1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the ARM implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 // 13 // This file contains the ARM implementation of TargetFrameLowering class. 14 // 15 // On ARM, stack frames are structured as follows: 16 // 17 // The stack grows downward. 18 // 19 // All of the individual frame areas on the frame below are optional, i.e. it's 20 // possible to create a function so that the particular area isn't present 21 // in the frame. 22 // 23 // At function entry, the "frame" looks as follows: 24 // 25 // | | Higher address 26 // |-----------------------------------| 27 // | | 28 // | arguments passed on the stack | 29 // | | 30 // |-----------------------------------| <- sp 31 // | | Lower address 32 // 33 // 34 // After the prologue has run, the frame has the following general structure. 35 // Technically the last frame area (VLAs) doesn't get created until in the 36 // main function body, after the prologue is run. However, it's depicted here 37 // for completeness. 38 // 39 // | | Higher address 40 // |-----------------------------------| 41 // | | 42 // | arguments passed on the stack | 43 // | | 44 // |-----------------------------------| <- (sp at function entry) 45 // | | 46 // | varargs from registers | 47 // | | 48 // |-----------------------------------| 49 // | | 50 // | prev_lr | 51 // | prev_fp | 52 // | (a.k.a. "frame record") | 53 // | | 54 // |- - - - - - - - - - - - - - - - - -| <- fp (r7 or r11) 55 // | | 56 // | callee-saved gpr registers | 57 // | | 58 // |-----------------------------------| 59 // | | 60 // | callee-saved fp/simd regs | 61 // | | 62 // |-----------------------------------| 63 // |.empty.space.to.make.part.below....| 64 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at 65 // |.the.standard.8-byte.alignment.....| compile time; if present) 66 // |-----------------------------------| 67 // | | 68 // | local variables of fixed size | 69 // | including spill slots | 70 // |-----------------------------------| <- base pointer (not defined by ABI, 71 // |.variable-sized.local.variables....| LLVM chooses r6) 72 // |.(VLAs)............................| (size of this area is unknown at 73 // |...................................| compile time) 74 // |-----------------------------------| <- sp 75 // | | Lower address 76 // 77 // 78 // To access the data in a frame, at-compile time, a constant offset must be 79 // computable from one of the pointers (fp, bp, sp) to access it. The size 80 // of the areas with a dotted background cannot be computed at compile-time 81 // if they are present, making it required to have all three of fp, bp and 82 // sp to be set up to be able to access all contents in the frame areas, 83 // assuming all of the frame areas are non-empty. 84 // 85 // For most functions, some of the frame areas are empty. For those functions, 86 // it may not be necessary to set up fp or bp: 87 // * A base pointer is definitely needed when there are both VLAs and local 88 // variables with more-than-default alignment requirements. 89 // * A frame pointer is definitely needed when there are local variables with 90 // more-than-default alignment requirements. 91 // 92 // In some cases when a base pointer is not strictly needed, it is generated 93 // anyway when offsets from the frame pointer to access local variables become 94 // so large that the offset can't be encoded in the immediate fields of loads 95 // or stores. 96 // 97 // The frame pointer might be chosen to be r7 or r11, depending on the target 98 // architecture and operating system. See ARMSubtarget::getFramePointerReg for 99 // details. 100 // 101 // Outgoing function arguments must be at the bottom of the stack frame when 102 // calling another function. If we do not have variable-sized stack objects, we 103 // can allocate a "reserved call frame" area at the bottom of the local 104 // variable area, large enough for all outgoing calls. If we do have VLAs, then 105 // the stack pointer must be decremented and incremented around each call to 106 // make space for the arguments below the VLAs. 107 // 108 //===----------------------------------------------------------------------===// 109 110 #include "ARMFrameLowering.h" 111 #include "ARMBaseInstrInfo.h" 112 #include "ARMBaseRegisterInfo.h" 113 #include "ARMConstantPoolValue.h" 114 #include "ARMMachineFunctionInfo.h" 115 #include "ARMSubtarget.h" 116 #include "MCTargetDesc/ARMAddressingModes.h" 117 #include "MCTargetDesc/ARMBaseInfo.h" 118 #include "Utils/ARMBaseInfo.h" 119 #include "llvm/ADT/BitVector.h" 120 #include "llvm/ADT/STLExtras.h" 121 #include "llvm/ADT/SmallPtrSet.h" 122 #include "llvm/ADT/SmallVector.h" 123 #include "llvm/CodeGen/MachineBasicBlock.h" 124 #include "llvm/CodeGen/MachineConstantPool.h" 125 #include "llvm/CodeGen/MachineFrameInfo.h" 126 #include "llvm/CodeGen/MachineFunction.h" 127 #include "llvm/CodeGen/MachineInstr.h" 128 #include "llvm/CodeGen/MachineInstrBuilder.h" 129 #include "llvm/CodeGen/MachineJumpTableInfo.h" 130 #include "llvm/CodeGen/MachineModuleInfo.h" 131 #include "llvm/CodeGen/MachineOperand.h" 132 #include "llvm/CodeGen/MachineRegisterInfo.h" 133 #include "llvm/CodeGen/RegisterScavenging.h" 134 #include "llvm/CodeGen/TargetInstrInfo.h" 135 #include "llvm/CodeGen/TargetOpcodes.h" 136 #include "llvm/CodeGen/TargetRegisterInfo.h" 137 #include "llvm/CodeGen/TargetSubtargetInfo.h" 138 #include "llvm/IR/Attributes.h" 139 #include "llvm/IR/CallingConv.h" 140 #include "llvm/IR/DebugLoc.h" 141 #include "llvm/IR/Function.h" 142 #include "llvm/MC/MCAsmInfo.h" 143 #include "llvm/MC/MCContext.h" 144 #include "llvm/MC/MCDwarf.h" 145 #include "llvm/MC/MCInstrDesc.h" 146 #include "llvm/MC/MCRegisterInfo.h" 147 #include "llvm/Support/CodeGen.h" 148 #include "llvm/Support/CommandLine.h" 149 #include "llvm/Support/Compiler.h" 150 #include "llvm/Support/Debug.h" 151 #include "llvm/Support/ErrorHandling.h" 152 #include "llvm/Support/MathExtras.h" 153 #include "llvm/Support/raw_ostream.h" 154 #include "llvm/Target/TargetMachine.h" 155 #include "llvm/Target/TargetOptions.h" 156 #include <algorithm> 157 #include <cassert> 158 #include <cstddef> 159 #include <cstdint> 160 #include <iterator> 161 #include <utility> 162 #include <vector> 163 164 #define DEBUG_TYPE "arm-frame-lowering" 165 166 using namespace llvm; 167 168 static cl::opt<bool> 169 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true), 170 cl::desc("Align ARM NEON spills in prolog and epilog")); 171 172 static MachineBasicBlock::iterator 173 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 174 unsigned NumAlignedDPRCS2Regs); 175 176 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti) 177 : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)), 178 STI(sti) {} 179 180 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const { 181 // iOS always has a FP for backtracking, force other targets to keep their FP 182 // when doing FastISel. The emitted code is currently superior, and in cases 183 // like test-suite's lencod FastISel isn't quite correct when FP is eliminated. 184 return MF.getSubtarget<ARMSubtarget>().useFastISel(); 185 } 186 187 /// Returns true if the target can safely skip saving callee-saved registers 188 /// for noreturn nounwind functions. 189 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const { 190 assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) && 191 MF.getFunction().hasFnAttribute(Attribute::NoUnwind) && 192 !MF.getFunction().hasFnAttribute(Attribute::UWTable)); 193 194 // Frame pointer and link register are not treated as normal CSR, thus we 195 // can always skip CSR saves for nonreturning functions. 196 return true; 197 } 198 199 /// hasFP - Return true if the specified function should have a dedicated frame 200 /// pointer register. This is true if the function has variable sized allocas 201 /// or if frame pointer elimination is disabled. 202 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const { 203 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 204 const MachineFrameInfo &MFI = MF.getFrameInfo(); 205 206 // ABI-required frame pointer. 207 if (MF.getTarget().Options.DisableFramePointerElim(MF)) 208 return true; 209 210 // Frame pointer required for use within this function. 211 return (RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || 212 MFI.isFrameAddressTaken()); 213 } 214 215 /// isFPReserved - Return true if the frame pointer register should be 216 /// considered a reserved register on the scope of the specified function. 217 bool ARMFrameLowering::isFPReserved(const MachineFunction &MF) const { 218 return hasFP(MF) || MF.getSubtarget<ARMSubtarget>().createAAPCSFrameChain(); 219 } 220 221 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 222 /// not required, we reserve argument space for call sites in the function 223 /// immediately on entry to the current function. This eliminates the need for 224 /// add/sub sp brackets around call sites. Returns true if the call frame is 225 /// included as part of the stack frame. 226 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 227 const MachineFrameInfo &MFI = MF.getFrameInfo(); 228 unsigned CFSize = MFI.getMaxCallFrameSize(); 229 // It's not always a good idea to include the call frame as part of the 230 // stack frame. ARM (especially Thumb) has small immediate offset to 231 // address the stack frame. So a large call frame can cause poor codegen 232 // and may even makes it impossible to scavenge a register. 233 if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12 234 return false; 235 236 return !MFI.hasVarSizedObjects(); 237 } 238 239 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 240 /// call frame pseudos can be simplified. Unlike most targets, having a FP 241 /// is not sufficient here since we still may reference some objects via SP 242 /// even when FP is available in Thumb2 mode. 243 bool 244 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 245 return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects(); 246 } 247 248 // Returns how much of the incoming argument stack area we should clean up in an 249 // epilogue. For the C calling convention this will be 0, for guaranteed tail 250 // call conventions it can be positive (a normal return or a tail call to a 251 // function that uses less stack space for arguments) or negative (for a tail 252 // call to a function that needs more stack space than us for arguments). 253 static int getArgumentStackToRestore(MachineFunction &MF, 254 MachineBasicBlock &MBB) { 255 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); 256 bool IsTailCallReturn = false; 257 if (MBB.end() != MBBI) { 258 unsigned RetOpcode = MBBI->getOpcode(); 259 IsTailCallReturn = RetOpcode == ARM::TCRETURNdi || 260 RetOpcode == ARM::TCRETURNri; 261 } 262 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 263 264 int ArgumentPopSize = 0; 265 if (IsTailCallReturn) { 266 MachineOperand &StackAdjust = MBBI->getOperand(1); 267 268 // For a tail-call in a callee-pops-arguments environment, some or all of 269 // the stack may actually be in use for the call's arguments, this is 270 // calculated during LowerCall and consumed here... 271 ArgumentPopSize = StackAdjust.getImm(); 272 } else { 273 // ... otherwise the amount to pop is *all* of the argument space, 274 // conveniently stored in the MachineFunctionInfo by 275 // LowerFormalArguments. This will, of course, be zero for the C calling 276 // convention. 277 ArgumentPopSize = AFI->getArgumentStackToRestore(); 278 } 279 280 return ArgumentPopSize; 281 } 282 283 static bool needsWinCFI(const MachineFunction &MF) { 284 const Function &F = MF.getFunction(); 285 return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && 286 F.needsUnwindTableEntry(); 287 } 288 289 // Given a load or a store instruction, generate an appropriate unwinding SEH 290 // code on Windows. 291 static MachineBasicBlock::iterator insertSEH(MachineBasicBlock::iterator MBBI, 292 const TargetInstrInfo &TII, 293 unsigned Flags) { 294 unsigned Opc = MBBI->getOpcode(); 295 MachineBasicBlock *MBB = MBBI->getParent(); 296 MachineFunction &MF = *MBB->getParent(); 297 DebugLoc DL = MBBI->getDebugLoc(); 298 MachineInstrBuilder MIB; 299 const ARMSubtarget &Subtarget = MF.getSubtarget<ARMSubtarget>(); 300 const ARMBaseRegisterInfo *RegInfo = Subtarget.getRegisterInfo(); 301 302 Flags |= MachineInstr::NoMerge; 303 304 switch (Opc) { 305 default: 306 report_fatal_error("No SEH Opcode for instruction " + TII.getName(Opc)); 307 break; 308 case ARM::t2ADDri: // add.w r11, sp, #xx 309 case ARM::t2ADDri12: // add.w r11, sp, #xx 310 case ARM::t2MOVTi16: // movt r4, #xx 311 case ARM::tBL: // bl __chkstk 312 // These are harmless if used for just setting up a frame pointer, 313 // but that frame pointer can't be relied upon for unwinding, unless 314 // set up with SEH_SaveSP. 315 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 316 .addImm(/*Wide=*/1) 317 .setMIFlags(Flags); 318 break; 319 320 case ARM::t2MOVi16: { // mov(w) r4, #xx 321 bool Wide = MBBI->getOperand(1).getImm() >= 256; 322 if (!Wide) { 323 MachineInstrBuilder NewInstr = 324 BuildMI(MF, DL, TII.get(ARM::tMOVi8)).setMIFlags(MBBI->getFlags()); 325 NewInstr.add(MBBI->getOperand(0)); 326 NewInstr.add(t1CondCodeOp(/*isDead=*/true)); 327 for (MachineOperand &MO : llvm::drop_begin(MBBI->operands())) 328 NewInstr.add(MO); 329 MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr); 330 MBB->erase(MBBI); 331 MBBI = NewMBBI; 332 } 333 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)).addImm(Wide).setMIFlags(Flags); 334 break; 335 } 336 337 case ARM::tBLXr: // blx r12 (__chkstk) 338 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 339 .addImm(/*Wide=*/0) 340 .setMIFlags(Flags); 341 break; 342 343 case ARM::t2MOVi32imm: // movw+movt 344 // This pseudo instruction expands into two mov instructions. If the 345 // second operand is a symbol reference, this will stay as two wide 346 // instructions, movw+movt. If they're immediates, the first one can 347 // end up as a narrow mov though. 348 // As two SEH instructions are appended here, they won't get interleaved 349 // between the two final movw/movt instructions, but it doesn't make any 350 // practical difference. 351 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 352 .addImm(/*Wide=*/1) 353 .setMIFlags(Flags); 354 MBB->insertAfter(MBBI, MIB); 355 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop)) 356 .addImm(/*Wide=*/1) 357 .setMIFlags(Flags); 358 break; 359 360 case ARM::t2STR_PRE: 361 if (MBBI->getOperand(0).getReg() == ARM::SP && 362 MBBI->getOperand(2).getReg() == ARM::SP && 363 MBBI->getOperand(3).getImm() == -4) { 364 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 365 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs)) 366 .addImm(1ULL << Reg) 367 .addImm(/*Wide=*/1) 368 .setMIFlags(Flags); 369 } else { 370 report_fatal_error("No matching SEH Opcode for t2STR_PRE"); 371 } 372 break; 373 374 case ARM::t2LDR_POST: 375 if (MBBI->getOperand(1).getReg() == ARM::SP && 376 MBBI->getOperand(2).getReg() == ARM::SP && 377 MBBI->getOperand(3).getImm() == 4) { 378 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 379 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveRegs)) 380 .addImm(1ULL << Reg) 381 .addImm(/*Wide=*/1) 382 .setMIFlags(Flags); 383 } else { 384 report_fatal_error("No matching SEH Opcode for t2LDR_POST"); 385 } 386 break; 387 388 case ARM::t2LDMIA_RET: 389 case ARM::t2LDMIA_UPD: 390 case ARM::t2STMDB_UPD: { 391 unsigned Mask = 0; 392 bool Wide = false; 393 for (unsigned i = 4, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) { 394 const MachineOperand &MO = MBBI->getOperand(i); 395 if (!MO.isReg() || MO.isImplicit()) 396 continue; 397 unsigned Reg = RegInfo->getSEHRegNum(MO.getReg()); 398 if (Reg == 15) 399 Reg = 14; 400 if (Reg >= 8 && Reg <= 13) 401 Wide = true; 402 else if (Opc == ARM::t2LDMIA_UPD && Reg == 14) 403 Wide = true; 404 Mask |= 1 << Reg; 405 } 406 if (!Wide) { 407 unsigned NewOpc; 408 switch (Opc) { 409 case ARM::t2LDMIA_RET: 410 NewOpc = ARM::tPOP_RET; 411 break; 412 case ARM::t2LDMIA_UPD: 413 NewOpc = ARM::tPOP; 414 break; 415 case ARM::t2STMDB_UPD: 416 NewOpc = ARM::tPUSH; 417 break; 418 default: 419 llvm_unreachable(""); 420 } 421 MachineInstrBuilder NewInstr = 422 BuildMI(MF, DL, TII.get(NewOpc)).setMIFlags(MBBI->getFlags()); 423 for (unsigned i = 2, NumOps = MBBI->getNumOperands(); i != NumOps; ++i) 424 NewInstr.add(MBBI->getOperand(i)); 425 MachineBasicBlock::iterator NewMBBI = MBB->insertAfter(MBBI, NewInstr); 426 MBB->erase(MBBI); 427 MBBI = NewMBBI; 428 } 429 unsigned SEHOpc = 430 (Opc == ARM::t2LDMIA_RET) ? ARM::SEH_SaveRegs_Ret : ARM::SEH_SaveRegs; 431 MIB = BuildMI(MF, DL, TII.get(SEHOpc)) 432 .addImm(Mask) 433 .addImm(Wide ? 1 : 0) 434 .setMIFlags(Flags); 435 break; 436 } 437 case ARM::VSTMDDB_UPD: 438 case ARM::VLDMDIA_UPD: { 439 int First = -1, Last = 0; 440 for (const MachineOperand &MO : llvm::drop_begin(MBBI->operands(), 4)) { 441 unsigned Reg = RegInfo->getSEHRegNum(MO.getReg()); 442 if (First == -1) 443 First = Reg; 444 Last = Reg; 445 } 446 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveFRegs)) 447 .addImm(First) 448 .addImm(Last) 449 .setMIFlags(Flags); 450 break; 451 } 452 case ARM::tSUBspi: 453 case ARM::tADDspi: 454 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc)) 455 .addImm(MBBI->getOperand(2).getImm() * 4) 456 .addImm(/*Wide=*/0) 457 .setMIFlags(Flags); 458 break; 459 case ARM::t2SUBspImm: 460 case ARM::t2SUBspImm12: 461 case ARM::t2ADDspImm: 462 case ARM::t2ADDspImm12: 463 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_StackAlloc)) 464 .addImm(MBBI->getOperand(2).getImm()) 465 .addImm(/*Wide=*/1) 466 .setMIFlags(Flags); 467 break; 468 469 case ARM::tMOVr: 470 if (MBBI->getOperand(1).getReg() == ARM::SP && 471 (Flags & MachineInstr::FrameSetup)) { 472 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); 473 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP)) 474 .addImm(Reg) 475 .setMIFlags(Flags); 476 } else if (MBBI->getOperand(0).getReg() == ARM::SP && 477 (Flags & MachineInstr::FrameDestroy)) { 478 unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); 479 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_SaveSP)) 480 .addImm(Reg) 481 .setMIFlags(Flags); 482 } else { 483 report_fatal_error("No SEH Opcode for MOV"); 484 } 485 break; 486 487 case ARM::tBX_RET: 488 case ARM::TCRETURNri: 489 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret)) 490 .addImm(/*Wide=*/0) 491 .setMIFlags(Flags); 492 break; 493 494 case ARM::TCRETURNdi: 495 MIB = BuildMI(MF, DL, TII.get(ARM::SEH_Nop_Ret)) 496 .addImm(/*Wide=*/1) 497 .setMIFlags(Flags); 498 break; 499 } 500 return MBB->insertAfter(MBBI, MIB); 501 } 502 503 static MachineBasicBlock::iterator 504 initMBBRange(MachineBasicBlock &MBB, const MachineBasicBlock::iterator &MBBI) { 505 if (MBBI == MBB.begin()) 506 return MachineBasicBlock::iterator(); 507 return std::prev(MBBI); 508 } 509 510 static void insertSEHRange(MachineBasicBlock &MBB, 511 MachineBasicBlock::iterator Start, 512 const MachineBasicBlock::iterator &End, 513 const ARMBaseInstrInfo &TII, unsigned MIFlags) { 514 if (Start.isValid()) 515 Start = std::next(Start); 516 else 517 Start = MBB.begin(); 518 519 for (auto MI = Start; MI != End;) { 520 auto Next = std::next(MI); 521 // Check if this instruction already has got a SEH opcode added. In that 522 // case, don't do this generic mapping. 523 if (Next != End && isSEHInstruction(*Next)) { 524 MI = std::next(Next); 525 while (MI != End && isSEHInstruction(*MI)) 526 ++MI; 527 continue; 528 } 529 insertSEH(MI, TII, MIFlags); 530 MI = Next; 531 } 532 } 533 534 static void emitRegPlusImmediate( 535 bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 536 const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg, 537 unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags, 538 ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) { 539 if (isARM) 540 emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 541 Pred, PredReg, TII, MIFlags); 542 else 543 emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 544 Pred, PredReg, TII, MIFlags); 545 } 546 547 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB, 548 MachineBasicBlock::iterator &MBBI, const DebugLoc &dl, 549 const ARMBaseInstrInfo &TII, int NumBytes, 550 unsigned MIFlags = MachineInstr::NoFlags, 551 ARMCC::CondCodes Pred = ARMCC::AL, 552 unsigned PredReg = 0) { 553 emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes, 554 MIFlags, Pred, PredReg); 555 } 556 557 static int sizeOfSPAdjustment(const MachineInstr &MI) { 558 int RegSize; 559 switch (MI.getOpcode()) { 560 case ARM::VSTMDDB_UPD: 561 RegSize = 8; 562 break; 563 case ARM::STMDB_UPD: 564 case ARM::t2STMDB_UPD: 565 RegSize = 4; 566 break; 567 case ARM::t2STR_PRE: 568 case ARM::STR_PRE_IMM: 569 return 4; 570 default: 571 llvm_unreachable("Unknown push or pop like instruction"); 572 } 573 574 int count = 0; 575 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 576 // pred) so the list starts at 4. 577 for (int i = MI.getNumOperands() - 1; i >= 4; --i) 578 count += RegSize; 579 return count; 580 } 581 582 static bool WindowsRequiresStackProbe(const MachineFunction &MF, 583 size_t StackSizeInBytes) { 584 const MachineFrameInfo &MFI = MF.getFrameInfo(); 585 const Function &F = MF.getFunction(); 586 unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096; 587 588 StackProbeSize = 589 F.getFnAttributeAsParsedInteger("stack-probe-size", StackProbeSize); 590 return (StackSizeInBytes >= StackProbeSize) && 591 !F.hasFnAttribute("no-stack-arg-probe"); 592 } 593 594 namespace { 595 596 struct StackAdjustingInsts { 597 struct InstInfo { 598 MachineBasicBlock::iterator I; 599 unsigned SPAdjust; 600 bool BeforeFPSet; 601 }; 602 603 SmallVector<InstInfo, 4> Insts; 604 605 void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust, 606 bool BeforeFPSet = false) { 607 InstInfo Info = {I, SPAdjust, BeforeFPSet}; 608 Insts.push_back(Info); 609 } 610 611 void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) { 612 auto Info = 613 llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; }); 614 assert(Info != Insts.end() && "invalid sp adjusting instruction"); 615 Info->SPAdjust += ExtraBytes; 616 } 617 618 void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl, 619 const ARMBaseInstrInfo &TII, bool HasFP) { 620 MachineFunction &MF = *MBB.getParent(); 621 unsigned CFAOffset = 0; 622 for (auto &Info : Insts) { 623 if (HasFP && !Info.BeforeFPSet) 624 return; 625 626 CFAOffset += Info.SPAdjust; 627 unsigned CFIIndex = MF.addFrameInst( 628 MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset)); 629 BuildMI(MBB, std::next(Info.I), dl, 630 TII.get(TargetOpcode::CFI_INSTRUCTION)) 631 .addCFIIndex(CFIIndex) 632 .setMIFlags(MachineInstr::FrameSetup); 633 } 634 } 635 }; 636 637 } // end anonymous namespace 638 639 /// Emit an instruction sequence that will align the address in 640 /// register Reg by zero-ing out the lower bits. For versions of the 641 /// architecture that support Neon, this must be done in a single 642 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a 643 /// single instruction. That function only gets called when optimizing 644 /// spilling of D registers on a core with the Neon instruction set 645 /// present. 646 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI, 647 const TargetInstrInfo &TII, 648 MachineBasicBlock &MBB, 649 MachineBasicBlock::iterator MBBI, 650 const DebugLoc &DL, const unsigned Reg, 651 const Align Alignment, 652 const bool MustBeSingleInstruction) { 653 const ARMSubtarget &AST = MF.getSubtarget<ARMSubtarget>(); 654 const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops(); 655 const unsigned AlignMask = Alignment.value() - 1U; 656 const unsigned NrBitsToZero = Log2(Alignment); 657 assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported"); 658 if (!AFI->isThumbFunction()) { 659 // if the BFC instruction is available, use that to zero the lower 660 // bits: 661 // bfc Reg, #0, log2(Alignment) 662 // otherwise use BIC, if the mask to zero the required number of bits 663 // can be encoded in the bic immediate field 664 // bic Reg, Reg, Alignment-1 665 // otherwise, emit 666 // lsr Reg, Reg, log2(Alignment) 667 // lsl Reg, Reg, log2(Alignment) 668 if (CanUseBFC) { 669 BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg) 670 .addReg(Reg, RegState::Kill) 671 .addImm(~AlignMask) 672 .add(predOps(ARMCC::AL)); 673 } else if (AlignMask <= 255) { 674 BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg) 675 .addReg(Reg, RegState::Kill) 676 .addImm(AlignMask) 677 .add(predOps(ARMCC::AL)) 678 .add(condCodeOp()); 679 } else { 680 assert(!MustBeSingleInstruction && 681 "Shouldn't call emitAligningInstructions demanding a single " 682 "instruction to be emitted for large stack alignment for a target " 683 "without BFC."); 684 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 685 .addReg(Reg, RegState::Kill) 686 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero)) 687 .add(predOps(ARMCC::AL)) 688 .add(condCodeOp()); 689 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 690 .addReg(Reg, RegState::Kill) 691 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero)) 692 .add(predOps(ARMCC::AL)) 693 .add(condCodeOp()); 694 } 695 } else { 696 // Since this is only reached for Thumb-2 targets, the BFC instruction 697 // should always be available. 698 assert(CanUseBFC); 699 BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg) 700 .addReg(Reg, RegState::Kill) 701 .addImm(~AlignMask) 702 .add(predOps(ARMCC::AL)); 703 } 704 } 705 706 /// We need the offset of the frame pointer relative to other MachineFrameInfo 707 /// offsets which are encoded relative to SP at function begin. 708 /// See also emitPrologue() for how the FP is set up. 709 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet 710 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use 711 /// this to produce a conservative estimate that we check in an assert() later. 712 static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI, 713 const MachineFunction &MF) { 714 // For Thumb1, push.w isn't available, so the first push will always push 715 // r7 and lr onto the stack first. 716 if (AFI.isThumb1OnlyFunction()) 717 return -AFI.getArgRegsSaveSize() - (2 * 4); 718 // This is a conservative estimation: Assume the frame pointer being r7 and 719 // pc("r15") up to r8 getting spilled before (= 8 registers). 720 int MaxRegBytes = 8 * 4; 721 if (STI.splitFramePointerPush(MF)) { 722 // Here, r11 can be stored below all of r4-r15 (3 registers more than 723 // above), plus d8-d15. 724 MaxRegBytes = 11 * 4 + 8 * 8; 725 } 726 int FPCXTSaveSize = 727 (STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0; 728 return -FPCXTSaveSize - AFI.getArgRegsSaveSize() - MaxRegBytes; 729 } 730 731 void ARMFrameLowering::emitPrologue(MachineFunction &MF, 732 MachineBasicBlock &MBB) const { 733 MachineBasicBlock::iterator MBBI = MBB.begin(); 734 MachineFrameInfo &MFI = MF.getFrameInfo(); 735 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 736 MachineModuleInfo &MMI = MF.getMMI(); 737 MCContext &Context = MMI.getContext(); 738 const TargetMachine &TM = MF.getTarget(); 739 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 740 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 741 const ARMBaseInstrInfo &TII = *STI.getInstrInfo(); 742 assert(!AFI->isThumb1OnlyFunction() && 743 "This emitPrologue does not support Thumb1!"); 744 bool isARM = !AFI->isThumbFunction(); 745 Align Alignment = STI.getFrameLowering()->getStackAlign(); 746 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 747 unsigned NumBytes = MFI.getStackSize(); 748 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 749 int FPCXTSaveSize = 0; 750 bool NeedsWinCFI = needsWinCFI(MF); 751 752 // Debug location must be unknown since the first debug location is used 753 // to determine the end of the prologue. 754 DebugLoc dl; 755 756 Register FramePtr = RegInfo->getFrameRegister(MF); 757 758 // Determine the sizes of each callee-save spill areas and record which frame 759 // belongs to which callee-save spill areas. 760 unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0; 761 int FramePtrSpillFI = 0; 762 int D8SpillFI = 0; 763 764 // All calls are tail calls in GHC calling conv, and functions have no 765 // prologue/epilogue. 766 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 767 return; 768 769 StackAdjustingInsts DefCFAOffsetCandidates; 770 bool HasFP = hasFP(MF); 771 772 if (!AFI->hasStackFrame() && 773 (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) { 774 if (NumBytes != 0) { 775 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 776 MachineInstr::FrameSetup); 777 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes, true); 778 } 779 if (!NeedsWinCFI) 780 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 781 if (NeedsWinCFI && MBBI != MBB.begin()) { 782 insertSEHRange(MBB, {}, MBBI, TII, MachineInstr::FrameSetup); 783 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_PrologEnd)) 784 .setMIFlag(MachineInstr::FrameSetup); 785 MF.setHasWinCFI(true); 786 } 787 return; 788 } 789 790 // Determine spill area sizes. 791 if (STI.splitFramePointerPush(MF)) { 792 for (const CalleeSavedInfo &I : CSI) { 793 Register Reg = I.getReg(); 794 int FI = I.getFrameIdx(); 795 switch (Reg) { 796 case ARM::R11: 797 case ARM::LR: 798 if (Reg == FramePtr) 799 FramePtrSpillFI = FI; 800 GPRCS2Size += 4; 801 break; 802 case ARM::R0: 803 case ARM::R1: 804 case ARM::R2: 805 case ARM::R3: 806 case ARM::R4: 807 case ARM::R5: 808 case ARM::R6: 809 case ARM::R7: 810 case ARM::R8: 811 case ARM::R9: 812 case ARM::R10: 813 case ARM::R12: 814 GPRCS1Size += 4; 815 break; 816 case ARM::FPCXTNS: 817 FPCXTSaveSize = 4; 818 break; 819 default: 820 // This is a DPR. Exclude the aligned DPRCS2 spills. 821 if (Reg == ARM::D8) 822 D8SpillFI = FI; 823 if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs()) 824 DPRCSSize += 8; 825 } 826 } 827 } else { 828 for (const CalleeSavedInfo &I : CSI) { 829 Register Reg = I.getReg(); 830 int FI = I.getFrameIdx(); 831 switch (Reg) { 832 case ARM::R8: 833 case ARM::R9: 834 case ARM::R10: 835 case ARM::R11: 836 case ARM::R12: 837 if (STI.splitFramePushPop(MF)) { 838 GPRCS2Size += 4; 839 break; 840 } 841 [[fallthrough]]; 842 case ARM::R0: 843 case ARM::R1: 844 case ARM::R2: 845 case ARM::R3: 846 case ARM::R4: 847 case ARM::R5: 848 case ARM::R6: 849 case ARM::R7: 850 case ARM::LR: 851 if (Reg == FramePtr) 852 FramePtrSpillFI = FI; 853 GPRCS1Size += 4; 854 break; 855 case ARM::FPCXTNS: 856 FPCXTSaveSize = 4; 857 break; 858 default: 859 // This is a DPR. Exclude the aligned DPRCS2 spills. 860 if (Reg == ARM::D8) 861 D8SpillFI = FI; 862 if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs()) 863 DPRCSSize += 8; 864 } 865 } 866 } 867 868 MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push; 869 870 // Move past the PAC computation. 871 if (AFI->shouldSignReturnAddress()) 872 LastPush = MBBI++; 873 874 // Move past FPCXT area. 875 if (FPCXTSaveSize > 0) { 876 LastPush = MBBI++; 877 DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, true); 878 } 879 880 // Allocate the vararg register save area. 881 if (ArgRegsSaveSize) { 882 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize, 883 MachineInstr::FrameSetup); 884 LastPush = std::prev(MBBI); 885 DefCFAOffsetCandidates.addInst(LastPush, ArgRegsSaveSize, true); 886 } 887 888 // Move past area 1. 889 if (GPRCS1Size > 0) { 890 GPRCS1Push = LastPush = MBBI++; 891 DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true); 892 } 893 894 // Determine starting offsets of spill areas. 895 unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize; 896 unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size; 897 unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size; 898 Align DPRAlign = DPRCSSize ? std::min(Align(8), Alignment) : Align(4); 899 unsigned DPRGapSize = GPRCS1Size + FPCXTSaveSize + ArgRegsSaveSize; 900 if (!STI.splitFramePointerPush(MF)) { 901 DPRGapSize += GPRCS2Size; 902 } 903 DPRGapSize %= DPRAlign.value(); 904 905 unsigned DPRCSOffset; 906 if (STI.splitFramePointerPush(MF)) { 907 DPRCSOffset = GPRCS1Offset - DPRGapSize - DPRCSSize; 908 GPRCS2Offset = DPRCSOffset - GPRCS2Size; 909 } else { 910 DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize; 911 } 912 int FramePtrOffsetInPush = 0; 913 if (HasFP) { 914 int FPOffset = MFI.getObjectOffset(FramePtrSpillFI); 915 assert(getMaxFPOffset(STI, *AFI, MF) <= FPOffset && 916 "Max FP estimation is wrong"); 917 FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize + FPCXTSaveSize; 918 AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) + 919 NumBytes); 920 } 921 AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset); 922 AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset); 923 AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset); 924 925 // Move past area 2. 926 if (GPRCS2Size > 0 && !STI.splitFramePointerPush(MF)) { 927 GPRCS2Push = LastPush = MBBI++; 928 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size); 929 } 930 931 // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our 932 // .cfi_offset operations will reflect that. 933 if (DPRGapSize) { 934 assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs"); 935 if (LastPush != MBB.end() && 936 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize)) 937 DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize); 938 else { 939 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize, 940 MachineInstr::FrameSetup); 941 DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize); 942 } 943 } 944 945 // Move past area 3. 946 if (DPRCSSize > 0) { 947 // Since vpush register list cannot have gaps, there may be multiple vpush 948 // instructions in the prologue. 949 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) { 950 DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI)); 951 LastPush = MBBI++; 952 } 953 } 954 955 // Move past the aligned DPRCS2 area. 956 if (AFI->getNumAlignedDPRCS2Regs() > 0) { 957 MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs()); 958 // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and 959 // leaves the stack pointer pointing to the DPRCS2 area. 960 // 961 // Adjust NumBytes to represent the stack slots below the DPRCS2 area. 962 NumBytes += MFI.getObjectOffset(D8SpillFI); 963 } else 964 NumBytes = DPRCSOffset; 965 966 if (GPRCS2Size > 0 && STI.splitFramePointerPush(MF)) { 967 GPRCS2Push = LastPush = MBBI++; 968 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size); 969 } 970 971 bool NeedsWinCFIStackAlloc = NeedsWinCFI; 972 if (STI.splitFramePointerPush(MF) && HasFP) 973 NeedsWinCFIStackAlloc = false; 974 975 if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) { 976 uint32_t NumWords = NumBytes >> 2; 977 978 if (NumWords < 65536) { 979 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 980 .addImm(NumWords) 981 .setMIFlags(MachineInstr::FrameSetup) 982 .add(predOps(ARMCC::AL)); 983 } else { 984 // Split into two instructions here, instead of using t2MOVi32imm, 985 // to allow inserting accurate SEH instructions (including accurate 986 // instruction size for each of them). 987 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 988 .addImm(NumWords & 0xffff) 989 .setMIFlags(MachineInstr::FrameSetup) 990 .add(predOps(ARMCC::AL)); 991 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVTi16), ARM::R4) 992 .addReg(ARM::R4) 993 .addImm(NumWords >> 16) 994 .setMIFlags(MachineInstr::FrameSetup) 995 .add(predOps(ARMCC::AL)); 996 } 997 998 switch (TM.getCodeModel()) { 999 case CodeModel::Tiny: 1000 llvm_unreachable("Tiny code model not available on ARM."); 1001 case CodeModel::Small: 1002 case CodeModel::Medium: 1003 case CodeModel::Kernel: 1004 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL)) 1005 .add(predOps(ARMCC::AL)) 1006 .addExternalSymbol("__chkstk") 1007 .addReg(ARM::R4, RegState::Implicit) 1008 .setMIFlags(MachineInstr::FrameSetup); 1009 break; 1010 case CodeModel::Large: 1011 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12) 1012 .addExternalSymbol("__chkstk") 1013 .setMIFlags(MachineInstr::FrameSetup); 1014 1015 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr)) 1016 .add(predOps(ARMCC::AL)) 1017 .addReg(ARM::R12, RegState::Kill) 1018 .addReg(ARM::R4, RegState::Implicit) 1019 .setMIFlags(MachineInstr::FrameSetup); 1020 break; 1021 } 1022 1023 MachineInstrBuilder Instr, SEH; 1024 Instr = BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP) 1025 .addReg(ARM::SP, RegState::Kill) 1026 .addReg(ARM::R4, RegState::Kill) 1027 .setMIFlags(MachineInstr::FrameSetup) 1028 .add(predOps(ARMCC::AL)) 1029 .add(condCodeOp()); 1030 if (NeedsWinCFIStackAlloc) { 1031 SEH = BuildMI(MF, dl, TII.get(ARM::SEH_StackAlloc)) 1032 .addImm(NumBytes) 1033 .addImm(/*Wide=*/1) 1034 .setMIFlags(MachineInstr::FrameSetup); 1035 MBB.insertAfter(Instr, SEH); 1036 } 1037 NumBytes = 0; 1038 } 1039 1040 if (NumBytes) { 1041 // Adjust SP after all the callee-save spills. 1042 if (AFI->getNumAlignedDPRCS2Regs() == 0 && 1043 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes)) 1044 DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes); 1045 else { 1046 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 1047 MachineInstr::FrameSetup); 1048 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes); 1049 } 1050 1051 if (HasFP && isARM) 1052 // Restore from fp only in ARM mode: e.g. sub sp, r7, #24 1053 // Note it's not safe to do this in Thumb2 mode because it would have 1054 // taken two instructions: 1055 // mov sp, r7 1056 // sub sp, #24 1057 // If an interrupt is taken between the two instructions, then sp is in 1058 // an inconsistent state (pointing to the middle of callee-saved area). 1059 // The interrupt handler can end up clobbering the registers. 1060 AFI->setShouldRestoreSPFromFP(true); 1061 } 1062 1063 // Set FP to point to the stack slot that contains the previous FP. 1064 // For iOS, FP is R7, which has now been stored in spill area 1. 1065 // Otherwise, if this is not iOS, all the callee-saved registers go 1066 // into spill area 1, including the FP in R11. In either case, it 1067 // is in area one and the adjustment needs to take place just after 1068 // that push. 1069 // FIXME: The above is not necessary true when PACBTI is enabled. 1070 // AAPCS requires use of R11, and PACBTI gets in the way of regular pushes, 1071 // so FP ends up on area two. 1072 MachineBasicBlock::iterator AfterPush; 1073 if (HasFP) { 1074 AfterPush = std::next(GPRCS1Push); 1075 unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push); 1076 int FPOffset = PushSize + FramePtrOffsetInPush; 1077 if (STI.splitFramePointerPush(MF)) { 1078 AfterPush = std::next(GPRCS2Push); 1079 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII, 1080 FramePtr, ARM::SP, 0, MachineInstr::FrameSetup); 1081 } else { 1082 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, dl, TII, 1083 FramePtr, ARM::SP, FPOffset, 1084 MachineInstr::FrameSetup); 1085 } 1086 if (!NeedsWinCFI) { 1087 if (FramePtrOffsetInPush + PushSize != 0) { 1088 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa( 1089 nullptr, MRI->getDwarfRegNum(FramePtr, true), 1090 FPCXTSaveSize + ArgRegsSaveSize - FramePtrOffsetInPush)); 1091 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1092 .addCFIIndex(CFIIndex) 1093 .setMIFlags(MachineInstr::FrameSetup); 1094 } else { 1095 unsigned CFIIndex = 1096 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister( 1097 nullptr, MRI->getDwarfRegNum(FramePtr, true))); 1098 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1099 .addCFIIndex(CFIIndex) 1100 .setMIFlags(MachineInstr::FrameSetup); 1101 } 1102 } 1103 } 1104 1105 // Emit a SEH opcode indicating the prologue end. The rest of the prologue 1106 // instructions below don't need to be replayed to unwind the stack. 1107 if (NeedsWinCFI && MBBI != MBB.begin()) { 1108 MachineBasicBlock::iterator End = MBBI; 1109 if (HasFP && STI.splitFramePointerPush(MF)) 1110 End = AfterPush; 1111 insertSEHRange(MBB, {}, End, TII, MachineInstr::FrameSetup); 1112 BuildMI(MBB, End, dl, TII.get(ARM::SEH_PrologEnd)) 1113 .setMIFlag(MachineInstr::FrameSetup); 1114 MF.setHasWinCFI(true); 1115 } 1116 1117 // Now that the prologue's actual instructions are finalised, we can insert 1118 // the necessary DWARF cf instructions to describe the situation. Start by 1119 // recording where each register ended up: 1120 if (GPRCS1Size > 0 && !NeedsWinCFI) { 1121 MachineBasicBlock::iterator Pos = std::next(GPRCS1Push); 1122 int CFIIndex; 1123 for (const auto &Entry : CSI) { 1124 Register Reg = Entry.getReg(); 1125 int FI = Entry.getFrameIdx(); 1126 switch (Reg) { 1127 case ARM::R8: 1128 case ARM::R9: 1129 case ARM::R10: 1130 case ARM::R11: 1131 case ARM::R12: 1132 if (STI.splitFramePushPop(MF)) 1133 break; 1134 [[fallthrough]]; 1135 case ARM::R0: 1136 case ARM::R1: 1137 case ARM::R2: 1138 case ARM::R3: 1139 case ARM::R4: 1140 case ARM::R5: 1141 case ARM::R6: 1142 case ARM::R7: 1143 case ARM::LR: 1144 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 1145 nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI))); 1146 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1147 .addCFIIndex(CFIIndex) 1148 .setMIFlags(MachineInstr::FrameSetup); 1149 break; 1150 } 1151 } 1152 } 1153 1154 if (GPRCS2Size > 0 && !NeedsWinCFI) { 1155 MachineBasicBlock::iterator Pos = std::next(GPRCS2Push); 1156 for (const auto &Entry : CSI) { 1157 Register Reg = Entry.getReg(); 1158 int FI = Entry.getFrameIdx(); 1159 switch (Reg) { 1160 case ARM::R8: 1161 case ARM::R9: 1162 case ARM::R10: 1163 case ARM::R11: 1164 case ARM::R12: 1165 if (STI.splitFramePushPop(MF)) { 1166 unsigned DwarfReg = MRI->getDwarfRegNum( 1167 Reg == ARM::R12 ? ARM::RA_AUTH_CODE : Reg, true); 1168 unsigned Offset = MFI.getObjectOffset(FI); 1169 unsigned CFIIndex = MF.addFrameInst( 1170 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 1171 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1172 .addCFIIndex(CFIIndex) 1173 .setMIFlags(MachineInstr::FrameSetup); 1174 } 1175 break; 1176 } 1177 } 1178 } 1179 1180 if (DPRCSSize > 0 && !NeedsWinCFI) { 1181 // Since vpush register list cannot have gaps, there may be multiple vpush 1182 // instructions in the prologue. 1183 MachineBasicBlock::iterator Pos = std::next(LastPush); 1184 for (const auto &Entry : CSI) { 1185 Register Reg = Entry.getReg(); 1186 int FI = Entry.getFrameIdx(); 1187 if ((Reg >= ARM::D0 && Reg <= ARM::D31) && 1188 (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) { 1189 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 1190 unsigned Offset = MFI.getObjectOffset(FI); 1191 unsigned CFIIndex = MF.addFrameInst( 1192 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 1193 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 1194 .addCFIIndex(CFIIndex) 1195 .setMIFlags(MachineInstr::FrameSetup); 1196 } 1197 } 1198 } 1199 1200 // Now we can emit descriptions of where the canonical frame address was 1201 // throughout the process. If we have a frame pointer, it takes over the job 1202 // half-way through, so only the first few .cfi_def_cfa_offset instructions 1203 // actually get emitted. 1204 if (!NeedsWinCFI) 1205 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 1206 1207 if (STI.isTargetELF() && hasFP(MF)) 1208 MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() - 1209 AFI->getFramePtrSpillOffset()); 1210 1211 AFI->setFPCXTSaveAreaSize(FPCXTSaveSize); 1212 AFI->setGPRCalleeSavedArea1Size(GPRCS1Size); 1213 AFI->setGPRCalleeSavedArea2Size(GPRCS2Size); 1214 AFI->setDPRCalleeSavedGapSize(DPRGapSize); 1215 AFI->setDPRCalleeSavedAreaSize(DPRCSSize); 1216 1217 // If we need dynamic stack realignment, do it here. Be paranoid and make 1218 // sure if we also have VLAs, we have a base pointer for frame access. 1219 // If aligned NEON registers were spilled, the stack has already been 1220 // realigned. 1221 if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->hasStackRealignment(MF)) { 1222 Align MaxAlign = MFI.getMaxAlign(); 1223 assert(!AFI->isThumb1OnlyFunction()); 1224 if (!AFI->isThumbFunction()) { 1225 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign, 1226 false); 1227 } else { 1228 // We cannot use sp as source/dest register here, thus we're using r4 to 1229 // perform the calculations. We're emitting the following sequence: 1230 // mov r4, sp 1231 // -- use emitAligningInstructions to produce best sequence to zero 1232 // -- out lower bits in r4 1233 // mov sp, r4 1234 // FIXME: It will be better just to find spare register here. 1235 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4) 1236 .addReg(ARM::SP, RegState::Kill) 1237 .add(predOps(ARMCC::AL)); 1238 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign, 1239 false); 1240 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 1241 .addReg(ARM::R4, RegState::Kill) 1242 .add(predOps(ARMCC::AL)); 1243 } 1244 1245 AFI->setShouldRestoreSPFromFP(true); 1246 } 1247 1248 // If we need a base pointer, set it up here. It's whatever the value 1249 // of the stack pointer is at this point. Any variable size objects 1250 // will be allocated after this, so we can still use the base pointer 1251 // to reference locals. 1252 // FIXME: Clarify FrameSetup flags here. 1253 if (RegInfo->hasBasePointer(MF)) { 1254 if (isARM) 1255 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister()) 1256 .addReg(ARM::SP) 1257 .add(predOps(ARMCC::AL)) 1258 .add(condCodeOp()); 1259 else 1260 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister()) 1261 .addReg(ARM::SP) 1262 .add(predOps(ARMCC::AL)); 1263 } 1264 1265 // If the frame has variable sized objects then the epilogue must restore 1266 // the sp from fp. We can assume there's an FP here since hasFP already 1267 // checks for hasVarSizedObjects. 1268 if (MFI.hasVarSizedObjects()) 1269 AFI->setShouldRestoreSPFromFP(true); 1270 } 1271 1272 void ARMFrameLowering::emitEpilogue(MachineFunction &MF, 1273 MachineBasicBlock &MBB) const { 1274 MachineFrameInfo &MFI = MF.getFrameInfo(); 1275 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1276 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 1277 const ARMBaseInstrInfo &TII = 1278 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1279 assert(!AFI->isThumb1OnlyFunction() && 1280 "This emitEpilogue does not support Thumb1!"); 1281 bool isARM = !AFI->isThumbFunction(); 1282 1283 // Amount of stack space we reserved next to incoming args for either 1284 // varargs registers or stack arguments in tail calls made by this function. 1285 unsigned ReservedArgStack = AFI->getArgRegsSaveSize(); 1286 1287 // How much of the stack used by incoming arguments this function is expected 1288 // to restore in this particular epilogue. 1289 int IncomingArgStackToRestore = getArgumentStackToRestore(MF, MBB); 1290 int NumBytes = (int)MFI.getStackSize(); 1291 Register FramePtr = RegInfo->getFrameRegister(MF); 1292 1293 // All calls are tail calls in GHC calling conv, and functions have no 1294 // prologue/epilogue. 1295 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 1296 return; 1297 1298 // First put ourselves on the first (from top) terminator instructions. 1299 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 1300 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 1301 1302 MachineBasicBlock::iterator RangeStart; 1303 if (!AFI->hasStackFrame()) { 1304 if (MF.hasWinCFI()) { 1305 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart)) 1306 .setMIFlag(MachineInstr::FrameDestroy); 1307 RangeStart = initMBBRange(MBB, MBBI); 1308 } 1309 1310 if (NumBytes + IncomingArgStackToRestore != 0) 1311 emitSPUpdate(isARM, MBB, MBBI, dl, TII, 1312 NumBytes + IncomingArgStackToRestore, 1313 MachineInstr::FrameDestroy); 1314 } else { 1315 // Unwind MBBI to point to first LDR / VLDRD. 1316 if (MBBI != MBB.begin()) { 1317 do { 1318 --MBBI; 1319 } while (MBBI != MBB.begin() && 1320 MBBI->getFlag(MachineInstr::FrameDestroy)); 1321 if (!MBBI->getFlag(MachineInstr::FrameDestroy)) 1322 ++MBBI; 1323 } 1324 1325 if (MF.hasWinCFI()) { 1326 BuildMI(MBB, MBBI, dl, TII.get(ARM::SEH_EpilogStart)) 1327 .setMIFlag(MachineInstr::FrameDestroy); 1328 RangeStart = initMBBRange(MBB, MBBI); 1329 } 1330 1331 // Move SP to start of FP callee save spill area. 1332 NumBytes -= (ReservedArgStack + 1333 AFI->getFPCXTSaveAreaSize() + 1334 AFI->getGPRCalleeSavedArea1Size() + 1335 AFI->getGPRCalleeSavedArea2Size() + 1336 AFI->getDPRCalleeSavedGapSize() + 1337 AFI->getDPRCalleeSavedAreaSize()); 1338 1339 // Reset SP based on frame pointer only if the stack frame extends beyond 1340 // frame pointer stack slot or target is ELF and the function has FP. 1341 if (AFI->shouldRestoreSPFromFP()) { 1342 NumBytes = AFI->getFramePtrSpillOffset() - NumBytes; 1343 if (NumBytes) { 1344 if (isARM) 1345 emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes, 1346 ARMCC::AL, 0, TII, 1347 MachineInstr::FrameDestroy); 1348 else { 1349 // It's not possible to restore SP from FP in a single instruction. 1350 // For iOS, this looks like: 1351 // mov sp, r7 1352 // sub sp, #24 1353 // This is bad, if an interrupt is taken after the mov, sp is in an 1354 // inconsistent state. 1355 // Use the first callee-saved register as a scratch register. 1356 assert(!MFI.getPristineRegs(MF).test(ARM::R4) && 1357 "No scratch register to restore SP from FP!"); 1358 emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes, 1359 ARMCC::AL, 0, TII, MachineInstr::FrameDestroy); 1360 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 1361 .addReg(ARM::R4) 1362 .add(predOps(ARMCC::AL)) 1363 .setMIFlag(MachineInstr::FrameDestroy); 1364 } 1365 } else { 1366 // Thumb2 or ARM. 1367 if (isARM) 1368 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP) 1369 .addReg(FramePtr) 1370 .add(predOps(ARMCC::AL)) 1371 .add(condCodeOp()) 1372 .setMIFlag(MachineInstr::FrameDestroy); 1373 else 1374 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 1375 .addReg(FramePtr) 1376 .add(predOps(ARMCC::AL)) 1377 .setMIFlag(MachineInstr::FrameDestroy); 1378 } 1379 } else if (NumBytes && 1380 !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes)) 1381 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes, 1382 MachineInstr::FrameDestroy); 1383 1384 // Increment past our save areas. 1385 if (AFI->getGPRCalleeSavedArea2Size() && STI.splitFramePointerPush(MF)) 1386 MBBI++; 1387 1388 if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) { 1389 MBBI++; 1390 // Since vpop register list cannot have gaps, there may be multiple vpop 1391 // instructions in the epilogue. 1392 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD) 1393 MBBI++; 1394 } 1395 if (AFI->getDPRCalleeSavedGapSize()) { 1396 assert(AFI->getDPRCalleeSavedGapSize() == 4 && 1397 "unexpected DPR alignment gap"); 1398 emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(), 1399 MachineInstr::FrameDestroy); 1400 } 1401 1402 if (AFI->getGPRCalleeSavedArea2Size() && !STI.splitFramePointerPush(MF)) 1403 MBBI++; 1404 if (AFI->getGPRCalleeSavedArea1Size()) MBBI++; 1405 1406 if (ReservedArgStack || IncomingArgStackToRestore) { 1407 assert((int)ReservedArgStack + IncomingArgStackToRestore >= 0 && 1408 "attempting to restore negative stack amount"); 1409 emitSPUpdate(isARM, MBB, MBBI, dl, TII, 1410 ReservedArgStack + IncomingArgStackToRestore, 1411 MachineInstr::FrameDestroy); 1412 } 1413 1414 // Validate PAC, It should have been already popped into R12. For CMSE entry 1415 // function, the validation instruction is emitted during expansion of the 1416 // tBXNS_RET, since the validation must use the value of SP at function 1417 // entry, before saving, resp. after restoring, FPCXTNS. 1418 if (AFI->shouldSignReturnAddress() && !AFI->isCmseNSEntryFunction()) 1419 BuildMI(MBB, MBBI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2AUT)); 1420 } 1421 1422 if (MF.hasWinCFI()) { 1423 insertSEHRange(MBB, RangeStart, MBB.end(), TII, MachineInstr::FrameDestroy); 1424 BuildMI(MBB, MBB.end(), dl, TII.get(ARM::SEH_EpilogEnd)) 1425 .setMIFlag(MachineInstr::FrameDestroy); 1426 } 1427 } 1428 1429 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 1430 /// debug info. It's the same as what we use for resolving the code-gen 1431 /// references for now. FIXME: This can go wrong when references are 1432 /// SP-relative and simple call frames aren't used. 1433 StackOffset ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, 1434 int FI, 1435 Register &FrameReg) const { 1436 return StackOffset::getFixed(ResolveFrameIndexReference(MF, FI, FrameReg, 0)); 1437 } 1438 1439 int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF, 1440 int FI, Register &FrameReg, 1441 int SPAdj) const { 1442 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1443 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 1444 MF.getSubtarget().getRegisterInfo()); 1445 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1446 int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize(); 1447 int FPOffset = Offset - AFI->getFramePtrSpillOffset(); 1448 bool isFixed = MFI.isFixedObjectIndex(FI); 1449 1450 FrameReg = ARM::SP; 1451 Offset += SPAdj; 1452 1453 // SP can move around if there are allocas. We may also lose track of SP 1454 // when emergency spilling inside a non-reserved call frame setup. 1455 bool hasMovingSP = !hasReservedCallFrame(MF); 1456 1457 // When dynamically realigning the stack, use the frame pointer for 1458 // parameters, and the stack/base pointer for locals. 1459 if (RegInfo->hasStackRealignment(MF)) { 1460 assert(hasFP(MF) && "dynamic stack realignment without a FP!"); 1461 if (isFixed) { 1462 FrameReg = RegInfo->getFrameRegister(MF); 1463 Offset = FPOffset; 1464 } else if (hasMovingSP) { 1465 assert(RegInfo->hasBasePointer(MF) && 1466 "VLAs and dynamic stack alignment, but missing base pointer!"); 1467 FrameReg = RegInfo->getBaseRegister(); 1468 Offset -= SPAdj; 1469 } 1470 return Offset; 1471 } 1472 1473 // If there is a frame pointer, use it when we can. 1474 if (hasFP(MF) && AFI->hasStackFrame()) { 1475 // Use frame pointer to reference fixed objects. Use it for locals if 1476 // there are VLAs (and thus the SP isn't reliable as a base). 1477 if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) { 1478 FrameReg = RegInfo->getFrameRegister(MF); 1479 return FPOffset; 1480 } else if (hasMovingSP) { 1481 assert(RegInfo->hasBasePointer(MF) && "missing base pointer!"); 1482 if (AFI->isThumb2Function()) { 1483 // Try to use the frame pointer if we can, else use the base pointer 1484 // since it's available. This is handy for the emergency spill slot, in 1485 // particular. 1486 if (FPOffset >= -255 && FPOffset < 0) { 1487 FrameReg = RegInfo->getFrameRegister(MF); 1488 return FPOffset; 1489 } 1490 } 1491 } else if (AFI->isThumbFunction()) { 1492 // Prefer SP to base pointer, if the offset is suitably aligned and in 1493 // range as the effective range of the immediate offset is bigger when 1494 // basing off SP. 1495 // Use add <rd>, sp, #<imm8> 1496 // ldr <rd>, [sp, #<imm8>] 1497 if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020) 1498 return Offset; 1499 // In Thumb2 mode, the negative offset is very limited. Try to avoid 1500 // out of range references. ldr <rt>,[<rn>, #-<imm8>] 1501 if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) { 1502 FrameReg = RegInfo->getFrameRegister(MF); 1503 return FPOffset; 1504 } 1505 } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) { 1506 // Otherwise, use SP or FP, whichever is closer to the stack slot. 1507 FrameReg = RegInfo->getFrameRegister(MF); 1508 return FPOffset; 1509 } 1510 } 1511 // Use the base pointer if we have one. 1512 // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper? 1513 // That can happen if we forced a base pointer for a large call frame. 1514 if (RegInfo->hasBasePointer(MF)) { 1515 FrameReg = RegInfo->getBaseRegister(); 1516 Offset -= SPAdj; 1517 } 1518 return Offset; 1519 } 1520 1521 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB, 1522 MachineBasicBlock::iterator MI, 1523 ArrayRef<CalleeSavedInfo> CSI, 1524 unsigned StmOpc, unsigned StrOpc, 1525 bool NoGap, bool (*Func)(unsigned, bool), 1526 unsigned NumAlignedDPRCS2Regs, 1527 unsigned MIFlags) const { 1528 MachineFunction &MF = *MBB.getParent(); 1529 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1530 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1531 1532 DebugLoc DL; 1533 1534 using RegAndKill = std::pair<unsigned, bool>; 1535 1536 SmallVector<RegAndKill, 4> Regs; 1537 unsigned i = CSI.size(); 1538 while (i != 0) { 1539 unsigned LastReg = 0; 1540 for (; i != 0; --i) { 1541 Register Reg = CSI[i-1].getReg(); 1542 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 1543 1544 // D-registers in the aligned area DPRCS2 are NOT spilled here. 1545 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 1546 continue; 1547 1548 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1549 bool isLiveIn = MRI.isLiveIn(Reg); 1550 if (!isLiveIn && !MRI.isReserved(Reg)) 1551 MBB.addLiveIn(Reg); 1552 // If NoGap is true, push consecutive registers and then leave the rest 1553 // for other instructions. e.g. 1554 // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11} 1555 if (NoGap && LastReg && LastReg != Reg-1) 1556 break; 1557 LastReg = Reg; 1558 // Do not set a kill flag on values that are also marked as live-in. This 1559 // happens with the @llvm-returnaddress intrinsic and with arguments 1560 // passed in callee saved registers. 1561 // Omitting the kill flags is conservatively correct even if the live-in 1562 // is not used after all. 1563 Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn)); 1564 } 1565 1566 if (Regs.empty()) 1567 continue; 1568 1569 llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) { 1570 return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first); 1571 }); 1572 1573 if (Regs.size() > 1 || StrOpc== 0) { 1574 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP) 1575 .addReg(ARM::SP) 1576 .setMIFlags(MIFlags) 1577 .add(predOps(ARMCC::AL)); 1578 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1579 MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second)); 1580 } else if (Regs.size() == 1) { 1581 BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP) 1582 .addReg(Regs[0].first, getKillRegState(Regs[0].second)) 1583 .addReg(ARM::SP) 1584 .setMIFlags(MIFlags) 1585 .addImm(-4) 1586 .add(predOps(ARMCC::AL)); 1587 } 1588 Regs.clear(); 1589 1590 // Put any subsequent vpush instructions before this one: they will refer to 1591 // higher register numbers so need to be pushed first in order to preserve 1592 // monotonicity. 1593 if (MI != MBB.begin()) 1594 --MI; 1595 } 1596 } 1597 1598 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB, 1599 MachineBasicBlock::iterator MI, 1600 MutableArrayRef<CalleeSavedInfo> CSI, 1601 unsigned LdmOpc, unsigned LdrOpc, 1602 bool isVarArg, bool NoGap, 1603 bool (*Func)(unsigned, bool), 1604 unsigned NumAlignedDPRCS2Regs) const { 1605 MachineFunction &MF = *MBB.getParent(); 1606 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1607 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1608 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1609 bool hasPAC = AFI->shouldSignReturnAddress(); 1610 DebugLoc DL; 1611 bool isTailCall = false; 1612 bool isInterrupt = false; 1613 bool isTrap = false; 1614 bool isCmseEntry = false; 1615 if (MBB.end() != MI) { 1616 DL = MI->getDebugLoc(); 1617 unsigned RetOpcode = MI->getOpcode(); 1618 isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri); 1619 isInterrupt = 1620 RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR; 1621 isTrap = 1622 RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl || 1623 RetOpcode == ARM::tTRAP; 1624 isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET); 1625 } 1626 1627 SmallVector<unsigned, 4> Regs; 1628 unsigned i = CSI.size(); 1629 while (i != 0) { 1630 unsigned LastReg = 0; 1631 bool DeleteRet = false; 1632 for (; i != 0; --i) { 1633 CalleeSavedInfo &Info = CSI[i-1]; 1634 Register Reg = Info.getReg(); 1635 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 1636 1637 // The aligned reloads from area DPRCS2 are not inserted here. 1638 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 1639 continue; 1640 if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt && 1641 !isCmseEntry && !isTrap && AFI->getArgumentStackToRestore() == 0 && 1642 STI.hasV5TOps() && MBB.succ_empty() && !hasPAC && 1643 !STI.splitFramePointerPush(MF)) { 1644 Reg = ARM::PC; 1645 // Fold the return instruction into the LDM. 1646 DeleteRet = true; 1647 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET; 1648 } 1649 1650 // If NoGap is true, pop consecutive registers and then leave the rest 1651 // for other instructions. e.g. 1652 // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11} 1653 if (NoGap && LastReg && LastReg != Reg-1) 1654 break; 1655 1656 LastReg = Reg; 1657 Regs.push_back(Reg); 1658 } 1659 1660 if (Regs.empty()) 1661 continue; 1662 1663 llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) { 1664 return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS); 1665 }); 1666 1667 if (Regs.size() > 1 || LdrOpc == 0) { 1668 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP) 1669 .addReg(ARM::SP) 1670 .add(predOps(ARMCC::AL)) 1671 .setMIFlags(MachineInstr::FrameDestroy); 1672 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1673 MIB.addReg(Regs[i], getDefRegState(true)); 1674 if (DeleteRet) { 1675 if (MI != MBB.end()) { 1676 MIB.copyImplicitOps(*MI); 1677 MI->eraseFromParent(); 1678 } 1679 } 1680 MI = MIB; 1681 } else if (Regs.size() == 1) { 1682 // If we adjusted the reg to PC from LR above, switch it back here. We 1683 // only do that for LDM. 1684 if (Regs[0] == ARM::PC) 1685 Regs[0] = ARM::LR; 1686 MachineInstrBuilder MIB = 1687 BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0]) 1688 .addReg(ARM::SP, RegState::Define) 1689 .addReg(ARM::SP) 1690 .setMIFlags(MachineInstr::FrameDestroy); 1691 // ARM mode needs an extra reg0 here due to addrmode2. Will go away once 1692 // that refactoring is complete (eventually). 1693 if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) { 1694 MIB.addReg(0); 1695 MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift)); 1696 } else 1697 MIB.addImm(4); 1698 MIB.add(predOps(ARMCC::AL)); 1699 } 1700 Regs.clear(); 1701 1702 // Put any subsequent vpop instructions after this one: they will refer to 1703 // higher register numbers so need to be popped afterwards. 1704 if (MI != MBB.end()) 1705 ++MI; 1706 } 1707 } 1708 1709 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers 1710 /// starting from d8. Also insert stack realignment code and leave the stack 1711 /// pointer pointing to the d8 spill slot. 1712 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB, 1713 MachineBasicBlock::iterator MI, 1714 unsigned NumAlignedDPRCS2Regs, 1715 ArrayRef<CalleeSavedInfo> CSI, 1716 const TargetRegisterInfo *TRI) { 1717 MachineFunction &MF = *MBB.getParent(); 1718 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1719 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1720 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1721 MachineFrameInfo &MFI = MF.getFrameInfo(); 1722 1723 // Mark the D-register spill slots as properly aligned. Since MFI computes 1724 // stack slot layout backwards, this can actually mean that the d-reg stack 1725 // slot offsets can be wrong. The offset for d8 will always be correct. 1726 for (const CalleeSavedInfo &I : CSI) { 1727 unsigned DNum = I.getReg() - ARM::D8; 1728 if (DNum > NumAlignedDPRCS2Regs - 1) 1729 continue; 1730 int FI = I.getFrameIdx(); 1731 // The even-numbered registers will be 16-byte aligned, the odd-numbered 1732 // registers will be 8-byte aligned. 1733 MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16)); 1734 1735 // The stack slot for D8 needs to be maximally aligned because this is 1736 // actually the point where we align the stack pointer. MachineFrameInfo 1737 // computes all offsets relative to the incoming stack pointer which is a 1738 // bit weird when realigning the stack. Any extra padding for this 1739 // over-alignment is not realized because the code inserted below adjusts 1740 // the stack pointer by numregs * 8 before aligning the stack pointer. 1741 if (DNum == 0) 1742 MFI.setObjectAlignment(FI, MFI.getMaxAlign()); 1743 } 1744 1745 // Move the stack pointer to the d8 spill slot, and align it at the same 1746 // time. Leave the stack slot address in the scratch register r4. 1747 // 1748 // sub r4, sp, #numregs * 8 1749 // bic r4, r4, #align - 1 1750 // mov sp, r4 1751 // 1752 bool isThumb = AFI->isThumbFunction(); 1753 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1754 AFI->setShouldRestoreSPFromFP(true); 1755 1756 // sub r4, sp, #numregs * 8 1757 // The immediate is <= 64, so it doesn't need any special encoding. 1758 unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri; 1759 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1760 .addReg(ARM::SP) 1761 .addImm(8 * NumAlignedDPRCS2Regs) 1762 .add(predOps(ARMCC::AL)) 1763 .add(condCodeOp()); 1764 1765 Align MaxAlign = MF.getFrameInfo().getMaxAlign(); 1766 // We must set parameter MustBeSingleInstruction to true, since 1767 // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform 1768 // stack alignment. Luckily, this can always be done since all ARM 1769 // architecture versions that support Neon also support the BFC 1770 // instruction. 1771 emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true); 1772 1773 // mov sp, r4 1774 // The stack pointer must be adjusted before spilling anything, otherwise 1775 // the stack slots could be clobbered by an interrupt handler. 1776 // Leave r4 live, it is used below. 1777 Opc = isThumb ? ARM::tMOVr : ARM::MOVr; 1778 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP) 1779 .addReg(ARM::R4) 1780 .add(predOps(ARMCC::AL)); 1781 if (!isThumb) 1782 MIB.add(condCodeOp()); 1783 1784 // Now spill NumAlignedDPRCS2Regs registers starting from d8. 1785 // r4 holds the stack slot address. 1786 unsigned NextReg = ARM::D8; 1787 1788 // 16-byte aligned vst1.64 with 4 d-regs and address writeback. 1789 // The writeback is only needed when emitting two vst1.64 instructions. 1790 if (NumAlignedDPRCS2Regs >= 6) { 1791 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1792 &ARM::QQPRRegClass); 1793 MBB.addLiveIn(SupReg); 1794 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4) 1795 .addReg(ARM::R4, RegState::Kill) 1796 .addImm(16) 1797 .addReg(NextReg) 1798 .addReg(SupReg, RegState::ImplicitKill) 1799 .add(predOps(ARMCC::AL)); 1800 NextReg += 4; 1801 NumAlignedDPRCS2Regs -= 4; 1802 } 1803 1804 // We won't modify r4 beyond this point. It currently points to the next 1805 // register to be spilled. 1806 unsigned R4BaseReg = NextReg; 1807 1808 // 16-byte aligned vst1.64 with 4 d-regs, no writeback. 1809 if (NumAlignedDPRCS2Regs >= 4) { 1810 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1811 &ARM::QQPRRegClass); 1812 MBB.addLiveIn(SupReg); 1813 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q)) 1814 .addReg(ARM::R4) 1815 .addImm(16) 1816 .addReg(NextReg) 1817 .addReg(SupReg, RegState::ImplicitKill) 1818 .add(predOps(ARMCC::AL)); 1819 NextReg += 4; 1820 NumAlignedDPRCS2Regs -= 4; 1821 } 1822 1823 // 16-byte aligned vst1.64 with 2 d-regs. 1824 if (NumAlignedDPRCS2Regs >= 2) { 1825 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1826 &ARM::QPRRegClass); 1827 MBB.addLiveIn(SupReg); 1828 BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64)) 1829 .addReg(ARM::R4) 1830 .addImm(16) 1831 .addReg(SupReg) 1832 .add(predOps(ARMCC::AL)); 1833 NextReg += 2; 1834 NumAlignedDPRCS2Regs -= 2; 1835 } 1836 1837 // Finally, use a vanilla vstr.64 for the odd last register. 1838 if (NumAlignedDPRCS2Regs) { 1839 MBB.addLiveIn(NextReg); 1840 // vstr.64 uses addrmode5 which has an offset scale of 4. 1841 BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD)) 1842 .addReg(NextReg) 1843 .addReg(ARM::R4) 1844 .addImm((NextReg - R4BaseReg) * 2) 1845 .add(predOps(ARMCC::AL)); 1846 } 1847 1848 // The last spill instruction inserted should kill the scratch register r4. 1849 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1850 } 1851 1852 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an 1853 /// iterator to the following instruction. 1854 static MachineBasicBlock::iterator 1855 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 1856 unsigned NumAlignedDPRCS2Regs) { 1857 // sub r4, sp, #numregs * 8 1858 // bic r4, r4, #align - 1 1859 // mov sp, r4 1860 ++MI; ++MI; ++MI; 1861 assert(MI->mayStore() && "Expecting spill instruction"); 1862 1863 // These switches all fall through. 1864 switch(NumAlignedDPRCS2Regs) { 1865 case 7: 1866 ++MI; 1867 assert(MI->mayStore() && "Expecting spill instruction"); 1868 [[fallthrough]]; 1869 default: 1870 ++MI; 1871 assert(MI->mayStore() && "Expecting spill instruction"); 1872 [[fallthrough]]; 1873 case 1: 1874 case 2: 1875 case 4: 1876 assert(MI->killsRegister(ARM::R4) && "Missed kill flag"); 1877 ++MI; 1878 } 1879 return MI; 1880 } 1881 1882 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers 1883 /// starting from d8. These instructions are assumed to execute while the 1884 /// stack is still aligned, unlike the code inserted by emitPopInst. 1885 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB, 1886 MachineBasicBlock::iterator MI, 1887 unsigned NumAlignedDPRCS2Regs, 1888 ArrayRef<CalleeSavedInfo> CSI, 1889 const TargetRegisterInfo *TRI) { 1890 MachineFunction &MF = *MBB.getParent(); 1891 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1892 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1893 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1894 1895 // Find the frame index assigned to d8. 1896 int D8SpillFI = 0; 1897 for (const CalleeSavedInfo &I : CSI) 1898 if (I.getReg() == ARM::D8) { 1899 D8SpillFI = I.getFrameIdx(); 1900 break; 1901 } 1902 1903 // Materialize the address of the d8 spill slot into the scratch register r4. 1904 // This can be fairly complicated if the stack frame is large, so just use 1905 // the normal frame index elimination mechanism to do it. This code runs as 1906 // the initial part of the epilog where the stack and base pointers haven't 1907 // been changed yet. 1908 bool isThumb = AFI->isThumbFunction(); 1909 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1910 1911 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri; 1912 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1913 .addFrameIndex(D8SpillFI) 1914 .addImm(0) 1915 .add(predOps(ARMCC::AL)) 1916 .add(condCodeOp()); 1917 1918 // Now restore NumAlignedDPRCS2Regs registers starting from d8. 1919 unsigned NextReg = ARM::D8; 1920 1921 // 16-byte aligned vld1.64 with 4 d-regs and writeback. 1922 if (NumAlignedDPRCS2Regs >= 6) { 1923 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1924 &ARM::QQPRRegClass); 1925 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg) 1926 .addReg(ARM::R4, RegState::Define) 1927 .addReg(ARM::R4, RegState::Kill) 1928 .addImm(16) 1929 .addReg(SupReg, RegState::ImplicitDefine) 1930 .add(predOps(ARMCC::AL)); 1931 NextReg += 4; 1932 NumAlignedDPRCS2Regs -= 4; 1933 } 1934 1935 // We won't modify r4 beyond this point. It currently points to the next 1936 // register to be spilled. 1937 unsigned R4BaseReg = NextReg; 1938 1939 // 16-byte aligned vld1.64 with 4 d-regs, no writeback. 1940 if (NumAlignedDPRCS2Regs >= 4) { 1941 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1942 &ARM::QQPRRegClass); 1943 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg) 1944 .addReg(ARM::R4) 1945 .addImm(16) 1946 .addReg(SupReg, RegState::ImplicitDefine) 1947 .add(predOps(ARMCC::AL)); 1948 NextReg += 4; 1949 NumAlignedDPRCS2Regs -= 4; 1950 } 1951 1952 // 16-byte aligned vld1.64 with 2 d-regs. 1953 if (NumAlignedDPRCS2Regs >= 2) { 1954 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1955 &ARM::QPRRegClass); 1956 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg) 1957 .addReg(ARM::R4) 1958 .addImm(16) 1959 .add(predOps(ARMCC::AL)); 1960 NextReg += 2; 1961 NumAlignedDPRCS2Regs -= 2; 1962 } 1963 1964 // Finally, use a vanilla vldr.64 for the remaining odd register. 1965 if (NumAlignedDPRCS2Regs) 1966 BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg) 1967 .addReg(ARM::R4) 1968 .addImm(2 * (NextReg - R4BaseReg)) 1969 .add(predOps(ARMCC::AL)); 1970 1971 // Last store kills r4. 1972 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1973 } 1974 1975 bool ARMFrameLowering::spillCalleeSavedRegisters( 1976 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 1977 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 1978 if (CSI.empty()) 1979 return false; 1980 1981 MachineFunction &MF = *MBB.getParent(); 1982 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1983 1984 unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD; 1985 unsigned PushOneOpc = AFI->isThumbFunction() ? 1986 ARM::t2STR_PRE : ARM::STR_PRE_IMM; 1987 unsigned FltOpc = ARM::VSTMDDB_UPD; 1988 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1989 // Compute PAC in R12. 1990 if (AFI->shouldSignReturnAddress()) { 1991 BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2PAC)) 1992 .setMIFlags(MachineInstr::FrameSetup); 1993 } 1994 // Save the non-secure floating point context. 1995 if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) { 1996 return C.getReg() == ARM::FPCXTNS; 1997 })) { 1998 BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre), 1999 ARM::SP) 2000 .addReg(ARM::SP) 2001 .addImm(-4) 2002 .add(predOps(ARMCC::AL)); 2003 } 2004 if (STI.splitFramePointerPush(MF)) { 2005 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, 2006 &isSplitFPArea1Register, 0, MachineInstr::FrameSetup); 2007 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register, 2008 NumAlignedDPRCS2Regs, MachineInstr::FrameSetup); 2009 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, 2010 &isSplitFPArea2Register, 0, MachineInstr::FrameSetup); 2011 } else { 2012 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 2013 0, MachineInstr::FrameSetup); 2014 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 2015 0, MachineInstr::FrameSetup); 2016 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register, 2017 NumAlignedDPRCS2Regs, MachineInstr::FrameSetup); 2018 } 2019 2020 // The code above does not insert spill code for the aligned DPRCS2 registers. 2021 // The stack realignment code will be inserted between the push instructions 2022 // and these spills. 2023 if (NumAlignedDPRCS2Regs) 2024 emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 2025 2026 return true; 2027 } 2028 2029 bool ARMFrameLowering::restoreCalleeSavedRegisters( 2030 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 2031 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 2032 if (CSI.empty()) 2033 return false; 2034 2035 MachineFunction &MF = *MBB.getParent(); 2036 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2037 bool isVarArg = AFI->getArgRegsSaveSize() > 0; 2038 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 2039 2040 // The emitPopInst calls below do not insert reloads for the aligned DPRCS2 2041 // registers. Do that here instead. 2042 if (NumAlignedDPRCS2Regs) 2043 emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 2044 2045 unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 2046 unsigned LdrOpc = 2047 AFI->isThumbFunction() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM; 2048 unsigned FltOpc = ARM::VLDMDIA_UPD; 2049 if (STI.splitFramePointerPush(MF)) { 2050 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 2051 &isSplitFPArea2Register, 0); 2052 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register, 2053 NumAlignedDPRCS2Regs); 2054 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 2055 &isSplitFPArea1Register, 0); 2056 } else { 2057 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register, 2058 NumAlignedDPRCS2Regs); 2059 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 2060 &isARMArea2Register, 0); 2061 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 2062 &isARMArea1Register, 0); 2063 } 2064 2065 return true; 2066 } 2067 2068 // FIXME: Make generic? 2069 static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF, 2070 const ARMBaseInstrInfo &TII) { 2071 unsigned FnSize = 0; 2072 for (auto &MBB : MF) { 2073 for (auto &MI : MBB) 2074 FnSize += TII.getInstSizeInBytes(MI); 2075 } 2076 if (MF.getJumpTableInfo()) 2077 for (auto &Table: MF.getJumpTableInfo()->getJumpTables()) 2078 FnSize += Table.MBBs.size() * 4; 2079 FnSize += MF.getConstantPool()->getConstants().size() * 4; 2080 return FnSize; 2081 } 2082 2083 /// estimateRSStackSizeLimit - Look at each instruction that references stack 2084 /// frames and return the stack size limit beyond which some of these 2085 /// instructions will require a scratch register during their expansion later. 2086 // FIXME: Move to TII? 2087 static unsigned estimateRSStackSizeLimit(MachineFunction &MF, 2088 const TargetFrameLowering *TFI, 2089 bool &HasNonSPFrameIndex) { 2090 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2091 const ARMBaseInstrInfo &TII = 2092 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2093 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2094 unsigned Limit = (1 << 12) - 1; 2095 for (auto &MBB : MF) { 2096 for (auto &MI : MBB) { 2097 if (MI.isDebugInstr()) 2098 continue; 2099 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 2100 if (!MI.getOperand(i).isFI()) 2101 continue; 2102 2103 // When using ADDri to get the address of a stack object, 255 is the 2104 // largest offset guaranteed to fit in the immediate offset. 2105 if (MI.getOpcode() == ARM::ADDri) { 2106 Limit = std::min(Limit, (1U << 8) - 1); 2107 break; 2108 } 2109 // t2ADDri will not require an extra register, it can reuse the 2110 // destination. 2111 if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12) 2112 break; 2113 2114 const MCInstrDesc &MCID = MI.getDesc(); 2115 const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF); 2116 if (RegClass && !RegClass->contains(ARM::SP)) 2117 HasNonSPFrameIndex = true; 2118 2119 // Otherwise check the addressing mode. 2120 switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) { 2121 case ARMII::AddrMode_i12: 2122 case ARMII::AddrMode2: 2123 // Default 12 bit limit. 2124 break; 2125 case ARMII::AddrMode3: 2126 case ARMII::AddrModeT2_i8neg: 2127 Limit = std::min(Limit, (1U << 8) - 1); 2128 break; 2129 case ARMII::AddrMode5FP16: 2130 Limit = std::min(Limit, ((1U << 8) - 1) * 2); 2131 break; 2132 case ARMII::AddrMode5: 2133 case ARMII::AddrModeT2_i8s4: 2134 case ARMII::AddrModeT2_ldrex: 2135 Limit = std::min(Limit, ((1U << 8) - 1) * 4); 2136 break; 2137 case ARMII::AddrModeT2_i12: 2138 // i12 supports only positive offset so these will be converted to 2139 // i8 opcodes. See llvm::rewriteT2FrameIndex. 2140 if (TFI->hasFP(MF) && AFI->hasStackFrame()) 2141 Limit = std::min(Limit, (1U << 8) - 1); 2142 break; 2143 case ARMII::AddrMode4: 2144 case ARMII::AddrMode6: 2145 // Addressing modes 4 & 6 (load/store) instructions can't encode an 2146 // immediate offset for stack references. 2147 return 0; 2148 case ARMII::AddrModeT2_i7: 2149 Limit = std::min(Limit, ((1U << 7) - 1) * 1); 2150 break; 2151 case ARMII::AddrModeT2_i7s2: 2152 Limit = std::min(Limit, ((1U << 7) - 1) * 2); 2153 break; 2154 case ARMII::AddrModeT2_i7s4: 2155 Limit = std::min(Limit, ((1U << 7) - 1) * 4); 2156 break; 2157 default: 2158 llvm_unreachable("Unhandled addressing mode in stack size limit calculation"); 2159 } 2160 break; // At most one FI per instruction 2161 } 2162 } 2163 } 2164 2165 return Limit; 2166 } 2167 2168 // In functions that realign the stack, it can be an advantage to spill the 2169 // callee-saved vector registers after realigning the stack. The vst1 and vld1 2170 // instructions take alignment hints that can improve performance. 2171 static void 2172 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) { 2173 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0); 2174 if (!SpillAlignedNEONRegs) 2175 return; 2176 2177 // Naked functions don't spill callee-saved registers. 2178 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 2179 return; 2180 2181 // We are planning to use NEON instructions vst1 / vld1. 2182 if (!MF.getSubtarget<ARMSubtarget>().hasNEON()) 2183 return; 2184 2185 // Don't bother if the default stack alignment is sufficiently high. 2186 if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8)) 2187 return; 2188 2189 // Aligned spills require stack realignment. 2190 if (!static_cast<const ARMBaseRegisterInfo *>( 2191 MF.getSubtarget().getRegisterInfo())->canRealignStack(MF)) 2192 return; 2193 2194 // We always spill contiguous d-registers starting from d8. Count how many 2195 // needs spilling. The register allocator will almost always use the 2196 // callee-saved registers in order, but it can happen that there are holes in 2197 // the range. Registers above the hole will be spilled to the standard DPRCS 2198 // area. 2199 unsigned NumSpills = 0; 2200 for (; NumSpills < 8; ++NumSpills) 2201 if (!SavedRegs.test(ARM::D8 + NumSpills)) 2202 break; 2203 2204 // Don't do this for just one d-register. It's not worth it. 2205 if (NumSpills < 2) 2206 return; 2207 2208 // Spill the first NumSpills D-registers after realigning the stack. 2209 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills); 2210 2211 // A scratch register is required for the vst1 / vld1 instructions. 2212 SavedRegs.set(ARM::R4); 2213 } 2214 2215 bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 2216 // For CMSE entry functions, we want to save the FPCXT_NS immediately 2217 // upon function entry (resp. restore it immmediately before return) 2218 if (STI.hasV8_1MMainlineOps() && 2219 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) 2220 return false; 2221 2222 // We are disabling shrinkwrapping for now when PAC is enabled, as 2223 // shrinkwrapping can cause clobbering of r12 when the PAC code is 2224 // generated. A follow-up patch will fix this in a more performant manner. 2225 if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress( 2226 true /* SpillsLR */)) 2227 return false; 2228 2229 return true; 2230 } 2231 2232 static bool requiresAAPCSFrameRecord(const MachineFunction &MF) { 2233 const auto &Subtarget = MF.getSubtarget<ARMSubtarget>(); 2234 return Subtarget.createAAPCSFrameChainLeaf() || 2235 (Subtarget.createAAPCSFrameChain() && MF.getFrameInfo().hasCalls()); 2236 } 2237 2238 // Thumb1 may require a spill when storing to a frame index through FP (or any 2239 // access with execute-only), for cases where FP is a high register (R11). This 2240 // scans the function for cases where this may happen. 2241 static bool canSpillOnFrameIndexAccess(const MachineFunction &MF, 2242 const TargetFrameLowering &TFI) { 2243 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2244 if (!AFI->isThumb1OnlyFunction()) 2245 return false; 2246 2247 const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); 2248 for (const auto &MBB : MF) 2249 for (const auto &MI : MBB) 2250 if (MI.getOpcode() == ARM::tSTRspi || MI.getOpcode() == ARM::tSTRi || 2251 STI.genExecuteOnly()) 2252 for (const auto &Op : MI.operands()) 2253 if (Op.isFI()) { 2254 Register Reg; 2255 TFI.getFrameIndexReference(MF, Op.getIndex(), Reg); 2256 if (ARM::hGPRRegClass.contains(Reg) && Reg != ARM::SP) 2257 return true; 2258 } 2259 return false; 2260 } 2261 2262 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF, 2263 BitVector &SavedRegs, 2264 RegScavenger *RS) const { 2265 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 2266 // This tells PEI to spill the FP as if it is any other callee-save register 2267 // to take advantage the eliminateFrameIndex machinery. This also ensures it 2268 // is spilled in the order specified by getCalleeSavedRegs() to make it easier 2269 // to combine multiple loads / stores. 2270 bool CanEliminateFrame = !(requiresAAPCSFrameRecord(MF) && hasFP(MF)); 2271 bool CS1Spilled = false; 2272 bool LRSpilled = false; 2273 unsigned NumGPRSpills = 0; 2274 unsigned NumFPRSpills = 0; 2275 SmallVector<unsigned, 4> UnspilledCS1GPRs; 2276 SmallVector<unsigned, 4> UnspilledCS2GPRs; 2277 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 2278 MF.getSubtarget().getRegisterInfo()); 2279 const ARMBaseInstrInfo &TII = 2280 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2281 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2282 MachineFrameInfo &MFI = MF.getFrameInfo(); 2283 MachineRegisterInfo &MRI = MF.getRegInfo(); 2284 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2285 (void)TRI; // Silence unused warning in non-assert builds. 2286 Register FramePtr = RegInfo->getFrameRegister(MF); 2287 2288 // Spill R4 if Thumb2 function requires stack realignment - it will be used as 2289 // scratch register. Also spill R4 if Thumb2 function has varsized objects, 2290 // since it's not always possible to restore sp from fp in a single 2291 // instruction. 2292 // FIXME: It will be better just to find spare register here. 2293 if (AFI->isThumb2Function() && 2294 (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF))) 2295 SavedRegs.set(ARM::R4); 2296 2297 // If a stack probe will be emitted, spill R4 and LR, since they are 2298 // clobbered by the stack probe call. 2299 // This estimate should be a safe, conservative estimate. The actual 2300 // stack probe is enabled based on the size of the local objects; 2301 // this estimate also includes the varargs store size. 2302 if (STI.isTargetWindows() && 2303 WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) { 2304 SavedRegs.set(ARM::R4); 2305 SavedRegs.set(ARM::LR); 2306 } 2307 2308 if (AFI->isThumb1OnlyFunction()) { 2309 // Spill LR if Thumb1 function uses variable length argument lists. 2310 if (AFI->getArgRegsSaveSize() > 0) 2311 SavedRegs.set(ARM::LR); 2312 2313 // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function 2314 // requires stack alignment. We don't know for sure what the stack size 2315 // will be, but for this, an estimate is good enough. If there anything 2316 // changes it, it'll be a spill, which implies we've used all the registers 2317 // and so R4 is already used, so not marking it here will be OK. 2318 // FIXME: It will be better just to find spare register here. 2319 if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF) || 2320 MFI.estimateStackSize(MF) > 508) 2321 SavedRegs.set(ARM::R4); 2322 } 2323 2324 // See if we can spill vector registers to aligned stack. 2325 checkNumAlignedDPRCS2Regs(MF, SavedRegs); 2326 2327 // Spill the BasePtr if it's used. 2328 if (RegInfo->hasBasePointer(MF)) 2329 SavedRegs.set(RegInfo->getBaseRegister()); 2330 2331 // On v8.1-M.Main CMSE entry functions save/restore FPCXT. 2332 if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction()) 2333 CanEliminateFrame = false; 2334 2335 // When return address signing is enabled R12 is treated as callee-saved. 2336 if (AFI->shouldSignReturnAddress()) 2337 CanEliminateFrame = false; 2338 2339 // Don't spill FP if the frame can be eliminated. This is determined 2340 // by scanning the callee-save registers to see if any is modified. 2341 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 2342 for (unsigned i = 0; CSRegs[i]; ++i) { 2343 unsigned Reg = CSRegs[i]; 2344 bool Spilled = false; 2345 if (SavedRegs.test(Reg)) { 2346 Spilled = true; 2347 CanEliminateFrame = false; 2348 } 2349 2350 if (!ARM::GPRRegClass.contains(Reg)) { 2351 if (Spilled) { 2352 if (ARM::SPRRegClass.contains(Reg)) 2353 NumFPRSpills++; 2354 else if (ARM::DPRRegClass.contains(Reg)) 2355 NumFPRSpills += 2; 2356 else if (ARM::QPRRegClass.contains(Reg)) 2357 NumFPRSpills += 4; 2358 } 2359 continue; 2360 } 2361 2362 if (Spilled) { 2363 NumGPRSpills++; 2364 2365 if (!STI.splitFramePushPop(MF)) { 2366 if (Reg == ARM::LR) 2367 LRSpilled = true; 2368 CS1Spilled = true; 2369 continue; 2370 } 2371 2372 // Keep track if LR and any of R4, R5, R6, and R7 is spilled. 2373 switch (Reg) { 2374 case ARM::LR: 2375 LRSpilled = true; 2376 [[fallthrough]]; 2377 case ARM::R0: case ARM::R1: 2378 case ARM::R2: case ARM::R3: 2379 case ARM::R4: case ARM::R5: 2380 case ARM::R6: case ARM::R7: 2381 CS1Spilled = true; 2382 break; 2383 default: 2384 break; 2385 } 2386 } else { 2387 if (!STI.splitFramePushPop(MF)) { 2388 UnspilledCS1GPRs.push_back(Reg); 2389 continue; 2390 } 2391 2392 switch (Reg) { 2393 case ARM::R0: case ARM::R1: 2394 case ARM::R2: case ARM::R3: 2395 case ARM::R4: case ARM::R5: 2396 case ARM::R6: case ARM::R7: 2397 case ARM::LR: 2398 UnspilledCS1GPRs.push_back(Reg); 2399 break; 2400 default: 2401 UnspilledCS2GPRs.push_back(Reg); 2402 break; 2403 } 2404 } 2405 } 2406 2407 bool ForceLRSpill = false; 2408 if (!LRSpilled && AFI->isThumb1OnlyFunction()) { 2409 unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII); 2410 // Force LR to be spilled if the Thumb function size is > 2048. This enables 2411 // use of BL to implement far jump. 2412 if (FnSize >= (1 << 11)) { 2413 CanEliminateFrame = false; 2414 ForceLRSpill = true; 2415 } 2416 } 2417 2418 // If any of the stack slot references may be out of range of an immediate 2419 // offset, make sure a register (or a spill slot) is available for the 2420 // register scavenger. Note that if we're indexing off the frame pointer, the 2421 // effective stack size is 4 bytes larger since the FP points to the stack 2422 // slot of the previous FP. Also, if we have variable sized objects in the 2423 // function, stack slot references will often be negative, and some of 2424 // our instructions are positive-offset only, so conservatively consider 2425 // that case to want a spill slot (or register) as well. Similarly, if 2426 // the function adjusts the stack pointer during execution and the 2427 // adjustments aren't already part of our stack size estimate, our offset 2428 // calculations may be off, so be conservative. 2429 // FIXME: We could add logic to be more precise about negative offsets 2430 // and which instructions will need a scratch register for them. Is it 2431 // worth the effort and added fragility? 2432 unsigned EstimatedStackSize = 2433 MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills); 2434 2435 // Determine biggest (positive) SP offset in MachineFrameInfo. 2436 int MaxFixedOffset = 0; 2437 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 2438 int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I); 2439 MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset); 2440 } 2441 2442 bool HasFP = hasFP(MF); 2443 if (HasFP) { 2444 if (AFI->hasStackFrame()) 2445 EstimatedStackSize += 4; 2446 } else { 2447 // If FP is not used, SP will be used to access arguments, so count the 2448 // size of arguments into the estimation. 2449 EstimatedStackSize += MaxFixedOffset; 2450 } 2451 EstimatedStackSize += 16; // For possible paddings. 2452 2453 unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit; 2454 bool HasNonSPFrameIndex = false; 2455 if (AFI->isThumb1OnlyFunction()) { 2456 // For Thumb1, don't bother to iterate over the function. The only 2457 // instruction that requires an emergency spill slot is a store to a 2458 // frame index. 2459 // 2460 // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned 2461 // immediate. tSTRi, which is used for bp- and fp-relative accesses, has 2462 // a 5-bit unsigned immediate. 2463 // 2464 // We could try to check if the function actually contains a tSTRspi 2465 // that might need the spill slot, but it's not really important. 2466 // Functions with VLAs or extremely large call frames are rare, and 2467 // if a function is allocating more than 1KB of stack, an extra 4-byte 2468 // slot probably isn't relevant. 2469 // 2470 // A special case is the scenario where r11 is used as FP, where accesses 2471 // to a frame index will require its value to be moved into a low reg. 2472 // This is handled later on, once we are able to determine if we have any 2473 // fp-relative accesses. 2474 if (RegInfo->hasBasePointer(MF)) 2475 EstimatedRSStackSizeLimit = (1U << 5) * 4; 2476 else 2477 EstimatedRSStackSizeLimit = (1U << 8) * 4; 2478 EstimatedRSFixedSizeLimit = (1U << 5) * 4; 2479 } else { 2480 EstimatedRSStackSizeLimit = 2481 estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex); 2482 EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit; 2483 } 2484 // Final estimate of whether sp or bp-relative accesses might require 2485 // scavenging. 2486 bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit; 2487 2488 // If the stack pointer moves and we don't have a base pointer, the 2489 // estimate logic doesn't work. The actual offsets might be larger when 2490 // we're constructing a call frame, or we might need to use negative 2491 // offsets from fp. 2492 bool HasMovingSP = MFI.hasVarSizedObjects() || 2493 (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF)); 2494 bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP; 2495 2496 // If we have a frame pointer, we assume arguments will be accessed 2497 // relative to the frame pointer. Check whether fp-relative accesses to 2498 // arguments require scavenging. 2499 // 2500 // We could do slightly better on Thumb1; in some cases, an sp-relative 2501 // offset would be legal even though an fp-relative offset is not. 2502 int MaxFPOffset = getMaxFPOffset(STI, *AFI, MF); 2503 bool HasLargeArgumentList = 2504 HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit; 2505 2506 bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP || 2507 HasLargeArgumentList || HasNonSPFrameIndex; 2508 LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit 2509 << "; EstimatedStack: " << EstimatedStackSize 2510 << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset 2511 << "; BigFrameOffsets: " << BigFrameOffsets << "\n"); 2512 if (BigFrameOffsets || 2513 !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) { 2514 AFI->setHasStackFrame(true); 2515 2516 if (HasFP) { 2517 SavedRegs.set(FramePtr); 2518 // If the frame pointer is required by the ABI, also spill LR so that we 2519 // emit a complete frame record. 2520 if ((requiresAAPCSFrameRecord(MF) || 2521 MF.getTarget().Options.DisableFramePointerElim(MF)) && 2522 !LRSpilled) { 2523 SavedRegs.set(ARM::LR); 2524 LRSpilled = true; 2525 NumGPRSpills++; 2526 auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR); 2527 if (LRPos != UnspilledCS1GPRs.end()) 2528 UnspilledCS1GPRs.erase(LRPos); 2529 } 2530 auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr); 2531 if (FPPos != UnspilledCS1GPRs.end()) 2532 UnspilledCS1GPRs.erase(FPPos); 2533 NumGPRSpills++; 2534 if (FramePtr == ARM::R7) 2535 CS1Spilled = true; 2536 } 2537 2538 // This is the number of extra spills inserted for callee-save GPRs which 2539 // would not otherwise be used by the function. When greater than zero it 2540 // guaranteees that it is possible to scavenge a register to hold the 2541 // address of a stack slot. On Thumb1, the register must be a valid operand 2542 // to tSTRi, i.e. r4-r7. For other subtargets, this is any GPR, i.e. r4-r11 2543 // or lr. 2544 // 2545 // If we don't insert a spill, we instead allocate an emergency spill 2546 // slot, which can be used by scavenging to spill an arbitrary register. 2547 // 2548 // We currently don't try to figure out whether any specific instruction 2549 // requires scavening an additional register. 2550 unsigned NumExtraCSSpill = 0; 2551 2552 if (AFI->isThumb1OnlyFunction()) { 2553 // For Thumb1-only targets, we need some low registers when we save and 2554 // restore the high registers (which aren't allocatable, but could be 2555 // used by inline assembly) because the push/pop instructions can not 2556 // access high registers. If necessary, we might need to push more low 2557 // registers to ensure that there is at least one free that can be used 2558 // for the saving & restoring, and preferably we should ensure that as 2559 // many as are needed are available so that fewer push/pop instructions 2560 // are required. 2561 2562 // Low registers which are not currently pushed, but could be (r4-r7). 2563 SmallVector<unsigned, 4> AvailableRegs; 2564 2565 // Unused argument registers (r0-r3) can be clobbered in the prologue for 2566 // free. 2567 int EntryRegDeficit = 0; 2568 for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) { 2569 if (!MF.getRegInfo().isLiveIn(Reg)) { 2570 --EntryRegDeficit; 2571 LLVM_DEBUG(dbgs() 2572 << printReg(Reg, TRI) 2573 << " is unused argument register, EntryRegDeficit = " 2574 << EntryRegDeficit << "\n"); 2575 } 2576 } 2577 2578 // Unused return registers can be clobbered in the epilogue for free. 2579 int ExitRegDeficit = AFI->getReturnRegsCount() - 4; 2580 LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount() 2581 << " return regs used, ExitRegDeficit = " 2582 << ExitRegDeficit << "\n"); 2583 2584 int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit); 2585 LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n"); 2586 2587 // r4-r6 can be used in the prologue if they are pushed by the first push 2588 // instruction. 2589 for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) { 2590 if (SavedRegs.test(Reg)) { 2591 --RegDeficit; 2592 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 2593 << " is saved low register, RegDeficit = " 2594 << RegDeficit << "\n"); 2595 } else { 2596 AvailableRegs.push_back(Reg); 2597 LLVM_DEBUG( 2598 dbgs() 2599 << printReg(Reg, TRI) 2600 << " is non-saved low register, adding to AvailableRegs\n"); 2601 } 2602 } 2603 2604 // r7 can be used if it is not being used as the frame pointer. 2605 if (!HasFP || FramePtr != ARM::R7) { 2606 if (SavedRegs.test(ARM::R7)) { 2607 --RegDeficit; 2608 LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = " 2609 << RegDeficit << "\n"); 2610 } else { 2611 AvailableRegs.push_back(ARM::R7); 2612 LLVM_DEBUG( 2613 dbgs() 2614 << "%r7 is non-saved low register, adding to AvailableRegs\n"); 2615 } 2616 } 2617 2618 // Each of r8-r11 needs to be copied to a low register, then pushed. 2619 for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) { 2620 if (SavedRegs.test(Reg)) { 2621 ++RegDeficit; 2622 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 2623 << " is saved high register, RegDeficit = " 2624 << RegDeficit << "\n"); 2625 } 2626 } 2627 2628 // LR can only be used by PUSH, not POP, and can't be used at all if the 2629 // llvm.returnaddress intrinsic is used. This is only worth doing if we 2630 // are more limited at function entry than exit. 2631 if ((EntryRegDeficit > ExitRegDeficit) && 2632 !(MF.getRegInfo().isLiveIn(ARM::LR) && 2633 MF.getFrameInfo().isReturnAddressTaken())) { 2634 if (SavedRegs.test(ARM::LR)) { 2635 --RegDeficit; 2636 LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = " 2637 << RegDeficit << "\n"); 2638 } else { 2639 AvailableRegs.push_back(ARM::LR); 2640 LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n"); 2641 } 2642 } 2643 2644 // If there are more high registers that need pushing than low registers 2645 // available, push some more low registers so that we can use fewer push 2646 // instructions. This might not reduce RegDeficit all the way to zero, 2647 // because we can only guarantee that r4-r6 are available, but r8-r11 may 2648 // need saving. 2649 LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n"); 2650 for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) { 2651 unsigned Reg = AvailableRegs.pop_back_val(); 2652 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2653 << " to make up reg deficit\n"); 2654 SavedRegs.set(Reg); 2655 NumGPRSpills++; 2656 CS1Spilled = true; 2657 assert(!MRI.isReserved(Reg) && "Should not be reserved"); 2658 if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg)) 2659 NumExtraCSSpill++; 2660 UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg)); 2661 if (Reg == ARM::LR) 2662 LRSpilled = true; 2663 } 2664 LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit 2665 << "\n"); 2666 } 2667 2668 // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to 2669 // restore LR in that case. 2670 bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall(); 2671 2672 // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled. 2673 // Spill LR as well so we can fold BX_RET to the registers restore (LDM). 2674 if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) { 2675 SavedRegs.set(ARM::LR); 2676 NumGPRSpills++; 2677 SmallVectorImpl<unsigned>::iterator LRPos; 2678 LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR); 2679 if (LRPos != UnspilledCS1GPRs.end()) 2680 UnspilledCS1GPRs.erase(LRPos); 2681 2682 ForceLRSpill = false; 2683 if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) && 2684 !AFI->isThumb1OnlyFunction()) 2685 NumExtraCSSpill++; 2686 } 2687 2688 // If stack and double are 8-byte aligned and we are spilling an odd number 2689 // of GPRs, spill one extra callee save GPR so we won't have to pad between 2690 // the integer and double callee save areas. 2691 LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n"); 2692 const Align TargetAlign = getStackAlign(); 2693 if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) { 2694 if (CS1Spilled && !UnspilledCS1GPRs.empty()) { 2695 for (unsigned Reg : UnspilledCS1GPRs) { 2696 // Don't spill high register if the function is thumb. In the case of 2697 // Windows on ARM, accept R11 (frame pointer) 2698 if (!AFI->isThumbFunction() || 2699 (STI.isTargetWindows() && Reg == ARM::R11) || 2700 isARMLowRegister(Reg) || 2701 (Reg == ARM::LR && !ExpensiveLRRestore)) { 2702 SavedRegs.set(Reg); 2703 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2704 << " to make up alignment\n"); 2705 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) && 2706 !(Reg == ARM::LR && AFI->isThumb1OnlyFunction())) 2707 NumExtraCSSpill++; 2708 break; 2709 } 2710 } 2711 } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) { 2712 unsigned Reg = UnspilledCS2GPRs.front(); 2713 SavedRegs.set(Reg); 2714 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2715 << " to make up alignment\n"); 2716 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg)) 2717 NumExtraCSSpill++; 2718 } 2719 } 2720 2721 // Estimate if we might need to scavenge registers at some point in order 2722 // to materialize a stack offset. If so, either spill one additional 2723 // callee-saved register or reserve a special spill slot to facilitate 2724 // register scavenging. Thumb1 needs a spill slot for stack pointer 2725 // adjustments and for frame index accesses when FP is high register, 2726 // even when the frame itself is small. 2727 unsigned RegsNeeded = 0; 2728 if (BigFrameOffsets || canSpillOnFrameIndexAccess(MF, *this)) { 2729 RegsNeeded++; 2730 // With thumb1 execute-only we may need an additional register for saving 2731 // and restoring the CPSR. 2732 if (AFI->isThumb1OnlyFunction() && STI.genExecuteOnly() && !STI.useMovt()) 2733 RegsNeeded++; 2734 } 2735 2736 if (RegsNeeded > NumExtraCSSpill) { 2737 // If any non-reserved CS register isn't spilled, just spill one or two 2738 // extra. That should take care of it! 2739 unsigned NumExtras = TargetAlign.value() / 4; 2740 SmallVector<unsigned, 2> Extras; 2741 while (NumExtras && !UnspilledCS1GPRs.empty()) { 2742 unsigned Reg = UnspilledCS1GPRs.pop_back_val(); 2743 if (!MRI.isReserved(Reg) && 2744 (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) { 2745 Extras.push_back(Reg); 2746 NumExtras--; 2747 } 2748 } 2749 // For non-Thumb1 functions, also check for hi-reg CS registers 2750 if (!AFI->isThumb1OnlyFunction()) { 2751 while (NumExtras && !UnspilledCS2GPRs.empty()) { 2752 unsigned Reg = UnspilledCS2GPRs.pop_back_val(); 2753 if (!MRI.isReserved(Reg)) { 2754 Extras.push_back(Reg); 2755 NumExtras--; 2756 } 2757 } 2758 } 2759 if (NumExtras == 0) { 2760 for (unsigned Reg : Extras) { 2761 SavedRegs.set(Reg); 2762 if (!MRI.isPhysRegUsed(Reg)) 2763 NumExtraCSSpill++; 2764 } 2765 } 2766 while ((RegsNeeded > NumExtraCSSpill) && RS) { 2767 // Reserve a slot closest to SP or frame pointer. 2768 LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n"); 2769 const TargetRegisterClass &RC = ARM::GPRRegClass; 2770 unsigned Size = TRI->getSpillSize(RC); 2771 Align Alignment = TRI->getSpillAlign(RC); 2772 RS->addScavengingFrameIndex( 2773 MFI.CreateStackObject(Size, Alignment, false)); 2774 --RegsNeeded; 2775 } 2776 } 2777 } 2778 2779 if (ForceLRSpill) 2780 SavedRegs.set(ARM::LR); 2781 AFI->setLRIsSpilled(SavedRegs.test(ARM::LR)); 2782 } 2783 2784 void ARMFrameLowering::updateLRRestored(MachineFunction &MF) { 2785 MachineFrameInfo &MFI = MF.getFrameInfo(); 2786 if (!MFI.isCalleeSavedInfoValid()) 2787 return; 2788 2789 // Check if all terminators do not implicitly use LR. Then we can 'restore' LR 2790 // into PC so it is not live out of the return block: Clear the Restored bit 2791 // in that case. 2792 for (CalleeSavedInfo &Info : MFI.getCalleeSavedInfo()) { 2793 if (Info.getReg() != ARM::LR) 2794 continue; 2795 if (all_of(MF, [](const MachineBasicBlock &MBB) { 2796 return all_of(MBB.terminators(), [](const MachineInstr &Term) { 2797 return !Term.isReturn() || Term.getOpcode() == ARM::LDMIA_RET || 2798 Term.getOpcode() == ARM::t2LDMIA_RET || 2799 Term.getOpcode() == ARM::tPOP_RET; 2800 }); 2801 })) { 2802 Info.setRestored(false); 2803 break; 2804 } 2805 } 2806 } 2807 2808 void ARMFrameLowering::processFunctionBeforeFrameFinalized( 2809 MachineFunction &MF, RegScavenger *RS) const { 2810 TargetFrameLowering::processFunctionBeforeFrameFinalized(MF, RS); 2811 updateLRRestored(MF); 2812 } 2813 2814 void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF, 2815 BitVector &SavedRegs) const { 2816 TargetFrameLowering::getCalleeSaves(MF, SavedRegs); 2817 2818 // If we have the "returned" parameter attribute which guarantees that we 2819 // return the value which was passed in r0 unmodified (e.g. C++ 'structors), 2820 // record that fact for IPRA. 2821 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2822 if (AFI->getPreservesR0()) 2823 SavedRegs.set(ARM::R0); 2824 } 2825 2826 bool ARMFrameLowering::assignCalleeSavedSpillSlots( 2827 MachineFunction &MF, const TargetRegisterInfo *TRI, 2828 std::vector<CalleeSavedInfo> &CSI) const { 2829 // For CMSE entry functions, handle floating-point context as if it was a 2830 // callee-saved register. 2831 if (STI.hasV8_1MMainlineOps() && 2832 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) { 2833 CSI.emplace_back(ARM::FPCXTNS); 2834 CSI.back().setRestored(false); 2835 } 2836 2837 // For functions, which sign their return address, upon function entry, the 2838 // return address PAC is computed in R12. Treat R12 as a callee-saved register 2839 // in this case. 2840 const auto &AFI = *MF.getInfo<ARMFunctionInfo>(); 2841 if (AFI.shouldSignReturnAddress()) { 2842 // The order of register must match the order we push them, because the 2843 // PEI assigns frame indices in that order. When compiling for return 2844 // address sign and authenication, we use split push, therefore the orders 2845 // we want are: 2846 // LR, R7, R6, R5, R4, <R12>, R11, R10, R9, R8, D15-D8 2847 CSI.insert(find_if(CSI, 2848 [=](const auto &CS) { 2849 Register Reg = CS.getReg(); 2850 return Reg == ARM::R10 || Reg == ARM::R11 || 2851 Reg == ARM::R8 || Reg == ARM::R9 || 2852 ARM::DPRRegClass.contains(Reg); 2853 }), 2854 CalleeSavedInfo(ARM::R12)); 2855 } 2856 2857 return false; 2858 } 2859 2860 const TargetFrameLowering::SpillSlot * 2861 ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const { 2862 static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}}; 2863 NumEntries = std::size(FixedSpillOffsets); 2864 return FixedSpillOffsets; 2865 } 2866 2867 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr( 2868 MachineFunction &MF, MachineBasicBlock &MBB, 2869 MachineBasicBlock::iterator I) const { 2870 const ARMBaseInstrInfo &TII = 2871 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2872 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2873 bool isARM = !AFI->isThumbFunction(); 2874 DebugLoc dl = I->getDebugLoc(); 2875 unsigned Opc = I->getOpcode(); 2876 bool IsDestroy = Opc == TII.getCallFrameDestroyOpcode(); 2877 unsigned CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0; 2878 2879 assert(!AFI->isThumb1OnlyFunction() && 2880 "This eliminateCallFramePseudoInstr does not support Thumb1!"); 2881 2882 int PIdx = I->findFirstPredOperandIdx(); 2883 ARMCC::CondCodes Pred = (PIdx == -1) 2884 ? ARMCC::AL 2885 : (ARMCC::CondCodes)I->getOperand(PIdx).getImm(); 2886 unsigned PredReg = TII.getFramePred(*I); 2887 2888 if (!hasReservedCallFrame(MF)) { 2889 // Bail early if the callee is expected to do the adjustment. 2890 if (IsDestroy && CalleePopAmount != -1U) 2891 return MBB.erase(I); 2892 2893 // If we have alloca, convert as follows: 2894 // ADJCALLSTACKDOWN -> sub, sp, sp, amount 2895 // ADJCALLSTACKUP -> add, sp, sp, amount 2896 unsigned Amount = TII.getFrameSize(*I); 2897 if (Amount != 0) { 2898 // We need to keep the stack aligned properly. To do this, we round the 2899 // amount of space needed for the outgoing arguments up to the next 2900 // alignment boundary. 2901 Amount = alignSPAdjust(Amount); 2902 2903 if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) { 2904 emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags, 2905 Pred, PredReg); 2906 } else { 2907 assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP); 2908 emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags, 2909 Pred, PredReg); 2910 } 2911 } 2912 } else if (CalleePopAmount != -1U) { 2913 // If the calling convention demands that the callee pops arguments from the 2914 // stack, we want to add it back if we have a reserved call frame. 2915 emitSPUpdate(isARM, MBB, I, dl, TII, -CalleePopAmount, 2916 MachineInstr::NoFlags, Pred, PredReg); 2917 } 2918 return MBB.erase(I); 2919 } 2920 2921 /// Get the minimum constant for ARM that is greater than or equal to the 2922 /// argument. In ARM, constants can have any value that can be produced by 2923 /// rotating an 8-bit value to the right by an even number of bits within a 2924 /// 32-bit word. 2925 static uint32_t alignToARMConstant(uint32_t Value) { 2926 unsigned Shifted = 0; 2927 2928 if (Value == 0) 2929 return 0; 2930 2931 while (!(Value & 0xC0000000)) { 2932 Value = Value << 2; 2933 Shifted += 2; 2934 } 2935 2936 bool Carry = (Value & 0x00FFFFFF); 2937 Value = ((Value & 0xFF000000) >> 24) + Carry; 2938 2939 if (Value & 0x0000100) 2940 Value = Value & 0x000001FC; 2941 2942 if (Shifted > 24) 2943 Value = Value >> (Shifted - 24); 2944 else 2945 Value = Value << (24 - Shifted); 2946 2947 return Value; 2948 } 2949 2950 // The stack limit in the TCB is set to this many bytes above the actual 2951 // stack limit. 2952 static const uint64_t kSplitStackAvailable = 256; 2953 2954 // Adjust the function prologue to enable split stacks. This currently only 2955 // supports android and linux. 2956 // 2957 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but 2958 // must be well defined in order to allow for consistent implementations of the 2959 // __morestack helper function. The ABI is also not a normal ABI in that it 2960 // doesn't follow the normal calling conventions because this allows the 2961 // prologue of each function to be optimized further. 2962 // 2963 // Currently, the ABI looks like (when calling __morestack) 2964 // 2965 // * r4 holds the minimum stack size requested for this function call 2966 // * r5 holds the stack size of the arguments to the function 2967 // * the beginning of the function is 3 instructions after the call to 2968 // __morestack 2969 // 2970 // Implementations of __morestack should use r4 to allocate a new stack, r5 to 2971 // place the arguments on to the new stack, and the 3-instruction knowledge to 2972 // jump directly to the body of the function when working on the new stack. 2973 // 2974 // An old (and possibly no longer compatible) implementation of __morestack for 2975 // ARM can be found at [1]. 2976 // 2977 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S 2978 void ARMFrameLowering::adjustForSegmentedStacks( 2979 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2980 unsigned Opcode; 2981 unsigned CFIIndex; 2982 const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>(); 2983 bool Thumb = ST->isThumb(); 2984 bool Thumb2 = ST->isThumb2(); 2985 2986 // Sadly, this currently doesn't support varargs, platforms other than 2987 // android/linux. Note that thumb1/thumb2 are support for android/linux. 2988 if (MF.getFunction().isVarArg()) 2989 report_fatal_error("Segmented stacks do not support vararg functions."); 2990 if (!ST->isTargetAndroid() && !ST->isTargetLinux()) 2991 report_fatal_error("Segmented stacks not supported on this platform."); 2992 2993 MachineFrameInfo &MFI = MF.getFrameInfo(); 2994 MachineModuleInfo &MMI = MF.getMMI(); 2995 MCContext &Context = MMI.getContext(); 2996 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 2997 const ARMBaseInstrInfo &TII = 2998 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2999 ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>(); 3000 DebugLoc DL; 3001 3002 if (!MFI.needsSplitStackProlog()) 3003 return; 3004 3005 uint64_t StackSize = MFI.getStackSize(); 3006 3007 // Use R4 and R5 as scratch registers. 3008 // We save R4 and R5 before use and restore them before leaving the function. 3009 unsigned ScratchReg0 = ARM::R4; 3010 unsigned ScratchReg1 = ARM::R5; 3011 unsigned MovOp = ST->useMovt() ? ARM::t2MOVi32imm : ARM::tMOVi32imm; 3012 uint64_t AlignedStackSize; 3013 3014 MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock(); 3015 MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock(); 3016 MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock(); 3017 MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock(); 3018 MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock(); 3019 3020 // Grab everything that reaches PrologueMBB to update there liveness as well. 3021 SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion; 3022 SmallVector<MachineBasicBlock *, 2> WalkList; 3023 WalkList.push_back(&PrologueMBB); 3024 3025 do { 3026 MachineBasicBlock *CurMBB = WalkList.pop_back_val(); 3027 for (MachineBasicBlock *PredBB : CurMBB->predecessors()) { 3028 if (BeforePrologueRegion.insert(PredBB).second) 3029 WalkList.push_back(PredBB); 3030 } 3031 } while (!WalkList.empty()); 3032 3033 // The order in that list is important. 3034 // The blocks will all be inserted before PrologueMBB using that order. 3035 // Therefore the block that should appear first in the CFG should appear 3036 // first in the list. 3037 MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB, 3038 PostStackMBB}; 3039 3040 for (MachineBasicBlock *B : AddedBlocks) 3041 BeforePrologueRegion.insert(B); 3042 3043 for (const auto &LI : PrologueMBB.liveins()) { 3044 for (MachineBasicBlock *PredBB : BeforePrologueRegion) 3045 PredBB->addLiveIn(LI); 3046 } 3047 3048 // Remove the newly added blocks from the list, since we know 3049 // we do not have to do the following updates for them. 3050 for (MachineBasicBlock *B : AddedBlocks) { 3051 BeforePrologueRegion.erase(B); 3052 MF.insert(PrologueMBB.getIterator(), B); 3053 } 3054 3055 for (MachineBasicBlock *MBB : BeforePrologueRegion) { 3056 // Make sure the LiveIns are still sorted and unique. 3057 MBB->sortUniqueLiveIns(); 3058 // Replace the edges to PrologueMBB by edges to the sequences 3059 // we are about to add, but only update for immediate predecessors. 3060 if (MBB->isSuccessor(&PrologueMBB)) 3061 MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]); 3062 } 3063 3064 // The required stack size that is aligned to ARM constant criterion. 3065 AlignedStackSize = alignToARMConstant(StackSize); 3066 3067 // When the frame size is less than 256 we just compare the stack 3068 // boundary directly to the value of the stack pointer, per gcc. 3069 bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable; 3070 3071 // We will use two of the callee save registers as scratch registers so we 3072 // need to save those registers onto the stack. 3073 // We will use SR0 to hold stack limit and SR1 to hold the stack size 3074 // requested and arguments for __morestack(). 3075 // SR0: Scratch Register #0 3076 // SR1: Scratch Register #1 3077 // push {SR0, SR1} 3078 if (Thumb) { 3079 BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH)) 3080 .add(predOps(ARMCC::AL)) 3081 .addReg(ScratchReg0) 3082 .addReg(ScratchReg1); 3083 } else { 3084 BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD)) 3085 .addReg(ARM::SP, RegState::Define) 3086 .addReg(ARM::SP) 3087 .add(predOps(ARMCC::AL)) 3088 .addReg(ScratchReg0) 3089 .addReg(ScratchReg1); 3090 } 3091 3092 // Emit the relevant DWARF information about the change in stack pointer as 3093 // well as where to find both r4 and r5 (the callee-save registers) 3094 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3095 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8)); 3096 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3097 .addCFIIndex(CFIIndex); 3098 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 3099 nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4)); 3100 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3101 .addCFIIndex(CFIIndex); 3102 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 3103 nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8)); 3104 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3105 .addCFIIndex(CFIIndex); 3106 } 3107 3108 // mov SR1, sp 3109 if (Thumb) { 3110 BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1) 3111 .addReg(ARM::SP) 3112 .add(predOps(ARMCC::AL)); 3113 } else if (CompareStackPointer) { 3114 BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1) 3115 .addReg(ARM::SP) 3116 .add(predOps(ARMCC::AL)) 3117 .add(condCodeOp()); 3118 } 3119 3120 // sub SR1, sp, #StackSize 3121 if (!CompareStackPointer && Thumb) { 3122 if (AlignedStackSize < 256) { 3123 BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1) 3124 .add(condCodeOp()) 3125 .addReg(ScratchReg1) 3126 .addImm(AlignedStackSize) 3127 .add(predOps(ARMCC::AL)); 3128 } else { 3129 if (Thumb2 || ST->genExecuteOnly()) { 3130 BuildMI(McrMBB, DL, TII.get(MovOp), ScratchReg0) 3131 .addImm(AlignedStackSize); 3132 } else { 3133 auto MBBI = McrMBB->end(); 3134 auto RegInfo = STI.getRegisterInfo(); 3135 RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0, 3136 AlignedStackSize); 3137 } 3138 BuildMI(McrMBB, DL, TII.get(ARM::tSUBrr), ScratchReg1) 3139 .add(condCodeOp()) 3140 .addReg(ScratchReg1) 3141 .addReg(ScratchReg0) 3142 .add(predOps(ARMCC::AL)); 3143 } 3144 } else if (!CompareStackPointer) { 3145 if (AlignedStackSize < 256) { 3146 BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1) 3147 .addReg(ARM::SP) 3148 .addImm(AlignedStackSize) 3149 .add(predOps(ARMCC::AL)) 3150 .add(condCodeOp()); 3151 } else { 3152 auto MBBI = McrMBB->end(); 3153 auto RegInfo = STI.getRegisterInfo(); 3154 RegInfo->emitLoadConstPool(*McrMBB, MBBI, DL, ScratchReg0, 0, 3155 AlignedStackSize); 3156 BuildMI(McrMBB, DL, TII.get(ARM::SUBrr), ScratchReg1) 3157 .addReg(ARM::SP) 3158 .addReg(ScratchReg0) 3159 .add(predOps(ARMCC::AL)) 3160 .add(condCodeOp()); 3161 } 3162 } 3163 3164 if (Thumb && ST->isThumb1Only()) { 3165 if (ST->genExecuteOnly()) { 3166 BuildMI(GetMBB, DL, TII.get(MovOp), ScratchReg0) 3167 .addExternalSymbol("__STACK_LIMIT"); 3168 } else { 3169 unsigned PCLabelId = ARMFI->createPICLabelUId(); 3170 ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create( 3171 MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0); 3172 MachineConstantPool *MCP = MF.getConstantPool(); 3173 unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4)); 3174 3175 // ldr SR0, [pc, offset(STACK_LIMIT)] 3176 BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0) 3177 .addConstantPoolIndex(CPI) 3178 .add(predOps(ARMCC::AL)); 3179 } 3180 3181 // ldr SR0, [SR0] 3182 BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0) 3183 .addReg(ScratchReg0) 3184 .addImm(0) 3185 .add(predOps(ARMCC::AL)); 3186 } else { 3187 // Get TLS base address from the coprocessor 3188 // mrc p15, #0, SR0, c13, c0, #3 3189 BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC), 3190 ScratchReg0) 3191 .addImm(15) 3192 .addImm(0) 3193 .addImm(13) 3194 .addImm(0) 3195 .addImm(3) 3196 .add(predOps(ARMCC::AL)); 3197 3198 // Use the last tls slot on android and a private field of the TCP on linux. 3199 assert(ST->isTargetAndroid() || ST->isTargetLinux()); 3200 unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1; 3201 3202 // Get the stack limit from the right offset 3203 // ldr SR0, [sr0, #4 * TlsOffset] 3204 BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12), 3205 ScratchReg0) 3206 .addReg(ScratchReg0) 3207 .addImm(4 * TlsOffset) 3208 .add(predOps(ARMCC::AL)); 3209 } 3210 3211 // Compare stack limit with stack size requested. 3212 // cmp SR0, SR1 3213 Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr; 3214 BuildMI(GetMBB, DL, TII.get(Opcode)) 3215 .addReg(ScratchReg0) 3216 .addReg(ScratchReg1) 3217 .add(predOps(ARMCC::AL)); 3218 3219 // This jump is taken if StackLimit <= SP - stack required. 3220 Opcode = Thumb ? ARM::tBcc : ARM::Bcc; 3221 BuildMI(GetMBB, DL, TII.get(Opcode)) 3222 .addMBB(PostStackMBB) 3223 .addImm(ARMCC::LS) 3224 .addReg(ARM::CPSR); 3225 3226 // Calling __morestack(StackSize, Size of stack arguments). 3227 // __morestack knows that the stack size requested is in SR0(r4) 3228 // and amount size of stack arguments is in SR1(r5). 3229 3230 // Pass first argument for the __morestack by Scratch Register #0. 3231 // The amount size of stack required 3232 if (Thumb) { 3233 if (AlignedStackSize < 256) { 3234 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0) 3235 .add(condCodeOp()) 3236 .addImm(AlignedStackSize) 3237 .add(predOps(ARMCC::AL)); 3238 } else { 3239 if (Thumb2 || ST->genExecuteOnly()) { 3240 BuildMI(AllocMBB, DL, TII.get(MovOp), ScratchReg0) 3241 .addImm(AlignedStackSize); 3242 } else { 3243 auto MBBI = AllocMBB->end(); 3244 auto RegInfo = STI.getRegisterInfo(); 3245 RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0, 3246 AlignedStackSize); 3247 } 3248 } 3249 } else { 3250 if (AlignedStackSize < 256) { 3251 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0) 3252 .addImm(AlignedStackSize) 3253 .add(predOps(ARMCC::AL)) 3254 .add(condCodeOp()); 3255 } else { 3256 auto MBBI = AllocMBB->end(); 3257 auto RegInfo = STI.getRegisterInfo(); 3258 RegInfo->emitLoadConstPool(*AllocMBB, MBBI, DL, ScratchReg0, 0, 3259 AlignedStackSize); 3260 } 3261 } 3262 3263 // Pass second argument for the __morestack by Scratch Register #1. 3264 // The amount size of stack consumed to save function arguments. 3265 if (Thumb) { 3266 if (ARMFI->getArgumentStackSize() < 256) { 3267 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1) 3268 .add(condCodeOp()) 3269 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 3270 .add(predOps(ARMCC::AL)); 3271 } else { 3272 if (Thumb2 || ST->genExecuteOnly()) { 3273 BuildMI(AllocMBB, DL, TII.get(MovOp), ScratchReg1) 3274 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())); 3275 } else { 3276 auto MBBI = AllocMBB->end(); 3277 auto RegInfo = STI.getRegisterInfo(); 3278 RegInfo->emitLoadConstPool( 3279 *AllocMBB, MBBI, DL, ScratchReg1, 0, 3280 alignToARMConstant(ARMFI->getArgumentStackSize())); 3281 } 3282 } 3283 } else { 3284 if (alignToARMConstant(ARMFI->getArgumentStackSize()) < 256) { 3285 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1) 3286 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 3287 .add(predOps(ARMCC::AL)) 3288 .add(condCodeOp()); 3289 } else { 3290 auto MBBI = AllocMBB->end(); 3291 auto RegInfo = STI.getRegisterInfo(); 3292 RegInfo->emitLoadConstPool( 3293 *AllocMBB, MBBI, DL, ScratchReg1, 0, 3294 alignToARMConstant(ARMFI->getArgumentStackSize())); 3295 } 3296 } 3297 3298 // push {lr} - Save return address of this function. 3299 if (Thumb) { 3300 BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH)) 3301 .add(predOps(ARMCC::AL)) 3302 .addReg(ARM::LR); 3303 } else { 3304 BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD)) 3305 .addReg(ARM::SP, RegState::Define) 3306 .addReg(ARM::SP) 3307 .add(predOps(ARMCC::AL)) 3308 .addReg(ARM::LR); 3309 } 3310 3311 // Emit the DWARF info about the change in stack as well as where to find the 3312 // previous link register 3313 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3314 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12)); 3315 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3316 .addCFIIndex(CFIIndex); 3317 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 3318 nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12)); 3319 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3320 .addCFIIndex(CFIIndex); 3321 } 3322 3323 // Call __morestack(). 3324 if (Thumb) { 3325 BuildMI(AllocMBB, DL, TII.get(ARM::tBL)) 3326 .add(predOps(ARMCC::AL)) 3327 .addExternalSymbol("__morestack"); 3328 } else { 3329 BuildMI(AllocMBB, DL, TII.get(ARM::BL)) 3330 .addExternalSymbol("__morestack"); 3331 } 3332 3333 // pop {lr} - Restore return address of this original function. 3334 if (Thumb) { 3335 if (ST->isThumb1Only()) { 3336 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 3337 .add(predOps(ARMCC::AL)) 3338 .addReg(ScratchReg0); 3339 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR) 3340 .addReg(ScratchReg0) 3341 .add(predOps(ARMCC::AL)); 3342 } else { 3343 BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST)) 3344 .addReg(ARM::LR, RegState::Define) 3345 .addReg(ARM::SP, RegState::Define) 3346 .addReg(ARM::SP) 3347 .addImm(4) 3348 .add(predOps(ARMCC::AL)); 3349 } 3350 } else { 3351 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 3352 .addReg(ARM::SP, RegState::Define) 3353 .addReg(ARM::SP) 3354 .add(predOps(ARMCC::AL)) 3355 .addReg(ARM::LR); 3356 } 3357 3358 // Restore SR0 and SR1 in case of __morestack() was called. 3359 // __morestack() will skip PostStackMBB block so we need to restore 3360 // scratch registers from here. 3361 // pop {SR0, SR1} 3362 if (Thumb) { 3363 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 3364 .add(predOps(ARMCC::AL)) 3365 .addReg(ScratchReg0) 3366 .addReg(ScratchReg1); 3367 } else { 3368 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 3369 .addReg(ARM::SP, RegState::Define) 3370 .addReg(ARM::SP) 3371 .add(predOps(ARMCC::AL)) 3372 .addReg(ScratchReg0) 3373 .addReg(ScratchReg1); 3374 } 3375 3376 // Update the CFA offset now that we've popped 3377 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3378 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 3379 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3380 .addCFIIndex(CFIIndex); 3381 } 3382 3383 // Return from this function. 3384 BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL)); 3385 3386 // Restore SR0 and SR1 in case of __morestack() was not called. 3387 // pop {SR0, SR1} 3388 if (Thumb) { 3389 BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP)) 3390 .add(predOps(ARMCC::AL)) 3391 .addReg(ScratchReg0) 3392 .addReg(ScratchReg1); 3393 } else { 3394 BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD)) 3395 .addReg(ARM::SP, RegState::Define) 3396 .addReg(ARM::SP) 3397 .add(predOps(ARMCC::AL)) 3398 .addReg(ScratchReg0) 3399 .addReg(ScratchReg1); 3400 } 3401 3402 // Update the CFA offset now that we've popped 3403 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) { 3404 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 3405 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3406 .addCFIIndex(CFIIndex); 3407 3408 // Tell debuggers that r4 and r5 are now the same as they were in the 3409 // previous function, that they're the "Same Value". 3410 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 3411 nullptr, MRI->getDwarfRegNum(ScratchReg0, true))); 3412 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3413 .addCFIIndex(CFIIndex); 3414 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 3415 nullptr, MRI->getDwarfRegNum(ScratchReg1, true))); 3416 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 3417 .addCFIIndex(CFIIndex); 3418 } 3419 3420 // Organizing MBB lists 3421 PostStackMBB->addSuccessor(&PrologueMBB); 3422 3423 AllocMBB->addSuccessor(PostStackMBB); 3424 3425 GetMBB->addSuccessor(PostStackMBB); 3426 GetMBB->addSuccessor(AllocMBB); 3427 3428 McrMBB->addSuccessor(GetMBB); 3429 3430 PrevStackMBB->addSuccessor(McrMBB); 3431 3432 #ifdef EXPENSIVE_CHECKS 3433 MF.verify(); 3434 #endif 3435 } 3436