1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the ARM implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 // 13 // This file contains the ARM implementation of TargetFrameLowering class. 14 // 15 // On ARM, stack frames are structured as follows: 16 // 17 // The stack grows downward. 18 // 19 // All of the individual frame areas on the frame below are optional, i.e. it's 20 // possible to create a function so that the particular area isn't present 21 // in the frame. 22 // 23 // At function entry, the "frame" looks as follows: 24 // 25 // | | Higher address 26 // |-----------------------------------| 27 // | | 28 // | arguments passed on the stack | 29 // | | 30 // |-----------------------------------| <- sp 31 // | | Lower address 32 // 33 // 34 // After the prologue has run, the frame has the following general structure. 35 // Technically the last frame area (VLAs) doesn't get created until in the 36 // main function body, after the prologue is run. However, it's depicted here 37 // for completeness. 38 // 39 // | | Higher address 40 // |-----------------------------------| 41 // | | 42 // | arguments passed on the stack | 43 // | | 44 // |-----------------------------------| <- (sp at function entry) 45 // | | 46 // | varargs from registers | 47 // | | 48 // |-----------------------------------| 49 // | | 50 // | prev_lr | 51 // | prev_fp | 52 // | (a.k.a. "frame record") | 53 // | | 54 // |- - - - - - - - - - - - - - - - - -| <- fp (r7 or r11) 55 // | | 56 // | callee-saved gpr registers | 57 // | | 58 // |-----------------------------------| 59 // | | 60 // | callee-saved fp/simd regs | 61 // | | 62 // |-----------------------------------| 63 // |.empty.space.to.make.part.below....| 64 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at 65 // |.the.standard.8-byte.alignment.....| compile time; if present) 66 // |-----------------------------------| 67 // | | 68 // | local variables of fixed size | 69 // | including spill slots | 70 // |-----------------------------------| <- base pointer (not defined by ABI, 71 // |.variable-sized.local.variables....| LLVM chooses r6) 72 // |.(VLAs)............................| (size of this area is unknown at 73 // |...................................| compile time) 74 // |-----------------------------------| <- sp 75 // | | Lower address 76 // 77 // 78 // To access the data in a frame, at-compile time, a constant offset must be 79 // computable from one of the pointers (fp, bp, sp) to access it. The size 80 // of the areas with a dotted background cannot be computed at compile-time 81 // if they are present, making it required to have all three of fp, bp and 82 // sp to be set up to be able to access all contents in the frame areas, 83 // assuming all of the frame areas are non-empty. 84 // 85 // For most functions, some of the frame areas are empty. For those functions, 86 // it may not be necessary to set up fp or bp: 87 // * A base pointer is definitely needed when there are both VLAs and local 88 // variables with more-than-default alignment requirements. 89 // * A frame pointer is definitely needed when there are local variables with 90 // more-than-default alignment requirements. 91 // 92 // In some cases when a base pointer is not strictly needed, it is generated 93 // anyway when offsets from the frame pointer to access local variables become 94 // so large that the offset can't be encoded in the immediate fields of loads 95 // or stores. 96 // 97 // The frame pointer might be chosen to be r7 or r11, depending on the target 98 // architecture and operating system. See ARMSubtarget::getFramePointerReg for 99 // details. 100 // 101 // Outgoing function arguments must be at the bottom of the stack frame when 102 // calling another function. If we do not have variable-sized stack objects, we 103 // can allocate a "reserved call frame" area at the bottom of the local 104 // variable area, large enough for all outgoing calls. If we do have VLAs, then 105 // the stack pointer must be decremented and incremented around each call to 106 // make space for the arguments below the VLAs. 107 // 108 //===----------------------------------------------------------------------===// 109 110 #include "ARMFrameLowering.h" 111 #include "ARMBaseInstrInfo.h" 112 #include "ARMBaseRegisterInfo.h" 113 #include "ARMConstantPoolValue.h" 114 #include "ARMMachineFunctionInfo.h" 115 #include "ARMSubtarget.h" 116 #include "MCTargetDesc/ARMAddressingModes.h" 117 #include "MCTargetDesc/ARMBaseInfo.h" 118 #include "Utils/ARMBaseInfo.h" 119 #include "llvm/ADT/BitVector.h" 120 #include "llvm/ADT/STLExtras.h" 121 #include "llvm/ADT/SmallPtrSet.h" 122 #include "llvm/ADT/SmallVector.h" 123 #include "llvm/CodeGen/MachineBasicBlock.h" 124 #include "llvm/CodeGen/MachineConstantPool.h" 125 #include "llvm/CodeGen/MachineFrameInfo.h" 126 #include "llvm/CodeGen/MachineFunction.h" 127 #include "llvm/CodeGen/MachineInstr.h" 128 #include "llvm/CodeGen/MachineInstrBuilder.h" 129 #include "llvm/CodeGen/MachineJumpTableInfo.h" 130 #include "llvm/CodeGen/MachineModuleInfo.h" 131 #include "llvm/CodeGen/MachineOperand.h" 132 #include "llvm/CodeGen/MachineRegisterInfo.h" 133 #include "llvm/CodeGen/RegisterScavenging.h" 134 #include "llvm/CodeGen/TargetInstrInfo.h" 135 #include "llvm/CodeGen/TargetOpcodes.h" 136 #include "llvm/CodeGen/TargetRegisterInfo.h" 137 #include "llvm/CodeGen/TargetSubtargetInfo.h" 138 #include "llvm/IR/Attributes.h" 139 #include "llvm/IR/CallingConv.h" 140 #include "llvm/IR/DebugLoc.h" 141 #include "llvm/IR/Function.h" 142 #include "llvm/MC/MCAsmInfo.h" 143 #include "llvm/MC/MCContext.h" 144 #include "llvm/MC/MCDwarf.h" 145 #include "llvm/MC/MCInstrDesc.h" 146 #include "llvm/MC/MCRegisterInfo.h" 147 #include "llvm/Support/CodeGen.h" 148 #include "llvm/Support/CommandLine.h" 149 #include "llvm/Support/Compiler.h" 150 #include "llvm/Support/Debug.h" 151 #include "llvm/Support/ErrorHandling.h" 152 #include "llvm/Support/MathExtras.h" 153 #include "llvm/Support/raw_ostream.h" 154 #include "llvm/Target/TargetMachine.h" 155 #include "llvm/Target/TargetOptions.h" 156 #include <algorithm> 157 #include <cassert> 158 #include <cstddef> 159 #include <cstdint> 160 #include <iterator> 161 #include <utility> 162 #include <vector> 163 164 #define DEBUG_TYPE "arm-frame-lowering" 165 166 using namespace llvm; 167 168 static cl::opt<bool> 169 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true), 170 cl::desc("Align ARM NEON spills in prolog and epilog")); 171 172 static MachineBasicBlock::iterator 173 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 174 unsigned NumAlignedDPRCS2Regs); 175 176 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti) 177 : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)), 178 STI(sti) {} 179 180 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const { 181 // iOS always has a FP for backtracking, force other targets to keep their FP 182 // when doing FastISel. The emitted code is currently superior, and in cases 183 // like test-suite's lencod FastISel isn't quite correct when FP is eliminated. 184 return MF.getSubtarget<ARMSubtarget>().useFastISel(); 185 } 186 187 /// Returns true if the target can safely skip saving callee-saved registers 188 /// for noreturn nounwind functions. 189 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const { 190 assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) && 191 MF.getFunction().hasFnAttribute(Attribute::NoUnwind) && 192 !MF.getFunction().hasFnAttribute(Attribute::UWTable)); 193 194 // Frame pointer and link register are not treated as normal CSR, thus we 195 // can always skip CSR saves for nonreturning functions. 196 return true; 197 } 198 199 /// hasFP - Return true if the specified function should have a dedicated frame 200 /// pointer register. This is true if the function has variable sized allocas 201 /// or if frame pointer elimination is disabled. 202 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const { 203 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 204 const MachineFrameInfo &MFI = MF.getFrameInfo(); 205 206 // ABI-required frame pointer. 207 if (MF.getTarget().Options.DisableFramePointerElim(MF)) 208 return true; 209 210 // Frame pointer required for use within this function. 211 return (RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || 212 MFI.isFrameAddressTaken()); 213 } 214 215 /// isFPReserved - Return true if the frame pointer register should be 216 /// considered a reserved register on the scope of the specified function. 217 bool ARMFrameLowering::isFPReserved(const MachineFunction &MF) const { 218 return hasFP(MF) || MF.getTarget().Options.FramePointerIsReserved(MF); 219 } 220 221 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 222 /// not required, we reserve argument space for call sites in the function 223 /// immediately on entry to the current function. This eliminates the need for 224 /// add/sub sp brackets around call sites. Returns true if the call frame is 225 /// included as part of the stack frame. 226 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 227 const MachineFrameInfo &MFI = MF.getFrameInfo(); 228 unsigned CFSize = MFI.getMaxCallFrameSize(); 229 // It's not always a good idea to include the call frame as part of the 230 // stack frame. ARM (especially Thumb) has small immediate offset to 231 // address the stack frame. So a large call frame can cause poor codegen 232 // and may even makes it impossible to scavenge a register. 233 if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12 234 return false; 235 236 return !MFI.hasVarSizedObjects(); 237 } 238 239 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 240 /// call frame pseudos can be simplified. Unlike most targets, having a FP 241 /// is not sufficient here since we still may reference some objects via SP 242 /// even when FP is available in Thumb2 mode. 243 bool 244 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 245 return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects(); 246 } 247 248 // Returns how much of the incoming argument stack area we should clean up in an 249 // epilogue. For the C calling convention this will be 0, for guaranteed tail 250 // call conventions it can be positive (a normal return or a tail call to a 251 // function that uses less stack space for arguments) or negative (for a tail 252 // call to a function that needs more stack space than us for arguments). 253 static int getArgumentStackToRestore(MachineFunction &MF, 254 MachineBasicBlock &MBB) { 255 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); 256 bool IsTailCallReturn = false; 257 if (MBB.end() != MBBI) { 258 unsigned RetOpcode = MBBI->getOpcode(); 259 IsTailCallReturn = RetOpcode == ARM::TCRETURNdi || 260 RetOpcode == ARM::TCRETURNri || 261 RetOpcode == ARM::TCRETURNrinotr12; 262 } 263 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 264 265 int ArgumentPopSize = 0; 266 if (IsTailCallReturn) { 267 MachineOperand &StackAdjust = MBBI->getOperand(1); 268 269 // For a tail-call in a callee-pops-arguments environment, some or all of 270 // the stack may actually be in use for the call's arguments, this is 271 // calculated during LowerCall and consumed here... 272 ArgumentPopSize = StackAdjust.getImm(); 273 } else { 274 // ... otherwise the amount to pop is *all* of the argument space, 275 // conveniently stored in the MachineFunctionInfo by 276 // LowerFormalArguments. This will, of course, be zero for the C calling 277 // convention. 278 ArgumentPopSize = AFI->getArgumentStackToRestore(); 279 } 280 281 return ArgumentPopSize; 282 } 283 284 static bool needsWinCFI(const MachineFunction &MF) { 285 const Function &F = MF.getFunction(); 286 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && 287 F.needsUnwindTableEntry(); 288 } 289 290 // Given a load or a store instruction, generate an appropriate unwinding SEH 291 // code on Windows. 292 static MachineBasicBlock::iterator insertSEH(MachineBasicBlock::iterator MBBI, 293 const TargetInstrInfo &TII, 294 unsigned Flags) { 295 unsigned Opc = MBBI->getOpcode(); 296 MachineBasicBlock *MBB = MBBI->getParent(); 297 MachineFunction &MF = *MBB->getParent(); 298 DebugLoc DL = MBBI->getDebugLoc(); 299 MachineInstrBuilder MIB; 300 const ARMSubtarget &Subtarget = MF.getSubtarget<ARMSubtarget>(); 301 const ARMBaseRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 302 303 Flags |= MachineInstr::NoMerge; 304 305 switch (Opc) { 306 default: 307 report_fatal_error("No SEH Opcode for instruction " + TII.getName(Opc)); 308 break; 309 case ARM::t2ADDri: // add.w r11, sp, #xx 310 case ARM::t2ADDri12: // add.w r11, sp, #xx 311 case ARM::t2MOVTi16: // movt r4, #xx 312 case ARM::tBL: // bl __chkstk 313 // These are harmless if used for just setting up a frame pointer, 314 // but that frame pointer can't be relied upon for unwinding, unless 315 // set up with SEH_SaveSP. 316 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 317 .addImm(/*Wide=*/1) 318 .setMIFlags(Flags); 319 break; 320 321 case ARM::t2MOVi16: { // mov(w) r4, #xx 322 bool Wide = MBBI->getOperand(1).getImm() >= 256; 323 if (!Wide) { 324 MachineInstrBuilder NewInstr = 325 BuildMI(MF, DL, TII.get(ARM::tMOVi8)).setMIFlags(MBBI->getFlags()); 326 NewInstr.add(MBBI->getOperand(0)); 327 NewInstr.add(t1CondCodeOp(/*isDead=*/true)); 328 for (MachineOperand &MO : llvm::drop_begin(MBBI->operands())) 329 NewInstr.add(MO); 330 MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr); 331 MBB->erase(MBBI); 332 MBBI = NewMBBI; 333 } 334 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)).addImm(Wide).setMIFlags(Flags); 335 break; 336 } 337 338 case ARM::tBLXr: // blx r12 (__chkstk) 339 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 340 .addImm(/*Wide=*/0) 341 .setMIFlags(Flags); 342 break; 343 344 case ARM::t2MOVi32imm: // movw+movt 345 // This pseudo instruction expands into two mov instructions. If the 346 // second operand is a symbol reference, this will stay as two wide 347 // instructions, movw+movt. If they're immediates, the first one can 348 // end up as a narrow mov though. 349 // As two SEH instructions are appended here, they won't get interleaved 350 // between the two final movw/movt instructions, but it doesn't make any 351 // practical difference. 352 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 353 .addImm(/*Wide=*/1) 354 .setMIFlags(Flags); 355 MBB->insertAfter(MBBI, MIB); 356 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 357 .addImm(/*Wide=*/1) 358 .setMIFlags(Flags); 359 break; 360 361 case ARM::t2STR_PRE: 362 if (MBBI->getOperand(0).getReg() == ARM::SP && 363 MBBI->getOperand(2).getReg() == ARM::SP && 364 MBBI->getOperand(3).getImm() == -4) { 365 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 366 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs)) 367 .addImm(1ULL << Reg) 368 .addImm(/*Wide=*/1) 369 .setMIFlags(Flags); 370 } else { 371 report_fatal_error("No matching SEH Opcode for t2STR_PRE"); 372 } 373 break; 374 375 case ARM::t2LDR_POST: 376 if (MBBI->getOperand(1).getReg() == ARM::SP && 377 MBBI->getOperand(2).getReg() == ARM::SP && 378 MBBI->getOperand(3).getImm() == 4) { 379 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 380 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs)) 381 .addImm(1ULL << Reg) 382 .addImm(/*Wide=*/1) 383 .setMIFlags(Flags); 384 } else { 385 report_fatal_error("No matching SEH Opcode for t2LDR_POST"); 386 } 387 break; 388 389 case ARM::t2LDMIA_RET: 390 case ARM::t2LDMIA_UPD: 391 case ARM::t2STMDB_UPD: { 392 unsigned Mask = 0; 393 bool Wide = false; 394 for (unsigned i = 4, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) { 395 const MachineOperand &MO = MBBI->getOperand(i); 396 if (!MO.isReg() || MO.isImplicit()) 397 continue; 398 unsigned Reg = RegInfo->getSEHRegNum(MO.getReg()); 399 if (Reg == 15) 400 Reg = 14; 401 if (Reg >= 8 && Reg <= 13) 402 Wide = true; 403 else if (Opc == ARM::t2LDMIA_UPD && Reg == 14) 404 Wide = true; 405 Mask |= 1 << Reg; 406 } 407 if (!Wide) { 408 unsigned NewOpc; 409 switch (Opc) { 410 case ARM::t2LDMIA_RET: 411 NewOpc = ARM::tPOP_RET; 412 break; 413 case ARM::t2LDMIA_UPD: 414 NewOpc = ARM::tPOP; 415 break; 416 case ARM::t2STMDB_UPD: 417 NewOpc = ARM::tPUSH; 418 break; 419 default: 420 llvm_unreachable(""); 421 } 422 MachineInstrBuilder NewInstr = 423 BuildMI(MF, DL, TII.get(NewOpc)).setMIFlags(MBBI->getFlags()); 424 for (unsigned i = 2, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) 425 NewInstr.add(MBBI->getOperand(i)); 426 MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr); 427 MBB->erase(MBBI); 428 MBBI = NewMBBI; 429 } 430 unsigned SEHOpc = 431 (Opc == ARM::t2LDMIA_RET) ? ARM::SEH_SaveRegs_Ret : ARM::SEH_SaveRegs; 432 MIB = BuildMI(MF, DL, TII.get(SEHOpc)) 433 .addImm(Mask) 434 .addImm(Wide ? 1 : 0) 435 .setMIFlags(Flags); 436 break; 437 } 438 case ARM::VSTMDDB_UPD: 439 case ARM::VLDMDIA_UPD: { 440 int First = -1, Last = 0; 441 for (const MachineOperand &MO : llvm::drop_begin(MBBI->operands(), 4)) { 442 unsigned Reg = RegInfo->getSEHRegNum(MO.getReg()); 443 if (First == -1) 444 First = Reg; 445 Last = Reg; 446 } 447 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveFRegs)) 448 .addImm(First) 449 .addImm(Last) 450 .setMIFlags(Flags); 451 break; 452 } 453 case ARM::tSUBspi: 454 case ARM::tADDspi: 455 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc)) 456 .addImm(MBBI->getOperand(2).getImm() * 4) 457 .addImm(/*Wide=*/0) 458 .setMIFlags(Flags); 459 break; 460 case ARM::t2SUBspImm: 461 case ARM::t2SUBspImm12: 462 case ARM::t2ADDspImm: 463 case ARM::t2ADDspImm12: 464 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc)) 465 .addImm(MBBI->getOperand(2).getImm()) 466 .addImm(/*Wide=*/1) 467 .setMIFlags(Flags); 468 break; 469 470 case ARM::tMOVr: 471 if (MBBI->getOperand(1).getReg() == ARM::SP && 472 (Flags & MachineInstr::FrameSetup)) { 473 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 474 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP)) 475 .addImm(Reg) 476 .setMIFlags(Flags); 477 } else if (MBBI->getOperand(0).getReg() == ARM::SP && 478 (Flags & MachineInstr::FrameDestroy)) { 479 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 480 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP)) 481 .addImm(Reg) 482 .setMIFlags(Flags); 483 } else { 484 report_fatal_error("No SEH Opcode for MOV"); 485 } 486 break; 487 488 case ARM::tBX_RET: 489 case ARM::TCRETURNri: 490 case ARM::TCRETURNrinotr12: 491 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret)) 492 .addImm(/*Wide=*/0) 493 .setMIFlags(Flags); 494 break; 495 496 case ARM::TCRETURNdi: 497 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret)) 498 .addImm(/*Wide=*/1) 499 .setMIFlags(Flags); 500 break; 501 } 502 return MBB->insertAfter(MBBI, MIB); 503 } 504 505 static MachineBasicBlock::iterator 506 initMBBRange(MachineBasicBlock &MBB, const MachineBasicBlock::iterator &MBBI) { 507 if (MBBI == MBB.begin()) 508 return MachineBasicBlock::iterator(); 509 return std::prev(MBBI); 510 } 511 512 static void insertSEHRange(MachineBasicBlock &MBB, 513 MachineBasicBlock::iterator Start, 514 const MachineBasicBlock::iterator &End, 515 const ARMBaseInstrInfo &TII, unsigned MIFlags) { 516 if (Start.isValid()) 517 Start = std::next(Start); 518 else 519 Start = MBB.begin(); 520 521 for (auto MI = Start; MI != End;) { 522 auto Next = std::next(MI); 523 // Check if this instruction already has got a SEH opcode added. In that 524 // case, don't do this generic mapping. 525 if (Next != End && isSEHInstruction(*Next)) { 526 MI = std::next(Next); 527 while (MI != End && isSEHInstruction(*MI)) 528 ++MI; 529 continue; 530 } 531 insertSEH(MI, TII, MIFlags); 532 MI = Next; 533 } 534 } 535 536 static void emitRegPlusImmediate( 537 bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 538 const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg, 539 unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags, 540 ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) { 541 if (isARM) 542 emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 543 Pred, PredReg, TII, MIFlags); 544 else 545 emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 546 Pred, PredReg, TII, MIFlags); 547 } 548 549 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB, 550 MachineBasicBlock::iterator &MBBI, const DebugLoc &dl, 551 const ARMBaseInstrInfo &TII, int NumBytes, 552 unsigned MIFlags = MachineInstr::NoFlags, 553 ARMCC::CondCodes Pred = ARMCC::AL, 554 unsigned PredReg = 0) { 555 emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes, 556 MIFlags, Pred, PredReg); 557 } 558 559 static int sizeOfSPAdjustment(const MachineInstr &MI) { 560 int RegSize; 561 switch (MI.getOpcode()) { 562 case ARM::VSTMDDB_UPD: 563 RegSize = 8; 564 break; 565 case ARM::STMDB_UPD: 566 case ARM::t2STMDB_UPD: 567 RegSize = 4; 568 break; 569 case ARM::t2STR_PRE: 570 case ARM::STR_PRE_IMM: 571 return 4; 572 default: 573 llvm_unreachable("Unknown push or pop like instruction"); 574 } 575 576 int count = 0; 577 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 578 // pred) so the list starts at 4. 579 for (int i = MI.getNumOperands() - 1; i >= 4; --i) 580 count += RegSize; 581 return count; 582 } 583 584 static bool WindowsRequiresStackProbe(const MachineFunction &MF, 585 size_t StackSizeInBytes) { 586 const MachineFrameInfo &MFI = MF.getFrameInfo(); 587 const Function &F = MF.getFunction(); 588 unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096; 589 590 StackProbeSize = 591 F.getFnAttributeAsParsedInteger("stack-probe-size", StackProbeSize); 592 return (StackSizeInBytes >= StackProbeSize) && 593 !F.hasFnAttribute("no-stack-arg-probe"); 594 } 595 596 namespace { 597 598 struct StackAdjustingInsts { 599 struct InstInfo { 600 MachineBasicBlock::iterator I; 601 unsigned SPAdjust; 602 bool BeforeFPSet; 603 }; 604 605 SmallVector<InstInfo, 4> Insts; 606 607 void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust, 608 bool BeforeFPSet = false) { 609 InstInfo Info = {I, SPAdjust, BeforeFPSet}; 610 Insts.push_back(Info); 611 } 612 613 void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) { 614 auto Info = 615 llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; }); 616 assert(Info != Insts.end() && "invalid sp adjusting instruction"); 617 Info->SPAdjust += ExtraBytes; 618 } 619 620 void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl, 621 const ARMBaseInstrInfo &TII, bool HasFP) { 622 MachineFunction &MF = *MBB.getParent(); 623 unsigned CFAOffset = 0; 624 for (auto &Info : Insts) { 625 if (HasFP && !Info.BeforeFPSet) 626 return; 627 628 CFAOffset += Info.SPAdjust; 629 unsigned CFIIndex = MF.addFrameInst( 630 MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset)); 631 BuildMI(MBB, std::next(Info.I), dl, 632 TII.get(TargetOpcode::CFI_INSTRUCTION)) 633 .addCFIIndex(CFIIndex) 634 .setMIFlags(MachineInstr::FrameSetup); 635 } 636 } 637 }; 638 639 } // end anonymous namespace 640 641 /// Emit an instruction sequence that will align the address in 642 /// register Reg by zero-ing out the lower bits. For versions of the 643 /// architecture that support Neon, this must be done in a single 644 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a 645 /// single instruction. That function only gets called when optimizing 646 /// spilling of D registers on a core with the Neon instruction set 647 /// present. 648 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI, 649 const TargetInstrInfo &TII, 650 MachineBasicBlock &MBB, 651 MachineBasicBlock::iterator MBBI, 652 const DebugLoc &DL, const unsigned Reg, 653 const Align Alignment, 654 const bool MustBeSingleInstruction) { 655 const ARMSubtarget &AST = MF.getSubtarget<ARMSubtarget>(); 656 const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops(); 657 const unsigned AlignMask = Alignment.value() - 1U; 658 const unsigned NrBitsToZero = Log2(Alignment); 659 assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported"); 660 if (!AFI->isThumbFunction()) { 661 // if the BFC instruction is available, use that to zero the lower 662 // bits: 663 // bfc Reg, #0, log2(Alignment) 664 // otherwise use BIC, if the mask to zero the required number of bits 665 // can be encoded in the bic immediate field 666 // bic Reg, Reg, Alignment-1 667 // otherwise, emit 668 // lsr Reg, Reg, log2(Alignment) 669 // lsl Reg, Reg, log2(Alignment) 670 if (CanUseBFC) { 671 BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg) 672 .addReg(Reg, RegState::Kill) 673 .addImm(~AlignMask) 674 .add(predOps(ARMCC::AL)); 675 } else if (AlignMask <= 255) { 676 BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg) 677 .addReg(Reg, RegState::Kill) 678 .addImm(AlignMask) 679 .add(predOps(ARMCC::AL)) 680 .add(condCodeOp()); 681 } else { 682 assert(!MustBeSingleInstruction && 683 "Shouldn't call emitAligningInstructions demanding a single " 684 "instruction to be emitted for large stack alignment for a target " 685 "without BFC."); 686 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 687 .addReg(Reg, RegState::Kill) 688 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero)) 689 .add(predOps(ARMCC::AL)) 690 .add(condCodeOp()); 691 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 692 .addReg(Reg, RegState::Kill) 693 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero)) 694 .add(predOps(ARMCC::AL)) 695 .add(condCodeOp()); 696 } 697 } else { 698 // Since this is only reached for Thumb-2 targets, the BFC instruction 699 // should always be available. 700 assert(CanUseBFC); 701 BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg) 702 .addReg(Reg, RegState::Kill) 703 .addImm(~AlignMask) 704 .add(predOps(ARMCC::AL)); 705 } 706 } 707 708 /// We need the offset of the frame pointer relative to other MachineFrameInfo 709 /// offsets which are encoded relative to SP at function begin. 710 /// See also emitPrologue() for how the FP is set up. 711 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet 712 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use 713 /// this to produce a conservative estimate that we check in an assert() later. 714 static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI, 715 const MachineFunction &MF) { 716 // For Thumb1, push.w isn't available, so the first push will always push 717 // r7 and lr onto the stack first. 718 if (AFI.isThumb1OnlyFunction()) 719 return -AFI.getArgRegsSaveSize() - (2 * 4); 720 // This is a conservative estimation: Assume the frame pointer being r7 and 721 // pc("r15") up to r8 getting spilled before (= 8 registers). 722 int MaxRegBytes = 8 * 4; 723 if (STI.splitFramePointerPush(MF)) { 724 // Here, r11 can be stored below all of r4-r15 (3 registers more than 725 // above), plus d8-d15. 726 MaxRegBytes = 11 * 4 + 8 * 8; 727 } 728 int FPCXTSaveSize = 729 (STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0; 730 return -FPCXTSaveSize - AFI.getArgRegsSaveSize() - MaxRegBytes; 731 } 732 733 void ARMFrameLowering::emitPrologue(MachineFunction &MF, 734 MachineBasicBlock &MBB) const { 735 MachineBasicBlock::iterator MBBI = MBB.begin(); 736 MachineFrameInfo &MFI = MF.getFrameInfo(); 737 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 738 MCContext &Context = MF.getContext(); 739 const TargetMachine &TM = MF.getTarget(); 740 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 741 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 742 const ARMBaseInstrInfo &TII = *STI.getInstrInfo(); 743 assert(!AFI->isThumb1OnlyFunction() && 744 "This emitPrologue does not support Thumb1!"); 745 bool isARM = !AFI->isThumbFunction(); 746 Align Alignment = STI.getFrameLowering()->getStackAlign(); 747 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 748 unsigned NumBytes = MFI.getStackSize(); 749 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 750 int FPCXTSaveSize = 0; 751 bool NeedsWinCFI = needsWinCFI(MF); 752 753 // Debug location must be unknown since the first debug location is used 754 // to determine the end of the prologue. 755 DebugLoc dl; 756 757 Register FramePtr = RegInfo->getFrameRegister(MF); 758 759 // Determine the sizes of each callee-save spill areas and record which frame 760 // belongs to which callee-save spill areas. 761 unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0; 762 int FramePtrSpillFI = 0; 763 int D8SpillFI = 0; 764 765 // All calls are tail calls in GHC calling conv, and functions have no 766 // prologue/epilogue. 767 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 768 return; 769 770 StackAdjustingInsts DefCFAOffsetCandidates; 771 bool HasFP = hasFP(MF); 772 773 if (!AFI->hasStackFrame() && 774 (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) { 775 if (NumBytes != 0) { 776 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 777 MachineInstr::FrameSetup); 778 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes, true); 779 } 780 if (!NeedsWinCFI) 781 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 782 if (NeedsWinCFI && MBBI != MBB.begin()) { 783 insertSEHRange(MBB, {}, MBBI, TII, MachineInstr::FrameSetup); 784 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_PrologEnd)) 785 .setMIFlag(MachineInstr::FrameSetup); 786 MF.setHasWinCFI(true); 787 } 788 return; 789 } 790 791 // Determine spill area sizes. 792 if (STI.splitFramePointerPush(MF)) { 793 for (const CalleeSavedInfo &I : CSI) { 794 Register Reg = I.getReg(); 795 int FI = I.getFrameIdx(); 796 switch (Reg) { 797 case ARM::R11: 798 case ARM::LR: 799 if (Reg == FramePtr) 800 FramePtrSpillFI = FI; 801 GPRCS2Size += 4; 802 break; 803 case ARM::R0: 804 case ARM::R1: 805 case ARM::R2: 806 case ARM::R3: 807 case ARM::R4: 808 case ARM::R5: 809 case ARM::R6: 810 case ARM::R7: 811 case ARM::R8: 812 case ARM::R9: 813 case ARM::R10: 814 case ARM::R12: 815 GPRCS1Size += 4; 816 break; 817 case ARM::FPCXTNS: 818 FPCXTSaveSize = 4; 819 break; 820 default: 821 // This is a DPR. Exclude the aligned DPRCS2 spills. 822 if (Reg == ARM::D8) 823 D8SpillFI = FI; 824 if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs()) 825 DPRCSSize += 8; 826 } 827 } 828 } else { 829 for (const CalleeSavedInfo &I : CSI) { 830 Register Reg = I.getReg(); 831 int FI = I.getFrameIdx(); 832 switch (Reg) { 833 case ARM::R8: 834 case ARM::R9: 835 case ARM::R10: 836 case ARM::R11: 837 case ARM::R12: 838 if (STI.splitFramePushPop(MF)) { 839 GPRCS2Size += 4; 840 break; 841 } 842 [[fallthrough]]; 843 case ARM::R0: 844 case ARM::R1: 845 case ARM::R2: 846 case ARM::R3: 847 case ARM::R4: 848 case ARM::R5: 849 case ARM::R6: 850 case ARM::R7: 851 case ARM::LR: 852 if (Reg == FramePtr) 853 FramePtrSpillFI = FI; 854 GPRCS1Size += 4; 855 break; 856 case ARM::FPCXTNS: 857 FPCXTSaveSize = 4; 858 break; 859 default: 860 // This is a DPR. Exclude the aligned DPRCS2 spills. 861 if (Reg == ARM::D8) 862 D8SpillFI = FI; 863 if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs()) 864 DPRCSSize += 8; 865 } 866 } 867 } 868 869 MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push; 870 871 // Move past the PAC computation. 872 if (AFI->shouldSignReturnAddress()) 873 LastPush = MBBI++; 874 875 // Move past FPCXT area. 876 if (FPCXTSaveSize > 0) { 877 LastPush = MBBI++; 878 DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, true); 879 } 880 881 // Allocate the vararg register save area. 882 if (ArgRegsSaveSize) { 883 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize, 884 MachineInstr::FrameSetup); 885 LastPush = std::prev(MBBI); 886 DefCFAOffsetCandidates.addInst(LastPush, ArgRegsSaveSize, true); 887 } 888 889 // Move past area 1. 890 if (GPRCS1Size > 0) { 891 GPRCS1Push = LastPush = MBBI++; 892 DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true); 893 } 894 895 // Determine starting offsets of spill areas. 896 unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize; 897 unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size; 898 unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size; 899 Align DPRAlign = DPRCSSize ? std::min(Align(8), Alignment) : Align(4); 900 unsigned DPRGapSize = GPRCS1Size + FPCXTSaveSize + ArgRegsSaveSize; 901 if (!STI.splitFramePointerPush(MF)) { 902 DPRGapSize += GPRCS2Size; 903 } 904 DPRGapSize %= DPRAlign.value(); 905 906 unsigned DPRCSOffset; 907 if (STI.splitFramePointerPush(MF)) { 908 DPRCSOffset = GPRCS1Offset - DPRGapSize - DPRCSSize; 909 GPRCS2Offset = DPRCSOffset - GPRCS2Size; 910 } else { 911 DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize; 912 } 913 int FramePtrOffsetInPush = 0; 914 if (HasFP) { 915 int FPOffset = MFI.getObjectOffset(FramePtrSpillFI); 916 assert(getMaxFPOffset(STI, *AFI, MF) <= FPOffset && 917 "Max FP estimation is wrong"); 918 FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize + FPCXTSaveSize; 919 AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) + 920 NumBytes); 921 } 922 AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset); 923 AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset); 924 AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset); 925 926 // Move past area 2. 927 if (GPRCS2Size > 0 && !STI.splitFramePointerPush(MF)) { 928 GPRCS2Push = LastPush = MBBI++; 929 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size); 930 } 931 932 // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our 933 // .cfi_offset operations will reflect that. 934 if (DPRGapSize) { 935 assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs"); 936 if (LastPush != MBB.end() && 937 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize)) 938 DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize); 939 else { 940 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize, 941 MachineInstr::FrameSetup); 942 DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize); 943 } 944 } 945 946 // Move past area 3. 947 if (DPRCSSize > 0) { 948 // Since vpush register list cannot have gaps, there may be multiple vpush 949 // instructions in the prologue. 950 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) { 951 DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI)); 952 LastPush = MBBI++; 953 } 954 } 955 956 // Move past the aligned DPRCS2 area. 957 if (AFI->getNumAlignedDPRCS2Regs() > 0) { 958 MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs()); 959 // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and 960 // leaves the stack pointer pointing to the DPRCS2 area. 961 // 962 // Adjust NumBytes to represent the stack slots below the DPRCS2 area. 963 NumBytes += MFI.getObjectOffset(D8SpillFI); 964 } else 965 NumBytes = DPRCSOffset; 966 967 if (GPRCS2Size > 0 && STI.splitFramePointerPush(MF)) { 968 GPRCS2Push = LastPush = MBBI++; 969 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size); 970 } 971 972 bool NeedsWinCFIStackAlloc = NeedsWinCFI; 973 if (STI.splitFramePointerPush(MF) && HasFP) 974 NeedsWinCFIStackAlloc = false; 975 976 if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) { 977 uint32_t NumWords = NumBytes >> 2; 978 979 if (NumWords < 65536) { 980 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 981 .addImm(NumWords) 982 .setMIFlags(MachineInstr::FrameSetup) 983 .add(predOps(ARMCC::AL)); 984 } else { 985 // Split into two instructions here, instead of using t2MOVi32imm, 986 // to allow inserting accurate SEH instructions (including accurate 987 // instruction size for each of them). 988 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 989 .addImm(NumWords & 0xffff) 990 .setMIFlags(MachineInstr::FrameSetup) 991 .add(predOps(ARMCC::AL)); 992 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVTi16), ARM::R4) 993 .addReg(ARM::R4) 994 .addImm(NumWords >> 16) 995 .setMIFlags(MachineInstr::FrameSetup) 996 .add(predOps(ARMCC::AL)); 997 } 998 999 switch (TM.getCodeModel()) { 1000 case CodeModel::Tiny: 1001 llvm_unreachable("Tiny code model not available on ARM."); 1002 case CodeModel::Small: 1003 case CodeModel::Medium: 1004 case CodeModel::Kernel: 1005 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL)) 1006 .add(predOps(ARMCC::AL)) 1007 .addExternalSymbol("__chkstk") 1008 .addReg(ARM::R4, RegState::Implicit) 1009 .setMIFlags(MachineInstr::FrameSetup); 1010 break; 1011 case CodeModel::Large: 1012 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12) 1013 .addExternalSymbol("__chkstk") 1014 .setMIFlags(MachineInstr::FrameSetup); 1015 1016 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr)) 1017 .add(predOps(ARMCC::AL)) 1018 .addReg(ARM::R12, RegState::Kill) 1019 .addReg(ARM::R4, RegState::Implicit) 1020 .setMIFlags(MachineInstr::FrameSetup); 1021 break; 1022 } 1023 1024 MachineInstrBuilder Instr, SEH; 1025 Instr = BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP) 1026 .addReg(ARM::SP, RegState::Kill) 1027 .addReg(ARM::R4, RegState::Kill) 1028 .setMIFlags(MachineInstr::FrameSetup) 1029 .add(predOps(ARMCC::AL)) 1030 .add(condCodeOp()); 1031 if (NeedsWinCFIStackAlloc) { 1032 SEH = BuildMI(MF, dl, TII.get(ARM::SEH_StackAlloc)) 1033 .addImm(NumBytes) 1034 .addImm(/*Wide=*/1) 1035 .setMIFlags(MachineInstr::FrameSetup); 1036 MBB.insertAfter(Instr, SEH); 1037 } 1038 NumBytes = 0; 1039 } 1040 1041 if (NumBytes) { 1042 // Adjust SP after all the callee-save spills. 1043 if (AFI->getNumAlignedDPRCS2Regs() == 0 && 1044 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes)) 1045 DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes); 1046 else { 1047 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 1048 MachineInstr::FrameSetup); 1049 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes); 1050 } 1051 1052 if (HasFP && isARM) 1053 // Restore from fp only in ARM mode: e.g. sub sp, r7, #24 1054 // Note it's not safe to do this in Thumb2 mode because it would have 1055 // taken two instructions: 1056 // mov sp, r7 1057 // sub sp, #24 1058 // If an interrupt is taken between the two instructions, then sp is in 1059 // an inconsistent state (pointing to the middle of callee-saved area). 1060 // The interrupt handler can end up clobbering the registers. 1061 AFI->setShouldRestoreSPFromFP(true); 1062 } 1063 1064 // Set FP to point to the stack slot that contains the previous FP. 1065 // For iOS, FP is R7, which has now been stored in spill area 1. 1066 // Otherwise, if this is not iOS, all the callee-saved registers go 1067 // into spill area 1, including the FP in R11. In either case, it 1068 // is in area one and the adjustment needs to take place just after 1069 // that push. 1070 // FIXME: The above is not necessary true when PACBTI is enabled. 1071 // AAPCS requires use of R11, and PACBTI gets in the way of regular pushes, 1072 // so FP ends up on area two. 1073 MachineBasicBlock::iterator AfterPush; 1074 if (HasFP) { 1075 AfterPush = std::next(GPRCS1Push); 1076 unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push); 1077 int FPOffset = PushSize + FramePtrOffsetInPush; 1078 if (STI.splitFramePointerPush(MF)) { 1079 AfterPush = std::next(GPRCS2Push); 1080 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII, 1081 FramePtr, ARM::SP, 0, MachineInstr::FrameSetup); 1082 } else { 1083 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII, 1084 FramePtr, ARM::SP, FPOffset, 1085 MachineInstr::FrameSetup); 1086 } 1087 if (!NeedsWinCFI) { 1088 if (FramePtrOffsetInPush + PushSize != 0) { 1089 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa( 1090 nullptr, MRI->getDwarfRegNum(FramePtr, true), 1091 FPCXTSaveSize + ArgRegsSaveSize - FramePtrOffsetInPush)); 1092 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1093 .addCFIIndex(CFIIndex) 1094 .setMIFlags(MachineInstr::FrameSetup); 1095 } else { 1096 unsigned CFIIndex = 1097 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister( 1098 nullptr, MRI->getDwarfRegNum(FramePtr, true))); 1099 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1100 .addCFIIndex(CFIIndex) 1101 .setMIFlags(MachineInstr::FrameSetup); 1102 } 1103 } 1104 } 1105 1106 // Emit a SEH opcode indicating the prologue end. The rest of the prologue 1107 // instructions below don't need to be replayed to unwind the stack. 1108 if (NeedsWinCFI && MBBI != MBB.begin()) { 1109 MachineBasicBlock::iterator End = MBBI; 1110 if (HasFP && STI.splitFramePointerPush(MF)) 1111 End = AfterPush; 1112 insertSEHRange(MBB, {}, End, TII, MachineInstr::FrameSetup); 1113 BuildMI(MBB, End, dl, TII.get(ARM::SEH_PrologEnd)) 1114 .setMIFlag(MachineInstr::FrameSetup); 1115 MF.setHasWinCFI(true); 1116 } 1117 1118 // Now that the prologue's actual instructions are finalised, we can insert 1119 // the necessary DWARF cf instructions to describe the situation. Start by 1120 // recording where each register ended up: 1121 if (GPRCS1Size > 0 && !NeedsWinCFI) { 1122 MachineBasicBlock::iterator Pos = std::next(GPRCS1Push); 1123 int CFIIndex; 1124 for (const auto &Entry : CSI) { 1125 Register Reg = Entry.getReg(); 1126 int FI = Entry.getFrameIdx(); 1127 switch (Reg) { 1128 case ARM::R8: 1129 case ARM::R9: 1130 case ARM::R10: 1131 case ARM::R11: 1132 case ARM::R12: 1133 if (STI.splitFramePushPop(MF)) 1134 break; 1135 [[fallthrough]]; 1136 case ARM::R0: 1137 case ARM::R1: 1138 case ARM::R2: 1139 case ARM::R3: 1140 case ARM::R4: 1141 case ARM::R5: 1142 case ARM::R6: 1143 case ARM::R7: 1144 case ARM::LR: 1145 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 1146 nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI))); 1147 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1148 .addCFIIndex(CFIIndex) 1149 .setMIFlags(MachineInstr::FrameSetup); 1150 break; 1151 } 1152 } 1153 } 1154 1155 if (GPRCS2Size > 0 && !NeedsWinCFI) { 1156 MachineBasicBlock::iterator Pos = std::next(GPRCS2Push); 1157 for (const auto &Entry : CSI) { 1158 Register Reg = Entry.getReg(); 1159 int FI = Entry.getFrameIdx(); 1160 switch (Reg) { 1161 case ARM::R8: 1162 case ARM::R9: 1163 case ARM::R10: 1164 case ARM::R11: 1165 case ARM::R12: 1166 if (STI.splitFramePushPop(MF)) { 1167 unsigned DwarfReg = MRI->getDwarfRegNum( 1168 Reg == ARM::R12 ? ARM::RA_AUTH_CODE : Reg, true); 1169 int64_t Offset = MFI.getObjectOffset(FI); 1170 unsigned CFIIndex = MF.addFrameInst( 1171 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 1172 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1173 .addCFIIndex(CFIIndex) 1174 .setMIFlags(MachineInstr::FrameSetup); 1175 } 1176 break; 1177 } 1178 } 1179 } 1180 1181 if (DPRCSSize > 0 && !NeedsWinCFI) { 1182 // Since vpush register list cannot have gaps, there may be multiple vpush 1183 // instructions in the prologue. 1184 MachineBasicBlock::iterator Pos = std::next(LastPush); 1185 for (const auto &Entry : CSI) { 1186 Register Reg = Entry.getReg(); 1187 int FI = Entry.getFrameIdx(); 1188 if ((Reg >= ARM::D0 && Reg <= ARM::D31) && 1189 (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) { 1190 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 1191 int64_t Offset = MFI.getObjectOffset(FI); 1192 unsigned CFIIndex = MF.addFrameInst( 1193 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 1194 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1195 .addCFIIndex(CFIIndex) 1196 .setMIFlags(MachineInstr::FrameSetup); 1197 } 1198 } 1199 } 1200 1201 // Now we can emit descriptions of where the canonical frame address was 1202 // throughout the process. If we have a frame pointer, it takes over the job 1203 // half-way through, so only the first few .cfi_def_cfa_offset instructions 1204 // actually get emitted. 1205 if (!NeedsWinCFI) 1206 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 1207 1208 if (STI.isTargetELF() && hasFP(MF)) 1209 MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() - 1210 AFI->getFramePtrSpillOffset()); 1211 1212 AFI->setFPCXTSaveAreaSize(FPCXTSaveSize); 1213 AFI->setGPRCalleeSavedArea1Size(GPRCS1Size); 1214 AFI->setGPRCalleeSavedArea2Size(GPRCS2Size); 1215 AFI->setDPRCalleeSavedGapSize(DPRGapSize); 1216 AFI->setDPRCalleeSavedAreaSize(DPRCSSize); 1217 1218 // If we need dynamic stack realignment, do it here. Be paranoid and make 1219 // sure if we also have VLAs, we have a base pointer for frame access. 1220 // If aligned NEON registers were spilled, the stack has already been 1221 // realigned. 1222 if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->hasStackRealignment(MF)) { 1223 Align MaxAlign = MFI.getMaxAlign(); 1224 assert(!AFI->isThumb1OnlyFunction()); 1225 if (!AFI->isThumbFunction()) { 1226 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign, 1227 false); 1228 } else { 1229 // We cannot use sp as source/dest register here, thus we're using r4 to 1230 // perform the calculations. We're emitting the following sequence: 1231 // mov r4, sp 1232 // -- use emitAligningInstructions to produce best sequence to zero 1233 // -- out lower bits in r4 1234 // mov sp, r4 1235 // FIXME: It will be better just to find spare register here. 1236 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4) 1237 .addReg(ARM::SP, RegState::Kill) 1238 .add(predOps(ARMCC::AL)); 1239 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign, 1240 false); 1241 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 1242 .addReg(ARM::R4, RegState::Kill) 1243 .add(predOps(ARMCC::AL)); 1244 } 1245 1246 AFI->setShouldRestoreSPFromFP(true); 1247 } 1248 1249 // If we need a base pointer, set it up here. It's whatever the value 1250 // of the stack pointer is at this point. Any variable size objects 1251 // will be allocated after this, so we can still use the base pointer 1252 // to reference locals. 1253 // FIXME: Clarify FrameSetup flags here. 1254 if (RegInfo->hasBasePointer(MF)) { 1255 if (isARM) 1256 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister()) 1257 .addReg(ARM::SP) 1258 .add(predOps(ARMCC::AL)) 1259 .add(condCodeOp()); 1260 else 1261 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister()) 1262 .addReg(ARM::SP) 1263 .add(predOps(ARMCC::AL)); 1264 } 1265 1266 // If the frame has variable sized objects then the epilogue must restore 1267 // the sp from fp. We can assume there's an FP here since hasFP already 1268 // checks for hasVarSizedObjects. 1269 if (MFI.hasVarSizedObjects()) 1270 AFI->setShouldRestoreSPFromFP(true); 1271 } 1272 1273 void ARMFrameLowering::emitEpilogue(MachineFunction &MF, 1274 MachineBasicBlock &MBB) const { 1275 MachineFrameInfo &MFI = MF.getFrameInfo(); 1276 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1277 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 1278 const ARMBaseInstrInfo &TII = 1279 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1280 assert(!AFI->isThumb1OnlyFunction() && 1281 "This emitEpilogue does not support Thumb1!"); 1282 bool isARM = !AFI->isThumbFunction(); 1283 1284 // Amount of stack space we reserved next to incoming args for either 1285 // varargs registers or stack arguments in tail calls made by this function. 1286 unsigned ReservedArgStack = AFI->getArgRegsSaveSize(); 1287 1288 // How much of the stack used by incoming arguments this function is expected 1289 // to restore in this particular epilogue. 1290 int IncomingArgStackToRestore = getArgumentStackToRestore(MF, MBB); 1291 int NumBytes = (int)MFI.getStackSize(); 1292 Register FramePtr = RegInfo->getFrameRegister(MF); 1293 1294 // All calls are tail calls in GHC calling conv, and functions have no 1295 // prologue/epilogue. 1296 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 1297 return; 1298 1299 // First put ourselves on the first (from top) terminator instructions. 1300 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1301 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 1302 1303 MachineBasicBlock::iterator RangeStart; 1304 if (!AFI->hasStackFrame()) { 1305 if (MF.hasWinCFI()) { 1306 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart)) 1307 .setMIFlag(MachineInstr::FrameDestroy); 1308 RangeStart = initMBBRange(MBB, MBBI); 1309 } 1310 1311 if (NumBytes + IncomingArgStackToRestore != 0) 1312 emitSPUpdate(isARM, MBB, MBBI, dl, TII, 1313 NumBytes + IncomingArgStackToRestore, 1314 MachineInstr::FrameDestroy); 1315 } else { 1316 // Unwind MBBI to point to first LDR / VLDRD. 1317 if (MBBI != MBB.begin()) { 1318 do { 1319 --MBBI; 1320 } while (MBBI != MBB.begin() && 1321 MBBI->getFlag(MachineInstr::FrameDestroy)); 1322 if (!MBBI->getFlag(MachineInstr::FrameDestroy)) 1323 ++MBBI; 1324 } 1325 1326 if (MF.hasWinCFI()) { 1327 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart)) 1328 .setMIFlag(MachineInstr::FrameDestroy); 1329 RangeStart = initMBBRange(MBB, MBBI); 1330 } 1331 1332 // Move SP to start of FP callee save spill area. 1333 NumBytes -= (ReservedArgStack + 1334 AFI->getFPCXTSaveAreaSize() + 1335 AFI->getGPRCalleeSavedArea1Size() + 1336 AFI->getGPRCalleeSavedArea2Size() + 1337 AFI->getDPRCalleeSavedGapSize() + 1338 AFI->getDPRCalleeSavedAreaSize()); 1339 1340 // Reset SP based on frame pointer only if the stack frame extends beyond 1341 // frame pointer stack slot or target is ELF and the function has FP. 1342 if (AFI->shouldRestoreSPFromFP()) { 1343 NumBytes = AFI->getFramePtrSpillOffset() - NumBytes; 1344 if (NumBytes) { 1345 if (isARM) 1346 emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes, 1347 ARMCC::AL, 0, TII, 1348 MachineInstr::FrameDestroy); 1349 else { 1350 // It's not possible to restore SP from FP in a single instruction. 1351 // For iOS, this looks like: 1352 // mov sp, r7 1353 // sub sp, #24 1354 // This is bad, if an interrupt is taken after the mov, sp is in an 1355 // inconsistent state. 1356 // Use the first callee-saved register as a scratch register. 1357 assert(!MFI.getPristineRegs(MF).test(ARM::R4) && 1358 "No scratch register to restore SP from FP!"); 1359 emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes, 1360 ARMCC::AL, 0, TII, MachineInstr::FrameDestroy); 1361 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 1362 .addReg(ARM::R4) 1363 .add(predOps(ARMCC::AL)) 1364 .setMIFlag(MachineInstr::FrameDestroy); 1365 } 1366 } else { 1367 // Thumb2 or ARM. 1368 if (isARM) 1369 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP) 1370 .addReg(FramePtr) 1371 .add(predOps(ARMCC::AL)) 1372 .add(condCodeOp()) 1373 .setMIFlag(MachineInstr::FrameDestroy); 1374 else 1375 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 1376 .addReg(FramePtr) 1377 .add(predOps(ARMCC::AL)) 1378 .setMIFlag(MachineInstr::FrameDestroy); 1379 } 1380 } else if (NumBytes && 1381 !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes)) 1382 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes, 1383 MachineInstr::FrameDestroy); 1384 1385 // Increment past our save areas. 1386 if (AFI->getGPRCalleeSavedArea2Size() && STI.splitFramePointerPush(MF)) 1387 MBBI++; 1388 1389 if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) { 1390 MBBI++; 1391 // Since vpop register list cannot have gaps, there may be multiple vpop 1392 // instructions in the epilogue. 1393 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD) 1394 MBBI++; 1395 } 1396 if (AFI->getDPRCalleeSavedGapSize()) { 1397 assert(AFI->getDPRCalleeSavedGapSize() == 4 && 1398 "unexpected DPR alignment gap"); 1399 emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(), 1400 MachineInstr::FrameDestroy); 1401 } 1402 1403 if (AFI->getGPRCalleeSavedArea2Size() && !STI.splitFramePointerPush(MF)) 1404 MBBI++; 1405 if (AFI->getGPRCalleeSavedArea1Size()) MBBI++; 1406 1407 if (ReservedArgStack || IncomingArgStackToRestore) { 1408 assert((int)ReservedArgStack + IncomingArgStackToRestore >= 0 && 1409 "attempting to restore negative stack amount"); 1410 emitSPUpdate(isARM, MBB, MBBI, dl, TII, 1411 ReservedArgStack + IncomingArgStackToRestore, 1412 MachineInstr::FrameDestroy); 1413 } 1414 1415 // Validate PAC, It should have been already popped into R12. For CMSE entry 1416 // function, the validation instruction is emitted during expansion of the 1417 // tBXNS_RET, since the validation must use the value of SP at function 1418 // entry, before saving, resp. after restoring, FPCXTNS. 1419 if (AFI->shouldSignReturnAddress() && !AFI->isCmseNSEntryFunction()) 1420 BuildMI(MBB, MBBI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2AUT)); 1421 } 1422 1423 if (MF.hasWinCFI()) { 1424 insertSEHRange(MBB, RangeStart, MBB.end(), TII, MachineInstr::FrameDestroy); 1425 BuildMI(MBB, MBB.end(), dl, TII.get(ARM::SEH_EpilogEnd)) 1426 .setMIFlag(MachineInstr::FrameDestroy); 1427 } 1428 } 1429 1430 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 1431 /// debug info. It's the same as what we use for resolving the code-gen 1432 /// references for now. FIXME: This can go wrong when references are 1433 /// SP-relative and simple call frames aren't used. 1434 StackOffset ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, 1435 int FI, 1436 Register &FrameReg) const { 1437 return StackOffset::getFixed(ResolveFrameIndexReference(MF, FI, FrameReg, 0)); 1438 } 1439 1440 int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF, 1441 int FI, Register &FrameReg, 1442 int SPAdj) const { 1443 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1444 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 1445 MF.getSubtarget().getRegisterInfo()); 1446 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1447 int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize(); 1448 int FPOffset = Offset - AFI->getFramePtrSpillOffset(); 1449 bool isFixed = MFI.isFixedObjectIndex(FI); 1450 1451 FrameReg = ARM::SP; 1452 Offset += SPAdj; 1453 1454 // SP can move around if there are allocas. We may also lose track of SP 1455 // when emergency spilling inside a non-reserved call frame setup. 1456 bool hasMovingSP = !hasReservedCallFrame(MF); 1457 1458 // When dynamically realigning the stack, use the frame pointer for 1459 // parameters, and the stack/base pointer for locals. 1460 if (RegInfo->hasStackRealignment(MF)) { 1461 assert(hasFP(MF) && "dynamic stack realignment without a FP!"); 1462 if (isFixed) { 1463 FrameReg = RegInfo->getFrameRegister(MF); 1464 Offset = FPOffset; 1465 } else if (hasMovingSP) { 1466 assert(RegInfo->hasBasePointer(MF) && 1467 "VLAs and dynamic stack alignment, but missing base pointer!"); 1468 FrameReg = RegInfo->getBaseRegister(); 1469 Offset -= SPAdj; 1470 } 1471 return Offset; 1472 } 1473 1474 // If there is a frame pointer, use it when we can. 1475 if (hasFP(MF) && AFI->hasStackFrame()) { 1476 // Use frame pointer to reference fixed objects. Use it for locals if 1477 // there are VLAs (and thus the SP isn't reliable as a base). 1478 if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) { 1479 FrameReg = RegInfo->getFrameRegister(MF); 1480 return FPOffset; 1481 } else if (hasMovingSP) { 1482 assert(RegInfo->hasBasePointer(MF) && "missing base pointer!"); 1483 if (AFI->isThumb2Function()) { 1484 // Try to use the frame pointer if we can, else use the base pointer 1485 // since it's available. This is handy for the emergency spill slot, in 1486 // particular. 1487 if (FPOffset >= -255 && FPOffset < 0) { 1488 FrameReg = RegInfo->getFrameRegister(MF); 1489 return FPOffset; 1490 } 1491 } 1492 } else if (AFI->isThumbFunction()) { 1493 // Prefer SP to base pointer, if the offset is suitably aligned and in 1494 // range as the effective range of the immediate offset is bigger when 1495 // basing off SP. 1496 // Use add <rd>, sp, #<imm8> 1497 // ldr <rd>, [sp, #<imm8>] 1498 if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020) 1499 return Offset; 1500 // In Thumb2 mode, the negative offset is very limited. Try to avoid 1501 // out of range references. ldr <rt>,[<rn>, #-<imm8>] 1502 if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) { 1503 FrameReg = RegInfo->getFrameRegister(MF); 1504 return FPOffset; 1505 } 1506 } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) { 1507 // Otherwise, use SP or FP, whichever is closer to the stack slot. 1508 FrameReg = RegInfo->getFrameRegister(MF); 1509 return FPOffset; 1510 } 1511 } 1512 // Use the base pointer if we have one. 1513 // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper? 1514 // That can happen if we forced a base pointer for a large call frame. 1515 if (RegInfo->hasBasePointer(MF)) { 1516 FrameReg = RegInfo->getBaseRegister(); 1517 Offset -= SPAdj; 1518 } 1519 return Offset; 1520 } 1521 1522 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB, 1523 MachineBasicBlock::iterator MI, 1524 ArrayRef<CalleeSavedInfo> CSI, 1525 unsigned StmOpc, unsigned StrOpc, 1526 bool NoGap, bool (*Func)(unsigned, bool), 1527 unsigned NumAlignedDPRCS2Regs, 1528 unsigned MIFlags) const { 1529 MachineFunction &MF = *MBB.getParent(); 1530 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1531 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1532 1533 DebugLoc DL; 1534 1535 using RegAndKill = std::pair<unsigned, bool>; 1536 1537 SmallVector<RegAndKill, 4> Regs; 1538 unsigned i = CSI.size(); 1539 while (i != 0) { 1540 unsigned LastReg = 0; 1541 for (; i != 0; --i) { 1542 Register Reg = CSI[i-1].getReg(); 1543 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 1544 1545 // D-registers in the aligned area DPRCS2 are NOT spilled here. 1546 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 1547 continue; 1548 1549 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1550 bool isLiveIn = MRI.isLiveIn(Reg); 1551 if (!isLiveIn && !MRI.isReserved(Reg)) 1552 MBB.addLiveIn(Reg); 1553 // If NoGap is true, push consecutive registers and then leave the rest 1554 // for other instructions. e.g. 1555 // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11} 1556 if (NoGap && LastReg && LastReg != Reg-1) 1557 break; 1558 LastReg = Reg; 1559 // Do not set a kill flag on values that are also marked as live-in. This 1560 // happens with the @llvm-returnaddress intrinsic and with arguments 1561 // passed in callee saved registers. 1562 // Omitting the kill flags is conservatively correct even if the live-in 1563 // is not used after all. 1564 Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn)); 1565 } 1566 1567 if (Regs.empty()) 1568 continue; 1569 1570 llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) { 1571 return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first); 1572 }); 1573 1574 if (Regs.size() > 1 || StrOpc== 0) { 1575 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP) 1576 .addReg(ARM::SP) 1577 .setMIFlags(MIFlags) 1578 .add(predOps(ARMCC::AL)); 1579 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1580 MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second)); 1581 } else if (Regs.size() == 1) { 1582 BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP) 1583 .addReg(Regs[0].first, getKillRegState(Regs[0].second)) 1584 .addReg(ARM::SP) 1585 .setMIFlags(MIFlags) 1586 .addImm(-4) 1587 .add(predOps(ARMCC::AL)); 1588 } 1589 Regs.clear(); 1590 1591 // Put any subsequent vpush instructions before this one: they will refer to 1592 // higher register numbers so need to be pushed first in order to preserve 1593 // monotonicity. 1594 if (MI != MBB.begin()) 1595 --MI; 1596 } 1597 } 1598 1599 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB, 1600 MachineBasicBlock::iterator MI, 1601 MutableArrayRef<CalleeSavedInfo> CSI, 1602 unsigned LdmOpc, unsigned LdrOpc, 1603 bool isVarArg, bool NoGap, 1604 bool (*Func)(unsigned, bool), 1605 unsigned NumAlignedDPRCS2Regs) const { 1606 MachineFunction &MF = *MBB.getParent(); 1607 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1608 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1609 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1610 bool hasPAC = AFI->shouldSignReturnAddress(); 1611 DebugLoc DL; 1612 bool isTailCall = false; 1613 bool isInterrupt = false; 1614 bool isTrap = false; 1615 bool isCmseEntry = false; 1616 if (MBB.end() != MI) { 1617 DL = MI->getDebugLoc(); 1618 unsigned RetOpcode = MI->getOpcode(); 1619 isTailCall = 1620 (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri || 1621 RetOpcode == ARM::TCRETURNrinotr12); 1622 isInterrupt = 1623 RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR; 1624 isTrap = 1625 RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl || 1626 RetOpcode == ARM::tTRAP; 1627 isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET); 1628 } 1629 1630 SmallVector<unsigned, 4> Regs; 1631 unsigned i = CSI.size(); 1632 while (i != 0) { 1633 unsigned LastReg = 0; 1634 bool DeleteRet = false; 1635 for (; i != 0; --i) { 1636 CalleeSavedInfo &Info = CSI[i-1]; 1637 Register Reg = Info.getReg(); 1638 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 1639 1640 // The aligned reloads from area DPRCS2 are not inserted here. 1641 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 1642 continue; 1643 if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt && 1644 !isCmseEntry && !isTrap && AFI->getArgumentStackToRestore() == 0 && 1645 STI.hasV5TOps() && MBB.succ_empty() && !hasPAC && 1646 !STI.splitFramePointerPush(MF)) { 1647 Reg = ARM::PC; 1648 // Fold the return instruction into the LDM. 1649 DeleteRet = true; 1650 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET; 1651 } 1652 1653 // If NoGap is true, pop consecutive registers and then leave the rest 1654 // for other instructions. e.g. 1655 // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11} 1656 if (NoGap && LastReg && LastReg != Reg-1) 1657 break; 1658 1659 LastReg = Reg; 1660 Regs.push_back(Reg); 1661 } 1662 1663 if (Regs.empty()) 1664 continue; 1665 1666 llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) { 1667 return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS); 1668 }); 1669 1670 if (Regs.size() > 1 || LdrOpc == 0) { 1671 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP) 1672 .addReg(ARM::SP) 1673 .add(predOps(ARMCC::AL)) 1674 .setMIFlags(MachineInstr::FrameDestroy); 1675 for (unsigned Reg : Regs) 1676 MIB.addReg(Reg, getDefRegState(true)); 1677 if (DeleteRet) { 1678 if (MI != MBB.end()) { 1679 MIB.copyImplicitOps(*MI); 1680 MI->eraseFromParent(); 1681 } 1682 } 1683 MI = MIB; 1684 } else if (Regs.size() == 1) { 1685 // If we adjusted the reg to PC from LR above, switch it back here. We 1686 // only do that for LDM. 1687 if (Regs[0] == ARM::PC) 1688 Regs[0] = ARM::LR; 1689 MachineInstrBuilder MIB = 1690 BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0]) 1691 .addReg(ARM::SP, RegState::Define) 1692 .addReg(ARM::SP) 1693 .setMIFlags(MachineInstr::FrameDestroy); 1694 // ARM mode needs an extra reg0 here due to addrmode2. Will go away once 1695 // that refactoring is complete (eventually). 1696 if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) { 1697 MIB.addReg(0); 1698 MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift)); 1699 } else 1700 MIB.addImm(4); 1701 MIB.add(predOps(ARMCC::AL)); 1702 } 1703 Regs.clear(); 1704 1705 // Put any subsequent vpop instructions after this one: they will refer to 1706 // higher register numbers so need to be popped afterwards. 1707 if (MI != MBB.end()) 1708 ++MI; 1709 } 1710 } 1711 1712 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers 1713 /// starting from d8. Also insert stack realignment code and leave the stack 1714 /// pointer pointing to the d8 spill slot. 1715 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB, 1716 MachineBasicBlock::iterator MI, 1717 unsigned NumAlignedDPRCS2Regs, 1718 ArrayRef<CalleeSavedInfo> CSI, 1719 const TargetRegisterInfo *TRI) { 1720 MachineFunction &MF = *MBB.getParent(); 1721 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1722 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1723 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1724 MachineFrameInfo &MFI = MF.getFrameInfo(); 1725 1726 // Mark the D-register spill slots as properly aligned. Since MFI computes 1727 // stack slot layout backwards, this can actually mean that the d-reg stack 1728 // slot offsets can be wrong. The offset for d8 will always be correct. 1729 for (const CalleeSavedInfo &I : CSI) { 1730 unsigned DNum = I.getReg() - ARM::D8; 1731 if (DNum > NumAlignedDPRCS2Regs - 1) 1732 continue; 1733 int FI = I.getFrameIdx(); 1734 // The even-numbered registers will be 16-byte aligned, the odd-numbered 1735 // registers will be 8-byte aligned. 1736 MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16)); 1737 1738 // The stack slot for D8 needs to be maximally aligned because this is 1739 // actually the point where we align the stack pointer. MachineFrameInfo 1740 // computes all offsets relative to the incoming stack pointer which is a 1741 // bit weird when realigning the stack. Any extra padding for this 1742 // over-alignment is not realized because the code inserted below adjusts 1743 // the stack pointer by numregs * 8 before aligning the stack pointer. 1744 if (DNum == 0) 1745 MFI.setObjectAlignment(FI, MFI.getMaxAlign()); 1746 } 1747 1748 // Move the stack pointer to the d8 spill slot, and align it at the same 1749 // time. Leave the stack slot address in the scratch register r4. 1750 // 1751 // sub r4, sp, #numregs * 8 1752 // bic r4, r4, #align - 1 1753 // mov sp, r4 1754 // 1755 bool isThumb = AFI->isThumbFunction(); 1756 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1757 AFI->setShouldRestoreSPFromFP(true); 1758 1759 // sub r4, sp, #numregs * 8 1760 // The immediate is <= 64, so it doesn't need any special encoding. 1761 unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri; 1762 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1763 .addReg(ARM::SP) 1764 .addImm(8 * NumAlignedDPRCS2Regs) 1765 .add(predOps(ARMCC::AL)) 1766 .add(condCodeOp()); 1767 1768 Align MaxAlign = MF.getFrameInfo().getMaxAlign(); 1769 // We must set parameter MustBeSingleInstruction to true, since 1770 // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform 1771 // stack alignment. Luckily, this can always be done since all ARM 1772 // architecture versions that support Neon also support the BFC 1773 // instruction. 1774 emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true); 1775 1776 // mov sp, r4 1777 // The stack pointer must be adjusted before spilling anything, otherwise 1778 // the stack slots could be clobbered by an interrupt handler. 1779 // Leave r4 live, it is used below. 1780 Opc = isThumb ? ARM::tMOVr : ARM::MOVr; 1781 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP) 1782 .addReg(ARM::R4) 1783 .add(predOps(ARMCC::AL)); 1784 if (!isThumb) 1785 MIB.add(condCodeOp()); 1786 1787 // Now spill NumAlignedDPRCS2Regs registers starting from d8. 1788 // r4 holds the stack slot address. 1789 unsigned NextReg = ARM::D8; 1790 1791 // 16-byte aligned vst1.64 with 4 d-regs and address writeback. 1792 // The writeback is only needed when emitting two vst1.64 instructions. 1793 if (NumAlignedDPRCS2Regs >= 6) { 1794 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1795 &ARM::QQPRRegClass); 1796 MBB.addLiveIn(SupReg); 1797 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4) 1798 .addReg(ARM::R4, RegState::Kill) 1799 .addImm(16) 1800 .addReg(NextReg) 1801 .addReg(SupReg, RegState::ImplicitKill) 1802 .add(predOps(ARMCC::AL)); 1803 NextReg += 4; 1804 NumAlignedDPRCS2Regs -= 4; 1805 } 1806 1807 // We won't modify r4 beyond this point. It currently points to the next 1808 // register to be spilled. 1809 unsigned R4BaseReg = NextReg; 1810 1811 // 16-byte aligned vst1.64 with 4 d-regs, no writeback. 1812 if (NumAlignedDPRCS2Regs >= 4) { 1813 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1814 &ARM::QQPRRegClass); 1815 MBB.addLiveIn(SupReg); 1816 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q)) 1817 .addReg(ARM::R4) 1818 .addImm(16) 1819 .addReg(NextReg) 1820 .addReg(SupReg, RegState::ImplicitKill) 1821 .add(predOps(ARMCC::AL)); 1822 NextReg += 4; 1823 NumAlignedDPRCS2Regs -= 4; 1824 } 1825 1826 // 16-byte aligned vst1.64 with 2 d-regs. 1827 if (NumAlignedDPRCS2Regs >= 2) { 1828 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1829 &ARM::QPRRegClass); 1830 MBB.addLiveIn(SupReg); 1831 BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64)) 1832 .addReg(ARM::R4) 1833 .addImm(16) 1834 .addReg(SupReg) 1835 .add(predOps(ARMCC::AL)); 1836 NextReg += 2; 1837 NumAlignedDPRCS2Regs -= 2; 1838 } 1839 1840 // Finally, use a vanilla vstr.64 for the odd last register. 1841 if (NumAlignedDPRCS2Regs) { 1842 MBB.addLiveIn(NextReg); 1843 // vstr.64 uses addrmode5 which has an offset scale of 4. 1844 BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD)) 1845 .addReg(NextReg) 1846 .addReg(ARM::R4) 1847 .addImm((NextReg - R4BaseReg) * 2) 1848 .add(predOps(ARMCC::AL)); 1849 } 1850 1851 // The last spill instruction inserted should kill the scratch register r4. 1852 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1853 } 1854 1855 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an 1856 /// iterator to the following instruction. 1857 static MachineBasicBlock::iterator 1858 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 1859 unsigned NumAlignedDPRCS2Regs) { 1860 // sub r4, sp, #numregs * 8 1861 // bic r4, r4, #align - 1 1862 // mov sp, r4 1863 ++MI; ++MI; ++MI; 1864 assert(MI->mayStore() && "Expecting spill instruction"); 1865 1866 // These switches all fall through. 1867 switch(NumAlignedDPRCS2Regs) { 1868 case 7: 1869 ++MI; 1870 assert(MI->mayStore() && "Expecting spill instruction"); 1871 [[fallthrough]]; 1872 default: 1873 ++MI; 1874 assert(MI->mayStore() && "Expecting spill instruction"); 1875 [[fallthrough]]; 1876 case 1: 1877 case 2: 1878 case 4: 1879 assert(MI->killsRegister(ARM::R4, /*TRI=*/nullptr) && "Missed kill flag"); 1880 ++MI; 1881 } 1882 return MI; 1883 } 1884 1885 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers 1886 /// starting from d8. These instructions are assumed to execute while the 1887 /// stack is still aligned, unlike the code inserted by emitPopInst. 1888 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB, 1889 MachineBasicBlock::iterator MI, 1890 unsigned NumAlignedDPRCS2Regs, 1891 ArrayRef<CalleeSavedInfo> CSI, 1892 const TargetRegisterInfo *TRI) { 1893 MachineFunction &MF = *MBB.getParent(); 1894 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1895 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1896 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1897 1898 // Find the frame index assigned to d8. 1899 int D8SpillFI = 0; 1900 for (const CalleeSavedInfo &I : CSI) 1901 if (I.getReg() == ARM::D8) { 1902 D8SpillFI = I.getFrameIdx(); 1903 break; 1904 } 1905 1906 // Materialize the address of the d8 spill slot into the scratch register r4. 1907 // This can be fairly complicated if the stack frame is large, so just use 1908 // the normal frame index elimination mechanism to do it. This code runs as 1909 // the initial part of the epilog where the stack and base pointers haven't 1910 // been changed yet. 1911 bool isThumb = AFI->isThumbFunction(); 1912 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1913 1914 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri; 1915 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1916 .addFrameIndex(D8SpillFI) 1917 .addImm(0) 1918 .add(predOps(ARMCC::AL)) 1919 .add(condCodeOp()); 1920 1921 // Now restore NumAlignedDPRCS2Regs registers starting from d8. 1922 unsigned NextReg = ARM::D8; 1923 1924 // 16-byte aligned vld1.64 with 4 d-regs and writeback. 1925 if (NumAlignedDPRCS2Regs >= 6) { 1926 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1927 &ARM::QQPRRegClass); 1928 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg) 1929 .addReg(ARM::R4, RegState::Define) 1930 .addReg(ARM::R4, RegState::Kill) 1931 .addImm(16) 1932 .addReg(SupReg, RegState::ImplicitDefine) 1933 .add(predOps(ARMCC::AL)); 1934 NextReg += 4; 1935 NumAlignedDPRCS2Regs -= 4; 1936 } 1937 1938 // We won't modify r4 beyond this point. It currently points to the next 1939 // register to be spilled. 1940 unsigned R4BaseReg = NextReg; 1941 1942 // 16-byte aligned vld1.64 with 4 d-regs, no writeback. 1943 if (NumAlignedDPRCS2Regs >= 4) { 1944 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1945 &ARM::QQPRRegClass); 1946 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg) 1947 .addReg(ARM::R4) 1948 .addImm(16) 1949 .addReg(SupReg, RegState::ImplicitDefine) 1950 .add(predOps(ARMCC::AL)); 1951 NextReg += 4; 1952 NumAlignedDPRCS2Regs -= 4; 1953 } 1954 1955 // 16-byte aligned vld1.64 with 2 d-regs. 1956 if (NumAlignedDPRCS2Regs >= 2) { 1957 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1958 &ARM::QPRRegClass); 1959 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg) 1960 .addReg(ARM::R4) 1961 .addImm(16) 1962 .add(predOps(ARMCC::AL)); 1963 NextReg += 2; 1964 NumAlignedDPRCS2Regs -= 2; 1965 } 1966 1967 // Finally, use a vanilla vldr.64 for the remaining odd register. 1968 if (NumAlignedDPRCS2Regs) 1969 BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg) 1970 .addReg(ARM::R4) 1971 .addImm(2 * (NextReg - R4BaseReg)) 1972 .add(predOps(ARMCC::AL)); 1973 1974 // Last store kills r4. 1975 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1976 } 1977 1978 bool ARMFrameLowering::spillCalleeSavedRegisters( 1979 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 1980 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 1981 if (CSI.empty()) 1982 return false; 1983 1984 MachineFunction &MF = *MBB.getParent(); 1985 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1986 1987 unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD; 1988 unsigned PushOneOpc = AFI->isThumbFunction() ? 1989 ARM::t2STR_PRE : ARM::STR_PRE_IMM; 1990 unsigned FltOpc = ARM::VSTMDDB_UPD; 1991 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1992 // Compute PAC in R12. 1993 if (AFI->shouldSignReturnAddress()) { 1994 BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2PAC)) 1995 .setMIFlags(MachineInstr::FrameSetup); 1996 } 1997 // Save the non-secure floating point context. 1998 if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) { 1999 return C.getReg() == ARM::FPCXTNS; 2000 })) { 2001 BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre), 2002 ARM::SP) 2003 .addReg(ARM::SP) 2004 .addImm(-4) 2005 .add(predOps(ARMCC::AL)); 2006 } 2007 if (STI.splitFramePointerPush(MF)) { 2008 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, 2009 &isSplitFPArea1Register, 0, MachineInstr::FrameSetup); 2010 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register, 2011 NumAlignedDPRCS2Regs, MachineInstr::FrameSetup); 2012 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, 2013 &isSplitFPArea2Register, 0, MachineInstr::FrameSetup); 2014 } else { 2015 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 2016 0, MachineInstr::FrameSetup); 2017 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 2018 0, MachineInstr::FrameSetup); 2019 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register, 2020 NumAlignedDPRCS2Regs, MachineInstr::FrameSetup); 2021 } 2022 2023 // The code above does not insert spill code for the aligned DPRCS2 registers. 2024 // The stack realignment code will be inserted between the push instructions 2025 // and these spills. 2026 if (NumAlignedDPRCS2Regs) 2027 emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 2028 2029 return true; 2030 } 2031 2032 bool ARMFrameLowering::restoreCalleeSavedRegisters( 2033 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2034 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2035 if (CSI.empty()) 2036 return false; 2037 2038 MachineFunction &MF = *MBB.getParent(); 2039 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2040 bool isVarArg = AFI->getArgRegsSaveSize() > 0; 2041 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 2042 2043 // The emitPopInst calls below do not insert reloads for the aligned DPRCS2 2044 // registers. Do that here instead. 2045 if (NumAlignedDPRCS2Regs) 2046 emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 2047 2048 unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 2049 unsigned LdrOpc = 2050 AFI->isThumbFunction() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM; 2051 unsigned FltOpc = ARM::VLDMDIA_UPD; 2052 if (STI.splitFramePointerPush(MF)) { 2053 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 2054 &isSplitFPArea2Register, 0); 2055 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register, 2056 NumAlignedDPRCS2Regs); 2057 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 2058 &isSplitFPArea1Register, 0); 2059 } else { 2060 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register, 2061 NumAlignedDPRCS2Regs); 2062 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 2063 &isARMArea2Register, 0); 2064 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 2065 &isARMArea1Register, 0); 2066 } 2067 2068 return true; 2069 } 2070 2071 // FIXME: Make generic? 2072 static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF, 2073 const ARMBaseInstrInfo &TII) { 2074 unsigned FnSize = 0; 2075 for (auto &MBB : MF) { 2076 for (auto &MI : MBB) 2077 FnSize += TII.getInstSizeInBytes(MI); 2078 } 2079 if (MF.getJumpTableInfo()) 2080 for (auto &Table: MF.getJumpTableInfo()->getJumpTables()) 2081 FnSize += Table.MBBs.size() * 4; 2082 FnSize += MF.getConstantPool()->getConstants().size() * 4; 2083 return FnSize; 2084 } 2085 2086 /// estimateRSStackSizeLimit - Look at each instruction that references stack 2087 /// frames and return the stack size limit beyond which some of these 2088 /// instructions will require a scratch register during their expansion later. 2089 // FIXME: Move to TII? 2090 static unsigned estimateRSStackSizeLimit(MachineFunction &MF, 2091 const TargetFrameLowering *TFI, 2092 bool &HasNonSPFrameIndex) { 2093 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2094 const ARMBaseInstrInfo &TII = 2095 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2096 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2097 unsigned Limit = (1 << 12) - 1; 2098 for (auto &MBB : MF) { 2099 for (auto &MI : MBB) { 2100 if (MI.isDebugInstr()) 2101 continue; 2102 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 2103 if (!MI.getOperand(i).isFI()) 2104 continue; 2105 2106 // When using ADDri to get the address of a stack object, 255 is the 2107 // largest offset guaranteed to fit in the immediate offset. 2108 if (MI.getOpcode() == ARM::ADDri) { 2109 Limit = std::min(Limit, (1U << 8) - 1); 2110 break; 2111 } 2112 // t2ADDri will not require an extra register, it can reuse the 2113 // destination. 2114 if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12) 2115 break; 2116 2117 const MCInstrDesc &MCID = MI.getDesc(); 2118 const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF); 2119 if (RegClass && !RegClass->contains(ARM::SP)) 2120 HasNonSPFrameIndex = true; 2121 2122 // Otherwise check the addressing mode. 2123 switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) { 2124 case ARMII::AddrMode_i12: 2125 case ARMII::AddrMode2: 2126 // Default 12 bit limit. 2127 break; 2128 case ARMII::AddrMode3: 2129 case ARMII::AddrModeT2_i8neg: 2130 Limit = std::min(Limit, (1U << 8) - 1); 2131 break; 2132 case ARMII::AddrMode5FP16: 2133 Limit = std::min(Limit, ((1U << 8) - 1) * 2); 2134 break; 2135 case ARMII::AddrMode5: 2136 case ARMII::AddrModeT2_i8s4: 2137 case ARMII::AddrModeT2_ldrex: 2138 Limit = std::min(Limit, ((1U << 8) - 1) * 4); 2139 break; 2140 case ARMII::AddrModeT2_i12: 2141 // i12 supports only positive offset so these will be converted to 2142 // i8 opcodes. See llvm::rewriteT2FrameIndex. 2143 if (TFI->hasFP(MF) && AFI->hasStackFrame()) 2144 Limit = std::min(Limit, (1U << 8) - 1); 2145 break; 2146 case ARMII::AddrMode4: 2147 case ARMII::AddrMode6: 2148 // Addressing modes 4 & 6 (load/store) instructions can't encode an 2149 // immediate offset for stack references. 2150 return 0; 2151 case ARMII::AddrModeT2_i7: 2152 Limit = std::min(Limit, ((1U << 7) - 1) * 1); 2153 break; 2154 case ARMII::AddrModeT2_i7s2: 2155 Limit = std::min(Limit, ((1U << 7) - 1) * 2); 2156 break; 2157 case ARMII::AddrModeT2_i7s4: 2158 Limit = std::min(Limit, ((1U << 7) - 1) * 4); 2159 break; 2160 default: 2161 llvm_unreachable("Unhandled addressing mode in stack size limit calculation"); 2162 } 2163 break; // At most one FI per instruction 2164 } 2165 } 2166 } 2167 2168 return Limit; 2169 } 2170 2171 // In functions that realign the stack, it can be an advantage to spill the 2172 // callee-saved vector registers after realigning the stack. The vst1 and vld1 2173 // instructions take alignment hints that can improve performance. 2174 static void 2175 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) { 2176 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0); 2177 if (!SpillAlignedNEONRegs) 2178 return; 2179 2180 // Naked functions don't spill callee-saved registers. 2181 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 2182 return; 2183 2184 // We are planning to use NEON instructions vst1 / vld1. 2185 if (!MF.getSubtarget<ARMSubtarget>().hasNEON()) 2186 return; 2187 2188 // Don't bother if the default stack alignment is sufficiently high. 2189 if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8)) 2190 return; 2191 2192 // Aligned spills require stack realignment. 2193 if (!static_cast<const ARMBaseRegisterInfo *>( 2194 MF.getSubtarget().getRegisterInfo())->canRealignStack(MF)) 2195 return; 2196 2197 // We always spill contiguous d-registers starting from d8. Count how many 2198 // needs spilling. The register allocator will almost always use the 2199 // callee-saved registers in order, but it can happen that there are holes in 2200 // the range. Registers above the hole will be spilled to the standard DPRCS 2201 // area. 2202 unsigned NumSpills = 0; 2203 for (; NumSpills < 8; ++NumSpills) 2204 if (!SavedRegs.test(ARM::D8 + NumSpills)) 2205 break; 2206 2207 // Don't do this for just one d-register. It's not worth it. 2208 if (NumSpills < 2) 2209 return; 2210 2211 // Spill the first NumSpills D-registers after realigning the stack. 2212 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills); 2213 2214 // A scratch register is required for the vst1 / vld1 instructions. 2215 SavedRegs.set(ARM::R4); 2216 } 2217 2218 bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 2219 // For CMSE entry functions, we want to save the FPCXT_NS immediately 2220 // upon function entry (resp. restore it immmediately before return) 2221 if (STI.hasV8_1MMainlineOps() && 2222 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) 2223 return false; 2224 2225 // We are disabling shrinkwrapping for now when PAC is enabled, as 2226 // shrinkwrapping can cause clobbering of r12 when the PAC code is 2227 // generated. A follow-up patch will fix this in a more performant manner. 2228 if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress( 2229 true /* SpillsLR */)) 2230 return false; 2231 2232 return true; 2233 } 2234 2235 bool ARMFrameLowering::requiresAAPCSFrameRecord( 2236 const MachineFunction &MF) const { 2237 const auto &Subtarget = MF.getSubtarget<ARMSubtarget>(); 2238 return Subtarget.createAAPCSFrameChain() && hasFP(MF); 2239 } 2240 2241 // Thumb1 may require a spill when storing to a frame index through FP (or any 2242 // access with execute-only), for cases where FP is a high register (R11). This 2243 // scans the function for cases where this may happen. 2244 static bool canSpillOnFrameIndexAccess(const MachineFunction &MF, 2245 const TargetFrameLowering &TFI) { 2246 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2247 if (!AFI->isThumb1OnlyFunction()) 2248 return false; 2249 2250 const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); 2251 for (const auto &MBB : MF) 2252 for (const auto &MI : MBB) 2253 if (MI.getOpcode() == ARM::tSTRspi || MI.getOpcode() == ARM::tSTRi || 2254 STI.genExecuteOnly()) 2255 for (const auto &Op : MI.operands()) 2256 if (Op.isFI()) { 2257 Register Reg; 2258 TFI.getFrameIndexReference(MF, Op.getIndex(), Reg); 2259 if (ARM::hGPRRegClass.contains(Reg) && Reg != ARM::SP) 2260 return true; 2261 } 2262 return false; 2263 } 2264 2265 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF, 2266 BitVector &SavedRegs, 2267 RegScavenger *RS) const { 2268 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2269 // This tells PEI to spill the FP as if it is any other callee-save register 2270 // to take advantage the eliminateFrameIndex machinery. This also ensures it 2271 // is spilled in the order specified by getCalleeSavedRegs() to make it easier 2272 // to combine multiple loads / stores. 2273 bool CanEliminateFrame = !(requiresAAPCSFrameRecord(MF) && hasFP(MF)); 2274 bool CS1Spilled = false; 2275 bool LRSpilled = false; 2276 unsigned NumGPRSpills = 0; 2277 unsigned NumFPRSpills = 0; 2278 SmallVector<unsigned, 4> UnspilledCS1GPRs; 2279 SmallVector<unsigned, 4> UnspilledCS2GPRs; 2280 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 2281 MF.getSubtarget().getRegisterInfo()); 2282 const ARMBaseInstrInfo &TII = 2283 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2284 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2285 MachineFrameInfo &MFI = MF.getFrameInfo(); 2286 MachineRegisterInfo &MRI = MF.getRegInfo(); 2287 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2288 (void)TRI; // Silence unused warning in non-assert builds. 2289 Register FramePtr = RegInfo->getFrameRegister(MF); 2290 2291 // Spill R4 if Thumb2 function requires stack realignment - it will be used as 2292 // scratch register. Also spill R4 if Thumb2 function has varsized objects, 2293 // since it's not always possible to restore sp from fp in a single 2294 // instruction. 2295 // FIXME: It will be better just to find spare register here. 2296 if (AFI->isThumb2Function() && 2297 (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF))) 2298 SavedRegs.set(ARM::R4); 2299 2300 // If a stack probe will be emitted, spill R4 and LR, since they are 2301 // clobbered by the stack probe call. 2302 // This estimate should be a safe, conservative estimate. The actual 2303 // stack probe is enabled based on the size of the local objects; 2304 // this estimate also includes the varargs store size. 2305 if (STI.isTargetWindows() && 2306 WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) { 2307 SavedRegs.set(ARM::R4); 2308 SavedRegs.set(ARM::LR); 2309 } 2310 2311 if (AFI->isThumb1OnlyFunction()) { 2312 // Spill LR if Thumb1 function uses variable length argument lists. 2313 if (AFI->getArgRegsSaveSize() > 0) 2314 SavedRegs.set(ARM::LR); 2315 2316 // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function 2317 // requires stack alignment. We don't know for sure what the stack size 2318 // will be, but for this, an estimate is good enough. If there anything 2319 // changes it, it'll be a spill, which implies we've used all the registers 2320 // and so R4 is already used, so not marking it here will be OK. 2321 // FIXME: It will be better just to find spare register here. 2322 if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF) || 2323 MFI.estimateStackSize(MF) > 508) 2324 SavedRegs.set(ARM::R4); 2325 } 2326 2327 // See if we can spill vector registers to aligned stack. 2328 checkNumAlignedDPRCS2Regs(MF, SavedRegs); 2329 2330 // Spill the BasePtr if it's used. 2331 if (RegInfo->hasBasePointer(MF)) 2332 SavedRegs.set(RegInfo->getBaseRegister()); 2333 2334 // On v8.1-M.Main CMSE entry functions save/restore FPCXT. 2335 if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction()) 2336 CanEliminateFrame = false; 2337 2338 // When return address signing is enabled R12 is treated as callee-saved. 2339 if (AFI->shouldSignReturnAddress()) 2340 CanEliminateFrame = false; 2341 2342 // Don't spill FP if the frame can be eliminated. This is determined 2343 // by scanning the callee-save registers to see if any is modified. 2344 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 2345 for (unsigned i = 0; CSRegs[i]; ++i) { 2346 unsigned Reg = CSRegs[i]; 2347 bool Spilled = false; 2348 if (SavedRegs.test(Reg)) { 2349 Spilled = true; 2350 CanEliminateFrame = false; 2351 } 2352 2353 if (!ARM::GPRRegClass.contains(Reg)) { 2354 if (Spilled) { 2355 if (ARM::SPRRegClass.contains(Reg)) 2356 NumFPRSpills++; 2357 else if (ARM::DPRRegClass.contains(Reg)) 2358 NumFPRSpills += 2; 2359 else if (ARM::QPRRegClass.contains(Reg)) 2360 NumFPRSpills += 4; 2361 } 2362 continue; 2363 } 2364 2365 if (Spilled) { 2366 NumGPRSpills++; 2367 2368 if (!STI.splitFramePushPop(MF)) { 2369 if (Reg == ARM::LR) 2370 LRSpilled = true; 2371 CS1Spilled = true; 2372 continue; 2373 } 2374 2375 // Keep track if LR and any of R4, R5, R6, and R7 is spilled. 2376 switch (Reg) { 2377 case ARM::LR: 2378 LRSpilled = true; 2379 [[fallthrough]]; 2380 case ARM::R0: case ARM::R1: 2381 case ARM::R2: case ARM::R3: 2382 case ARM::R4: case ARM::R5: 2383 case ARM::R6: case ARM::R7: 2384 CS1Spilled = true; 2385 break; 2386 default: 2387 break; 2388 } 2389 } else { 2390 if (!STI.splitFramePushPop(MF)) { 2391 UnspilledCS1GPRs.push_back(Reg); 2392 continue; 2393 } 2394 2395 switch (Reg) { 2396 case ARM::R0: case ARM::R1: 2397 case ARM::R2: case ARM::R3: 2398 case ARM::R4: case ARM::R5: 2399 case ARM::R6: case ARM::R7: 2400 case ARM::LR: 2401 UnspilledCS1GPRs.push_back(Reg); 2402 break; 2403 default: 2404 UnspilledCS2GPRs.push_back(Reg); 2405 break; 2406 } 2407 } 2408 } 2409 2410 bool ForceLRSpill = false; 2411 if (!LRSpilled && AFI->isThumb1OnlyFunction()) { 2412 unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII); 2413 // Force LR to be spilled if the Thumb function size is > 2048. This enables 2414 // use of BL to implement far jump. 2415 if (FnSize >= (1 << 11)) { 2416 CanEliminateFrame = false; 2417 ForceLRSpill = true; 2418 } 2419 } 2420 2421 // If any of the stack slot references may be out of range of an immediate 2422 // offset, make sure a register (or a spill slot) is available for the 2423 // register scavenger. Note that if we're indexing off the frame pointer, the 2424 // effective stack size is 4 bytes larger since the FP points to the stack 2425 // slot of the previous FP. Also, if we have variable sized objects in the 2426 // function, stack slot references will often be negative, and some of 2427 // our instructions are positive-offset only, so conservatively consider 2428 // that case to want a spill slot (or register) as well. Similarly, if 2429 // the function adjusts the stack pointer during execution and the 2430 // adjustments aren't already part of our stack size estimate, our offset 2431 // calculations may be off, so be conservative. 2432 // FIXME: We could add logic to be more precise about negative offsets 2433 // and which instructions will need a scratch register for them. Is it 2434 // worth the effort and added fragility? 2435 unsigned EstimatedStackSize = 2436 MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills); 2437 2438 // Determine biggest (positive) SP offset in MachineFrameInfo. 2439 int MaxFixedOffset = 0; 2440 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 2441 int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I); 2442 MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset); 2443 } 2444 2445 bool HasFP = hasFP(MF); 2446 if (HasFP) { 2447 if (AFI->hasStackFrame()) 2448 EstimatedStackSize += 4; 2449 } else { 2450 // If FP is not used, SP will be used to access arguments, so count the 2451 // size of arguments into the estimation. 2452 EstimatedStackSize += MaxFixedOffset; 2453 } 2454 EstimatedStackSize += 16; // For possible paddings. 2455 2456 unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit; 2457 bool HasNonSPFrameIndex = false; 2458 if (AFI->isThumb1OnlyFunction()) { 2459 // For Thumb1, don't bother to iterate over the function. The only 2460 // instruction that requires an emergency spill slot is a store to a 2461 // frame index. 2462 // 2463 // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned 2464 // immediate. tSTRi, which is used for bp- and fp-relative accesses, has 2465 // a 5-bit unsigned immediate. 2466 // 2467 // We could try to check if the function actually contains a tSTRspi 2468 // that might need the spill slot, but it's not really important. 2469 // Functions with VLAs or extremely large call frames are rare, and 2470 // if a function is allocating more than 1KB of stack, an extra 4-byte 2471 // slot probably isn't relevant. 2472 // 2473 // A special case is the scenario where r11 is used as FP, where accesses 2474 // to a frame index will require its value to be moved into a low reg. 2475 // This is handled later on, once we are able to determine if we have any 2476 // fp-relative accesses. 2477 if (RegInfo->hasBasePointer(MF)) 2478 EstimatedRSStackSizeLimit = (1U << 5) * 4; 2479 else 2480 EstimatedRSStackSizeLimit = (1U << 8) * 4; 2481 EstimatedRSFixedSizeLimit = (1U << 5) * 4; 2482 } else { 2483 EstimatedRSStackSizeLimit = 2484 estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex); 2485 EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit; 2486 } 2487 // Final estimate of whether sp or bp-relative accesses might require 2488 // scavenging. 2489 bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit; 2490 2491 // If the stack pointer moves and we don't have a base pointer, the 2492 // estimate logic doesn't work. The actual offsets might be larger when 2493 // we're constructing a call frame, or we might need to use negative 2494 // offsets from fp. 2495 bool HasMovingSP = MFI.hasVarSizedObjects() || 2496 (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF)); 2497 bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP; 2498 2499 // If we have a frame pointer, we assume arguments will be accessed 2500 // relative to the frame pointer. Check whether fp-relative accesses to 2501 // arguments require scavenging. 2502 // 2503 // We could do slightly better on Thumb1; in some cases, an sp-relative 2504 // offset would be legal even though an fp-relative offset is not. 2505 int MaxFPOffset = getMaxFPOffset(STI, *AFI, MF); 2506 bool HasLargeArgumentList = 2507 HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit; 2508 2509 bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP || 2510 HasLargeArgumentList || HasNonSPFrameIndex; 2511 LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit 2512 << "; EstimatedStack: " << EstimatedStackSize 2513 << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset 2514 << "; BigFrameOffsets: " << BigFrameOffsets << "\n"); 2515 if (BigFrameOffsets || 2516 !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) { 2517 AFI->setHasStackFrame(true); 2518 2519 if (HasFP) { 2520 SavedRegs.set(FramePtr); 2521 // If the frame pointer is required by the ABI, also spill LR so that we 2522 // emit a complete frame record. 2523 if ((requiresAAPCSFrameRecord(MF) || 2524 MF.getTarget().Options.DisableFramePointerElim(MF)) && 2525 !LRSpilled) { 2526 SavedRegs.set(ARM::LR); 2527 LRSpilled = true; 2528 NumGPRSpills++; 2529 auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR); 2530 if (LRPos != UnspilledCS1GPRs.end()) 2531 UnspilledCS1GPRs.erase(LRPos); 2532 } 2533 auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr); 2534 if (FPPos != UnspilledCS1GPRs.end()) 2535 UnspilledCS1GPRs.erase(FPPos); 2536 NumGPRSpills++; 2537 if (FramePtr == ARM::R7) 2538 CS1Spilled = true; 2539 } 2540 2541 // This is the number of extra spills inserted for callee-save GPRs which 2542 // would not otherwise be used by the function. When greater than zero it 2543 // guaranteees that it is possible to scavenge a register to hold the 2544 // address of a stack slot. On Thumb1, the register must be a valid operand 2545 // to tSTRi, i.e. r4-r7. For other subtargets, this is any GPR, i.e. r4-r11 2546 // or lr. 2547 // 2548 // If we don't insert a spill, we instead allocate an emergency spill 2549 // slot, which can be used by scavenging to spill an arbitrary register. 2550 // 2551 // We currently don't try to figure out whether any specific instruction 2552 // requires scavening an additional register. 2553 unsigned NumExtraCSSpill = 0; 2554 2555 if (AFI->isThumb1OnlyFunction()) { 2556 // For Thumb1-only targets, we need some low registers when we save and 2557 // restore the high registers (which aren't allocatable, but could be 2558 // used by inline assembly) because the push/pop instructions can not 2559 // access high registers. If necessary, we might need to push more low 2560 // registers to ensure that there is at least one free that can be used 2561 // for the saving & restoring, and preferably we should ensure that as 2562 // many as are needed are available so that fewer push/pop instructions 2563 // are required. 2564 2565 // Low registers which are not currently pushed, but could be (r4-r7). 2566 SmallVector<unsigned, 4> AvailableRegs; 2567 2568 // Unused argument registers (r0-r3) can be clobbered in the prologue for 2569 // free. 2570 int EntryRegDeficit = 0; 2571 for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) { 2572 if (!MF.getRegInfo().isLiveIn(Reg)) { 2573 --EntryRegDeficit; 2574 LLVM_DEBUG(dbgs() 2575 << printReg(Reg, TRI) 2576 << " is unused argument register, EntryRegDeficit = " 2577 << EntryRegDeficit << "\n"); 2578 } 2579 } 2580 2581 // Unused return registers can be clobbered in the epilogue for free. 2582 int ExitRegDeficit = AFI->getReturnRegsCount() - 4; 2583 LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount() 2584 << " return regs used, ExitRegDeficit = " 2585 << ExitRegDeficit << "\n"); 2586 2587 int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit); 2588 LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n"); 2589 2590 // r4-r6 can be used in the prologue if they are pushed by the first push 2591 // instruction. 2592 for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) { 2593 if (SavedRegs.test(Reg)) { 2594 --RegDeficit; 2595 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 2596 << " is saved low register, RegDeficit = " 2597 << RegDeficit << "\n"); 2598 } else { 2599 AvailableRegs.push_back(Reg); 2600 LLVM_DEBUG( 2601 dbgs() 2602 << printReg(Reg, TRI) 2603 << " is non-saved low register, adding to AvailableRegs\n"); 2604 } 2605 } 2606 2607 // r7 can be used if it is not being used as the frame pointer. 2608 if (!HasFP || FramePtr != ARM::R7) { 2609 if (SavedRegs.test(ARM::R7)) { 2610 --RegDeficit; 2611 LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = " 2612 << RegDeficit << "\n"); 2613 } else { 2614 AvailableRegs.push_back(ARM::R7); 2615 LLVM_DEBUG( 2616 dbgs() 2617 << "%r7 is non-saved low register, adding to AvailableRegs\n"); 2618 } 2619 } 2620 2621 // Each of r8-r11 needs to be copied to a low register, then pushed. 2622 for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) { 2623 if (SavedRegs.test(Reg)) { 2624 ++RegDeficit; 2625 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 2626 << " is saved high register, RegDeficit = " 2627 << RegDeficit << "\n"); 2628 } 2629 } 2630 2631 // LR can only be used by PUSH, not POP, and can't be used at all if the 2632 // llvm.returnaddress intrinsic is used. This is only worth doing if we 2633 // are more limited at function entry than exit. 2634 if ((EntryRegDeficit > ExitRegDeficit) && 2635 !(MF.getRegInfo().isLiveIn(ARM::LR) && 2636 MF.getFrameInfo().isReturnAddressTaken())) { 2637 if (SavedRegs.test(ARM::LR)) { 2638 --RegDeficit; 2639 LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = " 2640 << RegDeficit << "\n"); 2641 } else { 2642 AvailableRegs.push_back(ARM::LR); 2643 LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n"); 2644 } 2645 } 2646 2647 // If there are more high registers that need pushing than low registers 2648 // available, push some more low registers so that we can use fewer push 2649 // instructions. This might not reduce RegDeficit all the way to zero, 2650 // because we can only guarantee that r4-r6 are available, but r8-r11 may 2651 // need saving. 2652 LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n"); 2653 for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) { 2654 unsigned Reg = AvailableRegs.pop_back_val(); 2655 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2656 << " to make up reg deficit\n"); 2657 SavedRegs.set(Reg); 2658 NumGPRSpills++; 2659 CS1Spilled = true; 2660 assert(!MRI.isReserved(Reg) && "Should not be reserved"); 2661 if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg)) 2662 NumExtraCSSpill++; 2663 UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg)); 2664 if (Reg == ARM::LR) 2665 LRSpilled = true; 2666 } 2667 LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit 2668 << "\n"); 2669 } 2670 2671 // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to 2672 // restore LR in that case. 2673 bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall(); 2674 2675 // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled. 2676 // Spill LR as well so we can fold BX_RET to the registers restore (LDM). 2677 if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) { 2678 SavedRegs.set(ARM::LR); 2679 NumGPRSpills++; 2680 SmallVectorImpl<unsigned>::iterator LRPos; 2681 LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR); 2682 if (LRPos != UnspilledCS1GPRs.end()) 2683 UnspilledCS1GPRs.erase(LRPos); 2684 2685 ForceLRSpill = false; 2686 if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) && 2687 !AFI->isThumb1OnlyFunction()) 2688 NumExtraCSSpill++; 2689 } 2690 2691 // If stack and double are 8-byte aligned and we are spilling an odd number 2692 // of GPRs, spill one extra callee save GPR so we won't have to pad between 2693 // the integer and double callee save areas. 2694 LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n"); 2695 const Align TargetAlign = getStackAlign(); 2696 if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) { 2697 if (CS1Spilled && !UnspilledCS1GPRs.empty()) { 2698 for (unsigned Reg : UnspilledCS1GPRs) { 2699 // Don't spill high register if the function is thumb. In the case of 2700 // Windows on ARM, accept R11 (frame pointer) 2701 if (!AFI->isThumbFunction() || 2702 (STI.isTargetWindows() && Reg == ARM::R11) || 2703 isARMLowRegister(Reg) || 2704 (Reg == ARM::LR && !ExpensiveLRRestore)) { 2705 SavedRegs.set(Reg); 2706 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2707 << " to make up alignment\n"); 2708 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) && 2709 !(Reg == ARM::LR && AFI->isThumb1OnlyFunction())) 2710 NumExtraCSSpill++; 2711 break; 2712 } 2713 } 2714 } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) { 2715 unsigned Reg = UnspilledCS2GPRs.front(); 2716 SavedRegs.set(Reg); 2717 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2718 << " to make up alignment\n"); 2719 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg)) 2720 NumExtraCSSpill++; 2721 } 2722 } 2723 2724 // Estimate if we might need to scavenge registers at some point in order 2725 // to materialize a stack offset. If so, either spill one additional 2726 // callee-saved register or reserve a special spill slot to facilitate 2727 // register scavenging. Thumb1 needs a spill slot for stack pointer 2728 // adjustments and for frame index accesses when FP is high register, 2729 // even when the frame itself is small. 2730 unsigned RegsNeeded = 0; 2731 if (BigFrameOffsets || canSpillOnFrameIndexAccess(MF, *this)) { 2732 RegsNeeded++; 2733 // With thumb1 execute-only we may need an additional register for saving 2734 // and restoring the CPSR. 2735 if (AFI->isThumb1OnlyFunction() && STI.genExecuteOnly() && !STI.useMovt()) 2736 RegsNeeded++; 2737 } 2738 2739 if (RegsNeeded > NumExtraCSSpill) { 2740 // If any non-reserved CS register isn't spilled, just spill one or two 2741 // extra. That should take care of it! 2742 unsigned NumExtras = TargetAlign.value() / 4; 2743 SmallVector<unsigned, 2> Extras; 2744 while (NumExtras && !UnspilledCS1GPRs.empty()) { 2745 unsigned Reg = UnspilledCS1GPRs.pop_back_val(); 2746 if (!MRI.isReserved(Reg) && 2747 (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) { 2748 Extras.push_back(Reg); 2749 NumExtras--; 2750 } 2751 } 2752 // For non-Thumb1 functions, also check for hi-reg CS registers 2753 if (!AFI->isThumb1OnlyFunction()) { 2754 while (NumExtras && !UnspilledCS2GPRs.empty()) { 2755 unsigned Reg = UnspilledCS2GPRs.pop_back_val(); 2756 if (!MRI.isReserved(Reg)) { 2757 Extras.push_back(Reg); 2758 NumExtras--; 2759 } 2760 } 2761 } 2762 if (NumExtras == 0) { 2763 for (unsigned Reg : Extras) { 2764 SavedRegs.set(Reg); 2765 if (!MRI.isPhysRegUsed(Reg)) 2766 NumExtraCSSpill++; 2767 } 2768 } 2769 while ((RegsNeeded > NumExtraCSSpill) && RS) { 2770 // Reserve a slot closest to SP or frame pointer. 2771 LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n"); 2772 const TargetRegisterClass &RC = ARM::GPRRegClass; 2773 unsigned Size = TRI->getSpillSize(RC); 2774 Align Alignment = TRI->getSpillAlign(RC); 2775 RS->addScavengingFrameIndex( 2776 MFI.CreateStackObject(Size, Alignment, false)); 2777 --RegsNeeded; 2778 } 2779 } 2780 } 2781 2782 if (ForceLRSpill) 2783 SavedRegs.set(ARM::LR); 2784 AFI->setLRIsSpilled(SavedRegs.test(ARM::LR)); 2785 } 2786 2787 void ARMFrameLowering::updateLRRestored(MachineFunction &MF) { 2788 MachineFrameInfo &MFI = MF.getFrameInfo(); 2789 if (!MFI.isCalleeSavedInfoValid()) 2790 return; 2791 2792 // Check if all terminators do not implicitly use LR. Then we can 'restore' LR 2793 // into PC so it is not live out of the return block: Clear the Restored bit 2794 // in that case. 2795 for (CalleeSavedInfo &Info : MFI.getCalleeSavedInfo()) { 2796 if (Info.getReg() != ARM::LR) 2797 continue; 2798 if (all_of(MF, [](const MachineBasicBlock &MBB) { 2799 return all_of(MBB.terminators(), [](const MachineInstr &Term) { 2800 return !Term.isReturn() || Term.getOpcode() == ARM::LDMIA_RET || 2801 Term.getOpcode() == ARM::t2LDMIA_RET || 2802 Term.getOpcode() == ARM::tPOP_RET; 2803 }); 2804 })) { 2805 Info.setRestored(false); 2806 break; 2807 } 2808 } 2809 } 2810 2811 void ARMFrameLowering::processFunctionBeforeFrameFinalized( 2812 MachineFunction &MF, RegScavenger *RS) const { 2813 TargetFrameLowering::processFunctionBeforeFrameFinalized(MF, RS); 2814 updateLRRestored(MF); 2815 } 2816 2817 void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF, 2818 BitVector &SavedRegs) const { 2819 TargetFrameLowering::getCalleeSaves(MF, SavedRegs); 2820 2821 // If we have the "returned" parameter attribute which guarantees that we 2822 // return the value which was passed in r0 unmodified (e.g. C++ 'structors), 2823 // record that fact for IPRA. 2824 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2825 if (AFI->getPreservesR0()) 2826 SavedRegs.set(ARM::R0); 2827 } 2828 2829 bool ARMFrameLowering::assignCalleeSavedSpillSlots( 2830 MachineFunction &MF, const TargetRegisterInfo *TRI, 2831 std::vector<CalleeSavedInfo> &CSI) const { 2832 // For CMSE entry functions, handle floating-point context as if it was a 2833 // callee-saved register. 2834 if (STI.hasV8_1MMainlineOps() && 2835 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) { 2836 CSI.emplace_back(ARM::FPCXTNS); 2837 CSI.back().setRestored(false); 2838 } 2839 2840 // For functions, which sign their return address, upon function entry, the 2841 // return address PAC is computed in R12. Treat R12 as a callee-saved register 2842 // in this case. 2843 const auto &AFI = *MF.getInfo<ARMFunctionInfo>(); 2844 if (AFI.shouldSignReturnAddress()) { 2845 // The order of register must match the order we push them, because the 2846 // PEI assigns frame indices in that order. When compiling for return 2847 // address sign and authenication, we use split push, therefore the orders 2848 // we want are: 2849 // LR, R7, R6, R5, R4, <R12>, R11, R10, R9, R8, D15-D8 2850 CSI.insert(find_if(CSI, 2851 [=](const auto &CS) { 2852 Register Reg = CS.getReg(); 2853 return Reg == ARM::R10 || Reg == ARM::R11 || 2854 Reg == ARM::R8 || Reg == ARM::R9 || 2855 ARM::DPRRegClass.contains(Reg); 2856 }), 2857 CalleeSavedInfo(ARM::R12)); 2858 } 2859 2860 return false; 2861 } 2862 2863 const TargetFrameLowering::SpillSlot * 2864 ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const { 2865 static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}}; 2866 NumEntries = std::size(FixedSpillOffsets); 2867 return FixedSpillOffsets; 2868 } 2869 2870 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr( 2871 MachineFunction &MF, MachineBasicBlock &MBB, 2872 MachineBasicBlock::iterator I) const { 2873 const ARMBaseInstrInfo &TII = 2874 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2875 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2876 bool isARM = !AFI->isThumbFunction(); 2877 DebugLoc dl = I->getDebugLoc(); 2878 unsigned Opc = I->getOpcode(); 2879 bool IsDestroy = Opc == TII.getCallFrameDestroyOpcode(); 2880 unsigned CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0; 2881 2882 assert(!AFI->isThumb1OnlyFunction() && 2883 "This eliminateCallFramePseudoInstr does not support Thumb1!"); 2884 2885 int PIdx = I->findFirstPredOperandIdx(); 2886 ARMCC::CondCodes Pred = (PIdx == -1) 2887 ? ARMCC::AL 2888 : (ARMCC::CondCodes)I->getOperand(PIdx).getImm(); 2889 unsigned PredReg = TII.getFramePred(*I); 2890 2891 if (!hasReservedCallFrame(MF)) { 2892 // Bail early if the callee is expected to do the adjustment. 2893 if (IsDestroy && CalleePopAmount != -1U) 2894 return MBB.erase(I); 2895 2896 // If we have alloca, convert as follows: 2897 // ADJCALLSTACKDOWN -> sub, sp, sp, amount 2898 // ADJCALLSTACKUP -> add, sp, sp, amount 2899 unsigned Amount = TII.getFrameSize(*I); 2900 if (Amount != 0) { 2901 // We need to keep the stack aligned properly. To do this, we round the 2902 // amount of space needed for the outgoing arguments up to the next 2903 // alignment boundary. 2904 Amount = alignSPAdjust(Amount); 2905 2906 if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) { 2907 emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags, 2908 Pred, PredReg); 2909 } else { 2910 assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP); 2911 emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags, 2912 Pred, PredReg); 2913 } 2914 } 2915 } else if (CalleePopAmount != -1U) { 2916 // If the calling convention demands that the callee pops arguments from the 2917 // stack, we want to add it back if we have a reserved call frame. 2918 emitSPUpdate(isARM, MBB, I, dl, TII, -CalleePopAmount, 2919 MachineInstr::NoFlags, Pred, PredReg); 2920 } 2921 return MBB.erase(I); 2922 } 2923 2924 /// Get the minimum constant for ARM that is greater than or equal to the 2925 /// argument. In ARM, constants can have any value that can be produced by 2926 /// rotating an 8-bit value to the right by an even number of bits within a 2927 /// 32-bit word. 2928 static uint32_t alignToARMConstant(uint32_t Value) { 2929 unsigned Shifted = 0; 2930 2931 if (Value == 0) 2932 return 0; 2933 2934 while (!(Value & 0xC0000000)) { 2935 Value = Value << 2; 2936 Shifted += 2; 2937 } 2938 2939 bool Carry = (Value & 0x00FFFFFF); 2940 Value = ((Value & 0xFF000000) >> 24) + Carry; 2941 2942 if (Value & 0x0000100) 2943 Value = Value & 0x000001FC; 2944 2945 if (Shifted > 24) 2946 Value = Value >> (Shifted - 24); 2947 else 2948 Value = Value << (24 - Shifted); 2949 2950 return Value; 2951 } 2952 2953 // The stack limit in the TCB is set to this many bytes above the actual 2954 // stack limit. 2955 static const uint64_t kSplitStackAvailable = 256; 2956 2957 // Adjust the function prologue to enable split stacks. This currently only 2958 // supports android and linux. 2959 // 2960 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but 2961 // must be well defined in order to allow for consistent implementations of the 2962 // __morestack helper function. The ABI is also not a normal ABI in that it 2963 // doesn't follow the normal calling conventions because this allows the 2964 // prologue of each function to be optimized further. 2965 // 2966 // Currently, the ABI looks like (when calling __morestack) 2967 // 2968 // * r4 holds the minimum stack size requested for this function call 2969 // * r5 holds the stack size of the arguments to the function 2970 // * the beginning of the function is 3 instructions after the call to 2971 // __morestack 2972 // 2973 // Implementations of __morestack should use r4 to allocate a new stack, r5 to 2974 // place the arguments on to the new stack, and the 3-instruction knowledge to 2975 // jump directly to the body of the function when working on the new stack. 2976 // 2977 // An old (and possibly no longer compatible) implementation of __morestack for 2978 // ARM can be found at [1]. 2979 // 2980 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S 2981 void ARMFrameLowering::adjustForSegmentedStacks( 2982 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2983 unsigned Opcode; 2984 unsigned CFIIndex; 2985 const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>(); 2986 bool Thumb = ST->isThumb(); 2987 bool Thumb2 = ST->isThumb2(); 2988 2989 // Sadly, this currently doesn't support varargs, platforms other than 2990 // android/linux. Note that thumb1/thumb2 are support for android/linux. 2991 if (MF.getFunction().isVarArg()) 2992 report_fatal_error("Segmented stacks do not support vararg functions."); 2993 if (!ST->isTargetAndroid() && !ST->isTargetLinux()) 2994 report_fatal_error("Segmented stacks not supported on this platform."); 2995 2996 MachineFrameInfo &MFI = MF.getFrameInfo(); 2997 MCContext &Context = MF.getContext(); 2998 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 2999 const ARMBaseInstrInfo &TII = 3000 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 3001 ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>(); 3002 DebugLoc DL; 3003 3004 if (!MFI.needsSplitStackProlog()) 3005 return; 3006 3007 uint64_t StackSize = MFI.getStackSize(); 3008 3009 // Use R4 and R5 as scratch registers. 3010 // We save R4 and R5 before use and restore them before leaving the function. 3011 unsigned ScratchReg0 = ARM::R4; 3012 unsigned ScratchReg1 = ARM::R5; 3013 unsigned MovOp = ST->useMovt() ? ARM::t2MOVi32imm : ARM::tMOVi32imm; 3014 uint64_t AlignedStackSize; 3015 3016 MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock(); 3017 MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock(); 3018 MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock(); 3019 MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock(); 3020 MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock(); 3021 3022 // Grab everything that reaches PrologueMBB to update there liveness as well. 3023 SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion; 3024 SmallVector<MachineBasicBlock *, 2> WalkList; 3025 WalkList.push_back(&PrologueMBB); 3026 3027 do { 3028 MachineBasicBlock *CurMBB = WalkList.pop_back_val(); 3029 for (MachineBasicBlock *PredBB : CurMBB->predecessors()) { 3030 if (BeforePrologueRegion.insert(PredBB).second) 3031 WalkList.push_back(PredBB); 3032 } 3033 } while (!WalkList.empty()); 3034 3035 // The order in that list is important. 3036 // The blocks will all be inserted before PrologueMBB using that order. 3037 // Therefore the block that should appear first in the CFG should appear 3038 // first in the list. 3039 MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB, 3040 PostStackMBB}; 3041 3042 for (MachineBasicBlock *B : AddedBlocks) 3043 BeforePrologueRegion.insert(B); 3044 3045 for (const auto &LI : PrologueMBB.liveins()) { 3046 for (MachineBasicBlock *PredBB : BeforePrologueRegion) 3047 PredBB->addLiveIn(LI); 3048 } 3049 3050 // Remove the newly added blocks from the list, since we know 3051 // we do not have to do the following updates for them. 3052 for (MachineBasicBlock *B : AddedBlocks) { 3053 BeforePrologueRegion.erase(B); 3054 MF.insert(PrologueMBB.getIterator(), B); 3055 } 3056 3057 for (MachineBasicBlock *MBB : BeforePrologueRegion) { 3058 // Make sure the LiveIns are still sorted and unique. 3059 MBB->sortUniqueLiveIns(); 3060 // Replace the edges to PrologueMBB by edges to the sequences 3061 // we are about to add, but only update for immediate predecessors. 3062 if (MBB->isSuccessor(&PrologueMBB)) 3063 MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]); 3064 } 3065 3066 // The required stack size that is aligned to ARM constant criterion. 3067 AlignedStackSize = alignToARMConstant(StackSize); 3068 3069 // When the frame size is less than 256 we just compare the stack 3070 // boundary directly to the value of the stack pointer, per gcc. 3071 bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable; 3072 3073 // We will use two of the callee save registers as scratch registers so we 3074 // need to save those registers onto the stack. 3075 // We will use SR0 to hold stack limit and SR1 to hold the stack size 3076 // requested and arguments for __morestack(). 3077 // SR0: Scratch Register #0 3078 // SR1: Scratch Register #1 3079 // push {SR0, SR1} 3080 if (Thumb) { 3081 BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH)) 3082 .add(predOps(ARMCC::AL)) 3083 .addReg(ScratchReg0) 3084 .addReg(ScratchReg1); 3085 } else { 3086 BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD)) 3087 .addReg(ARM::SP, RegState::Define) 3088 .addReg(ARM::SP) 3089 .add(predOps(ARMCC::AL)) 3090 .addReg(ScratchReg0) 3091 .addReg(ScratchReg1); 3092 } 3093 3094 // Emit the relevant DWARF information about the change in stack pointer as 3095 // well as where to find both r4 and r5 (the callee-save registers) 3096 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3097 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8)); 3098 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3099 .addCFIIndex(CFIIndex); 3100 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 3101 nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4)); 3102 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3103 .addCFIIndex(CFIIndex); 3104 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 3105 nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8)); 3106 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3107 .addCFIIndex(CFIIndex); 3108 } 3109 3110 // mov SR1, sp 3111 if (Thumb) { 3112 BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1) 3113 .addReg(ARM::SP) 3114 .add(predOps(ARMCC::AL)); 3115 } else if (CompareStackPointer) { 3116 BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1) 3117 .addReg(ARM::SP) 3118 .add(predOps(ARMCC::AL)) 3119 .add(condCodeOp()); 3120 } 3121 3122 // sub SR1, sp, #StackSize 3123 if (!CompareStackPointer && Thumb) { 3124 if (AlignedStackSize < 256) { 3125 BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1) 3126 .add(condCodeOp()) 3127 .addReg(ScratchReg1) 3128 .addImm(AlignedStackSize) 3129 .add(predOps(ARMCC::AL)); 3130 } else { 3131 if (Thumb2 || ST->genExecuteOnly()) { 3132 BuildMI(McrMBB, DL, TII.get(MovOp), ScratchReg0) 3133 .addImm(AlignedStackSize); 3134 } else { 3135 auto MBBI = McrMBB->end(); 3136 auto RegInfo = STI.getRegisterInfo(); 3137 RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0, 3138 AlignedStackSize); 3139 } 3140 BuildMI(McrMBB, DL, TII.get(ARM::tSUBrr), ScratchReg1) 3141 .add(condCodeOp()) 3142 .addReg(ScratchReg1) 3143 .addReg(ScratchReg0) 3144 .add(predOps(ARMCC::AL)); 3145 } 3146 } else if (!CompareStackPointer) { 3147 if (AlignedStackSize < 256) { 3148 BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1) 3149 .addReg(ARM::SP) 3150 .addImm(AlignedStackSize) 3151 .add(predOps(ARMCC::AL)) 3152 .add(condCodeOp()); 3153 } else { 3154 auto MBBI = McrMBB->end(); 3155 auto RegInfo = STI.getRegisterInfo(); 3156 RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0, 3157 AlignedStackSize); 3158 BuildMI(McrMBB, DL, TII.get(ARM::SUBrr), ScratchReg1) 3159 .addReg(ARM::SP) 3160 .addReg(ScratchReg0) 3161 .add(predOps(ARMCC::AL)) 3162 .add(condCodeOp()); 3163 } 3164 } 3165 3166 if (Thumb && ST->isThumb1Only()) { 3167 if (ST->genExecuteOnly()) { 3168 BuildMI(GetMBB, DL, TII.get(MovOp), ScratchReg0) 3169 .addExternalSymbol("__STACK_LIMIT"); 3170 } else { 3171 unsigned PCLabelId = ARMFI->createPICLabelUId(); 3172 ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create( 3173 MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0); 3174 MachineConstantPool *MCP = MF.getConstantPool(); 3175 unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4)); 3176 3177 // ldr SR0, [pc, offset(STACK_LIMIT)] 3178 BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0) 3179 .addConstantPoolIndex(CPI) 3180 .add(predOps(ARMCC::AL)); 3181 } 3182 3183 // ldr SR0, [SR0] 3184 BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0) 3185 .addReg(ScratchReg0) 3186 .addImm(0) 3187 .add(predOps(ARMCC::AL)); 3188 } else { 3189 // Get TLS base address from the coprocessor 3190 // mrc p15, #0, SR0, c13, c0, #3 3191 BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC), 3192 ScratchReg0) 3193 .addImm(15) 3194 .addImm(0) 3195 .addImm(13) 3196 .addImm(0) 3197 .addImm(3) 3198 .add(predOps(ARMCC::AL)); 3199 3200 // Use the last tls slot on android and a private field of the TCP on linux. 3201 assert(ST->isTargetAndroid() || ST->isTargetLinux()); 3202 unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1; 3203 3204 // Get the stack limit from the right offset 3205 // ldr SR0, [sr0, #4 * TlsOffset] 3206 BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12), 3207 ScratchReg0) 3208 .addReg(ScratchReg0) 3209 .addImm(4 * TlsOffset) 3210 .add(predOps(ARMCC::AL)); 3211 } 3212 3213 // Compare stack limit with stack size requested. 3214 // cmp SR0, SR1 3215 Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr; 3216 BuildMI(GetMBB, DL, TII.get(Opcode)) 3217 .addReg(ScratchReg0) 3218 .addReg(ScratchReg1) 3219 .add(predOps(ARMCC::AL)); 3220 3221 // This jump is taken if StackLimit <= SP - stack required. 3222 Opcode = Thumb ? ARM::tBcc : ARM::Bcc; 3223 BuildMI(GetMBB, DL, TII.get(Opcode)) 3224 .addMBB(PostStackMBB) 3225 .addImm(ARMCC::LS) 3226 .addReg(ARM::CPSR); 3227 3228 // Calling __morestack(StackSize, Size of stack arguments). 3229 // __morestack knows that the stack size requested is in SR0(r4) 3230 // and amount size of stack arguments is in SR1(r5). 3231 3232 // Pass first argument for the __morestack by Scratch Register #0. 3233 // The amount size of stack required 3234 if (Thumb) { 3235 if (AlignedStackSize < 256) { 3236 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0) 3237 .add(condCodeOp()) 3238 .addImm(AlignedStackSize) 3239 .add(predOps(ARMCC::AL)); 3240 } else { 3241 if (Thumb2 || ST->genExecuteOnly()) { 3242 BuildMI(AllocMBB, DL, TII.get(MovOp), ScratchReg0) 3243 .addImm(AlignedStackSize); 3244 } else { 3245 auto MBBI = AllocMBB->end(); 3246 auto RegInfo = STI.getRegisterInfo(); 3247 RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0, 3248 AlignedStackSize); 3249 } 3250 } 3251 } else { 3252 if (AlignedStackSize < 256) { 3253 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0) 3254 .addImm(AlignedStackSize) 3255 .add(predOps(ARMCC::AL)) 3256 .add(condCodeOp()); 3257 } else { 3258 auto MBBI = AllocMBB->end(); 3259 auto RegInfo = STI.getRegisterInfo(); 3260 RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0, 3261 AlignedStackSize); 3262 } 3263 } 3264 3265 // Pass second argument for the __morestack by Scratch Register #1. 3266 // The amount size of stack consumed to save function arguments. 3267 if (Thumb) { 3268 if (ARMFI->getArgumentStackSize() < 256) { 3269 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1) 3270 .add(condCodeOp()) 3271 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 3272 .add(predOps(ARMCC::AL)); 3273 } else { 3274 if (Thumb2 || ST->genExecuteOnly()) { 3275 BuildMI(AllocMBB, DL, TII.get(MovOp), ScratchReg1) 3276 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())); 3277 } else { 3278 auto MBBI = AllocMBB->end(); 3279 auto RegInfo = STI.getRegisterInfo(); 3280 RegInfo->emitLoadConstPool( 3281 *AllocMBB, MBBI, DL, ScratchReg1, 0, 3282 alignToARMConstant(ARMFI->getArgumentStackSize())); 3283 } 3284 } 3285 } else { 3286 if (alignToARMConstant(ARMFI->getArgumentStackSize()) < 256) { 3287 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1) 3288 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 3289 .add(predOps(ARMCC::AL)) 3290 .add(condCodeOp()); 3291 } else { 3292 auto MBBI = AllocMBB->end(); 3293 auto RegInfo = STI.getRegisterInfo(); 3294 RegInfo->emitLoadConstPool( 3295 *AllocMBB, MBBI, DL, ScratchReg1, 0, 3296 alignToARMConstant(ARMFI->getArgumentStackSize())); 3297 } 3298 } 3299 3300 // push {lr} - Save return address of this function. 3301 if (Thumb) { 3302 BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH)) 3303 .add(predOps(ARMCC::AL)) 3304 .addReg(ARM::LR); 3305 } else { 3306 BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD)) 3307 .addReg(ARM::SP, RegState::Define) 3308 .addReg(ARM::SP) 3309 .add(predOps(ARMCC::AL)) 3310 .addReg(ARM::LR); 3311 } 3312 3313 // Emit the DWARF info about the change in stack as well as where to find the 3314 // previous link register 3315 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3316 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12)); 3317 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3318 .addCFIIndex(CFIIndex); 3319 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 3320 nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12)); 3321 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3322 .addCFIIndex(CFIIndex); 3323 } 3324 3325 // Call __morestack(). 3326 if (Thumb) { 3327 BuildMI(AllocMBB, DL, TII.get(ARM::tBL)) 3328 .add(predOps(ARMCC::AL)) 3329 .addExternalSymbol("__morestack"); 3330 } else { 3331 BuildMI(AllocMBB, DL, TII.get(ARM::BL)) 3332 .addExternalSymbol("__morestack"); 3333 } 3334 3335 // pop {lr} - Restore return address of this original function. 3336 if (Thumb) { 3337 if (ST->isThumb1Only()) { 3338 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 3339 .add(predOps(ARMCC::AL)) 3340 .addReg(ScratchReg0); 3341 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR) 3342 .addReg(ScratchReg0) 3343 .add(predOps(ARMCC::AL)); 3344 } else { 3345 BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST)) 3346 .addReg(ARM::LR, RegState::Define) 3347 .addReg(ARM::SP, RegState::Define) 3348 .addReg(ARM::SP) 3349 .addImm(4) 3350 .add(predOps(ARMCC::AL)); 3351 } 3352 } else { 3353 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 3354 .addReg(ARM::SP, RegState::Define) 3355 .addReg(ARM::SP) 3356 .add(predOps(ARMCC::AL)) 3357 .addReg(ARM::LR); 3358 } 3359 3360 // Restore SR0 and SR1 in case of __morestack() was called. 3361 // __morestack() will skip PostStackMBB block so we need to restore 3362 // scratch registers from here. 3363 // pop {SR0, SR1} 3364 if (Thumb) { 3365 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 3366 .add(predOps(ARMCC::AL)) 3367 .addReg(ScratchReg0) 3368 .addReg(ScratchReg1); 3369 } else { 3370 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 3371 .addReg(ARM::SP, RegState::Define) 3372 .addReg(ARM::SP) 3373 .add(predOps(ARMCC::AL)) 3374 .addReg(ScratchReg0) 3375 .addReg(ScratchReg1); 3376 } 3377 3378 // Update the CFA offset now that we've popped 3379 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3380 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 3381 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3382 .addCFIIndex(CFIIndex); 3383 } 3384 3385 // Return from this function. 3386 BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL)); 3387 3388 // Restore SR0 and SR1 in case of __morestack() was not called. 3389 // pop {SR0, SR1} 3390 if (Thumb) { 3391 BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP)) 3392 .add(predOps(ARMCC::AL)) 3393 .addReg(ScratchReg0) 3394 .addReg(ScratchReg1); 3395 } else { 3396 BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD)) 3397 .addReg(ARM::SP, RegState::Define) 3398 .addReg(ARM::SP) 3399 .add(predOps(ARMCC::AL)) 3400 .addReg(ScratchReg0) 3401 .addReg(ScratchReg1); 3402 } 3403 3404 // Update the CFA offset now that we've popped 3405 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3406 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 3407 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3408 .addCFIIndex(CFIIndex); 3409 3410 // Tell debuggers that r4 and r5 are now the same as they were in the 3411 // previous function, that they're the "Same Value". 3412 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 3413 nullptr, MRI->getDwarfRegNum(ScratchReg0, true))); 3414 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3415 .addCFIIndex(CFIIndex); 3416 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 3417 nullptr, MRI->getDwarfRegNum(ScratchReg1, true))); 3418 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3419 .addCFIIndex(CFIIndex); 3420 } 3421 3422 // Organizing MBB lists 3423 PostStackMBB->addSuccessor(&PrologueMBB); 3424 3425 AllocMBB->addSuccessor(PostStackMBB); 3426 3427 GetMBB->addSuccessor(PostStackMBB); 3428 GetMBB->addSuccessor(AllocMBB); 3429 3430 McrMBB->addSuccessor(GetMBB); 3431 3432 PrevStackMBB->addSuccessor(McrMBB); 3433 3434 #ifdef EXPENSIVE_CHECKS 3435 MF.verify(); 3436 #endif 3437 } 3438