if (Subtarget->hasMVEIntegerOps())
13593     if (SDValue NewToken = PerformSplittingToNarrowingStores(St, DCI.DAG))
13594       return NewToken;
13595 
13596   if (!ISD::isNormalStore(St))
13597     return SDValue();
13598 
13599   // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
13600   // ARM stores of arguments in the same cache line.
13601   if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
13602       StVal.getNode()->hasOneUse()) {
13603     SelectionDAG  &DAG = DCI.DAG;
13604     bool isBigEndian = DAG.getDataLayout().isBigEndian();
13605     SDLoc DL(St);
13606     SDValue BasePtr = St->getBasePtr();
13607     SDValue NewST1 = DAG.getStore(
13608         St->getChain(), DL, StVal.getNode()->getOperand(isBigEndian ? 1 : 0),
13609         BasePtr, St->getPointerInfo(), St->getAlignment(),
13610         St->getMemOperand()->getFlags());
13611 
13612     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
13613                                     DAG.getConstant(4, DL, MVT::i32));
13614     return DAG.getStore(NewST1.getValue(0), DL,
13615                         StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
13616                         OffsetPtr, St->getPointerInfo(),
13617                         std::min(4U, St->getAlignment() / 2),
13618                         St->getMemOperand()->getFlags());
13619   }
13620 
13621   if (StVal.getValueType() == MVT::i64 &&
13622       StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
13623 
13624     // Bitcast an i64 store extracted from a vector to f64.
13625     // Otherwise, the i64 value will be legalized to a pair of i32 values.
13626     SelectionDAG &DAG = DCI.DAG;
13627     SDLoc dl(StVal);
13628     SDValue IntVec = StVal.getOperand(0);
13629     EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
13630                                    IntVec.getValueType().getVectorNumElements());
13631     SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
13632     SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
13633                                  Vec, StVal.getOperand(1));
13634     dl = SDLoc(N);
13635     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
13636     // Make the DAGCombiner fold the bitcasts.
13637     DCI.AddToWorklist(Vec.getNode());
13638     DCI.AddToWorklist(ExtElt.getNode());
13639     DCI.AddToWorklist(V.getNode());
13640     return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
13641                         St->getPointerInfo(), St->getAlignment(),
13642                         St->getMemOperand()->getFlags(), St->getAAInfo());
13643   }
13644 
13645   // If this is a legal vector store, try to combine it into a VST1_UPD.
13646   if (Subtarget->hasNEON() && ISD::isNormalStore(N) && VT.isVector() &&
13647       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
13648     return CombineBaseUpdate(N, DCI);
13649 
13650   return SDValue();
13651 }
13652 
13653 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
13654 /// can replace combinations of VMUL and VCVT (floating-point to integer)
13655 /// when the VMUL has a constant operand that is a power of 2.
13656 ///
13657 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
13658 ///  vmul.f32        d16, d17, d16
13659 ///  vcvt.s32.f32    d16, d16
13660 /// becomes:
13661 ///  vcvt.s32.f32    d16, d16, #3
13662 static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
13663                                   const ARMSubtarget *Subtarget) {
13664   if (!Subtarget->hasNEON())
13665     return SDValue();
13666 
13667   SDValue Op = N->getOperand(0);
13668   if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
13669       Op.getOpcode() != ISD::FMUL)
13670     return SDValue();
13671 
13672   SDValue ConstVec = Op->getOperand(1);
13673   if (!isa<BuildVectorSDNode>(ConstVec))
13674     return SDValue();
13675 
13676   MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
13677   uint32_t FloatBits = FloatTy.getSizeInBits();
13678   MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
13679   uint32_t IntBits = IntTy.getSizeInBits();
13680   unsigned NumLanes = Op.getValueType().getVectorNumElements();
13681   if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
13682     // These instructions only exist converting from f32 to i32. We can handle
13683     // smaller integers by generating an extra truncate, but larger ones would
13684     // be lossy. We also can't handle anything other than 2 or 4 lanes, since
13685     // these intructions only support v2i32/v4i32 types.
13686     return SDValue();
13687   }
13688 
13689   BitVector UndefElements;
13690   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
13691   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
13692   if (C == -1 || C == 0 || C > 32)
13693     return SDValue();
13694 
13695   SDLoc dl(N);
13696   bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
13697   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
13698     Intrinsic::arm_neon_vcvtfp2fxu;
13699   SDValue FixConv = DAG.getNode(
13700       ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
13701       DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
13702       DAG.getConstant(C, dl, MVT::i32));
13703 
13704   if (IntBits < FloatBits)
13705     FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);
13706 
13707   return FixConv;
13708 }
13709 
13710 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
13711 /// can replace combinations of VCVT (integer to floating-point) and VDIV
13712 /// when the VDIV has a constant operand that is a power of 2.
13713 ///
13714 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
13715 ///  vcvt.f32.s32    d16, d16
13716 ///  vdiv.f32        d16, d17, d16
13717 /// becomes:
13718 ///  vcvt.f32.s32    d16, d16, #3
13719 static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG,
13720                                   const ARMSubtarget *Subtarget) {
13721   if (!Subtarget->hasNEON())
13722     return SDValue();
13723 
13724   SDValue Op = N->getOperand(0);
13725   unsigned OpOpcode = Op.getNode()->getOpcode();
13726   if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() ||
13727       (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
13728     return SDValue();
13729 
13730   SDValue ConstVec = N->getOperand(1);
13731   if (!isa<BuildVectorSDNode>(ConstVec))
13732     return SDValue();
13733 
13734   MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
13735   uint32_t FloatBits = FloatTy.getSizeInBits();
13736   MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
13737   uint32_t IntBits = IntTy.getSizeInBits();
13738   unsigned NumLanes = Op.getValueType().getVectorNumElements();
13739   if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
13740     // These instructions only exist converting from i32 to f32. We can handle
13741     // smaller integers by generating an extra extend, but larger ones would
13742     // be lossy. We also can't handle anything other than 2 or 4 lanes, since
13743     // these intructions only support v2i32/v4i32 types.
13744     return SDValue();
13745   }
13746 
13747   BitVector UndefElements;
13748   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
13749   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
13750   if (C == -1 || C == 0 || C > 32)
13751     return SDValue();
13752 
13753   SDLoc dl(N);
13754   bool isSigned = OpOpcode == ISD::SINT_TO_FP;
13755   SDValue ConvInput = Op.getOperand(0);
13756   if (IntBits < FloatBits)
13757     ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
13758                             dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
13759                             ConvInput);
13760 
13761   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
13762     Intrinsic::arm_neon_vcvtfxu2fp;
13763   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
13764                      Op.getValueType(),
13765                      DAG.getConstant(IntrinsicOpcode, dl, MVT::i32),
13766                      ConvInput, DAG.getConstant(C, dl, MVT::i32));
13767 }
13768 
13769 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
13770 static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
13771   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
13772   switch (IntNo) {
13773   default:
13774     // Don't do anything for most intrinsics.
13775     break;
13776 
13777   // Vector shifts: check for immediate versions and lower them.
13778   // Note: This is done during DAG combining instead of DAG legalizing because
13779   // the build_vectors for 64-bit vector element shift counts are generally
13780   // not legal, and it is hard to see their values after they get legalized to
13781   // loads from a constant pool.
13782   case Intrinsic::arm_neon_vshifts:
13783   case Intrinsic::arm_neon_vshiftu:
13784   case Intrinsic::arm_neon_vrshifts:
13785   case Intrinsic::arm_neon_vrshiftu:
13786   case Intrinsic::arm_neon_vrshiftn:
13787   case Intrinsic::arm_neon_vqshifts:
13788   case Intrinsic::arm_neon_vqshiftu:
13789   case Intrinsic::arm_neon_vqshiftsu:
13790   case Intrinsic::arm_neon_vqshiftns:
13791   case Intrinsic::arm_neon_vqshiftnu:
13792   case Intrinsic::arm_neon_vqshiftnsu:
13793   case Intrinsic::arm_neon_vqrshiftns:
13794   case Intrinsic::arm_neon_vqrshiftnu:
13795   case Intrinsic::arm_neon_vqrshiftnsu: {
13796     EVT VT = N->getOperand(1).getValueType();
13797     int64_t Cnt;
13798     unsigned VShiftOpc = 0;
13799 
13800     switch (IntNo) {
13801     case Intrinsic::arm_neon_vshifts:
13802     case Intrinsic::arm_neon_vshiftu:
13803       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
13804         VShiftOpc = ARMISD::VSHLIMM;
13805         break;
13806       }
13807       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
13808         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ? ARMISD::VSHRsIMM
13809                                                           : ARMISD::VSHRuIMM);
13810         break;
13811       }
13812       return SDValue();
13813 
13814     case Intrinsic::arm_neon_vrshifts:
13815     case Intrinsic::arm_neon_vrshiftu:
13816       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
13817         break;
13818       return SDValue();
13819 
13820     case Intrinsic::arm_neon_vqshifts:
13821     case Intrinsic::arm_neon_vqshiftu:
13822       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
13823         break;
13824       return SDValue();
13825 
13826     case Intrinsic::arm_neon_vqshiftsu:
13827       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
13828         break;
13829       llvm_unreachable("invalid shift count for vqshlu intrinsic");
13830 
13831     case Intrinsic::arm_neon_vrshiftn:
13832     case Intrinsic::arm_neon_vqshiftns:
13833     case Intrinsic::arm_neon_vqshiftnu:
13834     case Intrinsic::arm_neon_vqshiftnsu:
13835     case Intrinsic::arm_neon_vqrshiftns:
13836     case Intrinsic::arm_neon_vqrshiftnu:
13837     case Intrinsic::arm_neon_vqrshiftnsu:
13838       // Narrowing shifts require an immediate right shift.
13839       if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
13840         break;
13841       llvm_unreachable("invalid shift count for narrowing vector shift "
13842                        "intrinsic");
13843 
13844     default:
13845       llvm_unreachable("unhandled vector shift");
13846     }
13847 
13848     switch (IntNo) {
13849     case Intrinsic::arm_neon_vshifts:
13850     case Intrinsic::arm_neon_vshiftu:
13851       // Opcode already set above.
13852       break;
13853     case Intrinsic::arm_neon_vrshifts:
13854       VShiftOpc = ARMISD::VRSHRsIMM;
13855       break;
13856     case Intrinsic::arm_neon_vrshiftu:
13857       VShiftOpc = ARMISD::VRSHRuIMM;
13858       break;
13859     case Intrinsic::arm_neon_vrshiftn:
13860       VShiftOpc = ARMISD::VRSHRNIMM;
13861       break;
13862     case Intrinsic::arm_neon_vqshifts:
13863       VShiftOpc = ARMISD::VQSHLsIMM;
13864       break;
13865     case Intrinsic::arm_neon_vqshiftu:
13866       VShiftOpc = ARMISD::VQSHLuIMM;
13867       break;
13868     case Intrinsic::arm_neon_vqshiftsu:
13869       VShiftOpc = ARMISD::VQSHLsuIMM;
13870       break;
13871     case Intrinsic::arm_neon_vqshiftns:
13872       VShiftOpc = ARMISD::VQSHRNsIMM;
13873       break;
13874     case Intrinsic::arm_neon_vqshiftnu:
13875       VShiftOpc = ARMISD::VQSHRNuIMM;
13876       break;
13877     case Intrinsic::arm_neon_vqshiftnsu:
13878       VShiftOpc = ARMISD::VQSHRNsuIMM;
13879       break;
13880     case Intrinsic::arm_neon_vqrshiftns:
13881       VShiftOpc = ARMISD::VQRSHRNsIMM;
13882       break;
13883     case Intrinsic::arm_neon_vqrshiftnu:
13884       VShiftOpc = ARMISD::VQRSHRNuIMM;
13885       break;
13886     case Intrinsic::arm_neon_vqrshiftnsu:
13887       VShiftOpc = ARMISD::VQRSHRNsuIMM;
13888       break;
13889     }
13890 
13891     SDLoc dl(N);
13892     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
13893                        N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
13894   }
13895 
13896   case Intrinsic::arm_neon_vshiftins: {
13897     EVT VT = N->getOperand(1).getValueType();
13898     int64_t Cnt;
13899     unsigned VShiftOpc = 0;
13900 
13901     if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
13902       VShiftOpc = ARMISD::VSLIIMM;
13903     else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
13904       VShiftOpc = ARMISD::VSRIIMM;
13905     else {
13906       llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
13907     }
13908 
13909     SDLoc dl(N);
13910     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
13911                        N->getOperand(1), N->getOperand(2),
13912                        DAG.getConstant(Cnt, dl, MVT::i32));
13913   }
13914 
13915   case Intrinsic::arm_neon_vqrshifts:
13916   case Intrinsic::arm_neon_vqrshiftu:
13917     // No immediate versions of these to check for.
13918     break;
13919   }
13920 
13921   return SDValue();
13922 }
13923 
13924 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
13925 /// lowers them.  As with the vector shift intrinsics, this is done during DAG
13926 /// combining instead of DAG legalizing because the build_vectors for 64-bit
13927 /// vector element shift counts are generally not legal, and it is hard to see
13928 /// their values after they get legalized to loads from a constant pool.
13929 static SDValue PerformShiftCombine(SDNode *N,
13930                                    TargetLowering::DAGCombinerInfo &DCI,
13931                                    const ARMSubtarget *ST) {
13932   SelectionDAG &DAG = DCI.DAG;
13933   EVT VT = N->getValueType(0);
13934   if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
13935     // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
13936     // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
13937     SDValue N1 = N->getOperand(1);
13938     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
13939       SDValue N0 = N->getOperand(0);
13940       if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
13941           DAG.MaskedValueIsZero(N0.getOperand(0),
13942                                 APInt::getHighBitsSet(32, 16)))
13943         return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
13944     }
13945   }
13946 
13947   if (ST->isThumb1Only() && N->getOpcode() == ISD::SHL && VT == MVT::i32 &&
13948       N->getOperand(0)->getOpcode() == ISD::AND &&
13949       N->getOperand(0)->hasOneUse()) {
13950     if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13951       return SDValue();
13952     // Look for the pattern (shl (and x, AndMask), ShiftAmt). This doesn't
13953     // usually show up because instcombine prefers to canonicalize it to
13954     // (and (shl x, ShiftAmt) (shl AndMask, ShiftAmt)), but the shift can come
13955     // out of GEP lowering in some cases.
13956     SDValue N0 = N->getOperand(0);
13957     ConstantSDNode *ShiftAmtNode = dyn_cast<ConstantSDNode>(N->getOperand(1));
13958     if (!ShiftAmtNode)
13959       return SDValue();
13960     uint32_t ShiftAmt = static_cast<uint32_t>(ShiftAmtNode->getZExtValue());
13961     ConstantSDNode *AndMaskNode = dyn_cast<ConstantSDNode>(N0->getOperand(1));
13962     if (!AndMaskNode)
13963       return SDValue();
13964     uint32_t AndMask = static_cast<uint32_t>(AndMaskNode->getZExtValue());
13965     // Don't transform uxtb/uxth.
13966     if (AndMask == 255 || AndMask == 65535)
13967       return SDValue();
13968     if (isMask_32(AndMask)) {
13969       uint32_t MaskedBits = countLeadingZeros(AndMask);
13970       if (MaskedBits > ShiftAmt) {
13971         SDLoc DL(N);
13972         SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
13973                                   DAG.getConstant(MaskedBits, DL, MVT::i32));
13974         return DAG.getNode(
13975             ISD::SRL, DL, MVT::i32, SHL,
13976             DAG.getConstant(MaskedBits - ShiftAmt, DL, MVT::i32));
13977       }
13978     }
13979   }
13980 
13981   // Nothing to be done for scalar shifts.
13982   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13983   if (!VT.isVector() || !TLI.isTypeLegal(VT))
13984     return SDValue();
13985   if (ST->hasMVEIntegerOps() && VT == MVT::v2i64)
13986     return SDValue();
13987 
13988   int64_t Cnt;
13989 
13990   switch (N->getOpcode()) {
13991   default: llvm_unreachable("unexpected shift opcode");
13992 
13993   case ISD::SHL:
13994     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
13995       SDLoc dl(N);
13996       return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0),
13997                          DAG.getConstant(Cnt, dl, MVT::i32));
13998     }
13999     break;
14000 
14001   case ISD::SRA:
14002   case ISD::SRL:
14003     if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
14004       unsigned VShiftOpc =
14005           (N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM);
14006       SDLoc dl(N);
14007       return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
14008                          DAG.getConstant(Cnt, dl, MVT::i32));
14009     }
14010   }
14011   return SDValue();
14012 }
14013 
14014 // Look for a sign/zero extend of a larger than legal load. This can be split
14015 // into two extending loads, which are simpler to deal with than an arbitrary
14016 // sign extend.
14017 static SDValue PerformSplittingToWideningLoad(SDNode *N, SelectionDAG &DAG) {
14018   SDValue N0 = N->getOperand(0);
14019   if (N0.getOpcode() != ISD::LOAD)
14020     return SDValue();
14021   LoadSDNode *LD = cast<LoadSDNode>(N0.getNode());
14022   if (!LD->isSimple() || !N0.hasOneUse() || LD->isIndexed() ||
14023       LD->getExtensionType() != ISD::NON_EXTLOAD)
14024     return SDValue();
14025   EVT FromVT = LD->getValueType(0);
14026   EVT ToVT = N->getValueType(0);
14027   if (!ToVT.isVector())
14028     return SDValue();
14029   assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements());
14030   EVT ToEltVT = ToVT.getVectorElementType();
14031   EVT FromEltVT = FromVT.getVectorElementType();
14032 
14033   unsigned NumElements = 0;
14034   if (ToEltVT == MVT::i32 && (FromEltVT == MVT::i16 || FromEltVT == MVT::i8))
14035     NumElements = 4;
14036   if (ToEltVT == MVT::i16 && FromEltVT == MVT::i8)
14037     NumElements = 8;
14038   if (NumElements == 0 ||
14039       FromVT.getVectorNumElements() == NumElements ||
14040       FromVT.getVectorNumElements() % NumElements != 0 ||
14041       !isPowerOf2_32(NumElements))
14042     return SDValue();
14043 
14044   SDLoc DL(LD);
14045   // Details about the old load
14046   SDValue Ch = LD->getChain();
14047   SDValue BasePtr = LD->getBasePtr();
14048   unsigned Alignment = LD->getOriginalAlignment();
14049   MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
14050   AAMDNodes AAInfo = LD->getAAInfo();
14051 
14052   ISD::LoadExtType NewExtType =
14053       N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
14054   SDValue Offset = DAG.getUNDEF(BasePtr.getValueType());
14055   EVT NewFromVT = FromVT.getHalfNumVectorElementsVT(*DAG.getContext());
14056   EVT NewToVT = ToVT.getHalfNumVectorElementsVT(*DAG.getContext());
14057   unsigned NewOffset = NewFromVT.getSizeInBits() / 8;
14058   SDValue NewPtr = DAG.getObjectPtrOffset(DL, BasePtr, NewOffset);
14059 
14060   // Split the load in half, each side of which is extended separately. This
14061   // is good enough, as legalisation will take it from there. They are either
14062   // already legal or they will be split further into something that is
14063   // legal.
14064   SDValue NewLoad1 =
14065       DAG.getLoad(ISD::UNINDEXED, NewExtType, NewToVT, DL, Ch, BasePtr, Offset,
14066                   LD->getPointerInfo(), NewFromVT, Alignment, MMOFlags, AAInfo);
14067   SDValue NewLoad2 =
14068       DAG.getLoad(ISD::UNINDEXED, NewExtType, NewToVT, DL, Ch, NewPtr, Offset,
14069                   LD->getPointerInfo().getWithOffset(NewOffset), NewFromVT,
14070                   Alignment, MMOFlags, AAInfo);
14071 
14072   SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
14073                                  SDValue(NewLoad1.getNode(), 1),
14074                                  SDValue(NewLoad2.getNode(), 1));
14075   DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewChain);
14076   return DAG.getNode(ISD::CONCAT_VECTORS, DL, ToVT, NewLoad1, NewLoad2);
14077 }
14078 
14079 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
14080 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
14081 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
14082                                     const ARMSubtarget *ST) {
14083   SDValue N0 = N->getOperand(0);
14084 
14085   // Check for sign- and zero-extensions of vector extract operations of 8- and
14086   // 16-bit vector elements. NEON and MVE support these directly. They are
14087   // handled during DAG combining because type legalization will promote them
14088   // to 32-bit types and it is messy to recognize the operations after that.
14089   if ((ST->hasNEON() || ST->hasMVEIntegerOps()) &&
14090       N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
14091     SDValue Vec = N0.getOperand(0);
14092     SDValue Lane = N0.getOperand(1);
14093     EVT VT = N->getValueType(0);
14094     EVT EltVT = N0.getValueType();
14095     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14096 
14097     if (VT == MVT::i32 &&
14098         (EltVT == MVT::i8 || EltVT == MVT::i16) &&
14099         TLI.isTypeLegal(Vec.getValueType()) &&
14100         isa<ConstantSDNode>(Lane)) {
14101 
14102       unsigned Opc = 0;
14103       switch (N->getOpcode()) {
14104       default: llvm_unreachable("unexpected opcode");
14105       case ISD::SIGN_EXTEND:
14106         Opc = ARMISD::VGETLANEs;
14107         break;
14108       case ISD::ZERO_EXTEND:
14109       case ISD::ANY_EXTEND:
14110         Opc = ARMISD::VGETLANEu;
14111         break;
14112       }
14113       return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
14114     }
14115   }
14116 
14117   if (ST->hasMVEIntegerOps())
14118     if (SDValue NewLoad = PerformSplittingToWideningLoad(N, DAG))
14119       return NewLoad;
14120 
14121   return SDValue();
14122 }
14123 
14124 static const APInt *isPowerOf2Constant(SDValue V) {
14125   ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
14126   if (!C)
14127     return nullptr;
14128   const APInt *CV = &C->getAPIntValue();
14129   return CV->isPowerOf2() ? CV : nullptr;
14130 }
14131 
14132 SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
14133   // If we have a CMOV, OR and AND combination such as:
14134   //   if (x & CN)
14135   //     y |= CM;
14136   //
14137   // And:
14138   //   * CN is a single bit;
14139   //   * All bits covered by CM are known zero in y
14140   //
14141   // Then we can convert this into a sequence of BFI instructions. This will
14142   // always be a win if CM is a single bit, will always be no worse than the
14143   // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
14144   // three bits (due to the extra IT instruction).
14145 
14146   SDValue Op0 = CMOV->getOperand(0);
14147   SDValue Op1 = CMOV->getOperand(1);
14148   auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2));
14149   auto CC = CCNode->getAPIntValue().getLimitedValue();
14150   SDValue CmpZ = CMOV->getOperand(4);
14151 
14152   // The compare must be against zero.
14153   if (!isNullConstant(CmpZ->getOperand(1)))
14154     return SDValue();
14155 
14156   assert(CmpZ->getOpcode() == ARMISD::CMPZ);
14157   SDValue And = CmpZ->getOperand(0);
14158   if (And->getOpcode() != ISD::AND)
14159     return SDValue();
14160   const APInt *AndC = isPowerOf2Constant(And->getOperand(1));
14161   if (!AndC)
14162     return SDValue();
14163   SDValue X = And->getOperand(0);
14164 
14165   if (CC == ARMCC::EQ) {
14166     // We're performing an "equal to zero" compare. Swap the operands so we
14167     // canonicalize on a "not equal to zero" compare.
14168     std::swap(Op0, Op1);
14169   } else {
14170     assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
14171   }
14172 
14173   if (Op1->getOpcode() != ISD::OR)
14174     return SDValue();
14175 
14176   ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
14177   if (!OrC)
14178     return SDValue();
14179   SDValue Y = Op1->getOperand(0);
14180 
14181   if (Op0 != Y)
14182     return SDValue();
14183 
14184   // Now, is it profitable to continue?
14185   APInt OrCI = OrC->getAPIntValue();
14186   unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
14187   if (OrCI.countPopulation() > Heuristic)
14188     return SDValue();
14189 
14190   // Lastly, can we determine that the bits defined by OrCI
14191   // are zero in Y?
14192   KnownBits Known = DAG.computeKnownBits(Y);
14193   if ((OrCI & Known.Zero) != OrCI)
14194     return SDValue();
14195 
14196   // OK, we can do the combine.
14197   SDValue V = Y;
14198   SDLoc dl(X);
14199   EVT VT = X.getValueType();
14200   unsigned BitInX = AndC->logBase2();
14201 
14202   if (BitInX != 0) {
14203     // We must shift X first.
14204     X = DAG.getNode(ISD::SRL, dl, VT, X,
14205                     DAG.getConstant(BitInX, dl, VT));
14206   }
14207 
14208   for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
14209        BitInY < NumActiveBits; ++BitInY) {
14210     if (OrCI[BitInY] == 0)
14211       continue;
14212     APInt Mask(VT.getSizeInBits(), 0);
14213     Mask.setBit(BitInY);
14214     V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
14215                     // Confusingly, the operand is an *inverted* mask.
14216                     DAG.getConstant(~Mask, dl, VT));
14217   }
14218 
14219   return V;
14220 }
14221 
14222 // Given N, the value controlling the conditional branch, search for the loop
14223 // intrinsic, returning it, along with how the value is used. We need to handle
14224 // patterns such as the following:
14225 // (brcond (xor (setcc (loop.decrement), 0, ne), 1), exit)
14226 // (brcond (setcc (loop.decrement), 0, eq), exit)
14227 // (brcond (setcc (loop.decrement), 0, ne), header)
14228 static SDValue SearchLoopIntrinsic(SDValue N, ISD::CondCode &CC, int &Imm,
14229                                    bool &Negate) {
14230   switch (N->getOpcode()) {
14231   default:
14232     break;
14233   case ISD::XOR: {
14234     if (!isa<ConstantSDNode>(N.getOperand(1)))
14235       return SDValue();
14236     if (!cast<ConstantSDNode>(N.getOperand(1))->isOne())
14237       return SDValue();
14238     Negate = !Negate;
14239     return SearchLoopIntrinsic(N.getOperand(0), CC, Imm, Negate);
14240   }
14241   case ISD::SETCC: {
14242     auto *Const = dyn_cast<ConstantSDNode>(N.getOperand(1));
14243     if (!Const)
14244       return SDValue();
14245     if (Const->isNullValue())
14246       Imm = 0;
14247     else if (Const->isOne())
14248       Imm = 1;
14249     else
14250       return SDValue();
14251     CC = cast<CondCodeSDNode>(N.getOperand(2))->get();
14252     return SearchLoopIntrinsic(N->getOperand(0), CC, Imm, Negate);
14253   }
14254   case ISD::INTRINSIC_W_CHAIN: {
14255     unsigned IntOp = cast<ConstantSDNode>(N.getOperand(1))->getZExtValue();
14256     if (IntOp != Intrinsic::test_set_loop_iterations &&
14257         IntOp != Intrinsic::loop_decrement_reg)
14258       return SDValue();
14259     return N;
14260   }
14261   }
14262   return SDValue();
14263 }
14264 
14265 static SDValue PerformHWLoopCombine(SDNode *N,
14266                                     TargetLowering::DAGCombinerInfo &DCI,
14267                                     const ARMSubtarget *ST) {
14268 
14269   // The hwloop intrinsics that we're interested are used for control-flow,
14270   // either for entering or exiting the loop:
14271   // - test.set.loop.iterations will test whether its operand is zero. If it
14272   //   is zero, the proceeding branch should not enter the loop.
14273   // - loop.decrement.reg also tests whether its operand is zero. If it is
14274   //   zero, the proceeding branch should not branch back to the beginning of
14275   //   the loop.
14276   // So here, we need to check that how the brcond is using the result of each
14277   // of the intrinsics to ensure that we're branching to the right place at the
14278   // right time.
14279 
14280   ISD::CondCode CC;
14281   SDValue Cond;
14282   int Imm = 1;
14283   bool Negate = false;
14284   SDValue Chain = N->getOperand(0);
14285   SDValue Dest;
14286 
14287   if (N->getOpcode() == ISD::BRCOND) {
14288     CC = ISD::SETEQ;
14289     Cond = N->getOperand(1);
14290     Dest = N->getOperand(2);
14291   } else {
14292     assert(N->getOpcode() == ISD::BR_CC && "Expected BRCOND or BR_CC!");
14293     CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
14294     Cond = N->getOperand(2);
14295     Dest = N->getOperand(4);
14296     if (auto *Const = dyn_cast<ConstantSDNode>(N->getOperand(3))) {
14297       if (!Const->isOne() && !Const->isNullValue())
14298         return SDValue();
14299       Imm = Const->getZExtValue();
14300     } else
14301       return SDValue();
14302   }
14303 
14304   SDValue Int = SearchLoopIntrinsic(Cond, CC, Imm, Negate);
14305   if (!Int)
14306     return SDValue();
14307 
14308   if (Negate)
14309     CC = ISD::getSetCCInverse(CC, /* Integer inverse */ MVT::i32);
14310 
14311   auto IsTrueIfZero = [](ISD::CondCode CC, int Imm) {
14312     return (CC == ISD::SETEQ && Imm == 0) ||
14313            (CC == ISD::SETNE && Imm == 1) ||
14314            (CC == ISD::SETLT && Imm == 1) ||
14315            (CC == ISD::SETULT && Imm == 1);
14316   };
14317 
14318   auto IsFalseIfZero = [](ISD::CondCode CC, int Imm) {
14319     return (CC == ISD::SETEQ && Imm == 1) ||
14320            (CC == ISD::SETNE && Imm == 0) ||
14321            (CC == ISD::SETGT && Imm == 0) ||
14322            (CC == ISD::SETUGT && Imm == 0) ||
14323            (CC == ISD::SETGE && Imm == 1) ||
14324            (CC == ISD::SETUGE && Imm == 1);
14325   };
14326 
14327   assert((IsTrueIfZero(CC, Imm) || IsFalseIfZero(CC, Imm)) &&
14328          "unsupported condition");
14329 
14330   SDLoc dl(Int);
14331   SelectionDAG &DAG = DCI.DAG;
14332   SDValue Elements = Int.getOperand(2);
14333   unsigned IntOp = cast<ConstantSDNode>(Int->getOperand(1))->getZExtValue();
14334   assert((N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BR)
14335           && "expected single br user");
14336   SDNode *Br = *N->use_begin();
14337   SDValue OtherTarget = Br->getOperand(1);
14338 
14339   // Update the unconditional branch to branch to the given Dest.
14340   auto UpdateUncondBr = [](SDNode *Br, SDValue Dest, SelectionDAG &DAG) {
14341     SDValue NewBrOps[] = { Br->getOperand(0), Dest };
14342     SDValue NewBr = DAG.getNode(ISD::BR, SDLoc(Br), MVT::Other, NewBrOps);
14343     DAG.ReplaceAllUsesOfValueWith(SDValue(Br, 0), NewBr);
14344   };
14345 
14346   if (IntOp == Intrinsic::test_set_loop_iterations) {
14347     SDValue Res;
14348     // We expect this 'instruction' to branch when the counter is zero.
14349     if (IsTrueIfZero(CC, Imm)) {
14350       SDValue Ops[] = { Chain, Elements, Dest };
14351       Res = DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops);
14352     } else {
14353       // The logic is the reverse of what we need for WLS, so find the other
14354       // basic block target: the target of the proceeding br.
14355       UpdateUncondBr(Br, Dest, DAG);
14356 
14357       SDValue Ops[] = { Chain, Elements, OtherTarget };
14358       Res = DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops);
14359     }
14360     DAG.ReplaceAllUsesOfValueWith(Int.getValue(1), Int.getOperand(0));
14361     return Res;
14362   } else {
14363     SDValue Size = DAG.getTargetConstant(
14364       cast<ConstantSDNode>(Int.getOperand(3))->getZExtValue(), dl, MVT::i32);
14365     SDValue Args[] = { Int.getOperand(0), Elements, Size, };
14366     SDValue LoopDec = DAG.getNode(ARMISD::LOOP_DEC, dl,
14367                                   DAG.getVTList(MVT::i32, MVT::Other), Args);
14368     DAG.ReplaceAllUsesWith(Int.getNode(), LoopDec.getNode());
14369 
14370     // We expect this instruction to branch when the count is not zero.
14371     SDValue Target = IsFalseIfZero(CC, Imm) ? Dest : OtherTarget;
14372 
14373     // Update the unconditional branch to target the loop preheader if we've
14374     // found the condition has been reversed.
14375     if (Target == OtherTarget)
14376       UpdateUncondBr(Br, Dest, DAG);
14377 
14378     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
14379                         SDValue(LoopDec.getNode(), 1), Chain);
14380 
14381     SDValue EndArgs[] = { Chain, SDValue(LoopDec.getNode(), 0), Target };
14382     return DAG.getNode(ARMISD::LE, dl, MVT::Other, EndArgs);
14383   }
14384   return SDValue();
14385 }
14386 
14387 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
14388 SDValue
14389 ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const {
14390   SDValue Cmp = N->getOperand(4);
14391   if (Cmp.getOpcode() != ARMISD::CMPZ)
14392     // Only looking at NE cases.
14393     return SDValue();
14394 
14395   EVT VT = N->getValueType(0);
14396   SDLoc dl(N);
14397   SDValue LHS = Cmp.getOperand(0);
14398   SDValue RHS = Cmp.getOperand(1);
14399   SDValue Chain = N->getOperand(0);
14400   SDValue BB = N->getOperand(1);
14401   SDValue ARMcc = N->getOperand(2);
14402   ARMCC::CondCodes CC =
14403     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
14404 
14405   // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
14406   // -> (brcond Chain BB CC CPSR Cmp)
14407   if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() &&
14408       LHS->getOperand(0)->getOpcode() == ARMISD::CMOV &&
14409       LHS->getOperand(0)->hasOneUse()) {
14410     auto *LHS00C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(0));
14411     auto *LHS01C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(1));
14412     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
14413     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
14414     if ((LHS00C && LHS00C->getZExtValue() == 0) &&
14415         (LHS01C && LHS01C->getZExtValue() == 1) &&
14416         (LHS1C && LHS1C->getZExtValue() == 1) &&
14417         (RHSC && RHSC->getZExtValue() == 0)) {
14418       return DAG.getNode(
14419           ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2),
14420           LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4));
14421     }
14422   }
14423 
14424   return SDValue();
14425 }
14426 
14427 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
14428 SDValue
14429 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
14430   SDValue Cmp = N->getOperand(4);
14431   if (Cmp.getOpcode() != ARMISD::CMPZ)
14432     // Only looking at EQ and NE cases.
14433     return SDValue();
14434 
14435   EVT VT = N->getValueType(0);
14436   SDLoc dl(N);
14437   SDValue LHS = Cmp.getOperand(0);
14438   SDValue RHS = Cmp.getOperand(1);
14439   SDValue FalseVal = N->getOperand(0);
14440   SDValue TrueVal = N->getOperand(1);
14441   SDValue ARMcc = N->getOperand(2);
14442   ARMCC::CondCodes CC =
14443     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
14444 
14445   // BFI is only available on V6T2+.
14446   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
14447     SDValue R = PerformCMOVToBFICombine(N, DAG);
14448     if (R)
14449       return R;
14450   }
14451 
14452   // Simplify
14453   //   mov     r1, r0
14454   //   cmp     r1, x
14455   //   mov     r0, y
14456   //   moveq   r0, x
14457   // to
14458   //   cmp     r0, x
14459   //   movne   r0, y
14460   //
14461   //   mov     r1, r0
14462   //   cmp     r1, x
14463   //   mov     r0, x
14464   //   movne   r0, y
14465   // to
14466   //   cmp     r0, x
14467   //   movne   r0, y
14468   /// FIXME: Turn this into a target neutral optimization?
14469   SDValue Res;
14470   if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
14471     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
14472                       N->getOperand(3), Cmp);
14473   } else if (CC == ARMCC::EQ && TrueVal == RHS) {
14474     SDValue ARMcc;
14475     SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
14476     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
14477                       N->getOperand(3), NewCmp);
14478   }
14479 
14480   // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
14481   // -> (cmov F T CC CPSR Cmp)
14482   if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse()) {
14483     auto *LHS0C = dyn_cast<ConstantSDNode>(LHS->getOperand(0));
14484     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
14485     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
14486     if ((LHS0C && LHS0C->getZExtValue() == 0) &&
14487         (LHS1C && LHS1C->getZExtValue() == 1) &&
14488         (RHSC && RHSC->getZExtValue() == 0)) {
14489       return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
14490                          LHS->getOperand(2), LHS->getOperand(3),
14491                          LHS->getOperand(4));
14492     }
14493   }
14494 
14495   if (!VT.isInteger())
14496       return SDValue();
14497 
14498   // Materialize a boolean comparison for integers so we can avoid branching.
14499   if (isNullConstant(FalseVal)) {
14500     if (CC == ARMCC::EQ && isOneConstant(TrueVal)) {
14501       if (!Subtarget->isThumb1Only() && Subtarget->hasV5TOps()) {
14502         // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
14503         // right 5 bits will make that 32 be 1, otherwise it will be 0.
14504         // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
14505         SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
14506         Res = DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::CTLZ, dl, VT, Sub),
14507                           DAG.getConstant(5, dl, MVT::i32));
14508       } else {
14509         // CMOV 0, 1, ==, (CMPZ x, y) ->
14510         //     (ADDCARRY (SUB x, y), t:0, t:1)
14511         // where t = (SUBCARRY 0, (SUB x, y), 0)
14512         //
14513         // The SUBCARRY computes 0 - (x - y) and this will give a borrow when
14514         // x != y. In other words, a carry C == 1 when x == y, C == 0
14515         // otherwise.
14516         // The final ADDCARRY computes
14517         //     x - y + (0 - (x - y)) + C == C
14518         SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
14519         SDVTList VTs = DAG.getVTList(VT, MVT::i32);
14520         SDValue Neg = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, Sub);
14521         // ISD::SUBCARRY returns a borrow but we want the carry here
14522         // actually.
14523         SDValue Carry =
14524             DAG.getNode(ISD::SUB, dl, MVT::i32,
14525                         DAG.getConstant(1, dl, MVT::i32), Neg.getValue(1));
14526         Res = DAG.getNode(ISD::ADDCARRY, dl, VTs, Sub, Neg, Carry);
14527       }
14528     } else if (CC == ARMCC::NE && !isNullConstant(RHS) &&
14529                (!Subtarget->isThumb1Only() || isPowerOf2Constant(TrueVal))) {
14530       // This seems pointless but will allow us to combine it further below.
14531       // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
14532       SDValue Sub =
14533           DAG.getNode(ARMISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
14534       SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
14535                                           Sub.getValue(1), SDValue());
14536       Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, TrueVal, ARMcc,
14537                         N->getOperand(3), CPSRGlue.getValue(1));
14538       FalseVal = Sub;
14539     }
14540   } else if (isNullConstant(TrueVal)) {
14541     if (CC == ARMCC::EQ && !isNullConstant(RHS) &&
14542         (!Subtarget->isThumb1Only() || isPowerOf2Constant(FalseVal))) {
14543       // This seems pointless but will allow us to combine it further below
14544       // Note that we change == for != as this is the dual for the case above.
14545       // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
14546       SDValue Sub =
14547           DAG.getNode(ARMISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
14548       SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
14549                                           Sub.getValue(1), SDValue());
14550       Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, FalseVal,
14551                         DAG.getConstant(ARMCC::NE, dl, MVT::i32),
14552                         N->getOperand(3), CPSRGlue.getValue(1));
14553       FalseVal = Sub;
14554     }
14555   }
14556 
14557   // On Thumb1, the DAG above may be further combined if z is a power of 2
14558   // (z == 2 ^ K).
14559   // CMOV (SUBS x, y), z, !=, (SUBS x, y):1 ->
14560   // t1 = (USUBO (SUB x, y), 1)
14561   // t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
14562   // Result = if K != 0 then (SHL t2:0, K) else t2:0
14563   //
14564   // This also handles the special case of comparing against zero; it's
14565   // essentially, the same pattern, except there's no SUBS:
14566   // CMOV x, z, !=, (CMPZ x, 0) ->
14567   // t1 = (USUBO x, 1)
14568   // t2 = (SUBCARRY x, t1:0, t1:1)
14569   // Result = if K != 0 then (SHL t2:0, K) else t2:0
14570   const APInt *TrueConst;
14571   if (Subtarget->isThumb1Only() && CC == ARMCC::NE &&
14572       ((FalseVal.getOpcode() == ARMISD::SUBS &&
14573         FalseVal.getOperand(0) == LHS && FalseVal.getOperand(1) == RHS) ||
14574        (FalseVal == LHS && isNullConstant(RHS))) &&
14575       (TrueConst = isPowerOf2Constant(TrueVal))) {
14576     SDVTList VTs = DAG.getVTList(VT, MVT::i32);
14577     unsigned ShiftAmount = TrueConst->logBase2();
14578     if (ShiftAmount)
14579       TrueVal = DAG.getConstant(1, dl, VT);
14580     SDValue Subc = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, TrueVal);
14581     Res = DAG.getNode(ISD::SUBCARRY, dl, VTs, FalseVal, Subc, Subc.getValue(1));
14582 
14583     if (ShiftAmount)
14584       Res = DAG.getNode(ISD::SHL, dl, VT, Res,
14585                         DAG.getConstant(ShiftAmount, dl, MVT::i32));
14586   }
14587 
14588   if (Res.getNode()) {
14589     KnownBits Known = DAG.computeKnownBits(SDValue(N,0));
14590     // Capture demanded bits information that would be otherwise lost.
14591     if (Known.Zero == 0xfffffffe)
14592       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
14593                         DAG.getValueType(MVT::i1));
14594     else if (Known.Zero == 0xffffff00)
14595       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
14596                         DAG.getValueType(MVT::i8));
14597     else if (Known.Zero == 0xffff0000)
14598       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
14599                         DAG.getValueType(MVT::i16));
14600   }
14601 
14602   return Res;
14603 }
14604 
14605 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
14606                                              DAGCombinerInfo &DCI) const {
14607   switch (N->getOpcode()) {
14608   default: break;
14609   case ISD::ABS:        return PerformABSCombine(N, DCI, Subtarget);
14610   case ARMISD::ADDE:    return PerformADDECombine(N, DCI, Subtarget);
14611   case ARMISD::UMLAL:   return PerformUMLALCombine(N, DCI.DAG, Subtarget);
14612   case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
14613   case ISD::SUB:        return PerformSUBCombine(N, DCI, Subtarget);
14614   case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
14615   case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
14616   case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
14617   case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
14618   case ISD::BRCOND:
14619   case ISD::BR_CC:      return PerformHWLoopCombine(N, DCI, Subtarget);
14620   case ARMISD::ADDC:
14621   case ARMISD::SUBC:    return PerformAddcSubcCombine(N, DCI, Subtarget);
14622   case ARMISD::SUBE:    return PerformAddeSubeCombine(N, DCI, Subtarget);
14623   case ARMISD::BFI:     return PerformBFICombine(N, DCI);
14624   case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
14625   case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
14626   case ISD::STORE:      return PerformSTORECombine(N, DCI, Subtarget);
14627   case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
14628   case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
14629   case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
14630   case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
14631   case ARMISD::VDUP: return PerformVDUPCombine(N, DCI, Subtarget);
14632   case ISD::FP_TO_SINT:
14633   case ISD::FP_TO_UINT:
14634     return PerformVCVTCombine(N, DCI.DAG, Subtarget);
14635   case ISD::FDIV:
14636     return PerformVDIVCombine(N, DCI.DAG, Subtarget);
14637   case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
14638   case ISD::SHL:
14639   case ISD::SRA:
14640   case ISD::SRL:
14641     return PerformShiftCombine(N, DCI, Subtarget);
14642   case ISD::SIGN_EXTEND:
14643   case ISD::ZERO_EXTEND:
14644   case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
14645   case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
14646   case ARMISD::BRCOND: return PerformBRCONDCombine(N, DCI.DAG);
14647   case ISD::LOAD:       return PerformLOADCombine(N, DCI);
14648   case ARMISD::VLD1DUP:
14649   case ARMISD::VLD2DUP:
14650   case ARMISD::VLD3DUP:
14651   case ARMISD::VLD4DUP:
14652     return PerformVLDCombine(N, DCI);
14653   case ARMISD::BUILD_VECTOR:
14654     return PerformARMBUILD_VECTORCombine(N, DCI);
14655   case ARMISD::PREDICATE_CAST:
14656     return PerformPREDICATE_CASTCombine(N, DCI);
14657   case ARMISD::VCMP:
14658     return PerformVCMPCombine(N, DCI, Subtarget);
14659   case ARMISD::SMULWB: {
14660     unsigned BitWidth = N->getValueType(0).getSizeInBits();
14661     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
14662     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
14663       return SDValue();
14664     break;
14665   }
14666   case ARMISD::SMULWT: {
14667     unsigned BitWidth = N->getValueType(0).getSizeInBits();
14668     APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
14669     if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
14670       return SDValue();
14671     break;
14672   }
14673   case ARMISD::SMLALBB:
14674   case ARMISD::QADD16b:
14675   case ARMISD::QSUB16b: {
14676     unsigned BitWidth = N->getValueType(0).getSizeInBits();
14677     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
14678     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
14679         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
14680       return SDValue();
14681     break;
14682   }
14683   case ARMISD::SMLALBT: {
14684     unsigned LowWidth = N->getOperand(0).getValueType().getSizeInBits();
14685     APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
14686     unsigned HighWidth = N->getOperand(1).getValueType().getSizeInBits();
14687     APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
14688     if ((SimplifyDemandedBits(N->getOperand(0), LowMask, DCI)) ||
14689         (SimplifyDemandedBits(N->getOperand(1), HighMask, DCI)))
14690       return SDValue();
14691     break;
14692   }
14693   case ARMISD::SMLALTB: {
14694     unsigned HighWidth = N->getOperand(0).getValueType().getSizeInBits();
14695     APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
14696     unsigned LowWidth = N->getOperand(1).getValueType().getSizeInBits();
14697     APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
14698     if ((SimplifyDemandedBits(N->getOperand(0), HighMask, DCI)) ||
14699         (SimplifyDemandedBits(N->getOperand(1), LowMask, DCI)))
14700       return SDValue();
14701     break;
14702   }
14703   case ARMISD::SMLALTT: {
14704     unsigned BitWidth = N->getValueType(0).getSizeInBits();
14705     APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
14706     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
14707         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
14708       return SDValue();
14709     break;
14710   }
14711   case ARMISD::QADD8b:
14712   case ARMISD::QSUB8b: {
14713     unsigned BitWidth = N->getValueType(0).getSizeInBits();
14714     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
14715     if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
14716         (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
14717       return SDValue();
14718     break;
14719   }
14720   case ISD::INTRINSIC_VOID:
14721   case ISD::INTRINSIC_W_CHAIN:
14722     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14723     case Intrinsic::arm_neon_vld1:
14724     case Intrinsic::arm_neon_vld1x2:
14725     case Intrinsic::arm_neon_vld1x3:
14726     case Intrinsic::arm_neon_vld1x4:
14727     case Intrinsic::arm_neon_vld2:
14728     case Intrinsic::arm_neon_vld3:
14729     case Intrinsic::arm_neon_vld4:
14730     case Intrinsic::arm_neon_vld2lane:
14731     case Intrinsic::arm_neon_vld3lane:
14732     case Intrinsic::arm_neon_vld4lane:
14733     case Intrinsic::arm_neon_vld2dup:
14734     case Intrinsic::arm_neon_vld3dup:
14735     case Intrinsic::arm_neon_vld4dup:
14736     case Intrinsic::arm_neon_vst1:
14737     case Intrinsic::arm_neon_vst1x2:
14738     case Intrinsic::arm_neon_vst1x3:
14739     case Intrinsic::arm_neon_vst1x4:
14740     case Intrinsic::arm_neon_vst2:
14741     case Intrinsic::arm_neon_vst3:
14742     case Intrinsic::arm_neon_vst4:
14743     case Intrinsic::arm_neon_vst2lane:
14744     case Intrinsic::arm_neon_vst3lane:
14745     case Intrinsic::arm_neon_vst4lane:
14746       return PerformVLDCombine(N, DCI);
14747     default: break;
14748     }
14749     break;
14750   }
14751   return SDValue();
14752 }
14753 
14754 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
14755                                                           EVT VT) const {
14756   return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
14757 }
14758 
14759 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned,
14760                                                        unsigned Alignment,
14761                                                        MachineMemOperand::Flags,
14762                                                        bool *Fast) const {
14763   // Depends what it gets converted into if the type is weird.
14764   if (!VT.isSimple())
14765     return false;
14766 
14767   // The AllowsUnaligned flag models the SCTLR.A setting in ARM cpus
14768   bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
14769   auto Ty = VT.getSimpleVT().SimpleTy;
14770 
14771   if (Ty == MVT::i8 || Ty == MVT::i16 || Ty == MVT::i32) {
14772     // Unaligned access can use (for example) LRDB, LRDH, LDR
14773     if (AllowsUnaligned) {
14774       if (Fast)
14775         *Fast = Subtarget->hasV7Ops();
14776       return true;
14777     }
14778   }
14779 
14780   if (Ty == MVT::f64 || Ty == MVT::v2f64) {
14781     // For any little-endian targets with neon, we can support unaligned ld/st
14782     // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
14783     // A big-endian target may also explicitly support unaligned accesses
14784     if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
14785       if (Fast)
14786         *Fast = true;
14787       return true;
14788     }
14789   }
14790 
14791   if (!Subtarget->hasMVEIntegerOps())
14792     return false;
14793 
14794   // These are for predicates
14795   if ((Ty == MVT::v16i1 || Ty == MVT::v8i1 || Ty == MVT::v4i1)) {
14796     if (Fast)
14797       *Fast = true;
14798     return true;
14799   }
14800 
14801   // These are for truncated stores/narrowing loads. They are fine so long as
14802   // the alignment is at least the size of the item being loaded
14803   if ((Ty == MVT::v4i8 || Ty == MVT::v8i8 || Ty == MVT::v4i16) &&
14804       Alignment >= VT.getScalarSizeInBits() / 8) {
14805     if (Fast)
14806       *Fast = true;
14807     return true;
14808   }
14809 
14810   // In little-endian MVE, the store instructions VSTRB.U8, VSTRH.U16 and
14811   // VSTRW.U32 all store the vector register in exactly the same format, and
14812   // differ only in the range of their immediate offset field and the required
14813   // alignment. So there is always a store that can be used, regardless of
14814   // actual type.
14815   //
14816   // For big endian, that is not the case. But can still emit a (VSTRB.U8;
14817   // VREV64.8) pair and get the same effect. This will likely be better than
14818   // aligning the vector through the stack.
14819   if (Ty == MVT::v16i8 || Ty == MVT::v8i16 || Ty == MVT::v8f16 ||
14820       Ty == MVT::v4i32 || Ty == MVT::v4f32 || Ty == MVT::v2i64 ||
14821       Ty == MVT::v2f64) {
14822     if (Fast)
14823       *Fast = true;
14824     return true;
14825   }
14826 
14827   return false;
14828 }
14829 
14830 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
14831                        unsigned AlignCheck) {
14832   return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
14833           (DstAlign == 0 || DstAlign % AlignCheck == 0));
14834 }
14835 
14836 EVT ARMTargetLowering::getOptimalMemOpType(
14837     uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
14838     bool ZeroMemset, bool MemcpyStrSrc,
14839     const AttributeList &FuncAttributes) const {
14840   // See if we can use NEON instructions for this...
14841   if ((!IsMemset || ZeroMemset) && Subtarget->hasNEON() &&
14842       !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) {
14843     bool Fast;
14844     if (Size >= 16 &&
14845         (memOpAlign(SrcAlign, DstAlign, 16) ||
14846          (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1,
14847                                          MachineMemOperand::MONone, &Fast) &&
14848           Fast))) {
14849       return MVT::v2f64;
14850     } else if (Size >= 8 &&
14851                (memOpAlign(SrcAlign, DstAlign, 8) ||
14852                 (allowsMisalignedMemoryAccesses(
14853                      MVT::f64, 0, 1, MachineMemOperand::MONone, &Fast) &&
14854                  Fast))) {
14855       return MVT::f64;
14856     }
14857   }
14858 
14859   // Let the target-independent logic figure it out.
14860   return MVT::Other;
14861 }
14862 
14863 // 64-bit integers are split into their high and low parts and held in two
14864 // different registers, so the trunc is free since the low register can just
14865 // be used.
14866 bool ARMTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
14867   if (!SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
14868     return false;
14869   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
14870   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
14871   return (SrcBits == 64 && DestBits == 32);
14872 }
14873 
14874 bool ARMTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
14875   if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() ||
14876       !DstVT.isInteger())
14877     return false;
14878   unsigned SrcBits = SrcVT.getSizeInBits();
14879   unsigned DestBits = DstVT.getSizeInBits();
14880   return (SrcBits == 64 && DestBits == 32);
14881 }
14882 
14883 bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
14884   if (Val.getOpcode() != ISD::LOAD)
14885     return false;
14886 
14887   EVT VT1 = Val.getValueType();
14888   if (!VT1.isSimple() || !VT1.isInteger() ||
14889       !VT2.isSimple() || !VT2.isInteger())
14890     return false;
14891 
14892   switch (VT1.getSimpleVT().SimpleTy) {
14893   default: break;
14894   case MVT::i1:
14895   case MVT::i8:
14896   case MVT::i16:
14897     // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
14898     return true;
14899   }
14900 
14901   return false;
14902 }
14903 
14904 bool ARMTargetLowering::isFNegFree(EVT VT) const {
14905   if (!VT.isSimple())
14906     return false;
14907 
14908   // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
14909   // negate values directly (fneg is free). So, we don't want to let the DAG
14910   // combiner rewrite fneg into xors and some other instructions.  For f16 and
14911   // FullFP16 argument passing, some bitcast nodes may be introduced,
14912   // triggering this DAG combine rewrite, so we are avoiding that with this.
14913   switch (VT.getSimpleVT().SimpleTy) {
14914   default: break;
14915   case MVT::f16:
14916     return Subtarget->hasFullFP16();
14917   }
14918 
14919   return false;
14920 }
14921 
14922 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
14923 /// of the vector elements.
14924 static bool areExtractExts(Value *Ext1, Value *Ext2) {
14925   auto areExtDoubled = [](Instruction *Ext) {
14926     return Ext->getType()->getScalarSizeInBits() ==
14927            2 * Ext->getOperand(0)->getType()->getScalarSizeInBits();
14928   };
14929 
14930   if (!match(Ext1, m_ZExtOrSExt(m_Value())) ||
14931       !match(Ext2, m_ZExtOrSExt(m_Value())) ||
14932       !areExtDoubled(cast<Instruction>(Ext1)) ||
14933       !areExtDoubled(cast<Instruction>(Ext2)))
14934     return false;
14935 
14936   return true;
14937 }
14938 
14939 /// Check if sinking \p I's operands to I's basic block is profitable, because
14940 /// the operands can be folded into a target instruction, e.g.
14941 /// sext/zext can be folded into vsubl.
14942 bool ARMTargetLowering::shouldSinkOperands(Instruction *I,
14943                                            SmallVectorImpl<Use *> &Ops) const {
14944   if (!I->getType()->isVectorTy())
14945     return false;
14946 
14947   if (Subtarget->hasNEON()) {
14948     switch (I->getOpcode()) {
14949     case Instruction::Sub:
14950     case Instruction::Add: {
14951       if (!areExtractExts(I->getOperand(0), I->getOperand(1)))
14952         return false;
14953       Ops.push_back(&I->getOperandUse(0));
14954       Ops.push_back(&I->getOperandUse(1));
14955       return true;
14956     }
14957     default:
14958       return false;
14959     }
14960   }
14961 
14962   if (!Subtarget->hasMVEIntegerOps())
14963     return false;
14964 
14965   auto IsSinker = [](Instruction *I, int Operand) {
14966     switch (I->getOpcode()) {
14967     case Instruction::Add:
14968     case Instruction::Mul:
14969     case Instruction::ICmp:
14970       return true;
14971     case Instruction::Sub:
14972     case Instruction::Shl:
14973     case Instruction::LShr:
14974     case Instruction::AShr:
14975       return Operand == 1;
14976     default:
14977       return false;
14978     }
14979   };
14980 
14981   int Op = 0;
14982   if (!isa<ShuffleVectorInst>(I->getOperand(Op)))
14983     Op = 1;
14984   if (!IsSinker(I, Op))
14985     return false;
14986   if (!match(I->getOperand(Op),
14987              m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(), m_ZeroInt()),
14988                              m_Undef(), m_Zero()))) {
14989     return false;
14990   }
14991   Instruction *Shuffle = cast<Instruction>(I->getOperand(Op));
14992   // All uses of the shuffle should be sunk to avoid duplicating it across gpr
14993   // and vector registers
14994   for (Use &U : Shuffle->uses()) {
14995     Instruction *Insn = cast<Instruction>(U.getUser());
14996     if (!IsSinker(Insn, U.getOperandNo()))
14997       return false;
14998   }
14999   Ops.push_back(&Shuffle->getOperandUse(0));
15000   Ops.push_back(&I->getOperandUse(Op));
15001   return true;
15002 }
15003 
15004 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
15005   EVT VT = ExtVal.getValueType();
15006 
15007   if (!isTypeLegal(VT))
15008     return false;
15009 
15010   if (auto *Ld = dyn_cast<MaskedLoadSDNode>(ExtVal.getOperand(0))) {
15011     if (Ld->isExpandingLoad())
15012       return false;
15013   }
15014 
15015   // Don't create a loadext if we can fold the extension into a wide/long
15016   // instruction.
15017   // If there's more than one user instruction, the loadext is desirable no
15018   // matter what.  There can be two uses by the same instruction.
15019   if (ExtVal->use_empty() ||
15020       !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
15021     return true;
15022 
15023   SDNode *U = *ExtVal->use_begin();
15024   if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
15025        U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHLIMM))
15026     return false;
15027 
15028   return true;
15029 }
15030 
15031 bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
15032   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
15033     return false;
15034 
15035   if (!isTypeLegal(EVT::getEVT(Ty1)))
15036     return false;
15037 
15038   assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
15039 
15040   // Assuming the caller doesn't have a zeroext or signext return parameter,
15041   // truncation all the way down to i1 is valid.
15042   return true;
15043 }
15044 
15045 int ARMTargetLowering::getScalingFactorCost(const DataLayout &DL,
15046                                                 const AddrMode &AM, Type *Ty,
15047                                                 unsigned AS) const {
15048   if (isLegalAddressingMode(DL, AM, Ty, AS)) {
15049     if (Subtarget->hasFPAO())
15050       return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster
15051     return 0;
15052   }
15053   return -1;
15054 }
15055 
15056 /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
15057 /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
15058 /// expanded to FMAs when this method returns true, otherwise fmuladd is
15059 /// expanded to fmul + fadd.
15060 ///
15061 /// ARM supports both fused and unfused multiply-add operations; we already
15062 /// lower a pair of fmul and fadd to the latter so it's not clear that there
15063 /// would be a gain or that the gain would be worthwhile enough to risk
15064 /// correctness bugs.
15065 ///
15066 /// For MVE, we set this to true as it helps simplify the need for some
15067 /// patterns (and we don't have the non-fused floating point instruction).
15068 bool ARMTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
15069                                                    EVT VT) const {
15070   if (!VT.isSimple())
15071     return false;
15072 
15073   switch (VT.getSimpleVT().SimpleTy) {
15074   case MVT::v4f32:
15075   case MVT::v8f16:
15076     return Subtarget->hasMVEFloatOps();
15077   case MVT::f16:
15078     return Subtarget->useFPVFMx16();
15079   case MVT::f32:
15080     return Subtarget->useFPVFMx();
15081   case MVT::f64:
15082     return Subtarget->useFPVFMx64();
15083   default:
15084     break;
15085   }
15086 
15087   return false;
15088 }
15089 
15090 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
15091   if (V < 0)
15092     return false;
15093 
15094   unsigned Scale = 1;
15095   switch (VT.getSimpleVT().SimpleTy) {
15096   case MVT::i1:
15097   case MVT::i8:
15098     // Scale == 1;
15099     break;
15100   case MVT::i16:
15101     // Scale == 2;
15102     Scale = 2;
15103     break;
15104   default:
15105     // On thumb1 we load most things (i32, i64, floats, etc) with a LDR
15106     // Scale == 4;
15107     Scale = 4;
15108     break;
15109   }
15110 
15111   if ((V & (Scale - 1)) != 0)
15112     return false;
15113   return isUInt<5>(V / Scale);
15114 }
15115 
15116 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
15117                                       const ARMSubtarget *Subtarget) {
15118   if (!VT.isInteger() && !VT.isFloatingPoint())
15119     return false;
15120   if (VT.isVector() && Subtarget->hasNEON())
15121     return false;
15122   if (VT.isVector() && VT.isFloatingPoint() && Subtarget->hasMVEIntegerOps() &&
15123       !Subtarget->hasMVEFloatOps())
15124     return false;
15125 
15126   bool IsNeg = false;
15127   if (V < 0) {
15128     IsNeg = true;
15129     V = -V;
15130   }
15131 
15132   unsigned NumBytes = std::max((unsigned)VT.getSizeInBits() / 8, 1U);
15133 
15134   // MVE: size * imm7
15135   if (VT.isVector() && Subtarget->hasMVEIntegerOps()) {
15136     switch (VT.getSimpleVT().getVectorElementType().SimpleTy) {
15137     case MVT::i32:
15138     case MVT::f32:
15139       return isShiftedUInt<7,2>(V);
15140     case MVT::i16:
15141     case MVT::f16:
15142       return isShiftedUInt<7,1>(V);
15143     case MVT::i8:
15144       return isUInt<7>(V);
15145     default:
15146       return false;
15147     }
15148   }
15149 
15150   // half VLDR: 2 * imm8
15151   if (VT.isFloatingPoint() && NumBytes == 2 && Subtarget->hasFPRegs16())
15152     return isShiftedUInt<8, 1>(V);
15153   // VLDR and LDRD: 4 * imm8
15154   if ((VT.isFloatingPoint() && Subtarget->hasVFP2Base()) || NumBytes == 8)
15155     return isShiftedUInt<8, 2>(V);
15156 
15157   if (NumBytes == 1 || NumBytes == 2 || NumBytes == 4) {
15158     // + imm12 or - imm8
15159     if (IsNeg)
15160       return isUInt<8>(V);
15161     return isUInt<12>(V);
15162   }
15163 
15164   return false;
15165 }
15166 
15167 /// isLegalAddressImmediate - Return true if the integer value can be used
15168 /// as the offset of the target addressing mode for load / store of the
15169 /// given type.
15170 static bool isLegalAddressImmediate(int64_t V, EVT VT,
15171                                     const ARMSubtarget *Subtarget) {
15172   if (V == 0)
15173     return true;
15174 
15175   if (!VT.isSimple())
15176     return false;
15177 
15178   if (Subtarget->isThumb1Only())
15179     return isLegalT1AddressImmediate(V, VT);
15180   else if (Subtarget->isThumb2())
15181     return isLegalT2AddressImmediate(V, VT, Subtarget);
15182 
15183   // ARM mode.
15184   if (V < 0)
15185     V = - V;
15186   switch (VT.getSimpleVT().SimpleTy) {
15187   default: return false;
15188   case MVT::i1:
15189   case MVT::i8:
15190   case MVT::i32:
15191     // +- imm12
15192     return isUInt<12>(V);
15193   case MVT::i16:
15194     // +- imm8
15195     return isUInt<8>(V);
15196   case MVT::f32:
15197   case MVT::f64:
15198     if (!Subtarget->hasVFP2Base()) // FIXME: NEON?
15199       return false;
15200     return isShiftedUInt<8, 2>(V);
15201   }
15202 }
15203 
15204 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
15205                                                       EVT VT) const {
15206   int Scale = AM.Scale;
15207   if (Scale < 0)
15208     return false;
15209 
15210   switch (VT.getSimpleVT().SimpleTy) {
15211   default: return false;
15212   case MVT::i1:
15213   case MVT::i8:
15214   case MVT::i16:
15215   case MVT::i32:
15216     if (Scale == 1)
15217       return true;
15218     // r + r << imm
15219     Scale = Scale & ~1;
15220     return Scale == 2 || Scale == 4 || Scale == 8;
15221   case MVT::i64:
15222     // FIXME: What are we trying to model here? ldrd doesn't have an r + r
15223     // version in Thumb mode.
15224     // r + r
15225     if (Scale == 1)
15226       return true;
15227     // r * 2 (this can be lowered to r + r).
15228     if (!AM.HasBaseReg && Scale == 2)
15229       return true;
15230     return false;
15231   case MVT::isVoid:
15232     // Note, we allow "void" uses (basically, uses that aren't loads or
15233     // stores), because arm allows folding a scale into many arithmetic
15234     // operations.  This should be made more precise and revisited later.
15235 
15236     // Allow r << imm, but the imm has to be a multiple of two.
15237     if (Scale & 1) return false;
15238     return isPowerOf2_32(Scale);
15239   }
15240 }
15241 
15242 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode &AM,
15243                                                       EVT VT) const {
15244   const int Scale = AM.Scale;
15245 
15246   // Negative scales are not supported in Thumb1.
15247   if (Scale < 0)
15248     return false;
15249 
15250   // Thumb1 addressing modes do not support register scaling excepting the
15251   // following cases:
15252   // 1. Scale == 1 means no scaling.
15253   // 2. Scale == 2 this can be lowered to r + r if there is no base register.
15254   return (Scale == 1) || (!AM.HasBaseReg && Scale == 2);
15255 }
15256 
15257 /// isLegalAddressingMode - Return true if the addressing mode represented
15258 /// by AM is legal for this target, for a load/store of the specified type.
15259 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
15260                                               const AddrMode &AM, Type *Ty,
15261                                               unsigned AS, Instruction *I) const {
15262   EVT VT = getValueType(DL, Ty, true);
15263   if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
15264     return false;
15265 
15266   // Can never fold addr of global into load/store.
15267   if (AM.BaseGV)
15268     return false;
15269 
15270   switch (AM.Scale) {
15271   case 0:  // no scale reg, must be "r+i" or "r", or "i".
15272     break;
15273   default:
15274     // ARM doesn't support any R+R*scale+imm addr modes.
15275     if (AM.BaseOffs)
15276       return false;
15277 
15278     if (!VT.isSimple())
15279       return false;
15280 
15281     if (Subtarget->isThumb1Only())
15282       return isLegalT1ScaledAddressingMode(AM, VT);
15283 
15284     if (Subtarget->isThumb2())
15285       return isLegalT2ScaledAddressingMode(AM, VT);
15286 
15287     int Scale = AM.Scale;
15288     switch (VT.getSimpleVT().SimpleTy) {
15289     default: return false;
15290     case MVT::i1:
15291     case MVT::i8:
15292     case MVT::i32:
15293       if (Scale < 0) Scale = -Scale;
15294       if (Scale == 1)
15295         return true;
15296       // r + r << imm
15297       return isPowerOf2_32(Scale & ~1);
15298     case MVT::i16:
15299     case MVT::i64:
15300       // r +/- r
15301       if (Scale == 1 || (AM.HasBaseReg && Scale == -1))
15302         return true;
15303       // r * 2 (this can be lowered to r + r).
15304       if (!AM.HasBaseReg && Scale == 2)
15305         return true;
15306       return false;
15307 
15308     case MVT::isVoid:
15309       // Note, we allow "void" uses (basically, uses that aren't loads or
15310       // stores), because arm allows folding a scale into many arithmetic
15311       // operations.  This should be made more precise and revisited later.
15312 
15313       // Allow r << imm, but the imm has to be a multiple of two.
15314       if (Scale & 1) return false;
15315       return isPowerOf2_32(Scale);
15316     }
15317   }
15318   return true;
15319 }
15320 
15321 /// isLegalICmpImmediate - Return true if the specified immediate is legal
15322 /// icmp immediate, that is the target has icmp instructions which can compare
15323 /// a register against the immediate without having to materialize the
15324 /// immediate into a register.
15325 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
15326   // Thumb2 and ARM modes can use cmn for negative immediates.
15327   if (!Subtarget->isThumb())
15328     return ARM_AM::getSOImmVal((uint32_t)Imm) != -1 ||
15329            ARM_AM::getSOImmVal(-(uint32_t)Imm) != -1;
15330   if (Subtarget->isThumb2())
15331     return ARM_AM::getT2SOImmVal((uint32_t)Imm) != -1 ||
15332            ARM_AM::getT2SOImmVal(-(uint32_t)Imm) != -1;
15333   // Thumb1 doesn't have cmn, and only 8-bit immediates.
15334   return Imm >= 0 && Imm <= 255;
15335 }
15336 
15337 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
15338 /// *or sub* immediate, that is the target has add or sub instructions which can
15339 /// add a register with the immediate without having to materialize the
15340 /// immediate into a register.
15341 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
15342   // Same encoding for add/sub, just flip the sign.
15343   int64_t AbsImm = std::abs(Imm);
15344   if (!Subtarget->isThumb())
15345     return ARM_AM::getSOImmVal(AbsImm) != -1;
15346   if (Subtarget->isThumb2())
15347     return ARM_AM::getT2SOImmVal(AbsImm) != -1;
15348   // Thumb1 only has 8-bit unsigned immediate.
15349   return AbsImm >= 0 && AbsImm <= 255;
15350 }
15351 
15352 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
15353                                       bool isSEXTLoad, SDValue &Base,
15354                                       SDValue &Offset, bool &isInc,
15355                                       SelectionDAG &DAG) {
15356   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
15357     return false;
15358 
15359   if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
15360     // AddressingMode 3
15361     Base = Ptr->getOperand(0);
15362     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
15363       int RHSC = (int)RHS->getZExtValue();
15364       if (RHSC < 0 && RHSC > -256) {
15365         assert(Ptr->getOpcode() == ISD::ADD);
15366         isInc = false;
15367         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
15368         return true;
15369       }
15370     }
15371     isInc = (Ptr->getOpcode() == ISD::ADD);
15372     Offset = Ptr->getOperand(1);
15373     return true;
15374   } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
15375     // AddressingMode 2
15376     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
15377       int RHSC = (int)RHS->getZExtValue();
15378       if (RHSC < 0 && RHSC > -0x1000) {
15379         assert(Ptr->getOpcode() == ISD::ADD);
15380         isInc = false;
15381         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
15382         Base = Ptr->getOperand(0);
15383         return true;
15384       }
15385     }
15386 
15387     if (Ptr->getOpcode() == ISD::ADD) {
15388       isInc = true;
15389       ARM_AM::ShiftOpc ShOpcVal=
15390         ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
15391       if (ShOpcVal != ARM_AM::no_shift) {
15392         Base = Ptr->getOperand(1);
15393         Offset = Ptr->getOperand(0);
15394       } else {
15395         Base = Ptr->getOperand(0);
15396         Offset = Ptr->getOperand(1);
15397       }
15398       return true;
15399     }
15400 
15401     isInc = (Ptr->getOpcode() == ISD::ADD);
15402     Base = Ptr->getOperand(0);
15403     Offset = Ptr->getOperand(1);
15404     return true;
15405   }
15406 
15407   // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
15408   return false;
15409 }
15410 
15411 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
15412                                      bool isSEXTLoad, SDValue &Base,
15413                                      SDValue &Offset, bool &isInc,
15414                                      SelectionDAG &DAG) {
15415   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
15416     return false;
15417 
15418   Base = Ptr->getOperand(0);
15419   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
15420     int RHSC = (int)RHS->getZExtValue();
15421     if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
15422       assert(Ptr->getOpcode() == ISD::ADD);
15423       isInc = false;
15424       Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
15425       return true;
15426     } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
15427       isInc = Ptr->getOpcode() == ISD::ADD;
15428       Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
15429       return true;
15430     }
15431   }
15432 
15433   return false;
15434 }
15435 
15436 static bool getMVEIndexedAddressParts(SDNode *Ptr, EVT VT, unsigned Align,
15437                                       bool isSEXTLoad, bool IsMasked, bool isLE,
15438                                       SDValue &Base, SDValue &Offset,
15439                                       bool &isInc, SelectionDAG &DAG) {
15440   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
15441     return false;
15442   if (!isa<ConstantSDNode>(Ptr->getOperand(1)))
15443     return false;
15444 
15445   // We allow LE non-masked loads to change the type (for example use a vldrb.8
15446   // as opposed to a vldrw.32). This can allow extra addressing modes or
15447   // alignments for what is otherwise an equivalent instruction.
15448   bool CanChangeType = isLE && !IsMasked;
15449 
15450   ConstantSDNode *RHS = cast<ConstantSDNode>(Ptr->getOperand(1));
15451   int RHSC = (int)RHS->getZExtValue();
15452 
15453   auto IsInRange = [&](int RHSC, int Limit, int Scale) {
15454     if (RHSC < 0 && RHSC > -Limit * Scale && RHSC % Scale == 0) {
15455       assert(Ptr->getOpcode() == ISD::ADD);
15456       isInc = false;
15457       Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
15458       return true;
15459     } else if (RHSC > 0 && RHSC < Limit * Scale && RHSC % Scale == 0) {
15460       isInc = Ptr->getOpcode() == ISD::ADD;
15461       Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
15462       return true;
15463     }
15464     return false;
15465   };
15466 
15467   // Try to find a matching instruction based on s/zext, Alignment, Offset and
15468   // (in BE/masked) type.
15469   Base = Ptr->getOperand(0);
15470   if (VT == MVT::v4i16) {
15471     if (Align >= 2 && IsInRange(RHSC, 0x80, 2))
15472       return true;
15473   } else if (VT == MVT::v4i8 || VT == MVT::v8i8) {
15474     if (IsInRange(RHSC, 0x80, 1))
15475       return true;
15476   } else if (Align >= 4 &&
15477              (CanChangeType || VT == MVT::v4i32 || VT == MVT::v4f32) &&
15478              IsInRange(RHSC, 0x80, 4))
15479     return true;
15480   else if (Align >= 2 &&
15481            (CanChangeType || VT == MVT::v8i16 || VT == MVT::v8f16) &&
15482            IsInRange(RHSC, 0x80, 2))
15483     return true;
15484   else if ((CanChangeType || VT == MVT::v16i8) && IsInRange(RHSC, 0x80, 1))
15485     return true;
15486   return false;
15487 }
15488 
15489 /// getPreIndexedAddressParts - returns true by value, base pointer and
15490 /// offset pointer and addressing mode by reference if the node's address
15491 /// can be legally represented as pre-indexed load / store address.
15492 bool
15493 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
15494                                              SDValue &Offset,
15495                                              ISD::MemIndexedMode &AM,
15496                                              SelectionDAG &DAG) const {
15497   if (Subtarget->isThumb1Only())
15498     return false;
15499 
15500   EVT VT;
15501   SDValue Ptr;
15502   unsigned Align;
15503   bool isSEXTLoad = false;
15504   bool IsMasked = false;
15505   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
15506     Ptr = LD->getBasePtr();
15507     VT = LD->getMemoryVT();
15508     Align = LD->getAlignment();
15509     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
15510   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
15511     Ptr = ST->getBasePtr();
15512     VT = ST->getMemoryVT();
15513     Align = ST->getAlignment();
15514   } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) {
15515     Ptr = LD->getBasePtr();
15516     VT = LD->getMemoryVT();
15517     Align = LD->getAlignment();
15518     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
15519     IsMasked = true;
15520   } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) {
15521     Ptr = ST->getBasePtr();
15522     VT = ST->getMemoryVT();
15523     Align = ST->getAlignment();
15524     IsMasked = true;
15525   } else
15526     return false;
15527 
15528   bool isInc;
15529   bool isLegal = false;
15530   if (VT.isVector())
15531     isLegal = Subtarget->hasMVEIntegerOps() &&
15532               getMVEIndexedAddressParts(Ptr.getNode(), VT, Align, isSEXTLoad,
15533                                         IsMasked, Subtarget->isLittle(), Base,
15534                                         Offset, isInc, DAG);
15535   else {
15536     if (Subtarget->isThumb2())
15537       isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
15538                                          Offset, isInc, DAG);
15539     else
15540       isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
15541                                           Offset, isInc, DAG);
15542   }
15543   if (!isLegal)
15544     return false;
15545 
15546   AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
15547   return true;
15548 }
15549 
15550 /// getPostIndexedAddressParts - returns true by value, base pointer and
15551 /// offset pointer and addressing mode by reference if this node can be
15552 /// combined with a load / store to form a post-indexed load / store.
15553 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
15554                                                    SDValue &Base,
15555                                                    SDValue &Offset,
15556                                                    ISD::MemIndexedMode &AM,
15557                                                    SelectionDAG &DAG) const {
15558   EVT VT;
15559   SDValue Ptr;
15560   unsigned Align;
15561   bool isSEXTLoad = false, isNonExt;
15562   bool IsMasked = false;
15563   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
15564     VT = LD->getMemoryVT();
15565     Ptr = LD->getBasePtr();
15566     Align = LD->getAlignment();
15567     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
15568     isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
15569   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
15570     VT = ST->getMemoryVT();
15571     Ptr = ST->getBasePtr();
15572     Align = ST->getAlignment();
15573     isNonExt = !ST->isTruncatingStore();
15574   } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) {
15575     VT = LD->getMemoryVT();
15576     Ptr = LD->getBasePtr();
15577     Align = LD->getAlignment();
15578     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
15579     isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
15580     IsMasked = true;
15581   } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) {
15582     VT = ST->getMemoryVT();
15583     Ptr = ST->getBasePtr();
15584     Align = ST->getAlignment();
15585     isNonExt = !ST->isTruncatingStore();
15586     IsMasked = true;
15587   } else
15588     return false;
15589 
15590   if (Subtarget->isThumb1Only()) {
15591     // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
15592     // must be non-extending/truncating, i32, with an offset of 4.
15593     assert(Op->getValueType(0) == MVT::i32 && "Non-i32 post-inc op?!");
15594     if (Op->getOpcode() != ISD::ADD || !isNonExt)
15595       return false;
15596     auto *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1));
15597     if (!RHS || RHS->getZExtValue() != 4)
15598       return false;
15599 
15600     Offset = Op->getOperand(1);
15601     Base = Op->getOperand(0);
15602     AM = ISD::POST_INC;
15603     return true;
15604   }
15605 
15606   bool isInc;
15607   bool isLegal = false;
15608   if (VT.isVector())
15609     isLegal = Subtarget->hasMVEIntegerOps() &&
15610               getMVEIndexedAddressParts(Op, VT, Align, isSEXTLoad, IsMasked,
15611                                         Subtarget->isLittle(), Base, Offset,
15612                                         isInc, DAG);
15613   else {
15614     if (Subtarget->isThumb2())
15615       isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
15616                                          isInc, DAG);
15617     else
15618       isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
15619                                           isInc, DAG);
15620   }
15621   if (!isLegal)
15622     return false;
15623 
15624   if (Ptr != Base) {
15625     // Swap base ptr and offset to catch more post-index load / store when
15626     // it's legal. In Thumb2 mode, offset must be an immediate.
15627     if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
15628         !Subtarget->isThumb2())
15629       std::swap(Base, Offset);
15630 
15631     // Post-indexed load / store update the base pointer.
15632     if (Ptr != Base)
15633       return false;
15634   }
15635 
15636   AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
15637   return true;
15638 }
15639 
15640 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
15641                                                       KnownBits &Known,
15642                                                       const APInt &DemandedElts,
15643                                                       const SelectionDAG &DAG,
15644                                                       unsigned Depth) const {
15645   unsigned BitWidth = Known.getBitWidth();
15646   Known.resetAll();
15647   switch (Op.getOpcode()) {
15648   default: break;
15649   case ARMISD::ADDC:
15650   case ARMISD::ADDE:
15651   case ARMISD::SUBC:
15652   case ARMISD::SUBE:
15653     // Special cases when we convert a carry to a boolean.
15654     if (Op.getResNo() == 0) {
15655       SDValue LHS = Op.getOperand(0);
15656       SDValue RHS = Op.getOperand(1);
15657       // (ADDE 0, 0, C) will give us a single bit.
15658       if (Op->getOpcode() == ARMISD::ADDE && isNullConstant(LHS) &&
15659           isNullConstant(RHS)) {
15660         Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
15661         return;
15662       }
15663     }
15664     break;
15665   case ARMISD::CMOV: {
15666     // Bits are known zero/one if known on the LHS and RHS.
15667     Known = DAG.computeKnownBits(Op.getOperand(0), Depth+1);
15668     if (Known.isUnknown())
15669       return;
15670 
15671     KnownBits KnownRHS = DAG.computeKnownBits(Op.getOperand(1), Depth+1);
15672     Known.Zero &= KnownRHS.Zero;
15673     Known.One  &= KnownRHS.One;
15674     return;
15675   }
15676   case ISD::INTRINSIC_W_CHAIN: {
15677     ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
15678     Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
15679     switch (IntID) {
15680     default: return;
15681     case Intrinsic::arm_ldaex:
15682     case Intrinsic::arm_ldrex: {
15683       EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
15684       unsigned MemBits = VT.getScalarSizeInBits();
15685       Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
15686       return;
15687     }
15688     }
15689   }
15690   case ARMISD::BFI: {
15691     // Conservatively, we can recurse down the first operand
15692     // and just mask out all affected bits.
15693     Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
15694 
15695     // The operand to BFI is already a mask suitable for removing the bits it
15696     // sets.
15697     ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2));
15698     const APInt &Mask = CI->getAPIntValue();
15699     Known.Zero &= Mask;
15700     Known.One &= Mask;
15701     return;
15702   }
15703   case ARMISD::VGETLANEs:
15704   case ARMISD::VGETLANEu: {
15705     const SDValue &SrcSV = Op.getOperand(0);
15706     EVT VecVT = SrcSV.getValueType();
15707     assert(VecVT.isVector() && "VGETLANE expected a vector type");
15708     const unsigned NumSrcElts = VecVT.getVectorNumElements();
15709     ConstantSDNode *Pos = cast<ConstantSDNode>(Op.getOperand(1).getNode());
15710     assert(Pos->getAPIntValue().ult(NumSrcElts) &&
15711            "VGETLANE index out of bounds");
15712     unsigned Idx = Pos->getZExtValue();
15713     APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
15714     Known = DAG.computeKnownBits(SrcSV, DemandedElt, Depth + 1);
15715 
15716     EVT VT = Op.getValueType();
15717     const unsigned DstSz = VT.getScalarSizeInBits();
15718     const unsigned SrcSz = VecVT.getVectorElementType().getSizeInBits();
15719     (void)SrcSz;
15720     assert(SrcSz == Known.getBitWidth());
15721     assert(DstSz > SrcSz);
15722     if (Op.getOpcode() == ARMISD::VGETLANEs)
15723       Known = Known.sext(DstSz);
15724     else {
15725       Known = Known.zext(DstSz, true /* extended bits are known zero */);
15726     }
15727     assert(DstSz == Known.getBitWidth());
15728     break;
15729   }
15730   }
15731 }
15732 
15733 bool
15734 ARMTargetLowering::targetShrinkDemandedConstant(SDValue Op,
15735                                                 const APInt &DemandedAPInt,
15736                                                 TargetLoweringOpt &TLO) const {
15737   // Delay optimization, so we don't have to deal with illegal types, or block
15738   // optimizations.
15739   if (!TLO.LegalOps)
15740     return false;
15741 
15742   // Only optimize AND for now.
15743   if (Op.getOpcode() != ISD::AND)
15744     return false;
15745 
15746   EVT VT = Op.getValueType();
15747 
15748   // Ignore vectors.
15749   if (VT.isVector())
15750     return false;
15751 
15752   assert(VT == MVT::i32 && "Unexpected integer type");
15753 
15754   // Make sure the RHS really is a constant.
15755   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
15756   if (!C)
15757     return false;
15758 
15759   unsigned Mask = C->getZExtValue();
15760 
15761   unsigned Demanded = DemandedAPInt.getZExtValue();
15762   unsigned ShrunkMask = Mask & Demanded;
15763   unsigned ExpandedMask = Mask | ~Demanded;
15764 
15765   // If the mask is all zeros, let the target-independent code replace the
15766   // result with zero.
15767   if (ShrunkMask == 0)
15768     return false;
15769 
15770   // If the mask is all ones, erase the AND. (Currently, the target-independent
15771   // code won't do this, so we have to do it explicitly to avoid an infinite
15772   // loop in obscure cases.)
15773   if (ExpandedMask == ~0U)
15774     return TLO.CombineTo(Op, Op.getOperand(0));
15775 
15776   auto IsLegalMask = [ShrunkMask, ExpandedMask](unsigned Mask) -> bool {
15777     return (ShrunkMask & Mask) == ShrunkMask && (~ExpandedMask & Mask) == 0;
15778   };
15779   auto UseMask = [Mask, Op, VT, &TLO](unsigned NewMask) -> bool {
15780     if (NewMask == Mask)
15781       return true;
15782     SDLoc DL(Op);
15783     SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
15784     SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
15785     return TLO.CombineTo(Op, NewOp);
15786   };
15787 
15788   // Prefer uxtb mask.
15789   if (IsLegalMask(0xFF))
15790     return UseMask(0xFF);
15791 
15792   // Prefer uxth mask.
15793   if (IsLegalMask(0xFFFF))
15794     return UseMask(0xFFFF);
15795 
15796   // [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2.
15797   // FIXME: Prefer a contiguous sequence of bits for other optimizations.
15798   if (ShrunkMask < 256)
15799     return UseMask(ShrunkMask);
15800 
15801   // [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2.
15802   // FIXME: Prefer a contiguous sequence of bits for other optimizations.
15803   if ((int)ExpandedMask <= -2 && (int)ExpandedMask >= -256)
15804     return UseMask(ExpandedMask);
15805 
15806   // Potential improvements:
15807   //
15808   // We could try to recognize lsls+lsrs or lsrs+lsls pairs here.
15809   // We could try to prefer Thumb1 immediates which can be lowered to a
15810   // two-instruction sequence.
15811   // We could try to recognize more legal ARM/Thumb2 immediates here.
15812 
15813   return false;
15814 }
15815 
15816 
15817 //===----------------------------------------------------------------------===//
15818 //                           ARM Inline Assembly Support
15819 //===----------------------------------------------------------------------===//
15820 
15821 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
15822   // Looking for "rev" which is V6+.
15823   if (!Subtarget->hasV6Ops())
15824     return false;
15825 
15826   InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
15827   std::string AsmStr = IA->getAsmString();
15828   SmallVector<StringRef, 4> AsmPieces;
15829   SplitString(AsmStr, AsmPieces, ";\n");
15830 
15831   switch (AsmPieces.size()) {
15832   default: return false;
15833   case 1:
15834     AsmStr = AsmPieces[0];
15835     AsmPieces.clear();
15836     SplitString(AsmStr, AsmPieces, " \t,");
15837 
15838     // rev $0, $1
15839     if (AsmPieces.size() == 3 &&
15840         AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
15841         IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
15842       IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
15843       if (Ty && Ty->getBitWidth() == 32)
15844         return IntrinsicLowering::LowerToByteSwap(CI);
15845     }
15846     break;
15847   }
15848 
15849   return false;
15850 }
15851 
15852 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const {
15853   // At this point, we have to lower this constraint to something else, so we
15854   // lower it to an "r" or "w". However, by doing this we will force the result
15855   // to be in register, while the X constraint is much more permissive.
15856   //
15857   // Although we are correct (we are free to emit anything, without
15858   // constraints), we might break use cases that would expect us to be more
15859   // efficient and emit something else.
15860   if (!Subtarget->hasVFP2Base())
15861     return "r";
15862   if (ConstraintVT.isFloatingPoint())
15863     return "w";
15864   if (ConstraintVT.isVector() && Subtarget->hasNEON() &&
15865      (ConstraintVT.getSizeInBits() == 64 ||
15866       ConstraintVT.getSizeInBits() == 128))
15867     return "w";
15868 
15869   return "r";
15870 }
15871 
15872 /// getConstraintType - Given a constraint letter, return the type of
15873 /// constraint it is for this target.
15874 ARMTargetLowering::ConstraintType
15875 ARMTargetLowering::getConstraintType(StringRef Constraint) const {
15876   unsigned S = Constraint.size();
15877   if (S == 1) {
15878     switch (Constraint[0]) {
15879     default:  break;
15880     case 'l': return C_RegisterClass;
15881     case 'w': return C_RegisterClass;
15882     case 'h': return C_RegisterClass;
15883     case 'x': return C_RegisterClass;
15884     case 't': return C_RegisterClass;
15885     case 'j': return C_Immediate; // Constant for movw.
15886     // An address with a single base register. Due to the way we
15887     // currently handle addresses it is the same as an 'r' memory constraint.
15888     case 'Q': return C_Memory;
15889     }
15890   } else if (S == 2) {
15891     switch (Constraint[0]) {
15892     default: break;
15893     case 'T': return C_RegisterClass;
15894     // All 'U+' constraints are addresses.
15895     case 'U': return C_Memory;
15896     }
15897   }
15898   return TargetLowering::getConstraintType(Constraint);
15899 }
15900 
15901 /// Examine constraint type and operand type and determine a weight value.
15902 /// This object must already have been set up with the operand type
15903 /// and the current alternative constraint selected.
15904 TargetLowering::ConstraintWeight
15905 ARMTargetLowering::getSingleConstraintMatchWeight(
15906     AsmOperandInfo &info, const char *constraint) const {
15907   ConstraintWeight weight = CW_Invalid;
15908   Value *CallOperandVal = info.CallOperandVal;
15909     // If we don't have a value, we can't do a match,
15910     // but allow it at the lowest weight.
15911   if (!CallOperandVal)
15912     return CW_Default;
15913   Type *type = CallOperandVal->getType();
15914   // Look at the constraint type.
15915   switch (*constraint) {
15916   default:
15917     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15918     break;
15919   case 'l':
15920     if (type->isIntegerTy()) {
15921       if (Subtarget->isThumb())
15922         weight = CW_SpecificReg;
15923       else
15924         weight = CW_Register;
15925     }
15926     break;
15927   case 'w':
15928     if (type->isFloatingPointTy())
15929       weight = CW_Register;
15930     break;
15931   }
15932   return weight;
15933 }
15934 
15935 using RCPair = std::pair<unsigned, const TargetRegisterClass *>;
15936 
15937 RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
15938     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
15939   switch (Constraint.size()) {
15940   case 1:
15941     // GCC ARM Constraint Letters
15942     switch (Constraint[0]) {
15943     case 'l': // Low regs or general regs.
15944       if (Subtarget->isThumb())
15945         return RCPair(0U, &ARM::tGPRRegClass);
15946       return RCPair(0U, &ARM::GPRRegClass);
15947     case 'h': // High regs or no regs.
15948       if (Subtarget->isThumb())
15949         return RCPair(0U, &ARM::hGPRRegClass);
15950       break;
15951     case 'r':
15952       if (Subtarget->isThumb1Only())
15953         return RCPair(0U, &ARM::tGPRRegClass);
15954       return RCPair(0U, &ARM::GPRRegClass);
15955     case 'w':
15956       if (VT == MVT::Other)
15957         break;
15958       if (VT == MVT::f32)
15959         return RCPair(0U, &ARM::SPRRegClass);
15960       if (VT.getSizeInBits() == 64)
15961         return RCPair(0U, &ARM::DPRRegClass);
15962       if (VT.getSizeInBits() == 128)
15963         return RCPair(0U, &ARM::QPRRegClass);
15964       break;
15965     case 'x':
15966       if (VT == MVT::Other)
15967         break;
15968       if (VT == MVT::f32)
15969         return RCPair(0U, &ARM::SPR_8RegClass);
15970       if (VT.getSizeInBits() == 64)
15971         return RCPair(0U, &ARM::DPR_8RegClass);
15972       if (VT.getSizeInBits() == 128)
15973         return RCPair(0U, &ARM::QPR_8RegClass);
15974       break;
15975     case 't':
15976       if (VT == MVT::Other)
15977         break;
15978       if (VT == MVT::f32 || VT == MVT::i32)
15979         return RCPair(0U, &ARM::SPRRegClass);
15980       if (VT.getSizeInBits() == 64)
15981         return RCPair(0U, &ARM::DPR_VFP2RegClass);
15982       if (VT.getSizeInBits() == 128)
15983         return RCPair(0U, &ARM::QPR_VFP2RegClass);
15984       break;
15985     }
15986     break;
15987 
15988   case 2:
15989     if (Constraint[0] == 'T') {
15990       switch (Constraint[1]) {
15991       default:
15992         break;
15993       case 'e':
15994         return RCPair(0U, &ARM::tGPREvenRegClass);
15995       case 'o':
15996         return RCPair(0U, &ARM::tGPROddRegClass);
15997       }
15998     }
15999     break;
16000 
16001   default:
16002     break;
16003   }
16004 
16005   if (StringRef("{cc}").equals_lower(Constraint))
16006     return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
16007 
16008   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
16009 }
16010 
16011 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
16012 /// vector.  If it is invalid, don't add anything to Ops.
16013 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
16014                                                      std::string &Constraint,
16015                                                      std::vector<SDValue>&Ops,
16016                                                      SelectionDAG &DAG) const {
16017   SDValue Result;
16018 
16019   // Currently only support length 1 constraints.
16020   if (Constraint.length() != 1) return;
16021 
16022   char ConstraintLetter = Constraint[0];
16023   switch (ConstraintLetter) {
16024   default: break;
16025   case 'j':
16026   case 'I': case 'J': case 'K': case 'L':
16027   case 'M': case 'N': case 'O':
16028     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
16029     if (!C)
16030       return;
16031 
16032     int64_t CVal64 = C->getSExtValue();
16033     int CVal = (int) CVal64;
16034     // None of these constraints allow values larger than 32 bits.  Check
16035     // that the value fits in an int.
16036     if (CVal != CVal64)
16037       return;
16038 
16039     switch (ConstraintLetter) {
16040       case 'j':
16041         // Constant suitable for movw, must be between 0 and
16042         // 65535.
16043         if (Subtarget->hasV6T2Ops() || (Subtarget->hasV8MBaselineOps()))
16044           if (CVal >= 0 && CVal <= 65535)
16045             break;
16046         return;
16047       case 'I':
16048         if (Subtarget->isThumb1Only()) {
16049           // This must be a constant between 0 and 255, for ADD
16050           // immediates.
16051           if (CVal >= 0 && CVal <= 255)
16052             break;
16053         } else if (Subtarget->isThumb2()) {
16054           // A constant that can be used as an immediate value in a
16055           // data-processing instruction.
16056           if (ARM_AM::getT2SOImmVal(CVal) != -1)
16057             break;
16058         } else {
16059           // A constant that can be used as an immediate value in a
16060           // data-processing instruction.
16061           if (ARM_AM::getSOImmVal(CVal) != -1)
16062             break;
16063         }
16064         return;
16065 
16066       case 'J':
16067         if (Subtarget->isThumb1Only()) {
16068           // This must be a constant between -255 and -1, for negated ADD
16069           // immediates. This can be used in GCC with an "n" modifier that
16070           // prints the negated value, for use with SUB instructions. It is
16071           // not useful otherwise but is implemented for compatibility.
16072           if (CVal >= -255 && CVal <= -1)
16073             break;
16074         } else {
16075           // This must be a constant between -4095 and 4095. It is not clear
16076           // what this constraint is intended for. Implemented for
16077           // compatibility with GCC.
16078           if (CVal >= -4095 && CVal <= 4095)
16079             break;
16080         }
16081         return;
16082 
16083       case 'K':
16084         if (Subtarget->isThumb1Only()) {
16085           // A 32-bit value where only one byte has a nonzero value. Exclude
16086           // zero to match GCC. This constraint is used by GCC internally for
16087           // constants that can be loaded with a move/shift combination.
16088           // It is not useful otherwise but is implemented for compatibility.
16089           if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
16090             break;
16091         } else if (Subtarget->isThumb2()) {
16092           // A constant whose bitwise inverse can be used as an immediate
16093           // value in a data-processing instruction. This can be used in GCC
16094           // with a "B" modifier that prints the inverted value, for use with
16095           // BIC and MVN instructions. It is not useful otherwise but is
16096           // implemented for compatibility.
16097           if (ARM_AM::getT2SOImmVal(~CVal) != -1)
16098             break;
16099         } else {
16100           // A constant whose bitwise inverse can be used as an immediate
16101           // value in a data-processing instruction. This can be used in GCC
16102           // with a "B" modifier that prints the inverted value, for use with
16103           // BIC and MVN instructions. It is not useful otherwise but is
16104           // implemented for compatibility.
16105           if (ARM_AM::getSOImmVal(~CVal) != -1)
16106             break;
16107         }
16108         return;
16109 
16110       case 'L':
16111         if (Subtarget->isThumb1Only()) {
16112           // This must be a constant between -7 and 7,
16113           // for 3-operand ADD/SUB immediate instructions.
16114           if (CVal >= -7 && CVal < 7)
16115             break;
16116         } else if (Subtarget->isThumb2()) {
16117           // A constant whose negation can be used as an immediate value in a
16118           // data-processing instruction. This can be used in GCC with an "n"
16119           // modifier that prints the negated value, for use with SUB
16120           // instructions. It is not useful otherwise but is implemented for
16121           // compatibility.
16122           if (ARM_AM::getT2SOImmVal(-CVal) != -1)
16123             break;
16124         } else {
16125           // A constant whose negation can be used as an immediate value in a
16126           // data-processing instruction. This can be used in GCC with an "n"
16127           // modifier that prints the negated value, for use with SUB
16128           // instructions. It is not useful otherwise but is implemented for
16129           // compatibility.
16130           if (ARM_AM::getSOImmVal(-CVal) != -1)
16131             break;
16132         }
16133         return;
16134 
16135       case 'M':
16136         if (Subtarget->isThumb1Only()) {
16137           // This must be a multiple of 4 between 0 and 1020, for
16138           // ADD sp + immediate.
16139           if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
16140             break;
16141         } else {
16142           // A power of two or a constant between 0 and 32.  This is used in
16143           // GCC for the shift amount on shifted register operands, but it is
16144           // useful in general for any shift amounts.
16145           if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
16146             break;
16147         }
16148         return;
16149 
16150       case 'N':
16151         if (Subtarget->isThumb1Only()) {
16152           // This must be a constant between 0 and 31, for shift amounts.
16153           if (CVal >= 0 && CVal <= 31)
16154             break;
16155         }
16156         return;
16157 
16158       case 'O':
16159         if (Subtarget->isThumb1Only()) {
16160           // This must be a multiple of 4 between -508 and 508, for
16161           // ADD/SUB sp = sp + immediate.
16162           if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
16163             break;
16164         }
16165         return;
16166     }
16167     Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType());
16168     break;
16169   }
16170 
16171   if (Result.getNode()) {
16172     Ops.push_back(Result);
16173     return;
16174   }
16175   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
16176 }
16177 
16178 static RTLIB::Libcall getDivRemLibcall(
16179     const SDNode *N, MVT::SimpleValueType SVT) {
16180   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
16181           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
16182          "Unhandled Opcode in getDivRemLibcall");
16183   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
16184                   N->getOpcode() == ISD::SREM;
16185   RTLIB::Libcall LC;
16186   switch (SVT) {
16187   default: llvm_unreachable("Unexpected request for libcall!");
16188   case MVT::i8:  LC = isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
16189   case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
16190   case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
16191   case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
16192   }
16193   return LC;
16194 }
16195 
16196 static TargetLowering::ArgListTy getDivRemArgList(
16197     const SDNode *N, LLVMContext *Context, const ARMSubtarget *Subtarget) {
16198   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
16199           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
16200          "Unhandled Opcode in getDivRemArgList");
16201   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
16202                   N->getOpcode() == ISD::SREM;
16203   TargetLowering::ArgListTy Args;
16204   TargetLowering::ArgListEntry Entry;
16205   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
16206     EVT ArgVT = N->getOperand(i).getValueType();
16207     Type *ArgTy = ArgVT.getTypeForEVT(*Context);
16208     Entry.Node = N->getOperand(i);
16209     Entry.Ty = ArgTy;
16210     Entry.IsSExt = isSigned;
16211     Entry.IsZExt = !isSigned;
16212     Args.push_back(Entry);
16213   }
16214   if (Subtarget->isTargetWindows() && Args.size() >= 2)
16215     std::swap(Args[0], Args[1]);
16216   return Args;
16217 }
16218 
16219 SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
16220   assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
16221           Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
16222           Subtarget->isTargetWindows()) &&
16223          "Register-based DivRem lowering only");
16224   unsigned Opcode = Op->getOpcode();
16225   assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
16226          "Invalid opcode for Div/Rem lowering");
16227   bool isSigned = (Opcode == ISD::SDIVREM);
16228   EVT VT = Op->getValueType(0);
16229   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
16230   SDLoc dl(Op);
16231 
16232   // If the target has hardware divide, use divide + multiply + subtract:
16233   //     div = a / b
16234   //     rem = a - b * div
16235   //     return {div, rem}
16236   // This should be lowered into UDIV/SDIV + MLS later on.
16237   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
16238                                         : Subtarget->hasDivideInARMMode();
16239   if (hasDivide && Op->getValueType(0).isSimple() &&
16240       Op->getSimpleValueType(0) == MVT::i32) {
16241     unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
16242     const SDValue Dividend = Op->getOperand(0);
16243     const SDValue Divisor = Op->getOperand(1);
16244     SDValue Div = DAG.getNode(DivOpcode, dl, VT, Dividend, Divisor);
16245     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Div, Divisor);
16246     SDValue Rem = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
16247 
16248     SDValue Values[2] = {Div, Rem};
16249     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VT, VT), Values);
16250   }
16251 
16252   RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
16253                                        VT.getSimpleVT().SimpleTy);
16254   SDValue InChain = DAG.getEntryNode();
16255 
16256   TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
16257                                                     DAG.getContext(),
16258                                                     Subtarget);
16259 
16260   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
16261                                          getPointerTy(DAG.getDataLayout()));
16262 
16263   Type *RetTy = StructType::get(Ty, Ty);
16264 
16265   if (Subtarget->isTargetWindows())
16266     InChain = WinDBZCheckDenominator(DAG, Op.getNode(), InChain);
16267 
16268   TargetLowering::CallLoweringInfo CLI(DAG);
16269   CLI.setDebugLoc(dl).setChain(InChain)
16270     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
16271     .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
16272 
16273   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
16274   return CallInfo.first;
16275 }
16276 
16277 // Lowers REM using divmod helpers
16278 // see RTABI section 4.2/4.3
16279 SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
16280   // Build return types (div and rem)
16281   std::vector<Type*> RetTyParams;
16282   Type *RetTyElement;
16283 
16284   switch (N->getValueType(0).getSimpleVT().SimpleTy) {
16285   default: llvm_unreachable("Unexpected request for libcall!");
16286   case MVT::i8:   RetTyElement = Type::getInt8Ty(*DAG.getContext());  break;
16287   case MVT::i16:  RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
16288   case MVT::i32:  RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
16289   case MVT::i64:  RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
16290   }
16291 
16292   RetTyParams.push_back(RetTyElement);
16293   RetTyParams.push_back(RetTyElement);
16294   ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
16295   Type *RetTy = StructType::get(*DAG.getContext(), ret);
16296 
16297   RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
16298                                                              SimpleTy);
16299   SDValue InChain = DAG.getEntryNode();
16300   TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext(),
16301                                                     Subtarget);
16302   bool isSigned = N->getOpcode() == ISD::SREM;
16303   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
16304                                          getPointerTy(DAG.getDataLayout()));
16305 
16306   if (Subtarget->isTargetWindows())
16307     InChain = WinDBZCheckDenominator(DAG, N, InChain);
16308 
16309   // Lower call
16310   CallLoweringInfo CLI(DAG);
16311   CLI.setChain(InChain)
16312      .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args))
16313      .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
16314   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
16315 
16316   // Return second (rem) result operand (first contains div)
16317   SDNode *ResNode = CallResult.first.getNode();
16318   assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
16319   return ResNode->getOperand(1);
16320 }
16321 
16322 SDValue
16323 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
16324   assert(Subtarget->isTargetWindows() && "unsupported target platform");
16325   SDLoc DL(Op);
16326 
16327   // Get the inputs.
16328   SDValue Chain = Op.getOperand(0);
16329   SDValue Size  = Op.getOperand(1);
16330 
16331   if (DAG.getMachineFunction().getFunction().hasFnAttribute(
16332           "no-stack-arg-probe")) {
16333     unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
16334     SDValue SP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
16335     Chain = SP.getValue(1);
16336     SP = DAG.getNode(ISD::SUB, DL, MVT::i32, SP, Size);
16337     if (Align)
16338       SP = DAG.getNode(ISD::AND, DL, MVT::i32, SP.getValue(0),
16339                        DAG.getConstant(-(uint64_t)Align, DL, MVT::i32));
16340     Chain = DAG.getCopyToReg(Chain, DL, ARM::SP, SP);
16341     SDValue Ops[2] = { SP, Chain };
16342     return DAG.getMergeValues(Ops, DL);
16343   }
16344 
16345   SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
16346                               DAG.getConstant(2, DL, MVT::i32));
16347 
16348   SDValue Flag;
16349   Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
16350   Flag = Chain.getValue(1);
16351 
16352   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
16353   Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
16354 
16355   SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
16356   Chain = NewSP.getValue(1);
16357 
16358   SDValue Ops[2] = { NewSP, Chain };
16359   return DAG.getMergeValues(Ops, DL);
16360 }
16361 
16362 SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
16363   bool IsStrict = Op->isStrictFPOpcode();
16364   SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
16365   const unsigned DstSz = Op.getValueType().getSizeInBits();
16366   const unsigned SrcSz = SrcVal.getValueType().getSizeInBits();
16367   assert(DstSz > SrcSz && DstSz <= 64 && SrcSz >= 16 &&
16368          "Unexpected type for custom-lowering FP_EXTEND");
16369 
16370   assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) &&
16371          "With both FP DP and 16, any FP conversion is legal!");
16372 
16373   assert(!(DstSz == 32 && Subtarget->hasFP16()) &&
16374          "With FP16, 16 to 32 conversion is legal!");
16375 
16376   // Either we are converting from 16 -> 64, without FP16 and/or
16377   // FP.double-precision or without Armv8-fp. So we must do it in two
16378   // steps.
16379   // Or we are converting from 32 -> 64 without fp.double-precision or 16 -> 32
16380   // without FP16. So we must do a function call.
16381   SDLoc Loc(Op);
16382   RTLIB::Libcall LC;
16383   MakeLibCallOptions CallOptions;
16384   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
16385   for (unsigned Sz = SrcSz; Sz <= 32 && Sz < DstSz; Sz *= 2) {
16386     bool Supported = (Sz == 16 ? Subtarget->hasFP16() : Subtarget->hasFP64());
16387     MVT SrcVT = (Sz == 16 ? MVT::f16 : MVT::f32);
16388     MVT DstVT = (Sz == 16 ? MVT::f32 : MVT::f64);
16389     if (Supported) {
16390       if (IsStrict) {
16391         SrcVal = DAG.getNode(ISD::STRICT_FP_EXTEND, Loc,
16392                              {DstVT, MVT::Other}, {Chain, SrcVal});
16393         Chain = SrcVal.getValue(1);
16394       } else {
16395         SrcVal = DAG.getNode(ISD::FP_EXTEND, Loc, DstVT, SrcVal);
16396       }
16397     } else {
16398       LC = RTLIB::getFPEXT(SrcVT, DstVT);
16399       assert(LC != RTLIB::UNKNOWN_LIBCALL &&
16400              "Unexpected type for custom-lowering FP_EXTEND");
16401       std::tie(SrcVal, Chain) = makeLibCall(DAG, LC, DstVT, SrcVal, CallOptions,
16402                                             Loc, Chain);
16403     }
16404   }
16405 
16406   return IsStrict ? DAG.getMergeValues({SrcVal, Chain}, Loc) : SrcVal;
16407 }
16408 
16409 SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
16410   bool IsStrict = Op->isStrictFPOpcode();
16411 
16412   SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
16413   EVT SrcVT = SrcVal.getValueType();
16414   EVT DstVT = Op.getValueType();
16415   const unsigned DstSz = Op.getValueType().getSizeInBits();
16416   const unsigned SrcSz = SrcVT.getSizeInBits();
16417   (void)DstSz;
16418   assert(DstSz < SrcSz && SrcSz <= 64 && DstSz >= 16 &&
16419          "Unexpected type for custom-lowering FP_ROUND");
16420 
16421   assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) &&
16422          "With both FP DP and 16, any FP conversion is legal!");
16423 
16424   SDLoc Loc(Op);
16425 
16426   // Instruction from 32 -> 16 if hasFP16 is valid
16427   if (SrcSz == 32 && Subtarget->hasFP16())
16428     return Op;
16429 
16430   // Lib call from 32 -> 16 / 64 -> [32, 16]
16431   RTLIB::Libcall LC = RTLIB::getFPROUND(SrcVT, DstVT);
16432   assert(LC != RTLIB::UNKNOWN_LIBCALL &&
16433          "Unexpected type for custom-lowering FP_ROUND");
16434   MakeLibCallOptions CallOptions;
16435   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
16436   SDValue Result;
16437   std::tie(Result, Chain) = makeLibCall(DAG, LC, DstVT, SrcVal, CallOptions,
16438                                         Loc, Chain);
16439   return IsStrict ? DAG.getMergeValues({Result, Chain}, Loc) : Result;
16440 }
16441 
16442 void ARMTargetLowering::lowerABS(SDNode *N, SmallVectorImpl<SDValue> &Results,
16443                                  SelectionDAG &DAG) const {
16444   assert(N->getValueType(0) == MVT::i64 && "Unexpected type (!= i64) on ABS.");
16445   MVT HalfT = MVT::i32;
16446   SDLoc dl(N);
16447   SDValue Hi, Lo, Tmp;
16448 
16449   if (!isOperationLegalOrCustom(ISD::ADDCARRY, HalfT) ||
16450       !isOperationLegalOrCustom(ISD::UADDO, HalfT))
16451     return ;
16452 
16453   unsigned OpTypeBits = HalfT.getScalarSizeInBits();
16454   SDVTList VTList = DAG.getVTList(HalfT, MVT::i1);
16455 
16456   Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(0),
16457                    DAG.getConstant(0, dl, HalfT));
16458   Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(0),
16459                    DAG.getConstant(1, dl, HalfT));
16460 
16461   Tmp = DAG.getNode(ISD::SRA, dl, HalfT, Hi,
16462                     DAG.getConstant(OpTypeBits - 1, dl,
16463                     getShiftAmountTy(HalfT, DAG.getDataLayout())));
16464   Lo = DAG.getNode(ISD::UADDO, dl, VTList, Tmp, Lo);
16465   Hi = DAG.getNode(ISD::ADDCARRY, dl, VTList, Tmp, Hi,
16466                    SDValue(Lo.getNode(), 1));
16467   Hi = DAG.getNode(ISD::XOR, dl, HalfT, Tmp, Hi);
16468   Lo = DAG.getNode(ISD::XOR, dl, HalfT, Tmp, Lo);
16469 
16470   Results.push_back(Lo);
16471   Results.push_back(Hi);
16472 }
16473 
16474 bool
16475 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
16476   // The ARM target isn't yet aware of offsets.
16477   return false;
16478 }
16479 
16480 bool ARM::isBitFieldInvertedMask(unsigned v) {
16481   if (v == 0xffffffff)
16482     return false;
16483 
16484   // there can be 1's on either or both "outsides", all the "inside"
16485   // bits must be 0's
16486   return isShiftedMask_32(~v);
16487 }
16488 
16489 /// isFPImmLegal - Returns true if the target can instruction select the
16490 /// specified FP immediate natively. If false, the legalizer will
16491 /// materialize the FP immediate as a load from a constant pool.
16492 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
16493                                      bool ForCodeSize) const {
16494   if (!Subtarget->hasVFP3Base())
16495     return false;
16496   if (VT == MVT::f16 && Subtarget->hasFullFP16())
16497     return ARM_AM::getFP16Imm(Imm) != -1;
16498   if (VT == MVT::f32)
16499     return ARM_AM::getFP32Imm(Imm) != -1;
16500   if (VT == MVT::f64 && Subtarget->hasFP64())
16501     return ARM_AM::getFP64Imm(Imm) != -1;
16502   return false;
16503 }
16504 
16505 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
16506 /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
16507 /// specified in the intrinsic calls.
16508 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
16509                                            const CallInst &I,
16510                                            MachineFunction &MF,
16511                                            unsigned Intrinsic) const {
16512   switch (Intrinsic) {
16513   case Intrinsic::arm_neon_vld1:
16514   case Intrinsic::arm_neon_vld2:
16515   case Intrinsic::arm_neon_vld3:
16516   case Intrinsic::arm_neon_vld4:
16517   case Intrinsic::arm_neon_vld2lane:
16518   case Intrinsic::arm_neon_vld3lane:
16519   case Intrinsic::arm_neon_vld4lane:
16520   case Intrinsic::arm_neon_vld2dup:
16521   case Intrinsic::arm_neon_vld3dup:
16522   case Intrinsic::arm_neon_vld4dup: {
16523     Info.opc = ISD::INTRINSIC_W_CHAIN;
16524     // Conservatively set memVT to the entire set of vectors loaded.
16525     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
16526     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
16527     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
16528     Info.ptrVal = I.getArgOperand(0);
16529     Info.offset = 0;
16530     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
16531     Info.align = MaybeAlign(cast<ConstantInt>(AlignArg)->getZExtValue());
16532     // volatile loads with NEON intrinsics not supported
16533     Info.flags = MachineMemOperand::MOLoad;
16534     return true;
16535   }
16536   case Intrinsic::arm_neon_vld1x2:
16537   case Intrinsic::arm_neon_vld1x3:
16538   case Intrinsic::arm_neon_vld1x4: {
16539     Info.opc = ISD::INTRINSIC_W_CHAIN;
16540     // Conservatively set memVT to the entire set of vectors loaded.
16541     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
16542     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
16543     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
16544     Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
16545     Info.offset = 0;
16546     Info.align.reset();
16547     // volatile loads with NEON intrinsics not supported
16548     Info.flags = MachineMemOperand::MOLoad;
16549     return true;
16550   }
16551   case Intrinsic::arm_neon_vst1:
16552   case Intrinsic::arm_neon_vst2:
16553   case Intrinsic::arm_neon_vst3:
16554   case Intrinsic::arm_neon_vst4:
16555   case Intrinsic::arm_neon_vst2lane:
16556   case Intrinsic::arm_neon_vst3lane:
16557   case Intrinsic::arm_neon_vst4lane: {
16558     Info.opc = ISD::INTRINSIC_VOID;
16559     // Conservatively set memVT to the entire set of vectors stored.
16560     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
16561     unsigned NumElts = 0;
16562     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
16563       Type *ArgTy = I.getArgOperand(ArgI)->getType();
16564       if (!ArgTy->isVectorTy())
16565         break;
16566       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
16567     }
16568     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
16569     Info.ptrVal = I.getArgOperand(0);
16570     Info.offset = 0;
16571     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
16572     Info.align = MaybeAlign(cast<ConstantInt>(AlignArg)->getZExtValue());
16573     // volatile stores with NEON intrinsics not supported
16574     Info.flags = MachineMemOperand::MOStore;
16575     return true;
16576   }
16577   case Intrinsic::arm_neon_vst1x2:
16578   case Intrinsic::arm_neon_vst1x3:
16579   case Intrinsic::arm_neon_vst1x4: {
16580     Info.opc = ISD::INTRINSIC_VOID;
16581     // Conservatively set memVT to the entire set of vectors stored.
16582     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
16583     unsigned NumElts = 0;
16584     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
16585       Type *ArgTy = I.getArgOperand(ArgI)->getType();
16586       if (!ArgTy->isVectorTy())
16587         break;
16588       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
16589     }
16590     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
16591     Info.ptrVal = I.getArgOperand(0);
16592     Info.offset = 0;
16593     Info.align.reset();
16594     // volatile stores with NEON intrinsics not supported
16595     Info.flags = MachineMemOperand::MOStore;
16596     return true;
16597   }
16598   case Intrinsic::arm_ldaex:
16599   case Intrinsic::arm_ldrex: {
16600     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
16601     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
16602     Info.opc = ISD::INTRINSIC_W_CHAIN;
16603     Info.memVT = MVT::getVT(PtrTy->getElementType());
16604     Info.ptrVal = I.getArgOperand(0);
16605     Info.offset = 0;
16606     Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType()));
16607     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
16608     return true;
16609   }
16610   case Intrinsic::arm_stlex:
16611   case Intrinsic::arm_strex: {
16612     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
16613     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
16614     Info.opc = ISD::INTRINSIC_W_CHAIN;
16615     Info.memVT = MVT::getVT(PtrTy->getElementType());
16616     Info.ptrVal = I.getArgOperand(1);
16617     Info.offset = 0;
16618     Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType()));
16619     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
16620     return true;
16621   }
16622   case Intrinsic::arm_stlexd:
16623   case Intrinsic::arm_strexd:
16624     Info.opc = ISD::INTRINSIC_W_CHAIN;
16625     Info.memVT = MVT::i64;
16626     Info.ptrVal = I.getArgOperand(2);
16627     Info.offset = 0;
16628     Info.align = Align(8);
16629     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
16630     return true;
16631 
16632   case Intrinsic::arm_ldaexd:
16633   case Intrinsic::arm_ldrexd:
16634     Info.opc = ISD::INTRINSIC_W_CHAIN;
16635     Info.memVT = MVT::i64;
16636     Info.ptrVal = I.getArgOperand(0);
16637     Info.offset = 0;
16638     Info.align = Align(8);
16639     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
16640     return true;
16641 
16642   default:
16643     break;
16644   }
16645 
16646   return false;
16647 }
16648 
16649 /// Returns true if it is beneficial to convert a load of a constant
16650 /// to just the constant itself.
16651 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
16652                                                           Type *Ty) const {
16653   assert(Ty->isIntegerTy());
16654 
16655   unsigned Bits = Ty->getPrimitiveSizeInBits();
16656   if (Bits == 0 || Bits > 32)
16657     return false;
16658   return true;
16659 }
16660 
16661 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
16662                                                 unsigned Index) const {
16663   if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
16664     return false;
16665 
16666   return (Index == 0 || Index == ResVT.getVectorNumElements());
16667 }
16668 
16669 Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder,
16670                                         ARM_MB::MemBOpt Domain) const {
16671   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
16672 
16673   // First, if the target has no DMB, see what fallback we can use.
16674   if (!Subtarget->hasDataBarrier()) {
16675     // Some ARMv6 cpus can support data barriers with an mcr instruction.
16676     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
16677     // here.
16678     if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
16679       Function *MCR = Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
16680       Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
16681                         Builder.getInt32(0), Builder.getInt32(7),
16682                         Builder.getInt32(10), Builder.getInt32(5)};
16683       return Builder.CreateCall(MCR, args);
16684     } else {
16685       // Instead of using barriers, atomic accesses on these subtargets use
16686       // libcalls.
16687       llvm_unreachable("makeDMB on a target so old that it has no barriers");
16688     }
16689   } else {
16690     Function *DMB = Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
16691     // Only a full system barrier exists in the M-class architectures.
16692     Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
16693     Constant *CDomain = Builder.getInt32(Domain);
16694     return Builder.CreateCall(DMB, CDomain);
16695   }
16696 }
16697 
16698 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
16699 Instruction *ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
16700                                                  Instruction *Inst,
16701                                                  AtomicOrdering Ord) const {
16702   switch (Ord) {
16703   case AtomicOrdering::NotAtomic:
16704   case AtomicOrdering::Unordered:
16705     llvm_unreachable("Invalid fence: unordered/non-atomic");
16706   case AtomicOrdering::Monotonic:
16707   case AtomicOrdering::Acquire:
16708     return nullptr; // Nothing to do
16709   case AtomicOrdering::SequentiallyConsistent:
16710     if (!Inst->hasAtomicStore())
16711       return nullptr; // Nothing to do
16712     LLVM_FALLTHROUGH;
16713   case AtomicOrdering::Release:
16714   case AtomicOrdering::AcquireRelease:
16715     if (Subtarget->preferISHSTBarriers())
16716       return makeDMB(Builder, ARM_MB::ISHST);
16717     // FIXME: add a comment with a link to documentation justifying this.
16718     else
16719       return makeDMB(Builder, ARM_MB::ISH);
16720   }
16721   llvm_unreachable("Unknown fence ordering in emitLeadingFence");
16722 }
16723 
16724 Instruction *ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
16725                                                   Instruction *Inst,
16726                                                   AtomicOrdering Ord) const {
16727   switch (Ord) {
16728   case AtomicOrdering::NotAtomic:
16729   case AtomicOrdering::Unordered:
16730     llvm_unreachable("Invalid fence: unordered/not-atomic");
16731   case AtomicOrdering::Monotonic:
16732   case AtomicOrdering::Release:
16733     return nullptr; // Nothing to do
16734   case AtomicOrdering::Acquire:
16735   case AtomicOrdering::AcquireRelease:
16736   case AtomicOrdering::SequentiallyConsistent:
16737     return makeDMB(Builder, ARM_MB::ISH);
16738   }
16739   llvm_unreachable("Unknown fence ordering in emitTrailingFence");
16740 }
16741 
16742 // Loads and stores less than 64-bits are already atomic; ones above that
16743 // are doomed anyway, so defer to the default libcall and blame the OS when
16744 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
16745 // anything for those.
16746 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
16747   unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
16748   return (Size == 64) && !Subtarget->isMClass();
16749 }
16750 
16751 // Loads and stores less than 64-bits are already atomic; ones above that
16752 // are doomed anyway, so defer to the default libcall and blame the OS when
16753 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
16754 // anything for those.
16755 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
16756 // guarantee, see DDI0406C ARM architecture reference manual,
16757 // sections A8.8.72-74 LDRD)
16758 TargetLowering::AtomicExpansionKind
16759 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
16760   unsigned Size = LI->getType()->getPrimitiveSizeInBits();
16761   return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly
16762                                                   : AtomicExpansionKind::None;
16763 }
16764 
16765 // For the real atomic operations, we have ldrex/strex up to 32 bits,
16766 // and up to 64 bits on the non-M profiles
16767 TargetLowering::AtomicExpansionKind
16768 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
16769   if (AI->isFloatingPointOperation())
16770     return AtomicExpansionKind::CmpXChg;
16771 
16772   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
16773   bool hasAtomicRMW = !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
16774   return (Size <= (Subtarget->isMClass() ? 32U : 64U) && hasAtomicRMW)
16775              ? AtomicExpansionKind::LLSC
16776              : AtomicExpansionKind::None;
16777 }
16778 
16779 TargetLowering::AtomicExpansionKind
16780 ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
16781   // At -O0, fast-regalloc cannot cope with the live vregs necessary to
16782   // implement cmpxchg without spilling. If the address being exchanged is also
16783   // on the stack and close enough to the spill slot, this can lead to a
16784   // situation where the monitor always gets cleared and the atomic operation
16785   // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
16786   bool HasAtomicCmpXchg =
16787       !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
16788   if (getTargetMachine().getOptLevel() != 0 && HasAtomicCmpXchg)
16789     return AtomicExpansionKind::LLSC;
16790   return AtomicExpansionKind::None;
16791 }
16792 
16793 bool ARMTargetLowering::shouldInsertFencesForAtomic(
16794     const Instruction *I) const {
16795   return InsertFencesForAtomic;
16796 }
16797 
16798 // This has so far only been implemented for MachO.
16799 bool ARMTargetLowering::useLoadStackGuardNode() const {
16800   return Subtarget->isTargetMachO();
16801 }
16802 
16803 void ARMTargetLowering::insertSSPDeclarations(Module &M) const {
16804   if (!Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
16805     return TargetLowering::insertSSPDeclarations(M);
16806 
16807   // MSVC CRT has a global variable holding security cookie.
16808   M.getOrInsertGlobal("__security_cookie",
16809                       Type::getInt8PtrTy(M.getContext()));
16810 
16811   // MSVC CRT has a function to validate security cookie.
16812   FunctionCallee SecurityCheckCookie = M.getOrInsertFunction(
16813       "__security_check_cookie", Type::getVoidTy(M.getContext()),
16814       Type::getInt8PtrTy(M.getContext()));
16815   if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee()))
16816     F->addAttribute(1, Attribute::AttrKind::InReg);
16817 }
16818 
16819 Value *ARMTargetLowering::getSDagStackGuard(const Module &M) const {
16820   // MSVC CRT has a global variable holding security cookie.
16821   if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
16822     return M.getGlobalVariable("__security_cookie");
16823   return TargetLowering::getSDagStackGuard(M);
16824 }
16825 
16826 Function *ARMTargetLowering::getSSPStackGuardCheck(const Module &M) const {
16827   // MSVC CRT has a function to validate security cookie.
16828   if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
16829     return M.getFunction("__security_check_cookie");
16830   return TargetLowering::getSSPStackGuardCheck(M);
16831 }
16832 
16833 bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
16834                                                   unsigned &Cost) const {
16835   // If we do not have NEON, vector types are not natively supported.
16836   if (!Subtarget->hasNEON())
16837     return false;
16838 
16839   // Floating point values and vector values map to the same register file.
16840   // Therefore, although we could do a store extract of a vector type, this is
16841   // better to leave at float as we have more freedom in the addressing mode for
16842   // those.
16843   if (VectorTy->isFPOrFPVectorTy())
16844     return false;
16845 
16846   // If the index is unknown at compile time, this is very expensive to lower
16847   // and it is not possible to combine the store with the extract.
16848   if (!isa<ConstantInt>(Idx))
16849     return false;
16850 
16851   assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
16852   unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
16853   // We can do a store + vector extract on any vector that fits perfectly in a D
16854   // or Q register.
16855   if (BitWidth == 64 || BitWidth == 128) {
16856     Cost = 0;
16857     return true;
16858   }
16859   return false;
16860 }
16861 
16862 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
16863   return Subtarget->hasV6T2Ops();
16864 }
16865 
16866 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
16867   return Subtarget->hasV6T2Ops();
16868 }
16869 
16870 bool ARMTargetLowering::shouldExpandShift(SelectionDAG &DAG, SDNode *N) const {
16871   return !Subtarget->hasMinSize();
16872 }
16873 
16874 Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
16875                                          AtomicOrdering Ord) const {
16876   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
16877   Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
16878   bool IsAcquire = isAcquireOrStronger(Ord);
16879 
16880   // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
16881   // intrinsic must return {i32, i32} and we have to recombine them into a
16882   // single i64 here.
16883   if (ValTy->getPrimitiveSizeInBits() == 64) {
16884     Intrinsic::ID Int =
16885         IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
16886     Function *Ldrex = Intrinsic::getDeclaration(M, Int);
16887 
16888     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
16889     Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
16890 
16891     Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
16892     Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
16893     if (!Subtarget->isLittle())
16894       std::swap (Lo, Hi);
16895     Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
16896     Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
16897     return Builder.CreateOr(
16898         Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
16899   }
16900 
16901   Type *Tys[] = { Addr->getType() };
16902   Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
16903   Function *Ldrex = Intrinsic::getDeclaration(M, Int, Tys);
16904 
16905   return Builder.CreateTruncOrBitCast(
16906       Builder.CreateCall(Ldrex, Addr),
16907       cast<PointerType>(Addr->getType())->getElementType());
16908 }
16909 
16910 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
16911     IRBuilder<> &Builder) const {
16912   if (!Subtarget->hasV7Ops())
16913     return;
16914   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
16915   Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::arm_clrex));
16916 }
16917 
16918 Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
16919                                                Value *Addr,
16920                                                AtomicOrdering Ord) const {
16921   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
16922   bool IsRelease = isReleaseOrStronger(Ord);
16923 
16924   // Since the intrinsics must have legal type, the i64 intrinsics take two
16925   // parameters: "i32, i32". We must marshal Val into the appropriate form
16926   // before the call.
16927   if (Val->getType()->getPrimitiveSizeInBits() == 64) {
16928     Intrinsic::ID Int =
16929         IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
16930     Function *Strex = Intrinsic::getDeclaration(M, Int);
16931     Type *Int32Ty = Type::getInt32Ty(M->getContext());
16932 
16933     Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
16934     Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
16935     if (!Subtarget->isLittle())
16936       std::swap(Lo, Hi);
16937     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
16938     return Builder.CreateCall(Strex, {Lo, Hi, Addr});
16939   }
16940 
16941   Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
16942   Type *Tys[] = { Addr->getType() };
16943   Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
16944 
16945   return Builder.CreateCall(
16946       Strex, {Builder.CreateZExtOrBitCast(
16947                   Val, Strex->getFunctionType()->getParamType(0)),
16948               Addr});
16949 }
16950 
16951 
16952 bool ARMTargetLowering::alignLoopsWithOptSize() const {
16953   return Subtarget->isMClass();
16954 }
16955 
16956 /// A helper function for determining the number of interleaved accesses we
16957 /// will generate when lowering accesses of the given type.
16958 unsigned
16959 ARMTargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
16960                                              const DataLayout &DL) const {
16961   return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
16962 }
16963 
16964 bool ARMTargetLowering::isLegalInterleavedAccessType(
16965     unsigned Factor, VectorType *VecTy, const DataLayout &DL) const {
16966 
16967   unsigned VecSize = DL.getTypeSizeInBits(VecTy);
16968   unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
16969 
16970   if (!Subtarget->hasNEON() && !Subtarget->hasMVEIntegerOps())
16971     return false;
16972 
16973   // Ensure the vector doesn't have f16 elements. Even though we could do an
16974   // i16 vldN, we can't hold the f16 vectors and will end up converting via
16975   // f32.
16976   if (Subtarget->hasNEON() && VecTy->getElementType()->isHalfTy())
16977     return false;
16978   if (Subtarget->hasMVEIntegerOps() && Factor == 3)
16979     return false;
16980 
16981   // Ensure the number of vector elements is greater than 1.
16982   if (VecTy->getNumElements() < 2)
16983     return false;
16984 
16985   // Ensure the element type is legal.
16986   if (ElSize != 8 && ElSize != 16 && ElSize != 32)
16987     return false;
16988 
16989   // Ensure the total vector size is 64 or a multiple of 128. Types larger than
16990   // 128 will be split into multiple interleaved accesses.
16991   if (Subtarget->hasNEON() && VecSize == 64)
16992     return true;
16993   return VecSize % 128 == 0;
16994 }
16995 
16996 unsigned ARMTargetLowering::getMaxSupportedInterleaveFactor() const {
16997   if (Subtarget->hasNEON())
16998     return 4;
16999   if (Subtarget->hasMVEIntegerOps())
17000     return MVEMaxSupportedInterleaveFactor;
17001   return TargetLoweringBase::getMaxSupportedInterleaveFactor();
17002 }
17003 
17004 /// Lower an interleaved load into a vldN intrinsic.
17005 ///
17006 /// E.g. Lower an interleaved load (Factor = 2):
17007 ///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
17008 ///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
17009 ///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
17010 ///
17011 ///      Into:
17012 ///        %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
17013 ///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
17014 ///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
17015 bool ARMTargetLowering::lowerInterleavedLoad(
17016     LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
17017     ArrayRef<unsigned> Indices, unsigned Factor) const {
17018   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
17019          "Invalid interleave factor");
17020   assert(!Shuffles.empty() && "Empty shufflevector input");
17021   assert(Shuffles.size() == Indices.size() &&
17022          "Unmatched number of shufflevectors and indices");
17023 
17024   VectorType *VecTy = Shuffles[0]->getType();
17025   Type *EltTy = VecTy->getVectorElementType();
17026 
17027   const DataLayout &DL = LI->getModule()->getDataLayout();
17028 
17029   // Skip if we do not have NEON and skip illegal vector types. We can
17030   // "legalize" wide vector types into multiple interleaved accesses as long as
17031   // the vector types are divisible by 128.
17032   if (!isLegalInterleavedAccessType(Factor, VecTy, DL))
17033     return false;
17034 
17035   unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
17036 
17037   // A pointer vector can not be the return type of the ldN intrinsics. Need to
17038   // load integer vectors first and then convert to pointer vectors.
17039   if (EltTy->isPointerTy())
17040     VecTy =
17041         VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
17042 
17043   IRBuilder<> Builder(LI);
17044 
17045   // The base address of the load.
17046   Value *BaseAddr = LI->getPointerOperand();
17047 
17048   if (NumLoads > 1) {
17049     // If we're going to generate more than one load, reset the sub-vector type
17050     // to something legal.
17051     VecTy = VectorType::get(VecTy->getVectorElementType(),
17052                             VecTy->getVectorNumElements() / NumLoads);
17053 
17054     // We will compute the pointer operand of each load from the original base
17055     // address using GEPs. Cast the base address to a pointer to the scalar
17056     // element type.
17057     BaseAddr = Builder.CreateBitCast(
17058         BaseAddr, VecTy->getVectorElementType()->getPointerTo(
17059                       LI->getPointerAddressSpace()));
17060   }
17061 
17062   assert(isTypeLegal(EVT::getEVT(VecTy)) && "Illegal vldN vector type!");
17063 
17064   auto createLoadIntrinsic = [&](Value *BaseAddr) {
17065     if (Subtarget->hasNEON()) {
17066       Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace());
17067       Type *Tys[] = {VecTy, Int8Ptr};
17068       static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
17069                                                 Intrinsic::arm_neon_vld3,
17070                                                 Intrinsic::arm_neon_vld4};
17071       Function *VldnFunc =
17072           Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
17073 
17074       SmallVector<Value *, 2> Ops;
17075       Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
17076       Ops.push_back(Builder.getInt32(LI->getAlignment()));
17077 
17078       return Builder.CreateCall(VldnFunc, Ops, "vldN");
17079     } else {
17080       assert((Factor == 2 || Factor == 4) &&
17081              "expected interleave factor of 2 or 4 for MVE");
17082       Intrinsic::ID LoadInts =
17083           Factor == 2 ? Intrinsic::arm_mve_vld2q : Intrinsic::arm_mve_vld4q;
17084       Type *VecEltTy = VecTy->getVectorElementType()->getPointerTo(
17085           LI->getPointerAddressSpace());
17086       Type *Tys[] = {VecTy, VecEltTy};
17087       Function *VldnFunc =
17088           Intrinsic::getDeclaration(LI->getModule(), LoadInts, Tys);
17089 
17090       SmallVector<Value *, 2> Ops;
17091       Ops.push_back(Builder.CreateBitCast(BaseAddr, VecEltTy));
17092       return Builder.CreateCall(VldnFunc, Ops, "vldN");
17093     }
17094   };
17095 
17096   // Holds sub-vectors extracted from the load intrinsic return values. The
17097   // sub-vectors are associated with the shufflevector instructions they will
17098   // replace.
17099   DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
17100 
17101   for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
17102     // If we're generating more than one load, compute the base address of
17103     // subsequent loads as an offset from the previous.
17104     if (LoadCount > 0)
17105       BaseAddr =
17106           Builder.CreateConstGEP1_32(VecTy->getVectorElementType(), BaseAddr,
17107                                      VecTy->getVectorNumElements() * Factor);
17108 
17109     CallInst *VldN = createLoadIntrinsic(BaseAddr);
17110 
17111     // Replace uses of each shufflevector with the corresponding vector loaded
17112     // by ldN.
17113     for (unsigned i = 0; i < Shuffles.size(); i++) {
17114       ShuffleVectorInst *SV = Shuffles[i];
17115       unsigned Index = Indices[i];
17116 
17117       Value *SubVec = Builder.CreateExtractValue(VldN, Index);
17118 
17119       // Convert the integer vector to pointer vector if the element is pointer.
17120       if (EltTy->isPointerTy())
17121         SubVec = Builder.CreateIntToPtr(
17122             SubVec, VectorType::get(SV->getType()->getVectorElementType(),
17123                                     VecTy->getVectorNumElements()));
17124 
17125       SubVecs[SV].push_back(SubVec);
17126     }
17127   }
17128 
17129   // Replace uses of the shufflevector instructions with the sub-vectors
17130   // returned by the load intrinsic. If a shufflevector instruction is
17131   // associated with more than one sub-vector, those sub-vectors will be
17132   // concatenated into a single wide vector.
17133   for (ShuffleVectorInst *SVI : Shuffles) {
17134     auto &SubVec = SubVecs[SVI];
17135     auto *WideVec =
17136         SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
17137     SVI->replaceAllUsesWith(WideVec);
17138   }
17139 
17140   return true;
17141 }
17142 
17143 /// Lower an interleaved store into a vstN intrinsic.
17144 ///
17145 /// E.g. Lower an interleaved store (Factor = 3):
17146 ///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
17147 ///                                  <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
17148 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
17149 ///
17150 ///      Into:
17151 ///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
17152 ///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
17153 ///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
17154 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
17155 ///
17156 /// Note that the new shufflevectors will be removed and we'll only generate one
17157 /// vst3 instruction in CodeGen.
17158 ///
17159 /// Example for a more general valid mask (Factor 3). Lower:
17160 ///        %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
17161 ///                 <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
17162 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr
17163 ///
17164 ///      Into:
17165 ///        %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
17166 ///        %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
17167 ///        %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
17168 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
17169 bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
17170                                               ShuffleVectorInst *SVI,
17171                                               unsigned Factor) const {
17172   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
17173          "Invalid interleave factor");
17174 
17175   VectorType *VecTy = SVI->getType();
17176   assert(VecTy->getVectorNumElements() % Factor == 0 &&
17177          "Invalid interleaved store");
17178 
17179   unsigned LaneLen = VecTy->getVectorNumElements() / Factor;
17180   Type *EltTy = VecTy->getVectorElementType();
17181   VectorType *SubVecTy = VectorType::get(EltTy, LaneLen);
17182 
17183   const DataLayout &DL = SI->getModule()->getDataLayout();
17184 
17185   // Skip if we do not have NEON and skip illegal vector types. We can
17186   // "legalize" wide vector types into multiple interleaved accesses as long as
17187   // the vector types are divisible by 128.
17188   if (!isLegalInterleavedAccessType(Factor, SubVecTy, DL))
17189     return false;
17190 
17191   unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
17192 
17193   Value *Op0 = SVI->getOperand(0);
17194   Value *Op1 = SVI->getOperand(1);
17195   IRBuilder<> Builder(SI);
17196 
17197   // StN intrinsics don't support pointer vectors as arguments. Convert pointer
17198   // vectors to integer vectors.
17199   if (EltTy->isPointerTy()) {
17200     Type *IntTy = DL.getIntPtrType(EltTy);
17201 
17202     // Convert to the corresponding integer vector.
17203     Type *IntVecTy =
17204         VectorType::get(IntTy, Op0->getType()->getVectorNumElements());
17205     Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
17206     Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
17207 
17208     SubVecTy = VectorType::get(IntTy, LaneLen);
17209   }
17210 
17211   // The base address of the store.
17212   Value *BaseAddr = SI->getPointerOperand();
17213 
17214   if (NumStores > 1) {
17215     // If we're going to generate more than one store, reset the lane length
17216     // and sub-vector type to something legal.
17217     LaneLen /= NumStores;
17218     SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen);
17219 
17220     // We will compute the pointer operand of each store from the original base
17221     // address using GEPs. Cast the base address to a pointer to the scalar
17222     // element type.
17223     BaseAddr = Builder.CreateBitCast(
17224         BaseAddr, SubVecTy->getVectorElementType()->getPointerTo(
17225                       SI->getPointerAddressSpace()));
17226   }
17227 
17228   assert(isTypeLegal(EVT::getEVT(SubVecTy)) && "Illegal vstN vector type!");
17229 
17230   auto Mask = SVI->getShuffleMask();
17231 
17232   auto createStoreIntrinsic = [&](Value *BaseAddr,
17233                                   SmallVectorImpl<Value *> &Shuffles) {
17234     if (Subtarget->hasNEON()) {
17235       static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
17236                                                  Intrinsic::arm_neon_vst3,
17237                                                  Intrinsic::arm_neon_vst4};
17238       Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace());
17239       Type *Tys[] = {Int8Ptr, SubVecTy};
17240 
17241       Function *VstNFunc = Intrinsic::getDeclaration(
17242           SI->getModule(), StoreInts[Factor - 2], Tys);
17243 
17244       SmallVector<Value *, 6> Ops;
17245       Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
17246       for (auto S : Shuffles)
17247         Ops.push_back(S);
17248       Ops.push_back(Builder.getInt32(SI->getAlignment()));
17249       Builder.CreateCall(VstNFunc, Ops);
17250     } else {
17251       assert((Factor == 2 || Factor == 4) &&
17252              "expected interleave factor of 2 or 4 for MVE");
17253       Intrinsic::ID StoreInts =
17254           Factor == 2 ? Intrinsic::arm_mve_vst2q : Intrinsic::arm_mve_vst4q;
17255       Type *EltPtrTy = SubVecTy->getVectorElementType()->getPointerTo(
17256           SI->getPointerAddressSpace());
17257       Type *Tys[] = {EltPtrTy, SubVecTy};
17258       Function *VstNFunc =
17259           Intrinsic::getDeclaration(SI->getModule(), StoreInts, Tys);
17260 
17261       SmallVector<Value *, 6> Ops;
17262       Ops.push_back(Builder.CreateBitCast(BaseAddr, EltPtrTy));
17263       for (auto S : Shuffles)
17264         Ops.push_back(S);
17265       for (unsigned F = 0; F < Factor; F++) {
17266         Ops.push_back(Builder.getInt32(F));
17267         Builder.CreateCall(VstNFunc, Ops);
17268         Ops.pop_back();
17269       }
17270     }
17271   };
17272 
17273   for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
17274     // If we generating more than one store, we compute the base address of
17275     // subsequent stores as an offset from the previous.
17276     if (StoreCount > 0)
17277       BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getVectorElementType(),
17278                                             BaseAddr, LaneLen * Factor);
17279 
17280     SmallVector<Value *, 4> Shuffles;
17281 
17282     // Split the shufflevector operands into sub vectors for the new vstN call.
17283     for (unsigned i = 0; i < Factor; i++) {
17284       unsigned IdxI = StoreCount * LaneLen * Factor + i;
17285       if (Mask[IdxI] >= 0) {
17286         Shuffles.push_back(Builder.CreateShuffleVector(
17287             Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0)));
17288       } else {
17289         unsigned StartMask = 0;
17290         for (unsigned j = 1; j < LaneLen; j++) {
17291           unsigned IdxJ = StoreCount * LaneLen * Factor + j;
17292           if (Mask[IdxJ * Factor + IdxI] >= 0) {
17293             StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
17294             break;
17295           }
17296         }
17297         // Note: If all elements in a chunk are undefs, StartMask=0!
17298         // Note: Filling undef gaps with random elements is ok, since
17299         // those elements were being written anyway (with undefs).
17300         // In the case of all undefs we're defaulting to using elems from 0
17301         // Note: StartMask cannot be negative, it's checked in
17302         // isReInterleaveMask
17303         Shuffles.push_back(Builder.CreateShuffleVector(
17304             Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0)));
17305       }
17306     }
17307 
17308     createStoreIntrinsic(BaseAddr, Shuffles);
17309   }
17310   return true;
17311 }
17312 
17313 enum HABaseType {
17314   HA_UNKNOWN = 0,
17315   HA_FLOAT,
17316   HA_DOUBLE,
17317   HA_VECT64,
17318   HA_VECT128
17319 };
17320 
17321 static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
17322                                    uint64_t &Members) {
17323   if (auto *ST = dyn_cast<StructType>(Ty)) {
17324     for (unsigned i = 0; i < ST->getNumElements(); ++i) {
17325       uint64_t SubMembers = 0;
17326       if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
17327         return false;
17328       Members += SubMembers;
17329     }
17330   } else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
17331     uint64_t SubMembers = 0;
17332     if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
17333       return false;
17334     Members += SubMembers * AT->getNumElements();
17335   } else if (Ty->isFloatTy()) {
17336     if (Base != HA_UNKNOWN && Base != HA_FLOAT)
17337       return false;
17338     Members = 1;
17339     Base = HA_FLOAT;
17340   } else if (Ty->isDoubleTy()) {
17341     if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
17342       return false;
17343     Members = 1;
17344     Base = HA_DOUBLE;
17345   } else if (auto *VT = dyn_cast<VectorType>(Ty)) {
17346     Members = 1;
17347     switch (Base) {
17348     case HA_FLOAT:
17349     case HA_DOUBLE:
17350       return false;
17351     case HA_VECT64:
17352       return VT->getBitWidth() == 64;
17353     case HA_VECT128:
17354       return VT->getBitWidth() == 128;
17355     case HA_UNKNOWN:
17356       switch (VT->getBitWidth()) {
17357       case 64:
17358         Base = HA_VECT64;
17359         return true;
17360       case 128:
17361         Base = HA_VECT128;
17362         return true;
17363       default:
17364         return false;
17365       }
17366     }
17367   }
17368 
17369   return (Members > 0 && Members <= 4);
17370 }
17371 
17372 /// Return the correct alignment for the current calling convention.
17373 Align ARMTargetLowering::getABIAlignmentForCallingConv(Type *ArgTy,
17374                                                        DataLayout DL) const {
17375   const Align ABITypeAlign(DL.getABITypeAlignment(ArgTy));
17376   if (!ArgTy->isVectorTy())
17377     return ABITypeAlign;
17378 
17379   // Avoid over-aligning vector parameters. It would require realigning the
17380   // stack and waste space for no real benefit.
17381   return std::min(ABITypeAlign, DL.getStackAlignment());
17382 }
17383 
17384 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
17385 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
17386 /// passing according to AAPCS rules.
17387 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
17388     Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
17389   if (getEffectiveCallingConv(CallConv, isVarArg) !=
17390       CallingConv::ARM_AAPCS_VFP)
17391     return false;
17392 
17393   HABaseType Base = HA_UNKNOWN;
17394   uint64_t Members = 0;
17395   bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
17396   LLVM_DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
17397 
17398   bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
17399   return IsHA || IsIntArray;
17400 }
17401 
17402 unsigned ARMTargetLowering::getExceptionPointerRegister(
17403     const Constant *PersonalityFn) const {
17404   // Platforms which do not use SjLj EH may return values in these registers
17405   // via the personality function.
17406   return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R0;
17407 }
17408 
17409 unsigned ARMTargetLowering::getExceptionSelectorRegister(
17410     const Constant *PersonalityFn) const {
17411   // Platforms which do not use SjLj EH may return values in these registers
17412   // via the personality function.
17413   return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R1;
17414 }
17415 
17416 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
17417   // Update IsSplitCSR in ARMFunctionInfo.
17418   ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>();
17419   AFI->setIsSplitCSR(true);
17420 }
17421 
17422 void ARMTargetLowering::insertCopiesSplitCSR(
17423     MachineBasicBlock *Entry,
17424     const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
17425   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
17426   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
17427   if (!IStart)
17428     return;
17429 
17430   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
17431   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
17432   MachineBasicBlock::iterator MBBI = Entry->begin();
17433   for (const MCPhysReg *I = IStart; *I; ++I) {
17434     const TargetRegisterClass *RC = nullptr;
17435     if (ARM::GPRRegClass.contains(*I))
17436       RC = &ARM::GPRRegClass;
17437     else if (ARM::DPRRegClass.contains(*I))
17438       RC = &ARM::DPRRegClass;
17439     else
17440       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
17441 
17442     Register NewVR = MRI->createVirtualRegister(RC);
17443     // Create copy from CSR to a virtual register.
17444     // FIXME: this currently does not emit CFI pseudo-instructions, it works
17445     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
17446     // nounwind. If we want to generalize this later, we may need to emit
17447     // CFI pseudo-instructions.
17448     assert(Entry->getParent()->getFunction().hasFnAttribute(
17449                Attribute::NoUnwind) &&
17450            "Function should be nounwind in insertCopiesSplitCSR!");
17451     Entry->addLiveIn(*I);
17452     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
17453         .addReg(*I);
17454 
17455     // Insert the copy-back instructions right before the terminator.
17456     for (auto *Exit : Exits)
17457       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
17458               TII->get(TargetOpcode::COPY), *I)
17459           .addReg(NewVR);
17460   }
17461 }
17462 
17463 void ARMTargetLowering::finalizeLowering(MachineFunction &MF) const {
17464   MF.getFrameInfo().computeMaxCallFrameSize(MF);
17465   TargetLoweringBase::finalizeLowering(MF);
17466 }
17467