xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMFastISel.cpp (revision 85868e8a1daeaae7a0e48effb2ea2310ae3b02c6)
1 //===- ARMFastISel.cpp - ARM FastISel implementation ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the ARM-specific support for the FastISel class. Some
10 // of the target-specific code is generated by tablegen in the file
11 // ARMGenFastISel.inc, which is #included here.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ARM.h"
16 #include "ARMBaseInstrInfo.h"
17 #include "ARMBaseRegisterInfo.h"
18 #include "ARMCallingConv.h"
19 #include "ARMConstantPoolValue.h"
20 #include "ARMISelLowering.h"
21 #include "ARMMachineFunctionInfo.h"
22 #include "ARMSubtarget.h"
23 #include "MCTargetDesc/ARMAddressingModes.h"
24 #include "MCTargetDesc/ARMBaseInfo.h"
25 #include "Utils/ARMBaseInfo.h"
26 #include "llvm/ADT/APFloat.h"
27 #include "llvm/ADT/APInt.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/CodeGen/CallingConvLower.h"
31 #include "llvm/CodeGen/FastISel.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineConstantPool.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineInstr.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/RuntimeLibcalls.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/CodeGen/TargetOpcodes.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/ValueTypes.h"
49 #include "llvm/IR/Argument.h"
50 #include "llvm/IR/Attributes.h"
51 #include "llvm/IR/CallSite.h"
52 #include "llvm/IR/CallingConv.h"
53 #include "llvm/IR/Constant.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/DerivedTypes.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/GetElementPtrTypeIterator.h"
59 #include "llvm/IR/GlobalValue.h"
60 #include "llvm/IR/GlobalVariable.h"
61 #include "llvm/IR/InstrTypes.h"
62 #include "llvm/IR/Instruction.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/IR/IntrinsicInst.h"
65 #include "llvm/IR/Intrinsics.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/MC/MCInstrDesc.h"
72 #include "llvm/MC/MCRegisterInfo.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Compiler.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/MachineValueType.h"
77 #include "llvm/Support/MathExtras.h"
78 #include "llvm/Target/TargetMachine.h"
79 #include "llvm/Target/TargetOptions.h"
80 #include <cassert>
81 #include <cstdint>
82 #include <utility>
83 
84 using namespace llvm;
85 
86 namespace {
87 
88   // All possible address modes, plus some.
89   struct Address {
90     enum {
91       RegBase,
92       FrameIndexBase
93     } BaseType = RegBase;
94 
95     union {
96       unsigned Reg;
97       int FI;
98     } Base;
99 
100     int Offset = 0;
101 
102     // Innocuous defaults for our address.
103     Address() {
104       Base.Reg = 0;
105     }
106   };
107 
108 class ARMFastISel final : public FastISel {
109   /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
110   /// make the right decision when generating code for different targets.
111   const ARMSubtarget *Subtarget;
112   Module &M;
113   const TargetMachine &TM;
114   const TargetInstrInfo &TII;
115   const TargetLowering &TLI;
116   ARMFunctionInfo *AFI;
117 
118   // Convenience variables to avoid some queries.
119   bool isThumb2;
120   LLVMContext *Context;
121 
122   public:
123     explicit ARMFastISel(FunctionLoweringInfo &funcInfo,
124                          const TargetLibraryInfo *libInfo)
125         : FastISel(funcInfo, libInfo),
126           Subtarget(
127               &static_cast<const ARMSubtarget &>(funcInfo.MF->getSubtarget())),
128           M(const_cast<Module &>(*funcInfo.Fn->getParent())),
129           TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()),
130           TLI(*Subtarget->getTargetLowering()) {
131       AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
132       isThumb2 = AFI->isThumbFunction();
133       Context = &funcInfo.Fn->getContext();
134     }
135 
136   private:
137     // Code from FastISel.cpp.
138 
139     unsigned fastEmitInst_r(unsigned MachineInstOpcode,
140                             const TargetRegisterClass *RC,
141                             unsigned Op0, bool Op0IsKill);
142     unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
143                              const TargetRegisterClass *RC,
144                              unsigned Op0, bool Op0IsKill,
145                              unsigned Op1, bool Op1IsKill);
146     unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
147                              const TargetRegisterClass *RC,
148                              unsigned Op0, bool Op0IsKill,
149                              uint64_t Imm);
150     unsigned fastEmitInst_i(unsigned MachineInstOpcode,
151                             const TargetRegisterClass *RC,
152                             uint64_t Imm);
153 
154     // Backend specific FastISel code.
155 
156     bool fastSelectInstruction(const Instruction *I) override;
157     unsigned fastMaterializeConstant(const Constant *C) override;
158     unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
159     bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
160                              const LoadInst *LI) override;
161     bool fastLowerArguments() override;
162 
163   #include "ARMGenFastISel.inc"
164 
165     // Instruction selection routines.
166 
167     bool SelectLoad(const Instruction *I);
168     bool SelectStore(const Instruction *I);
169     bool SelectBranch(const Instruction *I);
170     bool SelectIndirectBr(const Instruction *I);
171     bool SelectCmp(const Instruction *I);
172     bool SelectFPExt(const Instruction *I);
173     bool SelectFPTrunc(const Instruction *I);
174     bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
175     bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
176     bool SelectIToFP(const Instruction *I, bool isSigned);
177     bool SelectFPToI(const Instruction *I, bool isSigned);
178     bool SelectDiv(const Instruction *I, bool isSigned);
179     bool SelectRem(const Instruction *I, bool isSigned);
180     bool SelectCall(const Instruction *I, const char *IntrMemName);
181     bool SelectIntrinsicCall(const IntrinsicInst &I);
182     bool SelectSelect(const Instruction *I);
183     bool SelectRet(const Instruction *I);
184     bool SelectTrunc(const Instruction *I);
185     bool SelectIntExt(const Instruction *I);
186     bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy);
187 
188     // Utility routines.
189 
190     bool isPositionIndependent() const;
191     bool isTypeLegal(Type *Ty, MVT &VT);
192     bool isLoadTypeLegal(Type *Ty, MVT &VT);
193     bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
194                     bool isZExt);
195     bool ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
196                      unsigned Alignment = 0, bool isZExt = true,
197                      bool allocReg = true);
198     bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
199                       unsigned Alignment = 0);
200     bool ARMComputeAddress(const Value *Obj, Address &Addr);
201     void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3);
202     bool ARMIsMemCpySmall(uint64_t Len);
203     bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
204                                unsigned Alignment);
205     unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
206     unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT);
207     unsigned ARMMaterializeInt(const Constant *C, MVT VT);
208     unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT);
209     unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg);
210     unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg);
211     unsigned ARMSelectCallOp(bool UseReg);
212     unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT);
213 
214     const TargetLowering *getTargetLowering() { return &TLI; }
215 
216     // Call handling routines.
217 
218     CCAssignFn *CCAssignFnForCall(CallingConv::ID CC,
219                                   bool Return,
220                                   bool isVarArg);
221     bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
222                          SmallVectorImpl<Register> &ArgRegs,
223                          SmallVectorImpl<MVT> &ArgVTs,
224                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
225                          SmallVectorImpl<Register> &RegArgs,
226                          CallingConv::ID CC,
227                          unsigned &NumBytes,
228                          bool isVarArg);
229     unsigned getLibcallReg(const Twine &Name);
230     bool FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs,
231                     const Instruction *I, CallingConv::ID CC,
232                     unsigned &NumBytes, bool isVarArg);
233     bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
234 
235     // OptionalDef handling routines.
236 
237     bool isARMNEONPred(const MachineInstr *MI);
238     bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
239     const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
240     void AddLoadStoreOperands(MVT VT, Address &Addr,
241                               const MachineInstrBuilder &MIB,
242                               MachineMemOperand::Flags Flags, bool useAM3);
243 };
244 
245 } // end anonymous namespace
246 
247 // DefinesOptionalPredicate - This is different from DefinesPredicate in that
248 // we don't care about implicit defs here, just places we'll need to add a
249 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
250 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
251   if (!MI->hasOptionalDef())
252     return false;
253 
254   // Look to see if our OptionalDef is defining CPSR or CCR.
255   for (const MachineOperand &MO : MI->operands()) {
256     if (!MO.isReg() || !MO.isDef()) continue;
257     if (MO.getReg() == ARM::CPSR)
258       *CPSR = true;
259   }
260   return true;
261 }
262 
263 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
264   const MCInstrDesc &MCID = MI->getDesc();
265 
266   // If we're a thumb2 or not NEON function we'll be handled via isPredicable.
267   if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
268        AFI->isThumb2Function())
269     return MI->isPredicable();
270 
271   for (const MCOperandInfo &opInfo : MCID.operands())
272     if (opInfo.isPredicate())
273       return true;
274 
275   return false;
276 }
277 
278 // If the machine is predicable go ahead and add the predicate operands, if
279 // it needs default CC operands add those.
280 // TODO: If we want to support thumb1 then we'll need to deal with optional
281 // CPSR defs that need to be added before the remaining operands. See s_cc_out
282 // for descriptions why.
283 const MachineInstrBuilder &
284 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
285   MachineInstr *MI = &*MIB;
286 
287   // Do we use a predicate? or...
288   // Are we NEON in ARM mode and have a predicate operand? If so, I know
289   // we're not predicable but add it anyways.
290   if (isARMNEONPred(MI))
291     MIB.add(predOps(ARMCC::AL));
292 
293   // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
294   // defines CPSR. All other OptionalDefines in ARM are the CCR register.
295   bool CPSR = false;
296   if (DefinesOptionalPredicate(MI, &CPSR))
297     MIB.add(CPSR ? t1CondCodeOp() : condCodeOp());
298   return MIB;
299 }
300 
301 unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
302                                      const TargetRegisterClass *RC,
303                                      unsigned Op0, bool Op0IsKill) {
304   Register ResultReg = createResultReg(RC);
305   const MCInstrDesc &II = TII.get(MachineInstOpcode);
306 
307   // Make sure the input operand is sufficiently constrained to be legal
308   // for this instruction.
309   Op0 = constrainOperandRegClass(II, Op0, 1);
310   if (II.getNumDefs() >= 1) {
311     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
312                             ResultReg).addReg(Op0, Op0IsKill * RegState::Kill));
313   } else {
314     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
315                    .addReg(Op0, Op0IsKill * RegState::Kill));
316     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
317                    TII.get(TargetOpcode::COPY), ResultReg)
318                    .addReg(II.ImplicitDefs[0]));
319   }
320   return ResultReg;
321 }
322 
323 unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
324                                       const TargetRegisterClass *RC,
325                                       unsigned Op0, bool Op0IsKill,
326                                       unsigned Op1, bool Op1IsKill) {
327   unsigned ResultReg = createResultReg(RC);
328   const MCInstrDesc &II = TII.get(MachineInstOpcode);
329 
330   // Make sure the input operands are sufficiently constrained to be legal
331   // for this instruction.
332   Op0 = constrainOperandRegClass(II, Op0, 1);
333   Op1 = constrainOperandRegClass(II, Op1, 2);
334 
335   if (II.getNumDefs() >= 1) {
336     AddOptionalDefs(
337         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
338             .addReg(Op0, Op0IsKill * RegState::Kill)
339             .addReg(Op1, Op1IsKill * RegState::Kill));
340   } else {
341     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
342                    .addReg(Op0, Op0IsKill * RegState::Kill)
343                    .addReg(Op1, Op1IsKill * RegState::Kill));
344     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
345                            TII.get(TargetOpcode::COPY), ResultReg)
346                    .addReg(II.ImplicitDefs[0]));
347   }
348   return ResultReg;
349 }
350 
351 unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
352                                       const TargetRegisterClass *RC,
353                                       unsigned Op0, bool Op0IsKill,
354                                       uint64_t Imm) {
355   unsigned ResultReg = createResultReg(RC);
356   const MCInstrDesc &II = TII.get(MachineInstOpcode);
357 
358   // Make sure the input operand is sufficiently constrained to be legal
359   // for this instruction.
360   Op0 = constrainOperandRegClass(II, Op0, 1);
361   if (II.getNumDefs() >= 1) {
362     AddOptionalDefs(
363         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
364             .addReg(Op0, Op0IsKill * RegState::Kill)
365             .addImm(Imm));
366   } else {
367     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
368                    .addReg(Op0, Op0IsKill * RegState::Kill)
369                    .addImm(Imm));
370     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
371                            TII.get(TargetOpcode::COPY), ResultReg)
372                    .addReg(II.ImplicitDefs[0]));
373   }
374   return ResultReg;
375 }
376 
377 unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode,
378                                      const TargetRegisterClass *RC,
379                                      uint64_t Imm) {
380   unsigned ResultReg = createResultReg(RC);
381   const MCInstrDesc &II = TII.get(MachineInstOpcode);
382 
383   if (II.getNumDefs() >= 1) {
384     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II,
385                             ResultReg).addImm(Imm));
386   } else {
387     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
388                    .addImm(Imm));
389     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
390                            TII.get(TargetOpcode::COPY), ResultReg)
391                    .addReg(II.ImplicitDefs[0]));
392   }
393   return ResultReg;
394 }
395 
396 // TODO: Don't worry about 64-bit now, but when this is fixed remove the
397 // checks from the various callers.
398 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) {
399   if (VT == MVT::f64) return 0;
400 
401   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
402   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
403                           TII.get(ARM::VMOVSR), MoveReg)
404                   .addReg(SrcReg));
405   return MoveReg;
406 }
407 
408 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) {
409   if (VT == MVT::i64) return 0;
410 
411   unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT));
412   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
413                           TII.get(ARM::VMOVRS), MoveReg)
414                   .addReg(SrcReg));
415   return MoveReg;
416 }
417 
418 // For double width floating point we need to materialize two constants
419 // (the high and the low) into integer registers then use a move to get
420 // the combined constant into an FP reg.
421 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) {
422   const APFloat Val = CFP->getValueAPF();
423   bool is64bit = VT == MVT::f64;
424 
425   // This checks to see if we can use VFP3 instructions to materialize
426   // a constant, otherwise we have to go through the constant pool.
427   if (TLI.isFPImmLegal(Val, VT)) {
428     int Imm;
429     unsigned Opc;
430     if (is64bit) {
431       Imm = ARM_AM::getFP64Imm(Val);
432       Opc = ARM::FCONSTD;
433     } else {
434       Imm = ARM_AM::getFP32Imm(Val);
435       Opc = ARM::FCONSTS;
436     }
437     unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
438     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
439                             TII.get(Opc), DestReg).addImm(Imm));
440     return DestReg;
441   }
442 
443   // Require VFP2 for loading fp constants.
444   if (!Subtarget->hasVFP2Base()) return false;
445 
446   // MachineConstantPool wants an explicit alignment.
447   unsigned Align = DL.getPrefTypeAlignment(CFP->getType());
448   if (Align == 0) {
449     // TODO: Figure out if this is correct.
450     Align = DL.getTypeAllocSize(CFP->getType());
451   }
452   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align);
453   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
454   unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
455 
456   // The extra reg is for addrmode5.
457   AddOptionalDefs(
458       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
459           .addConstantPoolIndex(Idx)
460           .addReg(0));
461   return DestReg;
462 }
463 
464 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
465   if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
466     return 0;
467 
468   // If we can do this in a single instruction without a constant pool entry
469   // do so now.
470   const ConstantInt *CI = cast<ConstantInt>(C);
471   if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
472     unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
473     const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
474       &ARM::GPRRegClass;
475     unsigned ImmReg = createResultReg(RC);
476     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
477                             TII.get(Opc), ImmReg)
478                     .addImm(CI->getZExtValue()));
479     return ImmReg;
480   }
481 
482   // Use MVN to emit negative constants.
483   if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
484     unsigned Imm = (unsigned)~(CI->getSExtValue());
485     bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
486       (ARM_AM::getSOImmVal(Imm) != -1);
487     if (UseImm) {
488       unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
489       const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
490                                                  &ARM::GPRRegClass;
491       unsigned ImmReg = createResultReg(RC);
492       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
493                               TII.get(Opc), ImmReg)
494                       .addImm(Imm));
495       return ImmReg;
496     }
497   }
498 
499   unsigned ResultReg = 0;
500   if (Subtarget->useMovt())
501     ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
502 
503   if (ResultReg)
504     return ResultReg;
505 
506   // Load from constant pool.  For now 32-bit only.
507   if (VT != MVT::i32)
508     return 0;
509 
510   // MachineConstantPool wants an explicit alignment.
511   unsigned Align = DL.getPrefTypeAlignment(C->getType());
512   if (Align == 0) {
513     // TODO: Figure out if this is correct.
514     Align = DL.getTypeAllocSize(C->getType());
515   }
516   unsigned Idx = MCP.getConstantPoolIndex(C, Align);
517   ResultReg = createResultReg(TLI.getRegClassFor(VT));
518   if (isThumb2)
519     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
520                             TII.get(ARM::t2LDRpci), ResultReg)
521                       .addConstantPoolIndex(Idx));
522   else {
523     // The extra immediate is for addrmode2.
524     ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0);
525     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
526                             TII.get(ARM::LDRcp), ResultReg)
527                       .addConstantPoolIndex(Idx)
528                       .addImm(0));
529   }
530   return ResultReg;
531 }
532 
533 bool ARMFastISel::isPositionIndependent() const {
534   return TLI.isPositionIndependent();
535 }
536 
537 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) {
538   // For now 32-bit only.
539   if (VT != MVT::i32 || GV->isThreadLocal()) return 0;
540 
541   // ROPI/RWPI not currently supported.
542   if (Subtarget->isROPI() || Subtarget->isRWPI())
543     return 0;
544 
545   bool IsIndirect = Subtarget->isGVIndirectSymbol(GV);
546   const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
547                                            : &ARM::GPRRegClass;
548   unsigned DestReg = createResultReg(RC);
549 
550   // FastISel TLS support on non-MachO is broken, punt to SelectionDAG.
551   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
552   bool IsThreadLocal = GVar && GVar->isThreadLocal();
553   if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0;
554 
555   bool IsPositionIndependent = isPositionIndependent();
556   // Use movw+movt when possible, it avoids constant pool entries.
557   // Non-darwin targets only support static movt relocations in FastISel.
558   if (Subtarget->useMovt() &&
559       (Subtarget->isTargetMachO() || !IsPositionIndependent)) {
560     unsigned Opc;
561     unsigned char TF = 0;
562     if (Subtarget->isTargetMachO())
563       TF = ARMII::MO_NONLAZY;
564 
565     if (IsPositionIndependent)
566       Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
567     else
568       Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
569     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
570                             TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF));
571   } else {
572     // MachineConstantPool wants an explicit alignment.
573     unsigned Align = DL.getPrefTypeAlignment(GV->getType());
574     if (Align == 0) {
575       // TODO: Figure out if this is correct.
576       Align = DL.getTypeAllocSize(GV->getType());
577     }
578 
579     if (Subtarget->isTargetELF() && IsPositionIndependent)
580       return ARMLowerPICELF(GV, Align, VT);
581 
582     // Grab index.
583     unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
584     unsigned Id = AFI->createPICLabelUId();
585     ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
586                                                                 ARMCP::CPValue,
587                                                                 PCAdj);
588     unsigned Idx = MCP.getConstantPoolIndex(CPV, Align);
589 
590     // Load value.
591     MachineInstrBuilder MIB;
592     if (isThumb2) {
593       unsigned Opc = IsPositionIndependent ? ARM::t2LDRpci_pic : ARM::t2LDRpci;
594       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
595                     DestReg).addConstantPoolIndex(Idx);
596       if (IsPositionIndependent)
597         MIB.addImm(Id);
598       AddOptionalDefs(MIB);
599     } else {
600       // The extra immediate is for addrmode2.
601       DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0);
602       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
603                     TII.get(ARM::LDRcp), DestReg)
604                 .addConstantPoolIndex(Idx)
605                 .addImm(0);
606       AddOptionalDefs(MIB);
607 
608       if (IsPositionIndependent) {
609         unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD;
610         unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
611 
612         MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
613                                           DbgLoc, TII.get(Opc), NewDestReg)
614                                   .addReg(DestReg)
615                                   .addImm(Id);
616         AddOptionalDefs(MIB);
617         return NewDestReg;
618       }
619     }
620   }
621 
622   if (IsIndirect) {
623     MachineInstrBuilder MIB;
624     unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
625     if (isThumb2)
626       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
627                     TII.get(ARM::t2LDRi12), NewDestReg)
628             .addReg(DestReg)
629             .addImm(0);
630     else
631       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
632                     TII.get(ARM::LDRi12), NewDestReg)
633                 .addReg(DestReg)
634                 .addImm(0);
635     DestReg = NewDestReg;
636     AddOptionalDefs(MIB);
637   }
638 
639   return DestReg;
640 }
641 
642 unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) {
643   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
644 
645   // Only handle simple types.
646   if (!CEVT.isSimple()) return 0;
647   MVT VT = CEVT.getSimpleVT();
648 
649   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
650     return ARMMaterializeFP(CFP, VT);
651   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
652     return ARMMaterializeGV(GV, VT);
653   else if (isa<ConstantInt>(C))
654     return ARMMaterializeInt(C, VT);
655 
656   return 0;
657 }
658 
659 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
660 
661 unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
662   // Don't handle dynamic allocas.
663   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
664 
665   MVT VT;
666   if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
667 
668   DenseMap<const AllocaInst*, int>::iterator SI =
669     FuncInfo.StaticAllocaMap.find(AI);
670 
671   // This will get lowered later into the correct offsets and registers
672   // via rewriteXFrameIndex.
673   if (SI != FuncInfo.StaticAllocaMap.end()) {
674     unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
675     const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
676     unsigned ResultReg = createResultReg(RC);
677     ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0);
678 
679     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
680                             TII.get(Opc), ResultReg)
681                             .addFrameIndex(SI->second)
682                             .addImm(0));
683     return ResultReg;
684   }
685 
686   return 0;
687 }
688 
689 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
690   EVT evt = TLI.getValueType(DL, Ty, true);
691 
692   // Only handle simple types.
693   if (evt == MVT::Other || !evt.isSimple()) return false;
694   VT = evt.getSimpleVT();
695 
696   // Handle all legal types, i.e. a register that will directly hold this
697   // value.
698   return TLI.isTypeLegal(VT);
699 }
700 
701 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
702   if (isTypeLegal(Ty, VT)) return true;
703 
704   // If this is a type than can be sign or zero-extended to a basic operation
705   // go ahead and accept it now.
706   if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
707     return true;
708 
709   return false;
710 }
711 
712 // Computes the address to get to an object.
713 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
714   // Some boilerplate from the X86 FastISel.
715   const User *U = nullptr;
716   unsigned Opcode = Instruction::UserOp1;
717   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
718     // Don't walk into other basic blocks unless the object is an alloca from
719     // another block, otherwise it may not have a virtual register assigned.
720     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
721         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
722       Opcode = I->getOpcode();
723       U = I;
724     }
725   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
726     Opcode = C->getOpcode();
727     U = C;
728   }
729 
730   if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
731     if (Ty->getAddressSpace() > 255)
732       // Fast instruction selection doesn't support the special
733       // address spaces.
734       return false;
735 
736   switch (Opcode) {
737     default:
738     break;
739     case Instruction::BitCast:
740       // Look through bitcasts.
741       return ARMComputeAddress(U->getOperand(0), Addr);
742     case Instruction::IntToPtr:
743       // Look past no-op inttoptrs.
744       if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
745           TLI.getPointerTy(DL))
746         return ARMComputeAddress(U->getOperand(0), Addr);
747       break;
748     case Instruction::PtrToInt:
749       // Look past no-op ptrtoints.
750       if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
751         return ARMComputeAddress(U->getOperand(0), Addr);
752       break;
753     case Instruction::GetElementPtr: {
754       Address SavedAddr = Addr;
755       int TmpOffset = Addr.Offset;
756 
757       // Iterate through the GEP folding the constants into offsets where
758       // we can.
759       gep_type_iterator GTI = gep_type_begin(U);
760       for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
761            i != e; ++i, ++GTI) {
762         const Value *Op = *i;
763         if (StructType *STy = GTI.getStructTypeOrNull()) {
764           const StructLayout *SL = DL.getStructLayout(STy);
765           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
766           TmpOffset += SL->getElementOffset(Idx);
767         } else {
768           uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
769           while (true) {
770             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
771               // Constant-offset addressing.
772               TmpOffset += CI->getSExtValue() * S;
773               break;
774             }
775             if (canFoldAddIntoGEP(U, Op)) {
776               // A compatible add with a constant operand. Fold the constant.
777               ConstantInt *CI =
778               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
779               TmpOffset += CI->getSExtValue() * S;
780               // Iterate on the other operand.
781               Op = cast<AddOperator>(Op)->getOperand(0);
782               continue;
783             }
784             // Unsupported
785             goto unsupported_gep;
786           }
787         }
788       }
789 
790       // Try to grab the base operand now.
791       Addr.Offset = TmpOffset;
792       if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
793 
794       // We failed, restore everything and try the other options.
795       Addr = SavedAddr;
796 
797       unsupported_gep:
798       break;
799     }
800     case Instruction::Alloca: {
801       const AllocaInst *AI = cast<AllocaInst>(Obj);
802       DenseMap<const AllocaInst*, int>::iterator SI =
803         FuncInfo.StaticAllocaMap.find(AI);
804       if (SI != FuncInfo.StaticAllocaMap.end()) {
805         Addr.BaseType = Address::FrameIndexBase;
806         Addr.Base.FI = SI->second;
807         return true;
808       }
809       break;
810     }
811   }
812 
813   // Try to get this in a register if nothing else has worked.
814   if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
815   return Addr.Base.Reg != 0;
816 }
817 
818 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) {
819   bool needsLowering = false;
820   switch (VT.SimpleTy) {
821     default: llvm_unreachable("Unhandled load/store type!");
822     case MVT::i1:
823     case MVT::i8:
824     case MVT::i16:
825     case MVT::i32:
826       if (!useAM3) {
827         // Integer loads/stores handle 12-bit offsets.
828         needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
829         // Handle negative offsets.
830         if (needsLowering && isThumb2)
831           needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
832                             Addr.Offset > -256);
833       } else {
834         // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
835         needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
836       }
837       break;
838     case MVT::f32:
839     case MVT::f64:
840       // Floating point operands handle 8-bit offsets.
841       needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
842       break;
843   }
844 
845   // If this is a stack pointer and the offset needs to be simplified then
846   // put the alloca address into a register, set the base type back to
847   // register and continue. This should almost never happen.
848   if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
849     const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
850                                              : &ARM::GPRRegClass;
851     unsigned ResultReg = createResultReg(RC);
852     unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
853     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
854                             TII.get(Opc), ResultReg)
855                             .addFrameIndex(Addr.Base.FI)
856                             .addImm(0));
857     Addr.Base.Reg = ResultReg;
858     Addr.BaseType = Address::RegBase;
859   }
860 
861   // Since the offset is too large for the load/store instruction
862   // get the reg+offset into a register.
863   if (needsLowering) {
864     Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
865                                  /*Op0IsKill*/false, Addr.Offset, MVT::i32);
866     Addr.Offset = 0;
867   }
868 }
869 
870 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr,
871                                        const MachineInstrBuilder &MIB,
872                                        MachineMemOperand::Flags Flags,
873                                        bool useAM3) {
874   // addrmode5 output depends on the selection dag addressing dividing the
875   // offset by 4 that it then later multiplies. Do this here as well.
876   if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64)
877     Addr.Offset /= 4;
878 
879   // Frame base works a bit differently. Handle it separately.
880   if (Addr.BaseType == Address::FrameIndexBase) {
881     int FI = Addr.Base.FI;
882     int Offset = Addr.Offset;
883     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
884         MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags,
885         MFI.getObjectSize(FI), MFI.getObjectAlignment(FI));
886     // Now add the rest of the operands.
887     MIB.addFrameIndex(FI);
888 
889     // ARM halfword load/stores and signed byte loads need an additional
890     // operand.
891     if (useAM3) {
892       int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
893       MIB.addReg(0);
894       MIB.addImm(Imm);
895     } else {
896       MIB.addImm(Addr.Offset);
897     }
898     MIB.addMemOperand(MMO);
899   } else {
900     // Now add the rest of the operands.
901     MIB.addReg(Addr.Base.Reg);
902 
903     // ARM halfword load/stores and signed byte loads need an additional
904     // operand.
905     if (useAM3) {
906       int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
907       MIB.addReg(0);
908       MIB.addImm(Imm);
909     } else {
910       MIB.addImm(Addr.Offset);
911     }
912   }
913   AddOptionalDefs(MIB);
914 }
915 
916 bool ARMFastISel::ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
917                               unsigned Alignment, bool isZExt, bool allocReg) {
918   unsigned Opc;
919   bool useAM3 = false;
920   bool needVMOV = false;
921   const TargetRegisterClass *RC;
922   switch (VT.SimpleTy) {
923     // This is mostly going to be Neon/vector support.
924     default: return false;
925     case MVT::i1:
926     case MVT::i8:
927       if (isThumb2) {
928         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
929           Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
930         else
931           Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
932       } else {
933         if (isZExt) {
934           Opc = ARM::LDRBi12;
935         } else {
936           Opc = ARM::LDRSB;
937           useAM3 = true;
938         }
939       }
940       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
941       break;
942     case MVT::i16:
943       if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
944         return false;
945 
946       if (isThumb2) {
947         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
948           Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
949         else
950           Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
951       } else {
952         Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
953         useAM3 = true;
954       }
955       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
956       break;
957     case MVT::i32:
958       if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
959         return false;
960 
961       if (isThumb2) {
962         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
963           Opc = ARM::t2LDRi8;
964         else
965           Opc = ARM::t2LDRi12;
966       } else {
967         Opc = ARM::LDRi12;
968       }
969       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
970       break;
971     case MVT::f32:
972       if (!Subtarget->hasVFP2Base()) return false;
973       // Unaligned loads need special handling. Floats require word-alignment.
974       if (Alignment && Alignment < 4) {
975         needVMOV = true;
976         VT = MVT::i32;
977         Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
978         RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
979       } else {
980         Opc = ARM::VLDRS;
981         RC = TLI.getRegClassFor(VT);
982       }
983       break;
984     case MVT::f64:
985       // Can load and store double precision even without FeatureFP64
986       if (!Subtarget->hasVFP2Base()) return false;
987       // FIXME: Unaligned loads need special handling.  Doublewords require
988       // word-alignment.
989       if (Alignment && Alignment < 4)
990         return false;
991 
992       Opc = ARM::VLDRD;
993       RC = TLI.getRegClassFor(VT);
994       break;
995   }
996   // Simplify this down to something we can handle.
997   ARMSimplifyAddress(Addr, VT, useAM3);
998 
999   // Create the base instruction, then add the operands.
1000   if (allocReg)
1001     ResultReg = createResultReg(RC);
1002   assert(ResultReg > 255 && "Expected an allocated virtual register.");
1003   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1004                                     TII.get(Opc), ResultReg);
1005   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
1006 
1007   // If we had an unaligned load of a float we've converted it to an regular
1008   // load.  Now we must move from the GRP to the FP register.
1009   if (needVMOV) {
1010     unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1011     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1012                             TII.get(ARM::VMOVSR), MoveReg)
1013                     .addReg(ResultReg));
1014     ResultReg = MoveReg;
1015   }
1016   return true;
1017 }
1018 
1019 bool ARMFastISel::SelectLoad(const Instruction *I) {
1020   // Atomic loads need special handling.
1021   if (cast<LoadInst>(I)->isAtomic())
1022     return false;
1023 
1024   const Value *SV = I->getOperand(0);
1025   if (TLI.supportSwiftError()) {
1026     // Swifterror values can come from either a function parameter with
1027     // swifterror attribute or an alloca with swifterror attribute.
1028     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1029       if (Arg->hasSwiftErrorAttr())
1030         return false;
1031     }
1032 
1033     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1034       if (Alloca->isSwiftError())
1035         return false;
1036     }
1037   }
1038 
1039   // Verify we have a legal type before going any further.
1040   MVT VT;
1041   if (!isLoadTypeLegal(I->getType(), VT))
1042     return false;
1043 
1044   // See if we can handle this address.
1045   Address Addr;
1046   if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
1047 
1048   Register ResultReg;
1049   if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
1050     return false;
1051   updateValueMap(I, ResultReg);
1052   return true;
1053 }
1054 
1055 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
1056                                unsigned Alignment) {
1057   unsigned StrOpc;
1058   bool useAM3 = false;
1059   switch (VT.SimpleTy) {
1060     // This is mostly going to be Neon/vector support.
1061     default: return false;
1062     case MVT::i1: {
1063       unsigned Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass
1064                                               : &ARM::GPRRegClass);
1065       unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
1066       SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1);
1067       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1068                               TII.get(Opc), Res)
1069                       .addReg(SrcReg).addImm(1));
1070       SrcReg = Res;
1071       LLVM_FALLTHROUGH;
1072     }
1073     case MVT::i8:
1074       if (isThumb2) {
1075         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1076           StrOpc = ARM::t2STRBi8;
1077         else
1078           StrOpc = ARM::t2STRBi12;
1079       } else {
1080         StrOpc = ARM::STRBi12;
1081       }
1082       break;
1083     case MVT::i16:
1084       if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem())
1085         return false;
1086 
1087       if (isThumb2) {
1088         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1089           StrOpc = ARM::t2STRHi8;
1090         else
1091           StrOpc = ARM::t2STRHi12;
1092       } else {
1093         StrOpc = ARM::STRH;
1094         useAM3 = true;
1095       }
1096       break;
1097     case MVT::i32:
1098       if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem())
1099         return false;
1100 
1101       if (isThumb2) {
1102         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1103           StrOpc = ARM::t2STRi8;
1104         else
1105           StrOpc = ARM::t2STRi12;
1106       } else {
1107         StrOpc = ARM::STRi12;
1108       }
1109       break;
1110     case MVT::f32:
1111       if (!Subtarget->hasVFP2Base()) return false;
1112       // Unaligned stores need special handling. Floats require word-alignment.
1113       if (Alignment && Alignment < 4) {
1114         unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1115         AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1116                                 TII.get(ARM::VMOVRS), MoveReg)
1117                         .addReg(SrcReg));
1118         SrcReg = MoveReg;
1119         VT = MVT::i32;
1120         StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
1121       } else {
1122         StrOpc = ARM::VSTRS;
1123       }
1124       break;
1125     case MVT::f64:
1126       // Can load and store double precision even without FeatureFP64
1127       if (!Subtarget->hasVFP2Base()) return false;
1128       // FIXME: Unaligned stores need special handling.  Doublewords require
1129       // word-alignment.
1130       if (Alignment && Alignment < 4)
1131           return false;
1132 
1133       StrOpc = ARM::VSTRD;
1134       break;
1135   }
1136   // Simplify this down to something we can handle.
1137   ARMSimplifyAddress(Addr, VT, useAM3);
1138 
1139   // Create the base instruction, then add the operands.
1140   SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0);
1141   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1142                                     TII.get(StrOpc))
1143                             .addReg(SrcReg);
1144   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
1145   return true;
1146 }
1147 
1148 bool ARMFastISel::SelectStore(const Instruction *I) {
1149   Value *Op0 = I->getOperand(0);
1150   unsigned SrcReg = 0;
1151 
1152   // Atomic stores need special handling.
1153   if (cast<StoreInst>(I)->isAtomic())
1154     return false;
1155 
1156   const Value *PtrV = I->getOperand(1);
1157   if (TLI.supportSwiftError()) {
1158     // Swifterror values can come from either a function parameter with
1159     // swifterror attribute or an alloca with swifterror attribute.
1160     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1161       if (Arg->hasSwiftErrorAttr())
1162         return false;
1163     }
1164 
1165     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1166       if (Alloca->isSwiftError())
1167         return false;
1168     }
1169   }
1170 
1171   // Verify we have a legal type before going any further.
1172   MVT VT;
1173   if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1174     return false;
1175 
1176   // Get the value to be stored into a register.
1177   SrcReg = getRegForValue(Op0);
1178   if (SrcReg == 0) return false;
1179 
1180   // See if we can handle this address.
1181   Address Addr;
1182   if (!ARMComputeAddress(I->getOperand(1), Addr))
1183     return false;
1184 
1185   if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
1186     return false;
1187   return true;
1188 }
1189 
1190 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1191   switch (Pred) {
1192     // Needs two compares...
1193     case CmpInst::FCMP_ONE:
1194     case CmpInst::FCMP_UEQ:
1195     default:
1196       // AL is our "false" for now. The other two need more compares.
1197       return ARMCC::AL;
1198     case CmpInst::ICMP_EQ:
1199     case CmpInst::FCMP_OEQ:
1200       return ARMCC::EQ;
1201     case CmpInst::ICMP_SGT:
1202     case CmpInst::FCMP_OGT:
1203       return ARMCC::GT;
1204     case CmpInst::ICMP_SGE:
1205     case CmpInst::FCMP_OGE:
1206       return ARMCC::GE;
1207     case CmpInst::ICMP_UGT:
1208     case CmpInst::FCMP_UGT:
1209       return ARMCC::HI;
1210     case CmpInst::FCMP_OLT:
1211       return ARMCC::MI;
1212     case CmpInst::ICMP_ULE:
1213     case CmpInst::FCMP_OLE:
1214       return ARMCC::LS;
1215     case CmpInst::FCMP_ORD:
1216       return ARMCC::VC;
1217     case CmpInst::FCMP_UNO:
1218       return ARMCC::VS;
1219     case CmpInst::FCMP_UGE:
1220       return ARMCC::PL;
1221     case CmpInst::ICMP_SLT:
1222     case CmpInst::FCMP_ULT:
1223       return ARMCC::LT;
1224     case CmpInst::ICMP_SLE:
1225     case CmpInst::FCMP_ULE:
1226       return ARMCC::LE;
1227     case CmpInst::FCMP_UNE:
1228     case CmpInst::ICMP_NE:
1229       return ARMCC::NE;
1230     case CmpInst::ICMP_UGE:
1231       return ARMCC::HS;
1232     case CmpInst::ICMP_ULT:
1233       return ARMCC::LO;
1234   }
1235 }
1236 
1237 bool ARMFastISel::SelectBranch(const Instruction *I) {
1238   const BranchInst *BI = cast<BranchInst>(I);
1239   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1240   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1241 
1242   // Simple branch support.
1243 
1244   // If we can, avoid recomputing the compare - redoing it could lead to wonky
1245   // behavior.
1246   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1247     if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1248       // Get the compare predicate.
1249       // Try to take advantage of fallthrough opportunities.
1250       CmpInst::Predicate Predicate = CI->getPredicate();
1251       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1252         std::swap(TBB, FBB);
1253         Predicate = CmpInst::getInversePredicate(Predicate);
1254       }
1255 
1256       ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1257 
1258       // We may not handle every CC for now.
1259       if (ARMPred == ARMCC::AL) return false;
1260 
1261       // Emit the compare.
1262       if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1263         return false;
1264 
1265       unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1266       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1267       .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1268       finishCondBranch(BI->getParent(), TBB, FBB);
1269       return true;
1270     }
1271   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1272     MVT SourceVT;
1273     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1274         (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1275       unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1276       unsigned OpReg = getRegForValue(TI->getOperand(0));
1277       OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0);
1278       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1279                               TII.get(TstOpc))
1280                       .addReg(OpReg).addImm(1));
1281 
1282       unsigned CCMode = ARMCC::NE;
1283       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1284         std::swap(TBB, FBB);
1285         CCMode = ARMCC::EQ;
1286       }
1287 
1288       unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1289       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1290       .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1291 
1292       finishCondBranch(BI->getParent(), TBB, FBB);
1293       return true;
1294     }
1295   } else if (const ConstantInt *CI =
1296              dyn_cast<ConstantInt>(BI->getCondition())) {
1297     uint64_t Imm = CI->getZExtValue();
1298     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1299     fastEmitBranch(Target, DbgLoc);
1300     return true;
1301   }
1302 
1303   unsigned CmpReg = getRegForValue(BI->getCondition());
1304   if (CmpReg == 0) return false;
1305 
1306   // We've been divorced from our compare!  Our block was split, and
1307   // now our compare lives in a predecessor block.  We musn't
1308   // re-compare here, as the children of the compare aren't guaranteed
1309   // live across the block boundary (we *could* check for this).
1310   // Regardless, the compare has been done in the predecessor block,
1311   // and it left a value for us in a virtual register.  Ergo, we test
1312   // the one-bit value left in the virtual register.
1313   unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1314   CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0);
1315   AddOptionalDefs(
1316       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
1317           .addReg(CmpReg)
1318           .addImm(1));
1319 
1320   unsigned CCMode = ARMCC::NE;
1321   if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1322     std::swap(TBB, FBB);
1323     CCMode = ARMCC::EQ;
1324   }
1325 
1326   unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1327   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc))
1328                   .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1329   finishCondBranch(BI->getParent(), TBB, FBB);
1330   return true;
1331 }
1332 
1333 bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
1334   unsigned AddrReg = getRegForValue(I->getOperand(0));
1335   if (AddrReg == 0) return false;
1336 
1337   unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
1338   assert(isThumb2 || Subtarget->hasV4TOps());
1339 
1340   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1341                           TII.get(Opc)).addReg(AddrReg));
1342 
1343   const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1344   for (const BasicBlock *SuccBB : IB->successors())
1345     FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
1346 
1347   return true;
1348 }
1349 
1350 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1351                              bool isZExt) {
1352   Type *Ty = Src1Value->getType();
1353   EVT SrcEVT = TLI.getValueType(DL, Ty, true);
1354   if (!SrcEVT.isSimple()) return false;
1355   MVT SrcVT = SrcEVT.getSimpleVT();
1356 
1357   if (Ty->isFloatTy() && !Subtarget->hasVFP2Base())
1358     return false;
1359 
1360   if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()))
1361     return false;
1362 
1363   // Check to see if the 2nd operand is a constant that we can encode directly
1364   // in the compare.
1365   int Imm = 0;
1366   bool UseImm = false;
1367   bool isNegativeImm = false;
1368   // FIXME: At -O0 we don't have anything that canonicalizes operand order.
1369   // Thus, Src1Value may be a ConstantInt, but we're missing it.
1370   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
1371     if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
1372         SrcVT == MVT::i1) {
1373       const APInt &CIVal = ConstInt->getValue();
1374       Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
1375       // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
1376       // then a cmn, because there is no way to represent 2147483648 as a
1377       // signed 32-bit int.
1378       if (Imm < 0 && Imm != (int)0x80000000) {
1379         isNegativeImm = true;
1380         Imm = -Imm;
1381       }
1382       UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1383         (ARM_AM::getSOImmVal(Imm) != -1);
1384     }
1385   } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
1386     if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
1387       if (ConstFP->isZero() && !ConstFP->isNegative())
1388         UseImm = true;
1389   }
1390 
1391   unsigned CmpOpc;
1392   bool isICmp = true;
1393   bool needsExt = false;
1394   switch (SrcVT.SimpleTy) {
1395     default: return false;
1396     // TODO: Verify compares.
1397     case MVT::f32:
1398       isICmp = false;
1399       CmpOpc = UseImm ? ARM::VCMPZS : ARM::VCMPS;
1400       break;
1401     case MVT::f64:
1402       isICmp = false;
1403       CmpOpc = UseImm ? ARM::VCMPZD : ARM::VCMPD;
1404       break;
1405     case MVT::i1:
1406     case MVT::i8:
1407     case MVT::i16:
1408       needsExt = true;
1409       LLVM_FALLTHROUGH;
1410     case MVT::i32:
1411       if (isThumb2) {
1412         if (!UseImm)
1413           CmpOpc = ARM::t2CMPrr;
1414         else
1415           CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri;
1416       } else {
1417         if (!UseImm)
1418           CmpOpc = ARM::CMPrr;
1419         else
1420           CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri;
1421       }
1422       break;
1423   }
1424 
1425   unsigned SrcReg1 = getRegForValue(Src1Value);
1426   if (SrcReg1 == 0) return false;
1427 
1428   unsigned SrcReg2 = 0;
1429   if (!UseImm) {
1430     SrcReg2 = getRegForValue(Src2Value);
1431     if (SrcReg2 == 0) return false;
1432   }
1433 
1434   // We have i1, i8, or i16, we need to either zero extend or sign extend.
1435   if (needsExt) {
1436     SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
1437     if (SrcReg1 == 0) return false;
1438     if (!UseImm) {
1439       SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
1440       if (SrcReg2 == 0) return false;
1441     }
1442   }
1443 
1444   const MCInstrDesc &II = TII.get(CmpOpc);
1445   SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0);
1446   if (!UseImm) {
1447     SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1);
1448     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1449                     .addReg(SrcReg1).addReg(SrcReg2));
1450   } else {
1451     MachineInstrBuilder MIB;
1452     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II)
1453       .addReg(SrcReg1);
1454 
1455     // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
1456     if (isICmp)
1457       MIB.addImm(Imm);
1458     AddOptionalDefs(MIB);
1459   }
1460 
1461   // For floating point we need to move the result to a comparison register
1462   // that we can then use for branches.
1463   if (Ty->isFloatTy() || Ty->isDoubleTy())
1464     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1465                             TII.get(ARM::FMSTAT)));
1466   return true;
1467 }
1468 
1469 bool ARMFastISel::SelectCmp(const Instruction *I) {
1470   const CmpInst *CI = cast<CmpInst>(I);
1471 
1472   // Get the compare predicate.
1473   ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1474 
1475   // We may not handle every CC for now.
1476   if (ARMPred == ARMCC::AL) return false;
1477 
1478   // Emit the compare.
1479   if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1480     return false;
1481 
1482   // Now set a register based on the comparison. Explicitly set the predicates
1483   // here.
1484   unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1485   const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
1486                                            : &ARM::GPRRegClass;
1487   unsigned DestReg = createResultReg(RC);
1488   Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1489   unsigned ZeroReg = fastMaterializeConstant(Zero);
1490   // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
1491   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg)
1492           .addReg(ZeroReg).addImm(1)
1493           .addImm(ARMPred).addReg(ARM::CPSR);
1494 
1495   updateValueMap(I, DestReg);
1496   return true;
1497 }
1498 
1499 bool ARMFastISel::SelectFPExt(const Instruction *I) {
1500   // Make sure we have VFP and that we're extending float to double.
1501   if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false;
1502 
1503   Value *V = I->getOperand(0);
1504   if (!I->getType()->isDoubleTy() ||
1505       !V->getType()->isFloatTy()) return false;
1506 
1507   unsigned Op = getRegForValue(V);
1508   if (Op == 0) return false;
1509 
1510   unsigned Result = createResultReg(&ARM::DPRRegClass);
1511   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1512                           TII.get(ARM::VCVTDS), Result)
1513                   .addReg(Op));
1514   updateValueMap(I, Result);
1515   return true;
1516 }
1517 
1518 bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1519   // Make sure we have VFP and that we're truncating double to float.
1520   if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false;
1521 
1522   Value *V = I->getOperand(0);
1523   if (!(I->getType()->isFloatTy() &&
1524         V->getType()->isDoubleTy())) return false;
1525 
1526   unsigned Op = getRegForValue(V);
1527   if (Op == 0) return false;
1528 
1529   unsigned Result = createResultReg(&ARM::SPRRegClass);
1530   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1531                           TII.get(ARM::VCVTSD), Result)
1532                   .addReg(Op));
1533   updateValueMap(I, Result);
1534   return true;
1535 }
1536 
1537 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
1538   // Make sure we have VFP.
1539   if (!Subtarget->hasVFP2Base()) return false;
1540 
1541   MVT DstVT;
1542   Type *Ty = I->getType();
1543   if (!isTypeLegal(Ty, DstVT))
1544     return false;
1545 
1546   Value *Src = I->getOperand(0);
1547   EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
1548   if (!SrcEVT.isSimple())
1549     return false;
1550   MVT SrcVT = SrcEVT.getSimpleVT();
1551   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1552     return false;
1553 
1554   unsigned SrcReg = getRegForValue(Src);
1555   if (SrcReg == 0) return false;
1556 
1557   // Handle sign-extension.
1558   if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
1559     SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32,
1560                                        /*isZExt*/!isSigned);
1561     if (SrcReg == 0) return false;
1562   }
1563 
1564   // The conversion routine works on fp-reg to fp-reg and the operand above
1565   // was an integer, move it to the fp registers if possible.
1566   unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1567   if (FP == 0) return false;
1568 
1569   unsigned Opc;
1570   if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
1571   else if (Ty->isDoubleTy() && Subtarget->hasFP64())
1572     Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
1573   else return false;
1574 
1575   unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1576   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1577                           TII.get(Opc), ResultReg).addReg(FP));
1578   updateValueMap(I, ResultReg);
1579   return true;
1580 }
1581 
1582 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
1583   // Make sure we have VFP.
1584   if (!Subtarget->hasVFP2Base()) return false;
1585 
1586   MVT DstVT;
1587   Type *RetTy = I->getType();
1588   if (!isTypeLegal(RetTy, DstVT))
1589     return false;
1590 
1591   unsigned Op = getRegForValue(I->getOperand(0));
1592   if (Op == 0) return false;
1593 
1594   unsigned Opc;
1595   Type *OpTy = I->getOperand(0)->getType();
1596   if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
1597   else if (OpTy->isDoubleTy() && Subtarget->hasFP64())
1598     Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
1599   else return false;
1600 
1601   // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
1602   unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1603   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1604                           TII.get(Opc), ResultReg).addReg(Op));
1605 
1606   // This result needs to be in an integer register, but the conversion only
1607   // takes place in fp-regs.
1608   unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1609   if (IntReg == 0) return false;
1610 
1611   updateValueMap(I, IntReg);
1612   return true;
1613 }
1614 
1615 bool ARMFastISel::SelectSelect(const Instruction *I) {
1616   MVT VT;
1617   if (!isTypeLegal(I->getType(), VT))
1618     return false;
1619 
1620   // Things need to be register sized for register moves.
1621   if (VT != MVT::i32) return false;
1622 
1623   unsigned CondReg = getRegForValue(I->getOperand(0));
1624   if (CondReg == 0) return false;
1625   unsigned Op1Reg = getRegForValue(I->getOperand(1));
1626   if (Op1Reg == 0) return false;
1627 
1628   // Check to see if we can use an immediate in the conditional move.
1629   int Imm = 0;
1630   bool UseImm = false;
1631   bool isNegativeImm = false;
1632   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
1633     assert(VT == MVT::i32 && "Expecting an i32.");
1634     Imm = (int)ConstInt->getValue().getZExtValue();
1635     if (Imm < 0) {
1636       isNegativeImm = true;
1637       Imm = ~Imm;
1638     }
1639     UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1640       (ARM_AM::getSOImmVal(Imm) != -1);
1641   }
1642 
1643   unsigned Op2Reg = 0;
1644   if (!UseImm) {
1645     Op2Reg = getRegForValue(I->getOperand(2));
1646     if (Op2Reg == 0) return false;
1647   }
1648 
1649   unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1650   CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0);
1651   AddOptionalDefs(
1652       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc))
1653           .addReg(CondReg)
1654           .addImm(1));
1655 
1656   unsigned MovCCOpc;
1657   const TargetRegisterClass *RC;
1658   if (!UseImm) {
1659     RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
1660     MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
1661   } else {
1662     RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass;
1663     if (!isNegativeImm)
1664       MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1665     else
1666       MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
1667   }
1668   unsigned ResultReg = createResultReg(RC);
1669   if (!UseImm) {
1670     Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1);
1671     Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2);
1672     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
1673             ResultReg)
1674         .addReg(Op2Reg)
1675         .addReg(Op1Reg)
1676         .addImm(ARMCC::NE)
1677         .addReg(ARM::CPSR);
1678   } else {
1679     Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1);
1680     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc),
1681             ResultReg)
1682         .addReg(Op1Reg)
1683         .addImm(Imm)
1684         .addImm(ARMCC::EQ)
1685         .addReg(ARM::CPSR);
1686   }
1687   updateValueMap(I, ResultReg);
1688   return true;
1689 }
1690 
1691 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
1692   MVT VT;
1693   Type *Ty = I->getType();
1694   if (!isTypeLegal(Ty, VT))
1695     return false;
1696 
1697   // If we have integer div support we should have selected this automagically.
1698   // In case we have a real miss go ahead and return false and we'll pick
1699   // it up later.
1700   if (Subtarget->hasDivideInThumbMode())
1701     return false;
1702 
1703   // Otherwise emit a libcall.
1704   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1705   if (VT == MVT::i8)
1706     LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
1707   else if (VT == MVT::i16)
1708     LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
1709   else if (VT == MVT::i32)
1710     LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
1711   else if (VT == MVT::i64)
1712     LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
1713   else if (VT == MVT::i128)
1714     LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
1715   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1716 
1717   return ARMEmitLibcall(I, LC);
1718 }
1719 
1720 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
1721   MVT VT;
1722   Type *Ty = I->getType();
1723   if (!isTypeLegal(Ty, VT))
1724     return false;
1725 
1726   // Many ABIs do not provide a libcall for standalone remainder, so we need to
1727   // use divrem (see the RTABI 4.3.1). Since FastISel can't handle non-double
1728   // multi-reg returns, we'll have to bail out.
1729   if (!TLI.hasStandaloneRem(VT)) {
1730     return false;
1731   }
1732 
1733   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1734   if (VT == MVT::i8)
1735     LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
1736   else if (VT == MVT::i16)
1737     LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
1738   else if (VT == MVT::i32)
1739     LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
1740   else if (VT == MVT::i64)
1741     LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
1742   else if (VT == MVT::i128)
1743     LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
1744   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1745 
1746   return ARMEmitLibcall(I, LC);
1747 }
1748 
1749 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1750   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1751 
1752   // We can get here in the case when we have a binary operation on a non-legal
1753   // type and the target independent selector doesn't know how to handle it.
1754   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1755     return false;
1756 
1757   unsigned Opc;
1758   switch (ISDOpcode) {
1759     default: return false;
1760     case ISD::ADD:
1761       Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
1762       break;
1763     case ISD::OR:
1764       Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
1765       break;
1766     case ISD::SUB:
1767       Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
1768       break;
1769   }
1770 
1771   unsigned SrcReg1 = getRegForValue(I->getOperand(0));
1772   if (SrcReg1 == 0) return false;
1773 
1774   // TODO: Often the 2nd operand is an immediate, which can be encoded directly
1775   // in the instruction, rather then materializing the value in a register.
1776   unsigned SrcReg2 = getRegForValue(I->getOperand(1));
1777   if (SrcReg2 == 0) return false;
1778 
1779   unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
1780   SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1);
1781   SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2);
1782   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1783                           TII.get(Opc), ResultReg)
1784                   .addReg(SrcReg1).addReg(SrcReg2));
1785   updateValueMap(I, ResultReg);
1786   return true;
1787 }
1788 
1789 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
1790   EVT FPVT = TLI.getValueType(DL, I->getType(), true);
1791   if (!FPVT.isSimple()) return false;
1792   MVT VT = FPVT.getSimpleVT();
1793 
1794   // FIXME: Support vector types where possible.
1795   if (VT.isVector())
1796     return false;
1797 
1798   // We can get here in the case when we want to use NEON for our fp
1799   // operations, but can't figure out how to. Just use the vfp instructions
1800   // if we have them.
1801   // FIXME: It'd be nice to use NEON instructions.
1802   Type *Ty = I->getType();
1803   if (Ty->isFloatTy() && !Subtarget->hasVFP2Base())
1804     return false;
1805   if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()))
1806     return false;
1807 
1808   unsigned Opc;
1809   bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1810   switch (ISDOpcode) {
1811     default: return false;
1812     case ISD::FADD:
1813       Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1814       break;
1815     case ISD::FSUB:
1816       Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1817       break;
1818     case ISD::FMUL:
1819       Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1820       break;
1821   }
1822   unsigned Op1 = getRegForValue(I->getOperand(0));
1823   if (Op1 == 0) return false;
1824 
1825   unsigned Op2 = getRegForValue(I->getOperand(1));
1826   if (Op2 == 0) return false;
1827 
1828   unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
1829   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1830                           TII.get(Opc), ResultReg)
1831                   .addReg(Op1).addReg(Op2));
1832   updateValueMap(I, ResultReg);
1833   return true;
1834 }
1835 
1836 // Call Handling Code
1837 
1838 // This is largely taken directly from CCAssignFnForNode
1839 // TODO: We may not support all of this.
1840 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC,
1841                                            bool Return,
1842                                            bool isVarArg) {
1843   switch (CC) {
1844   default:
1845     report_fatal_error("Unsupported calling convention");
1846   case CallingConv::Fast:
1847     if (Subtarget->hasVFP2Base() && !isVarArg) {
1848       if (!Subtarget->isAAPCS_ABI())
1849         return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1850       // For AAPCS ABI targets, just use VFP variant of the calling convention.
1851       return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1852     }
1853     LLVM_FALLTHROUGH;
1854   case CallingConv::C:
1855   case CallingConv::CXX_FAST_TLS:
1856     // Use target triple & subtarget features to do actual dispatch.
1857     if (Subtarget->isAAPCS_ABI()) {
1858       if (Subtarget->hasVFP2Base() &&
1859           TM.Options.FloatABIType == FloatABI::Hard && !isVarArg)
1860         return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1861       else
1862         return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1863     } else {
1864       return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1865     }
1866   case CallingConv::ARM_AAPCS_VFP:
1867   case CallingConv::Swift:
1868     if (!isVarArg)
1869       return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1870     // Fall through to soft float variant, variadic functions don't
1871     // use hard floating point ABI.
1872     LLVM_FALLTHROUGH;
1873   case CallingConv::ARM_AAPCS:
1874     return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1875   case CallingConv::ARM_APCS:
1876     return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1877   case CallingConv::GHC:
1878     if (Return)
1879       report_fatal_error("Can't return in GHC call convention");
1880     else
1881       return CC_ARM_APCS_GHC;
1882   }
1883 }
1884 
1885 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1886                                   SmallVectorImpl<Register> &ArgRegs,
1887                                   SmallVectorImpl<MVT> &ArgVTs,
1888                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1889                                   SmallVectorImpl<Register> &RegArgs,
1890                                   CallingConv::ID CC,
1891                                   unsigned &NumBytes,
1892                                   bool isVarArg) {
1893   SmallVector<CCValAssign, 16> ArgLocs;
1894   CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context);
1895   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
1896                              CCAssignFnForCall(CC, false, isVarArg));
1897 
1898   // Check that we can handle all of the arguments. If we can't, then bail out
1899   // now before we add code to the MBB.
1900   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1901     CCValAssign &VA = ArgLocs[i];
1902     MVT ArgVT = ArgVTs[VA.getValNo()];
1903 
1904     // We don't handle NEON/vector parameters yet.
1905     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1906       return false;
1907 
1908     // Now copy/store arg to correct locations.
1909     if (VA.isRegLoc() && !VA.needsCustom()) {
1910       continue;
1911     } else if (VA.needsCustom()) {
1912       // TODO: We need custom lowering for vector (v2f64) args.
1913       if (VA.getLocVT() != MVT::f64 ||
1914           // TODO: Only handle register args for now.
1915           !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
1916         return false;
1917     } else {
1918       switch (ArgVT.SimpleTy) {
1919       default:
1920         return false;
1921       case MVT::i1:
1922       case MVT::i8:
1923       case MVT::i16:
1924       case MVT::i32:
1925         break;
1926       case MVT::f32:
1927         if (!Subtarget->hasVFP2Base())
1928           return false;
1929         break;
1930       case MVT::f64:
1931         if (!Subtarget->hasVFP2Base())
1932           return false;
1933         break;
1934       }
1935     }
1936   }
1937 
1938   // At the point, we are able to handle the call's arguments in fast isel.
1939 
1940   // Get a count of how many bytes are to be pushed on the stack.
1941   NumBytes = CCInfo.getNextStackOffset();
1942 
1943   // Issue CALLSEQ_START
1944   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1945   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1946                           TII.get(AdjStackDown))
1947                   .addImm(NumBytes).addImm(0));
1948 
1949   // Process the args.
1950   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1951     CCValAssign &VA = ArgLocs[i];
1952     const Value *ArgVal = Args[VA.getValNo()];
1953     Register Arg = ArgRegs[VA.getValNo()];
1954     MVT ArgVT = ArgVTs[VA.getValNo()];
1955 
1956     assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
1957            "We don't handle NEON/vector parameters yet.");
1958 
1959     // Handle arg promotion, etc.
1960     switch (VA.getLocInfo()) {
1961       case CCValAssign::Full: break;
1962       case CCValAssign::SExt: {
1963         MVT DestVT = VA.getLocVT();
1964         Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
1965         assert(Arg != 0 && "Failed to emit a sext");
1966         ArgVT = DestVT;
1967         break;
1968       }
1969       case CCValAssign::AExt:
1970       // Intentional fall-through.  Handle AExt and ZExt.
1971       case CCValAssign::ZExt: {
1972         MVT DestVT = VA.getLocVT();
1973         Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
1974         assert(Arg != 0 && "Failed to emit a zext");
1975         ArgVT = DestVT;
1976         break;
1977       }
1978       case CCValAssign::BCvt: {
1979         unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg,
1980                                  /*TODO: Kill=*/false);
1981         assert(BC != 0 && "Failed to emit a bitcast!");
1982         Arg = BC;
1983         ArgVT = VA.getLocVT();
1984         break;
1985       }
1986       default: llvm_unreachable("Unknown arg promotion!");
1987     }
1988 
1989     // Now copy/store arg to correct locations.
1990     if (VA.isRegLoc() && !VA.needsCustom()) {
1991       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1992               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
1993       RegArgs.push_back(VA.getLocReg());
1994     } else if (VA.needsCustom()) {
1995       // TODO: We need custom lowering for vector (v2f64) args.
1996       assert(VA.getLocVT() == MVT::f64 &&
1997              "Custom lowering for v2f64 args not available");
1998 
1999       // FIXME: ArgLocs[++i] may extend beyond ArgLocs.size()
2000       CCValAssign &NextVA = ArgLocs[++i];
2001 
2002       assert(VA.isRegLoc() && NextVA.isRegLoc() &&
2003              "We only handle register args!");
2004 
2005       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2006                               TII.get(ARM::VMOVRRD), VA.getLocReg())
2007                       .addReg(NextVA.getLocReg(), RegState::Define)
2008                       .addReg(Arg));
2009       RegArgs.push_back(VA.getLocReg());
2010       RegArgs.push_back(NextVA.getLocReg());
2011     } else {
2012       assert(VA.isMemLoc());
2013       // Need to store on the stack.
2014 
2015       // Don't emit stores for undef values.
2016       if (isa<UndefValue>(ArgVal))
2017         continue;
2018 
2019       Address Addr;
2020       Addr.BaseType = Address::RegBase;
2021       Addr.Base.Reg = ARM::SP;
2022       Addr.Offset = VA.getLocMemOffset();
2023 
2024       bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
2025       assert(EmitRet && "Could not emit a store for argument!");
2026     }
2027   }
2028 
2029   return true;
2030 }
2031 
2032 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs,
2033                              const Instruction *I, CallingConv::ID CC,
2034                              unsigned &NumBytes, bool isVarArg) {
2035   // Issue CALLSEQ_END
2036   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
2037   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2038                           TII.get(AdjStackUp))
2039                   .addImm(NumBytes).addImm(0));
2040 
2041   // Now the return value.
2042   if (RetVT != MVT::isVoid) {
2043     SmallVector<CCValAssign, 16> RVLocs;
2044     CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2045     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2046 
2047     // Copy all of the result registers out of their specified physreg.
2048     if (RVLocs.size() == 2 && RetVT == MVT::f64) {
2049       // For this move we copy into two registers and then move into the
2050       // double fp reg we want.
2051       MVT DestVT = RVLocs[0].getValVT();
2052       const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
2053       Register ResultReg = createResultReg(DstRC);
2054       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2055                               TII.get(ARM::VMOVDRR), ResultReg)
2056                       .addReg(RVLocs[0].getLocReg())
2057                       .addReg(RVLocs[1].getLocReg()));
2058 
2059       UsedRegs.push_back(RVLocs[0].getLocReg());
2060       UsedRegs.push_back(RVLocs[1].getLocReg());
2061 
2062       // Finally update the result.
2063       updateValueMap(I, ResultReg);
2064     } else {
2065       assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
2066       MVT CopyVT = RVLocs[0].getValVT();
2067 
2068       // Special handling for extended integers.
2069       if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
2070         CopyVT = MVT::i32;
2071 
2072       const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
2073 
2074       Register ResultReg = createResultReg(DstRC);
2075       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2076               TII.get(TargetOpcode::COPY),
2077               ResultReg).addReg(RVLocs[0].getLocReg());
2078       UsedRegs.push_back(RVLocs[0].getLocReg());
2079 
2080       // Finally update the result.
2081       updateValueMap(I, ResultReg);
2082     }
2083   }
2084 
2085   return true;
2086 }
2087 
2088 bool ARMFastISel::SelectRet(const Instruction *I) {
2089   const ReturnInst *Ret = cast<ReturnInst>(I);
2090   const Function &F = *I->getParent()->getParent();
2091 
2092   if (!FuncInfo.CanLowerReturn)
2093     return false;
2094 
2095   if (TLI.supportSwiftError() &&
2096       F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
2097     return false;
2098 
2099   if (TLI.supportSplitCSR(FuncInfo.MF))
2100     return false;
2101 
2102   // Build a list of return value registers.
2103   SmallVector<unsigned, 4> RetRegs;
2104 
2105   CallingConv::ID CC = F.getCallingConv();
2106   if (Ret->getNumOperands() > 0) {
2107     SmallVector<ISD::OutputArg, 4> Outs;
2108     GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
2109 
2110     // Analyze operands of the call, assigning locations to each operand.
2111     SmallVector<CCValAssign, 16> ValLocs;
2112     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
2113     CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
2114                                                  F.isVarArg()));
2115 
2116     const Value *RV = Ret->getOperand(0);
2117     unsigned Reg = getRegForValue(RV);
2118     if (Reg == 0)
2119       return false;
2120 
2121     // Only handle a single return value for now.
2122     if (ValLocs.size() != 1)
2123       return false;
2124 
2125     CCValAssign &VA = ValLocs[0];
2126 
2127     // Don't bother handling odd stuff for now.
2128     if (VA.getLocInfo() != CCValAssign::Full)
2129       return false;
2130     // Only handle register returns for now.
2131     if (!VA.isRegLoc())
2132       return false;
2133 
2134     unsigned SrcReg = Reg + VA.getValNo();
2135     EVT RVEVT = TLI.getValueType(DL, RV->getType());
2136     if (!RVEVT.isSimple()) return false;
2137     MVT RVVT = RVEVT.getSimpleVT();
2138     MVT DestVT = VA.getValVT();
2139     // Special handling for extended integers.
2140     if (RVVT != DestVT) {
2141       if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
2142         return false;
2143 
2144       assert(DestVT == MVT::i32 && "ARM should always ext to i32");
2145 
2146       // Perform extension if flagged as either zext or sext.  Otherwise, do
2147       // nothing.
2148       if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
2149         SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
2150         if (SrcReg == 0) return false;
2151       }
2152     }
2153 
2154     // Make the copy.
2155     Register DstReg = VA.getLocReg();
2156     const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
2157     // Avoid a cross-class copy. This is very unlikely.
2158     if (!SrcRC->contains(DstReg))
2159       return false;
2160     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2161             TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
2162 
2163     // Add register to return instruction.
2164     RetRegs.push_back(VA.getLocReg());
2165   }
2166 
2167   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2168                                     TII.get(Subtarget->getReturnOpcode()));
2169   AddOptionalDefs(MIB);
2170   for (unsigned R : RetRegs)
2171     MIB.addReg(R, RegState::Implicit);
2172   return true;
2173 }
2174 
2175 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) {
2176   if (UseReg)
2177     return isThumb2 ? ARM::tBLXr : ARM::BLX;
2178   else
2179     return isThumb2 ? ARM::tBL : ARM::BL;
2180 }
2181 
2182 unsigned ARMFastISel::getLibcallReg(const Twine &Name) {
2183   // Manually compute the global's type to avoid building it when unnecessary.
2184   Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0);
2185   EVT LCREVT = TLI.getValueType(DL, GVTy);
2186   if (!LCREVT.isSimple()) return 0;
2187 
2188   GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false,
2189                                        GlobalValue::ExternalLinkage, nullptr,
2190                                        Name);
2191   assert(GV->getType() == GVTy && "We miscomputed the type for the global!");
2192   return ARMMaterializeGV(GV, LCREVT.getSimpleVT());
2193 }
2194 
2195 // A quick function that will emit a call for a named libcall in F with the
2196 // vector of passed arguments for the Instruction in I. We can assume that we
2197 // can emit a call for any libcall we can produce. This is an abridged version
2198 // of the full call infrastructure since we won't need to worry about things
2199 // like computed function pointers or strange arguments at call sites.
2200 // TODO: Try to unify this and the normal call bits for ARM, then try to unify
2201 // with X86.
2202 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
2203   CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
2204 
2205   // Handle *simple* calls for now.
2206   Type *RetTy = I->getType();
2207   MVT RetVT;
2208   if (RetTy->isVoidTy())
2209     RetVT = MVT::isVoid;
2210   else if (!isTypeLegal(RetTy, RetVT))
2211     return false;
2212 
2213   // Can't handle non-double multi-reg retvals.
2214   if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
2215     SmallVector<CCValAssign, 16> RVLocs;
2216     CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
2217     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
2218     if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2219       return false;
2220   }
2221 
2222   // Set up the argument vectors.
2223   SmallVector<Value*, 8> Args;
2224   SmallVector<Register, 8> ArgRegs;
2225   SmallVector<MVT, 8> ArgVTs;
2226   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2227   Args.reserve(I->getNumOperands());
2228   ArgRegs.reserve(I->getNumOperands());
2229   ArgVTs.reserve(I->getNumOperands());
2230   ArgFlags.reserve(I->getNumOperands());
2231   for (Value *Op :  I->operands()) {
2232     unsigned Arg = getRegForValue(Op);
2233     if (Arg == 0) return false;
2234 
2235     Type *ArgTy = Op->getType();
2236     MVT ArgVT;
2237     if (!isTypeLegal(ArgTy, ArgVT)) return false;
2238 
2239     ISD::ArgFlagsTy Flags;
2240     Flags.setOrigAlign(Align(DL.getABITypeAlignment(ArgTy)));
2241 
2242     Args.push_back(Op);
2243     ArgRegs.push_back(Arg);
2244     ArgVTs.push_back(ArgVT);
2245     ArgFlags.push_back(Flags);
2246   }
2247 
2248   // Handle the arguments now that we've gotten them.
2249   SmallVector<Register, 4> RegArgs;
2250   unsigned NumBytes;
2251   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2252                        RegArgs, CC, NumBytes, false))
2253     return false;
2254 
2255   Register CalleeReg;
2256   if (Subtarget->genLongCalls()) {
2257     CalleeReg = getLibcallReg(TLI.getLibcallName(Call));
2258     if (CalleeReg == 0) return false;
2259   }
2260 
2261   // Issue the call.
2262   unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls());
2263   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2264                                     DbgLoc, TII.get(CallOpc));
2265   // BL / BLX don't take a predicate, but tBL / tBLX do.
2266   if (isThumb2)
2267     MIB.add(predOps(ARMCC::AL));
2268   if (Subtarget->genLongCalls())
2269     MIB.addReg(CalleeReg);
2270   else
2271     MIB.addExternalSymbol(TLI.getLibcallName(Call));
2272 
2273   // Add implicit physical register uses to the call.
2274   for (Register R : RegArgs)
2275     MIB.addReg(R, RegState::Implicit);
2276 
2277   // Add a register mask with the call-preserved registers.
2278   // Proper defs for return values will be added by setPhysRegsDeadExcept().
2279   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
2280 
2281   // Finish off the call including any return values.
2282   SmallVector<Register, 4> UsedRegs;
2283   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false;
2284 
2285   // Set all unused physreg defs as dead.
2286   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2287 
2288   return true;
2289 }
2290 
2291 bool ARMFastISel::SelectCall(const Instruction *I,
2292                              const char *IntrMemName = nullptr) {
2293   const CallInst *CI = cast<CallInst>(I);
2294   const Value *Callee = CI->getCalledValue();
2295 
2296   // Can't handle inline asm.
2297   if (isa<InlineAsm>(Callee)) return false;
2298 
2299   // Allow SelectionDAG isel to handle tail calls.
2300   if (CI->isTailCall()) return false;
2301 
2302   // Check the calling convention.
2303   ImmutableCallSite CS(CI);
2304   CallingConv::ID CC = CS.getCallingConv();
2305 
2306   // TODO: Avoid some calling conventions?
2307 
2308   FunctionType *FTy = CS.getFunctionType();
2309   bool isVarArg = FTy->isVarArg();
2310 
2311   // Handle *simple* calls for now.
2312   Type *RetTy = I->getType();
2313   MVT RetVT;
2314   if (RetTy->isVoidTy())
2315     RetVT = MVT::isVoid;
2316   else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
2317            RetVT != MVT::i8  && RetVT != MVT::i1)
2318     return false;
2319 
2320   // Can't handle non-double multi-reg retvals.
2321   if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
2322       RetVT != MVT::i16 && RetVT != MVT::i32) {
2323     SmallVector<CCValAssign, 16> RVLocs;
2324     CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2325     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2326     if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2327       return false;
2328   }
2329 
2330   // Set up the argument vectors.
2331   SmallVector<Value*, 8> Args;
2332   SmallVector<Register, 8> ArgRegs;
2333   SmallVector<MVT, 8> ArgVTs;
2334   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2335   unsigned arg_size = CS.arg_size();
2336   Args.reserve(arg_size);
2337   ArgRegs.reserve(arg_size);
2338   ArgVTs.reserve(arg_size);
2339   ArgFlags.reserve(arg_size);
2340   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
2341        i != e; ++i) {
2342     // If we're lowering a memory intrinsic instead of a regular call, skip the
2343     // last argument, which shouldn't be passed to the underlying function.
2344     if (IntrMemName && e - i <= 1)
2345       break;
2346 
2347     ISD::ArgFlagsTy Flags;
2348     unsigned ArgIdx = i - CS.arg_begin();
2349     if (CS.paramHasAttr(ArgIdx, Attribute::SExt))
2350       Flags.setSExt();
2351     if (CS.paramHasAttr(ArgIdx, Attribute::ZExt))
2352       Flags.setZExt();
2353 
2354     // FIXME: Only handle *easy* calls for now.
2355     if (CS.paramHasAttr(ArgIdx, Attribute::InReg) ||
2356         CS.paramHasAttr(ArgIdx, Attribute::StructRet) ||
2357         CS.paramHasAttr(ArgIdx, Attribute::SwiftSelf) ||
2358         CS.paramHasAttr(ArgIdx, Attribute::SwiftError) ||
2359         CS.paramHasAttr(ArgIdx, Attribute::Nest) ||
2360         CS.paramHasAttr(ArgIdx, Attribute::ByVal))
2361       return false;
2362 
2363     Type *ArgTy = (*i)->getType();
2364     MVT ArgVT;
2365     if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
2366         ArgVT != MVT::i1)
2367       return false;
2368 
2369     Register Arg = getRegForValue(*i);
2370     if (!Arg.isValid())
2371       return false;
2372 
2373     Flags.setOrigAlign(Align(DL.getABITypeAlignment(ArgTy)));
2374 
2375     Args.push_back(*i);
2376     ArgRegs.push_back(Arg);
2377     ArgVTs.push_back(ArgVT);
2378     ArgFlags.push_back(Flags);
2379   }
2380 
2381   // Handle the arguments now that we've gotten them.
2382   SmallVector<Register, 4> RegArgs;
2383   unsigned NumBytes;
2384   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2385                        RegArgs, CC, NumBytes, isVarArg))
2386     return false;
2387 
2388   bool UseReg = false;
2389   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
2390   if (!GV || Subtarget->genLongCalls()) UseReg = true;
2391 
2392   Register CalleeReg;
2393   if (UseReg) {
2394     if (IntrMemName)
2395       CalleeReg = getLibcallReg(IntrMemName);
2396     else
2397       CalleeReg = getRegForValue(Callee);
2398 
2399     if (CalleeReg == 0) return false;
2400   }
2401 
2402   // Issue the call.
2403   unsigned CallOpc = ARMSelectCallOp(UseReg);
2404   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2405                                     DbgLoc, TII.get(CallOpc));
2406 
2407   // ARM calls don't take a predicate, but tBL / tBLX do.
2408   if(isThumb2)
2409     MIB.add(predOps(ARMCC::AL));
2410   if (UseReg)
2411     MIB.addReg(CalleeReg);
2412   else if (!IntrMemName)
2413     MIB.addGlobalAddress(GV, 0, 0);
2414   else
2415     MIB.addExternalSymbol(IntrMemName, 0);
2416 
2417   // Add implicit physical register uses to the call.
2418   for (Register R : RegArgs)
2419     MIB.addReg(R, RegState::Implicit);
2420 
2421   // Add a register mask with the call-preserved registers.
2422   // Proper defs for return values will be added by setPhysRegsDeadExcept().
2423   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
2424 
2425   // Finish off the call including any return values.
2426   SmallVector<Register, 4> UsedRegs;
2427   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg))
2428     return false;
2429 
2430   // Set all unused physreg defs as dead.
2431   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2432 
2433   return true;
2434 }
2435 
2436 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
2437   return Len <= 16;
2438 }
2439 
2440 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src,
2441                                         uint64_t Len, unsigned Alignment) {
2442   // Make sure we don't bloat code by inlining very large memcpy's.
2443   if (!ARMIsMemCpySmall(Len))
2444     return false;
2445 
2446   while (Len) {
2447     MVT VT;
2448     if (!Alignment || Alignment >= 4) {
2449       if (Len >= 4)
2450         VT = MVT::i32;
2451       else if (Len >= 2)
2452         VT = MVT::i16;
2453       else {
2454         assert(Len == 1 && "Expected a length of 1!");
2455         VT = MVT::i8;
2456       }
2457     } else {
2458       // Bound based on alignment.
2459       if (Len >= 2 && Alignment == 2)
2460         VT = MVT::i16;
2461       else {
2462         VT = MVT::i8;
2463       }
2464     }
2465 
2466     bool RV;
2467     Register ResultReg;
2468     RV = ARMEmitLoad(VT, ResultReg, Src);
2469     assert(RV && "Should be able to handle this load.");
2470     RV = ARMEmitStore(VT, ResultReg, Dest);
2471     assert(RV && "Should be able to handle this store.");
2472     (void)RV;
2473 
2474     unsigned Size = VT.getSizeInBits()/8;
2475     Len -= Size;
2476     Dest.Offset += Size;
2477     Src.Offset += Size;
2478   }
2479 
2480   return true;
2481 }
2482 
2483 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
2484   // FIXME: Handle more intrinsics.
2485   switch (I.getIntrinsicID()) {
2486   default: return false;
2487   case Intrinsic::frameaddress: {
2488     MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
2489     MFI.setFrameAddressIsTaken(true);
2490 
2491     unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
2492     const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
2493                                              : &ARM::GPRRegClass;
2494 
2495     const ARMBaseRegisterInfo *RegInfo =
2496         static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo());
2497     Register FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
2498     unsigned SrcReg = FramePtr;
2499 
2500     // Recursively load frame address
2501     // ldr r0 [fp]
2502     // ldr r0 [r0]
2503     // ldr r0 [r0]
2504     // ...
2505     unsigned DestReg;
2506     unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
2507     while (Depth--) {
2508       DestReg = createResultReg(RC);
2509       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2510                               TII.get(LdrOpc), DestReg)
2511                       .addReg(SrcReg).addImm(0));
2512       SrcReg = DestReg;
2513     }
2514     updateValueMap(&I, SrcReg);
2515     return true;
2516   }
2517   case Intrinsic::memcpy:
2518   case Intrinsic::memmove: {
2519     const MemTransferInst &MTI = cast<MemTransferInst>(I);
2520     // Don't handle volatile.
2521     if (MTI.isVolatile())
2522       return false;
2523 
2524     // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
2525     // we would emit dead code because we don't currently handle memmoves.
2526     bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
2527     if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
2528       // Small memcpy's are common enough that we want to do them without a call
2529       // if possible.
2530       uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
2531       if (ARMIsMemCpySmall(Len)) {
2532         Address Dest, Src;
2533         if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
2534             !ARMComputeAddress(MTI.getRawSource(), Src))
2535           return false;
2536         unsigned Alignment = MinAlign(MTI.getDestAlignment(),
2537                                       MTI.getSourceAlignment());
2538         if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment))
2539           return true;
2540       }
2541     }
2542 
2543     if (!MTI.getLength()->getType()->isIntegerTy(32))
2544       return false;
2545 
2546     if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
2547       return false;
2548 
2549     const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
2550     return SelectCall(&I, IntrMemName);
2551   }
2552   case Intrinsic::memset: {
2553     const MemSetInst &MSI = cast<MemSetInst>(I);
2554     // Don't handle volatile.
2555     if (MSI.isVolatile())
2556       return false;
2557 
2558     if (!MSI.getLength()->getType()->isIntegerTy(32))
2559       return false;
2560 
2561     if (MSI.getDestAddressSpace() > 255)
2562       return false;
2563 
2564     return SelectCall(&I, "memset");
2565   }
2566   case Intrinsic::trap: {
2567     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(
2568       Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP));
2569     return true;
2570   }
2571   }
2572 }
2573 
2574 bool ARMFastISel::SelectTrunc(const Instruction *I) {
2575   // The high bits for a type smaller than the register size are assumed to be
2576   // undefined.
2577   Value *Op = I->getOperand(0);
2578 
2579   EVT SrcVT, DestVT;
2580   SrcVT = TLI.getValueType(DL, Op->getType(), true);
2581   DestVT = TLI.getValueType(DL, I->getType(), true);
2582 
2583   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2584     return false;
2585   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2586     return false;
2587 
2588   unsigned SrcReg = getRegForValue(Op);
2589   if (!SrcReg) return false;
2590 
2591   // Because the high bits are undefined, a truncate doesn't generate
2592   // any code.
2593   updateValueMap(I, SrcReg);
2594   return true;
2595 }
2596 
2597 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
2598                                     bool isZExt) {
2599   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2600     return 0;
2601   if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1)
2602     return 0;
2603 
2604   // Table of which combinations can be emitted as a single instruction,
2605   // and which will require two.
2606   static const uint8_t isSingleInstrTbl[3][2][2][2] = {
2607     //            ARM                     Thumb
2608     //           !hasV6Ops  hasV6Ops     !hasV6Ops  hasV6Ops
2609     //    ext:     s  z      s  z          s  z      s  z
2610     /*  1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } },
2611     /*  8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } },
2612     /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }
2613   };
2614 
2615   // Target registers for:
2616   //  - For ARM can never be PC.
2617   //  - For 16-bit Thumb are restricted to lower 8 registers.
2618   //  - For 32-bit Thumb are restricted to non-SP and non-PC.
2619   static const TargetRegisterClass *RCTbl[2][2] = {
2620     // Instructions: Two                     Single
2621     /* ARM      */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass },
2622     /* Thumb    */ { &ARM::tGPRRegClass,    &ARM::rGPRRegClass    }
2623   };
2624 
2625   // Table governing the instruction(s) to be emitted.
2626   static const struct InstructionTable {
2627     uint32_t Opc   : 16;
2628     uint32_t hasS  :  1; // Some instructions have an S bit, always set it to 0.
2629     uint32_t Shift :  7; // For shift operand addressing mode, used by MOVsi.
2630     uint32_t Imm   :  8; // All instructions have either a shift or a mask.
2631   } IT[2][2][3][2] = {
2632     { // Two instructions (first is left shift, second is in this table).
2633       { // ARM                Opc           S  Shift             Imm
2634         /*  1 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  31 },
2635         /*  1 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  31 } },
2636         /*  8 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  24 },
2637         /*  8 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  24 } },
2638         /* 16 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  16 },
2639         /* 16 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  16 } }
2640       },
2641       { // Thumb              Opc           S  Shift             Imm
2642         /*  1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  31 },
2643         /*  1 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  31 } },
2644         /*  8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  24 },
2645         /*  8 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  24 } },
2646         /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  16 },
2647         /* 16 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  16 } }
2648       }
2649     },
2650     { // Single instruction.
2651       { // ARM                Opc           S  Shift             Imm
2652         /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
2653         /*  1 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift,   1 } },
2654         /*  8 bit sext */ { { ARM::SXTB   , 0, ARM_AM::no_shift,   0 },
2655         /*  8 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift, 255 } },
2656         /* 16 bit sext */ { { ARM::SXTH   , 0, ARM_AM::no_shift,   0 },
2657         /* 16 bit zext */   { ARM::UXTH   , 0, ARM_AM::no_shift,   0 } }
2658       },
2659       { // Thumb              Opc           S  Shift             Imm
2660         /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
2661         /*  1 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift,   1 } },
2662         /*  8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift,   0 },
2663         /*  8 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } },
2664         /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift,   0 },
2665         /* 16 bit zext */   { ARM::t2UXTH , 0, ARM_AM::no_shift,   0 } }
2666       }
2667     }
2668   };
2669 
2670   unsigned SrcBits = SrcVT.getSizeInBits();
2671   unsigned DestBits = DestVT.getSizeInBits();
2672   (void) DestBits;
2673   assert((SrcBits < DestBits) && "can only extend to larger types");
2674   assert((DestBits == 32 || DestBits == 16 || DestBits == 8) &&
2675          "other sizes unimplemented");
2676   assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) &&
2677          "other sizes unimplemented");
2678 
2679   bool hasV6Ops = Subtarget->hasV6Ops();
2680   unsigned Bitness = SrcBits / 8;  // {1,8,16}=>{0,1,2}
2681   assert((Bitness < 3) && "sanity-check table bounds");
2682 
2683   bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt];
2684   const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr];
2685   const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt];
2686   unsigned Opc = ITP->Opc;
2687   assert(ARM::KILL != Opc && "Invalid table entry");
2688   unsigned hasS = ITP->hasS;
2689   ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift;
2690   assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) &&
2691          "only MOVsi has shift operand addressing mode");
2692   unsigned Imm = ITP->Imm;
2693 
2694   // 16-bit Thumb instructions always set CPSR (unless they're in an IT block).
2695   bool setsCPSR = &ARM::tGPRRegClass == RC;
2696   unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi;
2697   unsigned ResultReg;
2698   // MOVsi encodes shift and immediate in shift operand addressing mode.
2699   // The following condition has the same value when emitting two
2700   // instruction sequences: both are shifts.
2701   bool ImmIsSO = (Shift != ARM_AM::no_shift);
2702 
2703   // Either one or two instructions are emitted.
2704   // They're always of the form:
2705   //   dst = in OP imm
2706   // CPSR is set only by 16-bit Thumb instructions.
2707   // Predicate, if any, is AL.
2708   // S bit, if available, is always 0.
2709   // When two are emitted the first's result will feed as the second's input,
2710   // that value is then dead.
2711   unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2;
2712   for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) {
2713     ResultReg = createResultReg(RC);
2714     bool isLsl = (0 == Instr) && !isSingleInstr;
2715     unsigned Opcode = isLsl ? LSLOpc : Opc;
2716     ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift;
2717     unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm;
2718     bool isKill = 1 == Instr;
2719     MachineInstrBuilder MIB = BuildMI(
2720         *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg);
2721     if (setsCPSR)
2722       MIB.addReg(ARM::CPSR, RegState::Define);
2723     SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR);
2724     MIB.addReg(SrcReg, isKill * RegState::Kill)
2725         .addImm(ImmEnc)
2726         .add(predOps(ARMCC::AL));
2727     if (hasS)
2728       MIB.add(condCodeOp());
2729     // Second instruction consumes the first's result.
2730     SrcReg = ResultReg;
2731   }
2732 
2733   return ResultReg;
2734 }
2735 
2736 bool ARMFastISel::SelectIntExt(const Instruction *I) {
2737   // On ARM, in general, integer casts don't involve legal types; this code
2738   // handles promotable integers.
2739   Type *DestTy = I->getType();
2740   Value *Src = I->getOperand(0);
2741   Type *SrcTy = Src->getType();
2742 
2743   bool isZExt = isa<ZExtInst>(I);
2744   unsigned SrcReg = getRegForValue(Src);
2745   if (!SrcReg) return false;
2746 
2747   EVT SrcEVT, DestEVT;
2748   SrcEVT = TLI.getValueType(DL, SrcTy, true);
2749   DestEVT = TLI.getValueType(DL, DestTy, true);
2750   if (!SrcEVT.isSimple()) return false;
2751   if (!DestEVT.isSimple()) return false;
2752 
2753   MVT SrcVT = SrcEVT.getSimpleVT();
2754   MVT DestVT = DestEVT.getSimpleVT();
2755   unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2756   if (ResultReg == 0) return false;
2757   updateValueMap(I, ResultReg);
2758   return true;
2759 }
2760 
2761 bool ARMFastISel::SelectShift(const Instruction *I,
2762                               ARM_AM::ShiftOpc ShiftTy) {
2763   // We handle thumb2 mode by target independent selector
2764   // or SelectionDAG ISel.
2765   if (isThumb2)
2766     return false;
2767 
2768   // Only handle i32 now.
2769   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
2770   if (DestVT != MVT::i32)
2771     return false;
2772 
2773   unsigned Opc = ARM::MOVsr;
2774   unsigned ShiftImm;
2775   Value *Src2Value = I->getOperand(1);
2776   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) {
2777     ShiftImm = CI->getZExtValue();
2778 
2779     // Fall back to selection DAG isel if the shift amount
2780     // is zero or greater than the width of the value type.
2781     if (ShiftImm == 0 || ShiftImm >=32)
2782       return false;
2783 
2784     Opc = ARM::MOVsi;
2785   }
2786 
2787   Value *Src1Value = I->getOperand(0);
2788   unsigned Reg1 = getRegForValue(Src1Value);
2789   if (Reg1 == 0) return false;
2790 
2791   unsigned Reg2 = 0;
2792   if (Opc == ARM::MOVsr) {
2793     Reg2 = getRegForValue(Src2Value);
2794     if (Reg2 == 0) return false;
2795   }
2796 
2797   unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass);
2798   if(ResultReg == 0) return false;
2799 
2800   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2801                                     TII.get(Opc), ResultReg)
2802                             .addReg(Reg1);
2803 
2804   if (Opc == ARM::MOVsi)
2805     MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm));
2806   else if (Opc == ARM::MOVsr) {
2807     MIB.addReg(Reg2);
2808     MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0));
2809   }
2810 
2811   AddOptionalDefs(MIB);
2812   updateValueMap(I, ResultReg);
2813   return true;
2814 }
2815 
2816 // TODO: SoftFP support.
2817 bool ARMFastISel::fastSelectInstruction(const Instruction *I) {
2818   switch (I->getOpcode()) {
2819     case Instruction::Load:
2820       return SelectLoad(I);
2821     case Instruction::Store:
2822       return SelectStore(I);
2823     case Instruction::Br:
2824       return SelectBranch(I);
2825     case Instruction::IndirectBr:
2826       return SelectIndirectBr(I);
2827     case Instruction::ICmp:
2828     case Instruction::FCmp:
2829       return SelectCmp(I);
2830     case Instruction::FPExt:
2831       return SelectFPExt(I);
2832     case Instruction::FPTrunc:
2833       return SelectFPTrunc(I);
2834     case Instruction::SIToFP:
2835       return SelectIToFP(I, /*isSigned*/ true);
2836     case Instruction::UIToFP:
2837       return SelectIToFP(I, /*isSigned*/ false);
2838     case Instruction::FPToSI:
2839       return SelectFPToI(I, /*isSigned*/ true);
2840     case Instruction::FPToUI:
2841       return SelectFPToI(I, /*isSigned*/ false);
2842     case Instruction::Add:
2843       return SelectBinaryIntOp(I, ISD::ADD);
2844     case Instruction::Or:
2845       return SelectBinaryIntOp(I, ISD::OR);
2846     case Instruction::Sub:
2847       return SelectBinaryIntOp(I, ISD::SUB);
2848     case Instruction::FAdd:
2849       return SelectBinaryFPOp(I, ISD::FADD);
2850     case Instruction::FSub:
2851       return SelectBinaryFPOp(I, ISD::FSUB);
2852     case Instruction::FMul:
2853       return SelectBinaryFPOp(I, ISD::FMUL);
2854     case Instruction::SDiv:
2855       return SelectDiv(I, /*isSigned*/ true);
2856     case Instruction::UDiv:
2857       return SelectDiv(I, /*isSigned*/ false);
2858     case Instruction::SRem:
2859       return SelectRem(I, /*isSigned*/ true);
2860     case Instruction::URem:
2861       return SelectRem(I, /*isSigned*/ false);
2862     case Instruction::Call:
2863       if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2864         return SelectIntrinsicCall(*II);
2865       return SelectCall(I);
2866     case Instruction::Select:
2867       return SelectSelect(I);
2868     case Instruction::Ret:
2869       return SelectRet(I);
2870     case Instruction::Trunc:
2871       return SelectTrunc(I);
2872     case Instruction::ZExt:
2873     case Instruction::SExt:
2874       return SelectIntExt(I);
2875     case Instruction::Shl:
2876       return SelectShift(I, ARM_AM::lsl);
2877     case Instruction::LShr:
2878       return SelectShift(I, ARM_AM::lsr);
2879     case Instruction::AShr:
2880       return SelectShift(I, ARM_AM::asr);
2881     default: break;
2882   }
2883   return false;
2884 }
2885 
2886 // This table describes sign- and zero-extend instructions which can be
2887 // folded into a preceding load. All of these extends have an immediate
2888 // (sometimes a mask and sometimes a shift) that's applied after
2889 // extension.
2890 static const struct FoldableLoadExtendsStruct {
2891   uint16_t Opc[2];  // ARM, Thumb.
2892   uint8_t ExpectedImm;
2893   uint8_t isZExt     : 1;
2894   uint8_t ExpectedVT : 7;
2895 } FoldableLoadExtends[] = {
2896   { { ARM::SXTH,  ARM::t2SXTH  },   0, 0, MVT::i16 },
2897   { { ARM::UXTH,  ARM::t2UXTH  },   0, 1, MVT::i16 },
2898   { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8  },
2899   { { ARM::SXTB,  ARM::t2SXTB  },   0, 0, MVT::i8  },
2900   { { ARM::UXTB,  ARM::t2UXTB  },   0, 1, MVT::i8  }
2901 };
2902 
2903 /// The specified machine instr operand is a vreg, and that
2904 /// vreg is being provided by the specified load instruction.  If possible,
2905 /// try to fold the load as an operand to the instruction, returning true if
2906 /// successful.
2907 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2908                                       const LoadInst *LI) {
2909   // Verify we have a legal type before going any further.
2910   MVT VT;
2911   if (!isLoadTypeLegal(LI->getType(), VT))
2912     return false;
2913 
2914   // Combine load followed by zero- or sign-extend.
2915   // ldrb r1, [r0]       ldrb r1, [r0]
2916   // uxtb r2, r1     =>
2917   // mov  r3, r2         mov  r3, r1
2918   if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm())
2919     return false;
2920   const uint64_t Imm = MI->getOperand(2).getImm();
2921 
2922   bool Found = false;
2923   bool isZExt;
2924   for (const FoldableLoadExtendsStruct &FLE : FoldableLoadExtends) {
2925     if (FLE.Opc[isThumb2] == MI->getOpcode() &&
2926         (uint64_t)FLE.ExpectedImm == Imm &&
2927         MVT((MVT::SimpleValueType)FLE.ExpectedVT) == VT) {
2928       Found = true;
2929       isZExt = FLE.isZExt;
2930     }
2931   }
2932   if (!Found) return false;
2933 
2934   // See if we can handle this address.
2935   Address Addr;
2936   if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
2937 
2938   Register ResultReg = MI->getOperand(0).getReg();
2939   if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false))
2940     return false;
2941   MachineBasicBlock::iterator I(MI);
2942   removeDeadCode(I, std::next(I));
2943   return true;
2944 }
2945 
2946 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV,
2947                                      unsigned Align, MVT VT) {
2948   bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
2949 
2950   LLVMContext *Context = &MF->getFunction().getContext();
2951   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2952   unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2953   ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
2954       GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj,
2955       UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier,
2956       /*AddCurrentAddress=*/UseGOT_PREL);
2957 
2958   unsigned ConstAlign =
2959       MF->getDataLayout().getPrefTypeAlignment(Type::getInt32PtrTy(*Context));
2960   unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign);
2961   MachineMemOperand *CPMMO =
2962       MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
2963                                MachineMemOperand::MOLoad, 4, 4);
2964 
2965   Register TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass);
2966   unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp;
2967   MachineInstrBuilder MIB =
2968       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), TempReg)
2969           .addConstantPoolIndex(Idx)
2970           .addMemOperand(CPMMO);
2971   if (Opc == ARM::LDRcp)
2972     MIB.addImm(0);
2973   MIB.add(predOps(ARMCC::AL));
2974 
2975   // Fix the address by adding pc.
2976   unsigned DestReg = createResultReg(TLI.getRegClassFor(VT));
2977   Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR
2978                                                           : ARM::PICADD;
2979   DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0);
2980   MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg)
2981             .addReg(TempReg)
2982             .addImm(ARMPCLabelIndex);
2983 
2984   if (!Subtarget->isThumb())
2985     MIB.add(predOps(ARMCC::AL));
2986 
2987   if (UseGOT_PREL && Subtarget->isThumb()) {
2988     unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT));
2989     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
2990                   TII.get(ARM::t2LDRi12), NewDestReg)
2991               .addReg(DestReg)
2992               .addImm(0);
2993     DestReg = NewDestReg;
2994     AddOptionalDefs(MIB);
2995   }
2996   return DestReg;
2997 }
2998 
2999 bool ARMFastISel::fastLowerArguments() {
3000   if (!FuncInfo.CanLowerReturn)
3001     return false;
3002 
3003   const Function *F = FuncInfo.Fn;
3004   if (F->isVarArg())
3005     return false;
3006 
3007   CallingConv::ID CC = F->getCallingConv();
3008   switch (CC) {
3009   default:
3010     return false;
3011   case CallingConv::Fast:
3012   case CallingConv::C:
3013   case CallingConv::ARM_AAPCS_VFP:
3014   case CallingConv::ARM_AAPCS:
3015   case CallingConv::ARM_APCS:
3016   case CallingConv::Swift:
3017     break;
3018   }
3019 
3020   // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments
3021   // which are passed in r0 - r3.
3022   for (const Argument &Arg : F->args()) {
3023     if (Arg.getArgNo() >= 4)
3024       return false;
3025 
3026     if (Arg.hasAttribute(Attribute::InReg) ||
3027         Arg.hasAttribute(Attribute::StructRet) ||
3028         Arg.hasAttribute(Attribute::SwiftSelf) ||
3029         Arg.hasAttribute(Attribute::SwiftError) ||
3030         Arg.hasAttribute(Attribute::ByVal))
3031       return false;
3032 
3033     Type *ArgTy = Arg.getType();
3034     if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3035       return false;
3036 
3037     EVT ArgVT = TLI.getValueType(DL, ArgTy);
3038     if (!ArgVT.isSimple()) return false;
3039     switch (ArgVT.getSimpleVT().SimpleTy) {
3040     case MVT::i8:
3041     case MVT::i16:
3042     case MVT::i32:
3043       break;
3044     default:
3045       return false;
3046     }
3047   }
3048 
3049   static const MCPhysReg GPRArgRegs[] = {
3050     ARM::R0, ARM::R1, ARM::R2, ARM::R3
3051   };
3052 
3053   const TargetRegisterClass *RC = &ARM::rGPRRegClass;
3054   for (const Argument &Arg : F->args()) {
3055     unsigned ArgNo = Arg.getArgNo();
3056     unsigned SrcReg = GPRArgRegs[ArgNo];
3057     unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3058     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3059     // Without this, EmitLiveInCopies may eliminate the livein if its only
3060     // use is a bitcast (which isn't turned into an instruction).
3061     unsigned ResultReg = createResultReg(RC);
3062     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
3063             TII.get(TargetOpcode::COPY),
3064             ResultReg).addReg(DstReg, getKillRegState(true));
3065     updateValueMap(&Arg, ResultReg);
3066   }
3067 
3068   return true;
3069 }
3070 
3071 namespace llvm {
3072 
3073   FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo,
3074                                 const TargetLibraryInfo *libInfo) {
3075     if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel())
3076       return new ARMFastISel(funcInfo, libInfo);
3077 
3078     return nullptr;
3079   }
3080 
3081 } // end namespace llvm
3082