xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMFrameLowering.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the ARM implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 //
13 // This file contains the ARM implementation of TargetFrameLowering class.
14 //
15 // On ARM, stack frames are structured as follows:
16 //
17 // The stack grows downward.
18 //
19 // All of the individual frame areas on the frame below are optional, i.e. it's
20 // possible to create a function so that the particular area isn't present
21 // in the frame.
22 //
23 // At function entry, the "frame" looks as follows:
24 //
25 // |                                   | Higher address
26 // |-----------------------------------|
27 // |                                   |
28 // | arguments passed on the stack     |
29 // |                                   |
30 // |-----------------------------------| <- sp
31 // |                                   | Lower address
32 //
33 //
34 // After the prologue has run, the frame has the following general structure.
35 // Technically the last frame area (VLAs) doesn't get created until in the
36 // main function body, after the prologue is run. However, it's depicted here
37 // for completeness.
38 //
39 // |                                   | Higher address
40 // |-----------------------------------|
41 // |                                   |
42 // | arguments passed on the stack     |
43 // |                                   |
44 // |-----------------------------------| <- (sp at function entry)
45 // |                                   |
46 // | varargs from registers            |
47 // |                                   |
48 // |-----------------------------------|
49 // |                                   |
50 // | prev_lr                           |
51 // | prev_fp                           |
52 // | (a.k.a. "frame record")           |
53 // |                                   |
54 // |- - - - - - - - - - - - - - - - - -| <- fp (r7 or r11)
55 // |                                   |
56 // | callee-saved gpr registers        |
57 // |                                   |
58 // |-----------------------------------|
59 // |                                   |
60 // | callee-saved fp/simd regs         |
61 // |                                   |
62 // |-----------------------------------|
63 // |.empty.space.to.make.part.below....|
64 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
65 // |.the.standard.8-byte.alignment.....|  compile time; if present)
66 // |-----------------------------------|
67 // |                                   |
68 // | local variables of fixed size     |
69 // | including spill slots             |
70 // |-----------------------------------| <- base pointer (not defined by ABI,
71 // |.variable-sized.local.variables....|       LLVM chooses r6)
72 // |.(VLAs)............................| (size of this area is unknown at
73 // |...................................|  compile time)
74 // |-----------------------------------| <- sp
75 // |                                   | Lower address
76 //
77 //
78 // To access the data in a frame, at-compile time, a constant offset must be
79 // computable from one of the pointers (fp, bp, sp) to access it. The size
80 // of the areas with a dotted background cannot be computed at compile-time
81 // if they are present, making it required to have all three of fp, bp and
82 // sp to be set up to be able to access all contents in the frame areas,
83 // assuming all of the frame areas are non-empty.
84 //
85 // For most functions, some of the frame areas are empty. For those functions,
86 // it may not be necessary to set up fp or bp:
87 // * A base pointer is definitely needed when there are both VLAs and local
88 //   variables with more-than-default alignment requirements.
89 // * A frame pointer is definitely needed when there are local variables with
90 //   more-than-default alignment requirements.
91 //
92 // In some cases when a base pointer is not strictly needed, it is generated
93 // anyway when offsets from the frame pointer to access local variables become
94 // so large that the offset can't be encoded in the immediate fields of loads
95 // or stores.
96 //
97 // The frame pointer might be chosen to be r7 or r11, depending on the target
98 // architecture and operating system. See ARMSubtarget::getFramePointerReg for
99 // details.
100 //
101 // Outgoing function arguments must be at the bottom of the stack frame when
102 // calling another function. If we do not have variable-sized stack objects, we
103 // can allocate a "reserved call frame" area at the bottom of the local
104 // variable area, large enough for all outgoing calls. If we do have VLAs, then
105 // the stack pointer must be decremented and incremented around each call to
106 // make space for the arguments below the VLAs.
107 //
108 //===----------------------------------------------------------------------===//
109 
110 #include "ARMFrameLowering.h"
111 #include "ARMBaseInstrInfo.h"
112 #include "ARMBaseRegisterInfo.h"
113 #include "ARMConstantPoolValue.h"
114 #include "ARMMachineFunctionInfo.h"
115 #include "ARMSubtarget.h"
116 #include "MCTargetDesc/ARMAddressingModes.h"
117 #include "MCTargetDesc/ARMBaseInfo.h"
118 #include "Utils/ARMBaseInfo.h"
119 #include "llvm/ADT/BitVector.h"
120 #include "llvm/ADT/STLExtras.h"
121 #include "llvm/ADT/SmallPtrSet.h"
122 #include "llvm/ADT/SmallVector.h"
123 #include "llvm/CodeGen/MachineBasicBlock.h"
124 #include "llvm/CodeGen/MachineConstantPool.h"
125 #include "llvm/CodeGen/MachineFrameInfo.h"
126 #include "llvm/CodeGen/MachineFunction.h"
127 #include "llvm/CodeGen/MachineInstr.h"
128 #include "llvm/CodeGen/MachineInstrBuilder.h"
129 #include "llvm/CodeGen/MachineJumpTableInfo.h"
130 #include "llvm/CodeGen/MachineModuleInfo.h"
131 #include "llvm/CodeGen/MachineOperand.h"
132 #include "llvm/CodeGen/MachineRegisterInfo.h"
133 #include "llvm/CodeGen/RegisterScavenging.h"
134 #include "llvm/CodeGen/TargetInstrInfo.h"
135 #include "llvm/CodeGen/TargetOpcodes.h"
136 #include "llvm/CodeGen/TargetRegisterInfo.h"
137 #include "llvm/CodeGen/TargetSubtargetInfo.h"
138 #include "llvm/IR/Attributes.h"
139 #include "llvm/IR/CallingConv.h"
140 #include "llvm/IR/DebugLoc.h"
141 #include "llvm/IR/Function.h"
142 #include "llvm/MC/MCAsmInfo.h"
143 #include "llvm/MC/MCContext.h"
144 #include "llvm/MC/MCDwarf.h"
145 #include "llvm/MC/MCInstrDesc.h"
146 #include "llvm/MC/MCRegisterInfo.h"
147 #include "llvm/Support/CodeGen.h"
148 #include "llvm/Support/CommandLine.h"
149 #include "llvm/Support/Compiler.h"
150 #include "llvm/Support/Debug.h"
151 #include "llvm/Support/ErrorHandling.h"
152 #include "llvm/Support/MathExtras.h"
153 #include "llvm/Support/raw_ostream.h"
154 #include "llvm/Target/TargetMachine.h"
155 #include "llvm/Target/TargetOptions.h"
156 #include <algorithm>
157 #include <cassert>
158 #include <cstddef>
159 #include <cstdint>
160 #include <iterator>
161 #include <utility>
162 #include <vector>
163 
164 #define DEBUG_TYPE "arm-frame-lowering"
165 
166 using namespace llvm;
167 
168 static cl::opt<bool>
169 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true),
170                      cl::desc("Align ARM NEON spills in prolog and epilog"));
171 
172 static MachineBasicBlock::iterator
173 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
174                         unsigned NumAlignedDPRCS2Regs);
175 
176 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti)
177     : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)),
178       STI(sti) {}
179 
180 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const {
181   // iOS always has a FP for backtracking, force other targets to keep their FP
182   // when doing FastISel. The emitted code is currently superior, and in cases
183   // like test-suite's lencod FastISel isn't quite correct when FP is eliminated.
184   return MF.getSubtarget<ARMSubtarget>().useFastISel();
185 }
186 
187 /// Returns true if the target can safely skip saving callee-saved registers
188 /// for noreturn nounwind functions.
189 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const {
190   assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) &&
191          MF.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
192          !MF.getFunction().hasFnAttribute(Attribute::UWTable));
193 
194   // Frame pointer and link register are not treated as normal CSR, thus we
195   // can always skip CSR saves for nonreturning functions.
196   return true;
197 }
198 
199 /// hasFP - Return true if the specified function should have a dedicated frame
200 /// pointer register.  This is true if the function has variable sized allocas
201 /// or if frame pointer elimination is disabled.
202 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const {
203   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
204   const MachineFrameInfo &MFI = MF.getFrameInfo();
205 
206   // ABI-required frame pointer.
207   if (MF.getTarget().Options.DisableFramePointerElim(MF))
208     return true;
209 
210   // Frame pointer required for use within this function.
211   return (RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() ||
212           MFI.isFrameAddressTaken());
213 }
214 
215 /// isFPReserved - Return true if the frame pointer register should be
216 /// considered a reserved register on the scope of the specified function.
217 bool ARMFrameLowering::isFPReserved(const MachineFunction &MF) const {
218   return hasFP(MF) || MF.getTarget().Options.FramePointerIsReserved(MF);
219 }
220 
221 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
222 /// not required, we reserve argument space for call sites in the function
223 /// immediately on entry to the current function.  This eliminates the need for
224 /// add/sub sp brackets around call sites.  Returns true if the call frame is
225 /// included as part of the stack frame.
226 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
227   const MachineFrameInfo &MFI = MF.getFrameInfo();
228   unsigned CFSize = MFI.getMaxCallFrameSize();
229   // It's not always a good idea to include the call frame as part of the
230   // stack frame. ARM (especially Thumb) has small immediate offset to
231   // address the stack frame. So a large call frame can cause poor codegen
232   // and may even makes it impossible to scavenge a register.
233   if (CFSize >= ((1 << 12) - 1) / 2)  // Half of imm12
234     return false;
235 
236   return !MFI.hasVarSizedObjects();
237 }
238 
239 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
240 /// call frame pseudos can be simplified.  Unlike most targets, having a FP
241 /// is not sufficient here since we still may reference some objects via SP
242 /// even when FP is available in Thumb2 mode.
243 bool
244 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
245   return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects();
246 }
247 
248 // Returns how much of the incoming argument stack area we should clean up in an
249 // epilogue. For the C calling convention this will be 0, for guaranteed tail
250 // call conventions it can be positive (a normal return or a tail call to a
251 // function that uses less stack space for arguments) or negative (for a tail
252 // call to a function that needs more stack space than us for arguments).
253 static int getArgumentStackToRestore(MachineFunction &MF,
254                                      MachineBasicBlock &MBB) {
255   MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
256   bool IsTailCallReturn = false;
257   if (MBB.end() != MBBI) {
258     unsigned RetOpcode = MBBI->getOpcode();
259     IsTailCallReturn = RetOpcode == ARM::TCRETURNdi ||
260                        RetOpcode == ARM::TCRETURNri ||
261                        RetOpcode == ARM::TCRETURNrinotr12;
262   }
263   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
264 
265   int ArgumentPopSize = 0;
266   if (IsTailCallReturn) {
267     MachineOperand &StackAdjust = MBBI->getOperand(1);
268 
269     // For a tail-call in a callee-pops-arguments environment, some or all of
270     // the stack may actually be in use for the call's arguments, this is
271     // calculated during LowerCall and consumed here...
272     ArgumentPopSize = StackAdjust.getImm();
273   } else {
274     // ... otherwise the amount to pop is *all* of the argument space,
275     // conveniently stored in the MachineFunctionInfo by
276     // LowerFormalArguments. This will, of course, be zero for the C calling
277     // convention.
278     ArgumentPopSize = AFI->getArgumentStackToRestore();
279   }
280 
281   return ArgumentPopSize;
282 }
283 
284 static bool needsWinCFI(const MachineFunction &MF) {
285   const Function &F = MF.getFunction();
286   return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
287          F.needsUnwindTableEntry();
288 }
289 
290 // Given a load or a store instruction, generate an appropriate unwinding SEH
291 // code on Windows.
292 static MachineBasicBlock::iterator insertSEH(MachineBasicBlock::iterator MBBI,
293                                              const TargetInstrInfo &TII,
294                                              unsigned Flags) {
295   unsigned Opc = MBBI->getOpcode();
296   MachineBasicBlock *MBB = MBBI->getParent();
297   MachineFunction &MF = *MBB->getParent();
298   DebugLoc DL = MBBI->getDebugLoc();
299   MachineInstrBuilder MIB;
300   const ARMSubtarget &Subtarget = MF.getSubtarget<ARMSubtarget>();
301   const ARMBaseRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
302 
303   Flags |= MachineInstr::NoMerge;
304 
305   switch (Opc) {
306   default:
307     report_fatal_error("No SEH Opcode for instruction " + TII.getName(Opc));
308     break;
309   case ARM::t2ADDri:   // add.w r11, sp, #xx
310   case ARM::t2ADDri12: // add.w r11, sp, #xx
311   case ARM::t2MOVTi16: // movt  r4, #xx
312   case ARM::tBL:       // bl __chkstk
313     // These are harmless if used for just setting up a frame pointer,
314     // but that frame pointer can't be relied upon for unwinding, unless
315     // set up with SEH_SaveSP.
316     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
317               .addImm(/*Wide=*/1)
318               .setMIFlags(Flags);
319     break;
320 
321   case ARM::t2MOVi16: { // mov(w) r4, #xx
322     bool Wide = MBBI->getOperand(1).getImm() >= 256;
323     if (!Wide) {
324       MachineInstrBuilder NewInstr =
325           BuildMI(MF, DL, TII.get(ARM::tMOVi8)).setMIFlags(MBBI->getFlags());
326       NewInstr.add(MBBI->getOperand(0));
327       NewInstr.add(t1CondCodeOp(/*isDead=*/true));
328       for (MachineOperand &MO : llvm::drop_begin(MBBI->operands()))
329         NewInstr.add(MO);
330       MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr);
331       MBB->erase(MBBI);
332       MBBI = NewMBBI;
333     }
334     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)).addImm(Wide).setMIFlags(Flags);
335     break;
336   }
337 
338   case ARM::tBLXr: // blx r12 (__chkstk)
339     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
340               .addImm(/*Wide=*/0)
341               .setMIFlags(Flags);
342     break;
343 
344   case ARM::t2MOVi32imm: // movw+movt
345     // This pseudo instruction expands into two mov instructions. If the
346     // second operand is a symbol reference, this will stay as two wide
347     // instructions, movw+movt. If they're immediates, the first one can
348     // end up as a narrow mov though.
349     // As two SEH instructions are appended here, they won't get interleaved
350     // between the two final movw/movt instructions, but it doesn't make any
351     // practical difference.
352     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
353               .addImm(/*Wide=*/1)
354               .setMIFlags(Flags);
355     MBB->insertAfter(MBBI, MIB);
356     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
357               .addImm(/*Wide=*/1)
358               .setMIFlags(Flags);
359     break;
360 
361   case ARM::t2STR_PRE:
362     if (MBBI->getOperand(0).getReg() == ARM::SP &&
363         MBBI->getOperand(2).getReg() == ARM::SP &&
364         MBBI->getOperand(3).getImm() == -4) {
365       unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
366       MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs))
367                 .addImm(1ULL << Reg)
368                 .addImm(/*Wide=*/1)
369                 .setMIFlags(Flags);
370     } else {
371       report_fatal_error("No matching SEH Opcode for t2STR_PRE");
372     }
373     break;
374 
375   case ARM::t2LDR_POST:
376     if (MBBI->getOperand(1).getReg() == ARM::SP &&
377         MBBI->getOperand(2).getReg() == ARM::SP &&
378         MBBI->getOperand(3).getImm() == 4) {
379       unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
380       MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs))
381                 .addImm(1ULL << Reg)
382                 .addImm(/*Wide=*/1)
383                 .setMIFlags(Flags);
384     } else {
385       report_fatal_error("No matching SEH Opcode for t2LDR_POST");
386     }
387     break;
388 
389   case ARM::t2LDMIA_RET:
390   case ARM::t2LDMIA_UPD:
391   case ARM::t2STMDB_UPD: {
392     unsigned Mask = 0;
393     bool Wide = false;
394     for (unsigned i = 4, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) {
395       const MachineOperand &MO = MBBI->getOperand(i);
396       if (!MO.isReg() || MO.isImplicit())
397         continue;
398       unsigned Reg = RegInfo->getSEHRegNum(MO.getReg());
399       if (Reg == 15)
400         Reg = 14;
401       if (Reg >= 8 && Reg <= 13)
402         Wide = true;
403       else if (Opc == ARM::t2LDMIA_UPD && Reg == 14)
404         Wide = true;
405       Mask |= 1 << Reg;
406     }
407     if (!Wide) {
408       unsigned NewOpc;
409       switch (Opc) {
410       case ARM::t2LDMIA_RET:
411         NewOpc = ARM::tPOP_RET;
412         break;
413       case ARM::t2LDMIA_UPD:
414         NewOpc = ARM::tPOP;
415         break;
416       case ARM::t2STMDB_UPD:
417         NewOpc = ARM::tPUSH;
418         break;
419       default:
420         llvm_unreachable("");
421       }
422       MachineInstrBuilder NewInstr =
423           BuildMI(MF, DL, TII.get(NewOpc)).setMIFlags(MBBI->getFlags());
424       for (unsigned i = 2, NumOps = MBBI->getNumOperands(); i != NumOps; ++i)
425         NewInstr.add(MBBI->getOperand(i));
426       MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr);
427       MBB->erase(MBBI);
428       MBBI = NewMBBI;
429     }
430     unsigned SEHOpc =
431         (Opc == ARM::t2LDMIA_RET) ? ARM::SEH_SaveRegs_Ret : ARM::SEH_SaveRegs;
432     MIB = BuildMI(MF, DL, TII.get(SEHOpc))
433               .addImm(Mask)
434               .addImm(Wide ? 1 : 0)
435               .setMIFlags(Flags);
436     break;
437   }
438   case ARM::VSTMDDB_UPD:
439   case ARM::VLDMDIA_UPD: {
440     int First = -1, Last = 0;
441     for (const MachineOperand &MO : llvm::drop_begin(MBBI->operands(), 4)) {
442       unsigned Reg = RegInfo->getSEHRegNum(MO.getReg());
443       if (First == -1)
444         First = Reg;
445       Last = Reg;
446     }
447     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveFRegs))
448               .addImm(First)
449               .addImm(Last)
450               .setMIFlags(Flags);
451     break;
452   }
453   case ARM::tSUBspi:
454   case ARM::tADDspi:
455     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc))
456               .addImm(MBBI->getOperand(2).getImm() * 4)
457               .addImm(/*Wide=*/0)
458               .setMIFlags(Flags);
459     break;
460   case ARM::t2SUBspImm:
461   case ARM::t2SUBspImm12:
462   case ARM::t2ADDspImm:
463   case ARM::t2ADDspImm12:
464     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc))
465               .addImm(MBBI->getOperand(2).getImm())
466               .addImm(/*Wide=*/1)
467               .setMIFlags(Flags);
468     break;
469 
470   case ARM::tMOVr:
471     if (MBBI->getOperand(1).getReg() == ARM::SP &&
472         (Flags & MachineInstr::FrameSetup)) {
473       unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
474       MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP))
475                 .addImm(Reg)
476                 .setMIFlags(Flags);
477     } else if (MBBI->getOperand(0).getReg() == ARM::SP &&
478                (Flags & MachineInstr::FrameDestroy)) {
479       unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
480       MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP))
481                 .addImm(Reg)
482                 .setMIFlags(Flags);
483     } else {
484       report_fatal_error("No SEH Opcode for MOV");
485     }
486     break;
487 
488   case ARM::tBX_RET:
489   case ARM::TCRETURNri:
490   case ARM::TCRETURNrinotr12:
491     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret))
492               .addImm(/*Wide=*/0)
493               .setMIFlags(Flags);
494     break;
495 
496   case ARM::TCRETURNdi:
497     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret))
498               .addImm(/*Wide=*/1)
499               .setMIFlags(Flags);
500     break;
501   }
502   return MBB->insertAfter(MBBI, MIB);
503 }
504 
505 static MachineBasicBlock::iterator
506 initMBBRange(MachineBasicBlock &MBB, const MachineBasicBlock::iterator &MBBI) {
507   if (MBBI == MBB.begin())
508     return MachineBasicBlock::iterator();
509   return std::prev(MBBI);
510 }
511 
512 static void insertSEHRange(MachineBasicBlock &MBB,
513                            MachineBasicBlock::iterator Start,
514                            const MachineBasicBlock::iterator &End,
515                            const ARMBaseInstrInfo &TII, unsigned MIFlags) {
516   if (Start.isValid())
517     Start = std::next(Start);
518   else
519     Start = MBB.begin();
520 
521   for (auto MI = Start; MI != End;) {
522     auto Next = std::next(MI);
523     // Check if this instruction already has got a SEH opcode added. In that
524     // case, don't do this generic mapping.
525     if (Next != End && isSEHInstruction(*Next)) {
526       MI = std::next(Next);
527       while (MI != End && isSEHInstruction(*MI))
528         ++MI;
529       continue;
530     }
531     insertSEH(MI, TII, MIFlags);
532     MI = Next;
533   }
534 }
535 
536 static void emitRegPlusImmediate(
537     bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
538     const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg,
539     unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags,
540     ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) {
541   if (isARM)
542     emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
543                             Pred, PredReg, TII, MIFlags);
544   else
545     emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
546                            Pred, PredReg, TII, MIFlags);
547 }
548 
549 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB,
550                          MachineBasicBlock::iterator &MBBI, const DebugLoc &dl,
551                          const ARMBaseInstrInfo &TII, int NumBytes,
552                          unsigned MIFlags = MachineInstr::NoFlags,
553                          ARMCC::CondCodes Pred = ARMCC::AL,
554                          unsigned PredReg = 0) {
555   emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes,
556                        MIFlags, Pred, PredReg);
557 }
558 
559 static int sizeOfSPAdjustment(const MachineInstr &MI) {
560   int RegSize;
561   switch (MI.getOpcode()) {
562   case ARM::VSTMDDB_UPD:
563     RegSize = 8;
564     break;
565   case ARM::STMDB_UPD:
566   case ARM::t2STMDB_UPD:
567     RegSize = 4;
568     break;
569   case ARM::t2STR_PRE:
570   case ARM::STR_PRE_IMM:
571     return 4;
572   default:
573     llvm_unreachable("Unknown push or pop like instruction");
574   }
575 
576   int count = 0;
577   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
578   // pred) so the list starts at 4.
579   for (int i = MI.getNumOperands() - 1; i >= 4; --i)
580     count += RegSize;
581   return count;
582 }
583 
584 static bool WindowsRequiresStackProbe(const MachineFunction &MF,
585                                       size_t StackSizeInBytes) {
586   const MachineFrameInfo &MFI = MF.getFrameInfo();
587   const Function &F = MF.getFunction();
588   unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096;
589 
590   StackProbeSize =
591       F.getFnAttributeAsParsedInteger("stack-probe-size", StackProbeSize);
592   return (StackSizeInBytes >= StackProbeSize) &&
593          !F.hasFnAttribute("no-stack-arg-probe");
594 }
595 
596 namespace {
597 
598 struct StackAdjustingInsts {
599   struct InstInfo {
600     MachineBasicBlock::iterator I;
601     unsigned SPAdjust;
602     bool BeforeFPSet;
603   };
604 
605   SmallVector<InstInfo, 4> Insts;
606 
607   void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust,
608                bool BeforeFPSet = false) {
609     InstInfo Info = {I, SPAdjust, BeforeFPSet};
610     Insts.push_back(Info);
611   }
612 
613   void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) {
614     auto Info =
615         llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; });
616     assert(Info != Insts.end() && "invalid sp adjusting instruction");
617     Info->SPAdjust += ExtraBytes;
618   }
619 
620   void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl,
621                          const ARMBaseInstrInfo &TII, bool HasFP) {
622     MachineFunction &MF = *MBB.getParent();
623     unsigned CFAOffset = 0;
624     for (auto &Info : Insts) {
625       if (HasFP && !Info.BeforeFPSet)
626         return;
627 
628       CFAOffset += Info.SPAdjust;
629       unsigned CFIIndex = MF.addFrameInst(
630           MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset));
631       BuildMI(MBB, std::next(Info.I), dl,
632               TII.get(TargetOpcode::CFI_INSTRUCTION))
633               .addCFIIndex(CFIIndex)
634               .setMIFlags(MachineInstr::FrameSetup);
635     }
636   }
637 };
638 
639 } // end anonymous namespace
640 
641 /// Emit an instruction sequence that will align the address in
642 /// register Reg by zero-ing out the lower bits.  For versions of the
643 /// architecture that support Neon, this must be done in a single
644 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a
645 /// single instruction. That function only gets called when optimizing
646 /// spilling of D registers on a core with the Neon instruction set
647 /// present.
648 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI,
649                                      const TargetInstrInfo &TII,
650                                      MachineBasicBlock &MBB,
651                                      MachineBasicBlock::iterator MBBI,
652                                      const DebugLoc &DL, const unsigned Reg,
653                                      const Align Alignment,
654                                      const bool MustBeSingleInstruction) {
655   const ARMSubtarget &AST = MF.getSubtarget<ARMSubtarget>();
656   const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops();
657   const unsigned AlignMask = Alignment.value() - 1U;
658   const unsigned NrBitsToZero = Log2(Alignment);
659   assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported");
660   if (!AFI->isThumbFunction()) {
661     // if the BFC instruction is available, use that to zero the lower
662     // bits:
663     //   bfc Reg, #0, log2(Alignment)
664     // otherwise use BIC, if the mask to zero the required number of bits
665     // can be encoded in the bic immediate field
666     //   bic Reg, Reg, Alignment-1
667     // otherwise, emit
668     //   lsr Reg, Reg, log2(Alignment)
669     //   lsl Reg, Reg, log2(Alignment)
670     if (CanUseBFC) {
671       BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg)
672           .addReg(Reg, RegState::Kill)
673           .addImm(~AlignMask)
674           .add(predOps(ARMCC::AL));
675     } else if (AlignMask <= 255) {
676       BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg)
677           .addReg(Reg, RegState::Kill)
678           .addImm(AlignMask)
679           .add(predOps(ARMCC::AL))
680           .add(condCodeOp());
681     } else {
682       assert(!MustBeSingleInstruction &&
683              "Shouldn't call emitAligningInstructions demanding a single "
684              "instruction to be emitted for large stack alignment for a target "
685              "without BFC.");
686       BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
687           .addReg(Reg, RegState::Kill)
688           .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero))
689           .add(predOps(ARMCC::AL))
690           .add(condCodeOp());
691       BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
692           .addReg(Reg, RegState::Kill)
693           .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero))
694           .add(predOps(ARMCC::AL))
695           .add(condCodeOp());
696     }
697   } else {
698     // Since this is only reached for Thumb-2 targets, the BFC instruction
699     // should always be available.
700     assert(CanUseBFC);
701     BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg)
702         .addReg(Reg, RegState::Kill)
703         .addImm(~AlignMask)
704         .add(predOps(ARMCC::AL));
705   }
706 }
707 
708 /// We need the offset of the frame pointer relative to other MachineFrameInfo
709 /// offsets which are encoded relative to SP at function begin.
710 /// See also emitPrologue() for how the FP is set up.
711 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet
712 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use
713 /// this to produce a conservative estimate that we check in an assert() later.
714 static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI,
715                           const MachineFunction &MF) {
716   // For Thumb1, push.w isn't available, so the first push will always push
717   // r7 and lr onto the stack first.
718   if (AFI.isThumb1OnlyFunction())
719     return -AFI.getArgRegsSaveSize() - (2 * 4);
720   // This is a conservative estimation: Assume the frame pointer being r7 and
721   // pc("r15") up to r8 getting spilled before (= 8 registers).
722   int MaxRegBytes = 8 * 4;
723   if (STI.splitFramePointerPush(MF)) {
724     // Here, r11 can be stored below all of r4-r15 (3 registers more than
725     // above), plus d8-d15.
726     MaxRegBytes = 11 * 4 + 8 * 8;
727   }
728   int FPCXTSaveSize =
729       (STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0;
730   return -FPCXTSaveSize - AFI.getArgRegsSaveSize() - MaxRegBytes;
731 }
732 
733 void ARMFrameLowering::emitPrologue(MachineFunction &MF,
734                                     MachineBasicBlock &MBB) const {
735   MachineBasicBlock::iterator MBBI = MBB.begin();
736   MachineFrameInfo  &MFI = MF.getFrameInfo();
737   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
738   MCContext &Context = MF.getContext();
739   const TargetMachine &TM = MF.getTarget();
740   const MCRegisterInfo *MRI = Context.getRegisterInfo();
741   const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo();
742   const ARMBaseInstrInfo &TII = *STI.getInstrInfo();
743   assert(!AFI->isThumb1OnlyFunction() &&
744          "This emitPrologue does not support Thumb1!");
745   bool isARM = !AFI->isThumbFunction();
746   Align Alignment = STI.getFrameLowering()->getStackAlign();
747   unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
748   unsigned NumBytes = MFI.getStackSize();
749   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
750   int FPCXTSaveSize = 0;
751   bool NeedsWinCFI = needsWinCFI(MF);
752 
753   // Debug location must be unknown since the first debug location is used
754   // to determine the end of the prologue.
755   DebugLoc dl;
756 
757   Register FramePtr = RegInfo->getFrameRegister(MF);
758 
759   // Determine the sizes of each callee-save spill areas and record which frame
760   // belongs to which callee-save spill areas.
761   unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
762   int FramePtrSpillFI = 0;
763   int D8SpillFI = 0;
764 
765   // All calls are tail calls in GHC calling conv, and functions have no
766   // prologue/epilogue.
767   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
768     return;
769 
770   StackAdjustingInsts DefCFAOffsetCandidates;
771   bool HasFP = hasFP(MF);
772 
773   if (!AFI->hasStackFrame() &&
774       (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) {
775     if (NumBytes != 0) {
776       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
777                    MachineInstr::FrameSetup);
778       DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes, true);
779     }
780     if (!NeedsWinCFI)
781       DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
782     if (NeedsWinCFI && MBBI != MBB.begin()) {
783       insertSEHRange(MBB, {}, MBBI, TII, MachineInstr::FrameSetup);
784       BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_PrologEnd))
785           .setMIFlag(MachineInstr::FrameSetup);
786       MF.setHasWinCFI(true);
787     }
788     return;
789   }
790 
791   // Determine spill area sizes.
792   if (STI.splitFramePointerPush(MF)) {
793     for (const CalleeSavedInfo &I : CSI) {
794       Register Reg = I.getReg();
795       int FI = I.getFrameIdx();
796       switch (Reg) {
797       case ARM::R11:
798       case ARM::LR:
799         if (Reg == FramePtr)
800           FramePtrSpillFI = FI;
801         GPRCS2Size += 4;
802         break;
803       case ARM::R0:
804       case ARM::R1:
805       case ARM::R2:
806       case ARM::R3:
807       case ARM::R4:
808       case ARM::R5:
809       case ARM::R6:
810       case ARM::R7:
811       case ARM::R8:
812       case ARM::R9:
813       case ARM::R10:
814       case ARM::R12:
815         GPRCS1Size += 4;
816         break;
817       case ARM::FPCXTNS:
818         FPCXTSaveSize = 4;
819         break;
820       default:
821         // This is a DPR. Exclude the aligned DPRCS2 spills.
822         if (Reg == ARM::D8)
823           D8SpillFI = FI;
824         if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
825           DPRCSSize += 8;
826       }
827     }
828   } else {
829     for (const CalleeSavedInfo &I : CSI) {
830       Register Reg = I.getReg();
831       int FI = I.getFrameIdx();
832       switch (Reg) {
833       case ARM::R8:
834       case ARM::R9:
835       case ARM::R10:
836       case ARM::R11:
837       case ARM::R12:
838         if (STI.splitFramePushPop(MF)) {
839           GPRCS2Size += 4;
840           break;
841         }
842         [[fallthrough]];
843       case ARM::R0:
844       case ARM::R1:
845       case ARM::R2:
846       case ARM::R3:
847       case ARM::R4:
848       case ARM::R5:
849       case ARM::R6:
850       case ARM::R7:
851       case ARM::LR:
852         if (Reg == FramePtr)
853           FramePtrSpillFI = FI;
854         GPRCS1Size += 4;
855         break;
856       case ARM::FPCXTNS:
857         FPCXTSaveSize = 4;
858         break;
859       default:
860         // This is a DPR. Exclude the aligned DPRCS2 spills.
861         if (Reg == ARM::D8)
862           D8SpillFI = FI;
863         if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
864           DPRCSSize += 8;
865       }
866     }
867   }
868 
869   MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push;
870 
871   // Move past the PAC computation.
872   if (AFI->shouldSignReturnAddress())
873     LastPush = MBBI++;
874 
875   // Move past FPCXT area.
876   if (FPCXTSaveSize > 0) {
877     LastPush = MBBI++;
878     DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, true);
879   }
880 
881   // Allocate the vararg register save area.
882   if (ArgRegsSaveSize) {
883     emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize,
884                  MachineInstr::FrameSetup);
885     LastPush = std::prev(MBBI);
886     DefCFAOffsetCandidates.addInst(LastPush, ArgRegsSaveSize, true);
887   }
888 
889   // Move past area 1.
890   if (GPRCS1Size > 0) {
891     GPRCS1Push = LastPush = MBBI++;
892     DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true);
893   }
894 
895   // Determine starting offsets of spill areas.
896   unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize;
897   unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size;
898   unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size;
899   Align DPRAlign = DPRCSSize ? std::min(Align(8), Alignment) : Align(4);
900   unsigned DPRGapSize = GPRCS1Size + FPCXTSaveSize + ArgRegsSaveSize;
901   if (!STI.splitFramePointerPush(MF)) {
902     DPRGapSize += GPRCS2Size;
903   }
904   DPRGapSize %= DPRAlign.value();
905 
906   unsigned DPRCSOffset;
907   if (STI.splitFramePointerPush(MF)) {
908     DPRCSOffset = GPRCS1Offset - DPRGapSize - DPRCSSize;
909     GPRCS2Offset = DPRCSOffset - GPRCS2Size;
910   } else {
911     DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize;
912   }
913   int FramePtrOffsetInPush = 0;
914   if (HasFP) {
915     int FPOffset = MFI.getObjectOffset(FramePtrSpillFI);
916     assert(getMaxFPOffset(STI, *AFI, MF) <= FPOffset &&
917            "Max FP estimation is wrong");
918     FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize + FPCXTSaveSize;
919     AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) +
920                                 NumBytes);
921   }
922   AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
923   AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
924   AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
925 
926   // Move past area 2.
927   if (GPRCS2Size > 0 && !STI.splitFramePointerPush(MF)) {
928     GPRCS2Push = LastPush = MBBI++;
929     DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
930   }
931 
932   // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our
933   // .cfi_offset operations will reflect that.
934   if (DPRGapSize) {
935     assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs");
936     if (LastPush != MBB.end() &&
937         tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize))
938       DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize);
939     else {
940       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize,
941                    MachineInstr::FrameSetup);
942       DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize);
943     }
944   }
945 
946   // Move past area 3.
947   if (DPRCSSize > 0) {
948     // Since vpush register list cannot have gaps, there may be multiple vpush
949     // instructions in the prologue.
950     while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) {
951       DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI));
952       LastPush = MBBI++;
953     }
954   }
955 
956   // Move past the aligned DPRCS2 area.
957   if (AFI->getNumAlignedDPRCS2Regs() > 0) {
958     MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs());
959     // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and
960     // leaves the stack pointer pointing to the DPRCS2 area.
961     //
962     // Adjust NumBytes to represent the stack slots below the DPRCS2 area.
963     NumBytes += MFI.getObjectOffset(D8SpillFI);
964   } else
965     NumBytes = DPRCSOffset;
966 
967   if (GPRCS2Size > 0 && STI.splitFramePointerPush(MF)) {
968     GPRCS2Push = LastPush = MBBI++;
969     DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
970   }
971 
972   bool NeedsWinCFIStackAlloc = NeedsWinCFI;
973   if (STI.splitFramePointerPush(MF) && HasFP)
974     NeedsWinCFIStackAlloc = false;
975 
976   if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) {
977     uint32_t NumWords = NumBytes >> 2;
978 
979     if (NumWords < 65536) {
980       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
981           .addImm(NumWords)
982           .setMIFlags(MachineInstr::FrameSetup)
983           .add(predOps(ARMCC::AL));
984     } else {
985       // Split into two instructions here, instead of using t2MOVi32imm,
986       // to allow inserting accurate SEH instructions (including accurate
987       // instruction size for each of them).
988       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
989           .addImm(NumWords & 0xffff)
990           .setMIFlags(MachineInstr::FrameSetup)
991           .add(predOps(ARMCC::AL));
992       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVTi16), ARM::R4)
993           .addReg(ARM::R4)
994           .addImm(NumWords >> 16)
995           .setMIFlags(MachineInstr::FrameSetup)
996           .add(predOps(ARMCC::AL));
997     }
998 
999     switch (TM.getCodeModel()) {
1000     case CodeModel::Tiny:
1001       llvm_unreachable("Tiny code model not available on ARM.");
1002     case CodeModel::Small:
1003     case CodeModel::Medium:
1004     case CodeModel::Kernel:
1005       BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL))
1006           .add(predOps(ARMCC::AL))
1007           .addExternalSymbol("__chkstk")
1008           .addReg(ARM::R4, RegState::Implicit)
1009           .setMIFlags(MachineInstr::FrameSetup);
1010       break;
1011     case CodeModel::Large:
1012       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12)
1013         .addExternalSymbol("__chkstk")
1014         .setMIFlags(MachineInstr::FrameSetup);
1015 
1016       BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr))
1017           .add(predOps(ARMCC::AL))
1018           .addReg(ARM::R12, RegState::Kill)
1019           .addReg(ARM::R4, RegState::Implicit)
1020           .setMIFlags(MachineInstr::FrameSetup);
1021       break;
1022     }
1023 
1024     MachineInstrBuilder Instr, SEH;
1025     Instr = BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP)
1026                 .addReg(ARM::SP, RegState::Kill)
1027                 .addReg(ARM::R4, RegState::Kill)
1028                 .setMIFlags(MachineInstr::FrameSetup)
1029                 .add(predOps(ARMCC::AL))
1030                 .add(condCodeOp());
1031     if (NeedsWinCFIStackAlloc) {
1032       SEH = BuildMI(MF, dl, TII.get(ARM::SEH_StackAlloc))
1033                 .addImm(NumBytes)
1034                 .addImm(/*Wide=*/1)
1035                 .setMIFlags(MachineInstr::FrameSetup);
1036       MBB.insertAfter(Instr, SEH);
1037     }
1038     NumBytes = 0;
1039   }
1040 
1041   if (NumBytes) {
1042     // Adjust SP after all the callee-save spills.
1043     if (AFI->getNumAlignedDPRCS2Regs() == 0 &&
1044         tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes))
1045       DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes);
1046     else {
1047       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
1048                    MachineInstr::FrameSetup);
1049       DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes);
1050     }
1051 
1052     if (HasFP && isARM)
1053       // Restore from fp only in ARM mode: e.g. sub sp, r7, #24
1054       // Note it's not safe to do this in Thumb2 mode because it would have
1055       // taken two instructions:
1056       // mov sp, r7
1057       // sub sp, #24
1058       // If an interrupt is taken between the two instructions, then sp is in
1059       // an inconsistent state (pointing to the middle of callee-saved area).
1060       // The interrupt handler can end up clobbering the registers.
1061       AFI->setShouldRestoreSPFromFP(true);
1062   }
1063 
1064   // Set FP to point to the stack slot that contains the previous FP.
1065   // For iOS, FP is R7, which has now been stored in spill area 1.
1066   // Otherwise, if this is not iOS, all the callee-saved registers go
1067   // into spill area 1, including the FP in R11.  In either case, it
1068   // is in area one and the adjustment needs to take place just after
1069   // that push.
1070   // FIXME: The above is not necessary true when PACBTI is enabled.
1071   // AAPCS requires use of R11, and PACBTI gets in the way of regular pushes,
1072   // so FP ends up on area two.
1073   MachineBasicBlock::iterator AfterPush;
1074   if (HasFP) {
1075     AfterPush = std::next(GPRCS1Push);
1076     unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push);
1077     int FPOffset = PushSize + FramePtrOffsetInPush;
1078     if (STI.splitFramePointerPush(MF)) {
1079       AfterPush = std::next(GPRCS2Push);
1080       emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII,
1081                            FramePtr, ARM::SP, 0, MachineInstr::FrameSetup);
1082     } else {
1083       emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII,
1084                            FramePtr, ARM::SP, FPOffset,
1085                            MachineInstr::FrameSetup);
1086     }
1087     if (!NeedsWinCFI) {
1088       if (FramePtrOffsetInPush + PushSize != 0) {
1089         unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
1090             nullptr, MRI->getDwarfRegNum(FramePtr, true),
1091             FPCXTSaveSize + ArgRegsSaveSize - FramePtrOffsetInPush));
1092         BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1093             .addCFIIndex(CFIIndex)
1094             .setMIFlags(MachineInstr::FrameSetup);
1095       } else {
1096         unsigned CFIIndex =
1097             MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(
1098                 nullptr, MRI->getDwarfRegNum(FramePtr, true)));
1099         BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1100             .addCFIIndex(CFIIndex)
1101             .setMIFlags(MachineInstr::FrameSetup);
1102       }
1103     }
1104   }
1105 
1106   // Emit a SEH opcode indicating the prologue end. The rest of the prologue
1107   // instructions below don't need to be replayed to unwind the stack.
1108   if (NeedsWinCFI && MBBI != MBB.begin()) {
1109     MachineBasicBlock::iterator End = MBBI;
1110     if (HasFP && STI.splitFramePointerPush(MF))
1111       End = AfterPush;
1112     insertSEHRange(MBB, {}, End, TII, MachineInstr::FrameSetup);
1113     BuildMI(MBB, End, dl, TII.get(ARM::SEH_PrologEnd))
1114         .setMIFlag(MachineInstr::FrameSetup);
1115     MF.setHasWinCFI(true);
1116   }
1117 
1118   // Now that the prologue's actual instructions are finalised, we can insert
1119   // the necessary DWARF cf instructions to describe the situation. Start by
1120   // recording where each register ended up:
1121   if (GPRCS1Size > 0 && !NeedsWinCFI) {
1122     MachineBasicBlock::iterator Pos = std::next(GPRCS1Push);
1123     int CFIIndex;
1124     for (const auto &Entry : CSI) {
1125       Register Reg = Entry.getReg();
1126       int FI = Entry.getFrameIdx();
1127       switch (Reg) {
1128       case ARM::R8:
1129       case ARM::R9:
1130       case ARM::R10:
1131       case ARM::R11:
1132       case ARM::R12:
1133         if (STI.splitFramePushPop(MF))
1134           break;
1135         [[fallthrough]];
1136       case ARM::R0:
1137       case ARM::R1:
1138       case ARM::R2:
1139       case ARM::R3:
1140       case ARM::R4:
1141       case ARM::R5:
1142       case ARM::R6:
1143       case ARM::R7:
1144       case ARM::LR:
1145         CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
1146             nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI)));
1147         BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1148             .addCFIIndex(CFIIndex)
1149             .setMIFlags(MachineInstr::FrameSetup);
1150         break;
1151       }
1152     }
1153   }
1154 
1155   if (GPRCS2Size > 0 && !NeedsWinCFI) {
1156     MachineBasicBlock::iterator Pos = std::next(GPRCS2Push);
1157     for (const auto &Entry : CSI) {
1158       Register Reg = Entry.getReg();
1159       int FI = Entry.getFrameIdx();
1160       switch (Reg) {
1161       case ARM::R8:
1162       case ARM::R9:
1163       case ARM::R10:
1164       case ARM::R11:
1165       case ARM::R12:
1166         if (STI.splitFramePushPop(MF)) {
1167           unsigned DwarfReg = MRI->getDwarfRegNum(
1168               Reg == ARM::R12 ? ARM::RA_AUTH_CODE : Reg, true);
1169           int64_t Offset = MFI.getObjectOffset(FI);
1170           unsigned CFIIndex = MF.addFrameInst(
1171               MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
1172           BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1173               .addCFIIndex(CFIIndex)
1174               .setMIFlags(MachineInstr::FrameSetup);
1175         }
1176         break;
1177       }
1178     }
1179   }
1180 
1181   if (DPRCSSize > 0 && !NeedsWinCFI) {
1182     // Since vpush register list cannot have gaps, there may be multiple vpush
1183     // instructions in the prologue.
1184     MachineBasicBlock::iterator Pos = std::next(LastPush);
1185     for (const auto &Entry : CSI) {
1186       Register Reg = Entry.getReg();
1187       int FI = Entry.getFrameIdx();
1188       if ((Reg >= ARM::D0 && Reg <= ARM::D31) &&
1189           (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) {
1190         unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
1191         int64_t Offset = MFI.getObjectOffset(FI);
1192         unsigned CFIIndex = MF.addFrameInst(
1193             MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
1194         BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1195             .addCFIIndex(CFIIndex)
1196             .setMIFlags(MachineInstr::FrameSetup);
1197       }
1198     }
1199   }
1200 
1201   // Now we can emit descriptions of where the canonical frame address was
1202   // throughout the process. If we have a frame pointer, it takes over the job
1203   // half-way through, so only the first few .cfi_def_cfa_offset instructions
1204   // actually get emitted.
1205   if (!NeedsWinCFI)
1206     DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
1207 
1208   if (STI.isTargetELF() && hasFP(MF))
1209     MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() -
1210                             AFI->getFramePtrSpillOffset());
1211 
1212   AFI->setFPCXTSaveAreaSize(FPCXTSaveSize);
1213   AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
1214   AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
1215   AFI->setDPRCalleeSavedGapSize(DPRGapSize);
1216   AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
1217 
1218   // If we need dynamic stack realignment, do it here. Be paranoid and make
1219   // sure if we also have VLAs, we have a base pointer for frame access.
1220   // If aligned NEON registers were spilled, the stack has already been
1221   // realigned.
1222   if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->hasStackRealignment(MF)) {
1223     Align MaxAlign = MFI.getMaxAlign();
1224     assert(!AFI->isThumb1OnlyFunction());
1225     if (!AFI->isThumbFunction()) {
1226       emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign,
1227                                false);
1228     } else {
1229       // We cannot use sp as source/dest register here, thus we're using r4 to
1230       // perform the calculations. We're emitting the following sequence:
1231       // mov r4, sp
1232       // -- use emitAligningInstructions to produce best sequence to zero
1233       // -- out lower bits in r4
1234       // mov sp, r4
1235       // FIXME: It will be better just to find spare register here.
1236       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4)
1237           .addReg(ARM::SP, RegState::Kill)
1238           .add(predOps(ARMCC::AL));
1239       emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign,
1240                                false);
1241       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1242           .addReg(ARM::R4, RegState::Kill)
1243           .add(predOps(ARMCC::AL));
1244     }
1245 
1246     AFI->setShouldRestoreSPFromFP(true);
1247   }
1248 
1249   // If we need a base pointer, set it up here. It's whatever the value
1250   // of the stack pointer is at this point. Any variable size objects
1251   // will be allocated after this, so we can still use the base pointer
1252   // to reference locals.
1253   // FIXME: Clarify FrameSetup flags here.
1254   if (RegInfo->hasBasePointer(MF)) {
1255     if (isARM)
1256       BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister())
1257           .addReg(ARM::SP)
1258           .add(predOps(ARMCC::AL))
1259           .add(condCodeOp());
1260     else
1261       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister())
1262           .addReg(ARM::SP)
1263           .add(predOps(ARMCC::AL));
1264   }
1265 
1266   // If the frame has variable sized objects then the epilogue must restore
1267   // the sp from fp. We can assume there's an FP here since hasFP already
1268   // checks for hasVarSizedObjects.
1269   if (MFI.hasVarSizedObjects())
1270     AFI->setShouldRestoreSPFromFP(true);
1271 }
1272 
1273 void ARMFrameLowering::emitEpilogue(MachineFunction &MF,
1274                                     MachineBasicBlock &MBB) const {
1275   MachineFrameInfo &MFI = MF.getFrameInfo();
1276   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1277   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
1278   const ARMBaseInstrInfo &TII =
1279       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
1280   assert(!AFI->isThumb1OnlyFunction() &&
1281          "This emitEpilogue does not support Thumb1!");
1282   bool isARM = !AFI->isThumbFunction();
1283 
1284   // Amount of stack space we reserved next to incoming args for either
1285   // varargs registers or stack arguments in tail calls made by this function.
1286   unsigned ReservedArgStack = AFI->getArgRegsSaveSize();
1287 
1288   // How much of the stack used by incoming arguments this function is expected
1289   // to restore in this particular epilogue.
1290   int IncomingArgStackToRestore = getArgumentStackToRestore(MF, MBB);
1291   int NumBytes = (int)MFI.getStackSize();
1292   Register FramePtr = RegInfo->getFrameRegister(MF);
1293 
1294   // All calls are tail calls in GHC calling conv, and functions have no
1295   // prologue/epilogue.
1296   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1297     return;
1298 
1299   // First put ourselves on the first (from top) terminator instructions.
1300   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1301   DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1302 
1303   MachineBasicBlock::iterator RangeStart;
1304   if (!AFI->hasStackFrame()) {
1305     if (MF.hasWinCFI()) {
1306       BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart))
1307           .setMIFlag(MachineInstr::FrameDestroy);
1308       RangeStart = initMBBRange(MBB, MBBI);
1309     }
1310 
1311     if (NumBytes + IncomingArgStackToRestore != 0)
1312       emitSPUpdate(isARM, MBB, MBBI, dl, TII,
1313                    NumBytes + IncomingArgStackToRestore,
1314                    MachineInstr::FrameDestroy);
1315   } else {
1316     // Unwind MBBI to point to first LDR / VLDRD.
1317     if (MBBI != MBB.begin()) {
1318       do {
1319         --MBBI;
1320       } while (MBBI != MBB.begin() &&
1321                MBBI->getFlag(MachineInstr::FrameDestroy));
1322       if (!MBBI->getFlag(MachineInstr::FrameDestroy))
1323         ++MBBI;
1324     }
1325 
1326     if (MF.hasWinCFI()) {
1327       BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart))
1328           .setMIFlag(MachineInstr::FrameDestroy);
1329       RangeStart = initMBBRange(MBB, MBBI);
1330     }
1331 
1332     // Move SP to start of FP callee save spill area.
1333     NumBytes -= (ReservedArgStack +
1334                  AFI->getFPCXTSaveAreaSize() +
1335                  AFI->getGPRCalleeSavedArea1Size() +
1336                  AFI->getGPRCalleeSavedArea2Size() +
1337                  AFI->getDPRCalleeSavedGapSize() +
1338                  AFI->getDPRCalleeSavedAreaSize());
1339 
1340     // Reset SP based on frame pointer only if the stack frame extends beyond
1341     // frame pointer stack slot or target is ELF and the function has FP.
1342     if (AFI->shouldRestoreSPFromFP()) {
1343       NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
1344       if (NumBytes) {
1345         if (isARM)
1346           emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes,
1347                                   ARMCC::AL, 0, TII,
1348                                   MachineInstr::FrameDestroy);
1349         else {
1350           // It's not possible to restore SP from FP in a single instruction.
1351           // For iOS, this looks like:
1352           // mov sp, r7
1353           // sub sp, #24
1354           // This is bad, if an interrupt is taken after the mov, sp is in an
1355           // inconsistent state.
1356           // Use the first callee-saved register as a scratch register.
1357           assert(!MFI.getPristineRegs(MF).test(ARM::R4) &&
1358                  "No scratch register to restore SP from FP!");
1359           emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes,
1360                                  ARMCC::AL, 0, TII, MachineInstr::FrameDestroy);
1361           BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1362               .addReg(ARM::R4)
1363               .add(predOps(ARMCC::AL))
1364               .setMIFlag(MachineInstr::FrameDestroy);
1365         }
1366       } else {
1367         // Thumb2 or ARM.
1368         if (isARM)
1369           BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP)
1370               .addReg(FramePtr)
1371               .add(predOps(ARMCC::AL))
1372               .add(condCodeOp())
1373               .setMIFlag(MachineInstr::FrameDestroy);
1374         else
1375           BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1376               .addReg(FramePtr)
1377               .add(predOps(ARMCC::AL))
1378               .setMIFlag(MachineInstr::FrameDestroy);
1379       }
1380     } else if (NumBytes &&
1381                !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes))
1382       emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes,
1383                    MachineInstr::FrameDestroy);
1384 
1385     // Increment past our save areas.
1386     if (AFI->getGPRCalleeSavedArea2Size() && STI.splitFramePointerPush(MF))
1387       MBBI++;
1388 
1389     if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) {
1390       MBBI++;
1391       // Since vpop register list cannot have gaps, there may be multiple vpop
1392       // instructions in the epilogue.
1393       while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD)
1394         MBBI++;
1395     }
1396     if (AFI->getDPRCalleeSavedGapSize()) {
1397       assert(AFI->getDPRCalleeSavedGapSize() == 4 &&
1398              "unexpected DPR alignment gap");
1399       emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(),
1400                    MachineInstr::FrameDestroy);
1401     }
1402 
1403     if (AFI->getGPRCalleeSavedArea2Size() && !STI.splitFramePointerPush(MF))
1404       MBBI++;
1405     if (AFI->getGPRCalleeSavedArea1Size()) MBBI++;
1406 
1407     if (ReservedArgStack || IncomingArgStackToRestore) {
1408       assert((int)ReservedArgStack + IncomingArgStackToRestore >= 0 &&
1409              "attempting to restore negative stack amount");
1410       emitSPUpdate(isARM, MBB, MBBI, dl, TII,
1411                    ReservedArgStack + IncomingArgStackToRestore,
1412                    MachineInstr::FrameDestroy);
1413     }
1414 
1415     // Validate PAC, It should have been already popped into R12. For CMSE entry
1416     // function, the validation instruction is emitted during expansion of the
1417     // tBXNS_RET, since the validation must use the value of SP at function
1418     // entry, before saving, resp. after restoring, FPCXTNS.
1419     if (AFI->shouldSignReturnAddress() && !AFI->isCmseNSEntryFunction())
1420       BuildMI(MBB, MBBI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2AUT));
1421   }
1422 
1423   if (MF.hasWinCFI()) {
1424     insertSEHRange(MBB, RangeStart, MBB.end(), TII, MachineInstr::FrameDestroy);
1425     BuildMI(MBB, MBB.end(), dl, TII.get(ARM::SEH_EpilogEnd))
1426         .setMIFlag(MachineInstr::FrameDestroy);
1427   }
1428 }
1429 
1430 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
1431 /// debug info.  It's the same as what we use for resolving the code-gen
1432 /// references for now.  FIXME: This can go wrong when references are
1433 /// SP-relative and simple call frames aren't used.
1434 StackOffset ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF,
1435                                                      int FI,
1436                                                      Register &FrameReg) const {
1437   return StackOffset::getFixed(ResolveFrameIndexReference(MF, FI, FrameReg, 0));
1438 }
1439 
1440 int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF,
1441                                                  int FI, Register &FrameReg,
1442                                                  int SPAdj) const {
1443   const MachineFrameInfo &MFI = MF.getFrameInfo();
1444   const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
1445       MF.getSubtarget().getRegisterInfo());
1446   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1447   int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize();
1448   int FPOffset = Offset - AFI->getFramePtrSpillOffset();
1449   bool isFixed = MFI.isFixedObjectIndex(FI);
1450 
1451   FrameReg = ARM::SP;
1452   Offset += SPAdj;
1453 
1454   // SP can move around if there are allocas.  We may also lose track of SP
1455   // when emergency spilling inside a non-reserved call frame setup.
1456   bool hasMovingSP = !hasReservedCallFrame(MF);
1457 
1458   // When dynamically realigning the stack, use the frame pointer for
1459   // parameters, and the stack/base pointer for locals.
1460   if (RegInfo->hasStackRealignment(MF)) {
1461     assert(hasFP(MF) && "dynamic stack realignment without a FP!");
1462     if (isFixed) {
1463       FrameReg = RegInfo->getFrameRegister(MF);
1464       Offset = FPOffset;
1465     } else if (hasMovingSP) {
1466       assert(RegInfo->hasBasePointer(MF) &&
1467              "VLAs and dynamic stack alignment, but missing base pointer!");
1468       FrameReg = RegInfo->getBaseRegister();
1469       Offset -= SPAdj;
1470     }
1471     return Offset;
1472   }
1473 
1474   // If there is a frame pointer, use it when we can.
1475   if (hasFP(MF) && AFI->hasStackFrame()) {
1476     // Use frame pointer to reference fixed objects. Use it for locals if
1477     // there are VLAs (and thus the SP isn't reliable as a base).
1478     if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) {
1479       FrameReg = RegInfo->getFrameRegister(MF);
1480       return FPOffset;
1481     } else if (hasMovingSP) {
1482       assert(RegInfo->hasBasePointer(MF) && "missing base pointer!");
1483       if (AFI->isThumb2Function()) {
1484         // Try to use the frame pointer if we can, else use the base pointer
1485         // since it's available. This is handy for the emergency spill slot, in
1486         // particular.
1487         if (FPOffset >= -255 && FPOffset < 0) {
1488           FrameReg = RegInfo->getFrameRegister(MF);
1489           return FPOffset;
1490         }
1491       }
1492     } else if (AFI->isThumbFunction()) {
1493       // Prefer SP to base pointer, if the offset is suitably aligned and in
1494       // range as the effective range of the immediate offset is bigger when
1495       // basing off SP.
1496       // Use  add <rd>, sp, #<imm8>
1497       //      ldr <rd>, [sp, #<imm8>]
1498       if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020)
1499         return Offset;
1500       // In Thumb2 mode, the negative offset is very limited. Try to avoid
1501       // out of range references. ldr <rt>,[<rn>, #-<imm8>]
1502       if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) {
1503         FrameReg = RegInfo->getFrameRegister(MF);
1504         return FPOffset;
1505       }
1506     } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) {
1507       // Otherwise, use SP or FP, whichever is closer to the stack slot.
1508       FrameReg = RegInfo->getFrameRegister(MF);
1509       return FPOffset;
1510     }
1511   }
1512   // Use the base pointer if we have one.
1513   // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper?
1514   // That can happen if we forced a base pointer for a large call frame.
1515   if (RegInfo->hasBasePointer(MF)) {
1516     FrameReg = RegInfo->getBaseRegister();
1517     Offset -= SPAdj;
1518   }
1519   return Offset;
1520 }
1521 
1522 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB,
1523                                     MachineBasicBlock::iterator MI,
1524                                     ArrayRef<CalleeSavedInfo> CSI,
1525                                     unsigned StmOpc, unsigned StrOpc,
1526                                     bool NoGap, bool (*Func)(unsigned, bool),
1527                                     unsigned NumAlignedDPRCS2Regs,
1528                                     unsigned MIFlags) const {
1529   MachineFunction &MF = *MBB.getParent();
1530   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1531   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1532 
1533   DebugLoc DL;
1534 
1535   using RegAndKill = std::pair<unsigned, bool>;
1536 
1537   SmallVector<RegAndKill, 4> Regs;
1538   unsigned i = CSI.size();
1539   while (i != 0) {
1540     unsigned LastReg = 0;
1541     for (; i != 0; --i) {
1542       Register Reg = CSI[i-1].getReg();
1543       if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
1544 
1545       // D-registers in the aligned area DPRCS2 are NOT spilled here.
1546       if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
1547         continue;
1548 
1549       const MachineRegisterInfo &MRI = MF.getRegInfo();
1550       bool isLiveIn = MRI.isLiveIn(Reg);
1551       if (!isLiveIn && !MRI.isReserved(Reg))
1552         MBB.addLiveIn(Reg);
1553       // If NoGap is true, push consecutive registers and then leave the rest
1554       // for other instructions. e.g.
1555       // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11}
1556       if (NoGap && LastReg && LastReg != Reg-1)
1557         break;
1558       LastReg = Reg;
1559       // Do not set a kill flag on values that are also marked as live-in. This
1560       // happens with the @llvm-returnaddress intrinsic and with arguments
1561       // passed in callee saved registers.
1562       // Omitting the kill flags is conservatively correct even if the live-in
1563       // is not used after all.
1564       Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn));
1565     }
1566 
1567     if (Regs.empty())
1568       continue;
1569 
1570     llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) {
1571       return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first);
1572     });
1573 
1574     if (Regs.size() > 1 || StrOpc== 0) {
1575       MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP)
1576                                     .addReg(ARM::SP)
1577                                     .setMIFlags(MIFlags)
1578                                     .add(predOps(ARMCC::AL));
1579       for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1580         MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second));
1581     } else if (Regs.size() == 1) {
1582       BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP)
1583           .addReg(Regs[0].first, getKillRegState(Regs[0].second))
1584           .addReg(ARM::SP)
1585           .setMIFlags(MIFlags)
1586           .addImm(-4)
1587           .add(predOps(ARMCC::AL));
1588     }
1589     Regs.clear();
1590 
1591     // Put any subsequent vpush instructions before this one: they will refer to
1592     // higher register numbers so need to be pushed first in order to preserve
1593     // monotonicity.
1594     if (MI != MBB.begin())
1595       --MI;
1596   }
1597 }
1598 
1599 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB,
1600                                    MachineBasicBlock::iterator MI,
1601                                    MutableArrayRef<CalleeSavedInfo> CSI,
1602                                    unsigned LdmOpc, unsigned LdrOpc,
1603                                    bool isVarArg, bool NoGap,
1604                                    bool (*Func)(unsigned, bool),
1605                                    unsigned NumAlignedDPRCS2Regs) const {
1606   MachineFunction &MF = *MBB.getParent();
1607   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1608   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1609   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1610   bool hasPAC = AFI->shouldSignReturnAddress();
1611   DebugLoc DL;
1612   bool isTailCall = false;
1613   bool isInterrupt = false;
1614   bool isTrap = false;
1615   bool isCmseEntry = false;
1616   if (MBB.end() != MI) {
1617     DL = MI->getDebugLoc();
1618     unsigned RetOpcode = MI->getOpcode();
1619     isTailCall =
1620         (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri ||
1621          RetOpcode == ARM::TCRETURNrinotr12);
1622     isInterrupt =
1623         RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR;
1624     isTrap =
1625         RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl ||
1626         RetOpcode == ARM::tTRAP;
1627     isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET);
1628   }
1629 
1630   SmallVector<unsigned, 4> Regs;
1631   unsigned i = CSI.size();
1632   while (i != 0) {
1633     unsigned LastReg = 0;
1634     bool DeleteRet = false;
1635     for (; i != 0; --i) {
1636       CalleeSavedInfo &Info = CSI[i-1];
1637       Register Reg = Info.getReg();
1638       if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
1639 
1640       // The aligned reloads from area DPRCS2 are not inserted here.
1641       if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
1642         continue;
1643       if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt &&
1644           !isCmseEntry && !isTrap && AFI->getArgumentStackToRestore() == 0 &&
1645           STI.hasV5TOps() && MBB.succ_empty() && !hasPAC &&
1646           !STI.splitFramePointerPush(MF)) {
1647         Reg = ARM::PC;
1648         // Fold the return instruction into the LDM.
1649         DeleteRet = true;
1650         LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET;
1651       }
1652 
1653       // If NoGap is true, pop consecutive registers and then leave the rest
1654       // for other instructions. e.g.
1655       // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11}
1656       if (NoGap && LastReg && LastReg != Reg-1)
1657         break;
1658 
1659       LastReg = Reg;
1660       Regs.push_back(Reg);
1661     }
1662 
1663     if (Regs.empty())
1664       continue;
1665 
1666     llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) {
1667       return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS);
1668     });
1669 
1670     if (Regs.size() > 1 || LdrOpc == 0) {
1671       MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP)
1672                                     .addReg(ARM::SP)
1673                                     .add(predOps(ARMCC::AL))
1674                                     .setMIFlags(MachineInstr::FrameDestroy);
1675       for (unsigned Reg : Regs)
1676         MIB.addReg(Reg, getDefRegState(true));
1677       if (DeleteRet) {
1678         if (MI != MBB.end()) {
1679           MIB.copyImplicitOps(*MI);
1680           MI->eraseFromParent();
1681         }
1682       }
1683       MI = MIB;
1684     } else if (Regs.size() == 1) {
1685       // If we adjusted the reg to PC from LR above, switch it back here. We
1686       // only do that for LDM.
1687       if (Regs[0] == ARM::PC)
1688         Regs[0] = ARM::LR;
1689       MachineInstrBuilder MIB =
1690         BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0])
1691           .addReg(ARM::SP, RegState::Define)
1692           .addReg(ARM::SP)
1693           .setMIFlags(MachineInstr::FrameDestroy);
1694       // ARM mode needs an extra reg0 here due to addrmode2. Will go away once
1695       // that refactoring is complete (eventually).
1696       if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) {
1697         MIB.addReg(0);
1698         MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift));
1699       } else
1700         MIB.addImm(4);
1701       MIB.add(predOps(ARMCC::AL));
1702     }
1703     Regs.clear();
1704 
1705     // Put any subsequent vpop instructions after this one: they will refer to
1706     // higher register numbers so need to be popped afterwards.
1707     if (MI != MBB.end())
1708       ++MI;
1709   }
1710 }
1711 
1712 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers
1713 /// starting from d8.  Also insert stack realignment code and leave the stack
1714 /// pointer pointing to the d8 spill slot.
1715 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB,
1716                                     MachineBasicBlock::iterator MI,
1717                                     unsigned NumAlignedDPRCS2Regs,
1718                                     ArrayRef<CalleeSavedInfo> CSI,
1719                                     const TargetRegisterInfo *TRI) {
1720   MachineFunction &MF = *MBB.getParent();
1721   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1722   DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1723   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1724   MachineFrameInfo &MFI = MF.getFrameInfo();
1725 
1726   // Mark the D-register spill slots as properly aligned.  Since MFI computes
1727   // stack slot layout backwards, this can actually mean that the d-reg stack
1728   // slot offsets can be wrong. The offset for d8 will always be correct.
1729   for (const CalleeSavedInfo &I : CSI) {
1730     unsigned DNum = I.getReg() - ARM::D8;
1731     if (DNum > NumAlignedDPRCS2Regs - 1)
1732       continue;
1733     int FI = I.getFrameIdx();
1734     // The even-numbered registers will be 16-byte aligned, the odd-numbered
1735     // registers will be 8-byte aligned.
1736     MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16));
1737 
1738     // The stack slot for D8 needs to be maximally aligned because this is
1739     // actually the point where we align the stack pointer.  MachineFrameInfo
1740     // computes all offsets relative to the incoming stack pointer which is a
1741     // bit weird when realigning the stack.  Any extra padding for this
1742     // over-alignment is not realized because the code inserted below adjusts
1743     // the stack pointer by numregs * 8 before aligning the stack pointer.
1744     if (DNum == 0)
1745       MFI.setObjectAlignment(FI, MFI.getMaxAlign());
1746   }
1747 
1748   // Move the stack pointer to the d8 spill slot, and align it at the same
1749   // time. Leave the stack slot address in the scratch register r4.
1750   //
1751   //   sub r4, sp, #numregs * 8
1752   //   bic r4, r4, #align - 1
1753   //   mov sp, r4
1754   //
1755   bool isThumb = AFI->isThumbFunction();
1756   assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1757   AFI->setShouldRestoreSPFromFP(true);
1758 
1759   // sub r4, sp, #numregs * 8
1760   // The immediate is <= 64, so it doesn't need any special encoding.
1761   unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri;
1762   BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1763       .addReg(ARM::SP)
1764       .addImm(8 * NumAlignedDPRCS2Regs)
1765       .add(predOps(ARMCC::AL))
1766       .add(condCodeOp());
1767 
1768   Align MaxAlign = MF.getFrameInfo().getMaxAlign();
1769   // We must set parameter MustBeSingleInstruction to true, since
1770   // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform
1771   // stack alignment.  Luckily, this can always be done since all ARM
1772   // architecture versions that support Neon also support the BFC
1773   // instruction.
1774   emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true);
1775 
1776   // mov sp, r4
1777   // The stack pointer must be adjusted before spilling anything, otherwise
1778   // the stack slots could be clobbered by an interrupt handler.
1779   // Leave r4 live, it is used below.
1780   Opc = isThumb ? ARM::tMOVr : ARM::MOVr;
1781   MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP)
1782                                 .addReg(ARM::R4)
1783                                 .add(predOps(ARMCC::AL));
1784   if (!isThumb)
1785     MIB.add(condCodeOp());
1786 
1787   // Now spill NumAlignedDPRCS2Regs registers starting from d8.
1788   // r4 holds the stack slot address.
1789   unsigned NextReg = ARM::D8;
1790 
1791   // 16-byte aligned vst1.64 with 4 d-regs and address writeback.
1792   // The writeback is only needed when emitting two vst1.64 instructions.
1793   if (NumAlignedDPRCS2Regs >= 6) {
1794     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1795                                                &ARM::QQPRRegClass);
1796     MBB.addLiveIn(SupReg);
1797     BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4)
1798         .addReg(ARM::R4, RegState::Kill)
1799         .addImm(16)
1800         .addReg(NextReg)
1801         .addReg(SupReg, RegState::ImplicitKill)
1802         .add(predOps(ARMCC::AL));
1803     NextReg += 4;
1804     NumAlignedDPRCS2Regs -= 4;
1805   }
1806 
1807   // We won't modify r4 beyond this point.  It currently points to the next
1808   // register to be spilled.
1809   unsigned R4BaseReg = NextReg;
1810 
1811   // 16-byte aligned vst1.64 with 4 d-regs, no writeback.
1812   if (NumAlignedDPRCS2Regs >= 4) {
1813     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1814                                                &ARM::QQPRRegClass);
1815     MBB.addLiveIn(SupReg);
1816     BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q))
1817         .addReg(ARM::R4)
1818         .addImm(16)
1819         .addReg(NextReg)
1820         .addReg(SupReg, RegState::ImplicitKill)
1821         .add(predOps(ARMCC::AL));
1822     NextReg += 4;
1823     NumAlignedDPRCS2Regs -= 4;
1824   }
1825 
1826   // 16-byte aligned vst1.64 with 2 d-regs.
1827   if (NumAlignedDPRCS2Regs >= 2) {
1828     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1829                                                &ARM::QPRRegClass);
1830     MBB.addLiveIn(SupReg);
1831     BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64))
1832         .addReg(ARM::R4)
1833         .addImm(16)
1834         .addReg(SupReg)
1835         .add(predOps(ARMCC::AL));
1836     NextReg += 2;
1837     NumAlignedDPRCS2Regs -= 2;
1838   }
1839 
1840   // Finally, use a vanilla vstr.64 for the odd last register.
1841   if (NumAlignedDPRCS2Regs) {
1842     MBB.addLiveIn(NextReg);
1843     // vstr.64 uses addrmode5 which has an offset scale of 4.
1844     BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD))
1845         .addReg(NextReg)
1846         .addReg(ARM::R4)
1847         .addImm((NextReg - R4BaseReg) * 2)
1848         .add(predOps(ARMCC::AL));
1849   }
1850 
1851   // The last spill instruction inserted should kill the scratch register r4.
1852   std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1853 }
1854 
1855 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an
1856 /// iterator to the following instruction.
1857 static MachineBasicBlock::iterator
1858 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
1859                         unsigned NumAlignedDPRCS2Regs) {
1860   //   sub r4, sp, #numregs * 8
1861   //   bic r4, r4, #align - 1
1862   //   mov sp, r4
1863   ++MI; ++MI; ++MI;
1864   assert(MI->mayStore() && "Expecting spill instruction");
1865 
1866   // These switches all fall through.
1867   switch(NumAlignedDPRCS2Regs) {
1868   case 7:
1869     ++MI;
1870     assert(MI->mayStore() && "Expecting spill instruction");
1871     [[fallthrough]];
1872   default:
1873     ++MI;
1874     assert(MI->mayStore() && "Expecting spill instruction");
1875     [[fallthrough]];
1876   case 1:
1877   case 2:
1878   case 4:
1879     assert(MI->killsRegister(ARM::R4, /*TRI=*/nullptr) && "Missed kill flag");
1880     ++MI;
1881   }
1882   return MI;
1883 }
1884 
1885 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers
1886 /// starting from d8.  These instructions are assumed to execute while the
1887 /// stack is still aligned, unlike the code inserted by emitPopInst.
1888 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB,
1889                                       MachineBasicBlock::iterator MI,
1890                                       unsigned NumAlignedDPRCS2Regs,
1891                                       ArrayRef<CalleeSavedInfo> CSI,
1892                                       const TargetRegisterInfo *TRI) {
1893   MachineFunction &MF = *MBB.getParent();
1894   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1895   DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1896   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1897 
1898   // Find the frame index assigned to d8.
1899   int D8SpillFI = 0;
1900   for (const CalleeSavedInfo &I : CSI)
1901     if (I.getReg() == ARM::D8) {
1902       D8SpillFI = I.getFrameIdx();
1903       break;
1904     }
1905 
1906   // Materialize the address of the d8 spill slot into the scratch register r4.
1907   // This can be fairly complicated if the stack frame is large, so just use
1908   // the normal frame index elimination mechanism to do it.  This code runs as
1909   // the initial part of the epilog where the stack and base pointers haven't
1910   // been changed yet.
1911   bool isThumb = AFI->isThumbFunction();
1912   assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1913 
1914   unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
1915   BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1916       .addFrameIndex(D8SpillFI)
1917       .addImm(0)
1918       .add(predOps(ARMCC::AL))
1919       .add(condCodeOp());
1920 
1921   // Now restore NumAlignedDPRCS2Regs registers starting from d8.
1922   unsigned NextReg = ARM::D8;
1923 
1924   // 16-byte aligned vld1.64 with 4 d-regs and writeback.
1925   if (NumAlignedDPRCS2Regs >= 6) {
1926     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1927                                                &ARM::QQPRRegClass);
1928     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg)
1929         .addReg(ARM::R4, RegState::Define)
1930         .addReg(ARM::R4, RegState::Kill)
1931         .addImm(16)
1932         .addReg(SupReg, RegState::ImplicitDefine)
1933         .add(predOps(ARMCC::AL));
1934     NextReg += 4;
1935     NumAlignedDPRCS2Regs -= 4;
1936   }
1937 
1938   // We won't modify r4 beyond this point.  It currently points to the next
1939   // register to be spilled.
1940   unsigned R4BaseReg = NextReg;
1941 
1942   // 16-byte aligned vld1.64 with 4 d-regs, no writeback.
1943   if (NumAlignedDPRCS2Regs >= 4) {
1944     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1945                                                &ARM::QQPRRegClass);
1946     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg)
1947         .addReg(ARM::R4)
1948         .addImm(16)
1949         .addReg(SupReg, RegState::ImplicitDefine)
1950         .add(predOps(ARMCC::AL));
1951     NextReg += 4;
1952     NumAlignedDPRCS2Regs -= 4;
1953   }
1954 
1955   // 16-byte aligned vld1.64 with 2 d-regs.
1956   if (NumAlignedDPRCS2Regs >= 2) {
1957     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1958                                                &ARM::QPRRegClass);
1959     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg)
1960         .addReg(ARM::R4)
1961         .addImm(16)
1962         .add(predOps(ARMCC::AL));
1963     NextReg += 2;
1964     NumAlignedDPRCS2Regs -= 2;
1965   }
1966 
1967   // Finally, use a vanilla vldr.64 for the remaining odd register.
1968   if (NumAlignedDPRCS2Regs)
1969     BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg)
1970         .addReg(ARM::R4)
1971         .addImm(2 * (NextReg - R4BaseReg))
1972         .add(predOps(ARMCC::AL));
1973 
1974   // Last store kills r4.
1975   std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1976 }
1977 
1978 bool ARMFrameLowering::spillCalleeSavedRegisters(
1979     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1980     ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
1981   if (CSI.empty())
1982     return false;
1983 
1984   MachineFunction &MF = *MBB.getParent();
1985   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1986 
1987   unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD;
1988   unsigned PushOneOpc = AFI->isThumbFunction() ?
1989     ARM::t2STR_PRE : ARM::STR_PRE_IMM;
1990   unsigned FltOpc = ARM::VSTMDDB_UPD;
1991   unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1992   // Compute PAC in R12.
1993   if (AFI->shouldSignReturnAddress()) {
1994     BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2PAC))
1995         .setMIFlags(MachineInstr::FrameSetup);
1996   }
1997   // Save the non-secure floating point context.
1998   if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) {
1999         return C.getReg() == ARM::FPCXTNS;
2000       })) {
2001     BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre),
2002             ARM::SP)
2003         .addReg(ARM::SP)
2004         .addImm(-4)
2005         .add(predOps(ARMCC::AL));
2006   }
2007   if (STI.splitFramePointerPush(MF)) {
2008     emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false,
2009                  &isSplitFPArea1Register, 0, MachineInstr::FrameSetup);
2010     emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
2011                  NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
2012     emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false,
2013                  &isSplitFPArea2Register, 0, MachineInstr::FrameSetup);
2014   } else {
2015     emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register,
2016                  0, MachineInstr::FrameSetup);
2017     emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register,
2018                  0, MachineInstr::FrameSetup);
2019     emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
2020                  NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
2021   }
2022 
2023   // The code above does not insert spill code for the aligned DPRCS2 registers.
2024   // The stack realignment code will be inserted between the push instructions
2025   // and these spills.
2026   if (NumAlignedDPRCS2Regs)
2027     emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
2028 
2029   return true;
2030 }
2031 
2032 bool ARMFrameLowering::restoreCalleeSavedRegisters(
2033     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2034     MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2035   if (CSI.empty())
2036     return false;
2037 
2038   MachineFunction &MF = *MBB.getParent();
2039   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2040   bool isVarArg = AFI->getArgRegsSaveSize() > 0;
2041   unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
2042 
2043   // The emitPopInst calls below do not insert reloads for the aligned DPRCS2
2044   // registers. Do that here instead.
2045   if (NumAlignedDPRCS2Regs)
2046     emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
2047 
2048   unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
2049   unsigned LdrOpc =
2050       AFI->isThumbFunction() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
2051   unsigned FltOpc = ARM::VLDMDIA_UPD;
2052   if (STI.splitFramePointerPush(MF)) {
2053     emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
2054                 &isSplitFPArea2Register, 0);
2055     emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
2056                 NumAlignedDPRCS2Regs);
2057     emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
2058                 &isSplitFPArea1Register, 0);
2059   } else {
2060     emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
2061                 NumAlignedDPRCS2Regs);
2062     emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
2063                 &isARMArea2Register, 0);
2064     emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
2065                 &isARMArea1Register, 0);
2066   }
2067 
2068   return true;
2069 }
2070 
2071 // FIXME: Make generic?
2072 static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF,
2073                                             const ARMBaseInstrInfo &TII) {
2074   unsigned FnSize = 0;
2075   for (auto &MBB : MF) {
2076     for (auto &MI : MBB)
2077       FnSize += TII.getInstSizeInBytes(MI);
2078   }
2079   if (MF.getJumpTableInfo())
2080     for (auto &Table: MF.getJumpTableInfo()->getJumpTables())
2081       FnSize += Table.MBBs.size() * 4;
2082   FnSize += MF.getConstantPool()->getConstants().size() * 4;
2083   return FnSize;
2084 }
2085 
2086 /// estimateRSStackSizeLimit - Look at each instruction that references stack
2087 /// frames and return the stack size limit beyond which some of these
2088 /// instructions will require a scratch register during their expansion later.
2089 // FIXME: Move to TII?
2090 static unsigned estimateRSStackSizeLimit(MachineFunction &MF,
2091                                          const TargetFrameLowering *TFI,
2092                                          bool &HasNonSPFrameIndex) {
2093   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2094   const ARMBaseInstrInfo &TII =
2095       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2096   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2097   unsigned Limit = (1 << 12) - 1;
2098   for (auto &MBB : MF) {
2099     for (auto &MI : MBB) {
2100       if (MI.isDebugInstr())
2101         continue;
2102       for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2103         if (!MI.getOperand(i).isFI())
2104           continue;
2105 
2106         // When using ADDri to get the address of a stack object, 255 is the
2107         // largest offset guaranteed to fit in the immediate offset.
2108         if (MI.getOpcode() == ARM::ADDri) {
2109           Limit = std::min(Limit, (1U << 8) - 1);
2110           break;
2111         }
2112         // t2ADDri will not require an extra register, it can reuse the
2113         // destination.
2114         if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12)
2115           break;
2116 
2117         const MCInstrDesc &MCID = MI.getDesc();
2118         const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF);
2119         if (RegClass && !RegClass->contains(ARM::SP))
2120           HasNonSPFrameIndex = true;
2121 
2122         // Otherwise check the addressing mode.
2123         switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) {
2124         case ARMII::AddrMode_i12:
2125         case ARMII::AddrMode2:
2126           // Default 12 bit limit.
2127           break;
2128         case ARMII::AddrMode3:
2129         case ARMII::AddrModeT2_i8neg:
2130           Limit = std::min(Limit, (1U << 8) - 1);
2131           break;
2132         case ARMII::AddrMode5FP16:
2133           Limit = std::min(Limit, ((1U << 8) - 1) * 2);
2134           break;
2135         case ARMII::AddrMode5:
2136         case ARMII::AddrModeT2_i8s4:
2137         case ARMII::AddrModeT2_ldrex:
2138           Limit = std::min(Limit, ((1U << 8) - 1) * 4);
2139           break;
2140         case ARMII::AddrModeT2_i12:
2141           // i12 supports only positive offset so these will be converted to
2142           // i8 opcodes. See llvm::rewriteT2FrameIndex.
2143           if (TFI->hasFP(MF) && AFI->hasStackFrame())
2144             Limit = std::min(Limit, (1U << 8) - 1);
2145           break;
2146         case ARMII::AddrMode4:
2147         case ARMII::AddrMode6:
2148           // Addressing modes 4 & 6 (load/store) instructions can't encode an
2149           // immediate offset for stack references.
2150           return 0;
2151         case ARMII::AddrModeT2_i7:
2152           Limit = std::min(Limit, ((1U << 7) - 1) * 1);
2153           break;
2154         case ARMII::AddrModeT2_i7s2:
2155           Limit = std::min(Limit, ((1U << 7) - 1) * 2);
2156           break;
2157         case ARMII::AddrModeT2_i7s4:
2158           Limit = std::min(Limit, ((1U << 7) - 1) * 4);
2159           break;
2160         default:
2161           llvm_unreachable("Unhandled addressing mode in stack size limit calculation");
2162         }
2163         break; // At most one FI per instruction
2164       }
2165     }
2166   }
2167 
2168   return Limit;
2169 }
2170 
2171 // In functions that realign the stack, it can be an advantage to spill the
2172 // callee-saved vector registers after realigning the stack. The vst1 and vld1
2173 // instructions take alignment hints that can improve performance.
2174 static void
2175 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) {
2176   MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0);
2177   if (!SpillAlignedNEONRegs)
2178     return;
2179 
2180   // Naked functions don't spill callee-saved registers.
2181   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
2182     return;
2183 
2184   // We are planning to use NEON instructions vst1 / vld1.
2185   if (!MF.getSubtarget<ARMSubtarget>().hasNEON())
2186     return;
2187 
2188   // Don't bother if the default stack alignment is sufficiently high.
2189   if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8))
2190     return;
2191 
2192   // Aligned spills require stack realignment.
2193   if (!static_cast<const ARMBaseRegisterInfo *>(
2194            MF.getSubtarget().getRegisterInfo())->canRealignStack(MF))
2195     return;
2196 
2197   // We always spill contiguous d-registers starting from d8. Count how many
2198   // needs spilling.  The register allocator will almost always use the
2199   // callee-saved registers in order, but it can happen that there are holes in
2200   // the range.  Registers above the hole will be spilled to the standard DPRCS
2201   // area.
2202   unsigned NumSpills = 0;
2203   for (; NumSpills < 8; ++NumSpills)
2204     if (!SavedRegs.test(ARM::D8 + NumSpills))
2205       break;
2206 
2207   // Don't do this for just one d-register. It's not worth it.
2208   if (NumSpills < 2)
2209     return;
2210 
2211   // Spill the first NumSpills D-registers after realigning the stack.
2212   MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills);
2213 
2214   // A scratch register is required for the vst1 / vld1 instructions.
2215   SavedRegs.set(ARM::R4);
2216 }
2217 
2218 bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
2219   // For CMSE entry functions, we want to save the FPCXT_NS immediately
2220   // upon function entry (resp. restore it immmediately before return)
2221   if (STI.hasV8_1MMainlineOps() &&
2222       MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction())
2223     return false;
2224 
2225   // We are disabling shrinkwrapping for now when PAC is enabled, as
2226   // shrinkwrapping can cause clobbering of r12 when the PAC code is
2227   // generated. A follow-up patch will fix this in a more performant manner.
2228   if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress(
2229           true /* SpillsLR */))
2230     return false;
2231 
2232   return true;
2233 }
2234 
2235 bool ARMFrameLowering::requiresAAPCSFrameRecord(
2236     const MachineFunction &MF) const {
2237   const auto &Subtarget = MF.getSubtarget<ARMSubtarget>();
2238   return Subtarget.createAAPCSFrameChain() && hasFP(MF);
2239 }
2240 
2241 // Thumb1 may require a spill when storing to a frame index through FP (or any
2242 // access with execute-only), for cases where FP is a high register (R11). This
2243 // scans the function for cases where this may happen.
2244 static bool canSpillOnFrameIndexAccess(const MachineFunction &MF,
2245                                        const TargetFrameLowering &TFI) {
2246   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2247   if (!AFI->isThumb1OnlyFunction())
2248     return false;
2249 
2250   const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
2251   for (const auto &MBB : MF)
2252     for (const auto &MI : MBB)
2253       if (MI.getOpcode() == ARM::tSTRspi || MI.getOpcode() == ARM::tSTRi ||
2254           STI.genExecuteOnly())
2255         for (const auto &Op : MI.operands())
2256           if (Op.isFI()) {
2257             Register Reg;
2258             TFI.getFrameIndexReference(MF, Op.getIndex(), Reg);
2259             if (ARM::hGPRRegClass.contains(Reg) && Reg != ARM::SP)
2260               return true;
2261           }
2262   return false;
2263 }
2264 
2265 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF,
2266                                             BitVector &SavedRegs,
2267                                             RegScavenger *RS) const {
2268   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2269   // This tells PEI to spill the FP as if it is any other callee-save register
2270   // to take advantage the eliminateFrameIndex machinery. This also ensures it
2271   // is spilled in the order specified by getCalleeSavedRegs() to make it easier
2272   // to combine multiple loads / stores.
2273   bool CanEliminateFrame = !(requiresAAPCSFrameRecord(MF) && hasFP(MF));
2274   bool CS1Spilled = false;
2275   bool LRSpilled = false;
2276   unsigned NumGPRSpills = 0;
2277   unsigned NumFPRSpills = 0;
2278   SmallVector<unsigned, 4> UnspilledCS1GPRs;
2279   SmallVector<unsigned, 4> UnspilledCS2GPRs;
2280   const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
2281       MF.getSubtarget().getRegisterInfo());
2282   const ARMBaseInstrInfo &TII =
2283       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2284   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2285   MachineFrameInfo &MFI = MF.getFrameInfo();
2286   MachineRegisterInfo &MRI = MF.getRegInfo();
2287   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2288   (void)TRI;  // Silence unused warning in non-assert builds.
2289   Register FramePtr = RegInfo->getFrameRegister(MF);
2290 
2291   // Spill R4 if Thumb2 function requires stack realignment - it will be used as
2292   // scratch register. Also spill R4 if Thumb2 function has varsized objects,
2293   // since it's not always possible to restore sp from fp in a single
2294   // instruction.
2295   // FIXME: It will be better just to find spare register here.
2296   if (AFI->isThumb2Function() &&
2297       (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF)))
2298     SavedRegs.set(ARM::R4);
2299 
2300   // If a stack probe will be emitted, spill R4 and LR, since they are
2301   // clobbered by the stack probe call.
2302   // This estimate should be a safe, conservative estimate. The actual
2303   // stack probe is enabled based on the size of the local objects;
2304   // this estimate also includes the varargs store size.
2305   if (STI.isTargetWindows() &&
2306       WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) {
2307     SavedRegs.set(ARM::R4);
2308     SavedRegs.set(ARM::LR);
2309   }
2310 
2311   if (AFI->isThumb1OnlyFunction()) {
2312     // Spill LR if Thumb1 function uses variable length argument lists.
2313     if (AFI->getArgRegsSaveSize() > 0)
2314       SavedRegs.set(ARM::LR);
2315 
2316     // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function
2317     // requires stack alignment.  We don't know for sure what the stack size
2318     // will be, but for this, an estimate is good enough. If there anything
2319     // changes it, it'll be a spill, which implies we've used all the registers
2320     // and so R4 is already used, so not marking it here will be OK.
2321     // FIXME: It will be better just to find spare register here.
2322     if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF) ||
2323         MFI.estimateStackSize(MF) > 508)
2324       SavedRegs.set(ARM::R4);
2325   }
2326 
2327   // See if we can spill vector registers to aligned stack.
2328   checkNumAlignedDPRCS2Regs(MF, SavedRegs);
2329 
2330   // Spill the BasePtr if it's used.
2331   if (RegInfo->hasBasePointer(MF))
2332     SavedRegs.set(RegInfo->getBaseRegister());
2333 
2334   // On v8.1-M.Main CMSE entry functions save/restore FPCXT.
2335   if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction())
2336     CanEliminateFrame = false;
2337 
2338   // When return address signing is enabled R12 is treated as callee-saved.
2339   if (AFI->shouldSignReturnAddress())
2340     CanEliminateFrame = false;
2341 
2342   // Don't spill FP if the frame can be eliminated. This is determined
2343   // by scanning the callee-save registers to see if any is modified.
2344   const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
2345   for (unsigned i = 0; CSRegs[i]; ++i) {
2346     unsigned Reg = CSRegs[i];
2347     bool Spilled = false;
2348     if (SavedRegs.test(Reg)) {
2349       Spilled = true;
2350       CanEliminateFrame = false;
2351     }
2352 
2353     if (!ARM::GPRRegClass.contains(Reg)) {
2354       if (Spilled) {
2355         if (ARM::SPRRegClass.contains(Reg))
2356           NumFPRSpills++;
2357         else if (ARM::DPRRegClass.contains(Reg))
2358           NumFPRSpills += 2;
2359         else if (ARM::QPRRegClass.contains(Reg))
2360           NumFPRSpills += 4;
2361       }
2362       continue;
2363     }
2364 
2365     if (Spilled) {
2366       NumGPRSpills++;
2367 
2368       if (!STI.splitFramePushPop(MF)) {
2369         if (Reg == ARM::LR)
2370           LRSpilled = true;
2371         CS1Spilled = true;
2372         continue;
2373       }
2374 
2375       // Keep track if LR and any of R4, R5, R6, and R7 is spilled.
2376       switch (Reg) {
2377       case ARM::LR:
2378         LRSpilled = true;
2379         [[fallthrough]];
2380       case ARM::R0: case ARM::R1:
2381       case ARM::R2: case ARM::R3:
2382       case ARM::R4: case ARM::R5:
2383       case ARM::R6: case ARM::R7:
2384         CS1Spilled = true;
2385         break;
2386       default:
2387         break;
2388       }
2389     } else {
2390       if (!STI.splitFramePushPop(MF)) {
2391         UnspilledCS1GPRs.push_back(Reg);
2392         continue;
2393       }
2394 
2395       switch (Reg) {
2396       case ARM::R0: case ARM::R1:
2397       case ARM::R2: case ARM::R3:
2398       case ARM::R4: case ARM::R5:
2399       case ARM::R6: case ARM::R7:
2400       case ARM::LR:
2401         UnspilledCS1GPRs.push_back(Reg);
2402         break;
2403       default:
2404         UnspilledCS2GPRs.push_back(Reg);
2405         break;
2406       }
2407     }
2408   }
2409 
2410   bool ForceLRSpill = false;
2411   if (!LRSpilled && AFI->isThumb1OnlyFunction()) {
2412     unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII);
2413     // Force LR to be spilled if the Thumb function size is > 2048. This enables
2414     // use of BL to implement far jump.
2415     if (FnSize >= (1 << 11)) {
2416       CanEliminateFrame = false;
2417       ForceLRSpill = true;
2418     }
2419   }
2420 
2421   // If any of the stack slot references may be out of range of an immediate
2422   // offset, make sure a register (or a spill slot) is available for the
2423   // register scavenger. Note that if we're indexing off the frame pointer, the
2424   // effective stack size is 4 bytes larger since the FP points to the stack
2425   // slot of the previous FP. Also, if we have variable sized objects in the
2426   // function, stack slot references will often be negative, and some of
2427   // our instructions are positive-offset only, so conservatively consider
2428   // that case to want a spill slot (or register) as well. Similarly, if
2429   // the function adjusts the stack pointer during execution and the
2430   // adjustments aren't already part of our stack size estimate, our offset
2431   // calculations may be off, so be conservative.
2432   // FIXME: We could add logic to be more precise about negative offsets
2433   //        and which instructions will need a scratch register for them. Is it
2434   //        worth the effort and added fragility?
2435   unsigned EstimatedStackSize =
2436       MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills);
2437 
2438   // Determine biggest (positive) SP offset in MachineFrameInfo.
2439   int MaxFixedOffset = 0;
2440   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
2441     int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I);
2442     MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset);
2443   }
2444 
2445   bool HasFP = hasFP(MF);
2446   if (HasFP) {
2447     if (AFI->hasStackFrame())
2448       EstimatedStackSize += 4;
2449   } else {
2450     // If FP is not used, SP will be used to access arguments, so count the
2451     // size of arguments into the estimation.
2452     EstimatedStackSize += MaxFixedOffset;
2453   }
2454   EstimatedStackSize += 16; // For possible paddings.
2455 
2456   unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit;
2457   bool HasNonSPFrameIndex = false;
2458   if (AFI->isThumb1OnlyFunction()) {
2459     // For Thumb1, don't bother to iterate over the function. The only
2460     // instruction that requires an emergency spill slot is a store to a
2461     // frame index.
2462     //
2463     // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned
2464     // immediate. tSTRi, which is used for bp- and fp-relative accesses, has
2465     // a 5-bit unsigned immediate.
2466     //
2467     // We could try to check if the function actually contains a tSTRspi
2468     // that might need the spill slot, but it's not really important.
2469     // Functions with VLAs or extremely large call frames are rare, and
2470     // if a function is allocating more than 1KB of stack, an extra 4-byte
2471     // slot probably isn't relevant.
2472     //
2473     // A special case is the scenario where r11 is used as FP, where accesses
2474     // to a frame index will require its value to be moved into a low reg.
2475     // This is handled later on, once we are able to determine if we have any
2476     // fp-relative accesses.
2477     if (RegInfo->hasBasePointer(MF))
2478       EstimatedRSStackSizeLimit = (1U << 5) * 4;
2479     else
2480       EstimatedRSStackSizeLimit = (1U << 8) * 4;
2481     EstimatedRSFixedSizeLimit = (1U << 5) * 4;
2482   } else {
2483     EstimatedRSStackSizeLimit =
2484         estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex);
2485     EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit;
2486   }
2487   // Final estimate of whether sp or bp-relative accesses might require
2488   // scavenging.
2489   bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit;
2490 
2491   // If the stack pointer moves and we don't have a base pointer, the
2492   // estimate logic doesn't work. The actual offsets might be larger when
2493   // we're constructing a call frame, or we might need to use negative
2494   // offsets from fp.
2495   bool HasMovingSP = MFI.hasVarSizedObjects() ||
2496     (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF));
2497   bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP;
2498 
2499   // If we have a frame pointer, we assume arguments will be accessed
2500   // relative to the frame pointer. Check whether fp-relative accesses to
2501   // arguments require scavenging.
2502   //
2503   // We could do slightly better on Thumb1; in some cases, an sp-relative
2504   // offset would be legal even though an fp-relative offset is not.
2505   int MaxFPOffset = getMaxFPOffset(STI, *AFI, MF);
2506   bool HasLargeArgumentList =
2507       HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit;
2508 
2509   bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP ||
2510                          HasLargeArgumentList || HasNonSPFrameIndex;
2511   LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit
2512                     << "; EstimatedStack: " << EstimatedStackSize
2513                     << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset
2514                     << "; BigFrameOffsets: " << BigFrameOffsets << "\n");
2515   if (BigFrameOffsets ||
2516       !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) {
2517     AFI->setHasStackFrame(true);
2518 
2519     if (HasFP) {
2520       SavedRegs.set(FramePtr);
2521       // If the frame pointer is required by the ABI, also spill LR so that we
2522       // emit a complete frame record.
2523       if ((requiresAAPCSFrameRecord(MF) ||
2524            MF.getTarget().Options.DisableFramePointerElim(MF)) &&
2525           !LRSpilled) {
2526         SavedRegs.set(ARM::LR);
2527         LRSpilled = true;
2528         NumGPRSpills++;
2529         auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR);
2530         if (LRPos != UnspilledCS1GPRs.end())
2531           UnspilledCS1GPRs.erase(LRPos);
2532       }
2533       auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr);
2534       if (FPPos != UnspilledCS1GPRs.end())
2535         UnspilledCS1GPRs.erase(FPPos);
2536       NumGPRSpills++;
2537       if (FramePtr == ARM::R7)
2538         CS1Spilled = true;
2539     }
2540 
2541     // This is the number of extra spills inserted for callee-save GPRs which
2542     // would not otherwise be used by the function. When greater than zero it
2543     // guaranteees that it is possible to scavenge a register to hold the
2544     // address of a stack slot. On Thumb1, the register must be a valid operand
2545     // to tSTRi, i.e. r4-r7. For other subtargets, this is any GPR, i.e. r4-r11
2546     // or lr.
2547     //
2548     // If we don't insert a spill, we instead allocate an emergency spill
2549     // slot, which can be used by scavenging to spill an arbitrary register.
2550     //
2551     // We currently don't try to figure out whether any specific instruction
2552     // requires scavening an additional register.
2553     unsigned NumExtraCSSpill = 0;
2554 
2555     if (AFI->isThumb1OnlyFunction()) {
2556       // For Thumb1-only targets, we need some low registers when we save and
2557       // restore the high registers (which aren't allocatable, but could be
2558       // used by inline assembly) because the push/pop instructions can not
2559       // access high registers. If necessary, we might need to push more low
2560       // registers to ensure that there is at least one free that can be used
2561       // for the saving & restoring, and preferably we should ensure that as
2562       // many as are needed are available so that fewer push/pop instructions
2563       // are required.
2564 
2565       // Low registers which are not currently pushed, but could be (r4-r7).
2566       SmallVector<unsigned, 4> AvailableRegs;
2567 
2568       // Unused argument registers (r0-r3) can be clobbered in the prologue for
2569       // free.
2570       int EntryRegDeficit = 0;
2571       for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) {
2572         if (!MF.getRegInfo().isLiveIn(Reg)) {
2573           --EntryRegDeficit;
2574           LLVM_DEBUG(dbgs()
2575                      << printReg(Reg, TRI)
2576                      << " is unused argument register, EntryRegDeficit = "
2577                      << EntryRegDeficit << "\n");
2578         }
2579       }
2580 
2581       // Unused return registers can be clobbered in the epilogue for free.
2582       int ExitRegDeficit = AFI->getReturnRegsCount() - 4;
2583       LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount()
2584                         << " return regs used, ExitRegDeficit = "
2585                         << ExitRegDeficit << "\n");
2586 
2587       int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit);
2588       LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n");
2589 
2590       // r4-r6 can be used in the prologue if they are pushed by the first push
2591       // instruction.
2592       for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) {
2593         if (SavedRegs.test(Reg)) {
2594           --RegDeficit;
2595           LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
2596                             << " is saved low register, RegDeficit = "
2597                             << RegDeficit << "\n");
2598         } else {
2599           AvailableRegs.push_back(Reg);
2600           LLVM_DEBUG(
2601               dbgs()
2602               << printReg(Reg, TRI)
2603               << " is non-saved low register, adding to AvailableRegs\n");
2604         }
2605       }
2606 
2607       // r7 can be used if it is not being used as the frame pointer.
2608       if (!HasFP || FramePtr != ARM::R7) {
2609         if (SavedRegs.test(ARM::R7)) {
2610           --RegDeficit;
2611           LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = "
2612                             << RegDeficit << "\n");
2613         } else {
2614           AvailableRegs.push_back(ARM::R7);
2615           LLVM_DEBUG(
2616               dbgs()
2617               << "%r7 is non-saved low register, adding to AvailableRegs\n");
2618         }
2619       }
2620 
2621       // Each of r8-r11 needs to be copied to a low register, then pushed.
2622       for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) {
2623         if (SavedRegs.test(Reg)) {
2624           ++RegDeficit;
2625           LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
2626                             << " is saved high register, RegDeficit = "
2627                             << RegDeficit << "\n");
2628         }
2629       }
2630 
2631       // LR can only be used by PUSH, not POP, and can't be used at all if the
2632       // llvm.returnaddress intrinsic is used. This is only worth doing if we
2633       // are more limited at function entry than exit.
2634       if ((EntryRegDeficit > ExitRegDeficit) &&
2635           !(MF.getRegInfo().isLiveIn(ARM::LR) &&
2636             MF.getFrameInfo().isReturnAddressTaken())) {
2637         if (SavedRegs.test(ARM::LR)) {
2638           --RegDeficit;
2639           LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = "
2640                             << RegDeficit << "\n");
2641         } else {
2642           AvailableRegs.push_back(ARM::LR);
2643           LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n");
2644         }
2645       }
2646 
2647       // If there are more high registers that need pushing than low registers
2648       // available, push some more low registers so that we can use fewer push
2649       // instructions. This might not reduce RegDeficit all the way to zero,
2650       // because we can only guarantee that r4-r6 are available, but r8-r11 may
2651       // need saving.
2652       LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n");
2653       for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) {
2654         unsigned Reg = AvailableRegs.pop_back_val();
2655         LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2656                           << " to make up reg deficit\n");
2657         SavedRegs.set(Reg);
2658         NumGPRSpills++;
2659         CS1Spilled = true;
2660         assert(!MRI.isReserved(Reg) && "Should not be reserved");
2661         if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg))
2662           NumExtraCSSpill++;
2663         UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg));
2664         if (Reg == ARM::LR)
2665           LRSpilled = true;
2666       }
2667       LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit
2668                         << "\n");
2669     }
2670 
2671     // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to
2672     // restore LR in that case.
2673     bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall();
2674 
2675     // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
2676     // Spill LR as well so we can fold BX_RET to the registers restore (LDM).
2677     if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) {
2678       SavedRegs.set(ARM::LR);
2679       NumGPRSpills++;
2680       SmallVectorImpl<unsigned>::iterator LRPos;
2681       LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR);
2682       if (LRPos != UnspilledCS1GPRs.end())
2683         UnspilledCS1GPRs.erase(LRPos);
2684 
2685       ForceLRSpill = false;
2686       if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) &&
2687           !AFI->isThumb1OnlyFunction())
2688         NumExtraCSSpill++;
2689     }
2690 
2691     // If stack and double are 8-byte aligned and we are spilling an odd number
2692     // of GPRs, spill one extra callee save GPR so we won't have to pad between
2693     // the integer and double callee save areas.
2694     LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n");
2695     const Align TargetAlign = getStackAlign();
2696     if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) {
2697       if (CS1Spilled && !UnspilledCS1GPRs.empty()) {
2698         for (unsigned Reg : UnspilledCS1GPRs) {
2699           // Don't spill high register if the function is thumb.  In the case of
2700           // Windows on ARM, accept R11 (frame pointer)
2701           if (!AFI->isThumbFunction() ||
2702               (STI.isTargetWindows() && Reg == ARM::R11) ||
2703               isARMLowRegister(Reg) ||
2704               (Reg == ARM::LR && !ExpensiveLRRestore)) {
2705             SavedRegs.set(Reg);
2706             LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2707                               << " to make up alignment\n");
2708             if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) &&
2709                 !(Reg == ARM::LR && AFI->isThumb1OnlyFunction()))
2710               NumExtraCSSpill++;
2711             break;
2712           }
2713         }
2714       } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) {
2715         unsigned Reg = UnspilledCS2GPRs.front();
2716         SavedRegs.set(Reg);
2717         LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2718                           << " to make up alignment\n");
2719         if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg))
2720           NumExtraCSSpill++;
2721       }
2722     }
2723 
2724     // Estimate if we might need to scavenge registers at some point in order
2725     // to materialize a stack offset. If so, either spill one additional
2726     // callee-saved register or reserve a special spill slot to facilitate
2727     // register scavenging. Thumb1 needs a spill slot for stack pointer
2728     // adjustments and for frame index accesses when FP is high register,
2729     // even when the frame itself is small.
2730     unsigned RegsNeeded = 0;
2731     if (BigFrameOffsets || canSpillOnFrameIndexAccess(MF, *this)) {
2732       RegsNeeded++;
2733       // With thumb1 execute-only we may need an additional register for saving
2734       // and restoring the CPSR.
2735       if (AFI->isThumb1OnlyFunction() && STI.genExecuteOnly() && !STI.useMovt())
2736         RegsNeeded++;
2737     }
2738 
2739     if (RegsNeeded > NumExtraCSSpill) {
2740       // If any non-reserved CS register isn't spilled, just spill one or two
2741       // extra. That should take care of it!
2742       unsigned NumExtras = TargetAlign.value() / 4;
2743       SmallVector<unsigned, 2> Extras;
2744       while (NumExtras && !UnspilledCS1GPRs.empty()) {
2745         unsigned Reg = UnspilledCS1GPRs.pop_back_val();
2746         if (!MRI.isReserved(Reg) &&
2747             (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) {
2748           Extras.push_back(Reg);
2749           NumExtras--;
2750         }
2751       }
2752       // For non-Thumb1 functions, also check for hi-reg CS registers
2753       if (!AFI->isThumb1OnlyFunction()) {
2754         while (NumExtras && !UnspilledCS2GPRs.empty()) {
2755           unsigned Reg = UnspilledCS2GPRs.pop_back_val();
2756           if (!MRI.isReserved(Reg)) {
2757             Extras.push_back(Reg);
2758             NumExtras--;
2759           }
2760         }
2761       }
2762       if (NumExtras == 0) {
2763         for (unsigned Reg : Extras) {
2764           SavedRegs.set(Reg);
2765           if (!MRI.isPhysRegUsed(Reg))
2766             NumExtraCSSpill++;
2767         }
2768       }
2769       while ((RegsNeeded > NumExtraCSSpill) && RS) {
2770         // Reserve a slot closest to SP or frame pointer.
2771         LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n");
2772         const TargetRegisterClass &RC = ARM::GPRRegClass;
2773         unsigned Size = TRI->getSpillSize(RC);
2774         Align Alignment = TRI->getSpillAlign(RC);
2775         RS->addScavengingFrameIndex(
2776             MFI.CreateStackObject(Size, Alignment, false));
2777         --RegsNeeded;
2778       }
2779     }
2780   }
2781 
2782   if (ForceLRSpill)
2783     SavedRegs.set(ARM::LR);
2784   AFI->setLRIsSpilled(SavedRegs.test(ARM::LR));
2785 }
2786 
2787 void ARMFrameLowering::updateLRRestored(MachineFunction &MF) {
2788   MachineFrameInfo &MFI = MF.getFrameInfo();
2789   if (!MFI.isCalleeSavedInfoValid())
2790     return;
2791 
2792   // Check if all terminators do not implicitly use LR. Then we can 'restore' LR
2793   // into PC so it is not live out of the return block: Clear the Restored bit
2794   // in that case.
2795   for (CalleeSavedInfo &Info : MFI.getCalleeSavedInfo()) {
2796     if (Info.getReg() != ARM::LR)
2797       continue;
2798     if (all_of(MF, [](const MachineBasicBlock &MBB) {
2799           return all_of(MBB.terminators(), [](const MachineInstr &Term) {
2800             return !Term.isReturn() || Term.getOpcode() == ARM::LDMIA_RET ||
2801                    Term.getOpcode() == ARM::t2LDMIA_RET ||
2802                    Term.getOpcode() == ARM::tPOP_RET;
2803           });
2804         })) {
2805       Info.setRestored(false);
2806       break;
2807     }
2808   }
2809 }
2810 
2811 void ARMFrameLowering::processFunctionBeforeFrameFinalized(
2812     MachineFunction &MF, RegScavenger *RS) const {
2813   TargetFrameLowering::processFunctionBeforeFrameFinalized(MF, RS);
2814   updateLRRestored(MF);
2815 }
2816 
2817 void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF,
2818                                       BitVector &SavedRegs) const {
2819   TargetFrameLowering::getCalleeSaves(MF, SavedRegs);
2820 
2821   // If we have the "returned" parameter attribute which guarantees that we
2822   // return the value which was passed in r0 unmodified (e.g. C++ 'structors),
2823   // record that fact for IPRA.
2824   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2825   if (AFI->getPreservesR0())
2826     SavedRegs.set(ARM::R0);
2827 }
2828 
2829 bool ARMFrameLowering::assignCalleeSavedSpillSlots(
2830     MachineFunction &MF, const TargetRegisterInfo *TRI,
2831     std::vector<CalleeSavedInfo> &CSI) const {
2832   // For CMSE entry functions, handle floating-point context as if it was a
2833   // callee-saved register.
2834   if (STI.hasV8_1MMainlineOps() &&
2835       MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) {
2836     CSI.emplace_back(ARM::FPCXTNS);
2837     CSI.back().setRestored(false);
2838   }
2839 
2840   // For functions, which sign their return address, upon function entry, the
2841   // return address PAC is computed in R12. Treat R12 as a callee-saved register
2842   // in this case.
2843   const auto &AFI = *MF.getInfo<ARMFunctionInfo>();
2844   if (AFI.shouldSignReturnAddress()) {
2845     // The order of register must match the order we push them, because the
2846     // PEI assigns frame indices in that order. When compiling for return
2847     // address sign and authenication, we use split push, therefore the orders
2848     // we want are:
2849     // LR, R7, R6, R5, R4, <R12>, R11, R10,  R9,  R8, D15-D8
2850     CSI.insert(find_if(CSI,
2851                        [=](const auto &CS) {
2852                          Register Reg = CS.getReg();
2853                          return Reg == ARM::R10 || Reg == ARM::R11 ||
2854                                 Reg == ARM::R8 || Reg == ARM::R9 ||
2855                                 ARM::DPRRegClass.contains(Reg);
2856                        }),
2857                CalleeSavedInfo(ARM::R12));
2858   }
2859 
2860   return false;
2861 }
2862 
2863 const TargetFrameLowering::SpillSlot *
2864 ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const {
2865   static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}};
2866   NumEntries = std::size(FixedSpillOffsets);
2867   return FixedSpillOffsets;
2868 }
2869 
2870 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr(
2871     MachineFunction &MF, MachineBasicBlock &MBB,
2872     MachineBasicBlock::iterator I) const {
2873   const ARMBaseInstrInfo &TII =
2874       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2875   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2876   bool isARM = !AFI->isThumbFunction();
2877   DebugLoc dl = I->getDebugLoc();
2878   unsigned Opc = I->getOpcode();
2879   bool IsDestroy = Opc == TII.getCallFrameDestroyOpcode();
2880   unsigned CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
2881 
2882   assert(!AFI->isThumb1OnlyFunction() &&
2883          "This eliminateCallFramePseudoInstr does not support Thumb1!");
2884 
2885   int PIdx = I->findFirstPredOperandIdx();
2886   ARMCC::CondCodes Pred = (PIdx == -1)
2887                               ? ARMCC::AL
2888                               : (ARMCC::CondCodes)I->getOperand(PIdx).getImm();
2889   unsigned PredReg = TII.getFramePred(*I);
2890 
2891   if (!hasReservedCallFrame(MF)) {
2892     // Bail early if the callee is expected to do the adjustment.
2893     if (IsDestroy && CalleePopAmount != -1U)
2894       return MBB.erase(I);
2895 
2896     // If we have alloca, convert as follows:
2897     // ADJCALLSTACKDOWN -> sub, sp, sp, amount
2898     // ADJCALLSTACKUP   -> add, sp, sp, amount
2899     unsigned Amount = TII.getFrameSize(*I);
2900     if (Amount != 0) {
2901       // We need to keep the stack aligned properly.  To do this, we round the
2902       // amount of space needed for the outgoing arguments up to the next
2903       // alignment boundary.
2904       Amount = alignSPAdjust(Amount);
2905 
2906       if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
2907         emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags,
2908                      Pred, PredReg);
2909       } else {
2910         assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
2911         emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags,
2912                      Pred, PredReg);
2913       }
2914     }
2915   } else if (CalleePopAmount != -1U) {
2916     // If the calling convention demands that the callee pops arguments from the
2917     // stack, we want to add it back if we have a reserved call frame.
2918     emitSPUpdate(isARM, MBB, I, dl, TII, -CalleePopAmount,
2919                  MachineInstr::NoFlags, Pred, PredReg);
2920   }
2921   return MBB.erase(I);
2922 }
2923 
2924 /// Get the minimum constant for ARM that is greater than or equal to the
2925 /// argument. In ARM, constants can have any value that can be produced by
2926 /// rotating an 8-bit value to the right by an even number of bits within a
2927 /// 32-bit word.
2928 static uint32_t alignToARMConstant(uint32_t Value) {
2929   unsigned Shifted = 0;
2930 
2931   if (Value == 0)
2932       return 0;
2933 
2934   while (!(Value & 0xC0000000)) {
2935       Value = Value << 2;
2936       Shifted += 2;
2937   }
2938 
2939   bool Carry = (Value & 0x00FFFFFF);
2940   Value = ((Value & 0xFF000000) >> 24) + Carry;
2941 
2942   if (Value & 0x0000100)
2943       Value = Value & 0x000001FC;
2944 
2945   if (Shifted > 24)
2946       Value = Value >> (Shifted - 24);
2947   else
2948       Value = Value << (24 - Shifted);
2949 
2950   return Value;
2951 }
2952 
2953 // The stack limit in the TCB is set to this many bytes above the actual
2954 // stack limit.
2955 static const uint64_t kSplitStackAvailable = 256;
2956 
2957 // Adjust the function prologue to enable split stacks. This currently only
2958 // supports android and linux.
2959 //
2960 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but
2961 // must be well defined in order to allow for consistent implementations of the
2962 // __morestack helper function. The ABI is also not a normal ABI in that it
2963 // doesn't follow the normal calling conventions because this allows the
2964 // prologue of each function to be optimized further.
2965 //
2966 // Currently, the ABI looks like (when calling __morestack)
2967 //
2968 //  * r4 holds the minimum stack size requested for this function call
2969 //  * r5 holds the stack size of the arguments to the function
2970 //  * the beginning of the function is 3 instructions after the call to
2971 //    __morestack
2972 //
2973 // Implementations of __morestack should use r4 to allocate a new stack, r5 to
2974 // place the arguments on to the new stack, and the 3-instruction knowledge to
2975 // jump directly to the body of the function when working on the new stack.
2976 //
2977 // An old (and possibly no longer compatible) implementation of __morestack for
2978 // ARM can be found at [1].
2979 //
2980 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S
2981 void ARMFrameLowering::adjustForSegmentedStacks(
2982     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2983   unsigned Opcode;
2984   unsigned CFIIndex;
2985   const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>();
2986   bool Thumb = ST->isThumb();
2987   bool Thumb2 = ST->isThumb2();
2988 
2989   // Sadly, this currently doesn't support varargs, platforms other than
2990   // android/linux. Note that thumb1/thumb2 are support for android/linux.
2991   if (MF.getFunction().isVarArg())
2992     report_fatal_error("Segmented stacks do not support vararg functions.");
2993   if (!ST->isTargetAndroid() && !ST->isTargetLinux())
2994     report_fatal_error("Segmented stacks not supported on this platform.");
2995 
2996   MachineFrameInfo &MFI = MF.getFrameInfo();
2997   MCContext &Context = MF.getContext();
2998   const MCRegisterInfo *MRI = Context.getRegisterInfo();
2999   const ARMBaseInstrInfo &TII =
3000       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
3001   ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>();
3002   DebugLoc DL;
3003 
3004   if (!MFI.needsSplitStackProlog())
3005     return;
3006 
3007   uint64_t StackSize = MFI.getStackSize();
3008 
3009   // Use R4 and R5 as scratch registers.
3010   // We save R4 and R5 before use and restore them before leaving the function.
3011   unsigned ScratchReg0 = ARM::R4;
3012   unsigned ScratchReg1 = ARM::R5;
3013   unsigned MovOp = ST->useMovt() ? ARM::t2MOVi32imm : ARM::tMOVi32imm;
3014   uint64_t AlignedStackSize;
3015 
3016   MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock();
3017   MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock();
3018   MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock();
3019   MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock();
3020   MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock();
3021 
3022   // Grab everything that reaches PrologueMBB to update there liveness as well.
3023   SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion;
3024   SmallVector<MachineBasicBlock *, 2> WalkList;
3025   WalkList.push_back(&PrologueMBB);
3026 
3027   do {
3028     MachineBasicBlock *CurMBB = WalkList.pop_back_val();
3029     for (MachineBasicBlock *PredBB : CurMBB->predecessors()) {
3030       if (BeforePrologueRegion.insert(PredBB).second)
3031         WalkList.push_back(PredBB);
3032     }
3033   } while (!WalkList.empty());
3034 
3035   // The order in that list is important.
3036   // The blocks will all be inserted before PrologueMBB using that order.
3037   // Therefore the block that should appear first in the CFG should appear
3038   // first in the list.
3039   MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB,
3040                                       PostStackMBB};
3041 
3042   for (MachineBasicBlock *B : AddedBlocks)
3043     BeforePrologueRegion.insert(B);
3044 
3045   for (const auto &LI : PrologueMBB.liveins()) {
3046     for (MachineBasicBlock *PredBB : BeforePrologueRegion)
3047       PredBB->addLiveIn(LI);
3048   }
3049 
3050   // Remove the newly added blocks from the list, since we know
3051   // we do not have to do the following updates for them.
3052   for (MachineBasicBlock *B : AddedBlocks) {
3053     BeforePrologueRegion.erase(B);
3054     MF.insert(PrologueMBB.getIterator(), B);
3055   }
3056 
3057   for (MachineBasicBlock *MBB : BeforePrologueRegion) {
3058     // Make sure the LiveIns are still sorted and unique.
3059     MBB->sortUniqueLiveIns();
3060     // Replace the edges to PrologueMBB by edges to the sequences
3061     // we are about to add, but only update for immediate predecessors.
3062     if (MBB->isSuccessor(&PrologueMBB))
3063       MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]);
3064   }
3065 
3066   // The required stack size that is aligned to ARM constant criterion.
3067   AlignedStackSize = alignToARMConstant(StackSize);
3068 
3069   // When the frame size is less than 256 we just compare the stack
3070   // boundary directly to the value of the stack pointer, per gcc.
3071   bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable;
3072 
3073   // We will use two of the callee save registers as scratch registers so we
3074   // need to save those registers onto the stack.
3075   // We will use SR0 to hold stack limit and SR1 to hold the stack size
3076   // requested and arguments for __morestack().
3077   // SR0: Scratch Register #0
3078   // SR1: Scratch Register #1
3079   // push {SR0, SR1}
3080   if (Thumb) {
3081     BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH))
3082         .add(predOps(ARMCC::AL))
3083         .addReg(ScratchReg0)
3084         .addReg(ScratchReg1);
3085   } else {
3086     BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD))
3087         .addReg(ARM::SP, RegState::Define)
3088         .addReg(ARM::SP)
3089         .add(predOps(ARMCC::AL))
3090         .addReg(ScratchReg0)
3091         .addReg(ScratchReg1);
3092   }
3093 
3094   // Emit the relevant DWARF information about the change in stack pointer as
3095   // well as where to find both r4 and r5 (the callee-save registers)
3096   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3097     CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8));
3098     BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3099         .addCFIIndex(CFIIndex);
3100     CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
3101         nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4));
3102     BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3103         .addCFIIndex(CFIIndex);
3104     CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
3105         nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8));
3106     BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3107         .addCFIIndex(CFIIndex);
3108   }
3109 
3110   // mov SR1, sp
3111   if (Thumb) {
3112     BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1)
3113         .addReg(ARM::SP)
3114         .add(predOps(ARMCC::AL));
3115   } else if (CompareStackPointer) {
3116     BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1)
3117         .addReg(ARM::SP)
3118         .add(predOps(ARMCC::AL))
3119         .add(condCodeOp());
3120   }
3121 
3122   // sub SR1, sp, #StackSize
3123   if (!CompareStackPointer && Thumb) {
3124     if (AlignedStackSize < 256) {
3125       BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1)
3126           .add(condCodeOp())
3127           .addReg(ScratchReg1)
3128           .addImm(AlignedStackSize)
3129           .add(predOps(ARMCC::AL));
3130     } else {
3131       if (Thumb2 || ST->genExecuteOnly()) {
3132         BuildMI(McrMBB, DL, TII.get(MovOp), ScratchReg0)
3133             .addImm(AlignedStackSize);
3134       } else {
3135         auto MBBI = McrMBB->end();
3136         auto RegInfo = STI.getRegisterInfo();
3137         RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0,
3138                                    AlignedStackSize);
3139       }
3140       BuildMI(McrMBB, DL, TII.get(ARM::tSUBrr), ScratchReg1)
3141           .add(condCodeOp())
3142           .addReg(ScratchReg1)
3143           .addReg(ScratchReg0)
3144           .add(predOps(ARMCC::AL));
3145     }
3146   } else if (!CompareStackPointer) {
3147     if (AlignedStackSize < 256) {
3148       BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1)
3149           .addReg(ARM::SP)
3150           .addImm(AlignedStackSize)
3151           .add(predOps(ARMCC::AL))
3152           .add(condCodeOp());
3153     } else {
3154       auto MBBI = McrMBB->end();
3155       auto RegInfo = STI.getRegisterInfo();
3156       RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0,
3157                                  AlignedStackSize);
3158       BuildMI(McrMBB, DL, TII.get(ARM::SUBrr), ScratchReg1)
3159           .addReg(ARM::SP)
3160           .addReg(ScratchReg0)
3161           .add(predOps(ARMCC::AL))
3162           .add(condCodeOp());
3163     }
3164   }
3165 
3166   if (Thumb && ST->isThumb1Only()) {
3167     if (ST->genExecuteOnly()) {
3168       BuildMI(GetMBB, DL, TII.get(MovOp), ScratchReg0)
3169           .addExternalSymbol("__STACK_LIMIT");
3170     } else {
3171       unsigned PCLabelId = ARMFI->createPICLabelUId();
3172       ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create(
3173           MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0);
3174       MachineConstantPool *MCP = MF.getConstantPool();
3175       unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4));
3176 
3177       // ldr SR0, [pc, offset(STACK_LIMIT)]
3178       BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0)
3179           .addConstantPoolIndex(CPI)
3180           .add(predOps(ARMCC::AL));
3181     }
3182 
3183     // ldr SR0, [SR0]
3184     BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0)
3185         .addReg(ScratchReg0)
3186         .addImm(0)
3187         .add(predOps(ARMCC::AL));
3188   } else {
3189     // Get TLS base address from the coprocessor
3190     // mrc p15, #0, SR0, c13, c0, #3
3191     BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC),
3192             ScratchReg0)
3193         .addImm(15)
3194         .addImm(0)
3195         .addImm(13)
3196         .addImm(0)
3197         .addImm(3)
3198         .add(predOps(ARMCC::AL));
3199 
3200     // Use the last tls slot on android and a private field of the TCP on linux.
3201     assert(ST->isTargetAndroid() || ST->isTargetLinux());
3202     unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1;
3203 
3204     // Get the stack limit from the right offset
3205     // ldr SR0, [sr0, #4 * TlsOffset]
3206     BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12),
3207             ScratchReg0)
3208         .addReg(ScratchReg0)
3209         .addImm(4 * TlsOffset)
3210         .add(predOps(ARMCC::AL));
3211   }
3212 
3213   // Compare stack limit with stack size requested.
3214   // cmp SR0, SR1
3215   Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr;
3216   BuildMI(GetMBB, DL, TII.get(Opcode))
3217       .addReg(ScratchReg0)
3218       .addReg(ScratchReg1)
3219       .add(predOps(ARMCC::AL));
3220 
3221   // This jump is taken if StackLimit <= SP - stack required.
3222   Opcode = Thumb ? ARM::tBcc : ARM::Bcc;
3223   BuildMI(GetMBB, DL, TII.get(Opcode))
3224       .addMBB(PostStackMBB)
3225       .addImm(ARMCC::LS)
3226       .addReg(ARM::CPSR);
3227 
3228   // Calling __morestack(StackSize, Size of stack arguments).
3229   // __morestack knows that the stack size requested is in SR0(r4)
3230   // and amount size of stack arguments is in SR1(r5).
3231 
3232   // Pass first argument for the __morestack by Scratch Register #0.
3233   //   The amount size of stack required
3234   if (Thumb) {
3235     if (AlignedStackSize < 256) {
3236       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0)
3237           .add(condCodeOp())
3238           .addImm(AlignedStackSize)
3239           .add(predOps(ARMCC::AL));
3240     } else {
3241       if (Thumb2 || ST->genExecuteOnly()) {
3242         BuildMI(AllocMBB, DL, TII.get(MovOp), ScratchReg0)
3243             .addImm(AlignedStackSize);
3244       } else {
3245         auto MBBI = AllocMBB->end();
3246         auto RegInfo = STI.getRegisterInfo();
3247         RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0,
3248                                    AlignedStackSize);
3249       }
3250     }
3251   } else {
3252     if (AlignedStackSize < 256) {
3253       BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0)
3254           .addImm(AlignedStackSize)
3255           .add(predOps(ARMCC::AL))
3256           .add(condCodeOp());
3257     } else {
3258       auto MBBI = AllocMBB->end();
3259       auto RegInfo = STI.getRegisterInfo();
3260       RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0,
3261                                  AlignedStackSize);
3262     }
3263   }
3264 
3265   // Pass second argument for the __morestack by Scratch Register #1.
3266   //   The amount size of stack consumed to save function arguments.
3267   if (Thumb) {
3268     if (ARMFI->getArgumentStackSize() < 256) {
3269       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1)
3270           .add(condCodeOp())
3271           .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
3272           .add(predOps(ARMCC::AL));
3273     } else {
3274       if (Thumb2 || ST->genExecuteOnly()) {
3275         BuildMI(AllocMBB, DL, TII.get(MovOp), ScratchReg1)
3276             .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()));
3277       } else {
3278         auto MBBI = AllocMBB->end();
3279         auto RegInfo = STI.getRegisterInfo();
3280         RegInfo->emitLoadConstPool(
3281             *AllocMBB, MBBI, DL, ScratchReg1, 0,
3282             alignToARMConstant(ARMFI->getArgumentStackSize()));
3283       }
3284     }
3285   } else {
3286     if (alignToARMConstant(ARMFI->getArgumentStackSize()) < 256) {
3287       BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1)
3288           .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
3289           .add(predOps(ARMCC::AL))
3290           .add(condCodeOp());
3291     } else {
3292       auto MBBI = AllocMBB->end();
3293       auto RegInfo = STI.getRegisterInfo();
3294       RegInfo->emitLoadConstPool(
3295           *AllocMBB, MBBI, DL, ScratchReg1, 0,
3296           alignToARMConstant(ARMFI->getArgumentStackSize()));
3297     }
3298   }
3299 
3300   // push {lr} - Save return address of this function.
3301   if (Thumb) {
3302     BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH))
3303         .add(predOps(ARMCC::AL))
3304         .addReg(ARM::LR);
3305   } else {
3306     BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD))
3307         .addReg(ARM::SP, RegState::Define)
3308         .addReg(ARM::SP)
3309         .add(predOps(ARMCC::AL))
3310         .addReg(ARM::LR);
3311   }
3312 
3313   // Emit the DWARF info about the change in stack as well as where to find the
3314   // previous link register
3315   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3316     CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12));
3317     BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3318         .addCFIIndex(CFIIndex);
3319     CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
3320         nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12));
3321     BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3322         .addCFIIndex(CFIIndex);
3323   }
3324 
3325   // Call __morestack().
3326   if (Thumb) {
3327     BuildMI(AllocMBB, DL, TII.get(ARM::tBL))
3328         .add(predOps(ARMCC::AL))
3329         .addExternalSymbol("__morestack");
3330   } else {
3331     BuildMI(AllocMBB, DL, TII.get(ARM::BL))
3332         .addExternalSymbol("__morestack");
3333   }
3334 
3335   // pop {lr} - Restore return address of this original function.
3336   if (Thumb) {
3337     if (ST->isThumb1Only()) {
3338       BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
3339           .add(predOps(ARMCC::AL))
3340           .addReg(ScratchReg0);
3341       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR)
3342           .addReg(ScratchReg0)
3343           .add(predOps(ARMCC::AL));
3344     } else {
3345       BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST))
3346           .addReg(ARM::LR, RegState::Define)
3347           .addReg(ARM::SP, RegState::Define)
3348           .addReg(ARM::SP)
3349           .addImm(4)
3350           .add(predOps(ARMCC::AL));
3351     }
3352   } else {
3353     BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
3354         .addReg(ARM::SP, RegState::Define)
3355         .addReg(ARM::SP)
3356         .add(predOps(ARMCC::AL))
3357         .addReg(ARM::LR);
3358   }
3359 
3360   // Restore SR0 and SR1 in case of __morestack() was called.
3361   // __morestack() will skip PostStackMBB block so we need to restore
3362   // scratch registers from here.
3363   // pop {SR0, SR1}
3364   if (Thumb) {
3365     BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
3366         .add(predOps(ARMCC::AL))
3367         .addReg(ScratchReg0)
3368         .addReg(ScratchReg1);
3369   } else {
3370     BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
3371         .addReg(ARM::SP, RegState::Define)
3372         .addReg(ARM::SP)
3373         .add(predOps(ARMCC::AL))
3374         .addReg(ScratchReg0)
3375         .addReg(ScratchReg1);
3376   }
3377 
3378   // Update the CFA offset now that we've popped
3379   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3380     CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
3381     BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3382         .addCFIIndex(CFIIndex);
3383   }
3384 
3385   // Return from this function.
3386   BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL));
3387 
3388   // Restore SR0 and SR1 in case of __morestack() was not called.
3389   // pop {SR0, SR1}
3390   if (Thumb) {
3391     BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP))
3392         .add(predOps(ARMCC::AL))
3393         .addReg(ScratchReg0)
3394         .addReg(ScratchReg1);
3395   } else {
3396     BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD))
3397         .addReg(ARM::SP, RegState::Define)
3398         .addReg(ARM::SP)
3399         .add(predOps(ARMCC::AL))
3400         .addReg(ScratchReg0)
3401         .addReg(ScratchReg1);
3402   }
3403 
3404   // Update the CFA offset now that we've popped
3405   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3406     CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
3407     BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3408         .addCFIIndex(CFIIndex);
3409 
3410     // Tell debuggers that r4 and r5 are now the same as they were in the
3411     // previous function, that they're the "Same Value".
3412     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
3413         nullptr, MRI->getDwarfRegNum(ScratchReg0, true)));
3414     BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3415         .addCFIIndex(CFIIndex);
3416     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
3417         nullptr, MRI->getDwarfRegNum(ScratchReg1, true)));
3418     BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3419         .addCFIIndex(CFIIndex);
3420   }
3421 
3422   // Organizing MBB lists
3423   PostStackMBB->addSuccessor(&PrologueMBB);
3424 
3425   AllocMBB->addSuccessor(PostStackMBB);
3426 
3427   GetMBB->addSuccessor(PostStackMBB);
3428   GetMBB->addSuccessor(AllocMBB);
3429 
3430   McrMBB->addSuccessor(GetMBB);
3431 
3432   PrevStackMBB->addSuccessor(McrMBB);
3433 
3434 #ifdef EXPENSIVE_CHECKS
3435   MF.verify();
3436 #endif
3437 }
3438