1 //===- ARMConstantIslandPass.cpp - ARM constant islands -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass that splits the constant pool up into 'islands' 10 // which are scattered through-out the function. This is required due to the 11 // limited pc-relative displacements that ARM has. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARM.h" 16 #include "ARMBaseInstrInfo.h" 17 #include "ARMBasicBlockInfo.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMBaseInfo.h" 21 #include "MVETailPredUtils.h" 22 #include "Thumb2InstrInfo.h" 23 #include "Utils/ARMBaseInfo.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/SmallSet.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/Statistic.h" 29 #include "llvm/ADT/StringRef.h" 30 #include "llvm/CodeGen/LivePhysRegs.h" 31 #include "llvm/CodeGen/MachineBasicBlock.h" 32 #include "llvm/CodeGen/MachineConstantPool.h" 33 #include "llvm/CodeGen/MachineDominators.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineJumpTableInfo.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/MachineRegisterInfo.h" 40 #include "llvm/Config/llvm-config.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugLoc.h" 43 #include "llvm/MC/MCInstrDesc.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/Format.h" 50 #include "llvm/Support/MathExtras.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstdint> 55 #include <iterator> 56 #include <utility> 57 #include <vector> 58 59 using namespace llvm; 60 61 #define DEBUG_TYPE "arm-cp-islands" 62 63 #define ARM_CP_ISLANDS_OPT_NAME \ 64 "ARM constant island placement and branch shortening pass" 65 STATISTIC(NumCPEs, "Number of constpool entries"); 66 STATISTIC(NumSplit, "Number of uncond branches inserted"); 67 STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 68 STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 69 STATISTIC(NumTBs, "Number of table branches generated"); 70 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 71 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 72 STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 73 STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 74 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 75 STATISTIC(NumLEInserted, "Number of LE backwards branches inserted"); 76 77 static cl::opt<bool> 78 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 79 cl::desc("Adjust basic block layout to better use TB[BH]")); 80 81 static cl::opt<unsigned> 82 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30), 83 cl::desc("The max number of iteration for converge")); 84 85 static cl::opt<bool> SynthesizeThumb1TBB( 86 "arm-synthesize-thumb-1-tbb", cl::Hidden, cl::init(true), 87 cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an " 88 "equivalent to the TBB/TBH instructions")); 89 90 namespace { 91 92 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 93 /// requires constant pool entries to be scattered among the instructions 94 /// inside a function. To do this, it completely ignores the normal LLVM 95 /// constant pool; instead, it places constants wherever it feels like with 96 /// special instructions. 97 /// 98 /// The terminology used in this pass includes: 99 /// Islands - Clumps of constants placed in the function. 100 /// Water - Potential places where an island could be formed. 101 /// CPE - A constant pool entry that has been placed somewhere, which 102 /// tracks a list of users. 103 class ARMConstantIslands : public MachineFunctionPass { 104 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 105 106 /// WaterList - A sorted list of basic blocks where islands could be placed 107 /// (i.e. blocks that don't fall through to the following block, due 108 /// to a return, unreachable, or unconditional branch). 109 std::vector<MachineBasicBlock*> WaterList; 110 111 /// NewWaterList - The subset of WaterList that was created since the 112 /// previous iteration by inserting unconditional branches. 113 SmallSet<MachineBasicBlock*, 4> NewWaterList; 114 115 using water_iterator = std::vector<MachineBasicBlock *>::iterator; 116 117 /// CPUser - One user of a constant pool, keeping the machine instruction 118 /// pointer, the constant pool being referenced, and the max displacement 119 /// allowed from the instruction to the CP. The HighWaterMark records the 120 /// highest basic block where a new CPEntry can be placed. To ensure this 121 /// pass terminates, the CP entries are initially placed at the end of the 122 /// function and then move monotonically to lower addresses. The 123 /// exception to this rule is when the current CP entry for a particular 124 /// CPUser is out of range, but there is another CP entry for the same 125 /// constant value in range. We want to use the existing in-range CP 126 /// entry, but if it later moves out of range, the search for new water 127 /// should resume where it left off. The HighWaterMark is used to record 128 /// that point. 129 struct CPUser { 130 MachineInstr *MI; 131 MachineInstr *CPEMI; 132 MachineBasicBlock *HighWaterMark; 133 unsigned MaxDisp; 134 bool NegOk; 135 bool IsSoImm; 136 bool KnownAlignment = false; 137 138 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 139 bool neg, bool soimm) 140 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) { 141 HighWaterMark = CPEMI->getParent(); 142 } 143 144 /// getMaxDisp - Returns the maximum displacement supported by MI. 145 /// Correct for unknown alignment. 146 /// Conservatively subtract 2 bytes to handle weird alignment effects. 147 unsigned getMaxDisp() const { 148 return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2; 149 } 150 }; 151 152 /// CPUsers - Keep track of all of the machine instructions that use various 153 /// constant pools and their max displacement. 154 std::vector<CPUser> CPUsers; 155 156 /// CPEntry - One per constant pool entry, keeping the machine instruction 157 /// pointer, the constpool index, and the number of CPUser's which 158 /// reference this entry. 159 struct CPEntry { 160 MachineInstr *CPEMI; 161 unsigned CPI; 162 unsigned RefCount; 163 164 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 165 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 166 }; 167 168 /// CPEntries - Keep track of all of the constant pool entry machine 169 /// instructions. For each original constpool index (i.e. those that existed 170 /// upon entry to this pass), it keeps a vector of entries. Original 171 /// elements are cloned as we go along; the clones are put in the vector of 172 /// the original element, but have distinct CPIs. 173 /// 174 /// The first half of CPEntries contains generic constants, the second half 175 /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up 176 /// which vector it will be in here. 177 std::vector<std::vector<CPEntry>> CPEntries; 178 179 /// Maps a JT index to the offset in CPEntries containing copies of that 180 /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity. 181 DenseMap<int, int> JumpTableEntryIndices; 182 183 /// Maps a JT index to the LEA that actually uses the index to calculate its 184 /// base address. 185 DenseMap<int, int> JumpTableUserIndices; 186 187 // Maps a MachineBasicBlock to the number of jump tables entries. 188 DenseMap<const MachineBasicBlock *, int> BlockJumpTableRefCount; 189 190 /// ImmBranch - One per immediate branch, keeping the machine instruction 191 /// pointer, conditional or unconditional, the max displacement, 192 /// and (if isCond is true) the corresponding unconditional branch 193 /// opcode. 194 struct ImmBranch { 195 MachineInstr *MI; 196 unsigned MaxDisp : 31; 197 bool isCond : 1; 198 unsigned UncondBr; 199 200 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr) 201 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 202 }; 203 204 /// ImmBranches - Keep track of all the immediate branch instructions. 205 std::vector<ImmBranch> ImmBranches; 206 207 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 208 SmallVector<MachineInstr*, 4> PushPopMIs; 209 210 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 211 SmallVector<MachineInstr*, 4> T2JumpTables; 212 213 MachineFunction *MF; 214 MachineConstantPool *MCP; 215 const ARMBaseInstrInfo *TII; 216 const ARMSubtarget *STI; 217 ARMFunctionInfo *AFI; 218 MachineDominatorTree *DT = nullptr; 219 bool isThumb; 220 bool isThumb1; 221 bool isThumb2; 222 bool isPositionIndependentOrROPI; 223 224 public: 225 static char ID; 226 227 ARMConstantIslands() : MachineFunctionPass(ID) {} 228 229 bool runOnMachineFunction(MachineFunction &MF) override; 230 231 void getAnalysisUsage(AnalysisUsage &AU) const override { 232 AU.addRequired<MachineDominatorTreeWrapperPass>(); 233 MachineFunctionPass::getAnalysisUsage(AU); 234 } 235 236 MachineFunctionProperties getRequiredProperties() const override { 237 return MachineFunctionProperties().set( 238 MachineFunctionProperties::Property::NoVRegs); 239 } 240 241 StringRef getPassName() const override { 242 return ARM_CP_ISLANDS_OPT_NAME; 243 } 244 245 private: 246 void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs); 247 void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs); 248 bool BBHasFallthrough(MachineBasicBlock *MBB); 249 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 250 Align getCPEAlign(const MachineInstr *CPEMI); 251 void scanFunctionJumpTables(); 252 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); 253 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI); 254 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); 255 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); 256 unsigned getCombinedIndex(const MachineInstr *CPEMI); 257 int findInRangeCPEntry(CPUser& U, unsigned UserOffset); 258 bool findAvailableWater(CPUser&U, unsigned UserOffset, 259 water_iterator &WaterIter, bool CloserWater); 260 void createNewWater(unsigned CPUserIndex, unsigned UserOffset, 261 MachineBasicBlock *&NewMBB); 262 bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater); 263 void removeDeadCPEMI(MachineInstr *CPEMI); 264 bool removeUnusedCPEntries(); 265 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 266 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 267 bool DoDump = false); 268 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, 269 CPUser &U, unsigned &Growth); 270 bool fixupImmediateBr(ImmBranch &Br); 271 bool fixupConditionalBr(ImmBranch &Br); 272 bool fixupUnconditionalBr(ImmBranch &Br); 273 bool optimizeThumb2Instructions(); 274 bool optimizeThumb2Branches(); 275 bool reorderThumb2JumpTables(); 276 bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI, 277 unsigned &DeadSize, bool &CanDeleteLEA, 278 bool &BaseRegKill); 279 bool optimizeThumb2JumpTables(); 280 MachineBasicBlock *adjustJTTargetBlockForward(unsigned JTI, 281 MachineBasicBlock *BB, 282 MachineBasicBlock *JTBB); 283 284 unsigned getUserOffset(CPUser&) const; 285 void dumpBBs(); 286 void verify(); 287 288 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 289 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 290 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 291 const CPUser &U) { 292 return isOffsetInRange(UserOffset, TrialOffset, 293 U.getMaxDisp(), U.NegOk, U.IsSoImm); 294 } 295 }; 296 297 } // end anonymous namespace 298 299 char ARMConstantIslands::ID = 0; 300 301 /// verify - check BBOffsets, BBSizes, alignment of islands 302 void ARMConstantIslands::verify() { 303 #ifndef NDEBUG 304 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 305 assert(is_sorted(*MF, [&BBInfo](const MachineBasicBlock &LHS, 306 const MachineBasicBlock &RHS) { 307 return BBInfo[LHS.getNumber()].postOffset() < 308 BBInfo[RHS.getNumber()].postOffset(); 309 })); 310 LLVM_DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n"); 311 for (CPUser &U : CPUsers) { 312 unsigned UserOffset = getUserOffset(U); 313 // Verify offset using the real max displacement without the safety 314 // adjustment. 315 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk, 316 /* DoDump = */ true)) { 317 LLVM_DEBUG(dbgs() << "OK\n"); 318 continue; 319 } 320 LLVM_DEBUG(dbgs() << "Out of range.\n"); 321 dumpBBs(); 322 LLVM_DEBUG(MF->dump()); 323 llvm_unreachable("Constant pool entry out of range!"); 324 } 325 #endif 326 } 327 328 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 329 /// print block size and offset information - debugging 330 LLVM_DUMP_METHOD void ARMConstantIslands::dumpBBs() { 331 LLVM_DEBUG({ 332 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 333 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { 334 const BasicBlockInfo &BBI = BBInfo[J]; 335 dbgs() << format("%08x %bb.%u\t", BBI.Offset, J) 336 << " kb=" << unsigned(BBI.KnownBits) 337 << " ua=" << unsigned(BBI.Unalign) << " pa=" << Log2(BBI.PostAlign) 338 << format(" size=%#x\n", BBInfo[J].Size); 339 } 340 }); 341 } 342 #endif 343 344 // Align blocks where the previous block does not fall through. This may add 345 // extra NOP's but they will not be executed. It uses the PrefLoopAlignment as a 346 // measure of how much to align, and only runs at CodeGenOptLevel::Aggressive. 347 static bool AlignBlocks(MachineFunction *MF, const ARMSubtarget *STI) { 348 if (MF->getTarget().getOptLevel() != CodeGenOptLevel::Aggressive || 349 MF->getFunction().hasOptSize()) 350 return false; 351 352 auto *TLI = STI->getTargetLowering(); 353 const Align Alignment = TLI->getPrefLoopAlignment(); 354 if (Alignment < 4) 355 return false; 356 357 bool Changed = false; 358 bool PrevCanFallthough = true; 359 for (auto &MBB : *MF) { 360 if (!PrevCanFallthough) { 361 Changed = true; 362 MBB.setAlignment(Alignment); 363 } 364 365 PrevCanFallthough = MBB.canFallThrough(); 366 367 // For LOB's, the ARMLowOverheadLoops pass may remove the unconditional 368 // branch later in the pipeline. 369 if (STI->hasLOB()) { 370 for (const auto &MI : reverse(MBB.terminators())) { 371 if (MI.getOpcode() == ARM::t2B && 372 MI.getOperand(0).getMBB() == MBB.getNextNode()) 373 continue; 374 if (isLoopStart(MI) || MI.getOpcode() == ARM::t2LoopEnd || 375 MI.getOpcode() == ARM::t2LoopEndDec) { 376 PrevCanFallthough = true; 377 break; 378 } 379 // Any other terminator - nothing to do 380 break; 381 } 382 } 383 } 384 385 return Changed; 386 } 387 388 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) { 389 MF = &mf; 390 MCP = mf.getConstantPool(); 391 BBUtils = std::make_unique<ARMBasicBlockUtils>(mf); 392 393 LLVM_DEBUG(dbgs() << "***** ARMConstantIslands: " 394 << MCP->getConstants().size() << " CP entries, aligned to " 395 << MCP->getConstantPoolAlign().value() << " bytes *****\n"); 396 397 STI = &MF->getSubtarget<ARMSubtarget>(); 398 TII = STI->getInstrInfo(); 399 isPositionIndependentOrROPI = 400 STI->getTargetLowering()->isPositionIndependent() || STI->isROPI(); 401 AFI = MF->getInfo<ARMFunctionInfo>(); 402 DT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 403 404 isThumb = AFI->isThumbFunction(); 405 isThumb1 = AFI->isThumb1OnlyFunction(); 406 isThumb2 = AFI->isThumb2Function(); 407 408 bool GenerateTBB = isThumb2 || (isThumb1 && SynthesizeThumb1TBB); 409 // TBB generation code in this constant island pass has not been adapted to 410 // deal with speculation barriers. 411 if (STI->hardenSlsRetBr()) 412 GenerateTBB = false; 413 414 // Renumber all of the machine basic blocks in the function, guaranteeing that 415 // the numbers agree with the position of the block in the function. 416 MF->RenumberBlocks(); 417 418 // Try to reorder and otherwise adjust the block layout to make good use 419 // of the TB[BH] instructions. 420 bool MadeChange = false; 421 if (GenerateTBB && AdjustJumpTableBlocks) { 422 scanFunctionJumpTables(); 423 MadeChange |= reorderThumb2JumpTables(); 424 // Data is out of date, so clear it. It'll be re-computed later. 425 T2JumpTables.clear(); 426 // Blocks may have shifted around. Keep the numbering up to date. 427 MF->RenumberBlocks(); 428 } 429 430 // Align any non-fallthrough blocks 431 MadeChange |= AlignBlocks(MF, STI); 432 433 // Perform the initial placement of the constant pool entries. To start with, 434 // we put them all at the end of the function. 435 std::vector<MachineInstr*> CPEMIs; 436 if (!MCP->isEmpty()) 437 doInitialConstPlacement(CPEMIs); 438 439 if (MF->getJumpTableInfo()) 440 doInitialJumpTablePlacement(CPEMIs); 441 442 /// The next UID to take is the first unused one. 443 AFI->initPICLabelUId(CPEMIs.size()); 444 445 // Do the initial scan of the function, building up information about the 446 // sizes of each block, the location of all the water, and finding all of the 447 // constant pool users. 448 initializeFunctionInfo(CPEMIs); 449 CPEMIs.clear(); 450 LLVM_DEBUG(dumpBBs()); 451 452 // Functions with jump tables need an alignment of 4 because they use the ADR 453 // instruction, which aligns the PC to 4 bytes before adding an offset. 454 if (!T2JumpTables.empty()) 455 MF->ensureAlignment(Align(4)); 456 457 /// Remove dead constant pool entries. 458 MadeChange |= removeUnusedCPEntries(); 459 460 // Iteratively place constant pool entries and fix up branches until there 461 // is no change. 462 unsigned NoCPIters = 0, NoBRIters = 0; 463 while (true) { 464 LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 465 bool CPChange = false; 466 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 467 // For most inputs, it converges in no more than 5 iterations. 468 // If it doesn't end in 10, the input may have huge BB or many CPEs. 469 // In this case, we will try different heuristics. 470 CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2); 471 if (CPChange && ++NoCPIters > CPMaxIteration) 472 report_fatal_error("Constant Island pass failed to converge!"); 473 LLVM_DEBUG(dumpBBs()); 474 475 // Clear NewWaterList now. If we split a block for branches, it should 476 // appear as "new water" for the next iteration of constant pool placement. 477 NewWaterList.clear(); 478 479 LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 480 bool BRChange = false; 481 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 482 BRChange |= fixupImmediateBr(ImmBranches[i]); 483 if (BRChange && ++NoBRIters > 30) 484 report_fatal_error("Branch Fix Up pass failed to converge!"); 485 LLVM_DEBUG(dumpBBs()); 486 487 if (!CPChange && !BRChange) 488 break; 489 MadeChange = true; 490 } 491 492 // Shrink 32-bit Thumb2 load and store instructions. 493 if (isThumb2 && !STI->prefers32BitThumb()) 494 MadeChange |= optimizeThumb2Instructions(); 495 496 // Shrink 32-bit branch instructions. 497 if (isThumb && STI->hasV8MBaselineOps()) 498 MadeChange |= optimizeThumb2Branches(); 499 500 // Optimize jump tables using TBB / TBH. 501 if (GenerateTBB && !STI->genExecuteOnly()) 502 MadeChange |= optimizeThumb2JumpTables(); 503 504 // After a while, this might be made debug-only, but it is not expensive. 505 verify(); 506 507 // Save the mapping between original and cloned constpool entries. 508 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 509 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) { 510 const CPEntry & CPE = CPEntries[i][j]; 511 if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI()) 512 AFI->recordCPEClone(i, CPE.CPI); 513 } 514 } 515 516 LLVM_DEBUG(dbgs() << '\n'; dumpBBs()); 517 518 BBUtils->clear(); 519 WaterList.clear(); 520 CPUsers.clear(); 521 CPEntries.clear(); 522 JumpTableEntryIndices.clear(); 523 JumpTableUserIndices.clear(); 524 BlockJumpTableRefCount.clear(); 525 ImmBranches.clear(); 526 PushPopMIs.clear(); 527 T2JumpTables.clear(); 528 529 return MadeChange; 530 } 531 532 /// Perform the initial placement of the regular constant pool entries. 533 /// To start with, we put them all at the end of the function. 534 void 535 ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) { 536 // Create the basic block to hold the CPE's. 537 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 538 MF->push_back(BB); 539 540 // MachineConstantPool measures alignment in bytes. 541 const Align MaxAlign = MCP->getConstantPoolAlign(); 542 const unsigned MaxLogAlign = Log2(MaxAlign); 543 544 // Mark the basic block as required by the const-pool. 545 BB->setAlignment(MaxAlign); 546 547 // The function needs to be as aligned as the basic blocks. The linker may 548 // move functions around based on their alignment. 549 // Special case: halfword literals still need word alignment on the function. 550 Align FuncAlign = MaxAlign; 551 if (MaxAlign == 2) 552 FuncAlign = Align(4); 553 MF->ensureAlignment(FuncAlign); 554 555 // Order the entries in BB by descending alignment. That ensures correct 556 // alignment of all entries as long as BB is sufficiently aligned. Keep 557 // track of the insertion point for each alignment. We are going to bucket 558 // sort the entries as they are created. 559 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxLogAlign + 1, 560 BB->end()); 561 562 // Add all of the constants from the constant pool to the end block, use an 563 // identity mapping of CPI's to CPE's. 564 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 565 566 const DataLayout &TD = MF->getDataLayout(); 567 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 568 unsigned Size = CPs[i].getSizeInBytes(TD); 569 Align Alignment = CPs[i].getAlign(); 570 // Verify that all constant pool entries are a multiple of their alignment. 571 // If not, we would have to pad them out so that instructions stay aligned. 572 assert(isAligned(Alignment, Size) && "CP Entry not multiple of 4 bytes!"); 573 574 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 575 unsigned LogAlign = Log2(Alignment); 576 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 577 MachineInstr *CPEMI = 578 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 579 .addImm(i).addConstantPoolIndex(i).addImm(Size); 580 CPEMIs.push_back(CPEMI); 581 582 // Ensure that future entries with higher alignment get inserted before 583 // CPEMI. This is bucket sort with iterators. 584 for (unsigned a = LogAlign + 1; a <= MaxLogAlign; ++a) 585 if (InsPoint[a] == InsAt) 586 InsPoint[a] = CPEMI; 587 588 // Add a new CPEntry, but no corresponding CPUser yet. 589 CPEntries.emplace_back(1, CPEntry(CPEMI, i)); 590 ++NumCPEs; 591 LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " 592 << Size << ", align = " << Alignment.value() << '\n'); 593 } 594 LLVM_DEBUG(BB->dump()); 595 } 596 597 /// Do initial placement of the jump tables. Because Thumb2's TBB and TBH 598 /// instructions can be made more efficient if the jump table immediately 599 /// follows the instruction, it's best to place them immediately next to their 600 /// jumps to begin with. In almost all cases they'll never be moved from that 601 /// position. 602 void ARMConstantIslands::doInitialJumpTablePlacement( 603 std::vector<MachineInstr *> &CPEMIs) { 604 unsigned i = CPEntries.size(); 605 auto MJTI = MF->getJumpTableInfo(); 606 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 607 608 // Only inline jump tables are placed in the function. 609 if (MJTI->getEntryKind() != MachineJumpTableInfo::EK_Inline) 610 return; 611 612 MachineBasicBlock *LastCorrectlyNumberedBB = nullptr; 613 for (MachineBasicBlock &MBB : *MF) { 614 auto MI = MBB.getLastNonDebugInstr(); 615 // Look past potential SpeculationBarriers at end of BB. 616 while (MI != MBB.end() && 617 (isSpeculationBarrierEndBBOpcode(MI->getOpcode()) || 618 MI->isDebugInstr())) 619 --MI; 620 621 if (MI == MBB.end()) 622 continue; 623 624 unsigned JTOpcode; 625 switch (MI->getOpcode()) { 626 default: 627 continue; 628 case ARM::BR_JTadd: 629 case ARM::BR_JTr: 630 case ARM::tBR_JTr: 631 case ARM::BR_JTm_i12: 632 case ARM::BR_JTm_rs: 633 // These instructions are emitted only in ARM or Thumb1 modes which do not 634 // support PACBTI. Hence we don't add BTI instructions in the destination 635 // blocks. 636 assert(!MF->getInfo<ARMFunctionInfo>()->branchTargetEnforcement() && 637 "Branch protection must not be enabled for Arm or Thumb1 modes"); 638 JTOpcode = ARM::JUMPTABLE_ADDRS; 639 break; 640 case ARM::t2BR_JT: 641 JTOpcode = ARM::JUMPTABLE_INSTS; 642 break; 643 case ARM::tTBB_JT: 644 case ARM::t2TBB_JT: 645 JTOpcode = ARM::JUMPTABLE_TBB; 646 break; 647 case ARM::tTBH_JT: 648 case ARM::t2TBH_JT: 649 JTOpcode = ARM::JUMPTABLE_TBH; 650 break; 651 } 652 653 unsigned NumOps = MI->getDesc().getNumOperands(); 654 MachineOperand JTOp = 655 MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1)); 656 unsigned JTI = JTOp.getIndex(); 657 unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t); 658 MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock(); 659 MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB); 660 MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(), 661 DebugLoc(), TII->get(JTOpcode)) 662 .addImm(i++) 663 .addJumpTableIndex(JTI) 664 .addImm(Size); 665 CPEMIs.push_back(CPEMI); 666 CPEntries.emplace_back(1, CPEntry(CPEMI, JTI)); 667 JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1)); 668 if (!LastCorrectlyNumberedBB) 669 LastCorrectlyNumberedBB = &MBB; 670 } 671 672 // If we did anything then we need to renumber the subsequent blocks. 673 if (LastCorrectlyNumberedBB) 674 MF->RenumberBlocks(LastCorrectlyNumberedBB); 675 } 676 677 /// BBHasFallthrough - Return true if the specified basic block can fallthrough 678 /// into the block immediately after it. 679 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) { 680 // Get the next machine basic block in the function. 681 MachineFunction::iterator MBBI = MBB->getIterator(); 682 // Can't fall off end of function. 683 if (std::next(MBBI) == MBB->getParent()->end()) 684 return false; 685 686 MachineBasicBlock *NextBB = &*std::next(MBBI); 687 if (!MBB->isSuccessor(NextBB)) 688 return false; 689 690 // Try to analyze the end of the block. A potential fallthrough may already 691 // have an unconditional branch for whatever reason. 692 MachineBasicBlock *TBB, *FBB; 693 SmallVector<MachineOperand, 4> Cond; 694 bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond); 695 return TooDifficult || FBB == nullptr; 696 } 697 698 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 699 /// look up the corresponding CPEntry. 700 ARMConstantIslands::CPEntry * 701 ARMConstantIslands::findConstPoolEntry(unsigned CPI, 702 const MachineInstr *CPEMI) { 703 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 704 // Number of entries per constpool index should be small, just do a 705 // linear search. 706 for (CPEntry &CPE : CPEs) 707 if (CPE.CPEMI == CPEMI) 708 return &CPE; 709 return nullptr; 710 } 711 712 /// getCPEAlign - Returns the required alignment of the constant pool entry 713 /// represented by CPEMI. 714 Align ARMConstantIslands::getCPEAlign(const MachineInstr *CPEMI) { 715 switch (CPEMI->getOpcode()) { 716 case ARM::CONSTPOOL_ENTRY: 717 break; 718 case ARM::JUMPTABLE_TBB: 719 return isThumb1 ? Align(4) : Align(1); 720 case ARM::JUMPTABLE_TBH: 721 return isThumb1 ? Align(4) : Align(2); 722 case ARM::JUMPTABLE_INSTS: 723 return Align(2); 724 case ARM::JUMPTABLE_ADDRS: 725 return Align(4); 726 default: 727 llvm_unreachable("unknown constpool entry kind"); 728 } 729 730 unsigned CPI = getCombinedIndex(CPEMI); 731 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 732 return MCP->getConstants()[CPI].getAlign(); 733 } 734 735 // Exception landing pads, blocks that has their adress taken, and function 736 // entry blocks will always be (potential) indirect jump targets, regardless of 737 // whether they are referenced by or not by jump tables. 738 static bool isAlwaysIndirectTarget(const MachineBasicBlock &MBB) { 739 return MBB.isEHPad() || MBB.hasAddressTaken() || 740 &MBB == &MBB.getParent()->front(); 741 } 742 743 /// scanFunctionJumpTables - Do a scan of the function, building up 744 /// information about the sizes of each block and the locations of all 745 /// the jump tables. 746 void ARMConstantIslands::scanFunctionJumpTables() { 747 for (MachineBasicBlock &MBB : *MF) { 748 for (MachineInstr &I : MBB) 749 if (I.isBranch() && 750 (I.getOpcode() == ARM::t2BR_JT || I.getOpcode() == ARM::tBR_JTr)) 751 T2JumpTables.push_back(&I); 752 } 753 754 if (!MF->getInfo<ARMFunctionInfo>()->branchTargetEnforcement()) 755 return; 756 757 if (const MachineJumpTableInfo *JTI = MF->getJumpTableInfo()) 758 for (const MachineJumpTableEntry &JTE : JTI->getJumpTables()) 759 for (const MachineBasicBlock *MBB : JTE.MBBs) { 760 if (isAlwaysIndirectTarget(*MBB)) 761 // Set the reference count essentially to infinity, it will never 762 // reach zero and the BTI Instruction will never be removed. 763 BlockJumpTableRefCount[MBB] = std::numeric_limits<int>::max(); 764 else 765 ++BlockJumpTableRefCount[MBB]; 766 } 767 } 768 769 /// initializeFunctionInfo - Do the initial scan of the function, building up 770 /// information about the sizes of each block, the location of all the water, 771 /// and finding all of the constant pool users. 772 void ARMConstantIslands:: 773 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { 774 775 BBUtils->computeAllBlockSizes(); 776 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 777 // The known bits of the entry block offset are determined by the function 778 // alignment. 779 BBInfo.front().KnownBits = Log2(MF->getAlignment()); 780 781 // Compute block offsets and known bits. 782 BBUtils->adjustBBOffsetsAfter(&MF->front()); 783 784 // We only care about jump table instructions when jump tables are inline. 785 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 786 bool InlineJumpTables = 787 MJTI && MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline; 788 789 // Now go back through the instructions and build up our data structures. 790 for (MachineBasicBlock &MBB : *MF) { 791 // If this block doesn't fall through into the next MBB, then this is 792 // 'water' that a constant pool island could be placed. 793 if (!BBHasFallthrough(&MBB)) 794 WaterList.push_back(&MBB); 795 796 for (MachineInstr &I : MBB) { 797 if (I.isDebugInstr()) 798 continue; 799 800 unsigned Opc = I.getOpcode(); 801 if (I.isBranch()) { 802 bool isCond = false; 803 unsigned Bits = 0; 804 unsigned Scale = 1; 805 int UOpc = Opc; 806 switch (Opc) { 807 default: 808 continue; // Ignore other JT branches 809 case ARM::t2BR_JT: 810 case ARM::tBR_JTr: 811 if (InlineJumpTables) 812 T2JumpTables.push_back(&I); 813 continue; // Does not get an entry in ImmBranches 814 case ARM::Bcc: 815 isCond = true; 816 UOpc = ARM::B; 817 [[fallthrough]]; 818 case ARM::B: 819 Bits = 24; 820 Scale = 4; 821 break; 822 case ARM::tBcc: 823 isCond = true; 824 UOpc = ARM::tB; 825 Bits = 8; 826 Scale = 2; 827 break; 828 case ARM::tB: 829 Bits = 11; 830 Scale = 2; 831 break; 832 case ARM::t2Bcc: 833 isCond = true; 834 UOpc = ARM::t2B; 835 Bits = 20; 836 Scale = 2; 837 break; 838 case ARM::t2B: 839 Bits = 24; 840 Scale = 2; 841 break; 842 } 843 844 // Record this immediate branch. 845 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 846 ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc)); 847 } 848 849 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 850 PushPopMIs.push_back(&I); 851 852 if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS || 853 Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB || 854 Opc == ARM::JUMPTABLE_TBH) 855 continue; 856 857 // Scan the instructions for constant pool operands. 858 for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op) 859 if (I.getOperand(op).isCPI() || 860 (I.getOperand(op).isJTI() && InlineJumpTables)) { 861 // We found one. The addressing mode tells us the max displacement 862 // from the PC that this instruction permits. 863 864 // Basic size info comes from the TSFlags field. 865 unsigned Bits = 0; 866 unsigned Scale = 1; 867 bool NegOk = false; 868 bool IsSoImm = false; 869 870 switch (Opc) { 871 default: 872 llvm_unreachable("Unknown addressing mode for CP reference!"); 873 874 // Taking the address of a CP entry. 875 case ARM::LEApcrel: 876 case ARM::LEApcrelJT: { 877 // This takes a SoImm, which is 8 bit immediate rotated. We'll 878 // pretend the maximum offset is 255 * 4. Since each instruction 879 // 4 byte wide, this is always correct. We'll check for other 880 // displacements that fits in a SoImm as well. 881 Bits = 8; 882 NegOk = true; 883 IsSoImm = true; 884 unsigned CPI = I.getOperand(op).getIndex(); 885 assert(CPI < CPEMIs.size()); 886 MachineInstr *CPEMI = CPEMIs[CPI]; 887 const Align CPEAlign = getCPEAlign(CPEMI); 888 const unsigned LogCPEAlign = Log2(CPEAlign); 889 if (LogCPEAlign >= 2) 890 Scale = 4; 891 else 892 // For constants with less than 4-byte alignment, 893 // we'll pretend the maximum offset is 255 * 1. 894 Scale = 1; 895 } 896 break; 897 case ARM::t2LEApcrel: 898 case ARM::t2LEApcrelJT: 899 Bits = 12; 900 NegOk = true; 901 break; 902 case ARM::tLEApcrel: 903 case ARM::tLEApcrelJT: 904 Bits = 8; 905 Scale = 4; 906 break; 907 908 case ARM::LDRBi12: 909 case ARM::LDRi12: 910 case ARM::LDRcp: 911 case ARM::t2LDRpci: 912 case ARM::t2LDRHpci: 913 case ARM::t2LDRSHpci: 914 case ARM::t2LDRBpci: 915 case ARM::t2LDRSBpci: 916 Bits = 12; // +-offset_12 917 NegOk = true; 918 break; 919 920 case ARM::tLDRpci: 921 Bits = 8; 922 Scale = 4; // +(offset_8*4) 923 break; 924 925 case ARM::VLDRD: 926 case ARM::VLDRS: 927 Bits = 8; 928 Scale = 4; // +-(offset_8*4) 929 NegOk = true; 930 break; 931 case ARM::VLDRH: 932 Bits = 8; 933 Scale = 2; // +-(offset_8*2) 934 NegOk = true; 935 break; 936 } 937 938 // Remember that this is a user of a CP entry. 939 unsigned CPI = I.getOperand(op).getIndex(); 940 if (I.getOperand(op).isJTI()) { 941 JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size())); 942 CPI = JumpTableEntryIndices[CPI]; 943 } 944 945 MachineInstr *CPEMI = CPEMIs[CPI]; 946 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 947 CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm)); 948 949 // Increment corresponding CPEntry reference count. 950 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 951 assert(CPE && "Cannot find a corresponding CPEntry!"); 952 CPE->RefCount++; 953 954 // Instructions can only use one CP entry, don't bother scanning the 955 // rest of the operands. 956 break; 957 } 958 } 959 } 960 } 961 962 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 963 /// ID. 964 static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 965 const MachineBasicBlock *RHS) { 966 return LHS->getNumber() < RHS->getNumber(); 967 } 968 969 /// updateForInsertedWaterBlock - When a block is newly inserted into the 970 /// machine function, it upsets all of the block numbers. Renumber the blocks 971 /// and update the arrays that parallel this numbering. 972 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 973 // Renumber the MBB's to keep them consecutive. 974 NewBB->getParent()->RenumberBlocks(NewBB); 975 976 // Insert an entry into BBInfo to align it properly with the (newly 977 // renumbered) block numbers. 978 BBUtils->insert(NewBB->getNumber(), BasicBlockInfo()); 979 980 // Next, update WaterList. Specifically, we need to add NewMBB as having 981 // available water after it. 982 water_iterator IP = llvm::lower_bound(WaterList, NewBB, CompareMBBNumbers); 983 WaterList.insert(IP, NewBB); 984 } 985 986 /// Split the basic block containing MI into two blocks, which are joined by 987 /// an unconditional branch. Update data structures and renumber blocks to 988 /// account for this change and returns the newly created block. 989 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) { 990 MachineBasicBlock *OrigBB = MI->getParent(); 991 992 // Collect liveness information at MI. 993 LivePhysRegs LRs(*MF->getSubtarget().getRegisterInfo()); 994 LRs.addLiveOuts(*OrigBB); 995 auto LivenessEnd = ++MachineBasicBlock::iterator(MI).getReverse(); 996 for (MachineInstr &LiveMI : make_range(OrigBB->rbegin(), LivenessEnd)) 997 LRs.stepBackward(LiveMI); 998 999 // Create a new MBB for the code after the OrigBB. 1000 MachineBasicBlock *NewBB = 1001 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 1002 MachineFunction::iterator MBBI = ++OrigBB->getIterator(); 1003 MF->insert(MBBI, NewBB); 1004 1005 // Splice the instructions starting with MI over to NewBB. 1006 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 1007 1008 // Add an unconditional branch from OrigBB to NewBB. 1009 // Note the new unconditional branch is not being recorded. 1010 // There doesn't seem to be meaningful DebugInfo available; this doesn't 1011 // correspond to anything in the source. 1012 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 1013 if (!isThumb) 1014 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); 1015 else 1016 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)) 1017 .addMBB(NewBB) 1018 .add(predOps(ARMCC::AL)); 1019 ++NumSplit; 1020 1021 // Update the CFG. All succs of OrigBB are now succs of NewBB. 1022 NewBB->transferSuccessors(OrigBB); 1023 1024 // OrigBB branches to NewBB. 1025 OrigBB->addSuccessor(NewBB); 1026 1027 // Update live-in information in the new block. 1028 MachineRegisterInfo &MRI = MF->getRegInfo(); 1029 for (MCPhysReg L : LRs) 1030 if (!MRI.isReserved(L)) 1031 NewBB->addLiveIn(L); 1032 1033 // Update internal data structures to account for the newly inserted MBB. 1034 // This is almost the same as updateForInsertedWaterBlock, except that 1035 // the Water goes after OrigBB, not NewBB. 1036 MF->RenumberBlocks(NewBB); 1037 1038 // Insert an entry into BBInfo to align it properly with the (newly 1039 // renumbered) block numbers. 1040 BBUtils->insert(NewBB->getNumber(), BasicBlockInfo()); 1041 1042 // Next, update WaterList. Specifically, we need to add OrigMBB as having 1043 // available water after it (but not if it's already there, which happens 1044 // when splitting before a conditional branch that is followed by an 1045 // unconditional branch - in that case we want to insert NewBB). 1046 water_iterator IP = llvm::lower_bound(WaterList, OrigBB, CompareMBBNumbers); 1047 MachineBasicBlock* WaterBB = *IP; 1048 if (WaterBB == OrigBB) 1049 WaterList.insert(std::next(IP), NewBB); 1050 else 1051 WaterList.insert(IP, OrigBB); 1052 NewWaterList.insert(OrigBB); 1053 1054 // Figure out how large the OrigBB is. As the first half of the original 1055 // block, it cannot contain a tablejump. The size includes 1056 // the new jump we added. (It should be possible to do this without 1057 // recounting everything, but it's very confusing, and this is rarely 1058 // executed.) 1059 BBUtils->computeBlockSize(OrigBB); 1060 1061 // Figure out how large the NewMBB is. As the second half of the original 1062 // block, it may contain a tablejump. 1063 BBUtils->computeBlockSize(NewBB); 1064 1065 // All BBOffsets following these blocks must be modified. 1066 BBUtils->adjustBBOffsetsAfter(OrigBB); 1067 1068 return NewBB; 1069 } 1070 1071 /// getUserOffset - Compute the offset of U.MI as seen by the hardware 1072 /// displacement computation. Update U.KnownAlignment to match its current 1073 /// basic block location. 1074 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const { 1075 unsigned UserOffset = BBUtils->getOffsetOf(U.MI); 1076 1077 SmallVectorImpl<BasicBlockInfo> &BBInfo = BBUtils->getBBInfo(); 1078 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()]; 1079 unsigned KnownBits = BBI.internalKnownBits(); 1080 1081 // The value read from PC is offset from the actual instruction address. 1082 UserOffset += (isThumb ? 4 : 8); 1083 1084 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI. 1085 // Make sure U.getMaxDisp() returns a constrained range. 1086 U.KnownAlignment = (KnownBits >= 2); 1087 1088 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for 1089 // purposes of the displacement computation; compensate for that here. 1090 // For unknown alignments, getMaxDisp() constrains the range instead. 1091 if (isThumb && U.KnownAlignment) 1092 UserOffset &= ~3u; 1093 1094 return UserOffset; 1095 } 1096 1097 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool 1098 /// reference) is within MaxDisp of TrialOffset (a proposed location of a 1099 /// constant pool entry). 1100 /// UserOffset is computed by getUserOffset above to include PC adjustments. If 1101 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be 1102 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that. 1103 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset, 1104 unsigned TrialOffset, unsigned MaxDisp, 1105 bool NegativeOK, bool IsSoImm) { 1106 if (UserOffset <= TrialOffset) { 1107 // User before the Trial. 1108 if (TrialOffset - UserOffset <= MaxDisp) 1109 return true; 1110 // FIXME: Make use full range of soimm values. 1111 } else if (NegativeOK) { 1112 if (UserOffset - TrialOffset <= MaxDisp) 1113 return true; 1114 // FIXME: Make use full range of soimm values. 1115 } 1116 return false; 1117 } 1118 1119 /// isWaterInRange - Returns true if a CPE placed after the specified 1120 /// Water (a basic block) will be in range for the specific MI. 1121 /// 1122 /// Compute how much the function will grow by inserting a CPE after Water. 1123 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset, 1124 MachineBasicBlock* Water, CPUser &U, 1125 unsigned &Growth) { 1126 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1127 const Align CPEAlign = getCPEAlign(U.CPEMI); 1128 const unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPEAlign); 1129 unsigned NextBlockOffset; 1130 Align NextBlockAlignment; 1131 MachineFunction::const_iterator NextBlock = Water->getIterator(); 1132 if (++NextBlock == MF->end()) { 1133 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 1134 } else { 1135 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 1136 NextBlockAlignment = NextBlock->getAlignment(); 1137 } 1138 unsigned Size = U.CPEMI->getOperand(2).getImm(); 1139 unsigned CPEEnd = CPEOffset + Size; 1140 1141 // The CPE may be able to hide in the alignment padding before the next 1142 // block. It may also cause more padding to be required if it is more aligned 1143 // that the next block. 1144 if (CPEEnd > NextBlockOffset) { 1145 Growth = CPEEnd - NextBlockOffset; 1146 // Compute the padding that would go at the end of the CPE to align the next 1147 // block. 1148 Growth += offsetToAlignment(CPEEnd, NextBlockAlignment); 1149 1150 // If the CPE is to be inserted before the instruction, that will raise 1151 // the offset of the instruction. Also account for unknown alignment padding 1152 // in blocks between CPE and the user. 1153 if (CPEOffset < UserOffset) 1154 UserOffset += Growth + UnknownPadding(MF->getAlignment(), Log2(CPEAlign)); 1155 } else 1156 // CPE fits in existing padding. 1157 Growth = 0; 1158 1159 return isOffsetInRange(UserOffset, CPEOffset, U); 1160 } 1161 1162 /// isCPEntryInRange - Returns true if the distance between specific MI and 1163 /// specific ConstPool entry instruction can fit in MI's displacement field. 1164 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 1165 MachineInstr *CPEMI, unsigned MaxDisp, 1166 bool NegOk, bool DoDump) { 1167 unsigned CPEOffset = BBUtils->getOffsetOf(CPEMI); 1168 1169 if (DoDump) { 1170 LLVM_DEBUG({ 1171 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1172 unsigned Block = MI->getParent()->getNumber(); 1173 const BasicBlockInfo &BBI = BBInfo[Block]; 1174 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 1175 << " max delta=" << MaxDisp 1176 << format(" insn address=%#x", UserOffset) << " in " 1177 << printMBBReference(*MI->getParent()) << ": " 1178 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 1179 << format("CPE address=%#x offset=%+d: ", CPEOffset, 1180 int(CPEOffset - UserOffset)); 1181 }); 1182 } 1183 1184 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 1185 } 1186 1187 #ifndef NDEBUG 1188 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor 1189 /// unconditionally branches to its only successor. 1190 static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 1191 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 1192 return false; 1193 1194 MachineBasicBlock *Succ = *MBB->succ_begin(); 1195 MachineBasicBlock *Pred = *MBB->pred_begin(); 1196 MachineInstr *PredMI = &Pred->back(); 1197 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 1198 || PredMI->getOpcode() == ARM::t2B) 1199 return PredMI->getOperand(0).getMBB() == Succ; 1200 return false; 1201 } 1202 #endif // NDEBUG 1203 1204 /// decrementCPEReferenceCount - find the constant pool entry with index CPI 1205 /// and instruction CPEMI, and decrement its refcount. If the refcount 1206 /// becomes 0 remove the entry and instruction. Returns true if we removed 1207 /// the entry, false if we didn't. 1208 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI, 1209 MachineInstr *CPEMI) { 1210 // Find the old entry. Eliminate it if it is no longer used. 1211 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 1212 assert(CPE && "Unexpected!"); 1213 if (--CPE->RefCount == 0) { 1214 removeDeadCPEMI(CPEMI); 1215 CPE->CPEMI = nullptr; 1216 --NumCPEs; 1217 return true; 1218 } 1219 return false; 1220 } 1221 1222 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) { 1223 if (CPEMI->getOperand(1).isCPI()) 1224 return CPEMI->getOperand(1).getIndex(); 1225 1226 return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()]; 1227 } 1228 1229 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1230 /// if not, see if an in-range clone of the CPE is in range, and if so, 1231 /// change the data structures so the user references the clone. Returns: 1232 /// 0 = no existing entry found 1233 /// 1 = entry found, and there were no code insertions or deletions 1234 /// 2 = entry found, and there were code insertions or deletions 1235 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) { 1236 MachineInstr *UserMI = U.MI; 1237 MachineInstr *CPEMI = U.CPEMI; 1238 1239 // Check to see if the CPE is already in-range. 1240 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, 1241 true)) { 1242 LLVM_DEBUG(dbgs() << "In range\n"); 1243 return 1; 1244 } 1245 1246 // No. Look for previously created clones of the CPE that are in range. 1247 unsigned CPI = getCombinedIndex(CPEMI); 1248 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1249 for (CPEntry &CPE : CPEs) { 1250 // We already tried this one 1251 if (CPE.CPEMI == CPEMI) 1252 continue; 1253 // Removing CPEs can leave empty entries, skip 1254 if (CPE.CPEMI == nullptr) 1255 continue; 1256 if (isCPEntryInRange(UserMI, UserOffset, CPE.CPEMI, U.getMaxDisp(), 1257 U.NegOk)) { 1258 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" << CPE.CPI 1259 << "\n"); 1260 // Point the CPUser node to the replacement 1261 U.CPEMI = CPE.CPEMI; 1262 // Change the CPI in the instruction operand to refer to the clone. 1263 for (MachineOperand &MO : UserMI->operands()) 1264 if (MO.isCPI()) { 1265 MO.setIndex(CPE.CPI); 1266 break; 1267 } 1268 // Adjust the refcount of the clone... 1269 CPE.RefCount++; 1270 // ...and the original. If we didn't remove the old entry, none of the 1271 // addresses changed, so we don't need another pass. 1272 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 1273 } 1274 } 1275 return 0; 1276 } 1277 1278 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1279 /// the specific unconditional branch instruction. 1280 static inline unsigned getUnconditionalBrDisp(int Opc) { 1281 switch (Opc) { 1282 case ARM::tB: 1283 return ((1<<10)-1)*2; 1284 case ARM::t2B: 1285 return ((1<<23)-1)*2; 1286 default: 1287 break; 1288 } 1289 1290 return ((1<<23)-1)*4; 1291 } 1292 1293 /// findAvailableWater - Look for an existing entry in the WaterList in which 1294 /// we can place the CPE referenced from U so it's within range of U's MI. 1295 /// Returns true if found, false if not. If it returns true, WaterIter 1296 /// is set to the WaterList entry. For Thumb, prefer water that will not 1297 /// introduce padding to water that will. To ensure that this pass 1298 /// terminates, the CPE location for a particular CPUser is only allowed to 1299 /// move to a lower address, so search backward from the end of the list and 1300 /// prefer the first water that is in range. 1301 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, 1302 water_iterator &WaterIter, 1303 bool CloserWater) { 1304 if (WaterList.empty()) 1305 return false; 1306 1307 unsigned BestGrowth = ~0u; 1308 // The nearest water without splitting the UserBB is right after it. 1309 // If the distance is still large (we have a big BB), then we need to split it 1310 // if we don't converge after certain iterations. This helps the following 1311 // situation to converge: 1312 // BB0: 1313 // Big BB 1314 // BB1: 1315 // Constant Pool 1316 // When a CP access is out of range, BB0 may be used as water. However, 1317 // inserting islands between BB0 and BB1 makes other accesses out of range. 1318 MachineBasicBlock *UserBB = U.MI->getParent(); 1319 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1320 const Align CPEAlign = getCPEAlign(U.CPEMI); 1321 unsigned MinNoSplitDisp = BBInfo[UserBB->getNumber()].postOffset(CPEAlign); 1322 if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2) 1323 return false; 1324 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();; 1325 --IP) { 1326 MachineBasicBlock* WaterBB = *IP; 1327 // Check if water is in range and is either at a lower address than the 1328 // current "high water mark" or a new water block that was created since 1329 // the previous iteration by inserting an unconditional branch. In the 1330 // latter case, we want to allow resetting the high water mark back to 1331 // this new water since we haven't seen it before. Inserting branches 1332 // should be relatively uncommon and when it does happen, we want to be 1333 // sure to take advantage of it for all the CPEs near that block, so that 1334 // we don't insert more branches than necessary. 1335 // When CloserWater is true, we try to find the lowest address after (or 1336 // equal to) user MI's BB no matter of padding growth. 1337 unsigned Growth; 1338 if (isWaterInRange(UserOffset, WaterBB, U, Growth) && 1339 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1340 NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) && 1341 Growth < BestGrowth) { 1342 // This is the least amount of required padding seen so far. 1343 BestGrowth = Growth; 1344 WaterIter = IP; 1345 LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB) 1346 << " Growth=" << Growth << '\n'); 1347 1348 if (CloserWater && WaterBB == U.MI->getParent()) 1349 return true; 1350 // Keep looking unless it is perfect and we're not looking for the lowest 1351 // possible address. 1352 if (!CloserWater && BestGrowth == 0) 1353 return true; 1354 } 1355 if (IP == B) 1356 break; 1357 } 1358 return BestGrowth != ~0u; 1359 } 1360 1361 /// createNewWater - No existing WaterList entry will work for 1362 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1363 /// block is used if in range, and the conditional branch munged so control 1364 /// flow is correct. Otherwise the block is split to create a hole with an 1365 /// unconditional branch around it. In either case NewMBB is set to a 1366 /// block following which the new island can be inserted (the WaterList 1367 /// is not adjusted). 1368 void ARMConstantIslands::createNewWater(unsigned CPUserIndex, 1369 unsigned UserOffset, 1370 MachineBasicBlock *&NewMBB) { 1371 CPUser &U = CPUsers[CPUserIndex]; 1372 MachineInstr *UserMI = U.MI; 1373 MachineInstr *CPEMI = U.CPEMI; 1374 const Align CPEAlign = getCPEAlign(CPEMI); 1375 MachineBasicBlock *UserMBB = UserMI->getParent(); 1376 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1377 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 1378 1379 // If the block does not end in an unconditional branch already, and if the 1380 // end of the block is within range, make new water there. (The addition 1381 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1382 // Thumb2, 2 on Thumb1. 1383 if (BBHasFallthrough(UserMBB)) { 1384 // Size of branch to insert. 1385 unsigned Delta = isThumb1 ? 2 : 4; 1386 // Compute the offset where the CPE will begin. 1387 unsigned CPEOffset = UserBBI.postOffset(CPEAlign) + Delta; 1388 1389 if (isOffsetInRange(UserOffset, CPEOffset, U)) { 1390 LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB) 1391 << format(", expected CPE offset %#x\n", CPEOffset)); 1392 NewMBB = &*++UserMBB->getIterator(); 1393 // Add an unconditional branch from UserMBB to fallthrough block. Record 1394 // it for branch lengthening; this new branch will not get out of range, 1395 // but if the preceding conditional branch is out of range, the targets 1396 // will be exchanged, and the altered branch may be out of range, so the 1397 // machinery has to know about it. 1398 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1399 if (!isThumb) 1400 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1401 else 1402 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)) 1403 .addMBB(NewMBB) 1404 .add(predOps(ARMCC::AL)); 1405 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1406 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1407 MaxDisp, false, UncondBr)); 1408 BBUtils->computeBlockSize(UserMBB); 1409 BBUtils->adjustBBOffsetsAfter(UserMBB); 1410 return; 1411 } 1412 } 1413 1414 // What a big block. Find a place within the block to split it. This is a 1415 // little tricky on Thumb1 since instructions are 2 bytes and constant pool 1416 // entries are 4 bytes: if instruction I references island CPE, and 1417 // instruction I+1 references CPE', it will not work well to put CPE as far 1418 // forward as possible, since then CPE' cannot immediately follow it (that 1419 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd 1420 // need to create a new island. So, we make a first guess, then walk through 1421 // the instructions between the one currently being looked at and the 1422 // possible insertion point, and make sure any other instructions that 1423 // reference CPEs will be able to use the same island area; if not, we back 1424 // up the insertion point. 1425 1426 // Try to split the block so it's fully aligned. Compute the latest split 1427 // point where we can add a 4-byte branch instruction, and then align to 1428 // Align which is the largest possible alignment in the function. 1429 const Align Align = MF->getAlignment(); 1430 assert(Align >= CPEAlign && "Over-aligned constant pool entry"); 1431 unsigned KnownBits = UserBBI.internalKnownBits(); 1432 unsigned UPad = UnknownPadding(Align, KnownBits); 1433 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad; 1434 LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x", 1435 BaseInsertOffset)); 1436 1437 // The 4 in the following is for the unconditional branch we'll be inserting 1438 // (allows for long branch on Thumb1). Alignment of the island is handled 1439 // inside isOffsetInRange. 1440 BaseInsertOffset -= 4; 1441 1442 LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1443 << " la=" << Log2(Align) << " kb=" << KnownBits 1444 << " up=" << UPad << '\n'); 1445 1446 // This could point off the end of the block if we've already got constant 1447 // pool entries following this block; only the last one is in the water list. 1448 // Back past any possible branches (allow for a conditional and a maximally 1449 // long unconditional). 1450 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { 1451 // Ensure BaseInsertOffset is larger than the offset of the instruction 1452 // following UserMI so that the loop which searches for the split point 1453 // iterates at least once. 1454 BaseInsertOffset = 1455 std::max(UserBBI.postOffset() - UPad - 8, 1456 UserOffset + TII->getInstSizeInBytes(*UserMI) + 1); 1457 // If the CP is referenced(ie, UserOffset) is in first four instructions 1458 // after IT, this recalculated BaseInsertOffset could be in the middle of 1459 // an IT block. If it is, change the BaseInsertOffset to just after the 1460 // IT block. This still make the CP Entry is in range becuase of the 1461 // following reasons. 1462 // 1. The initial BaseseInsertOffset calculated is (UserOffset + 1463 // U.getMaxDisp() - UPad). 1464 // 2. An IT block is only at most 4 instructions plus the "it" itself (18 1465 // bytes). 1466 // 3. All the relevant instructions support much larger Maximum 1467 // displacement. 1468 MachineBasicBlock::iterator I = UserMI; 1469 ++I; 1470 Register PredReg; 1471 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); 1472 I->getOpcode() != ARM::t2IT && 1473 getITInstrPredicate(*I, PredReg) != ARMCC::AL; 1474 Offset += TII->getInstSizeInBytes(*I), I = std::next(I)) { 1475 BaseInsertOffset = 1476 std::max(BaseInsertOffset, Offset + TII->getInstSizeInBytes(*I) + 1); 1477 assert(I != UserMBB->end() && "Fell off end of block"); 1478 } 1479 LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); 1480 } 1481 unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad + 1482 CPEMI->getOperand(2).getImm(); 1483 MachineBasicBlock::iterator MI = UserMI; 1484 ++MI; 1485 unsigned CPUIndex = CPUserIndex+1; 1486 unsigned NumCPUsers = CPUsers.size(); 1487 MachineInstr *LastIT = nullptr; 1488 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); 1489 Offset < BaseInsertOffset; 1490 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) { 1491 assert(MI != UserMBB->end() && "Fell off end of block"); 1492 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) { 1493 CPUser &U = CPUsers[CPUIndex]; 1494 if (!isOffsetInRange(Offset, EndInsertOffset, U)) { 1495 // Shift intertion point by one unit of alignment so it is within reach. 1496 BaseInsertOffset -= Align.value(); 1497 EndInsertOffset -= Align.value(); 1498 } 1499 // This is overly conservative, as we don't account for CPEMIs being 1500 // reused within the block, but it doesn't matter much. Also assume CPEs 1501 // are added in order with alignment padding. We may eventually be able 1502 // to pack the aligned CPEs better. 1503 EndInsertOffset += U.CPEMI->getOperand(2).getImm(); 1504 CPUIndex++; 1505 } 1506 1507 // Remember the last IT instruction. 1508 if (MI->getOpcode() == ARM::t2IT) 1509 LastIT = &*MI; 1510 } 1511 1512 --MI; 1513 1514 // Avoid splitting an IT block. 1515 if (LastIT) { 1516 Register PredReg; 1517 ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg); 1518 if (CC != ARMCC::AL) 1519 MI = LastIT; 1520 } 1521 1522 // Avoid splitting a MOVW+MOVT pair with a relocation on Windows. 1523 // On Windows, this instruction pair is covered by one single 1524 // IMAGE_REL_ARM_MOV32T relocation which covers both instructions. If a 1525 // constant island is injected inbetween them, the relocation will clobber 1526 // the instruction and fail to update the MOVT instruction. 1527 // (These instructions are bundled up until right before the ConstantIslands 1528 // pass.) 1529 if (STI->isTargetWindows() && isThumb && MI->getOpcode() == ARM::t2MOVTi16 && 1530 (MI->getOperand(2).getTargetFlags() & ARMII::MO_OPTION_MASK) == 1531 ARMII::MO_HI16) { 1532 --MI; 1533 assert(MI->getOpcode() == ARM::t2MOVi16 && 1534 (MI->getOperand(1).getTargetFlags() & ARMII::MO_OPTION_MASK) == 1535 ARMII::MO_LO16); 1536 } 1537 1538 // We really must not split an IT block. 1539 #ifndef NDEBUG 1540 Register PredReg; 1541 assert(!isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL); 1542 #endif 1543 NewMBB = splitBlockBeforeInstr(&*MI); 1544 } 1545 1546 /// handleConstantPoolUser - Analyze the specified user, checking to see if it 1547 /// is out-of-range. If so, pick up the constant pool value and move it some 1548 /// place in-range. Return true if we changed any addresses (thus must run 1549 /// another pass of branch lengthening), false otherwise. 1550 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex, 1551 bool CloserWater) { 1552 CPUser &U = CPUsers[CPUserIndex]; 1553 MachineInstr *UserMI = U.MI; 1554 MachineInstr *CPEMI = U.CPEMI; 1555 unsigned CPI = getCombinedIndex(CPEMI); 1556 unsigned Size = CPEMI->getOperand(2).getImm(); 1557 // Compute this only once, it's expensive. 1558 unsigned UserOffset = getUserOffset(U); 1559 1560 // See if the current entry is within range, or there is a clone of it 1561 // in range. 1562 int result = findInRangeCPEntry(U, UserOffset); 1563 if (result==1) return false; 1564 else if (result==2) return true; 1565 1566 // No existing clone of this CPE is within range. 1567 // We will be generating a new clone. Get a UID for it. 1568 unsigned ID = AFI->createPICLabelUId(); 1569 1570 // Look for water where we can place this CPE. 1571 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1572 MachineBasicBlock *NewMBB; 1573 water_iterator IP; 1574 if (findAvailableWater(U, UserOffset, IP, CloserWater)) { 1575 LLVM_DEBUG(dbgs() << "Found water in range\n"); 1576 MachineBasicBlock *WaterBB = *IP; 1577 1578 // If the original WaterList entry was "new water" on this iteration, 1579 // propagate that to the new island. This is just keeping NewWaterList 1580 // updated to match the WaterList, which will be updated below. 1581 if (NewWaterList.erase(WaterBB)) 1582 NewWaterList.insert(NewIsland); 1583 1584 // The new CPE goes before the following block (NewMBB). 1585 NewMBB = &*++WaterBB->getIterator(); 1586 } else { 1587 // No water found. 1588 LLVM_DEBUG(dbgs() << "No water found\n"); 1589 createNewWater(CPUserIndex, UserOffset, NewMBB); 1590 1591 // splitBlockBeforeInstr adds to WaterList, which is important when it is 1592 // called while handling branches so that the water will be seen on the 1593 // next iteration for constant pools, but in this context, we don't want 1594 // it. Check for this so it will be removed from the WaterList. 1595 // Also remove any entry from NewWaterList. 1596 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator(); 1597 IP = find(WaterList, WaterBB); 1598 if (IP != WaterList.end()) 1599 NewWaterList.erase(WaterBB); 1600 1601 // We are adding new water. Update NewWaterList. 1602 NewWaterList.insert(NewIsland); 1603 } 1604 // Always align the new block because CP entries can be smaller than 4 1605 // bytes. Be careful not to decrease the existing alignment, e.g. NewMBB may 1606 // be an already aligned constant pool block. 1607 const Align Alignment = isThumb ? Align(2) : Align(4); 1608 if (NewMBB->getAlignment() < Alignment) 1609 NewMBB->setAlignment(Alignment); 1610 1611 // Remove the original WaterList entry; we want subsequent insertions in 1612 // this vicinity to go after the one we're about to insert. This 1613 // considerably reduces the number of times we have to move the same CPE 1614 // more than once and is also important to ensure the algorithm terminates. 1615 if (IP != WaterList.end()) 1616 WaterList.erase(IP); 1617 1618 // Okay, we know we can put an island before NewMBB now, do it! 1619 MF->insert(NewMBB->getIterator(), NewIsland); 1620 1621 // Update internal data structures to account for the newly inserted MBB. 1622 updateForInsertedWaterBlock(NewIsland); 1623 1624 // Now that we have an island to add the CPE to, clone the original CPE and 1625 // add it to the island. 1626 U.HighWaterMark = NewIsland; 1627 U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc()) 1628 .addImm(ID) 1629 .add(CPEMI->getOperand(1)) 1630 .addImm(Size); 1631 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1632 ++NumCPEs; 1633 1634 // Decrement the old entry, and remove it if refcount becomes 0. 1635 decrementCPEReferenceCount(CPI, CPEMI); 1636 1637 // Mark the basic block as aligned as required by the const-pool entry. 1638 NewIsland->setAlignment(getCPEAlign(U.CPEMI)); 1639 1640 // Increase the size of the island block to account for the new entry. 1641 BBUtils->adjustBBSize(NewIsland, Size); 1642 BBUtils->adjustBBOffsetsAfter(&*--NewIsland->getIterator()); 1643 1644 // Finally, change the CPI in the instruction operand to be ID. 1645 for (MachineOperand &MO : UserMI->operands()) 1646 if (MO.isCPI()) { 1647 MO.setIndex(ID); 1648 break; 1649 } 1650 1651 LLVM_DEBUG( 1652 dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1653 << format(" offset=%#x\n", 1654 BBUtils->getBBInfo()[NewIsland->getNumber()].Offset)); 1655 1656 return true; 1657 } 1658 1659 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update 1660 /// sizes and offsets of impacted basic blocks. 1661 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { 1662 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1663 unsigned Size = CPEMI->getOperand(2).getImm(); 1664 CPEMI->eraseFromParent(); 1665 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1666 BBUtils->adjustBBSize(CPEBB, -Size); 1667 // All succeeding offsets have the current size value added in, fix this. 1668 if (CPEBB->empty()) { 1669 BBInfo[CPEBB->getNumber()].Size = 0; 1670 1671 // This block no longer needs to be aligned. 1672 CPEBB->setAlignment(Align(1)); 1673 } else { 1674 // Entries are sorted by descending alignment, so realign from the front. 1675 CPEBB->setAlignment(getCPEAlign(&*CPEBB->begin())); 1676 } 1677 1678 BBUtils->adjustBBOffsetsAfter(CPEBB); 1679 // An island has only one predecessor BB and one successor BB. Check if 1680 // this BB's predecessor jumps directly to this BB's successor. This 1681 // shouldn't happen currently. 1682 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1683 // FIXME: remove the empty blocks after all the work is done? 1684 } 1685 1686 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts 1687 /// are zero. 1688 bool ARMConstantIslands::removeUnusedCPEntries() { 1689 unsigned MadeChange = false; 1690 for (std::vector<CPEntry> &CPEs : CPEntries) { 1691 for (CPEntry &CPE : CPEs) { 1692 if (CPE.RefCount == 0 && CPE.CPEMI) { 1693 removeDeadCPEMI(CPE.CPEMI); 1694 CPE.CPEMI = nullptr; 1695 MadeChange = true; 1696 } 1697 } 1698 } 1699 return MadeChange; 1700 } 1701 1702 1703 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far 1704 /// away to fit in its displacement field. 1705 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) { 1706 MachineInstr *MI = Br.MI; 1707 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1708 1709 // Check to see if the DestBB is already in-range. 1710 if (BBUtils->isBBInRange(MI, DestBB, Br.MaxDisp)) 1711 return false; 1712 1713 if (!Br.isCond) 1714 return fixupUnconditionalBr(Br); 1715 return fixupConditionalBr(Br); 1716 } 1717 1718 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is 1719 /// too far away to fit in its displacement field. If the LR register has been 1720 /// spilled in the epilogue, then we can use BL to implement a far jump. 1721 /// Otherwise, add an intermediate branch instruction to a branch. 1722 bool 1723 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { 1724 MachineInstr *MI = Br.MI; 1725 MachineBasicBlock *MBB = MI->getParent(); 1726 if (!isThumb1) 1727 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!"); 1728 1729 if (!AFI->isLRSpilled()) 1730 report_fatal_error("underestimated function size"); 1731 1732 // Use BL to implement far jump. 1733 Br.MaxDisp = (1 << 21) * 2; 1734 MI->setDesc(TII->get(ARM::tBfar)); 1735 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1736 BBInfo[MBB->getNumber()].Size += 2; 1737 BBUtils->adjustBBOffsetsAfter(MBB); 1738 ++NumUBrFixed; 1739 1740 LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI); 1741 1742 return true; 1743 } 1744 1745 /// fixupConditionalBr - Fix up a conditional branch whose destination is too 1746 /// far away to fit in its displacement field. It is converted to an inverse 1747 /// conditional branch + an unconditional branch to the destination. 1748 bool 1749 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) { 1750 MachineInstr *MI = Br.MI; 1751 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1752 1753 // Add an unconditional branch to the destination and invert the branch 1754 // condition to jump over it: 1755 // blt L1 1756 // => 1757 // bge L2 1758 // b L1 1759 // L2: 1760 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1761 CC = ARMCC::getOppositeCondition(CC); 1762 Register CCReg = MI->getOperand(2).getReg(); 1763 1764 // If the branch is at the end of its MBB and that has a fall-through block, 1765 // direct the updated conditional branch to the fall-through block. Otherwise, 1766 // split the MBB before the next instruction. 1767 MachineBasicBlock *MBB = MI->getParent(); 1768 MachineInstr *BMI = &MBB->back(); 1769 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1770 1771 ++NumCBrFixed; 1772 if (BMI != MI) { 1773 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) && 1774 BMI->getOpcode() == Br.UncondBr) { 1775 // Last MI in the BB is an unconditional branch. Can we simply invert the 1776 // condition and swap destinations: 1777 // beq L1 1778 // b L2 1779 // => 1780 // bne L2 1781 // b L1 1782 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1783 if (BBUtils->isBBInRange(MI, NewDest, Br.MaxDisp)) { 1784 LLVM_DEBUG( 1785 dbgs() << " Invert Bcc condition and swap its destination with " 1786 << *BMI); 1787 BMI->getOperand(0).setMBB(DestBB); 1788 MI->getOperand(0).setMBB(NewDest); 1789 MI->getOperand(1).setImm(CC); 1790 return true; 1791 } 1792 } 1793 } 1794 1795 if (NeedSplit) { 1796 splitBlockBeforeInstr(MI); 1797 // No need for the branch to the next block. We're adding an unconditional 1798 // branch to the destination. 1799 int delta = TII->getInstSizeInBytes(MBB->back()); 1800 BBUtils->adjustBBSize(MBB, -delta); 1801 MBB->back().eraseFromParent(); 1802 1803 // The conditional successor will be swapped between the BBs after this, so 1804 // update CFG. 1805 MBB->addSuccessor(DestBB); 1806 std::next(MBB->getIterator())->removeSuccessor(DestBB); 1807 1808 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1809 } 1810 MachineBasicBlock *NextBB = &*++MBB->getIterator(); 1811 1812 LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB) 1813 << " also invert condition and change dest. to " 1814 << printMBBReference(*NextBB) << "\n"); 1815 1816 // Insert a new conditional branch and a new unconditional branch. 1817 // Also update the ImmBranch as well as adding a new entry for the new branch. 1818 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) 1819 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1820 Br.MI = &MBB->back(); 1821 BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back())); 1822 if (isThumb) 1823 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)) 1824 .addMBB(DestBB) 1825 .add(predOps(ARMCC::AL)); 1826 else 1827 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1828 BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back())); 1829 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1830 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1831 1832 // Remove the old conditional branch. It may or may not still be in MBB. 1833 BBUtils->adjustBBSize(MI->getParent(), -TII->getInstSizeInBytes(*MI)); 1834 MI->eraseFromParent(); 1835 BBUtils->adjustBBOffsetsAfter(MBB); 1836 return true; 1837 } 1838 1839 bool ARMConstantIslands::optimizeThumb2Instructions() { 1840 bool MadeChange = false; 1841 1842 // Shrink ADR and LDR from constantpool. 1843 for (CPUser &U : CPUsers) { 1844 unsigned Opcode = U.MI->getOpcode(); 1845 unsigned NewOpc = 0; 1846 unsigned Scale = 1; 1847 unsigned Bits = 0; 1848 switch (Opcode) { 1849 default: break; 1850 case ARM::t2LEApcrel: 1851 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1852 NewOpc = ARM::tLEApcrel; 1853 Bits = 8; 1854 Scale = 4; 1855 } 1856 break; 1857 case ARM::t2LDRpci: 1858 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1859 NewOpc = ARM::tLDRpci; 1860 Bits = 8; 1861 Scale = 4; 1862 } 1863 break; 1864 } 1865 1866 if (!NewOpc) 1867 continue; 1868 1869 unsigned UserOffset = getUserOffset(U); 1870 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1871 1872 // Be conservative with inline asm. 1873 if (!U.KnownAlignment) 1874 MaxOffs -= 2; 1875 1876 // FIXME: Check if offset is multiple of scale if scale is not 4. 1877 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1878 LLVM_DEBUG(dbgs() << "Shrink: " << *U.MI); 1879 U.MI->setDesc(TII->get(NewOpc)); 1880 MachineBasicBlock *MBB = U.MI->getParent(); 1881 BBUtils->adjustBBSize(MBB, -2); 1882 BBUtils->adjustBBOffsetsAfter(MBB); 1883 ++NumT2CPShrunk; 1884 MadeChange = true; 1885 } 1886 } 1887 1888 return MadeChange; 1889 } 1890 1891 1892 bool ARMConstantIslands::optimizeThumb2Branches() { 1893 1894 auto TryShrinkBranch = [this](ImmBranch &Br) { 1895 unsigned Opcode = Br.MI->getOpcode(); 1896 unsigned NewOpc = 0; 1897 unsigned Scale = 1; 1898 unsigned Bits = 0; 1899 switch (Opcode) { 1900 default: break; 1901 case ARM::t2B: 1902 NewOpc = ARM::tB; 1903 Bits = 11; 1904 Scale = 2; 1905 break; 1906 case ARM::t2Bcc: 1907 NewOpc = ARM::tBcc; 1908 Bits = 8; 1909 Scale = 2; 1910 break; 1911 } 1912 if (NewOpc) { 1913 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1914 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1915 if (BBUtils->isBBInRange(Br.MI, DestBB, MaxOffs)) { 1916 LLVM_DEBUG(dbgs() << "Shrink branch: " << *Br.MI); 1917 Br.MI->setDesc(TII->get(NewOpc)); 1918 MachineBasicBlock *MBB = Br.MI->getParent(); 1919 BBUtils->adjustBBSize(MBB, -2); 1920 BBUtils->adjustBBOffsetsAfter(MBB); 1921 ++NumT2BrShrunk; 1922 return true; 1923 } 1924 } 1925 return false; 1926 }; 1927 1928 struct ImmCompare { 1929 MachineInstr* MI = nullptr; 1930 unsigned NewOpc = 0; 1931 }; 1932 1933 auto FindCmpForCBZ = [this](ImmBranch &Br, ImmCompare &ImmCmp, 1934 MachineBasicBlock *DestBB) { 1935 ImmCmp.MI = nullptr; 1936 ImmCmp.NewOpc = 0; 1937 1938 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout 1939 // so this transformation is not safe. 1940 if (!Br.MI->killsRegister(ARM::CPSR, /*TRI=*/nullptr)) 1941 return false; 1942 1943 Register PredReg; 1944 unsigned NewOpc = 0; 1945 ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg); 1946 if (Pred == ARMCC::EQ) 1947 NewOpc = ARM::tCBZ; 1948 else if (Pred == ARMCC::NE) 1949 NewOpc = ARM::tCBNZ; 1950 else 1951 return false; 1952 1953 // Check if the distance is within 126. Subtract starting offset by 2 1954 // because the cmp will be eliminated. 1955 unsigned BrOffset = BBUtils->getOffsetOf(Br.MI) + 4 - 2; 1956 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1957 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1958 if (BrOffset >= DestOffset || (DestOffset - BrOffset) > 126) 1959 return false; 1960 1961 // Search backwards to find a tCMPi8 1962 auto *TRI = STI->getRegisterInfo(); 1963 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(Br.MI, TRI); 1964 if (!CmpMI || CmpMI->getOpcode() != ARM::tCMPi8) 1965 return false; 1966 1967 ImmCmp.MI = CmpMI; 1968 ImmCmp.NewOpc = NewOpc; 1969 return true; 1970 }; 1971 1972 auto TryConvertToLE = [this](ImmBranch &Br, ImmCompare &Cmp) { 1973 if (Br.MI->getOpcode() != ARM::t2Bcc || !STI->hasLOB() || 1974 STI->hasMinSize()) 1975 return false; 1976 1977 MachineBasicBlock *MBB = Br.MI->getParent(); 1978 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1979 if (BBUtils->getOffsetOf(MBB) < BBUtils->getOffsetOf(DestBB) || 1980 !BBUtils->isBBInRange(Br.MI, DestBB, 4094)) 1981 return false; 1982 1983 if (!DT->dominates(DestBB, MBB)) 1984 return false; 1985 1986 // We queried for the CBN?Z opcode based upon the 'ExitBB', the opposite 1987 // target of Br. So now we need to reverse the condition. 1988 Cmp.NewOpc = Cmp.NewOpc == ARM::tCBZ ? ARM::tCBNZ : ARM::tCBZ; 1989 1990 MachineInstrBuilder MIB = BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), 1991 TII->get(ARM::t2LE)); 1992 // Swapped a t2Bcc for a t2LE, so no need to update the size of the block. 1993 MIB.add(Br.MI->getOperand(0)); 1994 Br.MI->eraseFromParent(); 1995 Br.MI = MIB; 1996 ++NumLEInserted; 1997 return true; 1998 }; 1999 2000 bool MadeChange = false; 2001 2002 // The order in which branches appear in ImmBranches is approximately their 2003 // order within the function body. By visiting later branches first, we reduce 2004 // the distance between earlier forward branches and their targets, making it 2005 // more likely that the cbn?z optimization, which can only apply to forward 2006 // branches, will succeed. 2007 for (ImmBranch &Br : reverse(ImmBranches)) { 2008 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 2009 MachineBasicBlock *MBB = Br.MI->getParent(); 2010 MachineBasicBlock *ExitBB = &MBB->back() == Br.MI ? 2011 MBB->getFallThrough() : 2012 MBB->back().getOperand(0).getMBB(); 2013 2014 ImmCompare Cmp; 2015 if (FindCmpForCBZ(Br, Cmp, ExitBB) && TryConvertToLE(Br, Cmp)) { 2016 DestBB = ExitBB; 2017 MadeChange = true; 2018 } else { 2019 FindCmpForCBZ(Br, Cmp, DestBB); 2020 MadeChange |= TryShrinkBranch(Br); 2021 } 2022 2023 unsigned Opcode = Br.MI->getOpcode(); 2024 if ((Opcode != ARM::tBcc && Opcode != ARM::t2LE) || !Cmp.NewOpc) 2025 continue; 2026 2027 Register Reg = Cmp.MI->getOperand(0).getReg(); 2028 2029 // Check for Kill flags on Reg. If they are present remove them and set kill 2030 // on the new CBZ. 2031 auto *TRI = STI->getRegisterInfo(); 2032 MachineBasicBlock::iterator KillMI = Br.MI; 2033 bool RegKilled = false; 2034 do { 2035 --KillMI; 2036 if (KillMI->killsRegister(Reg, TRI)) { 2037 KillMI->clearRegisterKills(Reg, TRI); 2038 RegKilled = true; 2039 break; 2040 } 2041 } while (KillMI != Cmp.MI); 2042 2043 // Create the new CBZ/CBNZ 2044 LLVM_DEBUG(dbgs() << "Fold: " << *Cmp.MI << " and: " << *Br.MI); 2045 MachineInstr *NewBR = 2046 BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), TII->get(Cmp.NewOpc)) 2047 .addReg(Reg, getKillRegState(RegKilled) | 2048 getRegState(Cmp.MI->getOperand(0))) 2049 .addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags()); 2050 2051 Cmp.MI->eraseFromParent(); 2052 2053 if (Br.MI->getOpcode() == ARM::tBcc) { 2054 Br.MI->eraseFromParent(); 2055 Br.MI = NewBR; 2056 BBUtils->adjustBBSize(MBB, -2); 2057 } else if (MBB->back().getOpcode() != ARM::t2LE) { 2058 // An LE has been generated, but it's not the terminator - that is an 2059 // unconditional branch. However, the logic has now been reversed with the 2060 // CBN?Z being the conditional branch and the LE being the unconditional 2061 // branch. So this means we can remove the redundant unconditional branch 2062 // at the end of the block. 2063 MachineInstr *LastMI = &MBB->back(); 2064 BBUtils->adjustBBSize(MBB, -LastMI->getDesc().getSize()); 2065 LastMI->eraseFromParent(); 2066 } 2067 BBUtils->adjustBBOffsetsAfter(MBB); 2068 ++NumCBZ; 2069 MadeChange = true; 2070 } 2071 2072 return MadeChange; 2073 } 2074 2075 static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg, 2076 unsigned BaseReg) { 2077 if (I.getOpcode() != ARM::t2ADDrs) 2078 return false; 2079 2080 if (I.getOperand(0).getReg() != EntryReg) 2081 return false; 2082 2083 if (I.getOperand(1).getReg() != BaseReg) 2084 return false; 2085 2086 // FIXME: what about CC and IdxReg? 2087 return true; 2088 } 2089 2090 /// While trying to form a TBB/TBH instruction, we may (if the table 2091 /// doesn't immediately follow the BR_JT) need access to the start of the 2092 /// jump-table. We know one instruction that produces such a register; this 2093 /// function works out whether that definition can be preserved to the BR_JT, 2094 /// possibly by removing an intervening addition (which is usually needed to 2095 /// calculate the actual entry to jump to). 2096 bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI, 2097 MachineInstr *LEAMI, 2098 unsigned &DeadSize, 2099 bool &CanDeleteLEA, 2100 bool &BaseRegKill) { 2101 if (JumpMI->getParent() != LEAMI->getParent()) 2102 return false; 2103 2104 // Now we hope that we have at least these instructions in the basic block: 2105 // BaseReg = t2LEA ... 2106 // [...] 2107 // EntryReg = t2ADDrs BaseReg, ... 2108 // [...] 2109 // t2BR_JT EntryReg 2110 // 2111 // We have to be very conservative about what we recognise here though. The 2112 // main perturbing factors to watch out for are: 2113 // + Spills at any point in the chain: not direct problems but we would 2114 // expect a blocking Def of the spilled register so in practice what we 2115 // can do is limited. 2116 // + EntryReg == BaseReg: this is the one situation we should allow a Def 2117 // of BaseReg, but only if the t2ADDrs can be removed. 2118 // + Some instruction other than t2ADDrs computing the entry. Not seen in 2119 // the wild, but we should be careful. 2120 Register EntryReg = JumpMI->getOperand(0).getReg(); 2121 Register BaseReg = LEAMI->getOperand(0).getReg(); 2122 2123 CanDeleteLEA = true; 2124 BaseRegKill = false; 2125 MachineInstr *RemovableAdd = nullptr; 2126 MachineBasicBlock::iterator I(LEAMI); 2127 for (++I; &*I != JumpMI; ++I) { 2128 if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) { 2129 RemovableAdd = &*I; 2130 break; 2131 } 2132 2133 for (const MachineOperand &MO : I->operands()) { 2134 if (!MO.isReg() || !MO.getReg()) 2135 continue; 2136 if (MO.isDef() && MO.getReg() == BaseReg) 2137 return false; 2138 if (MO.isUse() && MO.getReg() == BaseReg) { 2139 BaseRegKill = BaseRegKill || MO.isKill(); 2140 CanDeleteLEA = false; 2141 } 2142 } 2143 } 2144 2145 if (!RemovableAdd) 2146 return true; 2147 2148 // Check the add really is removable, and that nothing else in the block 2149 // clobbers BaseReg. 2150 for (++I; &*I != JumpMI; ++I) { 2151 for (const MachineOperand &MO : I->operands()) { 2152 if (!MO.isReg() || !MO.getReg()) 2153 continue; 2154 if (MO.isDef() && MO.getReg() == BaseReg) 2155 return false; 2156 if (MO.isUse() && MO.getReg() == EntryReg) 2157 RemovableAdd = nullptr; 2158 } 2159 } 2160 2161 if (RemovableAdd) { 2162 RemovableAdd->eraseFromParent(); 2163 DeadSize += isThumb2 ? 4 : 2; 2164 } else if (BaseReg == EntryReg) { 2165 // The add wasn't removable, but clobbered the base for the TBB. So we can't 2166 // preserve it. 2167 return false; 2168 } 2169 2170 // We reached the end of the block without seeing another definition of 2171 // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be 2172 // used in the TBB/TBH if necessary. 2173 return true; 2174 } 2175 2176 /// Returns whether CPEMI is the first instruction in the block 2177 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so, 2178 /// we can switch the first register to PC and usually remove the address 2179 /// calculation that preceded it. 2180 static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) { 2181 MachineFunction::iterator MBB = JTMI->getParent()->getIterator(); 2182 MachineFunction *MF = MBB->getParent(); 2183 ++MBB; 2184 2185 return MBB != MF->end() && !MBB->empty() && &*MBB->begin() == CPEMI; 2186 } 2187 2188 static void RemoveDeadAddBetweenLEAAndJT(MachineInstr *LEAMI, 2189 MachineInstr *JumpMI, 2190 unsigned &DeadSize) { 2191 // Remove a dead add between the LEA and JT, which used to compute EntryReg, 2192 // but the JT now uses PC. Finds the last ADD (if any) that def's EntryReg 2193 // and is not clobbered / used. 2194 MachineInstr *RemovableAdd = nullptr; 2195 Register EntryReg = JumpMI->getOperand(0).getReg(); 2196 2197 // Find the last ADD to set EntryReg 2198 MachineBasicBlock::iterator I(LEAMI); 2199 for (++I; &*I != JumpMI; ++I) { 2200 if (I->getOpcode() == ARM::t2ADDrs && I->getOperand(0).getReg() == EntryReg) 2201 RemovableAdd = &*I; 2202 } 2203 2204 if (!RemovableAdd) 2205 return; 2206 2207 // Ensure EntryReg is not clobbered or used. 2208 MachineBasicBlock::iterator J(RemovableAdd); 2209 for (++J; &*J != JumpMI; ++J) { 2210 for (const MachineOperand &MO : J->operands()) { 2211 if (!MO.isReg() || !MO.getReg()) 2212 continue; 2213 if (MO.isDef() && MO.getReg() == EntryReg) 2214 return; 2215 if (MO.isUse() && MO.getReg() == EntryReg) 2216 return; 2217 } 2218 } 2219 2220 LLVM_DEBUG(dbgs() << "Removing Dead Add: " << *RemovableAdd); 2221 RemovableAdd->eraseFromParent(); 2222 DeadSize += 4; 2223 } 2224 2225 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 2226 /// jumptables when it's possible. 2227 bool ARMConstantIslands::optimizeThumb2JumpTables() { 2228 bool MadeChange = false; 2229 2230 // FIXME: After the tables are shrunk, can we get rid some of the 2231 // constantpool tables? 2232 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2233 if (!MJTI) return false; 2234 2235 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2236 for (MachineInstr *MI : T2JumpTables) { 2237 const MCInstrDesc &MCID = MI->getDesc(); 2238 unsigned NumOps = MCID.getNumOperands(); 2239 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2240 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2241 unsigned JTI = JTOP.getIndex(); 2242 assert(JTI < JT.size()); 2243 2244 bool ByteOk = true; 2245 bool HalfWordOk = true; 2246 unsigned JTOffset = BBUtils->getOffsetOf(MI) + 4; 2247 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2248 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 2249 for (MachineBasicBlock *MBB : JTBBs) { 2250 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset; 2251 // Negative offset is not ok. FIXME: We should change BB layout to make 2252 // sure all the branches are forward. 2253 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 2254 ByteOk = false; 2255 unsigned TBHLimit = ((1<<16)-1)*2; 2256 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 2257 HalfWordOk = false; 2258 if (!ByteOk && !HalfWordOk) 2259 break; 2260 } 2261 2262 if (!ByteOk && !HalfWordOk) 2263 continue; 2264 2265 CPUser &User = CPUsers[JumpTableUserIndices[JTI]]; 2266 MachineBasicBlock *MBB = MI->getParent(); 2267 if (!MI->getOperand(0).isKill()) // FIXME: needed now? 2268 continue; 2269 2270 unsigned DeadSize = 0; 2271 bool CanDeleteLEA = false; 2272 bool BaseRegKill = false; 2273 2274 unsigned IdxReg = ~0U; 2275 bool IdxRegKill = true; 2276 if (isThumb2) { 2277 IdxReg = MI->getOperand(1).getReg(); 2278 IdxRegKill = MI->getOperand(1).isKill(); 2279 2280 bool PreservedBaseReg = 2281 preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill); 2282 if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg) 2283 continue; 2284 } else { 2285 // We're in thumb-1 mode, so we must have something like: 2286 // %idx = tLSLri %idx, 2 2287 // %base = tLEApcrelJT 2288 // %t = tLDRr %base, %idx 2289 Register BaseReg = User.MI->getOperand(0).getReg(); 2290 2291 MachineBasicBlock *UserMBB = User.MI->getParent(); 2292 MachineBasicBlock::iterator Shift = User.MI->getIterator(); 2293 if (Shift == UserMBB->begin()) 2294 continue; 2295 2296 Shift = prev_nodbg(Shift, UserMBB->begin()); 2297 if (Shift->getOpcode() != ARM::tLSLri || 2298 Shift->getOperand(3).getImm() != 2 || 2299 !Shift->getOperand(2).isKill()) 2300 continue; 2301 IdxReg = Shift->getOperand(2).getReg(); 2302 Register ShiftedIdxReg = Shift->getOperand(0).getReg(); 2303 2304 // It's important that IdxReg is live until the actual TBB/TBH. Most of 2305 // the range is checked later, but the LEA might still clobber it and not 2306 // actually get removed. 2307 if (BaseReg == IdxReg && !jumpTableFollowsTB(MI, User.CPEMI)) 2308 continue; 2309 2310 MachineInstr *Load = User.MI->getNextNode(); 2311 if (Load->getOpcode() != ARM::tLDRr) 2312 continue; 2313 if (Load->getOperand(1).getReg() != BaseReg || 2314 Load->getOperand(2).getReg() != ShiftedIdxReg || 2315 !Load->getOperand(2).isKill()) 2316 continue; 2317 2318 // If we're in PIC mode, there should be another ADD following. 2319 auto *TRI = STI->getRegisterInfo(); 2320 2321 // %base cannot be redefined after the load as it will appear before 2322 // TBB/TBH like: 2323 // %base = 2324 // %base = 2325 // tBB %base, %idx 2326 if (registerDefinedBetween(BaseReg, Load->getNextNode(), MBB->end(), TRI)) 2327 continue; 2328 2329 if (isPositionIndependentOrROPI) { 2330 MachineInstr *Add = Load->getNextNode(); 2331 if (Add->getOpcode() != ARM::tADDrr || 2332 Add->getOperand(2).getReg() != BaseReg || 2333 Add->getOperand(3).getReg() != Load->getOperand(0).getReg() || 2334 !Add->getOperand(3).isKill()) 2335 continue; 2336 if (Add->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2337 continue; 2338 if (registerDefinedBetween(IdxReg, Add->getNextNode(), MI, TRI)) 2339 // IdxReg gets redefined in the middle of the sequence. 2340 continue; 2341 Add->eraseFromParent(); 2342 DeadSize += 2; 2343 } else { 2344 if (Load->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2345 continue; 2346 if (registerDefinedBetween(IdxReg, Load->getNextNode(), MI, TRI)) 2347 // IdxReg gets redefined in the middle of the sequence. 2348 continue; 2349 } 2350 2351 // Now safe to delete the load and lsl. The LEA will be removed later. 2352 CanDeleteLEA = true; 2353 Shift->eraseFromParent(); 2354 Load->eraseFromParent(); 2355 DeadSize += 4; 2356 } 2357 2358 LLVM_DEBUG(dbgs() << "Shrink JT: " << *MI); 2359 MachineInstr *CPEMI = User.CPEMI; 2360 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; 2361 if (!isThumb2) 2362 Opc = ByteOk ? ARM::tTBB_JT : ARM::tTBH_JT; 2363 2364 MachineBasicBlock::iterator MI_JT = MI; 2365 MachineInstr *NewJTMI = 2366 BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc)) 2367 .addReg(User.MI->getOperand(0).getReg(), 2368 getKillRegState(BaseRegKill)) 2369 .addReg(IdxReg, getKillRegState(IdxRegKill)) 2370 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 2371 .addImm(CPEMI->getOperand(0).getImm()); 2372 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": " << *NewJTMI); 2373 2374 unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH; 2375 CPEMI->setDesc(TII->get(JTOpc)); 2376 2377 if (jumpTableFollowsTB(MI, User.CPEMI)) { 2378 NewJTMI->getOperand(0).setReg(ARM::PC); 2379 NewJTMI->getOperand(0).setIsKill(false); 2380 2381 if (CanDeleteLEA) { 2382 if (isThumb2) 2383 RemoveDeadAddBetweenLEAAndJT(User.MI, MI, DeadSize); 2384 2385 User.MI->eraseFromParent(); 2386 DeadSize += isThumb2 ? 4 : 2; 2387 2388 // The LEA was eliminated, the TBB instruction becomes the only new user 2389 // of the jump table. 2390 User.MI = NewJTMI; 2391 User.MaxDisp = 4; 2392 User.NegOk = false; 2393 User.IsSoImm = false; 2394 User.KnownAlignment = false; 2395 } else { 2396 // The LEA couldn't be eliminated, so we must add another CPUser to 2397 // record the TBB or TBH use. 2398 int CPEntryIdx = JumpTableEntryIndices[JTI]; 2399 auto &CPEs = CPEntries[CPEntryIdx]; 2400 auto Entry = 2401 find_if(CPEs, [&](CPEntry &E) { return E.CPEMI == User.CPEMI; }); 2402 ++Entry->RefCount; 2403 CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false)); 2404 } 2405 } 2406 2407 unsigned NewSize = TII->getInstSizeInBytes(*NewJTMI); 2408 unsigned OrigSize = TII->getInstSizeInBytes(*MI); 2409 MI->eraseFromParent(); 2410 2411 int Delta = OrigSize - NewSize + DeadSize; 2412 BBInfo[MBB->getNumber()].Size -= Delta; 2413 BBUtils->adjustBBOffsetsAfter(MBB); 2414 2415 ++NumTBs; 2416 MadeChange = true; 2417 } 2418 2419 return MadeChange; 2420 } 2421 2422 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that 2423 /// jump tables always branch forwards, since that's what tbb and tbh need. 2424 bool ARMConstantIslands::reorderThumb2JumpTables() { 2425 bool MadeChange = false; 2426 2427 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2428 if (!MJTI) return false; 2429 2430 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2431 for (MachineInstr *MI : T2JumpTables) { 2432 const MCInstrDesc &MCID = MI->getDesc(); 2433 unsigned NumOps = MCID.getNumOperands(); 2434 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2435 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2436 unsigned JTI = JTOP.getIndex(); 2437 assert(JTI < JT.size()); 2438 2439 // We prefer if target blocks for the jump table come after the jump 2440 // instruction so we can use TB[BH]. Loop through the target blocks 2441 // and try to adjust them such that that's true. 2442 int JTNumber = MI->getParent()->getNumber(); 2443 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2444 for (MachineBasicBlock *MBB : JTBBs) { 2445 int DTNumber = MBB->getNumber(); 2446 2447 if (DTNumber < JTNumber) { 2448 // The destination precedes the switch. Try to move the block forward 2449 // so we have a positive offset. 2450 MachineBasicBlock *NewBB = 2451 adjustJTTargetBlockForward(JTI, MBB, MI->getParent()); 2452 if (NewBB) 2453 MJTI->ReplaceMBBInJumpTable(JTI, MBB, NewBB); 2454 MadeChange = true; 2455 } 2456 } 2457 } 2458 2459 return MadeChange; 2460 } 2461 2462 MachineBasicBlock *ARMConstantIslands::adjustJTTargetBlockForward( 2463 unsigned JTI, MachineBasicBlock *BB, MachineBasicBlock *JTBB) { 2464 // If the destination block is terminated by an unconditional branch, 2465 // try to move it; otherwise, create a new block following the jump 2466 // table that branches back to the actual target. This is a very simple 2467 // heuristic. FIXME: We can definitely improve it. 2468 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2469 SmallVector<MachineOperand, 4> Cond; 2470 SmallVector<MachineOperand, 4> CondPrior; 2471 MachineFunction::iterator BBi = BB->getIterator(); 2472 MachineFunction::iterator OldPrior = std::prev(BBi); 2473 MachineFunction::iterator OldNext = std::next(BBi); 2474 2475 // If the block terminator isn't analyzable, don't try to move the block 2476 bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond); 2477 2478 // If the block ends in an unconditional branch, move it. The prior block 2479 // has to have an analyzable terminator for us to move this one. Be paranoid 2480 // and make sure we're not trying to move the entry block of the function. 2481 if (!B && Cond.empty() && BB != &MF->front() && 2482 !TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 2483 BB->moveAfter(JTBB); 2484 OldPrior->updateTerminator(BB); 2485 BB->updateTerminator(OldNext != MF->end() ? &*OldNext : nullptr); 2486 // Update numbering to account for the block being moved. 2487 MF->RenumberBlocks(); 2488 ++NumJTMoved; 2489 return nullptr; 2490 } 2491 2492 // Create a new MBB for the code after the jump BB. 2493 MachineBasicBlock *NewBB = 2494 MF->CreateMachineBasicBlock(JTBB->getBasicBlock()); 2495 MachineFunction::iterator MBBI = ++JTBB->getIterator(); 2496 MF->insert(MBBI, NewBB); 2497 2498 // Copy live-in information to new block. 2499 for (const MachineBasicBlock::RegisterMaskPair &RegMaskPair : BB->liveins()) 2500 NewBB->addLiveIn(RegMaskPair); 2501 2502 // Add an unconditional branch from NewBB to BB. 2503 // There doesn't seem to be meaningful DebugInfo available; this doesn't 2504 // correspond directly to anything in the source. 2505 if (isThumb2) 2506 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)) 2507 .addMBB(BB) 2508 .add(predOps(ARMCC::AL)); 2509 else 2510 BuildMI(NewBB, DebugLoc(), TII->get(ARM::tB)) 2511 .addMBB(BB) 2512 .add(predOps(ARMCC::AL)); 2513 2514 // Update internal data structures to account for the newly inserted MBB. 2515 MF->RenumberBlocks(NewBB); 2516 2517 // Update the CFG. 2518 NewBB->addSuccessor(BB); 2519 JTBB->replaceSuccessor(BB, NewBB); 2520 2521 ++NumJTInserted; 2522 return NewBB; 2523 } 2524 2525 /// createARMConstantIslandPass - returns an instance of the constpool 2526 /// island pass. 2527 FunctionPass *llvm::createARMConstantIslandPass() { 2528 return new ARMConstantIslands(); 2529 } 2530 2531 INITIALIZE_PASS(ARMConstantIslands, "arm-cp-islands", ARM_CP_ISLANDS_OPT_NAME, 2532 false, false) 2533