1 //===- ARMFastISel.cpp - ARM FastISel implementation ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the ARM-specific support for the FastISel class. Some 10 // of the target-specific code is generated by tablegen in the file 11 // ARMGenFastISel.inc, which is #included here. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARM.h" 16 #include "ARMBaseInstrInfo.h" 17 #include "ARMBaseRegisterInfo.h" 18 #include "ARMCallingConv.h" 19 #include "ARMConstantPoolValue.h" 20 #include "ARMISelLowering.h" 21 #include "ARMMachineFunctionInfo.h" 22 #include "ARMSubtarget.h" 23 #include "MCTargetDesc/ARMAddressingModes.h" 24 #include "MCTargetDesc/ARMBaseInfo.h" 25 #include "Utils/ARMBaseInfo.h" 26 #include "llvm/ADT/APFloat.h" 27 #include "llvm/ADT/APInt.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/CodeGen/CallingConvLower.h" 31 #include "llvm/CodeGen/FastISel.h" 32 #include "llvm/CodeGen/FunctionLoweringInfo.h" 33 #include "llvm/CodeGen/ISDOpcodes.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineConstantPool.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineInstr.h" 39 #include "llvm/CodeGen/MachineInstrBuilder.h" 40 #include "llvm/CodeGen/MachineMemOperand.h" 41 #include "llvm/CodeGen/MachineOperand.h" 42 #include "llvm/CodeGen/MachineRegisterInfo.h" 43 #include "llvm/CodeGen/RuntimeLibcalls.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetLowering.h" 46 #include "llvm/CodeGen/TargetOpcodes.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/ValueTypes.h" 49 #include "llvm/IR/Argument.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/CallingConv.h" 52 #include "llvm/IR/Constant.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/GetElementPtrTypeIterator.h" 58 #include "llvm/IR/GlobalValue.h" 59 #include "llvm/IR/GlobalVariable.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/User.h" 69 #include "llvm/IR/Value.h" 70 #include "llvm/MC/MCInstrDesc.h" 71 #include "llvm/MC/MCRegisterInfo.h" 72 #include "llvm/Support/Casting.h" 73 #include "llvm/Support/Compiler.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/MachineValueType.h" 76 #include "llvm/Support/MathExtras.h" 77 #include "llvm/Target/TargetMachine.h" 78 #include "llvm/Target/TargetOptions.h" 79 #include <cassert> 80 #include <cstdint> 81 #include <utility> 82 83 using namespace llvm; 84 85 namespace { 86 87 // All possible address modes, plus some. 88 struct Address { 89 enum { 90 RegBase, 91 FrameIndexBase 92 } BaseType = RegBase; 93 94 union { 95 unsigned Reg; 96 int FI; 97 } Base; 98 99 int Offset = 0; 100 101 // Innocuous defaults for our address. 102 Address() { 103 Base.Reg = 0; 104 } 105 }; 106 107 class ARMFastISel final : public FastISel { 108 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can 109 /// make the right decision when generating code for different targets. 110 const ARMSubtarget *Subtarget; 111 Module &M; 112 const TargetMachine &TM; 113 const TargetInstrInfo &TII; 114 const TargetLowering &TLI; 115 ARMFunctionInfo *AFI; 116 117 // Convenience variables to avoid some queries. 118 bool isThumb2; 119 LLVMContext *Context; 120 121 public: 122 explicit ARMFastISel(FunctionLoweringInfo &funcInfo, 123 const TargetLibraryInfo *libInfo) 124 : FastISel(funcInfo, libInfo), 125 Subtarget( 126 &static_cast<const ARMSubtarget &>(funcInfo.MF->getSubtarget())), 127 M(const_cast<Module &>(*funcInfo.Fn->getParent())), 128 TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()), 129 TLI(*Subtarget->getTargetLowering()) { 130 AFI = funcInfo.MF->getInfo<ARMFunctionInfo>(); 131 isThumb2 = AFI->isThumbFunction(); 132 Context = &funcInfo.Fn->getContext(); 133 } 134 135 private: 136 // Code from FastISel.cpp. 137 138 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 139 const TargetRegisterClass *RC, unsigned Op0); 140 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 141 const TargetRegisterClass *RC, 142 unsigned Op0, unsigned Op1); 143 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 144 const TargetRegisterClass *RC, 145 unsigned Op0, uint64_t Imm); 146 unsigned fastEmitInst_i(unsigned MachineInstOpcode, 147 const TargetRegisterClass *RC, 148 uint64_t Imm); 149 150 // Backend specific FastISel code. 151 152 bool fastSelectInstruction(const Instruction *I) override; 153 unsigned fastMaterializeConstant(const Constant *C) override; 154 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 155 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 156 const LoadInst *LI) override; 157 bool fastLowerArguments() override; 158 159 #include "ARMGenFastISel.inc" 160 161 // Instruction selection routines. 162 163 bool SelectLoad(const Instruction *I); 164 bool SelectStore(const Instruction *I); 165 bool SelectBranch(const Instruction *I); 166 bool SelectIndirectBr(const Instruction *I); 167 bool SelectCmp(const Instruction *I); 168 bool SelectFPExt(const Instruction *I); 169 bool SelectFPTrunc(const Instruction *I); 170 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 171 bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode); 172 bool SelectIToFP(const Instruction *I, bool isSigned); 173 bool SelectFPToI(const Instruction *I, bool isSigned); 174 bool SelectDiv(const Instruction *I, bool isSigned); 175 bool SelectRem(const Instruction *I, bool isSigned); 176 bool SelectCall(const Instruction *I, const char *IntrMemName); 177 bool SelectIntrinsicCall(const IntrinsicInst &I); 178 bool SelectSelect(const Instruction *I); 179 bool SelectRet(const Instruction *I); 180 bool SelectTrunc(const Instruction *I); 181 bool SelectIntExt(const Instruction *I); 182 bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy); 183 184 // Utility routines. 185 186 bool isPositionIndependent() const; 187 bool isTypeLegal(Type *Ty, MVT &VT); 188 bool isLoadTypeLegal(Type *Ty, MVT &VT); 189 bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 190 bool isZExt); 191 bool ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr, 192 unsigned Alignment = 0, bool isZExt = true, 193 bool allocReg = true); 194 bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 195 unsigned Alignment = 0); 196 bool ARMComputeAddress(const Value *Obj, Address &Addr); 197 void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3); 198 bool ARMIsMemCpySmall(uint64_t Len); 199 bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, 200 unsigned Alignment); 201 unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt); 202 unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT); 203 unsigned ARMMaterializeInt(const Constant *C, MVT VT); 204 unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT); 205 unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg); 206 unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg); 207 unsigned ARMSelectCallOp(bool UseReg); 208 unsigned ARMLowerPICELF(const GlobalValue *GV, MVT VT); 209 210 const TargetLowering *getTargetLowering() { return &TLI; } 211 212 // Call handling routines. 213 214 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, 215 bool Return, 216 bool isVarArg); 217 bool ProcessCallArgs(SmallVectorImpl<Value*> &Args, 218 SmallVectorImpl<Register> &ArgRegs, 219 SmallVectorImpl<MVT> &ArgVTs, 220 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 221 SmallVectorImpl<Register> &RegArgs, 222 CallingConv::ID CC, 223 unsigned &NumBytes, 224 bool isVarArg); 225 unsigned getLibcallReg(const Twine &Name); 226 bool FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs, 227 const Instruction *I, CallingConv::ID CC, 228 unsigned &NumBytes, bool isVarArg); 229 bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call); 230 231 // OptionalDef handling routines. 232 233 bool isARMNEONPred(const MachineInstr *MI); 234 bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR); 235 const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB); 236 void AddLoadStoreOperands(MVT VT, Address &Addr, 237 const MachineInstrBuilder &MIB, 238 MachineMemOperand::Flags Flags, bool useAM3); 239 }; 240 241 } // end anonymous namespace 242 243 // DefinesOptionalPredicate - This is different from DefinesPredicate in that 244 // we don't care about implicit defs here, just places we'll need to add a 245 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR. 246 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) { 247 if (!MI->hasOptionalDef()) 248 return false; 249 250 // Look to see if our OptionalDef is defining CPSR or CCR. 251 for (const MachineOperand &MO : MI->operands()) { 252 if (!MO.isReg() || !MO.isDef()) continue; 253 if (MO.getReg() == ARM::CPSR) 254 *CPSR = true; 255 } 256 return true; 257 } 258 259 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) { 260 const MCInstrDesc &MCID = MI->getDesc(); 261 262 // If we're a thumb2 or not NEON function we'll be handled via isPredicable. 263 if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON || 264 AFI->isThumb2Function()) 265 return MI->isPredicable(); 266 267 for (const MCOperandInfo &opInfo : MCID.operands()) 268 if (opInfo.isPredicate()) 269 return true; 270 271 return false; 272 } 273 274 // If the machine is predicable go ahead and add the predicate operands, if 275 // it needs default CC operands add those. 276 // TODO: If we want to support thumb1 then we'll need to deal with optional 277 // CPSR defs that need to be added before the remaining operands. See s_cc_out 278 // for descriptions why. 279 const MachineInstrBuilder & 280 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) { 281 MachineInstr *MI = &*MIB; 282 283 // Do we use a predicate? or... 284 // Are we NEON in ARM mode and have a predicate operand? If so, I know 285 // we're not predicable but add it anyways. 286 if (isARMNEONPred(MI)) 287 MIB.add(predOps(ARMCC::AL)); 288 289 // Do we optionally set a predicate? Preds is size > 0 iff the predicate 290 // defines CPSR. All other OptionalDefines in ARM are the CCR register. 291 bool CPSR = false; 292 if (DefinesOptionalPredicate(MI, &CPSR)) 293 MIB.add(CPSR ? t1CondCodeOp() : condCodeOp()); 294 return MIB; 295 } 296 297 unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 298 const TargetRegisterClass *RC, 299 unsigned Op0) { 300 Register ResultReg = createResultReg(RC); 301 const MCInstrDesc &II = TII.get(MachineInstOpcode); 302 303 // Make sure the input operand is sufficiently constrained to be legal 304 // for this instruction. 305 Op0 = constrainOperandRegClass(II, Op0, 1); 306 if (II.getNumDefs() >= 1) { 307 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, 308 ResultReg).addReg(Op0)); 309 } else { 310 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 311 .addReg(Op0)); 312 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 313 TII.get(TargetOpcode::COPY), ResultReg) 314 .addReg(II.ImplicitDefs[0])); 315 } 316 return ResultReg; 317 } 318 319 unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 320 const TargetRegisterClass *RC, 321 unsigned Op0, unsigned Op1) { 322 Register ResultReg = createResultReg(RC); 323 const MCInstrDesc &II = TII.get(MachineInstOpcode); 324 325 // Make sure the input operands are sufficiently constrained to be legal 326 // for this instruction. 327 Op0 = constrainOperandRegClass(II, Op0, 1); 328 Op1 = constrainOperandRegClass(II, Op1, 2); 329 330 if (II.getNumDefs() >= 1) { 331 AddOptionalDefs( 332 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 333 .addReg(Op0) 334 .addReg(Op1)); 335 } else { 336 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 337 .addReg(Op0) 338 .addReg(Op1)); 339 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 340 TII.get(TargetOpcode::COPY), ResultReg) 341 .addReg(II.ImplicitDefs[0])); 342 } 343 return ResultReg; 344 } 345 346 unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 347 const TargetRegisterClass *RC, 348 unsigned Op0, uint64_t Imm) { 349 Register ResultReg = createResultReg(RC); 350 const MCInstrDesc &II = TII.get(MachineInstOpcode); 351 352 // Make sure the input operand is sufficiently constrained to be legal 353 // for this instruction. 354 Op0 = constrainOperandRegClass(II, Op0, 1); 355 if (II.getNumDefs() >= 1) { 356 AddOptionalDefs( 357 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 358 .addReg(Op0) 359 .addImm(Imm)); 360 } else { 361 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 362 .addReg(Op0) 363 .addImm(Imm)); 364 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 365 TII.get(TargetOpcode::COPY), ResultReg) 366 .addReg(II.ImplicitDefs[0])); 367 } 368 return ResultReg; 369 } 370 371 unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode, 372 const TargetRegisterClass *RC, 373 uint64_t Imm) { 374 Register ResultReg = createResultReg(RC); 375 const MCInstrDesc &II = TII.get(MachineInstOpcode); 376 377 if (II.getNumDefs() >= 1) { 378 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, 379 ResultReg).addImm(Imm)); 380 } else { 381 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 382 .addImm(Imm)); 383 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 384 TII.get(TargetOpcode::COPY), ResultReg) 385 .addReg(II.ImplicitDefs[0])); 386 } 387 return ResultReg; 388 } 389 390 // TODO: Don't worry about 64-bit now, but when this is fixed remove the 391 // checks from the various callers. 392 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) { 393 if (VT == MVT::f64) return 0; 394 395 Register MoveReg = createResultReg(TLI.getRegClassFor(VT)); 396 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 397 TII.get(ARM::VMOVSR), MoveReg) 398 .addReg(SrcReg)); 399 return MoveReg; 400 } 401 402 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) { 403 if (VT == MVT::i64) return 0; 404 405 Register MoveReg = createResultReg(TLI.getRegClassFor(VT)); 406 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 407 TII.get(ARM::VMOVRS), MoveReg) 408 .addReg(SrcReg)); 409 return MoveReg; 410 } 411 412 // For double width floating point we need to materialize two constants 413 // (the high and the low) into integer registers then use a move to get 414 // the combined constant into an FP reg. 415 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) { 416 const APFloat Val = CFP->getValueAPF(); 417 bool is64bit = VT == MVT::f64; 418 419 // This checks to see if we can use VFP3 instructions to materialize 420 // a constant, otherwise we have to go through the constant pool. 421 if (TLI.isFPImmLegal(Val, VT)) { 422 int Imm; 423 unsigned Opc; 424 if (is64bit) { 425 Imm = ARM_AM::getFP64Imm(Val); 426 Opc = ARM::FCONSTD; 427 } else { 428 Imm = ARM_AM::getFP32Imm(Val); 429 Opc = ARM::FCONSTS; 430 } 431 Register DestReg = createResultReg(TLI.getRegClassFor(VT)); 432 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 433 TII.get(Opc), DestReg).addImm(Imm)); 434 return DestReg; 435 } 436 437 // Require VFP2 for loading fp constants. 438 if (!Subtarget->hasVFP2Base()) return false; 439 440 // MachineConstantPool wants an explicit alignment. 441 Align Alignment = DL.getPrefTypeAlign(CFP->getType()); 442 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Alignment); 443 Register DestReg = createResultReg(TLI.getRegClassFor(VT)); 444 unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS; 445 446 // The extra reg is for addrmode5. 447 AddOptionalDefs( 448 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 449 .addConstantPoolIndex(Idx) 450 .addReg(0)); 451 return DestReg; 452 } 453 454 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) { 455 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) 456 return 0; 457 458 // If we can do this in a single instruction without a constant pool entry 459 // do so now. 460 const ConstantInt *CI = cast<ConstantInt>(C); 461 if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) { 462 unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16; 463 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 464 &ARM::GPRRegClass; 465 Register ImmReg = createResultReg(RC); 466 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 467 TII.get(Opc), ImmReg) 468 .addImm(CI->getZExtValue())); 469 return ImmReg; 470 } 471 472 // Use MVN to emit negative constants. 473 if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) { 474 unsigned Imm = (unsigned)~(CI->getSExtValue()); 475 bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 476 (ARM_AM::getSOImmVal(Imm) != -1); 477 if (UseImm) { 478 unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi; 479 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 480 &ARM::GPRRegClass; 481 Register ImmReg = createResultReg(RC); 482 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 483 TII.get(Opc), ImmReg) 484 .addImm(Imm)); 485 return ImmReg; 486 } 487 } 488 489 unsigned ResultReg = 0; 490 if (Subtarget->useMovt()) 491 ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 492 493 if (ResultReg) 494 return ResultReg; 495 496 // Load from constant pool. For now 32-bit only. 497 if (VT != MVT::i32) 498 return 0; 499 500 // MachineConstantPool wants an explicit alignment. 501 Align Alignment = DL.getPrefTypeAlign(C->getType()); 502 unsigned Idx = MCP.getConstantPoolIndex(C, Alignment); 503 ResultReg = createResultReg(TLI.getRegClassFor(VT)); 504 if (isThumb2) 505 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 506 TII.get(ARM::t2LDRpci), ResultReg) 507 .addConstantPoolIndex(Idx)); 508 else { 509 // The extra immediate is for addrmode2. 510 ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0); 511 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 512 TII.get(ARM::LDRcp), ResultReg) 513 .addConstantPoolIndex(Idx) 514 .addImm(0)); 515 } 516 return ResultReg; 517 } 518 519 bool ARMFastISel::isPositionIndependent() const { 520 return TLI.isPositionIndependent(); 521 } 522 523 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) { 524 // For now 32-bit only. 525 if (VT != MVT::i32 || GV->isThreadLocal()) return 0; 526 527 // ROPI/RWPI not currently supported. 528 if (Subtarget->isROPI() || Subtarget->isRWPI()) 529 return 0; 530 531 bool IsIndirect = Subtarget->isGVIndirectSymbol(GV); 532 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass 533 : &ARM::GPRRegClass; 534 Register DestReg = createResultReg(RC); 535 536 // FastISel TLS support on non-MachO is broken, punt to SelectionDAG. 537 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 538 bool IsThreadLocal = GVar && GVar->isThreadLocal(); 539 if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0; 540 541 bool IsPositionIndependent = isPositionIndependent(); 542 // Use movw+movt when possible, it avoids constant pool entries. 543 // Non-darwin targets only support static movt relocations in FastISel. 544 if (Subtarget->useMovt() && 545 (Subtarget->isTargetMachO() || !IsPositionIndependent)) { 546 unsigned Opc; 547 unsigned char TF = 0; 548 if (Subtarget->isTargetMachO()) 549 TF = ARMII::MO_NONLAZY; 550 551 if (IsPositionIndependent) 552 Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel; 553 else 554 Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm; 555 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 556 TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF)); 557 } else { 558 // MachineConstantPool wants an explicit alignment. 559 Align Alignment = DL.getPrefTypeAlign(GV->getType()); 560 561 if (Subtarget->isTargetELF() && IsPositionIndependent) 562 return ARMLowerPICELF(GV, VT); 563 564 // Grab index. 565 unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0; 566 unsigned Id = AFI->createPICLabelUId(); 567 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id, 568 ARMCP::CPValue, 569 PCAdj); 570 unsigned Idx = MCP.getConstantPoolIndex(CPV, Alignment); 571 572 // Load value. 573 MachineInstrBuilder MIB; 574 if (isThumb2) { 575 unsigned Opc = IsPositionIndependent ? ARM::t2LDRpci_pic : ARM::t2LDRpci; 576 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 577 DestReg).addConstantPoolIndex(Idx); 578 if (IsPositionIndependent) 579 MIB.addImm(Id); 580 AddOptionalDefs(MIB); 581 } else { 582 // The extra immediate is for addrmode2. 583 DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0); 584 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 585 TII.get(ARM::LDRcp), DestReg) 586 .addConstantPoolIndex(Idx) 587 .addImm(0); 588 AddOptionalDefs(MIB); 589 590 if (IsPositionIndependent) { 591 unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD; 592 Register NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 593 594 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 595 DbgLoc, TII.get(Opc), NewDestReg) 596 .addReg(DestReg) 597 .addImm(Id); 598 AddOptionalDefs(MIB); 599 return NewDestReg; 600 } 601 } 602 } 603 604 if ((Subtarget->isTargetELF() && Subtarget->isGVInGOT(GV)) || 605 (Subtarget->isTargetMachO() && IsIndirect) || 606 Subtarget->genLongCalls()) { 607 MachineInstrBuilder MIB; 608 Register NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 609 if (isThumb2) 610 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 611 TII.get(ARM::t2LDRi12), NewDestReg) 612 .addReg(DestReg) 613 .addImm(0); 614 else 615 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 616 TII.get(ARM::LDRi12), NewDestReg) 617 .addReg(DestReg) 618 .addImm(0); 619 DestReg = NewDestReg; 620 AddOptionalDefs(MIB); 621 } 622 623 return DestReg; 624 } 625 626 unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) { 627 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 628 629 // Only handle simple types. 630 if (!CEVT.isSimple()) return 0; 631 MVT VT = CEVT.getSimpleVT(); 632 633 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 634 return ARMMaterializeFP(CFP, VT); 635 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 636 return ARMMaterializeGV(GV, VT); 637 else if (isa<ConstantInt>(C)) 638 return ARMMaterializeInt(C, VT); 639 640 return 0; 641 } 642 643 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF); 644 645 unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 646 // Don't handle dynamic allocas. 647 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 648 649 MVT VT; 650 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 651 652 DenseMap<const AllocaInst*, int>::iterator SI = 653 FuncInfo.StaticAllocaMap.find(AI); 654 655 // This will get lowered later into the correct offsets and registers 656 // via rewriteXFrameIndex. 657 if (SI != FuncInfo.StaticAllocaMap.end()) { 658 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 659 const TargetRegisterClass* RC = TLI.getRegClassFor(VT); 660 Register ResultReg = createResultReg(RC); 661 ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0); 662 663 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 664 TII.get(Opc), ResultReg) 665 .addFrameIndex(SI->second) 666 .addImm(0)); 667 return ResultReg; 668 } 669 670 return 0; 671 } 672 673 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) { 674 EVT evt = TLI.getValueType(DL, Ty, true); 675 676 // Only handle simple types. 677 if (evt == MVT::Other || !evt.isSimple()) return false; 678 VT = evt.getSimpleVT(); 679 680 // Handle all legal types, i.e. a register that will directly hold this 681 // value. 682 return TLI.isTypeLegal(VT); 683 } 684 685 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 686 if (isTypeLegal(Ty, VT)) return true; 687 688 // If this is a type than can be sign or zero-extended to a basic operation 689 // go ahead and accept it now. 690 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 691 return true; 692 693 return false; 694 } 695 696 // Computes the address to get to an object. 697 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) { 698 // Some boilerplate from the X86 FastISel. 699 const User *U = nullptr; 700 unsigned Opcode = Instruction::UserOp1; 701 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 702 // Don't walk into other basic blocks unless the object is an alloca from 703 // another block, otherwise it may not have a virtual register assigned. 704 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 705 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 706 Opcode = I->getOpcode(); 707 U = I; 708 } 709 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 710 Opcode = C->getOpcode(); 711 U = C; 712 } 713 714 if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType())) 715 if (Ty->getAddressSpace() > 255) 716 // Fast instruction selection doesn't support the special 717 // address spaces. 718 return false; 719 720 switch (Opcode) { 721 default: 722 break; 723 case Instruction::BitCast: 724 // Look through bitcasts. 725 return ARMComputeAddress(U->getOperand(0), Addr); 726 case Instruction::IntToPtr: 727 // Look past no-op inttoptrs. 728 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 729 TLI.getPointerTy(DL)) 730 return ARMComputeAddress(U->getOperand(0), Addr); 731 break; 732 case Instruction::PtrToInt: 733 // Look past no-op ptrtoints. 734 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 735 return ARMComputeAddress(U->getOperand(0), Addr); 736 break; 737 case Instruction::GetElementPtr: { 738 Address SavedAddr = Addr; 739 int TmpOffset = Addr.Offset; 740 741 // Iterate through the GEP folding the constants into offsets where 742 // we can. 743 gep_type_iterator GTI = gep_type_begin(U); 744 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); 745 i != e; ++i, ++GTI) { 746 const Value *Op = *i; 747 if (StructType *STy = GTI.getStructTypeOrNull()) { 748 const StructLayout *SL = DL.getStructLayout(STy); 749 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 750 TmpOffset += SL->getElementOffset(Idx); 751 } else { 752 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 753 while (true) { 754 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 755 // Constant-offset addressing. 756 TmpOffset += CI->getSExtValue() * S; 757 break; 758 } 759 if (canFoldAddIntoGEP(U, Op)) { 760 // A compatible add with a constant operand. Fold the constant. 761 ConstantInt *CI = 762 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 763 TmpOffset += CI->getSExtValue() * S; 764 // Iterate on the other operand. 765 Op = cast<AddOperator>(Op)->getOperand(0); 766 continue; 767 } 768 // Unsupported 769 goto unsupported_gep; 770 } 771 } 772 } 773 774 // Try to grab the base operand now. 775 Addr.Offset = TmpOffset; 776 if (ARMComputeAddress(U->getOperand(0), Addr)) return true; 777 778 // We failed, restore everything and try the other options. 779 Addr = SavedAddr; 780 781 unsupported_gep: 782 break; 783 } 784 case Instruction::Alloca: { 785 const AllocaInst *AI = cast<AllocaInst>(Obj); 786 DenseMap<const AllocaInst*, int>::iterator SI = 787 FuncInfo.StaticAllocaMap.find(AI); 788 if (SI != FuncInfo.StaticAllocaMap.end()) { 789 Addr.BaseType = Address::FrameIndexBase; 790 Addr.Base.FI = SI->second; 791 return true; 792 } 793 break; 794 } 795 } 796 797 // Try to get this in a register if nothing else has worked. 798 if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj); 799 return Addr.Base.Reg != 0; 800 } 801 802 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) { 803 bool needsLowering = false; 804 switch (VT.SimpleTy) { 805 default: llvm_unreachable("Unhandled load/store type!"); 806 case MVT::i1: 807 case MVT::i8: 808 case MVT::i16: 809 case MVT::i32: 810 if (!useAM3) { 811 // Integer loads/stores handle 12-bit offsets. 812 needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset); 813 // Handle negative offsets. 814 if (needsLowering && isThumb2) 815 needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 && 816 Addr.Offset > -256); 817 } else { 818 // ARM halfword load/stores and signed byte loads use +/-imm8 offsets. 819 needsLowering = (Addr.Offset > 255 || Addr.Offset < -255); 820 } 821 break; 822 case MVT::f32: 823 case MVT::f64: 824 // Floating point operands handle 8-bit offsets. 825 needsLowering = ((Addr.Offset & 0xff) != Addr.Offset); 826 break; 827 } 828 829 // If this is a stack pointer and the offset needs to be simplified then 830 // put the alloca address into a register, set the base type back to 831 // register and continue. This should almost never happen. 832 if (needsLowering && Addr.BaseType == Address::FrameIndexBase) { 833 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass 834 : &ARM::GPRRegClass; 835 Register ResultReg = createResultReg(RC); 836 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 837 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 838 TII.get(Opc), ResultReg) 839 .addFrameIndex(Addr.Base.FI) 840 .addImm(0)); 841 Addr.Base.Reg = ResultReg; 842 Addr.BaseType = Address::RegBase; 843 } 844 845 // Since the offset is too large for the load/store instruction 846 // get the reg+offset into a register. 847 if (needsLowering) { 848 Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg, 849 Addr.Offset, MVT::i32); 850 Addr.Offset = 0; 851 } 852 } 853 854 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr, 855 const MachineInstrBuilder &MIB, 856 MachineMemOperand::Flags Flags, 857 bool useAM3) { 858 // addrmode5 output depends on the selection dag addressing dividing the 859 // offset by 4 that it then later multiplies. Do this here as well. 860 if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64) 861 Addr.Offset /= 4; 862 863 // Frame base works a bit differently. Handle it separately. 864 if (Addr.BaseType == Address::FrameIndexBase) { 865 int FI = Addr.Base.FI; 866 int Offset = Addr.Offset; 867 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 868 MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags, 869 MFI.getObjectSize(FI), MFI.getObjectAlign(FI)); 870 // Now add the rest of the operands. 871 MIB.addFrameIndex(FI); 872 873 // ARM halfword load/stores and signed byte loads need an additional 874 // operand. 875 if (useAM3) { 876 int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 877 MIB.addReg(0); 878 MIB.addImm(Imm); 879 } else { 880 MIB.addImm(Addr.Offset); 881 } 882 MIB.addMemOperand(MMO); 883 } else { 884 // Now add the rest of the operands. 885 MIB.addReg(Addr.Base.Reg); 886 887 // ARM halfword load/stores and signed byte loads need an additional 888 // operand. 889 if (useAM3) { 890 int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 891 MIB.addReg(0); 892 MIB.addImm(Imm); 893 } else { 894 MIB.addImm(Addr.Offset); 895 } 896 } 897 AddOptionalDefs(MIB); 898 } 899 900 bool ARMFastISel::ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr, 901 unsigned Alignment, bool isZExt, bool allocReg) { 902 unsigned Opc; 903 bool useAM3 = false; 904 bool needVMOV = false; 905 const TargetRegisterClass *RC; 906 switch (VT.SimpleTy) { 907 // This is mostly going to be Neon/vector support. 908 default: return false; 909 case MVT::i1: 910 case MVT::i8: 911 if (isThumb2) { 912 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 913 Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8; 914 else 915 Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12; 916 } else { 917 if (isZExt) { 918 Opc = ARM::LDRBi12; 919 } else { 920 Opc = ARM::LDRSB; 921 useAM3 = true; 922 } 923 } 924 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 925 break; 926 case MVT::i16: 927 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) 928 return false; 929 930 if (isThumb2) { 931 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 932 Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8; 933 else 934 Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12; 935 } else { 936 Opc = isZExt ? ARM::LDRH : ARM::LDRSH; 937 useAM3 = true; 938 } 939 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 940 break; 941 case MVT::i32: 942 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) 943 return false; 944 945 if (isThumb2) { 946 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 947 Opc = ARM::t2LDRi8; 948 else 949 Opc = ARM::t2LDRi12; 950 } else { 951 Opc = ARM::LDRi12; 952 } 953 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 954 break; 955 case MVT::f32: 956 if (!Subtarget->hasVFP2Base()) return false; 957 // Unaligned loads need special handling. Floats require word-alignment. 958 if (Alignment && Alignment < 4) { 959 needVMOV = true; 960 VT = MVT::i32; 961 Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 962 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 963 } else { 964 Opc = ARM::VLDRS; 965 RC = TLI.getRegClassFor(VT); 966 } 967 break; 968 case MVT::f64: 969 // Can load and store double precision even without FeatureFP64 970 if (!Subtarget->hasVFP2Base()) return false; 971 // FIXME: Unaligned loads need special handling. Doublewords require 972 // word-alignment. 973 if (Alignment && Alignment < 4) 974 return false; 975 976 Opc = ARM::VLDRD; 977 RC = TLI.getRegClassFor(VT); 978 break; 979 } 980 // Simplify this down to something we can handle. 981 ARMSimplifyAddress(Addr, VT, useAM3); 982 983 // Create the base instruction, then add the operands. 984 if (allocReg) 985 ResultReg = createResultReg(RC); 986 assert(ResultReg > 255 && "Expected an allocated virtual register."); 987 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 988 TII.get(Opc), ResultReg); 989 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3); 990 991 // If we had an unaligned load of a float we've converted it to an regular 992 // load. Now we must move from the GRP to the FP register. 993 if (needVMOV) { 994 Register MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 995 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 996 TII.get(ARM::VMOVSR), MoveReg) 997 .addReg(ResultReg)); 998 ResultReg = MoveReg; 999 } 1000 return true; 1001 } 1002 1003 bool ARMFastISel::SelectLoad(const Instruction *I) { 1004 // Atomic loads need special handling. 1005 if (cast<LoadInst>(I)->isAtomic()) 1006 return false; 1007 1008 const Value *SV = I->getOperand(0); 1009 if (TLI.supportSwiftError()) { 1010 // Swifterror values can come from either a function parameter with 1011 // swifterror attribute or an alloca with swifterror attribute. 1012 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 1013 if (Arg->hasSwiftErrorAttr()) 1014 return false; 1015 } 1016 1017 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 1018 if (Alloca->isSwiftError()) 1019 return false; 1020 } 1021 } 1022 1023 // Verify we have a legal type before going any further. 1024 MVT VT; 1025 if (!isLoadTypeLegal(I->getType(), VT)) 1026 return false; 1027 1028 // See if we can handle this address. 1029 Address Addr; 1030 if (!ARMComputeAddress(I->getOperand(0), Addr)) return false; 1031 1032 Register ResultReg; 1033 if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment())) 1034 return false; 1035 updateValueMap(I, ResultReg); 1036 return true; 1037 } 1038 1039 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 1040 unsigned Alignment) { 1041 unsigned StrOpc; 1042 bool useAM3 = false; 1043 switch (VT.SimpleTy) { 1044 // This is mostly going to be Neon/vector support. 1045 default: return false; 1046 case MVT::i1: { 1047 Register Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass 1048 : &ARM::GPRRegClass); 1049 unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri; 1050 SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1); 1051 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1052 TII.get(Opc), Res) 1053 .addReg(SrcReg).addImm(1)); 1054 SrcReg = Res; 1055 LLVM_FALLTHROUGH; 1056 } 1057 case MVT::i8: 1058 if (isThumb2) { 1059 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1060 StrOpc = ARM::t2STRBi8; 1061 else 1062 StrOpc = ARM::t2STRBi12; 1063 } else { 1064 StrOpc = ARM::STRBi12; 1065 } 1066 break; 1067 case MVT::i16: 1068 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) 1069 return false; 1070 1071 if (isThumb2) { 1072 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1073 StrOpc = ARM::t2STRHi8; 1074 else 1075 StrOpc = ARM::t2STRHi12; 1076 } else { 1077 StrOpc = ARM::STRH; 1078 useAM3 = true; 1079 } 1080 break; 1081 case MVT::i32: 1082 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) 1083 return false; 1084 1085 if (isThumb2) { 1086 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1087 StrOpc = ARM::t2STRi8; 1088 else 1089 StrOpc = ARM::t2STRi12; 1090 } else { 1091 StrOpc = ARM::STRi12; 1092 } 1093 break; 1094 case MVT::f32: 1095 if (!Subtarget->hasVFP2Base()) return false; 1096 // Unaligned stores need special handling. Floats require word-alignment. 1097 if (Alignment && Alignment < 4) { 1098 Register MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 1099 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1100 TII.get(ARM::VMOVRS), MoveReg) 1101 .addReg(SrcReg)); 1102 SrcReg = MoveReg; 1103 VT = MVT::i32; 1104 StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12; 1105 } else { 1106 StrOpc = ARM::VSTRS; 1107 } 1108 break; 1109 case MVT::f64: 1110 // Can load and store double precision even without FeatureFP64 1111 if (!Subtarget->hasVFP2Base()) return false; 1112 // FIXME: Unaligned stores need special handling. Doublewords require 1113 // word-alignment. 1114 if (Alignment && Alignment < 4) 1115 return false; 1116 1117 StrOpc = ARM::VSTRD; 1118 break; 1119 } 1120 // Simplify this down to something we can handle. 1121 ARMSimplifyAddress(Addr, VT, useAM3); 1122 1123 // Create the base instruction, then add the operands. 1124 SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0); 1125 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1126 TII.get(StrOpc)) 1127 .addReg(SrcReg); 1128 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3); 1129 return true; 1130 } 1131 1132 bool ARMFastISel::SelectStore(const Instruction *I) { 1133 Value *Op0 = I->getOperand(0); 1134 unsigned SrcReg = 0; 1135 1136 // Atomic stores need special handling. 1137 if (cast<StoreInst>(I)->isAtomic()) 1138 return false; 1139 1140 const Value *PtrV = I->getOperand(1); 1141 if (TLI.supportSwiftError()) { 1142 // Swifterror values can come from either a function parameter with 1143 // swifterror attribute or an alloca with swifterror attribute. 1144 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 1145 if (Arg->hasSwiftErrorAttr()) 1146 return false; 1147 } 1148 1149 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 1150 if (Alloca->isSwiftError()) 1151 return false; 1152 } 1153 } 1154 1155 // Verify we have a legal type before going any further. 1156 MVT VT; 1157 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) 1158 return false; 1159 1160 // Get the value to be stored into a register. 1161 SrcReg = getRegForValue(Op0); 1162 if (SrcReg == 0) return false; 1163 1164 // See if we can handle this address. 1165 Address Addr; 1166 if (!ARMComputeAddress(I->getOperand(1), Addr)) 1167 return false; 1168 1169 if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment())) 1170 return false; 1171 return true; 1172 } 1173 1174 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) { 1175 switch (Pred) { 1176 // Needs two compares... 1177 case CmpInst::FCMP_ONE: 1178 case CmpInst::FCMP_UEQ: 1179 default: 1180 // AL is our "false" for now. The other two need more compares. 1181 return ARMCC::AL; 1182 case CmpInst::ICMP_EQ: 1183 case CmpInst::FCMP_OEQ: 1184 return ARMCC::EQ; 1185 case CmpInst::ICMP_SGT: 1186 case CmpInst::FCMP_OGT: 1187 return ARMCC::GT; 1188 case CmpInst::ICMP_SGE: 1189 case CmpInst::FCMP_OGE: 1190 return ARMCC::GE; 1191 case CmpInst::ICMP_UGT: 1192 case CmpInst::FCMP_UGT: 1193 return ARMCC::HI; 1194 case CmpInst::FCMP_OLT: 1195 return ARMCC::MI; 1196 case CmpInst::ICMP_ULE: 1197 case CmpInst::FCMP_OLE: 1198 return ARMCC::LS; 1199 case CmpInst::FCMP_ORD: 1200 return ARMCC::VC; 1201 case CmpInst::FCMP_UNO: 1202 return ARMCC::VS; 1203 case CmpInst::FCMP_UGE: 1204 return ARMCC::PL; 1205 case CmpInst::ICMP_SLT: 1206 case CmpInst::FCMP_ULT: 1207 return ARMCC::LT; 1208 case CmpInst::ICMP_SLE: 1209 case CmpInst::FCMP_ULE: 1210 return ARMCC::LE; 1211 case CmpInst::FCMP_UNE: 1212 case CmpInst::ICMP_NE: 1213 return ARMCC::NE; 1214 case CmpInst::ICMP_UGE: 1215 return ARMCC::HS; 1216 case CmpInst::ICMP_ULT: 1217 return ARMCC::LO; 1218 } 1219 } 1220 1221 bool ARMFastISel::SelectBranch(const Instruction *I) { 1222 const BranchInst *BI = cast<BranchInst>(I); 1223 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 1224 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 1225 1226 // Simple branch support. 1227 1228 // If we can, avoid recomputing the compare - redoing it could lead to wonky 1229 // behavior. 1230 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 1231 if (CI->hasOneUse() && (CI->getParent() == I->getParent())) { 1232 // Get the compare predicate. 1233 // Try to take advantage of fallthrough opportunities. 1234 CmpInst::Predicate Predicate = CI->getPredicate(); 1235 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1236 std::swap(TBB, FBB); 1237 Predicate = CmpInst::getInversePredicate(Predicate); 1238 } 1239 1240 ARMCC::CondCodes ARMPred = getComparePred(Predicate); 1241 1242 // We may not handle every CC for now. 1243 if (ARMPred == ARMCC::AL) return false; 1244 1245 // Emit the compare. 1246 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1247 return false; 1248 1249 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1250 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1251 .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR); 1252 finishCondBranch(BI->getParent(), TBB, FBB); 1253 return true; 1254 } 1255 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { 1256 MVT SourceVT; 1257 if (TI->hasOneUse() && TI->getParent() == I->getParent() && 1258 (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) { 1259 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1260 Register OpReg = getRegForValue(TI->getOperand(0)); 1261 OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0); 1262 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1263 TII.get(TstOpc)) 1264 .addReg(OpReg).addImm(1)); 1265 1266 unsigned CCMode = ARMCC::NE; 1267 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1268 std::swap(TBB, FBB); 1269 CCMode = ARMCC::EQ; 1270 } 1271 1272 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1273 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1274 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1275 1276 finishCondBranch(BI->getParent(), TBB, FBB); 1277 return true; 1278 } 1279 } else if (const ConstantInt *CI = 1280 dyn_cast<ConstantInt>(BI->getCondition())) { 1281 uint64_t Imm = CI->getZExtValue(); 1282 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 1283 fastEmitBranch(Target, DbgLoc); 1284 return true; 1285 } 1286 1287 Register CmpReg = getRegForValue(BI->getCondition()); 1288 if (CmpReg == 0) return false; 1289 1290 // We've been divorced from our compare! Our block was split, and 1291 // now our compare lives in a predecessor block. We musn't 1292 // re-compare here, as the children of the compare aren't guaranteed 1293 // live across the block boundary (we *could* check for this). 1294 // Regardless, the compare has been done in the predecessor block, 1295 // and it left a value for us in a virtual register. Ergo, we test 1296 // the one-bit value left in the virtual register. 1297 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1298 CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0); 1299 AddOptionalDefs( 1300 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc)) 1301 .addReg(CmpReg) 1302 .addImm(1)); 1303 1304 unsigned CCMode = ARMCC::NE; 1305 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1306 std::swap(TBB, FBB); 1307 CCMode = ARMCC::EQ; 1308 } 1309 1310 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1311 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1312 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1313 finishCondBranch(BI->getParent(), TBB, FBB); 1314 return true; 1315 } 1316 1317 bool ARMFastISel::SelectIndirectBr(const Instruction *I) { 1318 Register AddrReg = getRegForValue(I->getOperand(0)); 1319 if (AddrReg == 0) return false; 1320 1321 unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX; 1322 assert(isThumb2 || Subtarget->hasV4TOps()); 1323 1324 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1325 TII.get(Opc)).addReg(AddrReg)); 1326 1327 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1328 for (const BasicBlock *SuccBB : IB->successors()) 1329 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]); 1330 1331 return true; 1332 } 1333 1334 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 1335 bool isZExt) { 1336 Type *Ty = Src1Value->getType(); 1337 EVT SrcEVT = TLI.getValueType(DL, Ty, true); 1338 if (!SrcEVT.isSimple()) return false; 1339 MVT SrcVT = SrcEVT.getSimpleVT(); 1340 1341 if (Ty->isFloatTy() && !Subtarget->hasVFP2Base()) 1342 return false; 1343 1344 if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64())) 1345 return false; 1346 1347 // Check to see if the 2nd operand is a constant that we can encode directly 1348 // in the compare. 1349 int Imm = 0; 1350 bool UseImm = false; 1351 bool isNegativeImm = false; 1352 // FIXME: At -O0 we don't have anything that canonicalizes operand order. 1353 // Thus, Src1Value may be a ConstantInt, but we're missing it. 1354 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) { 1355 if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 || 1356 SrcVT == MVT::i1) { 1357 const APInt &CIVal = ConstInt->getValue(); 1358 Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue(); 1359 // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather 1360 // then a cmn, because there is no way to represent 2147483648 as a 1361 // signed 32-bit int. 1362 if (Imm < 0 && Imm != (int)0x80000000) { 1363 isNegativeImm = true; 1364 Imm = -Imm; 1365 } 1366 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1367 (ARM_AM::getSOImmVal(Imm) != -1); 1368 } 1369 } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) { 1370 if (SrcVT == MVT::f32 || SrcVT == MVT::f64) 1371 if (ConstFP->isZero() && !ConstFP->isNegative()) 1372 UseImm = true; 1373 } 1374 1375 unsigned CmpOpc; 1376 bool isICmp = true; 1377 bool needsExt = false; 1378 switch (SrcVT.SimpleTy) { 1379 default: return false; 1380 // TODO: Verify compares. 1381 case MVT::f32: 1382 isICmp = false; 1383 CmpOpc = UseImm ? ARM::VCMPZS : ARM::VCMPS; 1384 break; 1385 case MVT::f64: 1386 isICmp = false; 1387 CmpOpc = UseImm ? ARM::VCMPZD : ARM::VCMPD; 1388 break; 1389 case MVT::i1: 1390 case MVT::i8: 1391 case MVT::i16: 1392 needsExt = true; 1393 LLVM_FALLTHROUGH; 1394 case MVT::i32: 1395 if (isThumb2) { 1396 if (!UseImm) 1397 CmpOpc = ARM::t2CMPrr; 1398 else 1399 CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri; 1400 } else { 1401 if (!UseImm) 1402 CmpOpc = ARM::CMPrr; 1403 else 1404 CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri; 1405 } 1406 break; 1407 } 1408 1409 Register SrcReg1 = getRegForValue(Src1Value); 1410 if (SrcReg1 == 0) return false; 1411 1412 unsigned SrcReg2 = 0; 1413 if (!UseImm) { 1414 SrcReg2 = getRegForValue(Src2Value); 1415 if (SrcReg2 == 0) return false; 1416 } 1417 1418 // We have i1, i8, or i16, we need to either zero extend or sign extend. 1419 if (needsExt) { 1420 SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt); 1421 if (SrcReg1 == 0) return false; 1422 if (!UseImm) { 1423 SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt); 1424 if (SrcReg2 == 0) return false; 1425 } 1426 } 1427 1428 const MCInstrDesc &II = TII.get(CmpOpc); 1429 SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0); 1430 if (!UseImm) { 1431 SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1); 1432 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1433 .addReg(SrcReg1).addReg(SrcReg2)); 1434 } else { 1435 MachineInstrBuilder MIB; 1436 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1437 .addReg(SrcReg1); 1438 1439 // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0. 1440 if (isICmp) 1441 MIB.addImm(Imm); 1442 AddOptionalDefs(MIB); 1443 } 1444 1445 // For floating point we need to move the result to a comparison register 1446 // that we can then use for branches. 1447 if (Ty->isFloatTy() || Ty->isDoubleTy()) 1448 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1449 TII.get(ARM::FMSTAT))); 1450 return true; 1451 } 1452 1453 bool ARMFastISel::SelectCmp(const Instruction *I) { 1454 const CmpInst *CI = cast<CmpInst>(I); 1455 1456 // Get the compare predicate. 1457 ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate()); 1458 1459 // We may not handle every CC for now. 1460 if (ARMPred == ARMCC::AL) return false; 1461 1462 // Emit the compare. 1463 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1464 return false; 1465 1466 // Now set a register based on the comparison. Explicitly set the predicates 1467 // here. 1468 unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1469 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass 1470 : &ARM::GPRRegClass; 1471 Register DestReg = createResultReg(RC); 1472 Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0); 1473 unsigned ZeroReg = fastMaterializeConstant(Zero); 1474 // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR. 1475 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg) 1476 .addReg(ZeroReg).addImm(1) 1477 .addImm(ARMPred).addReg(ARM::CPSR); 1478 1479 updateValueMap(I, DestReg); 1480 return true; 1481 } 1482 1483 bool ARMFastISel::SelectFPExt(const Instruction *I) { 1484 // Make sure we have VFP and that we're extending float to double. 1485 if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false; 1486 1487 Value *V = I->getOperand(0); 1488 if (!I->getType()->isDoubleTy() || 1489 !V->getType()->isFloatTy()) return false; 1490 1491 Register Op = getRegForValue(V); 1492 if (Op == 0) return false; 1493 1494 Register Result = createResultReg(&ARM::DPRRegClass); 1495 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1496 TII.get(ARM::VCVTDS), Result) 1497 .addReg(Op)); 1498 updateValueMap(I, Result); 1499 return true; 1500 } 1501 1502 bool ARMFastISel::SelectFPTrunc(const Instruction *I) { 1503 // Make sure we have VFP and that we're truncating double to float. 1504 if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false; 1505 1506 Value *V = I->getOperand(0); 1507 if (!(I->getType()->isFloatTy() && 1508 V->getType()->isDoubleTy())) return false; 1509 1510 Register Op = getRegForValue(V); 1511 if (Op == 0) return false; 1512 1513 Register Result = createResultReg(&ARM::SPRRegClass); 1514 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1515 TII.get(ARM::VCVTSD), Result) 1516 .addReg(Op)); 1517 updateValueMap(I, Result); 1518 return true; 1519 } 1520 1521 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) { 1522 // Make sure we have VFP. 1523 if (!Subtarget->hasVFP2Base()) return false; 1524 1525 MVT DstVT; 1526 Type *Ty = I->getType(); 1527 if (!isTypeLegal(Ty, DstVT)) 1528 return false; 1529 1530 Value *Src = I->getOperand(0); 1531 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true); 1532 if (!SrcEVT.isSimple()) 1533 return false; 1534 MVT SrcVT = SrcEVT.getSimpleVT(); 1535 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 1536 return false; 1537 1538 Register SrcReg = getRegForValue(Src); 1539 if (SrcReg == 0) return false; 1540 1541 // Handle sign-extension. 1542 if (SrcVT == MVT::i16 || SrcVT == MVT::i8) { 1543 SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32, 1544 /*isZExt*/!isSigned); 1545 if (SrcReg == 0) return false; 1546 } 1547 1548 // The conversion routine works on fp-reg to fp-reg and the operand above 1549 // was an integer, move it to the fp registers if possible. 1550 unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg); 1551 if (FP == 0) return false; 1552 1553 unsigned Opc; 1554 if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS; 1555 else if (Ty->isDoubleTy() && Subtarget->hasFP64()) 1556 Opc = isSigned ? ARM::VSITOD : ARM::VUITOD; 1557 else return false; 1558 1559 Register ResultReg = createResultReg(TLI.getRegClassFor(DstVT)); 1560 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1561 TII.get(Opc), ResultReg).addReg(FP)); 1562 updateValueMap(I, ResultReg); 1563 return true; 1564 } 1565 1566 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) { 1567 // Make sure we have VFP. 1568 if (!Subtarget->hasVFP2Base()) return false; 1569 1570 MVT DstVT; 1571 Type *RetTy = I->getType(); 1572 if (!isTypeLegal(RetTy, DstVT)) 1573 return false; 1574 1575 Register Op = getRegForValue(I->getOperand(0)); 1576 if (Op == 0) return false; 1577 1578 unsigned Opc; 1579 Type *OpTy = I->getOperand(0)->getType(); 1580 if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS; 1581 else if (OpTy->isDoubleTy() && Subtarget->hasFP64()) 1582 Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD; 1583 else return false; 1584 1585 // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg. 1586 Register ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1587 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1588 TII.get(Opc), ResultReg).addReg(Op)); 1589 1590 // This result needs to be in an integer register, but the conversion only 1591 // takes place in fp-regs. 1592 unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg); 1593 if (IntReg == 0) return false; 1594 1595 updateValueMap(I, IntReg); 1596 return true; 1597 } 1598 1599 bool ARMFastISel::SelectSelect(const Instruction *I) { 1600 MVT VT; 1601 if (!isTypeLegal(I->getType(), VT)) 1602 return false; 1603 1604 // Things need to be register sized for register moves. 1605 if (VT != MVT::i32) return false; 1606 1607 Register CondReg = getRegForValue(I->getOperand(0)); 1608 if (CondReg == 0) return false; 1609 Register Op1Reg = getRegForValue(I->getOperand(1)); 1610 if (Op1Reg == 0) return false; 1611 1612 // Check to see if we can use an immediate in the conditional move. 1613 int Imm = 0; 1614 bool UseImm = false; 1615 bool isNegativeImm = false; 1616 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) { 1617 assert(VT == MVT::i32 && "Expecting an i32."); 1618 Imm = (int)ConstInt->getValue().getZExtValue(); 1619 if (Imm < 0) { 1620 isNegativeImm = true; 1621 Imm = ~Imm; 1622 } 1623 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1624 (ARM_AM::getSOImmVal(Imm) != -1); 1625 } 1626 1627 unsigned Op2Reg = 0; 1628 if (!UseImm) { 1629 Op2Reg = getRegForValue(I->getOperand(2)); 1630 if (Op2Reg == 0) return false; 1631 } 1632 1633 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1634 CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0); 1635 AddOptionalDefs( 1636 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc)) 1637 .addReg(CondReg) 1638 .addImm(1)); 1639 1640 unsigned MovCCOpc; 1641 const TargetRegisterClass *RC; 1642 if (!UseImm) { 1643 RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass; 1644 MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr; 1645 } else { 1646 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass; 1647 if (!isNegativeImm) 1648 MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1649 else 1650 MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi; 1651 } 1652 Register ResultReg = createResultReg(RC); 1653 if (!UseImm) { 1654 Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1); 1655 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2); 1656 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), 1657 ResultReg) 1658 .addReg(Op2Reg) 1659 .addReg(Op1Reg) 1660 .addImm(ARMCC::NE) 1661 .addReg(ARM::CPSR); 1662 } else { 1663 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1); 1664 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), 1665 ResultReg) 1666 .addReg(Op1Reg) 1667 .addImm(Imm) 1668 .addImm(ARMCC::EQ) 1669 .addReg(ARM::CPSR); 1670 } 1671 updateValueMap(I, ResultReg); 1672 return true; 1673 } 1674 1675 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) { 1676 MVT VT; 1677 Type *Ty = I->getType(); 1678 if (!isTypeLegal(Ty, VT)) 1679 return false; 1680 1681 // If we have integer div support we should have selected this automagically. 1682 // In case we have a real miss go ahead and return false and we'll pick 1683 // it up later. 1684 if (Subtarget->hasDivideInThumbMode()) 1685 return false; 1686 1687 // Otherwise emit a libcall. 1688 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1689 if (VT == MVT::i8) 1690 LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8; 1691 else if (VT == MVT::i16) 1692 LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16; 1693 else if (VT == MVT::i32) 1694 LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32; 1695 else if (VT == MVT::i64) 1696 LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64; 1697 else if (VT == MVT::i128) 1698 LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128; 1699 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!"); 1700 1701 return ARMEmitLibcall(I, LC); 1702 } 1703 1704 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) { 1705 MVT VT; 1706 Type *Ty = I->getType(); 1707 if (!isTypeLegal(Ty, VT)) 1708 return false; 1709 1710 // Many ABIs do not provide a libcall for standalone remainder, so we need to 1711 // use divrem (see the RTABI 4.3.1). Since FastISel can't handle non-double 1712 // multi-reg returns, we'll have to bail out. 1713 if (!TLI.hasStandaloneRem(VT)) { 1714 return false; 1715 } 1716 1717 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1718 if (VT == MVT::i8) 1719 LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8; 1720 else if (VT == MVT::i16) 1721 LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16; 1722 else if (VT == MVT::i32) 1723 LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32; 1724 else if (VT == MVT::i64) 1725 LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64; 1726 else if (VT == MVT::i128) 1727 LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128; 1728 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!"); 1729 1730 return ARMEmitLibcall(I, LC); 1731 } 1732 1733 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1734 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1735 1736 // We can get here in the case when we have a binary operation on a non-legal 1737 // type and the target independent selector doesn't know how to handle it. 1738 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 1739 return false; 1740 1741 unsigned Opc; 1742 switch (ISDOpcode) { 1743 default: return false; 1744 case ISD::ADD: 1745 Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr; 1746 break; 1747 case ISD::OR: 1748 Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr; 1749 break; 1750 case ISD::SUB: 1751 Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr; 1752 break; 1753 } 1754 1755 Register SrcReg1 = getRegForValue(I->getOperand(0)); 1756 if (SrcReg1 == 0) return false; 1757 1758 // TODO: Often the 2nd operand is an immediate, which can be encoded directly 1759 // in the instruction, rather then materializing the value in a register. 1760 Register SrcReg2 = getRegForValue(I->getOperand(1)); 1761 if (SrcReg2 == 0) return false; 1762 1763 Register ResultReg = createResultReg(&ARM::GPRnopcRegClass); 1764 SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1); 1765 SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2); 1766 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1767 TII.get(Opc), ResultReg) 1768 .addReg(SrcReg1).addReg(SrcReg2)); 1769 updateValueMap(I, ResultReg); 1770 return true; 1771 } 1772 1773 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) { 1774 EVT FPVT = TLI.getValueType(DL, I->getType(), true); 1775 if (!FPVT.isSimple()) return false; 1776 MVT VT = FPVT.getSimpleVT(); 1777 1778 // FIXME: Support vector types where possible. 1779 if (VT.isVector()) 1780 return false; 1781 1782 // We can get here in the case when we want to use NEON for our fp 1783 // operations, but can't figure out how to. Just use the vfp instructions 1784 // if we have them. 1785 // FIXME: It'd be nice to use NEON instructions. 1786 Type *Ty = I->getType(); 1787 if (Ty->isFloatTy() && !Subtarget->hasVFP2Base()) 1788 return false; 1789 if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64())) 1790 return false; 1791 1792 unsigned Opc; 1793 bool is64bit = VT == MVT::f64 || VT == MVT::i64; 1794 switch (ISDOpcode) { 1795 default: return false; 1796 case ISD::FADD: 1797 Opc = is64bit ? ARM::VADDD : ARM::VADDS; 1798 break; 1799 case ISD::FSUB: 1800 Opc = is64bit ? ARM::VSUBD : ARM::VSUBS; 1801 break; 1802 case ISD::FMUL: 1803 Opc = is64bit ? ARM::VMULD : ARM::VMULS; 1804 break; 1805 } 1806 Register Op1 = getRegForValue(I->getOperand(0)); 1807 if (Op1 == 0) return false; 1808 1809 Register Op2 = getRegForValue(I->getOperand(1)); 1810 if (Op2 == 0) return false; 1811 1812 Register ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); 1813 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1814 TII.get(Opc), ResultReg) 1815 .addReg(Op1).addReg(Op2)); 1816 updateValueMap(I, ResultReg); 1817 return true; 1818 } 1819 1820 // Call Handling Code 1821 1822 // This is largely taken directly from CCAssignFnForNode 1823 // TODO: We may not support all of this. 1824 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, 1825 bool Return, 1826 bool isVarArg) { 1827 switch (CC) { 1828 default: 1829 report_fatal_error("Unsupported calling convention"); 1830 case CallingConv::Fast: 1831 if (Subtarget->hasVFP2Base() && !isVarArg) { 1832 if (!Subtarget->isAAPCS_ABI()) 1833 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); 1834 // For AAPCS ABI targets, just use VFP variant of the calling convention. 1835 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); 1836 } 1837 LLVM_FALLTHROUGH; 1838 case CallingConv::C: 1839 case CallingConv::CXX_FAST_TLS: 1840 // Use target triple & subtarget features to do actual dispatch. 1841 if (Subtarget->isAAPCS_ABI()) { 1842 if (Subtarget->hasVFP2Base() && 1843 TM.Options.FloatABIType == FloatABI::Hard && !isVarArg) 1844 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1845 else 1846 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1847 } else { 1848 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1849 } 1850 case CallingConv::ARM_AAPCS_VFP: 1851 case CallingConv::Swift: 1852 case CallingConv::SwiftTail: 1853 if (!isVarArg) 1854 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1855 // Fall through to soft float variant, variadic functions don't 1856 // use hard floating point ABI. 1857 LLVM_FALLTHROUGH; 1858 case CallingConv::ARM_AAPCS: 1859 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1860 case CallingConv::ARM_APCS: 1861 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1862 case CallingConv::GHC: 1863 if (Return) 1864 report_fatal_error("Can't return in GHC call convention"); 1865 else 1866 return CC_ARM_APCS_GHC; 1867 case CallingConv::CFGuard_Check: 1868 return (Return ? RetCC_ARM_AAPCS : CC_ARM_Win32_CFGuard_Check); 1869 } 1870 } 1871 1872 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args, 1873 SmallVectorImpl<Register> &ArgRegs, 1874 SmallVectorImpl<MVT> &ArgVTs, 1875 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1876 SmallVectorImpl<Register> &RegArgs, 1877 CallingConv::ID CC, 1878 unsigned &NumBytes, 1879 bool isVarArg) { 1880 SmallVector<CCValAssign, 16> ArgLocs; 1881 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context); 1882 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, 1883 CCAssignFnForCall(CC, false, isVarArg)); 1884 1885 // Check that we can handle all of the arguments. If we can't, then bail out 1886 // now before we add code to the MBB. 1887 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1888 CCValAssign &VA = ArgLocs[i]; 1889 MVT ArgVT = ArgVTs[VA.getValNo()]; 1890 1891 // We don't handle NEON/vector parameters yet. 1892 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64) 1893 return false; 1894 1895 // Now copy/store arg to correct locations. 1896 if (VA.isRegLoc() && !VA.needsCustom()) { 1897 continue; 1898 } else if (VA.needsCustom()) { 1899 // TODO: We need custom lowering for vector (v2f64) args. 1900 if (VA.getLocVT() != MVT::f64 || 1901 // TODO: Only handle register args for now. 1902 !VA.isRegLoc() || !ArgLocs[++i].isRegLoc()) 1903 return false; 1904 } else { 1905 switch (ArgVT.SimpleTy) { 1906 default: 1907 return false; 1908 case MVT::i1: 1909 case MVT::i8: 1910 case MVT::i16: 1911 case MVT::i32: 1912 break; 1913 case MVT::f32: 1914 if (!Subtarget->hasVFP2Base()) 1915 return false; 1916 break; 1917 case MVT::f64: 1918 if (!Subtarget->hasVFP2Base()) 1919 return false; 1920 break; 1921 } 1922 } 1923 } 1924 1925 // At the point, we are able to handle the call's arguments in fast isel. 1926 1927 // Get a count of how many bytes are to be pushed on the stack. 1928 NumBytes = CCInfo.getNextStackOffset(); 1929 1930 // Issue CALLSEQ_START 1931 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 1932 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1933 TII.get(AdjStackDown)) 1934 .addImm(NumBytes).addImm(0)); 1935 1936 // Process the args. 1937 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1938 CCValAssign &VA = ArgLocs[i]; 1939 const Value *ArgVal = Args[VA.getValNo()]; 1940 Register Arg = ArgRegs[VA.getValNo()]; 1941 MVT ArgVT = ArgVTs[VA.getValNo()]; 1942 1943 assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) && 1944 "We don't handle NEON/vector parameters yet."); 1945 1946 // Handle arg promotion, etc. 1947 switch (VA.getLocInfo()) { 1948 case CCValAssign::Full: break; 1949 case CCValAssign::SExt: { 1950 MVT DestVT = VA.getLocVT(); 1951 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false); 1952 assert(Arg != 0 && "Failed to emit a sext"); 1953 ArgVT = DestVT; 1954 break; 1955 } 1956 case CCValAssign::AExt: 1957 // Intentional fall-through. Handle AExt and ZExt. 1958 case CCValAssign::ZExt: { 1959 MVT DestVT = VA.getLocVT(); 1960 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true); 1961 assert(Arg != 0 && "Failed to emit a zext"); 1962 ArgVT = DestVT; 1963 break; 1964 } 1965 case CCValAssign::BCvt: { 1966 unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg); 1967 assert(BC != 0 && "Failed to emit a bitcast!"); 1968 Arg = BC; 1969 ArgVT = VA.getLocVT(); 1970 break; 1971 } 1972 default: llvm_unreachable("Unknown arg promotion!"); 1973 } 1974 1975 // Now copy/store arg to correct locations. 1976 if (VA.isRegLoc() && !VA.needsCustom()) { 1977 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1978 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg); 1979 RegArgs.push_back(VA.getLocReg()); 1980 } else if (VA.needsCustom()) { 1981 // TODO: We need custom lowering for vector (v2f64) args. 1982 assert(VA.getLocVT() == MVT::f64 && 1983 "Custom lowering for v2f64 args not available"); 1984 1985 // FIXME: ArgLocs[++i] may extend beyond ArgLocs.size() 1986 CCValAssign &NextVA = ArgLocs[++i]; 1987 1988 assert(VA.isRegLoc() && NextVA.isRegLoc() && 1989 "We only handle register args!"); 1990 1991 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1992 TII.get(ARM::VMOVRRD), VA.getLocReg()) 1993 .addReg(NextVA.getLocReg(), RegState::Define) 1994 .addReg(Arg)); 1995 RegArgs.push_back(VA.getLocReg()); 1996 RegArgs.push_back(NextVA.getLocReg()); 1997 } else { 1998 assert(VA.isMemLoc()); 1999 // Need to store on the stack. 2000 2001 // Don't emit stores for undef values. 2002 if (isa<UndefValue>(ArgVal)) 2003 continue; 2004 2005 Address Addr; 2006 Addr.BaseType = Address::RegBase; 2007 Addr.Base.Reg = ARM::SP; 2008 Addr.Offset = VA.getLocMemOffset(); 2009 2010 bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet; 2011 assert(EmitRet && "Could not emit a store for argument!"); 2012 } 2013 } 2014 2015 return true; 2016 } 2017 2018 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs, 2019 const Instruction *I, CallingConv::ID CC, 2020 unsigned &NumBytes, bool isVarArg) { 2021 // Issue CALLSEQ_END 2022 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 2023 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2024 TII.get(AdjStackUp)) 2025 .addImm(NumBytes).addImm(-1ULL)); 2026 2027 // Now the return value. 2028 if (RetVT != MVT::isVoid) { 2029 SmallVector<CCValAssign, 16> RVLocs; 2030 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); 2031 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2032 2033 // Copy all of the result registers out of their specified physreg. 2034 if (RVLocs.size() == 2 && RetVT == MVT::f64) { 2035 // For this move we copy into two registers and then move into the 2036 // double fp reg we want. 2037 MVT DestVT = RVLocs[0].getValVT(); 2038 const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT); 2039 Register ResultReg = createResultReg(DstRC); 2040 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2041 TII.get(ARM::VMOVDRR), ResultReg) 2042 .addReg(RVLocs[0].getLocReg()) 2043 .addReg(RVLocs[1].getLocReg())); 2044 2045 UsedRegs.push_back(RVLocs[0].getLocReg()); 2046 UsedRegs.push_back(RVLocs[1].getLocReg()); 2047 2048 // Finally update the result. 2049 updateValueMap(I, ResultReg); 2050 } else { 2051 assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!"); 2052 MVT CopyVT = RVLocs[0].getValVT(); 2053 2054 // Special handling for extended integers. 2055 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16) 2056 CopyVT = MVT::i32; 2057 2058 const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT); 2059 2060 Register ResultReg = createResultReg(DstRC); 2061 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2062 TII.get(TargetOpcode::COPY), 2063 ResultReg).addReg(RVLocs[0].getLocReg()); 2064 UsedRegs.push_back(RVLocs[0].getLocReg()); 2065 2066 // Finally update the result. 2067 updateValueMap(I, ResultReg); 2068 } 2069 } 2070 2071 return true; 2072 } 2073 2074 bool ARMFastISel::SelectRet(const Instruction *I) { 2075 const ReturnInst *Ret = cast<ReturnInst>(I); 2076 const Function &F = *I->getParent()->getParent(); 2077 const bool IsCmseNSEntry = F.hasFnAttribute("cmse_nonsecure_entry"); 2078 2079 if (!FuncInfo.CanLowerReturn) 2080 return false; 2081 2082 if (TLI.supportSwiftError() && 2083 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 2084 return false; 2085 2086 if (TLI.supportSplitCSR(FuncInfo.MF)) 2087 return false; 2088 2089 // Build a list of return value registers. 2090 SmallVector<unsigned, 4> RetRegs; 2091 2092 CallingConv::ID CC = F.getCallingConv(); 2093 if (Ret->getNumOperands() > 0) { 2094 SmallVector<ISD::OutputArg, 4> Outs; 2095 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 2096 2097 // Analyze operands of the call, assigning locations to each operand. 2098 SmallVector<CCValAssign, 16> ValLocs; 2099 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); 2100 CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */, 2101 F.isVarArg())); 2102 2103 const Value *RV = Ret->getOperand(0); 2104 Register Reg = getRegForValue(RV); 2105 if (Reg == 0) 2106 return false; 2107 2108 // Only handle a single return value for now. 2109 if (ValLocs.size() != 1) 2110 return false; 2111 2112 CCValAssign &VA = ValLocs[0]; 2113 2114 // Don't bother handling odd stuff for now. 2115 if (VA.getLocInfo() != CCValAssign::Full) 2116 return false; 2117 // Only handle register returns for now. 2118 if (!VA.isRegLoc()) 2119 return false; 2120 2121 unsigned SrcReg = Reg + VA.getValNo(); 2122 EVT RVEVT = TLI.getValueType(DL, RV->getType()); 2123 if (!RVEVT.isSimple()) return false; 2124 MVT RVVT = RVEVT.getSimpleVT(); 2125 MVT DestVT = VA.getValVT(); 2126 // Special handling for extended integers. 2127 if (RVVT != DestVT) { 2128 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) 2129 return false; 2130 2131 assert(DestVT == MVT::i32 && "ARM should always ext to i32"); 2132 2133 // Perform extension if flagged as either zext or sext. Otherwise, do 2134 // nothing. 2135 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) { 2136 SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt()); 2137 if (SrcReg == 0) return false; 2138 } 2139 } 2140 2141 // Make the copy. 2142 Register DstReg = VA.getLocReg(); 2143 const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg); 2144 // Avoid a cross-class copy. This is very unlikely. 2145 if (!SrcRC->contains(DstReg)) 2146 return false; 2147 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2148 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); 2149 2150 // Add register to return instruction. 2151 RetRegs.push_back(VA.getLocReg()); 2152 } 2153 2154 unsigned RetOpc; 2155 if (IsCmseNSEntry) 2156 if (isThumb2) 2157 RetOpc = ARM::tBXNS_RET; 2158 else 2159 llvm_unreachable("CMSE not valid for non-Thumb targets"); 2160 else 2161 RetOpc = Subtarget->getReturnOpcode(); 2162 2163 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2164 TII.get(RetOpc)); 2165 AddOptionalDefs(MIB); 2166 for (unsigned R : RetRegs) 2167 MIB.addReg(R, RegState::Implicit); 2168 return true; 2169 } 2170 2171 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) { 2172 if (UseReg) 2173 return isThumb2 ? gettBLXrOpcode(*MF) : getBLXOpcode(*MF); 2174 else 2175 return isThumb2 ? ARM::tBL : ARM::BL; 2176 } 2177 2178 unsigned ARMFastISel::getLibcallReg(const Twine &Name) { 2179 // Manually compute the global's type to avoid building it when unnecessary. 2180 Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0); 2181 EVT LCREVT = TLI.getValueType(DL, GVTy); 2182 if (!LCREVT.isSimple()) return 0; 2183 2184 GlobalValue *GV = M.getNamedGlobal(Name.str()); 2185 if (!GV) 2186 GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false, 2187 GlobalValue::ExternalLinkage, nullptr, Name); 2188 2189 return ARMMaterializeGV(GV, LCREVT.getSimpleVT()); 2190 } 2191 2192 // A quick function that will emit a call for a named libcall in F with the 2193 // vector of passed arguments for the Instruction in I. We can assume that we 2194 // can emit a call for any libcall we can produce. This is an abridged version 2195 // of the full call infrastructure since we won't need to worry about things 2196 // like computed function pointers or strange arguments at call sites. 2197 // TODO: Try to unify this and the normal call bits for ARM, then try to unify 2198 // with X86. 2199 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) { 2200 CallingConv::ID CC = TLI.getLibcallCallingConv(Call); 2201 2202 // Handle *simple* calls for now. 2203 Type *RetTy = I->getType(); 2204 MVT RetVT; 2205 if (RetTy->isVoidTy()) 2206 RetVT = MVT::isVoid; 2207 else if (!isTypeLegal(RetTy, RetVT)) 2208 return false; 2209 2210 // Can't handle non-double multi-reg retvals. 2211 if (RetVT != MVT::isVoid && RetVT != MVT::i32) { 2212 SmallVector<CCValAssign, 16> RVLocs; 2213 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 2214 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false)); 2215 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2216 return false; 2217 } 2218 2219 // Set up the argument vectors. 2220 SmallVector<Value*, 8> Args; 2221 SmallVector<Register, 8> ArgRegs; 2222 SmallVector<MVT, 8> ArgVTs; 2223 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2224 Args.reserve(I->getNumOperands()); 2225 ArgRegs.reserve(I->getNumOperands()); 2226 ArgVTs.reserve(I->getNumOperands()); 2227 ArgFlags.reserve(I->getNumOperands()); 2228 for (Value *Op : I->operands()) { 2229 Register Arg = getRegForValue(Op); 2230 if (Arg == 0) return false; 2231 2232 Type *ArgTy = Op->getType(); 2233 MVT ArgVT; 2234 if (!isTypeLegal(ArgTy, ArgVT)) return false; 2235 2236 ISD::ArgFlagsTy Flags; 2237 Flags.setOrigAlign(DL.getABITypeAlign(ArgTy)); 2238 2239 Args.push_back(Op); 2240 ArgRegs.push_back(Arg); 2241 ArgVTs.push_back(ArgVT); 2242 ArgFlags.push_back(Flags); 2243 } 2244 2245 // Handle the arguments now that we've gotten them. 2246 SmallVector<Register, 4> RegArgs; 2247 unsigned NumBytes; 2248 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2249 RegArgs, CC, NumBytes, false)) 2250 return false; 2251 2252 Register CalleeReg; 2253 if (Subtarget->genLongCalls()) { 2254 CalleeReg = getLibcallReg(TLI.getLibcallName(Call)); 2255 if (CalleeReg == 0) return false; 2256 } 2257 2258 // Issue the call. 2259 unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls()); 2260 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2261 DbgLoc, TII.get(CallOpc)); 2262 // BL / BLX don't take a predicate, but tBL / tBLX do. 2263 if (isThumb2) 2264 MIB.add(predOps(ARMCC::AL)); 2265 if (Subtarget->genLongCalls()) { 2266 CalleeReg = 2267 constrainOperandRegClass(TII.get(CallOpc), CalleeReg, isThumb2 ? 2 : 0); 2268 MIB.addReg(CalleeReg); 2269 } else 2270 MIB.addExternalSymbol(TLI.getLibcallName(Call)); 2271 2272 // Add implicit physical register uses to the call. 2273 for (Register R : RegArgs) 2274 MIB.addReg(R, RegState::Implicit); 2275 2276 // Add a register mask with the call-preserved registers. 2277 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2278 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 2279 2280 // Finish off the call including any return values. 2281 SmallVector<Register, 4> UsedRegs; 2282 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false; 2283 2284 // Set all unused physreg defs as dead. 2285 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2286 2287 return true; 2288 } 2289 2290 bool ARMFastISel::SelectCall(const Instruction *I, 2291 const char *IntrMemName = nullptr) { 2292 const CallInst *CI = cast<CallInst>(I); 2293 const Value *Callee = CI->getCalledOperand(); 2294 2295 // Can't handle inline asm. 2296 if (isa<InlineAsm>(Callee)) return false; 2297 2298 // Allow SelectionDAG isel to handle tail calls. 2299 if (CI->isTailCall()) return false; 2300 2301 // Check the calling convention. 2302 CallingConv::ID CC = CI->getCallingConv(); 2303 2304 // TODO: Avoid some calling conventions? 2305 2306 FunctionType *FTy = CI->getFunctionType(); 2307 bool isVarArg = FTy->isVarArg(); 2308 2309 // Handle *simple* calls for now. 2310 Type *RetTy = I->getType(); 2311 MVT RetVT; 2312 if (RetTy->isVoidTy()) 2313 RetVT = MVT::isVoid; 2314 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 2315 RetVT != MVT::i8 && RetVT != MVT::i1) 2316 return false; 2317 2318 // Can't handle non-double multi-reg retvals. 2319 if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 && 2320 RetVT != MVT::i16 && RetVT != MVT::i32) { 2321 SmallVector<CCValAssign, 16> RVLocs; 2322 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); 2323 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2324 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2325 return false; 2326 } 2327 2328 // Set up the argument vectors. 2329 SmallVector<Value*, 8> Args; 2330 SmallVector<Register, 8> ArgRegs; 2331 SmallVector<MVT, 8> ArgVTs; 2332 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2333 unsigned arg_size = CI->arg_size(); 2334 Args.reserve(arg_size); 2335 ArgRegs.reserve(arg_size); 2336 ArgVTs.reserve(arg_size); 2337 ArgFlags.reserve(arg_size); 2338 for (auto ArgI = CI->arg_begin(), ArgE = CI->arg_end(); ArgI != ArgE; ++ArgI) { 2339 // If we're lowering a memory intrinsic instead of a regular call, skip the 2340 // last argument, which shouldn't be passed to the underlying function. 2341 if (IntrMemName && ArgE - ArgI <= 1) 2342 break; 2343 2344 ISD::ArgFlagsTy Flags; 2345 unsigned ArgIdx = ArgI - CI->arg_begin(); 2346 if (CI->paramHasAttr(ArgIdx, Attribute::SExt)) 2347 Flags.setSExt(); 2348 if (CI->paramHasAttr(ArgIdx, Attribute::ZExt)) 2349 Flags.setZExt(); 2350 2351 // FIXME: Only handle *easy* calls for now. 2352 if (CI->paramHasAttr(ArgIdx, Attribute::InReg) || 2353 CI->paramHasAttr(ArgIdx, Attribute::StructRet) || 2354 CI->paramHasAttr(ArgIdx, Attribute::SwiftSelf) || 2355 CI->paramHasAttr(ArgIdx, Attribute::SwiftError) || 2356 CI->paramHasAttr(ArgIdx, Attribute::Nest) || 2357 CI->paramHasAttr(ArgIdx, Attribute::ByVal)) 2358 return false; 2359 2360 Type *ArgTy = (*ArgI)->getType(); 2361 MVT ArgVT; 2362 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 && 2363 ArgVT != MVT::i1) 2364 return false; 2365 2366 Register Arg = getRegForValue(*ArgI); 2367 if (!Arg.isValid()) 2368 return false; 2369 2370 Flags.setOrigAlign(DL.getABITypeAlign(ArgTy)); 2371 2372 Args.push_back(*ArgI); 2373 ArgRegs.push_back(Arg); 2374 ArgVTs.push_back(ArgVT); 2375 ArgFlags.push_back(Flags); 2376 } 2377 2378 // Handle the arguments now that we've gotten them. 2379 SmallVector<Register, 4> RegArgs; 2380 unsigned NumBytes; 2381 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2382 RegArgs, CC, NumBytes, isVarArg)) 2383 return false; 2384 2385 bool UseReg = false; 2386 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 2387 if (!GV || Subtarget->genLongCalls()) UseReg = true; 2388 2389 Register CalleeReg; 2390 if (UseReg) { 2391 if (IntrMemName) 2392 CalleeReg = getLibcallReg(IntrMemName); 2393 else 2394 CalleeReg = getRegForValue(Callee); 2395 2396 if (CalleeReg == 0) return false; 2397 } 2398 2399 // Issue the call. 2400 unsigned CallOpc = ARMSelectCallOp(UseReg); 2401 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2402 DbgLoc, TII.get(CallOpc)); 2403 2404 // ARM calls don't take a predicate, but tBL / tBLX do. 2405 if(isThumb2) 2406 MIB.add(predOps(ARMCC::AL)); 2407 if (UseReg) { 2408 CalleeReg = 2409 constrainOperandRegClass(TII.get(CallOpc), CalleeReg, isThumb2 ? 2 : 0); 2410 MIB.addReg(CalleeReg); 2411 } else if (!IntrMemName) 2412 MIB.addGlobalAddress(GV, 0, 0); 2413 else 2414 MIB.addExternalSymbol(IntrMemName, 0); 2415 2416 // Add implicit physical register uses to the call. 2417 for (Register R : RegArgs) 2418 MIB.addReg(R, RegState::Implicit); 2419 2420 // Add a register mask with the call-preserved registers. 2421 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2422 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 2423 2424 // Finish off the call including any return values. 2425 SmallVector<Register, 4> UsedRegs; 2426 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg)) 2427 return false; 2428 2429 // Set all unused physreg defs as dead. 2430 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2431 2432 return true; 2433 } 2434 2435 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) { 2436 return Len <= 16; 2437 } 2438 2439 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, 2440 uint64_t Len, unsigned Alignment) { 2441 // Make sure we don't bloat code by inlining very large memcpy's. 2442 if (!ARMIsMemCpySmall(Len)) 2443 return false; 2444 2445 while (Len) { 2446 MVT VT; 2447 if (!Alignment || Alignment >= 4) { 2448 if (Len >= 4) 2449 VT = MVT::i32; 2450 else if (Len >= 2) 2451 VT = MVT::i16; 2452 else { 2453 assert(Len == 1 && "Expected a length of 1!"); 2454 VT = MVT::i8; 2455 } 2456 } else { 2457 // Bound based on alignment. 2458 if (Len >= 2 && Alignment == 2) 2459 VT = MVT::i16; 2460 else { 2461 VT = MVT::i8; 2462 } 2463 } 2464 2465 bool RV; 2466 Register ResultReg; 2467 RV = ARMEmitLoad(VT, ResultReg, Src); 2468 assert(RV && "Should be able to handle this load."); 2469 RV = ARMEmitStore(VT, ResultReg, Dest); 2470 assert(RV && "Should be able to handle this store."); 2471 (void)RV; 2472 2473 unsigned Size = VT.getSizeInBits()/8; 2474 Len -= Size; 2475 Dest.Offset += Size; 2476 Src.Offset += Size; 2477 } 2478 2479 return true; 2480 } 2481 2482 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) { 2483 // FIXME: Handle more intrinsics. 2484 switch (I.getIntrinsicID()) { 2485 default: return false; 2486 case Intrinsic::frameaddress: { 2487 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 2488 MFI.setFrameAddressIsTaken(true); 2489 2490 unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 2491 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass 2492 : &ARM::GPRRegClass; 2493 2494 const ARMBaseRegisterInfo *RegInfo = 2495 static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo()); 2496 Register FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF)); 2497 unsigned SrcReg = FramePtr; 2498 2499 // Recursively load frame address 2500 // ldr r0 [fp] 2501 // ldr r0 [r0] 2502 // ldr r0 [r0] 2503 // ... 2504 unsigned DestReg; 2505 unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue(); 2506 while (Depth--) { 2507 DestReg = createResultReg(RC); 2508 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2509 TII.get(LdrOpc), DestReg) 2510 .addReg(SrcReg).addImm(0)); 2511 SrcReg = DestReg; 2512 } 2513 updateValueMap(&I, SrcReg); 2514 return true; 2515 } 2516 case Intrinsic::memcpy: 2517 case Intrinsic::memmove: { 2518 const MemTransferInst &MTI = cast<MemTransferInst>(I); 2519 // Don't handle volatile. 2520 if (MTI.isVolatile()) 2521 return false; 2522 2523 // Disable inlining for memmove before calls to ComputeAddress. Otherwise, 2524 // we would emit dead code because we don't currently handle memmoves. 2525 bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy); 2526 if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) { 2527 // Small memcpy's are common enough that we want to do them without a call 2528 // if possible. 2529 uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue(); 2530 if (ARMIsMemCpySmall(Len)) { 2531 Address Dest, Src; 2532 if (!ARMComputeAddress(MTI.getRawDest(), Dest) || 2533 !ARMComputeAddress(MTI.getRawSource(), Src)) 2534 return false; 2535 unsigned Alignment = MinAlign(MTI.getDestAlignment(), 2536 MTI.getSourceAlignment()); 2537 if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment)) 2538 return true; 2539 } 2540 } 2541 2542 if (!MTI.getLength()->getType()->isIntegerTy(32)) 2543 return false; 2544 2545 if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255) 2546 return false; 2547 2548 const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove"; 2549 return SelectCall(&I, IntrMemName); 2550 } 2551 case Intrinsic::memset: { 2552 const MemSetInst &MSI = cast<MemSetInst>(I); 2553 // Don't handle volatile. 2554 if (MSI.isVolatile()) 2555 return false; 2556 2557 if (!MSI.getLength()->getType()->isIntegerTy(32)) 2558 return false; 2559 2560 if (MSI.getDestAddressSpace() > 255) 2561 return false; 2562 2563 return SelectCall(&I, "memset"); 2564 } 2565 case Intrinsic::trap: { 2566 unsigned Opcode; 2567 if (Subtarget->isThumb()) 2568 Opcode = ARM::tTRAP; 2569 else 2570 Opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP; 2571 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode)); 2572 return true; 2573 } 2574 } 2575 } 2576 2577 bool ARMFastISel::SelectTrunc(const Instruction *I) { 2578 // The high bits for a type smaller than the register size are assumed to be 2579 // undefined. 2580 Value *Op = I->getOperand(0); 2581 2582 EVT SrcVT, DestVT; 2583 SrcVT = TLI.getValueType(DL, Op->getType(), true); 2584 DestVT = TLI.getValueType(DL, I->getType(), true); 2585 2586 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 2587 return false; 2588 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 2589 return false; 2590 2591 Register SrcReg = getRegForValue(Op); 2592 if (!SrcReg) return false; 2593 2594 // Because the high bits are undefined, a truncate doesn't generate 2595 // any code. 2596 updateValueMap(I, SrcReg); 2597 return true; 2598 } 2599 2600 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 2601 bool isZExt) { 2602 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 2603 return 0; 2604 if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1) 2605 return 0; 2606 2607 // Table of which combinations can be emitted as a single instruction, 2608 // and which will require two. 2609 static const uint8_t isSingleInstrTbl[3][2][2][2] = { 2610 // ARM Thumb 2611 // !hasV6Ops hasV6Ops !hasV6Ops hasV6Ops 2612 // ext: s z s z s z s z 2613 /* 1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } }, 2614 /* 8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }, 2615 /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } } 2616 }; 2617 2618 // Target registers for: 2619 // - For ARM can never be PC. 2620 // - For 16-bit Thumb are restricted to lower 8 registers. 2621 // - For 32-bit Thumb are restricted to non-SP and non-PC. 2622 static const TargetRegisterClass *RCTbl[2][2] = { 2623 // Instructions: Two Single 2624 /* ARM */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass }, 2625 /* Thumb */ { &ARM::tGPRRegClass, &ARM::rGPRRegClass } 2626 }; 2627 2628 // Table governing the instruction(s) to be emitted. 2629 static const struct InstructionTable { 2630 uint32_t Opc : 16; 2631 uint32_t hasS : 1; // Some instructions have an S bit, always set it to 0. 2632 uint32_t Shift : 7; // For shift operand addressing mode, used by MOVsi. 2633 uint32_t Imm : 8; // All instructions have either a shift or a mask. 2634 } IT[2][2][3][2] = { 2635 { // Two instructions (first is left shift, second is in this table). 2636 { // ARM Opc S Shift Imm 2637 /* 1 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 31 }, 2638 /* 1 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 31 } }, 2639 /* 8 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 24 }, 2640 /* 8 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 24 } }, 2641 /* 16 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 16 }, 2642 /* 16 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 16 } } 2643 }, 2644 { // Thumb Opc S Shift Imm 2645 /* 1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 31 }, 2646 /* 1 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 31 } }, 2647 /* 8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 24 }, 2648 /* 8 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 24 } }, 2649 /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 16 }, 2650 /* 16 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 16 } } 2651 } 2652 }, 2653 { // Single instruction. 2654 { // ARM Opc S Shift Imm 2655 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2656 /* 1 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 1 } }, 2657 /* 8 bit sext */ { { ARM::SXTB , 0, ARM_AM::no_shift, 0 }, 2658 /* 8 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 255 } }, 2659 /* 16 bit sext */ { { ARM::SXTH , 0, ARM_AM::no_shift, 0 }, 2660 /* 16 bit zext */ { ARM::UXTH , 0, ARM_AM::no_shift, 0 } } 2661 }, 2662 { // Thumb Opc S Shift Imm 2663 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2664 /* 1 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 1 } }, 2665 /* 8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift, 0 }, 2666 /* 8 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } }, 2667 /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift, 0 }, 2668 /* 16 bit zext */ { ARM::t2UXTH , 0, ARM_AM::no_shift, 0 } } 2669 } 2670 } 2671 }; 2672 2673 unsigned SrcBits = SrcVT.getSizeInBits(); 2674 unsigned DestBits = DestVT.getSizeInBits(); 2675 (void) DestBits; 2676 assert((SrcBits < DestBits) && "can only extend to larger types"); 2677 assert((DestBits == 32 || DestBits == 16 || DestBits == 8) && 2678 "other sizes unimplemented"); 2679 assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) && 2680 "other sizes unimplemented"); 2681 2682 bool hasV6Ops = Subtarget->hasV6Ops(); 2683 unsigned Bitness = SrcBits / 8; // {1,8,16}=>{0,1,2} 2684 assert((Bitness < 3) && "sanity-check table bounds"); 2685 2686 bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt]; 2687 const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr]; 2688 const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt]; 2689 unsigned Opc = ITP->Opc; 2690 assert(ARM::KILL != Opc && "Invalid table entry"); 2691 unsigned hasS = ITP->hasS; 2692 ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift; 2693 assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) && 2694 "only MOVsi has shift operand addressing mode"); 2695 unsigned Imm = ITP->Imm; 2696 2697 // 16-bit Thumb instructions always set CPSR (unless they're in an IT block). 2698 bool setsCPSR = &ARM::tGPRRegClass == RC; 2699 unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi; 2700 unsigned ResultReg; 2701 // MOVsi encodes shift and immediate in shift operand addressing mode. 2702 // The following condition has the same value when emitting two 2703 // instruction sequences: both are shifts. 2704 bool ImmIsSO = (Shift != ARM_AM::no_shift); 2705 2706 // Either one or two instructions are emitted. 2707 // They're always of the form: 2708 // dst = in OP imm 2709 // CPSR is set only by 16-bit Thumb instructions. 2710 // Predicate, if any, is AL. 2711 // S bit, if available, is always 0. 2712 // When two are emitted the first's result will feed as the second's input, 2713 // that value is then dead. 2714 unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2; 2715 for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) { 2716 ResultReg = createResultReg(RC); 2717 bool isLsl = (0 == Instr) && !isSingleInstr; 2718 unsigned Opcode = isLsl ? LSLOpc : Opc; 2719 ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift; 2720 unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm; 2721 bool isKill = 1 == Instr; 2722 MachineInstrBuilder MIB = BuildMI( 2723 *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg); 2724 if (setsCPSR) 2725 MIB.addReg(ARM::CPSR, RegState::Define); 2726 SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR); 2727 MIB.addReg(SrcReg, isKill * RegState::Kill) 2728 .addImm(ImmEnc) 2729 .add(predOps(ARMCC::AL)); 2730 if (hasS) 2731 MIB.add(condCodeOp()); 2732 // Second instruction consumes the first's result. 2733 SrcReg = ResultReg; 2734 } 2735 2736 return ResultReg; 2737 } 2738 2739 bool ARMFastISel::SelectIntExt(const Instruction *I) { 2740 // On ARM, in general, integer casts don't involve legal types; this code 2741 // handles promotable integers. 2742 Type *DestTy = I->getType(); 2743 Value *Src = I->getOperand(0); 2744 Type *SrcTy = Src->getType(); 2745 2746 bool isZExt = isa<ZExtInst>(I); 2747 Register SrcReg = getRegForValue(Src); 2748 if (!SrcReg) return false; 2749 2750 EVT SrcEVT, DestEVT; 2751 SrcEVT = TLI.getValueType(DL, SrcTy, true); 2752 DestEVT = TLI.getValueType(DL, DestTy, true); 2753 if (!SrcEVT.isSimple()) return false; 2754 if (!DestEVT.isSimple()) return false; 2755 2756 MVT SrcVT = SrcEVT.getSimpleVT(); 2757 MVT DestVT = DestEVT.getSimpleVT(); 2758 unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt); 2759 if (ResultReg == 0) return false; 2760 updateValueMap(I, ResultReg); 2761 return true; 2762 } 2763 2764 bool ARMFastISel::SelectShift(const Instruction *I, 2765 ARM_AM::ShiftOpc ShiftTy) { 2766 // We handle thumb2 mode by target independent selector 2767 // or SelectionDAG ISel. 2768 if (isThumb2) 2769 return false; 2770 2771 // Only handle i32 now. 2772 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 2773 if (DestVT != MVT::i32) 2774 return false; 2775 2776 unsigned Opc = ARM::MOVsr; 2777 unsigned ShiftImm; 2778 Value *Src2Value = I->getOperand(1); 2779 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) { 2780 ShiftImm = CI->getZExtValue(); 2781 2782 // Fall back to selection DAG isel if the shift amount 2783 // is zero or greater than the width of the value type. 2784 if (ShiftImm == 0 || ShiftImm >=32) 2785 return false; 2786 2787 Opc = ARM::MOVsi; 2788 } 2789 2790 Value *Src1Value = I->getOperand(0); 2791 Register Reg1 = getRegForValue(Src1Value); 2792 if (Reg1 == 0) return false; 2793 2794 unsigned Reg2 = 0; 2795 if (Opc == ARM::MOVsr) { 2796 Reg2 = getRegForValue(Src2Value); 2797 if (Reg2 == 0) return false; 2798 } 2799 2800 Register ResultReg = createResultReg(&ARM::GPRnopcRegClass); 2801 if(ResultReg == 0) return false; 2802 2803 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2804 TII.get(Opc), ResultReg) 2805 .addReg(Reg1); 2806 2807 if (Opc == ARM::MOVsi) 2808 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm)); 2809 else if (Opc == ARM::MOVsr) { 2810 MIB.addReg(Reg2); 2811 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0)); 2812 } 2813 2814 AddOptionalDefs(MIB); 2815 updateValueMap(I, ResultReg); 2816 return true; 2817 } 2818 2819 // TODO: SoftFP support. 2820 bool ARMFastISel::fastSelectInstruction(const Instruction *I) { 2821 switch (I->getOpcode()) { 2822 case Instruction::Load: 2823 return SelectLoad(I); 2824 case Instruction::Store: 2825 return SelectStore(I); 2826 case Instruction::Br: 2827 return SelectBranch(I); 2828 case Instruction::IndirectBr: 2829 return SelectIndirectBr(I); 2830 case Instruction::ICmp: 2831 case Instruction::FCmp: 2832 return SelectCmp(I); 2833 case Instruction::FPExt: 2834 return SelectFPExt(I); 2835 case Instruction::FPTrunc: 2836 return SelectFPTrunc(I); 2837 case Instruction::SIToFP: 2838 return SelectIToFP(I, /*isSigned*/ true); 2839 case Instruction::UIToFP: 2840 return SelectIToFP(I, /*isSigned*/ false); 2841 case Instruction::FPToSI: 2842 return SelectFPToI(I, /*isSigned*/ true); 2843 case Instruction::FPToUI: 2844 return SelectFPToI(I, /*isSigned*/ false); 2845 case Instruction::Add: 2846 return SelectBinaryIntOp(I, ISD::ADD); 2847 case Instruction::Or: 2848 return SelectBinaryIntOp(I, ISD::OR); 2849 case Instruction::Sub: 2850 return SelectBinaryIntOp(I, ISD::SUB); 2851 case Instruction::FAdd: 2852 return SelectBinaryFPOp(I, ISD::FADD); 2853 case Instruction::FSub: 2854 return SelectBinaryFPOp(I, ISD::FSUB); 2855 case Instruction::FMul: 2856 return SelectBinaryFPOp(I, ISD::FMUL); 2857 case Instruction::SDiv: 2858 return SelectDiv(I, /*isSigned*/ true); 2859 case Instruction::UDiv: 2860 return SelectDiv(I, /*isSigned*/ false); 2861 case Instruction::SRem: 2862 return SelectRem(I, /*isSigned*/ true); 2863 case Instruction::URem: 2864 return SelectRem(I, /*isSigned*/ false); 2865 case Instruction::Call: 2866 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2867 return SelectIntrinsicCall(*II); 2868 return SelectCall(I); 2869 case Instruction::Select: 2870 return SelectSelect(I); 2871 case Instruction::Ret: 2872 return SelectRet(I); 2873 case Instruction::Trunc: 2874 return SelectTrunc(I); 2875 case Instruction::ZExt: 2876 case Instruction::SExt: 2877 return SelectIntExt(I); 2878 case Instruction::Shl: 2879 return SelectShift(I, ARM_AM::lsl); 2880 case Instruction::LShr: 2881 return SelectShift(I, ARM_AM::lsr); 2882 case Instruction::AShr: 2883 return SelectShift(I, ARM_AM::asr); 2884 default: break; 2885 } 2886 return false; 2887 } 2888 2889 // This table describes sign- and zero-extend instructions which can be 2890 // folded into a preceding load. All of these extends have an immediate 2891 // (sometimes a mask and sometimes a shift) that's applied after 2892 // extension. 2893 static const struct FoldableLoadExtendsStruct { 2894 uint16_t Opc[2]; // ARM, Thumb. 2895 uint8_t ExpectedImm; 2896 uint8_t isZExt : 1; 2897 uint8_t ExpectedVT : 7; 2898 } FoldableLoadExtends[] = { 2899 { { ARM::SXTH, ARM::t2SXTH }, 0, 0, MVT::i16 }, 2900 { { ARM::UXTH, ARM::t2UXTH }, 0, 1, MVT::i16 }, 2901 { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8 }, 2902 { { ARM::SXTB, ARM::t2SXTB }, 0, 0, MVT::i8 }, 2903 { { ARM::UXTB, ARM::t2UXTB }, 0, 1, MVT::i8 } 2904 }; 2905 2906 /// The specified machine instr operand is a vreg, and that 2907 /// vreg is being provided by the specified load instruction. If possible, 2908 /// try to fold the load as an operand to the instruction, returning true if 2909 /// successful. 2910 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2911 const LoadInst *LI) { 2912 // Verify we have a legal type before going any further. 2913 MVT VT; 2914 if (!isLoadTypeLegal(LI->getType(), VT)) 2915 return false; 2916 2917 // Combine load followed by zero- or sign-extend. 2918 // ldrb r1, [r0] ldrb r1, [r0] 2919 // uxtb r2, r1 => 2920 // mov r3, r2 mov r3, r1 2921 if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm()) 2922 return false; 2923 const uint64_t Imm = MI->getOperand(2).getImm(); 2924 2925 bool Found = false; 2926 bool isZExt; 2927 for (const FoldableLoadExtendsStruct &FLE : FoldableLoadExtends) { 2928 if (FLE.Opc[isThumb2] == MI->getOpcode() && 2929 (uint64_t)FLE.ExpectedImm == Imm && 2930 MVT((MVT::SimpleValueType)FLE.ExpectedVT) == VT) { 2931 Found = true; 2932 isZExt = FLE.isZExt; 2933 } 2934 } 2935 if (!Found) return false; 2936 2937 // See if we can handle this address. 2938 Address Addr; 2939 if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false; 2940 2941 Register ResultReg = MI->getOperand(0).getReg(); 2942 if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false)) 2943 return false; 2944 MachineBasicBlock::iterator I(MI); 2945 removeDeadCode(I, std::next(I)); 2946 return true; 2947 } 2948 2949 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV, MVT VT) { 2950 bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV); 2951 2952 LLVMContext *Context = &MF->getFunction().getContext(); 2953 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 2954 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; 2955 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create( 2956 GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj, 2957 UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier, 2958 /*AddCurrentAddress=*/UseGOT_PREL); 2959 2960 Align ConstAlign = 2961 MF->getDataLayout().getPrefTypeAlign(Type::getInt32PtrTy(*Context)); 2962 unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign); 2963 MachineMemOperand *CPMMO = 2964 MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF), 2965 MachineMemOperand::MOLoad, 4, Align(4)); 2966 2967 Register TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass); 2968 unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp; 2969 MachineInstrBuilder MIB = 2970 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), TempReg) 2971 .addConstantPoolIndex(Idx) 2972 .addMemOperand(CPMMO); 2973 if (Opc == ARM::LDRcp) 2974 MIB.addImm(0); 2975 MIB.add(predOps(ARMCC::AL)); 2976 2977 // Fix the address by adding pc. 2978 Register DestReg = createResultReg(TLI.getRegClassFor(VT)); 2979 Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR 2980 : ARM::PICADD; 2981 DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0); 2982 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 2983 .addReg(TempReg) 2984 .addImm(ARMPCLabelIndex); 2985 2986 if (!Subtarget->isThumb()) 2987 MIB.add(predOps(ARMCC::AL)); 2988 2989 if (UseGOT_PREL && Subtarget->isThumb()) { 2990 Register NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 2991 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2992 TII.get(ARM::t2LDRi12), NewDestReg) 2993 .addReg(DestReg) 2994 .addImm(0); 2995 DestReg = NewDestReg; 2996 AddOptionalDefs(MIB); 2997 } 2998 return DestReg; 2999 } 3000 3001 bool ARMFastISel::fastLowerArguments() { 3002 if (!FuncInfo.CanLowerReturn) 3003 return false; 3004 3005 const Function *F = FuncInfo.Fn; 3006 if (F->isVarArg()) 3007 return false; 3008 3009 CallingConv::ID CC = F->getCallingConv(); 3010 switch (CC) { 3011 default: 3012 return false; 3013 case CallingConv::Fast: 3014 case CallingConv::C: 3015 case CallingConv::ARM_AAPCS_VFP: 3016 case CallingConv::ARM_AAPCS: 3017 case CallingConv::ARM_APCS: 3018 case CallingConv::Swift: 3019 case CallingConv::SwiftTail: 3020 break; 3021 } 3022 3023 // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments 3024 // which are passed in r0 - r3. 3025 for (const Argument &Arg : F->args()) { 3026 if (Arg.getArgNo() >= 4) 3027 return false; 3028 3029 if (Arg.hasAttribute(Attribute::InReg) || 3030 Arg.hasAttribute(Attribute::StructRet) || 3031 Arg.hasAttribute(Attribute::SwiftSelf) || 3032 Arg.hasAttribute(Attribute::SwiftError) || 3033 Arg.hasAttribute(Attribute::ByVal)) 3034 return false; 3035 3036 Type *ArgTy = Arg.getType(); 3037 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) 3038 return false; 3039 3040 EVT ArgVT = TLI.getValueType(DL, ArgTy); 3041 if (!ArgVT.isSimple()) return false; 3042 switch (ArgVT.getSimpleVT().SimpleTy) { 3043 case MVT::i8: 3044 case MVT::i16: 3045 case MVT::i32: 3046 break; 3047 default: 3048 return false; 3049 } 3050 } 3051 3052 static const MCPhysReg GPRArgRegs[] = { 3053 ARM::R0, ARM::R1, ARM::R2, ARM::R3 3054 }; 3055 3056 const TargetRegisterClass *RC = &ARM::rGPRRegClass; 3057 for (const Argument &Arg : F->args()) { 3058 unsigned ArgNo = Arg.getArgNo(); 3059 unsigned SrcReg = GPRArgRegs[ArgNo]; 3060 Register DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); 3061 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. 3062 // Without this, EmitLiveInCopies may eliminate the livein if its only 3063 // use is a bitcast (which isn't turned into an instruction). 3064 Register ResultReg = createResultReg(RC); 3065 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3066 TII.get(TargetOpcode::COPY), 3067 ResultReg).addReg(DstReg, getKillRegState(true)); 3068 updateValueMap(&Arg, ResultReg); 3069 } 3070 3071 return true; 3072 } 3073 3074 namespace llvm { 3075 3076 FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo, 3077 const TargetLibraryInfo *libInfo) { 3078 if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel()) 3079 return new ARMFastISel(funcInfo, libInfo); 3080 3081 return nullptr; 3082 } 3083 3084 } // end namespace llvm 3085