1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the ARM implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 // 13 // This file contains the ARM implementation of TargetFrameLowering class. 14 // 15 // On ARM, stack frames are structured as follows: 16 // 17 // The stack grows downward. 18 // 19 // All of the individual frame areas on the frame below are optional, i.e. it's 20 // possible to create a function so that the particular area isn't present 21 // in the frame. 22 // 23 // At function entry, the "frame" looks as follows: 24 // 25 // | | Higher address 26 // |-----------------------------------| 27 // | | 28 // | arguments passed on the stack | 29 // | | 30 // |-----------------------------------| <- sp 31 // | | Lower address 32 // 33 // 34 // After the prologue has run, the frame has the following general structure. 35 // Technically the last frame area (VLAs) doesn't get created until in the 36 // main function body, after the prologue is run. However, it's depicted here 37 // for completeness. 38 // 39 // | | Higher address 40 // |-----------------------------------| 41 // | | 42 // | arguments passed on the stack | 43 // | | 44 // |-----------------------------------| <- (sp at function entry) 45 // | | 46 // | varargs from registers | 47 // | | 48 // |-----------------------------------| 49 // | | 50 // | prev_lr | 51 // | prev_fp | 52 // | (a.k.a. "frame record") | 53 // | | 54 // |- - - - - - - - - - - - - - - - - -| <- fp (r7 or r11) 55 // | | 56 // | callee-saved gpr registers | 57 // | | 58 // |-----------------------------------| 59 // | | 60 // | callee-saved fp/simd regs | 61 // | | 62 // |-----------------------------------| 63 // |.empty.space.to.make.part.below....| 64 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at 65 // |.the.standard.8-byte.alignment.....| compile time; if present) 66 // |-----------------------------------| 67 // | | 68 // | local variables of fixed size | 69 // | including spill slots | 70 // |-----------------------------------| <- base pointer (not defined by ABI, 71 // |.variable-sized.local.variables....| LLVM chooses r6) 72 // |.(VLAs)............................| (size of this area is unknown at 73 // |...................................| compile time) 74 // |-----------------------------------| <- sp 75 // | | Lower address 76 // 77 // 78 // To access the data in a frame, at-compile time, a constant offset must be 79 // computable from one of the pointers (fp, bp, sp) to access it. The size 80 // of the areas with a dotted background cannot be computed at compile-time 81 // if they are present, making it required to have all three of fp, bp and 82 // sp to be set up to be able to access all contents in the frame areas, 83 // assuming all of the frame areas are non-empty. 84 // 85 // For most functions, some of the frame areas are empty. For those functions, 86 // it may not be necessary to set up fp or bp: 87 // * A base pointer is definitely needed when there are both VLAs and local 88 // variables with more-than-default alignment requirements. 89 // * A frame pointer is definitely needed when there are local variables with 90 // more-than-default alignment requirements. 91 // 92 // In some cases when a base pointer is not strictly needed, it is generated 93 // anyway when offsets from the frame pointer to access local variables become 94 // so large that the offset can't be encoded in the immediate fields of loads 95 // or stores. 96 // 97 // The frame pointer might be chosen to be r7 or r11, depending on the target 98 // architecture and operating system. See ARMSubtarget::getFramePointerReg for 99 // details. 100 // 101 // Outgoing function arguments must be at the bottom of the stack frame when 102 // calling another function. If we do not have variable-sized stack objects, we 103 // can allocate a "reserved call frame" area at the bottom of the local 104 // variable area, large enough for all outgoing calls. If we do have VLAs, then 105 // the stack pointer must be decremented and incremented around each call to 106 // make space for the arguments below the VLAs. 107 // 108 //===----------------------------------------------------------------------===// 109 110 #include "ARMFrameLowering.h" 111 #include "ARMBaseInstrInfo.h" 112 #include "ARMBaseRegisterInfo.h" 113 #include "ARMConstantPoolValue.h" 114 #include "ARMMachineFunctionInfo.h" 115 #include "ARMSubtarget.h" 116 #include "MCTargetDesc/ARMAddressingModes.h" 117 #include "MCTargetDesc/ARMBaseInfo.h" 118 #include "Utils/ARMBaseInfo.h" 119 #include "llvm/ADT/BitVector.h" 120 #include "llvm/ADT/STLExtras.h" 121 #include "llvm/ADT/SmallPtrSet.h" 122 #include "llvm/ADT/SmallVector.h" 123 #include "llvm/CodeGen/MachineBasicBlock.h" 124 #include "llvm/CodeGen/MachineConstantPool.h" 125 #include "llvm/CodeGen/MachineFrameInfo.h" 126 #include "llvm/CodeGen/MachineFunction.h" 127 #include "llvm/CodeGen/MachineInstr.h" 128 #include "llvm/CodeGen/MachineInstrBuilder.h" 129 #include "llvm/CodeGen/MachineJumpTableInfo.h" 130 #include "llvm/CodeGen/MachineModuleInfo.h" 131 #include "llvm/CodeGen/MachineOperand.h" 132 #include "llvm/CodeGen/MachineRegisterInfo.h" 133 #include "llvm/CodeGen/RegisterScavenging.h" 134 #include "llvm/CodeGen/TargetInstrInfo.h" 135 #include "llvm/CodeGen/TargetOpcodes.h" 136 #include "llvm/CodeGen/TargetRegisterInfo.h" 137 #include "llvm/CodeGen/TargetSubtargetInfo.h" 138 #include "llvm/IR/Attributes.h" 139 #include "llvm/IR/CallingConv.h" 140 #include "llvm/IR/DebugLoc.h" 141 #include "llvm/IR/Function.h" 142 #include "llvm/MC/MCAsmInfo.h" 143 #include "llvm/MC/MCContext.h" 144 #include "llvm/MC/MCDwarf.h" 145 #include "llvm/MC/MCInstrDesc.h" 146 #include "llvm/MC/MCRegisterInfo.h" 147 #include "llvm/Support/CodeGen.h" 148 #include "llvm/Support/CommandLine.h" 149 #include "llvm/Support/Compiler.h" 150 #include "llvm/Support/Debug.h" 151 #include "llvm/Support/ErrorHandling.h" 152 #include "llvm/Support/MathExtras.h" 153 #include "llvm/Support/raw_ostream.h" 154 #include "llvm/Target/TargetMachine.h" 155 #include "llvm/Target/TargetOptions.h" 156 #include <algorithm> 157 #include <cassert> 158 #include <cstddef> 159 #include <cstdint> 160 #include <iterator> 161 #include <utility> 162 #include <vector> 163 164 #define DEBUG_TYPE "arm-frame-lowering" 165 166 using namespace llvm; 167 168 static cl::opt<bool> 169 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true), 170 cl::desc("Align ARM NEON spills in prolog and epilog")); 171 172 static MachineBasicBlock::iterator 173 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 174 unsigned NumAlignedDPRCS2Regs); 175 176 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti) 177 : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)), 178 STI(sti) {} 179 180 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const { 181 // iOS always has a FP for backtracking, force other targets to keep their FP 182 // when doing FastISel. The emitted code is currently superior, and in cases 183 // like test-suite's lencod FastISel isn't quite correct when FP is eliminated. 184 return MF.getSubtarget<ARMSubtarget>().useFastISel(); 185 } 186 187 /// Returns true if the target can safely skip saving callee-saved registers 188 /// for noreturn nounwind functions. 189 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const { 190 assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) && 191 MF.getFunction().hasFnAttribute(Attribute::NoUnwind) && 192 !MF.getFunction().hasFnAttribute(Attribute::UWTable)); 193 194 // Frame pointer and link register are not treated as normal CSR, thus we 195 // can always skip CSR saves for nonreturning functions. 196 return true; 197 } 198 199 /// hasFP - Return true if the specified function should have a dedicated frame 200 /// pointer register. This is true if the function has variable sized allocas 201 /// or if frame pointer elimination is disabled. 202 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const { 203 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 204 const MachineFrameInfo &MFI = MF.getFrameInfo(); 205 206 // ABI-required frame pointer. 207 if (MF.getTarget().Options.DisableFramePointerElim(MF)) 208 return true; 209 210 // Frame pointer required for use within this function. 211 return (RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || 212 MFI.isFrameAddressTaken()); 213 } 214 215 /// isFPReserved - Return true if the frame pointer register should be 216 /// considered a reserved register on the scope of the specified function. 217 bool ARMFrameLowering::isFPReserved(const MachineFunction &MF) const { 218 return hasFP(MF) || MF.getSubtarget<ARMSubtarget>().createAAPCSFrameChain(); 219 } 220 221 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 222 /// not required, we reserve argument space for call sites in the function 223 /// immediately on entry to the current function. This eliminates the need for 224 /// add/sub sp brackets around call sites. Returns true if the call frame is 225 /// included as part of the stack frame. 226 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 227 const MachineFrameInfo &MFI = MF.getFrameInfo(); 228 unsigned CFSize = MFI.getMaxCallFrameSize(); 229 // It's not always a good idea to include the call frame as part of the 230 // stack frame. ARM (especially Thumb) has small immediate offset to 231 // address the stack frame. So a large call frame can cause poor codegen 232 // and may even makes it impossible to scavenge a register. 233 if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12 234 return false; 235 236 return !MFI.hasVarSizedObjects(); 237 } 238 239 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 240 /// call frame pseudos can be simplified. Unlike most targets, having a FP 241 /// is not sufficient here since we still may reference some objects via SP 242 /// even when FP is available in Thumb2 mode. 243 bool 244 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 245 return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects(); 246 } 247 248 // Returns how much of the incoming argument stack area we should clean up in an 249 // epilogue. For the C calling convention this will be 0, for guaranteed tail 250 // call conventions it can be positive (a normal return or a tail call to a 251 // function that uses less stack space for arguments) or negative (for a tail 252 // call to a function that needs more stack space than us for arguments). 253 static int getArgumentStackToRestore(MachineFunction &MF, 254 MachineBasicBlock &MBB) { 255 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); 256 bool IsTailCallReturn = false; 257 if (MBB.end() != MBBI) { 258 unsigned RetOpcode = MBBI->getOpcode(); 259 IsTailCallReturn = RetOpcode == ARM::TCRETURNdi || 260 RetOpcode == ARM::TCRETURNri; 261 } 262 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 263 264 int ArgumentPopSize = 0; 265 if (IsTailCallReturn) { 266 MachineOperand &StackAdjust = MBBI->getOperand(1); 267 268 // For a tail-call in a callee-pops-arguments environment, some or all of 269 // the stack may actually be in use for the call's arguments, this is 270 // calculated during LowerCall and consumed here... 271 ArgumentPopSize = StackAdjust.getImm(); 272 } else { 273 // ... otherwise the amount to pop is *all* of the argument space, 274 // conveniently stored in the MachineFunctionInfo by 275 // LowerFormalArguments. This will, of course, be zero for the C calling 276 // convention. 277 ArgumentPopSize = AFI->getArgumentStackToRestore(); 278 } 279 280 return ArgumentPopSize; 281 } 282 283 static bool needsWinCFI(const MachineFunction &MF) { 284 const Function &F = MF.getFunction(); 285 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && 286 F.needsUnwindTableEntry(); 287 } 288 289 // Given a load or a store instruction, generate an appropriate unwinding SEH 290 // code on Windows. 291 static MachineBasicBlock::iterator insertSEH(MachineBasicBlock::iterator MBBI, 292 const TargetInstrInfo &TII, 293 unsigned Flags) { 294 unsigned Opc = MBBI->getOpcode(); 295 MachineBasicBlock *MBB = MBBI->getParent(); 296 MachineFunction &MF = *MBB->getParent(); 297 DebugLoc DL = MBBI->getDebugLoc(); 298 MachineInstrBuilder MIB; 299 const ARMSubtarget &Subtarget = MF.getSubtarget<ARMSubtarget>(); 300 const ARMBaseRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 301 302 Flags |= MachineInstr::NoMerge; 303 304 switch (Opc) { 305 default: 306 report_fatal_error("No SEH Opcode for instruction " + TII.getName(Opc)); 307 break; 308 case ARM::t2ADDri: // add.w r11, sp, #xx 309 case ARM::t2ADDri12: // add.w r11, sp, #xx 310 case ARM::t2MOVTi16: // movt r4, #xx 311 case ARM::tBL: // bl __chkstk 312 // These are harmless if used for just setting up a frame pointer, 313 // but that frame pointer can't be relied upon for unwinding, unless 314 // set up with SEH_SaveSP. 315 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 316 .addImm(/*Wide=*/1) 317 .setMIFlags(Flags); 318 break; 319 320 case ARM::t2MOVi16: { // mov(w) r4, #xx 321 bool Wide = MBBI->getOperand(1).getImm() >= 256; 322 if (!Wide) { 323 MachineInstrBuilder NewInstr = 324 BuildMI(MF, DL, TII.get(ARM::tMOVi8)).setMIFlags(MBBI->getFlags()); 325 NewInstr.add(MBBI->getOperand(0)); 326 NewInstr.add(t1CondCodeOp(/*isDead=*/true)); 327 for (unsigned i = 1, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) 328 NewInstr.add(MBBI->getOperand(i)); 329 MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr); 330 MBB->erase(MBBI); 331 MBBI = NewMBBI; 332 } 333 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)).addImm(Wide).setMIFlags(Flags); 334 break; 335 } 336 337 case ARM::tBLXr: // blx r12 (__chkstk) 338 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 339 .addImm(/*Wide=*/0) 340 .setMIFlags(Flags); 341 break; 342 343 case ARM::t2MOVi32imm: // movw+movt 344 // This pseudo instruction expands into two mov instructions. If the 345 // second operand is a symbol reference, this will stay as two wide 346 // instructions, movw+movt. If they're immediates, the first one can 347 // end up as a narrow mov though. 348 // As two SEH instructions are appended here, they won't get interleaved 349 // between the two final movw/movt instructions, but it doesn't make any 350 // practical difference. 351 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 352 .addImm(/*Wide=*/1) 353 .setMIFlags(Flags); 354 MBB->insertAfter(MBBI, MIB); 355 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 356 .addImm(/*Wide=*/1) 357 .setMIFlags(Flags); 358 break; 359 360 case ARM::t2STR_PRE: 361 if (MBBI->getOperand(0).getReg() == ARM::SP && 362 MBBI->getOperand(2).getReg() == ARM::SP && 363 MBBI->getOperand(3).getImm() == -4) { 364 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 365 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs)) 366 .addImm(1ULL << Reg) 367 .addImm(/*Wide=*/1) 368 .setMIFlags(Flags); 369 } else { 370 report_fatal_error("No matching SEH Opcode for t2STR_PRE"); 371 } 372 break; 373 374 case ARM::t2LDR_POST: 375 if (MBBI->getOperand(1).getReg() == ARM::SP && 376 MBBI->getOperand(2).getReg() == ARM::SP && 377 MBBI->getOperand(3).getImm() == 4) { 378 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 379 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs)) 380 .addImm(1ULL << Reg) 381 .addImm(/*Wide=*/1) 382 .setMIFlags(Flags); 383 } else { 384 report_fatal_error("No matching SEH Opcode for t2LDR_POST"); 385 } 386 break; 387 388 case ARM::t2LDMIA_RET: 389 case ARM::t2LDMIA_UPD: 390 case ARM::t2STMDB_UPD: { 391 unsigned Mask = 0; 392 bool Wide = false; 393 for (unsigned i = 4, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) { 394 const MachineOperand &MO = MBBI->getOperand(i); 395 if (!MO.isReg() || MO.isImplicit()) 396 continue; 397 unsigned Reg = RegInfo->getSEHRegNum(MO.getReg()); 398 if (Reg == 15) 399 Reg = 14; 400 if (Reg >= 8 && Reg <= 13) 401 Wide = true; 402 else if (Opc == ARM::t2LDMIA_UPD && Reg == 14) 403 Wide = true; 404 Mask |= 1 << Reg; 405 } 406 if (!Wide) { 407 unsigned NewOpc; 408 switch (Opc) { 409 case ARM::t2LDMIA_RET: 410 NewOpc = ARM::tPOP_RET; 411 break; 412 case ARM::t2LDMIA_UPD: 413 NewOpc = ARM::tPOP; 414 break; 415 case ARM::t2STMDB_UPD: 416 NewOpc = ARM::tPUSH; 417 break; 418 default: 419 llvm_unreachable(""); 420 } 421 MachineInstrBuilder NewInstr = 422 BuildMI(MF, DL, TII.get(NewOpc)).setMIFlags(MBBI->getFlags()); 423 for (unsigned i = 2, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) 424 NewInstr.add(MBBI->getOperand(i)); 425 MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr); 426 MBB->erase(MBBI); 427 MBBI = NewMBBI; 428 } 429 unsigned SEHOpc = 430 (Opc == ARM::t2LDMIA_RET) ? ARM::SEH_SaveRegs_Ret : ARM::SEH_SaveRegs; 431 MIB = BuildMI(MF, DL, TII.get(SEHOpc)) 432 .addImm(Mask) 433 .addImm(Wide ? 1 : 0) 434 .setMIFlags(Flags); 435 break; 436 } 437 case ARM::VSTMDDB_UPD: 438 case ARM::VLDMDIA_UPD: { 439 int First = -1, Last = 0; 440 for (unsigned i = 4, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) { 441 const MachineOperand &MO = MBBI->getOperand(i); 442 unsigned Reg = RegInfo->getSEHRegNum(MO.getReg()); 443 if (First == -1) 444 First = Reg; 445 Last = Reg; 446 } 447 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveFRegs)) 448 .addImm(First) 449 .addImm(Last) 450 .setMIFlags(Flags); 451 break; 452 } 453 case ARM::tSUBspi: 454 case ARM::tADDspi: 455 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc)) 456 .addImm(MBBI->getOperand(2).getImm() * 4) 457 .addImm(/*Wide=*/0) 458 .setMIFlags(Flags); 459 break; 460 case ARM::t2SUBspImm: 461 case ARM::t2SUBspImm12: 462 case ARM::t2ADDspImm: 463 case ARM::t2ADDspImm12: 464 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc)) 465 .addImm(MBBI->getOperand(2).getImm()) 466 .addImm(/*Wide=*/1) 467 .setMIFlags(Flags); 468 break; 469 470 case ARM::tMOVr: 471 if (MBBI->getOperand(1).getReg() == ARM::SP && 472 (Flags & MachineInstr::FrameSetup)) { 473 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 474 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP)) 475 .addImm(Reg) 476 .setMIFlags(Flags); 477 } else if (MBBI->getOperand(0).getReg() == ARM::SP && 478 (Flags & MachineInstr::FrameDestroy)) { 479 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 480 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP)) 481 .addImm(Reg) 482 .setMIFlags(Flags); 483 } else { 484 report_fatal_error("No SEH Opcode for MOV"); 485 } 486 break; 487 488 case ARM::tBX_RET: 489 case ARM::TCRETURNri: 490 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret)) 491 .addImm(/*Wide=*/0) 492 .setMIFlags(Flags); 493 break; 494 495 case ARM::TCRETURNdi: 496 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret)) 497 .addImm(/*Wide=*/1) 498 .setMIFlags(Flags); 499 break; 500 } 501 return MBB->insertAfter(MBBI, MIB); 502 } 503 504 static MachineBasicBlock::iterator 505 initMBBRange(MachineBasicBlock &MBB, const MachineBasicBlock::iterator &MBBI) { 506 if (MBBI == MBB.begin()) 507 return MachineBasicBlock::iterator(); 508 return std::prev(MBBI); 509 } 510 511 static void insertSEHRange(MachineBasicBlock &MBB, 512 MachineBasicBlock::iterator Start, 513 const MachineBasicBlock::iterator &End, 514 const ARMBaseInstrInfo &TII, unsigned MIFlags) { 515 if (Start.isValid()) 516 Start = std::next(Start); 517 else 518 Start = MBB.begin(); 519 520 for (auto MI = Start; MI != End;) { 521 auto Next = std::next(MI); 522 // Check if this instruction already has got a SEH opcode added. In that 523 // case, don't do this generic mapping. 524 if (Next != End && isSEHInstruction(*Next)) { 525 MI = std::next(Next); 526 while (MI != End && isSEHInstruction(*MI)) 527 ++MI; 528 continue; 529 } 530 insertSEH(MI, TII, MIFlags); 531 MI = Next; 532 } 533 } 534 535 static void emitRegPlusImmediate( 536 bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 537 const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg, 538 unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags, 539 ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) { 540 if (isARM) 541 emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 542 Pred, PredReg, TII, MIFlags); 543 else 544 emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 545 Pred, PredReg, TII, MIFlags); 546 } 547 548 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB, 549 MachineBasicBlock::iterator &MBBI, const DebugLoc &dl, 550 const ARMBaseInstrInfo &TII, int NumBytes, 551 unsigned MIFlags = MachineInstr::NoFlags, 552 ARMCC::CondCodes Pred = ARMCC::AL, 553 unsigned PredReg = 0) { 554 emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes, 555 MIFlags, Pred, PredReg); 556 } 557 558 static int sizeOfSPAdjustment(const MachineInstr &MI) { 559 int RegSize; 560 switch (MI.getOpcode()) { 561 case ARM::VSTMDDB_UPD: 562 RegSize = 8; 563 break; 564 case ARM::STMDB_UPD: 565 case ARM::t2STMDB_UPD: 566 RegSize = 4; 567 break; 568 case ARM::t2STR_PRE: 569 case ARM::STR_PRE_IMM: 570 return 4; 571 default: 572 llvm_unreachable("Unknown push or pop like instruction"); 573 } 574 575 int count = 0; 576 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 577 // pred) so the list starts at 4. 578 for (int i = MI.getNumOperands() - 1; i >= 4; --i) 579 count += RegSize; 580 return count; 581 } 582 583 static bool WindowsRequiresStackProbe(const MachineFunction &MF, 584 size_t StackSizeInBytes) { 585 const MachineFrameInfo &MFI = MF.getFrameInfo(); 586 const Function &F = MF.getFunction(); 587 unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096; 588 589 StackProbeSize = 590 F.getFnAttributeAsParsedInteger("stack-probe-size", StackProbeSize); 591 return (StackSizeInBytes >= StackProbeSize) && 592 !F.hasFnAttribute("no-stack-arg-probe"); 593 } 594 595 namespace { 596 597 struct StackAdjustingInsts { 598 struct InstInfo { 599 MachineBasicBlock::iterator I; 600 unsigned SPAdjust; 601 bool BeforeFPSet; 602 }; 603 604 SmallVector<InstInfo, 4> Insts; 605 606 void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust, 607 bool BeforeFPSet = false) { 608 InstInfo Info = {I, SPAdjust, BeforeFPSet}; 609 Insts.push_back(Info); 610 } 611 612 void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) { 613 auto Info = 614 llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; }); 615 assert(Info != Insts.end() && "invalid sp adjusting instruction"); 616 Info->SPAdjust += ExtraBytes; 617 } 618 619 void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl, 620 const ARMBaseInstrInfo &TII, bool HasFP) { 621 MachineFunction &MF = *MBB.getParent(); 622 unsigned CFAOffset = 0; 623 for (auto &Info : Insts) { 624 if (HasFP && !Info.BeforeFPSet) 625 return; 626 627 CFAOffset += Info.SPAdjust; 628 unsigned CFIIndex = MF.addFrameInst( 629 MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset)); 630 BuildMI(MBB, std::next(Info.I), dl, 631 TII.get(TargetOpcode::CFI_INSTRUCTION)) 632 .addCFIIndex(CFIIndex) 633 .setMIFlags(MachineInstr::FrameSetup); 634 } 635 } 636 }; 637 638 } // end anonymous namespace 639 640 /// Emit an instruction sequence that will align the address in 641 /// register Reg by zero-ing out the lower bits. For versions of the 642 /// architecture that support Neon, this must be done in a single 643 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a 644 /// single instruction. That function only gets called when optimizing 645 /// spilling of D registers on a core with the Neon instruction set 646 /// present. 647 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI, 648 const TargetInstrInfo &TII, 649 MachineBasicBlock &MBB, 650 MachineBasicBlock::iterator MBBI, 651 const DebugLoc &DL, const unsigned Reg, 652 const Align Alignment, 653 const bool MustBeSingleInstruction) { 654 const ARMSubtarget &AST = MF.getSubtarget<ARMSubtarget>(); 655 const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops(); 656 const unsigned AlignMask = Alignment.value() - 1U; 657 const unsigned NrBitsToZero = Log2(Alignment); 658 assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported"); 659 if (!AFI->isThumbFunction()) { 660 // if the BFC instruction is available, use that to zero the lower 661 // bits: 662 // bfc Reg, #0, log2(Alignment) 663 // otherwise use BIC, if the mask to zero the required number of bits 664 // can be encoded in the bic immediate field 665 // bic Reg, Reg, Alignment-1 666 // otherwise, emit 667 // lsr Reg, Reg, log2(Alignment) 668 // lsl Reg, Reg, log2(Alignment) 669 if (CanUseBFC) { 670 BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg) 671 .addReg(Reg, RegState::Kill) 672 .addImm(~AlignMask) 673 .add(predOps(ARMCC::AL)); 674 } else if (AlignMask <= 255) { 675 BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg) 676 .addReg(Reg, RegState::Kill) 677 .addImm(AlignMask) 678 .add(predOps(ARMCC::AL)) 679 .add(condCodeOp()); 680 } else { 681 assert(!MustBeSingleInstruction && 682 "Shouldn't call emitAligningInstructions demanding a single " 683 "instruction to be emitted for large stack alignment for a target " 684 "without BFC."); 685 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 686 .addReg(Reg, RegState::Kill) 687 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero)) 688 .add(predOps(ARMCC::AL)) 689 .add(condCodeOp()); 690 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 691 .addReg(Reg, RegState::Kill) 692 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero)) 693 .add(predOps(ARMCC::AL)) 694 .add(condCodeOp()); 695 } 696 } else { 697 // Since this is only reached for Thumb-2 targets, the BFC instruction 698 // should always be available. 699 assert(CanUseBFC); 700 BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg) 701 .addReg(Reg, RegState::Kill) 702 .addImm(~AlignMask) 703 .add(predOps(ARMCC::AL)); 704 } 705 } 706 707 /// We need the offset of the frame pointer relative to other MachineFrameInfo 708 /// offsets which are encoded relative to SP at function begin. 709 /// See also emitPrologue() for how the FP is set up. 710 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet 711 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use 712 /// this to produce a conservative estimate that we check in an assert() later. 713 static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI, 714 const MachineFunction &MF) { 715 // For Thumb1, push.w isn't available, so the first push will always push 716 // r7 and lr onto the stack first. 717 if (AFI.isThumb1OnlyFunction()) 718 return -AFI.getArgRegsSaveSize() - (2 * 4); 719 // This is a conservative estimation: Assume the frame pointer being r7 and 720 // pc("r15") up to r8 getting spilled before (= 8 registers). 721 int MaxRegBytes = 8 * 4; 722 if (STI.splitFramePointerPush(MF)) { 723 // Here, r11 can be stored below all of r4-r15 (3 registers more than 724 // above), plus d8-d15. 725 MaxRegBytes = 11 * 4 + 8 * 8; 726 } 727 int FPCXTSaveSize = 728 (STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0; 729 return -FPCXTSaveSize - AFI.getArgRegsSaveSize() - MaxRegBytes; 730 } 731 732 void ARMFrameLowering::emitPrologue(MachineFunction &MF, 733 MachineBasicBlock &MBB) const { 734 MachineBasicBlock::iterator MBBI = MBB.begin(); 735 MachineFrameInfo &MFI = MF.getFrameInfo(); 736 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 737 MachineModuleInfo &MMI = MF.getMMI(); 738 MCContext &Context = MMI.getContext(); 739 const TargetMachine &TM = MF.getTarget(); 740 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 741 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 742 const ARMBaseInstrInfo &TII = *STI.getInstrInfo(); 743 assert(!AFI->isThumb1OnlyFunction() && 744 "This emitPrologue does not support Thumb1!"); 745 bool isARM = !AFI->isThumbFunction(); 746 Align Alignment = STI.getFrameLowering()->getStackAlign(); 747 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 748 unsigned NumBytes = MFI.getStackSize(); 749 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 750 int FPCXTSaveSize = 0; 751 bool NeedsWinCFI = needsWinCFI(MF); 752 753 // Debug location must be unknown since the first debug location is used 754 // to determine the end of the prologue. 755 DebugLoc dl; 756 757 Register FramePtr = RegInfo->getFrameRegister(MF); 758 759 // Determine the sizes of each callee-save spill areas and record which frame 760 // belongs to which callee-save spill areas. 761 unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0; 762 int FramePtrSpillFI = 0; 763 int D8SpillFI = 0; 764 765 // All calls are tail calls in GHC calling conv, and functions have no 766 // prologue/epilogue. 767 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 768 return; 769 770 StackAdjustingInsts DefCFAOffsetCandidates; 771 bool HasFP = hasFP(MF); 772 773 if (!AFI->hasStackFrame() && 774 (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) { 775 if (NumBytes != 0) { 776 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 777 MachineInstr::FrameSetup); 778 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes, true); 779 } 780 if (!NeedsWinCFI) 781 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 782 if (NeedsWinCFI && MBBI != MBB.begin()) { 783 insertSEHRange(MBB, {}, MBBI, TII, MachineInstr::FrameSetup); 784 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_PrologEnd)) 785 .setMIFlag(MachineInstr::FrameSetup); 786 MF.setHasWinCFI(true); 787 } 788 return; 789 } 790 791 // Determine spill area sizes. 792 if (STI.splitFramePointerPush(MF)) { 793 for (const CalleeSavedInfo &I : CSI) { 794 Register Reg = I.getReg(); 795 int FI = I.getFrameIdx(); 796 switch (Reg) { 797 case ARM::R11: 798 case ARM::LR: 799 if (Reg == FramePtr) 800 FramePtrSpillFI = FI; 801 GPRCS2Size += 4; 802 break; 803 case ARM::R0: 804 case ARM::R1: 805 case ARM::R2: 806 case ARM::R3: 807 case ARM::R4: 808 case ARM::R5: 809 case ARM::R6: 810 case ARM::R7: 811 case ARM::R8: 812 case ARM::R9: 813 case ARM::R10: 814 case ARM::R12: 815 GPRCS1Size += 4; 816 break; 817 case ARM::FPCXTNS: 818 FPCXTSaveSize = 4; 819 break; 820 default: 821 // This is a DPR. Exclude the aligned DPRCS2 spills. 822 if (Reg == ARM::D8) 823 D8SpillFI = FI; 824 if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs()) 825 DPRCSSize += 8; 826 } 827 } 828 } else { 829 for (const CalleeSavedInfo &I : CSI) { 830 Register Reg = I.getReg(); 831 int FI = I.getFrameIdx(); 832 switch (Reg) { 833 case ARM::R8: 834 case ARM::R9: 835 case ARM::R10: 836 case ARM::R11: 837 case ARM::R12: 838 if (STI.splitFramePushPop(MF)) { 839 GPRCS2Size += 4; 840 break; 841 } 842 [[fallthrough]]; 843 case ARM::R0: 844 case ARM::R1: 845 case ARM::R2: 846 case ARM::R3: 847 case ARM::R4: 848 case ARM::R5: 849 case ARM::R6: 850 case ARM::R7: 851 case ARM::LR: 852 if (Reg == FramePtr) 853 FramePtrSpillFI = FI; 854 GPRCS1Size += 4; 855 break; 856 case ARM::FPCXTNS: 857 FPCXTSaveSize = 4; 858 break; 859 default: 860 // This is a DPR. Exclude the aligned DPRCS2 spills. 861 if (Reg == ARM::D8) 862 D8SpillFI = FI; 863 if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs()) 864 DPRCSSize += 8; 865 } 866 } 867 } 868 869 MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push; 870 871 // Move past the PAC computation. 872 if (AFI->shouldSignReturnAddress()) 873 LastPush = MBBI++; 874 875 // Move past FPCXT area. 876 if (FPCXTSaveSize > 0) { 877 LastPush = MBBI++; 878 DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, true); 879 } 880 881 // Allocate the vararg register save area. 882 if (ArgRegsSaveSize) { 883 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize, 884 MachineInstr::FrameSetup); 885 LastPush = std::prev(MBBI); 886 DefCFAOffsetCandidates.addInst(LastPush, ArgRegsSaveSize, true); 887 } 888 889 // Move past area 1. 890 if (GPRCS1Size > 0) { 891 GPRCS1Push = LastPush = MBBI++; 892 DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true); 893 } 894 895 // Determine starting offsets of spill areas. 896 unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize; 897 unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size; 898 unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size; 899 Align DPRAlign = DPRCSSize ? std::min(Align(8), Alignment) : Align(4); 900 unsigned DPRGapSize = GPRCS1Size + FPCXTSaveSize + ArgRegsSaveSize; 901 if (!STI.splitFramePointerPush(MF)) { 902 DPRGapSize += GPRCS2Size; 903 } 904 DPRGapSize %= DPRAlign.value(); 905 906 unsigned DPRCSOffset; 907 if (STI.splitFramePointerPush(MF)) { 908 DPRCSOffset = GPRCS1Offset - DPRGapSize - DPRCSSize; 909 GPRCS2Offset = DPRCSOffset - GPRCS2Size; 910 } else { 911 DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize; 912 } 913 int FramePtrOffsetInPush = 0; 914 if (HasFP) { 915 int FPOffset = MFI.getObjectOffset(FramePtrSpillFI); 916 assert(getMaxFPOffset(STI, *AFI, MF) <= FPOffset && 917 "Max FP estimation is wrong"); 918 FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize + FPCXTSaveSize; 919 AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) + 920 NumBytes); 921 } 922 AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset); 923 AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset); 924 AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset); 925 926 // Move past area 2. 927 if (GPRCS2Size > 0 && !STI.splitFramePointerPush(MF)) { 928 GPRCS2Push = LastPush = MBBI++; 929 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size); 930 } 931 932 // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our 933 // .cfi_offset operations will reflect that. 934 if (DPRGapSize) { 935 assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs"); 936 if (LastPush != MBB.end() && 937 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize)) 938 DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize); 939 else { 940 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize, 941 MachineInstr::FrameSetup); 942 DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize); 943 } 944 } 945 946 // Move past area 3. 947 if (DPRCSSize > 0) { 948 // Since vpush register list cannot have gaps, there may be multiple vpush 949 // instructions in the prologue. 950 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) { 951 DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI)); 952 LastPush = MBBI++; 953 } 954 } 955 956 // Move past the aligned DPRCS2 area. 957 if (AFI->getNumAlignedDPRCS2Regs() > 0) { 958 MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs()); 959 // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and 960 // leaves the stack pointer pointing to the DPRCS2 area. 961 // 962 // Adjust NumBytes to represent the stack slots below the DPRCS2 area. 963 NumBytes += MFI.getObjectOffset(D8SpillFI); 964 } else 965 NumBytes = DPRCSOffset; 966 967 if (GPRCS2Size > 0 && STI.splitFramePointerPush(MF)) { 968 GPRCS2Push = LastPush = MBBI++; 969 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size); 970 } 971 972 bool NeedsWinCFIStackAlloc = NeedsWinCFI; 973 if (STI.splitFramePointerPush(MF) && HasFP) 974 NeedsWinCFIStackAlloc = false; 975 976 if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) { 977 uint32_t NumWords = NumBytes >> 2; 978 979 if (NumWords < 65536) { 980 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 981 .addImm(NumWords) 982 .setMIFlags(MachineInstr::FrameSetup) 983 .add(predOps(ARMCC::AL)); 984 } else { 985 // Split into two instructions here, instead of using t2MOVi32imm, 986 // to allow inserting accurate SEH instructions (including accurate 987 // instruction size for each of them). 988 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 989 .addImm(NumWords & 0xffff) 990 .setMIFlags(MachineInstr::FrameSetup) 991 .add(predOps(ARMCC::AL)); 992 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVTi16), ARM::R4) 993 .addReg(ARM::R4) 994 .addImm(NumWords >> 16) 995 .setMIFlags(MachineInstr::FrameSetup) 996 .add(predOps(ARMCC::AL)); 997 } 998 999 switch (TM.getCodeModel()) { 1000 case CodeModel::Tiny: 1001 llvm_unreachable("Tiny code model not available on ARM."); 1002 case CodeModel::Small: 1003 case CodeModel::Medium: 1004 case CodeModel::Kernel: 1005 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL)) 1006 .add(predOps(ARMCC::AL)) 1007 .addExternalSymbol("__chkstk") 1008 .addReg(ARM::R4, RegState::Implicit) 1009 .setMIFlags(MachineInstr::FrameSetup); 1010 break; 1011 case CodeModel::Large: 1012 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12) 1013 .addExternalSymbol("__chkstk") 1014 .setMIFlags(MachineInstr::FrameSetup); 1015 1016 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr)) 1017 .add(predOps(ARMCC::AL)) 1018 .addReg(ARM::R12, RegState::Kill) 1019 .addReg(ARM::R4, RegState::Implicit) 1020 .setMIFlags(MachineInstr::FrameSetup); 1021 break; 1022 } 1023 1024 MachineInstrBuilder Instr, SEH; 1025 Instr = BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP) 1026 .addReg(ARM::SP, RegState::Kill) 1027 .addReg(ARM::R4, RegState::Kill) 1028 .setMIFlags(MachineInstr::FrameSetup) 1029 .add(predOps(ARMCC::AL)) 1030 .add(condCodeOp()); 1031 if (NeedsWinCFIStackAlloc) { 1032 SEH = BuildMI(MF, dl, TII.get(ARM::SEH_StackAlloc)) 1033 .addImm(NumBytes) 1034 .addImm(/*Wide=*/1) 1035 .setMIFlags(MachineInstr::FrameSetup); 1036 MBB.insertAfter(Instr, SEH); 1037 } 1038 NumBytes = 0; 1039 } 1040 1041 if (NumBytes) { 1042 // Adjust SP after all the callee-save spills. 1043 if (AFI->getNumAlignedDPRCS2Regs() == 0 && 1044 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes)) 1045 DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes); 1046 else { 1047 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 1048 MachineInstr::FrameSetup); 1049 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes); 1050 } 1051 1052 if (HasFP && isARM) 1053 // Restore from fp only in ARM mode: e.g. sub sp, r7, #24 1054 // Note it's not safe to do this in Thumb2 mode because it would have 1055 // taken two instructions: 1056 // mov sp, r7 1057 // sub sp, #24 1058 // If an interrupt is taken between the two instructions, then sp is in 1059 // an inconsistent state (pointing to the middle of callee-saved area). 1060 // The interrupt handler can end up clobbering the registers. 1061 AFI->setShouldRestoreSPFromFP(true); 1062 } 1063 1064 // Set FP to point to the stack slot that contains the previous FP. 1065 // For iOS, FP is R7, which has now been stored in spill area 1. 1066 // Otherwise, if this is not iOS, all the callee-saved registers go 1067 // into spill area 1, including the FP in R11. In either case, it 1068 // is in area one and the adjustment needs to take place just after 1069 // that push. 1070 // FIXME: The above is not necessary true when PACBTI is enabled. 1071 // AAPCS requires use of R11, and PACBTI gets in the way of regular pushes, 1072 // so FP ends up on area two. 1073 MachineBasicBlock::iterator AfterPush; 1074 if (HasFP) { 1075 AfterPush = std::next(GPRCS1Push); 1076 unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push); 1077 int FPOffset = PushSize + FramePtrOffsetInPush; 1078 if (STI.splitFramePointerPush(MF)) { 1079 AfterPush = std::next(GPRCS2Push); 1080 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII, 1081 FramePtr, ARM::SP, 0, MachineInstr::FrameSetup); 1082 } else { 1083 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII, 1084 FramePtr, ARM::SP, FPOffset, 1085 MachineInstr::FrameSetup); 1086 } 1087 if (!NeedsWinCFI) { 1088 if (FramePtrOffsetInPush + PushSize != 0) { 1089 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa( 1090 nullptr, MRI->getDwarfRegNum(FramePtr, true), 1091 FPCXTSaveSize + ArgRegsSaveSize - FramePtrOffsetInPush)); 1092 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1093 .addCFIIndex(CFIIndex) 1094 .setMIFlags(MachineInstr::FrameSetup); 1095 } else { 1096 unsigned CFIIndex = 1097 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister( 1098 nullptr, MRI->getDwarfRegNum(FramePtr, true))); 1099 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1100 .addCFIIndex(CFIIndex) 1101 .setMIFlags(MachineInstr::FrameSetup); 1102 } 1103 } 1104 } 1105 1106 // Emit a SEH opcode indicating the prologue end. The rest of the prologue 1107 // instructions below don't need to be replayed to unwind the stack. 1108 if (NeedsWinCFI && MBBI != MBB.begin()) { 1109 MachineBasicBlock::iterator End = MBBI; 1110 if (HasFP && STI.splitFramePointerPush(MF)) 1111 End = AfterPush; 1112 insertSEHRange(MBB, {}, End, TII, MachineInstr::FrameSetup); 1113 BuildMI(MBB, End, dl, TII.get(ARM::SEH_PrologEnd)) 1114 .setMIFlag(MachineInstr::FrameSetup); 1115 MF.setHasWinCFI(true); 1116 } 1117 1118 // Now that the prologue's actual instructions are finalised, we can insert 1119 // the necessary DWARF cf instructions to describe the situation. Start by 1120 // recording where each register ended up: 1121 if (GPRCS1Size > 0 && !NeedsWinCFI) { 1122 MachineBasicBlock::iterator Pos = std::next(GPRCS1Push); 1123 int CFIIndex; 1124 for (const auto &Entry : CSI) { 1125 Register Reg = Entry.getReg(); 1126 int FI = Entry.getFrameIdx(); 1127 switch (Reg) { 1128 case ARM::R8: 1129 case ARM::R9: 1130 case ARM::R10: 1131 case ARM::R11: 1132 case ARM::R12: 1133 if (STI.splitFramePushPop(MF)) 1134 break; 1135 [[fallthrough]]; 1136 case ARM::R0: 1137 case ARM::R1: 1138 case ARM::R2: 1139 case ARM::R3: 1140 case ARM::R4: 1141 case ARM::R5: 1142 case ARM::R6: 1143 case ARM::R7: 1144 case ARM::LR: 1145 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 1146 nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI))); 1147 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1148 .addCFIIndex(CFIIndex) 1149 .setMIFlags(MachineInstr::FrameSetup); 1150 break; 1151 } 1152 } 1153 } 1154 1155 if (GPRCS2Size > 0 && !NeedsWinCFI) { 1156 MachineBasicBlock::iterator Pos = std::next(GPRCS2Push); 1157 for (const auto &Entry : CSI) { 1158 Register Reg = Entry.getReg(); 1159 int FI = Entry.getFrameIdx(); 1160 switch (Reg) { 1161 case ARM::R8: 1162 case ARM::R9: 1163 case ARM::R10: 1164 case ARM::R11: 1165 case ARM::R12: 1166 if (STI.splitFramePushPop(MF)) { 1167 unsigned DwarfReg = MRI->getDwarfRegNum( 1168 Reg == ARM::R12 ? ARM::RA_AUTH_CODE : Reg, true); 1169 unsigned Offset = MFI.getObjectOffset(FI); 1170 unsigned CFIIndex = MF.addFrameInst( 1171 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 1172 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1173 .addCFIIndex(CFIIndex) 1174 .setMIFlags(MachineInstr::FrameSetup); 1175 } 1176 break; 1177 } 1178 } 1179 } 1180 1181 if (DPRCSSize > 0 && !NeedsWinCFI) { 1182 // Since vpush register list cannot have gaps, there may be multiple vpush 1183 // instructions in the prologue. 1184 MachineBasicBlock::iterator Pos = std::next(LastPush); 1185 for (const auto &Entry : CSI) { 1186 Register Reg = Entry.getReg(); 1187 int FI = Entry.getFrameIdx(); 1188 if ((Reg >= ARM::D0 && Reg <= ARM::D31) && 1189 (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) { 1190 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 1191 unsigned Offset = MFI.getObjectOffset(FI); 1192 unsigned CFIIndex = MF.addFrameInst( 1193 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 1194 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1195 .addCFIIndex(CFIIndex) 1196 .setMIFlags(MachineInstr::FrameSetup); 1197 } 1198 } 1199 } 1200 1201 // Now we can emit descriptions of where the canonical frame address was 1202 // throughout the process. If we have a frame pointer, it takes over the job 1203 // half-way through, so only the first few .cfi_def_cfa_offset instructions 1204 // actually get emitted. 1205 if (!NeedsWinCFI) 1206 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 1207 1208 if (STI.isTargetELF() && hasFP(MF)) 1209 MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() - 1210 AFI->getFramePtrSpillOffset()); 1211 1212 AFI->setFPCXTSaveAreaSize(FPCXTSaveSize); 1213 AFI->setGPRCalleeSavedArea1Size(GPRCS1Size); 1214 AFI->setGPRCalleeSavedArea2Size(GPRCS2Size); 1215 AFI->setDPRCalleeSavedGapSize(DPRGapSize); 1216 AFI->setDPRCalleeSavedAreaSize(DPRCSSize); 1217 1218 // If we need dynamic stack realignment, do it here. Be paranoid and make 1219 // sure if we also have VLAs, we have a base pointer for frame access. 1220 // If aligned NEON registers were spilled, the stack has already been 1221 // realigned. 1222 if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->hasStackRealignment(MF)) { 1223 Align MaxAlign = MFI.getMaxAlign(); 1224 assert(!AFI->isThumb1OnlyFunction()); 1225 if (!AFI->isThumbFunction()) { 1226 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign, 1227 false); 1228 } else { 1229 // We cannot use sp as source/dest register here, thus we're using r4 to 1230 // perform the calculations. We're emitting the following sequence: 1231 // mov r4, sp 1232 // -- use emitAligningInstructions to produce best sequence to zero 1233 // -- out lower bits in r4 1234 // mov sp, r4 1235 // FIXME: It will be better just to find spare register here. 1236 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4) 1237 .addReg(ARM::SP, RegState::Kill) 1238 .add(predOps(ARMCC::AL)); 1239 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign, 1240 false); 1241 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 1242 .addReg(ARM::R4, RegState::Kill) 1243 .add(predOps(ARMCC::AL)); 1244 } 1245 1246 AFI->setShouldRestoreSPFromFP(true); 1247 } 1248 1249 // If we need a base pointer, set it up here. It's whatever the value 1250 // of the stack pointer is at this point. Any variable size objects 1251 // will be allocated after this, so we can still use the base pointer 1252 // to reference locals. 1253 // FIXME: Clarify FrameSetup flags here. 1254 if (RegInfo->hasBasePointer(MF)) { 1255 if (isARM) 1256 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister()) 1257 .addReg(ARM::SP) 1258 .add(predOps(ARMCC::AL)) 1259 .add(condCodeOp()); 1260 else 1261 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister()) 1262 .addReg(ARM::SP) 1263 .add(predOps(ARMCC::AL)); 1264 } 1265 1266 // If the frame has variable sized objects then the epilogue must restore 1267 // the sp from fp. We can assume there's an FP here since hasFP already 1268 // checks for hasVarSizedObjects. 1269 if (MFI.hasVarSizedObjects()) 1270 AFI->setShouldRestoreSPFromFP(true); 1271 } 1272 1273 void ARMFrameLowering::emitEpilogue(MachineFunction &MF, 1274 MachineBasicBlock &MBB) const { 1275 MachineFrameInfo &MFI = MF.getFrameInfo(); 1276 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1277 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 1278 const ARMBaseInstrInfo &TII = 1279 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1280 assert(!AFI->isThumb1OnlyFunction() && 1281 "This emitEpilogue does not support Thumb1!"); 1282 bool isARM = !AFI->isThumbFunction(); 1283 1284 // Amount of stack space we reserved next to incoming args for either 1285 // varargs registers or stack arguments in tail calls made by this function. 1286 unsigned ReservedArgStack = AFI->getArgRegsSaveSize(); 1287 1288 // How much of the stack used by incoming arguments this function is expected 1289 // to restore in this particular epilogue. 1290 int IncomingArgStackToRestore = getArgumentStackToRestore(MF, MBB); 1291 int NumBytes = (int)MFI.getStackSize(); 1292 Register FramePtr = RegInfo->getFrameRegister(MF); 1293 1294 // All calls are tail calls in GHC calling conv, and functions have no 1295 // prologue/epilogue. 1296 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 1297 return; 1298 1299 // First put ourselves on the first (from top) terminator instructions. 1300 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1301 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 1302 1303 MachineBasicBlock::iterator RangeStart; 1304 if (!AFI->hasStackFrame()) { 1305 if (MF.hasWinCFI()) { 1306 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart)) 1307 .setMIFlag(MachineInstr::FrameDestroy); 1308 RangeStart = initMBBRange(MBB, MBBI); 1309 } 1310 1311 if (NumBytes + IncomingArgStackToRestore != 0) 1312 emitSPUpdate(isARM, MBB, MBBI, dl, TII, 1313 NumBytes + IncomingArgStackToRestore, 1314 MachineInstr::FrameDestroy); 1315 } else { 1316 // Unwind MBBI to point to first LDR / VLDRD. 1317 if (MBBI != MBB.begin()) { 1318 do { 1319 --MBBI; 1320 } while (MBBI != MBB.begin() && 1321 MBBI->getFlag(MachineInstr::FrameDestroy)); 1322 if (!MBBI->getFlag(MachineInstr::FrameDestroy)) 1323 ++MBBI; 1324 } 1325 1326 if (MF.hasWinCFI()) { 1327 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart)) 1328 .setMIFlag(MachineInstr::FrameDestroy); 1329 RangeStart = initMBBRange(MBB, MBBI); 1330 } 1331 1332 // Move SP to start of FP callee save spill area. 1333 NumBytes -= (ReservedArgStack + 1334 AFI->getFPCXTSaveAreaSize() + 1335 AFI->getGPRCalleeSavedArea1Size() + 1336 AFI->getGPRCalleeSavedArea2Size() + 1337 AFI->getDPRCalleeSavedGapSize() + 1338 AFI->getDPRCalleeSavedAreaSize()); 1339 1340 // Reset SP based on frame pointer only if the stack frame extends beyond 1341 // frame pointer stack slot or target is ELF and the function has FP. 1342 if (AFI->shouldRestoreSPFromFP()) { 1343 NumBytes = AFI->getFramePtrSpillOffset() - NumBytes; 1344 if (NumBytes) { 1345 if (isARM) 1346 emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes, 1347 ARMCC::AL, 0, TII, 1348 MachineInstr::FrameDestroy); 1349 else { 1350 // It's not possible to restore SP from FP in a single instruction. 1351 // For iOS, this looks like: 1352 // mov sp, r7 1353 // sub sp, #24 1354 // This is bad, if an interrupt is taken after the mov, sp is in an 1355 // inconsistent state. 1356 // Use the first callee-saved register as a scratch register. 1357 assert(!MFI.getPristineRegs(MF).test(ARM::R4) && 1358 "No scratch register to restore SP from FP!"); 1359 emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes, 1360 ARMCC::AL, 0, TII, MachineInstr::FrameDestroy); 1361 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 1362 .addReg(ARM::R4) 1363 .add(predOps(ARMCC::AL)) 1364 .setMIFlag(MachineInstr::FrameDestroy); 1365 } 1366 } else { 1367 // Thumb2 or ARM. 1368 if (isARM) 1369 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP) 1370 .addReg(FramePtr) 1371 .add(predOps(ARMCC::AL)) 1372 .add(condCodeOp()) 1373 .setMIFlag(MachineInstr::FrameDestroy); 1374 else 1375 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 1376 .addReg(FramePtr) 1377 .add(predOps(ARMCC::AL)) 1378 .setMIFlag(MachineInstr::FrameDestroy); 1379 } 1380 } else if (NumBytes && 1381 !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes)) 1382 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes, 1383 MachineInstr::FrameDestroy); 1384 1385 // Increment past our save areas. 1386 if (AFI->getGPRCalleeSavedArea2Size() && STI.splitFramePointerPush(MF)) 1387 MBBI++; 1388 1389 if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) { 1390 MBBI++; 1391 // Since vpop register list cannot have gaps, there may be multiple vpop 1392 // instructions in the epilogue. 1393 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD) 1394 MBBI++; 1395 } 1396 if (AFI->getDPRCalleeSavedGapSize()) { 1397 assert(AFI->getDPRCalleeSavedGapSize() == 4 && 1398 "unexpected DPR alignment gap"); 1399 emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(), 1400 MachineInstr::FrameDestroy); 1401 } 1402 1403 if (AFI->getGPRCalleeSavedArea2Size() && !STI.splitFramePointerPush(MF)) 1404 MBBI++; 1405 if (AFI->getGPRCalleeSavedArea1Size()) MBBI++; 1406 1407 if (ReservedArgStack || IncomingArgStackToRestore) { 1408 assert((int)ReservedArgStack + IncomingArgStackToRestore >= 0 && 1409 "attempting to restore negative stack amount"); 1410 emitSPUpdate(isARM, MBB, MBBI, dl, TII, 1411 ReservedArgStack + IncomingArgStackToRestore, 1412 MachineInstr::FrameDestroy); 1413 } 1414 1415 // Validate PAC, It should have been already popped into R12. For CMSE entry 1416 // function, the validation instruction is emitted during expansion of the 1417 // tBXNS_RET, since the validation must use the value of SP at function 1418 // entry, before saving, resp. after restoring, FPCXTNS. 1419 if (AFI->shouldSignReturnAddress() && !AFI->isCmseNSEntryFunction()) 1420 BuildMI(MBB, MBBI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2AUT)); 1421 } 1422 1423 if (MF.hasWinCFI()) { 1424 insertSEHRange(MBB, RangeStart, MBB.end(), TII, MachineInstr::FrameDestroy); 1425 BuildMI(MBB, MBB.end(), dl, TII.get(ARM::SEH_EpilogEnd)) 1426 .setMIFlag(MachineInstr::FrameDestroy); 1427 } 1428 } 1429 1430 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 1431 /// debug info. It's the same as what we use for resolving the code-gen 1432 /// references for now. FIXME: This can go wrong when references are 1433 /// SP-relative and simple call frames aren't used. 1434 StackOffset ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, 1435 int FI, 1436 Register &FrameReg) const { 1437 return StackOffset::getFixed(ResolveFrameIndexReference(MF, FI, FrameReg, 0)); 1438 } 1439 1440 int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF, 1441 int FI, Register &FrameReg, 1442 int SPAdj) const { 1443 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1444 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 1445 MF.getSubtarget().getRegisterInfo()); 1446 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1447 int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize(); 1448 int FPOffset = Offset - AFI->getFramePtrSpillOffset(); 1449 bool isFixed = MFI.isFixedObjectIndex(FI); 1450 1451 FrameReg = ARM::SP; 1452 Offset += SPAdj; 1453 1454 // SP can move around if there are allocas. We may also lose track of SP 1455 // when emergency spilling inside a non-reserved call frame setup. 1456 bool hasMovingSP = !hasReservedCallFrame(MF); 1457 1458 // When dynamically realigning the stack, use the frame pointer for 1459 // parameters, and the stack/base pointer for locals. 1460 if (RegInfo->hasStackRealignment(MF)) { 1461 assert(hasFP(MF) && "dynamic stack realignment without a FP!"); 1462 if (isFixed) { 1463 FrameReg = RegInfo->getFrameRegister(MF); 1464 Offset = FPOffset; 1465 } else if (hasMovingSP) { 1466 assert(RegInfo->hasBasePointer(MF) && 1467 "VLAs and dynamic stack alignment, but missing base pointer!"); 1468 FrameReg = RegInfo->getBaseRegister(); 1469 Offset -= SPAdj; 1470 } 1471 return Offset; 1472 } 1473 1474 // If there is a frame pointer, use it when we can. 1475 if (hasFP(MF) && AFI->hasStackFrame()) { 1476 // Use frame pointer to reference fixed objects. Use it for locals if 1477 // there are VLAs (and thus the SP isn't reliable as a base). 1478 if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) { 1479 FrameReg = RegInfo->getFrameRegister(MF); 1480 return FPOffset; 1481 } else if (hasMovingSP) { 1482 assert(RegInfo->hasBasePointer(MF) && "missing base pointer!"); 1483 if (AFI->isThumb2Function()) { 1484 // Try to use the frame pointer if we can, else use the base pointer 1485 // since it's available. This is handy for the emergency spill slot, in 1486 // particular. 1487 if (FPOffset >= -255 && FPOffset < 0) { 1488 FrameReg = RegInfo->getFrameRegister(MF); 1489 return FPOffset; 1490 } 1491 } 1492 } else if (AFI->isThumbFunction()) { 1493 // Prefer SP to base pointer, if the offset is suitably aligned and in 1494 // range as the effective range of the immediate offset is bigger when 1495 // basing off SP. 1496 // Use add <rd>, sp, #<imm8> 1497 // ldr <rd>, [sp, #<imm8>] 1498 if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020) 1499 return Offset; 1500 // In Thumb2 mode, the negative offset is very limited. Try to avoid 1501 // out of range references. ldr <rt>,[<rn>, #-<imm8>] 1502 if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) { 1503 FrameReg = RegInfo->getFrameRegister(MF); 1504 return FPOffset; 1505 } 1506 } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) { 1507 // Otherwise, use SP or FP, whichever is closer to the stack slot. 1508 FrameReg = RegInfo->getFrameRegister(MF); 1509 return FPOffset; 1510 } 1511 } 1512 // Use the base pointer if we have one. 1513 // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper? 1514 // That can happen if we forced a base pointer for a large call frame. 1515 if (RegInfo->hasBasePointer(MF)) { 1516 FrameReg = RegInfo->getBaseRegister(); 1517 Offset -= SPAdj; 1518 } 1519 return Offset; 1520 } 1521 1522 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB, 1523 MachineBasicBlock::iterator MI, 1524 ArrayRef<CalleeSavedInfo> CSI, 1525 unsigned StmOpc, unsigned StrOpc, 1526 bool NoGap, bool (*Func)(unsigned, bool), 1527 unsigned NumAlignedDPRCS2Regs, 1528 unsigned MIFlags) const { 1529 MachineFunction &MF = *MBB.getParent(); 1530 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1531 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1532 1533 DebugLoc DL; 1534 1535 using RegAndKill = std::pair<unsigned, bool>; 1536 1537 SmallVector<RegAndKill, 4> Regs; 1538 unsigned i = CSI.size(); 1539 while (i != 0) { 1540 unsigned LastReg = 0; 1541 for (; i != 0; --i) { 1542 Register Reg = CSI[i-1].getReg(); 1543 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 1544 1545 // D-registers in the aligned area DPRCS2 are NOT spilled here. 1546 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 1547 continue; 1548 1549 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1550 bool isLiveIn = MRI.isLiveIn(Reg); 1551 if (!isLiveIn && !MRI.isReserved(Reg)) 1552 MBB.addLiveIn(Reg); 1553 // If NoGap is true, push consecutive registers and then leave the rest 1554 // for other instructions. e.g. 1555 // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11} 1556 if (NoGap && LastReg && LastReg != Reg-1) 1557 break; 1558 LastReg = Reg; 1559 // Do not set a kill flag on values that are also marked as live-in. This 1560 // happens with the @llvm-returnaddress intrinsic and with arguments 1561 // passed in callee saved registers. 1562 // Omitting the kill flags is conservatively correct even if the live-in 1563 // is not used after all. 1564 Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn)); 1565 } 1566 1567 if (Regs.empty()) 1568 continue; 1569 1570 llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) { 1571 return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first); 1572 }); 1573 1574 if (Regs.size() > 1 || StrOpc== 0) { 1575 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP) 1576 .addReg(ARM::SP) 1577 .setMIFlags(MIFlags) 1578 .add(predOps(ARMCC::AL)); 1579 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1580 MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second)); 1581 } else if (Regs.size() == 1) { 1582 BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP) 1583 .addReg(Regs[0].first, getKillRegState(Regs[0].second)) 1584 .addReg(ARM::SP) 1585 .setMIFlags(MIFlags) 1586 .addImm(-4) 1587 .add(predOps(ARMCC::AL)); 1588 } 1589 Regs.clear(); 1590 1591 // Put any subsequent vpush instructions before this one: they will refer to 1592 // higher register numbers so need to be pushed first in order to preserve 1593 // monotonicity. 1594 if (MI != MBB.begin()) 1595 --MI; 1596 } 1597 } 1598 1599 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB, 1600 MachineBasicBlock::iterator MI, 1601 MutableArrayRef<CalleeSavedInfo> CSI, 1602 unsigned LdmOpc, unsigned LdrOpc, 1603 bool isVarArg, bool NoGap, 1604 bool (*Func)(unsigned, bool), 1605 unsigned NumAlignedDPRCS2Regs) const { 1606 MachineFunction &MF = *MBB.getParent(); 1607 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1608 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1609 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1610 bool hasPAC = AFI->shouldSignReturnAddress(); 1611 DebugLoc DL; 1612 bool isTailCall = false; 1613 bool isInterrupt = false; 1614 bool isTrap = false; 1615 bool isCmseEntry = false; 1616 if (MBB.end() != MI) { 1617 DL = MI->getDebugLoc(); 1618 unsigned RetOpcode = MI->getOpcode(); 1619 isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri); 1620 isInterrupt = 1621 RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR; 1622 isTrap = 1623 RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl || 1624 RetOpcode == ARM::tTRAP; 1625 isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET); 1626 } 1627 1628 SmallVector<unsigned, 4> Regs; 1629 unsigned i = CSI.size(); 1630 while (i != 0) { 1631 unsigned LastReg = 0; 1632 bool DeleteRet = false; 1633 for (; i != 0; --i) { 1634 CalleeSavedInfo &Info = CSI[i-1]; 1635 Register Reg = Info.getReg(); 1636 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 1637 1638 // The aligned reloads from area DPRCS2 are not inserted here. 1639 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 1640 continue; 1641 if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt && 1642 !isCmseEntry && !isTrap && AFI->getArgumentStackToRestore() == 0 && 1643 STI.hasV5TOps() && MBB.succ_empty() && !hasPAC && 1644 !STI.splitFramePointerPush(MF)) { 1645 Reg = ARM::PC; 1646 // Fold the return instruction into the LDM. 1647 DeleteRet = true; 1648 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET; 1649 // We 'restore' LR into PC so it is not live out of the return block: 1650 // Clear Restored bit. 1651 Info.setRestored(false); 1652 } 1653 1654 // If NoGap is true, pop consecutive registers and then leave the rest 1655 // for other instructions. e.g. 1656 // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11} 1657 if (NoGap && LastReg && LastReg != Reg-1) 1658 break; 1659 1660 LastReg = Reg; 1661 Regs.push_back(Reg); 1662 } 1663 1664 if (Regs.empty()) 1665 continue; 1666 1667 llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) { 1668 return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS); 1669 }); 1670 1671 if (Regs.size() > 1 || LdrOpc == 0) { 1672 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP) 1673 .addReg(ARM::SP) 1674 .add(predOps(ARMCC::AL)) 1675 .setMIFlags(MachineInstr::FrameDestroy); 1676 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1677 MIB.addReg(Regs[i], getDefRegState(true)); 1678 if (DeleteRet) { 1679 if (MI != MBB.end()) { 1680 MIB.copyImplicitOps(*MI); 1681 MI->eraseFromParent(); 1682 } 1683 } 1684 MI = MIB; 1685 } else if (Regs.size() == 1) { 1686 // If we adjusted the reg to PC from LR above, switch it back here. We 1687 // only do that for LDM. 1688 if (Regs[0] == ARM::PC) 1689 Regs[0] = ARM::LR; 1690 MachineInstrBuilder MIB = 1691 BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0]) 1692 .addReg(ARM::SP, RegState::Define) 1693 .addReg(ARM::SP) 1694 .setMIFlags(MachineInstr::FrameDestroy); 1695 // ARM mode needs an extra reg0 here due to addrmode2. Will go away once 1696 // that refactoring is complete (eventually). 1697 if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) { 1698 MIB.addReg(0); 1699 MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift)); 1700 } else 1701 MIB.addImm(4); 1702 MIB.add(predOps(ARMCC::AL)); 1703 } 1704 Regs.clear(); 1705 1706 // Put any subsequent vpop instructions after this one: they will refer to 1707 // higher register numbers so need to be popped afterwards. 1708 if (MI != MBB.end()) 1709 ++MI; 1710 } 1711 } 1712 1713 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers 1714 /// starting from d8. Also insert stack realignment code and leave the stack 1715 /// pointer pointing to the d8 spill slot. 1716 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB, 1717 MachineBasicBlock::iterator MI, 1718 unsigned NumAlignedDPRCS2Regs, 1719 ArrayRef<CalleeSavedInfo> CSI, 1720 const TargetRegisterInfo *TRI) { 1721 MachineFunction &MF = *MBB.getParent(); 1722 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1723 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1724 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1725 MachineFrameInfo &MFI = MF.getFrameInfo(); 1726 1727 // Mark the D-register spill slots as properly aligned. Since MFI computes 1728 // stack slot layout backwards, this can actually mean that the d-reg stack 1729 // slot offsets can be wrong. The offset for d8 will always be correct. 1730 for (const CalleeSavedInfo &I : CSI) { 1731 unsigned DNum = I.getReg() - ARM::D8; 1732 if (DNum > NumAlignedDPRCS2Regs - 1) 1733 continue; 1734 int FI = I.getFrameIdx(); 1735 // The even-numbered registers will be 16-byte aligned, the odd-numbered 1736 // registers will be 8-byte aligned. 1737 MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16)); 1738 1739 // The stack slot for D8 needs to be maximally aligned because this is 1740 // actually the point where we align the stack pointer. MachineFrameInfo 1741 // computes all offsets relative to the incoming stack pointer which is a 1742 // bit weird when realigning the stack. Any extra padding for this 1743 // over-alignment is not realized because the code inserted below adjusts 1744 // the stack pointer by numregs * 8 before aligning the stack pointer. 1745 if (DNum == 0) 1746 MFI.setObjectAlignment(FI, MFI.getMaxAlign()); 1747 } 1748 1749 // Move the stack pointer to the d8 spill slot, and align it at the same 1750 // time. Leave the stack slot address in the scratch register r4. 1751 // 1752 // sub r4, sp, #numregs * 8 1753 // bic r4, r4, #align - 1 1754 // mov sp, r4 1755 // 1756 bool isThumb = AFI->isThumbFunction(); 1757 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1758 AFI->setShouldRestoreSPFromFP(true); 1759 1760 // sub r4, sp, #numregs * 8 1761 // The immediate is <= 64, so it doesn't need any special encoding. 1762 unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri; 1763 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1764 .addReg(ARM::SP) 1765 .addImm(8 * NumAlignedDPRCS2Regs) 1766 .add(predOps(ARMCC::AL)) 1767 .add(condCodeOp()); 1768 1769 Align MaxAlign = MF.getFrameInfo().getMaxAlign(); 1770 // We must set parameter MustBeSingleInstruction to true, since 1771 // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform 1772 // stack alignment. Luckily, this can always be done since all ARM 1773 // architecture versions that support Neon also support the BFC 1774 // instruction. 1775 emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true); 1776 1777 // mov sp, r4 1778 // The stack pointer must be adjusted before spilling anything, otherwise 1779 // the stack slots could be clobbered by an interrupt handler. 1780 // Leave r4 live, it is used below. 1781 Opc = isThumb ? ARM::tMOVr : ARM::MOVr; 1782 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP) 1783 .addReg(ARM::R4) 1784 .add(predOps(ARMCC::AL)); 1785 if (!isThumb) 1786 MIB.add(condCodeOp()); 1787 1788 // Now spill NumAlignedDPRCS2Regs registers starting from d8. 1789 // r4 holds the stack slot address. 1790 unsigned NextReg = ARM::D8; 1791 1792 // 16-byte aligned vst1.64 with 4 d-regs and address writeback. 1793 // The writeback is only needed when emitting two vst1.64 instructions. 1794 if (NumAlignedDPRCS2Regs >= 6) { 1795 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1796 &ARM::QQPRRegClass); 1797 MBB.addLiveIn(SupReg); 1798 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4) 1799 .addReg(ARM::R4, RegState::Kill) 1800 .addImm(16) 1801 .addReg(NextReg) 1802 .addReg(SupReg, RegState::ImplicitKill) 1803 .add(predOps(ARMCC::AL)); 1804 NextReg += 4; 1805 NumAlignedDPRCS2Regs -= 4; 1806 } 1807 1808 // We won't modify r4 beyond this point. It currently points to the next 1809 // register to be spilled. 1810 unsigned R4BaseReg = NextReg; 1811 1812 // 16-byte aligned vst1.64 with 4 d-regs, no writeback. 1813 if (NumAlignedDPRCS2Regs >= 4) { 1814 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1815 &ARM::QQPRRegClass); 1816 MBB.addLiveIn(SupReg); 1817 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q)) 1818 .addReg(ARM::R4) 1819 .addImm(16) 1820 .addReg(NextReg) 1821 .addReg(SupReg, RegState::ImplicitKill) 1822 .add(predOps(ARMCC::AL)); 1823 NextReg += 4; 1824 NumAlignedDPRCS2Regs -= 4; 1825 } 1826 1827 // 16-byte aligned vst1.64 with 2 d-regs. 1828 if (NumAlignedDPRCS2Regs >= 2) { 1829 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1830 &ARM::QPRRegClass); 1831 MBB.addLiveIn(SupReg); 1832 BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64)) 1833 .addReg(ARM::R4) 1834 .addImm(16) 1835 .addReg(SupReg) 1836 .add(predOps(ARMCC::AL)); 1837 NextReg += 2; 1838 NumAlignedDPRCS2Regs -= 2; 1839 } 1840 1841 // Finally, use a vanilla vstr.64 for the odd last register. 1842 if (NumAlignedDPRCS2Regs) { 1843 MBB.addLiveIn(NextReg); 1844 // vstr.64 uses addrmode5 which has an offset scale of 4. 1845 BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD)) 1846 .addReg(NextReg) 1847 .addReg(ARM::R4) 1848 .addImm((NextReg - R4BaseReg) * 2) 1849 .add(predOps(ARMCC::AL)); 1850 } 1851 1852 // The last spill instruction inserted should kill the scratch register r4. 1853 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1854 } 1855 1856 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an 1857 /// iterator to the following instruction. 1858 static MachineBasicBlock::iterator 1859 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 1860 unsigned NumAlignedDPRCS2Regs) { 1861 // sub r4, sp, #numregs * 8 1862 // bic r4, r4, #align - 1 1863 // mov sp, r4 1864 ++MI; ++MI; ++MI; 1865 assert(MI->mayStore() && "Expecting spill instruction"); 1866 1867 // These switches all fall through. 1868 switch(NumAlignedDPRCS2Regs) { 1869 case 7: 1870 ++MI; 1871 assert(MI->mayStore() && "Expecting spill instruction"); 1872 [[fallthrough]]; 1873 default: 1874 ++MI; 1875 assert(MI->mayStore() && "Expecting spill instruction"); 1876 [[fallthrough]]; 1877 case 1: 1878 case 2: 1879 case 4: 1880 assert(MI->killsRegister(ARM::R4) && "Missed kill flag"); 1881 ++MI; 1882 } 1883 return MI; 1884 } 1885 1886 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers 1887 /// starting from d8. These instructions are assumed to execute while the 1888 /// stack is still aligned, unlike the code inserted by emitPopInst. 1889 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB, 1890 MachineBasicBlock::iterator MI, 1891 unsigned NumAlignedDPRCS2Regs, 1892 ArrayRef<CalleeSavedInfo> CSI, 1893 const TargetRegisterInfo *TRI) { 1894 MachineFunction &MF = *MBB.getParent(); 1895 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1896 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1897 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1898 1899 // Find the frame index assigned to d8. 1900 int D8SpillFI = 0; 1901 for (const CalleeSavedInfo &I : CSI) 1902 if (I.getReg() == ARM::D8) { 1903 D8SpillFI = I.getFrameIdx(); 1904 break; 1905 } 1906 1907 // Materialize the address of the d8 spill slot into the scratch register r4. 1908 // This can be fairly complicated if the stack frame is large, so just use 1909 // the normal frame index elimination mechanism to do it. This code runs as 1910 // the initial part of the epilog where the stack and base pointers haven't 1911 // been changed yet. 1912 bool isThumb = AFI->isThumbFunction(); 1913 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1914 1915 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri; 1916 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1917 .addFrameIndex(D8SpillFI) 1918 .addImm(0) 1919 .add(predOps(ARMCC::AL)) 1920 .add(condCodeOp()); 1921 1922 // Now restore NumAlignedDPRCS2Regs registers starting from d8. 1923 unsigned NextReg = ARM::D8; 1924 1925 // 16-byte aligned vld1.64 with 4 d-regs and writeback. 1926 if (NumAlignedDPRCS2Regs >= 6) { 1927 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1928 &ARM::QQPRRegClass); 1929 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg) 1930 .addReg(ARM::R4, RegState::Define) 1931 .addReg(ARM::R4, RegState::Kill) 1932 .addImm(16) 1933 .addReg(SupReg, RegState::ImplicitDefine) 1934 .add(predOps(ARMCC::AL)); 1935 NextReg += 4; 1936 NumAlignedDPRCS2Regs -= 4; 1937 } 1938 1939 // We won't modify r4 beyond this point. It currently points to the next 1940 // register to be spilled. 1941 unsigned R4BaseReg = NextReg; 1942 1943 // 16-byte aligned vld1.64 with 4 d-regs, no writeback. 1944 if (NumAlignedDPRCS2Regs >= 4) { 1945 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1946 &ARM::QQPRRegClass); 1947 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg) 1948 .addReg(ARM::R4) 1949 .addImm(16) 1950 .addReg(SupReg, RegState::ImplicitDefine) 1951 .add(predOps(ARMCC::AL)); 1952 NextReg += 4; 1953 NumAlignedDPRCS2Regs -= 4; 1954 } 1955 1956 // 16-byte aligned vld1.64 with 2 d-regs. 1957 if (NumAlignedDPRCS2Regs >= 2) { 1958 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1959 &ARM::QPRRegClass); 1960 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg) 1961 .addReg(ARM::R4) 1962 .addImm(16) 1963 .add(predOps(ARMCC::AL)); 1964 NextReg += 2; 1965 NumAlignedDPRCS2Regs -= 2; 1966 } 1967 1968 // Finally, use a vanilla vldr.64 for the remaining odd register. 1969 if (NumAlignedDPRCS2Regs) 1970 BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg) 1971 .addReg(ARM::R4) 1972 .addImm(2 * (NextReg - R4BaseReg)) 1973 .add(predOps(ARMCC::AL)); 1974 1975 // Last store kills r4. 1976 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1977 } 1978 1979 bool ARMFrameLowering::spillCalleeSavedRegisters( 1980 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 1981 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 1982 if (CSI.empty()) 1983 return false; 1984 1985 MachineFunction &MF = *MBB.getParent(); 1986 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1987 1988 unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD; 1989 unsigned PushOneOpc = AFI->isThumbFunction() ? 1990 ARM::t2STR_PRE : ARM::STR_PRE_IMM; 1991 unsigned FltOpc = ARM::VSTMDDB_UPD; 1992 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1993 // Compute PAC in R12. 1994 if (AFI->shouldSignReturnAddress()) { 1995 BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2PAC)) 1996 .setMIFlags(MachineInstr::FrameSetup); 1997 } 1998 // Save the non-secure floating point context. 1999 if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) { 2000 return C.getReg() == ARM::FPCXTNS; 2001 })) { 2002 BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre), 2003 ARM::SP) 2004 .addReg(ARM::SP) 2005 .addImm(-4) 2006 .add(predOps(ARMCC::AL)); 2007 } 2008 if (STI.splitFramePointerPush(MF)) { 2009 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, 2010 &isSplitFPArea1Register, 0, MachineInstr::FrameSetup); 2011 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register, 2012 NumAlignedDPRCS2Regs, MachineInstr::FrameSetup); 2013 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, 2014 &isSplitFPArea2Register, 0, MachineInstr::FrameSetup); 2015 } else { 2016 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 2017 0, MachineInstr::FrameSetup); 2018 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 2019 0, MachineInstr::FrameSetup); 2020 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register, 2021 NumAlignedDPRCS2Regs, MachineInstr::FrameSetup); 2022 } 2023 2024 // The code above does not insert spill code for the aligned DPRCS2 registers. 2025 // The stack realignment code will be inserted between the push instructions 2026 // and these spills. 2027 if (NumAlignedDPRCS2Regs) 2028 emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 2029 2030 return true; 2031 } 2032 2033 bool ARMFrameLowering::restoreCalleeSavedRegisters( 2034 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2035 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2036 if (CSI.empty()) 2037 return false; 2038 2039 MachineFunction &MF = *MBB.getParent(); 2040 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2041 bool isVarArg = AFI->getArgRegsSaveSize() > 0; 2042 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 2043 2044 // The emitPopInst calls below do not insert reloads for the aligned DPRCS2 2045 // registers. Do that here instead. 2046 if (NumAlignedDPRCS2Regs) 2047 emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 2048 2049 unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 2050 unsigned LdrOpc = 2051 AFI->isThumbFunction() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM; 2052 unsigned FltOpc = ARM::VLDMDIA_UPD; 2053 if (STI.splitFramePointerPush(MF)) { 2054 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 2055 &isSplitFPArea2Register, 0); 2056 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register, 2057 NumAlignedDPRCS2Regs); 2058 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 2059 &isSplitFPArea1Register, 0); 2060 } else { 2061 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register, 2062 NumAlignedDPRCS2Regs); 2063 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 2064 &isARMArea2Register, 0); 2065 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 2066 &isARMArea1Register, 0); 2067 } 2068 2069 return true; 2070 } 2071 2072 // FIXME: Make generic? 2073 static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF, 2074 const ARMBaseInstrInfo &TII) { 2075 unsigned FnSize = 0; 2076 for (auto &MBB : MF) { 2077 for (auto &MI : MBB) 2078 FnSize += TII.getInstSizeInBytes(MI); 2079 } 2080 if (MF.getJumpTableInfo()) 2081 for (auto &Table: MF.getJumpTableInfo()->getJumpTables()) 2082 FnSize += Table.MBBs.size() * 4; 2083 FnSize += MF.getConstantPool()->getConstants().size() * 4; 2084 return FnSize; 2085 } 2086 2087 /// estimateRSStackSizeLimit - Look at each instruction that references stack 2088 /// frames and return the stack size limit beyond which some of these 2089 /// instructions will require a scratch register during their expansion later. 2090 // FIXME: Move to TII? 2091 static unsigned estimateRSStackSizeLimit(MachineFunction &MF, 2092 const TargetFrameLowering *TFI, 2093 bool &HasNonSPFrameIndex) { 2094 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2095 const ARMBaseInstrInfo &TII = 2096 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2097 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2098 unsigned Limit = (1 << 12) - 1; 2099 for (auto &MBB : MF) { 2100 for (auto &MI : MBB) { 2101 if (MI.isDebugInstr()) 2102 continue; 2103 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 2104 if (!MI.getOperand(i).isFI()) 2105 continue; 2106 2107 // When using ADDri to get the address of a stack object, 255 is the 2108 // largest offset guaranteed to fit in the immediate offset. 2109 if (MI.getOpcode() == ARM::ADDri) { 2110 Limit = std::min(Limit, (1U << 8) - 1); 2111 break; 2112 } 2113 // t2ADDri will not require an extra register, it can reuse the 2114 // destination. 2115 if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12) 2116 break; 2117 2118 const MCInstrDesc &MCID = MI.getDesc(); 2119 const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF); 2120 if (RegClass && !RegClass->contains(ARM::SP)) 2121 HasNonSPFrameIndex = true; 2122 2123 // Otherwise check the addressing mode. 2124 switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) { 2125 case ARMII::AddrMode_i12: 2126 case ARMII::AddrMode2: 2127 // Default 12 bit limit. 2128 break; 2129 case ARMII::AddrMode3: 2130 case ARMII::AddrModeT2_i8neg: 2131 Limit = std::min(Limit, (1U << 8) - 1); 2132 break; 2133 case ARMII::AddrMode5FP16: 2134 Limit = std::min(Limit, ((1U << 8) - 1) * 2); 2135 break; 2136 case ARMII::AddrMode5: 2137 case ARMII::AddrModeT2_i8s4: 2138 case ARMII::AddrModeT2_ldrex: 2139 Limit = std::min(Limit, ((1U << 8) - 1) * 4); 2140 break; 2141 case ARMII::AddrModeT2_i12: 2142 // i12 supports only positive offset so these will be converted to 2143 // i8 opcodes. See llvm::rewriteT2FrameIndex. 2144 if (TFI->hasFP(MF) && AFI->hasStackFrame()) 2145 Limit = std::min(Limit, (1U << 8) - 1); 2146 break; 2147 case ARMII::AddrMode4: 2148 case ARMII::AddrMode6: 2149 // Addressing modes 4 & 6 (load/store) instructions can't encode an 2150 // immediate offset for stack references. 2151 return 0; 2152 case ARMII::AddrModeT2_i7: 2153 Limit = std::min(Limit, ((1U << 7) - 1) * 1); 2154 break; 2155 case ARMII::AddrModeT2_i7s2: 2156 Limit = std::min(Limit, ((1U << 7) - 1) * 2); 2157 break; 2158 case ARMII::AddrModeT2_i7s4: 2159 Limit = std::min(Limit, ((1U << 7) - 1) * 4); 2160 break; 2161 default: 2162 llvm_unreachable("Unhandled addressing mode in stack size limit calculation"); 2163 } 2164 break; // At most one FI per instruction 2165 } 2166 } 2167 } 2168 2169 return Limit; 2170 } 2171 2172 // In functions that realign the stack, it can be an advantage to spill the 2173 // callee-saved vector registers after realigning the stack. The vst1 and vld1 2174 // instructions take alignment hints that can improve performance. 2175 static void 2176 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) { 2177 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0); 2178 if (!SpillAlignedNEONRegs) 2179 return; 2180 2181 // Naked functions don't spill callee-saved registers. 2182 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 2183 return; 2184 2185 // We are planning to use NEON instructions vst1 / vld1. 2186 if (!MF.getSubtarget<ARMSubtarget>().hasNEON()) 2187 return; 2188 2189 // Don't bother if the default stack alignment is sufficiently high. 2190 if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8)) 2191 return; 2192 2193 // Aligned spills require stack realignment. 2194 if (!static_cast<const ARMBaseRegisterInfo *>( 2195 MF.getSubtarget().getRegisterInfo())->canRealignStack(MF)) 2196 return; 2197 2198 // We always spill contiguous d-registers starting from d8. Count how many 2199 // needs spilling. The register allocator will almost always use the 2200 // callee-saved registers in order, but it can happen that there are holes in 2201 // the range. Registers above the hole will be spilled to the standard DPRCS 2202 // area. 2203 unsigned NumSpills = 0; 2204 for (; NumSpills < 8; ++NumSpills) 2205 if (!SavedRegs.test(ARM::D8 + NumSpills)) 2206 break; 2207 2208 // Don't do this for just one d-register. It's not worth it. 2209 if (NumSpills < 2) 2210 return; 2211 2212 // Spill the first NumSpills D-registers after realigning the stack. 2213 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills); 2214 2215 // A scratch register is required for the vst1 / vld1 instructions. 2216 SavedRegs.set(ARM::R4); 2217 } 2218 2219 bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 2220 // For CMSE entry functions, we want to save the FPCXT_NS immediately 2221 // upon function entry (resp. restore it immmediately before return) 2222 if (STI.hasV8_1MMainlineOps() && 2223 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) 2224 return false; 2225 2226 // We are disabling shrinkwrapping for now when PAC is enabled, as 2227 // shrinkwrapping can cause clobbering of r12 when the PAC code is 2228 // generated. A follow-up patch will fix this in a more performant manner. 2229 if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress( 2230 true /* SpillsLR */)) 2231 return false; 2232 2233 return true; 2234 } 2235 2236 static bool requiresAAPCSFrameRecord(const MachineFunction &MF) { 2237 const auto &Subtarget = MF.getSubtarget<ARMSubtarget>(); 2238 return Subtarget.createAAPCSFrameChainLeaf() || 2239 (Subtarget.createAAPCSFrameChain() && MF.getFrameInfo().hasCalls()); 2240 } 2241 2242 // Thumb1 may require a spill when storing to a frame index through FP, for 2243 // cases where FP is a high register (R11). This scans the function for cases 2244 // where this may happen. 2245 static bool canSpillOnFrameIndexAccess(const MachineFunction &MF, 2246 const TargetFrameLowering &TFI) { 2247 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2248 if (!AFI->isThumb1OnlyFunction()) 2249 return false; 2250 2251 for (const auto &MBB : MF) 2252 for (const auto &MI : MBB) 2253 if (MI.getOpcode() == ARM::tSTRspi || MI.getOpcode() == ARM::tSTRi) 2254 for (const auto &Op : MI.operands()) 2255 if (Op.isFI()) { 2256 Register Reg; 2257 TFI.getFrameIndexReference(MF, Op.getIndex(), Reg); 2258 if (ARM::hGPRRegClass.contains(Reg) && Reg != ARM::SP) 2259 return true; 2260 } 2261 return false; 2262 } 2263 2264 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF, 2265 BitVector &SavedRegs, 2266 RegScavenger *RS) const { 2267 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2268 // This tells PEI to spill the FP as if it is any other callee-save register 2269 // to take advantage the eliminateFrameIndex machinery. This also ensures it 2270 // is spilled in the order specified by getCalleeSavedRegs() to make it easier 2271 // to combine multiple loads / stores. 2272 bool CanEliminateFrame = !(requiresAAPCSFrameRecord(MF) && hasFP(MF)); 2273 bool CS1Spilled = false; 2274 bool LRSpilled = false; 2275 unsigned NumGPRSpills = 0; 2276 unsigned NumFPRSpills = 0; 2277 SmallVector<unsigned, 4> UnspilledCS1GPRs; 2278 SmallVector<unsigned, 4> UnspilledCS2GPRs; 2279 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 2280 MF.getSubtarget().getRegisterInfo()); 2281 const ARMBaseInstrInfo &TII = 2282 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2283 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2284 MachineFrameInfo &MFI = MF.getFrameInfo(); 2285 MachineRegisterInfo &MRI = MF.getRegInfo(); 2286 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2287 (void)TRI; // Silence unused warning in non-assert builds. 2288 Register FramePtr = RegInfo->getFrameRegister(MF); 2289 2290 // Spill R4 if Thumb2 function requires stack realignment - it will be used as 2291 // scratch register. Also spill R4 if Thumb2 function has varsized objects, 2292 // since it's not always possible to restore sp from fp in a single 2293 // instruction. 2294 // FIXME: It will be better just to find spare register here. 2295 if (AFI->isThumb2Function() && 2296 (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF))) 2297 SavedRegs.set(ARM::R4); 2298 2299 // If a stack probe will be emitted, spill R4 and LR, since they are 2300 // clobbered by the stack probe call. 2301 // This estimate should be a safe, conservative estimate. The actual 2302 // stack probe is enabled based on the size of the local objects; 2303 // this estimate also includes the varargs store size. 2304 if (STI.isTargetWindows() && 2305 WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) { 2306 SavedRegs.set(ARM::R4); 2307 SavedRegs.set(ARM::LR); 2308 } 2309 2310 if (AFI->isThumb1OnlyFunction()) { 2311 // Spill LR if Thumb1 function uses variable length argument lists. 2312 if (AFI->getArgRegsSaveSize() > 0) 2313 SavedRegs.set(ARM::LR); 2314 2315 // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function 2316 // requires stack alignment. We don't know for sure what the stack size 2317 // will be, but for this, an estimate is good enough. If there anything 2318 // changes it, it'll be a spill, which implies we've used all the registers 2319 // and so R4 is already used, so not marking it here will be OK. 2320 // FIXME: It will be better just to find spare register here. 2321 if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF) || 2322 MFI.estimateStackSize(MF) > 508) 2323 SavedRegs.set(ARM::R4); 2324 } 2325 2326 // See if we can spill vector registers to aligned stack. 2327 checkNumAlignedDPRCS2Regs(MF, SavedRegs); 2328 2329 // Spill the BasePtr if it's used. 2330 if (RegInfo->hasBasePointer(MF)) 2331 SavedRegs.set(RegInfo->getBaseRegister()); 2332 2333 // On v8.1-M.Main CMSE entry functions save/restore FPCXT. 2334 if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction()) 2335 CanEliminateFrame = false; 2336 2337 // Don't spill FP if the frame can be eliminated. This is determined 2338 // by scanning the callee-save registers to see if any is modified. 2339 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 2340 for (unsigned i = 0; CSRegs[i]; ++i) { 2341 unsigned Reg = CSRegs[i]; 2342 bool Spilled = false; 2343 if (SavedRegs.test(Reg)) { 2344 Spilled = true; 2345 CanEliminateFrame = false; 2346 } 2347 2348 if (!ARM::GPRRegClass.contains(Reg)) { 2349 if (Spilled) { 2350 if (ARM::SPRRegClass.contains(Reg)) 2351 NumFPRSpills++; 2352 else if (ARM::DPRRegClass.contains(Reg)) 2353 NumFPRSpills += 2; 2354 else if (ARM::QPRRegClass.contains(Reg)) 2355 NumFPRSpills += 4; 2356 } 2357 continue; 2358 } 2359 2360 if (Spilled) { 2361 NumGPRSpills++; 2362 2363 if (!STI.splitFramePushPop(MF)) { 2364 if (Reg == ARM::LR) 2365 LRSpilled = true; 2366 CS1Spilled = true; 2367 continue; 2368 } 2369 2370 // Keep track if LR and any of R4, R5, R6, and R7 is spilled. 2371 switch (Reg) { 2372 case ARM::LR: 2373 LRSpilled = true; 2374 [[fallthrough]]; 2375 case ARM::R0: case ARM::R1: 2376 case ARM::R2: case ARM::R3: 2377 case ARM::R4: case ARM::R5: 2378 case ARM::R6: case ARM::R7: 2379 CS1Spilled = true; 2380 break; 2381 default: 2382 break; 2383 } 2384 } else { 2385 if (!STI.splitFramePushPop(MF)) { 2386 UnspilledCS1GPRs.push_back(Reg); 2387 continue; 2388 } 2389 2390 switch (Reg) { 2391 case ARM::R0: case ARM::R1: 2392 case ARM::R2: case ARM::R3: 2393 case ARM::R4: case ARM::R5: 2394 case ARM::R6: case ARM::R7: 2395 case ARM::LR: 2396 UnspilledCS1GPRs.push_back(Reg); 2397 break; 2398 default: 2399 UnspilledCS2GPRs.push_back(Reg); 2400 break; 2401 } 2402 } 2403 } 2404 2405 bool ForceLRSpill = false; 2406 if (!LRSpilled && AFI->isThumb1OnlyFunction()) { 2407 unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII); 2408 // Force LR to be spilled if the Thumb function size is > 2048. This enables 2409 // use of BL to implement far jump. 2410 if (FnSize >= (1 << 11)) { 2411 CanEliminateFrame = false; 2412 ForceLRSpill = true; 2413 } 2414 } 2415 2416 // If any of the stack slot references may be out of range of an immediate 2417 // offset, make sure a register (or a spill slot) is available for the 2418 // register scavenger. Note that if we're indexing off the frame pointer, the 2419 // effective stack size is 4 bytes larger since the FP points to the stack 2420 // slot of the previous FP. Also, if we have variable sized objects in the 2421 // function, stack slot references will often be negative, and some of 2422 // our instructions are positive-offset only, so conservatively consider 2423 // that case to want a spill slot (or register) as well. Similarly, if 2424 // the function adjusts the stack pointer during execution and the 2425 // adjustments aren't already part of our stack size estimate, our offset 2426 // calculations may be off, so be conservative. 2427 // FIXME: We could add logic to be more precise about negative offsets 2428 // and which instructions will need a scratch register for them. Is it 2429 // worth the effort and added fragility? 2430 unsigned EstimatedStackSize = 2431 MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills); 2432 2433 // Determine biggest (positive) SP offset in MachineFrameInfo. 2434 int MaxFixedOffset = 0; 2435 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 2436 int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I); 2437 MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset); 2438 } 2439 2440 bool HasFP = hasFP(MF); 2441 if (HasFP) { 2442 if (AFI->hasStackFrame()) 2443 EstimatedStackSize += 4; 2444 } else { 2445 // If FP is not used, SP will be used to access arguments, so count the 2446 // size of arguments into the estimation. 2447 EstimatedStackSize += MaxFixedOffset; 2448 } 2449 EstimatedStackSize += 16; // For possible paddings. 2450 2451 unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit; 2452 bool HasNonSPFrameIndex = false; 2453 if (AFI->isThumb1OnlyFunction()) { 2454 // For Thumb1, don't bother to iterate over the function. The only 2455 // instruction that requires an emergency spill slot is a store to a 2456 // frame index. 2457 // 2458 // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned 2459 // immediate. tSTRi, which is used for bp- and fp-relative accesses, has 2460 // a 5-bit unsigned immediate. 2461 // 2462 // We could try to check if the function actually contains a tSTRspi 2463 // that might need the spill slot, but it's not really important. 2464 // Functions with VLAs or extremely large call frames are rare, and 2465 // if a function is allocating more than 1KB of stack, an extra 4-byte 2466 // slot probably isn't relevant. 2467 // 2468 // A special case is the scenario where r11 is used as FP, where accesses 2469 // to a frame index will require its value to be moved into a low reg. 2470 // This is handled later on, once we are able to determine if we have any 2471 // fp-relative accesses. 2472 if (RegInfo->hasBasePointer(MF)) 2473 EstimatedRSStackSizeLimit = (1U << 5) * 4; 2474 else 2475 EstimatedRSStackSizeLimit = (1U << 8) * 4; 2476 EstimatedRSFixedSizeLimit = (1U << 5) * 4; 2477 } else { 2478 EstimatedRSStackSizeLimit = 2479 estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex); 2480 EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit; 2481 } 2482 // Final estimate of whether sp or bp-relative accesses might require 2483 // scavenging. 2484 bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit; 2485 2486 // If the stack pointer moves and we don't have a base pointer, the 2487 // estimate logic doesn't work. The actual offsets might be larger when 2488 // we're constructing a call frame, or we might need to use negative 2489 // offsets from fp. 2490 bool HasMovingSP = MFI.hasVarSizedObjects() || 2491 (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF)); 2492 bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP; 2493 2494 // If we have a frame pointer, we assume arguments will be accessed 2495 // relative to the frame pointer. Check whether fp-relative accesses to 2496 // arguments require scavenging. 2497 // 2498 // We could do slightly better on Thumb1; in some cases, an sp-relative 2499 // offset would be legal even though an fp-relative offset is not. 2500 int MaxFPOffset = getMaxFPOffset(STI, *AFI, MF); 2501 bool HasLargeArgumentList = 2502 HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit; 2503 2504 bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP || 2505 HasLargeArgumentList || HasNonSPFrameIndex; 2506 LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit 2507 << "; EstimatedStack: " << EstimatedStackSize 2508 << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset 2509 << "; BigFrameOffsets: " << BigFrameOffsets << "\n"); 2510 if (BigFrameOffsets || 2511 !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) { 2512 AFI->setHasStackFrame(true); 2513 2514 if (HasFP) { 2515 SavedRegs.set(FramePtr); 2516 // If the frame pointer is required by the ABI, also spill LR so that we 2517 // emit a complete frame record. 2518 if ((requiresAAPCSFrameRecord(MF) || 2519 MF.getTarget().Options.DisableFramePointerElim(MF)) && 2520 !LRSpilled) { 2521 SavedRegs.set(ARM::LR); 2522 LRSpilled = true; 2523 NumGPRSpills++; 2524 auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR); 2525 if (LRPos != UnspilledCS1GPRs.end()) 2526 UnspilledCS1GPRs.erase(LRPos); 2527 } 2528 auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr); 2529 if (FPPos != UnspilledCS1GPRs.end()) 2530 UnspilledCS1GPRs.erase(FPPos); 2531 NumGPRSpills++; 2532 if (FramePtr == ARM::R7) 2533 CS1Spilled = true; 2534 } 2535 2536 // This is true when we inserted a spill for a callee-save GPR which is 2537 // not otherwise used by the function. This guaranteees it is possible 2538 // to scavenge a register to hold the address of a stack slot. On Thumb1, 2539 // the register must be a valid operand to tSTRi, i.e. r4-r7. For other 2540 // subtargets, this is any GPR, i.e. r4-r11 or lr. 2541 // 2542 // If we don't insert a spill, we instead allocate an emergency spill 2543 // slot, which can be used by scavenging to spill an arbitrary register. 2544 // 2545 // We currently don't try to figure out whether any specific instruction 2546 // requires scavening an additional register. 2547 bool ExtraCSSpill = false; 2548 2549 if (AFI->isThumb1OnlyFunction()) { 2550 // For Thumb1-only targets, we need some low registers when we save and 2551 // restore the high registers (which aren't allocatable, but could be 2552 // used by inline assembly) because the push/pop instructions can not 2553 // access high registers. If necessary, we might need to push more low 2554 // registers to ensure that there is at least one free that can be used 2555 // for the saving & restoring, and preferably we should ensure that as 2556 // many as are needed are available so that fewer push/pop instructions 2557 // are required. 2558 2559 // Low registers which are not currently pushed, but could be (r4-r7). 2560 SmallVector<unsigned, 4> AvailableRegs; 2561 2562 // Unused argument registers (r0-r3) can be clobbered in the prologue for 2563 // free. 2564 int EntryRegDeficit = 0; 2565 for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) { 2566 if (!MF.getRegInfo().isLiveIn(Reg)) { 2567 --EntryRegDeficit; 2568 LLVM_DEBUG(dbgs() 2569 << printReg(Reg, TRI) 2570 << " is unused argument register, EntryRegDeficit = " 2571 << EntryRegDeficit << "\n"); 2572 } 2573 } 2574 2575 // Unused return registers can be clobbered in the epilogue for free. 2576 int ExitRegDeficit = AFI->getReturnRegsCount() - 4; 2577 LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount() 2578 << " return regs used, ExitRegDeficit = " 2579 << ExitRegDeficit << "\n"); 2580 2581 int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit); 2582 LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n"); 2583 2584 // r4-r6 can be used in the prologue if they are pushed by the first push 2585 // instruction. 2586 for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) { 2587 if (SavedRegs.test(Reg)) { 2588 --RegDeficit; 2589 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 2590 << " is saved low register, RegDeficit = " 2591 << RegDeficit << "\n"); 2592 } else { 2593 AvailableRegs.push_back(Reg); 2594 LLVM_DEBUG( 2595 dbgs() 2596 << printReg(Reg, TRI) 2597 << " is non-saved low register, adding to AvailableRegs\n"); 2598 } 2599 } 2600 2601 // r7 can be used if it is not being used as the frame pointer. 2602 if (!HasFP || FramePtr != ARM::R7) { 2603 if (SavedRegs.test(ARM::R7)) { 2604 --RegDeficit; 2605 LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = " 2606 << RegDeficit << "\n"); 2607 } else { 2608 AvailableRegs.push_back(ARM::R7); 2609 LLVM_DEBUG( 2610 dbgs() 2611 << "%r7 is non-saved low register, adding to AvailableRegs\n"); 2612 } 2613 } 2614 2615 // Each of r8-r11 needs to be copied to a low register, then pushed. 2616 for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) { 2617 if (SavedRegs.test(Reg)) { 2618 ++RegDeficit; 2619 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 2620 << " is saved high register, RegDeficit = " 2621 << RegDeficit << "\n"); 2622 } 2623 } 2624 2625 // LR can only be used by PUSH, not POP, and can't be used at all if the 2626 // llvm.returnaddress intrinsic is used. This is only worth doing if we 2627 // are more limited at function entry than exit. 2628 if ((EntryRegDeficit > ExitRegDeficit) && 2629 !(MF.getRegInfo().isLiveIn(ARM::LR) && 2630 MF.getFrameInfo().isReturnAddressTaken())) { 2631 if (SavedRegs.test(ARM::LR)) { 2632 --RegDeficit; 2633 LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = " 2634 << RegDeficit << "\n"); 2635 } else { 2636 AvailableRegs.push_back(ARM::LR); 2637 LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n"); 2638 } 2639 } 2640 2641 // If there are more high registers that need pushing than low registers 2642 // available, push some more low registers so that we can use fewer push 2643 // instructions. This might not reduce RegDeficit all the way to zero, 2644 // because we can only guarantee that r4-r6 are available, but r8-r11 may 2645 // need saving. 2646 LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n"); 2647 for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) { 2648 unsigned Reg = AvailableRegs.pop_back_val(); 2649 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2650 << " to make up reg deficit\n"); 2651 SavedRegs.set(Reg); 2652 NumGPRSpills++; 2653 CS1Spilled = true; 2654 assert(!MRI.isReserved(Reg) && "Should not be reserved"); 2655 if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg)) 2656 ExtraCSSpill = true; 2657 UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg)); 2658 if (Reg == ARM::LR) 2659 LRSpilled = true; 2660 } 2661 LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit 2662 << "\n"); 2663 } 2664 2665 // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to 2666 // restore LR in that case. 2667 bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall(); 2668 2669 // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled. 2670 // Spill LR as well so we can fold BX_RET to the registers restore (LDM). 2671 if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) { 2672 SavedRegs.set(ARM::LR); 2673 NumGPRSpills++; 2674 SmallVectorImpl<unsigned>::iterator LRPos; 2675 LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR); 2676 if (LRPos != UnspilledCS1GPRs.end()) 2677 UnspilledCS1GPRs.erase(LRPos); 2678 2679 ForceLRSpill = false; 2680 if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) && 2681 !AFI->isThumb1OnlyFunction()) 2682 ExtraCSSpill = true; 2683 } 2684 2685 // If stack and double are 8-byte aligned and we are spilling an odd number 2686 // of GPRs, spill one extra callee save GPR so we won't have to pad between 2687 // the integer and double callee save areas. 2688 LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n"); 2689 const Align TargetAlign = getStackAlign(); 2690 if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) { 2691 if (CS1Spilled && !UnspilledCS1GPRs.empty()) { 2692 for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) { 2693 unsigned Reg = UnspilledCS1GPRs[i]; 2694 // Don't spill high register if the function is thumb. In the case of 2695 // Windows on ARM, accept R11 (frame pointer) 2696 if (!AFI->isThumbFunction() || 2697 (STI.isTargetWindows() && Reg == ARM::R11) || 2698 isARMLowRegister(Reg) || 2699 (Reg == ARM::LR && !ExpensiveLRRestore)) { 2700 SavedRegs.set(Reg); 2701 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2702 << " to make up alignment\n"); 2703 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) && 2704 !(Reg == ARM::LR && AFI->isThumb1OnlyFunction())) 2705 ExtraCSSpill = true; 2706 break; 2707 } 2708 } 2709 } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) { 2710 unsigned Reg = UnspilledCS2GPRs.front(); 2711 SavedRegs.set(Reg); 2712 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2713 << " to make up alignment\n"); 2714 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg)) 2715 ExtraCSSpill = true; 2716 } 2717 } 2718 2719 // Estimate if we might need to scavenge a register at some point in order 2720 // to materialize a stack offset. If so, either spill one additional 2721 // callee-saved register or reserve a special spill slot to facilitate 2722 // register scavenging. Thumb1 needs a spill slot for stack pointer 2723 // adjustments and for frame index accesses when FP is high register, 2724 // even when the frame itself is small. 2725 if (!ExtraCSSpill && 2726 (BigFrameOffsets || canSpillOnFrameIndexAccess(MF, *this))) { 2727 // If any non-reserved CS register isn't spilled, just spill one or two 2728 // extra. That should take care of it! 2729 unsigned NumExtras = TargetAlign.value() / 4; 2730 SmallVector<unsigned, 2> Extras; 2731 while (NumExtras && !UnspilledCS1GPRs.empty()) { 2732 unsigned Reg = UnspilledCS1GPRs.pop_back_val(); 2733 if (!MRI.isReserved(Reg) && 2734 (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) { 2735 Extras.push_back(Reg); 2736 NumExtras--; 2737 } 2738 } 2739 // For non-Thumb1 functions, also check for hi-reg CS registers 2740 if (!AFI->isThumb1OnlyFunction()) { 2741 while (NumExtras && !UnspilledCS2GPRs.empty()) { 2742 unsigned Reg = UnspilledCS2GPRs.pop_back_val(); 2743 if (!MRI.isReserved(Reg)) { 2744 Extras.push_back(Reg); 2745 NumExtras--; 2746 } 2747 } 2748 } 2749 if (NumExtras == 0) { 2750 for (unsigned Reg : Extras) { 2751 SavedRegs.set(Reg); 2752 if (!MRI.isPhysRegUsed(Reg)) 2753 ExtraCSSpill = true; 2754 } 2755 } 2756 if (!ExtraCSSpill && RS) { 2757 // Reserve a slot closest to SP or frame pointer. 2758 LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n"); 2759 const TargetRegisterClass &RC = ARM::GPRRegClass; 2760 unsigned Size = TRI->getSpillSize(RC); 2761 Align Alignment = TRI->getSpillAlign(RC); 2762 RS->addScavengingFrameIndex( 2763 MFI.CreateStackObject(Size, Alignment, false)); 2764 } 2765 } 2766 } 2767 2768 if (ForceLRSpill) 2769 SavedRegs.set(ARM::LR); 2770 AFI->setLRIsSpilled(SavedRegs.test(ARM::LR)); 2771 } 2772 2773 void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF, 2774 BitVector &SavedRegs) const { 2775 TargetFrameLowering::getCalleeSaves(MF, SavedRegs); 2776 2777 // If we have the "returned" parameter attribute which guarantees that we 2778 // return the value which was passed in r0 unmodified (e.g. C++ 'structors), 2779 // record that fact for IPRA. 2780 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2781 if (AFI->getPreservesR0()) 2782 SavedRegs.set(ARM::R0); 2783 } 2784 2785 bool ARMFrameLowering::assignCalleeSavedSpillSlots( 2786 MachineFunction &MF, const TargetRegisterInfo *TRI, 2787 std::vector<CalleeSavedInfo> &CSI) const { 2788 // For CMSE entry functions, handle floating-point context as if it was a 2789 // callee-saved register. 2790 if (STI.hasV8_1MMainlineOps() && 2791 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) { 2792 CSI.emplace_back(ARM::FPCXTNS); 2793 CSI.back().setRestored(false); 2794 } 2795 2796 // For functions, which sign their return address, upon function entry, the 2797 // return address PAC is computed in R12. Treat R12 as a callee-saved register 2798 // in this case. 2799 const auto &AFI = *MF.getInfo<ARMFunctionInfo>(); 2800 if (AFI.shouldSignReturnAddress()) { 2801 // The order of register must match the order we push them, because the 2802 // PEI assigns frame indices in that order. When compiling for return 2803 // address sign and authenication, we use split push, therefore the orders 2804 // we want are: 2805 // LR, R7, R6, R5, R4, <R12>, R11, R10, R9, R8, D15-D8 2806 CSI.insert(find_if(CSI, 2807 [=](const auto &CS) { 2808 Register Reg = CS.getReg(); 2809 return Reg == ARM::R10 || Reg == ARM::R11 || 2810 Reg == ARM::R8 || Reg == ARM::R9 || 2811 ARM::DPRRegClass.contains(Reg); 2812 }), 2813 CalleeSavedInfo(ARM::R12)); 2814 } 2815 2816 return false; 2817 } 2818 2819 const TargetFrameLowering::SpillSlot * 2820 ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const { 2821 static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}}; 2822 NumEntries = std::size(FixedSpillOffsets); 2823 return FixedSpillOffsets; 2824 } 2825 2826 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr( 2827 MachineFunction &MF, MachineBasicBlock &MBB, 2828 MachineBasicBlock::iterator I) const { 2829 const ARMBaseInstrInfo &TII = 2830 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2831 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2832 bool isARM = !AFI->isThumbFunction(); 2833 DebugLoc dl = I->getDebugLoc(); 2834 unsigned Opc = I->getOpcode(); 2835 bool IsDestroy = Opc == TII.getCallFrameDestroyOpcode(); 2836 unsigned CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0; 2837 2838 assert(!AFI->isThumb1OnlyFunction() && 2839 "This eliminateCallFramePseudoInstr does not support Thumb1!"); 2840 2841 int PIdx = I->findFirstPredOperandIdx(); 2842 ARMCC::CondCodes Pred = (PIdx == -1) 2843 ? ARMCC::AL 2844 : (ARMCC::CondCodes)I->getOperand(PIdx).getImm(); 2845 unsigned PredReg = TII.getFramePred(*I); 2846 2847 if (!hasReservedCallFrame(MF)) { 2848 // Bail early if the callee is expected to do the adjustment. 2849 if (IsDestroy && CalleePopAmount != -1U) 2850 return MBB.erase(I); 2851 2852 // If we have alloca, convert as follows: 2853 // ADJCALLSTACKDOWN -> sub, sp, sp, amount 2854 // ADJCALLSTACKUP -> add, sp, sp, amount 2855 unsigned Amount = TII.getFrameSize(*I); 2856 if (Amount != 0) { 2857 // We need to keep the stack aligned properly. To do this, we round the 2858 // amount of space needed for the outgoing arguments up to the next 2859 // alignment boundary. 2860 Amount = alignSPAdjust(Amount); 2861 2862 if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) { 2863 emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags, 2864 Pred, PredReg); 2865 } else { 2866 assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP); 2867 emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags, 2868 Pred, PredReg); 2869 } 2870 } 2871 } else if (CalleePopAmount != -1U) { 2872 // If the calling convention demands that the callee pops arguments from the 2873 // stack, we want to add it back if we have a reserved call frame. 2874 emitSPUpdate(isARM, MBB, I, dl, TII, -CalleePopAmount, 2875 MachineInstr::NoFlags, Pred, PredReg); 2876 } 2877 return MBB.erase(I); 2878 } 2879 2880 /// Get the minimum constant for ARM that is greater than or equal to the 2881 /// argument. In ARM, constants can have any value that can be produced by 2882 /// rotating an 8-bit value to the right by an even number of bits within a 2883 /// 32-bit word. 2884 static uint32_t alignToARMConstant(uint32_t Value) { 2885 unsigned Shifted = 0; 2886 2887 if (Value == 0) 2888 return 0; 2889 2890 while (!(Value & 0xC0000000)) { 2891 Value = Value << 2; 2892 Shifted += 2; 2893 } 2894 2895 bool Carry = (Value & 0x00FFFFFF); 2896 Value = ((Value & 0xFF000000) >> 24) + Carry; 2897 2898 if (Value & 0x0000100) 2899 Value = Value & 0x000001FC; 2900 2901 if (Shifted > 24) 2902 Value = Value >> (Shifted - 24); 2903 else 2904 Value = Value << (24 - Shifted); 2905 2906 return Value; 2907 } 2908 2909 // The stack limit in the TCB is set to this many bytes above the actual 2910 // stack limit. 2911 static const uint64_t kSplitStackAvailable = 256; 2912 2913 // Adjust the function prologue to enable split stacks. This currently only 2914 // supports android and linux. 2915 // 2916 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but 2917 // must be well defined in order to allow for consistent implementations of the 2918 // __morestack helper function. The ABI is also not a normal ABI in that it 2919 // doesn't follow the normal calling conventions because this allows the 2920 // prologue of each function to be optimized further. 2921 // 2922 // Currently, the ABI looks like (when calling __morestack) 2923 // 2924 // * r4 holds the minimum stack size requested for this function call 2925 // * r5 holds the stack size of the arguments to the function 2926 // * the beginning of the function is 3 instructions after the call to 2927 // __morestack 2928 // 2929 // Implementations of __morestack should use r4 to allocate a new stack, r5 to 2930 // place the arguments on to the new stack, and the 3-instruction knowledge to 2931 // jump directly to the body of the function when working on the new stack. 2932 // 2933 // An old (and possibly no longer compatible) implementation of __morestack for 2934 // ARM can be found at [1]. 2935 // 2936 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S 2937 void ARMFrameLowering::adjustForSegmentedStacks( 2938 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2939 unsigned Opcode; 2940 unsigned CFIIndex; 2941 const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>(); 2942 bool Thumb = ST->isThumb(); 2943 bool Thumb2 = ST->isThumb2(); 2944 2945 // Sadly, this currently doesn't support varargs, platforms other than 2946 // android/linux. Note that thumb1/thumb2 are support for android/linux. 2947 if (MF.getFunction().isVarArg()) 2948 report_fatal_error("Segmented stacks do not support vararg functions."); 2949 if (!ST->isTargetAndroid() && !ST->isTargetLinux()) 2950 report_fatal_error("Segmented stacks not supported on this platform."); 2951 2952 MachineFrameInfo &MFI = MF.getFrameInfo(); 2953 MachineModuleInfo &MMI = MF.getMMI(); 2954 MCContext &Context = MMI.getContext(); 2955 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 2956 const ARMBaseInstrInfo &TII = 2957 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2958 ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>(); 2959 DebugLoc DL; 2960 2961 if (!MFI.needsSplitStackProlog()) 2962 return; 2963 2964 uint64_t StackSize = MFI.getStackSize(); 2965 2966 // Use R4 and R5 as scratch registers. 2967 // We save R4 and R5 before use and restore them before leaving the function. 2968 unsigned ScratchReg0 = ARM::R4; 2969 unsigned ScratchReg1 = ARM::R5; 2970 uint64_t AlignedStackSize; 2971 2972 MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock(); 2973 MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock(); 2974 MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock(); 2975 MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock(); 2976 MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock(); 2977 2978 // Grab everything that reaches PrologueMBB to update there liveness as well. 2979 SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion; 2980 SmallVector<MachineBasicBlock *, 2> WalkList; 2981 WalkList.push_back(&PrologueMBB); 2982 2983 do { 2984 MachineBasicBlock *CurMBB = WalkList.pop_back_val(); 2985 for (MachineBasicBlock *PredBB : CurMBB->predecessors()) { 2986 if (BeforePrologueRegion.insert(PredBB).second) 2987 WalkList.push_back(PredBB); 2988 } 2989 } while (!WalkList.empty()); 2990 2991 // The order in that list is important. 2992 // The blocks will all be inserted before PrologueMBB using that order. 2993 // Therefore the block that should appear first in the CFG should appear 2994 // first in the list. 2995 MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB, 2996 PostStackMBB}; 2997 2998 for (MachineBasicBlock *B : AddedBlocks) 2999 BeforePrologueRegion.insert(B); 3000 3001 for (const auto &LI : PrologueMBB.liveins()) { 3002 for (MachineBasicBlock *PredBB : BeforePrologueRegion) 3003 PredBB->addLiveIn(LI); 3004 } 3005 3006 // Remove the newly added blocks from the list, since we know 3007 // we do not have to do the following updates for them. 3008 for (MachineBasicBlock *B : AddedBlocks) { 3009 BeforePrologueRegion.erase(B); 3010 MF.insert(PrologueMBB.getIterator(), B); 3011 } 3012 3013 for (MachineBasicBlock *MBB : BeforePrologueRegion) { 3014 // Make sure the LiveIns are still sorted and unique. 3015 MBB->sortUniqueLiveIns(); 3016 // Replace the edges to PrologueMBB by edges to the sequences 3017 // we are about to add, but only update for immediate predecessors. 3018 if (MBB->isSuccessor(&PrologueMBB)) 3019 MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]); 3020 } 3021 3022 // The required stack size that is aligned to ARM constant criterion. 3023 AlignedStackSize = alignToARMConstant(StackSize); 3024 3025 // When the frame size is less than 256 we just compare the stack 3026 // boundary directly to the value of the stack pointer, per gcc. 3027 bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable; 3028 3029 // We will use two of the callee save registers as scratch registers so we 3030 // need to save those registers onto the stack. 3031 // We will use SR0 to hold stack limit and SR1 to hold the stack size 3032 // requested and arguments for __morestack(). 3033 // SR0: Scratch Register #0 3034 // SR1: Scratch Register #1 3035 // push {SR0, SR1} 3036 if (Thumb) { 3037 BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH)) 3038 .add(predOps(ARMCC::AL)) 3039 .addReg(ScratchReg0) 3040 .addReg(ScratchReg1); 3041 } else { 3042 BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD)) 3043 .addReg(ARM::SP, RegState::Define) 3044 .addReg(ARM::SP) 3045 .add(predOps(ARMCC::AL)) 3046 .addReg(ScratchReg0) 3047 .addReg(ScratchReg1); 3048 } 3049 3050 // Emit the relevant DWARF information about the change in stack pointer as 3051 // well as where to find both r4 and r5 (the callee-save registers) 3052 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3053 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8)); 3054 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3055 .addCFIIndex(CFIIndex); 3056 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 3057 nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4)); 3058 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3059 .addCFIIndex(CFIIndex); 3060 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 3061 nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8)); 3062 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3063 .addCFIIndex(CFIIndex); 3064 } 3065 3066 // mov SR1, sp 3067 if (Thumb) { 3068 BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1) 3069 .addReg(ARM::SP) 3070 .add(predOps(ARMCC::AL)); 3071 } else if (CompareStackPointer) { 3072 BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1) 3073 .addReg(ARM::SP) 3074 .add(predOps(ARMCC::AL)) 3075 .add(condCodeOp()); 3076 } 3077 3078 // sub SR1, sp, #StackSize 3079 if (!CompareStackPointer && Thumb) { 3080 if (AlignedStackSize < 256) { 3081 BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1) 3082 .add(condCodeOp()) 3083 .addReg(ScratchReg1) 3084 .addImm(AlignedStackSize) 3085 .add(predOps(ARMCC::AL)); 3086 } else { 3087 if (Thumb2) { 3088 BuildMI(McrMBB, DL, TII.get(ARM::t2MOVi32imm), ScratchReg0) 3089 .addImm(AlignedStackSize); 3090 } else { 3091 auto MBBI = McrMBB->end(); 3092 auto RegInfo = STI.getRegisterInfo(); 3093 RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0, 3094 AlignedStackSize); 3095 } 3096 BuildMI(McrMBB, DL, TII.get(ARM::tSUBrr), ScratchReg1) 3097 .add(condCodeOp()) 3098 .addReg(ScratchReg1) 3099 .addReg(ScratchReg0) 3100 .add(predOps(ARMCC::AL)); 3101 } 3102 } else if (!CompareStackPointer) { 3103 if (AlignedStackSize < 256) { 3104 BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1) 3105 .addReg(ARM::SP) 3106 .addImm(AlignedStackSize) 3107 .add(predOps(ARMCC::AL)) 3108 .add(condCodeOp()); 3109 } else { 3110 auto MBBI = McrMBB->end(); 3111 auto RegInfo = STI.getRegisterInfo(); 3112 RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0, 3113 AlignedStackSize); 3114 BuildMI(McrMBB, DL, TII.get(ARM::SUBrr), ScratchReg1) 3115 .addReg(ARM::SP) 3116 .addReg(ScratchReg0) 3117 .add(predOps(ARMCC::AL)) 3118 .add(condCodeOp()); 3119 } 3120 } 3121 3122 if (Thumb && ST->isThumb1Only()) { 3123 unsigned PCLabelId = ARMFI->createPICLabelUId(); 3124 ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create( 3125 MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0); 3126 MachineConstantPool *MCP = MF.getConstantPool(); 3127 unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4)); 3128 3129 // ldr SR0, [pc, offset(STACK_LIMIT)] 3130 BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0) 3131 .addConstantPoolIndex(CPI) 3132 .add(predOps(ARMCC::AL)); 3133 3134 // ldr SR0, [SR0] 3135 BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0) 3136 .addReg(ScratchReg0) 3137 .addImm(0) 3138 .add(predOps(ARMCC::AL)); 3139 } else { 3140 // Get TLS base address from the coprocessor 3141 // mrc p15, #0, SR0, c13, c0, #3 3142 BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC), 3143 ScratchReg0) 3144 .addImm(15) 3145 .addImm(0) 3146 .addImm(13) 3147 .addImm(0) 3148 .addImm(3) 3149 .add(predOps(ARMCC::AL)); 3150 3151 // Use the last tls slot on android and a private field of the TCP on linux. 3152 assert(ST->isTargetAndroid() || ST->isTargetLinux()); 3153 unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1; 3154 3155 // Get the stack limit from the right offset 3156 // ldr SR0, [sr0, #4 * TlsOffset] 3157 BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12), 3158 ScratchReg0) 3159 .addReg(ScratchReg0) 3160 .addImm(4 * TlsOffset) 3161 .add(predOps(ARMCC::AL)); 3162 } 3163 3164 // Compare stack limit with stack size requested. 3165 // cmp SR0, SR1 3166 Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr; 3167 BuildMI(GetMBB, DL, TII.get(Opcode)) 3168 .addReg(ScratchReg0) 3169 .addReg(ScratchReg1) 3170 .add(predOps(ARMCC::AL)); 3171 3172 // This jump is taken if StackLimit < SP - stack required. 3173 Opcode = Thumb ? ARM::tBcc : ARM::Bcc; 3174 BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB) 3175 .addImm(ARMCC::LO) 3176 .addReg(ARM::CPSR); 3177 3178 3179 // Calling __morestack(StackSize, Size of stack arguments). 3180 // __morestack knows that the stack size requested is in SR0(r4) 3181 // and amount size of stack arguments is in SR1(r5). 3182 3183 // Pass first argument for the __morestack by Scratch Register #0. 3184 // The amount size of stack required 3185 if (Thumb) { 3186 if (AlignedStackSize < 256) { 3187 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0) 3188 .add(condCodeOp()) 3189 .addImm(AlignedStackSize) 3190 .add(predOps(ARMCC::AL)); 3191 } else { 3192 if (Thumb2) { 3193 BuildMI(AllocMBB, DL, TII.get(ARM::t2MOVi32imm), ScratchReg0) 3194 .addImm(AlignedStackSize); 3195 } else { 3196 auto MBBI = AllocMBB->end(); 3197 auto RegInfo = STI.getRegisterInfo(); 3198 RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0, 3199 AlignedStackSize); 3200 } 3201 } 3202 } else { 3203 if (AlignedStackSize < 256) { 3204 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0) 3205 .addImm(AlignedStackSize) 3206 .add(predOps(ARMCC::AL)) 3207 .add(condCodeOp()); 3208 } else { 3209 auto MBBI = AllocMBB->end(); 3210 auto RegInfo = STI.getRegisterInfo(); 3211 RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0, 3212 AlignedStackSize); 3213 } 3214 } 3215 3216 // Pass second argument for the __morestack by Scratch Register #1. 3217 // The amount size of stack consumed to save function arguments. 3218 if (Thumb) { 3219 if (ARMFI->getArgumentStackSize() < 256) { 3220 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1) 3221 .add(condCodeOp()) 3222 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 3223 .add(predOps(ARMCC::AL)); 3224 } else { 3225 if (Thumb2) { 3226 BuildMI(AllocMBB, DL, TII.get(ARM::t2MOVi32imm), ScratchReg1) 3227 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())); 3228 } else { 3229 auto MBBI = AllocMBB->end(); 3230 auto RegInfo = STI.getRegisterInfo(); 3231 RegInfo->emitLoadConstPool( 3232 *AllocMBB, MBBI, DL, ScratchReg1, 0, 3233 alignToARMConstant(ARMFI->getArgumentStackSize())); 3234 } 3235 } 3236 } else { 3237 if (alignToARMConstant(ARMFI->getArgumentStackSize()) < 256) { 3238 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1) 3239 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 3240 .add(predOps(ARMCC::AL)) 3241 .add(condCodeOp()); 3242 } else { 3243 auto MBBI = AllocMBB->end(); 3244 auto RegInfo = STI.getRegisterInfo(); 3245 RegInfo->emitLoadConstPool( 3246 *AllocMBB, MBBI, DL, ScratchReg1, 0, 3247 alignToARMConstant(ARMFI->getArgumentStackSize())); 3248 } 3249 } 3250 3251 // push {lr} - Save return address of this function. 3252 if (Thumb) { 3253 BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH)) 3254 .add(predOps(ARMCC::AL)) 3255 .addReg(ARM::LR); 3256 } else { 3257 BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD)) 3258 .addReg(ARM::SP, RegState::Define) 3259 .addReg(ARM::SP) 3260 .add(predOps(ARMCC::AL)) 3261 .addReg(ARM::LR); 3262 } 3263 3264 // Emit the DWARF info about the change in stack as well as where to find the 3265 // previous link register 3266 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3267 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12)); 3268 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3269 .addCFIIndex(CFIIndex); 3270 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 3271 nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12)); 3272 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3273 .addCFIIndex(CFIIndex); 3274 } 3275 3276 // Call __morestack(). 3277 if (Thumb) { 3278 BuildMI(AllocMBB, DL, TII.get(ARM::tBL)) 3279 .add(predOps(ARMCC::AL)) 3280 .addExternalSymbol("__morestack"); 3281 } else { 3282 BuildMI(AllocMBB, DL, TII.get(ARM::BL)) 3283 .addExternalSymbol("__morestack"); 3284 } 3285 3286 // pop {lr} - Restore return address of this original function. 3287 if (Thumb) { 3288 if (ST->isThumb1Only()) { 3289 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 3290 .add(predOps(ARMCC::AL)) 3291 .addReg(ScratchReg0); 3292 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR) 3293 .addReg(ScratchReg0) 3294 .add(predOps(ARMCC::AL)); 3295 } else { 3296 BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST)) 3297 .addReg(ARM::LR, RegState::Define) 3298 .addReg(ARM::SP, RegState::Define) 3299 .addReg(ARM::SP) 3300 .addImm(4) 3301 .add(predOps(ARMCC::AL)); 3302 } 3303 } else { 3304 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 3305 .addReg(ARM::SP, RegState::Define) 3306 .addReg(ARM::SP) 3307 .add(predOps(ARMCC::AL)) 3308 .addReg(ARM::LR); 3309 } 3310 3311 // Restore SR0 and SR1 in case of __morestack() was called. 3312 // __morestack() will skip PostStackMBB block so we need to restore 3313 // scratch registers from here. 3314 // pop {SR0, SR1} 3315 if (Thumb) { 3316 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 3317 .add(predOps(ARMCC::AL)) 3318 .addReg(ScratchReg0) 3319 .addReg(ScratchReg1); 3320 } else { 3321 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 3322 .addReg(ARM::SP, RegState::Define) 3323 .addReg(ARM::SP) 3324 .add(predOps(ARMCC::AL)) 3325 .addReg(ScratchReg0) 3326 .addReg(ScratchReg1); 3327 } 3328 3329 // Update the CFA offset now that we've popped 3330 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3331 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 3332 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3333 .addCFIIndex(CFIIndex); 3334 } 3335 3336 // Return from this function. 3337 BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL)); 3338 3339 // Restore SR0 and SR1 in case of __morestack() was not called. 3340 // pop {SR0, SR1} 3341 if (Thumb) { 3342 BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP)) 3343 .add(predOps(ARMCC::AL)) 3344 .addReg(ScratchReg0) 3345 .addReg(ScratchReg1); 3346 } else { 3347 BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD)) 3348 .addReg(ARM::SP, RegState::Define) 3349 .addReg(ARM::SP) 3350 .add(predOps(ARMCC::AL)) 3351 .addReg(ScratchReg0) 3352 .addReg(ScratchReg1); 3353 } 3354 3355 // Update the CFA offset now that we've popped 3356 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3357 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 3358 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3359 .addCFIIndex(CFIIndex); 3360 3361 // Tell debuggers that r4 and r5 are now the same as they were in the 3362 // previous function, that they're the "Same Value". 3363 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 3364 nullptr, MRI->getDwarfRegNum(ScratchReg0, true))); 3365 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3366 .addCFIIndex(CFIIndex); 3367 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 3368 nullptr, MRI->getDwarfRegNum(ScratchReg1, true))); 3369 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3370 .addCFIIndex(CFIIndex); 3371 } 3372 3373 // Organizing MBB lists 3374 PostStackMBB->addSuccessor(&PrologueMBB); 3375 3376 AllocMBB->addSuccessor(PostStackMBB); 3377 3378 GetMBB->addSuccessor(PostStackMBB); 3379 GetMBB->addSuccessor(AllocMBB); 3380 3381 McrMBB->addSuccessor(GetMBB); 3382 3383 PrevStackMBB->addSuccessor(McrMBB); 3384 3385 #ifdef EXPENSIVE_CHECKS 3386 MF.verify(); 3387 #endif 3388 } 3389