1 //===- ARMFastISel.cpp - ARM FastISel implementation ----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the ARM-specific support for the FastISel class. Some 10 // of the target-specific code is generated by tablegen in the file 11 // ARMGenFastISel.inc, which is #included here. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARM.h" 16 #include "ARMBaseInstrInfo.h" 17 #include "ARMBaseRegisterInfo.h" 18 #include "ARMCallingConv.h" 19 #include "ARMConstantPoolValue.h" 20 #include "ARMISelLowering.h" 21 #include "ARMMachineFunctionInfo.h" 22 #include "ARMSubtarget.h" 23 #include "MCTargetDesc/ARMAddressingModes.h" 24 #include "MCTargetDesc/ARMBaseInfo.h" 25 #include "Utils/ARMBaseInfo.h" 26 #include "llvm/ADT/APFloat.h" 27 #include "llvm/ADT/APInt.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/CodeGen/CallingConvLower.h" 31 #include "llvm/CodeGen/FastISel.h" 32 #include "llvm/CodeGen/FunctionLoweringInfo.h" 33 #include "llvm/CodeGen/ISDOpcodes.h" 34 #include "llvm/CodeGen/MachineBasicBlock.h" 35 #include "llvm/CodeGen/MachineConstantPool.h" 36 #include "llvm/CodeGen/MachineFrameInfo.h" 37 #include "llvm/CodeGen/MachineFunction.h" 38 #include "llvm/CodeGen/MachineInstr.h" 39 #include "llvm/CodeGen/MachineInstrBuilder.h" 40 #include "llvm/CodeGen/MachineMemOperand.h" 41 #include "llvm/CodeGen/MachineOperand.h" 42 #include "llvm/CodeGen/MachineRegisterInfo.h" 43 #include "llvm/CodeGen/RuntimeLibcallUtil.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetLowering.h" 46 #include "llvm/CodeGen/TargetOpcodes.h" 47 #include "llvm/CodeGen/TargetRegisterInfo.h" 48 #include "llvm/CodeGen/ValueTypes.h" 49 #include "llvm/CodeGenTypes/MachineValueType.h" 50 #include "llvm/IR/Argument.h" 51 #include "llvm/IR/Attributes.h" 52 #include "llvm/IR/CallingConv.h" 53 #include "llvm/IR/Constant.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/DataLayout.h" 56 #include "llvm/IR/DerivedTypes.h" 57 #include "llvm/IR/Function.h" 58 #include "llvm/IR/GetElementPtrTypeIterator.h" 59 #include "llvm/IR/GlobalValue.h" 60 #include "llvm/IR/GlobalVariable.h" 61 #include "llvm/IR/InstrTypes.h" 62 #include "llvm/IR/Instruction.h" 63 #include "llvm/IR/Instructions.h" 64 #include "llvm/IR/IntrinsicInst.h" 65 #include "llvm/IR/Intrinsics.h" 66 #include "llvm/IR/Module.h" 67 #include "llvm/IR/Operator.h" 68 #include "llvm/IR/Type.h" 69 #include "llvm/IR/User.h" 70 #include "llvm/IR/Value.h" 71 #include "llvm/MC/MCInstrDesc.h" 72 #include "llvm/MC/MCRegisterInfo.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/Compiler.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/MathExtras.h" 77 #include "llvm/Target/TargetMachine.h" 78 #include "llvm/Target/TargetOptions.h" 79 #include <cassert> 80 #include <cstdint> 81 #include <utility> 82 83 using namespace llvm; 84 85 namespace { 86 87 // All possible address modes, plus some. 88 struct Address { 89 enum { 90 RegBase, 91 FrameIndexBase 92 } BaseType = RegBase; 93 94 union { 95 unsigned Reg; 96 int FI; 97 } Base; 98 99 int Offset = 0; 100 101 // Innocuous defaults for our address. 102 Address() { 103 Base.Reg = 0; 104 } 105 }; 106 107 class ARMFastISel final : public FastISel { 108 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can 109 /// make the right decision when generating code for different targets. 110 const ARMSubtarget *Subtarget; 111 Module &M; 112 const TargetMachine &TM; 113 const TargetInstrInfo &TII; 114 const TargetLowering &TLI; 115 ARMFunctionInfo *AFI; 116 117 // Convenience variables to avoid some queries. 118 bool isThumb2; 119 LLVMContext *Context; 120 121 public: 122 explicit ARMFastISel(FunctionLoweringInfo &funcInfo, 123 const TargetLibraryInfo *libInfo) 124 : FastISel(funcInfo, libInfo), 125 Subtarget(&funcInfo.MF->getSubtarget<ARMSubtarget>()), 126 M(const_cast<Module &>(*funcInfo.Fn->getParent())), 127 TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()), 128 TLI(*Subtarget->getTargetLowering()) { 129 AFI = funcInfo.MF->getInfo<ARMFunctionInfo>(); 130 isThumb2 = AFI->isThumbFunction(); 131 Context = &funcInfo.Fn->getContext(); 132 } 133 134 private: 135 // Code from FastISel.cpp. 136 137 unsigned fastEmitInst_r(unsigned MachineInstOpcode, 138 const TargetRegisterClass *RC, unsigned Op0); 139 unsigned fastEmitInst_rr(unsigned MachineInstOpcode, 140 const TargetRegisterClass *RC, 141 unsigned Op0, unsigned Op1); 142 unsigned fastEmitInst_ri(unsigned MachineInstOpcode, 143 const TargetRegisterClass *RC, 144 unsigned Op0, uint64_t Imm); 145 unsigned fastEmitInst_i(unsigned MachineInstOpcode, 146 const TargetRegisterClass *RC, 147 uint64_t Imm); 148 149 // Backend specific FastISel code. 150 151 bool fastSelectInstruction(const Instruction *I) override; 152 unsigned fastMaterializeConstant(const Constant *C) override; 153 unsigned fastMaterializeAlloca(const AllocaInst *AI) override; 154 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 155 const LoadInst *LI) override; 156 bool fastLowerArguments() override; 157 158 #include "ARMGenFastISel.inc" 159 160 // Instruction selection routines. 161 162 bool SelectLoad(const Instruction *I); 163 bool SelectStore(const Instruction *I); 164 bool SelectBranch(const Instruction *I); 165 bool SelectIndirectBr(const Instruction *I); 166 bool SelectCmp(const Instruction *I); 167 bool SelectFPExt(const Instruction *I); 168 bool SelectFPTrunc(const Instruction *I); 169 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); 170 bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode); 171 bool SelectIToFP(const Instruction *I, bool isSigned); 172 bool SelectFPToI(const Instruction *I, bool isSigned); 173 bool SelectDiv(const Instruction *I, bool isSigned); 174 bool SelectRem(const Instruction *I, bool isSigned); 175 bool SelectCall(const Instruction *I, const char *IntrMemName); 176 bool SelectIntrinsicCall(const IntrinsicInst &I); 177 bool SelectSelect(const Instruction *I); 178 bool SelectRet(const Instruction *I); 179 bool SelectTrunc(const Instruction *I); 180 bool SelectIntExt(const Instruction *I); 181 bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy); 182 183 // Utility routines. 184 185 bool isPositionIndependent() const; 186 bool isTypeLegal(Type *Ty, MVT &VT); 187 bool isLoadTypeLegal(Type *Ty, MVT &VT); 188 bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 189 bool isZExt); 190 bool ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr, 191 MaybeAlign Alignment = std::nullopt, bool isZExt = true, 192 bool allocReg = true); 193 bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 194 MaybeAlign Alignment = std::nullopt); 195 bool ARMComputeAddress(const Value *Obj, Address &Addr); 196 void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3); 197 bool ARMIsMemCpySmall(uint64_t Len); 198 bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, 199 MaybeAlign Alignment); 200 unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt); 201 unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT); 202 unsigned ARMMaterializeInt(const Constant *C, MVT VT); 203 unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT); 204 unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg); 205 unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg); 206 unsigned ARMSelectCallOp(bool UseReg); 207 unsigned ARMLowerPICELF(const GlobalValue *GV, MVT VT); 208 209 const TargetLowering *getTargetLowering() { return &TLI; } 210 211 // Call handling routines. 212 213 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, 214 bool Return, 215 bool isVarArg); 216 bool ProcessCallArgs(SmallVectorImpl<Value*> &Args, 217 SmallVectorImpl<Register> &ArgRegs, 218 SmallVectorImpl<MVT> &ArgVTs, 219 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 220 SmallVectorImpl<Register> &RegArgs, 221 CallingConv::ID CC, 222 unsigned &NumBytes, 223 bool isVarArg); 224 unsigned getLibcallReg(const Twine &Name); 225 bool FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs, 226 const Instruction *I, CallingConv::ID CC, 227 unsigned &NumBytes, bool isVarArg); 228 bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call); 229 230 // OptionalDef handling routines. 231 232 bool isARMNEONPred(const MachineInstr *MI); 233 bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR); 234 const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB); 235 void AddLoadStoreOperands(MVT VT, Address &Addr, 236 const MachineInstrBuilder &MIB, 237 MachineMemOperand::Flags Flags, bool useAM3); 238 }; 239 240 } // end anonymous namespace 241 242 // DefinesOptionalPredicate - This is different from DefinesPredicate in that 243 // we don't care about implicit defs here, just places we'll need to add a 244 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR. 245 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) { 246 if (!MI->hasOptionalDef()) 247 return false; 248 249 // Look to see if our OptionalDef is defining CPSR or CCR. 250 for (const MachineOperand &MO : MI->operands()) { 251 if (!MO.isReg() || !MO.isDef()) continue; 252 if (MO.getReg() == ARM::CPSR) 253 *CPSR = true; 254 } 255 return true; 256 } 257 258 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) { 259 const MCInstrDesc &MCID = MI->getDesc(); 260 261 // If we're a thumb2 or not NEON function we'll be handled via isPredicable. 262 if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON || 263 AFI->isThumb2Function()) 264 return MI->isPredicable(); 265 266 for (const MCOperandInfo &opInfo : MCID.operands()) 267 if (opInfo.isPredicate()) 268 return true; 269 270 return false; 271 } 272 273 // If the machine is predicable go ahead and add the predicate operands, if 274 // it needs default CC operands add those. 275 // TODO: If we want to support thumb1 then we'll need to deal with optional 276 // CPSR defs that need to be added before the remaining operands. See s_cc_out 277 // for descriptions why. 278 const MachineInstrBuilder & 279 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) { 280 MachineInstr *MI = &*MIB; 281 282 // Do we use a predicate? or... 283 // Are we NEON in ARM mode and have a predicate operand? If so, I know 284 // we're not predicable but add it anyways. 285 if (isARMNEONPred(MI)) 286 MIB.add(predOps(ARMCC::AL)); 287 288 // Do we optionally set a predicate? Preds is size > 0 iff the predicate 289 // defines CPSR. All other OptionalDefines in ARM are the CCR register. 290 bool CPSR = false; 291 if (DefinesOptionalPredicate(MI, &CPSR)) 292 MIB.add(CPSR ? t1CondCodeOp() : condCodeOp()); 293 return MIB; 294 } 295 296 unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode, 297 const TargetRegisterClass *RC, 298 unsigned Op0) { 299 Register ResultReg = createResultReg(RC); 300 const MCInstrDesc &II = TII.get(MachineInstOpcode); 301 302 // Make sure the input operand is sufficiently constrained to be legal 303 // for this instruction. 304 Op0 = constrainOperandRegClass(II, Op0, 1); 305 if (II.getNumDefs() >= 1) { 306 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, 307 ResultReg).addReg(Op0)); 308 } else { 309 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 310 .addReg(Op0)); 311 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 312 TII.get(TargetOpcode::COPY), ResultReg) 313 .addReg(II.implicit_defs()[0])); 314 } 315 return ResultReg; 316 } 317 318 unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, 319 const TargetRegisterClass *RC, 320 unsigned Op0, unsigned Op1) { 321 Register ResultReg = createResultReg(RC); 322 const MCInstrDesc &II = TII.get(MachineInstOpcode); 323 324 // Make sure the input operands are sufficiently constrained to be legal 325 // for this instruction. 326 Op0 = constrainOperandRegClass(II, Op0, 1); 327 Op1 = constrainOperandRegClass(II, Op1, 2); 328 329 if (II.getNumDefs() >= 1) { 330 AddOptionalDefs( 331 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 332 .addReg(Op0) 333 .addReg(Op1)); 334 } else { 335 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 336 .addReg(Op0) 337 .addReg(Op1)); 338 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 339 TII.get(TargetOpcode::COPY), ResultReg) 340 .addReg(II.implicit_defs()[0])); 341 } 342 return ResultReg; 343 } 344 345 unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, 346 const TargetRegisterClass *RC, 347 unsigned Op0, uint64_t Imm) { 348 Register ResultReg = createResultReg(RC); 349 const MCInstrDesc &II = TII.get(MachineInstOpcode); 350 351 // Make sure the input operand is sufficiently constrained to be legal 352 // for this instruction. 353 Op0 = constrainOperandRegClass(II, Op0, 1); 354 if (II.getNumDefs() >= 1) { 355 AddOptionalDefs( 356 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg) 357 .addReg(Op0) 358 .addImm(Imm)); 359 } else { 360 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 361 .addReg(Op0) 362 .addImm(Imm)); 363 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 364 TII.get(TargetOpcode::COPY), ResultReg) 365 .addReg(II.implicit_defs()[0])); 366 } 367 return ResultReg; 368 } 369 370 unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode, 371 const TargetRegisterClass *RC, 372 uint64_t Imm) { 373 Register ResultReg = createResultReg(RC); 374 const MCInstrDesc &II = TII.get(MachineInstOpcode); 375 376 if (II.getNumDefs() >= 1) { 377 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, 378 ResultReg).addImm(Imm)); 379 } else { 380 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 381 .addImm(Imm)); 382 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 383 TII.get(TargetOpcode::COPY), ResultReg) 384 .addReg(II.implicit_defs()[0])); 385 } 386 return ResultReg; 387 } 388 389 // TODO: Don't worry about 64-bit now, but when this is fixed remove the 390 // checks from the various callers. 391 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) { 392 if (VT == MVT::f64) return 0; 393 394 Register MoveReg = createResultReg(TLI.getRegClassFor(VT)); 395 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 396 TII.get(ARM::VMOVSR), MoveReg) 397 .addReg(SrcReg)); 398 return MoveReg; 399 } 400 401 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) { 402 if (VT == MVT::i64) return 0; 403 404 Register MoveReg = createResultReg(TLI.getRegClassFor(VT)); 405 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 406 TII.get(ARM::VMOVRS), MoveReg) 407 .addReg(SrcReg)); 408 return MoveReg; 409 } 410 411 // For double width floating point we need to materialize two constants 412 // (the high and the low) into integer registers then use a move to get 413 // the combined constant into an FP reg. 414 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) { 415 const APFloat Val = CFP->getValueAPF(); 416 bool is64bit = VT == MVT::f64; 417 418 // This checks to see if we can use VFP3 instructions to materialize 419 // a constant, otherwise we have to go through the constant pool. 420 if (TLI.isFPImmLegal(Val, VT)) { 421 int Imm; 422 unsigned Opc; 423 if (is64bit) { 424 Imm = ARM_AM::getFP64Imm(Val); 425 Opc = ARM::FCONSTD; 426 } else { 427 Imm = ARM_AM::getFP32Imm(Val); 428 Opc = ARM::FCONSTS; 429 } 430 Register DestReg = createResultReg(TLI.getRegClassFor(VT)); 431 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 432 TII.get(Opc), DestReg).addImm(Imm)); 433 return DestReg; 434 } 435 436 // Require VFP2 for loading fp constants. 437 if (!Subtarget->hasVFP2Base()) return false; 438 439 // MachineConstantPool wants an explicit alignment. 440 Align Alignment = DL.getPrefTypeAlign(CFP->getType()); 441 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Alignment); 442 Register DestReg = createResultReg(TLI.getRegClassFor(VT)); 443 unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS; 444 445 // The extra reg is for addrmode5. 446 AddOptionalDefs( 447 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg) 448 .addConstantPoolIndex(Idx) 449 .addReg(0)); 450 return DestReg; 451 } 452 453 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) { 454 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) 455 return 0; 456 457 // If we can do this in a single instruction without a constant pool entry 458 // do so now. 459 const ConstantInt *CI = cast<ConstantInt>(C); 460 if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) { 461 unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16; 462 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 463 &ARM::GPRRegClass; 464 Register ImmReg = createResultReg(RC); 465 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 466 TII.get(Opc), ImmReg) 467 .addImm(CI->getZExtValue())); 468 return ImmReg; 469 } 470 471 // Use MVN to emit negative constants. 472 if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) { 473 unsigned Imm = (unsigned)~(CI->getSExtValue()); 474 bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 475 (ARM_AM::getSOImmVal(Imm) != -1); 476 if (UseImm) { 477 unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi; 478 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : 479 &ARM::GPRRegClass; 480 Register ImmReg = createResultReg(RC); 481 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 482 TII.get(Opc), ImmReg) 483 .addImm(Imm)); 484 return ImmReg; 485 } 486 } 487 488 unsigned ResultReg = 0; 489 if (Subtarget->useMovt()) 490 ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 491 492 if (ResultReg) 493 return ResultReg; 494 495 // Load from constant pool. For now 32-bit only. 496 if (VT != MVT::i32) 497 return 0; 498 499 // MachineConstantPool wants an explicit alignment. 500 Align Alignment = DL.getPrefTypeAlign(C->getType()); 501 unsigned Idx = MCP.getConstantPoolIndex(C, Alignment); 502 ResultReg = createResultReg(TLI.getRegClassFor(VT)); 503 if (isThumb2) 504 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 505 TII.get(ARM::t2LDRpci), ResultReg) 506 .addConstantPoolIndex(Idx)); 507 else { 508 // The extra immediate is for addrmode2. 509 ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0); 510 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 511 TII.get(ARM::LDRcp), ResultReg) 512 .addConstantPoolIndex(Idx) 513 .addImm(0)); 514 } 515 return ResultReg; 516 } 517 518 bool ARMFastISel::isPositionIndependent() const { 519 return TLI.isPositionIndependent(); 520 } 521 522 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) { 523 // For now 32-bit only. 524 if (VT != MVT::i32 || GV->isThreadLocal()) return 0; 525 526 // ROPI/RWPI not currently supported. 527 if (Subtarget->isROPI() || Subtarget->isRWPI()) 528 return 0; 529 530 bool IsIndirect = Subtarget->isGVIndirectSymbol(GV); 531 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass 532 : &ARM::GPRRegClass; 533 Register DestReg = createResultReg(RC); 534 535 // FastISel TLS support on non-MachO is broken, punt to SelectionDAG. 536 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 537 bool IsThreadLocal = GVar && GVar->isThreadLocal(); 538 if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0; 539 540 bool IsPositionIndependent = isPositionIndependent(); 541 // Use movw+movt when possible, it avoids constant pool entries. 542 // Non-darwin targets only support static movt relocations in FastISel. 543 if (Subtarget->useMovt() && 544 (Subtarget->isTargetMachO() || !IsPositionIndependent)) { 545 unsigned Opc; 546 unsigned char TF = 0; 547 if (Subtarget->isTargetMachO()) 548 TF = ARMII::MO_NONLAZY; 549 550 if (IsPositionIndependent) 551 Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel; 552 else 553 Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm; 554 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 555 TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF)); 556 } else { 557 // MachineConstantPool wants an explicit alignment. 558 Align Alignment = DL.getPrefTypeAlign(GV->getType()); 559 560 if (Subtarget->isTargetELF() && IsPositionIndependent) 561 return ARMLowerPICELF(GV, VT); 562 563 // Grab index. 564 unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0; 565 unsigned Id = AFI->createPICLabelUId(); 566 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id, 567 ARMCP::CPValue, 568 PCAdj); 569 unsigned Idx = MCP.getConstantPoolIndex(CPV, Alignment); 570 571 // Load value. 572 MachineInstrBuilder MIB; 573 if (isThumb2) { 574 unsigned Opc = IsPositionIndependent ? ARM::t2LDRpci_pic : ARM::t2LDRpci; 575 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), 576 DestReg).addConstantPoolIndex(Idx); 577 if (IsPositionIndependent) 578 MIB.addImm(Id); 579 AddOptionalDefs(MIB); 580 } else { 581 // The extra immediate is for addrmode2. 582 DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0); 583 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 584 TII.get(ARM::LDRcp), DestReg) 585 .addConstantPoolIndex(Idx) 586 .addImm(0); 587 AddOptionalDefs(MIB); 588 589 if (IsPositionIndependent) { 590 unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD; 591 Register NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 592 593 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 594 MIMD, TII.get(Opc), NewDestReg) 595 .addReg(DestReg) 596 .addImm(Id); 597 AddOptionalDefs(MIB); 598 return NewDestReg; 599 } 600 } 601 } 602 603 if ((Subtarget->isTargetELF() && Subtarget->isGVInGOT(GV)) || 604 (Subtarget->isTargetMachO() && IsIndirect)) { 605 MachineInstrBuilder MIB; 606 Register NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 607 if (isThumb2) 608 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 609 TII.get(ARM::t2LDRi12), NewDestReg) 610 .addReg(DestReg) 611 .addImm(0); 612 else 613 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 614 TII.get(ARM::LDRi12), NewDestReg) 615 .addReg(DestReg) 616 .addImm(0); 617 DestReg = NewDestReg; 618 AddOptionalDefs(MIB); 619 } 620 621 return DestReg; 622 } 623 624 unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) { 625 EVT CEVT = TLI.getValueType(DL, C->getType(), true); 626 627 // Only handle simple types. 628 if (!CEVT.isSimple()) return 0; 629 MVT VT = CEVT.getSimpleVT(); 630 631 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 632 return ARMMaterializeFP(CFP, VT); 633 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 634 return ARMMaterializeGV(GV, VT); 635 else if (isa<ConstantInt>(C)) 636 return ARMMaterializeInt(C, VT); 637 638 return 0; 639 } 640 641 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF); 642 643 unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) { 644 // Don't handle dynamic allocas. 645 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; 646 647 MVT VT; 648 if (!isLoadTypeLegal(AI->getType(), VT)) return 0; 649 650 DenseMap<const AllocaInst*, int>::iterator SI = 651 FuncInfo.StaticAllocaMap.find(AI); 652 653 // This will get lowered later into the correct offsets and registers 654 // via rewriteXFrameIndex. 655 if (SI != FuncInfo.StaticAllocaMap.end()) { 656 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 657 const TargetRegisterClass* RC = TLI.getRegClassFor(VT); 658 Register ResultReg = createResultReg(RC); 659 ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0); 660 661 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 662 TII.get(Opc), ResultReg) 663 .addFrameIndex(SI->second) 664 .addImm(0)); 665 return ResultReg; 666 } 667 668 return 0; 669 } 670 671 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) { 672 EVT evt = TLI.getValueType(DL, Ty, true); 673 674 // Only handle simple types. 675 if (evt == MVT::Other || !evt.isSimple()) return false; 676 VT = evt.getSimpleVT(); 677 678 // Handle all legal types, i.e. a register that will directly hold this 679 // value. 680 return TLI.isTypeLegal(VT); 681 } 682 683 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { 684 if (isTypeLegal(Ty, VT)) return true; 685 686 // If this is a type than can be sign or zero-extended to a basic operation 687 // go ahead and accept it now. 688 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 689 return true; 690 691 return false; 692 } 693 694 // Computes the address to get to an object. 695 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) { 696 // Some boilerplate from the X86 FastISel. 697 const User *U = nullptr; 698 unsigned Opcode = Instruction::UserOp1; 699 if (const Instruction *I = dyn_cast<Instruction>(Obj)) { 700 // Don't walk into other basic blocks unless the object is an alloca from 701 // another block, otherwise it may not have a virtual register assigned. 702 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || 703 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { 704 Opcode = I->getOpcode(); 705 U = I; 706 } 707 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { 708 Opcode = C->getOpcode(); 709 U = C; 710 } 711 712 if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType())) 713 if (Ty->getAddressSpace() > 255) 714 // Fast instruction selection doesn't support the special 715 // address spaces. 716 return false; 717 718 switch (Opcode) { 719 default: 720 break; 721 case Instruction::BitCast: 722 // Look through bitcasts. 723 return ARMComputeAddress(U->getOperand(0), Addr); 724 case Instruction::IntToPtr: 725 // Look past no-op inttoptrs. 726 if (TLI.getValueType(DL, U->getOperand(0)->getType()) == 727 TLI.getPointerTy(DL)) 728 return ARMComputeAddress(U->getOperand(0), Addr); 729 break; 730 case Instruction::PtrToInt: 731 // Look past no-op ptrtoints. 732 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) 733 return ARMComputeAddress(U->getOperand(0), Addr); 734 break; 735 case Instruction::GetElementPtr: { 736 Address SavedAddr = Addr; 737 int TmpOffset = Addr.Offset; 738 739 // Iterate through the GEP folding the constants into offsets where 740 // we can. 741 gep_type_iterator GTI = gep_type_begin(U); 742 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); 743 i != e; ++i, ++GTI) { 744 const Value *Op = *i; 745 if (StructType *STy = GTI.getStructTypeOrNull()) { 746 const StructLayout *SL = DL.getStructLayout(STy); 747 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); 748 TmpOffset += SL->getElementOffset(Idx); 749 } else { 750 uint64_t S = GTI.getSequentialElementStride(DL); 751 while (true) { 752 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { 753 // Constant-offset addressing. 754 TmpOffset += CI->getSExtValue() * S; 755 break; 756 } 757 if (canFoldAddIntoGEP(U, Op)) { 758 // A compatible add with a constant operand. Fold the constant. 759 ConstantInt *CI = 760 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); 761 TmpOffset += CI->getSExtValue() * S; 762 // Iterate on the other operand. 763 Op = cast<AddOperator>(Op)->getOperand(0); 764 continue; 765 } 766 // Unsupported 767 goto unsupported_gep; 768 } 769 } 770 } 771 772 // Try to grab the base operand now. 773 Addr.Offset = TmpOffset; 774 if (ARMComputeAddress(U->getOperand(0), Addr)) return true; 775 776 // We failed, restore everything and try the other options. 777 Addr = SavedAddr; 778 779 unsupported_gep: 780 break; 781 } 782 case Instruction::Alloca: { 783 const AllocaInst *AI = cast<AllocaInst>(Obj); 784 DenseMap<const AllocaInst*, int>::iterator SI = 785 FuncInfo.StaticAllocaMap.find(AI); 786 if (SI != FuncInfo.StaticAllocaMap.end()) { 787 Addr.BaseType = Address::FrameIndexBase; 788 Addr.Base.FI = SI->second; 789 return true; 790 } 791 break; 792 } 793 } 794 795 // Try to get this in a register if nothing else has worked. 796 if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj); 797 return Addr.Base.Reg != 0; 798 } 799 800 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) { 801 bool needsLowering = false; 802 switch (VT.SimpleTy) { 803 default: llvm_unreachable("Unhandled load/store type!"); 804 case MVT::i1: 805 case MVT::i8: 806 case MVT::i16: 807 case MVT::i32: 808 if (!useAM3) { 809 // Integer loads/stores handle 12-bit offsets. 810 needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset); 811 // Handle negative offsets. 812 if (needsLowering && isThumb2) 813 needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 && 814 Addr.Offset > -256); 815 } else { 816 // ARM halfword load/stores and signed byte loads use +/-imm8 offsets. 817 needsLowering = (Addr.Offset > 255 || Addr.Offset < -255); 818 } 819 break; 820 case MVT::f32: 821 case MVT::f64: 822 // Floating point operands handle 8-bit offsets. 823 needsLowering = ((Addr.Offset & 0xff) != Addr.Offset); 824 break; 825 } 826 827 // If this is a stack pointer and the offset needs to be simplified then 828 // put the alloca address into a register, set the base type back to 829 // register and continue. This should almost never happen. 830 if (needsLowering && Addr.BaseType == Address::FrameIndexBase) { 831 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass 832 : &ARM::GPRRegClass; 833 Register ResultReg = createResultReg(RC); 834 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; 835 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 836 TII.get(Opc), ResultReg) 837 .addFrameIndex(Addr.Base.FI) 838 .addImm(0)); 839 Addr.Base.Reg = ResultReg; 840 Addr.BaseType = Address::RegBase; 841 } 842 843 // Since the offset is too large for the load/store instruction 844 // get the reg+offset into a register. 845 if (needsLowering) { 846 Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg, 847 Addr.Offset, MVT::i32); 848 Addr.Offset = 0; 849 } 850 } 851 852 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr, 853 const MachineInstrBuilder &MIB, 854 MachineMemOperand::Flags Flags, 855 bool useAM3) { 856 // addrmode5 output depends on the selection dag addressing dividing the 857 // offset by 4 that it then later multiplies. Do this here as well. 858 if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64) 859 Addr.Offset /= 4; 860 861 // Frame base works a bit differently. Handle it separately. 862 if (Addr.BaseType == Address::FrameIndexBase) { 863 int FI = Addr.Base.FI; 864 int Offset = Addr.Offset; 865 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( 866 MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags, 867 MFI.getObjectSize(FI), MFI.getObjectAlign(FI)); 868 // Now add the rest of the operands. 869 MIB.addFrameIndex(FI); 870 871 // ARM halfword load/stores and signed byte loads need an additional 872 // operand. 873 if (useAM3) { 874 int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 875 MIB.addReg(0); 876 MIB.addImm(Imm); 877 } else { 878 MIB.addImm(Addr.Offset); 879 } 880 MIB.addMemOperand(MMO); 881 } else { 882 // Now add the rest of the operands. 883 MIB.addReg(Addr.Base.Reg); 884 885 // ARM halfword load/stores and signed byte loads need an additional 886 // operand. 887 if (useAM3) { 888 int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; 889 MIB.addReg(0); 890 MIB.addImm(Imm); 891 } else { 892 MIB.addImm(Addr.Offset); 893 } 894 } 895 AddOptionalDefs(MIB); 896 } 897 898 bool ARMFastISel::ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr, 899 MaybeAlign Alignment, bool isZExt, 900 bool allocReg) { 901 unsigned Opc; 902 bool useAM3 = false; 903 bool needVMOV = false; 904 const TargetRegisterClass *RC; 905 switch (VT.SimpleTy) { 906 // This is mostly going to be Neon/vector support. 907 default: return false; 908 case MVT::i1: 909 case MVT::i8: 910 if (isThumb2) { 911 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 912 Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8; 913 else 914 Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12; 915 } else { 916 if (isZExt) { 917 Opc = ARM::LDRBi12; 918 } else { 919 Opc = ARM::LDRSB; 920 useAM3 = true; 921 } 922 } 923 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 924 break; 925 case MVT::i16: 926 if (Alignment && *Alignment < Align(2) && 927 !Subtarget->allowsUnalignedMem()) 928 return false; 929 930 if (isThumb2) { 931 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 932 Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8; 933 else 934 Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12; 935 } else { 936 Opc = isZExt ? ARM::LDRH : ARM::LDRSH; 937 useAM3 = true; 938 } 939 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 940 break; 941 case MVT::i32: 942 if (Alignment && *Alignment < Align(4) && 943 !Subtarget->allowsUnalignedMem()) 944 return false; 945 946 if (isThumb2) { 947 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 948 Opc = ARM::t2LDRi8; 949 else 950 Opc = ARM::t2LDRi12; 951 } else { 952 Opc = ARM::LDRi12; 953 } 954 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 955 break; 956 case MVT::f32: 957 if (!Subtarget->hasVFP2Base()) return false; 958 // Unaligned loads need special handling. Floats require word-alignment. 959 if (Alignment && *Alignment < Align(4)) { 960 needVMOV = true; 961 VT = MVT::i32; 962 Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 963 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; 964 } else { 965 Opc = ARM::VLDRS; 966 RC = TLI.getRegClassFor(VT); 967 } 968 break; 969 case MVT::f64: 970 // Can load and store double precision even without FeatureFP64 971 if (!Subtarget->hasVFP2Base()) return false; 972 // FIXME: Unaligned loads need special handling. Doublewords require 973 // word-alignment. 974 if (Alignment && *Alignment < Align(4)) 975 return false; 976 977 Opc = ARM::VLDRD; 978 RC = TLI.getRegClassFor(VT); 979 break; 980 } 981 // Simplify this down to something we can handle. 982 ARMSimplifyAddress(Addr, VT, useAM3); 983 984 // Create the base instruction, then add the operands. 985 if (allocReg) 986 ResultReg = createResultReg(RC); 987 assert(ResultReg > 255 && "Expected an allocated virtual register."); 988 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 989 TII.get(Opc), ResultReg); 990 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3); 991 992 // If we had an unaligned load of a float we've converted it to an regular 993 // load. Now we must move from the GRP to the FP register. 994 if (needVMOV) { 995 Register MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 996 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 997 TII.get(ARM::VMOVSR), MoveReg) 998 .addReg(ResultReg)); 999 ResultReg = MoveReg; 1000 } 1001 return true; 1002 } 1003 1004 bool ARMFastISel::SelectLoad(const Instruction *I) { 1005 // Atomic loads need special handling. 1006 if (cast<LoadInst>(I)->isAtomic()) 1007 return false; 1008 1009 const Value *SV = I->getOperand(0); 1010 if (TLI.supportSwiftError()) { 1011 // Swifterror values can come from either a function parameter with 1012 // swifterror attribute or an alloca with swifterror attribute. 1013 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 1014 if (Arg->hasSwiftErrorAttr()) 1015 return false; 1016 } 1017 1018 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 1019 if (Alloca->isSwiftError()) 1020 return false; 1021 } 1022 } 1023 1024 // Verify we have a legal type before going any further. 1025 MVT VT; 1026 if (!isLoadTypeLegal(I->getType(), VT)) 1027 return false; 1028 1029 // See if we can handle this address. 1030 Address Addr; 1031 if (!ARMComputeAddress(I->getOperand(0), Addr)) return false; 1032 1033 Register ResultReg; 1034 if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlign())) 1035 return false; 1036 updateValueMap(I, ResultReg); 1037 return true; 1038 } 1039 1040 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, 1041 MaybeAlign Alignment) { 1042 unsigned StrOpc; 1043 bool useAM3 = false; 1044 switch (VT.SimpleTy) { 1045 // This is mostly going to be Neon/vector support. 1046 default: return false; 1047 case MVT::i1: { 1048 Register Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass 1049 : &ARM::GPRRegClass); 1050 unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri; 1051 SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1); 1052 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1053 TII.get(Opc), Res) 1054 .addReg(SrcReg).addImm(1)); 1055 SrcReg = Res; 1056 [[fallthrough]]; 1057 } 1058 case MVT::i8: 1059 if (isThumb2) { 1060 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1061 StrOpc = ARM::t2STRBi8; 1062 else 1063 StrOpc = ARM::t2STRBi12; 1064 } else { 1065 StrOpc = ARM::STRBi12; 1066 } 1067 break; 1068 case MVT::i16: 1069 if (Alignment && *Alignment < Align(2) && 1070 !Subtarget->allowsUnalignedMem()) 1071 return false; 1072 1073 if (isThumb2) { 1074 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1075 StrOpc = ARM::t2STRHi8; 1076 else 1077 StrOpc = ARM::t2STRHi12; 1078 } else { 1079 StrOpc = ARM::STRH; 1080 useAM3 = true; 1081 } 1082 break; 1083 case MVT::i32: 1084 if (Alignment && *Alignment < Align(4) && 1085 !Subtarget->allowsUnalignedMem()) 1086 return false; 1087 1088 if (isThumb2) { 1089 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) 1090 StrOpc = ARM::t2STRi8; 1091 else 1092 StrOpc = ARM::t2STRi12; 1093 } else { 1094 StrOpc = ARM::STRi12; 1095 } 1096 break; 1097 case MVT::f32: 1098 if (!Subtarget->hasVFP2Base()) return false; 1099 // Unaligned stores need special handling. Floats require word-alignment. 1100 if (Alignment && *Alignment < Align(4)) { 1101 Register MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32)); 1102 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1103 TII.get(ARM::VMOVRS), MoveReg) 1104 .addReg(SrcReg)); 1105 SrcReg = MoveReg; 1106 VT = MVT::i32; 1107 StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12; 1108 } else { 1109 StrOpc = ARM::VSTRS; 1110 } 1111 break; 1112 case MVT::f64: 1113 // Can load and store double precision even without FeatureFP64 1114 if (!Subtarget->hasVFP2Base()) return false; 1115 // FIXME: Unaligned stores need special handling. Doublewords require 1116 // word-alignment. 1117 if (Alignment && *Alignment < Align(4)) 1118 return false; 1119 1120 StrOpc = ARM::VSTRD; 1121 break; 1122 } 1123 // Simplify this down to something we can handle. 1124 ARMSimplifyAddress(Addr, VT, useAM3); 1125 1126 // Create the base instruction, then add the operands. 1127 SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0); 1128 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1129 TII.get(StrOpc)) 1130 .addReg(SrcReg); 1131 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3); 1132 return true; 1133 } 1134 1135 bool ARMFastISel::SelectStore(const Instruction *I) { 1136 Value *Op0 = I->getOperand(0); 1137 unsigned SrcReg = 0; 1138 1139 // Atomic stores need special handling. 1140 if (cast<StoreInst>(I)->isAtomic()) 1141 return false; 1142 1143 const Value *PtrV = I->getOperand(1); 1144 if (TLI.supportSwiftError()) { 1145 // Swifterror values can come from either a function parameter with 1146 // swifterror attribute or an alloca with swifterror attribute. 1147 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 1148 if (Arg->hasSwiftErrorAttr()) 1149 return false; 1150 } 1151 1152 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 1153 if (Alloca->isSwiftError()) 1154 return false; 1155 } 1156 } 1157 1158 // Verify we have a legal type before going any further. 1159 MVT VT; 1160 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) 1161 return false; 1162 1163 // Get the value to be stored into a register. 1164 SrcReg = getRegForValue(Op0); 1165 if (SrcReg == 0) return false; 1166 1167 // See if we can handle this address. 1168 Address Addr; 1169 if (!ARMComputeAddress(I->getOperand(1), Addr)) 1170 return false; 1171 1172 if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlign())) 1173 return false; 1174 return true; 1175 } 1176 1177 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) { 1178 switch (Pred) { 1179 // Needs two compares... 1180 case CmpInst::FCMP_ONE: 1181 case CmpInst::FCMP_UEQ: 1182 default: 1183 // AL is our "false" for now. The other two need more compares. 1184 return ARMCC::AL; 1185 case CmpInst::ICMP_EQ: 1186 case CmpInst::FCMP_OEQ: 1187 return ARMCC::EQ; 1188 case CmpInst::ICMP_SGT: 1189 case CmpInst::FCMP_OGT: 1190 return ARMCC::GT; 1191 case CmpInst::ICMP_SGE: 1192 case CmpInst::FCMP_OGE: 1193 return ARMCC::GE; 1194 case CmpInst::ICMP_UGT: 1195 case CmpInst::FCMP_UGT: 1196 return ARMCC::HI; 1197 case CmpInst::FCMP_OLT: 1198 return ARMCC::MI; 1199 case CmpInst::ICMP_ULE: 1200 case CmpInst::FCMP_OLE: 1201 return ARMCC::LS; 1202 case CmpInst::FCMP_ORD: 1203 return ARMCC::VC; 1204 case CmpInst::FCMP_UNO: 1205 return ARMCC::VS; 1206 case CmpInst::FCMP_UGE: 1207 return ARMCC::PL; 1208 case CmpInst::ICMP_SLT: 1209 case CmpInst::FCMP_ULT: 1210 return ARMCC::LT; 1211 case CmpInst::ICMP_SLE: 1212 case CmpInst::FCMP_ULE: 1213 return ARMCC::LE; 1214 case CmpInst::FCMP_UNE: 1215 case CmpInst::ICMP_NE: 1216 return ARMCC::NE; 1217 case CmpInst::ICMP_UGE: 1218 return ARMCC::HS; 1219 case CmpInst::ICMP_ULT: 1220 return ARMCC::LO; 1221 } 1222 } 1223 1224 bool ARMFastISel::SelectBranch(const Instruction *I) { 1225 const BranchInst *BI = cast<BranchInst>(I); 1226 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; 1227 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; 1228 1229 // Simple branch support. 1230 1231 // If we can, avoid recomputing the compare - redoing it could lead to wonky 1232 // behavior. 1233 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { 1234 if (CI->hasOneUse() && (CI->getParent() == I->getParent())) { 1235 // Get the compare predicate. 1236 // Try to take advantage of fallthrough opportunities. 1237 CmpInst::Predicate Predicate = CI->getPredicate(); 1238 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1239 std::swap(TBB, FBB); 1240 Predicate = CmpInst::getInversePredicate(Predicate); 1241 } 1242 1243 ARMCC::CondCodes ARMPred = getComparePred(Predicate); 1244 1245 // We may not handle every CC for now. 1246 if (ARMPred == ARMCC::AL) return false; 1247 1248 // Emit the compare. 1249 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1250 return false; 1251 1252 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1253 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(BrOpc)) 1254 .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR); 1255 finishCondBranch(BI->getParent(), TBB, FBB); 1256 return true; 1257 } 1258 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { 1259 MVT SourceVT; 1260 if (TI->hasOneUse() && TI->getParent() == I->getParent() && 1261 (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) { 1262 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1263 Register OpReg = getRegForValue(TI->getOperand(0)); 1264 OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0); 1265 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1266 TII.get(TstOpc)) 1267 .addReg(OpReg).addImm(1)); 1268 1269 unsigned CCMode = ARMCC::NE; 1270 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1271 std::swap(TBB, FBB); 1272 CCMode = ARMCC::EQ; 1273 } 1274 1275 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1276 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(BrOpc)) 1277 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1278 1279 finishCondBranch(BI->getParent(), TBB, FBB); 1280 return true; 1281 } 1282 } else if (const ConstantInt *CI = 1283 dyn_cast<ConstantInt>(BI->getCondition())) { 1284 uint64_t Imm = CI->getZExtValue(); 1285 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; 1286 fastEmitBranch(Target, MIMD.getDL()); 1287 return true; 1288 } 1289 1290 Register CmpReg = getRegForValue(BI->getCondition()); 1291 if (CmpReg == 0) return false; 1292 1293 // We've been divorced from our compare! Our block was split, and 1294 // now our compare lives in a predecessor block. We musn't 1295 // re-compare here, as the children of the compare aren't guaranteed 1296 // live across the block boundary (we *could* check for this). 1297 // Regardless, the compare has been done in the predecessor block, 1298 // and it left a value for us in a virtual register. Ergo, we test 1299 // the one-bit value left in the virtual register. 1300 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1301 CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0); 1302 AddOptionalDefs( 1303 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TstOpc)) 1304 .addReg(CmpReg) 1305 .addImm(1)); 1306 1307 unsigned CCMode = ARMCC::NE; 1308 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { 1309 std::swap(TBB, FBB); 1310 CCMode = ARMCC::EQ; 1311 } 1312 1313 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; 1314 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(BrOpc)) 1315 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); 1316 finishCondBranch(BI->getParent(), TBB, FBB); 1317 return true; 1318 } 1319 1320 bool ARMFastISel::SelectIndirectBr(const Instruction *I) { 1321 Register AddrReg = getRegForValue(I->getOperand(0)); 1322 if (AddrReg == 0) return false; 1323 1324 unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX; 1325 assert(isThumb2 || Subtarget->hasV4TOps()); 1326 1327 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1328 TII.get(Opc)).addReg(AddrReg)); 1329 1330 const IndirectBrInst *IB = cast<IndirectBrInst>(I); 1331 for (const BasicBlock *SuccBB : IB->successors()) 1332 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]); 1333 1334 return true; 1335 } 1336 1337 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, 1338 bool isZExt) { 1339 Type *Ty = Src1Value->getType(); 1340 EVT SrcEVT = TLI.getValueType(DL, Ty, true); 1341 if (!SrcEVT.isSimple()) return false; 1342 MVT SrcVT = SrcEVT.getSimpleVT(); 1343 1344 if (Ty->isFloatTy() && !Subtarget->hasVFP2Base()) 1345 return false; 1346 1347 if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64())) 1348 return false; 1349 1350 // Check to see if the 2nd operand is a constant that we can encode directly 1351 // in the compare. 1352 int Imm = 0; 1353 bool UseImm = false; 1354 bool isNegativeImm = false; 1355 // FIXME: At -O0 we don't have anything that canonicalizes operand order. 1356 // Thus, Src1Value may be a ConstantInt, but we're missing it. 1357 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) { 1358 if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 || 1359 SrcVT == MVT::i1) { 1360 const APInt &CIVal = ConstInt->getValue(); 1361 Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue(); 1362 // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather 1363 // then a cmn, because there is no way to represent 2147483648 as a 1364 // signed 32-bit int. 1365 if (Imm < 0 && Imm != (int)0x80000000) { 1366 isNegativeImm = true; 1367 Imm = -Imm; 1368 } 1369 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1370 (ARM_AM::getSOImmVal(Imm) != -1); 1371 } 1372 } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) { 1373 if (SrcVT == MVT::f32 || SrcVT == MVT::f64) 1374 if (ConstFP->isZero() && !ConstFP->isNegative()) 1375 UseImm = true; 1376 } 1377 1378 unsigned CmpOpc; 1379 bool isICmp = true; 1380 bool needsExt = false; 1381 switch (SrcVT.SimpleTy) { 1382 default: return false; 1383 // TODO: Verify compares. 1384 case MVT::f32: 1385 isICmp = false; 1386 CmpOpc = UseImm ? ARM::VCMPZS : ARM::VCMPS; 1387 break; 1388 case MVT::f64: 1389 isICmp = false; 1390 CmpOpc = UseImm ? ARM::VCMPZD : ARM::VCMPD; 1391 break; 1392 case MVT::i1: 1393 case MVT::i8: 1394 case MVT::i16: 1395 needsExt = true; 1396 [[fallthrough]]; 1397 case MVT::i32: 1398 if (isThumb2) { 1399 if (!UseImm) 1400 CmpOpc = ARM::t2CMPrr; 1401 else 1402 CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri; 1403 } else { 1404 if (!UseImm) 1405 CmpOpc = ARM::CMPrr; 1406 else 1407 CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri; 1408 } 1409 break; 1410 } 1411 1412 Register SrcReg1 = getRegForValue(Src1Value); 1413 if (SrcReg1 == 0) return false; 1414 1415 unsigned SrcReg2 = 0; 1416 if (!UseImm) { 1417 SrcReg2 = getRegForValue(Src2Value); 1418 if (SrcReg2 == 0) return false; 1419 } 1420 1421 // We have i1, i8, or i16, we need to either zero extend or sign extend. 1422 if (needsExt) { 1423 SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt); 1424 if (SrcReg1 == 0) return false; 1425 if (!UseImm) { 1426 SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt); 1427 if (SrcReg2 == 0) return false; 1428 } 1429 } 1430 1431 const MCInstrDesc &II = TII.get(CmpOpc); 1432 SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0); 1433 if (!UseImm) { 1434 SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1); 1435 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 1436 .addReg(SrcReg1).addReg(SrcReg2)); 1437 } else { 1438 MachineInstrBuilder MIB; 1439 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II) 1440 .addReg(SrcReg1); 1441 1442 // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0. 1443 if (isICmp) 1444 MIB.addImm(Imm); 1445 AddOptionalDefs(MIB); 1446 } 1447 1448 // For floating point we need to move the result to a comparison register 1449 // that we can then use for branches. 1450 if (Ty->isFloatTy() || Ty->isDoubleTy()) 1451 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1452 TII.get(ARM::FMSTAT))); 1453 return true; 1454 } 1455 1456 bool ARMFastISel::SelectCmp(const Instruction *I) { 1457 const CmpInst *CI = cast<CmpInst>(I); 1458 1459 // Get the compare predicate. 1460 ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate()); 1461 1462 // We may not handle every CC for now. 1463 if (ARMPred == ARMCC::AL) return false; 1464 1465 // Emit the compare. 1466 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) 1467 return false; 1468 1469 // Now set a register based on the comparison. Explicitly set the predicates 1470 // here. 1471 unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1472 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass 1473 : &ARM::GPRRegClass; 1474 Register DestReg = createResultReg(RC); 1475 Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0); 1476 unsigned ZeroReg = fastMaterializeConstant(Zero); 1477 // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR. 1478 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(MovCCOpc), DestReg) 1479 .addReg(ZeroReg).addImm(1) 1480 .addImm(ARMPred).addReg(ARM::CPSR); 1481 1482 updateValueMap(I, DestReg); 1483 return true; 1484 } 1485 1486 bool ARMFastISel::SelectFPExt(const Instruction *I) { 1487 // Make sure we have VFP and that we're extending float to double. 1488 if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false; 1489 1490 Value *V = I->getOperand(0); 1491 if (!I->getType()->isDoubleTy() || 1492 !V->getType()->isFloatTy()) return false; 1493 1494 Register Op = getRegForValue(V); 1495 if (Op == 0) return false; 1496 1497 Register Result = createResultReg(&ARM::DPRRegClass); 1498 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1499 TII.get(ARM::VCVTDS), Result) 1500 .addReg(Op)); 1501 updateValueMap(I, Result); 1502 return true; 1503 } 1504 1505 bool ARMFastISel::SelectFPTrunc(const Instruction *I) { 1506 // Make sure we have VFP and that we're truncating double to float. 1507 if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false; 1508 1509 Value *V = I->getOperand(0); 1510 if (!(I->getType()->isFloatTy() && 1511 V->getType()->isDoubleTy())) return false; 1512 1513 Register Op = getRegForValue(V); 1514 if (Op == 0) return false; 1515 1516 Register Result = createResultReg(&ARM::SPRRegClass); 1517 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1518 TII.get(ARM::VCVTSD), Result) 1519 .addReg(Op)); 1520 updateValueMap(I, Result); 1521 return true; 1522 } 1523 1524 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) { 1525 // Make sure we have VFP. 1526 if (!Subtarget->hasVFP2Base()) return false; 1527 1528 MVT DstVT; 1529 Type *Ty = I->getType(); 1530 if (!isTypeLegal(Ty, DstVT)) 1531 return false; 1532 1533 Value *Src = I->getOperand(0); 1534 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true); 1535 if (!SrcEVT.isSimple()) 1536 return false; 1537 MVT SrcVT = SrcEVT.getSimpleVT(); 1538 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 1539 return false; 1540 1541 Register SrcReg = getRegForValue(Src); 1542 if (SrcReg == 0) return false; 1543 1544 // Handle sign-extension. 1545 if (SrcVT == MVT::i16 || SrcVT == MVT::i8) { 1546 SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32, 1547 /*isZExt*/!isSigned); 1548 if (SrcReg == 0) return false; 1549 } 1550 1551 // The conversion routine works on fp-reg to fp-reg and the operand above 1552 // was an integer, move it to the fp registers if possible. 1553 unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg); 1554 if (FP == 0) return false; 1555 1556 unsigned Opc; 1557 if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS; 1558 else if (Ty->isDoubleTy() && Subtarget->hasFP64()) 1559 Opc = isSigned ? ARM::VSITOD : ARM::VUITOD; 1560 else return false; 1561 1562 Register ResultReg = createResultReg(TLI.getRegClassFor(DstVT)); 1563 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1564 TII.get(Opc), ResultReg).addReg(FP)); 1565 updateValueMap(I, ResultReg); 1566 return true; 1567 } 1568 1569 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) { 1570 // Make sure we have VFP. 1571 if (!Subtarget->hasVFP2Base()) return false; 1572 1573 MVT DstVT; 1574 Type *RetTy = I->getType(); 1575 if (!isTypeLegal(RetTy, DstVT)) 1576 return false; 1577 1578 Register Op = getRegForValue(I->getOperand(0)); 1579 if (Op == 0) return false; 1580 1581 unsigned Opc; 1582 Type *OpTy = I->getOperand(0)->getType(); 1583 if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS; 1584 else if (OpTy->isDoubleTy() && Subtarget->hasFP64()) 1585 Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD; 1586 else return false; 1587 1588 // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg. 1589 Register ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); 1590 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1591 TII.get(Opc), ResultReg).addReg(Op)); 1592 1593 // This result needs to be in an integer register, but the conversion only 1594 // takes place in fp-regs. 1595 unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg); 1596 if (IntReg == 0) return false; 1597 1598 updateValueMap(I, IntReg); 1599 return true; 1600 } 1601 1602 bool ARMFastISel::SelectSelect(const Instruction *I) { 1603 MVT VT; 1604 if (!isTypeLegal(I->getType(), VT)) 1605 return false; 1606 1607 // Things need to be register sized for register moves. 1608 if (VT != MVT::i32) return false; 1609 1610 Register CondReg = getRegForValue(I->getOperand(0)); 1611 if (CondReg == 0) return false; 1612 Register Op1Reg = getRegForValue(I->getOperand(1)); 1613 if (Op1Reg == 0) return false; 1614 1615 // Check to see if we can use an immediate in the conditional move. 1616 int Imm = 0; 1617 bool UseImm = false; 1618 bool isNegativeImm = false; 1619 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) { 1620 assert(VT == MVT::i32 && "Expecting an i32."); 1621 Imm = (int)ConstInt->getValue().getZExtValue(); 1622 if (Imm < 0) { 1623 isNegativeImm = true; 1624 Imm = ~Imm; 1625 } 1626 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : 1627 (ARM_AM::getSOImmVal(Imm) != -1); 1628 } 1629 1630 unsigned Op2Reg = 0; 1631 if (!UseImm) { 1632 Op2Reg = getRegForValue(I->getOperand(2)); 1633 if (Op2Reg == 0) return false; 1634 } 1635 1636 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; 1637 CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0); 1638 AddOptionalDefs( 1639 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TstOpc)) 1640 .addReg(CondReg) 1641 .addImm(1)); 1642 1643 unsigned MovCCOpc; 1644 const TargetRegisterClass *RC; 1645 if (!UseImm) { 1646 RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass; 1647 MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr; 1648 } else { 1649 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass; 1650 if (!isNegativeImm) 1651 MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; 1652 else 1653 MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi; 1654 } 1655 Register ResultReg = createResultReg(RC); 1656 if (!UseImm) { 1657 Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1); 1658 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2); 1659 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(MovCCOpc), 1660 ResultReg) 1661 .addReg(Op2Reg) 1662 .addReg(Op1Reg) 1663 .addImm(ARMCC::NE) 1664 .addReg(ARM::CPSR); 1665 } else { 1666 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1); 1667 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(MovCCOpc), 1668 ResultReg) 1669 .addReg(Op1Reg) 1670 .addImm(Imm) 1671 .addImm(ARMCC::EQ) 1672 .addReg(ARM::CPSR); 1673 } 1674 updateValueMap(I, ResultReg); 1675 return true; 1676 } 1677 1678 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) { 1679 MVT VT; 1680 Type *Ty = I->getType(); 1681 if (!isTypeLegal(Ty, VT)) 1682 return false; 1683 1684 // If we have integer div support we should have selected this automagically. 1685 // In case we have a real miss go ahead and return false and we'll pick 1686 // it up later. 1687 if (Subtarget->hasDivideInThumbMode()) 1688 return false; 1689 1690 // Otherwise emit a libcall. 1691 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1692 if (VT == MVT::i8) 1693 LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8; 1694 else if (VT == MVT::i16) 1695 LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16; 1696 else if (VT == MVT::i32) 1697 LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32; 1698 else if (VT == MVT::i64) 1699 LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64; 1700 else if (VT == MVT::i128) 1701 LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128; 1702 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!"); 1703 1704 return ARMEmitLibcall(I, LC); 1705 } 1706 1707 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) { 1708 MVT VT; 1709 Type *Ty = I->getType(); 1710 if (!isTypeLegal(Ty, VT)) 1711 return false; 1712 1713 // Many ABIs do not provide a libcall for standalone remainder, so we need to 1714 // use divrem (see the RTABI 4.3.1). Since FastISel can't handle non-double 1715 // multi-reg returns, we'll have to bail out. 1716 if (!TLI.hasStandaloneRem(VT)) { 1717 return false; 1718 } 1719 1720 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 1721 if (VT == MVT::i8) 1722 LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8; 1723 else if (VT == MVT::i16) 1724 LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16; 1725 else if (VT == MVT::i32) 1726 LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32; 1727 else if (VT == MVT::i64) 1728 LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64; 1729 else if (VT == MVT::i128) 1730 LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128; 1731 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!"); 1732 1733 return ARMEmitLibcall(I, LC); 1734 } 1735 1736 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { 1737 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 1738 1739 // We can get here in the case when we have a binary operation on a non-legal 1740 // type and the target independent selector doesn't know how to handle it. 1741 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 1742 return false; 1743 1744 unsigned Opc; 1745 switch (ISDOpcode) { 1746 default: return false; 1747 case ISD::ADD: 1748 Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr; 1749 break; 1750 case ISD::OR: 1751 Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr; 1752 break; 1753 case ISD::SUB: 1754 Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr; 1755 break; 1756 } 1757 1758 Register SrcReg1 = getRegForValue(I->getOperand(0)); 1759 if (SrcReg1 == 0) return false; 1760 1761 // TODO: Often the 2nd operand is an immediate, which can be encoded directly 1762 // in the instruction, rather then materializing the value in a register. 1763 Register SrcReg2 = getRegForValue(I->getOperand(1)); 1764 if (SrcReg2 == 0) return false; 1765 1766 Register ResultReg = createResultReg(&ARM::GPRnopcRegClass); 1767 SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1); 1768 SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2); 1769 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1770 TII.get(Opc), ResultReg) 1771 .addReg(SrcReg1).addReg(SrcReg2)); 1772 updateValueMap(I, ResultReg); 1773 return true; 1774 } 1775 1776 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) { 1777 EVT FPVT = TLI.getValueType(DL, I->getType(), true); 1778 if (!FPVT.isSimple()) return false; 1779 MVT VT = FPVT.getSimpleVT(); 1780 1781 // FIXME: Support vector types where possible. 1782 if (VT.isVector()) 1783 return false; 1784 1785 // We can get here in the case when we want to use NEON for our fp 1786 // operations, but can't figure out how to. Just use the vfp instructions 1787 // if we have them. 1788 // FIXME: It'd be nice to use NEON instructions. 1789 Type *Ty = I->getType(); 1790 if (Ty->isFloatTy() && !Subtarget->hasVFP2Base()) 1791 return false; 1792 if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64())) 1793 return false; 1794 1795 unsigned Opc; 1796 bool is64bit = VT == MVT::f64 || VT == MVT::i64; 1797 switch (ISDOpcode) { 1798 default: return false; 1799 case ISD::FADD: 1800 Opc = is64bit ? ARM::VADDD : ARM::VADDS; 1801 break; 1802 case ISD::FSUB: 1803 Opc = is64bit ? ARM::VSUBD : ARM::VSUBS; 1804 break; 1805 case ISD::FMUL: 1806 Opc = is64bit ? ARM::VMULD : ARM::VMULS; 1807 break; 1808 } 1809 Register Op1 = getRegForValue(I->getOperand(0)); 1810 if (Op1 == 0) return false; 1811 1812 Register Op2 = getRegForValue(I->getOperand(1)); 1813 if (Op2 == 0) return false; 1814 1815 Register ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); 1816 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1817 TII.get(Opc), ResultReg) 1818 .addReg(Op1).addReg(Op2)); 1819 updateValueMap(I, ResultReg); 1820 return true; 1821 } 1822 1823 // Call Handling Code 1824 1825 // This is largely taken directly from CCAssignFnForNode 1826 // TODO: We may not support all of this. 1827 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, 1828 bool Return, 1829 bool isVarArg) { 1830 switch (CC) { 1831 default: 1832 report_fatal_error("Unsupported calling convention"); 1833 case CallingConv::Fast: 1834 if (Subtarget->hasVFP2Base() && !isVarArg) { 1835 if (!Subtarget->isAAPCS_ABI()) 1836 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); 1837 // For AAPCS ABI targets, just use VFP variant of the calling convention. 1838 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); 1839 } 1840 [[fallthrough]]; 1841 case CallingConv::C: 1842 case CallingConv::CXX_FAST_TLS: 1843 // Use target triple & subtarget features to do actual dispatch. 1844 if (Subtarget->isAAPCS_ABI()) { 1845 if (Subtarget->hasFPRegs() && 1846 TM.Options.FloatABIType == FloatABI::Hard && !isVarArg) 1847 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1848 else 1849 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1850 } else { 1851 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1852 } 1853 case CallingConv::ARM_AAPCS_VFP: 1854 case CallingConv::Swift: 1855 case CallingConv::SwiftTail: 1856 if (!isVarArg) 1857 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); 1858 // Fall through to soft float variant, variadic functions don't 1859 // use hard floating point ABI. 1860 [[fallthrough]]; 1861 case CallingConv::ARM_AAPCS: 1862 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); 1863 case CallingConv::ARM_APCS: 1864 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); 1865 case CallingConv::GHC: 1866 if (Return) 1867 report_fatal_error("Can't return in GHC call convention"); 1868 else 1869 return CC_ARM_APCS_GHC; 1870 case CallingConv::CFGuard_Check: 1871 return (Return ? RetCC_ARM_AAPCS : CC_ARM_Win32_CFGuard_Check); 1872 } 1873 } 1874 1875 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args, 1876 SmallVectorImpl<Register> &ArgRegs, 1877 SmallVectorImpl<MVT> &ArgVTs, 1878 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, 1879 SmallVectorImpl<Register> &RegArgs, 1880 CallingConv::ID CC, 1881 unsigned &NumBytes, 1882 bool isVarArg) { 1883 SmallVector<CCValAssign, 16> ArgLocs; 1884 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context); 1885 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, 1886 CCAssignFnForCall(CC, false, isVarArg)); 1887 1888 // Check that we can handle all of the arguments. If we can't, then bail out 1889 // now before we add code to the MBB. 1890 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1891 CCValAssign &VA = ArgLocs[i]; 1892 MVT ArgVT = ArgVTs[VA.getValNo()]; 1893 1894 // We don't handle NEON/vector parameters yet. 1895 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64) 1896 return false; 1897 1898 // Now copy/store arg to correct locations. 1899 if (VA.isRegLoc() && !VA.needsCustom()) { 1900 continue; 1901 } else if (VA.needsCustom()) { 1902 // TODO: We need custom lowering for vector (v2f64) args. 1903 if (VA.getLocVT() != MVT::f64 || 1904 // TODO: Only handle register args for now. 1905 !VA.isRegLoc() || !ArgLocs[++i].isRegLoc()) 1906 return false; 1907 } else { 1908 switch (ArgVT.SimpleTy) { 1909 default: 1910 return false; 1911 case MVT::i1: 1912 case MVT::i8: 1913 case MVT::i16: 1914 case MVT::i32: 1915 break; 1916 case MVT::f32: 1917 if (!Subtarget->hasVFP2Base()) 1918 return false; 1919 break; 1920 case MVT::f64: 1921 if (!Subtarget->hasVFP2Base()) 1922 return false; 1923 break; 1924 } 1925 } 1926 } 1927 1928 // At the point, we are able to handle the call's arguments in fast isel. 1929 1930 // Get a count of how many bytes are to be pushed on the stack. 1931 NumBytes = CCInfo.getStackSize(); 1932 1933 // Issue CALLSEQ_START 1934 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 1935 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1936 TII.get(AdjStackDown)) 1937 .addImm(NumBytes).addImm(0)); 1938 1939 // Process the args. 1940 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 1941 CCValAssign &VA = ArgLocs[i]; 1942 const Value *ArgVal = Args[VA.getValNo()]; 1943 Register Arg = ArgRegs[VA.getValNo()]; 1944 MVT ArgVT = ArgVTs[VA.getValNo()]; 1945 1946 assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) && 1947 "We don't handle NEON/vector parameters yet."); 1948 1949 // Handle arg promotion, etc. 1950 switch (VA.getLocInfo()) { 1951 case CCValAssign::Full: break; 1952 case CCValAssign::SExt: { 1953 MVT DestVT = VA.getLocVT(); 1954 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false); 1955 assert(Arg != 0 && "Failed to emit a sext"); 1956 ArgVT = DestVT; 1957 break; 1958 } 1959 case CCValAssign::AExt: 1960 // Intentional fall-through. Handle AExt and ZExt. 1961 case CCValAssign::ZExt: { 1962 MVT DestVT = VA.getLocVT(); 1963 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true); 1964 assert(Arg != 0 && "Failed to emit a zext"); 1965 ArgVT = DestVT; 1966 break; 1967 } 1968 case CCValAssign::BCvt: { 1969 unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg); 1970 assert(BC != 0 && "Failed to emit a bitcast!"); 1971 Arg = BC; 1972 ArgVT = VA.getLocVT(); 1973 break; 1974 } 1975 default: llvm_unreachable("Unknown arg promotion!"); 1976 } 1977 1978 // Now copy/store arg to correct locations. 1979 if (VA.isRegLoc() && !VA.needsCustom()) { 1980 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1981 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg); 1982 RegArgs.push_back(VA.getLocReg()); 1983 } else if (VA.needsCustom()) { 1984 // TODO: We need custom lowering for vector (v2f64) args. 1985 assert(VA.getLocVT() == MVT::f64 && 1986 "Custom lowering for v2f64 args not available"); 1987 1988 // FIXME: ArgLocs[++i] may extend beyond ArgLocs.size() 1989 CCValAssign &NextVA = ArgLocs[++i]; 1990 1991 assert(VA.isRegLoc() && NextVA.isRegLoc() && 1992 "We only handle register args!"); 1993 1994 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 1995 TII.get(ARM::VMOVRRD), VA.getLocReg()) 1996 .addReg(NextVA.getLocReg(), RegState::Define) 1997 .addReg(Arg)); 1998 RegArgs.push_back(VA.getLocReg()); 1999 RegArgs.push_back(NextVA.getLocReg()); 2000 } else { 2001 assert(VA.isMemLoc()); 2002 // Need to store on the stack. 2003 2004 // Don't emit stores for undef values. 2005 if (isa<UndefValue>(ArgVal)) 2006 continue; 2007 2008 Address Addr; 2009 Addr.BaseType = Address::RegBase; 2010 Addr.Base.Reg = ARM::SP; 2011 Addr.Offset = VA.getLocMemOffset(); 2012 2013 bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet; 2014 assert(EmitRet && "Could not emit a store for argument!"); 2015 } 2016 } 2017 2018 return true; 2019 } 2020 2021 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs, 2022 const Instruction *I, CallingConv::ID CC, 2023 unsigned &NumBytes, bool isVarArg) { 2024 // Issue CALLSEQ_END 2025 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 2026 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2027 TII.get(AdjStackUp)) 2028 .addImm(NumBytes).addImm(-1ULL)); 2029 2030 // Now the return value. 2031 if (RetVT != MVT::isVoid) { 2032 SmallVector<CCValAssign, 16> RVLocs; 2033 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); 2034 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2035 2036 // Copy all of the result registers out of their specified physreg. 2037 if (RVLocs.size() == 2 && RetVT == MVT::f64) { 2038 // For this move we copy into two registers and then move into the 2039 // double fp reg we want. 2040 MVT DestVT = RVLocs[0].getValVT(); 2041 const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT); 2042 Register ResultReg = createResultReg(DstRC); 2043 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2044 TII.get(ARM::VMOVDRR), ResultReg) 2045 .addReg(RVLocs[0].getLocReg()) 2046 .addReg(RVLocs[1].getLocReg())); 2047 2048 UsedRegs.push_back(RVLocs[0].getLocReg()); 2049 UsedRegs.push_back(RVLocs[1].getLocReg()); 2050 2051 // Finally update the result. 2052 updateValueMap(I, ResultReg); 2053 } else { 2054 assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!"); 2055 MVT CopyVT = RVLocs[0].getValVT(); 2056 2057 // Special handling for extended integers. 2058 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16) 2059 CopyVT = MVT::i32; 2060 2061 const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT); 2062 2063 Register ResultReg = createResultReg(DstRC); 2064 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2065 TII.get(TargetOpcode::COPY), 2066 ResultReg).addReg(RVLocs[0].getLocReg()); 2067 UsedRegs.push_back(RVLocs[0].getLocReg()); 2068 2069 // Finally update the result. 2070 updateValueMap(I, ResultReg); 2071 } 2072 } 2073 2074 return true; 2075 } 2076 2077 bool ARMFastISel::SelectRet(const Instruction *I) { 2078 const ReturnInst *Ret = cast<ReturnInst>(I); 2079 const Function &F = *I->getParent()->getParent(); 2080 const bool IsCmseNSEntry = F.hasFnAttribute("cmse_nonsecure_entry"); 2081 2082 if (!FuncInfo.CanLowerReturn) 2083 return false; 2084 2085 if (TLI.supportSwiftError() && 2086 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 2087 return false; 2088 2089 if (TLI.supportSplitCSR(FuncInfo.MF)) 2090 return false; 2091 2092 // Build a list of return value registers. 2093 SmallVector<unsigned, 4> RetRegs; 2094 2095 CallingConv::ID CC = F.getCallingConv(); 2096 if (Ret->getNumOperands() > 0) { 2097 SmallVector<ISD::OutputArg, 4> Outs; 2098 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL); 2099 2100 // Analyze operands of the call, assigning locations to each operand. 2101 SmallVector<CCValAssign, 16> ValLocs; 2102 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); 2103 CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */, 2104 F.isVarArg())); 2105 2106 const Value *RV = Ret->getOperand(0); 2107 Register Reg = getRegForValue(RV); 2108 if (Reg == 0) 2109 return false; 2110 2111 // Only handle a single return value for now. 2112 if (ValLocs.size() != 1) 2113 return false; 2114 2115 CCValAssign &VA = ValLocs[0]; 2116 2117 // Don't bother handling odd stuff for now. 2118 if (VA.getLocInfo() != CCValAssign::Full) 2119 return false; 2120 // Only handle register returns for now. 2121 if (!VA.isRegLoc()) 2122 return false; 2123 2124 unsigned SrcReg = Reg + VA.getValNo(); 2125 EVT RVEVT = TLI.getValueType(DL, RV->getType()); 2126 if (!RVEVT.isSimple()) return false; 2127 MVT RVVT = RVEVT.getSimpleVT(); 2128 MVT DestVT = VA.getValVT(); 2129 // Special handling for extended integers. 2130 if (RVVT != DestVT) { 2131 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) 2132 return false; 2133 2134 assert(DestVT == MVT::i32 && "ARM should always ext to i32"); 2135 2136 // Perform extension if flagged as either zext or sext. Otherwise, do 2137 // nothing. 2138 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) { 2139 SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt()); 2140 if (SrcReg == 0) return false; 2141 } 2142 } 2143 2144 // Make the copy. 2145 Register DstReg = VA.getLocReg(); 2146 const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg); 2147 // Avoid a cross-class copy. This is very unlikely. 2148 if (!SrcRC->contains(DstReg)) 2149 return false; 2150 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2151 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); 2152 2153 // Add register to return instruction. 2154 RetRegs.push_back(VA.getLocReg()); 2155 } 2156 2157 unsigned RetOpc; 2158 if (IsCmseNSEntry) 2159 if (isThumb2) 2160 RetOpc = ARM::tBXNS_RET; 2161 else 2162 llvm_unreachable("CMSE not valid for non-Thumb targets"); 2163 else 2164 RetOpc = Subtarget->getReturnOpcode(); 2165 2166 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2167 TII.get(RetOpc)); 2168 AddOptionalDefs(MIB); 2169 for (unsigned R : RetRegs) 2170 MIB.addReg(R, RegState::Implicit); 2171 return true; 2172 } 2173 2174 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) { 2175 if (UseReg) 2176 return isThumb2 ? gettBLXrOpcode(*MF) : getBLXOpcode(*MF); 2177 else 2178 return isThumb2 ? ARM::tBL : ARM::BL; 2179 } 2180 2181 unsigned ARMFastISel::getLibcallReg(const Twine &Name) { 2182 // Manually compute the global's type to avoid building it when unnecessary. 2183 Type *GVTy = PointerType::get(*Context, /*AS=*/0); 2184 EVT LCREVT = TLI.getValueType(DL, GVTy); 2185 if (!LCREVT.isSimple()) return 0; 2186 2187 GlobalValue *GV = M.getNamedGlobal(Name.str()); 2188 if (!GV) 2189 GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false, 2190 GlobalValue::ExternalLinkage, nullptr, Name); 2191 2192 return ARMMaterializeGV(GV, LCREVT.getSimpleVT()); 2193 } 2194 2195 // A quick function that will emit a call for a named libcall in F with the 2196 // vector of passed arguments for the Instruction in I. We can assume that we 2197 // can emit a call for any libcall we can produce. This is an abridged version 2198 // of the full call infrastructure since we won't need to worry about things 2199 // like computed function pointers or strange arguments at call sites. 2200 // TODO: Try to unify this and the normal call bits for ARM, then try to unify 2201 // with X86. 2202 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) { 2203 CallingConv::ID CC = TLI.getLibcallCallingConv(Call); 2204 2205 // Handle *simple* calls for now. 2206 Type *RetTy = I->getType(); 2207 MVT RetVT; 2208 if (RetTy->isVoidTy()) 2209 RetVT = MVT::isVoid; 2210 else if (!isTypeLegal(RetTy, RetVT)) 2211 return false; 2212 2213 // Can't handle non-double multi-reg retvals. 2214 if (RetVT != MVT::isVoid && RetVT != MVT::i32) { 2215 SmallVector<CCValAssign, 16> RVLocs; 2216 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); 2217 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false)); 2218 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2219 return false; 2220 } 2221 2222 // Set up the argument vectors. 2223 SmallVector<Value*, 8> Args; 2224 SmallVector<Register, 8> ArgRegs; 2225 SmallVector<MVT, 8> ArgVTs; 2226 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2227 Args.reserve(I->getNumOperands()); 2228 ArgRegs.reserve(I->getNumOperands()); 2229 ArgVTs.reserve(I->getNumOperands()); 2230 ArgFlags.reserve(I->getNumOperands()); 2231 for (Value *Op : I->operands()) { 2232 Register Arg = getRegForValue(Op); 2233 if (Arg == 0) return false; 2234 2235 Type *ArgTy = Op->getType(); 2236 MVT ArgVT; 2237 if (!isTypeLegal(ArgTy, ArgVT)) return false; 2238 2239 ISD::ArgFlagsTy Flags; 2240 Flags.setOrigAlign(DL.getABITypeAlign(ArgTy)); 2241 2242 Args.push_back(Op); 2243 ArgRegs.push_back(Arg); 2244 ArgVTs.push_back(ArgVT); 2245 ArgFlags.push_back(Flags); 2246 } 2247 2248 // Handle the arguments now that we've gotten them. 2249 SmallVector<Register, 4> RegArgs; 2250 unsigned NumBytes; 2251 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2252 RegArgs, CC, NumBytes, false)) 2253 return false; 2254 2255 Register CalleeReg; 2256 if (Subtarget->genLongCalls()) { 2257 CalleeReg = getLibcallReg(TLI.getLibcallName(Call)); 2258 if (CalleeReg == 0) return false; 2259 } 2260 2261 // Issue the call. 2262 unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls()); 2263 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2264 MIMD, TII.get(CallOpc)); 2265 // BL / BLX don't take a predicate, but tBL / tBLX do. 2266 if (isThumb2) 2267 MIB.add(predOps(ARMCC::AL)); 2268 if (Subtarget->genLongCalls()) { 2269 CalleeReg = 2270 constrainOperandRegClass(TII.get(CallOpc), CalleeReg, isThumb2 ? 2 : 0); 2271 MIB.addReg(CalleeReg); 2272 } else 2273 MIB.addExternalSymbol(TLI.getLibcallName(Call)); 2274 2275 // Add implicit physical register uses to the call. 2276 for (Register R : RegArgs) 2277 MIB.addReg(R, RegState::Implicit); 2278 2279 // Add a register mask with the call-preserved registers. 2280 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2281 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 2282 2283 // Finish off the call including any return values. 2284 SmallVector<Register, 4> UsedRegs; 2285 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false; 2286 2287 // Set all unused physreg defs as dead. 2288 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2289 2290 return true; 2291 } 2292 2293 bool ARMFastISel::SelectCall(const Instruction *I, 2294 const char *IntrMemName = nullptr) { 2295 const CallInst *CI = cast<CallInst>(I); 2296 const Value *Callee = CI->getCalledOperand(); 2297 2298 // Can't handle inline asm. 2299 if (isa<InlineAsm>(Callee)) return false; 2300 2301 // Allow SelectionDAG isel to handle tail calls. 2302 if (CI->isTailCall()) return false; 2303 2304 // Check the calling convention. 2305 CallingConv::ID CC = CI->getCallingConv(); 2306 2307 // TODO: Avoid some calling conventions? 2308 2309 FunctionType *FTy = CI->getFunctionType(); 2310 bool isVarArg = FTy->isVarArg(); 2311 2312 // Handle *simple* calls for now. 2313 Type *RetTy = I->getType(); 2314 MVT RetVT; 2315 if (RetTy->isVoidTy()) 2316 RetVT = MVT::isVoid; 2317 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && 2318 RetVT != MVT::i8 && RetVT != MVT::i1) 2319 return false; 2320 2321 // Can't handle non-double multi-reg retvals. 2322 if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 && 2323 RetVT != MVT::i16 && RetVT != MVT::i32) { 2324 SmallVector<CCValAssign, 16> RVLocs; 2325 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); 2326 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); 2327 if (RVLocs.size() >= 2 && RetVT != MVT::f64) 2328 return false; 2329 } 2330 2331 // Set up the argument vectors. 2332 SmallVector<Value*, 8> Args; 2333 SmallVector<Register, 8> ArgRegs; 2334 SmallVector<MVT, 8> ArgVTs; 2335 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; 2336 unsigned arg_size = CI->arg_size(); 2337 Args.reserve(arg_size); 2338 ArgRegs.reserve(arg_size); 2339 ArgVTs.reserve(arg_size); 2340 ArgFlags.reserve(arg_size); 2341 for (auto ArgI = CI->arg_begin(), ArgE = CI->arg_end(); ArgI != ArgE; ++ArgI) { 2342 // If we're lowering a memory intrinsic instead of a regular call, skip the 2343 // last argument, which shouldn't be passed to the underlying function. 2344 if (IntrMemName && ArgE - ArgI <= 1) 2345 break; 2346 2347 ISD::ArgFlagsTy Flags; 2348 unsigned ArgIdx = ArgI - CI->arg_begin(); 2349 if (CI->paramHasAttr(ArgIdx, Attribute::SExt)) 2350 Flags.setSExt(); 2351 if (CI->paramHasAttr(ArgIdx, Attribute::ZExt)) 2352 Flags.setZExt(); 2353 2354 // FIXME: Only handle *easy* calls for now. 2355 if (CI->paramHasAttr(ArgIdx, Attribute::InReg) || 2356 CI->paramHasAttr(ArgIdx, Attribute::StructRet) || 2357 CI->paramHasAttr(ArgIdx, Attribute::SwiftSelf) || 2358 CI->paramHasAttr(ArgIdx, Attribute::SwiftError) || 2359 CI->paramHasAttr(ArgIdx, Attribute::Nest) || 2360 CI->paramHasAttr(ArgIdx, Attribute::ByVal)) 2361 return false; 2362 2363 Type *ArgTy = (*ArgI)->getType(); 2364 MVT ArgVT; 2365 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 && 2366 ArgVT != MVT::i1) 2367 return false; 2368 2369 Register Arg = getRegForValue(*ArgI); 2370 if (!Arg.isValid()) 2371 return false; 2372 2373 Flags.setOrigAlign(DL.getABITypeAlign(ArgTy)); 2374 2375 Args.push_back(*ArgI); 2376 ArgRegs.push_back(Arg); 2377 ArgVTs.push_back(ArgVT); 2378 ArgFlags.push_back(Flags); 2379 } 2380 2381 // Handle the arguments now that we've gotten them. 2382 SmallVector<Register, 4> RegArgs; 2383 unsigned NumBytes; 2384 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, 2385 RegArgs, CC, NumBytes, isVarArg)) 2386 return false; 2387 2388 bool UseReg = false; 2389 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); 2390 if (!GV || Subtarget->genLongCalls()) UseReg = true; 2391 2392 Register CalleeReg; 2393 if (UseReg) { 2394 if (IntrMemName) 2395 CalleeReg = getLibcallReg(IntrMemName); 2396 else 2397 CalleeReg = getRegForValue(Callee); 2398 2399 if (CalleeReg == 0) return false; 2400 } 2401 2402 // Issue the call. 2403 unsigned CallOpc = ARMSelectCallOp(UseReg); 2404 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 2405 MIMD, TII.get(CallOpc)); 2406 2407 // ARM calls don't take a predicate, but tBL / tBLX do. 2408 if(isThumb2) 2409 MIB.add(predOps(ARMCC::AL)); 2410 if (UseReg) { 2411 CalleeReg = 2412 constrainOperandRegClass(TII.get(CallOpc), CalleeReg, isThumb2 ? 2 : 0); 2413 MIB.addReg(CalleeReg); 2414 } else if (!IntrMemName) 2415 MIB.addGlobalAddress(GV, 0, 0); 2416 else 2417 MIB.addExternalSymbol(IntrMemName, 0); 2418 2419 // Add implicit physical register uses to the call. 2420 for (Register R : RegArgs) 2421 MIB.addReg(R, RegState::Implicit); 2422 2423 // Add a register mask with the call-preserved registers. 2424 // Proper defs for return values will be added by setPhysRegsDeadExcept(). 2425 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); 2426 2427 // Finish off the call including any return values. 2428 SmallVector<Register, 4> UsedRegs; 2429 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg)) 2430 return false; 2431 2432 // Set all unused physreg defs as dead. 2433 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); 2434 2435 return true; 2436 } 2437 2438 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) { 2439 return Len <= 16; 2440 } 2441 2442 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, 2443 MaybeAlign Alignment) { 2444 // Make sure we don't bloat code by inlining very large memcpy's. 2445 if (!ARMIsMemCpySmall(Len)) 2446 return false; 2447 2448 while (Len) { 2449 MVT VT; 2450 if (!Alignment || *Alignment >= 4) { 2451 if (Len >= 4) 2452 VT = MVT::i32; 2453 else if (Len >= 2) 2454 VT = MVT::i16; 2455 else { 2456 assert(Len == 1 && "Expected a length of 1!"); 2457 VT = MVT::i8; 2458 } 2459 } else { 2460 assert(Alignment && "Alignment is set in this branch"); 2461 // Bound based on alignment. 2462 if (Len >= 2 && *Alignment == 2) 2463 VT = MVT::i16; 2464 else { 2465 VT = MVT::i8; 2466 } 2467 } 2468 2469 bool RV; 2470 Register ResultReg; 2471 RV = ARMEmitLoad(VT, ResultReg, Src); 2472 assert(RV && "Should be able to handle this load."); 2473 RV = ARMEmitStore(VT, ResultReg, Dest); 2474 assert(RV && "Should be able to handle this store."); 2475 (void)RV; 2476 2477 unsigned Size = VT.getSizeInBits()/8; 2478 Len -= Size; 2479 Dest.Offset += Size; 2480 Src.Offset += Size; 2481 } 2482 2483 return true; 2484 } 2485 2486 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) { 2487 // FIXME: Handle more intrinsics. 2488 switch (I.getIntrinsicID()) { 2489 default: return false; 2490 case Intrinsic::frameaddress: { 2491 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 2492 MFI.setFrameAddressIsTaken(true); 2493 2494 unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; 2495 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass 2496 : &ARM::GPRRegClass; 2497 2498 const ARMBaseRegisterInfo *RegInfo = 2499 static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo()); 2500 Register FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF)); 2501 unsigned SrcReg = FramePtr; 2502 2503 // Recursively load frame address 2504 // ldr r0 [fp] 2505 // ldr r0 [r0] 2506 // ldr r0 [r0] 2507 // ... 2508 unsigned DestReg; 2509 unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue(); 2510 while (Depth--) { 2511 DestReg = createResultReg(RC); 2512 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2513 TII.get(LdrOpc), DestReg) 2514 .addReg(SrcReg).addImm(0)); 2515 SrcReg = DestReg; 2516 } 2517 updateValueMap(&I, SrcReg); 2518 return true; 2519 } 2520 case Intrinsic::memcpy: 2521 case Intrinsic::memmove: { 2522 const MemTransferInst &MTI = cast<MemTransferInst>(I); 2523 // Don't handle volatile. 2524 if (MTI.isVolatile()) 2525 return false; 2526 2527 // Disable inlining for memmove before calls to ComputeAddress. Otherwise, 2528 // we would emit dead code because we don't currently handle memmoves. 2529 bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy); 2530 if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) { 2531 // Small memcpy's are common enough that we want to do them without a call 2532 // if possible. 2533 uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue(); 2534 if (ARMIsMemCpySmall(Len)) { 2535 Address Dest, Src; 2536 if (!ARMComputeAddress(MTI.getRawDest(), Dest) || 2537 !ARMComputeAddress(MTI.getRawSource(), Src)) 2538 return false; 2539 MaybeAlign Alignment; 2540 if (MTI.getDestAlign() || MTI.getSourceAlign()) 2541 Alignment = std::min(MTI.getDestAlign().valueOrOne(), 2542 MTI.getSourceAlign().valueOrOne()); 2543 if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment)) 2544 return true; 2545 } 2546 } 2547 2548 if (!MTI.getLength()->getType()->isIntegerTy(32)) 2549 return false; 2550 2551 if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255) 2552 return false; 2553 2554 const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove"; 2555 return SelectCall(&I, IntrMemName); 2556 } 2557 case Intrinsic::memset: { 2558 const MemSetInst &MSI = cast<MemSetInst>(I); 2559 // Don't handle volatile. 2560 if (MSI.isVolatile()) 2561 return false; 2562 2563 if (!MSI.getLength()->getType()->isIntegerTy(32)) 2564 return false; 2565 2566 if (MSI.getDestAddressSpace() > 255) 2567 return false; 2568 2569 return SelectCall(&I, "memset"); 2570 } 2571 case Intrinsic::trap: { 2572 unsigned Opcode; 2573 if (Subtarget->isThumb()) 2574 Opcode = ARM::tTRAP; 2575 else 2576 Opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP; 2577 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opcode)); 2578 return true; 2579 } 2580 } 2581 } 2582 2583 bool ARMFastISel::SelectTrunc(const Instruction *I) { 2584 // The high bits for a type smaller than the register size are assumed to be 2585 // undefined. 2586 Value *Op = I->getOperand(0); 2587 2588 EVT SrcVT, DestVT; 2589 SrcVT = TLI.getValueType(DL, Op->getType(), true); 2590 DestVT = TLI.getValueType(DL, I->getType(), true); 2591 2592 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) 2593 return false; 2594 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) 2595 return false; 2596 2597 Register SrcReg = getRegForValue(Op); 2598 if (!SrcReg) return false; 2599 2600 // Because the high bits are undefined, a truncate doesn't generate 2601 // any code. 2602 updateValueMap(I, SrcReg); 2603 return true; 2604 } 2605 2606 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, 2607 bool isZExt) { 2608 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) 2609 return 0; 2610 if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1) 2611 return 0; 2612 2613 // Table of which combinations can be emitted as a single instruction, 2614 // and which will require two. 2615 static const uint8_t isSingleInstrTbl[3][2][2][2] = { 2616 // ARM Thumb 2617 // !hasV6Ops hasV6Ops !hasV6Ops hasV6Ops 2618 // ext: s z s z s z s z 2619 /* 1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } }, 2620 /* 8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }, 2621 /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } } 2622 }; 2623 2624 // Target registers for: 2625 // - For ARM can never be PC. 2626 // - For 16-bit Thumb are restricted to lower 8 registers. 2627 // - For 32-bit Thumb are restricted to non-SP and non-PC. 2628 static const TargetRegisterClass *RCTbl[2][2] = { 2629 // Instructions: Two Single 2630 /* ARM */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass }, 2631 /* Thumb */ { &ARM::tGPRRegClass, &ARM::rGPRRegClass } 2632 }; 2633 2634 // Table governing the instruction(s) to be emitted. 2635 static const struct InstructionTable { 2636 uint32_t Opc : 16; 2637 uint32_t hasS : 1; // Some instructions have an S bit, always set it to 0. 2638 uint32_t Shift : 7; // For shift operand addressing mode, used by MOVsi. 2639 uint32_t Imm : 8; // All instructions have either a shift or a mask. 2640 } IT[2][2][3][2] = { 2641 { // Two instructions (first is left shift, second is in this table). 2642 { // ARM Opc S Shift Imm 2643 /* 1 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 31 }, 2644 /* 1 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 31 } }, 2645 /* 8 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 24 }, 2646 /* 8 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 24 } }, 2647 /* 16 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 16 }, 2648 /* 16 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 16 } } 2649 }, 2650 { // Thumb Opc S Shift Imm 2651 /* 1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 31 }, 2652 /* 1 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 31 } }, 2653 /* 8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 24 }, 2654 /* 8 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 24 } }, 2655 /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 16 }, 2656 /* 16 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 16 } } 2657 } 2658 }, 2659 { // Single instruction. 2660 { // ARM Opc S Shift Imm 2661 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2662 /* 1 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 1 } }, 2663 /* 8 bit sext */ { { ARM::SXTB , 0, ARM_AM::no_shift, 0 }, 2664 /* 8 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 255 } }, 2665 /* 16 bit sext */ { { ARM::SXTH , 0, ARM_AM::no_shift, 0 }, 2666 /* 16 bit zext */ { ARM::UXTH , 0, ARM_AM::no_shift, 0 } } 2667 }, 2668 { // Thumb Opc S Shift Imm 2669 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 }, 2670 /* 1 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 1 } }, 2671 /* 8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift, 0 }, 2672 /* 8 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } }, 2673 /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift, 0 }, 2674 /* 16 bit zext */ { ARM::t2UXTH , 0, ARM_AM::no_shift, 0 } } 2675 } 2676 } 2677 }; 2678 2679 unsigned SrcBits = SrcVT.getSizeInBits(); 2680 unsigned DestBits = DestVT.getSizeInBits(); 2681 (void) DestBits; 2682 assert((SrcBits < DestBits) && "can only extend to larger types"); 2683 assert((DestBits == 32 || DestBits == 16 || DestBits == 8) && 2684 "other sizes unimplemented"); 2685 assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) && 2686 "other sizes unimplemented"); 2687 2688 bool hasV6Ops = Subtarget->hasV6Ops(); 2689 unsigned Bitness = SrcBits / 8; // {1,8,16}=>{0,1,2} 2690 assert((Bitness < 3) && "sanity-check table bounds"); 2691 2692 bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt]; 2693 const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr]; 2694 const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt]; 2695 unsigned Opc = ITP->Opc; 2696 assert(ARM::KILL != Opc && "Invalid table entry"); 2697 unsigned hasS = ITP->hasS; 2698 ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift; 2699 assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) && 2700 "only MOVsi has shift operand addressing mode"); 2701 unsigned Imm = ITP->Imm; 2702 2703 // 16-bit Thumb instructions always set CPSR (unless they're in an IT block). 2704 bool setsCPSR = &ARM::tGPRRegClass == RC; 2705 unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi; 2706 unsigned ResultReg; 2707 // MOVsi encodes shift and immediate in shift operand addressing mode. 2708 // The following condition has the same value when emitting two 2709 // instruction sequences: both are shifts. 2710 bool ImmIsSO = (Shift != ARM_AM::no_shift); 2711 2712 // Either one or two instructions are emitted. 2713 // They're always of the form: 2714 // dst = in OP imm 2715 // CPSR is set only by 16-bit Thumb instructions. 2716 // Predicate, if any, is AL. 2717 // S bit, if available, is always 0. 2718 // When two are emitted the first's result will feed as the second's input, 2719 // that value is then dead. 2720 unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2; 2721 for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) { 2722 ResultReg = createResultReg(RC); 2723 bool isLsl = (0 == Instr) && !isSingleInstr; 2724 unsigned Opcode = isLsl ? LSLOpc : Opc; 2725 ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift; 2726 unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm; 2727 bool isKill = 1 == Instr; 2728 MachineInstrBuilder MIB = BuildMI( 2729 *FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opcode), ResultReg); 2730 if (setsCPSR) 2731 MIB.addReg(ARM::CPSR, RegState::Define); 2732 SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR); 2733 MIB.addReg(SrcReg, isKill * RegState::Kill) 2734 .addImm(ImmEnc) 2735 .add(predOps(ARMCC::AL)); 2736 if (hasS) 2737 MIB.add(condCodeOp()); 2738 // Second instruction consumes the first's result. 2739 SrcReg = ResultReg; 2740 } 2741 2742 return ResultReg; 2743 } 2744 2745 bool ARMFastISel::SelectIntExt(const Instruction *I) { 2746 // On ARM, in general, integer casts don't involve legal types; this code 2747 // handles promotable integers. 2748 Type *DestTy = I->getType(); 2749 Value *Src = I->getOperand(0); 2750 Type *SrcTy = Src->getType(); 2751 2752 bool isZExt = isa<ZExtInst>(I); 2753 Register SrcReg = getRegForValue(Src); 2754 if (!SrcReg) return false; 2755 2756 EVT SrcEVT, DestEVT; 2757 SrcEVT = TLI.getValueType(DL, SrcTy, true); 2758 DestEVT = TLI.getValueType(DL, DestTy, true); 2759 if (!SrcEVT.isSimple()) return false; 2760 if (!DestEVT.isSimple()) return false; 2761 2762 MVT SrcVT = SrcEVT.getSimpleVT(); 2763 MVT DestVT = DestEVT.getSimpleVT(); 2764 unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt); 2765 if (ResultReg == 0) return false; 2766 updateValueMap(I, ResultReg); 2767 return true; 2768 } 2769 2770 bool ARMFastISel::SelectShift(const Instruction *I, 2771 ARM_AM::ShiftOpc ShiftTy) { 2772 // We handle thumb2 mode by target independent selector 2773 // or SelectionDAG ISel. 2774 if (isThumb2) 2775 return false; 2776 2777 // Only handle i32 now. 2778 EVT DestVT = TLI.getValueType(DL, I->getType(), true); 2779 if (DestVT != MVT::i32) 2780 return false; 2781 2782 unsigned Opc = ARM::MOVsr; 2783 unsigned ShiftImm; 2784 Value *Src2Value = I->getOperand(1); 2785 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) { 2786 ShiftImm = CI->getZExtValue(); 2787 2788 // Fall back to selection DAG isel if the shift amount 2789 // is zero or greater than the width of the value type. 2790 if (ShiftImm == 0 || ShiftImm >=32) 2791 return false; 2792 2793 Opc = ARM::MOVsi; 2794 } 2795 2796 Value *Src1Value = I->getOperand(0); 2797 Register Reg1 = getRegForValue(Src1Value); 2798 if (Reg1 == 0) return false; 2799 2800 unsigned Reg2 = 0; 2801 if (Opc == ARM::MOVsr) { 2802 Reg2 = getRegForValue(Src2Value); 2803 if (Reg2 == 0) return false; 2804 } 2805 2806 Register ResultReg = createResultReg(&ARM::GPRnopcRegClass); 2807 if(ResultReg == 0) return false; 2808 2809 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2810 TII.get(Opc), ResultReg) 2811 .addReg(Reg1); 2812 2813 if (Opc == ARM::MOVsi) 2814 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm)); 2815 else if (Opc == ARM::MOVsr) { 2816 MIB.addReg(Reg2); 2817 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0)); 2818 } 2819 2820 AddOptionalDefs(MIB); 2821 updateValueMap(I, ResultReg); 2822 return true; 2823 } 2824 2825 // TODO: SoftFP support. 2826 bool ARMFastISel::fastSelectInstruction(const Instruction *I) { 2827 switch (I->getOpcode()) { 2828 case Instruction::Load: 2829 return SelectLoad(I); 2830 case Instruction::Store: 2831 return SelectStore(I); 2832 case Instruction::Br: 2833 return SelectBranch(I); 2834 case Instruction::IndirectBr: 2835 return SelectIndirectBr(I); 2836 case Instruction::ICmp: 2837 case Instruction::FCmp: 2838 return SelectCmp(I); 2839 case Instruction::FPExt: 2840 return SelectFPExt(I); 2841 case Instruction::FPTrunc: 2842 return SelectFPTrunc(I); 2843 case Instruction::SIToFP: 2844 return SelectIToFP(I, /*isSigned*/ true); 2845 case Instruction::UIToFP: 2846 return SelectIToFP(I, /*isSigned*/ false); 2847 case Instruction::FPToSI: 2848 return SelectFPToI(I, /*isSigned*/ true); 2849 case Instruction::FPToUI: 2850 return SelectFPToI(I, /*isSigned*/ false); 2851 case Instruction::Add: 2852 return SelectBinaryIntOp(I, ISD::ADD); 2853 case Instruction::Or: 2854 return SelectBinaryIntOp(I, ISD::OR); 2855 case Instruction::Sub: 2856 return SelectBinaryIntOp(I, ISD::SUB); 2857 case Instruction::FAdd: 2858 return SelectBinaryFPOp(I, ISD::FADD); 2859 case Instruction::FSub: 2860 return SelectBinaryFPOp(I, ISD::FSUB); 2861 case Instruction::FMul: 2862 return SelectBinaryFPOp(I, ISD::FMUL); 2863 case Instruction::SDiv: 2864 return SelectDiv(I, /*isSigned*/ true); 2865 case Instruction::UDiv: 2866 return SelectDiv(I, /*isSigned*/ false); 2867 case Instruction::SRem: 2868 return SelectRem(I, /*isSigned*/ true); 2869 case Instruction::URem: 2870 return SelectRem(I, /*isSigned*/ false); 2871 case Instruction::Call: 2872 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2873 return SelectIntrinsicCall(*II); 2874 return SelectCall(I); 2875 case Instruction::Select: 2876 return SelectSelect(I); 2877 case Instruction::Ret: 2878 return SelectRet(I); 2879 case Instruction::Trunc: 2880 return SelectTrunc(I); 2881 case Instruction::ZExt: 2882 case Instruction::SExt: 2883 return SelectIntExt(I); 2884 case Instruction::Shl: 2885 return SelectShift(I, ARM_AM::lsl); 2886 case Instruction::LShr: 2887 return SelectShift(I, ARM_AM::lsr); 2888 case Instruction::AShr: 2889 return SelectShift(I, ARM_AM::asr); 2890 default: break; 2891 } 2892 return false; 2893 } 2894 2895 // This table describes sign- and zero-extend instructions which can be 2896 // folded into a preceding load. All of these extends have an immediate 2897 // (sometimes a mask and sometimes a shift) that's applied after 2898 // extension. 2899 static const struct FoldableLoadExtendsStruct { 2900 uint16_t Opc[2]; // ARM, Thumb. 2901 uint8_t ExpectedImm; 2902 uint8_t isZExt : 1; 2903 uint8_t ExpectedVT : 7; 2904 } FoldableLoadExtends[] = { 2905 { { ARM::SXTH, ARM::t2SXTH }, 0, 0, MVT::i16 }, 2906 { { ARM::UXTH, ARM::t2UXTH }, 0, 1, MVT::i16 }, 2907 { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8 }, 2908 { { ARM::SXTB, ARM::t2SXTB }, 0, 0, MVT::i8 }, 2909 { { ARM::UXTB, ARM::t2UXTB }, 0, 1, MVT::i8 } 2910 }; 2911 2912 /// The specified machine instr operand is a vreg, and that 2913 /// vreg is being provided by the specified load instruction. If possible, 2914 /// try to fold the load as an operand to the instruction, returning true if 2915 /// successful. 2916 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, 2917 const LoadInst *LI) { 2918 // Verify we have a legal type before going any further. 2919 MVT VT; 2920 if (!isLoadTypeLegal(LI->getType(), VT)) 2921 return false; 2922 2923 // Combine load followed by zero- or sign-extend. 2924 // ldrb r1, [r0] ldrb r1, [r0] 2925 // uxtb r2, r1 => 2926 // mov r3, r2 mov r3, r1 2927 if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm()) 2928 return false; 2929 const uint64_t Imm = MI->getOperand(2).getImm(); 2930 2931 bool Found = false; 2932 bool isZExt; 2933 for (const FoldableLoadExtendsStruct &FLE : FoldableLoadExtends) { 2934 if (FLE.Opc[isThumb2] == MI->getOpcode() && 2935 (uint64_t)FLE.ExpectedImm == Imm && 2936 MVT((MVT::SimpleValueType)FLE.ExpectedVT) == VT) { 2937 Found = true; 2938 isZExt = FLE.isZExt; 2939 } 2940 } 2941 if (!Found) return false; 2942 2943 // See if we can handle this address. 2944 Address Addr; 2945 if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false; 2946 2947 Register ResultReg = MI->getOperand(0).getReg(); 2948 if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlign(), isZExt, false)) 2949 return false; 2950 MachineBasicBlock::iterator I(MI); 2951 removeDeadCode(I, std::next(I)); 2952 return true; 2953 } 2954 2955 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV, MVT VT) { 2956 bool UseGOT_PREL = !GV->isDSOLocal(); 2957 LLVMContext *Context = &MF->getFunction().getContext(); 2958 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 2959 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; 2960 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create( 2961 GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj, 2962 UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier, 2963 /*AddCurrentAddress=*/UseGOT_PREL); 2964 2965 Align ConstAlign = 2966 MF->getDataLayout().getPrefTypeAlign(PointerType::get(*Context, 0)); 2967 unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign); 2968 MachineMemOperand *CPMMO = 2969 MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF), 2970 MachineMemOperand::MOLoad, 4, Align(4)); 2971 2972 Register TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass); 2973 unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp; 2974 MachineInstrBuilder MIB = 2975 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), TempReg) 2976 .addConstantPoolIndex(Idx) 2977 .addMemOperand(CPMMO); 2978 if (Opc == ARM::LDRcp) 2979 MIB.addImm(0); 2980 MIB.add(predOps(ARMCC::AL)); 2981 2982 // Fix the address by adding pc. 2983 Register DestReg = createResultReg(TLI.getRegClassFor(VT)); 2984 Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR 2985 : ARM::PICADD; 2986 DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0); 2987 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg) 2988 .addReg(TempReg) 2989 .addImm(ARMPCLabelIndex); 2990 2991 if (!Subtarget->isThumb()) 2992 MIB.add(predOps(ARMCC::AL)); 2993 2994 if (UseGOT_PREL && Subtarget->isThumb()) { 2995 Register NewDestReg = createResultReg(TLI.getRegClassFor(VT)); 2996 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 2997 TII.get(ARM::t2LDRi12), NewDestReg) 2998 .addReg(DestReg) 2999 .addImm(0); 3000 DestReg = NewDestReg; 3001 AddOptionalDefs(MIB); 3002 } 3003 return DestReg; 3004 } 3005 3006 bool ARMFastISel::fastLowerArguments() { 3007 if (!FuncInfo.CanLowerReturn) 3008 return false; 3009 3010 const Function *F = FuncInfo.Fn; 3011 if (F->isVarArg()) 3012 return false; 3013 3014 CallingConv::ID CC = F->getCallingConv(); 3015 switch (CC) { 3016 default: 3017 return false; 3018 case CallingConv::Fast: 3019 case CallingConv::C: 3020 case CallingConv::ARM_AAPCS_VFP: 3021 case CallingConv::ARM_AAPCS: 3022 case CallingConv::ARM_APCS: 3023 case CallingConv::Swift: 3024 case CallingConv::SwiftTail: 3025 break; 3026 } 3027 3028 // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments 3029 // which are passed in r0 - r3. 3030 for (const Argument &Arg : F->args()) { 3031 if (Arg.getArgNo() >= 4) 3032 return false; 3033 3034 if (Arg.hasAttribute(Attribute::InReg) || 3035 Arg.hasAttribute(Attribute::StructRet) || 3036 Arg.hasAttribute(Attribute::SwiftSelf) || 3037 Arg.hasAttribute(Attribute::SwiftError) || 3038 Arg.hasAttribute(Attribute::ByVal)) 3039 return false; 3040 3041 Type *ArgTy = Arg.getType(); 3042 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) 3043 return false; 3044 3045 EVT ArgVT = TLI.getValueType(DL, ArgTy); 3046 if (!ArgVT.isSimple()) return false; 3047 switch (ArgVT.getSimpleVT().SimpleTy) { 3048 case MVT::i8: 3049 case MVT::i16: 3050 case MVT::i32: 3051 break; 3052 default: 3053 return false; 3054 } 3055 } 3056 3057 static const MCPhysReg GPRArgRegs[] = { 3058 ARM::R0, ARM::R1, ARM::R2, ARM::R3 3059 }; 3060 3061 const TargetRegisterClass *RC = &ARM::rGPRRegClass; 3062 for (const Argument &Arg : F->args()) { 3063 unsigned ArgNo = Arg.getArgNo(); 3064 unsigned SrcReg = GPRArgRegs[ArgNo]; 3065 Register DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); 3066 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. 3067 // Without this, EmitLiveInCopies may eliminate the livein if its only 3068 // use is a bitcast (which isn't turned into an instruction). 3069 Register ResultReg = createResultReg(RC); 3070 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, 3071 TII.get(TargetOpcode::COPY), 3072 ResultReg).addReg(DstReg, getKillRegState(true)); 3073 updateValueMap(&Arg, ResultReg); 3074 } 3075 3076 return true; 3077 } 3078 3079 namespace llvm { 3080 3081 FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo, 3082 const TargetLibraryInfo *libInfo) { 3083 if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel()) 3084 return new ARMFastISel(funcInfo, libInfo); 3085 3086 return nullptr; 3087 } 3088 3089 } // end namespace llvm 3090