1 //===- ARMFastISel.cpp - ARM FastISel implementation ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the ARM-specific support for the FastISel class. Some 10 // of the target-specific code is generated by tablegen in the file 11 // ARMGenFastISel.inc, which is #included here. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARM.h" 16 #include "ARMBaseInstrInfo.h" 17 #include "ARMBaseRegisterInfo.h" 18 #include "ARMCallingConv.h" 19 #include "ARMConstantPoolValue.h" 20 #include "ARMISelLowering.h" 21 #include "ARMMachineFunctionInfo.h" 22 #include "ARMSubtarget.h" 23 #include "MCTargetDesc/ARMAddressingModes.h" 24 #include "MCTargetDesc/ARMBaseInfo.h" 25 #include "Utils/ARMBaseInfo.h" 26 #include "llvm/ADT/APFloat.h" 27 #include "llvm/ADT/APInt.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/CodeGen/CallingConvLower.h" 31 #include "llvm/CodeGen/FastISel.h" 32 #include "llvm/CodeGen/FunctionLoweringInfo.h" 33 #include "llvm/CodeGen/ISDOpcodes.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineConstantPool.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineInstr.h" 39 #include "llvm/CodeGen/MachineInstrBuilder.h" 40 #include "llvm/CodeGen/MachineMemOperand.h" 41 #include "llvm/CodeGen/MachineOperand.h" 42 #include "llvm/CodeGen/MachineRegisterInfo.h" 43 #include "llvm/CodeGen/RuntimeLibcalls.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetLowering.h" 46 #include "llvm/CodeGen/TargetOpcodes.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/ValueTypes.h" 49 #include "llvm/IR/Argument.h" 50 #include "llvm/IR/Attributes.h" 51 #include "llvm/IR/CallingConv.h" 52 #include "llvm/IR/Constant.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DerivedTypes.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/GetElementPtrTypeIterator.h" 58 #include "llvm/IR/GlobalValue.h" 59 #include "llvm/IR/GlobalVariable.h" 60 #include "llvm/IR/InstrTypes.h" 61 #include "llvm/IR/Instruction.h" 62 #include "llvm/IR/Instructions.h" 63 #include "llvm/IR/IntrinsicInst.h" 64 #include "llvm/IR/Intrinsics.h" 65 #include "llvm/IR/Module.h" 66 #include "llvm/IR/Operator.h" 67 #include "llvm/IR/Type.h" 68 #include "llvm/IR/User.h" 69 #include "llvm/IR/Value.h" 70 #include "llvm/MC/MCInstrDesc.h" 71 #include "llvm/MC/MCRegisterInfo.h" 72 #include "llvm/Support/Casting.h" 73 #include "llvm/Support/Compiler.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/MachineValueType.h" 76 #include "llvm/Support/MathExtras.h" 77 #include "llvm/Target/TargetMachine.h" 78 #include "llvm/Target/TargetOptions.h" 79 #include <cassert> 80 #include <cstdint> 81 #include <utility> 82 83 using namespace llvm; 84 85 namespace { 86 87 // All possible address modes, plus some. 88 struct Address { 89 enum { 90 RegBase, 91 FrameIndexBase 92 } BaseType = RegBase; 93 94 union { 95 unsigned Reg; 96 int FI; 97 } Base; 98 99 int Offset = 0; 100 101 // Innocuous defaults for our address. 102 Address() { 103 Base.Reg = 0; 104 } 105 }; 106 107 class ARMFastISel final : public FastISel { 108 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can 109 /// make the right decision when generating code for different targets. 110 const ARMSubtarget *Subtarget; 111 Module &M; 112 const TargetMachine &TM; 113 const TargetInstrInfo &TII; 114 const TargetLowering &TLI; 115 ARMFunctionInfo *AFI; 116 117 // Convenience variables to avoid some queries. 118 bool isThumb2; 119 LLVMContext *Context; 120 121 public: 122 explicit ARMFastISel(FunctionLoweringInfo &funcInfo, 123 const TargetLibraryInfo *libInfo) 124 : FastISel(funcInfo, libInfo), 125 Subtarget( 126 &static_cast<const ARMSubtarget &>(funcInfo.MF->getSubtarget())), 127 M(const_cast<Module &>(*funcInfo.Fn->getParent())), 128 TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()), 129 TLI(*Subtarget->getTargetLowering()) { 130 AFI = funcInfo.MF->getInfo<ARMFunctionInfo>(); 131 isThumb2 = AFI->isThumbFunction(); 132 Context = &funcInfo.Fn->getContext(); 133 } 134 135 private: 136 // Code from FastISel.cpp. 137 138 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 139 const TargetRegisterClass *RC, 140 unsigned Op0, bool Op0IsKill); 141 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 142 const TargetRegisterClass *RC, 143 unsigned Op0, bool Op0IsKill, 144 unsigned Op1, bool Op1IsKill); 145 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 146 const TargetRegisterClass *RC, 147 unsigned Op0, bool Op0IsKill, 148 uint64_t Imm); 149 unsigned fastEmitInst_i(unsigned MachineInstOpcode, 150 const TargetRegisterClass *RC, 151 uint64_t Imm); 152 153 // Backend specific FastISel code. 154 155 bool fastSelectInstruction(const Instruction *I) override; 156 unsigned fastMaterializeConstant(const Constant *C) override; 157 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 158 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 159 const LoadInst *LI) override; 160 bool fastLowerArguments() override; 161 162 #include "ARMGenFastISel.inc" 163 164 // Instruction selection routines. 165 166 bool SelectLoad(const Instruction *I); 167 bool SelectStore(const Instruction *I); 168 bool SelectBranch(const Instruction *I); 169 bool SelectIndirectBr(const Instruction *I); 170 bool SelectCmp(const Instruction *I); 171 bool SelectFPExt(const Instruction *I); 172 bool SelectFPTrunc(const Instruction *I); 173 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 174 bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode); 175 bool SelectIToFP(const Instruction *I, bool isSigned); 176 bool SelectFPToI(const Instruction *I, bool isSigned); 177 bool SelectDiv(const Instruction *I, bool isSigned); 178 bool SelectRem(const Instruction *I, bool isSigned); 179 bool SelectCall(const Instruction *I, const char *IntrMemName); 180 bool SelectIntrinsicCall(const IntrinsicInst &I); 181 bool SelectSelect(const Instruction *I); 182 bool SelectRet(const Instruction *I); 183 bool SelectTrunc(const Instruction *I); 184 bool SelectIntExt(const Instruction *I); 185 bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy); 186 187 // Utility routines. 188 189 bool isPositionIndependent() const; 190 bool isTypeLegal(Type *Ty, MVT &VT); 191 bool isLoadTypeLegal(Type *Ty, MVT &VT); 192 bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 193 bool isZExt); 194 bool ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr, 195 unsigned Alignment = 0, bool isZExt = true, 196 bool allocReg = true); 197 bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 198 unsigned Alignment = 0); 199 bool ARMComputeAddress(const Value *Obj, Address &Addr); 200 void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3); 201 bool ARMIsMemCpySmall(uint64_t Len); 202 bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, 203 unsigned Alignment); 204 unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt); 205 unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT); 206 unsigned ARMMaterializeInt(const Constant *C, MVT VT); 207 unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT); 208 unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg); 209 unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg); 210 unsigned ARMSelectCallOp(bool UseReg); 211 unsigned ARMLowerPICELF(const GlobalValue *GV, MVT VT); 212 213 const TargetLowering *getTargetLowering() { return &TLI; } 214 215 // Call handling routines. 216 217 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, 218 bool Return, 219 bool isVarArg); 220 bool ProcessCallArgs(SmallVectorImpl<Value*> &Args, 221 SmallVectorImpl<Register> &ArgRegs, 222 SmallVectorImpl<MVT> &ArgVTs, 223 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 224 SmallVectorImpl<Register> &RegArgs, 225 CallingConv::ID CC, 226 unsigned &NumBytes, 227 bool isVarArg); 228 unsigned getLibcallReg(const Twine &Name); 229 bool FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs, 230 const Instruction *I, CallingConv::ID CC, 231 unsigned &NumBytes, bool isVarArg); 232 bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call); 233 234 // OptionalDef handling routines. 235 236 bool isARMNEONPred(const MachineInstr *MI); 237 bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR); 238 const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB); 239 void AddLoadStoreOperands(MVT VT, Address &Addr, 240 const MachineInstrBuilder &MIB, 241 MachineMemOperand::Flags Flags, bool useAM3); 242 }; 243 244 } // end anonymous namespace 245 246 // DefinesOptionalPredicate - This is different from DefinesPredicate in that 247 // we don't care about implicit defs here, just places we'll need to add a 248 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR. 249 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) { 250 if (!MI->hasOptionalDef()) 251 return false; 252 253 // Look to see if our OptionalDef is defining CPSR or CCR. 254 for (const MachineOperand &MO : MI->operands()) { 255 if (!MO.isReg() || !MO.isDef()) continue; 256 if (MO.getReg() == ARM::CPSR) 257 *CPSR = true; 258 } 259 return true; 260 } 261 262 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) { 263 const MCInstrDesc &MCID = MI->getDesc(); 264 265 // If we're a thumb2 or not NEON function we'll be handled via isPredicable. 266 if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON || 267 AFI->isThumb2Function()) 268 return MI->isPredicable(); 269 270 for (const MCOperandInfo &opInfo : MCID.operands()) 271 if (opInfo.isPredicate()) 272 return true; 273 274 return false; 275 } 276 277 // If the machine is predicable go ahead and add the predicate operands, if 278 // it needs default CC operands add those. 279 // TODO: If we want to support thumb1 then we'll need to deal with optional 280 // CPSR defs that need to be added before the remaining operands. See s_cc_out 281 // for descriptions why. 282 const MachineInstrBuilder & 283 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) { 284 MachineInstr *MI = &*MIB; 285 286 // Do we use a predicate? or... 287 // Are we NEON in ARM mode and have a predicate operand? If so, I know 288 // we're not predicable but add it anyways. 289 if (isARMNEONPred(MI)) 290 MIB.add(predOps(ARMCC::AL)); 291 292 // Do we optionally set a predicate? Preds is size > 0 iff the predicate 293 // defines CPSR. All other OptionalDefines in ARM are the CCR register. 294 bool CPSR = false; 295 if (DefinesOptionalPredicate(MI, &CPSR)) 296 MIB.add(CPSR ? t1CondCodeOp() : condCodeOp()); 297 return MIB; 298 } 299 300 unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 301 const TargetRegisterClass *RC, 302 unsigned Op0, bool Op0IsKill) { 303 Register ResultReg = createResultReg(RC); 304 const MCInstrDesc &II = TII.get(MachineInstOpcode); 305 306 // Make sure the input operand is sufficiently constrained to be legal 307 // for this instruction. 308 Op0 = constrainOperandRegClass(II, Op0, 1); 309 if (II.getNumDefs() >= 1) { 310 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, 311 ResultReg).addReg(Op0, Op0IsKill * RegState::Kill)); 312 } else { 313 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 314 .addReg(Op0, Op0IsKill * RegState::Kill)); 315 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 316 TII.get(TargetOpcode::COPY), ResultReg) 317 .addReg(II.ImplicitDefs[0])); 318 } 319 return ResultReg; 320 } 321 322 unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 323 const TargetRegisterClass *RC, 324 unsigned Op0, bool Op0IsKill, 325 unsigned Op1, bool Op1IsKill) { 326 unsigned ResultReg = createResultReg(RC); 327 const MCInstrDesc &II = TII.get(MachineInstOpcode); 328 329 // Make sure the input operands are sufficiently constrained to be legal 330 // for this instruction. 331 Op0 = constrainOperandRegClass(II, Op0, 1); 332 Op1 = constrainOperandRegClass(II, Op1, 2); 333 334 if (II.getNumDefs() >= 1) { 335 AddOptionalDefs( 336 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 337 .addReg(Op0, Op0IsKill * RegState::Kill) 338 .addReg(Op1, Op1IsKill * RegState::Kill)); 339 } else { 340 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 341 .addReg(Op0, Op0IsKill * RegState::Kill) 342 .addReg(Op1, Op1IsKill * RegState::Kill)); 343 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 344 TII.get(TargetOpcode::COPY), ResultReg) 345 .addReg(II.ImplicitDefs[0])); 346 } 347 return ResultReg; 348 } 349 350 unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 351 const TargetRegisterClass *RC, 352 unsigned Op0, bool Op0IsKill, 353 uint64_t Imm) { 354 unsigned ResultReg = createResultReg(RC); 355 const MCInstrDesc &II = TII.get(MachineInstOpcode); 356 357 // Make sure the input operand is sufficiently constrained to be legal 358 // for this instruction. 359 Op0 = constrainOperandRegClass(II, Op0, 1); 360 if (II.getNumDefs() >= 1) { 361 AddOptionalDefs( 362 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 363 .addReg(Op0, Op0IsKill * RegState::Kill) 364 .addImm(Imm)); 365 } else { 366 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 367 .addReg(Op0, Op0IsKill * RegState::Kill) 368 .addImm(Imm)); 369 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 370 TII.get(TargetOpcode::COPY), ResultReg) 371 .addReg(II.ImplicitDefs[0])); 372 } 373 return ResultReg; 374 } 375 376 unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode, 377 const TargetRegisterClass *RC, 378 uint64_t Imm) { 379 unsigned ResultReg = createResultReg(RC); 380 const MCInstrDesc &II = TII.get(MachineInstOpcode); 381 382 if (II.getNumDefs() >= 1) { 383 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, 384 ResultReg).addImm(Imm)); 385 } else { 386 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 387 .addImm(Imm)); 388 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 389 TII.get(TargetOpcode::COPY), ResultReg) 390 .addReg(II.ImplicitDefs[0])); 391 } 392 return ResultReg; 393 } 394 395 // TODO: Don't worry about 64-bit now, but when this is fixed remove the 396 // checks from the various callers. 397 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) { 398 if (VT == MVT::f64) return 0; 399 400 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 401 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 402 TII.get(ARM::VMOVSR), MoveReg) 403 .addReg(SrcReg)); 404 return MoveReg; 405 } 406 407 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) { 408 if (VT == MVT::i64) return 0; 409 410 unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); 411 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 412 TII.get(ARM::VMOVRS), MoveReg) 413 .addReg(SrcReg)); 414 return MoveReg; 415 } 416 417 // For double width floating point we need to materialize two constants 418 // (the high and the low) into integer registers then use a move to get 419 // the combined constant into an FP reg. 420 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) { 421 const APFloat Val = CFP->getValueAPF(); 422 bool is64bit = VT == MVT::f64; 423 424 // This checks to see if we can use VFP3 instructions to materialize 425 // a constant, otherwise we have to go through the constant pool. 426 if (TLI.isFPImmLegal(Val, VT)) { 427 int Imm; 428 unsigned Opc; 429 if (is64bit) { 430 Imm = ARM_AM::getFP64Imm(Val); 431 Opc = ARM::FCONSTD; 432 } else { 433 Imm = ARM_AM::getFP32Imm(Val); 434 Opc = ARM::FCONSTS; 435 } 436 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 437 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 438 TII.get(Opc), DestReg).addImm(Imm)); 439 return DestReg; 440 } 441 442 // Require VFP2 for loading fp constants. 443 if (!Subtarget->hasVFP2Base()) return false; 444 445 // MachineConstantPool wants an explicit alignment. 446 Align Alignment = DL.getPrefTypeAlign(CFP->getType()); 447 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Alignment); 448 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 449 unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS; 450 451 // The extra reg is for addrmode5. 452 AddOptionalDefs( 453 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 454 .addConstantPoolIndex(Idx) 455 .addReg(0)); 456 return DestReg; 457 } 458 459 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) { 460 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) 461 return 0; 462 463 // If we can do this in a single instruction without a constant pool entry 464 // do so now. 465 const ConstantInt *CI = cast<ConstantInt>(C); 466 if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) { 467 unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16; 468 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 469 &ARM::GPRRegClass; 470 unsigned ImmReg = createResultReg(RC); 471 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 472 TII.get(Opc), ImmReg) 473 .addImm(CI->getZExtValue())); 474 return ImmReg; 475 } 476 477 // Use MVN to emit negative constants. 478 if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) { 479 unsigned Imm = (unsigned)~(CI->getSExtValue()); 480 bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 481 (ARM_AM::getSOImmVal(Imm) != -1); 482 if (UseImm) { 483 unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi; 484 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 485 &ARM::GPRRegClass; 486 unsigned ImmReg = createResultReg(RC); 487 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 488 TII.get(Opc), ImmReg) 489 .addImm(Imm)); 490 return ImmReg; 491 } 492 } 493 494 unsigned ResultReg = 0; 495 if (Subtarget->useMovt()) 496 ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 497 498 if (ResultReg) 499 return ResultReg; 500 501 // Load from constant pool. For now 32-bit only. 502 if (VT != MVT::i32) 503 return 0; 504 505 // MachineConstantPool wants an explicit alignment. 506 Align Alignment = DL.getPrefTypeAlign(C->getType()); 507 unsigned Idx = MCP.getConstantPoolIndex(C, Alignment); 508 ResultReg = createResultReg(TLI.getRegClassFor(VT)); 509 if (isThumb2) 510 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 511 TII.get(ARM::t2LDRpci), ResultReg) 512 .addConstantPoolIndex(Idx)); 513 else { 514 // The extra immediate is for addrmode2. 515 ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0); 516 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 517 TII.get(ARM::LDRcp), ResultReg) 518 .addConstantPoolIndex(Idx) 519 .addImm(0)); 520 } 521 return ResultReg; 522 } 523 524 bool ARMFastISel::isPositionIndependent() const { 525 return TLI.isPositionIndependent(); 526 } 527 528 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) { 529 // For now 32-bit only. 530 if (VT != MVT::i32 || GV->isThreadLocal()) return 0; 531 532 // ROPI/RWPI not currently supported. 533 if (Subtarget->isROPI() || Subtarget->isRWPI()) 534 return 0; 535 536 bool IsIndirect = Subtarget->isGVIndirectSymbol(GV); 537 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass 538 : &ARM::GPRRegClass; 539 unsigned DestReg = createResultReg(RC); 540 541 // FastISel TLS support on non-MachO is broken, punt to SelectionDAG. 542 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 543 bool IsThreadLocal = GVar && GVar->isThreadLocal(); 544 if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0; 545 546 bool IsPositionIndependent = isPositionIndependent(); 547 // Use movw+movt when possible, it avoids constant pool entries. 548 // Non-darwin targets only support static movt relocations in FastISel. 549 if (Subtarget->useMovt() && 550 (Subtarget->isTargetMachO() || !IsPositionIndependent)) { 551 unsigned Opc; 552 unsigned char TF = 0; 553 if (Subtarget->isTargetMachO()) 554 TF = ARMII::MO_NONLAZY; 555 556 if (IsPositionIndependent) 557 Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel; 558 else 559 Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm; 560 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 561 TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF)); 562 } else { 563 // MachineConstantPool wants an explicit alignment. 564 Align Alignment = DL.getPrefTypeAlign(GV->getType()); 565 566 if (Subtarget->isTargetELF() && IsPositionIndependent) 567 return ARMLowerPICELF(GV, VT); 568 569 // Grab index. 570 unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0; 571 unsigned Id = AFI->createPICLabelUId(); 572 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id, 573 ARMCP::CPValue, 574 PCAdj); 575 unsigned Idx = MCP.getConstantPoolIndex(CPV, Alignment); 576 577 // Load value. 578 MachineInstrBuilder MIB; 579 if (isThumb2) { 580 unsigned Opc = IsPositionIndependent ? ARM::t2LDRpci_pic : ARM::t2LDRpci; 581 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), 582 DestReg).addConstantPoolIndex(Idx); 583 if (IsPositionIndependent) 584 MIB.addImm(Id); 585 AddOptionalDefs(MIB); 586 } else { 587 // The extra immediate is for addrmode2. 588 DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0); 589 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 590 TII.get(ARM::LDRcp), DestReg) 591 .addConstantPoolIndex(Idx) 592 .addImm(0); 593 AddOptionalDefs(MIB); 594 595 if (IsPositionIndependent) { 596 unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD; 597 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 598 599 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 600 DbgLoc, TII.get(Opc), NewDestReg) 601 .addReg(DestReg) 602 .addImm(Id); 603 AddOptionalDefs(MIB); 604 return NewDestReg; 605 } 606 } 607 } 608 609 if ((Subtarget->isTargetELF() && Subtarget->isGVInGOT(GV)) || 610 (Subtarget->isTargetMachO() && IsIndirect) || 611 Subtarget->genLongCalls()) { 612 MachineInstrBuilder MIB; 613 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 614 if (isThumb2) 615 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 616 TII.get(ARM::t2LDRi12), NewDestReg) 617 .addReg(DestReg) 618 .addImm(0); 619 else 620 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 621 TII.get(ARM::LDRi12), NewDestReg) 622 .addReg(DestReg) 623 .addImm(0); 624 DestReg = NewDestReg; 625 AddOptionalDefs(MIB); 626 } 627 628 return DestReg; 629 } 630 631 unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) { 632 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 633 634 // Only handle simple types. 635 if (!CEVT.isSimple()) return 0; 636 MVT VT = CEVT.getSimpleVT(); 637 638 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 639 return ARMMaterializeFP(CFP, VT); 640 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 641 return ARMMaterializeGV(GV, VT); 642 else if (isa<ConstantInt>(C)) 643 return ARMMaterializeInt(C, VT); 644 645 return 0; 646 } 647 648 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF); 649 650 unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 651 // Don't handle dynamic allocas. 652 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 653 654 MVT VT; 655 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 656 657 DenseMap<const AllocaInst*, int>::iterator SI = 658 FuncInfo.StaticAllocaMap.find(AI); 659 660 // This will get lowered later into the correct offsets and registers 661 // via rewriteXFrameIndex. 662 if (SI != FuncInfo.StaticAllocaMap.end()) { 663 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 664 const TargetRegisterClass* RC = TLI.getRegClassFor(VT); 665 unsigned ResultReg = createResultReg(RC); 666 ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0); 667 668 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 669 TII.get(Opc), ResultReg) 670 .addFrameIndex(SI->second) 671 .addImm(0)); 672 return ResultReg; 673 } 674 675 return 0; 676 } 677 678 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) { 679 EVT evt = TLI.getValueType(DL, Ty, true); 680 681 // Only handle simple types. 682 if (evt == MVT::Other || !evt.isSimple()) return false; 683 VT = evt.getSimpleVT(); 684 685 // Handle all legal types, i.e. a register that will directly hold this 686 // value. 687 return TLI.isTypeLegal(VT); 688 } 689 690 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 691 if (isTypeLegal(Ty, VT)) return true; 692 693 // If this is a type than can be sign or zero-extended to a basic operation 694 // go ahead and accept it now. 695 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 696 return true; 697 698 return false; 699 } 700 701 // Computes the address to get to an object. 702 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) { 703 // Some boilerplate from the X86 FastISel. 704 const User *U = nullptr; 705 unsigned Opcode = Instruction::UserOp1; 706 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 707 // Don't walk into other basic blocks unless the object is an alloca from 708 // another block, otherwise it may not have a virtual register assigned. 709 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 710 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 711 Opcode = I->getOpcode(); 712 U = I; 713 } 714 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 715 Opcode = C->getOpcode(); 716 U = C; 717 } 718 719 if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType())) 720 if (Ty->getAddressSpace() > 255) 721 // Fast instruction selection doesn't support the special 722 // address spaces. 723 return false; 724 725 switch (Opcode) { 726 default: 727 break; 728 case Instruction::BitCast: 729 // Look through bitcasts. 730 return ARMComputeAddress(U->getOperand(0), Addr); 731 case Instruction::IntToPtr: 732 // Look past no-op inttoptrs. 733 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 734 TLI.getPointerTy(DL)) 735 return ARMComputeAddress(U->getOperand(0), Addr); 736 break; 737 case Instruction::PtrToInt: 738 // Look past no-op ptrtoints. 739 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 740 return ARMComputeAddress(U->getOperand(0), Addr); 741 break; 742 case Instruction::GetElementPtr: { 743 Address SavedAddr = Addr; 744 int TmpOffset = Addr.Offset; 745 746 // Iterate through the GEP folding the constants into offsets where 747 // we can. 748 gep_type_iterator GTI = gep_type_begin(U); 749 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); 750 i != e; ++i, ++GTI) { 751 const Value *Op = *i; 752 if (StructType *STy = GTI.getStructTypeOrNull()) { 753 const StructLayout *SL = DL.getStructLayout(STy); 754 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 755 TmpOffset += SL->getElementOffset(Idx); 756 } else { 757 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); 758 while (true) { 759 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 760 // Constant-offset addressing. 761 TmpOffset += CI->getSExtValue() * S; 762 break; 763 } 764 if (canFoldAddIntoGEP(U, Op)) { 765 // A compatible add with a constant operand. Fold the constant. 766 ConstantInt *CI = 767 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 768 TmpOffset += CI->getSExtValue() * S; 769 // Iterate on the other operand. 770 Op = cast<AddOperator>(Op)->getOperand(0); 771 continue; 772 } 773 // Unsupported 774 goto unsupported_gep; 775 } 776 } 777 } 778 779 // Try to grab the base operand now. 780 Addr.Offset = TmpOffset; 781 if (ARMComputeAddress(U->getOperand(0), Addr)) return true; 782 783 // We failed, restore everything and try the other options. 784 Addr = SavedAddr; 785 786 unsupported_gep: 787 break; 788 } 789 case Instruction::Alloca: { 790 const AllocaInst *AI = cast<AllocaInst>(Obj); 791 DenseMap<const AllocaInst*, int>::iterator SI = 792 FuncInfo.StaticAllocaMap.find(AI); 793 if (SI != FuncInfo.StaticAllocaMap.end()) { 794 Addr.BaseType = Address::FrameIndexBase; 795 Addr.Base.FI = SI->second; 796 return true; 797 } 798 break; 799 } 800 } 801 802 // Try to get this in a register if nothing else has worked. 803 if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj); 804 return Addr.Base.Reg != 0; 805 } 806 807 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) { 808 bool needsLowering = false; 809 switch (VT.SimpleTy) { 810 default: llvm_unreachable("Unhandled load/store type!"); 811 case MVT::i1: 812 case MVT::i8: 813 case MVT::i16: 814 case MVT::i32: 815 if (!useAM3) { 816 // Integer loads/stores handle 12-bit offsets. 817 needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset); 818 // Handle negative offsets. 819 if (needsLowering && isThumb2) 820 needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 && 821 Addr.Offset > -256); 822 } else { 823 // ARM halfword load/stores and signed byte loads use +/-imm8 offsets. 824 needsLowering = (Addr.Offset > 255 || Addr.Offset < -255); 825 } 826 break; 827 case MVT::f32: 828 case MVT::f64: 829 // Floating point operands handle 8-bit offsets. 830 needsLowering = ((Addr.Offset & 0xff) != Addr.Offset); 831 break; 832 } 833 834 // If this is a stack pointer and the offset needs to be simplified then 835 // put the alloca address into a register, set the base type back to 836 // register and continue. This should almost never happen. 837 if (needsLowering && Addr.BaseType == Address::FrameIndexBase) { 838 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass 839 : &ARM::GPRRegClass; 840 unsigned ResultReg = createResultReg(RC); 841 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 842 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 843 TII.get(Opc), ResultReg) 844 .addFrameIndex(Addr.Base.FI) 845 .addImm(0)); 846 Addr.Base.Reg = ResultReg; 847 Addr.BaseType = Address::RegBase; 848 } 849 850 // Since the offset is too large for the load/store instruction 851 // get the reg+offset into a register. 852 if (needsLowering) { 853 Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg, 854 /*Op0IsKill*/false, Addr.Offset, MVT::i32); 855 Addr.Offset = 0; 856 } 857 } 858 859 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr, 860 const MachineInstrBuilder &MIB, 861 MachineMemOperand::Flags Flags, 862 bool useAM3) { 863 // addrmode5 output depends on the selection dag addressing dividing the 864 // offset by 4 that it then later multiplies. Do this here as well. 865 if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64) 866 Addr.Offset /= 4; 867 868 // Frame base works a bit differently. Handle it separately. 869 if (Addr.BaseType == Address::FrameIndexBase) { 870 int FI = Addr.Base.FI; 871 int Offset = Addr.Offset; 872 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 873 MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags, 874 MFI.getObjectSize(FI), MFI.getObjectAlign(FI)); 875 // Now add the rest of the operands. 876 MIB.addFrameIndex(FI); 877 878 // ARM halfword load/stores and signed byte loads need an additional 879 // operand. 880 if (useAM3) { 881 int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 882 MIB.addReg(0); 883 MIB.addImm(Imm); 884 } else { 885 MIB.addImm(Addr.Offset); 886 } 887 MIB.addMemOperand(MMO); 888 } else { 889 // Now add the rest of the operands. 890 MIB.addReg(Addr.Base.Reg); 891 892 // ARM halfword load/stores and signed byte loads need an additional 893 // operand. 894 if (useAM3) { 895 int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 896 MIB.addReg(0); 897 MIB.addImm(Imm); 898 } else { 899 MIB.addImm(Addr.Offset); 900 } 901 } 902 AddOptionalDefs(MIB); 903 } 904 905 bool ARMFastISel::ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr, 906 unsigned Alignment, bool isZExt, bool allocReg) { 907 unsigned Opc; 908 bool useAM3 = false; 909 bool needVMOV = false; 910 const TargetRegisterClass *RC; 911 switch (VT.SimpleTy) { 912 // This is mostly going to be Neon/vector support. 913 default: return false; 914 case MVT::i1: 915 case MVT::i8: 916 if (isThumb2) { 917 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 918 Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8; 919 else 920 Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12; 921 } else { 922 if (isZExt) { 923 Opc = ARM::LDRBi12; 924 } else { 925 Opc = ARM::LDRSB; 926 useAM3 = true; 927 } 928 } 929 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 930 break; 931 case MVT::i16: 932 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) 933 return false; 934 935 if (isThumb2) { 936 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 937 Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8; 938 else 939 Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12; 940 } else { 941 Opc = isZExt ? ARM::LDRH : ARM::LDRSH; 942 useAM3 = true; 943 } 944 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 945 break; 946 case MVT::i32: 947 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) 948 return false; 949 950 if (isThumb2) { 951 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 952 Opc = ARM::t2LDRi8; 953 else 954 Opc = ARM::t2LDRi12; 955 } else { 956 Opc = ARM::LDRi12; 957 } 958 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 959 break; 960 case MVT::f32: 961 if (!Subtarget->hasVFP2Base()) return false; 962 // Unaligned loads need special handling. Floats require word-alignment. 963 if (Alignment && Alignment < 4) { 964 needVMOV = true; 965 VT = MVT::i32; 966 Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 967 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 968 } else { 969 Opc = ARM::VLDRS; 970 RC = TLI.getRegClassFor(VT); 971 } 972 break; 973 case MVT::f64: 974 // Can load and store double precision even without FeatureFP64 975 if (!Subtarget->hasVFP2Base()) return false; 976 // FIXME: Unaligned loads need special handling. Doublewords require 977 // word-alignment. 978 if (Alignment && Alignment < 4) 979 return false; 980 981 Opc = ARM::VLDRD; 982 RC = TLI.getRegClassFor(VT); 983 break; 984 } 985 // Simplify this down to something we can handle. 986 ARMSimplifyAddress(Addr, VT, useAM3); 987 988 // Create the base instruction, then add the operands. 989 if (allocReg) 990 ResultReg = createResultReg(RC); 991 assert(ResultReg > 255 && "Expected an allocated virtual register."); 992 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 993 TII.get(Opc), ResultReg); 994 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3); 995 996 // If we had an unaligned load of a float we've converted it to an regular 997 // load. Now we must move from the GRP to the FP register. 998 if (needVMOV) { 999 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1000 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1001 TII.get(ARM::VMOVSR), MoveReg) 1002 .addReg(ResultReg)); 1003 ResultReg = MoveReg; 1004 } 1005 return true; 1006 } 1007 1008 bool ARMFastISel::SelectLoad(const Instruction *I) { 1009 // Atomic loads need special handling. 1010 if (cast<LoadInst>(I)->isAtomic()) 1011 return false; 1012 1013 const Value *SV = I->getOperand(0); 1014 if (TLI.supportSwiftError()) { 1015 // Swifterror values can come from either a function parameter with 1016 // swifterror attribute or an alloca with swifterror attribute. 1017 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 1018 if (Arg->hasSwiftErrorAttr()) 1019 return false; 1020 } 1021 1022 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 1023 if (Alloca->isSwiftError()) 1024 return false; 1025 } 1026 } 1027 1028 // Verify we have a legal type before going any further. 1029 MVT VT; 1030 if (!isLoadTypeLegal(I->getType(), VT)) 1031 return false; 1032 1033 // See if we can handle this address. 1034 Address Addr; 1035 if (!ARMComputeAddress(I->getOperand(0), Addr)) return false; 1036 1037 Register ResultReg; 1038 if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment())) 1039 return false; 1040 updateValueMap(I, ResultReg); 1041 return true; 1042 } 1043 1044 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 1045 unsigned Alignment) { 1046 unsigned StrOpc; 1047 bool useAM3 = false; 1048 switch (VT.SimpleTy) { 1049 // This is mostly going to be Neon/vector support. 1050 default: return false; 1051 case MVT::i1: { 1052 unsigned Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass 1053 : &ARM::GPRRegClass); 1054 unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri; 1055 SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1); 1056 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1057 TII.get(Opc), Res) 1058 .addReg(SrcReg).addImm(1)); 1059 SrcReg = Res; 1060 LLVM_FALLTHROUGH; 1061 } 1062 case MVT::i8: 1063 if (isThumb2) { 1064 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1065 StrOpc = ARM::t2STRBi8; 1066 else 1067 StrOpc = ARM::t2STRBi12; 1068 } else { 1069 StrOpc = ARM::STRBi12; 1070 } 1071 break; 1072 case MVT::i16: 1073 if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) 1074 return false; 1075 1076 if (isThumb2) { 1077 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1078 StrOpc = ARM::t2STRHi8; 1079 else 1080 StrOpc = ARM::t2STRHi12; 1081 } else { 1082 StrOpc = ARM::STRH; 1083 useAM3 = true; 1084 } 1085 break; 1086 case MVT::i32: 1087 if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) 1088 return false; 1089 1090 if (isThumb2) { 1091 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1092 StrOpc = ARM::t2STRi8; 1093 else 1094 StrOpc = ARM::t2STRi12; 1095 } else { 1096 StrOpc = ARM::STRi12; 1097 } 1098 break; 1099 case MVT::f32: 1100 if (!Subtarget->hasVFP2Base()) return false; 1101 // Unaligned stores need special handling. Floats require word-alignment. 1102 if (Alignment && Alignment < 4) { 1103 unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 1104 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1105 TII.get(ARM::VMOVRS), MoveReg) 1106 .addReg(SrcReg)); 1107 SrcReg = MoveReg; 1108 VT = MVT::i32; 1109 StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12; 1110 } else { 1111 StrOpc = ARM::VSTRS; 1112 } 1113 break; 1114 case MVT::f64: 1115 // Can load and store double precision even without FeatureFP64 1116 if (!Subtarget->hasVFP2Base()) return false; 1117 // FIXME: Unaligned stores need special handling. Doublewords require 1118 // word-alignment. 1119 if (Alignment && Alignment < 4) 1120 return false; 1121 1122 StrOpc = ARM::VSTRD; 1123 break; 1124 } 1125 // Simplify this down to something we can handle. 1126 ARMSimplifyAddress(Addr, VT, useAM3); 1127 1128 // Create the base instruction, then add the operands. 1129 SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0); 1130 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1131 TII.get(StrOpc)) 1132 .addReg(SrcReg); 1133 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3); 1134 return true; 1135 } 1136 1137 bool ARMFastISel::SelectStore(const Instruction *I) { 1138 Value *Op0 = I->getOperand(0); 1139 unsigned SrcReg = 0; 1140 1141 // Atomic stores need special handling. 1142 if (cast<StoreInst>(I)->isAtomic()) 1143 return false; 1144 1145 const Value *PtrV = I->getOperand(1); 1146 if (TLI.supportSwiftError()) { 1147 // Swifterror values can come from either a function parameter with 1148 // swifterror attribute or an alloca with swifterror attribute. 1149 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 1150 if (Arg->hasSwiftErrorAttr()) 1151 return false; 1152 } 1153 1154 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 1155 if (Alloca->isSwiftError()) 1156 return false; 1157 } 1158 } 1159 1160 // Verify we have a legal type before going any further. 1161 MVT VT; 1162 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) 1163 return false; 1164 1165 // Get the value to be stored into a register. 1166 SrcReg = getRegForValue(Op0); 1167 if (SrcReg == 0) return false; 1168 1169 // See if we can handle this address. 1170 Address Addr; 1171 if (!ARMComputeAddress(I->getOperand(1), Addr)) 1172 return false; 1173 1174 if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment())) 1175 return false; 1176 return true; 1177 } 1178 1179 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) { 1180 switch (Pred) { 1181 // Needs two compares... 1182 case CmpInst::FCMP_ONE: 1183 case CmpInst::FCMP_UEQ: 1184 default: 1185 // AL is our "false" for now. The other two need more compares. 1186 return ARMCC::AL; 1187 case CmpInst::ICMP_EQ: 1188 case CmpInst::FCMP_OEQ: 1189 return ARMCC::EQ; 1190 case CmpInst::ICMP_SGT: 1191 case CmpInst::FCMP_OGT: 1192 return ARMCC::GT; 1193 case CmpInst::ICMP_SGE: 1194 case CmpInst::FCMP_OGE: 1195 return ARMCC::GE; 1196 case CmpInst::ICMP_UGT: 1197 case CmpInst::FCMP_UGT: 1198 return ARMCC::HI; 1199 case CmpInst::FCMP_OLT: 1200 return ARMCC::MI; 1201 case CmpInst::ICMP_ULE: 1202 case CmpInst::FCMP_OLE: 1203 return ARMCC::LS; 1204 case CmpInst::FCMP_ORD: 1205 return ARMCC::VC; 1206 case CmpInst::FCMP_UNO: 1207 return ARMCC::VS; 1208 case CmpInst::FCMP_UGE: 1209 return ARMCC::PL; 1210 case CmpInst::ICMP_SLT: 1211 case CmpInst::FCMP_ULT: 1212 return ARMCC::LT; 1213 case CmpInst::ICMP_SLE: 1214 case CmpInst::FCMP_ULE: 1215 return ARMCC::LE; 1216 case CmpInst::FCMP_UNE: 1217 case CmpInst::ICMP_NE: 1218 return ARMCC::NE; 1219 case CmpInst::ICMP_UGE: 1220 return ARMCC::HS; 1221 case CmpInst::ICMP_ULT: 1222 return ARMCC::LO; 1223 } 1224 } 1225 1226 bool ARMFastISel::SelectBranch(const Instruction *I) { 1227 const BranchInst *BI = cast<BranchInst>(I); 1228 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 1229 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 1230 1231 // Simple branch support. 1232 1233 // If we can, avoid recomputing the compare - redoing it could lead to wonky 1234 // behavior. 1235 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 1236 if (CI->hasOneUse() && (CI->getParent() == I->getParent())) { 1237 // Get the compare predicate. 1238 // Try to take advantage of fallthrough opportunities. 1239 CmpInst::Predicate Predicate = CI->getPredicate(); 1240 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1241 std::swap(TBB, FBB); 1242 Predicate = CmpInst::getInversePredicate(Predicate); 1243 } 1244 1245 ARMCC::CondCodes ARMPred = getComparePred(Predicate); 1246 1247 // We may not handle every CC for now. 1248 if (ARMPred == ARMCC::AL) return false; 1249 1250 // Emit the compare. 1251 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1252 return false; 1253 1254 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1255 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1256 .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR); 1257 finishCondBranch(BI->getParent(), TBB, FBB); 1258 return true; 1259 } 1260 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { 1261 MVT SourceVT; 1262 if (TI->hasOneUse() && TI->getParent() == I->getParent() && 1263 (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) { 1264 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1265 unsigned OpReg = getRegForValue(TI->getOperand(0)); 1266 OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0); 1267 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1268 TII.get(TstOpc)) 1269 .addReg(OpReg).addImm(1)); 1270 1271 unsigned CCMode = ARMCC::NE; 1272 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1273 std::swap(TBB, FBB); 1274 CCMode = ARMCC::EQ; 1275 } 1276 1277 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1278 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1279 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1280 1281 finishCondBranch(BI->getParent(), TBB, FBB); 1282 return true; 1283 } 1284 } else if (const ConstantInt *CI = 1285 dyn_cast<ConstantInt>(BI->getCondition())) { 1286 uint64_t Imm = CI->getZExtValue(); 1287 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 1288 fastEmitBranch(Target, DbgLoc); 1289 return true; 1290 } 1291 1292 unsigned CmpReg = getRegForValue(BI->getCondition()); 1293 if (CmpReg == 0) return false; 1294 1295 // We've been divorced from our compare! Our block was split, and 1296 // now our compare lives in a predecessor block. We musn't 1297 // re-compare here, as the children of the compare aren't guaranteed 1298 // live across the block boundary (we *could* check for this). 1299 // Regardless, the compare has been done in the predecessor block, 1300 // and it left a value for us in a virtual register. Ergo, we test 1301 // the one-bit value left in the virtual register. 1302 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1303 CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0); 1304 AddOptionalDefs( 1305 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc)) 1306 .addReg(CmpReg) 1307 .addImm(1)); 1308 1309 unsigned CCMode = ARMCC::NE; 1310 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1311 std::swap(TBB, FBB); 1312 CCMode = ARMCC::EQ; 1313 } 1314 1315 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1316 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) 1317 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1318 finishCondBranch(BI->getParent(), TBB, FBB); 1319 return true; 1320 } 1321 1322 bool ARMFastISel::SelectIndirectBr(const Instruction *I) { 1323 unsigned AddrReg = getRegForValue(I->getOperand(0)); 1324 if (AddrReg == 0) return false; 1325 1326 unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX; 1327 assert(isThumb2 || Subtarget->hasV4TOps()); 1328 1329 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1330 TII.get(Opc)).addReg(AddrReg)); 1331 1332 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1333 for (const BasicBlock *SuccBB : IB->successors()) 1334 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]); 1335 1336 return true; 1337 } 1338 1339 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 1340 bool isZExt) { 1341 Type *Ty = Src1Value->getType(); 1342 EVT SrcEVT = TLI.getValueType(DL, Ty, true); 1343 if (!SrcEVT.isSimple()) return false; 1344 MVT SrcVT = SrcEVT.getSimpleVT(); 1345 1346 if (Ty->isFloatTy() && !Subtarget->hasVFP2Base()) 1347 return false; 1348 1349 if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64())) 1350 return false; 1351 1352 // Check to see if the 2nd operand is a constant that we can encode directly 1353 // in the compare. 1354 int Imm = 0; 1355 bool UseImm = false; 1356 bool isNegativeImm = false; 1357 // FIXME: At -O0 we don't have anything that canonicalizes operand order. 1358 // Thus, Src1Value may be a ConstantInt, but we're missing it. 1359 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) { 1360 if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 || 1361 SrcVT == MVT::i1) { 1362 const APInt &CIVal = ConstInt->getValue(); 1363 Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue(); 1364 // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather 1365 // then a cmn, because there is no way to represent 2147483648 as a 1366 // signed 32-bit int. 1367 if (Imm < 0 && Imm != (int)0x80000000) { 1368 isNegativeImm = true; 1369 Imm = -Imm; 1370 } 1371 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1372 (ARM_AM::getSOImmVal(Imm) != -1); 1373 } 1374 } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) { 1375 if (SrcVT == MVT::f32 || SrcVT == MVT::f64) 1376 if (ConstFP->isZero() && !ConstFP->isNegative()) 1377 UseImm = true; 1378 } 1379 1380 unsigned CmpOpc; 1381 bool isICmp = true; 1382 bool needsExt = false; 1383 switch (SrcVT.SimpleTy) { 1384 default: return false; 1385 // TODO: Verify compares. 1386 case MVT::f32: 1387 isICmp = false; 1388 CmpOpc = UseImm ? ARM::VCMPZS : ARM::VCMPS; 1389 break; 1390 case MVT::f64: 1391 isICmp = false; 1392 CmpOpc = UseImm ? ARM::VCMPZD : ARM::VCMPD; 1393 break; 1394 case MVT::i1: 1395 case MVT::i8: 1396 case MVT::i16: 1397 needsExt = true; 1398 LLVM_FALLTHROUGH; 1399 case MVT::i32: 1400 if (isThumb2) { 1401 if (!UseImm) 1402 CmpOpc = ARM::t2CMPrr; 1403 else 1404 CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri; 1405 } else { 1406 if (!UseImm) 1407 CmpOpc = ARM::CMPrr; 1408 else 1409 CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri; 1410 } 1411 break; 1412 } 1413 1414 unsigned SrcReg1 = getRegForValue(Src1Value); 1415 if (SrcReg1 == 0) return false; 1416 1417 unsigned SrcReg2 = 0; 1418 if (!UseImm) { 1419 SrcReg2 = getRegForValue(Src2Value); 1420 if (SrcReg2 == 0) return false; 1421 } 1422 1423 // We have i1, i8, or i16, we need to either zero extend or sign extend. 1424 if (needsExt) { 1425 SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt); 1426 if (SrcReg1 == 0) return false; 1427 if (!UseImm) { 1428 SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt); 1429 if (SrcReg2 == 0) return false; 1430 } 1431 } 1432 1433 const MCInstrDesc &II = TII.get(CmpOpc); 1434 SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0); 1435 if (!UseImm) { 1436 SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1); 1437 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1438 .addReg(SrcReg1).addReg(SrcReg2)); 1439 } else { 1440 MachineInstrBuilder MIB; 1441 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1442 .addReg(SrcReg1); 1443 1444 // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0. 1445 if (isICmp) 1446 MIB.addImm(Imm); 1447 AddOptionalDefs(MIB); 1448 } 1449 1450 // For floating point we need to move the result to a comparison register 1451 // that we can then use for branches. 1452 if (Ty->isFloatTy() || Ty->isDoubleTy()) 1453 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1454 TII.get(ARM::FMSTAT))); 1455 return true; 1456 } 1457 1458 bool ARMFastISel::SelectCmp(const Instruction *I) { 1459 const CmpInst *CI = cast<CmpInst>(I); 1460 1461 // Get the compare predicate. 1462 ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate()); 1463 1464 // We may not handle every CC for now. 1465 if (ARMPred == ARMCC::AL) return false; 1466 1467 // Emit the compare. 1468 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1469 return false; 1470 1471 // Now set a register based on the comparison. Explicitly set the predicates 1472 // here. 1473 unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1474 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass 1475 : &ARM::GPRRegClass; 1476 unsigned DestReg = createResultReg(RC); 1477 Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0); 1478 unsigned ZeroReg = fastMaterializeConstant(Zero); 1479 // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR. 1480 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg) 1481 .addReg(ZeroReg).addImm(1) 1482 .addImm(ARMPred).addReg(ARM::CPSR); 1483 1484 updateValueMap(I, DestReg); 1485 return true; 1486 } 1487 1488 bool ARMFastISel::SelectFPExt(const Instruction *I) { 1489 // Make sure we have VFP and that we're extending float to double. 1490 if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false; 1491 1492 Value *V = I->getOperand(0); 1493 if (!I->getType()->isDoubleTy() || 1494 !V->getType()->isFloatTy()) return false; 1495 1496 unsigned Op = getRegForValue(V); 1497 if (Op == 0) return false; 1498 1499 unsigned Result = createResultReg(&ARM::DPRRegClass); 1500 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1501 TII.get(ARM::VCVTDS), Result) 1502 .addReg(Op)); 1503 updateValueMap(I, Result); 1504 return true; 1505 } 1506 1507 bool ARMFastISel::SelectFPTrunc(const Instruction *I) { 1508 // Make sure we have VFP and that we're truncating double to float. 1509 if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false; 1510 1511 Value *V = I->getOperand(0); 1512 if (!(I->getType()->isFloatTy() && 1513 V->getType()->isDoubleTy())) return false; 1514 1515 unsigned Op = getRegForValue(V); 1516 if (Op == 0) return false; 1517 1518 unsigned Result = createResultReg(&ARM::SPRRegClass); 1519 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1520 TII.get(ARM::VCVTSD), Result) 1521 .addReg(Op)); 1522 updateValueMap(I, Result); 1523 return true; 1524 } 1525 1526 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) { 1527 // Make sure we have VFP. 1528 if (!Subtarget->hasVFP2Base()) return false; 1529 1530 MVT DstVT; 1531 Type *Ty = I->getType(); 1532 if (!isTypeLegal(Ty, DstVT)) 1533 return false; 1534 1535 Value *Src = I->getOperand(0); 1536 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true); 1537 if (!SrcEVT.isSimple()) 1538 return false; 1539 MVT SrcVT = SrcEVT.getSimpleVT(); 1540 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 1541 return false; 1542 1543 unsigned SrcReg = getRegForValue(Src); 1544 if (SrcReg == 0) return false; 1545 1546 // Handle sign-extension. 1547 if (SrcVT == MVT::i16 || SrcVT == MVT::i8) { 1548 SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32, 1549 /*isZExt*/!isSigned); 1550 if (SrcReg == 0) return false; 1551 } 1552 1553 // The conversion routine works on fp-reg to fp-reg and the operand above 1554 // was an integer, move it to the fp registers if possible. 1555 unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg); 1556 if (FP == 0) return false; 1557 1558 unsigned Opc; 1559 if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS; 1560 else if (Ty->isDoubleTy() && Subtarget->hasFP64()) 1561 Opc = isSigned ? ARM::VSITOD : ARM::VUITOD; 1562 else return false; 1563 1564 unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT)); 1565 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1566 TII.get(Opc), ResultReg).addReg(FP)); 1567 updateValueMap(I, ResultReg); 1568 return true; 1569 } 1570 1571 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) { 1572 // Make sure we have VFP. 1573 if (!Subtarget->hasVFP2Base()) return false; 1574 1575 MVT DstVT; 1576 Type *RetTy = I->getType(); 1577 if (!isTypeLegal(RetTy, DstVT)) 1578 return false; 1579 1580 unsigned Op = getRegForValue(I->getOperand(0)); 1581 if (Op == 0) return false; 1582 1583 unsigned Opc; 1584 Type *OpTy = I->getOperand(0)->getType(); 1585 if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS; 1586 else if (OpTy->isDoubleTy() && Subtarget->hasFP64()) 1587 Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD; 1588 else return false; 1589 1590 // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg. 1591 unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1592 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1593 TII.get(Opc), ResultReg).addReg(Op)); 1594 1595 // This result needs to be in an integer register, but the conversion only 1596 // takes place in fp-regs. 1597 unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg); 1598 if (IntReg == 0) return false; 1599 1600 updateValueMap(I, IntReg); 1601 return true; 1602 } 1603 1604 bool ARMFastISel::SelectSelect(const Instruction *I) { 1605 MVT VT; 1606 if (!isTypeLegal(I->getType(), VT)) 1607 return false; 1608 1609 // Things need to be register sized for register moves. 1610 if (VT != MVT::i32) return false; 1611 1612 unsigned CondReg = getRegForValue(I->getOperand(0)); 1613 if (CondReg == 0) return false; 1614 unsigned Op1Reg = getRegForValue(I->getOperand(1)); 1615 if (Op1Reg == 0) return false; 1616 1617 // Check to see if we can use an immediate in the conditional move. 1618 int Imm = 0; 1619 bool UseImm = false; 1620 bool isNegativeImm = false; 1621 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) { 1622 assert(VT == MVT::i32 && "Expecting an i32."); 1623 Imm = (int)ConstInt->getValue().getZExtValue(); 1624 if (Imm < 0) { 1625 isNegativeImm = true; 1626 Imm = ~Imm; 1627 } 1628 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1629 (ARM_AM::getSOImmVal(Imm) != -1); 1630 } 1631 1632 unsigned Op2Reg = 0; 1633 if (!UseImm) { 1634 Op2Reg = getRegForValue(I->getOperand(2)); 1635 if (Op2Reg == 0) return false; 1636 } 1637 1638 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1639 CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0); 1640 AddOptionalDefs( 1641 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc)) 1642 .addReg(CondReg) 1643 .addImm(1)); 1644 1645 unsigned MovCCOpc; 1646 const TargetRegisterClass *RC; 1647 if (!UseImm) { 1648 RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass; 1649 MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr; 1650 } else { 1651 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass; 1652 if (!isNegativeImm) 1653 MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1654 else 1655 MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi; 1656 } 1657 unsigned ResultReg = createResultReg(RC); 1658 if (!UseImm) { 1659 Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1); 1660 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2); 1661 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), 1662 ResultReg) 1663 .addReg(Op2Reg) 1664 .addReg(Op1Reg) 1665 .addImm(ARMCC::NE) 1666 .addReg(ARM::CPSR); 1667 } else { 1668 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1); 1669 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), 1670 ResultReg) 1671 .addReg(Op1Reg) 1672 .addImm(Imm) 1673 .addImm(ARMCC::EQ) 1674 .addReg(ARM::CPSR); 1675 } 1676 updateValueMap(I, ResultReg); 1677 return true; 1678 } 1679 1680 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) { 1681 MVT VT; 1682 Type *Ty = I->getType(); 1683 if (!isTypeLegal(Ty, VT)) 1684 return false; 1685 1686 // If we have integer div support we should have selected this automagically. 1687 // In case we have a real miss go ahead and return false and we'll pick 1688 // it up later. 1689 if (Subtarget->hasDivideInThumbMode()) 1690 return false; 1691 1692 // Otherwise emit a libcall. 1693 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1694 if (VT == MVT::i8) 1695 LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8; 1696 else if (VT == MVT::i16) 1697 LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16; 1698 else if (VT == MVT::i32) 1699 LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32; 1700 else if (VT == MVT::i64) 1701 LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64; 1702 else if (VT == MVT::i128) 1703 LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128; 1704 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!"); 1705 1706 return ARMEmitLibcall(I, LC); 1707 } 1708 1709 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) { 1710 MVT VT; 1711 Type *Ty = I->getType(); 1712 if (!isTypeLegal(Ty, VT)) 1713 return false; 1714 1715 // Many ABIs do not provide a libcall for standalone remainder, so we need to 1716 // use divrem (see the RTABI 4.3.1). Since FastISel can't handle non-double 1717 // multi-reg returns, we'll have to bail out. 1718 if (!TLI.hasStandaloneRem(VT)) { 1719 return false; 1720 } 1721 1722 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1723 if (VT == MVT::i8) 1724 LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8; 1725 else if (VT == MVT::i16) 1726 LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16; 1727 else if (VT == MVT::i32) 1728 LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32; 1729 else if (VT == MVT::i64) 1730 LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64; 1731 else if (VT == MVT::i128) 1732 LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128; 1733 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!"); 1734 1735 return ARMEmitLibcall(I, LC); 1736 } 1737 1738 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1739 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1740 1741 // We can get here in the case when we have a binary operation on a non-legal 1742 // type and the target independent selector doesn't know how to handle it. 1743 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 1744 return false; 1745 1746 unsigned Opc; 1747 switch (ISDOpcode) { 1748 default: return false; 1749 case ISD::ADD: 1750 Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr; 1751 break; 1752 case ISD::OR: 1753 Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr; 1754 break; 1755 case ISD::SUB: 1756 Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr; 1757 break; 1758 } 1759 1760 unsigned SrcReg1 = getRegForValue(I->getOperand(0)); 1761 if (SrcReg1 == 0) return false; 1762 1763 // TODO: Often the 2nd operand is an immediate, which can be encoded directly 1764 // in the instruction, rather then materializing the value in a register. 1765 unsigned SrcReg2 = getRegForValue(I->getOperand(1)); 1766 if (SrcReg2 == 0) return false; 1767 1768 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); 1769 SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1); 1770 SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2); 1771 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1772 TII.get(Opc), ResultReg) 1773 .addReg(SrcReg1).addReg(SrcReg2)); 1774 updateValueMap(I, ResultReg); 1775 return true; 1776 } 1777 1778 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) { 1779 EVT FPVT = TLI.getValueType(DL, I->getType(), true); 1780 if (!FPVT.isSimple()) return false; 1781 MVT VT = FPVT.getSimpleVT(); 1782 1783 // FIXME: Support vector types where possible. 1784 if (VT.isVector()) 1785 return false; 1786 1787 // We can get here in the case when we want to use NEON for our fp 1788 // operations, but can't figure out how to. Just use the vfp instructions 1789 // if we have them. 1790 // FIXME: It'd be nice to use NEON instructions. 1791 Type *Ty = I->getType(); 1792 if (Ty->isFloatTy() && !Subtarget->hasVFP2Base()) 1793 return false; 1794 if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64())) 1795 return false; 1796 1797 unsigned Opc; 1798 bool is64bit = VT == MVT::f64 || VT == MVT::i64; 1799 switch (ISDOpcode) { 1800 default: return false; 1801 case ISD::FADD: 1802 Opc = is64bit ? ARM::VADDD : ARM::VADDS; 1803 break; 1804 case ISD::FSUB: 1805 Opc = is64bit ? ARM::VSUBD : ARM::VSUBS; 1806 break; 1807 case ISD::FMUL: 1808 Opc = is64bit ? ARM::VMULD : ARM::VMULS; 1809 break; 1810 } 1811 unsigned Op1 = getRegForValue(I->getOperand(0)); 1812 if (Op1 == 0) return false; 1813 1814 unsigned Op2 = getRegForValue(I->getOperand(1)); 1815 if (Op2 == 0) return false; 1816 1817 unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); 1818 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1819 TII.get(Opc), ResultReg) 1820 .addReg(Op1).addReg(Op2)); 1821 updateValueMap(I, ResultReg); 1822 return true; 1823 } 1824 1825 // Call Handling Code 1826 1827 // This is largely taken directly from CCAssignFnForNode 1828 // TODO: We may not support all of this. 1829 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, 1830 bool Return, 1831 bool isVarArg) { 1832 switch (CC) { 1833 default: 1834 report_fatal_error("Unsupported calling convention"); 1835 case CallingConv::Fast: 1836 if (Subtarget->hasVFP2Base() && !isVarArg) { 1837 if (!Subtarget->isAAPCS_ABI()) 1838 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); 1839 // For AAPCS ABI targets, just use VFP variant of the calling convention. 1840 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); 1841 } 1842 LLVM_FALLTHROUGH; 1843 case CallingConv::C: 1844 case CallingConv::CXX_FAST_TLS: 1845 // Use target triple & subtarget features to do actual dispatch. 1846 if (Subtarget->isAAPCS_ABI()) { 1847 if (Subtarget->hasVFP2Base() && 1848 TM.Options.FloatABIType == FloatABI::Hard && !isVarArg) 1849 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1850 else 1851 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1852 } else { 1853 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1854 } 1855 case CallingConv::ARM_AAPCS_VFP: 1856 case CallingConv::Swift: 1857 if (!isVarArg) 1858 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1859 // Fall through to soft float variant, variadic functions don't 1860 // use hard floating point ABI. 1861 LLVM_FALLTHROUGH; 1862 case CallingConv::ARM_AAPCS: 1863 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1864 case CallingConv::ARM_APCS: 1865 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1866 case CallingConv::GHC: 1867 if (Return) 1868 report_fatal_error("Can't return in GHC call convention"); 1869 else 1870 return CC_ARM_APCS_GHC; 1871 case CallingConv::CFGuard_Check: 1872 return (Return ? RetCC_ARM_AAPCS : CC_ARM_Win32_CFGuard_Check); 1873 } 1874 } 1875 1876 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args, 1877 SmallVectorImpl<Register> &ArgRegs, 1878 SmallVectorImpl<MVT> &ArgVTs, 1879 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1880 SmallVectorImpl<Register> &RegArgs, 1881 CallingConv::ID CC, 1882 unsigned &NumBytes, 1883 bool isVarArg) { 1884 SmallVector<CCValAssign, 16> ArgLocs; 1885 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context); 1886 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, 1887 CCAssignFnForCall(CC, false, isVarArg)); 1888 1889 // Check that we can handle all of the arguments. If we can't, then bail out 1890 // now before we add code to the MBB. 1891 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1892 CCValAssign &VA = ArgLocs[i]; 1893 MVT ArgVT = ArgVTs[VA.getValNo()]; 1894 1895 // We don't handle NEON/vector parameters yet. 1896 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64) 1897 return false; 1898 1899 // Now copy/store arg to correct locations. 1900 if (VA.isRegLoc() && !VA.needsCustom()) { 1901 continue; 1902 } else if (VA.needsCustom()) { 1903 // TODO: We need custom lowering for vector (v2f64) args. 1904 if (VA.getLocVT() != MVT::f64 || 1905 // TODO: Only handle register args for now. 1906 !VA.isRegLoc() || !ArgLocs[++i].isRegLoc()) 1907 return false; 1908 } else { 1909 switch (ArgVT.SimpleTy) { 1910 default: 1911 return false; 1912 case MVT::i1: 1913 case MVT::i8: 1914 case MVT::i16: 1915 case MVT::i32: 1916 break; 1917 case MVT::f32: 1918 if (!Subtarget->hasVFP2Base()) 1919 return false; 1920 break; 1921 case MVT::f64: 1922 if (!Subtarget->hasVFP2Base()) 1923 return false; 1924 break; 1925 } 1926 } 1927 } 1928 1929 // At the point, we are able to handle the call's arguments in fast isel. 1930 1931 // Get a count of how many bytes are to be pushed on the stack. 1932 NumBytes = CCInfo.getNextStackOffset(); 1933 1934 // Issue CALLSEQ_START 1935 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 1936 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1937 TII.get(AdjStackDown)) 1938 .addImm(NumBytes).addImm(0)); 1939 1940 // Process the args. 1941 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1942 CCValAssign &VA = ArgLocs[i]; 1943 const Value *ArgVal = Args[VA.getValNo()]; 1944 Register Arg = ArgRegs[VA.getValNo()]; 1945 MVT ArgVT = ArgVTs[VA.getValNo()]; 1946 1947 assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) && 1948 "We don't handle NEON/vector parameters yet."); 1949 1950 // Handle arg promotion, etc. 1951 switch (VA.getLocInfo()) { 1952 case CCValAssign::Full: break; 1953 case CCValAssign::SExt: { 1954 MVT DestVT = VA.getLocVT(); 1955 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false); 1956 assert(Arg != 0 && "Failed to emit a sext"); 1957 ArgVT = DestVT; 1958 break; 1959 } 1960 case CCValAssign::AExt: 1961 // Intentional fall-through. Handle AExt and ZExt. 1962 case CCValAssign::ZExt: { 1963 MVT DestVT = VA.getLocVT(); 1964 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true); 1965 assert(Arg != 0 && "Failed to emit a zext"); 1966 ArgVT = DestVT; 1967 break; 1968 } 1969 case CCValAssign::BCvt: { 1970 unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg, 1971 /*TODO: Kill=*/false); 1972 assert(BC != 0 && "Failed to emit a bitcast!"); 1973 Arg = BC; 1974 ArgVT = VA.getLocVT(); 1975 break; 1976 } 1977 default: llvm_unreachable("Unknown arg promotion!"); 1978 } 1979 1980 // Now copy/store arg to correct locations. 1981 if (VA.isRegLoc() && !VA.needsCustom()) { 1982 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1983 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg); 1984 RegArgs.push_back(VA.getLocReg()); 1985 } else if (VA.needsCustom()) { 1986 // TODO: We need custom lowering for vector (v2f64) args. 1987 assert(VA.getLocVT() == MVT::f64 && 1988 "Custom lowering for v2f64 args not available"); 1989 1990 // FIXME: ArgLocs[++i] may extend beyond ArgLocs.size() 1991 CCValAssign &NextVA = ArgLocs[++i]; 1992 1993 assert(VA.isRegLoc() && NextVA.isRegLoc() && 1994 "We only handle register args!"); 1995 1996 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1997 TII.get(ARM::VMOVRRD), VA.getLocReg()) 1998 .addReg(NextVA.getLocReg(), RegState::Define) 1999 .addReg(Arg)); 2000 RegArgs.push_back(VA.getLocReg()); 2001 RegArgs.push_back(NextVA.getLocReg()); 2002 } else { 2003 assert(VA.isMemLoc()); 2004 // Need to store on the stack. 2005 2006 // Don't emit stores for undef values. 2007 if (isa<UndefValue>(ArgVal)) 2008 continue; 2009 2010 Address Addr; 2011 Addr.BaseType = Address::RegBase; 2012 Addr.Base.Reg = ARM::SP; 2013 Addr.Offset = VA.getLocMemOffset(); 2014 2015 bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet; 2016 assert(EmitRet && "Could not emit a store for argument!"); 2017 } 2018 } 2019 2020 return true; 2021 } 2022 2023 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs, 2024 const Instruction *I, CallingConv::ID CC, 2025 unsigned &NumBytes, bool isVarArg) { 2026 // Issue CALLSEQ_END 2027 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 2028 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2029 TII.get(AdjStackUp)) 2030 .addImm(NumBytes).addImm(0)); 2031 2032 // Now the return value. 2033 if (RetVT != MVT::isVoid) { 2034 SmallVector<CCValAssign, 16> RVLocs; 2035 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); 2036 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2037 2038 // Copy all of the result registers out of their specified physreg. 2039 if (RVLocs.size() == 2 && RetVT == MVT::f64) { 2040 // For this move we copy into two registers and then move into the 2041 // double fp reg we want. 2042 MVT DestVT = RVLocs[0].getValVT(); 2043 const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT); 2044 Register ResultReg = createResultReg(DstRC); 2045 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2046 TII.get(ARM::VMOVDRR), ResultReg) 2047 .addReg(RVLocs[0].getLocReg()) 2048 .addReg(RVLocs[1].getLocReg())); 2049 2050 UsedRegs.push_back(RVLocs[0].getLocReg()); 2051 UsedRegs.push_back(RVLocs[1].getLocReg()); 2052 2053 // Finally update the result. 2054 updateValueMap(I, ResultReg); 2055 } else { 2056 assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!"); 2057 MVT CopyVT = RVLocs[0].getValVT(); 2058 2059 // Special handling for extended integers. 2060 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16) 2061 CopyVT = MVT::i32; 2062 2063 const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT); 2064 2065 Register ResultReg = createResultReg(DstRC); 2066 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2067 TII.get(TargetOpcode::COPY), 2068 ResultReg).addReg(RVLocs[0].getLocReg()); 2069 UsedRegs.push_back(RVLocs[0].getLocReg()); 2070 2071 // Finally update the result. 2072 updateValueMap(I, ResultReg); 2073 } 2074 } 2075 2076 return true; 2077 } 2078 2079 bool ARMFastISel::SelectRet(const Instruction *I) { 2080 const ReturnInst *Ret = cast<ReturnInst>(I); 2081 const Function &F = *I->getParent()->getParent(); 2082 const bool IsCmseNSEntry = F.hasFnAttribute("cmse_nonsecure_entry"); 2083 2084 if (!FuncInfo.CanLowerReturn) 2085 return false; 2086 2087 if (TLI.supportSwiftError() && 2088 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 2089 return false; 2090 2091 if (TLI.supportSplitCSR(FuncInfo.MF)) 2092 return false; 2093 2094 // Build a list of return value registers. 2095 SmallVector<unsigned, 4> RetRegs; 2096 2097 CallingConv::ID CC = F.getCallingConv(); 2098 if (Ret->getNumOperands() > 0) { 2099 SmallVector<ISD::OutputArg, 4> Outs; 2100 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 2101 2102 // Analyze operands of the call, assigning locations to each operand. 2103 SmallVector<CCValAssign, 16> ValLocs; 2104 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); 2105 CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */, 2106 F.isVarArg())); 2107 2108 const Value *RV = Ret->getOperand(0); 2109 unsigned Reg = getRegForValue(RV); 2110 if (Reg == 0) 2111 return false; 2112 2113 // Only handle a single return value for now. 2114 if (ValLocs.size() != 1) 2115 return false; 2116 2117 CCValAssign &VA = ValLocs[0]; 2118 2119 // Don't bother handling odd stuff for now. 2120 if (VA.getLocInfo() != CCValAssign::Full) 2121 return false; 2122 // Only handle register returns for now. 2123 if (!VA.isRegLoc()) 2124 return false; 2125 2126 unsigned SrcReg = Reg + VA.getValNo(); 2127 EVT RVEVT = TLI.getValueType(DL, RV->getType()); 2128 if (!RVEVT.isSimple()) return false; 2129 MVT RVVT = RVEVT.getSimpleVT(); 2130 MVT DestVT = VA.getValVT(); 2131 // Special handling for extended integers. 2132 if (RVVT != DestVT) { 2133 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) 2134 return false; 2135 2136 assert(DestVT == MVT::i32 && "ARM should always ext to i32"); 2137 2138 // Perform extension if flagged as either zext or sext. Otherwise, do 2139 // nothing. 2140 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) { 2141 SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt()); 2142 if (SrcReg == 0) return false; 2143 } 2144 } 2145 2146 // Make the copy. 2147 Register DstReg = VA.getLocReg(); 2148 const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg); 2149 // Avoid a cross-class copy. This is very unlikely. 2150 if (!SrcRC->contains(DstReg)) 2151 return false; 2152 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2153 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); 2154 2155 // Add register to return instruction. 2156 RetRegs.push_back(VA.getLocReg()); 2157 } 2158 2159 unsigned RetOpc; 2160 if (IsCmseNSEntry) 2161 if (isThumb2) 2162 RetOpc = ARM::tBXNS_RET; 2163 else 2164 llvm_unreachable("CMSE not valid for non-Thumb targets"); 2165 else 2166 RetOpc = Subtarget->getReturnOpcode(); 2167 2168 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2169 TII.get(RetOpc)); 2170 AddOptionalDefs(MIB); 2171 for (unsigned R : RetRegs) 2172 MIB.addReg(R, RegState::Implicit); 2173 return true; 2174 } 2175 2176 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) { 2177 if (UseReg) 2178 return isThumb2 ? gettBLXrOpcode(*MF) : getBLXOpcode(*MF); 2179 else 2180 return isThumb2 ? ARM::tBL : ARM::BL; 2181 } 2182 2183 unsigned ARMFastISel::getLibcallReg(const Twine &Name) { 2184 // Manually compute the global's type to avoid building it when unnecessary. 2185 Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0); 2186 EVT LCREVT = TLI.getValueType(DL, GVTy); 2187 if (!LCREVT.isSimple()) return 0; 2188 2189 GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false, 2190 GlobalValue::ExternalLinkage, nullptr, 2191 Name); 2192 assert(GV->getType() == GVTy && "We miscomputed the type for the global!"); 2193 return ARMMaterializeGV(GV, LCREVT.getSimpleVT()); 2194 } 2195 2196 // A quick function that will emit a call for a named libcall in F with the 2197 // vector of passed arguments for the Instruction in I. We can assume that we 2198 // can emit a call for any libcall we can produce. This is an abridged version 2199 // of the full call infrastructure since we won't need to worry about things 2200 // like computed function pointers or strange arguments at call sites. 2201 // TODO: Try to unify this and the normal call bits for ARM, then try to unify 2202 // with X86. 2203 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) { 2204 CallingConv::ID CC = TLI.getLibcallCallingConv(Call); 2205 2206 // Handle *simple* calls for now. 2207 Type *RetTy = I->getType(); 2208 MVT RetVT; 2209 if (RetTy->isVoidTy()) 2210 RetVT = MVT::isVoid; 2211 else if (!isTypeLegal(RetTy, RetVT)) 2212 return false; 2213 2214 // Can't handle non-double multi-reg retvals. 2215 if (RetVT != MVT::isVoid && RetVT != MVT::i32) { 2216 SmallVector<CCValAssign, 16> RVLocs; 2217 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 2218 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false)); 2219 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2220 return false; 2221 } 2222 2223 // Set up the argument vectors. 2224 SmallVector<Value*, 8> Args; 2225 SmallVector<Register, 8> ArgRegs; 2226 SmallVector<MVT, 8> ArgVTs; 2227 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2228 Args.reserve(I->getNumOperands()); 2229 ArgRegs.reserve(I->getNumOperands()); 2230 ArgVTs.reserve(I->getNumOperands()); 2231 ArgFlags.reserve(I->getNumOperands()); 2232 for (Value *Op : I->operands()) { 2233 unsigned Arg = getRegForValue(Op); 2234 if (Arg == 0) return false; 2235 2236 Type *ArgTy = Op->getType(); 2237 MVT ArgVT; 2238 if (!isTypeLegal(ArgTy, ArgVT)) return false; 2239 2240 ISD::ArgFlagsTy Flags; 2241 Flags.setOrigAlign(DL.getABITypeAlign(ArgTy)); 2242 2243 Args.push_back(Op); 2244 ArgRegs.push_back(Arg); 2245 ArgVTs.push_back(ArgVT); 2246 ArgFlags.push_back(Flags); 2247 } 2248 2249 // Handle the arguments now that we've gotten them. 2250 SmallVector<Register, 4> RegArgs; 2251 unsigned NumBytes; 2252 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2253 RegArgs, CC, NumBytes, false)) 2254 return false; 2255 2256 Register CalleeReg; 2257 if (Subtarget->genLongCalls()) { 2258 CalleeReg = getLibcallReg(TLI.getLibcallName(Call)); 2259 if (CalleeReg == 0) return false; 2260 } 2261 2262 // Issue the call. 2263 unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls()); 2264 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2265 DbgLoc, TII.get(CallOpc)); 2266 // BL / BLX don't take a predicate, but tBL / tBLX do. 2267 if (isThumb2) 2268 MIB.add(predOps(ARMCC::AL)); 2269 if (Subtarget->genLongCalls()) { 2270 CalleeReg = 2271 constrainOperandRegClass(TII.get(CallOpc), CalleeReg, isThumb2 ? 2 : 0); 2272 MIB.addReg(CalleeReg); 2273 } else 2274 MIB.addExternalSymbol(TLI.getLibcallName(Call)); 2275 2276 // Add implicit physical register uses to the call. 2277 for (Register R : RegArgs) 2278 MIB.addReg(R, RegState::Implicit); 2279 2280 // Add a register mask with the call-preserved registers. 2281 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2282 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 2283 2284 // Finish off the call including any return values. 2285 SmallVector<Register, 4> UsedRegs; 2286 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false; 2287 2288 // Set all unused physreg defs as dead. 2289 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2290 2291 return true; 2292 } 2293 2294 bool ARMFastISel::SelectCall(const Instruction *I, 2295 const char *IntrMemName = nullptr) { 2296 const CallInst *CI = cast<CallInst>(I); 2297 const Value *Callee = CI->getCalledOperand(); 2298 2299 // Can't handle inline asm. 2300 if (isa<InlineAsm>(Callee)) return false; 2301 2302 // Allow SelectionDAG isel to handle tail calls. 2303 if (CI->isTailCall()) return false; 2304 2305 // Check the calling convention. 2306 CallingConv::ID CC = CI->getCallingConv(); 2307 2308 // TODO: Avoid some calling conventions? 2309 2310 FunctionType *FTy = CI->getFunctionType(); 2311 bool isVarArg = FTy->isVarArg(); 2312 2313 // Handle *simple* calls for now. 2314 Type *RetTy = I->getType(); 2315 MVT RetVT; 2316 if (RetTy->isVoidTy()) 2317 RetVT = MVT::isVoid; 2318 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 2319 RetVT != MVT::i8 && RetVT != MVT::i1) 2320 return false; 2321 2322 // Can't handle non-double multi-reg retvals. 2323 if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 && 2324 RetVT != MVT::i16 && RetVT != MVT::i32) { 2325 SmallVector<CCValAssign, 16> RVLocs; 2326 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); 2327 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2328 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2329 return false; 2330 } 2331 2332 // Set up the argument vectors. 2333 SmallVector<Value*, 8> Args; 2334 SmallVector<Register, 8> ArgRegs; 2335 SmallVector<MVT, 8> ArgVTs; 2336 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2337 unsigned arg_size = CI->arg_size(); 2338 Args.reserve(arg_size); 2339 ArgRegs.reserve(arg_size); 2340 ArgVTs.reserve(arg_size); 2341 ArgFlags.reserve(arg_size); 2342 for (auto ArgI = CI->arg_begin(), ArgE = CI->arg_end(); ArgI != ArgE; ++ArgI) { 2343 // If we're lowering a memory intrinsic instead of a regular call, skip the 2344 // last argument, which shouldn't be passed to the underlying function. 2345 if (IntrMemName && ArgE - ArgI <= 1) 2346 break; 2347 2348 ISD::ArgFlagsTy Flags; 2349 unsigned ArgIdx = ArgI - CI->arg_begin(); 2350 if (CI->paramHasAttr(ArgIdx, Attribute::SExt)) 2351 Flags.setSExt(); 2352 if (CI->paramHasAttr(ArgIdx, Attribute::ZExt)) 2353 Flags.setZExt(); 2354 2355 // FIXME: Only handle *easy* calls for now. 2356 if (CI->paramHasAttr(ArgIdx, Attribute::InReg) || 2357 CI->paramHasAttr(ArgIdx, Attribute::StructRet) || 2358 CI->paramHasAttr(ArgIdx, Attribute::SwiftSelf) || 2359 CI->paramHasAttr(ArgIdx, Attribute::SwiftError) || 2360 CI->paramHasAttr(ArgIdx, Attribute::Nest) || 2361 CI->paramHasAttr(ArgIdx, Attribute::ByVal)) 2362 return false; 2363 2364 Type *ArgTy = (*ArgI)->getType(); 2365 MVT ArgVT; 2366 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 && 2367 ArgVT != MVT::i1) 2368 return false; 2369 2370 Register Arg = getRegForValue(*ArgI); 2371 if (!Arg.isValid()) 2372 return false; 2373 2374 Flags.setOrigAlign(DL.getABITypeAlign(ArgTy)); 2375 2376 Args.push_back(*ArgI); 2377 ArgRegs.push_back(Arg); 2378 ArgVTs.push_back(ArgVT); 2379 ArgFlags.push_back(Flags); 2380 } 2381 2382 // Handle the arguments now that we've gotten them. 2383 SmallVector<Register, 4> RegArgs; 2384 unsigned NumBytes; 2385 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2386 RegArgs, CC, NumBytes, isVarArg)) 2387 return false; 2388 2389 bool UseReg = false; 2390 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 2391 if (!GV || Subtarget->genLongCalls()) UseReg = true; 2392 2393 Register CalleeReg; 2394 if (UseReg) { 2395 if (IntrMemName) 2396 CalleeReg = getLibcallReg(IntrMemName); 2397 else 2398 CalleeReg = getRegForValue(Callee); 2399 2400 if (CalleeReg == 0) return false; 2401 } 2402 2403 // Issue the call. 2404 unsigned CallOpc = ARMSelectCallOp(UseReg); 2405 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2406 DbgLoc, TII.get(CallOpc)); 2407 2408 // ARM calls don't take a predicate, but tBL / tBLX do. 2409 if(isThumb2) 2410 MIB.add(predOps(ARMCC::AL)); 2411 if (UseReg) { 2412 CalleeReg = 2413 constrainOperandRegClass(TII.get(CallOpc), CalleeReg, isThumb2 ? 2 : 0); 2414 MIB.addReg(CalleeReg); 2415 } else if (!IntrMemName) 2416 MIB.addGlobalAddress(GV, 0, 0); 2417 else 2418 MIB.addExternalSymbol(IntrMemName, 0); 2419 2420 // Add implicit physical register uses to the call. 2421 for (Register R : RegArgs) 2422 MIB.addReg(R, RegState::Implicit); 2423 2424 // Add a register mask with the call-preserved registers. 2425 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2426 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 2427 2428 // Finish off the call including any return values. 2429 SmallVector<Register, 4> UsedRegs; 2430 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg)) 2431 return false; 2432 2433 // Set all unused physreg defs as dead. 2434 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2435 2436 return true; 2437 } 2438 2439 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) { 2440 return Len <= 16; 2441 } 2442 2443 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, 2444 uint64_t Len, unsigned Alignment) { 2445 // Make sure we don't bloat code by inlining very large memcpy's. 2446 if (!ARMIsMemCpySmall(Len)) 2447 return false; 2448 2449 while (Len) { 2450 MVT VT; 2451 if (!Alignment || Alignment >= 4) { 2452 if (Len >= 4) 2453 VT = MVT::i32; 2454 else if (Len >= 2) 2455 VT = MVT::i16; 2456 else { 2457 assert(Len == 1 && "Expected a length of 1!"); 2458 VT = MVT::i8; 2459 } 2460 } else { 2461 // Bound based on alignment. 2462 if (Len >= 2 && Alignment == 2) 2463 VT = MVT::i16; 2464 else { 2465 VT = MVT::i8; 2466 } 2467 } 2468 2469 bool RV; 2470 Register ResultReg; 2471 RV = ARMEmitLoad(VT, ResultReg, Src); 2472 assert(RV && "Should be able to handle this load."); 2473 RV = ARMEmitStore(VT, ResultReg, Dest); 2474 assert(RV && "Should be able to handle this store."); 2475 (void)RV; 2476 2477 unsigned Size = VT.getSizeInBits()/8; 2478 Len -= Size; 2479 Dest.Offset += Size; 2480 Src.Offset += Size; 2481 } 2482 2483 return true; 2484 } 2485 2486 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) { 2487 // FIXME: Handle more intrinsics. 2488 switch (I.getIntrinsicID()) { 2489 default: return false; 2490 case Intrinsic::frameaddress: { 2491 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 2492 MFI.setFrameAddressIsTaken(true); 2493 2494 unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 2495 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass 2496 : &ARM::GPRRegClass; 2497 2498 const ARMBaseRegisterInfo *RegInfo = 2499 static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo()); 2500 Register FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF)); 2501 unsigned SrcReg = FramePtr; 2502 2503 // Recursively load frame address 2504 // ldr r0 [fp] 2505 // ldr r0 [r0] 2506 // ldr r0 [r0] 2507 // ... 2508 unsigned DestReg; 2509 unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue(); 2510 while (Depth--) { 2511 DestReg = createResultReg(RC); 2512 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2513 TII.get(LdrOpc), DestReg) 2514 .addReg(SrcReg).addImm(0)); 2515 SrcReg = DestReg; 2516 } 2517 updateValueMap(&I, SrcReg); 2518 return true; 2519 } 2520 case Intrinsic::memcpy: 2521 case Intrinsic::memmove: { 2522 const MemTransferInst &MTI = cast<MemTransferInst>(I); 2523 // Don't handle volatile. 2524 if (MTI.isVolatile()) 2525 return false; 2526 2527 // Disable inlining for memmove before calls to ComputeAddress. Otherwise, 2528 // we would emit dead code because we don't currently handle memmoves. 2529 bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy); 2530 if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) { 2531 // Small memcpy's are common enough that we want to do them without a call 2532 // if possible. 2533 uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue(); 2534 if (ARMIsMemCpySmall(Len)) { 2535 Address Dest, Src; 2536 if (!ARMComputeAddress(MTI.getRawDest(), Dest) || 2537 !ARMComputeAddress(MTI.getRawSource(), Src)) 2538 return false; 2539 unsigned Alignment = MinAlign(MTI.getDestAlignment(), 2540 MTI.getSourceAlignment()); 2541 if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment)) 2542 return true; 2543 } 2544 } 2545 2546 if (!MTI.getLength()->getType()->isIntegerTy(32)) 2547 return false; 2548 2549 if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255) 2550 return false; 2551 2552 const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove"; 2553 return SelectCall(&I, IntrMemName); 2554 } 2555 case Intrinsic::memset: { 2556 const MemSetInst &MSI = cast<MemSetInst>(I); 2557 // Don't handle volatile. 2558 if (MSI.isVolatile()) 2559 return false; 2560 2561 if (!MSI.getLength()->getType()->isIntegerTy(32)) 2562 return false; 2563 2564 if (MSI.getDestAddressSpace() > 255) 2565 return false; 2566 2567 return SelectCall(&I, "memset"); 2568 } 2569 case Intrinsic::trap: { 2570 unsigned Opcode; 2571 if (Subtarget->isThumb()) 2572 Opcode = ARM::tTRAP; 2573 else 2574 Opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP; 2575 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode)); 2576 return true; 2577 } 2578 } 2579 } 2580 2581 bool ARMFastISel::SelectTrunc(const Instruction *I) { 2582 // The high bits for a type smaller than the register size are assumed to be 2583 // undefined. 2584 Value *Op = I->getOperand(0); 2585 2586 EVT SrcVT, DestVT; 2587 SrcVT = TLI.getValueType(DL, Op->getType(), true); 2588 DestVT = TLI.getValueType(DL, I->getType(), true); 2589 2590 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 2591 return false; 2592 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 2593 return false; 2594 2595 unsigned SrcReg = getRegForValue(Op); 2596 if (!SrcReg) return false; 2597 2598 // Because the high bits are undefined, a truncate doesn't generate 2599 // any code. 2600 updateValueMap(I, SrcReg); 2601 return true; 2602 } 2603 2604 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 2605 bool isZExt) { 2606 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 2607 return 0; 2608 if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1) 2609 return 0; 2610 2611 // Table of which combinations can be emitted as a single instruction, 2612 // and which will require two. 2613 static const uint8_t isSingleInstrTbl[3][2][2][2] = { 2614 // ARM Thumb 2615 // !hasV6Ops hasV6Ops !hasV6Ops hasV6Ops 2616 // ext: s z s z s z s z 2617 /* 1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } }, 2618 /* 8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }, 2619 /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } } 2620 }; 2621 2622 // Target registers for: 2623 // - For ARM can never be PC. 2624 // - For 16-bit Thumb are restricted to lower 8 registers. 2625 // - For 32-bit Thumb are restricted to non-SP and non-PC. 2626 static const TargetRegisterClass *RCTbl[2][2] = { 2627 // Instructions: Two Single 2628 /* ARM */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass }, 2629 /* Thumb */ { &ARM::tGPRRegClass, &ARM::rGPRRegClass } 2630 }; 2631 2632 // Table governing the instruction(s) to be emitted. 2633 static const struct InstructionTable { 2634 uint32_t Opc : 16; 2635 uint32_t hasS : 1; // Some instructions have an S bit, always set it to 0. 2636 uint32_t Shift : 7; // For shift operand addressing mode, used by MOVsi. 2637 uint32_t Imm : 8; // All instructions have either a shift or a mask. 2638 } IT[2][2][3][2] = { 2639 { // Two instructions (first is left shift, second is in this table). 2640 { // ARM Opc S Shift Imm 2641 /* 1 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 31 }, 2642 /* 1 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 31 } }, 2643 /* 8 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 24 }, 2644 /* 8 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 24 } }, 2645 /* 16 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 16 }, 2646 /* 16 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 16 } } 2647 }, 2648 { // Thumb Opc S Shift Imm 2649 /* 1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 31 }, 2650 /* 1 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 31 } }, 2651 /* 8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 24 }, 2652 /* 8 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 24 } }, 2653 /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 16 }, 2654 /* 16 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 16 } } 2655 } 2656 }, 2657 { // Single instruction. 2658 { // ARM Opc S Shift Imm 2659 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2660 /* 1 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 1 } }, 2661 /* 8 bit sext */ { { ARM::SXTB , 0, ARM_AM::no_shift, 0 }, 2662 /* 8 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 255 } }, 2663 /* 16 bit sext */ { { ARM::SXTH , 0, ARM_AM::no_shift, 0 }, 2664 /* 16 bit zext */ { ARM::UXTH , 0, ARM_AM::no_shift, 0 } } 2665 }, 2666 { // Thumb Opc S Shift Imm 2667 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2668 /* 1 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 1 } }, 2669 /* 8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift, 0 }, 2670 /* 8 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } }, 2671 /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift, 0 }, 2672 /* 16 bit zext */ { ARM::t2UXTH , 0, ARM_AM::no_shift, 0 } } 2673 } 2674 } 2675 }; 2676 2677 unsigned SrcBits = SrcVT.getSizeInBits(); 2678 unsigned DestBits = DestVT.getSizeInBits(); 2679 (void) DestBits; 2680 assert((SrcBits < DestBits) && "can only extend to larger types"); 2681 assert((DestBits == 32 || DestBits == 16 || DestBits == 8) && 2682 "other sizes unimplemented"); 2683 assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) && 2684 "other sizes unimplemented"); 2685 2686 bool hasV6Ops = Subtarget->hasV6Ops(); 2687 unsigned Bitness = SrcBits / 8; // {1,8,16}=>{0,1,2} 2688 assert((Bitness < 3) && "sanity-check table bounds"); 2689 2690 bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt]; 2691 const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr]; 2692 const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt]; 2693 unsigned Opc = ITP->Opc; 2694 assert(ARM::KILL != Opc && "Invalid table entry"); 2695 unsigned hasS = ITP->hasS; 2696 ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift; 2697 assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) && 2698 "only MOVsi has shift operand addressing mode"); 2699 unsigned Imm = ITP->Imm; 2700 2701 // 16-bit Thumb instructions always set CPSR (unless they're in an IT block). 2702 bool setsCPSR = &ARM::tGPRRegClass == RC; 2703 unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi; 2704 unsigned ResultReg; 2705 // MOVsi encodes shift and immediate in shift operand addressing mode. 2706 // The following condition has the same value when emitting two 2707 // instruction sequences: both are shifts. 2708 bool ImmIsSO = (Shift != ARM_AM::no_shift); 2709 2710 // Either one or two instructions are emitted. 2711 // They're always of the form: 2712 // dst = in OP imm 2713 // CPSR is set only by 16-bit Thumb instructions. 2714 // Predicate, if any, is AL. 2715 // S bit, if available, is always 0. 2716 // When two are emitted the first's result will feed as the second's input, 2717 // that value is then dead. 2718 unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2; 2719 for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) { 2720 ResultReg = createResultReg(RC); 2721 bool isLsl = (0 == Instr) && !isSingleInstr; 2722 unsigned Opcode = isLsl ? LSLOpc : Opc; 2723 ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift; 2724 unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm; 2725 bool isKill = 1 == Instr; 2726 MachineInstrBuilder MIB = BuildMI( 2727 *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg); 2728 if (setsCPSR) 2729 MIB.addReg(ARM::CPSR, RegState::Define); 2730 SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR); 2731 MIB.addReg(SrcReg, isKill * RegState::Kill) 2732 .addImm(ImmEnc) 2733 .add(predOps(ARMCC::AL)); 2734 if (hasS) 2735 MIB.add(condCodeOp()); 2736 // Second instruction consumes the first's result. 2737 SrcReg = ResultReg; 2738 } 2739 2740 return ResultReg; 2741 } 2742 2743 bool ARMFastISel::SelectIntExt(const Instruction *I) { 2744 // On ARM, in general, integer casts don't involve legal types; this code 2745 // handles promotable integers. 2746 Type *DestTy = I->getType(); 2747 Value *Src = I->getOperand(0); 2748 Type *SrcTy = Src->getType(); 2749 2750 bool isZExt = isa<ZExtInst>(I); 2751 unsigned SrcReg = getRegForValue(Src); 2752 if (!SrcReg) return false; 2753 2754 EVT SrcEVT, DestEVT; 2755 SrcEVT = TLI.getValueType(DL, SrcTy, true); 2756 DestEVT = TLI.getValueType(DL, DestTy, true); 2757 if (!SrcEVT.isSimple()) return false; 2758 if (!DestEVT.isSimple()) return false; 2759 2760 MVT SrcVT = SrcEVT.getSimpleVT(); 2761 MVT DestVT = DestEVT.getSimpleVT(); 2762 unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt); 2763 if (ResultReg == 0) return false; 2764 updateValueMap(I, ResultReg); 2765 return true; 2766 } 2767 2768 bool ARMFastISel::SelectShift(const Instruction *I, 2769 ARM_AM::ShiftOpc ShiftTy) { 2770 // We handle thumb2 mode by target independent selector 2771 // or SelectionDAG ISel. 2772 if (isThumb2) 2773 return false; 2774 2775 // Only handle i32 now. 2776 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 2777 if (DestVT != MVT::i32) 2778 return false; 2779 2780 unsigned Opc = ARM::MOVsr; 2781 unsigned ShiftImm; 2782 Value *Src2Value = I->getOperand(1); 2783 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) { 2784 ShiftImm = CI->getZExtValue(); 2785 2786 // Fall back to selection DAG isel if the shift amount 2787 // is zero or greater than the width of the value type. 2788 if (ShiftImm == 0 || ShiftImm >=32) 2789 return false; 2790 2791 Opc = ARM::MOVsi; 2792 } 2793 2794 Value *Src1Value = I->getOperand(0); 2795 unsigned Reg1 = getRegForValue(Src1Value); 2796 if (Reg1 == 0) return false; 2797 2798 unsigned Reg2 = 0; 2799 if (Opc == ARM::MOVsr) { 2800 Reg2 = getRegForValue(Src2Value); 2801 if (Reg2 == 0) return false; 2802 } 2803 2804 unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); 2805 if(ResultReg == 0) return false; 2806 2807 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2808 TII.get(Opc), ResultReg) 2809 .addReg(Reg1); 2810 2811 if (Opc == ARM::MOVsi) 2812 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm)); 2813 else if (Opc == ARM::MOVsr) { 2814 MIB.addReg(Reg2); 2815 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0)); 2816 } 2817 2818 AddOptionalDefs(MIB); 2819 updateValueMap(I, ResultReg); 2820 return true; 2821 } 2822 2823 // TODO: SoftFP support. 2824 bool ARMFastISel::fastSelectInstruction(const Instruction *I) { 2825 switch (I->getOpcode()) { 2826 case Instruction::Load: 2827 return SelectLoad(I); 2828 case Instruction::Store: 2829 return SelectStore(I); 2830 case Instruction::Br: 2831 return SelectBranch(I); 2832 case Instruction::IndirectBr: 2833 return SelectIndirectBr(I); 2834 case Instruction::ICmp: 2835 case Instruction::FCmp: 2836 return SelectCmp(I); 2837 case Instruction::FPExt: 2838 return SelectFPExt(I); 2839 case Instruction::FPTrunc: 2840 return SelectFPTrunc(I); 2841 case Instruction::SIToFP: 2842 return SelectIToFP(I, /*isSigned*/ true); 2843 case Instruction::UIToFP: 2844 return SelectIToFP(I, /*isSigned*/ false); 2845 case Instruction::FPToSI: 2846 return SelectFPToI(I, /*isSigned*/ true); 2847 case Instruction::FPToUI: 2848 return SelectFPToI(I, /*isSigned*/ false); 2849 case Instruction::Add: 2850 return SelectBinaryIntOp(I, ISD::ADD); 2851 case Instruction::Or: 2852 return SelectBinaryIntOp(I, ISD::OR); 2853 case Instruction::Sub: 2854 return SelectBinaryIntOp(I, ISD::SUB); 2855 case Instruction::FAdd: 2856 return SelectBinaryFPOp(I, ISD::FADD); 2857 case Instruction::FSub: 2858 return SelectBinaryFPOp(I, ISD::FSUB); 2859 case Instruction::FMul: 2860 return SelectBinaryFPOp(I, ISD::FMUL); 2861 case Instruction::SDiv: 2862 return SelectDiv(I, /*isSigned*/ true); 2863 case Instruction::UDiv: 2864 return SelectDiv(I, /*isSigned*/ false); 2865 case Instruction::SRem: 2866 return SelectRem(I, /*isSigned*/ true); 2867 case Instruction::URem: 2868 return SelectRem(I, /*isSigned*/ false); 2869 case Instruction::Call: 2870 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2871 return SelectIntrinsicCall(*II); 2872 return SelectCall(I); 2873 case Instruction::Select: 2874 return SelectSelect(I); 2875 case Instruction::Ret: 2876 return SelectRet(I); 2877 case Instruction::Trunc: 2878 return SelectTrunc(I); 2879 case Instruction::ZExt: 2880 case Instruction::SExt: 2881 return SelectIntExt(I); 2882 case Instruction::Shl: 2883 return SelectShift(I, ARM_AM::lsl); 2884 case Instruction::LShr: 2885 return SelectShift(I, ARM_AM::lsr); 2886 case Instruction::AShr: 2887 return SelectShift(I, ARM_AM::asr); 2888 default: break; 2889 } 2890 return false; 2891 } 2892 2893 // This table describes sign- and zero-extend instructions which can be 2894 // folded into a preceding load. All of these extends have an immediate 2895 // (sometimes a mask and sometimes a shift) that's applied after 2896 // extension. 2897 static const struct FoldableLoadExtendsStruct { 2898 uint16_t Opc[2]; // ARM, Thumb. 2899 uint8_t ExpectedImm; 2900 uint8_t isZExt : 1; 2901 uint8_t ExpectedVT : 7; 2902 } FoldableLoadExtends[] = { 2903 { { ARM::SXTH, ARM::t2SXTH }, 0, 0, MVT::i16 }, 2904 { { ARM::UXTH, ARM::t2UXTH }, 0, 1, MVT::i16 }, 2905 { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8 }, 2906 { { ARM::SXTB, ARM::t2SXTB }, 0, 0, MVT::i8 }, 2907 { { ARM::UXTB, ARM::t2UXTB }, 0, 1, MVT::i8 } 2908 }; 2909 2910 /// The specified machine instr operand is a vreg, and that 2911 /// vreg is being provided by the specified load instruction. If possible, 2912 /// try to fold the load as an operand to the instruction, returning true if 2913 /// successful. 2914 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2915 const LoadInst *LI) { 2916 // Verify we have a legal type before going any further. 2917 MVT VT; 2918 if (!isLoadTypeLegal(LI->getType(), VT)) 2919 return false; 2920 2921 // Combine load followed by zero- or sign-extend. 2922 // ldrb r1, [r0] ldrb r1, [r0] 2923 // uxtb r2, r1 => 2924 // mov r3, r2 mov r3, r1 2925 if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm()) 2926 return false; 2927 const uint64_t Imm = MI->getOperand(2).getImm(); 2928 2929 bool Found = false; 2930 bool isZExt; 2931 for (const FoldableLoadExtendsStruct &FLE : FoldableLoadExtends) { 2932 if (FLE.Opc[isThumb2] == MI->getOpcode() && 2933 (uint64_t)FLE.ExpectedImm == Imm && 2934 MVT((MVT::SimpleValueType)FLE.ExpectedVT) == VT) { 2935 Found = true; 2936 isZExt = FLE.isZExt; 2937 } 2938 } 2939 if (!Found) return false; 2940 2941 // See if we can handle this address. 2942 Address Addr; 2943 if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false; 2944 2945 Register ResultReg = MI->getOperand(0).getReg(); 2946 if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false)) 2947 return false; 2948 MachineBasicBlock::iterator I(MI); 2949 removeDeadCode(I, std::next(I)); 2950 return true; 2951 } 2952 2953 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV, MVT VT) { 2954 bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV); 2955 2956 LLVMContext *Context = &MF->getFunction().getContext(); 2957 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 2958 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; 2959 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create( 2960 GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj, 2961 UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier, 2962 /*AddCurrentAddress=*/UseGOT_PREL); 2963 2964 Align ConstAlign = 2965 MF->getDataLayout().getPrefTypeAlign(Type::getInt32PtrTy(*Context)); 2966 unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign); 2967 MachineMemOperand *CPMMO = 2968 MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF), 2969 MachineMemOperand::MOLoad, 4, Align(4)); 2970 2971 Register TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass); 2972 unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp; 2973 MachineInstrBuilder MIB = 2974 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), TempReg) 2975 .addConstantPoolIndex(Idx) 2976 .addMemOperand(CPMMO); 2977 if (Opc == ARM::LDRcp) 2978 MIB.addImm(0); 2979 MIB.add(predOps(ARMCC::AL)); 2980 2981 // Fix the address by adding pc. 2982 unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); 2983 Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR 2984 : ARM::PICADD; 2985 DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0); 2986 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) 2987 .addReg(TempReg) 2988 .addImm(ARMPCLabelIndex); 2989 2990 if (!Subtarget->isThumb()) 2991 MIB.add(predOps(ARMCC::AL)); 2992 2993 if (UseGOT_PREL && Subtarget->isThumb()) { 2994 unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 2995 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 2996 TII.get(ARM::t2LDRi12), NewDestReg) 2997 .addReg(DestReg) 2998 .addImm(0); 2999 DestReg = NewDestReg; 3000 AddOptionalDefs(MIB); 3001 } 3002 return DestReg; 3003 } 3004 3005 bool ARMFastISel::fastLowerArguments() { 3006 if (!FuncInfo.CanLowerReturn) 3007 return false; 3008 3009 const Function *F = FuncInfo.Fn; 3010 if (F->isVarArg()) 3011 return false; 3012 3013 CallingConv::ID CC = F->getCallingConv(); 3014 switch (CC) { 3015 default: 3016 return false; 3017 case CallingConv::Fast: 3018 case CallingConv::C: 3019 case CallingConv::ARM_AAPCS_VFP: 3020 case CallingConv::ARM_AAPCS: 3021 case CallingConv::ARM_APCS: 3022 case CallingConv::Swift: 3023 break; 3024 } 3025 3026 // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments 3027 // which are passed in r0 - r3. 3028 for (const Argument &Arg : F->args()) { 3029 if (Arg.getArgNo() >= 4) 3030 return false; 3031 3032 if (Arg.hasAttribute(Attribute::InReg) || 3033 Arg.hasAttribute(Attribute::StructRet) || 3034 Arg.hasAttribute(Attribute::SwiftSelf) || 3035 Arg.hasAttribute(Attribute::SwiftError) || 3036 Arg.hasAttribute(Attribute::ByVal)) 3037 return false; 3038 3039 Type *ArgTy = Arg.getType(); 3040 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) 3041 return false; 3042 3043 EVT ArgVT = TLI.getValueType(DL, ArgTy); 3044 if (!ArgVT.isSimple()) return false; 3045 switch (ArgVT.getSimpleVT().SimpleTy) { 3046 case MVT::i8: 3047 case MVT::i16: 3048 case MVT::i32: 3049 break; 3050 default: 3051 return false; 3052 } 3053 } 3054 3055 static const MCPhysReg GPRArgRegs[] = { 3056 ARM::R0, ARM::R1, ARM::R2, ARM::R3 3057 }; 3058 3059 const TargetRegisterClass *RC = &ARM::rGPRRegClass; 3060 for (const Argument &Arg : F->args()) { 3061 unsigned ArgNo = Arg.getArgNo(); 3062 unsigned SrcReg = GPRArgRegs[ArgNo]; 3063 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); 3064 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. 3065 // Without this, EmitLiveInCopies may eliminate the livein if its only 3066 // use is a bitcast (which isn't turned into an instruction). 3067 unsigned ResultReg = createResultReg(RC); 3068 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 3069 TII.get(TargetOpcode::COPY), 3070 ResultReg).addReg(DstReg, getKillRegState(true)); 3071 updateValueMap(&Arg, ResultReg); 3072 } 3073 3074 return true; 3075 } 3076 3077 namespace llvm { 3078 3079 FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo, 3080 const TargetLibraryInfo *libInfo) { 3081 if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel()) 3082 return new ARMFastISel(funcInfo, libInfo); 3083 3084 return nullptr; 3085 } 3086 3087 } // end namespace llvm 3088