xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMFrameLowering.cpp (revision 725a9f47324d42037db93c27ceb40d4956872f3e)
1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the ARM implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 //
13 // This file contains the ARM implementation of TargetFrameLowering class.
14 //
15 // On ARM, stack frames are structured as follows:
16 //
17 // The stack grows downward.
18 //
19 // All of the individual frame areas on the frame below are optional, i.e. it's
20 // possible to create a function so that the particular area isn't present
21 // in the frame.
22 //
23 // At function entry, the "frame" looks as follows:
24 //
25 // |                                   | Higher address
26 // |-----------------------------------|
27 // |                                   |
28 // | arguments passed on the stack     |
29 // |                                   |
30 // |-----------------------------------| <- sp
31 // |                                   | Lower address
32 //
33 //
34 // After the prologue has run, the frame has the following general structure.
35 // Technically the last frame area (VLAs) doesn't get created until in the
36 // main function body, after the prologue is run. However, it's depicted here
37 // for completeness.
38 //
39 // |                                   | Higher address
40 // |-----------------------------------|
41 // |                                   |
42 // | arguments passed on the stack     |
43 // |                                   |
44 // |-----------------------------------| <- (sp at function entry)
45 // |                                   |
46 // | varargs from registers            |
47 // |                                   |
48 // |-----------------------------------|
49 // |                                   |
50 // | prev_lr                           |
51 // | prev_fp                           |
52 // | (a.k.a. "frame record")           |
53 // |                                   |
54 // |- - - - - - - - - - - - - - - - - -| <- fp (r7 or r11)
55 // |                                   |
56 // | callee-saved gpr registers        |
57 // |                                   |
58 // |-----------------------------------|
59 // |                                   |
60 // | callee-saved fp/simd regs         |
61 // |                                   |
62 // |-----------------------------------|
63 // |.empty.space.to.make.part.below....|
64 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
65 // |.the.standard.8-byte.alignment.....|  compile time; if present)
66 // |-----------------------------------|
67 // |                                   |
68 // | local variables of fixed size     |
69 // | including spill slots             |
70 // |-----------------------------------| <- base pointer (not defined by ABI,
71 // |.variable-sized.local.variables....|       LLVM chooses r6)
72 // |.(VLAs)............................| (size of this area is unknown at
73 // |...................................|  compile time)
74 // |-----------------------------------| <- sp
75 // |                                   | Lower address
76 //
77 //
78 // To access the data in a frame, at-compile time, a constant offset must be
79 // computable from one of the pointers (fp, bp, sp) to access it. The size
80 // of the areas with a dotted background cannot be computed at compile-time
81 // if they are present, making it required to have all three of fp, bp and
82 // sp to be set up to be able to access all contents in the frame areas,
83 // assuming all of the frame areas are non-empty.
84 //
85 // For most functions, some of the frame areas are empty. For those functions,
86 // it may not be necessary to set up fp or bp:
87 // * A base pointer is definitely needed when there are both VLAs and local
88 //   variables with more-than-default alignment requirements.
89 // * A frame pointer is definitely needed when there are local variables with
90 //   more-than-default alignment requirements.
91 //
92 // In some cases when a base pointer is not strictly needed, it is generated
93 // anyway when offsets from the frame pointer to access local variables become
94 // so large that the offset can't be encoded in the immediate fields of loads
95 // or stores.
96 //
97 // The frame pointer might be chosen to be r7 or r11, depending on the target
98 // architecture and operating system. See ARMSubtarget::getFramePointerReg for
99 // details.
100 //
101 // Outgoing function arguments must be at the bottom of the stack frame when
102 // calling another function. If we do not have variable-sized stack objects, we
103 // can allocate a "reserved call frame" area at the bottom of the local
104 // variable area, large enough for all outgoing calls. If we do have VLAs, then
105 // the stack pointer must be decremented and incremented around each call to
106 // make space for the arguments below the VLAs.
107 //
108 //===----------------------------------------------------------------------===//
109 
110 #include "ARMFrameLowering.h"
111 #include "ARMBaseInstrInfo.h"
112 #include "ARMBaseRegisterInfo.h"
113 #include "ARMConstantPoolValue.h"
114 #include "ARMMachineFunctionInfo.h"
115 #include "ARMSubtarget.h"
116 #include "MCTargetDesc/ARMAddressingModes.h"
117 #include "MCTargetDesc/ARMBaseInfo.h"
118 #include "Utils/ARMBaseInfo.h"
119 #include "llvm/ADT/BitVector.h"
120 #include "llvm/ADT/STLExtras.h"
121 #include "llvm/ADT/SmallPtrSet.h"
122 #include "llvm/ADT/SmallVector.h"
123 #include "llvm/CodeGen/MachineBasicBlock.h"
124 #include "llvm/CodeGen/MachineConstantPool.h"
125 #include "llvm/CodeGen/MachineFrameInfo.h"
126 #include "llvm/CodeGen/MachineFunction.h"
127 #include "llvm/CodeGen/MachineInstr.h"
128 #include "llvm/CodeGen/MachineInstrBuilder.h"
129 #include "llvm/CodeGen/MachineJumpTableInfo.h"
130 #include "llvm/CodeGen/MachineModuleInfo.h"
131 #include "llvm/CodeGen/MachineOperand.h"
132 #include "llvm/CodeGen/MachineRegisterInfo.h"
133 #include "llvm/CodeGen/RegisterScavenging.h"
134 #include "llvm/CodeGen/TargetInstrInfo.h"
135 #include "llvm/CodeGen/TargetOpcodes.h"
136 #include "llvm/CodeGen/TargetRegisterInfo.h"
137 #include "llvm/CodeGen/TargetSubtargetInfo.h"
138 #include "llvm/IR/Attributes.h"
139 #include "llvm/IR/CallingConv.h"
140 #include "llvm/IR/DebugLoc.h"
141 #include "llvm/IR/Function.h"
142 #include "llvm/MC/MCAsmInfo.h"
143 #include "llvm/MC/MCContext.h"
144 #include "llvm/MC/MCDwarf.h"
145 #include "llvm/MC/MCInstrDesc.h"
146 #include "llvm/MC/MCRegisterInfo.h"
147 #include "llvm/Support/CodeGen.h"
148 #include "llvm/Support/CommandLine.h"
149 #include "llvm/Support/Compiler.h"
150 #include "llvm/Support/Debug.h"
151 #include "llvm/Support/ErrorHandling.h"
152 #include "llvm/Support/MathExtras.h"
153 #include "llvm/Support/raw_ostream.h"
154 #include "llvm/Target/TargetMachine.h"
155 #include "llvm/Target/TargetOptions.h"
156 #include <algorithm>
157 #include <cassert>
158 #include <cstddef>
159 #include <cstdint>
160 #include <iterator>
161 #include <utility>
162 #include <vector>
163 
164 #define DEBUG_TYPE "arm-frame-lowering"
165 
166 using namespace llvm;
167 
168 static cl::opt<bool>
169 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true),
170                      cl::desc("Align ARM NEON spills in prolog and epilog"));
171 
172 static MachineBasicBlock::iterator
173 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
174                         unsigned NumAlignedDPRCS2Regs);
175 
176 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti)
177     : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)),
178       STI(sti) {}
179 
180 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const {
181   // iOS always has a FP for backtracking, force other targets to keep their FP
182   // when doing FastISel. The emitted code is currently superior, and in cases
183   // like test-suite's lencod FastISel isn't quite correct when FP is eliminated.
184   return MF.getSubtarget<ARMSubtarget>().useFastISel();
185 }
186 
187 /// Returns true if the target can safely skip saving callee-saved registers
188 /// for noreturn nounwind functions.
189 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const {
190   assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) &&
191          MF.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
192          !MF.getFunction().hasFnAttribute(Attribute::UWTable));
193 
194   // Frame pointer and link register are not treated as normal CSR, thus we
195   // can always skip CSR saves for nonreturning functions.
196   return true;
197 }
198 
199 /// hasFP - Return true if the specified function should have a dedicated frame
200 /// pointer register.  This is true if the function has variable sized allocas
201 /// or if frame pointer elimination is disabled.
202 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const {
203   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
204   const MachineFrameInfo &MFI = MF.getFrameInfo();
205 
206   // ABI-required frame pointer.
207   if (MF.getTarget().Options.DisableFramePointerElim(MF))
208     return true;
209 
210   // Frame pointer required for use within this function.
211   return (RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() ||
212           MFI.isFrameAddressTaken());
213 }
214 
215 /// isFPReserved - Return true if the frame pointer register should be
216 /// considered a reserved register on the scope of the specified function.
217 bool ARMFrameLowering::isFPReserved(const MachineFunction &MF) const {
218   return hasFP(MF) || MF.getSubtarget<ARMSubtarget>().createAAPCSFrameChain();
219 }
220 
221 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
222 /// not required, we reserve argument space for call sites in the function
223 /// immediately on entry to the current function.  This eliminates the need for
224 /// add/sub sp brackets around call sites.  Returns true if the call frame is
225 /// included as part of the stack frame.
226 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
227   const MachineFrameInfo &MFI = MF.getFrameInfo();
228   unsigned CFSize = MFI.getMaxCallFrameSize();
229   // It's not always a good idea to include the call frame as part of the
230   // stack frame. ARM (especially Thumb) has small immediate offset to
231   // address the stack frame. So a large call frame can cause poor codegen
232   // and may even makes it impossible to scavenge a register.
233   if (CFSize >= ((1 << 12) - 1) / 2)  // Half of imm12
234     return false;
235 
236   return !MFI.hasVarSizedObjects();
237 }
238 
239 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
240 /// call frame pseudos can be simplified.  Unlike most targets, having a FP
241 /// is not sufficient here since we still may reference some objects via SP
242 /// even when FP is available in Thumb2 mode.
243 bool
244 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
245   return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects();
246 }
247 
248 // Returns how much of the incoming argument stack area we should clean up in an
249 // epilogue. For the C calling convention this will be 0, for guaranteed tail
250 // call conventions it can be positive (a normal return or a tail call to a
251 // function that uses less stack space for arguments) or negative (for a tail
252 // call to a function that needs more stack space than us for arguments).
253 static int getArgumentStackToRestore(MachineFunction &MF,
254                                      MachineBasicBlock &MBB) {
255   MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
256   bool IsTailCallReturn = false;
257   if (MBB.end() != MBBI) {
258     unsigned RetOpcode = MBBI->getOpcode();
259     IsTailCallReturn = RetOpcode == ARM::TCRETURNdi ||
260                        RetOpcode == ARM::TCRETURNri;
261   }
262   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
263 
264   int ArgumentPopSize = 0;
265   if (IsTailCallReturn) {
266     MachineOperand &StackAdjust = MBBI->getOperand(1);
267 
268     // For a tail-call in a callee-pops-arguments environment, some or all of
269     // the stack may actually be in use for the call's arguments, this is
270     // calculated during LowerCall and consumed here...
271     ArgumentPopSize = StackAdjust.getImm();
272   } else {
273     // ... otherwise the amount to pop is *all* of the argument space,
274     // conveniently stored in the MachineFunctionInfo by
275     // LowerFormalArguments. This will, of course, be zero for the C calling
276     // convention.
277     ArgumentPopSize = AFI->getArgumentStackToRestore();
278   }
279 
280   return ArgumentPopSize;
281 }
282 
283 static bool needsWinCFI(const MachineFunction &MF) {
284   const Function &F = MF.getFunction();
285   return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
286          F.needsUnwindTableEntry();
287 }
288 
289 // Given a load or a store instruction, generate an appropriate unwinding SEH
290 // code on Windows.
291 static MachineBasicBlock::iterator insertSEH(MachineBasicBlock::iterator MBBI,
292                                              const TargetInstrInfo &TII,
293                                              unsigned Flags) {
294   unsigned Opc = MBBI->getOpcode();
295   MachineBasicBlock *MBB = MBBI->getParent();
296   MachineFunction &MF = *MBB->getParent();
297   DebugLoc DL = MBBI->getDebugLoc();
298   MachineInstrBuilder MIB;
299   const ARMSubtarget &Subtarget = MF.getSubtarget<ARMSubtarget>();
300   const ARMBaseRegisterInfo *RegInfo = Subtarget.getRegisterInfo();
301 
302   Flags |= MachineInstr::NoMerge;
303 
304   switch (Opc) {
305   default:
306     report_fatal_error("No SEH Opcode for instruction " + TII.getName(Opc));
307     break;
308   case ARM::t2ADDri:   // add.w r11, sp, #xx
309   case ARM::t2ADDri12: // add.w r11, sp, #xx
310   case ARM::t2MOVTi16: // movt  r4, #xx
311   case ARM::tBL:       // bl __chkstk
312     // These are harmless if used for just setting up a frame pointer,
313     // but that frame pointer can't be relied upon for unwinding, unless
314     // set up with SEH_SaveSP.
315     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
316               .addImm(/*Wide=*/1)
317               .setMIFlags(Flags);
318     break;
319 
320   case ARM::t2MOVi16: { // mov(w) r4, #xx
321     bool Wide = MBBI->getOperand(1).getImm() >= 256;
322     if (!Wide) {
323       MachineInstrBuilder NewInstr =
324           BuildMI(MF, DL, TII.get(ARM::tMOVi8)).setMIFlags(MBBI->getFlags());
325       NewInstr.add(MBBI->getOperand(0));
326       NewInstr.add(t1CondCodeOp(/*isDead=*/true));
327       for (MachineOperand &MO : llvm::drop_begin(MBBI->operands()))
328         NewInstr.add(MO);
329       MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr);
330       MBB->erase(MBBI);
331       MBBI = NewMBBI;
332     }
333     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)).addImm(Wide).setMIFlags(Flags);
334     break;
335   }
336 
337   case ARM::tBLXr: // blx r12 (__chkstk)
338     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
339               .addImm(/*Wide=*/0)
340               .setMIFlags(Flags);
341     break;
342 
343   case ARM::t2MOVi32imm: // movw+movt
344     // This pseudo instruction expands into two mov instructions. If the
345     // second operand is a symbol reference, this will stay as two wide
346     // instructions, movw+movt. If they're immediates, the first one can
347     // end up as a narrow mov though.
348     // As two SEH instructions are appended here, they won't get interleaved
349     // between the two final movw/movt instructions, but it doesn't make any
350     // practical difference.
351     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
352               .addImm(/*Wide=*/1)
353               .setMIFlags(Flags);
354     MBB->insertAfter(MBBI, MIB);
355     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop))
356               .addImm(/*Wide=*/1)
357               .setMIFlags(Flags);
358     break;
359 
360   case ARM::t2STR_PRE:
361     if (MBBI->getOperand(0).getReg() == ARM::SP &&
362         MBBI->getOperand(2).getReg() == ARM::SP &&
363         MBBI->getOperand(3).getImm() == -4) {
364       unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
365       MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs))
366                 .addImm(1ULL << Reg)
367                 .addImm(/*Wide=*/1)
368                 .setMIFlags(Flags);
369     } else {
370       report_fatal_error("No matching SEH Opcode for t2STR_PRE");
371     }
372     break;
373 
374   case ARM::t2LDR_POST:
375     if (MBBI->getOperand(1).getReg() == ARM::SP &&
376         MBBI->getOperand(2).getReg() == ARM::SP &&
377         MBBI->getOperand(3).getImm() == 4) {
378       unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
379       MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs))
380                 .addImm(1ULL << Reg)
381                 .addImm(/*Wide=*/1)
382                 .setMIFlags(Flags);
383     } else {
384       report_fatal_error("No matching SEH Opcode for t2LDR_POST");
385     }
386     break;
387 
388   case ARM::t2LDMIA_RET:
389   case ARM::t2LDMIA_UPD:
390   case ARM::t2STMDB_UPD: {
391     unsigned Mask = 0;
392     bool Wide = false;
393     for (unsigned i = 4, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) {
394       const MachineOperand &MO = MBBI->getOperand(i);
395       if (!MO.isReg() || MO.isImplicit())
396         continue;
397       unsigned Reg = RegInfo->getSEHRegNum(MO.getReg());
398       if (Reg == 15)
399         Reg = 14;
400       if (Reg >= 8 && Reg <= 13)
401         Wide = true;
402       else if (Opc == ARM::t2LDMIA_UPD && Reg == 14)
403         Wide = true;
404       Mask |= 1 << Reg;
405     }
406     if (!Wide) {
407       unsigned NewOpc;
408       switch (Opc) {
409       case ARM::t2LDMIA_RET:
410         NewOpc = ARM::tPOP_RET;
411         break;
412       case ARM::t2LDMIA_UPD:
413         NewOpc = ARM::tPOP;
414         break;
415       case ARM::t2STMDB_UPD:
416         NewOpc = ARM::tPUSH;
417         break;
418       default:
419         llvm_unreachable("");
420       }
421       MachineInstrBuilder NewInstr =
422           BuildMI(MF, DL, TII.get(NewOpc)).setMIFlags(MBBI->getFlags());
423       for (unsigned i = 2, NumOps = MBBI->getNumOperands(); i != NumOps; ++i)
424         NewInstr.add(MBBI->getOperand(i));
425       MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr);
426       MBB->erase(MBBI);
427       MBBI = NewMBBI;
428     }
429     unsigned SEHOpc =
430         (Opc == ARM::t2LDMIA_RET) ? ARM::SEH_SaveRegs_Ret : ARM::SEH_SaveRegs;
431     MIB = BuildMI(MF, DL, TII.get(SEHOpc))
432               .addImm(Mask)
433               .addImm(Wide ? 1 : 0)
434               .setMIFlags(Flags);
435     break;
436   }
437   case ARM::VSTMDDB_UPD:
438   case ARM::VLDMDIA_UPD: {
439     int First = -1, Last = 0;
440     for (const MachineOperand &MO : llvm::drop_begin(MBBI->operands(), 4)) {
441       unsigned Reg = RegInfo->getSEHRegNum(MO.getReg());
442       if (First == -1)
443         First = Reg;
444       Last = Reg;
445     }
446     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveFRegs))
447               .addImm(First)
448               .addImm(Last)
449               .setMIFlags(Flags);
450     break;
451   }
452   case ARM::tSUBspi:
453   case ARM::tADDspi:
454     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc))
455               .addImm(MBBI->getOperand(2).getImm() * 4)
456               .addImm(/*Wide=*/0)
457               .setMIFlags(Flags);
458     break;
459   case ARM::t2SUBspImm:
460   case ARM::t2SUBspImm12:
461   case ARM::t2ADDspImm:
462   case ARM::t2ADDspImm12:
463     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc))
464               .addImm(MBBI->getOperand(2).getImm())
465               .addImm(/*Wide=*/1)
466               .setMIFlags(Flags);
467     break;
468 
469   case ARM::tMOVr:
470     if (MBBI->getOperand(1).getReg() == ARM::SP &&
471         (Flags & MachineInstr::FrameSetup)) {
472       unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg());
473       MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP))
474                 .addImm(Reg)
475                 .setMIFlags(Flags);
476     } else if (MBBI->getOperand(0).getReg() == ARM::SP &&
477                (Flags & MachineInstr::FrameDestroy)) {
478       unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg());
479       MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP))
480                 .addImm(Reg)
481                 .setMIFlags(Flags);
482     } else {
483       report_fatal_error("No SEH Opcode for MOV");
484     }
485     break;
486 
487   case ARM::tBX_RET:
488   case ARM::TCRETURNri:
489     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret))
490               .addImm(/*Wide=*/0)
491               .setMIFlags(Flags);
492     break;
493 
494   case ARM::TCRETURNdi:
495     MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret))
496               .addImm(/*Wide=*/1)
497               .setMIFlags(Flags);
498     break;
499   }
500   return MBB->insertAfter(MBBI, MIB);
501 }
502 
503 static MachineBasicBlock::iterator
504 initMBBRange(MachineBasicBlock &MBB, const MachineBasicBlock::iterator &MBBI) {
505   if (MBBI == MBB.begin())
506     return MachineBasicBlock::iterator();
507   return std::prev(MBBI);
508 }
509 
510 static void insertSEHRange(MachineBasicBlock &MBB,
511                            MachineBasicBlock::iterator Start,
512                            const MachineBasicBlock::iterator &End,
513                            const ARMBaseInstrInfo &TII, unsigned MIFlags) {
514   if (Start.isValid())
515     Start = std::next(Start);
516   else
517     Start = MBB.begin();
518 
519   for (auto MI = Start; MI != End;) {
520     auto Next = std::next(MI);
521     // Check if this instruction already has got a SEH opcode added. In that
522     // case, don't do this generic mapping.
523     if (Next != End && isSEHInstruction(*Next)) {
524       MI = std::next(Next);
525       while (MI != End && isSEHInstruction(*MI))
526         ++MI;
527       continue;
528     }
529     insertSEH(MI, TII, MIFlags);
530     MI = Next;
531   }
532 }
533 
534 static void emitRegPlusImmediate(
535     bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
536     const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg,
537     unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags,
538     ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) {
539   if (isARM)
540     emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
541                             Pred, PredReg, TII, MIFlags);
542   else
543     emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
544                            Pred, PredReg, TII, MIFlags);
545 }
546 
547 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB,
548                          MachineBasicBlock::iterator &MBBI, const DebugLoc &dl,
549                          const ARMBaseInstrInfo &TII, int NumBytes,
550                          unsigned MIFlags = MachineInstr::NoFlags,
551                          ARMCC::CondCodes Pred = ARMCC::AL,
552                          unsigned PredReg = 0) {
553   emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes,
554                        MIFlags, Pred, PredReg);
555 }
556 
557 static int sizeOfSPAdjustment(const MachineInstr &MI) {
558   int RegSize;
559   switch (MI.getOpcode()) {
560   case ARM::VSTMDDB_UPD:
561     RegSize = 8;
562     break;
563   case ARM::STMDB_UPD:
564   case ARM::t2STMDB_UPD:
565     RegSize = 4;
566     break;
567   case ARM::t2STR_PRE:
568   case ARM::STR_PRE_IMM:
569     return 4;
570   default:
571     llvm_unreachable("Unknown push or pop like instruction");
572   }
573 
574   int count = 0;
575   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
576   // pred) so the list starts at 4.
577   for (int i = MI.getNumOperands() - 1; i >= 4; --i)
578     count += RegSize;
579   return count;
580 }
581 
582 static bool WindowsRequiresStackProbe(const MachineFunction &MF,
583                                       size_t StackSizeInBytes) {
584   const MachineFrameInfo &MFI = MF.getFrameInfo();
585   const Function &F = MF.getFunction();
586   unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096;
587 
588   StackProbeSize =
589       F.getFnAttributeAsParsedInteger("stack-probe-size", StackProbeSize);
590   return (StackSizeInBytes >= StackProbeSize) &&
591          !F.hasFnAttribute("no-stack-arg-probe");
592 }
593 
594 namespace {
595 
596 struct StackAdjustingInsts {
597   struct InstInfo {
598     MachineBasicBlock::iterator I;
599     unsigned SPAdjust;
600     bool BeforeFPSet;
601   };
602 
603   SmallVector<InstInfo, 4> Insts;
604 
605   void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust,
606                bool BeforeFPSet = false) {
607     InstInfo Info = {I, SPAdjust, BeforeFPSet};
608     Insts.push_back(Info);
609   }
610 
611   void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) {
612     auto Info =
613         llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; });
614     assert(Info != Insts.end() && "invalid sp adjusting instruction");
615     Info->SPAdjust += ExtraBytes;
616   }
617 
618   void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl,
619                          const ARMBaseInstrInfo &TII, bool HasFP) {
620     MachineFunction &MF = *MBB.getParent();
621     unsigned CFAOffset = 0;
622     for (auto &Info : Insts) {
623       if (HasFP && !Info.BeforeFPSet)
624         return;
625 
626       CFAOffset += Info.SPAdjust;
627       unsigned CFIIndex = MF.addFrameInst(
628           MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset));
629       BuildMI(MBB, std::next(Info.I), dl,
630               TII.get(TargetOpcode::CFI_INSTRUCTION))
631               .addCFIIndex(CFIIndex)
632               .setMIFlags(MachineInstr::FrameSetup);
633     }
634   }
635 };
636 
637 } // end anonymous namespace
638 
639 /// Emit an instruction sequence that will align the address in
640 /// register Reg by zero-ing out the lower bits.  For versions of the
641 /// architecture that support Neon, this must be done in a single
642 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a
643 /// single instruction. That function only gets called when optimizing
644 /// spilling of D registers on a core with the Neon instruction set
645 /// present.
646 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI,
647                                      const TargetInstrInfo &TII,
648                                      MachineBasicBlock &MBB,
649                                      MachineBasicBlock::iterator MBBI,
650                                      const DebugLoc &DL, const unsigned Reg,
651                                      const Align Alignment,
652                                      const bool MustBeSingleInstruction) {
653   const ARMSubtarget &AST = MF.getSubtarget<ARMSubtarget>();
654   const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops();
655   const unsigned AlignMask = Alignment.value() - 1U;
656   const unsigned NrBitsToZero = Log2(Alignment);
657   assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported");
658   if (!AFI->isThumbFunction()) {
659     // if the BFC instruction is available, use that to zero the lower
660     // bits:
661     //   bfc Reg, #0, log2(Alignment)
662     // otherwise use BIC, if the mask to zero the required number of bits
663     // can be encoded in the bic immediate field
664     //   bic Reg, Reg, Alignment-1
665     // otherwise, emit
666     //   lsr Reg, Reg, log2(Alignment)
667     //   lsl Reg, Reg, log2(Alignment)
668     if (CanUseBFC) {
669       BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg)
670           .addReg(Reg, RegState::Kill)
671           .addImm(~AlignMask)
672           .add(predOps(ARMCC::AL));
673     } else if (AlignMask <= 255) {
674       BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg)
675           .addReg(Reg, RegState::Kill)
676           .addImm(AlignMask)
677           .add(predOps(ARMCC::AL))
678           .add(condCodeOp());
679     } else {
680       assert(!MustBeSingleInstruction &&
681              "Shouldn't call emitAligningInstructions demanding a single "
682              "instruction to be emitted for large stack alignment for a target "
683              "without BFC.");
684       BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
685           .addReg(Reg, RegState::Kill)
686           .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero))
687           .add(predOps(ARMCC::AL))
688           .add(condCodeOp());
689       BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
690           .addReg(Reg, RegState::Kill)
691           .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero))
692           .add(predOps(ARMCC::AL))
693           .add(condCodeOp());
694     }
695   } else {
696     // Since this is only reached for Thumb-2 targets, the BFC instruction
697     // should always be available.
698     assert(CanUseBFC);
699     BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg)
700         .addReg(Reg, RegState::Kill)
701         .addImm(~AlignMask)
702         .add(predOps(ARMCC::AL));
703   }
704 }
705 
706 /// We need the offset of the frame pointer relative to other MachineFrameInfo
707 /// offsets which are encoded relative to SP at function begin.
708 /// See also emitPrologue() for how the FP is set up.
709 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet
710 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use
711 /// this to produce a conservative estimate that we check in an assert() later.
712 static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI,
713                           const MachineFunction &MF) {
714   // For Thumb1, push.w isn't available, so the first push will always push
715   // r7 and lr onto the stack first.
716   if (AFI.isThumb1OnlyFunction())
717     return -AFI.getArgRegsSaveSize() - (2 * 4);
718   // This is a conservative estimation: Assume the frame pointer being r7 and
719   // pc("r15") up to r8 getting spilled before (= 8 registers).
720   int MaxRegBytes = 8 * 4;
721   if (STI.splitFramePointerPush(MF)) {
722     // Here, r11 can be stored below all of r4-r15 (3 registers more than
723     // above), plus d8-d15.
724     MaxRegBytes = 11 * 4 + 8 * 8;
725   }
726   int FPCXTSaveSize =
727       (STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0;
728   return -FPCXTSaveSize - AFI.getArgRegsSaveSize() - MaxRegBytes;
729 }
730 
731 void ARMFrameLowering::emitPrologue(MachineFunction &MF,
732                                     MachineBasicBlock &MBB) const {
733   MachineBasicBlock::iterator MBBI = MBB.begin();
734   MachineFrameInfo  &MFI = MF.getFrameInfo();
735   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
736   MachineModuleInfo &MMI = MF.getMMI();
737   MCContext &Context = MMI.getContext();
738   const TargetMachine &TM = MF.getTarget();
739   const MCRegisterInfo *MRI = Context.getRegisterInfo();
740   const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo();
741   const ARMBaseInstrInfo &TII = *STI.getInstrInfo();
742   assert(!AFI->isThumb1OnlyFunction() &&
743          "This emitPrologue does not support Thumb1!");
744   bool isARM = !AFI->isThumbFunction();
745   Align Alignment = STI.getFrameLowering()->getStackAlign();
746   unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
747   unsigned NumBytes = MFI.getStackSize();
748   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
749   int FPCXTSaveSize = 0;
750   bool NeedsWinCFI = needsWinCFI(MF);
751 
752   // Debug location must be unknown since the first debug location is used
753   // to determine the end of the prologue.
754   DebugLoc dl;
755 
756   Register FramePtr = RegInfo->getFrameRegister(MF);
757 
758   // Determine the sizes of each callee-save spill areas and record which frame
759   // belongs to which callee-save spill areas.
760   unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
761   int FramePtrSpillFI = 0;
762   int D8SpillFI = 0;
763 
764   // All calls are tail calls in GHC calling conv, and functions have no
765   // prologue/epilogue.
766   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
767     return;
768 
769   StackAdjustingInsts DefCFAOffsetCandidates;
770   bool HasFP = hasFP(MF);
771 
772   if (!AFI->hasStackFrame() &&
773       (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) {
774     if (NumBytes != 0) {
775       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
776                    MachineInstr::FrameSetup);
777       DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes, true);
778     }
779     if (!NeedsWinCFI)
780       DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
781     if (NeedsWinCFI && MBBI != MBB.begin()) {
782       insertSEHRange(MBB, {}, MBBI, TII, MachineInstr::FrameSetup);
783       BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_PrologEnd))
784           .setMIFlag(MachineInstr::FrameSetup);
785       MF.setHasWinCFI(true);
786     }
787     return;
788   }
789 
790   // Determine spill area sizes.
791   if (STI.splitFramePointerPush(MF)) {
792     for (const CalleeSavedInfo &I : CSI) {
793       Register Reg = I.getReg();
794       int FI = I.getFrameIdx();
795       switch (Reg) {
796       case ARM::R11:
797       case ARM::LR:
798         if (Reg == FramePtr)
799           FramePtrSpillFI = FI;
800         GPRCS2Size += 4;
801         break;
802       case ARM::R0:
803       case ARM::R1:
804       case ARM::R2:
805       case ARM::R3:
806       case ARM::R4:
807       case ARM::R5:
808       case ARM::R6:
809       case ARM::R7:
810       case ARM::R8:
811       case ARM::R9:
812       case ARM::R10:
813       case ARM::R12:
814         GPRCS1Size += 4;
815         break;
816       case ARM::FPCXTNS:
817         FPCXTSaveSize = 4;
818         break;
819       default:
820         // This is a DPR. Exclude the aligned DPRCS2 spills.
821         if (Reg == ARM::D8)
822           D8SpillFI = FI;
823         if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
824           DPRCSSize += 8;
825       }
826     }
827   } else {
828     for (const CalleeSavedInfo &I : CSI) {
829       Register Reg = I.getReg();
830       int FI = I.getFrameIdx();
831       switch (Reg) {
832       case ARM::R8:
833       case ARM::R9:
834       case ARM::R10:
835       case ARM::R11:
836       case ARM::R12:
837         if (STI.splitFramePushPop(MF)) {
838           GPRCS2Size += 4;
839           break;
840         }
841         [[fallthrough]];
842       case ARM::R0:
843       case ARM::R1:
844       case ARM::R2:
845       case ARM::R3:
846       case ARM::R4:
847       case ARM::R5:
848       case ARM::R6:
849       case ARM::R7:
850       case ARM::LR:
851         if (Reg == FramePtr)
852           FramePtrSpillFI = FI;
853         GPRCS1Size += 4;
854         break;
855       case ARM::FPCXTNS:
856         FPCXTSaveSize = 4;
857         break;
858       default:
859         // This is a DPR. Exclude the aligned DPRCS2 spills.
860         if (Reg == ARM::D8)
861           D8SpillFI = FI;
862         if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
863           DPRCSSize += 8;
864       }
865     }
866   }
867 
868   MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push;
869 
870   // Move past the PAC computation.
871   if (AFI->shouldSignReturnAddress())
872     LastPush = MBBI++;
873 
874   // Move past FPCXT area.
875   if (FPCXTSaveSize > 0) {
876     LastPush = MBBI++;
877     DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, true);
878   }
879 
880   // Allocate the vararg register save area.
881   if (ArgRegsSaveSize) {
882     emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize,
883                  MachineInstr::FrameSetup);
884     LastPush = std::prev(MBBI);
885     DefCFAOffsetCandidates.addInst(LastPush, ArgRegsSaveSize, true);
886   }
887 
888   // Move past area 1.
889   if (GPRCS1Size > 0) {
890     GPRCS1Push = LastPush = MBBI++;
891     DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true);
892   }
893 
894   // Determine starting offsets of spill areas.
895   unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize;
896   unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size;
897   unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size;
898   Align DPRAlign = DPRCSSize ? std::min(Align(8), Alignment) : Align(4);
899   unsigned DPRGapSize = GPRCS1Size + FPCXTSaveSize + ArgRegsSaveSize;
900   if (!STI.splitFramePointerPush(MF)) {
901     DPRGapSize += GPRCS2Size;
902   }
903   DPRGapSize %= DPRAlign.value();
904 
905   unsigned DPRCSOffset;
906   if (STI.splitFramePointerPush(MF)) {
907     DPRCSOffset = GPRCS1Offset - DPRGapSize - DPRCSSize;
908     GPRCS2Offset = DPRCSOffset - GPRCS2Size;
909   } else {
910     DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize;
911   }
912   int FramePtrOffsetInPush = 0;
913   if (HasFP) {
914     int FPOffset = MFI.getObjectOffset(FramePtrSpillFI);
915     assert(getMaxFPOffset(STI, *AFI, MF) <= FPOffset &&
916            "Max FP estimation is wrong");
917     FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize + FPCXTSaveSize;
918     AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) +
919                                 NumBytes);
920   }
921   AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
922   AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
923   AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
924 
925   // Move past area 2.
926   if (GPRCS2Size > 0 && !STI.splitFramePointerPush(MF)) {
927     GPRCS2Push = LastPush = MBBI++;
928     DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
929   }
930 
931   // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our
932   // .cfi_offset operations will reflect that.
933   if (DPRGapSize) {
934     assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs");
935     if (LastPush != MBB.end() &&
936         tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize))
937       DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize);
938     else {
939       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize,
940                    MachineInstr::FrameSetup);
941       DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize);
942     }
943   }
944 
945   // Move past area 3.
946   if (DPRCSSize > 0) {
947     // Since vpush register list cannot have gaps, there may be multiple vpush
948     // instructions in the prologue.
949     while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) {
950       DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI));
951       LastPush = MBBI++;
952     }
953   }
954 
955   // Move past the aligned DPRCS2 area.
956   if (AFI->getNumAlignedDPRCS2Regs() > 0) {
957     MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs());
958     // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and
959     // leaves the stack pointer pointing to the DPRCS2 area.
960     //
961     // Adjust NumBytes to represent the stack slots below the DPRCS2 area.
962     NumBytes += MFI.getObjectOffset(D8SpillFI);
963   } else
964     NumBytes = DPRCSOffset;
965 
966   if (GPRCS2Size > 0 && STI.splitFramePointerPush(MF)) {
967     GPRCS2Push = LastPush = MBBI++;
968     DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
969   }
970 
971   bool NeedsWinCFIStackAlloc = NeedsWinCFI;
972   if (STI.splitFramePointerPush(MF) && HasFP)
973     NeedsWinCFIStackAlloc = false;
974 
975   if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) {
976     uint32_t NumWords = NumBytes >> 2;
977 
978     if (NumWords < 65536) {
979       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
980           .addImm(NumWords)
981           .setMIFlags(MachineInstr::FrameSetup)
982           .add(predOps(ARMCC::AL));
983     } else {
984       // Split into two instructions here, instead of using t2MOVi32imm,
985       // to allow inserting accurate SEH instructions (including accurate
986       // instruction size for each of them).
987       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
988           .addImm(NumWords & 0xffff)
989           .setMIFlags(MachineInstr::FrameSetup)
990           .add(predOps(ARMCC::AL));
991       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVTi16), ARM::R4)
992           .addReg(ARM::R4)
993           .addImm(NumWords >> 16)
994           .setMIFlags(MachineInstr::FrameSetup)
995           .add(predOps(ARMCC::AL));
996     }
997 
998     switch (TM.getCodeModel()) {
999     case CodeModel::Tiny:
1000       llvm_unreachable("Tiny code model not available on ARM.");
1001     case CodeModel::Small:
1002     case CodeModel::Medium:
1003     case CodeModel::Kernel:
1004       BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL))
1005           .add(predOps(ARMCC::AL))
1006           .addExternalSymbol("__chkstk")
1007           .addReg(ARM::R4, RegState::Implicit)
1008           .setMIFlags(MachineInstr::FrameSetup);
1009       break;
1010     case CodeModel::Large:
1011       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12)
1012         .addExternalSymbol("__chkstk")
1013         .setMIFlags(MachineInstr::FrameSetup);
1014 
1015       BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr))
1016           .add(predOps(ARMCC::AL))
1017           .addReg(ARM::R12, RegState::Kill)
1018           .addReg(ARM::R4, RegState::Implicit)
1019           .setMIFlags(MachineInstr::FrameSetup);
1020       break;
1021     }
1022 
1023     MachineInstrBuilder Instr, SEH;
1024     Instr = BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP)
1025                 .addReg(ARM::SP, RegState::Kill)
1026                 .addReg(ARM::R4, RegState::Kill)
1027                 .setMIFlags(MachineInstr::FrameSetup)
1028                 .add(predOps(ARMCC::AL))
1029                 .add(condCodeOp());
1030     if (NeedsWinCFIStackAlloc) {
1031       SEH = BuildMI(MF, dl, TII.get(ARM::SEH_StackAlloc))
1032                 .addImm(NumBytes)
1033                 .addImm(/*Wide=*/1)
1034                 .setMIFlags(MachineInstr::FrameSetup);
1035       MBB.insertAfter(Instr, SEH);
1036     }
1037     NumBytes = 0;
1038   }
1039 
1040   if (NumBytes) {
1041     // Adjust SP after all the callee-save spills.
1042     if (AFI->getNumAlignedDPRCS2Regs() == 0 &&
1043         tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes))
1044       DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes);
1045     else {
1046       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
1047                    MachineInstr::FrameSetup);
1048       DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes);
1049     }
1050 
1051     if (HasFP && isARM)
1052       // Restore from fp only in ARM mode: e.g. sub sp, r7, #24
1053       // Note it's not safe to do this in Thumb2 mode because it would have
1054       // taken two instructions:
1055       // mov sp, r7
1056       // sub sp, #24
1057       // If an interrupt is taken between the two instructions, then sp is in
1058       // an inconsistent state (pointing to the middle of callee-saved area).
1059       // The interrupt handler can end up clobbering the registers.
1060       AFI->setShouldRestoreSPFromFP(true);
1061   }
1062 
1063   // Set FP to point to the stack slot that contains the previous FP.
1064   // For iOS, FP is R7, which has now been stored in spill area 1.
1065   // Otherwise, if this is not iOS, all the callee-saved registers go
1066   // into spill area 1, including the FP in R11.  In either case, it
1067   // is in area one and the adjustment needs to take place just after
1068   // that push.
1069   // FIXME: The above is not necessary true when PACBTI is enabled.
1070   // AAPCS requires use of R11, and PACBTI gets in the way of regular pushes,
1071   // so FP ends up on area two.
1072   MachineBasicBlock::iterator AfterPush;
1073   if (HasFP) {
1074     AfterPush = std::next(GPRCS1Push);
1075     unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push);
1076     int FPOffset = PushSize + FramePtrOffsetInPush;
1077     if (STI.splitFramePointerPush(MF)) {
1078       AfterPush = std::next(GPRCS2Push);
1079       emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII,
1080                            FramePtr, ARM::SP, 0, MachineInstr::FrameSetup);
1081     } else {
1082       emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII,
1083                            FramePtr, ARM::SP, FPOffset,
1084                            MachineInstr::FrameSetup);
1085     }
1086     if (!NeedsWinCFI) {
1087       if (FramePtrOffsetInPush + PushSize != 0) {
1088         unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
1089             nullptr, MRI->getDwarfRegNum(FramePtr, true),
1090             FPCXTSaveSize + ArgRegsSaveSize - FramePtrOffsetInPush));
1091         BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1092             .addCFIIndex(CFIIndex)
1093             .setMIFlags(MachineInstr::FrameSetup);
1094       } else {
1095         unsigned CFIIndex =
1096             MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(
1097                 nullptr, MRI->getDwarfRegNum(FramePtr, true)));
1098         BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1099             .addCFIIndex(CFIIndex)
1100             .setMIFlags(MachineInstr::FrameSetup);
1101       }
1102     }
1103   }
1104 
1105   // Emit a SEH opcode indicating the prologue end. The rest of the prologue
1106   // instructions below don't need to be replayed to unwind the stack.
1107   if (NeedsWinCFI && MBBI != MBB.begin()) {
1108     MachineBasicBlock::iterator End = MBBI;
1109     if (HasFP && STI.splitFramePointerPush(MF))
1110       End = AfterPush;
1111     insertSEHRange(MBB, {}, End, TII, MachineInstr::FrameSetup);
1112     BuildMI(MBB, End, dl, TII.get(ARM::SEH_PrologEnd))
1113         .setMIFlag(MachineInstr::FrameSetup);
1114     MF.setHasWinCFI(true);
1115   }
1116 
1117   // Now that the prologue's actual instructions are finalised, we can insert
1118   // the necessary DWARF cf instructions to describe the situation. Start by
1119   // recording where each register ended up:
1120   if (GPRCS1Size > 0 && !NeedsWinCFI) {
1121     MachineBasicBlock::iterator Pos = std::next(GPRCS1Push);
1122     int CFIIndex;
1123     for (const auto &Entry : CSI) {
1124       Register Reg = Entry.getReg();
1125       int FI = Entry.getFrameIdx();
1126       switch (Reg) {
1127       case ARM::R8:
1128       case ARM::R9:
1129       case ARM::R10:
1130       case ARM::R11:
1131       case ARM::R12:
1132         if (STI.splitFramePushPop(MF))
1133           break;
1134         [[fallthrough]];
1135       case ARM::R0:
1136       case ARM::R1:
1137       case ARM::R2:
1138       case ARM::R3:
1139       case ARM::R4:
1140       case ARM::R5:
1141       case ARM::R6:
1142       case ARM::R7:
1143       case ARM::LR:
1144         CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
1145             nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI)));
1146         BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1147             .addCFIIndex(CFIIndex)
1148             .setMIFlags(MachineInstr::FrameSetup);
1149         break;
1150       }
1151     }
1152   }
1153 
1154   if (GPRCS2Size > 0 && !NeedsWinCFI) {
1155     MachineBasicBlock::iterator Pos = std::next(GPRCS2Push);
1156     for (const auto &Entry : CSI) {
1157       Register Reg = Entry.getReg();
1158       int FI = Entry.getFrameIdx();
1159       switch (Reg) {
1160       case ARM::R8:
1161       case ARM::R9:
1162       case ARM::R10:
1163       case ARM::R11:
1164       case ARM::R12:
1165         if (STI.splitFramePushPop(MF)) {
1166           unsigned DwarfReg = MRI->getDwarfRegNum(
1167               Reg == ARM::R12 ? ARM::RA_AUTH_CODE : Reg, true);
1168           unsigned Offset = MFI.getObjectOffset(FI);
1169           unsigned CFIIndex = MF.addFrameInst(
1170               MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
1171           BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1172               .addCFIIndex(CFIIndex)
1173               .setMIFlags(MachineInstr::FrameSetup);
1174         }
1175         break;
1176       }
1177     }
1178   }
1179 
1180   if (DPRCSSize > 0 && !NeedsWinCFI) {
1181     // Since vpush register list cannot have gaps, there may be multiple vpush
1182     // instructions in the prologue.
1183     MachineBasicBlock::iterator Pos = std::next(LastPush);
1184     for (const auto &Entry : CSI) {
1185       Register Reg = Entry.getReg();
1186       int FI = Entry.getFrameIdx();
1187       if ((Reg >= ARM::D0 && Reg <= ARM::D31) &&
1188           (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) {
1189         unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
1190         unsigned Offset = MFI.getObjectOffset(FI);
1191         unsigned CFIIndex = MF.addFrameInst(
1192             MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
1193         BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
1194             .addCFIIndex(CFIIndex)
1195             .setMIFlags(MachineInstr::FrameSetup);
1196       }
1197     }
1198   }
1199 
1200   // Now we can emit descriptions of where the canonical frame address was
1201   // throughout the process. If we have a frame pointer, it takes over the job
1202   // half-way through, so only the first few .cfi_def_cfa_offset instructions
1203   // actually get emitted.
1204   if (!NeedsWinCFI)
1205     DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
1206 
1207   if (STI.isTargetELF() && hasFP(MF))
1208     MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() -
1209                             AFI->getFramePtrSpillOffset());
1210 
1211   AFI->setFPCXTSaveAreaSize(FPCXTSaveSize);
1212   AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
1213   AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
1214   AFI->setDPRCalleeSavedGapSize(DPRGapSize);
1215   AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
1216 
1217   // If we need dynamic stack realignment, do it here. Be paranoid and make
1218   // sure if we also have VLAs, we have a base pointer for frame access.
1219   // If aligned NEON registers were spilled, the stack has already been
1220   // realigned.
1221   if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->hasStackRealignment(MF)) {
1222     Align MaxAlign = MFI.getMaxAlign();
1223     assert(!AFI->isThumb1OnlyFunction());
1224     if (!AFI->isThumbFunction()) {
1225       emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign,
1226                                false);
1227     } else {
1228       // We cannot use sp as source/dest register here, thus we're using r4 to
1229       // perform the calculations. We're emitting the following sequence:
1230       // mov r4, sp
1231       // -- use emitAligningInstructions to produce best sequence to zero
1232       // -- out lower bits in r4
1233       // mov sp, r4
1234       // FIXME: It will be better just to find spare register here.
1235       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4)
1236           .addReg(ARM::SP, RegState::Kill)
1237           .add(predOps(ARMCC::AL));
1238       emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign,
1239                                false);
1240       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1241           .addReg(ARM::R4, RegState::Kill)
1242           .add(predOps(ARMCC::AL));
1243     }
1244 
1245     AFI->setShouldRestoreSPFromFP(true);
1246   }
1247 
1248   // If we need a base pointer, set it up here. It's whatever the value
1249   // of the stack pointer is at this point. Any variable size objects
1250   // will be allocated after this, so we can still use the base pointer
1251   // to reference locals.
1252   // FIXME: Clarify FrameSetup flags here.
1253   if (RegInfo->hasBasePointer(MF)) {
1254     if (isARM)
1255       BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister())
1256           .addReg(ARM::SP)
1257           .add(predOps(ARMCC::AL))
1258           .add(condCodeOp());
1259     else
1260       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister())
1261           .addReg(ARM::SP)
1262           .add(predOps(ARMCC::AL));
1263   }
1264 
1265   // If the frame has variable sized objects then the epilogue must restore
1266   // the sp from fp. We can assume there's an FP here since hasFP already
1267   // checks for hasVarSizedObjects.
1268   if (MFI.hasVarSizedObjects())
1269     AFI->setShouldRestoreSPFromFP(true);
1270 }
1271 
1272 void ARMFrameLowering::emitEpilogue(MachineFunction &MF,
1273                                     MachineBasicBlock &MBB) const {
1274   MachineFrameInfo &MFI = MF.getFrameInfo();
1275   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1276   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
1277   const ARMBaseInstrInfo &TII =
1278       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
1279   assert(!AFI->isThumb1OnlyFunction() &&
1280          "This emitEpilogue does not support Thumb1!");
1281   bool isARM = !AFI->isThumbFunction();
1282 
1283   // Amount of stack space we reserved next to incoming args for either
1284   // varargs registers or stack arguments in tail calls made by this function.
1285   unsigned ReservedArgStack = AFI->getArgRegsSaveSize();
1286 
1287   // How much of the stack used by incoming arguments this function is expected
1288   // to restore in this particular epilogue.
1289   int IncomingArgStackToRestore = getArgumentStackToRestore(MF, MBB);
1290   int NumBytes = (int)MFI.getStackSize();
1291   Register FramePtr = RegInfo->getFrameRegister(MF);
1292 
1293   // All calls are tail calls in GHC calling conv, and functions have no
1294   // prologue/epilogue.
1295   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
1296     return;
1297 
1298   // First put ourselves on the first (from top) terminator instructions.
1299   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1300   DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1301 
1302   MachineBasicBlock::iterator RangeStart;
1303   if (!AFI->hasStackFrame()) {
1304     if (MF.hasWinCFI()) {
1305       BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart))
1306           .setMIFlag(MachineInstr::FrameDestroy);
1307       RangeStart = initMBBRange(MBB, MBBI);
1308     }
1309 
1310     if (NumBytes + IncomingArgStackToRestore != 0)
1311       emitSPUpdate(isARM, MBB, MBBI, dl, TII,
1312                    NumBytes + IncomingArgStackToRestore,
1313                    MachineInstr::FrameDestroy);
1314   } else {
1315     // Unwind MBBI to point to first LDR / VLDRD.
1316     if (MBBI != MBB.begin()) {
1317       do {
1318         --MBBI;
1319       } while (MBBI != MBB.begin() &&
1320                MBBI->getFlag(MachineInstr::FrameDestroy));
1321       if (!MBBI->getFlag(MachineInstr::FrameDestroy))
1322         ++MBBI;
1323     }
1324 
1325     if (MF.hasWinCFI()) {
1326       BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart))
1327           .setMIFlag(MachineInstr::FrameDestroy);
1328       RangeStart = initMBBRange(MBB, MBBI);
1329     }
1330 
1331     // Move SP to start of FP callee save spill area.
1332     NumBytes -= (ReservedArgStack +
1333                  AFI->getFPCXTSaveAreaSize() +
1334                  AFI->getGPRCalleeSavedArea1Size() +
1335                  AFI->getGPRCalleeSavedArea2Size() +
1336                  AFI->getDPRCalleeSavedGapSize() +
1337                  AFI->getDPRCalleeSavedAreaSize());
1338 
1339     // Reset SP based on frame pointer only if the stack frame extends beyond
1340     // frame pointer stack slot or target is ELF and the function has FP.
1341     if (AFI->shouldRestoreSPFromFP()) {
1342       NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
1343       if (NumBytes) {
1344         if (isARM)
1345           emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes,
1346                                   ARMCC::AL, 0, TII,
1347                                   MachineInstr::FrameDestroy);
1348         else {
1349           // It's not possible to restore SP from FP in a single instruction.
1350           // For iOS, this looks like:
1351           // mov sp, r7
1352           // sub sp, #24
1353           // This is bad, if an interrupt is taken after the mov, sp is in an
1354           // inconsistent state.
1355           // Use the first callee-saved register as a scratch register.
1356           assert(!MFI.getPristineRegs(MF).test(ARM::R4) &&
1357                  "No scratch register to restore SP from FP!");
1358           emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes,
1359                                  ARMCC::AL, 0, TII, MachineInstr::FrameDestroy);
1360           BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1361               .addReg(ARM::R4)
1362               .add(predOps(ARMCC::AL))
1363               .setMIFlag(MachineInstr::FrameDestroy);
1364         }
1365       } else {
1366         // Thumb2 or ARM.
1367         if (isARM)
1368           BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP)
1369               .addReg(FramePtr)
1370               .add(predOps(ARMCC::AL))
1371               .add(condCodeOp())
1372               .setMIFlag(MachineInstr::FrameDestroy);
1373         else
1374           BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
1375               .addReg(FramePtr)
1376               .add(predOps(ARMCC::AL))
1377               .setMIFlag(MachineInstr::FrameDestroy);
1378       }
1379     } else if (NumBytes &&
1380                !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes))
1381       emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes,
1382                    MachineInstr::FrameDestroy);
1383 
1384     // Increment past our save areas.
1385     if (AFI->getGPRCalleeSavedArea2Size() && STI.splitFramePointerPush(MF))
1386       MBBI++;
1387 
1388     if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) {
1389       MBBI++;
1390       // Since vpop register list cannot have gaps, there may be multiple vpop
1391       // instructions in the epilogue.
1392       while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD)
1393         MBBI++;
1394     }
1395     if (AFI->getDPRCalleeSavedGapSize()) {
1396       assert(AFI->getDPRCalleeSavedGapSize() == 4 &&
1397              "unexpected DPR alignment gap");
1398       emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(),
1399                    MachineInstr::FrameDestroy);
1400     }
1401 
1402     if (AFI->getGPRCalleeSavedArea2Size() && !STI.splitFramePointerPush(MF))
1403       MBBI++;
1404     if (AFI->getGPRCalleeSavedArea1Size()) MBBI++;
1405 
1406     if (ReservedArgStack || IncomingArgStackToRestore) {
1407       assert((int)ReservedArgStack + IncomingArgStackToRestore >= 0 &&
1408              "attempting to restore negative stack amount");
1409       emitSPUpdate(isARM, MBB, MBBI, dl, TII,
1410                    ReservedArgStack + IncomingArgStackToRestore,
1411                    MachineInstr::FrameDestroy);
1412     }
1413 
1414     // Validate PAC, It should have been already popped into R12. For CMSE entry
1415     // function, the validation instruction is emitted during expansion of the
1416     // tBXNS_RET, since the validation must use the value of SP at function
1417     // entry, before saving, resp. after restoring, FPCXTNS.
1418     if (AFI->shouldSignReturnAddress() && !AFI->isCmseNSEntryFunction())
1419       BuildMI(MBB, MBBI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2AUT));
1420   }
1421 
1422   if (MF.hasWinCFI()) {
1423     insertSEHRange(MBB, RangeStart, MBB.end(), TII, MachineInstr::FrameDestroy);
1424     BuildMI(MBB, MBB.end(), dl, TII.get(ARM::SEH_EpilogEnd))
1425         .setMIFlag(MachineInstr::FrameDestroy);
1426   }
1427 }
1428 
1429 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
1430 /// debug info.  It's the same as what we use for resolving the code-gen
1431 /// references for now.  FIXME: This can go wrong when references are
1432 /// SP-relative and simple call frames aren't used.
1433 StackOffset ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF,
1434                                                      int FI,
1435                                                      Register &FrameReg) const {
1436   return StackOffset::getFixed(ResolveFrameIndexReference(MF, FI, FrameReg, 0));
1437 }
1438 
1439 int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF,
1440                                                  int FI, Register &FrameReg,
1441                                                  int SPAdj) const {
1442   const MachineFrameInfo &MFI = MF.getFrameInfo();
1443   const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
1444       MF.getSubtarget().getRegisterInfo());
1445   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1446   int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize();
1447   int FPOffset = Offset - AFI->getFramePtrSpillOffset();
1448   bool isFixed = MFI.isFixedObjectIndex(FI);
1449 
1450   FrameReg = ARM::SP;
1451   Offset += SPAdj;
1452 
1453   // SP can move around if there are allocas.  We may also lose track of SP
1454   // when emergency spilling inside a non-reserved call frame setup.
1455   bool hasMovingSP = !hasReservedCallFrame(MF);
1456 
1457   // When dynamically realigning the stack, use the frame pointer for
1458   // parameters, and the stack/base pointer for locals.
1459   if (RegInfo->hasStackRealignment(MF)) {
1460     assert(hasFP(MF) && "dynamic stack realignment without a FP!");
1461     if (isFixed) {
1462       FrameReg = RegInfo->getFrameRegister(MF);
1463       Offset = FPOffset;
1464     } else if (hasMovingSP) {
1465       assert(RegInfo->hasBasePointer(MF) &&
1466              "VLAs and dynamic stack alignment, but missing base pointer!");
1467       FrameReg = RegInfo->getBaseRegister();
1468       Offset -= SPAdj;
1469     }
1470     return Offset;
1471   }
1472 
1473   // If there is a frame pointer, use it when we can.
1474   if (hasFP(MF) && AFI->hasStackFrame()) {
1475     // Use frame pointer to reference fixed objects. Use it for locals if
1476     // there are VLAs (and thus the SP isn't reliable as a base).
1477     if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) {
1478       FrameReg = RegInfo->getFrameRegister(MF);
1479       return FPOffset;
1480     } else if (hasMovingSP) {
1481       assert(RegInfo->hasBasePointer(MF) && "missing base pointer!");
1482       if (AFI->isThumb2Function()) {
1483         // Try to use the frame pointer if we can, else use the base pointer
1484         // since it's available. This is handy for the emergency spill slot, in
1485         // particular.
1486         if (FPOffset >= -255 && FPOffset < 0) {
1487           FrameReg = RegInfo->getFrameRegister(MF);
1488           return FPOffset;
1489         }
1490       }
1491     } else if (AFI->isThumbFunction()) {
1492       // Prefer SP to base pointer, if the offset is suitably aligned and in
1493       // range as the effective range of the immediate offset is bigger when
1494       // basing off SP.
1495       // Use  add <rd>, sp, #<imm8>
1496       //      ldr <rd>, [sp, #<imm8>]
1497       if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020)
1498         return Offset;
1499       // In Thumb2 mode, the negative offset is very limited. Try to avoid
1500       // out of range references. ldr <rt>,[<rn>, #-<imm8>]
1501       if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) {
1502         FrameReg = RegInfo->getFrameRegister(MF);
1503         return FPOffset;
1504       }
1505     } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) {
1506       // Otherwise, use SP or FP, whichever is closer to the stack slot.
1507       FrameReg = RegInfo->getFrameRegister(MF);
1508       return FPOffset;
1509     }
1510   }
1511   // Use the base pointer if we have one.
1512   // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper?
1513   // That can happen if we forced a base pointer for a large call frame.
1514   if (RegInfo->hasBasePointer(MF)) {
1515     FrameReg = RegInfo->getBaseRegister();
1516     Offset -= SPAdj;
1517   }
1518   return Offset;
1519 }
1520 
1521 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB,
1522                                     MachineBasicBlock::iterator MI,
1523                                     ArrayRef<CalleeSavedInfo> CSI,
1524                                     unsigned StmOpc, unsigned StrOpc,
1525                                     bool NoGap, bool (*Func)(unsigned, bool),
1526                                     unsigned NumAlignedDPRCS2Regs,
1527                                     unsigned MIFlags) const {
1528   MachineFunction &MF = *MBB.getParent();
1529   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1530   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1531 
1532   DebugLoc DL;
1533 
1534   using RegAndKill = std::pair<unsigned, bool>;
1535 
1536   SmallVector<RegAndKill, 4> Regs;
1537   unsigned i = CSI.size();
1538   while (i != 0) {
1539     unsigned LastReg = 0;
1540     for (; i != 0; --i) {
1541       Register Reg = CSI[i-1].getReg();
1542       if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
1543 
1544       // D-registers in the aligned area DPRCS2 are NOT spilled here.
1545       if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
1546         continue;
1547 
1548       const MachineRegisterInfo &MRI = MF.getRegInfo();
1549       bool isLiveIn = MRI.isLiveIn(Reg);
1550       if (!isLiveIn && !MRI.isReserved(Reg))
1551         MBB.addLiveIn(Reg);
1552       // If NoGap is true, push consecutive registers and then leave the rest
1553       // for other instructions. e.g.
1554       // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11}
1555       if (NoGap && LastReg && LastReg != Reg-1)
1556         break;
1557       LastReg = Reg;
1558       // Do not set a kill flag on values that are also marked as live-in. This
1559       // happens with the @llvm-returnaddress intrinsic and with arguments
1560       // passed in callee saved registers.
1561       // Omitting the kill flags is conservatively correct even if the live-in
1562       // is not used after all.
1563       Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn));
1564     }
1565 
1566     if (Regs.empty())
1567       continue;
1568 
1569     llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) {
1570       return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first);
1571     });
1572 
1573     if (Regs.size() > 1 || StrOpc== 0) {
1574       MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP)
1575                                     .addReg(ARM::SP)
1576                                     .setMIFlags(MIFlags)
1577                                     .add(predOps(ARMCC::AL));
1578       for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1579         MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second));
1580     } else if (Regs.size() == 1) {
1581       BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP)
1582           .addReg(Regs[0].first, getKillRegState(Regs[0].second))
1583           .addReg(ARM::SP)
1584           .setMIFlags(MIFlags)
1585           .addImm(-4)
1586           .add(predOps(ARMCC::AL));
1587     }
1588     Regs.clear();
1589 
1590     // Put any subsequent vpush instructions before this one: they will refer to
1591     // higher register numbers so need to be pushed first in order to preserve
1592     // monotonicity.
1593     if (MI != MBB.begin())
1594       --MI;
1595   }
1596 }
1597 
1598 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB,
1599                                    MachineBasicBlock::iterator MI,
1600                                    MutableArrayRef<CalleeSavedInfo> CSI,
1601                                    unsigned LdmOpc, unsigned LdrOpc,
1602                                    bool isVarArg, bool NoGap,
1603                                    bool (*Func)(unsigned, bool),
1604                                    unsigned NumAlignedDPRCS2Regs) const {
1605   MachineFunction &MF = *MBB.getParent();
1606   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1607   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1608   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1609   bool hasPAC = AFI->shouldSignReturnAddress();
1610   DebugLoc DL;
1611   bool isTailCall = false;
1612   bool isInterrupt = false;
1613   bool isTrap = false;
1614   bool isCmseEntry = false;
1615   if (MBB.end() != MI) {
1616     DL = MI->getDebugLoc();
1617     unsigned RetOpcode = MI->getOpcode();
1618     isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri);
1619     isInterrupt =
1620         RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR;
1621     isTrap =
1622         RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl ||
1623         RetOpcode == ARM::tTRAP;
1624     isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET);
1625   }
1626 
1627   SmallVector<unsigned, 4> Regs;
1628   unsigned i = CSI.size();
1629   while (i != 0) {
1630     unsigned LastReg = 0;
1631     bool DeleteRet = false;
1632     for (; i != 0; --i) {
1633       CalleeSavedInfo &Info = CSI[i-1];
1634       Register Reg = Info.getReg();
1635       if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
1636 
1637       // The aligned reloads from area DPRCS2 are not inserted here.
1638       if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
1639         continue;
1640       if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt &&
1641           !isCmseEntry && !isTrap && AFI->getArgumentStackToRestore() == 0 &&
1642           STI.hasV5TOps() && MBB.succ_empty() && !hasPAC &&
1643           !STI.splitFramePointerPush(MF)) {
1644         Reg = ARM::PC;
1645         // Fold the return instruction into the LDM.
1646         DeleteRet = true;
1647         LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET;
1648       }
1649 
1650       // If NoGap is true, pop consecutive registers and then leave the rest
1651       // for other instructions. e.g.
1652       // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11}
1653       if (NoGap && LastReg && LastReg != Reg-1)
1654         break;
1655 
1656       LastReg = Reg;
1657       Regs.push_back(Reg);
1658     }
1659 
1660     if (Regs.empty())
1661       continue;
1662 
1663     llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) {
1664       return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS);
1665     });
1666 
1667     if (Regs.size() > 1 || LdrOpc == 0) {
1668       MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP)
1669                                     .addReg(ARM::SP)
1670                                     .add(predOps(ARMCC::AL))
1671                                     .setMIFlags(MachineInstr::FrameDestroy);
1672       for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1673         MIB.addReg(Regs[i], getDefRegState(true));
1674       if (DeleteRet) {
1675         if (MI != MBB.end()) {
1676           MIB.copyImplicitOps(*MI);
1677           MI->eraseFromParent();
1678         }
1679       }
1680       MI = MIB;
1681     } else if (Regs.size() == 1) {
1682       // If we adjusted the reg to PC from LR above, switch it back here. We
1683       // only do that for LDM.
1684       if (Regs[0] == ARM::PC)
1685         Regs[0] = ARM::LR;
1686       MachineInstrBuilder MIB =
1687         BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0])
1688           .addReg(ARM::SP, RegState::Define)
1689           .addReg(ARM::SP)
1690           .setMIFlags(MachineInstr::FrameDestroy);
1691       // ARM mode needs an extra reg0 here due to addrmode2. Will go away once
1692       // that refactoring is complete (eventually).
1693       if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) {
1694         MIB.addReg(0);
1695         MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift));
1696       } else
1697         MIB.addImm(4);
1698       MIB.add(predOps(ARMCC::AL));
1699     }
1700     Regs.clear();
1701 
1702     // Put any subsequent vpop instructions after this one: they will refer to
1703     // higher register numbers so need to be popped afterwards.
1704     if (MI != MBB.end())
1705       ++MI;
1706   }
1707 }
1708 
1709 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers
1710 /// starting from d8.  Also insert stack realignment code and leave the stack
1711 /// pointer pointing to the d8 spill slot.
1712 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB,
1713                                     MachineBasicBlock::iterator MI,
1714                                     unsigned NumAlignedDPRCS2Regs,
1715                                     ArrayRef<CalleeSavedInfo> CSI,
1716                                     const TargetRegisterInfo *TRI) {
1717   MachineFunction &MF = *MBB.getParent();
1718   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1719   DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1720   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1721   MachineFrameInfo &MFI = MF.getFrameInfo();
1722 
1723   // Mark the D-register spill slots as properly aligned.  Since MFI computes
1724   // stack slot layout backwards, this can actually mean that the d-reg stack
1725   // slot offsets can be wrong. The offset for d8 will always be correct.
1726   for (const CalleeSavedInfo &I : CSI) {
1727     unsigned DNum = I.getReg() - ARM::D8;
1728     if (DNum > NumAlignedDPRCS2Regs - 1)
1729       continue;
1730     int FI = I.getFrameIdx();
1731     // The even-numbered registers will be 16-byte aligned, the odd-numbered
1732     // registers will be 8-byte aligned.
1733     MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16));
1734 
1735     // The stack slot for D8 needs to be maximally aligned because this is
1736     // actually the point where we align the stack pointer.  MachineFrameInfo
1737     // computes all offsets relative to the incoming stack pointer which is a
1738     // bit weird when realigning the stack.  Any extra padding for this
1739     // over-alignment is not realized because the code inserted below adjusts
1740     // the stack pointer by numregs * 8 before aligning the stack pointer.
1741     if (DNum == 0)
1742       MFI.setObjectAlignment(FI, MFI.getMaxAlign());
1743   }
1744 
1745   // Move the stack pointer to the d8 spill slot, and align it at the same
1746   // time. Leave the stack slot address in the scratch register r4.
1747   //
1748   //   sub r4, sp, #numregs * 8
1749   //   bic r4, r4, #align - 1
1750   //   mov sp, r4
1751   //
1752   bool isThumb = AFI->isThumbFunction();
1753   assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1754   AFI->setShouldRestoreSPFromFP(true);
1755 
1756   // sub r4, sp, #numregs * 8
1757   // The immediate is <= 64, so it doesn't need any special encoding.
1758   unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri;
1759   BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1760       .addReg(ARM::SP)
1761       .addImm(8 * NumAlignedDPRCS2Regs)
1762       .add(predOps(ARMCC::AL))
1763       .add(condCodeOp());
1764 
1765   Align MaxAlign = MF.getFrameInfo().getMaxAlign();
1766   // We must set parameter MustBeSingleInstruction to true, since
1767   // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform
1768   // stack alignment.  Luckily, this can always be done since all ARM
1769   // architecture versions that support Neon also support the BFC
1770   // instruction.
1771   emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true);
1772 
1773   // mov sp, r4
1774   // The stack pointer must be adjusted before spilling anything, otherwise
1775   // the stack slots could be clobbered by an interrupt handler.
1776   // Leave r4 live, it is used below.
1777   Opc = isThumb ? ARM::tMOVr : ARM::MOVr;
1778   MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP)
1779                                 .addReg(ARM::R4)
1780                                 .add(predOps(ARMCC::AL));
1781   if (!isThumb)
1782     MIB.add(condCodeOp());
1783 
1784   // Now spill NumAlignedDPRCS2Regs registers starting from d8.
1785   // r4 holds the stack slot address.
1786   unsigned NextReg = ARM::D8;
1787 
1788   // 16-byte aligned vst1.64 with 4 d-regs and address writeback.
1789   // The writeback is only needed when emitting two vst1.64 instructions.
1790   if (NumAlignedDPRCS2Regs >= 6) {
1791     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1792                                                &ARM::QQPRRegClass);
1793     MBB.addLiveIn(SupReg);
1794     BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4)
1795         .addReg(ARM::R4, RegState::Kill)
1796         .addImm(16)
1797         .addReg(NextReg)
1798         .addReg(SupReg, RegState::ImplicitKill)
1799         .add(predOps(ARMCC::AL));
1800     NextReg += 4;
1801     NumAlignedDPRCS2Regs -= 4;
1802   }
1803 
1804   // We won't modify r4 beyond this point.  It currently points to the next
1805   // register to be spilled.
1806   unsigned R4BaseReg = NextReg;
1807 
1808   // 16-byte aligned vst1.64 with 4 d-regs, no writeback.
1809   if (NumAlignedDPRCS2Regs >= 4) {
1810     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1811                                                &ARM::QQPRRegClass);
1812     MBB.addLiveIn(SupReg);
1813     BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q))
1814         .addReg(ARM::R4)
1815         .addImm(16)
1816         .addReg(NextReg)
1817         .addReg(SupReg, RegState::ImplicitKill)
1818         .add(predOps(ARMCC::AL));
1819     NextReg += 4;
1820     NumAlignedDPRCS2Regs -= 4;
1821   }
1822 
1823   // 16-byte aligned vst1.64 with 2 d-regs.
1824   if (NumAlignedDPRCS2Regs >= 2) {
1825     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1826                                                &ARM::QPRRegClass);
1827     MBB.addLiveIn(SupReg);
1828     BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64))
1829         .addReg(ARM::R4)
1830         .addImm(16)
1831         .addReg(SupReg)
1832         .add(predOps(ARMCC::AL));
1833     NextReg += 2;
1834     NumAlignedDPRCS2Regs -= 2;
1835   }
1836 
1837   // Finally, use a vanilla vstr.64 for the odd last register.
1838   if (NumAlignedDPRCS2Regs) {
1839     MBB.addLiveIn(NextReg);
1840     // vstr.64 uses addrmode5 which has an offset scale of 4.
1841     BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD))
1842         .addReg(NextReg)
1843         .addReg(ARM::R4)
1844         .addImm((NextReg - R4BaseReg) * 2)
1845         .add(predOps(ARMCC::AL));
1846   }
1847 
1848   // The last spill instruction inserted should kill the scratch register r4.
1849   std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1850 }
1851 
1852 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an
1853 /// iterator to the following instruction.
1854 static MachineBasicBlock::iterator
1855 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
1856                         unsigned NumAlignedDPRCS2Regs) {
1857   //   sub r4, sp, #numregs * 8
1858   //   bic r4, r4, #align - 1
1859   //   mov sp, r4
1860   ++MI; ++MI; ++MI;
1861   assert(MI->mayStore() && "Expecting spill instruction");
1862 
1863   // These switches all fall through.
1864   switch(NumAlignedDPRCS2Regs) {
1865   case 7:
1866     ++MI;
1867     assert(MI->mayStore() && "Expecting spill instruction");
1868     [[fallthrough]];
1869   default:
1870     ++MI;
1871     assert(MI->mayStore() && "Expecting spill instruction");
1872     [[fallthrough]];
1873   case 1:
1874   case 2:
1875   case 4:
1876     assert(MI->killsRegister(ARM::R4) && "Missed kill flag");
1877     ++MI;
1878   }
1879   return MI;
1880 }
1881 
1882 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers
1883 /// starting from d8.  These instructions are assumed to execute while the
1884 /// stack is still aligned, unlike the code inserted by emitPopInst.
1885 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB,
1886                                       MachineBasicBlock::iterator MI,
1887                                       unsigned NumAlignedDPRCS2Regs,
1888                                       ArrayRef<CalleeSavedInfo> CSI,
1889                                       const TargetRegisterInfo *TRI) {
1890   MachineFunction &MF = *MBB.getParent();
1891   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1892   DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1893   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1894 
1895   // Find the frame index assigned to d8.
1896   int D8SpillFI = 0;
1897   for (const CalleeSavedInfo &I : CSI)
1898     if (I.getReg() == ARM::D8) {
1899       D8SpillFI = I.getFrameIdx();
1900       break;
1901     }
1902 
1903   // Materialize the address of the d8 spill slot into the scratch register r4.
1904   // This can be fairly complicated if the stack frame is large, so just use
1905   // the normal frame index elimination mechanism to do it.  This code runs as
1906   // the initial part of the epilog where the stack and base pointers haven't
1907   // been changed yet.
1908   bool isThumb = AFI->isThumbFunction();
1909   assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1910 
1911   unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
1912   BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1913       .addFrameIndex(D8SpillFI)
1914       .addImm(0)
1915       .add(predOps(ARMCC::AL))
1916       .add(condCodeOp());
1917 
1918   // Now restore NumAlignedDPRCS2Regs registers starting from d8.
1919   unsigned NextReg = ARM::D8;
1920 
1921   // 16-byte aligned vld1.64 with 4 d-regs and writeback.
1922   if (NumAlignedDPRCS2Regs >= 6) {
1923     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1924                                                &ARM::QQPRRegClass);
1925     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg)
1926         .addReg(ARM::R4, RegState::Define)
1927         .addReg(ARM::R4, RegState::Kill)
1928         .addImm(16)
1929         .addReg(SupReg, RegState::ImplicitDefine)
1930         .add(predOps(ARMCC::AL));
1931     NextReg += 4;
1932     NumAlignedDPRCS2Regs -= 4;
1933   }
1934 
1935   // We won't modify r4 beyond this point.  It currently points to the next
1936   // register to be spilled.
1937   unsigned R4BaseReg = NextReg;
1938 
1939   // 16-byte aligned vld1.64 with 4 d-regs, no writeback.
1940   if (NumAlignedDPRCS2Regs >= 4) {
1941     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1942                                                &ARM::QQPRRegClass);
1943     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg)
1944         .addReg(ARM::R4)
1945         .addImm(16)
1946         .addReg(SupReg, RegState::ImplicitDefine)
1947         .add(predOps(ARMCC::AL));
1948     NextReg += 4;
1949     NumAlignedDPRCS2Regs -= 4;
1950   }
1951 
1952   // 16-byte aligned vld1.64 with 2 d-regs.
1953   if (NumAlignedDPRCS2Regs >= 2) {
1954     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1955                                                &ARM::QPRRegClass);
1956     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg)
1957         .addReg(ARM::R4)
1958         .addImm(16)
1959         .add(predOps(ARMCC::AL));
1960     NextReg += 2;
1961     NumAlignedDPRCS2Regs -= 2;
1962   }
1963 
1964   // Finally, use a vanilla vldr.64 for the remaining odd register.
1965   if (NumAlignedDPRCS2Regs)
1966     BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg)
1967         .addReg(ARM::R4)
1968         .addImm(2 * (NextReg - R4BaseReg))
1969         .add(predOps(ARMCC::AL));
1970 
1971   // Last store kills r4.
1972   std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1973 }
1974 
1975 bool ARMFrameLowering::spillCalleeSavedRegisters(
1976     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1977     ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
1978   if (CSI.empty())
1979     return false;
1980 
1981   MachineFunction &MF = *MBB.getParent();
1982   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1983 
1984   unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD;
1985   unsigned PushOneOpc = AFI->isThumbFunction() ?
1986     ARM::t2STR_PRE : ARM::STR_PRE_IMM;
1987   unsigned FltOpc = ARM::VSTMDDB_UPD;
1988   unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1989   // Compute PAC in R12.
1990   if (AFI->shouldSignReturnAddress()) {
1991     BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2PAC))
1992         .setMIFlags(MachineInstr::FrameSetup);
1993   }
1994   // Save the non-secure floating point context.
1995   if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) {
1996         return C.getReg() == ARM::FPCXTNS;
1997       })) {
1998     BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre),
1999             ARM::SP)
2000         .addReg(ARM::SP)
2001         .addImm(-4)
2002         .add(predOps(ARMCC::AL));
2003   }
2004   if (STI.splitFramePointerPush(MF)) {
2005     emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false,
2006                  &isSplitFPArea1Register, 0, MachineInstr::FrameSetup);
2007     emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
2008                  NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
2009     emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false,
2010                  &isSplitFPArea2Register, 0, MachineInstr::FrameSetup);
2011   } else {
2012     emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register,
2013                  0, MachineInstr::FrameSetup);
2014     emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register,
2015                  0, MachineInstr::FrameSetup);
2016     emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
2017                  NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
2018   }
2019 
2020   // The code above does not insert spill code for the aligned DPRCS2 registers.
2021   // The stack realignment code will be inserted between the push instructions
2022   // and these spills.
2023   if (NumAlignedDPRCS2Regs)
2024     emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
2025 
2026   return true;
2027 }
2028 
2029 bool ARMFrameLowering::restoreCalleeSavedRegisters(
2030     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2031     MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
2032   if (CSI.empty())
2033     return false;
2034 
2035   MachineFunction &MF = *MBB.getParent();
2036   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2037   bool isVarArg = AFI->getArgRegsSaveSize() > 0;
2038   unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
2039 
2040   // The emitPopInst calls below do not insert reloads for the aligned DPRCS2
2041   // registers. Do that here instead.
2042   if (NumAlignedDPRCS2Regs)
2043     emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
2044 
2045   unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
2046   unsigned LdrOpc =
2047       AFI->isThumbFunction() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
2048   unsigned FltOpc = ARM::VLDMDIA_UPD;
2049   if (STI.splitFramePointerPush(MF)) {
2050     emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
2051                 &isSplitFPArea2Register, 0);
2052     emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
2053                 NumAlignedDPRCS2Regs);
2054     emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
2055                 &isSplitFPArea1Register, 0);
2056   } else {
2057     emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
2058                 NumAlignedDPRCS2Regs);
2059     emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
2060                 &isARMArea2Register, 0);
2061     emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
2062                 &isARMArea1Register, 0);
2063   }
2064 
2065   return true;
2066 }
2067 
2068 // FIXME: Make generic?
2069 static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF,
2070                                             const ARMBaseInstrInfo &TII) {
2071   unsigned FnSize = 0;
2072   for (auto &MBB : MF) {
2073     for (auto &MI : MBB)
2074       FnSize += TII.getInstSizeInBytes(MI);
2075   }
2076   if (MF.getJumpTableInfo())
2077     for (auto &Table: MF.getJumpTableInfo()->getJumpTables())
2078       FnSize += Table.MBBs.size() * 4;
2079   FnSize += MF.getConstantPool()->getConstants().size() * 4;
2080   return FnSize;
2081 }
2082 
2083 /// estimateRSStackSizeLimit - Look at each instruction that references stack
2084 /// frames and return the stack size limit beyond which some of these
2085 /// instructions will require a scratch register during their expansion later.
2086 // FIXME: Move to TII?
2087 static unsigned estimateRSStackSizeLimit(MachineFunction &MF,
2088                                          const TargetFrameLowering *TFI,
2089                                          bool &HasNonSPFrameIndex) {
2090   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2091   const ARMBaseInstrInfo &TII =
2092       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2093   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2094   unsigned Limit = (1 << 12) - 1;
2095   for (auto &MBB : MF) {
2096     for (auto &MI : MBB) {
2097       if (MI.isDebugInstr())
2098         continue;
2099       for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
2100         if (!MI.getOperand(i).isFI())
2101           continue;
2102 
2103         // When using ADDri to get the address of a stack object, 255 is the
2104         // largest offset guaranteed to fit in the immediate offset.
2105         if (MI.getOpcode() == ARM::ADDri) {
2106           Limit = std::min(Limit, (1U << 8) - 1);
2107           break;
2108         }
2109         // t2ADDri will not require an extra register, it can reuse the
2110         // destination.
2111         if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12)
2112           break;
2113 
2114         const MCInstrDesc &MCID = MI.getDesc();
2115         const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF);
2116         if (RegClass && !RegClass->contains(ARM::SP))
2117           HasNonSPFrameIndex = true;
2118 
2119         // Otherwise check the addressing mode.
2120         switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) {
2121         case ARMII::AddrMode_i12:
2122         case ARMII::AddrMode2:
2123           // Default 12 bit limit.
2124           break;
2125         case ARMII::AddrMode3:
2126         case ARMII::AddrModeT2_i8neg:
2127           Limit = std::min(Limit, (1U << 8) - 1);
2128           break;
2129         case ARMII::AddrMode5FP16:
2130           Limit = std::min(Limit, ((1U << 8) - 1) * 2);
2131           break;
2132         case ARMII::AddrMode5:
2133         case ARMII::AddrModeT2_i8s4:
2134         case ARMII::AddrModeT2_ldrex:
2135           Limit = std::min(Limit, ((1U << 8) - 1) * 4);
2136           break;
2137         case ARMII::AddrModeT2_i12:
2138           // i12 supports only positive offset so these will be converted to
2139           // i8 opcodes. See llvm::rewriteT2FrameIndex.
2140           if (TFI->hasFP(MF) && AFI->hasStackFrame())
2141             Limit = std::min(Limit, (1U << 8) - 1);
2142           break;
2143         case ARMII::AddrMode4:
2144         case ARMII::AddrMode6:
2145           // Addressing modes 4 & 6 (load/store) instructions can't encode an
2146           // immediate offset for stack references.
2147           return 0;
2148         case ARMII::AddrModeT2_i7:
2149           Limit = std::min(Limit, ((1U << 7) - 1) * 1);
2150           break;
2151         case ARMII::AddrModeT2_i7s2:
2152           Limit = std::min(Limit, ((1U << 7) - 1) * 2);
2153           break;
2154         case ARMII::AddrModeT2_i7s4:
2155           Limit = std::min(Limit, ((1U << 7) - 1) * 4);
2156           break;
2157         default:
2158           llvm_unreachable("Unhandled addressing mode in stack size limit calculation");
2159         }
2160         break; // At most one FI per instruction
2161       }
2162     }
2163   }
2164 
2165   return Limit;
2166 }
2167 
2168 // In functions that realign the stack, it can be an advantage to spill the
2169 // callee-saved vector registers after realigning the stack. The vst1 and vld1
2170 // instructions take alignment hints that can improve performance.
2171 static void
2172 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) {
2173   MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0);
2174   if (!SpillAlignedNEONRegs)
2175     return;
2176 
2177   // Naked functions don't spill callee-saved registers.
2178   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
2179     return;
2180 
2181   // We are planning to use NEON instructions vst1 / vld1.
2182   if (!MF.getSubtarget<ARMSubtarget>().hasNEON())
2183     return;
2184 
2185   // Don't bother if the default stack alignment is sufficiently high.
2186   if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8))
2187     return;
2188 
2189   // Aligned spills require stack realignment.
2190   if (!static_cast<const ARMBaseRegisterInfo *>(
2191            MF.getSubtarget().getRegisterInfo())->canRealignStack(MF))
2192     return;
2193 
2194   // We always spill contiguous d-registers starting from d8. Count how many
2195   // needs spilling.  The register allocator will almost always use the
2196   // callee-saved registers in order, but it can happen that there are holes in
2197   // the range.  Registers above the hole will be spilled to the standard DPRCS
2198   // area.
2199   unsigned NumSpills = 0;
2200   for (; NumSpills < 8; ++NumSpills)
2201     if (!SavedRegs.test(ARM::D8 + NumSpills))
2202       break;
2203 
2204   // Don't do this for just one d-register. It's not worth it.
2205   if (NumSpills < 2)
2206     return;
2207 
2208   // Spill the first NumSpills D-registers after realigning the stack.
2209   MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills);
2210 
2211   // A scratch register is required for the vst1 / vld1 instructions.
2212   SavedRegs.set(ARM::R4);
2213 }
2214 
2215 bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
2216   // For CMSE entry functions, we want to save the FPCXT_NS immediately
2217   // upon function entry (resp. restore it immmediately before return)
2218   if (STI.hasV8_1MMainlineOps() &&
2219       MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction())
2220     return false;
2221 
2222   // We are disabling shrinkwrapping for now when PAC is enabled, as
2223   // shrinkwrapping can cause clobbering of r12 when the PAC code is
2224   // generated. A follow-up patch will fix this in a more performant manner.
2225   if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress(
2226           true /* SpillsLR */))
2227     return false;
2228 
2229   return true;
2230 }
2231 
2232 static bool requiresAAPCSFrameRecord(const MachineFunction &MF) {
2233   const auto &Subtarget = MF.getSubtarget<ARMSubtarget>();
2234   return Subtarget.createAAPCSFrameChainLeaf() ||
2235          (Subtarget.createAAPCSFrameChain() && MF.getFrameInfo().hasCalls());
2236 }
2237 
2238 // Thumb1 may require a spill when storing to a frame index through FP (or any
2239 // access with execute-only), for cases where FP is a high register (R11). This
2240 // scans the function for cases where this may happen.
2241 static bool canSpillOnFrameIndexAccess(const MachineFunction &MF,
2242                                        const TargetFrameLowering &TFI) {
2243   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2244   if (!AFI->isThumb1OnlyFunction())
2245     return false;
2246 
2247   const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
2248   for (const auto &MBB : MF)
2249     for (const auto &MI : MBB)
2250       if (MI.getOpcode() == ARM::tSTRspi || MI.getOpcode() == ARM::tSTRi ||
2251           STI.genExecuteOnly())
2252         for (const auto &Op : MI.operands())
2253           if (Op.isFI()) {
2254             Register Reg;
2255             TFI.getFrameIndexReference(MF, Op.getIndex(), Reg);
2256             if (ARM::hGPRRegClass.contains(Reg) && Reg != ARM::SP)
2257               return true;
2258           }
2259   return false;
2260 }
2261 
2262 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF,
2263                                             BitVector &SavedRegs,
2264                                             RegScavenger *RS) const {
2265   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2266   // This tells PEI to spill the FP as if it is any other callee-save register
2267   // to take advantage the eliminateFrameIndex machinery. This also ensures it
2268   // is spilled in the order specified by getCalleeSavedRegs() to make it easier
2269   // to combine multiple loads / stores.
2270   bool CanEliminateFrame = !(requiresAAPCSFrameRecord(MF) && hasFP(MF));
2271   bool CS1Spilled = false;
2272   bool LRSpilled = false;
2273   unsigned NumGPRSpills = 0;
2274   unsigned NumFPRSpills = 0;
2275   SmallVector<unsigned, 4> UnspilledCS1GPRs;
2276   SmallVector<unsigned, 4> UnspilledCS2GPRs;
2277   const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
2278       MF.getSubtarget().getRegisterInfo());
2279   const ARMBaseInstrInfo &TII =
2280       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2281   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2282   MachineFrameInfo &MFI = MF.getFrameInfo();
2283   MachineRegisterInfo &MRI = MF.getRegInfo();
2284   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2285   (void)TRI;  // Silence unused warning in non-assert builds.
2286   Register FramePtr = RegInfo->getFrameRegister(MF);
2287 
2288   // Spill R4 if Thumb2 function requires stack realignment - it will be used as
2289   // scratch register. Also spill R4 if Thumb2 function has varsized objects,
2290   // since it's not always possible to restore sp from fp in a single
2291   // instruction.
2292   // FIXME: It will be better just to find spare register here.
2293   if (AFI->isThumb2Function() &&
2294       (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF)))
2295     SavedRegs.set(ARM::R4);
2296 
2297   // If a stack probe will be emitted, spill R4 and LR, since they are
2298   // clobbered by the stack probe call.
2299   // This estimate should be a safe, conservative estimate. The actual
2300   // stack probe is enabled based on the size of the local objects;
2301   // this estimate also includes the varargs store size.
2302   if (STI.isTargetWindows() &&
2303       WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) {
2304     SavedRegs.set(ARM::R4);
2305     SavedRegs.set(ARM::LR);
2306   }
2307 
2308   if (AFI->isThumb1OnlyFunction()) {
2309     // Spill LR if Thumb1 function uses variable length argument lists.
2310     if (AFI->getArgRegsSaveSize() > 0)
2311       SavedRegs.set(ARM::LR);
2312 
2313     // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function
2314     // requires stack alignment.  We don't know for sure what the stack size
2315     // will be, but for this, an estimate is good enough. If there anything
2316     // changes it, it'll be a spill, which implies we've used all the registers
2317     // and so R4 is already used, so not marking it here will be OK.
2318     // FIXME: It will be better just to find spare register here.
2319     if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF) ||
2320         MFI.estimateStackSize(MF) > 508)
2321       SavedRegs.set(ARM::R4);
2322   }
2323 
2324   // See if we can spill vector registers to aligned stack.
2325   checkNumAlignedDPRCS2Regs(MF, SavedRegs);
2326 
2327   // Spill the BasePtr if it's used.
2328   if (RegInfo->hasBasePointer(MF))
2329     SavedRegs.set(RegInfo->getBaseRegister());
2330 
2331   // On v8.1-M.Main CMSE entry functions save/restore FPCXT.
2332   if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction())
2333     CanEliminateFrame = false;
2334 
2335   // When return address signing is enabled R12 is treated as callee-saved.
2336   if (AFI->shouldSignReturnAddress())
2337     CanEliminateFrame = false;
2338 
2339   // Don't spill FP if the frame can be eliminated. This is determined
2340   // by scanning the callee-save registers to see if any is modified.
2341   const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
2342   for (unsigned i = 0; CSRegs[i]; ++i) {
2343     unsigned Reg = CSRegs[i];
2344     bool Spilled = false;
2345     if (SavedRegs.test(Reg)) {
2346       Spilled = true;
2347       CanEliminateFrame = false;
2348     }
2349 
2350     if (!ARM::GPRRegClass.contains(Reg)) {
2351       if (Spilled) {
2352         if (ARM::SPRRegClass.contains(Reg))
2353           NumFPRSpills++;
2354         else if (ARM::DPRRegClass.contains(Reg))
2355           NumFPRSpills += 2;
2356         else if (ARM::QPRRegClass.contains(Reg))
2357           NumFPRSpills += 4;
2358       }
2359       continue;
2360     }
2361 
2362     if (Spilled) {
2363       NumGPRSpills++;
2364 
2365       if (!STI.splitFramePushPop(MF)) {
2366         if (Reg == ARM::LR)
2367           LRSpilled = true;
2368         CS1Spilled = true;
2369         continue;
2370       }
2371 
2372       // Keep track if LR and any of R4, R5, R6, and R7 is spilled.
2373       switch (Reg) {
2374       case ARM::LR:
2375         LRSpilled = true;
2376         [[fallthrough]];
2377       case ARM::R0: case ARM::R1:
2378       case ARM::R2: case ARM::R3:
2379       case ARM::R4: case ARM::R5:
2380       case ARM::R6: case ARM::R7:
2381         CS1Spilled = true;
2382         break;
2383       default:
2384         break;
2385       }
2386     } else {
2387       if (!STI.splitFramePushPop(MF)) {
2388         UnspilledCS1GPRs.push_back(Reg);
2389         continue;
2390       }
2391 
2392       switch (Reg) {
2393       case ARM::R0: case ARM::R1:
2394       case ARM::R2: case ARM::R3:
2395       case ARM::R4: case ARM::R5:
2396       case ARM::R6: case ARM::R7:
2397       case ARM::LR:
2398         UnspilledCS1GPRs.push_back(Reg);
2399         break;
2400       default:
2401         UnspilledCS2GPRs.push_back(Reg);
2402         break;
2403       }
2404     }
2405   }
2406 
2407   bool ForceLRSpill = false;
2408   if (!LRSpilled && AFI->isThumb1OnlyFunction()) {
2409     unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII);
2410     // Force LR to be spilled if the Thumb function size is > 2048. This enables
2411     // use of BL to implement far jump.
2412     if (FnSize >= (1 << 11)) {
2413       CanEliminateFrame = false;
2414       ForceLRSpill = true;
2415     }
2416   }
2417 
2418   // If any of the stack slot references may be out of range of an immediate
2419   // offset, make sure a register (or a spill slot) is available for the
2420   // register scavenger. Note that if we're indexing off the frame pointer, the
2421   // effective stack size is 4 bytes larger since the FP points to the stack
2422   // slot of the previous FP. Also, if we have variable sized objects in the
2423   // function, stack slot references will often be negative, and some of
2424   // our instructions are positive-offset only, so conservatively consider
2425   // that case to want a spill slot (or register) as well. Similarly, if
2426   // the function adjusts the stack pointer during execution and the
2427   // adjustments aren't already part of our stack size estimate, our offset
2428   // calculations may be off, so be conservative.
2429   // FIXME: We could add logic to be more precise about negative offsets
2430   //        and which instructions will need a scratch register for them. Is it
2431   //        worth the effort and added fragility?
2432   unsigned EstimatedStackSize =
2433       MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills);
2434 
2435   // Determine biggest (positive) SP offset in MachineFrameInfo.
2436   int MaxFixedOffset = 0;
2437   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
2438     int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I);
2439     MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset);
2440   }
2441 
2442   bool HasFP = hasFP(MF);
2443   if (HasFP) {
2444     if (AFI->hasStackFrame())
2445       EstimatedStackSize += 4;
2446   } else {
2447     // If FP is not used, SP will be used to access arguments, so count the
2448     // size of arguments into the estimation.
2449     EstimatedStackSize += MaxFixedOffset;
2450   }
2451   EstimatedStackSize += 16; // For possible paddings.
2452 
2453   unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit;
2454   bool HasNonSPFrameIndex = false;
2455   if (AFI->isThumb1OnlyFunction()) {
2456     // For Thumb1, don't bother to iterate over the function. The only
2457     // instruction that requires an emergency spill slot is a store to a
2458     // frame index.
2459     //
2460     // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned
2461     // immediate. tSTRi, which is used for bp- and fp-relative accesses, has
2462     // a 5-bit unsigned immediate.
2463     //
2464     // We could try to check if the function actually contains a tSTRspi
2465     // that might need the spill slot, but it's not really important.
2466     // Functions with VLAs or extremely large call frames are rare, and
2467     // if a function is allocating more than 1KB of stack, an extra 4-byte
2468     // slot probably isn't relevant.
2469     //
2470     // A special case is the scenario where r11 is used as FP, where accesses
2471     // to a frame index will require its value to be moved into a low reg.
2472     // This is handled later on, once we are able to determine if we have any
2473     // fp-relative accesses.
2474     if (RegInfo->hasBasePointer(MF))
2475       EstimatedRSStackSizeLimit = (1U << 5) * 4;
2476     else
2477       EstimatedRSStackSizeLimit = (1U << 8) * 4;
2478     EstimatedRSFixedSizeLimit = (1U << 5) * 4;
2479   } else {
2480     EstimatedRSStackSizeLimit =
2481         estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex);
2482     EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit;
2483   }
2484   // Final estimate of whether sp or bp-relative accesses might require
2485   // scavenging.
2486   bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit;
2487 
2488   // If the stack pointer moves and we don't have a base pointer, the
2489   // estimate logic doesn't work. The actual offsets might be larger when
2490   // we're constructing a call frame, or we might need to use negative
2491   // offsets from fp.
2492   bool HasMovingSP = MFI.hasVarSizedObjects() ||
2493     (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF));
2494   bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP;
2495 
2496   // If we have a frame pointer, we assume arguments will be accessed
2497   // relative to the frame pointer. Check whether fp-relative accesses to
2498   // arguments require scavenging.
2499   //
2500   // We could do slightly better on Thumb1; in some cases, an sp-relative
2501   // offset would be legal even though an fp-relative offset is not.
2502   int MaxFPOffset = getMaxFPOffset(STI, *AFI, MF);
2503   bool HasLargeArgumentList =
2504       HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit;
2505 
2506   bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP ||
2507                          HasLargeArgumentList || HasNonSPFrameIndex;
2508   LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit
2509                     << "; EstimatedStack: " << EstimatedStackSize
2510                     << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset
2511                     << "; BigFrameOffsets: " << BigFrameOffsets << "\n");
2512   if (BigFrameOffsets ||
2513       !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) {
2514     AFI->setHasStackFrame(true);
2515 
2516     if (HasFP) {
2517       SavedRegs.set(FramePtr);
2518       // If the frame pointer is required by the ABI, also spill LR so that we
2519       // emit a complete frame record.
2520       if ((requiresAAPCSFrameRecord(MF) ||
2521            MF.getTarget().Options.DisableFramePointerElim(MF)) &&
2522           !LRSpilled) {
2523         SavedRegs.set(ARM::LR);
2524         LRSpilled = true;
2525         NumGPRSpills++;
2526         auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR);
2527         if (LRPos != UnspilledCS1GPRs.end())
2528           UnspilledCS1GPRs.erase(LRPos);
2529       }
2530       auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr);
2531       if (FPPos != UnspilledCS1GPRs.end())
2532         UnspilledCS1GPRs.erase(FPPos);
2533       NumGPRSpills++;
2534       if (FramePtr == ARM::R7)
2535         CS1Spilled = true;
2536     }
2537 
2538     // This is the number of extra spills inserted for callee-save GPRs which
2539     // would not otherwise be used by the function. When greater than zero it
2540     // guaranteees that it is possible to scavenge a register to hold the
2541     // address of a stack slot. On Thumb1, the register must be a valid operand
2542     // to tSTRi, i.e. r4-r7. For other subtargets, this is any GPR, i.e. r4-r11
2543     // or lr.
2544     //
2545     // If we don't insert a spill, we instead allocate an emergency spill
2546     // slot, which can be used by scavenging to spill an arbitrary register.
2547     //
2548     // We currently don't try to figure out whether any specific instruction
2549     // requires scavening an additional register.
2550     unsigned NumExtraCSSpill = 0;
2551 
2552     if (AFI->isThumb1OnlyFunction()) {
2553       // For Thumb1-only targets, we need some low registers when we save and
2554       // restore the high registers (which aren't allocatable, but could be
2555       // used by inline assembly) because the push/pop instructions can not
2556       // access high registers. If necessary, we might need to push more low
2557       // registers to ensure that there is at least one free that can be used
2558       // for the saving & restoring, and preferably we should ensure that as
2559       // many as are needed are available so that fewer push/pop instructions
2560       // are required.
2561 
2562       // Low registers which are not currently pushed, but could be (r4-r7).
2563       SmallVector<unsigned, 4> AvailableRegs;
2564 
2565       // Unused argument registers (r0-r3) can be clobbered in the prologue for
2566       // free.
2567       int EntryRegDeficit = 0;
2568       for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) {
2569         if (!MF.getRegInfo().isLiveIn(Reg)) {
2570           --EntryRegDeficit;
2571           LLVM_DEBUG(dbgs()
2572                      << printReg(Reg, TRI)
2573                      << " is unused argument register, EntryRegDeficit = "
2574                      << EntryRegDeficit << "\n");
2575         }
2576       }
2577 
2578       // Unused return registers can be clobbered in the epilogue for free.
2579       int ExitRegDeficit = AFI->getReturnRegsCount() - 4;
2580       LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount()
2581                         << " return regs used, ExitRegDeficit = "
2582                         << ExitRegDeficit << "\n");
2583 
2584       int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit);
2585       LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n");
2586 
2587       // r4-r6 can be used in the prologue if they are pushed by the first push
2588       // instruction.
2589       for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) {
2590         if (SavedRegs.test(Reg)) {
2591           --RegDeficit;
2592           LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
2593                             << " is saved low register, RegDeficit = "
2594                             << RegDeficit << "\n");
2595         } else {
2596           AvailableRegs.push_back(Reg);
2597           LLVM_DEBUG(
2598               dbgs()
2599               << printReg(Reg, TRI)
2600               << " is non-saved low register, adding to AvailableRegs\n");
2601         }
2602       }
2603 
2604       // r7 can be used if it is not being used as the frame pointer.
2605       if (!HasFP || FramePtr != ARM::R7) {
2606         if (SavedRegs.test(ARM::R7)) {
2607           --RegDeficit;
2608           LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = "
2609                             << RegDeficit << "\n");
2610         } else {
2611           AvailableRegs.push_back(ARM::R7);
2612           LLVM_DEBUG(
2613               dbgs()
2614               << "%r7 is non-saved low register, adding to AvailableRegs\n");
2615         }
2616       }
2617 
2618       // Each of r8-r11 needs to be copied to a low register, then pushed.
2619       for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) {
2620         if (SavedRegs.test(Reg)) {
2621           ++RegDeficit;
2622           LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
2623                             << " is saved high register, RegDeficit = "
2624                             << RegDeficit << "\n");
2625         }
2626       }
2627 
2628       // LR can only be used by PUSH, not POP, and can't be used at all if the
2629       // llvm.returnaddress intrinsic is used. This is only worth doing if we
2630       // are more limited at function entry than exit.
2631       if ((EntryRegDeficit > ExitRegDeficit) &&
2632           !(MF.getRegInfo().isLiveIn(ARM::LR) &&
2633             MF.getFrameInfo().isReturnAddressTaken())) {
2634         if (SavedRegs.test(ARM::LR)) {
2635           --RegDeficit;
2636           LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = "
2637                             << RegDeficit << "\n");
2638         } else {
2639           AvailableRegs.push_back(ARM::LR);
2640           LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n");
2641         }
2642       }
2643 
2644       // If there are more high registers that need pushing than low registers
2645       // available, push some more low registers so that we can use fewer push
2646       // instructions. This might not reduce RegDeficit all the way to zero,
2647       // because we can only guarantee that r4-r6 are available, but r8-r11 may
2648       // need saving.
2649       LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n");
2650       for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) {
2651         unsigned Reg = AvailableRegs.pop_back_val();
2652         LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2653                           << " to make up reg deficit\n");
2654         SavedRegs.set(Reg);
2655         NumGPRSpills++;
2656         CS1Spilled = true;
2657         assert(!MRI.isReserved(Reg) && "Should not be reserved");
2658         if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg))
2659           NumExtraCSSpill++;
2660         UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg));
2661         if (Reg == ARM::LR)
2662           LRSpilled = true;
2663       }
2664       LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit
2665                         << "\n");
2666     }
2667 
2668     // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to
2669     // restore LR in that case.
2670     bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall();
2671 
2672     // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
2673     // Spill LR as well so we can fold BX_RET to the registers restore (LDM).
2674     if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) {
2675       SavedRegs.set(ARM::LR);
2676       NumGPRSpills++;
2677       SmallVectorImpl<unsigned>::iterator LRPos;
2678       LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR);
2679       if (LRPos != UnspilledCS1GPRs.end())
2680         UnspilledCS1GPRs.erase(LRPos);
2681 
2682       ForceLRSpill = false;
2683       if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) &&
2684           !AFI->isThumb1OnlyFunction())
2685         NumExtraCSSpill++;
2686     }
2687 
2688     // If stack and double are 8-byte aligned and we are spilling an odd number
2689     // of GPRs, spill one extra callee save GPR so we won't have to pad between
2690     // the integer and double callee save areas.
2691     LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n");
2692     const Align TargetAlign = getStackAlign();
2693     if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) {
2694       if (CS1Spilled && !UnspilledCS1GPRs.empty()) {
2695         for (unsigned Reg : UnspilledCS1GPRs) {
2696           // Don't spill high register if the function is thumb.  In the case of
2697           // Windows on ARM, accept R11 (frame pointer)
2698           if (!AFI->isThumbFunction() ||
2699               (STI.isTargetWindows() && Reg == ARM::R11) ||
2700               isARMLowRegister(Reg) ||
2701               (Reg == ARM::LR && !ExpensiveLRRestore)) {
2702             SavedRegs.set(Reg);
2703             LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2704                               << " to make up alignment\n");
2705             if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) &&
2706                 !(Reg == ARM::LR && AFI->isThumb1OnlyFunction()))
2707               NumExtraCSSpill++;
2708             break;
2709           }
2710         }
2711       } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) {
2712         unsigned Reg = UnspilledCS2GPRs.front();
2713         SavedRegs.set(Reg);
2714         LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2715                           << " to make up alignment\n");
2716         if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg))
2717           NumExtraCSSpill++;
2718       }
2719     }
2720 
2721     // Estimate if we might need to scavenge registers at some point in order
2722     // to materialize a stack offset. If so, either spill one additional
2723     // callee-saved register or reserve a special spill slot to facilitate
2724     // register scavenging. Thumb1 needs a spill slot for stack pointer
2725     // adjustments and for frame index accesses when FP is high register,
2726     // even when the frame itself is small.
2727     unsigned RegsNeeded = 0;
2728     if (BigFrameOffsets || canSpillOnFrameIndexAccess(MF, *this)) {
2729       RegsNeeded++;
2730       // With thumb1 execute-only we may need an additional register for saving
2731       // and restoring the CPSR.
2732       if (AFI->isThumb1OnlyFunction() && STI.genExecuteOnly() && !STI.useMovt())
2733         RegsNeeded++;
2734     }
2735 
2736     if (RegsNeeded > NumExtraCSSpill) {
2737       // If any non-reserved CS register isn't spilled, just spill one or two
2738       // extra. That should take care of it!
2739       unsigned NumExtras = TargetAlign.value() / 4;
2740       SmallVector<unsigned, 2> Extras;
2741       while (NumExtras && !UnspilledCS1GPRs.empty()) {
2742         unsigned Reg = UnspilledCS1GPRs.pop_back_val();
2743         if (!MRI.isReserved(Reg) &&
2744             (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) {
2745           Extras.push_back(Reg);
2746           NumExtras--;
2747         }
2748       }
2749       // For non-Thumb1 functions, also check for hi-reg CS registers
2750       if (!AFI->isThumb1OnlyFunction()) {
2751         while (NumExtras && !UnspilledCS2GPRs.empty()) {
2752           unsigned Reg = UnspilledCS2GPRs.pop_back_val();
2753           if (!MRI.isReserved(Reg)) {
2754             Extras.push_back(Reg);
2755             NumExtras--;
2756           }
2757         }
2758       }
2759       if (NumExtras == 0) {
2760         for (unsigned Reg : Extras) {
2761           SavedRegs.set(Reg);
2762           if (!MRI.isPhysRegUsed(Reg))
2763             NumExtraCSSpill++;
2764         }
2765       }
2766       while ((RegsNeeded > NumExtraCSSpill) && RS) {
2767         // Reserve a slot closest to SP or frame pointer.
2768         LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n");
2769         const TargetRegisterClass &RC = ARM::GPRRegClass;
2770         unsigned Size = TRI->getSpillSize(RC);
2771         Align Alignment = TRI->getSpillAlign(RC);
2772         RS->addScavengingFrameIndex(
2773             MFI.CreateStackObject(Size, Alignment, false));
2774         --RegsNeeded;
2775       }
2776     }
2777   }
2778 
2779   if (ForceLRSpill)
2780     SavedRegs.set(ARM::LR);
2781   AFI->setLRIsSpilled(SavedRegs.test(ARM::LR));
2782 }
2783 
2784 void ARMFrameLowering::updateLRRestored(MachineFunction &MF) {
2785   MachineFrameInfo &MFI = MF.getFrameInfo();
2786   if (!MFI.isCalleeSavedInfoValid())
2787     return;
2788 
2789   // Check if all terminators do not implicitly use LR. Then we can 'restore' LR
2790   // into PC so it is not live out of the return block: Clear the Restored bit
2791   // in that case.
2792   for (CalleeSavedInfo &Info : MFI.getCalleeSavedInfo()) {
2793     if (Info.getReg() != ARM::LR)
2794       continue;
2795     if (all_of(MF, [](const MachineBasicBlock &MBB) {
2796           return all_of(MBB.terminators(), [](const MachineInstr &Term) {
2797             return !Term.isReturn() || Term.getOpcode() == ARM::LDMIA_RET ||
2798                    Term.getOpcode() == ARM::t2LDMIA_RET ||
2799                    Term.getOpcode() == ARM::tPOP_RET;
2800           });
2801         })) {
2802       Info.setRestored(false);
2803       break;
2804     }
2805   }
2806 }
2807 
2808 void ARMFrameLowering::processFunctionBeforeFrameFinalized(
2809     MachineFunction &MF, RegScavenger *RS) const {
2810   TargetFrameLowering::processFunctionBeforeFrameFinalized(MF, RS);
2811   updateLRRestored(MF);
2812 }
2813 
2814 void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF,
2815                                       BitVector &SavedRegs) const {
2816   TargetFrameLowering::getCalleeSaves(MF, SavedRegs);
2817 
2818   // If we have the "returned" parameter attribute which guarantees that we
2819   // return the value which was passed in r0 unmodified (e.g. C++ 'structors),
2820   // record that fact for IPRA.
2821   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2822   if (AFI->getPreservesR0())
2823     SavedRegs.set(ARM::R0);
2824 }
2825 
2826 bool ARMFrameLowering::assignCalleeSavedSpillSlots(
2827     MachineFunction &MF, const TargetRegisterInfo *TRI,
2828     std::vector<CalleeSavedInfo> &CSI) const {
2829   // For CMSE entry functions, handle floating-point context as if it was a
2830   // callee-saved register.
2831   if (STI.hasV8_1MMainlineOps() &&
2832       MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) {
2833     CSI.emplace_back(ARM::FPCXTNS);
2834     CSI.back().setRestored(false);
2835   }
2836 
2837   // For functions, which sign their return address, upon function entry, the
2838   // return address PAC is computed in R12. Treat R12 as a callee-saved register
2839   // in this case.
2840   const auto &AFI = *MF.getInfo<ARMFunctionInfo>();
2841   if (AFI.shouldSignReturnAddress()) {
2842     // The order of register must match the order we push them, because the
2843     // PEI assigns frame indices in that order. When compiling for return
2844     // address sign and authenication, we use split push, therefore the orders
2845     // we want are:
2846     // LR, R7, R6, R5, R4, <R12>, R11, R10,  R9,  R8, D15-D8
2847     CSI.insert(find_if(CSI,
2848                        [=](const auto &CS) {
2849                          Register Reg = CS.getReg();
2850                          return Reg == ARM::R10 || Reg == ARM::R11 ||
2851                                 Reg == ARM::R8 || Reg == ARM::R9 ||
2852                                 ARM::DPRRegClass.contains(Reg);
2853                        }),
2854                CalleeSavedInfo(ARM::R12));
2855   }
2856 
2857   return false;
2858 }
2859 
2860 const TargetFrameLowering::SpillSlot *
2861 ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const {
2862   static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}};
2863   NumEntries = std::size(FixedSpillOffsets);
2864   return FixedSpillOffsets;
2865 }
2866 
2867 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr(
2868     MachineFunction &MF, MachineBasicBlock &MBB,
2869     MachineBasicBlock::iterator I) const {
2870   const ARMBaseInstrInfo &TII =
2871       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2872   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2873   bool isARM = !AFI->isThumbFunction();
2874   DebugLoc dl = I->getDebugLoc();
2875   unsigned Opc = I->getOpcode();
2876   bool IsDestroy = Opc == TII.getCallFrameDestroyOpcode();
2877   unsigned CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
2878 
2879   assert(!AFI->isThumb1OnlyFunction() &&
2880          "This eliminateCallFramePseudoInstr does not support Thumb1!");
2881 
2882   int PIdx = I->findFirstPredOperandIdx();
2883   ARMCC::CondCodes Pred = (PIdx == -1)
2884                               ? ARMCC::AL
2885                               : (ARMCC::CondCodes)I->getOperand(PIdx).getImm();
2886   unsigned PredReg = TII.getFramePred(*I);
2887 
2888   if (!hasReservedCallFrame(MF)) {
2889     // Bail early if the callee is expected to do the adjustment.
2890     if (IsDestroy && CalleePopAmount != -1U)
2891       return MBB.erase(I);
2892 
2893     // If we have alloca, convert as follows:
2894     // ADJCALLSTACKDOWN -> sub, sp, sp, amount
2895     // ADJCALLSTACKUP   -> add, sp, sp, amount
2896     unsigned Amount = TII.getFrameSize(*I);
2897     if (Amount != 0) {
2898       // We need to keep the stack aligned properly.  To do this, we round the
2899       // amount of space needed for the outgoing arguments up to the next
2900       // alignment boundary.
2901       Amount = alignSPAdjust(Amount);
2902 
2903       if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
2904         emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags,
2905                      Pred, PredReg);
2906       } else {
2907         assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
2908         emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags,
2909                      Pred, PredReg);
2910       }
2911     }
2912   } else if (CalleePopAmount != -1U) {
2913     // If the calling convention demands that the callee pops arguments from the
2914     // stack, we want to add it back if we have a reserved call frame.
2915     emitSPUpdate(isARM, MBB, I, dl, TII, -CalleePopAmount,
2916                  MachineInstr::NoFlags, Pred, PredReg);
2917   }
2918   return MBB.erase(I);
2919 }
2920 
2921 /// Get the minimum constant for ARM that is greater than or equal to the
2922 /// argument. In ARM, constants can have any value that can be produced by
2923 /// rotating an 8-bit value to the right by an even number of bits within a
2924 /// 32-bit word.
2925 static uint32_t alignToARMConstant(uint32_t Value) {
2926   unsigned Shifted = 0;
2927 
2928   if (Value == 0)
2929       return 0;
2930 
2931   while (!(Value & 0xC0000000)) {
2932       Value = Value << 2;
2933       Shifted += 2;
2934   }
2935 
2936   bool Carry = (Value & 0x00FFFFFF);
2937   Value = ((Value & 0xFF000000) >> 24) + Carry;
2938 
2939   if (Value & 0x0000100)
2940       Value = Value & 0x000001FC;
2941 
2942   if (Shifted > 24)
2943       Value = Value >> (Shifted - 24);
2944   else
2945       Value = Value << (24 - Shifted);
2946 
2947   return Value;
2948 }
2949 
2950 // The stack limit in the TCB is set to this many bytes above the actual
2951 // stack limit.
2952 static const uint64_t kSplitStackAvailable = 256;
2953 
2954 // Adjust the function prologue to enable split stacks. This currently only
2955 // supports android and linux.
2956 //
2957 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but
2958 // must be well defined in order to allow for consistent implementations of the
2959 // __morestack helper function. The ABI is also not a normal ABI in that it
2960 // doesn't follow the normal calling conventions because this allows the
2961 // prologue of each function to be optimized further.
2962 //
2963 // Currently, the ABI looks like (when calling __morestack)
2964 //
2965 //  * r4 holds the minimum stack size requested for this function call
2966 //  * r5 holds the stack size of the arguments to the function
2967 //  * the beginning of the function is 3 instructions after the call to
2968 //    __morestack
2969 //
2970 // Implementations of __morestack should use r4 to allocate a new stack, r5 to
2971 // place the arguments on to the new stack, and the 3-instruction knowledge to
2972 // jump directly to the body of the function when working on the new stack.
2973 //
2974 // An old (and possibly no longer compatible) implementation of __morestack for
2975 // ARM can be found at [1].
2976 //
2977 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S
2978 void ARMFrameLowering::adjustForSegmentedStacks(
2979     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2980   unsigned Opcode;
2981   unsigned CFIIndex;
2982   const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>();
2983   bool Thumb = ST->isThumb();
2984   bool Thumb2 = ST->isThumb2();
2985 
2986   // Sadly, this currently doesn't support varargs, platforms other than
2987   // android/linux. Note that thumb1/thumb2 are support for android/linux.
2988   if (MF.getFunction().isVarArg())
2989     report_fatal_error("Segmented stacks do not support vararg functions.");
2990   if (!ST->isTargetAndroid() && !ST->isTargetLinux())
2991     report_fatal_error("Segmented stacks not supported on this platform.");
2992 
2993   MachineFrameInfo &MFI = MF.getFrameInfo();
2994   MachineModuleInfo &MMI = MF.getMMI();
2995   MCContext &Context = MMI.getContext();
2996   const MCRegisterInfo *MRI = Context.getRegisterInfo();
2997   const ARMBaseInstrInfo &TII =
2998       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2999   ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>();
3000   DebugLoc DL;
3001 
3002   if (!MFI.needsSplitStackProlog())
3003     return;
3004 
3005   uint64_t StackSize = MFI.getStackSize();
3006 
3007   // Use R4 and R5 as scratch registers.
3008   // We save R4 and R5 before use and restore them before leaving the function.
3009   unsigned ScratchReg0 = ARM::R4;
3010   unsigned ScratchReg1 = ARM::R5;
3011   unsigned MovOp = ST->useMovt() ? ARM::t2MOVi32imm : ARM::tMOVi32imm;
3012   uint64_t AlignedStackSize;
3013 
3014   MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock();
3015   MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock();
3016   MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock();
3017   MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock();
3018   MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock();
3019 
3020   // Grab everything that reaches PrologueMBB to update there liveness as well.
3021   SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion;
3022   SmallVector<MachineBasicBlock *, 2> WalkList;
3023   WalkList.push_back(&PrologueMBB);
3024 
3025   do {
3026     MachineBasicBlock *CurMBB = WalkList.pop_back_val();
3027     for (MachineBasicBlock *PredBB : CurMBB->predecessors()) {
3028       if (BeforePrologueRegion.insert(PredBB).second)
3029         WalkList.push_back(PredBB);
3030     }
3031   } while (!WalkList.empty());
3032 
3033   // The order in that list is important.
3034   // The blocks will all be inserted before PrologueMBB using that order.
3035   // Therefore the block that should appear first in the CFG should appear
3036   // first in the list.
3037   MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB,
3038                                       PostStackMBB};
3039 
3040   for (MachineBasicBlock *B : AddedBlocks)
3041     BeforePrologueRegion.insert(B);
3042 
3043   for (const auto &LI : PrologueMBB.liveins()) {
3044     for (MachineBasicBlock *PredBB : BeforePrologueRegion)
3045       PredBB->addLiveIn(LI);
3046   }
3047 
3048   // Remove the newly added blocks from the list, since we know
3049   // we do not have to do the following updates for them.
3050   for (MachineBasicBlock *B : AddedBlocks) {
3051     BeforePrologueRegion.erase(B);
3052     MF.insert(PrologueMBB.getIterator(), B);
3053   }
3054 
3055   for (MachineBasicBlock *MBB : BeforePrologueRegion) {
3056     // Make sure the LiveIns are still sorted and unique.
3057     MBB->sortUniqueLiveIns();
3058     // Replace the edges to PrologueMBB by edges to the sequences
3059     // we are about to add, but only update for immediate predecessors.
3060     if (MBB->isSuccessor(&PrologueMBB))
3061       MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]);
3062   }
3063 
3064   // The required stack size that is aligned to ARM constant criterion.
3065   AlignedStackSize = alignToARMConstant(StackSize);
3066 
3067   // When the frame size is less than 256 we just compare the stack
3068   // boundary directly to the value of the stack pointer, per gcc.
3069   bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable;
3070 
3071   // We will use two of the callee save registers as scratch registers so we
3072   // need to save those registers onto the stack.
3073   // We will use SR0 to hold stack limit and SR1 to hold the stack size
3074   // requested and arguments for __morestack().
3075   // SR0: Scratch Register #0
3076   // SR1: Scratch Register #1
3077   // push {SR0, SR1}
3078   if (Thumb) {
3079     BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH))
3080         .add(predOps(ARMCC::AL))
3081         .addReg(ScratchReg0)
3082         .addReg(ScratchReg1);
3083   } else {
3084     BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD))
3085         .addReg(ARM::SP, RegState::Define)
3086         .addReg(ARM::SP)
3087         .add(predOps(ARMCC::AL))
3088         .addReg(ScratchReg0)
3089         .addReg(ScratchReg1);
3090   }
3091 
3092   // Emit the relevant DWARF information about the change in stack pointer as
3093   // well as where to find both r4 and r5 (the callee-save registers)
3094   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3095     CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8));
3096     BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3097         .addCFIIndex(CFIIndex);
3098     CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
3099         nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4));
3100     BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3101         .addCFIIndex(CFIIndex);
3102     CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
3103         nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8));
3104     BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3105         .addCFIIndex(CFIIndex);
3106   }
3107 
3108   // mov SR1, sp
3109   if (Thumb) {
3110     BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1)
3111         .addReg(ARM::SP)
3112         .add(predOps(ARMCC::AL));
3113   } else if (CompareStackPointer) {
3114     BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1)
3115         .addReg(ARM::SP)
3116         .add(predOps(ARMCC::AL))
3117         .add(condCodeOp());
3118   }
3119 
3120   // sub SR1, sp, #StackSize
3121   if (!CompareStackPointer && Thumb) {
3122     if (AlignedStackSize < 256) {
3123       BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1)
3124           .add(condCodeOp())
3125           .addReg(ScratchReg1)
3126           .addImm(AlignedStackSize)
3127           .add(predOps(ARMCC::AL));
3128     } else {
3129       if (Thumb2 || ST->genExecuteOnly()) {
3130         BuildMI(McrMBB, DL, TII.get(MovOp), ScratchReg0)
3131             .addImm(AlignedStackSize);
3132       } else {
3133         auto MBBI = McrMBB->end();
3134         auto RegInfo = STI.getRegisterInfo();
3135         RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0,
3136                                    AlignedStackSize);
3137       }
3138       BuildMI(McrMBB, DL, TII.get(ARM::tSUBrr), ScratchReg1)
3139           .add(condCodeOp())
3140           .addReg(ScratchReg1)
3141           .addReg(ScratchReg0)
3142           .add(predOps(ARMCC::AL));
3143     }
3144   } else if (!CompareStackPointer) {
3145     if (AlignedStackSize < 256) {
3146       BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1)
3147           .addReg(ARM::SP)
3148           .addImm(AlignedStackSize)
3149           .add(predOps(ARMCC::AL))
3150           .add(condCodeOp());
3151     } else {
3152       auto MBBI = McrMBB->end();
3153       auto RegInfo = STI.getRegisterInfo();
3154       RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0,
3155                                  AlignedStackSize);
3156       BuildMI(McrMBB, DL, TII.get(ARM::SUBrr), ScratchReg1)
3157           .addReg(ARM::SP)
3158           .addReg(ScratchReg0)
3159           .add(predOps(ARMCC::AL))
3160           .add(condCodeOp());
3161     }
3162   }
3163 
3164   if (Thumb && ST->isThumb1Only()) {
3165     if (ST->genExecuteOnly()) {
3166       BuildMI(GetMBB, DL, TII.get(MovOp), ScratchReg0)
3167           .addExternalSymbol("__STACK_LIMIT");
3168     } else {
3169       unsigned PCLabelId = ARMFI->createPICLabelUId();
3170       ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create(
3171           MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0);
3172       MachineConstantPool *MCP = MF.getConstantPool();
3173       unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4));
3174 
3175       // ldr SR0, [pc, offset(STACK_LIMIT)]
3176       BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0)
3177           .addConstantPoolIndex(CPI)
3178           .add(predOps(ARMCC::AL));
3179     }
3180 
3181     // ldr SR0, [SR0]
3182     BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0)
3183         .addReg(ScratchReg0)
3184         .addImm(0)
3185         .add(predOps(ARMCC::AL));
3186   } else {
3187     // Get TLS base address from the coprocessor
3188     // mrc p15, #0, SR0, c13, c0, #3
3189     BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC),
3190             ScratchReg0)
3191         .addImm(15)
3192         .addImm(0)
3193         .addImm(13)
3194         .addImm(0)
3195         .addImm(3)
3196         .add(predOps(ARMCC::AL));
3197 
3198     // Use the last tls slot on android and a private field of the TCP on linux.
3199     assert(ST->isTargetAndroid() || ST->isTargetLinux());
3200     unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1;
3201 
3202     // Get the stack limit from the right offset
3203     // ldr SR0, [sr0, #4 * TlsOffset]
3204     BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12),
3205             ScratchReg0)
3206         .addReg(ScratchReg0)
3207         .addImm(4 * TlsOffset)
3208         .add(predOps(ARMCC::AL));
3209   }
3210 
3211   // Compare stack limit with stack size requested.
3212   // cmp SR0, SR1
3213   Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr;
3214   BuildMI(GetMBB, DL, TII.get(Opcode))
3215       .addReg(ScratchReg0)
3216       .addReg(ScratchReg1)
3217       .add(predOps(ARMCC::AL));
3218 
3219   // This jump is taken if StackLimit <= SP - stack required.
3220   Opcode = Thumb ? ARM::tBcc : ARM::Bcc;
3221   BuildMI(GetMBB, DL, TII.get(Opcode))
3222       .addMBB(PostStackMBB)
3223       .addImm(ARMCC::LS)
3224       .addReg(ARM::CPSR);
3225 
3226   // Calling __morestack(StackSize, Size of stack arguments).
3227   // __morestack knows that the stack size requested is in SR0(r4)
3228   // and amount size of stack arguments is in SR1(r5).
3229 
3230   // Pass first argument for the __morestack by Scratch Register #0.
3231   //   The amount size of stack required
3232   if (Thumb) {
3233     if (AlignedStackSize < 256) {
3234       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0)
3235           .add(condCodeOp())
3236           .addImm(AlignedStackSize)
3237           .add(predOps(ARMCC::AL));
3238     } else {
3239       if (Thumb2 || ST->genExecuteOnly()) {
3240         BuildMI(AllocMBB, DL, TII.get(MovOp), ScratchReg0)
3241             .addImm(AlignedStackSize);
3242       } else {
3243         auto MBBI = AllocMBB->end();
3244         auto RegInfo = STI.getRegisterInfo();
3245         RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0,
3246                                    AlignedStackSize);
3247       }
3248     }
3249   } else {
3250     if (AlignedStackSize < 256) {
3251       BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0)
3252           .addImm(AlignedStackSize)
3253           .add(predOps(ARMCC::AL))
3254           .add(condCodeOp());
3255     } else {
3256       auto MBBI = AllocMBB->end();
3257       auto RegInfo = STI.getRegisterInfo();
3258       RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0,
3259                                  AlignedStackSize);
3260     }
3261   }
3262 
3263   // Pass second argument for the __morestack by Scratch Register #1.
3264   //   The amount size of stack consumed to save function arguments.
3265   if (Thumb) {
3266     if (ARMFI->getArgumentStackSize() < 256) {
3267       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1)
3268           .add(condCodeOp())
3269           .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
3270           .add(predOps(ARMCC::AL));
3271     } else {
3272       if (Thumb2 || ST->genExecuteOnly()) {
3273         BuildMI(AllocMBB, DL, TII.get(MovOp), ScratchReg1)
3274             .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()));
3275       } else {
3276         auto MBBI = AllocMBB->end();
3277         auto RegInfo = STI.getRegisterInfo();
3278         RegInfo->emitLoadConstPool(
3279             *AllocMBB, MBBI, DL, ScratchReg1, 0,
3280             alignToARMConstant(ARMFI->getArgumentStackSize()));
3281       }
3282     }
3283   } else {
3284     if (alignToARMConstant(ARMFI->getArgumentStackSize()) < 256) {
3285       BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1)
3286           .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
3287           .add(predOps(ARMCC::AL))
3288           .add(condCodeOp());
3289     } else {
3290       auto MBBI = AllocMBB->end();
3291       auto RegInfo = STI.getRegisterInfo();
3292       RegInfo->emitLoadConstPool(
3293           *AllocMBB, MBBI, DL, ScratchReg1, 0,
3294           alignToARMConstant(ARMFI->getArgumentStackSize()));
3295     }
3296   }
3297 
3298   // push {lr} - Save return address of this function.
3299   if (Thumb) {
3300     BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH))
3301         .add(predOps(ARMCC::AL))
3302         .addReg(ARM::LR);
3303   } else {
3304     BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD))
3305         .addReg(ARM::SP, RegState::Define)
3306         .addReg(ARM::SP)
3307         .add(predOps(ARMCC::AL))
3308         .addReg(ARM::LR);
3309   }
3310 
3311   // Emit the DWARF info about the change in stack as well as where to find the
3312   // previous link register
3313   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3314     CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12));
3315     BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3316         .addCFIIndex(CFIIndex);
3317     CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
3318         nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12));
3319     BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3320         .addCFIIndex(CFIIndex);
3321   }
3322 
3323   // Call __morestack().
3324   if (Thumb) {
3325     BuildMI(AllocMBB, DL, TII.get(ARM::tBL))
3326         .add(predOps(ARMCC::AL))
3327         .addExternalSymbol("__morestack");
3328   } else {
3329     BuildMI(AllocMBB, DL, TII.get(ARM::BL))
3330         .addExternalSymbol("__morestack");
3331   }
3332 
3333   // pop {lr} - Restore return address of this original function.
3334   if (Thumb) {
3335     if (ST->isThumb1Only()) {
3336       BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
3337           .add(predOps(ARMCC::AL))
3338           .addReg(ScratchReg0);
3339       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR)
3340           .addReg(ScratchReg0)
3341           .add(predOps(ARMCC::AL));
3342     } else {
3343       BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST))
3344           .addReg(ARM::LR, RegState::Define)
3345           .addReg(ARM::SP, RegState::Define)
3346           .addReg(ARM::SP)
3347           .addImm(4)
3348           .add(predOps(ARMCC::AL));
3349     }
3350   } else {
3351     BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
3352         .addReg(ARM::SP, RegState::Define)
3353         .addReg(ARM::SP)
3354         .add(predOps(ARMCC::AL))
3355         .addReg(ARM::LR);
3356   }
3357 
3358   // Restore SR0 and SR1 in case of __morestack() was called.
3359   // __morestack() will skip PostStackMBB block so we need to restore
3360   // scratch registers from here.
3361   // pop {SR0, SR1}
3362   if (Thumb) {
3363     BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
3364         .add(predOps(ARMCC::AL))
3365         .addReg(ScratchReg0)
3366         .addReg(ScratchReg1);
3367   } else {
3368     BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
3369         .addReg(ARM::SP, RegState::Define)
3370         .addReg(ARM::SP)
3371         .add(predOps(ARMCC::AL))
3372         .addReg(ScratchReg0)
3373         .addReg(ScratchReg1);
3374   }
3375 
3376   // Update the CFA offset now that we've popped
3377   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3378     CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
3379     BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3380         .addCFIIndex(CFIIndex);
3381   }
3382 
3383   // Return from this function.
3384   BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL));
3385 
3386   // Restore SR0 and SR1 in case of __morestack() was not called.
3387   // pop {SR0, SR1}
3388   if (Thumb) {
3389     BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP))
3390         .add(predOps(ARMCC::AL))
3391         .addReg(ScratchReg0)
3392         .addReg(ScratchReg1);
3393   } else {
3394     BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD))
3395         .addReg(ARM::SP, RegState::Define)
3396         .addReg(ARM::SP)
3397         .add(predOps(ARMCC::AL))
3398         .addReg(ScratchReg0)
3399         .addReg(ScratchReg1);
3400   }
3401 
3402   // Update the CFA offset now that we've popped
3403   if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
3404     CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
3405     BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3406         .addCFIIndex(CFIIndex);
3407 
3408     // Tell debuggers that r4 and r5 are now the same as they were in the
3409     // previous function, that they're the "Same Value".
3410     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
3411         nullptr, MRI->getDwarfRegNum(ScratchReg0, true)));
3412     BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3413         .addCFIIndex(CFIIndex);
3414     CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
3415         nullptr, MRI->getDwarfRegNum(ScratchReg1, true)));
3416     BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
3417         .addCFIIndex(CFIIndex);
3418   }
3419 
3420   // Organizing MBB lists
3421   PostStackMBB->addSuccessor(&PrologueMBB);
3422 
3423   AllocMBB->addSuccessor(PostStackMBB);
3424 
3425   GetMBB->addSuccessor(PostStackMBB);
3426   GetMBB->addSuccessor(AllocMBB);
3427 
3428   McrMBB->addSuccessor(GetMBB);
3429 
3430   PrevStackMBB->addSuccessor(McrMBB);
3431 
3432 #ifdef EXPENSIVE_CHECKS
3433   MF.verify();
3434 #endif
3435 }
3436