1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the ARM implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ARMFrameLowering.h" 14 #include "ARMBaseInstrInfo.h" 15 #include "ARMBaseRegisterInfo.h" 16 #include "ARMConstantPoolValue.h" 17 #include "ARMMachineFunctionInfo.h" 18 #include "ARMSubtarget.h" 19 #include "MCTargetDesc/ARMAddressingModes.h" 20 #include "MCTargetDesc/ARMBaseInfo.h" 21 #include "Utils/ARMBaseInfo.h" 22 #include "llvm/ADT/BitVector.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineConstantPool.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineInstrBuilder.h" 32 #include "llvm/CodeGen/MachineJumpTableInfo.h" 33 #include "llvm/CodeGen/MachineModuleInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/RegisterScavenging.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetOpcodes.h" 39 #include "llvm/CodeGen/TargetRegisterInfo.h" 40 #include "llvm/CodeGen/TargetSubtargetInfo.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/CallingConv.h" 43 #include "llvm/IR/DebugLoc.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/MC/MCContext.h" 46 #include "llvm/MC/MCDwarf.h" 47 #include "llvm/MC/MCInstrDesc.h" 48 #include "llvm/MC/MCRegisterInfo.h" 49 #include "llvm/Support/CodeGen.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Compiler.h" 52 #include "llvm/Support/Debug.h" 53 #include "llvm/Support/ErrorHandling.h" 54 #include "llvm/Support/MathExtras.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Target/TargetMachine.h" 57 #include "llvm/Target/TargetOptions.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <cstddef> 61 #include <cstdint> 62 #include <iterator> 63 #include <utility> 64 #include <vector> 65 66 #define DEBUG_TYPE "arm-frame-lowering" 67 68 using namespace llvm; 69 70 static cl::opt<bool> 71 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true), 72 cl::desc("Align ARM NEON spills in prolog and epilog")); 73 74 static MachineBasicBlock::iterator 75 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 76 unsigned NumAlignedDPRCS2Regs); 77 78 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti) 79 : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)), 80 STI(sti) {} 81 82 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const { 83 // iOS always has a FP for backtracking, force other targets to keep their FP 84 // when doing FastISel. The emitted code is currently superior, and in cases 85 // like test-suite's lencod FastISel isn't quite correct when FP is eliminated. 86 return MF.getSubtarget<ARMSubtarget>().useFastISel(); 87 } 88 89 /// Returns true if the target can safely skip saving callee-saved registers 90 /// for noreturn nounwind functions. 91 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const { 92 assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) && 93 MF.getFunction().hasFnAttribute(Attribute::NoUnwind) && 94 !MF.getFunction().hasFnAttribute(Attribute::UWTable)); 95 96 // Frame pointer and link register are not treated as normal CSR, thus we 97 // can always skip CSR saves for nonreturning functions. 98 return true; 99 } 100 101 /// hasFP - Return true if the specified function should have a dedicated frame 102 /// pointer register. This is true if the function has variable sized allocas 103 /// or if frame pointer elimination is disabled. 104 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const { 105 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 106 const MachineFrameInfo &MFI = MF.getFrameInfo(); 107 108 // ABI-required frame pointer. 109 if (MF.getTarget().Options.DisableFramePointerElim(MF)) 110 return true; 111 112 // Frame pointer required for use within this function. 113 return (RegInfo->needsStackRealignment(MF) || 114 MFI.hasVarSizedObjects() || 115 MFI.isFrameAddressTaken()); 116 } 117 118 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 119 /// not required, we reserve argument space for call sites in the function 120 /// immediately on entry to the current function. This eliminates the need for 121 /// add/sub sp brackets around call sites. Returns true if the call frame is 122 /// included as part of the stack frame. 123 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 124 const MachineFrameInfo &MFI = MF.getFrameInfo(); 125 unsigned CFSize = MFI.getMaxCallFrameSize(); 126 // It's not always a good idea to include the call frame as part of the 127 // stack frame. ARM (especially Thumb) has small immediate offset to 128 // address the stack frame. So a large call frame can cause poor codegen 129 // and may even makes it impossible to scavenge a register. 130 if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12 131 return false; 132 133 return !MFI.hasVarSizedObjects(); 134 } 135 136 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 137 /// call frame pseudos can be simplified. Unlike most targets, having a FP 138 /// is not sufficient here since we still may reference some objects via SP 139 /// even when FP is available in Thumb2 mode. 140 bool 141 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 142 return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects(); 143 } 144 145 static bool isCSRestore(MachineInstr &MI, const ARMBaseInstrInfo &TII, 146 const MCPhysReg *CSRegs) { 147 // Integer spill area is handled with "pop". 148 if (isPopOpcode(MI.getOpcode())) { 149 // The first two operands are predicates. The last two are 150 // imp-def and imp-use of SP. Check everything in between. 151 for (int i = 5, e = MI.getNumOperands(); i != e; ++i) 152 if (!isCalleeSavedRegister(MI.getOperand(i).getReg(), CSRegs)) 153 return false; 154 return true; 155 } 156 if ((MI.getOpcode() == ARM::LDR_POST_IMM || 157 MI.getOpcode() == ARM::LDR_POST_REG || 158 MI.getOpcode() == ARM::t2LDR_POST) && 159 isCalleeSavedRegister(MI.getOperand(0).getReg(), CSRegs) && 160 MI.getOperand(1).getReg() == ARM::SP) 161 return true; 162 163 return false; 164 } 165 166 static void emitRegPlusImmediate( 167 bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 168 const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg, 169 unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags, 170 ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) { 171 if (isARM) 172 emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 173 Pred, PredReg, TII, MIFlags); 174 else 175 emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 176 Pred, PredReg, TII, MIFlags); 177 } 178 179 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB, 180 MachineBasicBlock::iterator &MBBI, const DebugLoc &dl, 181 const ARMBaseInstrInfo &TII, int NumBytes, 182 unsigned MIFlags = MachineInstr::NoFlags, 183 ARMCC::CondCodes Pred = ARMCC::AL, 184 unsigned PredReg = 0) { 185 emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes, 186 MIFlags, Pred, PredReg); 187 } 188 189 static int sizeOfSPAdjustment(const MachineInstr &MI) { 190 int RegSize; 191 switch (MI.getOpcode()) { 192 case ARM::VSTMDDB_UPD: 193 RegSize = 8; 194 break; 195 case ARM::STMDB_UPD: 196 case ARM::t2STMDB_UPD: 197 RegSize = 4; 198 break; 199 case ARM::t2STR_PRE: 200 case ARM::STR_PRE_IMM: 201 return 4; 202 default: 203 llvm_unreachable("Unknown push or pop like instruction"); 204 } 205 206 int count = 0; 207 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 208 // pred) so the list starts at 4. 209 for (int i = MI.getNumOperands() - 1; i >= 4; --i) 210 count += RegSize; 211 return count; 212 } 213 214 static bool WindowsRequiresStackProbe(const MachineFunction &MF, 215 size_t StackSizeInBytes) { 216 const MachineFrameInfo &MFI = MF.getFrameInfo(); 217 const Function &F = MF.getFunction(); 218 unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096; 219 if (F.hasFnAttribute("stack-probe-size")) 220 F.getFnAttribute("stack-probe-size") 221 .getValueAsString() 222 .getAsInteger(0, StackProbeSize); 223 return (StackSizeInBytes >= StackProbeSize) && 224 !F.hasFnAttribute("no-stack-arg-probe"); 225 } 226 227 namespace { 228 229 struct StackAdjustingInsts { 230 struct InstInfo { 231 MachineBasicBlock::iterator I; 232 unsigned SPAdjust; 233 bool BeforeFPSet; 234 }; 235 236 SmallVector<InstInfo, 4> Insts; 237 238 void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust, 239 bool BeforeFPSet = false) { 240 InstInfo Info = {I, SPAdjust, BeforeFPSet}; 241 Insts.push_back(Info); 242 } 243 244 void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) { 245 auto Info = 246 llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; }); 247 assert(Info != Insts.end() && "invalid sp adjusting instruction"); 248 Info->SPAdjust += ExtraBytes; 249 } 250 251 void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl, 252 const ARMBaseInstrInfo &TII, bool HasFP) { 253 MachineFunction &MF = *MBB.getParent(); 254 unsigned CFAOffset = 0; 255 for (auto &Info : Insts) { 256 if (HasFP && !Info.BeforeFPSet) 257 return; 258 259 CFAOffset -= Info.SPAdjust; 260 unsigned CFIIndex = MF.addFrameInst( 261 MCCFIInstruction::createDefCfaOffset(nullptr, CFAOffset)); 262 BuildMI(MBB, std::next(Info.I), dl, 263 TII.get(TargetOpcode::CFI_INSTRUCTION)) 264 .addCFIIndex(CFIIndex) 265 .setMIFlags(MachineInstr::FrameSetup); 266 } 267 } 268 }; 269 270 } // end anonymous namespace 271 272 /// Emit an instruction sequence that will align the address in 273 /// register Reg by zero-ing out the lower bits. For versions of the 274 /// architecture that support Neon, this must be done in a single 275 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a 276 /// single instruction. That function only gets called when optimizing 277 /// spilling of D registers on a core with the Neon instruction set 278 /// present. 279 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI, 280 const TargetInstrInfo &TII, 281 MachineBasicBlock &MBB, 282 MachineBasicBlock::iterator MBBI, 283 const DebugLoc &DL, const unsigned Reg, 284 const unsigned Alignment, 285 const bool MustBeSingleInstruction) { 286 const ARMSubtarget &AST = 287 static_cast<const ARMSubtarget &>(MF.getSubtarget()); 288 const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops(); 289 const unsigned AlignMask = Alignment - 1; 290 const unsigned NrBitsToZero = countTrailingZeros(Alignment); 291 assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported"); 292 if (!AFI->isThumbFunction()) { 293 // if the BFC instruction is available, use that to zero the lower 294 // bits: 295 // bfc Reg, #0, log2(Alignment) 296 // otherwise use BIC, if the mask to zero the required number of bits 297 // can be encoded in the bic immediate field 298 // bic Reg, Reg, Alignment-1 299 // otherwise, emit 300 // lsr Reg, Reg, log2(Alignment) 301 // lsl Reg, Reg, log2(Alignment) 302 if (CanUseBFC) { 303 BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg) 304 .addReg(Reg, RegState::Kill) 305 .addImm(~AlignMask) 306 .add(predOps(ARMCC::AL)); 307 } else if (AlignMask <= 255) { 308 BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg) 309 .addReg(Reg, RegState::Kill) 310 .addImm(AlignMask) 311 .add(predOps(ARMCC::AL)) 312 .add(condCodeOp()); 313 } else { 314 assert(!MustBeSingleInstruction && 315 "Shouldn't call emitAligningInstructions demanding a single " 316 "instruction to be emitted for large stack alignment for a target " 317 "without BFC."); 318 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 319 .addReg(Reg, RegState::Kill) 320 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero)) 321 .add(predOps(ARMCC::AL)) 322 .add(condCodeOp()); 323 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 324 .addReg(Reg, RegState::Kill) 325 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero)) 326 .add(predOps(ARMCC::AL)) 327 .add(condCodeOp()); 328 } 329 } else { 330 // Since this is only reached for Thumb-2 targets, the BFC instruction 331 // should always be available. 332 assert(CanUseBFC); 333 BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg) 334 .addReg(Reg, RegState::Kill) 335 .addImm(~AlignMask) 336 .add(predOps(ARMCC::AL)); 337 } 338 } 339 340 /// We need the offset of the frame pointer relative to other MachineFrameInfo 341 /// offsets which are encoded relative to SP at function begin. 342 /// See also emitPrologue() for how the FP is set up. 343 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet 344 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use 345 /// this to produce a conservative estimate that we check in an assert() later. 346 static int getMaxFPOffset(const Function &F, const ARMFunctionInfo &AFI) { 347 // For Thumb1, push.w isn't available, so the first push will always push 348 // r7 and lr onto the stack first. 349 if (AFI.isThumb1OnlyFunction()) 350 return -AFI.getArgRegsSaveSize() - (2 * 4); 351 // This is a conservative estimation: Assume the frame pointer being r7 and 352 // pc("r15") up to r8 getting spilled before (= 8 registers). 353 return -AFI.getArgRegsSaveSize() - (8 * 4); 354 } 355 356 void ARMFrameLowering::emitPrologue(MachineFunction &MF, 357 MachineBasicBlock &MBB) const { 358 MachineBasicBlock::iterator MBBI = MBB.begin(); 359 MachineFrameInfo &MFI = MF.getFrameInfo(); 360 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 361 MachineModuleInfo &MMI = MF.getMMI(); 362 MCContext &Context = MMI.getContext(); 363 const TargetMachine &TM = MF.getTarget(); 364 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 365 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 366 const ARMBaseInstrInfo &TII = *STI.getInstrInfo(); 367 assert(!AFI->isThumb1OnlyFunction() && 368 "This emitPrologue does not support Thumb1!"); 369 bool isARM = !AFI->isThumbFunction(); 370 unsigned Align = STI.getFrameLowering()->getStackAlignment(); 371 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 372 unsigned NumBytes = MFI.getStackSize(); 373 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 374 375 // Debug location must be unknown since the first debug location is used 376 // to determine the end of the prologue. 377 DebugLoc dl; 378 379 Register FramePtr = RegInfo->getFrameRegister(MF); 380 381 // Determine the sizes of each callee-save spill areas and record which frame 382 // belongs to which callee-save spill areas. 383 unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0; 384 int FramePtrSpillFI = 0; 385 int D8SpillFI = 0; 386 387 // All calls are tail calls in GHC calling conv, and functions have no 388 // prologue/epilogue. 389 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 390 return; 391 392 StackAdjustingInsts DefCFAOffsetCandidates; 393 bool HasFP = hasFP(MF); 394 395 // Allocate the vararg register save area. 396 if (ArgRegsSaveSize) { 397 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize, 398 MachineInstr::FrameSetup); 399 DefCFAOffsetCandidates.addInst(std::prev(MBBI), ArgRegsSaveSize, true); 400 } 401 402 if (!AFI->hasStackFrame() && 403 (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) { 404 if (NumBytes - ArgRegsSaveSize != 0) { 405 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -(NumBytes - ArgRegsSaveSize), 406 MachineInstr::FrameSetup); 407 DefCFAOffsetCandidates.addInst(std::prev(MBBI), 408 NumBytes - ArgRegsSaveSize, true); 409 } 410 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 411 return; 412 } 413 414 // Determine spill area sizes. 415 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 416 unsigned Reg = CSI[i].getReg(); 417 int FI = CSI[i].getFrameIdx(); 418 switch (Reg) { 419 case ARM::R8: 420 case ARM::R9: 421 case ARM::R10: 422 case ARM::R11: 423 case ARM::R12: 424 if (STI.splitFramePushPop(MF)) { 425 GPRCS2Size += 4; 426 break; 427 } 428 LLVM_FALLTHROUGH; 429 case ARM::R0: 430 case ARM::R1: 431 case ARM::R2: 432 case ARM::R3: 433 case ARM::R4: 434 case ARM::R5: 435 case ARM::R6: 436 case ARM::R7: 437 case ARM::LR: 438 if (Reg == FramePtr) 439 FramePtrSpillFI = FI; 440 GPRCS1Size += 4; 441 break; 442 default: 443 // This is a DPR. Exclude the aligned DPRCS2 spills. 444 if (Reg == ARM::D8) 445 D8SpillFI = FI; 446 if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs()) 447 DPRCSSize += 8; 448 } 449 } 450 451 // Move past area 1. 452 MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push; 453 if (GPRCS1Size > 0) { 454 GPRCS1Push = LastPush = MBBI++; 455 DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true); 456 } 457 458 // Determine starting offsets of spill areas. 459 unsigned GPRCS1Offset = NumBytes - ArgRegsSaveSize - GPRCS1Size; 460 unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size; 461 unsigned DPRAlign = DPRCSSize ? std::min(8U, Align) : 4U; 462 unsigned DPRGapSize = (GPRCS1Size + GPRCS2Size + ArgRegsSaveSize) % DPRAlign; 463 unsigned DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize; 464 int FramePtrOffsetInPush = 0; 465 if (HasFP) { 466 int FPOffset = MFI.getObjectOffset(FramePtrSpillFI); 467 assert(getMaxFPOffset(MF.getFunction(), *AFI) <= FPOffset && 468 "Max FP estimation is wrong"); 469 FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize; 470 AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) + 471 NumBytes); 472 } 473 AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset); 474 AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset); 475 AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset); 476 477 // Move past area 2. 478 if (GPRCS2Size > 0) { 479 GPRCS2Push = LastPush = MBBI++; 480 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size); 481 } 482 483 // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our 484 // .cfi_offset operations will reflect that. 485 if (DPRGapSize) { 486 assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs"); 487 if (LastPush != MBB.end() && 488 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize)) 489 DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize); 490 else { 491 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize, 492 MachineInstr::FrameSetup); 493 DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize); 494 } 495 } 496 497 // Move past area 3. 498 if (DPRCSSize > 0) { 499 // Since vpush register list cannot have gaps, there may be multiple vpush 500 // instructions in the prologue. 501 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) { 502 DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI)); 503 LastPush = MBBI++; 504 } 505 } 506 507 // Move past the aligned DPRCS2 area. 508 if (AFI->getNumAlignedDPRCS2Regs() > 0) { 509 MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs()); 510 // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and 511 // leaves the stack pointer pointing to the DPRCS2 area. 512 // 513 // Adjust NumBytes to represent the stack slots below the DPRCS2 area. 514 NumBytes += MFI.getObjectOffset(D8SpillFI); 515 } else 516 NumBytes = DPRCSOffset; 517 518 if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) { 519 uint32_t NumWords = NumBytes >> 2; 520 521 if (NumWords < 65536) 522 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 523 .addImm(NumWords) 524 .setMIFlags(MachineInstr::FrameSetup) 525 .add(predOps(ARMCC::AL)); 526 else 527 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R4) 528 .addImm(NumWords) 529 .setMIFlags(MachineInstr::FrameSetup); 530 531 switch (TM.getCodeModel()) { 532 case CodeModel::Tiny: 533 llvm_unreachable("Tiny code model not available on ARM."); 534 case CodeModel::Small: 535 case CodeModel::Medium: 536 case CodeModel::Kernel: 537 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL)) 538 .add(predOps(ARMCC::AL)) 539 .addExternalSymbol("__chkstk") 540 .addReg(ARM::R4, RegState::Implicit) 541 .setMIFlags(MachineInstr::FrameSetup); 542 break; 543 case CodeModel::Large: 544 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12) 545 .addExternalSymbol("__chkstk") 546 .setMIFlags(MachineInstr::FrameSetup); 547 548 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr)) 549 .add(predOps(ARMCC::AL)) 550 .addReg(ARM::R12, RegState::Kill) 551 .addReg(ARM::R4, RegState::Implicit) 552 .setMIFlags(MachineInstr::FrameSetup); 553 break; 554 } 555 556 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP) 557 .addReg(ARM::SP, RegState::Kill) 558 .addReg(ARM::R4, RegState::Kill) 559 .setMIFlags(MachineInstr::FrameSetup) 560 .add(predOps(ARMCC::AL)) 561 .add(condCodeOp()); 562 NumBytes = 0; 563 } 564 565 if (NumBytes) { 566 // Adjust SP after all the callee-save spills. 567 if (AFI->getNumAlignedDPRCS2Regs() == 0 && 568 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes)) 569 DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes); 570 else { 571 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 572 MachineInstr::FrameSetup); 573 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes); 574 } 575 576 if (HasFP && isARM) 577 // Restore from fp only in ARM mode: e.g. sub sp, r7, #24 578 // Note it's not safe to do this in Thumb2 mode because it would have 579 // taken two instructions: 580 // mov sp, r7 581 // sub sp, #24 582 // If an interrupt is taken between the two instructions, then sp is in 583 // an inconsistent state (pointing to the middle of callee-saved area). 584 // The interrupt handler can end up clobbering the registers. 585 AFI->setShouldRestoreSPFromFP(true); 586 } 587 588 // Set FP to point to the stack slot that contains the previous FP. 589 // For iOS, FP is R7, which has now been stored in spill area 1. 590 // Otherwise, if this is not iOS, all the callee-saved registers go 591 // into spill area 1, including the FP in R11. In either case, it 592 // is in area one and the adjustment needs to take place just after 593 // that push. 594 if (HasFP) { 595 MachineBasicBlock::iterator AfterPush = std::next(GPRCS1Push); 596 unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push); 597 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, 598 dl, TII, FramePtr, ARM::SP, 599 PushSize + FramePtrOffsetInPush, 600 MachineInstr::FrameSetup); 601 if (FramePtrOffsetInPush + PushSize != 0) { 602 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfa( 603 nullptr, MRI->getDwarfRegNum(FramePtr, true), 604 -(ArgRegsSaveSize - FramePtrOffsetInPush))); 605 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 606 .addCFIIndex(CFIIndex) 607 .setMIFlags(MachineInstr::FrameSetup); 608 } else { 609 unsigned CFIIndex = 610 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister( 611 nullptr, MRI->getDwarfRegNum(FramePtr, true))); 612 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 613 .addCFIIndex(CFIIndex) 614 .setMIFlags(MachineInstr::FrameSetup); 615 } 616 } 617 618 // Now that the prologue's actual instructions are finalised, we can insert 619 // the necessary DWARF cf instructions to describe the situation. Start by 620 // recording where each register ended up: 621 if (GPRCS1Size > 0) { 622 MachineBasicBlock::iterator Pos = std::next(GPRCS1Push); 623 int CFIIndex; 624 for (const auto &Entry : CSI) { 625 unsigned Reg = Entry.getReg(); 626 int FI = Entry.getFrameIdx(); 627 switch (Reg) { 628 case ARM::R8: 629 case ARM::R9: 630 case ARM::R10: 631 case ARM::R11: 632 case ARM::R12: 633 if (STI.splitFramePushPop(MF)) 634 break; 635 LLVM_FALLTHROUGH; 636 case ARM::R0: 637 case ARM::R1: 638 case ARM::R2: 639 case ARM::R3: 640 case ARM::R4: 641 case ARM::R5: 642 case ARM::R6: 643 case ARM::R7: 644 case ARM::LR: 645 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 646 nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI))); 647 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 648 .addCFIIndex(CFIIndex) 649 .setMIFlags(MachineInstr::FrameSetup); 650 break; 651 } 652 } 653 } 654 655 if (GPRCS2Size > 0) { 656 MachineBasicBlock::iterator Pos = std::next(GPRCS2Push); 657 for (const auto &Entry : CSI) { 658 unsigned Reg = Entry.getReg(); 659 int FI = Entry.getFrameIdx(); 660 switch (Reg) { 661 case ARM::R8: 662 case ARM::R9: 663 case ARM::R10: 664 case ARM::R11: 665 case ARM::R12: 666 if (STI.splitFramePushPop(MF)) { 667 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 668 unsigned Offset = MFI.getObjectOffset(FI); 669 unsigned CFIIndex = MF.addFrameInst( 670 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 671 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 672 .addCFIIndex(CFIIndex) 673 .setMIFlags(MachineInstr::FrameSetup); 674 } 675 break; 676 } 677 } 678 } 679 680 if (DPRCSSize > 0) { 681 // Since vpush register list cannot have gaps, there may be multiple vpush 682 // instructions in the prologue. 683 MachineBasicBlock::iterator Pos = std::next(LastPush); 684 for (const auto &Entry : CSI) { 685 unsigned Reg = Entry.getReg(); 686 int FI = Entry.getFrameIdx(); 687 if ((Reg >= ARM::D0 && Reg <= ARM::D31) && 688 (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) { 689 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 690 unsigned Offset = MFI.getObjectOffset(FI); 691 unsigned CFIIndex = MF.addFrameInst( 692 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 693 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 694 .addCFIIndex(CFIIndex) 695 .setMIFlags(MachineInstr::FrameSetup); 696 } 697 } 698 } 699 700 // Now we can emit descriptions of where the canonical frame address was 701 // throughout the process. If we have a frame pointer, it takes over the job 702 // half-way through, so only the first few .cfi_def_cfa_offset instructions 703 // actually get emitted. 704 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 705 706 if (STI.isTargetELF() && hasFP(MF)) 707 MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() - 708 AFI->getFramePtrSpillOffset()); 709 710 AFI->setGPRCalleeSavedArea1Size(GPRCS1Size); 711 AFI->setGPRCalleeSavedArea2Size(GPRCS2Size); 712 AFI->setDPRCalleeSavedGapSize(DPRGapSize); 713 AFI->setDPRCalleeSavedAreaSize(DPRCSSize); 714 715 // If we need dynamic stack realignment, do it here. Be paranoid and make 716 // sure if we also have VLAs, we have a base pointer for frame access. 717 // If aligned NEON registers were spilled, the stack has already been 718 // realigned. 719 if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->needsStackRealignment(MF)) { 720 unsigned MaxAlign = MFI.getMaxAlignment(); 721 assert(!AFI->isThumb1OnlyFunction()); 722 if (!AFI->isThumbFunction()) { 723 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign, 724 false); 725 } else { 726 // We cannot use sp as source/dest register here, thus we're using r4 to 727 // perform the calculations. We're emitting the following sequence: 728 // mov r4, sp 729 // -- use emitAligningInstructions to produce best sequence to zero 730 // -- out lower bits in r4 731 // mov sp, r4 732 // FIXME: It will be better just to find spare register here. 733 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4) 734 .addReg(ARM::SP, RegState::Kill) 735 .add(predOps(ARMCC::AL)); 736 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign, 737 false); 738 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 739 .addReg(ARM::R4, RegState::Kill) 740 .add(predOps(ARMCC::AL)); 741 } 742 743 AFI->setShouldRestoreSPFromFP(true); 744 } 745 746 // If we need a base pointer, set it up here. It's whatever the value 747 // of the stack pointer is at this point. Any variable size objects 748 // will be allocated after this, so we can still use the base pointer 749 // to reference locals. 750 // FIXME: Clarify FrameSetup flags here. 751 if (RegInfo->hasBasePointer(MF)) { 752 if (isARM) 753 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister()) 754 .addReg(ARM::SP) 755 .add(predOps(ARMCC::AL)) 756 .add(condCodeOp()); 757 else 758 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister()) 759 .addReg(ARM::SP) 760 .add(predOps(ARMCC::AL)); 761 } 762 763 // If the frame has variable sized objects then the epilogue must restore 764 // the sp from fp. We can assume there's an FP here since hasFP already 765 // checks for hasVarSizedObjects. 766 if (MFI.hasVarSizedObjects()) 767 AFI->setShouldRestoreSPFromFP(true); 768 } 769 770 void ARMFrameLowering::emitEpilogue(MachineFunction &MF, 771 MachineBasicBlock &MBB) const { 772 MachineFrameInfo &MFI = MF.getFrameInfo(); 773 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 774 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 775 const ARMBaseInstrInfo &TII = 776 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 777 assert(!AFI->isThumb1OnlyFunction() && 778 "This emitEpilogue does not support Thumb1!"); 779 bool isARM = !AFI->isThumbFunction(); 780 781 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 782 int NumBytes = (int)MFI.getStackSize(); 783 Register FramePtr = RegInfo->getFrameRegister(MF); 784 785 // All calls are tail calls in GHC calling conv, and functions have no 786 // prologue/epilogue. 787 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 788 return; 789 790 // First put ourselves on the first (from top) terminator instructions. 791 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 792 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 793 794 if (!AFI->hasStackFrame()) { 795 if (NumBytes - ArgRegsSaveSize != 0) 796 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes - ArgRegsSaveSize); 797 } else { 798 // Unwind MBBI to point to first LDR / VLDRD. 799 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 800 if (MBBI != MBB.begin()) { 801 do { 802 --MBBI; 803 } while (MBBI != MBB.begin() && isCSRestore(*MBBI, TII, CSRegs)); 804 if (!isCSRestore(*MBBI, TII, CSRegs)) 805 ++MBBI; 806 } 807 808 // Move SP to start of FP callee save spill area. 809 NumBytes -= (ArgRegsSaveSize + 810 AFI->getGPRCalleeSavedArea1Size() + 811 AFI->getGPRCalleeSavedArea2Size() + 812 AFI->getDPRCalleeSavedGapSize() + 813 AFI->getDPRCalleeSavedAreaSize()); 814 815 // Reset SP based on frame pointer only if the stack frame extends beyond 816 // frame pointer stack slot or target is ELF and the function has FP. 817 if (AFI->shouldRestoreSPFromFP()) { 818 NumBytes = AFI->getFramePtrSpillOffset() - NumBytes; 819 if (NumBytes) { 820 if (isARM) 821 emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes, 822 ARMCC::AL, 0, TII); 823 else { 824 // It's not possible to restore SP from FP in a single instruction. 825 // For iOS, this looks like: 826 // mov sp, r7 827 // sub sp, #24 828 // This is bad, if an interrupt is taken after the mov, sp is in an 829 // inconsistent state. 830 // Use the first callee-saved register as a scratch register. 831 assert(!MFI.getPristineRegs(MF).test(ARM::R4) && 832 "No scratch register to restore SP from FP!"); 833 emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes, 834 ARMCC::AL, 0, TII); 835 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 836 .addReg(ARM::R4) 837 .add(predOps(ARMCC::AL)); 838 } 839 } else { 840 // Thumb2 or ARM. 841 if (isARM) 842 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP) 843 .addReg(FramePtr) 844 .add(predOps(ARMCC::AL)) 845 .add(condCodeOp()); 846 else 847 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 848 .addReg(FramePtr) 849 .add(predOps(ARMCC::AL)); 850 } 851 } else if (NumBytes && 852 !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes)) 853 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes); 854 855 // Increment past our save areas. 856 if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) { 857 MBBI++; 858 // Since vpop register list cannot have gaps, there may be multiple vpop 859 // instructions in the epilogue. 860 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD) 861 MBBI++; 862 } 863 if (AFI->getDPRCalleeSavedGapSize()) { 864 assert(AFI->getDPRCalleeSavedGapSize() == 4 && 865 "unexpected DPR alignment gap"); 866 emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize()); 867 } 868 869 if (AFI->getGPRCalleeSavedArea2Size()) MBBI++; 870 if (AFI->getGPRCalleeSavedArea1Size()) MBBI++; 871 } 872 873 if (ArgRegsSaveSize) 874 emitSPUpdate(isARM, MBB, MBBI, dl, TII, ArgRegsSaveSize); 875 } 876 877 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 878 /// debug info. It's the same as what we use for resolving the code-gen 879 /// references for now. FIXME: This can go wrong when references are 880 /// SP-relative and simple call frames aren't used. 881 int 882 ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, 883 unsigned &FrameReg) const { 884 return ResolveFrameIndexReference(MF, FI, FrameReg, 0); 885 } 886 887 int 888 ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF, 889 int FI, unsigned &FrameReg, 890 int SPAdj) const { 891 const MachineFrameInfo &MFI = MF.getFrameInfo(); 892 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 893 MF.getSubtarget().getRegisterInfo()); 894 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 895 int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize(); 896 int FPOffset = Offset - AFI->getFramePtrSpillOffset(); 897 bool isFixed = MFI.isFixedObjectIndex(FI); 898 899 FrameReg = ARM::SP; 900 Offset += SPAdj; 901 902 // SP can move around if there are allocas. We may also lose track of SP 903 // when emergency spilling inside a non-reserved call frame setup. 904 bool hasMovingSP = !hasReservedCallFrame(MF); 905 906 // When dynamically realigning the stack, use the frame pointer for 907 // parameters, and the stack/base pointer for locals. 908 if (RegInfo->needsStackRealignment(MF)) { 909 assert(hasFP(MF) && "dynamic stack realignment without a FP!"); 910 if (isFixed) { 911 FrameReg = RegInfo->getFrameRegister(MF); 912 Offset = FPOffset; 913 } else if (hasMovingSP) { 914 assert(RegInfo->hasBasePointer(MF) && 915 "VLAs and dynamic stack alignment, but missing base pointer!"); 916 FrameReg = RegInfo->getBaseRegister(); 917 Offset -= SPAdj; 918 } 919 return Offset; 920 } 921 922 // If there is a frame pointer, use it when we can. 923 if (hasFP(MF) && AFI->hasStackFrame()) { 924 // Use frame pointer to reference fixed objects. Use it for locals if 925 // there are VLAs (and thus the SP isn't reliable as a base). 926 if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) { 927 FrameReg = RegInfo->getFrameRegister(MF); 928 return FPOffset; 929 } else if (hasMovingSP) { 930 assert(RegInfo->hasBasePointer(MF) && "missing base pointer!"); 931 if (AFI->isThumb2Function()) { 932 // Try to use the frame pointer if we can, else use the base pointer 933 // since it's available. This is handy for the emergency spill slot, in 934 // particular. 935 if (FPOffset >= -255 && FPOffset < 0) { 936 FrameReg = RegInfo->getFrameRegister(MF); 937 return FPOffset; 938 } 939 } 940 } else if (AFI->isThumbFunction()) { 941 // Prefer SP to base pointer, if the offset is suitably aligned and in 942 // range as the effective range of the immediate offset is bigger when 943 // basing off SP. 944 // Use add <rd>, sp, #<imm8> 945 // ldr <rd>, [sp, #<imm8>] 946 if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020) 947 return Offset; 948 // In Thumb2 mode, the negative offset is very limited. Try to avoid 949 // out of range references. ldr <rt>,[<rn>, #-<imm8>] 950 if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) { 951 FrameReg = RegInfo->getFrameRegister(MF); 952 return FPOffset; 953 } 954 } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) { 955 // Otherwise, use SP or FP, whichever is closer to the stack slot. 956 FrameReg = RegInfo->getFrameRegister(MF); 957 return FPOffset; 958 } 959 } 960 // Use the base pointer if we have one. 961 // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper? 962 // That can happen if we forced a base pointer for a large call frame. 963 if (RegInfo->hasBasePointer(MF)) { 964 FrameReg = RegInfo->getBaseRegister(); 965 Offset -= SPAdj; 966 } 967 return Offset; 968 } 969 970 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB, 971 MachineBasicBlock::iterator MI, 972 const std::vector<CalleeSavedInfo> &CSI, 973 unsigned StmOpc, unsigned StrOpc, 974 bool NoGap, 975 bool(*Func)(unsigned, bool), 976 unsigned NumAlignedDPRCS2Regs, 977 unsigned MIFlags) const { 978 MachineFunction &MF = *MBB.getParent(); 979 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 980 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 981 982 DebugLoc DL; 983 984 using RegAndKill = std::pair<unsigned, bool>; 985 986 SmallVector<RegAndKill, 4> Regs; 987 unsigned i = CSI.size(); 988 while (i != 0) { 989 unsigned LastReg = 0; 990 for (; i != 0; --i) { 991 unsigned Reg = CSI[i-1].getReg(); 992 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 993 994 // D-registers in the aligned area DPRCS2 are NOT spilled here. 995 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 996 continue; 997 998 const MachineRegisterInfo &MRI = MF.getRegInfo(); 999 bool isLiveIn = MRI.isLiveIn(Reg); 1000 if (!isLiveIn && !MRI.isReserved(Reg)) 1001 MBB.addLiveIn(Reg); 1002 // If NoGap is true, push consecutive registers and then leave the rest 1003 // for other instructions. e.g. 1004 // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11} 1005 if (NoGap && LastReg && LastReg != Reg-1) 1006 break; 1007 LastReg = Reg; 1008 // Do not set a kill flag on values that are also marked as live-in. This 1009 // happens with the @llvm-returnaddress intrinsic and with arguments 1010 // passed in callee saved registers. 1011 // Omitting the kill flags is conservatively correct even if the live-in 1012 // is not used after all. 1013 Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn)); 1014 } 1015 1016 if (Regs.empty()) 1017 continue; 1018 1019 llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) { 1020 return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first); 1021 }); 1022 1023 if (Regs.size() > 1 || StrOpc== 0) { 1024 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP) 1025 .addReg(ARM::SP) 1026 .setMIFlags(MIFlags) 1027 .add(predOps(ARMCC::AL)); 1028 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1029 MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second)); 1030 } else if (Regs.size() == 1) { 1031 BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP) 1032 .addReg(Regs[0].first, getKillRegState(Regs[0].second)) 1033 .addReg(ARM::SP) 1034 .setMIFlags(MIFlags) 1035 .addImm(-4) 1036 .add(predOps(ARMCC::AL)); 1037 } 1038 Regs.clear(); 1039 1040 // Put any subsequent vpush instructions before this one: they will refer to 1041 // higher register numbers so need to be pushed first in order to preserve 1042 // monotonicity. 1043 if (MI != MBB.begin()) 1044 --MI; 1045 } 1046 } 1047 1048 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB, 1049 MachineBasicBlock::iterator MI, 1050 std::vector<CalleeSavedInfo> &CSI, 1051 unsigned LdmOpc, unsigned LdrOpc, 1052 bool isVarArg, bool NoGap, 1053 bool(*Func)(unsigned, bool), 1054 unsigned NumAlignedDPRCS2Regs) const { 1055 MachineFunction &MF = *MBB.getParent(); 1056 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1057 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1058 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1059 DebugLoc DL; 1060 bool isTailCall = false; 1061 bool isInterrupt = false; 1062 bool isTrap = false; 1063 if (MBB.end() != MI) { 1064 DL = MI->getDebugLoc(); 1065 unsigned RetOpcode = MI->getOpcode(); 1066 isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri); 1067 isInterrupt = 1068 RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR; 1069 isTrap = 1070 RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl || 1071 RetOpcode == ARM::tTRAP; 1072 } 1073 1074 SmallVector<unsigned, 4> Regs; 1075 unsigned i = CSI.size(); 1076 while (i != 0) { 1077 unsigned LastReg = 0; 1078 bool DeleteRet = false; 1079 for (; i != 0; --i) { 1080 CalleeSavedInfo &Info = CSI[i-1]; 1081 unsigned Reg = Info.getReg(); 1082 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 1083 1084 // The aligned reloads from area DPRCS2 are not inserted here. 1085 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 1086 continue; 1087 1088 if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt && 1089 !isTrap && STI.hasV5TOps()) { 1090 if (MBB.succ_empty()) { 1091 Reg = ARM::PC; 1092 // Fold the return instruction into the LDM. 1093 DeleteRet = true; 1094 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET; 1095 // We 'restore' LR into PC so it is not live out of the return block: 1096 // Clear Restored bit. 1097 Info.setRestored(false); 1098 } else 1099 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 1100 } 1101 1102 // If NoGap is true, pop consecutive registers and then leave the rest 1103 // for other instructions. e.g. 1104 // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11} 1105 if (NoGap && LastReg && LastReg != Reg-1) 1106 break; 1107 1108 LastReg = Reg; 1109 Regs.push_back(Reg); 1110 } 1111 1112 if (Regs.empty()) 1113 continue; 1114 1115 llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) { 1116 return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS); 1117 }); 1118 1119 if (Regs.size() > 1 || LdrOpc == 0) { 1120 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP) 1121 .addReg(ARM::SP) 1122 .add(predOps(ARMCC::AL)); 1123 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1124 MIB.addReg(Regs[i], getDefRegState(true)); 1125 if (DeleteRet) { 1126 if (MI != MBB.end()) { 1127 MIB.copyImplicitOps(*MI); 1128 MI->eraseFromParent(); 1129 } 1130 } 1131 MI = MIB; 1132 } else if (Regs.size() == 1) { 1133 // If we adjusted the reg to PC from LR above, switch it back here. We 1134 // only do that for LDM. 1135 if (Regs[0] == ARM::PC) 1136 Regs[0] = ARM::LR; 1137 MachineInstrBuilder MIB = 1138 BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0]) 1139 .addReg(ARM::SP, RegState::Define) 1140 .addReg(ARM::SP); 1141 // ARM mode needs an extra reg0 here due to addrmode2. Will go away once 1142 // that refactoring is complete (eventually). 1143 if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) { 1144 MIB.addReg(0); 1145 MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift)); 1146 } else 1147 MIB.addImm(4); 1148 MIB.add(predOps(ARMCC::AL)); 1149 } 1150 Regs.clear(); 1151 1152 // Put any subsequent vpop instructions after this one: they will refer to 1153 // higher register numbers so need to be popped afterwards. 1154 if (MI != MBB.end()) 1155 ++MI; 1156 } 1157 } 1158 1159 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers 1160 /// starting from d8. Also insert stack realignment code and leave the stack 1161 /// pointer pointing to the d8 spill slot. 1162 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB, 1163 MachineBasicBlock::iterator MI, 1164 unsigned NumAlignedDPRCS2Regs, 1165 const std::vector<CalleeSavedInfo> &CSI, 1166 const TargetRegisterInfo *TRI) { 1167 MachineFunction &MF = *MBB.getParent(); 1168 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1169 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1170 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1171 MachineFrameInfo &MFI = MF.getFrameInfo(); 1172 1173 // Mark the D-register spill slots as properly aligned. Since MFI computes 1174 // stack slot layout backwards, this can actually mean that the d-reg stack 1175 // slot offsets can be wrong. The offset for d8 will always be correct. 1176 for (unsigned i = 0, e = CSI.size(); i != e; ++i) { 1177 unsigned DNum = CSI[i].getReg() - ARM::D8; 1178 if (DNum > NumAlignedDPRCS2Regs - 1) 1179 continue; 1180 int FI = CSI[i].getFrameIdx(); 1181 // The even-numbered registers will be 16-byte aligned, the odd-numbered 1182 // registers will be 8-byte aligned. 1183 MFI.setObjectAlignment(FI, DNum % 2 ? 8 : 16); 1184 1185 // The stack slot for D8 needs to be maximally aligned because this is 1186 // actually the point where we align the stack pointer. MachineFrameInfo 1187 // computes all offsets relative to the incoming stack pointer which is a 1188 // bit weird when realigning the stack. Any extra padding for this 1189 // over-alignment is not realized because the code inserted below adjusts 1190 // the stack pointer by numregs * 8 before aligning the stack pointer. 1191 if (DNum == 0) 1192 MFI.setObjectAlignment(FI, MFI.getMaxAlignment()); 1193 } 1194 1195 // Move the stack pointer to the d8 spill slot, and align it at the same 1196 // time. Leave the stack slot address in the scratch register r4. 1197 // 1198 // sub r4, sp, #numregs * 8 1199 // bic r4, r4, #align - 1 1200 // mov sp, r4 1201 // 1202 bool isThumb = AFI->isThumbFunction(); 1203 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1204 AFI->setShouldRestoreSPFromFP(true); 1205 1206 // sub r4, sp, #numregs * 8 1207 // The immediate is <= 64, so it doesn't need any special encoding. 1208 unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri; 1209 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1210 .addReg(ARM::SP) 1211 .addImm(8 * NumAlignedDPRCS2Regs) 1212 .add(predOps(ARMCC::AL)) 1213 .add(condCodeOp()); 1214 1215 unsigned MaxAlign = MF.getFrameInfo().getMaxAlignment(); 1216 // We must set parameter MustBeSingleInstruction to true, since 1217 // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform 1218 // stack alignment. Luckily, this can always be done since all ARM 1219 // architecture versions that support Neon also support the BFC 1220 // instruction. 1221 emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true); 1222 1223 // mov sp, r4 1224 // The stack pointer must be adjusted before spilling anything, otherwise 1225 // the stack slots could be clobbered by an interrupt handler. 1226 // Leave r4 live, it is used below. 1227 Opc = isThumb ? ARM::tMOVr : ARM::MOVr; 1228 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP) 1229 .addReg(ARM::R4) 1230 .add(predOps(ARMCC::AL)); 1231 if (!isThumb) 1232 MIB.add(condCodeOp()); 1233 1234 // Now spill NumAlignedDPRCS2Regs registers starting from d8. 1235 // r4 holds the stack slot address. 1236 unsigned NextReg = ARM::D8; 1237 1238 // 16-byte aligned vst1.64 with 4 d-regs and address writeback. 1239 // The writeback is only needed when emitting two vst1.64 instructions. 1240 if (NumAlignedDPRCS2Regs >= 6) { 1241 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1242 &ARM::QQPRRegClass); 1243 MBB.addLiveIn(SupReg); 1244 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4) 1245 .addReg(ARM::R4, RegState::Kill) 1246 .addImm(16) 1247 .addReg(NextReg) 1248 .addReg(SupReg, RegState::ImplicitKill) 1249 .add(predOps(ARMCC::AL)); 1250 NextReg += 4; 1251 NumAlignedDPRCS2Regs -= 4; 1252 } 1253 1254 // We won't modify r4 beyond this point. It currently points to the next 1255 // register to be spilled. 1256 unsigned R4BaseReg = NextReg; 1257 1258 // 16-byte aligned vst1.64 with 4 d-regs, no writeback. 1259 if (NumAlignedDPRCS2Regs >= 4) { 1260 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1261 &ARM::QQPRRegClass); 1262 MBB.addLiveIn(SupReg); 1263 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q)) 1264 .addReg(ARM::R4) 1265 .addImm(16) 1266 .addReg(NextReg) 1267 .addReg(SupReg, RegState::ImplicitKill) 1268 .add(predOps(ARMCC::AL)); 1269 NextReg += 4; 1270 NumAlignedDPRCS2Regs -= 4; 1271 } 1272 1273 // 16-byte aligned vst1.64 with 2 d-regs. 1274 if (NumAlignedDPRCS2Regs >= 2) { 1275 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1276 &ARM::QPRRegClass); 1277 MBB.addLiveIn(SupReg); 1278 BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64)) 1279 .addReg(ARM::R4) 1280 .addImm(16) 1281 .addReg(SupReg) 1282 .add(predOps(ARMCC::AL)); 1283 NextReg += 2; 1284 NumAlignedDPRCS2Regs -= 2; 1285 } 1286 1287 // Finally, use a vanilla vstr.64 for the odd last register. 1288 if (NumAlignedDPRCS2Regs) { 1289 MBB.addLiveIn(NextReg); 1290 // vstr.64 uses addrmode5 which has an offset scale of 4. 1291 BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD)) 1292 .addReg(NextReg) 1293 .addReg(ARM::R4) 1294 .addImm((NextReg - R4BaseReg) * 2) 1295 .add(predOps(ARMCC::AL)); 1296 } 1297 1298 // The last spill instruction inserted should kill the scratch register r4. 1299 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1300 } 1301 1302 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an 1303 /// iterator to the following instruction. 1304 static MachineBasicBlock::iterator 1305 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 1306 unsigned NumAlignedDPRCS2Regs) { 1307 // sub r4, sp, #numregs * 8 1308 // bic r4, r4, #align - 1 1309 // mov sp, r4 1310 ++MI; ++MI; ++MI; 1311 assert(MI->mayStore() && "Expecting spill instruction"); 1312 1313 // These switches all fall through. 1314 switch(NumAlignedDPRCS2Regs) { 1315 case 7: 1316 ++MI; 1317 assert(MI->mayStore() && "Expecting spill instruction"); 1318 LLVM_FALLTHROUGH; 1319 default: 1320 ++MI; 1321 assert(MI->mayStore() && "Expecting spill instruction"); 1322 LLVM_FALLTHROUGH; 1323 case 1: 1324 case 2: 1325 case 4: 1326 assert(MI->killsRegister(ARM::R4) && "Missed kill flag"); 1327 ++MI; 1328 } 1329 return MI; 1330 } 1331 1332 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers 1333 /// starting from d8. These instructions are assumed to execute while the 1334 /// stack is still aligned, unlike the code inserted by emitPopInst. 1335 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB, 1336 MachineBasicBlock::iterator MI, 1337 unsigned NumAlignedDPRCS2Regs, 1338 const std::vector<CalleeSavedInfo> &CSI, 1339 const TargetRegisterInfo *TRI) { 1340 MachineFunction &MF = *MBB.getParent(); 1341 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1342 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1343 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1344 1345 // Find the frame index assigned to d8. 1346 int D8SpillFI = 0; 1347 for (unsigned i = 0, e = CSI.size(); i != e; ++i) 1348 if (CSI[i].getReg() == ARM::D8) { 1349 D8SpillFI = CSI[i].getFrameIdx(); 1350 break; 1351 } 1352 1353 // Materialize the address of the d8 spill slot into the scratch register r4. 1354 // This can be fairly complicated if the stack frame is large, so just use 1355 // the normal frame index elimination mechanism to do it. This code runs as 1356 // the initial part of the epilog where the stack and base pointers haven't 1357 // been changed yet. 1358 bool isThumb = AFI->isThumbFunction(); 1359 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1360 1361 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri; 1362 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1363 .addFrameIndex(D8SpillFI) 1364 .addImm(0) 1365 .add(predOps(ARMCC::AL)) 1366 .add(condCodeOp()); 1367 1368 // Now restore NumAlignedDPRCS2Regs registers starting from d8. 1369 unsigned NextReg = ARM::D8; 1370 1371 // 16-byte aligned vld1.64 with 4 d-regs and writeback. 1372 if (NumAlignedDPRCS2Regs >= 6) { 1373 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1374 &ARM::QQPRRegClass); 1375 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg) 1376 .addReg(ARM::R4, RegState::Define) 1377 .addReg(ARM::R4, RegState::Kill) 1378 .addImm(16) 1379 .addReg(SupReg, RegState::ImplicitDefine) 1380 .add(predOps(ARMCC::AL)); 1381 NextReg += 4; 1382 NumAlignedDPRCS2Regs -= 4; 1383 } 1384 1385 // We won't modify r4 beyond this point. It currently points to the next 1386 // register to be spilled. 1387 unsigned R4BaseReg = NextReg; 1388 1389 // 16-byte aligned vld1.64 with 4 d-regs, no writeback. 1390 if (NumAlignedDPRCS2Regs >= 4) { 1391 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1392 &ARM::QQPRRegClass); 1393 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg) 1394 .addReg(ARM::R4) 1395 .addImm(16) 1396 .addReg(SupReg, RegState::ImplicitDefine) 1397 .add(predOps(ARMCC::AL)); 1398 NextReg += 4; 1399 NumAlignedDPRCS2Regs -= 4; 1400 } 1401 1402 // 16-byte aligned vld1.64 with 2 d-regs. 1403 if (NumAlignedDPRCS2Regs >= 2) { 1404 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1405 &ARM::QPRRegClass); 1406 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg) 1407 .addReg(ARM::R4) 1408 .addImm(16) 1409 .add(predOps(ARMCC::AL)); 1410 NextReg += 2; 1411 NumAlignedDPRCS2Regs -= 2; 1412 } 1413 1414 // Finally, use a vanilla vldr.64 for the remaining odd register. 1415 if (NumAlignedDPRCS2Regs) 1416 BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg) 1417 .addReg(ARM::R4) 1418 .addImm(2 * (NextReg - R4BaseReg)) 1419 .add(predOps(ARMCC::AL)); 1420 1421 // Last store kills r4. 1422 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1423 } 1424 1425 bool ARMFrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB, 1426 MachineBasicBlock::iterator MI, 1427 const std::vector<CalleeSavedInfo> &CSI, 1428 const TargetRegisterInfo *TRI) const { 1429 if (CSI.empty()) 1430 return false; 1431 1432 MachineFunction &MF = *MBB.getParent(); 1433 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1434 1435 unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD; 1436 unsigned PushOneOpc = AFI->isThumbFunction() ? 1437 ARM::t2STR_PRE : ARM::STR_PRE_IMM; 1438 unsigned FltOpc = ARM::VSTMDDB_UPD; 1439 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1440 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 0, 1441 MachineInstr::FrameSetup); 1442 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 0, 1443 MachineInstr::FrameSetup); 1444 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register, 1445 NumAlignedDPRCS2Regs, MachineInstr::FrameSetup); 1446 1447 // The code above does not insert spill code for the aligned DPRCS2 registers. 1448 // The stack realignment code will be inserted between the push instructions 1449 // and these spills. 1450 if (NumAlignedDPRCS2Regs) 1451 emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 1452 1453 return true; 1454 } 1455 1456 bool ARMFrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB, 1457 MachineBasicBlock::iterator MI, 1458 std::vector<CalleeSavedInfo> &CSI, 1459 const TargetRegisterInfo *TRI) const { 1460 if (CSI.empty()) 1461 return false; 1462 1463 MachineFunction &MF = *MBB.getParent(); 1464 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1465 bool isVarArg = AFI->getArgRegsSaveSize() > 0; 1466 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1467 1468 // The emitPopInst calls below do not insert reloads for the aligned DPRCS2 1469 // registers. Do that here instead. 1470 if (NumAlignedDPRCS2Regs) 1471 emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 1472 1473 unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 1474 unsigned LdrOpc = AFI->isThumbFunction() ? ARM::t2LDR_POST :ARM::LDR_POST_IMM; 1475 unsigned FltOpc = ARM::VLDMDIA_UPD; 1476 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register, 1477 NumAlignedDPRCS2Regs); 1478 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 1479 &isARMArea2Register, 0); 1480 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 1481 &isARMArea1Register, 0); 1482 1483 return true; 1484 } 1485 1486 // FIXME: Make generic? 1487 static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF, 1488 const ARMBaseInstrInfo &TII) { 1489 unsigned FnSize = 0; 1490 for (auto &MBB : MF) { 1491 for (auto &MI : MBB) 1492 FnSize += TII.getInstSizeInBytes(MI); 1493 } 1494 if (MF.getJumpTableInfo()) 1495 for (auto &Table: MF.getJumpTableInfo()->getJumpTables()) 1496 FnSize += Table.MBBs.size() * 4; 1497 FnSize += MF.getConstantPool()->getConstants().size() * 4; 1498 return FnSize; 1499 } 1500 1501 /// estimateRSStackSizeLimit - Look at each instruction that references stack 1502 /// frames and return the stack size limit beyond which some of these 1503 /// instructions will require a scratch register during their expansion later. 1504 // FIXME: Move to TII? 1505 static unsigned estimateRSStackSizeLimit(MachineFunction &MF, 1506 const TargetFrameLowering *TFI, 1507 bool &HasNonSPFrameIndex) { 1508 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1509 const ARMBaseInstrInfo &TII = 1510 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1511 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1512 unsigned Limit = (1 << 12) - 1; 1513 for (auto &MBB : MF) { 1514 for (auto &MI : MBB) { 1515 if (MI.isDebugInstr()) 1516 continue; 1517 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1518 if (!MI.getOperand(i).isFI()) 1519 continue; 1520 1521 // When using ADDri to get the address of a stack object, 255 is the 1522 // largest offset guaranteed to fit in the immediate offset. 1523 if (MI.getOpcode() == ARM::ADDri) { 1524 Limit = std::min(Limit, (1U << 8) - 1); 1525 break; 1526 } 1527 // t2ADDri will not require an extra register, it can reuse the 1528 // destination. 1529 if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12) 1530 break; 1531 1532 const MCInstrDesc &MCID = MI.getDesc(); 1533 const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF); 1534 if (RegClass && !RegClass->contains(ARM::SP)) 1535 HasNonSPFrameIndex = true; 1536 1537 // Otherwise check the addressing mode. 1538 switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) { 1539 case ARMII::AddrMode_i12: 1540 case ARMII::AddrMode2: 1541 // Default 12 bit limit. 1542 break; 1543 case ARMII::AddrMode3: 1544 case ARMII::AddrModeT2_i8: 1545 Limit = std::min(Limit, (1U << 8) - 1); 1546 break; 1547 case ARMII::AddrMode5FP16: 1548 Limit = std::min(Limit, ((1U << 8) - 1) * 2); 1549 break; 1550 case ARMII::AddrMode5: 1551 case ARMII::AddrModeT2_i8s4: 1552 case ARMII::AddrModeT2_ldrex: 1553 Limit = std::min(Limit, ((1U << 8) - 1) * 4); 1554 break; 1555 case ARMII::AddrModeT2_i12: 1556 // i12 supports only positive offset so these will be converted to 1557 // i8 opcodes. See llvm::rewriteT2FrameIndex. 1558 if (TFI->hasFP(MF) && AFI->hasStackFrame()) 1559 Limit = std::min(Limit, (1U << 8) - 1); 1560 break; 1561 case ARMII::AddrMode4: 1562 case ARMII::AddrMode6: 1563 // Addressing modes 4 & 6 (load/store) instructions can't encode an 1564 // immediate offset for stack references. 1565 return 0; 1566 case ARMII::AddrModeT2_i7: 1567 Limit = std::min(Limit, ((1U << 7) - 1) * 1); 1568 break; 1569 case ARMII::AddrModeT2_i7s2: 1570 Limit = std::min(Limit, ((1U << 7) - 1) * 2); 1571 break; 1572 case ARMII::AddrModeT2_i7s4: 1573 Limit = std::min(Limit, ((1U << 7) - 1) * 4); 1574 break; 1575 default: 1576 llvm_unreachable("Unhandled addressing mode in stack size limit calculation"); 1577 } 1578 break; // At most one FI per instruction 1579 } 1580 } 1581 } 1582 1583 return Limit; 1584 } 1585 1586 // In functions that realign the stack, it can be an advantage to spill the 1587 // callee-saved vector registers after realigning the stack. The vst1 and vld1 1588 // instructions take alignment hints that can improve performance. 1589 static void 1590 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) { 1591 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0); 1592 if (!SpillAlignedNEONRegs) 1593 return; 1594 1595 // Naked functions don't spill callee-saved registers. 1596 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 1597 return; 1598 1599 // We are planning to use NEON instructions vst1 / vld1. 1600 if (!static_cast<const ARMSubtarget &>(MF.getSubtarget()).hasNEON()) 1601 return; 1602 1603 // Don't bother if the default stack alignment is sufficiently high. 1604 if (MF.getSubtarget().getFrameLowering()->getStackAlignment() >= 8) 1605 return; 1606 1607 // Aligned spills require stack realignment. 1608 if (!static_cast<const ARMBaseRegisterInfo *>( 1609 MF.getSubtarget().getRegisterInfo())->canRealignStack(MF)) 1610 return; 1611 1612 // We always spill contiguous d-registers starting from d8. Count how many 1613 // needs spilling. The register allocator will almost always use the 1614 // callee-saved registers in order, but it can happen that there are holes in 1615 // the range. Registers above the hole will be spilled to the standard DPRCS 1616 // area. 1617 unsigned NumSpills = 0; 1618 for (; NumSpills < 8; ++NumSpills) 1619 if (!SavedRegs.test(ARM::D8 + NumSpills)) 1620 break; 1621 1622 // Don't do this for just one d-register. It's not worth it. 1623 if (NumSpills < 2) 1624 return; 1625 1626 // Spill the first NumSpills D-registers after realigning the stack. 1627 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills); 1628 1629 // A scratch register is required for the vst1 / vld1 instructions. 1630 SavedRegs.set(ARM::R4); 1631 } 1632 1633 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF, 1634 BitVector &SavedRegs, 1635 RegScavenger *RS) const { 1636 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 1637 // This tells PEI to spill the FP as if it is any other callee-save register 1638 // to take advantage the eliminateFrameIndex machinery. This also ensures it 1639 // is spilled in the order specified by getCalleeSavedRegs() to make it easier 1640 // to combine multiple loads / stores. 1641 bool CanEliminateFrame = true; 1642 bool CS1Spilled = false; 1643 bool LRSpilled = false; 1644 unsigned NumGPRSpills = 0; 1645 unsigned NumFPRSpills = 0; 1646 SmallVector<unsigned, 4> UnspilledCS1GPRs; 1647 SmallVector<unsigned, 4> UnspilledCS2GPRs; 1648 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 1649 MF.getSubtarget().getRegisterInfo()); 1650 const ARMBaseInstrInfo &TII = 1651 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1652 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1653 MachineFrameInfo &MFI = MF.getFrameInfo(); 1654 MachineRegisterInfo &MRI = MF.getRegInfo(); 1655 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1656 (void)TRI; // Silence unused warning in non-assert builds. 1657 Register FramePtr = RegInfo->getFrameRegister(MF); 1658 1659 // Spill R4 if Thumb2 function requires stack realignment - it will be used as 1660 // scratch register. Also spill R4 if Thumb2 function has varsized objects, 1661 // since it's not always possible to restore sp from fp in a single 1662 // instruction. 1663 // FIXME: It will be better just to find spare register here. 1664 if (AFI->isThumb2Function() && 1665 (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF))) 1666 SavedRegs.set(ARM::R4); 1667 1668 // If a stack probe will be emitted, spill R4 and LR, since they are 1669 // clobbered by the stack probe call. 1670 // This estimate should be a safe, conservative estimate. The actual 1671 // stack probe is enabled based on the size of the local objects; 1672 // this estimate also includes the varargs store size. 1673 if (STI.isTargetWindows() && 1674 WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) { 1675 SavedRegs.set(ARM::R4); 1676 SavedRegs.set(ARM::LR); 1677 } 1678 1679 if (AFI->isThumb1OnlyFunction()) { 1680 // Spill LR if Thumb1 function uses variable length argument lists. 1681 if (AFI->getArgRegsSaveSize() > 0) 1682 SavedRegs.set(ARM::LR); 1683 1684 // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function 1685 // requires stack alignment. We don't know for sure what the stack size 1686 // will be, but for this, an estimate is good enough. If there anything 1687 // changes it, it'll be a spill, which implies we've used all the registers 1688 // and so R4 is already used, so not marking it here will be OK. 1689 // FIXME: It will be better just to find spare register here. 1690 if (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF) || 1691 MFI.estimateStackSize(MF) > 508) 1692 SavedRegs.set(ARM::R4); 1693 } 1694 1695 // See if we can spill vector registers to aligned stack. 1696 checkNumAlignedDPRCS2Regs(MF, SavedRegs); 1697 1698 // Spill the BasePtr if it's used. 1699 if (RegInfo->hasBasePointer(MF)) 1700 SavedRegs.set(RegInfo->getBaseRegister()); 1701 1702 // Don't spill FP if the frame can be eliminated. This is determined 1703 // by scanning the callee-save registers to see if any is modified. 1704 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 1705 for (unsigned i = 0; CSRegs[i]; ++i) { 1706 unsigned Reg = CSRegs[i]; 1707 bool Spilled = false; 1708 if (SavedRegs.test(Reg)) { 1709 Spilled = true; 1710 CanEliminateFrame = false; 1711 } 1712 1713 if (!ARM::GPRRegClass.contains(Reg)) { 1714 if (Spilled) { 1715 if (ARM::SPRRegClass.contains(Reg)) 1716 NumFPRSpills++; 1717 else if (ARM::DPRRegClass.contains(Reg)) 1718 NumFPRSpills += 2; 1719 else if (ARM::QPRRegClass.contains(Reg)) 1720 NumFPRSpills += 4; 1721 } 1722 continue; 1723 } 1724 1725 if (Spilled) { 1726 NumGPRSpills++; 1727 1728 if (!STI.splitFramePushPop(MF)) { 1729 if (Reg == ARM::LR) 1730 LRSpilled = true; 1731 CS1Spilled = true; 1732 continue; 1733 } 1734 1735 // Keep track if LR and any of R4, R5, R6, and R7 is spilled. 1736 switch (Reg) { 1737 case ARM::LR: 1738 LRSpilled = true; 1739 LLVM_FALLTHROUGH; 1740 case ARM::R0: case ARM::R1: 1741 case ARM::R2: case ARM::R3: 1742 case ARM::R4: case ARM::R5: 1743 case ARM::R6: case ARM::R7: 1744 CS1Spilled = true; 1745 break; 1746 default: 1747 break; 1748 } 1749 } else { 1750 if (!STI.splitFramePushPop(MF)) { 1751 UnspilledCS1GPRs.push_back(Reg); 1752 continue; 1753 } 1754 1755 switch (Reg) { 1756 case ARM::R0: case ARM::R1: 1757 case ARM::R2: case ARM::R3: 1758 case ARM::R4: case ARM::R5: 1759 case ARM::R6: case ARM::R7: 1760 case ARM::LR: 1761 UnspilledCS1GPRs.push_back(Reg); 1762 break; 1763 default: 1764 UnspilledCS2GPRs.push_back(Reg); 1765 break; 1766 } 1767 } 1768 } 1769 1770 bool ForceLRSpill = false; 1771 if (!LRSpilled && AFI->isThumb1OnlyFunction()) { 1772 unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII); 1773 // Force LR to be spilled if the Thumb function size is > 2048. This enables 1774 // use of BL to implement far jump. If it turns out that it's not needed 1775 // then the branch fix up path will undo it. 1776 if (FnSize >= (1 << 11)) { 1777 CanEliminateFrame = false; 1778 ForceLRSpill = true; 1779 } 1780 } 1781 1782 // If any of the stack slot references may be out of range of an immediate 1783 // offset, make sure a register (or a spill slot) is available for the 1784 // register scavenger. Note that if we're indexing off the frame pointer, the 1785 // effective stack size is 4 bytes larger since the FP points to the stack 1786 // slot of the previous FP. Also, if we have variable sized objects in the 1787 // function, stack slot references will often be negative, and some of 1788 // our instructions are positive-offset only, so conservatively consider 1789 // that case to want a spill slot (or register) as well. Similarly, if 1790 // the function adjusts the stack pointer during execution and the 1791 // adjustments aren't already part of our stack size estimate, our offset 1792 // calculations may be off, so be conservative. 1793 // FIXME: We could add logic to be more precise about negative offsets 1794 // and which instructions will need a scratch register for them. Is it 1795 // worth the effort and added fragility? 1796 unsigned EstimatedStackSize = 1797 MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills); 1798 1799 // Determine biggest (positive) SP offset in MachineFrameInfo. 1800 int MaxFixedOffset = 0; 1801 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 1802 int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I); 1803 MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset); 1804 } 1805 1806 bool HasFP = hasFP(MF); 1807 if (HasFP) { 1808 if (AFI->hasStackFrame()) 1809 EstimatedStackSize += 4; 1810 } else { 1811 // If FP is not used, SP will be used to access arguments, so count the 1812 // size of arguments into the estimation. 1813 EstimatedStackSize += MaxFixedOffset; 1814 } 1815 EstimatedStackSize += 16; // For possible paddings. 1816 1817 unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit; 1818 bool HasNonSPFrameIndex = false; 1819 if (AFI->isThumb1OnlyFunction()) { 1820 // For Thumb1, don't bother to iterate over the function. The only 1821 // instruction that requires an emergency spill slot is a store to a 1822 // frame index. 1823 // 1824 // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned 1825 // immediate. tSTRi, which is used for bp- and fp-relative accesses, has 1826 // a 5-bit unsigned immediate. 1827 // 1828 // We could try to check if the function actually contains a tSTRspi 1829 // that might need the spill slot, but it's not really important. 1830 // Functions with VLAs or extremely large call frames are rare, and 1831 // if a function is allocating more than 1KB of stack, an extra 4-byte 1832 // slot probably isn't relevant. 1833 if (RegInfo->hasBasePointer(MF)) 1834 EstimatedRSStackSizeLimit = (1U << 5) * 4; 1835 else 1836 EstimatedRSStackSizeLimit = (1U << 8) * 4; 1837 EstimatedRSFixedSizeLimit = (1U << 5) * 4; 1838 } else { 1839 EstimatedRSStackSizeLimit = 1840 estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex); 1841 EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit; 1842 } 1843 // Final estimate of whether sp or bp-relative accesses might require 1844 // scavenging. 1845 bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit; 1846 1847 // If the stack pointer moves and we don't have a base pointer, the 1848 // estimate logic doesn't work. The actual offsets might be larger when 1849 // we're constructing a call frame, or we might need to use negative 1850 // offsets from fp. 1851 bool HasMovingSP = MFI.hasVarSizedObjects() || 1852 (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF)); 1853 bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP; 1854 1855 // If we have a frame pointer, we assume arguments will be accessed 1856 // relative to the frame pointer. Check whether fp-relative accesses to 1857 // arguments require scavenging. 1858 // 1859 // We could do slightly better on Thumb1; in some cases, an sp-relative 1860 // offset would be legal even though an fp-relative offset is not. 1861 int MaxFPOffset = getMaxFPOffset(MF.getFunction(), *AFI); 1862 bool HasLargeArgumentList = 1863 HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit; 1864 1865 bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP || 1866 HasLargeArgumentList || HasNonSPFrameIndex; 1867 LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit 1868 << "; EstimatedStack: " << EstimatedStackSize 1869 << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset 1870 << "; BigFrameOffsets: " << BigFrameOffsets << "\n"); 1871 if (BigFrameOffsets || 1872 !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) { 1873 AFI->setHasStackFrame(true); 1874 1875 if (HasFP) { 1876 SavedRegs.set(FramePtr); 1877 // If the frame pointer is required by the ABI, also spill LR so that we 1878 // emit a complete frame record. 1879 if (MF.getTarget().Options.DisableFramePointerElim(MF) && !LRSpilled) { 1880 SavedRegs.set(ARM::LR); 1881 LRSpilled = true; 1882 NumGPRSpills++; 1883 auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR); 1884 if (LRPos != UnspilledCS1GPRs.end()) 1885 UnspilledCS1GPRs.erase(LRPos); 1886 } 1887 auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr); 1888 if (FPPos != UnspilledCS1GPRs.end()) 1889 UnspilledCS1GPRs.erase(FPPos); 1890 NumGPRSpills++; 1891 if (FramePtr == ARM::R7) 1892 CS1Spilled = true; 1893 } 1894 1895 // This is true when we inserted a spill for a callee-save GPR which is 1896 // not otherwise used by the function. This guaranteees it is possible 1897 // to scavenge a register to hold the address of a stack slot. On Thumb1, 1898 // the register must be a valid operand to tSTRi, i.e. r4-r7. For other 1899 // subtargets, this is any GPR, i.e. r4-r11 or lr. 1900 // 1901 // If we don't insert a spill, we instead allocate an emergency spill 1902 // slot, which can be used by scavenging to spill an arbitrary register. 1903 // 1904 // We currently don't try to figure out whether any specific instruction 1905 // requires scavening an additional register. 1906 bool ExtraCSSpill = false; 1907 1908 if (AFI->isThumb1OnlyFunction()) { 1909 // For Thumb1-only targets, we need some low registers when we save and 1910 // restore the high registers (which aren't allocatable, but could be 1911 // used by inline assembly) because the push/pop instructions can not 1912 // access high registers. If necessary, we might need to push more low 1913 // registers to ensure that there is at least one free that can be used 1914 // for the saving & restoring, and preferably we should ensure that as 1915 // many as are needed are available so that fewer push/pop instructions 1916 // are required. 1917 1918 // Low registers which are not currently pushed, but could be (r4-r7). 1919 SmallVector<unsigned, 4> AvailableRegs; 1920 1921 // Unused argument registers (r0-r3) can be clobbered in the prologue for 1922 // free. 1923 int EntryRegDeficit = 0; 1924 for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) { 1925 if (!MF.getRegInfo().isLiveIn(Reg)) { 1926 --EntryRegDeficit; 1927 LLVM_DEBUG(dbgs() 1928 << printReg(Reg, TRI) 1929 << " is unused argument register, EntryRegDeficit = " 1930 << EntryRegDeficit << "\n"); 1931 } 1932 } 1933 1934 // Unused return registers can be clobbered in the epilogue for free. 1935 int ExitRegDeficit = AFI->getReturnRegsCount() - 4; 1936 LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount() 1937 << " return regs used, ExitRegDeficit = " 1938 << ExitRegDeficit << "\n"); 1939 1940 int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit); 1941 LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n"); 1942 1943 // r4-r6 can be used in the prologue if they are pushed by the first push 1944 // instruction. 1945 for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) { 1946 if (SavedRegs.test(Reg)) { 1947 --RegDeficit; 1948 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 1949 << " is saved low register, RegDeficit = " 1950 << RegDeficit << "\n"); 1951 } else { 1952 AvailableRegs.push_back(Reg); 1953 LLVM_DEBUG( 1954 dbgs() 1955 << printReg(Reg, TRI) 1956 << " is non-saved low register, adding to AvailableRegs\n"); 1957 } 1958 } 1959 1960 // r7 can be used if it is not being used as the frame pointer. 1961 if (!HasFP) { 1962 if (SavedRegs.test(ARM::R7)) { 1963 --RegDeficit; 1964 LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = " 1965 << RegDeficit << "\n"); 1966 } else { 1967 AvailableRegs.push_back(ARM::R7); 1968 LLVM_DEBUG( 1969 dbgs() 1970 << "%r7 is non-saved low register, adding to AvailableRegs\n"); 1971 } 1972 } 1973 1974 // Each of r8-r11 needs to be copied to a low register, then pushed. 1975 for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) { 1976 if (SavedRegs.test(Reg)) { 1977 ++RegDeficit; 1978 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 1979 << " is saved high register, RegDeficit = " 1980 << RegDeficit << "\n"); 1981 } 1982 } 1983 1984 // LR can only be used by PUSH, not POP, and can't be used at all if the 1985 // llvm.returnaddress intrinsic is used. This is only worth doing if we 1986 // are more limited at function entry than exit. 1987 if ((EntryRegDeficit > ExitRegDeficit) && 1988 !(MF.getRegInfo().isLiveIn(ARM::LR) && 1989 MF.getFrameInfo().isReturnAddressTaken())) { 1990 if (SavedRegs.test(ARM::LR)) { 1991 --RegDeficit; 1992 LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = " 1993 << RegDeficit << "\n"); 1994 } else { 1995 AvailableRegs.push_back(ARM::LR); 1996 LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n"); 1997 } 1998 } 1999 2000 // If there are more high registers that need pushing than low registers 2001 // available, push some more low registers so that we can use fewer push 2002 // instructions. This might not reduce RegDeficit all the way to zero, 2003 // because we can only guarantee that r4-r6 are available, but r8-r11 may 2004 // need saving. 2005 LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n"); 2006 for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) { 2007 unsigned Reg = AvailableRegs.pop_back_val(); 2008 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2009 << " to make up reg deficit\n"); 2010 SavedRegs.set(Reg); 2011 NumGPRSpills++; 2012 CS1Spilled = true; 2013 assert(!MRI.isReserved(Reg) && "Should not be reserved"); 2014 if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg)) 2015 ExtraCSSpill = true; 2016 UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg)); 2017 if (Reg == ARM::LR) 2018 LRSpilled = true; 2019 } 2020 LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit 2021 << "\n"); 2022 } 2023 2024 // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to 2025 // restore LR in that case. 2026 bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall(); 2027 2028 // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled. 2029 // Spill LR as well so we can fold BX_RET to the registers restore (LDM). 2030 if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) { 2031 SavedRegs.set(ARM::LR); 2032 NumGPRSpills++; 2033 SmallVectorImpl<unsigned>::iterator LRPos; 2034 LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR); 2035 if (LRPos != UnspilledCS1GPRs.end()) 2036 UnspilledCS1GPRs.erase(LRPos); 2037 2038 ForceLRSpill = false; 2039 if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) && 2040 !AFI->isThumb1OnlyFunction()) 2041 ExtraCSSpill = true; 2042 } 2043 2044 // If stack and double are 8-byte aligned and we are spilling an odd number 2045 // of GPRs, spill one extra callee save GPR so we won't have to pad between 2046 // the integer and double callee save areas. 2047 LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n"); 2048 unsigned TargetAlign = getStackAlignment(); 2049 if (TargetAlign >= 8 && (NumGPRSpills & 1)) { 2050 if (CS1Spilled && !UnspilledCS1GPRs.empty()) { 2051 for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) { 2052 unsigned Reg = UnspilledCS1GPRs[i]; 2053 // Don't spill high register if the function is thumb. In the case of 2054 // Windows on ARM, accept R11 (frame pointer) 2055 if (!AFI->isThumbFunction() || 2056 (STI.isTargetWindows() && Reg == ARM::R11) || 2057 isARMLowRegister(Reg) || 2058 (Reg == ARM::LR && !ExpensiveLRRestore)) { 2059 SavedRegs.set(Reg); 2060 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2061 << " to make up alignment\n"); 2062 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) && 2063 !(Reg == ARM::LR && AFI->isThumb1OnlyFunction())) 2064 ExtraCSSpill = true; 2065 break; 2066 } 2067 } 2068 } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) { 2069 unsigned Reg = UnspilledCS2GPRs.front(); 2070 SavedRegs.set(Reg); 2071 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2072 << " to make up alignment\n"); 2073 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg)) 2074 ExtraCSSpill = true; 2075 } 2076 } 2077 2078 // Estimate if we might need to scavenge a register at some point in order 2079 // to materialize a stack offset. If so, either spill one additional 2080 // callee-saved register or reserve a special spill slot to facilitate 2081 // register scavenging. Thumb1 needs a spill slot for stack pointer 2082 // adjustments also, even when the frame itself is small. 2083 if (BigFrameOffsets && !ExtraCSSpill) { 2084 // If any non-reserved CS register isn't spilled, just spill one or two 2085 // extra. That should take care of it! 2086 unsigned NumExtras = TargetAlign / 4; 2087 SmallVector<unsigned, 2> Extras; 2088 while (NumExtras && !UnspilledCS1GPRs.empty()) { 2089 unsigned Reg = UnspilledCS1GPRs.back(); 2090 UnspilledCS1GPRs.pop_back(); 2091 if (!MRI.isReserved(Reg) && 2092 (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) { 2093 Extras.push_back(Reg); 2094 NumExtras--; 2095 } 2096 } 2097 // For non-Thumb1 functions, also check for hi-reg CS registers 2098 if (!AFI->isThumb1OnlyFunction()) { 2099 while (NumExtras && !UnspilledCS2GPRs.empty()) { 2100 unsigned Reg = UnspilledCS2GPRs.back(); 2101 UnspilledCS2GPRs.pop_back(); 2102 if (!MRI.isReserved(Reg)) { 2103 Extras.push_back(Reg); 2104 NumExtras--; 2105 } 2106 } 2107 } 2108 if (NumExtras == 0) { 2109 for (unsigned Reg : Extras) { 2110 SavedRegs.set(Reg); 2111 if (!MRI.isPhysRegUsed(Reg)) 2112 ExtraCSSpill = true; 2113 } 2114 } 2115 if (!ExtraCSSpill && RS) { 2116 // Reserve a slot closest to SP or frame pointer. 2117 LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n"); 2118 const TargetRegisterClass &RC = ARM::GPRRegClass; 2119 unsigned Size = TRI->getSpillSize(RC); 2120 unsigned Align = TRI->getSpillAlignment(RC); 2121 RS->addScavengingFrameIndex(MFI.CreateStackObject(Size, Align, false)); 2122 } 2123 } 2124 } 2125 2126 if (ForceLRSpill) { 2127 SavedRegs.set(ARM::LR); 2128 AFI->setLRIsSpilledForFarJump(true); 2129 } 2130 AFI->setLRIsSpilled(SavedRegs.test(ARM::LR)); 2131 } 2132 2133 void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF, 2134 BitVector &SavedRegs) const { 2135 TargetFrameLowering::getCalleeSaves(MF, SavedRegs); 2136 2137 // If we have the "returned" parameter attribute which guarantees that we 2138 // return the value which was passed in r0 unmodified (e.g. C++ 'structors), 2139 // record that fact for IPRA. 2140 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2141 if (AFI->getPreservesR0()) 2142 SavedRegs.set(ARM::R0); 2143 } 2144 2145 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr( 2146 MachineFunction &MF, MachineBasicBlock &MBB, 2147 MachineBasicBlock::iterator I) const { 2148 const ARMBaseInstrInfo &TII = 2149 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2150 if (!hasReservedCallFrame(MF)) { 2151 // If we have alloca, convert as follows: 2152 // ADJCALLSTACKDOWN -> sub, sp, sp, amount 2153 // ADJCALLSTACKUP -> add, sp, sp, amount 2154 MachineInstr &Old = *I; 2155 DebugLoc dl = Old.getDebugLoc(); 2156 unsigned Amount = TII.getFrameSize(Old); 2157 if (Amount != 0) { 2158 // We need to keep the stack aligned properly. To do this, we round the 2159 // amount of space needed for the outgoing arguments up to the next 2160 // alignment boundary. 2161 Amount = alignSPAdjust(Amount); 2162 2163 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2164 assert(!AFI->isThumb1OnlyFunction() && 2165 "This eliminateCallFramePseudoInstr does not support Thumb1!"); 2166 bool isARM = !AFI->isThumbFunction(); 2167 2168 // Replace the pseudo instruction with a new instruction... 2169 unsigned Opc = Old.getOpcode(); 2170 int PIdx = Old.findFirstPredOperandIdx(); 2171 ARMCC::CondCodes Pred = 2172 (PIdx == -1) ? ARMCC::AL 2173 : (ARMCC::CondCodes)Old.getOperand(PIdx).getImm(); 2174 unsigned PredReg = TII.getFramePred(Old); 2175 if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) { 2176 emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags, 2177 Pred, PredReg); 2178 } else { 2179 assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP); 2180 emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags, 2181 Pred, PredReg); 2182 } 2183 } 2184 } 2185 return MBB.erase(I); 2186 } 2187 2188 /// Get the minimum constant for ARM that is greater than or equal to the 2189 /// argument. In ARM, constants can have any value that can be produced by 2190 /// rotating an 8-bit value to the right by an even number of bits within a 2191 /// 32-bit word. 2192 static uint32_t alignToARMConstant(uint32_t Value) { 2193 unsigned Shifted = 0; 2194 2195 if (Value == 0) 2196 return 0; 2197 2198 while (!(Value & 0xC0000000)) { 2199 Value = Value << 2; 2200 Shifted += 2; 2201 } 2202 2203 bool Carry = (Value & 0x00FFFFFF); 2204 Value = ((Value & 0xFF000000) >> 24) + Carry; 2205 2206 if (Value & 0x0000100) 2207 Value = Value & 0x000001FC; 2208 2209 if (Shifted > 24) 2210 Value = Value >> (Shifted - 24); 2211 else 2212 Value = Value << (24 - Shifted); 2213 2214 return Value; 2215 } 2216 2217 // The stack limit in the TCB is set to this many bytes above the actual 2218 // stack limit. 2219 static const uint64_t kSplitStackAvailable = 256; 2220 2221 // Adjust the function prologue to enable split stacks. This currently only 2222 // supports android and linux. 2223 // 2224 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but 2225 // must be well defined in order to allow for consistent implementations of the 2226 // __morestack helper function. The ABI is also not a normal ABI in that it 2227 // doesn't follow the normal calling conventions because this allows the 2228 // prologue of each function to be optimized further. 2229 // 2230 // Currently, the ABI looks like (when calling __morestack) 2231 // 2232 // * r4 holds the minimum stack size requested for this function call 2233 // * r5 holds the stack size of the arguments to the function 2234 // * the beginning of the function is 3 instructions after the call to 2235 // __morestack 2236 // 2237 // Implementations of __morestack should use r4 to allocate a new stack, r5 to 2238 // place the arguments on to the new stack, and the 3-instruction knowledge to 2239 // jump directly to the body of the function when working on the new stack. 2240 // 2241 // An old (and possibly no longer compatible) implementation of __morestack for 2242 // ARM can be found at [1]. 2243 // 2244 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S 2245 void ARMFrameLowering::adjustForSegmentedStacks( 2246 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2247 unsigned Opcode; 2248 unsigned CFIIndex; 2249 const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>(); 2250 bool Thumb = ST->isThumb(); 2251 2252 // Sadly, this currently doesn't support varargs, platforms other than 2253 // android/linux. Note that thumb1/thumb2 are support for android/linux. 2254 if (MF.getFunction().isVarArg()) 2255 report_fatal_error("Segmented stacks do not support vararg functions."); 2256 if (!ST->isTargetAndroid() && !ST->isTargetLinux()) 2257 report_fatal_error("Segmented stacks not supported on this platform."); 2258 2259 MachineFrameInfo &MFI = MF.getFrameInfo(); 2260 MachineModuleInfo &MMI = MF.getMMI(); 2261 MCContext &Context = MMI.getContext(); 2262 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 2263 const ARMBaseInstrInfo &TII = 2264 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2265 ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>(); 2266 DebugLoc DL; 2267 2268 uint64_t StackSize = MFI.getStackSize(); 2269 2270 // Do not generate a prologue for leaf functions with a stack of size zero. 2271 // For non-leaf functions we have to allow for the possibility that the 2272 // callis to a non-split function, as in PR37807. This function could also 2273 // take the address of a non-split function. When the linker tries to adjust 2274 // its non-existent prologue, it would fail with an error. Mark the object 2275 // file so that such failures are not errors. See this Go language bug-report 2276 // https://go-review.googlesource.com/c/go/+/148819/ 2277 if (StackSize == 0 && !MFI.hasTailCall()) { 2278 MF.getMMI().setHasNosplitStack(true); 2279 return; 2280 } 2281 2282 // Use R4 and R5 as scratch registers. 2283 // We save R4 and R5 before use and restore them before leaving the function. 2284 unsigned ScratchReg0 = ARM::R4; 2285 unsigned ScratchReg1 = ARM::R5; 2286 uint64_t AlignedStackSize; 2287 2288 MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock(); 2289 MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock(); 2290 MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock(); 2291 MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock(); 2292 MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock(); 2293 2294 // Grab everything that reaches PrologueMBB to update there liveness as well. 2295 SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion; 2296 SmallVector<MachineBasicBlock *, 2> WalkList; 2297 WalkList.push_back(&PrologueMBB); 2298 2299 do { 2300 MachineBasicBlock *CurMBB = WalkList.pop_back_val(); 2301 for (MachineBasicBlock *PredBB : CurMBB->predecessors()) { 2302 if (BeforePrologueRegion.insert(PredBB).second) 2303 WalkList.push_back(PredBB); 2304 } 2305 } while (!WalkList.empty()); 2306 2307 // The order in that list is important. 2308 // The blocks will all be inserted before PrologueMBB using that order. 2309 // Therefore the block that should appear first in the CFG should appear 2310 // first in the list. 2311 MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB, 2312 PostStackMBB}; 2313 2314 for (MachineBasicBlock *B : AddedBlocks) 2315 BeforePrologueRegion.insert(B); 2316 2317 for (const auto &LI : PrologueMBB.liveins()) { 2318 for (MachineBasicBlock *PredBB : BeforePrologueRegion) 2319 PredBB->addLiveIn(LI); 2320 } 2321 2322 // Remove the newly added blocks from the list, since we know 2323 // we do not have to do the following updates for them. 2324 for (MachineBasicBlock *B : AddedBlocks) { 2325 BeforePrologueRegion.erase(B); 2326 MF.insert(PrologueMBB.getIterator(), B); 2327 } 2328 2329 for (MachineBasicBlock *MBB : BeforePrologueRegion) { 2330 // Make sure the LiveIns are still sorted and unique. 2331 MBB->sortUniqueLiveIns(); 2332 // Replace the edges to PrologueMBB by edges to the sequences 2333 // we are about to add. 2334 MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]); 2335 } 2336 2337 // The required stack size that is aligned to ARM constant criterion. 2338 AlignedStackSize = alignToARMConstant(StackSize); 2339 2340 // When the frame size is less than 256 we just compare the stack 2341 // boundary directly to the value of the stack pointer, per gcc. 2342 bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable; 2343 2344 // We will use two of the callee save registers as scratch registers so we 2345 // need to save those registers onto the stack. 2346 // We will use SR0 to hold stack limit and SR1 to hold the stack size 2347 // requested and arguments for __morestack(). 2348 // SR0: Scratch Register #0 2349 // SR1: Scratch Register #1 2350 // push {SR0, SR1} 2351 if (Thumb) { 2352 BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH)) 2353 .add(predOps(ARMCC::AL)) 2354 .addReg(ScratchReg0) 2355 .addReg(ScratchReg1); 2356 } else { 2357 BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD)) 2358 .addReg(ARM::SP, RegState::Define) 2359 .addReg(ARM::SP) 2360 .add(predOps(ARMCC::AL)) 2361 .addReg(ScratchReg0) 2362 .addReg(ScratchReg1); 2363 } 2364 2365 // Emit the relevant DWARF information about the change in stack pointer as 2366 // well as where to find both r4 and r5 (the callee-save registers) 2367 CFIIndex = 2368 MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -8)); 2369 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2370 .addCFIIndex(CFIIndex); 2371 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2372 nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4)); 2373 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2374 .addCFIIndex(CFIIndex); 2375 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2376 nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8)); 2377 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2378 .addCFIIndex(CFIIndex); 2379 2380 // mov SR1, sp 2381 if (Thumb) { 2382 BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1) 2383 .addReg(ARM::SP) 2384 .add(predOps(ARMCC::AL)); 2385 } else if (CompareStackPointer) { 2386 BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1) 2387 .addReg(ARM::SP) 2388 .add(predOps(ARMCC::AL)) 2389 .add(condCodeOp()); 2390 } 2391 2392 // sub SR1, sp, #StackSize 2393 if (!CompareStackPointer && Thumb) { 2394 BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1) 2395 .add(condCodeOp()) 2396 .addReg(ScratchReg1) 2397 .addImm(AlignedStackSize) 2398 .add(predOps(ARMCC::AL)); 2399 } else if (!CompareStackPointer) { 2400 BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1) 2401 .addReg(ARM::SP) 2402 .addImm(AlignedStackSize) 2403 .add(predOps(ARMCC::AL)) 2404 .add(condCodeOp()); 2405 } 2406 2407 if (Thumb && ST->isThumb1Only()) { 2408 unsigned PCLabelId = ARMFI->createPICLabelUId(); 2409 ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create( 2410 MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0); 2411 MachineConstantPool *MCP = MF.getConstantPool(); 2412 unsigned CPI = MCP->getConstantPoolIndex(NewCPV, 4); 2413 2414 // ldr SR0, [pc, offset(STACK_LIMIT)] 2415 BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0) 2416 .addConstantPoolIndex(CPI) 2417 .add(predOps(ARMCC::AL)); 2418 2419 // ldr SR0, [SR0] 2420 BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0) 2421 .addReg(ScratchReg0) 2422 .addImm(0) 2423 .add(predOps(ARMCC::AL)); 2424 } else { 2425 // Get TLS base address from the coprocessor 2426 // mrc p15, #0, SR0, c13, c0, #3 2427 BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC), 2428 ScratchReg0) 2429 .addImm(15) 2430 .addImm(0) 2431 .addImm(13) 2432 .addImm(0) 2433 .addImm(3) 2434 .add(predOps(ARMCC::AL)); 2435 2436 // Use the last tls slot on android and a private field of the TCP on linux. 2437 assert(ST->isTargetAndroid() || ST->isTargetLinux()); 2438 unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1; 2439 2440 // Get the stack limit from the right offset 2441 // ldr SR0, [sr0, #4 * TlsOffset] 2442 BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12), 2443 ScratchReg0) 2444 .addReg(ScratchReg0) 2445 .addImm(4 * TlsOffset) 2446 .add(predOps(ARMCC::AL)); 2447 } 2448 2449 // Compare stack limit with stack size requested. 2450 // cmp SR0, SR1 2451 Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr; 2452 BuildMI(GetMBB, DL, TII.get(Opcode)) 2453 .addReg(ScratchReg0) 2454 .addReg(ScratchReg1) 2455 .add(predOps(ARMCC::AL)); 2456 2457 // This jump is taken if StackLimit < SP - stack required. 2458 Opcode = Thumb ? ARM::tBcc : ARM::Bcc; 2459 BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB) 2460 .addImm(ARMCC::LO) 2461 .addReg(ARM::CPSR); 2462 2463 2464 // Calling __morestack(StackSize, Size of stack arguments). 2465 // __morestack knows that the stack size requested is in SR0(r4) 2466 // and amount size of stack arguments is in SR1(r5). 2467 2468 // Pass first argument for the __morestack by Scratch Register #0. 2469 // The amount size of stack required 2470 if (Thumb) { 2471 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0) 2472 .add(condCodeOp()) 2473 .addImm(AlignedStackSize) 2474 .add(predOps(ARMCC::AL)); 2475 } else { 2476 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0) 2477 .addImm(AlignedStackSize) 2478 .add(predOps(ARMCC::AL)) 2479 .add(condCodeOp()); 2480 } 2481 // Pass second argument for the __morestack by Scratch Register #1. 2482 // The amount size of stack consumed to save function arguments. 2483 if (Thumb) { 2484 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1) 2485 .add(condCodeOp()) 2486 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 2487 .add(predOps(ARMCC::AL)); 2488 } else { 2489 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1) 2490 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 2491 .add(predOps(ARMCC::AL)) 2492 .add(condCodeOp()); 2493 } 2494 2495 // push {lr} - Save return address of this function. 2496 if (Thumb) { 2497 BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH)) 2498 .add(predOps(ARMCC::AL)) 2499 .addReg(ARM::LR); 2500 } else { 2501 BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD)) 2502 .addReg(ARM::SP, RegState::Define) 2503 .addReg(ARM::SP) 2504 .add(predOps(ARMCC::AL)) 2505 .addReg(ARM::LR); 2506 } 2507 2508 // Emit the DWARF info about the change in stack as well as where to find the 2509 // previous link register 2510 CFIIndex = 2511 MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, -12)); 2512 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2513 .addCFIIndex(CFIIndex); 2514 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2515 nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12)); 2516 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2517 .addCFIIndex(CFIIndex); 2518 2519 // Call __morestack(). 2520 if (Thumb) { 2521 BuildMI(AllocMBB, DL, TII.get(ARM::tBL)) 2522 .add(predOps(ARMCC::AL)) 2523 .addExternalSymbol("__morestack"); 2524 } else { 2525 BuildMI(AllocMBB, DL, TII.get(ARM::BL)) 2526 .addExternalSymbol("__morestack"); 2527 } 2528 2529 // pop {lr} - Restore return address of this original function. 2530 if (Thumb) { 2531 if (ST->isThumb1Only()) { 2532 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 2533 .add(predOps(ARMCC::AL)) 2534 .addReg(ScratchReg0); 2535 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR) 2536 .addReg(ScratchReg0) 2537 .add(predOps(ARMCC::AL)); 2538 } else { 2539 BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST)) 2540 .addReg(ARM::LR, RegState::Define) 2541 .addReg(ARM::SP, RegState::Define) 2542 .addReg(ARM::SP) 2543 .addImm(4) 2544 .add(predOps(ARMCC::AL)); 2545 } 2546 } else { 2547 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 2548 .addReg(ARM::SP, RegState::Define) 2549 .addReg(ARM::SP) 2550 .add(predOps(ARMCC::AL)) 2551 .addReg(ARM::LR); 2552 } 2553 2554 // Restore SR0 and SR1 in case of __morestack() was called. 2555 // __morestack() will skip PostStackMBB block so we need to restore 2556 // scratch registers from here. 2557 // pop {SR0, SR1} 2558 if (Thumb) { 2559 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 2560 .add(predOps(ARMCC::AL)) 2561 .addReg(ScratchReg0) 2562 .addReg(ScratchReg1); 2563 } else { 2564 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 2565 .addReg(ARM::SP, RegState::Define) 2566 .addReg(ARM::SP) 2567 .add(predOps(ARMCC::AL)) 2568 .addReg(ScratchReg0) 2569 .addReg(ScratchReg1); 2570 } 2571 2572 // Update the CFA offset now that we've popped 2573 CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0)); 2574 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2575 .addCFIIndex(CFIIndex); 2576 2577 // Return from this function. 2578 BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL)); 2579 2580 // Restore SR0 and SR1 in case of __morestack() was not called. 2581 // pop {SR0, SR1} 2582 if (Thumb) { 2583 BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP)) 2584 .add(predOps(ARMCC::AL)) 2585 .addReg(ScratchReg0) 2586 .addReg(ScratchReg1); 2587 } else { 2588 BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD)) 2589 .addReg(ARM::SP, RegState::Define) 2590 .addReg(ARM::SP) 2591 .add(predOps(ARMCC::AL)) 2592 .addReg(ScratchReg0) 2593 .addReg(ScratchReg1); 2594 } 2595 2596 // Update the CFA offset now that we've popped 2597 CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaOffset(nullptr, 0)); 2598 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2599 .addCFIIndex(CFIIndex); 2600 2601 // Tell debuggers that r4 and r5 are now the same as they were in the 2602 // previous function, that they're the "Same Value". 2603 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 2604 nullptr, MRI->getDwarfRegNum(ScratchReg0, true))); 2605 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2606 .addCFIIndex(CFIIndex); 2607 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 2608 nullptr, MRI->getDwarfRegNum(ScratchReg1, true))); 2609 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2610 .addCFIIndex(CFIIndex); 2611 2612 // Organizing MBB lists 2613 PostStackMBB->addSuccessor(&PrologueMBB); 2614 2615 AllocMBB->addSuccessor(PostStackMBB); 2616 2617 GetMBB->addSuccessor(PostStackMBB); 2618 GetMBB->addSuccessor(AllocMBB); 2619 2620 McrMBB->addSuccessor(GetMBB); 2621 2622 PrevStackMBB->addSuccessor(McrMBB); 2623 2624 #ifdef EXPENSIVE_CHECKS 2625 MF.verify(); 2626 #endif 2627 } 2628