1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the ARM implementation of TargetFrameLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 // 13 // This file contains the ARM implementation of TargetFrameLowering class. 14 // 15 // On ARM, stack frames are structured as follows: 16 // 17 // The stack grows downward. 18 // 19 // All of the individual frame areas on the frame below are optional, i.e. it's 20 // possible to create a function so that the particular area isn't present 21 // in the frame. 22 // 23 // At function entry, the "frame" looks as follows: 24 // 25 // | | Higher address 26 // |-----------------------------------| 27 // | | 28 // | arguments passed on the stack | 29 // | | 30 // |-----------------------------------| <- sp 31 // | | Lower address 32 // 33 // 34 // After the prologue has run, the frame has the following general structure. 35 // Technically the last frame area (VLAs) doesn't get created until in the 36 // main function body, after the prologue is run. However, it's depicted here 37 // for completeness. 38 // 39 // | | Higher address 40 // |-----------------------------------| 41 // | | 42 // | arguments passed on the stack | 43 // | | 44 // |-----------------------------------| <- (sp at function entry) 45 // | | 46 // | varargs from registers | 47 // | | 48 // |-----------------------------------| 49 // | | 50 // | prev_fp, prev_lr | 51 // | (a.k.a. "frame record") | 52 // | | 53 // |- - - - - - - - - - - - - - - - - -| <- fp (r7 or r11) 54 // | | 55 // | callee-saved gpr registers | 56 // | | 57 // |-----------------------------------| 58 // | | 59 // | callee-saved fp/simd regs | 60 // | | 61 // |-----------------------------------| 62 // |.empty.space.to.make.part.below....| 63 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at 64 // |.the.standard.8-byte.alignment.....| compile time; if present) 65 // |-----------------------------------| 66 // | | 67 // | local variables of fixed size | 68 // | including spill slots | 69 // |-----------------------------------| <- base pointer (not defined by ABI, 70 // |.variable-sized.local.variables....| LLVM chooses r6) 71 // |.(VLAs)............................| (size of this area is unknown at 72 // |...................................| compile time) 73 // |-----------------------------------| <- sp 74 // | | Lower address 75 // 76 // 77 // To access the data in a frame, at-compile time, a constant offset must be 78 // computable from one of the pointers (fp, bp, sp) to access it. The size 79 // of the areas with a dotted background cannot be computed at compile-time 80 // if they are present, making it required to have all three of fp, bp and 81 // sp to be set up to be able to access all contents in the frame areas, 82 // assuming all of the frame areas are non-empty. 83 // 84 // For most functions, some of the frame areas are empty. For those functions, 85 // it may not be necessary to set up fp or bp: 86 // * A base pointer is definitely needed when there are both VLAs and local 87 // variables with more-than-default alignment requirements. 88 // * A frame pointer is definitely needed when there are local variables with 89 // more-than-default alignment requirements. 90 // 91 // In some cases when a base pointer is not strictly needed, it is generated 92 // anyway when offsets from the frame pointer to access local variables become 93 // so large that the offset can't be encoded in the immediate fields of loads 94 // or stores. 95 // 96 // The frame pointer might be chosen to be r7 or r11, depending on the target 97 // architecture and operating system. See ARMSubtarget::getFramePointerReg for 98 // details. 99 // 100 // Outgoing function arguments must be at the bottom of the stack frame when 101 // calling another function. If we do not have variable-sized stack objects, we 102 // can allocate a "reserved call frame" area at the bottom of the local 103 // variable area, large enough for all outgoing calls. If we do have VLAs, then 104 // the stack pointer must be decremented and incremented around each call to 105 // make space for the arguments below the VLAs. 106 // 107 //===----------------------------------------------------------------------===// 108 109 #include "ARMFrameLowering.h" 110 #include "ARMBaseInstrInfo.h" 111 #include "ARMBaseRegisterInfo.h" 112 #include "ARMConstantPoolValue.h" 113 #include "ARMMachineFunctionInfo.h" 114 #include "ARMSubtarget.h" 115 #include "MCTargetDesc/ARMAddressingModes.h" 116 #include "MCTargetDesc/ARMBaseInfo.h" 117 #include "Utils/ARMBaseInfo.h" 118 #include "llvm/ADT/BitVector.h" 119 #include "llvm/ADT/STLExtras.h" 120 #include "llvm/ADT/SmallPtrSet.h" 121 #include "llvm/ADT/SmallVector.h" 122 #include "llvm/CodeGen/MachineBasicBlock.h" 123 #include "llvm/CodeGen/MachineConstantPool.h" 124 #include "llvm/CodeGen/MachineFrameInfo.h" 125 #include "llvm/CodeGen/MachineFunction.h" 126 #include "llvm/CodeGen/MachineInstr.h" 127 #include "llvm/CodeGen/MachineInstrBuilder.h" 128 #include "llvm/CodeGen/MachineJumpTableInfo.h" 129 #include "llvm/CodeGen/MachineModuleInfo.h" 130 #include "llvm/CodeGen/MachineOperand.h" 131 #include "llvm/CodeGen/MachineRegisterInfo.h" 132 #include "llvm/CodeGen/RegisterScavenging.h" 133 #include "llvm/CodeGen/TargetInstrInfo.h" 134 #include "llvm/CodeGen/TargetOpcodes.h" 135 #include "llvm/CodeGen/TargetRegisterInfo.h" 136 #include "llvm/CodeGen/TargetSubtargetInfo.h" 137 #include "llvm/IR/Attributes.h" 138 #include "llvm/IR/CallingConv.h" 139 #include "llvm/IR/DebugLoc.h" 140 #include "llvm/IR/Function.h" 141 #include "llvm/MC/MCContext.h" 142 #include "llvm/MC/MCDwarf.h" 143 #include "llvm/MC/MCInstrDesc.h" 144 #include "llvm/MC/MCRegisterInfo.h" 145 #include "llvm/Support/CodeGen.h" 146 #include "llvm/Support/CommandLine.h" 147 #include "llvm/Support/Compiler.h" 148 #include "llvm/Support/Debug.h" 149 #include "llvm/Support/ErrorHandling.h" 150 #include "llvm/Support/MathExtras.h" 151 #include "llvm/Support/raw_ostream.h" 152 #include "llvm/Target/TargetMachine.h" 153 #include "llvm/Target/TargetOptions.h" 154 #include <algorithm> 155 #include <cassert> 156 #include <cstddef> 157 #include <cstdint> 158 #include <iterator> 159 #include <utility> 160 #include <vector> 161 162 #define DEBUG_TYPE "arm-frame-lowering" 163 164 using namespace llvm; 165 166 static cl::opt<bool> 167 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true), 168 cl::desc("Align ARM NEON spills in prolog and epilog")); 169 170 static MachineBasicBlock::iterator 171 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 172 unsigned NumAlignedDPRCS2Regs); 173 174 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti) 175 : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)), 176 STI(sti) {} 177 178 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const { 179 // iOS always has a FP for backtracking, force other targets to keep their FP 180 // when doing FastISel. The emitted code is currently superior, and in cases 181 // like test-suite's lencod FastISel isn't quite correct when FP is eliminated. 182 return MF.getSubtarget<ARMSubtarget>().useFastISel(); 183 } 184 185 /// Returns true if the target can safely skip saving callee-saved registers 186 /// for noreturn nounwind functions. 187 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const { 188 assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) && 189 MF.getFunction().hasFnAttribute(Attribute::NoUnwind) && 190 !MF.getFunction().hasFnAttribute(Attribute::UWTable)); 191 192 // Frame pointer and link register are not treated as normal CSR, thus we 193 // can always skip CSR saves for nonreturning functions. 194 return true; 195 } 196 197 /// hasFP - Return true if the specified function should have a dedicated frame 198 /// pointer register. This is true if the function has variable sized allocas 199 /// or if frame pointer elimination is disabled. 200 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const { 201 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 202 const MachineFrameInfo &MFI = MF.getFrameInfo(); 203 204 // ABI-required frame pointer. 205 if (MF.getTarget().Options.DisableFramePointerElim(MF)) 206 return true; 207 208 // Frame pointer required for use within this function. 209 return (RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() || 210 MFI.isFrameAddressTaken()); 211 } 212 213 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is 214 /// not required, we reserve argument space for call sites in the function 215 /// immediately on entry to the current function. This eliminates the need for 216 /// add/sub sp brackets around call sites. Returns true if the call frame is 217 /// included as part of the stack frame. 218 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const { 219 const MachineFrameInfo &MFI = MF.getFrameInfo(); 220 unsigned CFSize = MFI.getMaxCallFrameSize(); 221 // It's not always a good idea to include the call frame as part of the 222 // stack frame. ARM (especially Thumb) has small immediate offset to 223 // address the stack frame. So a large call frame can cause poor codegen 224 // and may even makes it impossible to scavenge a register. 225 if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12 226 return false; 227 228 return !MFI.hasVarSizedObjects(); 229 } 230 231 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the 232 /// call frame pseudos can be simplified. Unlike most targets, having a FP 233 /// is not sufficient here since we still may reference some objects via SP 234 /// even when FP is available in Thumb2 mode. 235 bool 236 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const { 237 return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects(); 238 } 239 240 // Returns how much of the incoming argument stack area we should clean up in an 241 // epilogue. For the C calling convention this will be 0, for guaranteed tail 242 // call conventions it can be positive (a normal return or a tail call to a 243 // function that uses less stack space for arguments) or negative (for a tail 244 // call to a function that needs more stack space than us for arguments). 245 static int getArgumentStackToRestore(MachineFunction &MF, 246 MachineBasicBlock &MBB) { 247 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); 248 bool IsTailCallReturn = false; 249 if (MBB.end() != MBBI) { 250 unsigned RetOpcode = MBBI->getOpcode(); 251 IsTailCallReturn = RetOpcode == ARM::TCRETURNdi || 252 RetOpcode == ARM::TCRETURNri; 253 } 254 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 255 256 int ArgumentPopSize = 0; 257 if (IsTailCallReturn) { 258 MachineOperand &StackAdjust = MBBI->getOperand(1); 259 260 // For a tail-call in a callee-pops-arguments environment, some or all of 261 // the stack may actually be in use for the call's arguments, this is 262 // calculated during LowerCall and consumed here... 263 ArgumentPopSize = StackAdjust.getImm(); 264 } else { 265 // ... otherwise the amount to pop is *all* of the argument space, 266 // conveniently stored in the MachineFunctionInfo by 267 // LowerFormalArguments. This will, of course, be zero for the C calling 268 // convention. 269 ArgumentPopSize = AFI->getArgumentStackToRestore(); 270 } 271 272 return ArgumentPopSize; 273 } 274 275 static void emitRegPlusImmediate( 276 bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI, 277 const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg, 278 unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags, 279 ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) { 280 if (isARM) 281 emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 282 Pred, PredReg, TII, MIFlags); 283 else 284 emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes, 285 Pred, PredReg, TII, MIFlags); 286 } 287 288 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB, 289 MachineBasicBlock::iterator &MBBI, const DebugLoc &dl, 290 const ARMBaseInstrInfo &TII, int NumBytes, 291 unsigned MIFlags = MachineInstr::NoFlags, 292 ARMCC::CondCodes Pred = ARMCC::AL, 293 unsigned PredReg = 0) { 294 emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes, 295 MIFlags, Pred, PredReg); 296 } 297 298 static int sizeOfSPAdjustment(const MachineInstr &MI) { 299 int RegSize; 300 switch (MI.getOpcode()) { 301 case ARM::VSTMDDB_UPD: 302 RegSize = 8; 303 break; 304 case ARM::STMDB_UPD: 305 case ARM::t2STMDB_UPD: 306 RegSize = 4; 307 break; 308 case ARM::t2STR_PRE: 309 case ARM::STR_PRE_IMM: 310 return 4; 311 default: 312 llvm_unreachable("Unknown push or pop like instruction"); 313 } 314 315 int count = 0; 316 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 317 // pred) so the list starts at 4. 318 for (int i = MI.getNumOperands() - 1; i >= 4; --i) 319 count += RegSize; 320 return count; 321 } 322 323 static bool WindowsRequiresStackProbe(const MachineFunction &MF, 324 size_t StackSizeInBytes) { 325 const MachineFrameInfo &MFI = MF.getFrameInfo(); 326 const Function &F = MF.getFunction(); 327 unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096; 328 if (F.hasFnAttribute("stack-probe-size")) 329 F.getFnAttribute("stack-probe-size") 330 .getValueAsString() 331 .getAsInteger(0, StackProbeSize); 332 return (StackSizeInBytes >= StackProbeSize) && 333 !F.hasFnAttribute("no-stack-arg-probe"); 334 } 335 336 namespace { 337 338 struct StackAdjustingInsts { 339 struct InstInfo { 340 MachineBasicBlock::iterator I; 341 unsigned SPAdjust; 342 bool BeforeFPSet; 343 }; 344 345 SmallVector<InstInfo, 4> Insts; 346 347 void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust, 348 bool BeforeFPSet = false) { 349 InstInfo Info = {I, SPAdjust, BeforeFPSet}; 350 Insts.push_back(Info); 351 } 352 353 void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) { 354 auto Info = 355 llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; }); 356 assert(Info != Insts.end() && "invalid sp adjusting instruction"); 357 Info->SPAdjust += ExtraBytes; 358 } 359 360 void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl, 361 const ARMBaseInstrInfo &TII, bool HasFP) { 362 MachineFunction &MF = *MBB.getParent(); 363 unsigned CFAOffset = 0; 364 for (auto &Info : Insts) { 365 if (HasFP && !Info.BeforeFPSet) 366 return; 367 368 CFAOffset += Info.SPAdjust; 369 unsigned CFIIndex = MF.addFrameInst( 370 MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset)); 371 BuildMI(MBB, std::next(Info.I), dl, 372 TII.get(TargetOpcode::CFI_INSTRUCTION)) 373 .addCFIIndex(CFIIndex) 374 .setMIFlags(MachineInstr::FrameSetup); 375 } 376 } 377 }; 378 379 } // end anonymous namespace 380 381 /// Emit an instruction sequence that will align the address in 382 /// register Reg by zero-ing out the lower bits. For versions of the 383 /// architecture that support Neon, this must be done in a single 384 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a 385 /// single instruction. That function only gets called when optimizing 386 /// spilling of D registers on a core with the Neon instruction set 387 /// present. 388 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI, 389 const TargetInstrInfo &TII, 390 MachineBasicBlock &MBB, 391 MachineBasicBlock::iterator MBBI, 392 const DebugLoc &DL, const unsigned Reg, 393 const Align Alignment, 394 const bool MustBeSingleInstruction) { 395 const ARMSubtarget &AST = 396 static_cast<const ARMSubtarget &>(MF.getSubtarget()); 397 const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops(); 398 const unsigned AlignMask = Alignment.value() - 1U; 399 const unsigned NrBitsToZero = Log2(Alignment); 400 assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported"); 401 if (!AFI->isThumbFunction()) { 402 // if the BFC instruction is available, use that to zero the lower 403 // bits: 404 // bfc Reg, #0, log2(Alignment) 405 // otherwise use BIC, if the mask to zero the required number of bits 406 // can be encoded in the bic immediate field 407 // bic Reg, Reg, Alignment-1 408 // otherwise, emit 409 // lsr Reg, Reg, log2(Alignment) 410 // lsl Reg, Reg, log2(Alignment) 411 if (CanUseBFC) { 412 BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg) 413 .addReg(Reg, RegState::Kill) 414 .addImm(~AlignMask) 415 .add(predOps(ARMCC::AL)); 416 } else if (AlignMask <= 255) { 417 BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg) 418 .addReg(Reg, RegState::Kill) 419 .addImm(AlignMask) 420 .add(predOps(ARMCC::AL)) 421 .add(condCodeOp()); 422 } else { 423 assert(!MustBeSingleInstruction && 424 "Shouldn't call emitAligningInstructions demanding a single " 425 "instruction to be emitted for large stack alignment for a target " 426 "without BFC."); 427 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 428 .addReg(Reg, RegState::Kill) 429 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero)) 430 .add(predOps(ARMCC::AL)) 431 .add(condCodeOp()); 432 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg) 433 .addReg(Reg, RegState::Kill) 434 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero)) 435 .add(predOps(ARMCC::AL)) 436 .add(condCodeOp()); 437 } 438 } else { 439 // Since this is only reached for Thumb-2 targets, the BFC instruction 440 // should always be available. 441 assert(CanUseBFC); 442 BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg) 443 .addReg(Reg, RegState::Kill) 444 .addImm(~AlignMask) 445 .add(predOps(ARMCC::AL)); 446 } 447 } 448 449 /// We need the offset of the frame pointer relative to other MachineFrameInfo 450 /// offsets which are encoded relative to SP at function begin. 451 /// See also emitPrologue() for how the FP is set up. 452 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet 453 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use 454 /// this to produce a conservative estimate that we check in an assert() later. 455 static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI) { 456 // For Thumb1, push.w isn't available, so the first push will always push 457 // r7 and lr onto the stack first. 458 if (AFI.isThumb1OnlyFunction()) 459 return -AFI.getArgRegsSaveSize() - (2 * 4); 460 // This is a conservative estimation: Assume the frame pointer being r7 and 461 // pc("r15") up to r8 getting spilled before (= 8 registers). 462 int FPCXTSaveSize = (STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0; 463 return - FPCXTSaveSize - AFI.getArgRegsSaveSize() - (8 * 4); 464 } 465 466 void ARMFrameLowering::emitPrologue(MachineFunction &MF, 467 MachineBasicBlock &MBB) const { 468 MachineBasicBlock::iterator MBBI = MBB.begin(); 469 MachineFrameInfo &MFI = MF.getFrameInfo(); 470 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 471 MachineModuleInfo &MMI = MF.getMMI(); 472 MCContext &Context = MMI.getContext(); 473 const TargetMachine &TM = MF.getTarget(); 474 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 475 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo(); 476 const ARMBaseInstrInfo &TII = *STI.getInstrInfo(); 477 assert(!AFI->isThumb1OnlyFunction() && 478 "This emitPrologue does not support Thumb1!"); 479 bool isARM = !AFI->isThumbFunction(); 480 Align Alignment = STI.getFrameLowering()->getStackAlign(); 481 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize(); 482 unsigned NumBytes = MFI.getStackSize(); 483 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo(); 484 int FPCXTSaveSize = 0; 485 486 // Debug location must be unknown since the first debug location is used 487 // to determine the end of the prologue. 488 DebugLoc dl; 489 490 Register FramePtr = RegInfo->getFrameRegister(MF); 491 492 // Determine the sizes of each callee-save spill areas and record which frame 493 // belongs to which callee-save spill areas. 494 unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0; 495 int FramePtrSpillFI = 0; 496 int D8SpillFI = 0; 497 498 // All calls are tail calls in GHC calling conv, and functions have no 499 // prologue/epilogue. 500 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 501 return; 502 503 StackAdjustingInsts DefCFAOffsetCandidates; 504 bool HasFP = hasFP(MF); 505 506 if (!AFI->hasStackFrame() && 507 (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) { 508 if (NumBytes != 0) { 509 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 510 MachineInstr::FrameSetup); 511 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes, true); 512 } 513 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 514 return; 515 } 516 517 // Determine spill area sizes. 518 for (const CalleeSavedInfo &I : CSI) { 519 Register Reg = I.getReg(); 520 int FI = I.getFrameIdx(); 521 switch (Reg) { 522 case ARM::R8: 523 case ARM::R9: 524 case ARM::R10: 525 case ARM::R11: 526 case ARM::R12: 527 if (STI.splitFramePushPop(MF)) { 528 GPRCS2Size += 4; 529 break; 530 } 531 LLVM_FALLTHROUGH; 532 case ARM::R0: 533 case ARM::R1: 534 case ARM::R2: 535 case ARM::R3: 536 case ARM::R4: 537 case ARM::R5: 538 case ARM::R6: 539 case ARM::R7: 540 case ARM::LR: 541 if (Reg == FramePtr) 542 FramePtrSpillFI = FI; 543 GPRCS1Size += 4; 544 break; 545 case ARM::FPCXTNS: 546 FPCXTSaveSize = 4; 547 break; 548 default: 549 // This is a DPR. Exclude the aligned DPRCS2 spills. 550 if (Reg == ARM::D8) 551 D8SpillFI = FI; 552 if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs()) 553 DPRCSSize += 8; 554 } 555 } 556 557 MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push; 558 559 // Move past the PAC computation. 560 if (AFI->shouldSignReturnAddress()) 561 LastPush = MBBI++; 562 563 // Move past FPCXT area. 564 if (FPCXTSaveSize > 0) { 565 LastPush = MBBI++; 566 DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, true); 567 } 568 569 // Allocate the vararg register save area. 570 if (ArgRegsSaveSize) { 571 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize, 572 MachineInstr::FrameSetup); 573 LastPush = std::prev(MBBI); 574 DefCFAOffsetCandidates.addInst(LastPush, ArgRegsSaveSize, true); 575 } 576 577 // Move past area 1. 578 if (GPRCS1Size > 0) { 579 GPRCS1Push = LastPush = MBBI++; 580 DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true); 581 } 582 583 // Determine starting offsets of spill areas. 584 unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize; 585 unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size; 586 unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size; 587 Align DPRAlign = DPRCSSize ? std::min(Align(8), Alignment) : Align(4); 588 unsigned DPRGapSize = 589 (GPRCS1Size + GPRCS2Size + FPCXTSaveSize + ArgRegsSaveSize) % 590 DPRAlign.value(); 591 592 unsigned DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize; 593 int FramePtrOffsetInPush = 0; 594 if (HasFP) { 595 int FPOffset = MFI.getObjectOffset(FramePtrSpillFI); 596 assert(getMaxFPOffset(STI, *AFI) <= FPOffset && 597 "Max FP estimation is wrong"); 598 FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize + FPCXTSaveSize; 599 AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) + 600 NumBytes); 601 } 602 AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset); 603 AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset); 604 AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset); 605 606 // Move past area 2. 607 if (GPRCS2Size > 0) { 608 GPRCS2Push = LastPush = MBBI++; 609 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size); 610 } 611 612 // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our 613 // .cfi_offset operations will reflect that. 614 if (DPRGapSize) { 615 assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs"); 616 if (LastPush != MBB.end() && 617 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize)) 618 DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize); 619 else { 620 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize, 621 MachineInstr::FrameSetup); 622 DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize); 623 } 624 } 625 626 // Move past area 3. 627 if (DPRCSSize > 0) { 628 // Since vpush register list cannot have gaps, there may be multiple vpush 629 // instructions in the prologue. 630 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) { 631 DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI)); 632 LastPush = MBBI++; 633 } 634 } 635 636 // Move past the aligned DPRCS2 area. 637 if (AFI->getNumAlignedDPRCS2Regs() > 0) { 638 MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs()); 639 // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and 640 // leaves the stack pointer pointing to the DPRCS2 area. 641 // 642 // Adjust NumBytes to represent the stack slots below the DPRCS2 area. 643 NumBytes += MFI.getObjectOffset(D8SpillFI); 644 } else 645 NumBytes = DPRCSOffset; 646 647 if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) { 648 uint32_t NumWords = NumBytes >> 2; 649 650 if (NumWords < 65536) 651 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4) 652 .addImm(NumWords) 653 .setMIFlags(MachineInstr::FrameSetup) 654 .add(predOps(ARMCC::AL)); 655 else 656 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R4) 657 .addImm(NumWords) 658 .setMIFlags(MachineInstr::FrameSetup); 659 660 switch (TM.getCodeModel()) { 661 case CodeModel::Tiny: 662 llvm_unreachable("Tiny code model not available on ARM."); 663 case CodeModel::Small: 664 case CodeModel::Medium: 665 case CodeModel::Kernel: 666 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL)) 667 .add(predOps(ARMCC::AL)) 668 .addExternalSymbol("__chkstk") 669 .addReg(ARM::R4, RegState::Implicit) 670 .setMIFlags(MachineInstr::FrameSetup); 671 break; 672 case CodeModel::Large: 673 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12) 674 .addExternalSymbol("__chkstk") 675 .setMIFlags(MachineInstr::FrameSetup); 676 677 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr)) 678 .add(predOps(ARMCC::AL)) 679 .addReg(ARM::R12, RegState::Kill) 680 .addReg(ARM::R4, RegState::Implicit) 681 .setMIFlags(MachineInstr::FrameSetup); 682 break; 683 } 684 685 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP) 686 .addReg(ARM::SP, RegState::Kill) 687 .addReg(ARM::R4, RegState::Kill) 688 .setMIFlags(MachineInstr::FrameSetup) 689 .add(predOps(ARMCC::AL)) 690 .add(condCodeOp()); 691 NumBytes = 0; 692 } 693 694 if (NumBytes) { 695 // Adjust SP after all the callee-save spills. 696 if (AFI->getNumAlignedDPRCS2Regs() == 0 && 697 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes)) 698 DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes); 699 else { 700 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes, 701 MachineInstr::FrameSetup); 702 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes); 703 } 704 705 if (HasFP && isARM) 706 // Restore from fp only in ARM mode: e.g. sub sp, r7, #24 707 // Note it's not safe to do this in Thumb2 mode because it would have 708 // taken two instructions: 709 // mov sp, r7 710 // sub sp, #24 711 // If an interrupt is taken between the two instructions, then sp is in 712 // an inconsistent state (pointing to the middle of callee-saved area). 713 // The interrupt handler can end up clobbering the registers. 714 AFI->setShouldRestoreSPFromFP(true); 715 } 716 717 // Set FP to point to the stack slot that contains the previous FP. 718 // For iOS, FP is R7, which has now been stored in spill area 1. 719 // Otherwise, if this is not iOS, all the callee-saved registers go 720 // into spill area 1, including the FP in R11. In either case, it 721 // is in area one and the adjustment needs to take place just after 722 // that push. 723 if (HasFP) { 724 MachineBasicBlock::iterator AfterPush = std::next(GPRCS1Push); 725 unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push); 726 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush, 727 dl, TII, FramePtr, ARM::SP, 728 PushSize + FramePtrOffsetInPush, 729 MachineInstr::FrameSetup); 730 if (FramePtrOffsetInPush + PushSize != 0) { 731 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa( 732 nullptr, MRI->getDwarfRegNum(FramePtr, true), 733 FPCXTSaveSize + ArgRegsSaveSize - FramePtrOffsetInPush)); 734 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 735 .addCFIIndex(CFIIndex) 736 .setMIFlags(MachineInstr::FrameSetup); 737 } else { 738 unsigned CFIIndex = 739 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister( 740 nullptr, MRI->getDwarfRegNum(FramePtr, true))); 741 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 742 .addCFIIndex(CFIIndex) 743 .setMIFlags(MachineInstr::FrameSetup); 744 } 745 } 746 747 // Now that the prologue's actual instructions are finalised, we can insert 748 // the necessary DWARF cf instructions to describe the situation. Start by 749 // recording where each register ended up: 750 if (GPRCS1Size > 0) { 751 MachineBasicBlock::iterator Pos = std::next(GPRCS1Push); 752 int CFIIndex; 753 for (const auto &Entry : CSI) { 754 Register Reg = Entry.getReg(); 755 int FI = Entry.getFrameIdx(); 756 switch (Reg) { 757 case ARM::R8: 758 case ARM::R9: 759 case ARM::R10: 760 case ARM::R11: 761 case ARM::R12: 762 if (STI.splitFramePushPop(MF)) 763 break; 764 LLVM_FALLTHROUGH; 765 case ARM::R0: 766 case ARM::R1: 767 case ARM::R2: 768 case ARM::R3: 769 case ARM::R4: 770 case ARM::R5: 771 case ARM::R6: 772 case ARM::R7: 773 case ARM::LR: 774 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 775 nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI))); 776 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 777 .addCFIIndex(CFIIndex) 778 .setMIFlags(MachineInstr::FrameSetup); 779 break; 780 } 781 } 782 } 783 784 if (GPRCS2Size > 0) { 785 MachineBasicBlock::iterator Pos = std::next(GPRCS2Push); 786 for (const auto &Entry : CSI) { 787 Register Reg = Entry.getReg(); 788 int FI = Entry.getFrameIdx(); 789 switch (Reg) { 790 case ARM::R8: 791 case ARM::R9: 792 case ARM::R10: 793 case ARM::R11: 794 case ARM::R12: 795 if (STI.splitFramePushPop(MF)) { 796 unsigned DwarfReg = MRI->getDwarfRegNum( 797 Reg == ARM::R12 ? ARM::RA_AUTH_CODE : Reg, true); 798 unsigned Offset = MFI.getObjectOffset(FI); 799 unsigned CFIIndex = MF.addFrameInst( 800 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 801 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 802 .addCFIIndex(CFIIndex) 803 .setMIFlags(MachineInstr::FrameSetup); 804 } 805 break; 806 } 807 } 808 } 809 810 if (DPRCSSize > 0) { 811 // Since vpush register list cannot have gaps, there may be multiple vpush 812 // instructions in the prologue. 813 MachineBasicBlock::iterator Pos = std::next(LastPush); 814 for (const auto &Entry : CSI) { 815 Register Reg = Entry.getReg(); 816 int FI = Entry.getFrameIdx(); 817 if ((Reg >= ARM::D0 && Reg <= ARM::D31) && 818 (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) { 819 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 820 unsigned Offset = MFI.getObjectOffset(FI); 821 unsigned CFIIndex = MF.addFrameInst( 822 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); 823 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION)) 824 .addCFIIndex(CFIIndex) 825 .setMIFlags(MachineInstr::FrameSetup); 826 } 827 } 828 } 829 830 // Now we can emit descriptions of where the canonical frame address was 831 // throughout the process. If we have a frame pointer, it takes over the job 832 // half-way through, so only the first few .cfi_def_cfa_offset instructions 833 // actually get emitted. 834 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP); 835 836 if (STI.isTargetELF() && hasFP(MF)) 837 MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() - 838 AFI->getFramePtrSpillOffset()); 839 840 AFI->setFPCXTSaveAreaSize(FPCXTSaveSize); 841 AFI->setGPRCalleeSavedArea1Size(GPRCS1Size); 842 AFI->setGPRCalleeSavedArea2Size(GPRCS2Size); 843 AFI->setDPRCalleeSavedGapSize(DPRGapSize); 844 AFI->setDPRCalleeSavedAreaSize(DPRCSSize); 845 846 // If we need dynamic stack realignment, do it here. Be paranoid and make 847 // sure if we also have VLAs, we have a base pointer for frame access. 848 // If aligned NEON registers were spilled, the stack has already been 849 // realigned. 850 if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->hasStackRealignment(MF)) { 851 Align MaxAlign = MFI.getMaxAlign(); 852 assert(!AFI->isThumb1OnlyFunction()); 853 if (!AFI->isThumbFunction()) { 854 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign, 855 false); 856 } else { 857 // We cannot use sp as source/dest register here, thus we're using r4 to 858 // perform the calculations. We're emitting the following sequence: 859 // mov r4, sp 860 // -- use emitAligningInstructions to produce best sequence to zero 861 // -- out lower bits in r4 862 // mov sp, r4 863 // FIXME: It will be better just to find spare register here. 864 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4) 865 .addReg(ARM::SP, RegState::Kill) 866 .add(predOps(ARMCC::AL)); 867 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign, 868 false); 869 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 870 .addReg(ARM::R4, RegState::Kill) 871 .add(predOps(ARMCC::AL)); 872 } 873 874 AFI->setShouldRestoreSPFromFP(true); 875 } 876 877 // If we need a base pointer, set it up here. It's whatever the value 878 // of the stack pointer is at this point. Any variable size objects 879 // will be allocated after this, so we can still use the base pointer 880 // to reference locals. 881 // FIXME: Clarify FrameSetup flags here. 882 if (RegInfo->hasBasePointer(MF)) { 883 if (isARM) 884 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister()) 885 .addReg(ARM::SP) 886 .add(predOps(ARMCC::AL)) 887 .add(condCodeOp()); 888 else 889 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister()) 890 .addReg(ARM::SP) 891 .add(predOps(ARMCC::AL)); 892 } 893 894 // If the frame has variable sized objects then the epilogue must restore 895 // the sp from fp. We can assume there's an FP here since hasFP already 896 // checks for hasVarSizedObjects. 897 if (MFI.hasVarSizedObjects()) 898 AFI->setShouldRestoreSPFromFP(true); 899 } 900 901 void ARMFrameLowering::emitEpilogue(MachineFunction &MF, 902 MachineBasicBlock &MBB) const { 903 MachineFrameInfo &MFI = MF.getFrameInfo(); 904 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 905 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 906 const ARMBaseInstrInfo &TII = 907 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 908 assert(!AFI->isThumb1OnlyFunction() && 909 "This emitEpilogue does not support Thumb1!"); 910 bool isARM = !AFI->isThumbFunction(); 911 912 // Amount of stack space we reserved next to incoming args for either 913 // varargs registers or stack arguments in tail calls made by this function. 914 unsigned ReservedArgStack = AFI->getArgRegsSaveSize(); 915 916 // How much of the stack used by incoming arguments this function is expected 917 // to restore in this particular epilogue. 918 int IncomingArgStackToRestore = getArgumentStackToRestore(MF, MBB); 919 int NumBytes = (int)MFI.getStackSize(); 920 Register FramePtr = RegInfo->getFrameRegister(MF); 921 922 // All calls are tail calls in GHC calling conv, and functions have no 923 // prologue/epilogue. 924 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 925 return; 926 927 // First put ourselves on the first (from top) terminator instructions. 928 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); 929 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 930 931 if (!AFI->hasStackFrame()) { 932 if (NumBytes + IncomingArgStackToRestore != 0) 933 emitSPUpdate(isARM, MBB, MBBI, dl, TII, 934 NumBytes + IncomingArgStackToRestore, 935 MachineInstr::FrameDestroy); 936 } else { 937 // Unwind MBBI to point to first LDR / VLDRD. 938 if (MBBI != MBB.begin()) { 939 do { 940 --MBBI; 941 } while (MBBI != MBB.begin() && 942 MBBI->getFlag(MachineInstr::FrameDestroy)); 943 if (!MBBI->getFlag(MachineInstr::FrameDestroy)) 944 ++MBBI; 945 } 946 947 // Move SP to start of FP callee save spill area. 948 NumBytes -= (ReservedArgStack + 949 AFI->getFPCXTSaveAreaSize() + 950 AFI->getGPRCalleeSavedArea1Size() + 951 AFI->getGPRCalleeSavedArea2Size() + 952 AFI->getDPRCalleeSavedGapSize() + 953 AFI->getDPRCalleeSavedAreaSize()); 954 955 // Reset SP based on frame pointer only if the stack frame extends beyond 956 // frame pointer stack slot or target is ELF and the function has FP. 957 if (AFI->shouldRestoreSPFromFP()) { 958 NumBytes = AFI->getFramePtrSpillOffset() - NumBytes; 959 if (NumBytes) { 960 if (isARM) 961 emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes, 962 ARMCC::AL, 0, TII, 963 MachineInstr::FrameDestroy); 964 else { 965 // It's not possible to restore SP from FP in a single instruction. 966 // For iOS, this looks like: 967 // mov sp, r7 968 // sub sp, #24 969 // This is bad, if an interrupt is taken after the mov, sp is in an 970 // inconsistent state. 971 // Use the first callee-saved register as a scratch register. 972 assert(!MFI.getPristineRegs(MF).test(ARM::R4) && 973 "No scratch register to restore SP from FP!"); 974 emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes, 975 ARMCC::AL, 0, TII, MachineInstr::FrameDestroy); 976 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 977 .addReg(ARM::R4) 978 .add(predOps(ARMCC::AL)) 979 .setMIFlag(MachineInstr::FrameDestroy); 980 } 981 } else { 982 // Thumb2 or ARM. 983 if (isARM) 984 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP) 985 .addReg(FramePtr) 986 .add(predOps(ARMCC::AL)) 987 .add(condCodeOp()) 988 .setMIFlag(MachineInstr::FrameDestroy); 989 else 990 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP) 991 .addReg(FramePtr) 992 .add(predOps(ARMCC::AL)) 993 .setMIFlag(MachineInstr::FrameDestroy); 994 } 995 } else if (NumBytes && 996 !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes)) 997 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes, 998 MachineInstr::FrameDestroy); 999 1000 // Increment past our save areas. 1001 if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) { 1002 MBBI++; 1003 // Since vpop register list cannot have gaps, there may be multiple vpop 1004 // instructions in the epilogue. 1005 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD) 1006 MBBI++; 1007 } 1008 if (AFI->getDPRCalleeSavedGapSize()) { 1009 assert(AFI->getDPRCalleeSavedGapSize() == 4 && 1010 "unexpected DPR alignment gap"); 1011 emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(), 1012 MachineInstr::FrameDestroy); 1013 } 1014 1015 if (AFI->getGPRCalleeSavedArea2Size()) MBBI++; 1016 if (AFI->getGPRCalleeSavedArea1Size()) MBBI++; 1017 1018 if (ReservedArgStack || IncomingArgStackToRestore) { 1019 assert((int)ReservedArgStack + IncomingArgStackToRestore >= 0 && 1020 "attempting to restore negative stack amount"); 1021 emitSPUpdate(isARM, MBB, MBBI, dl, TII, 1022 ReservedArgStack + IncomingArgStackToRestore, 1023 MachineInstr::FrameDestroy); 1024 } 1025 1026 // Validate PAC, It should have been already popped into R12. For CMSE entry 1027 // function, the validation instruction is emitted during expansion of the 1028 // tBXNS_RET, since the validation must use the value of SP at function 1029 // entry, before saving, resp. after restoring, FPCXTNS. 1030 if (AFI->shouldSignReturnAddress() && !AFI->isCmseNSEntryFunction()) 1031 BuildMI(MBB, MBBI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2AUT)); 1032 } 1033 } 1034 1035 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for 1036 /// debug info. It's the same as what we use for resolving the code-gen 1037 /// references for now. FIXME: This can go wrong when references are 1038 /// SP-relative and simple call frames aren't used. 1039 StackOffset ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, 1040 int FI, 1041 Register &FrameReg) const { 1042 return StackOffset::getFixed(ResolveFrameIndexReference(MF, FI, FrameReg, 0)); 1043 } 1044 1045 int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF, 1046 int FI, Register &FrameReg, 1047 int SPAdj) const { 1048 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1049 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 1050 MF.getSubtarget().getRegisterInfo()); 1051 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1052 int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize(); 1053 int FPOffset = Offset - AFI->getFramePtrSpillOffset(); 1054 bool isFixed = MFI.isFixedObjectIndex(FI); 1055 1056 FrameReg = ARM::SP; 1057 Offset += SPAdj; 1058 1059 // SP can move around if there are allocas. We may also lose track of SP 1060 // when emergency spilling inside a non-reserved call frame setup. 1061 bool hasMovingSP = !hasReservedCallFrame(MF); 1062 1063 // When dynamically realigning the stack, use the frame pointer for 1064 // parameters, and the stack/base pointer for locals. 1065 if (RegInfo->hasStackRealignment(MF)) { 1066 assert(hasFP(MF) && "dynamic stack realignment without a FP!"); 1067 if (isFixed) { 1068 FrameReg = RegInfo->getFrameRegister(MF); 1069 Offset = FPOffset; 1070 } else if (hasMovingSP) { 1071 assert(RegInfo->hasBasePointer(MF) && 1072 "VLAs and dynamic stack alignment, but missing base pointer!"); 1073 FrameReg = RegInfo->getBaseRegister(); 1074 Offset -= SPAdj; 1075 } 1076 return Offset; 1077 } 1078 1079 // If there is a frame pointer, use it when we can. 1080 if (hasFP(MF) && AFI->hasStackFrame()) { 1081 // Use frame pointer to reference fixed objects. Use it for locals if 1082 // there are VLAs (and thus the SP isn't reliable as a base). 1083 if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) { 1084 FrameReg = RegInfo->getFrameRegister(MF); 1085 return FPOffset; 1086 } else if (hasMovingSP) { 1087 assert(RegInfo->hasBasePointer(MF) && "missing base pointer!"); 1088 if (AFI->isThumb2Function()) { 1089 // Try to use the frame pointer if we can, else use the base pointer 1090 // since it's available. This is handy for the emergency spill slot, in 1091 // particular. 1092 if (FPOffset >= -255 && FPOffset < 0) { 1093 FrameReg = RegInfo->getFrameRegister(MF); 1094 return FPOffset; 1095 } 1096 } 1097 } else if (AFI->isThumbFunction()) { 1098 // Prefer SP to base pointer, if the offset is suitably aligned and in 1099 // range as the effective range of the immediate offset is bigger when 1100 // basing off SP. 1101 // Use add <rd>, sp, #<imm8> 1102 // ldr <rd>, [sp, #<imm8>] 1103 if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020) 1104 return Offset; 1105 // In Thumb2 mode, the negative offset is very limited. Try to avoid 1106 // out of range references. ldr <rt>,[<rn>, #-<imm8>] 1107 if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) { 1108 FrameReg = RegInfo->getFrameRegister(MF); 1109 return FPOffset; 1110 } 1111 } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) { 1112 // Otherwise, use SP or FP, whichever is closer to the stack slot. 1113 FrameReg = RegInfo->getFrameRegister(MF); 1114 return FPOffset; 1115 } 1116 } 1117 // Use the base pointer if we have one. 1118 // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper? 1119 // That can happen if we forced a base pointer for a large call frame. 1120 if (RegInfo->hasBasePointer(MF)) { 1121 FrameReg = RegInfo->getBaseRegister(); 1122 Offset -= SPAdj; 1123 } 1124 return Offset; 1125 } 1126 1127 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB, 1128 MachineBasicBlock::iterator MI, 1129 ArrayRef<CalleeSavedInfo> CSI, 1130 unsigned StmOpc, unsigned StrOpc, 1131 bool NoGap, bool (*Func)(unsigned, bool), 1132 unsigned NumAlignedDPRCS2Regs, 1133 unsigned MIFlags) const { 1134 MachineFunction &MF = *MBB.getParent(); 1135 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1136 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1137 1138 DebugLoc DL; 1139 1140 using RegAndKill = std::pair<unsigned, bool>; 1141 1142 SmallVector<RegAndKill, 4> Regs; 1143 unsigned i = CSI.size(); 1144 while (i != 0) { 1145 unsigned LastReg = 0; 1146 for (; i != 0; --i) { 1147 Register Reg = CSI[i-1].getReg(); 1148 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 1149 1150 // D-registers in the aligned area DPRCS2 are NOT spilled here. 1151 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 1152 continue; 1153 1154 const MachineRegisterInfo &MRI = MF.getRegInfo(); 1155 bool isLiveIn = MRI.isLiveIn(Reg); 1156 if (!isLiveIn && !MRI.isReserved(Reg)) 1157 MBB.addLiveIn(Reg); 1158 // If NoGap is true, push consecutive registers and then leave the rest 1159 // for other instructions. e.g. 1160 // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11} 1161 if (NoGap && LastReg && LastReg != Reg-1) 1162 break; 1163 LastReg = Reg; 1164 // Do not set a kill flag on values that are also marked as live-in. This 1165 // happens with the @llvm-returnaddress intrinsic and with arguments 1166 // passed in callee saved registers. 1167 // Omitting the kill flags is conservatively correct even if the live-in 1168 // is not used after all. 1169 Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn)); 1170 } 1171 1172 if (Regs.empty()) 1173 continue; 1174 1175 llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) { 1176 return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first); 1177 }); 1178 1179 if (Regs.size() > 1 || StrOpc== 0) { 1180 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP) 1181 .addReg(ARM::SP) 1182 .setMIFlags(MIFlags) 1183 .add(predOps(ARMCC::AL)); 1184 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1185 MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second)); 1186 } else if (Regs.size() == 1) { 1187 BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP) 1188 .addReg(Regs[0].first, getKillRegState(Regs[0].second)) 1189 .addReg(ARM::SP) 1190 .setMIFlags(MIFlags) 1191 .addImm(-4) 1192 .add(predOps(ARMCC::AL)); 1193 } 1194 Regs.clear(); 1195 1196 // Put any subsequent vpush instructions before this one: they will refer to 1197 // higher register numbers so need to be pushed first in order to preserve 1198 // monotonicity. 1199 if (MI != MBB.begin()) 1200 --MI; 1201 } 1202 } 1203 1204 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB, 1205 MachineBasicBlock::iterator MI, 1206 MutableArrayRef<CalleeSavedInfo> CSI, 1207 unsigned LdmOpc, unsigned LdrOpc, 1208 bool isVarArg, bool NoGap, 1209 bool (*Func)(unsigned, bool), 1210 unsigned NumAlignedDPRCS2Regs) const { 1211 MachineFunction &MF = *MBB.getParent(); 1212 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1213 const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); 1214 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1215 bool hasPAC = AFI->shouldSignReturnAddress(); 1216 DebugLoc DL; 1217 bool isTailCall = false; 1218 bool isInterrupt = false; 1219 bool isTrap = false; 1220 bool isCmseEntry = false; 1221 if (MBB.end() != MI) { 1222 DL = MI->getDebugLoc(); 1223 unsigned RetOpcode = MI->getOpcode(); 1224 isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri); 1225 isInterrupt = 1226 RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR; 1227 isTrap = 1228 RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl || 1229 RetOpcode == ARM::tTRAP; 1230 isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET); 1231 } 1232 1233 SmallVector<unsigned, 4> Regs; 1234 unsigned i = CSI.size(); 1235 while (i != 0) { 1236 unsigned LastReg = 0; 1237 bool DeleteRet = false; 1238 for (; i != 0; --i) { 1239 CalleeSavedInfo &Info = CSI[i-1]; 1240 Register Reg = Info.getReg(); 1241 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue; 1242 1243 // The aligned reloads from area DPRCS2 are not inserted here. 1244 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs) 1245 continue; 1246 if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt && 1247 !isCmseEntry && !isTrap && AFI->getArgumentStackToRestore() == 0 && 1248 STI.hasV5TOps() && MBB.succ_empty() && !hasPAC) { 1249 Reg = ARM::PC; 1250 // Fold the return instruction into the LDM. 1251 DeleteRet = true; 1252 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET; 1253 // We 'restore' LR into PC so it is not live out of the return block: 1254 // Clear Restored bit. 1255 Info.setRestored(false); 1256 } 1257 1258 // If NoGap is true, pop consecutive registers and then leave the rest 1259 // for other instructions. e.g. 1260 // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11} 1261 if (NoGap && LastReg && LastReg != Reg-1) 1262 break; 1263 1264 LastReg = Reg; 1265 Regs.push_back(Reg); 1266 } 1267 1268 if (Regs.empty()) 1269 continue; 1270 1271 llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) { 1272 return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS); 1273 }); 1274 1275 if (Regs.size() > 1 || LdrOpc == 0) { 1276 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP) 1277 .addReg(ARM::SP) 1278 .add(predOps(ARMCC::AL)) 1279 .setMIFlags(MachineInstr::FrameDestroy); 1280 for (unsigned i = 0, e = Regs.size(); i < e; ++i) 1281 MIB.addReg(Regs[i], getDefRegState(true)); 1282 if (DeleteRet) { 1283 if (MI != MBB.end()) { 1284 MIB.copyImplicitOps(*MI); 1285 MI->eraseFromParent(); 1286 } 1287 } 1288 MI = MIB; 1289 } else if (Regs.size() == 1) { 1290 // If we adjusted the reg to PC from LR above, switch it back here. We 1291 // only do that for LDM. 1292 if (Regs[0] == ARM::PC) 1293 Regs[0] = ARM::LR; 1294 MachineInstrBuilder MIB = 1295 BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0]) 1296 .addReg(ARM::SP, RegState::Define) 1297 .addReg(ARM::SP) 1298 .setMIFlags(MachineInstr::FrameDestroy); 1299 // ARM mode needs an extra reg0 here due to addrmode2. Will go away once 1300 // that refactoring is complete (eventually). 1301 if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) { 1302 MIB.addReg(0); 1303 MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift)); 1304 } else 1305 MIB.addImm(4); 1306 MIB.add(predOps(ARMCC::AL)); 1307 } 1308 Regs.clear(); 1309 1310 // Put any subsequent vpop instructions after this one: they will refer to 1311 // higher register numbers so need to be popped afterwards. 1312 if (MI != MBB.end()) 1313 ++MI; 1314 } 1315 } 1316 1317 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers 1318 /// starting from d8. Also insert stack realignment code and leave the stack 1319 /// pointer pointing to the d8 spill slot. 1320 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB, 1321 MachineBasicBlock::iterator MI, 1322 unsigned NumAlignedDPRCS2Regs, 1323 ArrayRef<CalleeSavedInfo> CSI, 1324 const TargetRegisterInfo *TRI) { 1325 MachineFunction &MF = *MBB.getParent(); 1326 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1327 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1328 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1329 MachineFrameInfo &MFI = MF.getFrameInfo(); 1330 1331 // Mark the D-register spill slots as properly aligned. Since MFI computes 1332 // stack slot layout backwards, this can actually mean that the d-reg stack 1333 // slot offsets can be wrong. The offset for d8 will always be correct. 1334 for (const CalleeSavedInfo &I : CSI) { 1335 unsigned DNum = I.getReg() - ARM::D8; 1336 if (DNum > NumAlignedDPRCS2Regs - 1) 1337 continue; 1338 int FI = I.getFrameIdx(); 1339 // The even-numbered registers will be 16-byte aligned, the odd-numbered 1340 // registers will be 8-byte aligned. 1341 MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16)); 1342 1343 // The stack slot for D8 needs to be maximally aligned because this is 1344 // actually the point where we align the stack pointer. MachineFrameInfo 1345 // computes all offsets relative to the incoming stack pointer which is a 1346 // bit weird when realigning the stack. Any extra padding for this 1347 // over-alignment is not realized because the code inserted below adjusts 1348 // the stack pointer by numregs * 8 before aligning the stack pointer. 1349 if (DNum == 0) 1350 MFI.setObjectAlignment(FI, MFI.getMaxAlign()); 1351 } 1352 1353 // Move the stack pointer to the d8 spill slot, and align it at the same 1354 // time. Leave the stack slot address in the scratch register r4. 1355 // 1356 // sub r4, sp, #numregs * 8 1357 // bic r4, r4, #align - 1 1358 // mov sp, r4 1359 // 1360 bool isThumb = AFI->isThumbFunction(); 1361 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1362 AFI->setShouldRestoreSPFromFP(true); 1363 1364 // sub r4, sp, #numregs * 8 1365 // The immediate is <= 64, so it doesn't need any special encoding. 1366 unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri; 1367 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1368 .addReg(ARM::SP) 1369 .addImm(8 * NumAlignedDPRCS2Regs) 1370 .add(predOps(ARMCC::AL)) 1371 .add(condCodeOp()); 1372 1373 Align MaxAlign = MF.getFrameInfo().getMaxAlign(); 1374 // We must set parameter MustBeSingleInstruction to true, since 1375 // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform 1376 // stack alignment. Luckily, this can always be done since all ARM 1377 // architecture versions that support Neon also support the BFC 1378 // instruction. 1379 emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true); 1380 1381 // mov sp, r4 1382 // The stack pointer must be adjusted before spilling anything, otherwise 1383 // the stack slots could be clobbered by an interrupt handler. 1384 // Leave r4 live, it is used below. 1385 Opc = isThumb ? ARM::tMOVr : ARM::MOVr; 1386 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP) 1387 .addReg(ARM::R4) 1388 .add(predOps(ARMCC::AL)); 1389 if (!isThumb) 1390 MIB.add(condCodeOp()); 1391 1392 // Now spill NumAlignedDPRCS2Regs registers starting from d8. 1393 // r4 holds the stack slot address. 1394 unsigned NextReg = ARM::D8; 1395 1396 // 16-byte aligned vst1.64 with 4 d-regs and address writeback. 1397 // The writeback is only needed when emitting two vst1.64 instructions. 1398 if (NumAlignedDPRCS2Regs >= 6) { 1399 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1400 &ARM::QQPRRegClass); 1401 MBB.addLiveIn(SupReg); 1402 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4) 1403 .addReg(ARM::R4, RegState::Kill) 1404 .addImm(16) 1405 .addReg(NextReg) 1406 .addReg(SupReg, RegState::ImplicitKill) 1407 .add(predOps(ARMCC::AL)); 1408 NextReg += 4; 1409 NumAlignedDPRCS2Regs -= 4; 1410 } 1411 1412 // We won't modify r4 beyond this point. It currently points to the next 1413 // register to be spilled. 1414 unsigned R4BaseReg = NextReg; 1415 1416 // 16-byte aligned vst1.64 with 4 d-regs, no writeback. 1417 if (NumAlignedDPRCS2Regs >= 4) { 1418 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1419 &ARM::QQPRRegClass); 1420 MBB.addLiveIn(SupReg); 1421 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q)) 1422 .addReg(ARM::R4) 1423 .addImm(16) 1424 .addReg(NextReg) 1425 .addReg(SupReg, RegState::ImplicitKill) 1426 .add(predOps(ARMCC::AL)); 1427 NextReg += 4; 1428 NumAlignedDPRCS2Regs -= 4; 1429 } 1430 1431 // 16-byte aligned vst1.64 with 2 d-regs. 1432 if (NumAlignedDPRCS2Regs >= 2) { 1433 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1434 &ARM::QPRRegClass); 1435 MBB.addLiveIn(SupReg); 1436 BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64)) 1437 .addReg(ARM::R4) 1438 .addImm(16) 1439 .addReg(SupReg) 1440 .add(predOps(ARMCC::AL)); 1441 NextReg += 2; 1442 NumAlignedDPRCS2Regs -= 2; 1443 } 1444 1445 // Finally, use a vanilla vstr.64 for the odd last register. 1446 if (NumAlignedDPRCS2Regs) { 1447 MBB.addLiveIn(NextReg); 1448 // vstr.64 uses addrmode5 which has an offset scale of 4. 1449 BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD)) 1450 .addReg(NextReg) 1451 .addReg(ARM::R4) 1452 .addImm((NextReg - R4BaseReg) * 2) 1453 .add(predOps(ARMCC::AL)); 1454 } 1455 1456 // The last spill instruction inserted should kill the scratch register r4. 1457 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1458 } 1459 1460 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an 1461 /// iterator to the following instruction. 1462 static MachineBasicBlock::iterator 1463 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI, 1464 unsigned NumAlignedDPRCS2Regs) { 1465 // sub r4, sp, #numregs * 8 1466 // bic r4, r4, #align - 1 1467 // mov sp, r4 1468 ++MI; ++MI; ++MI; 1469 assert(MI->mayStore() && "Expecting spill instruction"); 1470 1471 // These switches all fall through. 1472 switch(NumAlignedDPRCS2Regs) { 1473 case 7: 1474 ++MI; 1475 assert(MI->mayStore() && "Expecting spill instruction"); 1476 LLVM_FALLTHROUGH; 1477 default: 1478 ++MI; 1479 assert(MI->mayStore() && "Expecting spill instruction"); 1480 LLVM_FALLTHROUGH; 1481 case 1: 1482 case 2: 1483 case 4: 1484 assert(MI->killsRegister(ARM::R4) && "Missed kill flag"); 1485 ++MI; 1486 } 1487 return MI; 1488 } 1489 1490 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers 1491 /// starting from d8. These instructions are assumed to execute while the 1492 /// stack is still aligned, unlike the code inserted by emitPopInst. 1493 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB, 1494 MachineBasicBlock::iterator MI, 1495 unsigned NumAlignedDPRCS2Regs, 1496 ArrayRef<CalleeSavedInfo> CSI, 1497 const TargetRegisterInfo *TRI) { 1498 MachineFunction &MF = *MBB.getParent(); 1499 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1500 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); 1501 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); 1502 1503 // Find the frame index assigned to d8. 1504 int D8SpillFI = 0; 1505 for (const CalleeSavedInfo &I : CSI) 1506 if (I.getReg() == ARM::D8) { 1507 D8SpillFI = I.getFrameIdx(); 1508 break; 1509 } 1510 1511 // Materialize the address of the d8 spill slot into the scratch register r4. 1512 // This can be fairly complicated if the stack frame is large, so just use 1513 // the normal frame index elimination mechanism to do it. This code runs as 1514 // the initial part of the epilog where the stack and base pointers haven't 1515 // been changed yet. 1516 bool isThumb = AFI->isThumbFunction(); 1517 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1"); 1518 1519 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri; 1520 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4) 1521 .addFrameIndex(D8SpillFI) 1522 .addImm(0) 1523 .add(predOps(ARMCC::AL)) 1524 .add(condCodeOp()); 1525 1526 // Now restore NumAlignedDPRCS2Regs registers starting from d8. 1527 unsigned NextReg = ARM::D8; 1528 1529 // 16-byte aligned vld1.64 with 4 d-regs and writeback. 1530 if (NumAlignedDPRCS2Regs >= 6) { 1531 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1532 &ARM::QQPRRegClass); 1533 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg) 1534 .addReg(ARM::R4, RegState::Define) 1535 .addReg(ARM::R4, RegState::Kill) 1536 .addImm(16) 1537 .addReg(SupReg, RegState::ImplicitDefine) 1538 .add(predOps(ARMCC::AL)); 1539 NextReg += 4; 1540 NumAlignedDPRCS2Regs -= 4; 1541 } 1542 1543 // We won't modify r4 beyond this point. It currently points to the next 1544 // register to be spilled. 1545 unsigned R4BaseReg = NextReg; 1546 1547 // 16-byte aligned vld1.64 with 4 d-regs, no writeback. 1548 if (NumAlignedDPRCS2Regs >= 4) { 1549 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1550 &ARM::QQPRRegClass); 1551 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg) 1552 .addReg(ARM::R4) 1553 .addImm(16) 1554 .addReg(SupReg, RegState::ImplicitDefine) 1555 .add(predOps(ARMCC::AL)); 1556 NextReg += 4; 1557 NumAlignedDPRCS2Regs -= 4; 1558 } 1559 1560 // 16-byte aligned vld1.64 with 2 d-regs. 1561 if (NumAlignedDPRCS2Regs >= 2) { 1562 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0, 1563 &ARM::QPRRegClass); 1564 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg) 1565 .addReg(ARM::R4) 1566 .addImm(16) 1567 .add(predOps(ARMCC::AL)); 1568 NextReg += 2; 1569 NumAlignedDPRCS2Regs -= 2; 1570 } 1571 1572 // Finally, use a vanilla vldr.64 for the remaining odd register. 1573 if (NumAlignedDPRCS2Regs) 1574 BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg) 1575 .addReg(ARM::R4) 1576 .addImm(2 * (NextReg - R4BaseReg)) 1577 .add(predOps(ARMCC::AL)); 1578 1579 // Last store kills r4. 1580 std::prev(MI)->addRegisterKilled(ARM::R4, TRI); 1581 } 1582 1583 bool ARMFrameLowering::spillCalleeSavedRegisters( 1584 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 1585 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 1586 if (CSI.empty()) 1587 return false; 1588 1589 MachineFunction &MF = *MBB.getParent(); 1590 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1591 1592 unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD; 1593 unsigned PushOneOpc = AFI->isThumbFunction() ? 1594 ARM::t2STR_PRE : ARM::STR_PRE_IMM; 1595 unsigned FltOpc = ARM::VSTMDDB_UPD; 1596 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1597 // Compute PAC in R12. 1598 if (AFI->shouldSignReturnAddress()) { 1599 BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::t2PAC)) 1600 .setMIFlags(MachineInstr::FrameSetup); 1601 } 1602 // Save the non-secure floating point context. 1603 if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) { 1604 return C.getReg() == ARM::FPCXTNS; 1605 })) { 1606 BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre), 1607 ARM::SP) 1608 .addReg(ARM::SP) 1609 .addImm(-4) 1610 .add(predOps(ARMCC::AL)); 1611 } 1612 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 0, 1613 MachineInstr::FrameSetup); 1614 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 0, 1615 MachineInstr::FrameSetup); 1616 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register, 1617 NumAlignedDPRCS2Regs, MachineInstr::FrameSetup); 1618 1619 // The code above does not insert spill code for the aligned DPRCS2 registers. 1620 // The stack realignment code will be inserted between the push instructions 1621 // and these spills. 1622 if (NumAlignedDPRCS2Regs) 1623 emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 1624 1625 return true; 1626 } 1627 1628 bool ARMFrameLowering::restoreCalleeSavedRegisters( 1629 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, 1630 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const { 1631 if (CSI.empty()) 1632 return false; 1633 1634 MachineFunction &MF = *MBB.getParent(); 1635 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1636 bool isVarArg = AFI->getArgRegsSaveSize() > 0; 1637 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs(); 1638 1639 // The emitPopInst calls below do not insert reloads for the aligned DPRCS2 1640 // registers. Do that here instead. 1641 if (NumAlignedDPRCS2Regs) 1642 emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI); 1643 1644 unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD; 1645 unsigned LdrOpc = AFI->isThumbFunction() ? ARM::t2LDR_POST :ARM::LDR_POST_IMM; 1646 unsigned FltOpc = ARM::VLDMDIA_UPD; 1647 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register, 1648 NumAlignedDPRCS2Regs); 1649 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 1650 &isARMArea2Register, 0); 1651 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false, 1652 &isARMArea1Register, 0); 1653 1654 return true; 1655 } 1656 1657 // FIXME: Make generic? 1658 static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF, 1659 const ARMBaseInstrInfo &TII) { 1660 unsigned FnSize = 0; 1661 for (auto &MBB : MF) { 1662 for (auto &MI : MBB) 1663 FnSize += TII.getInstSizeInBytes(MI); 1664 } 1665 if (MF.getJumpTableInfo()) 1666 for (auto &Table: MF.getJumpTableInfo()->getJumpTables()) 1667 FnSize += Table.MBBs.size() * 4; 1668 FnSize += MF.getConstantPool()->getConstants().size() * 4; 1669 return FnSize; 1670 } 1671 1672 /// estimateRSStackSizeLimit - Look at each instruction that references stack 1673 /// frames and return the stack size limit beyond which some of these 1674 /// instructions will require a scratch register during their expansion later. 1675 // FIXME: Move to TII? 1676 static unsigned estimateRSStackSizeLimit(MachineFunction &MF, 1677 const TargetFrameLowering *TFI, 1678 bool &HasNonSPFrameIndex) { 1679 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1680 const ARMBaseInstrInfo &TII = 1681 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1682 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1683 unsigned Limit = (1 << 12) - 1; 1684 for (auto &MBB : MF) { 1685 for (auto &MI : MBB) { 1686 if (MI.isDebugInstr()) 1687 continue; 1688 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 1689 if (!MI.getOperand(i).isFI()) 1690 continue; 1691 1692 // When using ADDri to get the address of a stack object, 255 is the 1693 // largest offset guaranteed to fit in the immediate offset. 1694 if (MI.getOpcode() == ARM::ADDri) { 1695 Limit = std::min(Limit, (1U << 8) - 1); 1696 break; 1697 } 1698 // t2ADDri will not require an extra register, it can reuse the 1699 // destination. 1700 if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12) 1701 break; 1702 1703 const MCInstrDesc &MCID = MI.getDesc(); 1704 const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF); 1705 if (RegClass && !RegClass->contains(ARM::SP)) 1706 HasNonSPFrameIndex = true; 1707 1708 // Otherwise check the addressing mode. 1709 switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) { 1710 case ARMII::AddrMode_i12: 1711 case ARMII::AddrMode2: 1712 // Default 12 bit limit. 1713 break; 1714 case ARMII::AddrMode3: 1715 case ARMII::AddrModeT2_i8neg: 1716 Limit = std::min(Limit, (1U << 8) - 1); 1717 break; 1718 case ARMII::AddrMode5FP16: 1719 Limit = std::min(Limit, ((1U << 8) - 1) * 2); 1720 break; 1721 case ARMII::AddrMode5: 1722 case ARMII::AddrModeT2_i8s4: 1723 case ARMII::AddrModeT2_ldrex: 1724 Limit = std::min(Limit, ((1U << 8) - 1) * 4); 1725 break; 1726 case ARMII::AddrModeT2_i12: 1727 // i12 supports only positive offset so these will be converted to 1728 // i8 opcodes. See llvm::rewriteT2FrameIndex. 1729 if (TFI->hasFP(MF) && AFI->hasStackFrame()) 1730 Limit = std::min(Limit, (1U << 8) - 1); 1731 break; 1732 case ARMII::AddrMode4: 1733 case ARMII::AddrMode6: 1734 // Addressing modes 4 & 6 (load/store) instructions can't encode an 1735 // immediate offset for stack references. 1736 return 0; 1737 case ARMII::AddrModeT2_i7: 1738 Limit = std::min(Limit, ((1U << 7) - 1) * 1); 1739 break; 1740 case ARMII::AddrModeT2_i7s2: 1741 Limit = std::min(Limit, ((1U << 7) - 1) * 2); 1742 break; 1743 case ARMII::AddrModeT2_i7s4: 1744 Limit = std::min(Limit, ((1U << 7) - 1) * 4); 1745 break; 1746 default: 1747 llvm_unreachable("Unhandled addressing mode in stack size limit calculation"); 1748 } 1749 break; // At most one FI per instruction 1750 } 1751 } 1752 } 1753 1754 return Limit; 1755 } 1756 1757 // In functions that realign the stack, it can be an advantage to spill the 1758 // callee-saved vector registers after realigning the stack. The vst1 and vld1 1759 // instructions take alignment hints that can improve performance. 1760 static void 1761 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) { 1762 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0); 1763 if (!SpillAlignedNEONRegs) 1764 return; 1765 1766 // Naked functions don't spill callee-saved registers. 1767 if (MF.getFunction().hasFnAttribute(Attribute::Naked)) 1768 return; 1769 1770 // We are planning to use NEON instructions vst1 / vld1. 1771 if (!static_cast<const ARMSubtarget &>(MF.getSubtarget()).hasNEON()) 1772 return; 1773 1774 // Don't bother if the default stack alignment is sufficiently high. 1775 if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8)) 1776 return; 1777 1778 // Aligned spills require stack realignment. 1779 if (!static_cast<const ARMBaseRegisterInfo *>( 1780 MF.getSubtarget().getRegisterInfo())->canRealignStack(MF)) 1781 return; 1782 1783 // We always spill contiguous d-registers starting from d8. Count how many 1784 // needs spilling. The register allocator will almost always use the 1785 // callee-saved registers in order, but it can happen that there are holes in 1786 // the range. Registers above the hole will be spilled to the standard DPRCS 1787 // area. 1788 unsigned NumSpills = 0; 1789 for (; NumSpills < 8; ++NumSpills) 1790 if (!SavedRegs.test(ARM::D8 + NumSpills)) 1791 break; 1792 1793 // Don't do this for just one d-register. It's not worth it. 1794 if (NumSpills < 2) 1795 return; 1796 1797 // Spill the first NumSpills D-registers after realigning the stack. 1798 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills); 1799 1800 // A scratch register is required for the vst1 / vld1 instructions. 1801 SavedRegs.set(ARM::R4); 1802 } 1803 1804 bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const { 1805 // For CMSE entry functions, we want to save the FPCXT_NS immediately 1806 // upon function entry (resp. restore it immmediately before return) 1807 if (STI.hasV8_1MMainlineOps() && 1808 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) 1809 return false; 1810 1811 // We are disabling shrinkwrapping for now when PAC is enabled, as 1812 // shrinkwrapping can cause clobbering of r12 when the PAC code is 1813 // generated. A follow-up patch will fix this in a more performant manner. 1814 if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress( 1815 true /* SpillsLR */)) 1816 return false; 1817 1818 return true; 1819 } 1820 1821 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF, 1822 BitVector &SavedRegs, 1823 RegScavenger *RS) const { 1824 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); 1825 // This tells PEI to spill the FP as if it is any other callee-save register 1826 // to take advantage the eliminateFrameIndex machinery. This also ensures it 1827 // is spilled in the order specified by getCalleeSavedRegs() to make it easier 1828 // to combine multiple loads / stores. 1829 bool CanEliminateFrame = true; 1830 bool CS1Spilled = false; 1831 bool LRSpilled = false; 1832 unsigned NumGPRSpills = 0; 1833 unsigned NumFPRSpills = 0; 1834 SmallVector<unsigned, 4> UnspilledCS1GPRs; 1835 SmallVector<unsigned, 4> UnspilledCS2GPRs; 1836 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>( 1837 MF.getSubtarget().getRegisterInfo()); 1838 const ARMBaseInstrInfo &TII = 1839 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 1840 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1841 MachineFrameInfo &MFI = MF.getFrameInfo(); 1842 MachineRegisterInfo &MRI = MF.getRegInfo(); 1843 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1844 (void)TRI; // Silence unused warning in non-assert builds. 1845 Register FramePtr = RegInfo->getFrameRegister(MF); 1846 1847 // Spill R4 if Thumb2 function requires stack realignment - it will be used as 1848 // scratch register. Also spill R4 if Thumb2 function has varsized objects, 1849 // since it's not always possible to restore sp from fp in a single 1850 // instruction. 1851 // FIXME: It will be better just to find spare register here. 1852 if (AFI->isThumb2Function() && 1853 (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF))) 1854 SavedRegs.set(ARM::R4); 1855 1856 // If a stack probe will be emitted, spill R4 and LR, since they are 1857 // clobbered by the stack probe call. 1858 // This estimate should be a safe, conservative estimate. The actual 1859 // stack probe is enabled based on the size of the local objects; 1860 // this estimate also includes the varargs store size. 1861 if (STI.isTargetWindows() && 1862 WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) { 1863 SavedRegs.set(ARM::R4); 1864 SavedRegs.set(ARM::LR); 1865 } 1866 1867 if (AFI->isThumb1OnlyFunction()) { 1868 // Spill LR if Thumb1 function uses variable length argument lists. 1869 if (AFI->getArgRegsSaveSize() > 0) 1870 SavedRegs.set(ARM::LR); 1871 1872 // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function 1873 // requires stack alignment. We don't know for sure what the stack size 1874 // will be, but for this, an estimate is good enough. If there anything 1875 // changes it, it'll be a spill, which implies we've used all the registers 1876 // and so R4 is already used, so not marking it here will be OK. 1877 // FIXME: It will be better just to find spare register here. 1878 if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF) || 1879 MFI.estimateStackSize(MF) > 508) 1880 SavedRegs.set(ARM::R4); 1881 } 1882 1883 // See if we can spill vector registers to aligned stack. 1884 checkNumAlignedDPRCS2Regs(MF, SavedRegs); 1885 1886 // Spill the BasePtr if it's used. 1887 if (RegInfo->hasBasePointer(MF)) 1888 SavedRegs.set(RegInfo->getBaseRegister()); 1889 1890 // On v8.1-M.Main CMSE entry functions save/restore FPCXT. 1891 if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction()) 1892 CanEliminateFrame = false; 1893 1894 // Don't spill FP if the frame can be eliminated. This is determined 1895 // by scanning the callee-save registers to see if any is modified. 1896 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF); 1897 for (unsigned i = 0; CSRegs[i]; ++i) { 1898 unsigned Reg = CSRegs[i]; 1899 bool Spilled = false; 1900 if (SavedRegs.test(Reg)) { 1901 Spilled = true; 1902 CanEliminateFrame = false; 1903 } 1904 1905 if (!ARM::GPRRegClass.contains(Reg)) { 1906 if (Spilled) { 1907 if (ARM::SPRRegClass.contains(Reg)) 1908 NumFPRSpills++; 1909 else if (ARM::DPRRegClass.contains(Reg)) 1910 NumFPRSpills += 2; 1911 else if (ARM::QPRRegClass.contains(Reg)) 1912 NumFPRSpills += 4; 1913 } 1914 continue; 1915 } 1916 1917 if (Spilled) { 1918 NumGPRSpills++; 1919 1920 if (!STI.splitFramePushPop(MF)) { 1921 if (Reg == ARM::LR) 1922 LRSpilled = true; 1923 CS1Spilled = true; 1924 continue; 1925 } 1926 1927 // Keep track if LR and any of R4, R5, R6, and R7 is spilled. 1928 switch (Reg) { 1929 case ARM::LR: 1930 LRSpilled = true; 1931 LLVM_FALLTHROUGH; 1932 case ARM::R0: case ARM::R1: 1933 case ARM::R2: case ARM::R3: 1934 case ARM::R4: case ARM::R5: 1935 case ARM::R6: case ARM::R7: 1936 CS1Spilled = true; 1937 break; 1938 default: 1939 break; 1940 } 1941 } else { 1942 if (!STI.splitFramePushPop(MF)) { 1943 UnspilledCS1GPRs.push_back(Reg); 1944 continue; 1945 } 1946 1947 switch (Reg) { 1948 case ARM::R0: case ARM::R1: 1949 case ARM::R2: case ARM::R3: 1950 case ARM::R4: case ARM::R5: 1951 case ARM::R6: case ARM::R7: 1952 case ARM::LR: 1953 UnspilledCS1GPRs.push_back(Reg); 1954 break; 1955 default: 1956 UnspilledCS2GPRs.push_back(Reg); 1957 break; 1958 } 1959 } 1960 } 1961 1962 bool ForceLRSpill = false; 1963 if (!LRSpilled && AFI->isThumb1OnlyFunction()) { 1964 unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII); 1965 // Force LR to be spilled if the Thumb function size is > 2048. This enables 1966 // use of BL to implement far jump. 1967 if (FnSize >= (1 << 11)) { 1968 CanEliminateFrame = false; 1969 ForceLRSpill = true; 1970 } 1971 } 1972 1973 // If any of the stack slot references may be out of range of an immediate 1974 // offset, make sure a register (or a spill slot) is available for the 1975 // register scavenger. Note that if we're indexing off the frame pointer, the 1976 // effective stack size is 4 bytes larger since the FP points to the stack 1977 // slot of the previous FP. Also, if we have variable sized objects in the 1978 // function, stack slot references will often be negative, and some of 1979 // our instructions are positive-offset only, so conservatively consider 1980 // that case to want a spill slot (or register) as well. Similarly, if 1981 // the function adjusts the stack pointer during execution and the 1982 // adjustments aren't already part of our stack size estimate, our offset 1983 // calculations may be off, so be conservative. 1984 // FIXME: We could add logic to be more precise about negative offsets 1985 // and which instructions will need a scratch register for them. Is it 1986 // worth the effort and added fragility? 1987 unsigned EstimatedStackSize = 1988 MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills); 1989 1990 // Determine biggest (positive) SP offset in MachineFrameInfo. 1991 int MaxFixedOffset = 0; 1992 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { 1993 int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I); 1994 MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset); 1995 } 1996 1997 bool HasFP = hasFP(MF); 1998 if (HasFP) { 1999 if (AFI->hasStackFrame()) 2000 EstimatedStackSize += 4; 2001 } else { 2002 // If FP is not used, SP will be used to access arguments, so count the 2003 // size of arguments into the estimation. 2004 EstimatedStackSize += MaxFixedOffset; 2005 } 2006 EstimatedStackSize += 16; // For possible paddings. 2007 2008 unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit; 2009 bool HasNonSPFrameIndex = false; 2010 if (AFI->isThumb1OnlyFunction()) { 2011 // For Thumb1, don't bother to iterate over the function. The only 2012 // instruction that requires an emergency spill slot is a store to a 2013 // frame index. 2014 // 2015 // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned 2016 // immediate. tSTRi, which is used for bp- and fp-relative accesses, has 2017 // a 5-bit unsigned immediate. 2018 // 2019 // We could try to check if the function actually contains a tSTRspi 2020 // that might need the spill slot, but it's not really important. 2021 // Functions with VLAs or extremely large call frames are rare, and 2022 // if a function is allocating more than 1KB of stack, an extra 4-byte 2023 // slot probably isn't relevant. 2024 if (RegInfo->hasBasePointer(MF)) 2025 EstimatedRSStackSizeLimit = (1U << 5) * 4; 2026 else 2027 EstimatedRSStackSizeLimit = (1U << 8) * 4; 2028 EstimatedRSFixedSizeLimit = (1U << 5) * 4; 2029 } else { 2030 EstimatedRSStackSizeLimit = 2031 estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex); 2032 EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit; 2033 } 2034 // Final estimate of whether sp or bp-relative accesses might require 2035 // scavenging. 2036 bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit; 2037 2038 // If the stack pointer moves and we don't have a base pointer, the 2039 // estimate logic doesn't work. The actual offsets might be larger when 2040 // we're constructing a call frame, or we might need to use negative 2041 // offsets from fp. 2042 bool HasMovingSP = MFI.hasVarSizedObjects() || 2043 (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF)); 2044 bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP; 2045 2046 // If we have a frame pointer, we assume arguments will be accessed 2047 // relative to the frame pointer. Check whether fp-relative accesses to 2048 // arguments require scavenging. 2049 // 2050 // We could do slightly better on Thumb1; in some cases, an sp-relative 2051 // offset would be legal even though an fp-relative offset is not. 2052 int MaxFPOffset = getMaxFPOffset(STI, *AFI); 2053 bool HasLargeArgumentList = 2054 HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit; 2055 2056 bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP || 2057 HasLargeArgumentList || HasNonSPFrameIndex; 2058 LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit 2059 << "; EstimatedStack: " << EstimatedStackSize 2060 << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset 2061 << "; BigFrameOffsets: " << BigFrameOffsets << "\n"); 2062 if (BigFrameOffsets || 2063 !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) { 2064 AFI->setHasStackFrame(true); 2065 2066 if (HasFP) { 2067 SavedRegs.set(FramePtr); 2068 // If the frame pointer is required by the ABI, also spill LR so that we 2069 // emit a complete frame record. 2070 if (MF.getTarget().Options.DisableFramePointerElim(MF) && !LRSpilled) { 2071 SavedRegs.set(ARM::LR); 2072 LRSpilled = true; 2073 NumGPRSpills++; 2074 auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR); 2075 if (LRPos != UnspilledCS1GPRs.end()) 2076 UnspilledCS1GPRs.erase(LRPos); 2077 } 2078 auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr); 2079 if (FPPos != UnspilledCS1GPRs.end()) 2080 UnspilledCS1GPRs.erase(FPPos); 2081 NumGPRSpills++; 2082 if (FramePtr == ARM::R7) 2083 CS1Spilled = true; 2084 } 2085 2086 // This is true when we inserted a spill for a callee-save GPR which is 2087 // not otherwise used by the function. This guaranteees it is possible 2088 // to scavenge a register to hold the address of a stack slot. On Thumb1, 2089 // the register must be a valid operand to tSTRi, i.e. r4-r7. For other 2090 // subtargets, this is any GPR, i.e. r4-r11 or lr. 2091 // 2092 // If we don't insert a spill, we instead allocate an emergency spill 2093 // slot, which can be used by scavenging to spill an arbitrary register. 2094 // 2095 // We currently don't try to figure out whether any specific instruction 2096 // requires scavening an additional register. 2097 bool ExtraCSSpill = false; 2098 2099 if (AFI->isThumb1OnlyFunction()) { 2100 // For Thumb1-only targets, we need some low registers when we save and 2101 // restore the high registers (which aren't allocatable, but could be 2102 // used by inline assembly) because the push/pop instructions can not 2103 // access high registers. If necessary, we might need to push more low 2104 // registers to ensure that there is at least one free that can be used 2105 // for the saving & restoring, and preferably we should ensure that as 2106 // many as are needed are available so that fewer push/pop instructions 2107 // are required. 2108 2109 // Low registers which are not currently pushed, but could be (r4-r7). 2110 SmallVector<unsigned, 4> AvailableRegs; 2111 2112 // Unused argument registers (r0-r3) can be clobbered in the prologue for 2113 // free. 2114 int EntryRegDeficit = 0; 2115 for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) { 2116 if (!MF.getRegInfo().isLiveIn(Reg)) { 2117 --EntryRegDeficit; 2118 LLVM_DEBUG(dbgs() 2119 << printReg(Reg, TRI) 2120 << " is unused argument register, EntryRegDeficit = " 2121 << EntryRegDeficit << "\n"); 2122 } 2123 } 2124 2125 // Unused return registers can be clobbered in the epilogue for free. 2126 int ExitRegDeficit = AFI->getReturnRegsCount() - 4; 2127 LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount() 2128 << " return regs used, ExitRegDeficit = " 2129 << ExitRegDeficit << "\n"); 2130 2131 int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit); 2132 LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n"); 2133 2134 // r4-r6 can be used in the prologue if they are pushed by the first push 2135 // instruction. 2136 for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) { 2137 if (SavedRegs.test(Reg)) { 2138 --RegDeficit; 2139 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 2140 << " is saved low register, RegDeficit = " 2141 << RegDeficit << "\n"); 2142 } else { 2143 AvailableRegs.push_back(Reg); 2144 LLVM_DEBUG( 2145 dbgs() 2146 << printReg(Reg, TRI) 2147 << " is non-saved low register, adding to AvailableRegs\n"); 2148 } 2149 } 2150 2151 // r7 can be used if it is not being used as the frame pointer. 2152 if (!HasFP) { 2153 if (SavedRegs.test(ARM::R7)) { 2154 --RegDeficit; 2155 LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = " 2156 << RegDeficit << "\n"); 2157 } else { 2158 AvailableRegs.push_back(ARM::R7); 2159 LLVM_DEBUG( 2160 dbgs() 2161 << "%r7 is non-saved low register, adding to AvailableRegs\n"); 2162 } 2163 } 2164 2165 // Each of r8-r11 needs to be copied to a low register, then pushed. 2166 for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) { 2167 if (SavedRegs.test(Reg)) { 2168 ++RegDeficit; 2169 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) 2170 << " is saved high register, RegDeficit = " 2171 << RegDeficit << "\n"); 2172 } 2173 } 2174 2175 // LR can only be used by PUSH, not POP, and can't be used at all if the 2176 // llvm.returnaddress intrinsic is used. This is only worth doing if we 2177 // are more limited at function entry than exit. 2178 if ((EntryRegDeficit > ExitRegDeficit) && 2179 !(MF.getRegInfo().isLiveIn(ARM::LR) && 2180 MF.getFrameInfo().isReturnAddressTaken())) { 2181 if (SavedRegs.test(ARM::LR)) { 2182 --RegDeficit; 2183 LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = " 2184 << RegDeficit << "\n"); 2185 } else { 2186 AvailableRegs.push_back(ARM::LR); 2187 LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n"); 2188 } 2189 } 2190 2191 // If there are more high registers that need pushing than low registers 2192 // available, push some more low registers so that we can use fewer push 2193 // instructions. This might not reduce RegDeficit all the way to zero, 2194 // because we can only guarantee that r4-r6 are available, but r8-r11 may 2195 // need saving. 2196 LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n"); 2197 for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) { 2198 unsigned Reg = AvailableRegs.pop_back_val(); 2199 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2200 << " to make up reg deficit\n"); 2201 SavedRegs.set(Reg); 2202 NumGPRSpills++; 2203 CS1Spilled = true; 2204 assert(!MRI.isReserved(Reg) && "Should not be reserved"); 2205 if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg)) 2206 ExtraCSSpill = true; 2207 UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg)); 2208 if (Reg == ARM::LR) 2209 LRSpilled = true; 2210 } 2211 LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit 2212 << "\n"); 2213 } 2214 2215 // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to 2216 // restore LR in that case. 2217 bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall(); 2218 2219 // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled. 2220 // Spill LR as well so we can fold BX_RET to the registers restore (LDM). 2221 if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) { 2222 SavedRegs.set(ARM::LR); 2223 NumGPRSpills++; 2224 SmallVectorImpl<unsigned>::iterator LRPos; 2225 LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR); 2226 if (LRPos != UnspilledCS1GPRs.end()) 2227 UnspilledCS1GPRs.erase(LRPos); 2228 2229 ForceLRSpill = false; 2230 if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) && 2231 !AFI->isThumb1OnlyFunction()) 2232 ExtraCSSpill = true; 2233 } 2234 2235 // If stack and double are 8-byte aligned and we are spilling an odd number 2236 // of GPRs, spill one extra callee save GPR so we won't have to pad between 2237 // the integer and double callee save areas. 2238 LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n"); 2239 const Align TargetAlign = getStackAlign(); 2240 if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) { 2241 if (CS1Spilled && !UnspilledCS1GPRs.empty()) { 2242 for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) { 2243 unsigned Reg = UnspilledCS1GPRs[i]; 2244 // Don't spill high register if the function is thumb. In the case of 2245 // Windows on ARM, accept R11 (frame pointer) 2246 if (!AFI->isThumbFunction() || 2247 (STI.isTargetWindows() && Reg == ARM::R11) || 2248 isARMLowRegister(Reg) || 2249 (Reg == ARM::LR && !ExpensiveLRRestore)) { 2250 SavedRegs.set(Reg); 2251 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2252 << " to make up alignment\n"); 2253 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) && 2254 !(Reg == ARM::LR && AFI->isThumb1OnlyFunction())) 2255 ExtraCSSpill = true; 2256 break; 2257 } 2258 } 2259 } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) { 2260 unsigned Reg = UnspilledCS2GPRs.front(); 2261 SavedRegs.set(Reg); 2262 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI) 2263 << " to make up alignment\n"); 2264 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg)) 2265 ExtraCSSpill = true; 2266 } 2267 } 2268 2269 // Estimate if we might need to scavenge a register at some point in order 2270 // to materialize a stack offset. If so, either spill one additional 2271 // callee-saved register or reserve a special spill slot to facilitate 2272 // register scavenging. Thumb1 needs a spill slot for stack pointer 2273 // adjustments also, even when the frame itself is small. 2274 if (BigFrameOffsets && !ExtraCSSpill) { 2275 // If any non-reserved CS register isn't spilled, just spill one or two 2276 // extra. That should take care of it! 2277 unsigned NumExtras = TargetAlign.value() / 4; 2278 SmallVector<unsigned, 2> Extras; 2279 while (NumExtras && !UnspilledCS1GPRs.empty()) { 2280 unsigned Reg = UnspilledCS1GPRs.pop_back_val(); 2281 if (!MRI.isReserved(Reg) && 2282 (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) { 2283 Extras.push_back(Reg); 2284 NumExtras--; 2285 } 2286 } 2287 // For non-Thumb1 functions, also check for hi-reg CS registers 2288 if (!AFI->isThumb1OnlyFunction()) { 2289 while (NumExtras && !UnspilledCS2GPRs.empty()) { 2290 unsigned Reg = UnspilledCS2GPRs.pop_back_val(); 2291 if (!MRI.isReserved(Reg)) { 2292 Extras.push_back(Reg); 2293 NumExtras--; 2294 } 2295 } 2296 } 2297 if (NumExtras == 0) { 2298 for (unsigned Reg : Extras) { 2299 SavedRegs.set(Reg); 2300 if (!MRI.isPhysRegUsed(Reg)) 2301 ExtraCSSpill = true; 2302 } 2303 } 2304 if (!ExtraCSSpill && RS) { 2305 // Reserve a slot closest to SP or frame pointer. 2306 LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n"); 2307 const TargetRegisterClass &RC = ARM::GPRRegClass; 2308 unsigned Size = TRI->getSpillSize(RC); 2309 Align Alignment = TRI->getSpillAlign(RC); 2310 RS->addScavengingFrameIndex( 2311 MFI.CreateStackObject(Size, Alignment, false)); 2312 } 2313 } 2314 } 2315 2316 if (ForceLRSpill) 2317 SavedRegs.set(ARM::LR); 2318 AFI->setLRIsSpilled(SavedRegs.test(ARM::LR)); 2319 } 2320 2321 void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF, 2322 BitVector &SavedRegs) const { 2323 TargetFrameLowering::getCalleeSaves(MF, SavedRegs); 2324 2325 // If we have the "returned" parameter attribute which guarantees that we 2326 // return the value which was passed in r0 unmodified (e.g. C++ 'structors), 2327 // record that fact for IPRA. 2328 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2329 if (AFI->getPreservesR0()) 2330 SavedRegs.set(ARM::R0); 2331 } 2332 2333 bool ARMFrameLowering::assignCalleeSavedSpillSlots( 2334 MachineFunction &MF, const TargetRegisterInfo *TRI, 2335 std::vector<CalleeSavedInfo> &CSI) const { 2336 // For CMSE entry functions, handle floating-point context as if it was a 2337 // callee-saved register. 2338 if (STI.hasV8_1MMainlineOps() && 2339 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) { 2340 CSI.emplace_back(ARM::FPCXTNS); 2341 CSI.back().setRestored(false); 2342 } 2343 2344 // For functions, which sign their return address, upon function entry, the 2345 // return address PAC is computed in R12. Treat R12 as a callee-saved register 2346 // in this case. 2347 const auto &AFI = *MF.getInfo<ARMFunctionInfo>(); 2348 if (AFI.shouldSignReturnAddress()) { 2349 // The order of register must match the order we push them, because the 2350 // PEI assigns frame indices in that order. When compiling for return 2351 // address sign and authenication, we use split push, therefore the orders 2352 // we want are: 2353 // LR, R7, R6, R5, R4, <R12>, R11, R10, R9, R8, D15-D8 2354 CSI.insert(find_if(CSI, 2355 [=](const auto &CS) { 2356 Register Reg = CS.getReg(); 2357 return Reg == ARM::R10 || Reg == ARM::R11 || 2358 Reg == ARM::R8 || Reg == ARM::R9 || 2359 ARM::DPRRegClass.contains(Reg); 2360 }), 2361 CalleeSavedInfo(ARM::R12)); 2362 } 2363 2364 return false; 2365 } 2366 2367 const TargetFrameLowering::SpillSlot * 2368 ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const { 2369 static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}}; 2370 NumEntries = array_lengthof(FixedSpillOffsets); 2371 return FixedSpillOffsets; 2372 } 2373 2374 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr( 2375 MachineFunction &MF, MachineBasicBlock &MBB, 2376 MachineBasicBlock::iterator I) const { 2377 const ARMBaseInstrInfo &TII = 2378 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2379 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2380 bool isARM = !AFI->isThumbFunction(); 2381 DebugLoc dl = I->getDebugLoc(); 2382 unsigned Opc = I->getOpcode(); 2383 bool IsDestroy = Opc == TII.getCallFrameDestroyOpcode(); 2384 unsigned CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0; 2385 2386 assert(!AFI->isThumb1OnlyFunction() && 2387 "This eliminateCallFramePseudoInstr does not support Thumb1!"); 2388 2389 int PIdx = I->findFirstPredOperandIdx(); 2390 ARMCC::CondCodes Pred = (PIdx == -1) 2391 ? ARMCC::AL 2392 : (ARMCC::CondCodes)I->getOperand(PIdx).getImm(); 2393 unsigned PredReg = TII.getFramePred(*I); 2394 2395 if (!hasReservedCallFrame(MF)) { 2396 // Bail early if the callee is expected to do the adjustment. 2397 if (IsDestroy && CalleePopAmount != -1U) 2398 return MBB.erase(I); 2399 2400 // If we have alloca, convert as follows: 2401 // ADJCALLSTACKDOWN -> sub, sp, sp, amount 2402 // ADJCALLSTACKUP -> add, sp, sp, amount 2403 unsigned Amount = TII.getFrameSize(*I); 2404 if (Amount != 0) { 2405 // We need to keep the stack aligned properly. To do this, we round the 2406 // amount of space needed for the outgoing arguments up to the next 2407 // alignment boundary. 2408 Amount = alignSPAdjust(Amount); 2409 2410 if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) { 2411 emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags, 2412 Pred, PredReg); 2413 } else { 2414 assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP); 2415 emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags, 2416 Pred, PredReg); 2417 } 2418 } 2419 } else if (CalleePopAmount != -1U) { 2420 // If the calling convention demands that the callee pops arguments from the 2421 // stack, we want to add it back if we have a reserved call frame. 2422 emitSPUpdate(isARM, MBB, I, dl, TII, -CalleePopAmount, 2423 MachineInstr::NoFlags, Pred, PredReg); 2424 } 2425 return MBB.erase(I); 2426 } 2427 2428 /// Get the minimum constant for ARM that is greater than or equal to the 2429 /// argument. In ARM, constants can have any value that can be produced by 2430 /// rotating an 8-bit value to the right by an even number of bits within a 2431 /// 32-bit word. 2432 static uint32_t alignToARMConstant(uint32_t Value) { 2433 unsigned Shifted = 0; 2434 2435 if (Value == 0) 2436 return 0; 2437 2438 while (!(Value & 0xC0000000)) { 2439 Value = Value << 2; 2440 Shifted += 2; 2441 } 2442 2443 bool Carry = (Value & 0x00FFFFFF); 2444 Value = ((Value & 0xFF000000) >> 24) + Carry; 2445 2446 if (Value & 0x0000100) 2447 Value = Value & 0x000001FC; 2448 2449 if (Shifted > 24) 2450 Value = Value >> (Shifted - 24); 2451 else 2452 Value = Value << (24 - Shifted); 2453 2454 return Value; 2455 } 2456 2457 // The stack limit in the TCB is set to this many bytes above the actual 2458 // stack limit. 2459 static const uint64_t kSplitStackAvailable = 256; 2460 2461 // Adjust the function prologue to enable split stacks. This currently only 2462 // supports android and linux. 2463 // 2464 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but 2465 // must be well defined in order to allow for consistent implementations of the 2466 // __morestack helper function. The ABI is also not a normal ABI in that it 2467 // doesn't follow the normal calling conventions because this allows the 2468 // prologue of each function to be optimized further. 2469 // 2470 // Currently, the ABI looks like (when calling __morestack) 2471 // 2472 // * r4 holds the minimum stack size requested for this function call 2473 // * r5 holds the stack size of the arguments to the function 2474 // * the beginning of the function is 3 instructions after the call to 2475 // __morestack 2476 // 2477 // Implementations of __morestack should use r4 to allocate a new stack, r5 to 2478 // place the arguments on to the new stack, and the 3-instruction knowledge to 2479 // jump directly to the body of the function when working on the new stack. 2480 // 2481 // An old (and possibly no longer compatible) implementation of __morestack for 2482 // ARM can be found at [1]. 2483 // 2484 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S 2485 void ARMFrameLowering::adjustForSegmentedStacks( 2486 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const { 2487 unsigned Opcode; 2488 unsigned CFIIndex; 2489 const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>(); 2490 bool Thumb = ST->isThumb(); 2491 2492 // Sadly, this currently doesn't support varargs, platforms other than 2493 // android/linux. Note that thumb1/thumb2 are support for android/linux. 2494 if (MF.getFunction().isVarArg()) 2495 report_fatal_error("Segmented stacks do not support vararg functions."); 2496 if (!ST->isTargetAndroid() && !ST->isTargetLinux()) 2497 report_fatal_error("Segmented stacks not supported on this platform."); 2498 2499 MachineFrameInfo &MFI = MF.getFrameInfo(); 2500 MachineModuleInfo &MMI = MF.getMMI(); 2501 MCContext &Context = MMI.getContext(); 2502 const MCRegisterInfo *MRI = Context.getRegisterInfo(); 2503 const ARMBaseInstrInfo &TII = 2504 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2505 ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>(); 2506 DebugLoc DL; 2507 2508 uint64_t StackSize = MFI.getStackSize(); 2509 2510 // Do not generate a prologue for leaf functions with a stack of size zero. 2511 // For non-leaf functions we have to allow for the possibility that the 2512 // callis to a non-split function, as in PR37807. This function could also 2513 // take the address of a non-split function. When the linker tries to adjust 2514 // its non-existent prologue, it would fail with an error. Mark the object 2515 // file so that such failures are not errors. See this Go language bug-report 2516 // https://go-review.googlesource.com/c/go/+/148819/ 2517 if (StackSize == 0 && !MFI.hasTailCall()) { 2518 MF.getMMI().setHasNosplitStack(true); 2519 return; 2520 } 2521 2522 // Use R4 and R5 as scratch registers. 2523 // We save R4 and R5 before use and restore them before leaving the function. 2524 unsigned ScratchReg0 = ARM::R4; 2525 unsigned ScratchReg1 = ARM::R5; 2526 uint64_t AlignedStackSize; 2527 2528 MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock(); 2529 MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock(); 2530 MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock(); 2531 MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock(); 2532 MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock(); 2533 2534 // Grab everything that reaches PrologueMBB to update there liveness as well. 2535 SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion; 2536 SmallVector<MachineBasicBlock *, 2> WalkList; 2537 WalkList.push_back(&PrologueMBB); 2538 2539 do { 2540 MachineBasicBlock *CurMBB = WalkList.pop_back_val(); 2541 for (MachineBasicBlock *PredBB : CurMBB->predecessors()) { 2542 if (BeforePrologueRegion.insert(PredBB).second) 2543 WalkList.push_back(PredBB); 2544 } 2545 } while (!WalkList.empty()); 2546 2547 // The order in that list is important. 2548 // The blocks will all be inserted before PrologueMBB using that order. 2549 // Therefore the block that should appear first in the CFG should appear 2550 // first in the list. 2551 MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB, 2552 PostStackMBB}; 2553 2554 for (MachineBasicBlock *B : AddedBlocks) 2555 BeforePrologueRegion.insert(B); 2556 2557 for (const auto &LI : PrologueMBB.liveins()) { 2558 for (MachineBasicBlock *PredBB : BeforePrologueRegion) 2559 PredBB->addLiveIn(LI); 2560 } 2561 2562 // Remove the newly added blocks from the list, since we know 2563 // we do not have to do the following updates for them. 2564 for (MachineBasicBlock *B : AddedBlocks) { 2565 BeforePrologueRegion.erase(B); 2566 MF.insert(PrologueMBB.getIterator(), B); 2567 } 2568 2569 for (MachineBasicBlock *MBB : BeforePrologueRegion) { 2570 // Make sure the LiveIns are still sorted and unique. 2571 MBB->sortUniqueLiveIns(); 2572 // Replace the edges to PrologueMBB by edges to the sequences 2573 // we are about to add. 2574 MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]); 2575 } 2576 2577 // The required stack size that is aligned to ARM constant criterion. 2578 AlignedStackSize = alignToARMConstant(StackSize); 2579 2580 // When the frame size is less than 256 we just compare the stack 2581 // boundary directly to the value of the stack pointer, per gcc. 2582 bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable; 2583 2584 // We will use two of the callee save registers as scratch registers so we 2585 // need to save those registers onto the stack. 2586 // We will use SR0 to hold stack limit and SR1 to hold the stack size 2587 // requested and arguments for __morestack(). 2588 // SR0: Scratch Register #0 2589 // SR1: Scratch Register #1 2590 // push {SR0, SR1} 2591 if (Thumb) { 2592 BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH)) 2593 .add(predOps(ARMCC::AL)) 2594 .addReg(ScratchReg0) 2595 .addReg(ScratchReg1); 2596 } else { 2597 BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD)) 2598 .addReg(ARM::SP, RegState::Define) 2599 .addReg(ARM::SP) 2600 .add(predOps(ARMCC::AL)) 2601 .addReg(ScratchReg0) 2602 .addReg(ScratchReg1); 2603 } 2604 2605 // Emit the relevant DWARF information about the change in stack pointer as 2606 // well as where to find both r4 and r5 (the callee-save registers) 2607 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8)); 2608 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2609 .addCFIIndex(CFIIndex); 2610 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2611 nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4)); 2612 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2613 .addCFIIndex(CFIIndex); 2614 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2615 nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8)); 2616 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2617 .addCFIIndex(CFIIndex); 2618 2619 // mov SR1, sp 2620 if (Thumb) { 2621 BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1) 2622 .addReg(ARM::SP) 2623 .add(predOps(ARMCC::AL)); 2624 } else if (CompareStackPointer) { 2625 BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1) 2626 .addReg(ARM::SP) 2627 .add(predOps(ARMCC::AL)) 2628 .add(condCodeOp()); 2629 } 2630 2631 // sub SR1, sp, #StackSize 2632 if (!CompareStackPointer && Thumb) { 2633 BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1) 2634 .add(condCodeOp()) 2635 .addReg(ScratchReg1) 2636 .addImm(AlignedStackSize) 2637 .add(predOps(ARMCC::AL)); 2638 } else if (!CompareStackPointer) { 2639 BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1) 2640 .addReg(ARM::SP) 2641 .addImm(AlignedStackSize) 2642 .add(predOps(ARMCC::AL)) 2643 .add(condCodeOp()); 2644 } 2645 2646 if (Thumb && ST->isThumb1Only()) { 2647 unsigned PCLabelId = ARMFI->createPICLabelUId(); 2648 ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create( 2649 MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0); 2650 MachineConstantPool *MCP = MF.getConstantPool(); 2651 unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4)); 2652 2653 // ldr SR0, [pc, offset(STACK_LIMIT)] 2654 BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0) 2655 .addConstantPoolIndex(CPI) 2656 .add(predOps(ARMCC::AL)); 2657 2658 // ldr SR0, [SR0] 2659 BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0) 2660 .addReg(ScratchReg0) 2661 .addImm(0) 2662 .add(predOps(ARMCC::AL)); 2663 } else { 2664 // Get TLS base address from the coprocessor 2665 // mrc p15, #0, SR0, c13, c0, #3 2666 BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC), 2667 ScratchReg0) 2668 .addImm(15) 2669 .addImm(0) 2670 .addImm(13) 2671 .addImm(0) 2672 .addImm(3) 2673 .add(predOps(ARMCC::AL)); 2674 2675 // Use the last tls slot on android and a private field of the TCP on linux. 2676 assert(ST->isTargetAndroid() || ST->isTargetLinux()); 2677 unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1; 2678 2679 // Get the stack limit from the right offset 2680 // ldr SR0, [sr0, #4 * TlsOffset] 2681 BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12), 2682 ScratchReg0) 2683 .addReg(ScratchReg0) 2684 .addImm(4 * TlsOffset) 2685 .add(predOps(ARMCC::AL)); 2686 } 2687 2688 // Compare stack limit with stack size requested. 2689 // cmp SR0, SR1 2690 Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr; 2691 BuildMI(GetMBB, DL, TII.get(Opcode)) 2692 .addReg(ScratchReg0) 2693 .addReg(ScratchReg1) 2694 .add(predOps(ARMCC::AL)); 2695 2696 // This jump is taken if StackLimit < SP - stack required. 2697 Opcode = Thumb ? ARM::tBcc : ARM::Bcc; 2698 BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB) 2699 .addImm(ARMCC::LO) 2700 .addReg(ARM::CPSR); 2701 2702 2703 // Calling __morestack(StackSize, Size of stack arguments). 2704 // __morestack knows that the stack size requested is in SR0(r4) 2705 // and amount size of stack arguments is in SR1(r5). 2706 2707 // Pass first argument for the __morestack by Scratch Register #0. 2708 // The amount size of stack required 2709 if (Thumb) { 2710 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0) 2711 .add(condCodeOp()) 2712 .addImm(AlignedStackSize) 2713 .add(predOps(ARMCC::AL)); 2714 } else { 2715 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0) 2716 .addImm(AlignedStackSize) 2717 .add(predOps(ARMCC::AL)) 2718 .add(condCodeOp()); 2719 } 2720 // Pass second argument for the __morestack by Scratch Register #1. 2721 // The amount size of stack consumed to save function arguments. 2722 if (Thumb) { 2723 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1) 2724 .add(condCodeOp()) 2725 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 2726 .add(predOps(ARMCC::AL)); 2727 } else { 2728 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1) 2729 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize())) 2730 .add(predOps(ARMCC::AL)) 2731 .add(condCodeOp()); 2732 } 2733 2734 // push {lr} - Save return address of this function. 2735 if (Thumb) { 2736 BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH)) 2737 .add(predOps(ARMCC::AL)) 2738 .addReg(ARM::LR); 2739 } else { 2740 BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD)) 2741 .addReg(ARM::SP, RegState::Define) 2742 .addReg(ARM::SP) 2743 .add(predOps(ARMCC::AL)) 2744 .addReg(ARM::LR); 2745 } 2746 2747 // Emit the DWARF info about the change in stack as well as where to find the 2748 // previous link register 2749 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12)); 2750 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2751 .addCFIIndex(CFIIndex); 2752 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset( 2753 nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12)); 2754 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2755 .addCFIIndex(CFIIndex); 2756 2757 // Call __morestack(). 2758 if (Thumb) { 2759 BuildMI(AllocMBB, DL, TII.get(ARM::tBL)) 2760 .add(predOps(ARMCC::AL)) 2761 .addExternalSymbol("__morestack"); 2762 } else { 2763 BuildMI(AllocMBB, DL, TII.get(ARM::BL)) 2764 .addExternalSymbol("__morestack"); 2765 } 2766 2767 // pop {lr} - Restore return address of this original function. 2768 if (Thumb) { 2769 if (ST->isThumb1Only()) { 2770 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 2771 .add(predOps(ARMCC::AL)) 2772 .addReg(ScratchReg0); 2773 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR) 2774 .addReg(ScratchReg0) 2775 .add(predOps(ARMCC::AL)); 2776 } else { 2777 BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST)) 2778 .addReg(ARM::LR, RegState::Define) 2779 .addReg(ARM::SP, RegState::Define) 2780 .addReg(ARM::SP) 2781 .addImm(4) 2782 .add(predOps(ARMCC::AL)); 2783 } 2784 } else { 2785 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 2786 .addReg(ARM::SP, RegState::Define) 2787 .addReg(ARM::SP) 2788 .add(predOps(ARMCC::AL)) 2789 .addReg(ARM::LR); 2790 } 2791 2792 // Restore SR0 and SR1 in case of __morestack() was called. 2793 // __morestack() will skip PostStackMBB block so we need to restore 2794 // scratch registers from here. 2795 // pop {SR0, SR1} 2796 if (Thumb) { 2797 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP)) 2798 .add(predOps(ARMCC::AL)) 2799 .addReg(ScratchReg0) 2800 .addReg(ScratchReg1); 2801 } else { 2802 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD)) 2803 .addReg(ARM::SP, RegState::Define) 2804 .addReg(ARM::SP) 2805 .add(predOps(ARMCC::AL)) 2806 .addReg(ScratchReg0) 2807 .addReg(ScratchReg1); 2808 } 2809 2810 // Update the CFA offset now that we've popped 2811 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 2812 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2813 .addCFIIndex(CFIIndex); 2814 2815 // Return from this function. 2816 BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL)); 2817 2818 // Restore SR0 and SR1 in case of __morestack() was not called. 2819 // pop {SR0, SR1} 2820 if (Thumb) { 2821 BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP)) 2822 .add(predOps(ARMCC::AL)) 2823 .addReg(ScratchReg0) 2824 .addReg(ScratchReg1); 2825 } else { 2826 BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD)) 2827 .addReg(ARM::SP, RegState::Define) 2828 .addReg(ARM::SP) 2829 .add(predOps(ARMCC::AL)) 2830 .addReg(ScratchReg0) 2831 .addReg(ScratchReg1); 2832 } 2833 2834 // Update the CFA offset now that we've popped 2835 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 2836 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2837 .addCFIIndex(CFIIndex); 2838 2839 // Tell debuggers that r4 and r5 are now the same as they were in the 2840 // previous function, that they're the "Same Value". 2841 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 2842 nullptr, MRI->getDwarfRegNum(ScratchReg0, true))); 2843 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2844 .addCFIIndex(CFIIndex); 2845 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue( 2846 nullptr, MRI->getDwarfRegNum(ScratchReg1, true))); 2847 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) 2848 .addCFIIndex(CFIIndex); 2849 2850 // Organizing MBB lists 2851 PostStackMBB->addSuccessor(&PrologueMBB); 2852 2853 AllocMBB->addSuccessor(PostStackMBB); 2854 2855 GetMBB->addSuccessor(PostStackMBB); 2856 GetMBB->addSuccessor(AllocMBB); 2857 2858 McrMBB->addSuccessor(GetMBB); 2859 2860 PrevStackMBB->addSuccessor(McrMBB); 2861 2862 #ifdef EXPENSIVE_CHECKS 2863 MF.verify(); 2864 #endif 2865 } 2866