xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMFrameLowering.cpp (revision 0d8fe2373503aeac48492f28073049a8bfa4feb5)
1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the ARM implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ARMFrameLowering.h"
14 #include "ARMBaseInstrInfo.h"
15 #include "ARMBaseRegisterInfo.h"
16 #include "ARMConstantPoolValue.h"
17 #include "ARMMachineFunctionInfo.h"
18 #include "ARMSubtarget.h"
19 #include "MCTargetDesc/ARMAddressingModes.h"
20 #include "MCTargetDesc/ARMBaseInfo.h"
21 #include "Utils/ARMBaseInfo.h"
22 #include "llvm/ADT/BitVector.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineJumpTableInfo.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/RegisterScavenging.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetOpcodes.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/CallingConv.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/MC/MCContext.h"
46 #include "llvm/MC/MCDwarf.h"
47 #include "llvm/MC/MCInstrDesc.h"
48 #include "llvm/MC/MCRegisterInfo.h"
49 #include "llvm/Support/CodeGen.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Compiler.h"
52 #include "llvm/Support/Debug.h"
53 #include "llvm/Support/ErrorHandling.h"
54 #include "llvm/Support/MathExtras.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include "llvm/Target/TargetMachine.h"
57 #include "llvm/Target/TargetOptions.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cstddef>
61 #include <cstdint>
62 #include <iterator>
63 #include <utility>
64 #include <vector>
65 
66 #define DEBUG_TYPE "arm-frame-lowering"
67 
68 using namespace llvm;
69 
70 static cl::opt<bool>
71 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true),
72                      cl::desc("Align ARM NEON spills in prolog and epilog"));
73 
74 static MachineBasicBlock::iterator
75 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
76                         unsigned NumAlignedDPRCS2Regs);
77 
78 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti)
79     : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)),
80       STI(sti) {}
81 
82 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const {
83   // iOS always has a FP for backtracking, force other targets to keep their FP
84   // when doing FastISel. The emitted code is currently superior, and in cases
85   // like test-suite's lencod FastISel isn't quite correct when FP is eliminated.
86   return MF.getSubtarget<ARMSubtarget>().useFastISel();
87 }
88 
89 /// Returns true if the target can safely skip saving callee-saved registers
90 /// for noreturn nounwind functions.
91 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const {
92   assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) &&
93          MF.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
94          !MF.getFunction().hasFnAttribute(Attribute::UWTable));
95 
96   // Frame pointer and link register are not treated as normal CSR, thus we
97   // can always skip CSR saves for nonreturning functions.
98   return true;
99 }
100 
101 /// hasFP - Return true if the specified function should have a dedicated frame
102 /// pointer register.  This is true if the function has variable sized allocas
103 /// or if frame pointer elimination is disabled.
104 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const {
105   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
106   const MachineFrameInfo &MFI = MF.getFrameInfo();
107 
108   // ABI-required frame pointer.
109   if (MF.getTarget().Options.DisableFramePointerElim(MF))
110     return true;
111 
112   // Frame pointer required for use within this function.
113   return (RegInfo->needsStackRealignment(MF) ||
114           MFI.hasVarSizedObjects() ||
115           MFI.isFrameAddressTaken());
116 }
117 
118 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
119 /// not required, we reserve argument space for call sites in the function
120 /// immediately on entry to the current function.  This eliminates the need for
121 /// add/sub sp brackets around call sites.  Returns true if the call frame is
122 /// included as part of the stack frame.
123 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
124   const MachineFrameInfo &MFI = MF.getFrameInfo();
125   unsigned CFSize = MFI.getMaxCallFrameSize();
126   // It's not always a good idea to include the call frame as part of the
127   // stack frame. ARM (especially Thumb) has small immediate offset to
128   // address the stack frame. So a large call frame can cause poor codegen
129   // and may even makes it impossible to scavenge a register.
130   if (CFSize >= ((1 << 12) - 1) / 2)  // Half of imm12
131     return false;
132 
133   return !MFI.hasVarSizedObjects();
134 }
135 
136 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
137 /// call frame pseudos can be simplified.  Unlike most targets, having a FP
138 /// is not sufficient here since we still may reference some objects via SP
139 /// even when FP is available in Thumb2 mode.
140 bool
141 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
142   return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects();
143 }
144 
145 static void emitRegPlusImmediate(
146     bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
147     const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg,
148     unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags,
149     ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) {
150   if (isARM)
151     emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
152                             Pred, PredReg, TII, MIFlags);
153   else
154     emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
155                            Pred, PredReg, TII, MIFlags);
156 }
157 
158 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB,
159                          MachineBasicBlock::iterator &MBBI, const DebugLoc &dl,
160                          const ARMBaseInstrInfo &TII, int NumBytes,
161                          unsigned MIFlags = MachineInstr::NoFlags,
162                          ARMCC::CondCodes Pred = ARMCC::AL,
163                          unsigned PredReg = 0) {
164   emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes,
165                        MIFlags, Pred, PredReg);
166 }
167 
168 static int sizeOfSPAdjustment(const MachineInstr &MI) {
169   int RegSize;
170   switch (MI.getOpcode()) {
171   case ARM::VSTMDDB_UPD:
172     RegSize = 8;
173     break;
174   case ARM::STMDB_UPD:
175   case ARM::t2STMDB_UPD:
176     RegSize = 4;
177     break;
178   case ARM::t2STR_PRE:
179   case ARM::STR_PRE_IMM:
180     return 4;
181   default:
182     llvm_unreachable("Unknown push or pop like instruction");
183   }
184 
185   int count = 0;
186   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
187   // pred) so the list starts at 4.
188   for (int i = MI.getNumOperands() - 1; i >= 4; --i)
189     count += RegSize;
190   return count;
191 }
192 
193 static bool WindowsRequiresStackProbe(const MachineFunction &MF,
194                                       size_t StackSizeInBytes) {
195   const MachineFrameInfo &MFI = MF.getFrameInfo();
196   const Function &F = MF.getFunction();
197   unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096;
198   if (F.hasFnAttribute("stack-probe-size"))
199     F.getFnAttribute("stack-probe-size")
200         .getValueAsString()
201         .getAsInteger(0, StackProbeSize);
202   return (StackSizeInBytes >= StackProbeSize) &&
203          !F.hasFnAttribute("no-stack-arg-probe");
204 }
205 
206 namespace {
207 
208 struct StackAdjustingInsts {
209   struct InstInfo {
210     MachineBasicBlock::iterator I;
211     unsigned SPAdjust;
212     bool BeforeFPSet;
213   };
214 
215   SmallVector<InstInfo, 4> Insts;
216 
217   void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust,
218                bool BeforeFPSet = false) {
219     InstInfo Info = {I, SPAdjust, BeforeFPSet};
220     Insts.push_back(Info);
221   }
222 
223   void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) {
224     auto Info =
225         llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; });
226     assert(Info != Insts.end() && "invalid sp adjusting instruction");
227     Info->SPAdjust += ExtraBytes;
228   }
229 
230   void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl,
231                          const ARMBaseInstrInfo &TII, bool HasFP) {
232     MachineFunction &MF = *MBB.getParent();
233     unsigned CFAOffset = 0;
234     for (auto &Info : Insts) {
235       if (HasFP && !Info.BeforeFPSet)
236         return;
237 
238       CFAOffset += Info.SPAdjust;
239       unsigned CFIIndex = MF.addFrameInst(
240           MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset));
241       BuildMI(MBB, std::next(Info.I), dl,
242               TII.get(TargetOpcode::CFI_INSTRUCTION))
243               .addCFIIndex(CFIIndex)
244               .setMIFlags(MachineInstr::FrameSetup);
245     }
246   }
247 };
248 
249 } // end anonymous namespace
250 
251 /// Emit an instruction sequence that will align the address in
252 /// register Reg by zero-ing out the lower bits.  For versions of the
253 /// architecture that support Neon, this must be done in a single
254 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a
255 /// single instruction. That function only gets called when optimizing
256 /// spilling of D registers on a core with the Neon instruction set
257 /// present.
258 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI,
259                                      const TargetInstrInfo &TII,
260                                      MachineBasicBlock &MBB,
261                                      MachineBasicBlock::iterator MBBI,
262                                      const DebugLoc &DL, const unsigned Reg,
263                                      const Align Alignment,
264                                      const bool MustBeSingleInstruction) {
265   const ARMSubtarget &AST =
266       static_cast<const ARMSubtarget &>(MF.getSubtarget());
267   const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops();
268   const unsigned AlignMask = Alignment.value() - 1U;
269   const unsigned NrBitsToZero = Log2(Alignment);
270   assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported");
271   if (!AFI->isThumbFunction()) {
272     // if the BFC instruction is available, use that to zero the lower
273     // bits:
274     //   bfc Reg, #0, log2(Alignment)
275     // otherwise use BIC, if the mask to zero the required number of bits
276     // can be encoded in the bic immediate field
277     //   bic Reg, Reg, Alignment-1
278     // otherwise, emit
279     //   lsr Reg, Reg, log2(Alignment)
280     //   lsl Reg, Reg, log2(Alignment)
281     if (CanUseBFC) {
282       BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg)
283           .addReg(Reg, RegState::Kill)
284           .addImm(~AlignMask)
285           .add(predOps(ARMCC::AL));
286     } else if (AlignMask <= 255) {
287       BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg)
288           .addReg(Reg, RegState::Kill)
289           .addImm(AlignMask)
290           .add(predOps(ARMCC::AL))
291           .add(condCodeOp());
292     } else {
293       assert(!MustBeSingleInstruction &&
294              "Shouldn't call emitAligningInstructions demanding a single "
295              "instruction to be emitted for large stack alignment for a target "
296              "without BFC.");
297       BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
298           .addReg(Reg, RegState::Kill)
299           .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero))
300           .add(predOps(ARMCC::AL))
301           .add(condCodeOp());
302       BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
303           .addReg(Reg, RegState::Kill)
304           .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero))
305           .add(predOps(ARMCC::AL))
306           .add(condCodeOp());
307     }
308   } else {
309     // Since this is only reached for Thumb-2 targets, the BFC instruction
310     // should always be available.
311     assert(CanUseBFC);
312     BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg)
313         .addReg(Reg, RegState::Kill)
314         .addImm(~AlignMask)
315         .add(predOps(ARMCC::AL));
316   }
317 }
318 
319 /// We need the offset of the frame pointer relative to other MachineFrameInfo
320 /// offsets which are encoded relative to SP at function begin.
321 /// See also emitPrologue() for how the FP is set up.
322 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet
323 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use
324 /// this to produce a conservative estimate that we check in an assert() later.
325 static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI) {
326   // For Thumb1, push.w isn't available, so the first push will always push
327   // r7 and lr onto the stack first.
328   if (AFI.isThumb1OnlyFunction())
329     return -AFI.getArgRegsSaveSize() - (2 * 4);
330   // This is a conservative estimation: Assume the frame pointer being r7 and
331   // pc("r15") up to r8 getting spilled before (= 8 registers).
332   int FPCXTSaveSize = (STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0;
333   return - FPCXTSaveSize - AFI.getArgRegsSaveSize() - (8 * 4);
334 }
335 
336 void ARMFrameLowering::emitPrologue(MachineFunction &MF,
337                                     MachineBasicBlock &MBB) const {
338   MachineBasicBlock::iterator MBBI = MBB.begin();
339   MachineFrameInfo  &MFI = MF.getFrameInfo();
340   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
341   MachineModuleInfo &MMI = MF.getMMI();
342   MCContext &Context = MMI.getContext();
343   const TargetMachine &TM = MF.getTarget();
344   const MCRegisterInfo *MRI = Context.getRegisterInfo();
345   const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo();
346   const ARMBaseInstrInfo &TII = *STI.getInstrInfo();
347   assert(!AFI->isThumb1OnlyFunction() &&
348          "This emitPrologue does not support Thumb1!");
349   bool isARM = !AFI->isThumbFunction();
350   Align Alignment = STI.getFrameLowering()->getStackAlign();
351   unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
352   unsigned NumBytes = MFI.getStackSize();
353   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
354   int FPCXTSaveSize = 0;
355 
356   // Debug location must be unknown since the first debug location is used
357   // to determine the end of the prologue.
358   DebugLoc dl;
359 
360   Register FramePtr = RegInfo->getFrameRegister(MF);
361 
362   // Determine the sizes of each callee-save spill areas and record which frame
363   // belongs to which callee-save spill areas.
364   unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
365   int FramePtrSpillFI = 0;
366   int D8SpillFI = 0;
367 
368   // All calls are tail calls in GHC calling conv, and functions have no
369   // prologue/epilogue.
370   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
371     return;
372 
373   StackAdjustingInsts DefCFAOffsetCandidates;
374   bool HasFP = hasFP(MF);
375 
376   // Allocate the vararg register save area.
377   if (ArgRegsSaveSize) {
378     emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize,
379                  MachineInstr::FrameSetup);
380     DefCFAOffsetCandidates.addInst(std::prev(MBBI), ArgRegsSaveSize, true);
381   }
382 
383   if (!AFI->hasStackFrame() &&
384       (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) {
385     if (NumBytes - ArgRegsSaveSize != 0) {
386       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -(NumBytes - ArgRegsSaveSize),
387                    MachineInstr::FrameSetup);
388       DefCFAOffsetCandidates.addInst(std::prev(MBBI),
389                                      NumBytes - ArgRegsSaveSize, true);
390     }
391     DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
392     return;
393   }
394 
395   // Determine spill area sizes.
396   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
397     unsigned Reg = CSI[i].getReg();
398     int FI = CSI[i].getFrameIdx();
399     switch (Reg) {
400     case ARM::R8:
401     case ARM::R9:
402     case ARM::R10:
403     case ARM::R11:
404     case ARM::R12:
405       if (STI.splitFramePushPop(MF)) {
406         GPRCS2Size += 4;
407         break;
408       }
409       LLVM_FALLTHROUGH;
410     case ARM::R0:
411     case ARM::R1:
412     case ARM::R2:
413     case ARM::R3:
414     case ARM::R4:
415     case ARM::R5:
416     case ARM::R6:
417     case ARM::R7:
418     case ARM::LR:
419       if (Reg == FramePtr)
420         FramePtrSpillFI = FI;
421       GPRCS1Size += 4;
422       break;
423     case ARM::FPCXTNS:
424       FPCXTSaveSize = 4;
425       break;
426     default:
427       // This is a DPR. Exclude the aligned DPRCS2 spills.
428       if (Reg == ARM::D8)
429         D8SpillFI = FI;
430       if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
431         DPRCSSize += 8;
432     }
433   }
434 
435   // Move past FPCXT area.
436   MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push;
437   if (FPCXTSaveSize > 0) {
438     LastPush = MBBI++;
439     DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, true);
440   }
441 
442   // Move past area 1.
443   if (GPRCS1Size > 0) {
444     GPRCS1Push = LastPush = MBBI++;
445     DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true);
446   }
447 
448   // Determine starting offsets of spill areas.
449   unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize;
450   unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size;
451   unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size;
452   Align DPRAlign = DPRCSSize ? std::min(Align(8), Alignment) : Align(4);
453   unsigned DPRGapSize =
454       (GPRCS1Size + GPRCS2Size + FPCXTSaveSize + ArgRegsSaveSize) %
455       DPRAlign.value();
456 
457   unsigned DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize;
458   int FramePtrOffsetInPush = 0;
459   if (HasFP) {
460     int FPOffset = MFI.getObjectOffset(FramePtrSpillFI);
461     assert(getMaxFPOffset(STI, *AFI) <= FPOffset &&
462            "Max FP estimation is wrong");
463     FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize + FPCXTSaveSize;
464     AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) +
465                                 NumBytes);
466   }
467   AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
468   AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
469   AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
470 
471   // Move past area 2.
472   if (GPRCS2Size > 0) {
473     GPRCS2Push = LastPush = MBBI++;
474     DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
475   }
476 
477   // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our
478   // .cfi_offset operations will reflect that.
479   if (DPRGapSize) {
480     assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs");
481     if (LastPush != MBB.end() &&
482         tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize))
483       DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize);
484     else {
485       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize,
486                    MachineInstr::FrameSetup);
487       DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize);
488     }
489   }
490 
491   // Move past area 3.
492   if (DPRCSSize > 0) {
493     // Since vpush register list cannot have gaps, there may be multiple vpush
494     // instructions in the prologue.
495     while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) {
496       DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI));
497       LastPush = MBBI++;
498     }
499   }
500 
501   // Move past the aligned DPRCS2 area.
502   if (AFI->getNumAlignedDPRCS2Regs() > 0) {
503     MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs());
504     // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and
505     // leaves the stack pointer pointing to the DPRCS2 area.
506     //
507     // Adjust NumBytes to represent the stack slots below the DPRCS2 area.
508     NumBytes += MFI.getObjectOffset(D8SpillFI);
509   } else
510     NumBytes = DPRCSOffset;
511 
512   if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) {
513     uint32_t NumWords = NumBytes >> 2;
514 
515     if (NumWords < 65536)
516       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
517           .addImm(NumWords)
518           .setMIFlags(MachineInstr::FrameSetup)
519           .add(predOps(ARMCC::AL));
520     else
521       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R4)
522         .addImm(NumWords)
523         .setMIFlags(MachineInstr::FrameSetup);
524 
525     switch (TM.getCodeModel()) {
526     case CodeModel::Tiny:
527       llvm_unreachable("Tiny code model not available on ARM.");
528     case CodeModel::Small:
529     case CodeModel::Medium:
530     case CodeModel::Kernel:
531       BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL))
532           .add(predOps(ARMCC::AL))
533           .addExternalSymbol("__chkstk")
534           .addReg(ARM::R4, RegState::Implicit)
535           .setMIFlags(MachineInstr::FrameSetup);
536       break;
537     case CodeModel::Large:
538       BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12)
539         .addExternalSymbol("__chkstk")
540         .setMIFlags(MachineInstr::FrameSetup);
541 
542       BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr))
543           .add(predOps(ARMCC::AL))
544           .addReg(ARM::R12, RegState::Kill)
545           .addReg(ARM::R4, RegState::Implicit)
546           .setMIFlags(MachineInstr::FrameSetup);
547       break;
548     }
549 
550     BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP)
551         .addReg(ARM::SP, RegState::Kill)
552         .addReg(ARM::R4, RegState::Kill)
553         .setMIFlags(MachineInstr::FrameSetup)
554         .add(predOps(ARMCC::AL))
555         .add(condCodeOp());
556     NumBytes = 0;
557   }
558 
559   if (NumBytes) {
560     // Adjust SP after all the callee-save spills.
561     if (AFI->getNumAlignedDPRCS2Regs() == 0 &&
562         tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes))
563       DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes);
564     else {
565       emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
566                    MachineInstr::FrameSetup);
567       DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes);
568     }
569 
570     if (HasFP && isARM)
571       // Restore from fp only in ARM mode: e.g. sub sp, r7, #24
572       // Note it's not safe to do this in Thumb2 mode because it would have
573       // taken two instructions:
574       // mov sp, r7
575       // sub sp, #24
576       // If an interrupt is taken between the two instructions, then sp is in
577       // an inconsistent state (pointing to the middle of callee-saved area).
578       // The interrupt handler can end up clobbering the registers.
579       AFI->setShouldRestoreSPFromFP(true);
580   }
581 
582   // Set FP to point to the stack slot that contains the previous FP.
583   // For iOS, FP is R7, which has now been stored in spill area 1.
584   // Otherwise, if this is not iOS, all the callee-saved registers go
585   // into spill area 1, including the FP in R11.  In either case, it
586   // is in area one and the adjustment needs to take place just after
587   // that push.
588   if (HasFP) {
589     MachineBasicBlock::iterator AfterPush = std::next(GPRCS1Push);
590     unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push);
591     emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush,
592                          dl, TII, FramePtr, ARM::SP,
593                          PushSize + FramePtrOffsetInPush,
594                          MachineInstr::FrameSetup);
595     if (FramePtrOffsetInPush + PushSize != 0) {
596       unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
597           nullptr, MRI->getDwarfRegNum(FramePtr, true),
598           FPCXTSaveSize + ArgRegsSaveSize - FramePtrOffsetInPush));
599       BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
600           .addCFIIndex(CFIIndex)
601           .setMIFlags(MachineInstr::FrameSetup);
602     } else {
603       unsigned CFIIndex =
604           MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(
605               nullptr, MRI->getDwarfRegNum(FramePtr, true)));
606       BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
607           .addCFIIndex(CFIIndex)
608           .setMIFlags(MachineInstr::FrameSetup);
609     }
610   }
611 
612   // Now that the prologue's actual instructions are finalised, we can insert
613   // the necessary DWARF cf instructions to describe the situation. Start by
614   // recording where each register ended up:
615   if (GPRCS1Size > 0) {
616     MachineBasicBlock::iterator Pos = std::next(GPRCS1Push);
617     int CFIIndex;
618     for (const auto &Entry : CSI) {
619       unsigned Reg = Entry.getReg();
620       int FI = Entry.getFrameIdx();
621       switch (Reg) {
622       case ARM::R8:
623       case ARM::R9:
624       case ARM::R10:
625       case ARM::R11:
626       case ARM::R12:
627         if (STI.splitFramePushPop(MF))
628           break;
629         LLVM_FALLTHROUGH;
630       case ARM::R0:
631       case ARM::R1:
632       case ARM::R2:
633       case ARM::R3:
634       case ARM::R4:
635       case ARM::R5:
636       case ARM::R6:
637       case ARM::R7:
638       case ARM::LR:
639         CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
640             nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI)));
641         BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
642             .addCFIIndex(CFIIndex)
643             .setMIFlags(MachineInstr::FrameSetup);
644         break;
645       }
646     }
647   }
648 
649   if (GPRCS2Size > 0) {
650     MachineBasicBlock::iterator Pos = std::next(GPRCS2Push);
651     for (const auto &Entry : CSI) {
652       unsigned Reg = Entry.getReg();
653       int FI = Entry.getFrameIdx();
654       switch (Reg) {
655       case ARM::R8:
656       case ARM::R9:
657       case ARM::R10:
658       case ARM::R11:
659       case ARM::R12:
660         if (STI.splitFramePushPop(MF)) {
661           unsigned DwarfReg =  MRI->getDwarfRegNum(Reg, true);
662           unsigned Offset = MFI.getObjectOffset(FI);
663           unsigned CFIIndex = MF.addFrameInst(
664               MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
665           BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
666               .addCFIIndex(CFIIndex)
667               .setMIFlags(MachineInstr::FrameSetup);
668         }
669         break;
670       }
671     }
672   }
673 
674   if (DPRCSSize > 0) {
675     // Since vpush register list cannot have gaps, there may be multiple vpush
676     // instructions in the prologue.
677     MachineBasicBlock::iterator Pos = std::next(LastPush);
678     for (const auto &Entry : CSI) {
679       unsigned Reg = Entry.getReg();
680       int FI = Entry.getFrameIdx();
681       if ((Reg >= ARM::D0 && Reg <= ARM::D31) &&
682           (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) {
683         unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
684         unsigned Offset = MFI.getObjectOffset(FI);
685         unsigned CFIIndex = MF.addFrameInst(
686             MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
687         BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
688             .addCFIIndex(CFIIndex)
689             .setMIFlags(MachineInstr::FrameSetup);
690       }
691     }
692   }
693 
694   // Now we can emit descriptions of where the canonical frame address was
695   // throughout the process. If we have a frame pointer, it takes over the job
696   // half-way through, so only the first few .cfi_def_cfa_offset instructions
697   // actually get emitted.
698   DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
699 
700   if (STI.isTargetELF() && hasFP(MF))
701     MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() -
702                             AFI->getFramePtrSpillOffset());
703 
704   AFI->setFPCXTSaveAreaSize(FPCXTSaveSize);
705   AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
706   AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
707   AFI->setDPRCalleeSavedGapSize(DPRGapSize);
708   AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
709 
710   // If we need dynamic stack realignment, do it here. Be paranoid and make
711   // sure if we also have VLAs, we have a base pointer for frame access.
712   // If aligned NEON registers were spilled, the stack has already been
713   // realigned.
714   if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->needsStackRealignment(MF)) {
715     Align MaxAlign = MFI.getMaxAlign();
716     assert(!AFI->isThumb1OnlyFunction());
717     if (!AFI->isThumbFunction()) {
718       emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign,
719                                false);
720     } else {
721       // We cannot use sp as source/dest register here, thus we're using r4 to
722       // perform the calculations. We're emitting the following sequence:
723       // mov r4, sp
724       // -- use emitAligningInstructions to produce best sequence to zero
725       // -- out lower bits in r4
726       // mov sp, r4
727       // FIXME: It will be better just to find spare register here.
728       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4)
729           .addReg(ARM::SP, RegState::Kill)
730           .add(predOps(ARMCC::AL));
731       emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign,
732                                false);
733       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
734           .addReg(ARM::R4, RegState::Kill)
735           .add(predOps(ARMCC::AL));
736     }
737 
738     AFI->setShouldRestoreSPFromFP(true);
739   }
740 
741   // If we need a base pointer, set it up here. It's whatever the value
742   // of the stack pointer is at this point. Any variable size objects
743   // will be allocated after this, so we can still use the base pointer
744   // to reference locals.
745   // FIXME: Clarify FrameSetup flags here.
746   if (RegInfo->hasBasePointer(MF)) {
747     if (isARM)
748       BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister())
749           .addReg(ARM::SP)
750           .add(predOps(ARMCC::AL))
751           .add(condCodeOp());
752     else
753       BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister())
754           .addReg(ARM::SP)
755           .add(predOps(ARMCC::AL));
756   }
757 
758   // If the frame has variable sized objects then the epilogue must restore
759   // the sp from fp. We can assume there's an FP here since hasFP already
760   // checks for hasVarSizedObjects.
761   if (MFI.hasVarSizedObjects())
762     AFI->setShouldRestoreSPFromFP(true);
763 }
764 
765 void ARMFrameLowering::emitEpilogue(MachineFunction &MF,
766                                     MachineBasicBlock &MBB) const {
767   MachineFrameInfo &MFI = MF.getFrameInfo();
768   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
769   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
770   const ARMBaseInstrInfo &TII =
771       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
772   assert(!AFI->isThumb1OnlyFunction() &&
773          "This emitEpilogue does not support Thumb1!");
774   bool isARM = !AFI->isThumbFunction();
775 
776   unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
777   int NumBytes = (int)MFI.getStackSize();
778   Register FramePtr = RegInfo->getFrameRegister(MF);
779 
780   // All calls are tail calls in GHC calling conv, and functions have no
781   // prologue/epilogue.
782   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
783     return;
784 
785   // First put ourselves on the first (from top) terminator instructions.
786   MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
787   DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
788 
789   if (!AFI->hasStackFrame()) {
790     if (NumBytes - ArgRegsSaveSize != 0)
791       emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes - ArgRegsSaveSize,
792                    MachineInstr::FrameDestroy);
793   } else {
794     // Unwind MBBI to point to first LDR / VLDRD.
795     if (MBBI != MBB.begin()) {
796       do {
797         --MBBI;
798       } while (MBBI != MBB.begin() &&
799                MBBI->getFlag(MachineInstr::FrameDestroy));
800       if (!MBBI->getFlag(MachineInstr::FrameDestroy))
801         ++MBBI;
802     }
803 
804     // Move SP to start of FP callee save spill area.
805     NumBytes -= (ArgRegsSaveSize +
806                  AFI->getFPCXTSaveAreaSize() +
807                  AFI->getGPRCalleeSavedArea1Size() +
808                  AFI->getGPRCalleeSavedArea2Size() +
809                  AFI->getDPRCalleeSavedGapSize() +
810                  AFI->getDPRCalleeSavedAreaSize());
811 
812     // Reset SP based on frame pointer only if the stack frame extends beyond
813     // frame pointer stack slot or target is ELF and the function has FP.
814     if (AFI->shouldRestoreSPFromFP()) {
815       NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
816       if (NumBytes) {
817         if (isARM)
818           emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes,
819                                   ARMCC::AL, 0, TII,
820                                   MachineInstr::FrameDestroy);
821         else {
822           // It's not possible to restore SP from FP in a single instruction.
823           // For iOS, this looks like:
824           // mov sp, r7
825           // sub sp, #24
826           // This is bad, if an interrupt is taken after the mov, sp is in an
827           // inconsistent state.
828           // Use the first callee-saved register as a scratch register.
829           assert(!MFI.getPristineRegs(MF).test(ARM::R4) &&
830                  "No scratch register to restore SP from FP!");
831           emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes,
832                                  ARMCC::AL, 0, TII, MachineInstr::FrameDestroy);
833           BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
834               .addReg(ARM::R4)
835               .add(predOps(ARMCC::AL))
836               .setMIFlag(MachineInstr::FrameDestroy);
837         }
838       } else {
839         // Thumb2 or ARM.
840         if (isARM)
841           BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP)
842               .addReg(FramePtr)
843               .add(predOps(ARMCC::AL))
844               .add(condCodeOp())
845               .setMIFlag(MachineInstr::FrameDestroy);
846         else
847           BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
848               .addReg(FramePtr)
849               .add(predOps(ARMCC::AL))
850               .setMIFlag(MachineInstr::FrameDestroy);
851       }
852     } else if (NumBytes &&
853                !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes))
854       emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes,
855                    MachineInstr::FrameDestroy);
856 
857     // Increment past our save areas.
858     if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) {
859       MBBI++;
860       // Since vpop register list cannot have gaps, there may be multiple vpop
861       // instructions in the epilogue.
862       while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD)
863         MBBI++;
864     }
865     if (AFI->getDPRCalleeSavedGapSize()) {
866       assert(AFI->getDPRCalleeSavedGapSize() == 4 &&
867              "unexpected DPR alignment gap");
868       emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(),
869                    MachineInstr::FrameDestroy);
870     }
871 
872     if (AFI->getGPRCalleeSavedArea2Size()) MBBI++;
873     if (AFI->getGPRCalleeSavedArea1Size()) MBBI++;
874     if (AFI->getFPCXTSaveAreaSize()) MBBI++;
875   }
876 
877   if (ArgRegsSaveSize)
878     emitSPUpdate(isARM, MBB, MBBI, dl, TII, ArgRegsSaveSize,
879                  MachineInstr::FrameDestroy);
880 }
881 
882 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
883 /// debug info.  It's the same as what we use for resolving the code-gen
884 /// references for now.  FIXME: This can go wrong when references are
885 /// SP-relative and simple call frames aren't used.
886 StackOffset ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF,
887                                                      int FI,
888                                                      Register &FrameReg) const {
889   return StackOffset::getFixed(ResolveFrameIndexReference(MF, FI, FrameReg, 0));
890 }
891 
892 int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF,
893                                                  int FI, Register &FrameReg,
894                                                  int SPAdj) const {
895   const MachineFrameInfo &MFI = MF.getFrameInfo();
896   const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
897       MF.getSubtarget().getRegisterInfo());
898   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
899   int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize();
900   int FPOffset = Offset - AFI->getFramePtrSpillOffset();
901   bool isFixed = MFI.isFixedObjectIndex(FI);
902 
903   FrameReg = ARM::SP;
904   Offset += SPAdj;
905 
906   // SP can move around if there are allocas.  We may also lose track of SP
907   // when emergency spilling inside a non-reserved call frame setup.
908   bool hasMovingSP = !hasReservedCallFrame(MF);
909 
910   // When dynamically realigning the stack, use the frame pointer for
911   // parameters, and the stack/base pointer for locals.
912   if (RegInfo->needsStackRealignment(MF)) {
913     assert(hasFP(MF) && "dynamic stack realignment without a FP!");
914     if (isFixed) {
915       FrameReg = RegInfo->getFrameRegister(MF);
916       Offset = FPOffset;
917     } else if (hasMovingSP) {
918       assert(RegInfo->hasBasePointer(MF) &&
919              "VLAs and dynamic stack alignment, but missing base pointer!");
920       FrameReg = RegInfo->getBaseRegister();
921       Offset -= SPAdj;
922     }
923     return Offset;
924   }
925 
926   // If there is a frame pointer, use it when we can.
927   if (hasFP(MF) && AFI->hasStackFrame()) {
928     // Use frame pointer to reference fixed objects. Use it for locals if
929     // there are VLAs (and thus the SP isn't reliable as a base).
930     if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) {
931       FrameReg = RegInfo->getFrameRegister(MF);
932       return FPOffset;
933     } else if (hasMovingSP) {
934       assert(RegInfo->hasBasePointer(MF) && "missing base pointer!");
935       if (AFI->isThumb2Function()) {
936         // Try to use the frame pointer if we can, else use the base pointer
937         // since it's available. This is handy for the emergency spill slot, in
938         // particular.
939         if (FPOffset >= -255 && FPOffset < 0) {
940           FrameReg = RegInfo->getFrameRegister(MF);
941           return FPOffset;
942         }
943       }
944     } else if (AFI->isThumbFunction()) {
945       // Prefer SP to base pointer, if the offset is suitably aligned and in
946       // range as the effective range of the immediate offset is bigger when
947       // basing off SP.
948       // Use  add <rd>, sp, #<imm8>
949       //      ldr <rd>, [sp, #<imm8>]
950       if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020)
951         return Offset;
952       // In Thumb2 mode, the negative offset is very limited. Try to avoid
953       // out of range references. ldr <rt>,[<rn>, #-<imm8>]
954       if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) {
955         FrameReg = RegInfo->getFrameRegister(MF);
956         return FPOffset;
957       }
958     } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) {
959       // Otherwise, use SP or FP, whichever is closer to the stack slot.
960       FrameReg = RegInfo->getFrameRegister(MF);
961       return FPOffset;
962     }
963   }
964   // Use the base pointer if we have one.
965   // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper?
966   // That can happen if we forced a base pointer for a large call frame.
967   if (RegInfo->hasBasePointer(MF)) {
968     FrameReg = RegInfo->getBaseRegister();
969     Offset -= SPAdj;
970   }
971   return Offset;
972 }
973 
974 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB,
975                                     MachineBasicBlock::iterator MI,
976                                     ArrayRef<CalleeSavedInfo> CSI,
977                                     unsigned StmOpc, unsigned StrOpc,
978                                     bool NoGap, bool (*Func)(unsigned, bool),
979                                     unsigned NumAlignedDPRCS2Regs,
980                                     unsigned MIFlags) const {
981   MachineFunction &MF = *MBB.getParent();
982   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
983   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
984 
985   DebugLoc DL;
986 
987   using RegAndKill = std::pair<unsigned, bool>;
988 
989   SmallVector<RegAndKill, 4> Regs;
990   unsigned i = CSI.size();
991   while (i != 0) {
992     unsigned LastReg = 0;
993     for (; i != 0; --i) {
994       unsigned Reg = CSI[i-1].getReg();
995       if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
996 
997       // D-registers in the aligned area DPRCS2 are NOT spilled here.
998       if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
999         continue;
1000 
1001       const MachineRegisterInfo &MRI = MF.getRegInfo();
1002       bool isLiveIn = MRI.isLiveIn(Reg);
1003       if (!isLiveIn && !MRI.isReserved(Reg))
1004         MBB.addLiveIn(Reg);
1005       // If NoGap is true, push consecutive registers and then leave the rest
1006       // for other instructions. e.g.
1007       // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11}
1008       if (NoGap && LastReg && LastReg != Reg-1)
1009         break;
1010       LastReg = Reg;
1011       // Do not set a kill flag on values that are also marked as live-in. This
1012       // happens with the @llvm-returnaddress intrinsic and with arguments
1013       // passed in callee saved registers.
1014       // Omitting the kill flags is conservatively correct even if the live-in
1015       // is not used after all.
1016       Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn));
1017     }
1018 
1019     if (Regs.empty())
1020       continue;
1021 
1022     llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) {
1023       return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first);
1024     });
1025 
1026     if (Regs.size() > 1 || StrOpc== 0) {
1027       MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP)
1028                                     .addReg(ARM::SP)
1029                                     .setMIFlags(MIFlags)
1030                                     .add(predOps(ARMCC::AL));
1031       for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1032         MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second));
1033     } else if (Regs.size() == 1) {
1034       BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP)
1035           .addReg(Regs[0].first, getKillRegState(Regs[0].second))
1036           .addReg(ARM::SP)
1037           .setMIFlags(MIFlags)
1038           .addImm(-4)
1039           .add(predOps(ARMCC::AL));
1040     }
1041     Regs.clear();
1042 
1043     // Put any subsequent vpush instructions before this one: they will refer to
1044     // higher register numbers so need to be pushed first in order to preserve
1045     // monotonicity.
1046     if (MI != MBB.begin())
1047       --MI;
1048   }
1049 }
1050 
1051 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB,
1052                                    MachineBasicBlock::iterator MI,
1053                                    MutableArrayRef<CalleeSavedInfo> CSI,
1054                                    unsigned LdmOpc, unsigned LdrOpc,
1055                                    bool isVarArg, bool NoGap,
1056                                    bool (*Func)(unsigned, bool),
1057                                    unsigned NumAlignedDPRCS2Regs) const {
1058   MachineFunction &MF = *MBB.getParent();
1059   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1060   const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1061   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1062   DebugLoc DL;
1063   bool isTailCall = false;
1064   bool isInterrupt = false;
1065   bool isTrap = false;
1066   bool isCmseEntry = false;
1067   if (MBB.end() != MI) {
1068     DL = MI->getDebugLoc();
1069     unsigned RetOpcode = MI->getOpcode();
1070     isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri);
1071     isInterrupt =
1072         RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR;
1073     isTrap =
1074         RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl ||
1075         RetOpcode == ARM::tTRAP;
1076     isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET);
1077   }
1078 
1079   SmallVector<unsigned, 4> Regs;
1080   unsigned i = CSI.size();
1081   while (i != 0) {
1082     unsigned LastReg = 0;
1083     bool DeleteRet = false;
1084     for (; i != 0; --i) {
1085       CalleeSavedInfo &Info = CSI[i-1];
1086       unsigned Reg = Info.getReg();
1087       if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
1088 
1089       // The aligned reloads from area DPRCS2 are not inserted here.
1090       if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
1091         continue;
1092 
1093       if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt &&
1094           !isCmseEntry && !isTrap && STI.hasV5TOps()) {
1095         if (MBB.succ_empty()) {
1096           Reg = ARM::PC;
1097           // Fold the return instruction into the LDM.
1098           DeleteRet = true;
1099           LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET;
1100           // We 'restore' LR into PC so it is not live out of the return block:
1101           // Clear Restored bit.
1102           Info.setRestored(false);
1103         } else
1104           LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
1105       }
1106 
1107       // If NoGap is true, pop consecutive registers and then leave the rest
1108       // for other instructions. e.g.
1109       // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11}
1110       if (NoGap && LastReg && LastReg != Reg-1)
1111         break;
1112 
1113       LastReg = Reg;
1114       Regs.push_back(Reg);
1115     }
1116 
1117     if (Regs.empty())
1118       continue;
1119 
1120     llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) {
1121       return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS);
1122     });
1123 
1124     if (Regs.size() > 1 || LdrOpc == 0) {
1125       MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP)
1126                                     .addReg(ARM::SP)
1127                                     .add(predOps(ARMCC::AL))
1128                                     .setMIFlags(MachineInstr::FrameDestroy);
1129       for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1130         MIB.addReg(Regs[i], getDefRegState(true));
1131       if (DeleteRet) {
1132         if (MI != MBB.end()) {
1133           MIB.copyImplicitOps(*MI);
1134           MI->eraseFromParent();
1135         }
1136       }
1137       MI = MIB;
1138     } else if (Regs.size() == 1) {
1139       // If we adjusted the reg to PC from LR above, switch it back here. We
1140       // only do that for LDM.
1141       if (Regs[0] == ARM::PC)
1142         Regs[0] = ARM::LR;
1143       MachineInstrBuilder MIB =
1144         BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0])
1145           .addReg(ARM::SP, RegState::Define)
1146           .addReg(ARM::SP)
1147           .setMIFlags(MachineInstr::FrameDestroy);
1148       // ARM mode needs an extra reg0 here due to addrmode2. Will go away once
1149       // that refactoring is complete (eventually).
1150       if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) {
1151         MIB.addReg(0);
1152         MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift));
1153       } else
1154         MIB.addImm(4);
1155       MIB.add(predOps(ARMCC::AL));
1156     }
1157     Regs.clear();
1158 
1159     // Put any subsequent vpop instructions after this one: they will refer to
1160     // higher register numbers so need to be popped afterwards.
1161     if (MI != MBB.end())
1162       ++MI;
1163   }
1164 }
1165 
1166 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers
1167 /// starting from d8.  Also insert stack realignment code and leave the stack
1168 /// pointer pointing to the d8 spill slot.
1169 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB,
1170                                     MachineBasicBlock::iterator MI,
1171                                     unsigned NumAlignedDPRCS2Regs,
1172                                     ArrayRef<CalleeSavedInfo> CSI,
1173                                     const TargetRegisterInfo *TRI) {
1174   MachineFunction &MF = *MBB.getParent();
1175   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1176   DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1177   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1178   MachineFrameInfo &MFI = MF.getFrameInfo();
1179 
1180   // Mark the D-register spill slots as properly aligned.  Since MFI computes
1181   // stack slot layout backwards, this can actually mean that the d-reg stack
1182   // slot offsets can be wrong. The offset for d8 will always be correct.
1183   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1184     unsigned DNum = CSI[i].getReg() - ARM::D8;
1185     if (DNum > NumAlignedDPRCS2Regs - 1)
1186       continue;
1187     int FI = CSI[i].getFrameIdx();
1188     // The even-numbered registers will be 16-byte aligned, the odd-numbered
1189     // registers will be 8-byte aligned.
1190     MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16));
1191 
1192     // The stack slot for D8 needs to be maximally aligned because this is
1193     // actually the point where we align the stack pointer.  MachineFrameInfo
1194     // computes all offsets relative to the incoming stack pointer which is a
1195     // bit weird when realigning the stack.  Any extra padding for this
1196     // over-alignment is not realized because the code inserted below adjusts
1197     // the stack pointer by numregs * 8 before aligning the stack pointer.
1198     if (DNum == 0)
1199       MFI.setObjectAlignment(FI, MFI.getMaxAlign());
1200   }
1201 
1202   // Move the stack pointer to the d8 spill slot, and align it at the same
1203   // time. Leave the stack slot address in the scratch register r4.
1204   //
1205   //   sub r4, sp, #numregs * 8
1206   //   bic r4, r4, #align - 1
1207   //   mov sp, r4
1208   //
1209   bool isThumb = AFI->isThumbFunction();
1210   assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1211   AFI->setShouldRestoreSPFromFP(true);
1212 
1213   // sub r4, sp, #numregs * 8
1214   // The immediate is <= 64, so it doesn't need any special encoding.
1215   unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri;
1216   BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1217       .addReg(ARM::SP)
1218       .addImm(8 * NumAlignedDPRCS2Regs)
1219       .add(predOps(ARMCC::AL))
1220       .add(condCodeOp());
1221 
1222   Align MaxAlign = MF.getFrameInfo().getMaxAlign();
1223   // We must set parameter MustBeSingleInstruction to true, since
1224   // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform
1225   // stack alignment.  Luckily, this can always be done since all ARM
1226   // architecture versions that support Neon also support the BFC
1227   // instruction.
1228   emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true);
1229 
1230   // mov sp, r4
1231   // The stack pointer must be adjusted before spilling anything, otherwise
1232   // the stack slots could be clobbered by an interrupt handler.
1233   // Leave r4 live, it is used below.
1234   Opc = isThumb ? ARM::tMOVr : ARM::MOVr;
1235   MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP)
1236                                 .addReg(ARM::R4)
1237                                 .add(predOps(ARMCC::AL));
1238   if (!isThumb)
1239     MIB.add(condCodeOp());
1240 
1241   // Now spill NumAlignedDPRCS2Regs registers starting from d8.
1242   // r4 holds the stack slot address.
1243   unsigned NextReg = ARM::D8;
1244 
1245   // 16-byte aligned vst1.64 with 4 d-regs and address writeback.
1246   // The writeback is only needed when emitting two vst1.64 instructions.
1247   if (NumAlignedDPRCS2Regs >= 6) {
1248     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1249                                                &ARM::QQPRRegClass);
1250     MBB.addLiveIn(SupReg);
1251     BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4)
1252         .addReg(ARM::R4, RegState::Kill)
1253         .addImm(16)
1254         .addReg(NextReg)
1255         .addReg(SupReg, RegState::ImplicitKill)
1256         .add(predOps(ARMCC::AL));
1257     NextReg += 4;
1258     NumAlignedDPRCS2Regs -= 4;
1259   }
1260 
1261   // We won't modify r4 beyond this point.  It currently points to the next
1262   // register to be spilled.
1263   unsigned R4BaseReg = NextReg;
1264 
1265   // 16-byte aligned vst1.64 with 4 d-regs, no writeback.
1266   if (NumAlignedDPRCS2Regs >= 4) {
1267     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1268                                                &ARM::QQPRRegClass);
1269     MBB.addLiveIn(SupReg);
1270     BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q))
1271         .addReg(ARM::R4)
1272         .addImm(16)
1273         .addReg(NextReg)
1274         .addReg(SupReg, RegState::ImplicitKill)
1275         .add(predOps(ARMCC::AL));
1276     NextReg += 4;
1277     NumAlignedDPRCS2Regs -= 4;
1278   }
1279 
1280   // 16-byte aligned vst1.64 with 2 d-regs.
1281   if (NumAlignedDPRCS2Regs >= 2) {
1282     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1283                                                &ARM::QPRRegClass);
1284     MBB.addLiveIn(SupReg);
1285     BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64))
1286         .addReg(ARM::R4)
1287         .addImm(16)
1288         .addReg(SupReg)
1289         .add(predOps(ARMCC::AL));
1290     NextReg += 2;
1291     NumAlignedDPRCS2Regs -= 2;
1292   }
1293 
1294   // Finally, use a vanilla vstr.64 for the odd last register.
1295   if (NumAlignedDPRCS2Regs) {
1296     MBB.addLiveIn(NextReg);
1297     // vstr.64 uses addrmode5 which has an offset scale of 4.
1298     BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD))
1299         .addReg(NextReg)
1300         .addReg(ARM::R4)
1301         .addImm((NextReg - R4BaseReg) * 2)
1302         .add(predOps(ARMCC::AL));
1303   }
1304 
1305   // The last spill instruction inserted should kill the scratch register r4.
1306   std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1307 }
1308 
1309 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an
1310 /// iterator to the following instruction.
1311 static MachineBasicBlock::iterator
1312 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
1313                         unsigned NumAlignedDPRCS2Regs) {
1314   //   sub r4, sp, #numregs * 8
1315   //   bic r4, r4, #align - 1
1316   //   mov sp, r4
1317   ++MI; ++MI; ++MI;
1318   assert(MI->mayStore() && "Expecting spill instruction");
1319 
1320   // These switches all fall through.
1321   switch(NumAlignedDPRCS2Regs) {
1322   case 7:
1323     ++MI;
1324     assert(MI->mayStore() && "Expecting spill instruction");
1325     LLVM_FALLTHROUGH;
1326   default:
1327     ++MI;
1328     assert(MI->mayStore() && "Expecting spill instruction");
1329     LLVM_FALLTHROUGH;
1330   case 1:
1331   case 2:
1332   case 4:
1333     assert(MI->killsRegister(ARM::R4) && "Missed kill flag");
1334     ++MI;
1335   }
1336   return MI;
1337 }
1338 
1339 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers
1340 /// starting from d8.  These instructions are assumed to execute while the
1341 /// stack is still aligned, unlike the code inserted by emitPopInst.
1342 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB,
1343                                       MachineBasicBlock::iterator MI,
1344                                       unsigned NumAlignedDPRCS2Regs,
1345                                       ArrayRef<CalleeSavedInfo> CSI,
1346                                       const TargetRegisterInfo *TRI) {
1347   MachineFunction &MF = *MBB.getParent();
1348   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1349   DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1350   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1351 
1352   // Find the frame index assigned to d8.
1353   int D8SpillFI = 0;
1354   for (unsigned i = 0, e = CSI.size(); i != e; ++i)
1355     if (CSI[i].getReg() == ARM::D8) {
1356       D8SpillFI = CSI[i].getFrameIdx();
1357       break;
1358     }
1359 
1360   // Materialize the address of the d8 spill slot into the scratch register r4.
1361   // This can be fairly complicated if the stack frame is large, so just use
1362   // the normal frame index elimination mechanism to do it.  This code runs as
1363   // the initial part of the epilog where the stack and base pointers haven't
1364   // been changed yet.
1365   bool isThumb = AFI->isThumbFunction();
1366   assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1367 
1368   unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
1369   BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1370       .addFrameIndex(D8SpillFI)
1371       .addImm(0)
1372       .add(predOps(ARMCC::AL))
1373       .add(condCodeOp());
1374 
1375   // Now restore NumAlignedDPRCS2Regs registers starting from d8.
1376   unsigned NextReg = ARM::D8;
1377 
1378   // 16-byte aligned vld1.64 with 4 d-regs and writeback.
1379   if (NumAlignedDPRCS2Regs >= 6) {
1380     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1381                                                &ARM::QQPRRegClass);
1382     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg)
1383         .addReg(ARM::R4, RegState::Define)
1384         .addReg(ARM::R4, RegState::Kill)
1385         .addImm(16)
1386         .addReg(SupReg, RegState::ImplicitDefine)
1387         .add(predOps(ARMCC::AL));
1388     NextReg += 4;
1389     NumAlignedDPRCS2Regs -= 4;
1390   }
1391 
1392   // We won't modify r4 beyond this point.  It currently points to the next
1393   // register to be spilled.
1394   unsigned R4BaseReg = NextReg;
1395 
1396   // 16-byte aligned vld1.64 with 4 d-regs, no writeback.
1397   if (NumAlignedDPRCS2Regs >= 4) {
1398     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1399                                                &ARM::QQPRRegClass);
1400     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg)
1401         .addReg(ARM::R4)
1402         .addImm(16)
1403         .addReg(SupReg, RegState::ImplicitDefine)
1404         .add(predOps(ARMCC::AL));
1405     NextReg += 4;
1406     NumAlignedDPRCS2Regs -= 4;
1407   }
1408 
1409   // 16-byte aligned vld1.64 with 2 d-regs.
1410   if (NumAlignedDPRCS2Regs >= 2) {
1411     unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1412                                                &ARM::QPRRegClass);
1413     BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg)
1414         .addReg(ARM::R4)
1415         .addImm(16)
1416         .add(predOps(ARMCC::AL));
1417     NextReg += 2;
1418     NumAlignedDPRCS2Regs -= 2;
1419   }
1420 
1421   // Finally, use a vanilla vldr.64 for the remaining odd register.
1422   if (NumAlignedDPRCS2Regs)
1423     BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg)
1424         .addReg(ARM::R4)
1425         .addImm(2 * (NextReg - R4BaseReg))
1426         .add(predOps(ARMCC::AL));
1427 
1428   // Last store kills r4.
1429   std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1430 }
1431 
1432 bool ARMFrameLowering::spillCalleeSavedRegisters(
1433     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1434     ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
1435   if (CSI.empty())
1436     return false;
1437 
1438   MachineFunction &MF = *MBB.getParent();
1439   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1440 
1441   unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD;
1442   unsigned PushOneOpc = AFI->isThumbFunction() ?
1443     ARM::t2STR_PRE : ARM::STR_PRE_IMM;
1444   unsigned FltOpc = ARM::VSTMDDB_UPD;
1445   unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1446   // Save the non-secure floating point context.
1447   if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) {
1448         return C.getReg() == ARM::FPCXTNS;
1449       })) {
1450     BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre),
1451             ARM::SP)
1452         .addReg(ARM::SP)
1453         .addImm(-4)
1454         .add(predOps(ARMCC::AL));
1455   }
1456   emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 0,
1457                MachineInstr::FrameSetup);
1458   emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 0,
1459                MachineInstr::FrameSetup);
1460   emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
1461                NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
1462 
1463   // The code above does not insert spill code for the aligned DPRCS2 registers.
1464   // The stack realignment code will be inserted between the push instructions
1465   // and these spills.
1466   if (NumAlignedDPRCS2Regs)
1467     emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
1468 
1469   return true;
1470 }
1471 
1472 bool ARMFrameLowering::restoreCalleeSavedRegisters(
1473     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1474     MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
1475   if (CSI.empty())
1476     return false;
1477 
1478   MachineFunction &MF = *MBB.getParent();
1479   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1480   bool isVarArg = AFI->getArgRegsSaveSize() > 0;
1481   unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1482 
1483   // The emitPopInst calls below do not insert reloads for the aligned DPRCS2
1484   // registers. Do that here instead.
1485   if (NumAlignedDPRCS2Regs)
1486     emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
1487 
1488   unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
1489   unsigned LdrOpc = AFI->isThumbFunction() ? ARM::t2LDR_POST :ARM::LDR_POST_IMM;
1490   unsigned FltOpc = ARM::VLDMDIA_UPD;
1491   emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
1492               NumAlignedDPRCS2Regs);
1493   emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
1494               &isARMArea2Register, 0);
1495   emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
1496               &isARMArea1Register, 0);
1497 
1498   return true;
1499 }
1500 
1501 // FIXME: Make generic?
1502 static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF,
1503                                             const ARMBaseInstrInfo &TII) {
1504   unsigned FnSize = 0;
1505   for (auto &MBB : MF) {
1506     for (auto &MI : MBB)
1507       FnSize += TII.getInstSizeInBytes(MI);
1508   }
1509   if (MF.getJumpTableInfo())
1510     for (auto &Table: MF.getJumpTableInfo()->getJumpTables())
1511       FnSize += Table.MBBs.size() * 4;
1512   FnSize += MF.getConstantPool()->getConstants().size() * 4;
1513   return FnSize;
1514 }
1515 
1516 /// estimateRSStackSizeLimit - Look at each instruction that references stack
1517 /// frames and return the stack size limit beyond which some of these
1518 /// instructions will require a scratch register during their expansion later.
1519 // FIXME: Move to TII?
1520 static unsigned estimateRSStackSizeLimit(MachineFunction &MF,
1521                                          const TargetFrameLowering *TFI,
1522                                          bool &HasNonSPFrameIndex) {
1523   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1524   const ARMBaseInstrInfo &TII =
1525       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
1526   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1527   unsigned Limit = (1 << 12) - 1;
1528   for (auto &MBB : MF) {
1529     for (auto &MI : MBB) {
1530       if (MI.isDebugInstr())
1531         continue;
1532       for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1533         if (!MI.getOperand(i).isFI())
1534           continue;
1535 
1536         // When using ADDri to get the address of a stack object, 255 is the
1537         // largest offset guaranteed to fit in the immediate offset.
1538         if (MI.getOpcode() == ARM::ADDri) {
1539           Limit = std::min(Limit, (1U << 8) - 1);
1540           break;
1541         }
1542         // t2ADDri will not require an extra register, it can reuse the
1543         // destination.
1544         if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12)
1545           break;
1546 
1547         const MCInstrDesc &MCID = MI.getDesc();
1548         const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF);
1549         if (RegClass && !RegClass->contains(ARM::SP))
1550           HasNonSPFrameIndex = true;
1551 
1552         // Otherwise check the addressing mode.
1553         switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) {
1554         case ARMII::AddrMode_i12:
1555         case ARMII::AddrMode2:
1556           // Default 12 bit limit.
1557           break;
1558         case ARMII::AddrMode3:
1559         case ARMII::AddrModeT2_i8:
1560           Limit = std::min(Limit, (1U << 8) - 1);
1561           break;
1562         case ARMII::AddrMode5FP16:
1563           Limit = std::min(Limit, ((1U << 8) - 1) * 2);
1564           break;
1565         case ARMII::AddrMode5:
1566         case ARMII::AddrModeT2_i8s4:
1567         case ARMII::AddrModeT2_ldrex:
1568           Limit = std::min(Limit, ((1U << 8) - 1) * 4);
1569           break;
1570         case ARMII::AddrModeT2_i12:
1571           // i12 supports only positive offset so these will be converted to
1572           // i8 opcodes. See llvm::rewriteT2FrameIndex.
1573           if (TFI->hasFP(MF) && AFI->hasStackFrame())
1574             Limit = std::min(Limit, (1U << 8) - 1);
1575           break;
1576         case ARMII::AddrMode4:
1577         case ARMII::AddrMode6:
1578           // Addressing modes 4 & 6 (load/store) instructions can't encode an
1579           // immediate offset for stack references.
1580           return 0;
1581         case ARMII::AddrModeT2_i7:
1582           Limit = std::min(Limit, ((1U << 7) - 1) * 1);
1583           break;
1584         case ARMII::AddrModeT2_i7s2:
1585           Limit = std::min(Limit, ((1U << 7) - 1) * 2);
1586           break;
1587         case ARMII::AddrModeT2_i7s4:
1588           Limit = std::min(Limit, ((1U << 7) - 1) * 4);
1589           break;
1590         default:
1591           llvm_unreachable("Unhandled addressing mode in stack size limit calculation");
1592         }
1593         break; // At most one FI per instruction
1594       }
1595     }
1596   }
1597 
1598   return Limit;
1599 }
1600 
1601 // In functions that realign the stack, it can be an advantage to spill the
1602 // callee-saved vector registers after realigning the stack. The vst1 and vld1
1603 // instructions take alignment hints that can improve performance.
1604 static void
1605 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) {
1606   MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0);
1607   if (!SpillAlignedNEONRegs)
1608     return;
1609 
1610   // Naked functions don't spill callee-saved registers.
1611   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
1612     return;
1613 
1614   // We are planning to use NEON instructions vst1 / vld1.
1615   if (!static_cast<const ARMSubtarget &>(MF.getSubtarget()).hasNEON())
1616     return;
1617 
1618   // Don't bother if the default stack alignment is sufficiently high.
1619   if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8))
1620     return;
1621 
1622   // Aligned spills require stack realignment.
1623   if (!static_cast<const ARMBaseRegisterInfo *>(
1624            MF.getSubtarget().getRegisterInfo())->canRealignStack(MF))
1625     return;
1626 
1627   // We always spill contiguous d-registers starting from d8. Count how many
1628   // needs spilling.  The register allocator will almost always use the
1629   // callee-saved registers in order, but it can happen that there are holes in
1630   // the range.  Registers above the hole will be spilled to the standard DPRCS
1631   // area.
1632   unsigned NumSpills = 0;
1633   for (; NumSpills < 8; ++NumSpills)
1634     if (!SavedRegs.test(ARM::D8 + NumSpills))
1635       break;
1636 
1637   // Don't do this for just one d-register. It's not worth it.
1638   if (NumSpills < 2)
1639     return;
1640 
1641   // Spill the first NumSpills D-registers after realigning the stack.
1642   MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills);
1643 
1644   // A scratch register is required for the vst1 / vld1 instructions.
1645   SavedRegs.set(ARM::R4);
1646 }
1647 
1648 bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
1649   // For CMSE entry functions, we want to save the FPCXT_NS immediately
1650   // upon function entry (resp. restore it immmediately before return)
1651   if (STI.hasV8_1MMainlineOps() &&
1652       MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction())
1653     return false;
1654 
1655   return true;
1656 }
1657 
1658 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF,
1659                                             BitVector &SavedRegs,
1660                                             RegScavenger *RS) const {
1661   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
1662   // This tells PEI to spill the FP as if it is any other callee-save register
1663   // to take advantage the eliminateFrameIndex machinery. This also ensures it
1664   // is spilled in the order specified by getCalleeSavedRegs() to make it easier
1665   // to combine multiple loads / stores.
1666   bool CanEliminateFrame = true;
1667   bool CS1Spilled = false;
1668   bool LRSpilled = false;
1669   unsigned NumGPRSpills = 0;
1670   unsigned NumFPRSpills = 0;
1671   SmallVector<unsigned, 4> UnspilledCS1GPRs;
1672   SmallVector<unsigned, 4> UnspilledCS2GPRs;
1673   const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
1674       MF.getSubtarget().getRegisterInfo());
1675   const ARMBaseInstrInfo &TII =
1676       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
1677   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1678   MachineFrameInfo &MFI = MF.getFrameInfo();
1679   MachineRegisterInfo &MRI = MF.getRegInfo();
1680   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1681   (void)TRI;  // Silence unused warning in non-assert builds.
1682   Register FramePtr = RegInfo->getFrameRegister(MF);
1683 
1684   // Spill R4 if Thumb2 function requires stack realignment - it will be used as
1685   // scratch register. Also spill R4 if Thumb2 function has varsized objects,
1686   // since it's not always possible to restore sp from fp in a single
1687   // instruction.
1688   // FIXME: It will be better just to find spare register here.
1689   if (AFI->isThumb2Function() &&
1690       (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF)))
1691     SavedRegs.set(ARM::R4);
1692 
1693   // If a stack probe will be emitted, spill R4 and LR, since they are
1694   // clobbered by the stack probe call.
1695   // This estimate should be a safe, conservative estimate. The actual
1696   // stack probe is enabled based on the size of the local objects;
1697   // this estimate also includes the varargs store size.
1698   if (STI.isTargetWindows() &&
1699       WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) {
1700     SavedRegs.set(ARM::R4);
1701     SavedRegs.set(ARM::LR);
1702   }
1703 
1704   if (AFI->isThumb1OnlyFunction()) {
1705     // Spill LR if Thumb1 function uses variable length argument lists.
1706     if (AFI->getArgRegsSaveSize() > 0)
1707       SavedRegs.set(ARM::LR);
1708 
1709     // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function
1710     // requires stack alignment.  We don't know for sure what the stack size
1711     // will be, but for this, an estimate is good enough. If there anything
1712     // changes it, it'll be a spill, which implies we've used all the registers
1713     // and so R4 is already used, so not marking it here will be OK.
1714     // FIXME: It will be better just to find spare register here.
1715     if (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF) ||
1716         MFI.estimateStackSize(MF) > 508)
1717       SavedRegs.set(ARM::R4);
1718   }
1719 
1720   // See if we can spill vector registers to aligned stack.
1721   checkNumAlignedDPRCS2Regs(MF, SavedRegs);
1722 
1723   // Spill the BasePtr if it's used.
1724   if (RegInfo->hasBasePointer(MF))
1725     SavedRegs.set(RegInfo->getBaseRegister());
1726 
1727   // On v8.1-M.Main CMSE entry functions save/restore FPCXT.
1728   if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction())
1729     CanEliminateFrame = false;
1730 
1731   // Don't spill FP if the frame can be eliminated. This is determined
1732   // by scanning the callee-save registers to see if any is modified.
1733   const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
1734   for (unsigned i = 0; CSRegs[i]; ++i) {
1735     unsigned Reg = CSRegs[i];
1736     bool Spilled = false;
1737     if (SavedRegs.test(Reg)) {
1738       Spilled = true;
1739       CanEliminateFrame = false;
1740     }
1741 
1742     if (!ARM::GPRRegClass.contains(Reg)) {
1743       if (Spilled) {
1744         if (ARM::SPRRegClass.contains(Reg))
1745           NumFPRSpills++;
1746         else if (ARM::DPRRegClass.contains(Reg))
1747           NumFPRSpills += 2;
1748         else if (ARM::QPRRegClass.contains(Reg))
1749           NumFPRSpills += 4;
1750       }
1751       continue;
1752     }
1753 
1754     if (Spilled) {
1755       NumGPRSpills++;
1756 
1757       if (!STI.splitFramePushPop(MF)) {
1758         if (Reg == ARM::LR)
1759           LRSpilled = true;
1760         CS1Spilled = true;
1761         continue;
1762       }
1763 
1764       // Keep track if LR and any of R4, R5, R6, and R7 is spilled.
1765       switch (Reg) {
1766       case ARM::LR:
1767         LRSpilled = true;
1768         LLVM_FALLTHROUGH;
1769       case ARM::R0: case ARM::R1:
1770       case ARM::R2: case ARM::R3:
1771       case ARM::R4: case ARM::R5:
1772       case ARM::R6: case ARM::R7:
1773         CS1Spilled = true;
1774         break;
1775       default:
1776         break;
1777       }
1778     } else {
1779       if (!STI.splitFramePushPop(MF)) {
1780         UnspilledCS1GPRs.push_back(Reg);
1781         continue;
1782       }
1783 
1784       switch (Reg) {
1785       case ARM::R0: case ARM::R1:
1786       case ARM::R2: case ARM::R3:
1787       case ARM::R4: case ARM::R5:
1788       case ARM::R6: case ARM::R7:
1789       case ARM::LR:
1790         UnspilledCS1GPRs.push_back(Reg);
1791         break;
1792       default:
1793         UnspilledCS2GPRs.push_back(Reg);
1794         break;
1795       }
1796     }
1797   }
1798 
1799   bool ForceLRSpill = false;
1800   if (!LRSpilled && AFI->isThumb1OnlyFunction()) {
1801     unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII);
1802     // Force LR to be spilled if the Thumb function size is > 2048. This enables
1803     // use of BL to implement far jump.
1804     if (FnSize >= (1 << 11)) {
1805       CanEliminateFrame = false;
1806       ForceLRSpill = true;
1807     }
1808   }
1809 
1810   // If any of the stack slot references may be out of range of an immediate
1811   // offset, make sure a register (or a spill slot) is available for the
1812   // register scavenger. Note that if we're indexing off the frame pointer, the
1813   // effective stack size is 4 bytes larger since the FP points to the stack
1814   // slot of the previous FP. Also, if we have variable sized objects in the
1815   // function, stack slot references will often be negative, and some of
1816   // our instructions are positive-offset only, so conservatively consider
1817   // that case to want a spill slot (or register) as well. Similarly, if
1818   // the function adjusts the stack pointer during execution and the
1819   // adjustments aren't already part of our stack size estimate, our offset
1820   // calculations may be off, so be conservative.
1821   // FIXME: We could add logic to be more precise about negative offsets
1822   //        and which instructions will need a scratch register for them. Is it
1823   //        worth the effort and added fragility?
1824   unsigned EstimatedStackSize =
1825       MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills);
1826 
1827   // Determine biggest (positive) SP offset in MachineFrameInfo.
1828   int MaxFixedOffset = 0;
1829   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
1830     int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I);
1831     MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset);
1832   }
1833 
1834   bool HasFP = hasFP(MF);
1835   if (HasFP) {
1836     if (AFI->hasStackFrame())
1837       EstimatedStackSize += 4;
1838   } else {
1839     // If FP is not used, SP will be used to access arguments, so count the
1840     // size of arguments into the estimation.
1841     EstimatedStackSize += MaxFixedOffset;
1842   }
1843   EstimatedStackSize += 16; // For possible paddings.
1844 
1845   unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit;
1846   bool HasNonSPFrameIndex = false;
1847   if (AFI->isThumb1OnlyFunction()) {
1848     // For Thumb1, don't bother to iterate over the function. The only
1849     // instruction that requires an emergency spill slot is a store to a
1850     // frame index.
1851     //
1852     // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned
1853     // immediate. tSTRi, which is used for bp- and fp-relative accesses, has
1854     // a 5-bit unsigned immediate.
1855     //
1856     // We could try to check if the function actually contains a tSTRspi
1857     // that might need the spill slot, but it's not really important.
1858     // Functions with VLAs or extremely large call frames are rare, and
1859     // if a function is allocating more than 1KB of stack, an extra 4-byte
1860     // slot probably isn't relevant.
1861     if (RegInfo->hasBasePointer(MF))
1862       EstimatedRSStackSizeLimit = (1U << 5) * 4;
1863     else
1864       EstimatedRSStackSizeLimit = (1U << 8) * 4;
1865     EstimatedRSFixedSizeLimit = (1U << 5) * 4;
1866   } else {
1867     EstimatedRSStackSizeLimit =
1868         estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex);
1869     EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit;
1870   }
1871   // Final estimate of whether sp or bp-relative accesses might require
1872   // scavenging.
1873   bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit;
1874 
1875   // If the stack pointer moves and we don't have a base pointer, the
1876   // estimate logic doesn't work. The actual offsets might be larger when
1877   // we're constructing a call frame, or we might need to use negative
1878   // offsets from fp.
1879   bool HasMovingSP = MFI.hasVarSizedObjects() ||
1880     (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF));
1881   bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP;
1882 
1883   // If we have a frame pointer, we assume arguments will be accessed
1884   // relative to the frame pointer. Check whether fp-relative accesses to
1885   // arguments require scavenging.
1886   //
1887   // We could do slightly better on Thumb1; in some cases, an sp-relative
1888   // offset would be legal even though an fp-relative offset is not.
1889   int MaxFPOffset = getMaxFPOffset(STI, *AFI);
1890   bool HasLargeArgumentList =
1891       HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit;
1892 
1893   bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP ||
1894                          HasLargeArgumentList || HasNonSPFrameIndex;
1895   LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit
1896                     << "; EstimatedStack: " << EstimatedStackSize
1897                     << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset
1898                     << "; BigFrameOffsets: " << BigFrameOffsets << "\n");
1899   if (BigFrameOffsets ||
1900       !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) {
1901     AFI->setHasStackFrame(true);
1902 
1903     if (HasFP) {
1904       SavedRegs.set(FramePtr);
1905       // If the frame pointer is required by the ABI, also spill LR so that we
1906       // emit a complete frame record.
1907       if (MF.getTarget().Options.DisableFramePointerElim(MF) && !LRSpilled) {
1908         SavedRegs.set(ARM::LR);
1909         LRSpilled = true;
1910         NumGPRSpills++;
1911         auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR);
1912         if (LRPos != UnspilledCS1GPRs.end())
1913           UnspilledCS1GPRs.erase(LRPos);
1914       }
1915       auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr);
1916       if (FPPos != UnspilledCS1GPRs.end())
1917         UnspilledCS1GPRs.erase(FPPos);
1918       NumGPRSpills++;
1919       if (FramePtr == ARM::R7)
1920         CS1Spilled = true;
1921     }
1922 
1923     // This is true when we inserted a spill for a callee-save GPR which is
1924     // not otherwise used by the function. This guaranteees it is possible
1925     // to scavenge a register to hold the address of a stack slot. On Thumb1,
1926     // the register must be a valid operand to tSTRi, i.e. r4-r7. For other
1927     // subtargets, this is any GPR, i.e. r4-r11 or lr.
1928     //
1929     // If we don't insert a spill, we instead allocate an emergency spill
1930     // slot, which can be used by scavenging to spill an arbitrary register.
1931     //
1932     // We currently don't try to figure out whether any specific instruction
1933     // requires scavening an additional register.
1934     bool ExtraCSSpill = false;
1935 
1936     if (AFI->isThumb1OnlyFunction()) {
1937       // For Thumb1-only targets, we need some low registers when we save and
1938       // restore the high registers (which aren't allocatable, but could be
1939       // used by inline assembly) because the push/pop instructions can not
1940       // access high registers. If necessary, we might need to push more low
1941       // registers to ensure that there is at least one free that can be used
1942       // for the saving & restoring, and preferably we should ensure that as
1943       // many as are needed are available so that fewer push/pop instructions
1944       // are required.
1945 
1946       // Low registers which are not currently pushed, but could be (r4-r7).
1947       SmallVector<unsigned, 4> AvailableRegs;
1948 
1949       // Unused argument registers (r0-r3) can be clobbered in the prologue for
1950       // free.
1951       int EntryRegDeficit = 0;
1952       for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) {
1953         if (!MF.getRegInfo().isLiveIn(Reg)) {
1954           --EntryRegDeficit;
1955           LLVM_DEBUG(dbgs()
1956                      << printReg(Reg, TRI)
1957                      << " is unused argument register, EntryRegDeficit = "
1958                      << EntryRegDeficit << "\n");
1959         }
1960       }
1961 
1962       // Unused return registers can be clobbered in the epilogue for free.
1963       int ExitRegDeficit = AFI->getReturnRegsCount() - 4;
1964       LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount()
1965                         << " return regs used, ExitRegDeficit = "
1966                         << ExitRegDeficit << "\n");
1967 
1968       int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit);
1969       LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n");
1970 
1971       // r4-r6 can be used in the prologue if they are pushed by the first push
1972       // instruction.
1973       for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) {
1974         if (SavedRegs.test(Reg)) {
1975           --RegDeficit;
1976           LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
1977                             << " is saved low register, RegDeficit = "
1978                             << RegDeficit << "\n");
1979         } else {
1980           AvailableRegs.push_back(Reg);
1981           LLVM_DEBUG(
1982               dbgs()
1983               << printReg(Reg, TRI)
1984               << " is non-saved low register, adding to AvailableRegs\n");
1985         }
1986       }
1987 
1988       // r7 can be used if it is not being used as the frame pointer.
1989       if (!HasFP) {
1990         if (SavedRegs.test(ARM::R7)) {
1991           --RegDeficit;
1992           LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = "
1993                             << RegDeficit << "\n");
1994         } else {
1995           AvailableRegs.push_back(ARM::R7);
1996           LLVM_DEBUG(
1997               dbgs()
1998               << "%r7 is non-saved low register, adding to AvailableRegs\n");
1999         }
2000       }
2001 
2002       // Each of r8-r11 needs to be copied to a low register, then pushed.
2003       for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) {
2004         if (SavedRegs.test(Reg)) {
2005           ++RegDeficit;
2006           LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
2007                             << " is saved high register, RegDeficit = "
2008                             << RegDeficit << "\n");
2009         }
2010       }
2011 
2012       // LR can only be used by PUSH, not POP, and can't be used at all if the
2013       // llvm.returnaddress intrinsic is used. This is only worth doing if we
2014       // are more limited at function entry than exit.
2015       if ((EntryRegDeficit > ExitRegDeficit) &&
2016           !(MF.getRegInfo().isLiveIn(ARM::LR) &&
2017             MF.getFrameInfo().isReturnAddressTaken())) {
2018         if (SavedRegs.test(ARM::LR)) {
2019           --RegDeficit;
2020           LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = "
2021                             << RegDeficit << "\n");
2022         } else {
2023           AvailableRegs.push_back(ARM::LR);
2024           LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n");
2025         }
2026       }
2027 
2028       // If there are more high registers that need pushing than low registers
2029       // available, push some more low registers so that we can use fewer push
2030       // instructions. This might not reduce RegDeficit all the way to zero,
2031       // because we can only guarantee that r4-r6 are available, but r8-r11 may
2032       // need saving.
2033       LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n");
2034       for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) {
2035         unsigned Reg = AvailableRegs.pop_back_val();
2036         LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2037                           << " to make up reg deficit\n");
2038         SavedRegs.set(Reg);
2039         NumGPRSpills++;
2040         CS1Spilled = true;
2041         assert(!MRI.isReserved(Reg) && "Should not be reserved");
2042         if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg))
2043           ExtraCSSpill = true;
2044         UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg));
2045         if (Reg == ARM::LR)
2046           LRSpilled = true;
2047       }
2048       LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit
2049                         << "\n");
2050     }
2051 
2052     // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to
2053     // restore LR in that case.
2054     bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall();
2055 
2056     // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
2057     // Spill LR as well so we can fold BX_RET to the registers restore (LDM).
2058     if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) {
2059       SavedRegs.set(ARM::LR);
2060       NumGPRSpills++;
2061       SmallVectorImpl<unsigned>::iterator LRPos;
2062       LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR);
2063       if (LRPos != UnspilledCS1GPRs.end())
2064         UnspilledCS1GPRs.erase(LRPos);
2065 
2066       ForceLRSpill = false;
2067       if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) &&
2068           !AFI->isThumb1OnlyFunction())
2069         ExtraCSSpill = true;
2070     }
2071 
2072     // If stack and double are 8-byte aligned and we are spilling an odd number
2073     // of GPRs, spill one extra callee save GPR so we won't have to pad between
2074     // the integer and double callee save areas.
2075     LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n");
2076     const Align TargetAlign = getStackAlign();
2077     if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) {
2078       if (CS1Spilled && !UnspilledCS1GPRs.empty()) {
2079         for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) {
2080           unsigned Reg = UnspilledCS1GPRs[i];
2081           // Don't spill high register if the function is thumb.  In the case of
2082           // Windows on ARM, accept R11 (frame pointer)
2083           if (!AFI->isThumbFunction() ||
2084               (STI.isTargetWindows() && Reg == ARM::R11) ||
2085               isARMLowRegister(Reg) ||
2086               (Reg == ARM::LR && !ExpensiveLRRestore)) {
2087             SavedRegs.set(Reg);
2088             LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2089                               << " to make up alignment\n");
2090             if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) &&
2091                 !(Reg == ARM::LR && AFI->isThumb1OnlyFunction()))
2092               ExtraCSSpill = true;
2093             break;
2094           }
2095         }
2096       } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) {
2097         unsigned Reg = UnspilledCS2GPRs.front();
2098         SavedRegs.set(Reg);
2099         LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2100                           << " to make up alignment\n");
2101         if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg))
2102           ExtraCSSpill = true;
2103       }
2104     }
2105 
2106     // Estimate if we might need to scavenge a register at some point in order
2107     // to materialize a stack offset. If so, either spill one additional
2108     // callee-saved register or reserve a special spill slot to facilitate
2109     // register scavenging. Thumb1 needs a spill slot for stack pointer
2110     // adjustments also, even when the frame itself is small.
2111     if (BigFrameOffsets && !ExtraCSSpill) {
2112       // If any non-reserved CS register isn't spilled, just spill one or two
2113       // extra. That should take care of it!
2114       unsigned NumExtras = TargetAlign.value() / 4;
2115       SmallVector<unsigned, 2> Extras;
2116       while (NumExtras && !UnspilledCS1GPRs.empty()) {
2117         unsigned Reg = UnspilledCS1GPRs.pop_back_val();
2118         if (!MRI.isReserved(Reg) &&
2119             (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) {
2120           Extras.push_back(Reg);
2121           NumExtras--;
2122         }
2123       }
2124       // For non-Thumb1 functions, also check for hi-reg CS registers
2125       if (!AFI->isThumb1OnlyFunction()) {
2126         while (NumExtras && !UnspilledCS2GPRs.empty()) {
2127           unsigned Reg = UnspilledCS2GPRs.pop_back_val();
2128           if (!MRI.isReserved(Reg)) {
2129             Extras.push_back(Reg);
2130             NumExtras--;
2131           }
2132         }
2133       }
2134       if (NumExtras == 0) {
2135         for (unsigned Reg : Extras) {
2136           SavedRegs.set(Reg);
2137           if (!MRI.isPhysRegUsed(Reg))
2138             ExtraCSSpill = true;
2139         }
2140       }
2141       if (!ExtraCSSpill && RS) {
2142         // Reserve a slot closest to SP or frame pointer.
2143         LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n");
2144         const TargetRegisterClass &RC = ARM::GPRRegClass;
2145         unsigned Size = TRI->getSpillSize(RC);
2146         Align Alignment = TRI->getSpillAlign(RC);
2147         RS->addScavengingFrameIndex(
2148             MFI.CreateStackObject(Size, Alignment, false));
2149       }
2150     }
2151   }
2152 
2153   if (ForceLRSpill)
2154     SavedRegs.set(ARM::LR);
2155   AFI->setLRIsSpilled(SavedRegs.test(ARM::LR));
2156 }
2157 
2158 void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF,
2159                                       BitVector &SavedRegs) const {
2160   TargetFrameLowering::getCalleeSaves(MF, SavedRegs);
2161 
2162   // If we have the "returned" parameter attribute which guarantees that we
2163   // return the value which was passed in r0 unmodified (e.g. C++ 'structors),
2164   // record that fact for IPRA.
2165   const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2166   if (AFI->getPreservesR0())
2167     SavedRegs.set(ARM::R0);
2168 }
2169 
2170 bool ARMFrameLowering::assignCalleeSavedSpillSlots(
2171     MachineFunction &MF, const TargetRegisterInfo *TRI,
2172     std::vector<CalleeSavedInfo> &CSI) const {
2173   // For CMSE entry functions, handle floating-point context as if it was a
2174   // callee-saved register.
2175   if (STI.hasV8_1MMainlineOps() &&
2176       MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) {
2177     CSI.emplace_back(ARM::FPCXTNS);
2178     CSI.back().setRestored(false);
2179   }
2180 
2181   return false;
2182 }
2183 
2184 const TargetFrameLowering::SpillSlot *
2185 ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const {
2186   static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}};
2187   NumEntries = array_lengthof(FixedSpillOffsets);
2188   return FixedSpillOffsets;
2189 }
2190 
2191 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr(
2192     MachineFunction &MF, MachineBasicBlock &MBB,
2193     MachineBasicBlock::iterator I) const {
2194   const ARMBaseInstrInfo &TII =
2195       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2196   if (!hasReservedCallFrame(MF)) {
2197     // If we have alloca, convert as follows:
2198     // ADJCALLSTACKDOWN -> sub, sp, sp, amount
2199     // ADJCALLSTACKUP   -> add, sp, sp, amount
2200     MachineInstr &Old = *I;
2201     DebugLoc dl = Old.getDebugLoc();
2202     unsigned Amount = TII.getFrameSize(Old);
2203     if (Amount != 0) {
2204       // We need to keep the stack aligned properly.  To do this, we round the
2205       // amount of space needed for the outgoing arguments up to the next
2206       // alignment boundary.
2207       Amount = alignSPAdjust(Amount);
2208 
2209       ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2210       assert(!AFI->isThumb1OnlyFunction() &&
2211              "This eliminateCallFramePseudoInstr does not support Thumb1!");
2212       bool isARM = !AFI->isThumbFunction();
2213 
2214       // Replace the pseudo instruction with a new instruction...
2215       unsigned Opc = Old.getOpcode();
2216       int PIdx = Old.findFirstPredOperandIdx();
2217       ARMCC::CondCodes Pred =
2218           (PIdx == -1) ? ARMCC::AL
2219                        : (ARMCC::CondCodes)Old.getOperand(PIdx).getImm();
2220       unsigned PredReg = TII.getFramePred(Old);
2221       if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
2222         emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags,
2223                      Pred, PredReg);
2224       } else {
2225         assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
2226         emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags,
2227                      Pred, PredReg);
2228       }
2229     }
2230   }
2231   return MBB.erase(I);
2232 }
2233 
2234 /// Get the minimum constant for ARM that is greater than or equal to the
2235 /// argument. In ARM, constants can have any value that can be produced by
2236 /// rotating an 8-bit value to the right by an even number of bits within a
2237 /// 32-bit word.
2238 static uint32_t alignToARMConstant(uint32_t Value) {
2239   unsigned Shifted = 0;
2240 
2241   if (Value == 0)
2242       return 0;
2243 
2244   while (!(Value & 0xC0000000)) {
2245       Value = Value << 2;
2246       Shifted += 2;
2247   }
2248 
2249   bool Carry = (Value & 0x00FFFFFF);
2250   Value = ((Value & 0xFF000000) >> 24) + Carry;
2251 
2252   if (Value & 0x0000100)
2253       Value = Value & 0x000001FC;
2254 
2255   if (Shifted > 24)
2256       Value = Value >> (Shifted - 24);
2257   else
2258       Value = Value << (24 - Shifted);
2259 
2260   return Value;
2261 }
2262 
2263 // The stack limit in the TCB is set to this many bytes above the actual
2264 // stack limit.
2265 static const uint64_t kSplitStackAvailable = 256;
2266 
2267 // Adjust the function prologue to enable split stacks. This currently only
2268 // supports android and linux.
2269 //
2270 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but
2271 // must be well defined in order to allow for consistent implementations of the
2272 // __morestack helper function. The ABI is also not a normal ABI in that it
2273 // doesn't follow the normal calling conventions because this allows the
2274 // prologue of each function to be optimized further.
2275 //
2276 // Currently, the ABI looks like (when calling __morestack)
2277 //
2278 //  * r4 holds the minimum stack size requested for this function call
2279 //  * r5 holds the stack size of the arguments to the function
2280 //  * the beginning of the function is 3 instructions after the call to
2281 //    __morestack
2282 //
2283 // Implementations of __morestack should use r4 to allocate a new stack, r5 to
2284 // place the arguments on to the new stack, and the 3-instruction knowledge to
2285 // jump directly to the body of the function when working on the new stack.
2286 //
2287 // An old (and possibly no longer compatible) implementation of __morestack for
2288 // ARM can be found at [1].
2289 //
2290 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S
2291 void ARMFrameLowering::adjustForSegmentedStacks(
2292     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2293   unsigned Opcode;
2294   unsigned CFIIndex;
2295   const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>();
2296   bool Thumb = ST->isThumb();
2297 
2298   // Sadly, this currently doesn't support varargs, platforms other than
2299   // android/linux. Note that thumb1/thumb2 are support for android/linux.
2300   if (MF.getFunction().isVarArg())
2301     report_fatal_error("Segmented stacks do not support vararg functions.");
2302   if (!ST->isTargetAndroid() && !ST->isTargetLinux())
2303     report_fatal_error("Segmented stacks not supported on this platform.");
2304 
2305   MachineFrameInfo &MFI = MF.getFrameInfo();
2306   MachineModuleInfo &MMI = MF.getMMI();
2307   MCContext &Context = MMI.getContext();
2308   const MCRegisterInfo *MRI = Context.getRegisterInfo();
2309   const ARMBaseInstrInfo &TII =
2310       *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2311   ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>();
2312   DebugLoc DL;
2313 
2314   uint64_t StackSize = MFI.getStackSize();
2315 
2316   // Do not generate a prologue for leaf functions with a stack of size zero.
2317   // For non-leaf functions we have to allow for the possibility that the
2318   // callis to a non-split function, as in PR37807. This function could also
2319   // take the address of a non-split function. When the linker tries to adjust
2320   // its non-existent prologue, it would fail with an error. Mark the object
2321   // file so that such failures are not errors. See this Go language bug-report
2322   // https://go-review.googlesource.com/c/go/+/148819/
2323   if (StackSize == 0 && !MFI.hasTailCall()) {
2324     MF.getMMI().setHasNosplitStack(true);
2325     return;
2326   }
2327 
2328   // Use R4 and R5 as scratch registers.
2329   // We save R4 and R5 before use and restore them before leaving the function.
2330   unsigned ScratchReg0 = ARM::R4;
2331   unsigned ScratchReg1 = ARM::R5;
2332   uint64_t AlignedStackSize;
2333 
2334   MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock();
2335   MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock();
2336   MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock();
2337   MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock();
2338   MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock();
2339 
2340   // Grab everything that reaches PrologueMBB to update there liveness as well.
2341   SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion;
2342   SmallVector<MachineBasicBlock *, 2> WalkList;
2343   WalkList.push_back(&PrologueMBB);
2344 
2345   do {
2346     MachineBasicBlock *CurMBB = WalkList.pop_back_val();
2347     for (MachineBasicBlock *PredBB : CurMBB->predecessors()) {
2348       if (BeforePrologueRegion.insert(PredBB).second)
2349         WalkList.push_back(PredBB);
2350     }
2351   } while (!WalkList.empty());
2352 
2353   // The order in that list is important.
2354   // The blocks will all be inserted before PrologueMBB using that order.
2355   // Therefore the block that should appear first in the CFG should appear
2356   // first in the list.
2357   MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB,
2358                                       PostStackMBB};
2359 
2360   for (MachineBasicBlock *B : AddedBlocks)
2361     BeforePrologueRegion.insert(B);
2362 
2363   for (const auto &LI : PrologueMBB.liveins()) {
2364     for (MachineBasicBlock *PredBB : BeforePrologueRegion)
2365       PredBB->addLiveIn(LI);
2366   }
2367 
2368   // Remove the newly added blocks from the list, since we know
2369   // we do not have to do the following updates for them.
2370   for (MachineBasicBlock *B : AddedBlocks) {
2371     BeforePrologueRegion.erase(B);
2372     MF.insert(PrologueMBB.getIterator(), B);
2373   }
2374 
2375   for (MachineBasicBlock *MBB : BeforePrologueRegion) {
2376     // Make sure the LiveIns are still sorted and unique.
2377     MBB->sortUniqueLiveIns();
2378     // Replace the edges to PrologueMBB by edges to the sequences
2379     // we are about to add.
2380     MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]);
2381   }
2382 
2383   // The required stack size that is aligned to ARM constant criterion.
2384   AlignedStackSize = alignToARMConstant(StackSize);
2385 
2386   // When the frame size is less than 256 we just compare the stack
2387   // boundary directly to the value of the stack pointer, per gcc.
2388   bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable;
2389 
2390   // We will use two of the callee save registers as scratch registers so we
2391   // need to save those registers onto the stack.
2392   // We will use SR0 to hold stack limit and SR1 to hold the stack size
2393   // requested and arguments for __morestack().
2394   // SR0: Scratch Register #0
2395   // SR1: Scratch Register #1
2396   // push {SR0, SR1}
2397   if (Thumb) {
2398     BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH))
2399         .add(predOps(ARMCC::AL))
2400         .addReg(ScratchReg0)
2401         .addReg(ScratchReg1);
2402   } else {
2403     BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD))
2404         .addReg(ARM::SP, RegState::Define)
2405         .addReg(ARM::SP)
2406         .add(predOps(ARMCC::AL))
2407         .addReg(ScratchReg0)
2408         .addReg(ScratchReg1);
2409   }
2410 
2411   // Emit the relevant DWARF information about the change in stack pointer as
2412   // well as where to find both r4 and r5 (the callee-save registers)
2413   CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8));
2414   BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2415       .addCFIIndex(CFIIndex);
2416   CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2417       nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4));
2418   BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2419       .addCFIIndex(CFIIndex);
2420   CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2421       nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8));
2422   BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2423       .addCFIIndex(CFIIndex);
2424 
2425   // mov SR1, sp
2426   if (Thumb) {
2427     BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1)
2428         .addReg(ARM::SP)
2429         .add(predOps(ARMCC::AL));
2430   } else if (CompareStackPointer) {
2431     BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1)
2432         .addReg(ARM::SP)
2433         .add(predOps(ARMCC::AL))
2434         .add(condCodeOp());
2435   }
2436 
2437   // sub SR1, sp, #StackSize
2438   if (!CompareStackPointer && Thumb) {
2439     BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1)
2440         .add(condCodeOp())
2441         .addReg(ScratchReg1)
2442         .addImm(AlignedStackSize)
2443         .add(predOps(ARMCC::AL));
2444   } else if (!CompareStackPointer) {
2445     BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1)
2446         .addReg(ARM::SP)
2447         .addImm(AlignedStackSize)
2448         .add(predOps(ARMCC::AL))
2449         .add(condCodeOp());
2450   }
2451 
2452   if (Thumb && ST->isThumb1Only()) {
2453     unsigned PCLabelId = ARMFI->createPICLabelUId();
2454     ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create(
2455         MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0);
2456     MachineConstantPool *MCP = MF.getConstantPool();
2457     unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4));
2458 
2459     // ldr SR0, [pc, offset(STACK_LIMIT)]
2460     BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0)
2461         .addConstantPoolIndex(CPI)
2462         .add(predOps(ARMCC::AL));
2463 
2464     // ldr SR0, [SR0]
2465     BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0)
2466         .addReg(ScratchReg0)
2467         .addImm(0)
2468         .add(predOps(ARMCC::AL));
2469   } else {
2470     // Get TLS base address from the coprocessor
2471     // mrc p15, #0, SR0, c13, c0, #3
2472     BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC),
2473             ScratchReg0)
2474         .addImm(15)
2475         .addImm(0)
2476         .addImm(13)
2477         .addImm(0)
2478         .addImm(3)
2479         .add(predOps(ARMCC::AL));
2480 
2481     // Use the last tls slot on android and a private field of the TCP on linux.
2482     assert(ST->isTargetAndroid() || ST->isTargetLinux());
2483     unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1;
2484 
2485     // Get the stack limit from the right offset
2486     // ldr SR0, [sr0, #4 * TlsOffset]
2487     BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12),
2488             ScratchReg0)
2489         .addReg(ScratchReg0)
2490         .addImm(4 * TlsOffset)
2491         .add(predOps(ARMCC::AL));
2492   }
2493 
2494   // Compare stack limit with stack size requested.
2495   // cmp SR0, SR1
2496   Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr;
2497   BuildMI(GetMBB, DL, TII.get(Opcode))
2498       .addReg(ScratchReg0)
2499       .addReg(ScratchReg1)
2500       .add(predOps(ARMCC::AL));
2501 
2502   // This jump is taken if StackLimit < SP - stack required.
2503   Opcode = Thumb ? ARM::tBcc : ARM::Bcc;
2504   BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB)
2505        .addImm(ARMCC::LO)
2506        .addReg(ARM::CPSR);
2507 
2508 
2509   // Calling __morestack(StackSize, Size of stack arguments).
2510   // __morestack knows that the stack size requested is in SR0(r4)
2511   // and amount size of stack arguments is in SR1(r5).
2512 
2513   // Pass first argument for the __morestack by Scratch Register #0.
2514   //   The amount size of stack required
2515   if (Thumb) {
2516     BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0)
2517         .add(condCodeOp())
2518         .addImm(AlignedStackSize)
2519         .add(predOps(ARMCC::AL));
2520   } else {
2521     BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0)
2522         .addImm(AlignedStackSize)
2523         .add(predOps(ARMCC::AL))
2524         .add(condCodeOp());
2525   }
2526   // Pass second argument for the __morestack by Scratch Register #1.
2527   //   The amount size of stack consumed to save function arguments.
2528   if (Thumb) {
2529     BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1)
2530         .add(condCodeOp())
2531         .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
2532         .add(predOps(ARMCC::AL));
2533   } else {
2534     BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1)
2535         .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
2536         .add(predOps(ARMCC::AL))
2537         .add(condCodeOp());
2538   }
2539 
2540   // push {lr} - Save return address of this function.
2541   if (Thumb) {
2542     BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH))
2543         .add(predOps(ARMCC::AL))
2544         .addReg(ARM::LR);
2545   } else {
2546     BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD))
2547         .addReg(ARM::SP, RegState::Define)
2548         .addReg(ARM::SP)
2549         .add(predOps(ARMCC::AL))
2550         .addReg(ARM::LR);
2551   }
2552 
2553   // Emit the DWARF info about the change in stack as well as where to find the
2554   // previous link register
2555   CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12));
2556   BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2557       .addCFIIndex(CFIIndex);
2558   CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2559         nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12));
2560   BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2561       .addCFIIndex(CFIIndex);
2562 
2563   // Call __morestack().
2564   if (Thumb) {
2565     BuildMI(AllocMBB, DL, TII.get(ARM::tBL))
2566         .add(predOps(ARMCC::AL))
2567         .addExternalSymbol("__morestack");
2568   } else {
2569     BuildMI(AllocMBB, DL, TII.get(ARM::BL))
2570         .addExternalSymbol("__morestack");
2571   }
2572 
2573   // pop {lr} - Restore return address of this original function.
2574   if (Thumb) {
2575     if (ST->isThumb1Only()) {
2576       BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
2577           .add(predOps(ARMCC::AL))
2578           .addReg(ScratchReg0);
2579       BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR)
2580           .addReg(ScratchReg0)
2581           .add(predOps(ARMCC::AL));
2582     } else {
2583       BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST))
2584           .addReg(ARM::LR, RegState::Define)
2585           .addReg(ARM::SP, RegState::Define)
2586           .addReg(ARM::SP)
2587           .addImm(4)
2588           .add(predOps(ARMCC::AL));
2589     }
2590   } else {
2591     BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
2592         .addReg(ARM::SP, RegState::Define)
2593         .addReg(ARM::SP)
2594         .add(predOps(ARMCC::AL))
2595         .addReg(ARM::LR);
2596   }
2597 
2598   // Restore SR0 and SR1 in case of __morestack() was called.
2599   // __morestack() will skip PostStackMBB block so we need to restore
2600   // scratch registers from here.
2601   // pop {SR0, SR1}
2602   if (Thumb) {
2603     BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
2604         .add(predOps(ARMCC::AL))
2605         .addReg(ScratchReg0)
2606         .addReg(ScratchReg1);
2607   } else {
2608     BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
2609         .addReg(ARM::SP, RegState::Define)
2610         .addReg(ARM::SP)
2611         .add(predOps(ARMCC::AL))
2612         .addReg(ScratchReg0)
2613         .addReg(ScratchReg1);
2614   }
2615 
2616   // Update the CFA offset now that we've popped
2617   CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
2618   BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2619       .addCFIIndex(CFIIndex);
2620 
2621   // Return from this function.
2622   BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL));
2623 
2624   // Restore SR0 and SR1 in case of __morestack() was not called.
2625   // pop {SR0, SR1}
2626   if (Thumb) {
2627     BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP))
2628         .add(predOps(ARMCC::AL))
2629         .addReg(ScratchReg0)
2630         .addReg(ScratchReg1);
2631   } else {
2632     BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD))
2633         .addReg(ARM::SP, RegState::Define)
2634         .addReg(ARM::SP)
2635         .add(predOps(ARMCC::AL))
2636         .addReg(ScratchReg0)
2637         .addReg(ScratchReg1);
2638   }
2639 
2640   // Update the CFA offset now that we've popped
2641   CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
2642   BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2643       .addCFIIndex(CFIIndex);
2644 
2645   // Tell debuggers that r4 and r5 are now the same as they were in the
2646   // previous function, that they're the "Same Value".
2647   CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
2648       nullptr, MRI->getDwarfRegNum(ScratchReg0, true)));
2649   BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2650       .addCFIIndex(CFIIndex);
2651   CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
2652       nullptr, MRI->getDwarfRegNum(ScratchReg1, true)));
2653   BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2654       .addCFIIndex(CFIIndex);
2655 
2656   // Organizing MBB lists
2657   PostStackMBB->addSuccessor(&PrologueMBB);
2658 
2659   AllocMBB->addSuccessor(PostStackMBB);
2660 
2661   GetMBB->addSuccessor(PostStackMBB);
2662   GetMBB->addSuccessor(AllocMBB);
2663 
2664   McrMBB->addSuccessor(GetMBB);
2665 
2666   PrevStackMBB->addSuccessor(McrMBB);
2667 
2668 #ifdef EXPENSIVE_CHECKS
2669   MF.verify();
2670 #endif
2671 }
2672