xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMFastISel.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 //===- ARMFastISel.cpp - ARM FastISel implementation ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the ARM-specific support for the FastISel class. Some
10 // of the target-specific code is generated by tablegen in the file
11 // ARMGenFastISel.inc, which is #included here.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ARM.h"
16 #include "ARMBaseInstrInfo.h"
17 #include "ARMBaseRegisterInfo.h"
18 #include "ARMCallingConv.h"
19 #include "ARMConstantPoolValue.h"
20 #include "ARMISelLowering.h"
21 #include "ARMMachineFunctionInfo.h"
22 #include "ARMSubtarget.h"
23 #include "MCTargetDesc/ARMAddressingModes.h"
24 #include "MCTargetDesc/ARMBaseInfo.h"
25 #include "Utils/ARMBaseInfo.h"
26 #include "llvm/ADT/APFloat.h"
27 #include "llvm/ADT/APInt.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/CodeGen/CallingConvLower.h"
31 #include "llvm/CodeGen/FastISel.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineConstantPool.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineInstr.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/MachineValueType.h"
44 #include "llvm/CodeGen/RuntimeLibcalls.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetLowering.h"
47 #include "llvm/CodeGen/TargetOpcodes.h"
48 #include "llvm/CodeGen/TargetRegisterInfo.h"
49 #include "llvm/CodeGen/ValueTypes.h"
50 #include "llvm/IR/Argument.h"
51 #include "llvm/IR/Attributes.h"
52 #include "llvm/IR/CallingConv.h"
53 #include "llvm/IR/Constant.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/DerivedTypes.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/GetElementPtrTypeIterator.h"
59 #include "llvm/IR/GlobalValue.h"
60 #include "llvm/IR/GlobalVariable.h"
61 #include "llvm/IR/InstrTypes.h"
62 #include "llvm/IR/Instruction.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/IR/IntrinsicInst.h"
65 #include "llvm/IR/Intrinsics.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/MC/MCInstrDesc.h"
72 #include "llvm/MC/MCRegisterInfo.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Compiler.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/MathExtras.h"
77 #include "llvm/Target/TargetMachine.h"
78 #include "llvm/Target/TargetOptions.h"
79 #include <cassert>
80 #include <cstdint>
81 #include <utility>
82 
83 using namespace llvm;
84 
85 namespace {
86 
87   // All possible address modes, plus some.
88   struct Address {
89     enum {
90       RegBase,
91       FrameIndexBase
92     } BaseType = RegBase;
93 
94     union {
95       unsigned Reg;
96       int FI;
97     } Base;
98 
99     int Offset = 0;
100 
101     // Innocuous defaults for our address.
102     Address() {
103       Base.Reg = 0;
104     }
105   };
106 
107 class ARMFastISel final : public FastISel {
108   /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
109   /// make the right decision when generating code for different targets.
110   const ARMSubtarget *Subtarget;
111   Module &M;
112   const TargetMachine &TM;
113   const TargetInstrInfo &TII;
114   const TargetLowering &TLI;
115   ARMFunctionInfo *AFI;
116 
117   // Convenience variables to avoid some queries.
118   bool isThumb2;
119   LLVMContext *Context;
120 
121   public:
122     explicit ARMFastISel(FunctionLoweringInfo &funcInfo,
123                          const TargetLibraryInfo *libInfo)
124         : FastISel(funcInfo, libInfo),
125           Subtarget(&funcInfo.MF->getSubtarget<ARMSubtarget>()),
126           M(const_cast<Module &>(*funcInfo.Fn->getParent())),
127           TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()),
128           TLI(*Subtarget->getTargetLowering()) {
129       AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
130       isThumb2 = AFI->isThumbFunction();
131       Context = &funcInfo.Fn->getContext();
132     }
133 
134   private:
135     // Code from FastISel.cpp.
136 
137     unsigned fastEmitInst_r(unsigned MachineInstOpcode,
138                             const TargetRegisterClass *RC, unsigned Op0);
139     unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
140                              const TargetRegisterClass *RC,
141                              unsigned Op0, unsigned Op1);
142     unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
143                              const TargetRegisterClass *RC,
144                              unsigned Op0, uint64_t Imm);
145     unsigned fastEmitInst_i(unsigned MachineInstOpcode,
146                             const TargetRegisterClass *RC,
147                             uint64_t Imm);
148 
149     // Backend specific FastISel code.
150 
151     bool fastSelectInstruction(const Instruction *I) override;
152     unsigned fastMaterializeConstant(const Constant *C) override;
153     unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
154     bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
155                              const LoadInst *LI) override;
156     bool fastLowerArguments() override;
157 
158 #include "ARMGenFastISel.inc"
159 
160     // Instruction selection routines.
161 
162     bool SelectLoad(const Instruction *I);
163     bool SelectStore(const Instruction *I);
164     bool SelectBranch(const Instruction *I);
165     bool SelectIndirectBr(const Instruction *I);
166     bool SelectCmp(const Instruction *I);
167     bool SelectFPExt(const Instruction *I);
168     bool SelectFPTrunc(const Instruction *I);
169     bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
170     bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
171     bool SelectIToFP(const Instruction *I, bool isSigned);
172     bool SelectFPToI(const Instruction *I, bool isSigned);
173     bool SelectDiv(const Instruction *I, bool isSigned);
174     bool SelectRem(const Instruction *I, bool isSigned);
175     bool SelectCall(const Instruction *I, const char *IntrMemName);
176     bool SelectIntrinsicCall(const IntrinsicInst &I);
177     bool SelectSelect(const Instruction *I);
178     bool SelectRet(const Instruction *I);
179     bool SelectTrunc(const Instruction *I);
180     bool SelectIntExt(const Instruction *I);
181     bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy);
182 
183     // Utility routines.
184 
185     bool isPositionIndependent() const;
186     bool isTypeLegal(Type *Ty, MVT &VT);
187     bool isLoadTypeLegal(Type *Ty, MVT &VT);
188     bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
189                     bool isZExt);
190     bool ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
191                      MaybeAlign Alignment = std::nullopt, bool isZExt = true,
192                      bool allocReg = true);
193     bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
194                       MaybeAlign Alignment = std::nullopt);
195     bool ARMComputeAddress(const Value *Obj, Address &Addr);
196     void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3);
197     bool ARMIsMemCpySmall(uint64_t Len);
198     bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
199                                MaybeAlign Alignment);
200     unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
201     unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT);
202     unsigned ARMMaterializeInt(const Constant *C, MVT VT);
203     unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT);
204     unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg);
205     unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg);
206     unsigned ARMSelectCallOp(bool UseReg);
207     unsigned ARMLowerPICELF(const GlobalValue *GV, MVT VT);
208 
209     const TargetLowering *getTargetLowering() { return &TLI; }
210 
211     // Call handling routines.
212 
213     CCAssignFn *CCAssignFnForCall(CallingConv::ID CC,
214                                   bool Return,
215                                   bool isVarArg);
216     bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
217                          SmallVectorImpl<Register> &ArgRegs,
218                          SmallVectorImpl<MVT> &ArgVTs,
219                          SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
220                          SmallVectorImpl<Register> &RegArgs,
221                          CallingConv::ID CC,
222                          unsigned &NumBytes,
223                          bool isVarArg);
224     unsigned getLibcallReg(const Twine &Name);
225     bool FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs,
226                     const Instruction *I, CallingConv::ID CC,
227                     unsigned &NumBytes, bool isVarArg);
228     bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
229 
230     // OptionalDef handling routines.
231 
232     bool isARMNEONPred(const MachineInstr *MI);
233     bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
234     const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
235     void AddLoadStoreOperands(MVT VT, Address &Addr,
236                               const MachineInstrBuilder &MIB,
237                               MachineMemOperand::Flags Flags, bool useAM3);
238 };
239 
240 } // end anonymous namespace
241 
242 // DefinesOptionalPredicate - This is different from DefinesPredicate in that
243 // we don't care about implicit defs here, just places we'll need to add a
244 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
245 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
246   if (!MI->hasOptionalDef())
247     return false;
248 
249   // Look to see if our OptionalDef is defining CPSR or CCR.
250   for (const MachineOperand &MO : MI->operands()) {
251     if (!MO.isReg() || !MO.isDef()) continue;
252     if (MO.getReg() == ARM::CPSR)
253       *CPSR = true;
254   }
255   return true;
256 }
257 
258 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
259   const MCInstrDesc &MCID = MI->getDesc();
260 
261   // If we're a thumb2 or not NEON function we'll be handled via isPredicable.
262   if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
263        AFI->isThumb2Function())
264     return MI->isPredicable();
265 
266   for (const MCOperandInfo &opInfo : MCID.operands())
267     if (opInfo.isPredicate())
268       return true;
269 
270   return false;
271 }
272 
273 // If the machine is predicable go ahead and add the predicate operands, if
274 // it needs default CC operands add those.
275 // TODO: If we want to support thumb1 then we'll need to deal with optional
276 // CPSR defs that need to be added before the remaining operands. See s_cc_out
277 // for descriptions why.
278 const MachineInstrBuilder &
279 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
280   MachineInstr *MI = &*MIB;
281 
282   // Do we use a predicate? or...
283   // Are we NEON in ARM mode and have a predicate operand? If so, I know
284   // we're not predicable but add it anyways.
285   if (isARMNEONPred(MI))
286     MIB.add(predOps(ARMCC::AL));
287 
288   // Do we optionally set a predicate?  Preds is size > 0 iff the predicate
289   // defines CPSR. All other OptionalDefines in ARM are the CCR register.
290   bool CPSR = false;
291   if (DefinesOptionalPredicate(MI, &CPSR))
292     MIB.add(CPSR ? t1CondCodeOp() : condCodeOp());
293   return MIB;
294 }
295 
296 unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
297                                      const TargetRegisterClass *RC,
298                                      unsigned Op0) {
299   Register ResultReg = createResultReg(RC);
300   const MCInstrDesc &II = TII.get(MachineInstOpcode);
301 
302   // Make sure the input operand is sufficiently constrained to be legal
303   // for this instruction.
304   Op0 = constrainOperandRegClass(II, Op0, 1);
305   if (II.getNumDefs() >= 1) {
306     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II,
307                             ResultReg).addReg(Op0));
308   } else {
309     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
310                    .addReg(Op0));
311     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
312                             TII.get(TargetOpcode::COPY), ResultReg)
313                         .addReg(II.implicit_defs()[0]));
314   }
315   return ResultReg;
316 }
317 
318 unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
319                                       const TargetRegisterClass *RC,
320                                       unsigned Op0, unsigned Op1) {
321   Register ResultReg = createResultReg(RC);
322   const MCInstrDesc &II = TII.get(MachineInstOpcode);
323 
324   // Make sure the input operands are sufficiently constrained to be legal
325   // for this instruction.
326   Op0 = constrainOperandRegClass(II, Op0, 1);
327   Op1 = constrainOperandRegClass(II, Op1, 2);
328 
329   if (II.getNumDefs() >= 1) {
330     AddOptionalDefs(
331         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
332             .addReg(Op0)
333             .addReg(Op1));
334   } else {
335     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
336                    .addReg(Op0)
337                    .addReg(Op1));
338     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
339                             TII.get(TargetOpcode::COPY), ResultReg)
340                         .addReg(II.implicit_defs()[0]));
341   }
342   return ResultReg;
343 }
344 
345 unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
346                                       const TargetRegisterClass *RC,
347                                       unsigned Op0, uint64_t Imm) {
348   Register ResultReg = createResultReg(RC);
349   const MCInstrDesc &II = TII.get(MachineInstOpcode);
350 
351   // Make sure the input operand is sufficiently constrained to be legal
352   // for this instruction.
353   Op0 = constrainOperandRegClass(II, Op0, 1);
354   if (II.getNumDefs() >= 1) {
355     AddOptionalDefs(
356         BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
357             .addReg(Op0)
358             .addImm(Imm));
359   } else {
360     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
361                    .addReg(Op0)
362                    .addImm(Imm));
363     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
364                             TII.get(TargetOpcode::COPY), ResultReg)
365                         .addReg(II.implicit_defs()[0]));
366   }
367   return ResultReg;
368 }
369 
370 unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode,
371                                      const TargetRegisterClass *RC,
372                                      uint64_t Imm) {
373   Register ResultReg = createResultReg(RC);
374   const MCInstrDesc &II = TII.get(MachineInstOpcode);
375 
376   if (II.getNumDefs() >= 1) {
377     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II,
378                             ResultReg).addImm(Imm));
379   } else {
380     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
381                    .addImm(Imm));
382     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
383                             TII.get(TargetOpcode::COPY), ResultReg)
384                         .addReg(II.implicit_defs()[0]));
385   }
386   return ResultReg;
387 }
388 
389 // TODO: Don't worry about 64-bit now, but when this is fixed remove the
390 // checks from the various callers.
391 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) {
392   if (VT == MVT::f64) return 0;
393 
394   Register MoveReg = createResultReg(TLI.getRegClassFor(VT));
395   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
396                           TII.get(ARM::VMOVSR), MoveReg)
397                   .addReg(SrcReg));
398   return MoveReg;
399 }
400 
401 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) {
402   if (VT == MVT::i64) return 0;
403 
404   Register MoveReg = createResultReg(TLI.getRegClassFor(VT));
405   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
406                           TII.get(ARM::VMOVRS), MoveReg)
407                   .addReg(SrcReg));
408   return MoveReg;
409 }
410 
411 // For double width floating point we need to materialize two constants
412 // (the high and the low) into integer registers then use a move to get
413 // the combined constant into an FP reg.
414 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) {
415   const APFloat Val = CFP->getValueAPF();
416   bool is64bit = VT == MVT::f64;
417 
418   // This checks to see if we can use VFP3 instructions to materialize
419   // a constant, otherwise we have to go through the constant pool.
420   if (TLI.isFPImmLegal(Val, VT)) {
421     int Imm;
422     unsigned Opc;
423     if (is64bit) {
424       Imm = ARM_AM::getFP64Imm(Val);
425       Opc = ARM::FCONSTD;
426     } else {
427       Imm = ARM_AM::getFP32Imm(Val);
428       Opc = ARM::FCONSTS;
429     }
430     Register DestReg = createResultReg(TLI.getRegClassFor(VT));
431     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
432                             TII.get(Opc), DestReg).addImm(Imm));
433     return DestReg;
434   }
435 
436   // Require VFP2 for loading fp constants.
437   if (!Subtarget->hasVFP2Base()) return false;
438 
439   // MachineConstantPool wants an explicit alignment.
440   Align Alignment = DL.getPrefTypeAlign(CFP->getType());
441   unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Alignment);
442   Register DestReg = createResultReg(TLI.getRegClassFor(VT));
443   unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
444 
445   // The extra reg is for addrmode5.
446   AddOptionalDefs(
447       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg)
448           .addConstantPoolIndex(Idx)
449           .addReg(0));
450   return DestReg;
451 }
452 
453 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
454   if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
455     return 0;
456 
457   // If we can do this in a single instruction without a constant pool entry
458   // do so now.
459   const ConstantInt *CI = cast<ConstantInt>(C);
460   if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
461     unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
462     const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
463       &ARM::GPRRegClass;
464     Register ImmReg = createResultReg(RC);
465     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
466                             TII.get(Opc), ImmReg)
467                     .addImm(CI->getZExtValue()));
468     return ImmReg;
469   }
470 
471   // Use MVN to emit negative constants.
472   if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
473     unsigned Imm = (unsigned)~(CI->getSExtValue());
474     bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
475       (ARM_AM::getSOImmVal(Imm) != -1);
476     if (UseImm) {
477       unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
478       const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
479                                                  &ARM::GPRRegClass;
480       Register ImmReg = createResultReg(RC);
481       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
482                               TII.get(Opc), ImmReg)
483                       .addImm(Imm));
484       return ImmReg;
485     }
486   }
487 
488   unsigned ResultReg = 0;
489   if (Subtarget->useMovt())
490     ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
491 
492   if (ResultReg)
493     return ResultReg;
494 
495   // Load from constant pool.  For now 32-bit only.
496   if (VT != MVT::i32)
497     return 0;
498 
499   // MachineConstantPool wants an explicit alignment.
500   Align Alignment = DL.getPrefTypeAlign(C->getType());
501   unsigned Idx = MCP.getConstantPoolIndex(C, Alignment);
502   ResultReg = createResultReg(TLI.getRegClassFor(VT));
503   if (isThumb2)
504     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
505                             TII.get(ARM::t2LDRpci), ResultReg)
506                       .addConstantPoolIndex(Idx));
507   else {
508     // The extra immediate is for addrmode2.
509     ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0);
510     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
511                             TII.get(ARM::LDRcp), ResultReg)
512                       .addConstantPoolIndex(Idx)
513                       .addImm(0));
514   }
515   return ResultReg;
516 }
517 
518 bool ARMFastISel::isPositionIndependent() const {
519   return TLI.isPositionIndependent();
520 }
521 
522 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) {
523   // For now 32-bit only.
524   if (VT != MVT::i32 || GV->isThreadLocal()) return 0;
525 
526   // ROPI/RWPI not currently supported.
527   if (Subtarget->isROPI() || Subtarget->isRWPI())
528     return 0;
529 
530   bool IsIndirect = Subtarget->isGVIndirectSymbol(GV);
531   const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
532                                            : &ARM::GPRRegClass;
533   Register DestReg = createResultReg(RC);
534 
535   // FastISel TLS support on non-MachO is broken, punt to SelectionDAG.
536   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
537   bool IsThreadLocal = GVar && GVar->isThreadLocal();
538   if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0;
539 
540   bool IsPositionIndependent = isPositionIndependent();
541   // Use movw+movt when possible, it avoids constant pool entries.
542   // Non-darwin targets only support static movt relocations in FastISel.
543   if (Subtarget->useMovt() &&
544       (Subtarget->isTargetMachO() || !IsPositionIndependent)) {
545     unsigned Opc;
546     unsigned char TF = 0;
547     if (Subtarget->isTargetMachO())
548       TF = ARMII::MO_NONLAZY;
549 
550     if (IsPositionIndependent)
551       Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
552     else
553       Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
554     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
555                             TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF));
556   } else {
557     // MachineConstantPool wants an explicit alignment.
558     Align Alignment = DL.getPrefTypeAlign(GV->getType());
559 
560     if (Subtarget->isTargetELF() && IsPositionIndependent)
561       return ARMLowerPICELF(GV, VT);
562 
563     // Grab index.
564     unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
565     unsigned Id = AFI->createPICLabelUId();
566     ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
567                                                                 ARMCP::CPValue,
568                                                                 PCAdj);
569     unsigned Idx = MCP.getConstantPoolIndex(CPV, Alignment);
570 
571     // Load value.
572     MachineInstrBuilder MIB;
573     if (isThumb2) {
574       unsigned Opc = IsPositionIndependent ? ARM::t2LDRpci_pic : ARM::t2LDRpci;
575       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc),
576                     DestReg).addConstantPoolIndex(Idx);
577       if (IsPositionIndependent)
578         MIB.addImm(Id);
579       AddOptionalDefs(MIB);
580     } else {
581       // The extra immediate is for addrmode2.
582       DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0);
583       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
584                     TII.get(ARM::LDRcp), DestReg)
585                 .addConstantPoolIndex(Idx)
586                 .addImm(0);
587       AddOptionalDefs(MIB);
588 
589       if (IsPositionIndependent) {
590         unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD;
591         Register NewDestReg = createResultReg(TLI.getRegClassFor(VT));
592 
593         MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
594                                           MIMD, TII.get(Opc), NewDestReg)
595                                   .addReg(DestReg)
596                                   .addImm(Id);
597         AddOptionalDefs(MIB);
598         return NewDestReg;
599       }
600     }
601   }
602 
603   if ((Subtarget->isTargetELF() && Subtarget->isGVInGOT(GV)) ||
604       (Subtarget->isTargetMachO() && IsIndirect)) {
605     MachineInstrBuilder MIB;
606     Register NewDestReg = createResultReg(TLI.getRegClassFor(VT));
607     if (isThumb2)
608       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
609                     TII.get(ARM::t2LDRi12), NewDestReg)
610             .addReg(DestReg)
611             .addImm(0);
612     else
613       MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
614                     TII.get(ARM::LDRi12), NewDestReg)
615                 .addReg(DestReg)
616                 .addImm(0);
617     DestReg = NewDestReg;
618     AddOptionalDefs(MIB);
619   }
620 
621   return DestReg;
622 }
623 
624 unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) {
625   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
626 
627   // Only handle simple types.
628   if (!CEVT.isSimple()) return 0;
629   MVT VT = CEVT.getSimpleVT();
630 
631   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
632     return ARMMaterializeFP(CFP, VT);
633   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
634     return ARMMaterializeGV(GV, VT);
635   else if (isa<ConstantInt>(C))
636     return ARMMaterializeInt(C, VT);
637 
638   return 0;
639 }
640 
641 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
642 
643 unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
644   // Don't handle dynamic allocas.
645   if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
646 
647   MVT VT;
648   if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
649 
650   DenseMap<const AllocaInst*, int>::iterator SI =
651     FuncInfo.StaticAllocaMap.find(AI);
652 
653   // This will get lowered later into the correct offsets and registers
654   // via rewriteXFrameIndex.
655   if (SI != FuncInfo.StaticAllocaMap.end()) {
656     unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
657     const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
658     Register ResultReg = createResultReg(RC);
659     ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0);
660 
661     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
662                             TII.get(Opc), ResultReg)
663                             .addFrameIndex(SI->second)
664                             .addImm(0));
665     return ResultReg;
666   }
667 
668   return 0;
669 }
670 
671 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
672   EVT evt = TLI.getValueType(DL, Ty, true);
673 
674   // Only handle simple types.
675   if (evt == MVT::Other || !evt.isSimple()) return false;
676   VT = evt.getSimpleVT();
677 
678   // Handle all legal types, i.e. a register that will directly hold this
679   // value.
680   return TLI.isTypeLegal(VT);
681 }
682 
683 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
684   if (isTypeLegal(Ty, VT)) return true;
685 
686   // If this is a type than can be sign or zero-extended to a basic operation
687   // go ahead and accept it now.
688   if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
689     return true;
690 
691   return false;
692 }
693 
694 // Computes the address to get to an object.
695 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
696   // Some boilerplate from the X86 FastISel.
697   const User *U = nullptr;
698   unsigned Opcode = Instruction::UserOp1;
699   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
700     // Don't walk into other basic blocks unless the object is an alloca from
701     // another block, otherwise it may not have a virtual register assigned.
702     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
703         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
704       Opcode = I->getOpcode();
705       U = I;
706     }
707   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
708     Opcode = C->getOpcode();
709     U = C;
710   }
711 
712   if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
713     if (Ty->getAddressSpace() > 255)
714       // Fast instruction selection doesn't support the special
715       // address spaces.
716       return false;
717 
718   switch (Opcode) {
719     default:
720     break;
721     case Instruction::BitCast:
722       // Look through bitcasts.
723       return ARMComputeAddress(U->getOperand(0), Addr);
724     case Instruction::IntToPtr:
725       // Look past no-op inttoptrs.
726       if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
727           TLI.getPointerTy(DL))
728         return ARMComputeAddress(U->getOperand(0), Addr);
729       break;
730     case Instruction::PtrToInt:
731       // Look past no-op ptrtoints.
732       if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
733         return ARMComputeAddress(U->getOperand(0), Addr);
734       break;
735     case Instruction::GetElementPtr: {
736       Address SavedAddr = Addr;
737       int TmpOffset = Addr.Offset;
738 
739       // Iterate through the GEP folding the constants into offsets where
740       // we can.
741       gep_type_iterator GTI = gep_type_begin(U);
742       for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
743            i != e; ++i, ++GTI) {
744         const Value *Op = *i;
745         if (StructType *STy = GTI.getStructTypeOrNull()) {
746           const StructLayout *SL = DL.getStructLayout(STy);
747           unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
748           TmpOffset += SL->getElementOffset(Idx);
749         } else {
750           uint64_t S = GTI.getSequentialElementStride(DL);
751           while (true) {
752             if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
753               // Constant-offset addressing.
754               TmpOffset += CI->getSExtValue() * S;
755               break;
756             }
757             if (canFoldAddIntoGEP(U, Op)) {
758               // A compatible add with a constant operand. Fold the constant.
759               ConstantInt *CI =
760               cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
761               TmpOffset += CI->getSExtValue() * S;
762               // Iterate on the other operand.
763               Op = cast<AddOperator>(Op)->getOperand(0);
764               continue;
765             }
766             // Unsupported
767             goto unsupported_gep;
768           }
769         }
770       }
771 
772       // Try to grab the base operand now.
773       Addr.Offset = TmpOffset;
774       if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
775 
776       // We failed, restore everything and try the other options.
777       Addr = SavedAddr;
778 
779       unsupported_gep:
780       break;
781     }
782     case Instruction::Alloca: {
783       const AllocaInst *AI = cast<AllocaInst>(Obj);
784       DenseMap<const AllocaInst*, int>::iterator SI =
785         FuncInfo.StaticAllocaMap.find(AI);
786       if (SI != FuncInfo.StaticAllocaMap.end()) {
787         Addr.BaseType = Address::FrameIndexBase;
788         Addr.Base.FI = SI->second;
789         return true;
790       }
791       break;
792     }
793   }
794 
795   // Try to get this in a register if nothing else has worked.
796   if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
797   return Addr.Base.Reg != 0;
798 }
799 
800 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) {
801   bool needsLowering = false;
802   switch (VT.SimpleTy) {
803     default: llvm_unreachable("Unhandled load/store type!");
804     case MVT::i1:
805     case MVT::i8:
806     case MVT::i16:
807     case MVT::i32:
808       if (!useAM3) {
809         // Integer loads/stores handle 12-bit offsets.
810         needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
811         // Handle negative offsets.
812         if (needsLowering && isThumb2)
813           needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
814                             Addr.Offset > -256);
815       } else {
816         // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
817         needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
818       }
819       break;
820     case MVT::f32:
821     case MVT::f64:
822       // Floating point operands handle 8-bit offsets.
823       needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
824       break;
825   }
826 
827   // If this is a stack pointer and the offset needs to be simplified then
828   // put the alloca address into a register, set the base type back to
829   // register and continue. This should almost never happen.
830   if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
831     const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
832                                              : &ARM::GPRRegClass;
833     Register ResultReg = createResultReg(RC);
834     unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
835     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
836                             TII.get(Opc), ResultReg)
837                             .addFrameIndex(Addr.Base.FI)
838                             .addImm(0));
839     Addr.Base.Reg = ResultReg;
840     Addr.BaseType = Address::RegBase;
841   }
842 
843   // Since the offset is too large for the load/store instruction
844   // get the reg+offset into a register.
845   if (needsLowering) {
846     Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
847                                  Addr.Offset, MVT::i32);
848     Addr.Offset = 0;
849   }
850 }
851 
852 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr,
853                                        const MachineInstrBuilder &MIB,
854                                        MachineMemOperand::Flags Flags,
855                                        bool useAM3) {
856   // addrmode5 output depends on the selection dag addressing dividing the
857   // offset by 4 that it then later multiplies. Do this here as well.
858   if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64)
859     Addr.Offset /= 4;
860 
861   // Frame base works a bit differently. Handle it separately.
862   if (Addr.BaseType == Address::FrameIndexBase) {
863     int FI = Addr.Base.FI;
864     int Offset = Addr.Offset;
865     MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
866         MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags,
867         MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
868     // Now add the rest of the operands.
869     MIB.addFrameIndex(FI);
870 
871     // ARM halfword load/stores and signed byte loads need an additional
872     // operand.
873     if (useAM3) {
874       int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
875       MIB.addReg(0);
876       MIB.addImm(Imm);
877     } else {
878       MIB.addImm(Addr.Offset);
879     }
880     MIB.addMemOperand(MMO);
881   } else {
882     // Now add the rest of the operands.
883     MIB.addReg(Addr.Base.Reg);
884 
885     // ARM halfword load/stores and signed byte loads need an additional
886     // operand.
887     if (useAM3) {
888       int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
889       MIB.addReg(0);
890       MIB.addImm(Imm);
891     } else {
892       MIB.addImm(Addr.Offset);
893     }
894   }
895   AddOptionalDefs(MIB);
896 }
897 
898 bool ARMFastISel::ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
899                               MaybeAlign Alignment, bool isZExt,
900                               bool allocReg) {
901   unsigned Opc;
902   bool useAM3 = false;
903   bool needVMOV = false;
904   const TargetRegisterClass *RC;
905   switch (VT.SimpleTy) {
906     // This is mostly going to be Neon/vector support.
907     default: return false;
908     case MVT::i1:
909     case MVT::i8:
910       if (isThumb2) {
911         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
912           Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
913         else
914           Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
915       } else {
916         if (isZExt) {
917           Opc = ARM::LDRBi12;
918         } else {
919           Opc = ARM::LDRSB;
920           useAM3 = true;
921         }
922       }
923       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
924       break;
925     case MVT::i16:
926       if (Alignment && *Alignment < Align(2) &&
927           !Subtarget->allowsUnalignedMem())
928         return false;
929 
930       if (isThumb2) {
931         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
932           Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
933         else
934           Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
935       } else {
936         Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
937         useAM3 = true;
938       }
939       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
940       break;
941     case MVT::i32:
942       if (Alignment && *Alignment < Align(4) &&
943           !Subtarget->allowsUnalignedMem())
944         return false;
945 
946       if (isThumb2) {
947         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
948           Opc = ARM::t2LDRi8;
949         else
950           Opc = ARM::t2LDRi12;
951       } else {
952         Opc = ARM::LDRi12;
953       }
954       RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
955       break;
956     case MVT::f32:
957       if (!Subtarget->hasVFP2Base()) return false;
958       // Unaligned loads need special handling. Floats require word-alignment.
959       if (Alignment && *Alignment < Align(4)) {
960         needVMOV = true;
961         VT = MVT::i32;
962         Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
963         RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
964       } else {
965         Opc = ARM::VLDRS;
966         RC = TLI.getRegClassFor(VT);
967       }
968       break;
969     case MVT::f64:
970       // Can load and store double precision even without FeatureFP64
971       if (!Subtarget->hasVFP2Base()) return false;
972       // FIXME: Unaligned loads need special handling.  Doublewords require
973       // word-alignment.
974       if (Alignment && *Alignment < Align(4))
975         return false;
976 
977       Opc = ARM::VLDRD;
978       RC = TLI.getRegClassFor(VT);
979       break;
980   }
981   // Simplify this down to something we can handle.
982   ARMSimplifyAddress(Addr, VT, useAM3);
983 
984   // Create the base instruction, then add the operands.
985   if (allocReg)
986     ResultReg = createResultReg(RC);
987   assert(ResultReg > 255 && "Expected an allocated virtual register.");
988   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
989                                     TII.get(Opc), ResultReg);
990   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
991 
992   // If we had an unaligned load of a float we've converted it to an regular
993   // load.  Now we must move from the GRP to the FP register.
994   if (needVMOV) {
995     Register MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
996     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
997                             TII.get(ARM::VMOVSR), MoveReg)
998                     .addReg(ResultReg));
999     ResultReg = MoveReg;
1000   }
1001   return true;
1002 }
1003 
1004 bool ARMFastISel::SelectLoad(const Instruction *I) {
1005   // Atomic loads need special handling.
1006   if (cast<LoadInst>(I)->isAtomic())
1007     return false;
1008 
1009   const Value *SV = I->getOperand(0);
1010   if (TLI.supportSwiftError()) {
1011     // Swifterror values can come from either a function parameter with
1012     // swifterror attribute or an alloca with swifterror attribute.
1013     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1014       if (Arg->hasSwiftErrorAttr())
1015         return false;
1016     }
1017 
1018     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1019       if (Alloca->isSwiftError())
1020         return false;
1021     }
1022   }
1023 
1024   // Verify we have a legal type before going any further.
1025   MVT VT;
1026   if (!isLoadTypeLegal(I->getType(), VT))
1027     return false;
1028 
1029   // See if we can handle this address.
1030   Address Addr;
1031   if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
1032 
1033   Register ResultReg;
1034   if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlign()))
1035     return false;
1036   updateValueMap(I, ResultReg);
1037   return true;
1038 }
1039 
1040 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
1041                                MaybeAlign Alignment) {
1042   unsigned StrOpc;
1043   bool useAM3 = false;
1044   switch (VT.SimpleTy) {
1045     // This is mostly going to be Neon/vector support.
1046     default: return false;
1047     case MVT::i1: {
1048       Register Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass
1049                                               : &ARM::GPRRegClass);
1050       unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
1051       SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1);
1052       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1053                               TII.get(Opc), Res)
1054                       .addReg(SrcReg).addImm(1));
1055       SrcReg = Res;
1056       [[fallthrough]];
1057     }
1058     case MVT::i8:
1059       if (isThumb2) {
1060         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1061           StrOpc = ARM::t2STRBi8;
1062         else
1063           StrOpc = ARM::t2STRBi12;
1064       } else {
1065         StrOpc = ARM::STRBi12;
1066       }
1067       break;
1068     case MVT::i16:
1069       if (Alignment && *Alignment < Align(2) &&
1070           !Subtarget->allowsUnalignedMem())
1071         return false;
1072 
1073       if (isThumb2) {
1074         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1075           StrOpc = ARM::t2STRHi8;
1076         else
1077           StrOpc = ARM::t2STRHi12;
1078       } else {
1079         StrOpc = ARM::STRH;
1080         useAM3 = true;
1081       }
1082       break;
1083     case MVT::i32:
1084       if (Alignment && *Alignment < Align(4) &&
1085           !Subtarget->allowsUnalignedMem())
1086         return false;
1087 
1088       if (isThumb2) {
1089         if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1090           StrOpc = ARM::t2STRi8;
1091         else
1092           StrOpc = ARM::t2STRi12;
1093       } else {
1094         StrOpc = ARM::STRi12;
1095       }
1096       break;
1097     case MVT::f32:
1098       if (!Subtarget->hasVFP2Base()) return false;
1099       // Unaligned stores need special handling. Floats require word-alignment.
1100       if (Alignment && *Alignment < Align(4)) {
1101         Register MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1102         AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1103                                 TII.get(ARM::VMOVRS), MoveReg)
1104                         .addReg(SrcReg));
1105         SrcReg = MoveReg;
1106         VT = MVT::i32;
1107         StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
1108       } else {
1109         StrOpc = ARM::VSTRS;
1110       }
1111       break;
1112     case MVT::f64:
1113       // Can load and store double precision even without FeatureFP64
1114       if (!Subtarget->hasVFP2Base()) return false;
1115       // FIXME: Unaligned stores need special handling.  Doublewords require
1116       // word-alignment.
1117       if (Alignment && *Alignment < Align(4))
1118         return false;
1119 
1120       StrOpc = ARM::VSTRD;
1121       break;
1122   }
1123   // Simplify this down to something we can handle.
1124   ARMSimplifyAddress(Addr, VT, useAM3);
1125 
1126   // Create the base instruction, then add the operands.
1127   SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0);
1128   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1129                                     TII.get(StrOpc))
1130                             .addReg(SrcReg);
1131   AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
1132   return true;
1133 }
1134 
1135 bool ARMFastISel::SelectStore(const Instruction *I) {
1136   Value *Op0 = I->getOperand(0);
1137   unsigned SrcReg = 0;
1138 
1139   // Atomic stores need special handling.
1140   if (cast<StoreInst>(I)->isAtomic())
1141     return false;
1142 
1143   const Value *PtrV = I->getOperand(1);
1144   if (TLI.supportSwiftError()) {
1145     // Swifterror values can come from either a function parameter with
1146     // swifterror attribute or an alloca with swifterror attribute.
1147     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1148       if (Arg->hasSwiftErrorAttr())
1149         return false;
1150     }
1151 
1152     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1153       if (Alloca->isSwiftError())
1154         return false;
1155     }
1156   }
1157 
1158   // Verify we have a legal type before going any further.
1159   MVT VT;
1160   if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1161     return false;
1162 
1163   // Get the value to be stored into a register.
1164   SrcReg = getRegForValue(Op0);
1165   if (SrcReg == 0) return false;
1166 
1167   // See if we can handle this address.
1168   Address Addr;
1169   if (!ARMComputeAddress(I->getOperand(1), Addr))
1170     return false;
1171 
1172   if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlign()))
1173     return false;
1174   return true;
1175 }
1176 
1177 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1178   switch (Pred) {
1179     // Needs two compares...
1180     case CmpInst::FCMP_ONE:
1181     case CmpInst::FCMP_UEQ:
1182     default:
1183       // AL is our "false" for now. The other two need more compares.
1184       return ARMCC::AL;
1185     case CmpInst::ICMP_EQ:
1186     case CmpInst::FCMP_OEQ:
1187       return ARMCC::EQ;
1188     case CmpInst::ICMP_SGT:
1189     case CmpInst::FCMP_OGT:
1190       return ARMCC::GT;
1191     case CmpInst::ICMP_SGE:
1192     case CmpInst::FCMP_OGE:
1193       return ARMCC::GE;
1194     case CmpInst::ICMP_UGT:
1195     case CmpInst::FCMP_UGT:
1196       return ARMCC::HI;
1197     case CmpInst::FCMP_OLT:
1198       return ARMCC::MI;
1199     case CmpInst::ICMP_ULE:
1200     case CmpInst::FCMP_OLE:
1201       return ARMCC::LS;
1202     case CmpInst::FCMP_ORD:
1203       return ARMCC::VC;
1204     case CmpInst::FCMP_UNO:
1205       return ARMCC::VS;
1206     case CmpInst::FCMP_UGE:
1207       return ARMCC::PL;
1208     case CmpInst::ICMP_SLT:
1209     case CmpInst::FCMP_ULT:
1210       return ARMCC::LT;
1211     case CmpInst::ICMP_SLE:
1212     case CmpInst::FCMP_ULE:
1213       return ARMCC::LE;
1214     case CmpInst::FCMP_UNE:
1215     case CmpInst::ICMP_NE:
1216       return ARMCC::NE;
1217     case CmpInst::ICMP_UGE:
1218       return ARMCC::HS;
1219     case CmpInst::ICMP_ULT:
1220       return ARMCC::LO;
1221   }
1222 }
1223 
1224 bool ARMFastISel::SelectBranch(const Instruction *I) {
1225   const BranchInst *BI = cast<BranchInst>(I);
1226   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1227   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1228 
1229   // Simple branch support.
1230 
1231   // If we can, avoid recomputing the compare - redoing it could lead to wonky
1232   // behavior.
1233   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1234     if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1235       // Get the compare predicate.
1236       // Try to take advantage of fallthrough opportunities.
1237       CmpInst::Predicate Predicate = CI->getPredicate();
1238       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1239         std::swap(TBB, FBB);
1240         Predicate = CmpInst::getInversePredicate(Predicate);
1241       }
1242 
1243       ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1244 
1245       // We may not handle every CC for now.
1246       if (ARMPred == ARMCC::AL) return false;
1247 
1248       // Emit the compare.
1249       if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1250         return false;
1251 
1252       unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1253       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(BrOpc))
1254       .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1255       finishCondBranch(BI->getParent(), TBB, FBB);
1256       return true;
1257     }
1258   } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1259     MVT SourceVT;
1260     if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1261         (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1262       unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1263       Register OpReg = getRegForValue(TI->getOperand(0));
1264       OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0);
1265       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1266                               TII.get(TstOpc))
1267                       .addReg(OpReg).addImm(1));
1268 
1269       unsigned CCMode = ARMCC::NE;
1270       if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1271         std::swap(TBB, FBB);
1272         CCMode = ARMCC::EQ;
1273       }
1274 
1275       unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1276       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(BrOpc))
1277       .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1278 
1279       finishCondBranch(BI->getParent(), TBB, FBB);
1280       return true;
1281     }
1282   } else if (const ConstantInt *CI =
1283              dyn_cast<ConstantInt>(BI->getCondition())) {
1284     uint64_t Imm = CI->getZExtValue();
1285     MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1286     fastEmitBranch(Target, MIMD.getDL());
1287     return true;
1288   }
1289 
1290   Register CmpReg = getRegForValue(BI->getCondition());
1291   if (CmpReg == 0) return false;
1292 
1293   // We've been divorced from our compare!  Our block was split, and
1294   // now our compare lives in a predecessor block.  We musn't
1295   // re-compare here, as the children of the compare aren't guaranteed
1296   // live across the block boundary (we *could* check for this).
1297   // Regardless, the compare has been done in the predecessor block,
1298   // and it left a value for us in a virtual register.  Ergo, we test
1299   // the one-bit value left in the virtual register.
1300   unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1301   CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0);
1302   AddOptionalDefs(
1303       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TstOpc))
1304           .addReg(CmpReg)
1305           .addImm(1));
1306 
1307   unsigned CCMode = ARMCC::NE;
1308   if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1309     std::swap(TBB, FBB);
1310     CCMode = ARMCC::EQ;
1311   }
1312 
1313   unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1314   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(BrOpc))
1315                   .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1316   finishCondBranch(BI->getParent(), TBB, FBB);
1317   return true;
1318 }
1319 
1320 bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
1321   Register AddrReg = getRegForValue(I->getOperand(0));
1322   if (AddrReg == 0) return false;
1323 
1324   unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
1325   assert(isThumb2 || Subtarget->hasV4TOps());
1326 
1327   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1328                           TII.get(Opc)).addReg(AddrReg));
1329 
1330   const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1331   for (const BasicBlock *SuccBB : IB->successors())
1332     FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
1333 
1334   return true;
1335 }
1336 
1337 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1338                              bool isZExt) {
1339   Type *Ty = Src1Value->getType();
1340   EVT SrcEVT = TLI.getValueType(DL, Ty, true);
1341   if (!SrcEVT.isSimple()) return false;
1342   MVT SrcVT = SrcEVT.getSimpleVT();
1343 
1344   if (Ty->isFloatTy() && !Subtarget->hasVFP2Base())
1345     return false;
1346 
1347   if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()))
1348     return false;
1349 
1350   // Check to see if the 2nd operand is a constant that we can encode directly
1351   // in the compare.
1352   int Imm = 0;
1353   bool UseImm = false;
1354   bool isNegativeImm = false;
1355   // FIXME: At -O0 we don't have anything that canonicalizes operand order.
1356   // Thus, Src1Value may be a ConstantInt, but we're missing it.
1357   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
1358     if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
1359         SrcVT == MVT::i1) {
1360       const APInt &CIVal = ConstInt->getValue();
1361       Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
1362       // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
1363       // then a cmn, because there is no way to represent 2147483648 as a
1364       // signed 32-bit int.
1365       if (Imm < 0 && Imm != (int)0x80000000) {
1366         isNegativeImm = true;
1367         Imm = -Imm;
1368       }
1369       UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1370         (ARM_AM::getSOImmVal(Imm) != -1);
1371     }
1372   } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
1373     if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
1374       if (ConstFP->isZero() && !ConstFP->isNegative())
1375         UseImm = true;
1376   }
1377 
1378   unsigned CmpOpc;
1379   bool isICmp = true;
1380   bool needsExt = false;
1381   switch (SrcVT.SimpleTy) {
1382     default: return false;
1383     // TODO: Verify compares.
1384     case MVT::f32:
1385       isICmp = false;
1386       CmpOpc = UseImm ? ARM::VCMPZS : ARM::VCMPS;
1387       break;
1388     case MVT::f64:
1389       isICmp = false;
1390       CmpOpc = UseImm ? ARM::VCMPZD : ARM::VCMPD;
1391       break;
1392     case MVT::i1:
1393     case MVT::i8:
1394     case MVT::i16:
1395       needsExt = true;
1396       [[fallthrough]];
1397     case MVT::i32:
1398       if (isThumb2) {
1399         if (!UseImm)
1400           CmpOpc = ARM::t2CMPrr;
1401         else
1402           CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri;
1403       } else {
1404         if (!UseImm)
1405           CmpOpc = ARM::CMPrr;
1406         else
1407           CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri;
1408       }
1409       break;
1410   }
1411 
1412   Register SrcReg1 = getRegForValue(Src1Value);
1413   if (SrcReg1 == 0) return false;
1414 
1415   unsigned SrcReg2 = 0;
1416   if (!UseImm) {
1417     SrcReg2 = getRegForValue(Src2Value);
1418     if (SrcReg2 == 0) return false;
1419   }
1420 
1421   // We have i1, i8, or i16, we need to either zero extend or sign extend.
1422   if (needsExt) {
1423     SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
1424     if (SrcReg1 == 0) return false;
1425     if (!UseImm) {
1426       SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
1427       if (SrcReg2 == 0) return false;
1428     }
1429   }
1430 
1431   const MCInstrDesc &II = TII.get(CmpOpc);
1432   SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0);
1433   if (!UseImm) {
1434     SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1);
1435     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
1436                     .addReg(SrcReg1).addReg(SrcReg2));
1437   } else {
1438     MachineInstrBuilder MIB;
1439     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
1440       .addReg(SrcReg1);
1441 
1442     // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
1443     if (isICmp)
1444       MIB.addImm(Imm);
1445     AddOptionalDefs(MIB);
1446   }
1447 
1448   // For floating point we need to move the result to a comparison register
1449   // that we can then use for branches.
1450   if (Ty->isFloatTy() || Ty->isDoubleTy())
1451     AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1452                             TII.get(ARM::FMSTAT)));
1453   return true;
1454 }
1455 
1456 bool ARMFastISel::SelectCmp(const Instruction *I) {
1457   const CmpInst *CI = cast<CmpInst>(I);
1458 
1459   // Get the compare predicate.
1460   ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1461 
1462   // We may not handle every CC for now.
1463   if (ARMPred == ARMCC::AL) return false;
1464 
1465   // Emit the compare.
1466   if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1467     return false;
1468 
1469   // Now set a register based on the comparison. Explicitly set the predicates
1470   // here.
1471   unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1472   const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
1473                                            : &ARM::GPRRegClass;
1474   Register DestReg = createResultReg(RC);
1475   Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1476   unsigned ZeroReg = fastMaterializeConstant(Zero);
1477   // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
1478   BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(MovCCOpc), DestReg)
1479           .addReg(ZeroReg).addImm(1)
1480           .addImm(ARMPred).addReg(ARM::CPSR);
1481 
1482   updateValueMap(I, DestReg);
1483   return true;
1484 }
1485 
1486 bool ARMFastISel::SelectFPExt(const Instruction *I) {
1487   // Make sure we have VFP and that we're extending float to double.
1488   if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false;
1489 
1490   Value *V = I->getOperand(0);
1491   if (!I->getType()->isDoubleTy() ||
1492       !V->getType()->isFloatTy()) return false;
1493 
1494   Register Op = getRegForValue(V);
1495   if (Op == 0) return false;
1496 
1497   Register Result = createResultReg(&ARM::DPRRegClass);
1498   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1499                           TII.get(ARM::VCVTDS), Result)
1500                   .addReg(Op));
1501   updateValueMap(I, Result);
1502   return true;
1503 }
1504 
1505 bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1506   // Make sure we have VFP and that we're truncating double to float.
1507   if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false;
1508 
1509   Value *V = I->getOperand(0);
1510   if (!(I->getType()->isFloatTy() &&
1511         V->getType()->isDoubleTy())) return false;
1512 
1513   Register Op = getRegForValue(V);
1514   if (Op == 0) return false;
1515 
1516   Register Result = createResultReg(&ARM::SPRRegClass);
1517   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1518                           TII.get(ARM::VCVTSD), Result)
1519                   .addReg(Op));
1520   updateValueMap(I, Result);
1521   return true;
1522 }
1523 
1524 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
1525   // Make sure we have VFP.
1526   if (!Subtarget->hasVFP2Base()) return false;
1527 
1528   MVT DstVT;
1529   Type *Ty = I->getType();
1530   if (!isTypeLegal(Ty, DstVT))
1531     return false;
1532 
1533   Value *Src = I->getOperand(0);
1534   EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
1535   if (!SrcEVT.isSimple())
1536     return false;
1537   MVT SrcVT = SrcEVT.getSimpleVT();
1538   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1539     return false;
1540 
1541   Register SrcReg = getRegForValue(Src);
1542   if (SrcReg == 0) return false;
1543 
1544   // Handle sign-extension.
1545   if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
1546     SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32,
1547                                        /*isZExt*/!isSigned);
1548     if (SrcReg == 0) return false;
1549   }
1550 
1551   // The conversion routine works on fp-reg to fp-reg and the operand above
1552   // was an integer, move it to the fp registers if possible.
1553   unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1554   if (FP == 0) return false;
1555 
1556   unsigned Opc;
1557   if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
1558   else if (Ty->isDoubleTy() && Subtarget->hasFP64())
1559     Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
1560   else return false;
1561 
1562   Register ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1563   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1564                           TII.get(Opc), ResultReg).addReg(FP));
1565   updateValueMap(I, ResultReg);
1566   return true;
1567 }
1568 
1569 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
1570   // Make sure we have VFP.
1571   if (!Subtarget->hasVFP2Base()) return false;
1572 
1573   MVT DstVT;
1574   Type *RetTy = I->getType();
1575   if (!isTypeLegal(RetTy, DstVT))
1576     return false;
1577 
1578   Register Op = getRegForValue(I->getOperand(0));
1579   if (Op == 0) return false;
1580 
1581   unsigned Opc;
1582   Type *OpTy = I->getOperand(0)->getType();
1583   if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
1584   else if (OpTy->isDoubleTy() && Subtarget->hasFP64())
1585     Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
1586   else return false;
1587 
1588   // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
1589   Register ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1590   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1591                           TII.get(Opc), ResultReg).addReg(Op));
1592 
1593   // This result needs to be in an integer register, but the conversion only
1594   // takes place in fp-regs.
1595   unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1596   if (IntReg == 0) return false;
1597 
1598   updateValueMap(I, IntReg);
1599   return true;
1600 }
1601 
1602 bool ARMFastISel::SelectSelect(const Instruction *I) {
1603   MVT VT;
1604   if (!isTypeLegal(I->getType(), VT))
1605     return false;
1606 
1607   // Things need to be register sized for register moves.
1608   if (VT != MVT::i32) return false;
1609 
1610   Register CondReg = getRegForValue(I->getOperand(0));
1611   if (CondReg == 0) return false;
1612   Register Op1Reg = getRegForValue(I->getOperand(1));
1613   if (Op1Reg == 0) return false;
1614 
1615   // Check to see if we can use an immediate in the conditional move.
1616   int Imm = 0;
1617   bool UseImm = false;
1618   bool isNegativeImm = false;
1619   if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
1620     assert(VT == MVT::i32 && "Expecting an i32.");
1621     Imm = (int)ConstInt->getValue().getZExtValue();
1622     if (Imm < 0) {
1623       isNegativeImm = true;
1624       Imm = ~Imm;
1625     }
1626     UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1627       (ARM_AM::getSOImmVal(Imm) != -1);
1628   }
1629 
1630   unsigned Op2Reg = 0;
1631   if (!UseImm) {
1632     Op2Reg = getRegForValue(I->getOperand(2));
1633     if (Op2Reg == 0) return false;
1634   }
1635 
1636   unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1637   CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0);
1638   AddOptionalDefs(
1639       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TstOpc))
1640           .addReg(CondReg)
1641           .addImm(1));
1642 
1643   unsigned MovCCOpc;
1644   const TargetRegisterClass *RC;
1645   if (!UseImm) {
1646     RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
1647     MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
1648   } else {
1649     RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass;
1650     if (!isNegativeImm)
1651       MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1652     else
1653       MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
1654   }
1655   Register ResultReg = createResultReg(RC);
1656   if (!UseImm) {
1657     Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1);
1658     Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2);
1659     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(MovCCOpc),
1660             ResultReg)
1661         .addReg(Op2Reg)
1662         .addReg(Op1Reg)
1663         .addImm(ARMCC::NE)
1664         .addReg(ARM::CPSR);
1665   } else {
1666     Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1);
1667     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(MovCCOpc),
1668             ResultReg)
1669         .addReg(Op1Reg)
1670         .addImm(Imm)
1671         .addImm(ARMCC::EQ)
1672         .addReg(ARM::CPSR);
1673   }
1674   updateValueMap(I, ResultReg);
1675   return true;
1676 }
1677 
1678 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
1679   MVT VT;
1680   Type *Ty = I->getType();
1681   if (!isTypeLegal(Ty, VT))
1682     return false;
1683 
1684   // If we have integer div support we should have selected this automagically.
1685   // In case we have a real miss go ahead and return false and we'll pick
1686   // it up later.
1687   if (Subtarget->hasDivideInThumbMode())
1688     return false;
1689 
1690   // Otherwise emit a libcall.
1691   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1692   if (VT == MVT::i8)
1693     LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
1694   else if (VT == MVT::i16)
1695     LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
1696   else if (VT == MVT::i32)
1697     LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
1698   else if (VT == MVT::i64)
1699     LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
1700   else if (VT == MVT::i128)
1701     LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
1702   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1703 
1704   return ARMEmitLibcall(I, LC);
1705 }
1706 
1707 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
1708   MVT VT;
1709   Type *Ty = I->getType();
1710   if (!isTypeLegal(Ty, VT))
1711     return false;
1712 
1713   // Many ABIs do not provide a libcall for standalone remainder, so we need to
1714   // use divrem (see the RTABI 4.3.1). Since FastISel can't handle non-double
1715   // multi-reg returns, we'll have to bail out.
1716   if (!TLI.hasStandaloneRem(VT)) {
1717     return false;
1718   }
1719 
1720   RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1721   if (VT == MVT::i8)
1722     LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
1723   else if (VT == MVT::i16)
1724     LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
1725   else if (VT == MVT::i32)
1726     LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
1727   else if (VT == MVT::i64)
1728     LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
1729   else if (VT == MVT::i128)
1730     LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
1731   assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1732 
1733   return ARMEmitLibcall(I, LC);
1734 }
1735 
1736 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1737   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1738 
1739   // We can get here in the case when we have a binary operation on a non-legal
1740   // type and the target independent selector doesn't know how to handle it.
1741   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1742     return false;
1743 
1744   unsigned Opc;
1745   switch (ISDOpcode) {
1746     default: return false;
1747     case ISD::ADD:
1748       Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
1749       break;
1750     case ISD::OR:
1751       Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
1752       break;
1753     case ISD::SUB:
1754       Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
1755       break;
1756   }
1757 
1758   Register SrcReg1 = getRegForValue(I->getOperand(0));
1759   if (SrcReg1 == 0) return false;
1760 
1761   // TODO: Often the 2nd operand is an immediate, which can be encoded directly
1762   // in the instruction, rather then materializing the value in a register.
1763   Register SrcReg2 = getRegForValue(I->getOperand(1));
1764   if (SrcReg2 == 0) return false;
1765 
1766   Register ResultReg = createResultReg(&ARM::GPRnopcRegClass);
1767   SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1);
1768   SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2);
1769   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1770                           TII.get(Opc), ResultReg)
1771                   .addReg(SrcReg1).addReg(SrcReg2));
1772   updateValueMap(I, ResultReg);
1773   return true;
1774 }
1775 
1776 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
1777   EVT FPVT = TLI.getValueType(DL, I->getType(), true);
1778   if (!FPVT.isSimple()) return false;
1779   MVT VT = FPVT.getSimpleVT();
1780 
1781   // FIXME: Support vector types where possible.
1782   if (VT.isVector())
1783     return false;
1784 
1785   // We can get here in the case when we want to use NEON for our fp
1786   // operations, but can't figure out how to. Just use the vfp instructions
1787   // if we have them.
1788   // FIXME: It'd be nice to use NEON instructions.
1789   Type *Ty = I->getType();
1790   if (Ty->isFloatTy() && !Subtarget->hasVFP2Base())
1791     return false;
1792   if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()))
1793     return false;
1794 
1795   unsigned Opc;
1796   bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1797   switch (ISDOpcode) {
1798     default: return false;
1799     case ISD::FADD:
1800       Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1801       break;
1802     case ISD::FSUB:
1803       Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1804       break;
1805     case ISD::FMUL:
1806       Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1807       break;
1808   }
1809   Register Op1 = getRegForValue(I->getOperand(0));
1810   if (Op1 == 0) return false;
1811 
1812   Register Op2 = getRegForValue(I->getOperand(1));
1813   if (Op2 == 0) return false;
1814 
1815   Register ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
1816   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1817                           TII.get(Opc), ResultReg)
1818                   .addReg(Op1).addReg(Op2));
1819   updateValueMap(I, ResultReg);
1820   return true;
1821 }
1822 
1823 // Call Handling Code
1824 
1825 // This is largely taken directly from CCAssignFnForNode
1826 // TODO: We may not support all of this.
1827 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC,
1828                                            bool Return,
1829                                            bool isVarArg) {
1830   switch (CC) {
1831   default:
1832     report_fatal_error("Unsupported calling convention");
1833   case CallingConv::Fast:
1834     if (Subtarget->hasVFP2Base() && !isVarArg) {
1835       if (!Subtarget->isAAPCS_ABI())
1836         return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1837       // For AAPCS ABI targets, just use VFP variant of the calling convention.
1838       return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1839     }
1840     [[fallthrough]];
1841   case CallingConv::C:
1842   case CallingConv::CXX_FAST_TLS:
1843     // Use target triple & subtarget features to do actual dispatch.
1844     if (Subtarget->isAAPCS_ABI()) {
1845       if (Subtarget->hasFPRegs() &&
1846           TM.Options.FloatABIType == FloatABI::Hard && !isVarArg)
1847         return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1848       else
1849         return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1850     } else {
1851       return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1852     }
1853   case CallingConv::ARM_AAPCS_VFP:
1854   case CallingConv::Swift:
1855   case CallingConv::SwiftTail:
1856     if (!isVarArg)
1857       return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1858     // Fall through to soft float variant, variadic functions don't
1859     // use hard floating point ABI.
1860     [[fallthrough]];
1861   case CallingConv::ARM_AAPCS:
1862     return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1863   case CallingConv::ARM_APCS:
1864     return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1865   case CallingConv::GHC:
1866     if (Return)
1867       report_fatal_error("Can't return in GHC call convention");
1868     else
1869       return CC_ARM_APCS_GHC;
1870   case CallingConv::CFGuard_Check:
1871     return (Return ? RetCC_ARM_AAPCS : CC_ARM_Win32_CFGuard_Check);
1872   }
1873 }
1874 
1875 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1876                                   SmallVectorImpl<Register> &ArgRegs,
1877                                   SmallVectorImpl<MVT> &ArgVTs,
1878                                   SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1879                                   SmallVectorImpl<Register> &RegArgs,
1880                                   CallingConv::ID CC,
1881                                   unsigned &NumBytes,
1882                                   bool isVarArg) {
1883   SmallVector<CCValAssign, 16> ArgLocs;
1884   CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context);
1885   CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
1886                              CCAssignFnForCall(CC, false, isVarArg));
1887 
1888   // Check that we can handle all of the arguments. If we can't, then bail out
1889   // now before we add code to the MBB.
1890   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1891     CCValAssign &VA = ArgLocs[i];
1892     MVT ArgVT = ArgVTs[VA.getValNo()];
1893 
1894     // We don't handle NEON/vector parameters yet.
1895     if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1896       return false;
1897 
1898     // Now copy/store arg to correct locations.
1899     if (VA.isRegLoc() && !VA.needsCustom()) {
1900       continue;
1901     } else if (VA.needsCustom()) {
1902       // TODO: We need custom lowering for vector (v2f64) args.
1903       if (VA.getLocVT() != MVT::f64 ||
1904           // TODO: Only handle register args for now.
1905           !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
1906         return false;
1907     } else {
1908       switch (ArgVT.SimpleTy) {
1909       default:
1910         return false;
1911       case MVT::i1:
1912       case MVT::i8:
1913       case MVT::i16:
1914       case MVT::i32:
1915         break;
1916       case MVT::f32:
1917         if (!Subtarget->hasVFP2Base())
1918           return false;
1919         break;
1920       case MVT::f64:
1921         if (!Subtarget->hasVFP2Base())
1922           return false;
1923         break;
1924       }
1925     }
1926   }
1927 
1928   // At the point, we are able to handle the call's arguments in fast isel.
1929 
1930   // Get a count of how many bytes are to be pushed on the stack.
1931   NumBytes = CCInfo.getStackSize();
1932 
1933   // Issue CALLSEQ_START
1934   unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1935   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1936                           TII.get(AdjStackDown))
1937                   .addImm(NumBytes).addImm(0));
1938 
1939   // Process the args.
1940   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1941     CCValAssign &VA = ArgLocs[i];
1942     const Value *ArgVal = Args[VA.getValNo()];
1943     Register Arg = ArgRegs[VA.getValNo()];
1944     MVT ArgVT = ArgVTs[VA.getValNo()];
1945 
1946     assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
1947            "We don't handle NEON/vector parameters yet.");
1948 
1949     // Handle arg promotion, etc.
1950     switch (VA.getLocInfo()) {
1951       case CCValAssign::Full: break;
1952       case CCValAssign::SExt: {
1953         MVT DestVT = VA.getLocVT();
1954         Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
1955         assert(Arg != 0 && "Failed to emit a sext");
1956         ArgVT = DestVT;
1957         break;
1958       }
1959       case CCValAssign::AExt:
1960       // Intentional fall-through.  Handle AExt and ZExt.
1961       case CCValAssign::ZExt: {
1962         MVT DestVT = VA.getLocVT();
1963         Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
1964         assert(Arg != 0 && "Failed to emit a zext");
1965         ArgVT = DestVT;
1966         break;
1967       }
1968       case CCValAssign::BCvt: {
1969         unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg);
1970         assert(BC != 0 && "Failed to emit a bitcast!");
1971         Arg = BC;
1972         ArgVT = VA.getLocVT();
1973         break;
1974       }
1975       default: llvm_unreachable("Unknown arg promotion!");
1976     }
1977 
1978     // Now copy/store arg to correct locations.
1979     if (VA.isRegLoc() && !VA.needsCustom()) {
1980       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1981               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
1982       RegArgs.push_back(VA.getLocReg());
1983     } else if (VA.needsCustom()) {
1984       // TODO: We need custom lowering for vector (v2f64) args.
1985       assert(VA.getLocVT() == MVT::f64 &&
1986              "Custom lowering for v2f64 args not available");
1987 
1988       // FIXME: ArgLocs[++i] may extend beyond ArgLocs.size()
1989       CCValAssign &NextVA = ArgLocs[++i];
1990 
1991       assert(VA.isRegLoc() && NextVA.isRegLoc() &&
1992              "We only handle register args!");
1993 
1994       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1995                               TII.get(ARM::VMOVRRD), VA.getLocReg())
1996                       .addReg(NextVA.getLocReg(), RegState::Define)
1997                       .addReg(Arg));
1998       RegArgs.push_back(VA.getLocReg());
1999       RegArgs.push_back(NextVA.getLocReg());
2000     } else {
2001       assert(VA.isMemLoc());
2002       // Need to store on the stack.
2003 
2004       // Don't emit stores for undef values.
2005       if (isa<UndefValue>(ArgVal))
2006         continue;
2007 
2008       Address Addr;
2009       Addr.BaseType = Address::RegBase;
2010       Addr.Base.Reg = ARM::SP;
2011       Addr.Offset = VA.getLocMemOffset();
2012 
2013       bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
2014       assert(EmitRet && "Could not emit a store for argument!");
2015     }
2016   }
2017 
2018   return true;
2019 }
2020 
2021 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs,
2022                              const Instruction *I, CallingConv::ID CC,
2023                              unsigned &NumBytes, bool isVarArg) {
2024   // Issue CALLSEQ_END
2025   unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
2026   AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2027                           TII.get(AdjStackUp))
2028                   .addImm(NumBytes).addImm(-1ULL));
2029 
2030   // Now the return value.
2031   if (RetVT != MVT::isVoid) {
2032     SmallVector<CCValAssign, 16> RVLocs;
2033     CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2034     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2035 
2036     // Copy all of the result registers out of their specified physreg.
2037     if (RVLocs.size() == 2 && RetVT == MVT::f64) {
2038       // For this move we copy into two registers and then move into the
2039       // double fp reg we want.
2040       MVT DestVT = RVLocs[0].getValVT();
2041       const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
2042       Register ResultReg = createResultReg(DstRC);
2043       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2044                               TII.get(ARM::VMOVDRR), ResultReg)
2045                       .addReg(RVLocs[0].getLocReg())
2046                       .addReg(RVLocs[1].getLocReg()));
2047 
2048       UsedRegs.push_back(RVLocs[0].getLocReg());
2049       UsedRegs.push_back(RVLocs[1].getLocReg());
2050 
2051       // Finally update the result.
2052       updateValueMap(I, ResultReg);
2053     } else {
2054       assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
2055       MVT CopyVT = RVLocs[0].getValVT();
2056 
2057       // Special handling for extended integers.
2058       if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
2059         CopyVT = MVT::i32;
2060 
2061       const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
2062 
2063       Register ResultReg = createResultReg(DstRC);
2064       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2065               TII.get(TargetOpcode::COPY),
2066               ResultReg).addReg(RVLocs[0].getLocReg());
2067       UsedRegs.push_back(RVLocs[0].getLocReg());
2068 
2069       // Finally update the result.
2070       updateValueMap(I, ResultReg);
2071     }
2072   }
2073 
2074   return true;
2075 }
2076 
2077 bool ARMFastISel::SelectRet(const Instruction *I) {
2078   const ReturnInst *Ret = cast<ReturnInst>(I);
2079   const Function &F = *I->getParent()->getParent();
2080   const bool IsCmseNSEntry = F.hasFnAttribute("cmse_nonsecure_entry");
2081 
2082   if (!FuncInfo.CanLowerReturn)
2083     return false;
2084 
2085   if (TLI.supportSwiftError() &&
2086       F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
2087     return false;
2088 
2089   if (TLI.supportSplitCSR(FuncInfo.MF))
2090     return false;
2091 
2092   // Build a list of return value registers.
2093   SmallVector<unsigned, 4> RetRegs;
2094 
2095   CallingConv::ID CC = F.getCallingConv();
2096   if (Ret->getNumOperands() > 0) {
2097     SmallVector<ISD::OutputArg, 4> Outs;
2098     GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
2099 
2100     // Analyze operands of the call, assigning locations to each operand.
2101     SmallVector<CCValAssign, 16> ValLocs;
2102     CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
2103     CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
2104                                                  F.isVarArg()));
2105 
2106     const Value *RV = Ret->getOperand(0);
2107     Register Reg = getRegForValue(RV);
2108     if (Reg == 0)
2109       return false;
2110 
2111     // Only handle a single return value for now.
2112     if (ValLocs.size() != 1)
2113       return false;
2114 
2115     CCValAssign &VA = ValLocs[0];
2116 
2117     // Don't bother handling odd stuff for now.
2118     if (VA.getLocInfo() != CCValAssign::Full)
2119       return false;
2120     // Only handle register returns for now.
2121     if (!VA.isRegLoc())
2122       return false;
2123 
2124     unsigned SrcReg = Reg + VA.getValNo();
2125     EVT RVEVT = TLI.getValueType(DL, RV->getType());
2126     if (!RVEVT.isSimple()) return false;
2127     MVT RVVT = RVEVT.getSimpleVT();
2128     MVT DestVT = VA.getValVT();
2129     // Special handling for extended integers.
2130     if (RVVT != DestVT) {
2131       if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
2132         return false;
2133 
2134       assert(DestVT == MVT::i32 && "ARM should always ext to i32");
2135 
2136       // Perform extension if flagged as either zext or sext.  Otherwise, do
2137       // nothing.
2138       if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
2139         SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
2140         if (SrcReg == 0) return false;
2141       }
2142     }
2143 
2144     // Make the copy.
2145     Register DstReg = VA.getLocReg();
2146     const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
2147     // Avoid a cross-class copy. This is very unlikely.
2148     if (!SrcRC->contains(DstReg))
2149       return false;
2150     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2151             TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
2152 
2153     // Add register to return instruction.
2154     RetRegs.push_back(VA.getLocReg());
2155   }
2156 
2157   unsigned RetOpc;
2158   if (IsCmseNSEntry)
2159     if (isThumb2)
2160       RetOpc = ARM::tBXNS_RET;
2161     else
2162       llvm_unreachable("CMSE not valid for non-Thumb targets");
2163   else
2164     RetOpc = Subtarget->getReturnOpcode();
2165 
2166   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2167                                     TII.get(RetOpc));
2168   AddOptionalDefs(MIB);
2169   for (unsigned R : RetRegs)
2170     MIB.addReg(R, RegState::Implicit);
2171   return true;
2172 }
2173 
2174 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) {
2175   if (UseReg)
2176     return isThumb2 ? gettBLXrOpcode(*MF) : getBLXOpcode(*MF);
2177   else
2178     return isThumb2 ? ARM::tBL : ARM::BL;
2179 }
2180 
2181 unsigned ARMFastISel::getLibcallReg(const Twine &Name) {
2182   // Manually compute the global's type to avoid building it when unnecessary.
2183   Type *GVTy = PointerType::get(*Context, /*AS=*/0);
2184   EVT LCREVT = TLI.getValueType(DL, GVTy);
2185   if (!LCREVT.isSimple()) return 0;
2186 
2187   GlobalValue *GV = M.getNamedGlobal(Name.str());
2188   if (!GV)
2189     GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false,
2190                             GlobalValue::ExternalLinkage, nullptr, Name);
2191 
2192   return ARMMaterializeGV(GV, LCREVT.getSimpleVT());
2193 }
2194 
2195 // A quick function that will emit a call for a named libcall in F with the
2196 // vector of passed arguments for the Instruction in I. We can assume that we
2197 // can emit a call for any libcall we can produce. This is an abridged version
2198 // of the full call infrastructure since we won't need to worry about things
2199 // like computed function pointers or strange arguments at call sites.
2200 // TODO: Try to unify this and the normal call bits for ARM, then try to unify
2201 // with X86.
2202 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
2203   CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
2204 
2205   // Handle *simple* calls for now.
2206   Type *RetTy = I->getType();
2207   MVT RetVT;
2208   if (RetTy->isVoidTy())
2209     RetVT = MVT::isVoid;
2210   else if (!isTypeLegal(RetTy, RetVT))
2211     return false;
2212 
2213   // Can't handle non-double multi-reg retvals.
2214   if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
2215     SmallVector<CCValAssign, 16> RVLocs;
2216     CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
2217     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
2218     if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2219       return false;
2220   }
2221 
2222   // Set up the argument vectors.
2223   SmallVector<Value*, 8> Args;
2224   SmallVector<Register, 8> ArgRegs;
2225   SmallVector<MVT, 8> ArgVTs;
2226   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2227   Args.reserve(I->getNumOperands());
2228   ArgRegs.reserve(I->getNumOperands());
2229   ArgVTs.reserve(I->getNumOperands());
2230   ArgFlags.reserve(I->getNumOperands());
2231   for (Value *Op :  I->operands()) {
2232     Register Arg = getRegForValue(Op);
2233     if (Arg == 0) return false;
2234 
2235     Type *ArgTy = Op->getType();
2236     MVT ArgVT;
2237     if (!isTypeLegal(ArgTy, ArgVT)) return false;
2238 
2239     ISD::ArgFlagsTy Flags;
2240     Flags.setOrigAlign(DL.getABITypeAlign(ArgTy));
2241 
2242     Args.push_back(Op);
2243     ArgRegs.push_back(Arg);
2244     ArgVTs.push_back(ArgVT);
2245     ArgFlags.push_back(Flags);
2246   }
2247 
2248   // Handle the arguments now that we've gotten them.
2249   SmallVector<Register, 4> RegArgs;
2250   unsigned NumBytes;
2251   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2252                        RegArgs, CC, NumBytes, false))
2253     return false;
2254 
2255   Register CalleeReg;
2256   if (Subtarget->genLongCalls()) {
2257     CalleeReg = getLibcallReg(TLI.getLibcallName(Call));
2258     if (CalleeReg == 0) return false;
2259   }
2260 
2261   // Issue the call.
2262   unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls());
2263   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2264                                     MIMD, TII.get(CallOpc));
2265   // BL / BLX don't take a predicate, but tBL / tBLX do.
2266   if (isThumb2)
2267     MIB.add(predOps(ARMCC::AL));
2268   if (Subtarget->genLongCalls()) {
2269     CalleeReg =
2270         constrainOperandRegClass(TII.get(CallOpc), CalleeReg, isThumb2 ? 2 : 0);
2271     MIB.addReg(CalleeReg);
2272   } else
2273     MIB.addExternalSymbol(TLI.getLibcallName(Call));
2274 
2275   // Add implicit physical register uses to the call.
2276   for (Register R : RegArgs)
2277     MIB.addReg(R, RegState::Implicit);
2278 
2279   // Add a register mask with the call-preserved registers.
2280   // Proper defs for return values will be added by setPhysRegsDeadExcept().
2281   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
2282 
2283   // Finish off the call including any return values.
2284   SmallVector<Register, 4> UsedRegs;
2285   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false;
2286 
2287   // Set all unused physreg defs as dead.
2288   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2289 
2290   return true;
2291 }
2292 
2293 bool ARMFastISel::SelectCall(const Instruction *I,
2294                              const char *IntrMemName = nullptr) {
2295   const CallInst *CI = cast<CallInst>(I);
2296   const Value *Callee = CI->getCalledOperand();
2297 
2298   // Can't handle inline asm.
2299   if (isa<InlineAsm>(Callee)) return false;
2300 
2301   // Allow SelectionDAG isel to handle tail calls.
2302   if (CI->isTailCall()) return false;
2303 
2304   // Check the calling convention.
2305   CallingConv::ID CC = CI->getCallingConv();
2306 
2307   // TODO: Avoid some calling conventions?
2308 
2309   FunctionType *FTy = CI->getFunctionType();
2310   bool isVarArg = FTy->isVarArg();
2311 
2312   // Handle *simple* calls for now.
2313   Type *RetTy = I->getType();
2314   MVT RetVT;
2315   if (RetTy->isVoidTy())
2316     RetVT = MVT::isVoid;
2317   else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
2318            RetVT != MVT::i8  && RetVT != MVT::i1)
2319     return false;
2320 
2321   // Can't handle non-double multi-reg retvals.
2322   if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
2323       RetVT != MVT::i16 && RetVT != MVT::i32) {
2324     SmallVector<CCValAssign, 16> RVLocs;
2325     CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2326     CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2327     if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2328       return false;
2329   }
2330 
2331   // Set up the argument vectors.
2332   SmallVector<Value*, 8> Args;
2333   SmallVector<Register, 8> ArgRegs;
2334   SmallVector<MVT, 8> ArgVTs;
2335   SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2336   unsigned arg_size = CI->arg_size();
2337   Args.reserve(arg_size);
2338   ArgRegs.reserve(arg_size);
2339   ArgVTs.reserve(arg_size);
2340   ArgFlags.reserve(arg_size);
2341   for (auto ArgI = CI->arg_begin(), ArgE = CI->arg_end(); ArgI != ArgE; ++ArgI) {
2342     // If we're lowering a memory intrinsic instead of a regular call, skip the
2343     // last argument, which shouldn't be passed to the underlying function.
2344     if (IntrMemName && ArgE - ArgI <= 1)
2345       break;
2346 
2347     ISD::ArgFlagsTy Flags;
2348     unsigned ArgIdx = ArgI - CI->arg_begin();
2349     if (CI->paramHasAttr(ArgIdx, Attribute::SExt))
2350       Flags.setSExt();
2351     if (CI->paramHasAttr(ArgIdx, Attribute::ZExt))
2352       Flags.setZExt();
2353 
2354     // FIXME: Only handle *easy* calls for now.
2355     if (CI->paramHasAttr(ArgIdx, Attribute::InReg) ||
2356         CI->paramHasAttr(ArgIdx, Attribute::StructRet) ||
2357         CI->paramHasAttr(ArgIdx, Attribute::SwiftSelf) ||
2358         CI->paramHasAttr(ArgIdx, Attribute::SwiftError) ||
2359         CI->paramHasAttr(ArgIdx, Attribute::Nest) ||
2360         CI->paramHasAttr(ArgIdx, Attribute::ByVal))
2361       return false;
2362 
2363     Type *ArgTy = (*ArgI)->getType();
2364     MVT ArgVT;
2365     if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
2366         ArgVT != MVT::i1)
2367       return false;
2368 
2369     Register Arg = getRegForValue(*ArgI);
2370     if (!Arg.isValid())
2371       return false;
2372 
2373     Flags.setOrigAlign(DL.getABITypeAlign(ArgTy));
2374 
2375     Args.push_back(*ArgI);
2376     ArgRegs.push_back(Arg);
2377     ArgVTs.push_back(ArgVT);
2378     ArgFlags.push_back(Flags);
2379   }
2380 
2381   // Handle the arguments now that we've gotten them.
2382   SmallVector<Register, 4> RegArgs;
2383   unsigned NumBytes;
2384   if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2385                        RegArgs, CC, NumBytes, isVarArg))
2386     return false;
2387 
2388   bool UseReg = false;
2389   const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
2390   if (!GV || Subtarget->genLongCalls()) UseReg = true;
2391 
2392   Register CalleeReg;
2393   if (UseReg) {
2394     if (IntrMemName)
2395       CalleeReg = getLibcallReg(IntrMemName);
2396     else
2397       CalleeReg = getRegForValue(Callee);
2398 
2399     if (CalleeReg == 0) return false;
2400   }
2401 
2402   // Issue the call.
2403   unsigned CallOpc = ARMSelectCallOp(UseReg);
2404   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2405                                     MIMD, TII.get(CallOpc));
2406 
2407   // ARM calls don't take a predicate, but tBL / tBLX do.
2408   if(isThumb2)
2409     MIB.add(predOps(ARMCC::AL));
2410   if (UseReg) {
2411     CalleeReg =
2412         constrainOperandRegClass(TII.get(CallOpc), CalleeReg, isThumb2 ? 2 : 0);
2413     MIB.addReg(CalleeReg);
2414   } else if (!IntrMemName)
2415     MIB.addGlobalAddress(GV, 0, 0);
2416   else
2417     MIB.addExternalSymbol(IntrMemName, 0);
2418 
2419   // Add implicit physical register uses to the call.
2420   for (Register R : RegArgs)
2421     MIB.addReg(R, RegState::Implicit);
2422 
2423   // Add a register mask with the call-preserved registers.
2424   // Proper defs for return values will be added by setPhysRegsDeadExcept().
2425   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
2426 
2427   // Finish off the call including any return values.
2428   SmallVector<Register, 4> UsedRegs;
2429   if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg))
2430     return false;
2431 
2432   // Set all unused physreg defs as dead.
2433   static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2434 
2435   return true;
2436 }
2437 
2438 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
2439   return Len <= 16;
2440 }
2441 
2442 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
2443                                         MaybeAlign Alignment) {
2444   // Make sure we don't bloat code by inlining very large memcpy's.
2445   if (!ARMIsMemCpySmall(Len))
2446     return false;
2447 
2448   while (Len) {
2449     MVT VT;
2450     if (!Alignment || *Alignment >= 4) {
2451       if (Len >= 4)
2452         VT = MVT::i32;
2453       else if (Len >= 2)
2454         VT = MVT::i16;
2455       else {
2456         assert(Len == 1 && "Expected a length of 1!");
2457         VT = MVT::i8;
2458       }
2459     } else {
2460       assert(Alignment && "Alignment is set in this branch");
2461       // Bound based on alignment.
2462       if (Len >= 2 && *Alignment == 2)
2463         VT = MVT::i16;
2464       else {
2465         VT = MVT::i8;
2466       }
2467     }
2468 
2469     bool RV;
2470     Register ResultReg;
2471     RV = ARMEmitLoad(VT, ResultReg, Src);
2472     assert(RV && "Should be able to handle this load.");
2473     RV = ARMEmitStore(VT, ResultReg, Dest);
2474     assert(RV && "Should be able to handle this store.");
2475     (void)RV;
2476 
2477     unsigned Size = VT.getSizeInBits()/8;
2478     Len -= Size;
2479     Dest.Offset += Size;
2480     Src.Offset += Size;
2481   }
2482 
2483   return true;
2484 }
2485 
2486 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
2487   // FIXME: Handle more intrinsics.
2488   switch (I.getIntrinsicID()) {
2489   default: return false;
2490   case Intrinsic::frameaddress: {
2491     MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
2492     MFI.setFrameAddressIsTaken(true);
2493 
2494     unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
2495     const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
2496                                              : &ARM::GPRRegClass;
2497 
2498     const ARMBaseRegisterInfo *RegInfo =
2499         static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo());
2500     Register FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
2501     unsigned SrcReg = FramePtr;
2502 
2503     // Recursively load frame address
2504     // ldr r0 [fp]
2505     // ldr r0 [r0]
2506     // ldr r0 [r0]
2507     // ...
2508     unsigned DestReg;
2509     unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
2510     while (Depth--) {
2511       DestReg = createResultReg(RC);
2512       AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2513                               TII.get(LdrOpc), DestReg)
2514                       .addReg(SrcReg).addImm(0));
2515       SrcReg = DestReg;
2516     }
2517     updateValueMap(&I, SrcReg);
2518     return true;
2519   }
2520   case Intrinsic::memcpy:
2521   case Intrinsic::memmove: {
2522     const MemTransferInst &MTI = cast<MemTransferInst>(I);
2523     // Don't handle volatile.
2524     if (MTI.isVolatile())
2525       return false;
2526 
2527     // Disable inlining for memmove before calls to ComputeAddress.  Otherwise,
2528     // we would emit dead code because we don't currently handle memmoves.
2529     bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
2530     if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
2531       // Small memcpy's are common enough that we want to do them without a call
2532       // if possible.
2533       uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
2534       if (ARMIsMemCpySmall(Len)) {
2535         Address Dest, Src;
2536         if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
2537             !ARMComputeAddress(MTI.getRawSource(), Src))
2538           return false;
2539         MaybeAlign Alignment;
2540         if (MTI.getDestAlign() || MTI.getSourceAlign())
2541           Alignment = std::min(MTI.getDestAlign().valueOrOne(),
2542                                MTI.getSourceAlign().valueOrOne());
2543         if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment))
2544           return true;
2545       }
2546     }
2547 
2548     if (!MTI.getLength()->getType()->isIntegerTy(32))
2549       return false;
2550 
2551     if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
2552       return false;
2553 
2554     const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
2555     return SelectCall(&I, IntrMemName);
2556   }
2557   case Intrinsic::memset: {
2558     const MemSetInst &MSI = cast<MemSetInst>(I);
2559     // Don't handle volatile.
2560     if (MSI.isVolatile())
2561       return false;
2562 
2563     if (!MSI.getLength()->getType()->isIntegerTy(32))
2564       return false;
2565 
2566     if (MSI.getDestAddressSpace() > 255)
2567       return false;
2568 
2569     return SelectCall(&I, "memset");
2570   }
2571   case Intrinsic::trap: {
2572     unsigned Opcode;
2573     if (Subtarget->isThumb())
2574       Opcode = ARM::tTRAP;
2575     else
2576       Opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
2577     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opcode));
2578     return true;
2579   }
2580   }
2581 }
2582 
2583 bool ARMFastISel::SelectTrunc(const Instruction *I) {
2584   // The high bits for a type smaller than the register size are assumed to be
2585   // undefined.
2586   Value *Op = I->getOperand(0);
2587 
2588   EVT SrcVT, DestVT;
2589   SrcVT = TLI.getValueType(DL, Op->getType(), true);
2590   DestVT = TLI.getValueType(DL, I->getType(), true);
2591 
2592   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2593     return false;
2594   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2595     return false;
2596 
2597   Register SrcReg = getRegForValue(Op);
2598   if (!SrcReg) return false;
2599 
2600   // Because the high bits are undefined, a truncate doesn't generate
2601   // any code.
2602   updateValueMap(I, SrcReg);
2603   return true;
2604 }
2605 
2606 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
2607                                     bool isZExt) {
2608   if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2609     return 0;
2610   if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1)
2611     return 0;
2612 
2613   // Table of which combinations can be emitted as a single instruction,
2614   // and which will require two.
2615   static const uint8_t isSingleInstrTbl[3][2][2][2] = {
2616     //            ARM                     Thumb
2617     //           !hasV6Ops  hasV6Ops     !hasV6Ops  hasV6Ops
2618     //    ext:     s  z      s  z          s  z      s  z
2619     /*  1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } },
2620     /*  8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } },
2621     /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }
2622   };
2623 
2624   // Target registers for:
2625   //  - For ARM can never be PC.
2626   //  - For 16-bit Thumb are restricted to lower 8 registers.
2627   //  - For 32-bit Thumb are restricted to non-SP and non-PC.
2628   static const TargetRegisterClass *RCTbl[2][2] = {
2629     // Instructions: Two                     Single
2630     /* ARM      */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass },
2631     /* Thumb    */ { &ARM::tGPRRegClass,    &ARM::rGPRRegClass    }
2632   };
2633 
2634   // Table governing the instruction(s) to be emitted.
2635   static const struct InstructionTable {
2636     uint32_t Opc   : 16;
2637     uint32_t hasS  :  1; // Some instructions have an S bit, always set it to 0.
2638     uint32_t Shift :  7; // For shift operand addressing mode, used by MOVsi.
2639     uint32_t Imm   :  8; // All instructions have either a shift or a mask.
2640   } IT[2][2][3][2] = {
2641     { // Two instructions (first is left shift, second is in this table).
2642       { // ARM                Opc           S  Shift             Imm
2643         /*  1 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  31 },
2644         /*  1 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  31 } },
2645         /*  8 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  24 },
2646         /*  8 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  24 } },
2647         /* 16 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  16 },
2648         /* 16 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  16 } }
2649       },
2650       { // Thumb              Opc           S  Shift             Imm
2651         /*  1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  31 },
2652         /*  1 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  31 } },
2653         /*  8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  24 },
2654         /*  8 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  24 } },
2655         /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  16 },
2656         /* 16 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  16 } }
2657       }
2658     },
2659     { // Single instruction.
2660       { // ARM                Opc           S  Shift             Imm
2661         /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
2662         /*  1 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift,   1 } },
2663         /*  8 bit sext */ { { ARM::SXTB   , 0, ARM_AM::no_shift,   0 },
2664         /*  8 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift, 255 } },
2665         /* 16 bit sext */ { { ARM::SXTH   , 0, ARM_AM::no_shift,   0 },
2666         /* 16 bit zext */   { ARM::UXTH   , 0, ARM_AM::no_shift,   0 } }
2667       },
2668       { // Thumb              Opc           S  Shift             Imm
2669         /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 },
2670         /*  1 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift,   1 } },
2671         /*  8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift,   0 },
2672         /*  8 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } },
2673         /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift,   0 },
2674         /* 16 bit zext */   { ARM::t2UXTH , 0, ARM_AM::no_shift,   0 } }
2675       }
2676     }
2677   };
2678 
2679   unsigned SrcBits = SrcVT.getSizeInBits();
2680   unsigned DestBits = DestVT.getSizeInBits();
2681   (void) DestBits;
2682   assert((SrcBits < DestBits) && "can only extend to larger types");
2683   assert((DestBits == 32 || DestBits == 16 || DestBits == 8) &&
2684          "other sizes unimplemented");
2685   assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) &&
2686          "other sizes unimplemented");
2687 
2688   bool hasV6Ops = Subtarget->hasV6Ops();
2689   unsigned Bitness = SrcBits / 8;  // {1,8,16}=>{0,1,2}
2690   assert((Bitness < 3) && "sanity-check table bounds");
2691 
2692   bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt];
2693   const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr];
2694   const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt];
2695   unsigned Opc = ITP->Opc;
2696   assert(ARM::KILL != Opc && "Invalid table entry");
2697   unsigned hasS = ITP->hasS;
2698   ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift;
2699   assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) &&
2700          "only MOVsi has shift operand addressing mode");
2701   unsigned Imm = ITP->Imm;
2702 
2703   // 16-bit Thumb instructions always set CPSR (unless they're in an IT block).
2704   bool setsCPSR = &ARM::tGPRRegClass == RC;
2705   unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi;
2706   unsigned ResultReg;
2707   // MOVsi encodes shift and immediate in shift operand addressing mode.
2708   // The following condition has the same value when emitting two
2709   // instruction sequences: both are shifts.
2710   bool ImmIsSO = (Shift != ARM_AM::no_shift);
2711 
2712   // Either one or two instructions are emitted.
2713   // They're always of the form:
2714   //   dst = in OP imm
2715   // CPSR is set only by 16-bit Thumb instructions.
2716   // Predicate, if any, is AL.
2717   // S bit, if available, is always 0.
2718   // When two are emitted the first's result will feed as the second's input,
2719   // that value is then dead.
2720   unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2;
2721   for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) {
2722     ResultReg = createResultReg(RC);
2723     bool isLsl = (0 == Instr) && !isSingleInstr;
2724     unsigned Opcode = isLsl ? LSLOpc : Opc;
2725     ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift;
2726     unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm;
2727     bool isKill = 1 == Instr;
2728     MachineInstrBuilder MIB = BuildMI(
2729         *FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opcode), ResultReg);
2730     if (setsCPSR)
2731       MIB.addReg(ARM::CPSR, RegState::Define);
2732     SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR);
2733     MIB.addReg(SrcReg, isKill * RegState::Kill)
2734         .addImm(ImmEnc)
2735         .add(predOps(ARMCC::AL));
2736     if (hasS)
2737       MIB.add(condCodeOp());
2738     // Second instruction consumes the first's result.
2739     SrcReg = ResultReg;
2740   }
2741 
2742   return ResultReg;
2743 }
2744 
2745 bool ARMFastISel::SelectIntExt(const Instruction *I) {
2746   // On ARM, in general, integer casts don't involve legal types; this code
2747   // handles promotable integers.
2748   Type *DestTy = I->getType();
2749   Value *Src = I->getOperand(0);
2750   Type *SrcTy = Src->getType();
2751 
2752   bool isZExt = isa<ZExtInst>(I);
2753   Register SrcReg = getRegForValue(Src);
2754   if (!SrcReg) return false;
2755 
2756   EVT SrcEVT, DestEVT;
2757   SrcEVT = TLI.getValueType(DL, SrcTy, true);
2758   DestEVT = TLI.getValueType(DL, DestTy, true);
2759   if (!SrcEVT.isSimple()) return false;
2760   if (!DestEVT.isSimple()) return false;
2761 
2762   MVT SrcVT = SrcEVT.getSimpleVT();
2763   MVT DestVT = DestEVT.getSimpleVT();
2764   unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2765   if (ResultReg == 0) return false;
2766   updateValueMap(I, ResultReg);
2767   return true;
2768 }
2769 
2770 bool ARMFastISel::SelectShift(const Instruction *I,
2771                               ARM_AM::ShiftOpc ShiftTy) {
2772   // We handle thumb2 mode by target independent selector
2773   // or SelectionDAG ISel.
2774   if (isThumb2)
2775     return false;
2776 
2777   // Only handle i32 now.
2778   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
2779   if (DestVT != MVT::i32)
2780     return false;
2781 
2782   unsigned Opc = ARM::MOVsr;
2783   unsigned ShiftImm;
2784   Value *Src2Value = I->getOperand(1);
2785   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) {
2786     ShiftImm = CI->getZExtValue();
2787 
2788     // Fall back to selection DAG isel if the shift amount
2789     // is zero or greater than the width of the value type.
2790     if (ShiftImm == 0 || ShiftImm >=32)
2791       return false;
2792 
2793     Opc = ARM::MOVsi;
2794   }
2795 
2796   Value *Src1Value = I->getOperand(0);
2797   Register Reg1 = getRegForValue(Src1Value);
2798   if (Reg1 == 0) return false;
2799 
2800   unsigned Reg2 = 0;
2801   if (Opc == ARM::MOVsr) {
2802     Reg2 = getRegForValue(Src2Value);
2803     if (Reg2 == 0) return false;
2804   }
2805 
2806   Register ResultReg = createResultReg(&ARM::GPRnopcRegClass);
2807   if(ResultReg == 0) return false;
2808 
2809   MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2810                                     TII.get(Opc), ResultReg)
2811                             .addReg(Reg1);
2812 
2813   if (Opc == ARM::MOVsi)
2814     MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm));
2815   else if (Opc == ARM::MOVsr) {
2816     MIB.addReg(Reg2);
2817     MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0));
2818   }
2819 
2820   AddOptionalDefs(MIB);
2821   updateValueMap(I, ResultReg);
2822   return true;
2823 }
2824 
2825 // TODO: SoftFP support.
2826 bool ARMFastISel::fastSelectInstruction(const Instruction *I) {
2827   switch (I->getOpcode()) {
2828     case Instruction::Load:
2829       return SelectLoad(I);
2830     case Instruction::Store:
2831       return SelectStore(I);
2832     case Instruction::Br:
2833       return SelectBranch(I);
2834     case Instruction::IndirectBr:
2835       return SelectIndirectBr(I);
2836     case Instruction::ICmp:
2837     case Instruction::FCmp:
2838       return SelectCmp(I);
2839     case Instruction::FPExt:
2840       return SelectFPExt(I);
2841     case Instruction::FPTrunc:
2842       return SelectFPTrunc(I);
2843     case Instruction::SIToFP:
2844       return SelectIToFP(I, /*isSigned*/ true);
2845     case Instruction::UIToFP:
2846       return SelectIToFP(I, /*isSigned*/ false);
2847     case Instruction::FPToSI:
2848       return SelectFPToI(I, /*isSigned*/ true);
2849     case Instruction::FPToUI:
2850       return SelectFPToI(I, /*isSigned*/ false);
2851     case Instruction::Add:
2852       return SelectBinaryIntOp(I, ISD::ADD);
2853     case Instruction::Or:
2854       return SelectBinaryIntOp(I, ISD::OR);
2855     case Instruction::Sub:
2856       return SelectBinaryIntOp(I, ISD::SUB);
2857     case Instruction::FAdd:
2858       return SelectBinaryFPOp(I, ISD::FADD);
2859     case Instruction::FSub:
2860       return SelectBinaryFPOp(I, ISD::FSUB);
2861     case Instruction::FMul:
2862       return SelectBinaryFPOp(I, ISD::FMUL);
2863     case Instruction::SDiv:
2864       return SelectDiv(I, /*isSigned*/ true);
2865     case Instruction::UDiv:
2866       return SelectDiv(I, /*isSigned*/ false);
2867     case Instruction::SRem:
2868       return SelectRem(I, /*isSigned*/ true);
2869     case Instruction::URem:
2870       return SelectRem(I, /*isSigned*/ false);
2871     case Instruction::Call:
2872       if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2873         return SelectIntrinsicCall(*II);
2874       return SelectCall(I);
2875     case Instruction::Select:
2876       return SelectSelect(I);
2877     case Instruction::Ret:
2878       return SelectRet(I);
2879     case Instruction::Trunc:
2880       return SelectTrunc(I);
2881     case Instruction::ZExt:
2882     case Instruction::SExt:
2883       return SelectIntExt(I);
2884     case Instruction::Shl:
2885       return SelectShift(I, ARM_AM::lsl);
2886     case Instruction::LShr:
2887       return SelectShift(I, ARM_AM::lsr);
2888     case Instruction::AShr:
2889       return SelectShift(I, ARM_AM::asr);
2890     default: break;
2891   }
2892   return false;
2893 }
2894 
2895 // This table describes sign- and zero-extend instructions which can be
2896 // folded into a preceding load. All of these extends have an immediate
2897 // (sometimes a mask and sometimes a shift) that's applied after
2898 // extension.
2899 static const struct FoldableLoadExtendsStruct {
2900   uint16_t Opc[2];  // ARM, Thumb.
2901   uint8_t ExpectedImm;
2902   uint8_t isZExt     : 1;
2903   uint8_t ExpectedVT : 7;
2904 } FoldableLoadExtends[] = {
2905   { { ARM::SXTH,  ARM::t2SXTH  },   0, 0, MVT::i16 },
2906   { { ARM::UXTH,  ARM::t2UXTH  },   0, 1, MVT::i16 },
2907   { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8  },
2908   { { ARM::SXTB,  ARM::t2SXTB  },   0, 0, MVT::i8  },
2909   { { ARM::UXTB,  ARM::t2UXTB  },   0, 1, MVT::i8  }
2910 };
2911 
2912 /// The specified machine instr operand is a vreg, and that
2913 /// vreg is being provided by the specified load instruction.  If possible,
2914 /// try to fold the load as an operand to the instruction, returning true if
2915 /// successful.
2916 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2917                                       const LoadInst *LI) {
2918   // Verify we have a legal type before going any further.
2919   MVT VT;
2920   if (!isLoadTypeLegal(LI->getType(), VT))
2921     return false;
2922 
2923   // Combine load followed by zero- or sign-extend.
2924   // ldrb r1, [r0]       ldrb r1, [r0]
2925   // uxtb r2, r1     =>
2926   // mov  r3, r2         mov  r3, r1
2927   if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm())
2928     return false;
2929   const uint64_t Imm = MI->getOperand(2).getImm();
2930 
2931   bool Found = false;
2932   bool isZExt;
2933   for (const FoldableLoadExtendsStruct &FLE : FoldableLoadExtends) {
2934     if (FLE.Opc[isThumb2] == MI->getOpcode() &&
2935         (uint64_t)FLE.ExpectedImm == Imm &&
2936         MVT((MVT::SimpleValueType)FLE.ExpectedVT) == VT) {
2937       Found = true;
2938       isZExt = FLE.isZExt;
2939     }
2940   }
2941   if (!Found) return false;
2942 
2943   // See if we can handle this address.
2944   Address Addr;
2945   if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
2946 
2947   Register ResultReg = MI->getOperand(0).getReg();
2948   if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlign(), isZExt, false))
2949     return false;
2950   MachineBasicBlock::iterator I(MI);
2951   removeDeadCode(I, std::next(I));
2952   return true;
2953 }
2954 
2955 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV, MVT VT) {
2956   bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
2957 
2958   LLVMContext *Context = &MF->getFunction().getContext();
2959   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2960   unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2961   ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
2962       GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj,
2963       UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier,
2964       /*AddCurrentAddress=*/UseGOT_PREL);
2965 
2966   Align ConstAlign =
2967       MF->getDataLayout().getPrefTypeAlign(PointerType::get(*Context, 0));
2968   unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign);
2969   MachineMemOperand *CPMMO =
2970       MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
2971                                MachineMemOperand::MOLoad, 4, Align(4));
2972 
2973   Register TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass);
2974   unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp;
2975   MachineInstrBuilder MIB =
2976       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), TempReg)
2977           .addConstantPoolIndex(Idx)
2978           .addMemOperand(CPMMO);
2979   if (Opc == ARM::LDRcp)
2980     MIB.addImm(0);
2981   MIB.add(predOps(ARMCC::AL));
2982 
2983   // Fix the address by adding pc.
2984   Register DestReg = createResultReg(TLI.getRegClassFor(VT));
2985   Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR
2986                                                           : ARM::PICADD;
2987   DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0);
2988   MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg)
2989             .addReg(TempReg)
2990             .addImm(ARMPCLabelIndex);
2991 
2992   if (!Subtarget->isThumb())
2993     MIB.add(predOps(ARMCC::AL));
2994 
2995   if (UseGOT_PREL && Subtarget->isThumb()) {
2996     Register NewDestReg = createResultReg(TLI.getRegClassFor(VT));
2997     MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2998                   TII.get(ARM::t2LDRi12), NewDestReg)
2999               .addReg(DestReg)
3000               .addImm(0);
3001     DestReg = NewDestReg;
3002     AddOptionalDefs(MIB);
3003   }
3004   return DestReg;
3005 }
3006 
3007 bool ARMFastISel::fastLowerArguments() {
3008   if (!FuncInfo.CanLowerReturn)
3009     return false;
3010 
3011   const Function *F = FuncInfo.Fn;
3012   if (F->isVarArg())
3013     return false;
3014 
3015   CallingConv::ID CC = F->getCallingConv();
3016   switch (CC) {
3017   default:
3018     return false;
3019   case CallingConv::Fast:
3020   case CallingConv::C:
3021   case CallingConv::ARM_AAPCS_VFP:
3022   case CallingConv::ARM_AAPCS:
3023   case CallingConv::ARM_APCS:
3024   case CallingConv::Swift:
3025   case CallingConv::SwiftTail:
3026     break;
3027   }
3028 
3029   // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments
3030   // which are passed in r0 - r3.
3031   for (const Argument &Arg : F->args()) {
3032     if (Arg.getArgNo() >= 4)
3033       return false;
3034 
3035     if (Arg.hasAttribute(Attribute::InReg) ||
3036         Arg.hasAttribute(Attribute::StructRet) ||
3037         Arg.hasAttribute(Attribute::SwiftSelf) ||
3038         Arg.hasAttribute(Attribute::SwiftError) ||
3039         Arg.hasAttribute(Attribute::ByVal))
3040       return false;
3041 
3042     Type *ArgTy = Arg.getType();
3043     if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3044       return false;
3045 
3046     EVT ArgVT = TLI.getValueType(DL, ArgTy);
3047     if (!ArgVT.isSimple()) return false;
3048     switch (ArgVT.getSimpleVT().SimpleTy) {
3049     case MVT::i8:
3050     case MVT::i16:
3051     case MVT::i32:
3052       break;
3053     default:
3054       return false;
3055     }
3056   }
3057 
3058   static const MCPhysReg GPRArgRegs[] = {
3059     ARM::R0, ARM::R1, ARM::R2, ARM::R3
3060   };
3061 
3062   const TargetRegisterClass *RC = &ARM::rGPRRegClass;
3063   for (const Argument &Arg : F->args()) {
3064     unsigned ArgNo = Arg.getArgNo();
3065     unsigned SrcReg = GPRArgRegs[ArgNo];
3066     Register DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3067     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3068     // Without this, EmitLiveInCopies may eliminate the livein if its only
3069     // use is a bitcast (which isn't turned into an instruction).
3070     Register ResultReg = createResultReg(RC);
3071     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3072             TII.get(TargetOpcode::COPY),
3073             ResultReg).addReg(DstReg, getKillRegState(true));
3074     updateValueMap(&Arg, ResultReg);
3075   }
3076 
3077   return true;
3078 }
3079 
3080 namespace llvm {
3081 
3082   FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo,
3083                                 const TargetLibraryInfo *libInfo) {
3084     if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel())
3085       return new ARMFastISel(funcInfo, libInfo);
3086 
3087     return nullptr;
3088   }
3089 
3090 } // end namespace llvm
3091