1 //===- ARMConstantIslandPass.cpp - ARM constant islands -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass that splits the constant pool up into 'islands' 10 // which are scattered through-out the function. This is required due to the 11 // limited pc-relative displacements that ARM has. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARM.h" 16 #include "ARMBaseInstrInfo.h" 17 #include "ARMBasicBlockInfo.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMBaseInfo.h" 21 #include "Thumb2InstrInfo.h" 22 #include "Utils/ARMBaseInfo.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/CodeGen/LivePhysRegs.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineConstantPool.h" 32 #include "llvm/CodeGen/MachineDominators.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineJumpTableInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/Config/llvm-config.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/MC/MCInstrDesc.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Compiler.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/Format.h" 49 #include "llvm/Support/MathExtras.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <cstdint> 54 #include <iterator> 55 #include <utility> 56 #include <vector> 57 58 using namespace llvm; 59 60 #define DEBUG_TYPE "arm-cp-islands" 61 62 #define ARM_CP_ISLANDS_OPT_NAME \ 63 "ARM constant island placement and branch shortening pass" 64 STATISTIC(NumCPEs, "Number of constpool entries"); 65 STATISTIC(NumSplit, "Number of uncond branches inserted"); 66 STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 67 STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 68 STATISTIC(NumTBs, "Number of table branches generated"); 69 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 70 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 71 STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 72 STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 73 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 74 STATISTIC(NumLEInserted, "Number of LE backwards branches inserted"); 75 76 static cl::opt<bool> 77 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 78 cl::desc("Adjust basic block layout to better use TB[BH]")); 79 80 static cl::opt<unsigned> 81 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30), 82 cl::desc("The max number of iteration for converge")); 83 84 static cl::opt<bool> SynthesizeThumb1TBB( 85 "arm-synthesize-thumb-1-tbb", cl::Hidden, cl::init(true), 86 cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an " 87 "equivalent to the TBB/TBH instructions")); 88 89 namespace { 90 91 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 92 /// requires constant pool entries to be scattered among the instructions 93 /// inside a function. To do this, it completely ignores the normal LLVM 94 /// constant pool; instead, it places constants wherever it feels like with 95 /// special instructions. 96 /// 97 /// The terminology used in this pass includes: 98 /// Islands - Clumps of constants placed in the function. 99 /// Water - Potential places where an island could be formed. 100 /// CPE - A constant pool entry that has been placed somewhere, which 101 /// tracks a list of users. 102 class ARMConstantIslands : public MachineFunctionPass { 103 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 104 105 /// WaterList - A sorted list of basic blocks where islands could be placed 106 /// (i.e. blocks that don't fall through to the following block, due 107 /// to a return, unreachable, or unconditional branch). 108 std::vector<MachineBasicBlock*> WaterList; 109 110 /// NewWaterList - The subset of WaterList that was created since the 111 /// previous iteration by inserting unconditional branches. 112 SmallSet<MachineBasicBlock*, 4> NewWaterList; 113 114 using water_iterator = std::vector<MachineBasicBlock *>::iterator; 115 116 /// CPUser - One user of a constant pool, keeping the machine instruction 117 /// pointer, the constant pool being referenced, and the max displacement 118 /// allowed from the instruction to the CP. The HighWaterMark records the 119 /// highest basic block where a new CPEntry can be placed. To ensure this 120 /// pass terminates, the CP entries are initially placed at the end of the 121 /// function and then move monotonically to lower addresses. The 122 /// exception to this rule is when the current CP entry for a particular 123 /// CPUser is out of range, but there is another CP entry for the same 124 /// constant value in range. We want to use the existing in-range CP 125 /// entry, but if it later moves out of range, the search for new water 126 /// should resume where it left off. The HighWaterMark is used to record 127 /// that point. 128 struct CPUser { 129 MachineInstr *MI; 130 MachineInstr *CPEMI; 131 MachineBasicBlock *HighWaterMark; 132 unsigned MaxDisp; 133 bool NegOk; 134 bool IsSoImm; 135 bool KnownAlignment = false; 136 137 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 138 bool neg, bool soimm) 139 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) { 140 HighWaterMark = CPEMI->getParent(); 141 } 142 143 /// getMaxDisp - Returns the maximum displacement supported by MI. 144 /// Correct for unknown alignment. 145 /// Conservatively subtract 2 bytes to handle weird alignment effects. 146 unsigned getMaxDisp() const { 147 return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2; 148 } 149 }; 150 151 /// CPUsers - Keep track of all of the machine instructions that use various 152 /// constant pools and their max displacement. 153 std::vector<CPUser> CPUsers; 154 155 /// CPEntry - One per constant pool entry, keeping the machine instruction 156 /// pointer, the constpool index, and the number of CPUser's which 157 /// reference this entry. 158 struct CPEntry { 159 MachineInstr *CPEMI; 160 unsigned CPI; 161 unsigned RefCount; 162 163 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 164 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 165 }; 166 167 /// CPEntries - Keep track of all of the constant pool entry machine 168 /// instructions. For each original constpool index (i.e. those that existed 169 /// upon entry to this pass), it keeps a vector of entries. Original 170 /// elements are cloned as we go along; the clones are put in the vector of 171 /// the original element, but have distinct CPIs. 172 /// 173 /// The first half of CPEntries contains generic constants, the second half 174 /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up 175 /// which vector it will be in here. 176 std::vector<std::vector<CPEntry>> CPEntries; 177 178 /// Maps a JT index to the offset in CPEntries containing copies of that 179 /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity. 180 DenseMap<int, int> JumpTableEntryIndices; 181 182 /// Maps a JT index to the LEA that actually uses the index to calculate its 183 /// base address. 184 DenseMap<int, int> JumpTableUserIndices; 185 186 /// ImmBranch - One per immediate branch, keeping the machine instruction 187 /// pointer, conditional or unconditional, the max displacement, 188 /// and (if isCond is true) the corresponding unconditional branch 189 /// opcode. 190 struct ImmBranch { 191 MachineInstr *MI; 192 unsigned MaxDisp : 31; 193 bool isCond : 1; 194 unsigned UncondBr; 195 196 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr) 197 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 198 }; 199 200 /// ImmBranches - Keep track of all the immediate branch instructions. 201 std::vector<ImmBranch> ImmBranches; 202 203 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 204 SmallVector<MachineInstr*, 4> PushPopMIs; 205 206 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 207 SmallVector<MachineInstr*, 4> T2JumpTables; 208 209 /// HasFarJump - True if any far jump instruction has been emitted during 210 /// the branch fix up pass. 211 bool HasFarJump; 212 213 MachineFunction *MF; 214 MachineConstantPool *MCP; 215 const ARMBaseInstrInfo *TII; 216 const ARMSubtarget *STI; 217 ARMFunctionInfo *AFI; 218 MachineDominatorTree *DT = nullptr; 219 bool isThumb; 220 bool isThumb1; 221 bool isThumb2; 222 bool isPositionIndependentOrROPI; 223 224 public: 225 static char ID; 226 227 ARMConstantIslands() : MachineFunctionPass(ID) {} 228 229 bool runOnMachineFunction(MachineFunction &MF) override; 230 231 void getAnalysisUsage(AnalysisUsage &AU) const override { 232 AU.addRequired<MachineDominatorTree>(); 233 MachineFunctionPass::getAnalysisUsage(AU); 234 } 235 236 MachineFunctionProperties getRequiredProperties() const override { 237 return MachineFunctionProperties().set( 238 MachineFunctionProperties::Property::NoVRegs); 239 } 240 241 StringRef getPassName() const override { 242 return ARM_CP_ISLANDS_OPT_NAME; 243 } 244 245 private: 246 void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs); 247 void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs); 248 bool BBHasFallthrough(MachineBasicBlock *MBB); 249 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 250 Align getCPEAlign(const MachineInstr *CPEMI); 251 void scanFunctionJumpTables(); 252 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); 253 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI); 254 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); 255 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); 256 unsigned getCombinedIndex(const MachineInstr *CPEMI); 257 int findInRangeCPEntry(CPUser& U, unsigned UserOffset); 258 bool findAvailableWater(CPUser&U, unsigned UserOffset, 259 water_iterator &WaterIter, bool CloserWater); 260 void createNewWater(unsigned CPUserIndex, unsigned UserOffset, 261 MachineBasicBlock *&NewMBB); 262 bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater); 263 void removeDeadCPEMI(MachineInstr *CPEMI); 264 bool removeUnusedCPEntries(); 265 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 266 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 267 bool DoDump = false); 268 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, 269 CPUser &U, unsigned &Growth); 270 bool fixupImmediateBr(ImmBranch &Br); 271 bool fixupConditionalBr(ImmBranch &Br); 272 bool fixupUnconditionalBr(ImmBranch &Br); 273 bool undoLRSpillRestore(); 274 bool optimizeThumb2Instructions(); 275 bool optimizeThumb2Branches(); 276 bool reorderThumb2JumpTables(); 277 bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI, 278 unsigned &DeadSize, bool &CanDeleteLEA, 279 bool &BaseRegKill); 280 bool optimizeThumb2JumpTables(); 281 MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB, 282 MachineBasicBlock *JTBB); 283 284 unsigned getUserOffset(CPUser&) const; 285 void dumpBBs(); 286 void verify(); 287 288 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 289 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 290 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 291 const CPUser &U) { 292 return isOffsetInRange(UserOffset, TrialOffset, 293 U.getMaxDisp(), U.NegOk, U.IsSoImm); 294 } 295 }; 296 297 } // end anonymous namespace 298 299 char ARMConstantIslands::ID = 0; 300 301 /// verify - check BBOffsets, BBSizes, alignment of islands 302 void ARMConstantIslands::verify() { 303 #ifndef NDEBUG 304 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 305 assert(std::is_sorted(MF->begin(), MF->end(), 306 [&BBInfo](const MachineBasicBlock &LHS, 307 const MachineBasicBlock &RHS) { 308 return BBInfo[LHS.getNumber()].postOffset() < 309 BBInfo[RHS.getNumber()].postOffset(); 310 })); 311 LLVM_DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n"); 312 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 313 CPUser &U = CPUsers[i]; 314 unsigned UserOffset = getUserOffset(U); 315 // Verify offset using the real max displacement without the safety 316 // adjustment. 317 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk, 318 /* DoDump = */ true)) { 319 LLVM_DEBUG(dbgs() << "OK\n"); 320 continue; 321 } 322 LLVM_DEBUG(dbgs() << "Out of range.\n"); 323 dumpBBs(); 324 LLVM_DEBUG(MF->dump()); 325 llvm_unreachable("Constant pool entry out of range!"); 326 } 327 #endif 328 } 329 330 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 331 /// print block size and offset information - debugging 332 LLVM_DUMP_METHOD void ARMConstantIslands::dumpBBs() { 333 LLVM_DEBUG({ 334 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 335 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { 336 const BasicBlockInfo &BBI = BBInfo[J]; 337 dbgs() << format("%08x %bb.%u\t", BBI.Offset, J) 338 << " kb=" << unsigned(BBI.KnownBits) 339 << " ua=" << unsigned(BBI.Unalign) << " pa=" << Log2(BBI.PostAlign) 340 << format(" size=%#x\n", BBInfo[J].Size); 341 } 342 }); 343 } 344 #endif 345 346 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) { 347 MF = &mf; 348 MCP = mf.getConstantPool(); 349 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(mf)); 350 351 LLVM_DEBUG(dbgs() << "***** ARMConstantIslands: " 352 << MCP->getConstants().size() << " CP entries, aligned to " 353 << MCP->getConstantPoolAlignment() << " bytes *****\n"); 354 355 STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget()); 356 TII = STI->getInstrInfo(); 357 isPositionIndependentOrROPI = 358 STI->getTargetLowering()->isPositionIndependent() || STI->isROPI(); 359 AFI = MF->getInfo<ARMFunctionInfo>(); 360 DT = &getAnalysis<MachineDominatorTree>(); 361 362 isThumb = AFI->isThumbFunction(); 363 isThumb1 = AFI->isThumb1OnlyFunction(); 364 isThumb2 = AFI->isThumb2Function(); 365 366 HasFarJump = false; 367 bool GenerateTBB = isThumb2 || (isThumb1 && SynthesizeThumb1TBB); 368 369 // Renumber all of the machine basic blocks in the function, guaranteeing that 370 // the numbers agree with the position of the block in the function. 371 MF->RenumberBlocks(); 372 373 // Try to reorder and otherwise adjust the block layout to make good use 374 // of the TB[BH] instructions. 375 bool MadeChange = false; 376 if (GenerateTBB && AdjustJumpTableBlocks) { 377 scanFunctionJumpTables(); 378 MadeChange |= reorderThumb2JumpTables(); 379 // Data is out of date, so clear it. It'll be re-computed later. 380 T2JumpTables.clear(); 381 // Blocks may have shifted around. Keep the numbering up to date. 382 MF->RenumberBlocks(); 383 } 384 385 // Perform the initial placement of the constant pool entries. To start with, 386 // we put them all at the end of the function. 387 std::vector<MachineInstr*> CPEMIs; 388 if (!MCP->isEmpty()) 389 doInitialConstPlacement(CPEMIs); 390 391 if (MF->getJumpTableInfo()) 392 doInitialJumpTablePlacement(CPEMIs); 393 394 /// The next UID to take is the first unused one. 395 AFI->initPICLabelUId(CPEMIs.size()); 396 397 // Do the initial scan of the function, building up information about the 398 // sizes of each block, the location of all the water, and finding all of the 399 // constant pool users. 400 initializeFunctionInfo(CPEMIs); 401 CPEMIs.clear(); 402 LLVM_DEBUG(dumpBBs()); 403 404 // Functions with jump tables need an alignment of 4 because they use the ADR 405 // instruction, which aligns the PC to 4 bytes before adding an offset. 406 if (!T2JumpTables.empty()) 407 MF->ensureAlignment(Align(4)); 408 409 /// Remove dead constant pool entries. 410 MadeChange |= removeUnusedCPEntries(); 411 412 // Iteratively place constant pool entries and fix up branches until there 413 // is no change. 414 unsigned NoCPIters = 0, NoBRIters = 0; 415 while (true) { 416 LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 417 bool CPChange = false; 418 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 419 // For most inputs, it converges in no more than 5 iterations. 420 // If it doesn't end in 10, the input may have huge BB or many CPEs. 421 // In this case, we will try different heuristics. 422 CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2); 423 if (CPChange && ++NoCPIters > CPMaxIteration) 424 report_fatal_error("Constant Island pass failed to converge!"); 425 LLVM_DEBUG(dumpBBs()); 426 427 // Clear NewWaterList now. If we split a block for branches, it should 428 // appear as "new water" for the next iteration of constant pool placement. 429 NewWaterList.clear(); 430 431 LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 432 bool BRChange = false; 433 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 434 BRChange |= fixupImmediateBr(ImmBranches[i]); 435 if (BRChange && ++NoBRIters > 30) 436 report_fatal_error("Branch Fix Up pass failed to converge!"); 437 LLVM_DEBUG(dumpBBs()); 438 439 if (!CPChange && !BRChange) 440 break; 441 MadeChange = true; 442 } 443 444 // Shrink 32-bit Thumb2 load and store instructions. 445 if (isThumb2 && !STI->prefers32BitThumb()) 446 MadeChange |= optimizeThumb2Instructions(); 447 448 // Shrink 32-bit branch instructions. 449 if (isThumb && STI->hasV8MBaselineOps()) 450 MadeChange |= optimizeThumb2Branches(); 451 452 // Optimize jump tables using TBB / TBH. 453 if (GenerateTBB && !STI->genExecuteOnly()) 454 MadeChange |= optimizeThumb2JumpTables(); 455 456 // After a while, this might be made debug-only, but it is not expensive. 457 verify(); 458 459 // If LR has been forced spilled and no far jump (i.e. BL) has been issued, 460 // undo the spill / restore of LR if possible. 461 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump()) 462 MadeChange |= undoLRSpillRestore(); 463 464 // Save the mapping between original and cloned constpool entries. 465 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 466 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) { 467 const CPEntry & CPE = CPEntries[i][j]; 468 if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI()) 469 AFI->recordCPEClone(i, CPE.CPI); 470 } 471 } 472 473 LLVM_DEBUG(dbgs() << '\n'; dumpBBs()); 474 475 BBUtils->clear(); 476 WaterList.clear(); 477 CPUsers.clear(); 478 CPEntries.clear(); 479 JumpTableEntryIndices.clear(); 480 JumpTableUserIndices.clear(); 481 ImmBranches.clear(); 482 PushPopMIs.clear(); 483 T2JumpTables.clear(); 484 485 return MadeChange; 486 } 487 488 /// Perform the initial placement of the regular constant pool entries. 489 /// To start with, we put them all at the end of the function. 490 void 491 ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) { 492 // Create the basic block to hold the CPE's. 493 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 494 MF->push_back(BB); 495 496 // MachineConstantPool measures alignment in bytes. 497 const Align MaxAlign(MCP->getConstantPoolAlignment()); 498 const unsigned MaxLogAlign = Log2(MaxAlign); 499 500 // Mark the basic block as required by the const-pool. 501 BB->setAlignment(MaxAlign); 502 503 // The function needs to be as aligned as the basic blocks. The linker may 504 // move functions around based on their alignment. 505 MF->ensureAlignment(BB->getAlignment()); 506 507 // Order the entries in BB by descending alignment. That ensures correct 508 // alignment of all entries as long as BB is sufficiently aligned. Keep 509 // track of the insertion point for each alignment. We are going to bucket 510 // sort the entries as they are created. 511 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxLogAlign + 1, 512 BB->end()); 513 514 // Add all of the constants from the constant pool to the end block, use an 515 // identity mapping of CPI's to CPE's. 516 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 517 518 const DataLayout &TD = MF->getDataLayout(); 519 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 520 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 521 unsigned Align = CPs[i].getAlignment(); 522 assert(isPowerOf2_32(Align) && "Invalid alignment"); 523 // Verify that all constant pool entries are a multiple of their alignment. 524 // If not, we would have to pad them out so that instructions stay aligned. 525 assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!"); 526 527 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 528 unsigned LogAlign = Log2_32(Align); 529 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 530 MachineInstr *CPEMI = 531 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 532 .addImm(i).addConstantPoolIndex(i).addImm(Size); 533 CPEMIs.push_back(CPEMI); 534 535 // Ensure that future entries with higher alignment get inserted before 536 // CPEMI. This is bucket sort with iterators. 537 for (unsigned a = LogAlign + 1; a <= MaxLogAlign; ++a) 538 if (InsPoint[a] == InsAt) 539 InsPoint[a] = CPEMI; 540 541 // Add a new CPEntry, but no corresponding CPUser yet. 542 CPEntries.emplace_back(1, CPEntry(CPEMI, i)); 543 ++NumCPEs; 544 LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " 545 << Size << ", align = " << Align << '\n'); 546 } 547 LLVM_DEBUG(BB->dump()); 548 } 549 550 /// Do initial placement of the jump tables. Because Thumb2's TBB and TBH 551 /// instructions can be made more efficient if the jump table immediately 552 /// follows the instruction, it's best to place them immediately next to their 553 /// jumps to begin with. In almost all cases they'll never be moved from that 554 /// position. 555 void ARMConstantIslands::doInitialJumpTablePlacement( 556 std::vector<MachineInstr *> &CPEMIs) { 557 unsigned i = CPEntries.size(); 558 auto MJTI = MF->getJumpTableInfo(); 559 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 560 561 MachineBasicBlock *LastCorrectlyNumberedBB = nullptr; 562 for (MachineBasicBlock &MBB : *MF) { 563 auto MI = MBB.getLastNonDebugInstr(); 564 if (MI == MBB.end()) 565 continue; 566 567 unsigned JTOpcode; 568 switch (MI->getOpcode()) { 569 default: 570 continue; 571 case ARM::BR_JTadd: 572 case ARM::BR_JTr: 573 case ARM::tBR_JTr: 574 case ARM::BR_JTm_i12: 575 case ARM::BR_JTm_rs: 576 JTOpcode = ARM::JUMPTABLE_ADDRS; 577 break; 578 case ARM::t2BR_JT: 579 JTOpcode = ARM::JUMPTABLE_INSTS; 580 break; 581 case ARM::tTBB_JT: 582 case ARM::t2TBB_JT: 583 JTOpcode = ARM::JUMPTABLE_TBB; 584 break; 585 case ARM::tTBH_JT: 586 case ARM::t2TBH_JT: 587 JTOpcode = ARM::JUMPTABLE_TBH; 588 break; 589 } 590 591 unsigned NumOps = MI->getDesc().getNumOperands(); 592 MachineOperand JTOp = 593 MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1)); 594 unsigned JTI = JTOp.getIndex(); 595 unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t); 596 MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock(); 597 MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB); 598 MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(), 599 DebugLoc(), TII->get(JTOpcode)) 600 .addImm(i++) 601 .addJumpTableIndex(JTI) 602 .addImm(Size); 603 CPEMIs.push_back(CPEMI); 604 CPEntries.emplace_back(1, CPEntry(CPEMI, JTI)); 605 JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1)); 606 if (!LastCorrectlyNumberedBB) 607 LastCorrectlyNumberedBB = &MBB; 608 } 609 610 // If we did anything then we need to renumber the subsequent blocks. 611 if (LastCorrectlyNumberedBB) 612 MF->RenumberBlocks(LastCorrectlyNumberedBB); 613 } 614 615 /// BBHasFallthrough - Return true if the specified basic block can fallthrough 616 /// into the block immediately after it. 617 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) { 618 // Get the next machine basic block in the function. 619 MachineFunction::iterator MBBI = MBB->getIterator(); 620 // Can't fall off end of function. 621 if (std::next(MBBI) == MBB->getParent()->end()) 622 return false; 623 624 MachineBasicBlock *NextBB = &*std::next(MBBI); 625 if (!MBB->isSuccessor(NextBB)) 626 return false; 627 628 // Try to analyze the end of the block. A potential fallthrough may already 629 // have an unconditional branch for whatever reason. 630 MachineBasicBlock *TBB, *FBB; 631 SmallVector<MachineOperand, 4> Cond; 632 bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond); 633 return TooDifficult || FBB == nullptr; 634 } 635 636 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 637 /// look up the corresponding CPEntry. 638 ARMConstantIslands::CPEntry * 639 ARMConstantIslands::findConstPoolEntry(unsigned CPI, 640 const MachineInstr *CPEMI) { 641 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 642 // Number of entries per constpool index should be small, just do a 643 // linear search. 644 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 645 if (CPEs[i].CPEMI == CPEMI) 646 return &CPEs[i]; 647 } 648 return nullptr; 649 } 650 651 /// getCPEAlign - Returns the required alignment of the constant pool entry 652 /// represented by CPEMI. 653 Align ARMConstantIslands::getCPEAlign(const MachineInstr *CPEMI) { 654 switch (CPEMI->getOpcode()) { 655 case ARM::CONSTPOOL_ENTRY: 656 break; 657 case ARM::JUMPTABLE_TBB: 658 return isThumb1 ? Align(4) : Align(1); 659 case ARM::JUMPTABLE_TBH: 660 return isThumb1 ? Align(4) : Align(2); 661 case ARM::JUMPTABLE_INSTS: 662 return Align(2); 663 case ARM::JUMPTABLE_ADDRS: 664 return Align(4); 665 default: 666 llvm_unreachable("unknown constpool entry kind"); 667 } 668 669 unsigned CPI = getCombinedIndex(CPEMI); 670 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 671 return Align(MCP->getConstants()[CPI].getAlignment()); 672 } 673 674 /// scanFunctionJumpTables - Do a scan of the function, building up 675 /// information about the sizes of each block and the locations of all 676 /// the jump tables. 677 void ARMConstantIslands::scanFunctionJumpTables() { 678 for (MachineBasicBlock &MBB : *MF) { 679 for (MachineInstr &I : MBB) 680 if (I.isBranch() && 681 (I.getOpcode() == ARM::t2BR_JT || I.getOpcode() == ARM::tBR_JTr)) 682 T2JumpTables.push_back(&I); 683 } 684 } 685 686 /// initializeFunctionInfo - Do the initial scan of the function, building up 687 /// information about the sizes of each block, the location of all the water, 688 /// and finding all of the constant pool users. 689 void ARMConstantIslands:: 690 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { 691 692 BBUtils->computeAllBlockSizes(); 693 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 694 // The known bits of the entry block offset are determined by the function 695 // alignment. 696 BBInfo.front().KnownBits = Log2(MF->getAlignment()); 697 698 // Compute block offsets and known bits. 699 BBUtils->adjustBBOffsetsAfter(&MF->front()); 700 701 // Now go back through the instructions and build up our data structures. 702 for (MachineBasicBlock &MBB : *MF) { 703 // If this block doesn't fall through into the next MBB, then this is 704 // 'water' that a constant pool island could be placed. 705 if (!BBHasFallthrough(&MBB)) 706 WaterList.push_back(&MBB); 707 708 for (MachineInstr &I : MBB) { 709 if (I.isDebugInstr()) 710 continue; 711 712 unsigned Opc = I.getOpcode(); 713 if (I.isBranch()) { 714 bool isCond = false; 715 unsigned Bits = 0; 716 unsigned Scale = 1; 717 int UOpc = Opc; 718 switch (Opc) { 719 default: 720 continue; // Ignore other JT branches 721 case ARM::t2BR_JT: 722 case ARM::tBR_JTr: 723 T2JumpTables.push_back(&I); 724 continue; // Does not get an entry in ImmBranches 725 case ARM::Bcc: 726 isCond = true; 727 UOpc = ARM::B; 728 LLVM_FALLTHROUGH; 729 case ARM::B: 730 Bits = 24; 731 Scale = 4; 732 break; 733 case ARM::tBcc: 734 isCond = true; 735 UOpc = ARM::tB; 736 Bits = 8; 737 Scale = 2; 738 break; 739 case ARM::tB: 740 Bits = 11; 741 Scale = 2; 742 break; 743 case ARM::t2Bcc: 744 isCond = true; 745 UOpc = ARM::t2B; 746 Bits = 20; 747 Scale = 2; 748 break; 749 case ARM::t2B: 750 Bits = 24; 751 Scale = 2; 752 break; 753 } 754 755 // Record this immediate branch. 756 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 757 ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc)); 758 } 759 760 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 761 PushPopMIs.push_back(&I); 762 763 if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS || 764 Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB || 765 Opc == ARM::JUMPTABLE_TBH) 766 continue; 767 768 // Scan the instructions for constant pool operands. 769 for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op) 770 if (I.getOperand(op).isCPI() || I.getOperand(op).isJTI()) { 771 // We found one. The addressing mode tells us the max displacement 772 // from the PC that this instruction permits. 773 774 // Basic size info comes from the TSFlags field. 775 unsigned Bits = 0; 776 unsigned Scale = 1; 777 bool NegOk = false; 778 bool IsSoImm = false; 779 780 switch (Opc) { 781 default: 782 llvm_unreachable("Unknown addressing mode for CP reference!"); 783 784 // Taking the address of a CP entry. 785 case ARM::LEApcrel: 786 case ARM::LEApcrelJT: 787 // This takes a SoImm, which is 8 bit immediate rotated. We'll 788 // pretend the maximum offset is 255 * 4. Since each instruction 789 // 4 byte wide, this is always correct. We'll check for other 790 // displacements that fits in a SoImm as well. 791 Bits = 8; 792 Scale = 4; 793 NegOk = true; 794 IsSoImm = true; 795 break; 796 case ARM::t2LEApcrel: 797 case ARM::t2LEApcrelJT: 798 Bits = 12; 799 NegOk = true; 800 break; 801 case ARM::tLEApcrel: 802 case ARM::tLEApcrelJT: 803 Bits = 8; 804 Scale = 4; 805 break; 806 807 case ARM::LDRBi12: 808 case ARM::LDRi12: 809 case ARM::LDRcp: 810 case ARM::t2LDRpci: 811 case ARM::t2LDRHpci: 812 case ARM::t2LDRBpci: 813 Bits = 12; // +-offset_12 814 NegOk = true; 815 break; 816 817 case ARM::tLDRpci: 818 Bits = 8; 819 Scale = 4; // +(offset_8*4) 820 break; 821 822 case ARM::VLDRD: 823 case ARM::VLDRS: 824 Bits = 8; 825 Scale = 4; // +-(offset_8*4) 826 NegOk = true; 827 break; 828 case ARM::VLDRH: 829 Bits = 8; 830 Scale = 2; // +-(offset_8*2) 831 NegOk = true; 832 break; 833 } 834 835 // Remember that this is a user of a CP entry. 836 unsigned CPI = I.getOperand(op).getIndex(); 837 if (I.getOperand(op).isJTI()) { 838 JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size())); 839 CPI = JumpTableEntryIndices[CPI]; 840 } 841 842 MachineInstr *CPEMI = CPEMIs[CPI]; 843 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 844 CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm)); 845 846 // Increment corresponding CPEntry reference count. 847 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 848 assert(CPE && "Cannot find a corresponding CPEntry!"); 849 CPE->RefCount++; 850 851 // Instructions can only use one CP entry, don't bother scanning the 852 // rest of the operands. 853 break; 854 } 855 } 856 } 857 } 858 859 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 860 /// ID. 861 static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 862 const MachineBasicBlock *RHS) { 863 return LHS->getNumber() < RHS->getNumber(); 864 } 865 866 /// updateForInsertedWaterBlock - When a block is newly inserted into the 867 /// machine function, it upsets all of the block numbers. Renumber the blocks 868 /// and update the arrays that parallel this numbering. 869 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 870 // Renumber the MBB's to keep them consecutive. 871 NewBB->getParent()->RenumberBlocks(NewBB); 872 873 // Insert an entry into BBInfo to align it properly with the (newly 874 // renumbered) block numbers. 875 BBUtils->insert(NewBB->getNumber(), BasicBlockInfo()); 876 877 // Next, update WaterList. Specifically, we need to add NewMBB as having 878 // available water after it. 879 water_iterator IP = llvm::lower_bound(WaterList, NewBB, CompareMBBNumbers); 880 WaterList.insert(IP, NewBB); 881 } 882 883 /// Split the basic block containing MI into two blocks, which are joined by 884 /// an unconditional branch. Update data structures and renumber blocks to 885 /// account for this change and returns the newly created block. 886 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) { 887 MachineBasicBlock *OrigBB = MI->getParent(); 888 889 // Collect liveness information at MI. 890 LivePhysRegs LRs(*MF->getSubtarget().getRegisterInfo()); 891 LRs.addLiveOuts(*OrigBB); 892 auto LivenessEnd = ++MachineBasicBlock::iterator(MI).getReverse(); 893 for (MachineInstr &LiveMI : make_range(OrigBB->rbegin(), LivenessEnd)) 894 LRs.stepBackward(LiveMI); 895 896 // Create a new MBB for the code after the OrigBB. 897 MachineBasicBlock *NewBB = 898 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 899 MachineFunction::iterator MBBI = ++OrigBB->getIterator(); 900 MF->insert(MBBI, NewBB); 901 902 // Splice the instructions starting with MI over to NewBB. 903 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 904 905 // Add an unconditional branch from OrigBB to NewBB. 906 // Note the new unconditional branch is not being recorded. 907 // There doesn't seem to be meaningful DebugInfo available; this doesn't 908 // correspond to anything in the source. 909 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 910 if (!isThumb) 911 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); 912 else 913 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)) 914 .addMBB(NewBB) 915 .add(predOps(ARMCC::AL)); 916 ++NumSplit; 917 918 // Update the CFG. All succs of OrigBB are now succs of NewBB. 919 NewBB->transferSuccessors(OrigBB); 920 921 // OrigBB branches to NewBB. 922 OrigBB->addSuccessor(NewBB); 923 924 // Update live-in information in the new block. 925 MachineRegisterInfo &MRI = MF->getRegInfo(); 926 for (MCPhysReg L : LRs) 927 if (!MRI.isReserved(L)) 928 NewBB->addLiveIn(L); 929 930 // Update internal data structures to account for the newly inserted MBB. 931 // This is almost the same as updateForInsertedWaterBlock, except that 932 // the Water goes after OrigBB, not NewBB. 933 MF->RenumberBlocks(NewBB); 934 935 // Insert an entry into BBInfo to align it properly with the (newly 936 // renumbered) block numbers. 937 BBUtils->insert(NewBB->getNumber(), BasicBlockInfo()); 938 939 // Next, update WaterList. Specifically, we need to add OrigMBB as having 940 // available water after it (but not if it's already there, which happens 941 // when splitting before a conditional branch that is followed by an 942 // unconditional branch - in that case we want to insert NewBB). 943 water_iterator IP = llvm::lower_bound(WaterList, OrigBB, CompareMBBNumbers); 944 MachineBasicBlock* WaterBB = *IP; 945 if (WaterBB == OrigBB) 946 WaterList.insert(std::next(IP), NewBB); 947 else 948 WaterList.insert(IP, OrigBB); 949 NewWaterList.insert(OrigBB); 950 951 // Figure out how large the OrigBB is. As the first half of the original 952 // block, it cannot contain a tablejump. The size includes 953 // the new jump we added. (It should be possible to do this without 954 // recounting everything, but it's very confusing, and this is rarely 955 // executed.) 956 BBUtils->computeBlockSize(OrigBB); 957 958 // Figure out how large the NewMBB is. As the second half of the original 959 // block, it may contain a tablejump. 960 BBUtils->computeBlockSize(NewBB); 961 962 // All BBOffsets following these blocks must be modified. 963 BBUtils->adjustBBOffsetsAfter(OrigBB); 964 965 return NewBB; 966 } 967 968 /// getUserOffset - Compute the offset of U.MI as seen by the hardware 969 /// displacement computation. Update U.KnownAlignment to match its current 970 /// basic block location. 971 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const { 972 unsigned UserOffset = BBUtils->getOffsetOf(U.MI); 973 974 SmallVectorImpl<BasicBlockInfo> &BBInfo = BBUtils->getBBInfo(); 975 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()]; 976 unsigned KnownBits = BBI.internalKnownBits(); 977 978 // The value read from PC is offset from the actual instruction address. 979 UserOffset += (isThumb ? 4 : 8); 980 981 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI. 982 // Make sure U.getMaxDisp() returns a constrained range. 983 U.KnownAlignment = (KnownBits >= 2); 984 985 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for 986 // purposes of the displacement computation; compensate for that here. 987 // For unknown alignments, getMaxDisp() constrains the range instead. 988 if (isThumb && U.KnownAlignment) 989 UserOffset &= ~3u; 990 991 return UserOffset; 992 } 993 994 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool 995 /// reference) is within MaxDisp of TrialOffset (a proposed location of a 996 /// constant pool entry). 997 /// UserOffset is computed by getUserOffset above to include PC adjustments. If 998 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be 999 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that. 1000 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset, 1001 unsigned TrialOffset, unsigned MaxDisp, 1002 bool NegativeOK, bool IsSoImm) { 1003 if (UserOffset <= TrialOffset) { 1004 // User before the Trial. 1005 if (TrialOffset - UserOffset <= MaxDisp) 1006 return true; 1007 // FIXME: Make use full range of soimm values. 1008 } else if (NegativeOK) { 1009 if (UserOffset - TrialOffset <= MaxDisp) 1010 return true; 1011 // FIXME: Make use full range of soimm values. 1012 } 1013 return false; 1014 } 1015 1016 /// isWaterInRange - Returns true if a CPE placed after the specified 1017 /// Water (a basic block) will be in range for the specific MI. 1018 /// 1019 /// Compute how much the function will grow by inserting a CPE after Water. 1020 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset, 1021 MachineBasicBlock* Water, CPUser &U, 1022 unsigned &Growth) { 1023 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1024 const Align CPEAlign = getCPEAlign(U.CPEMI); 1025 const unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPEAlign); 1026 unsigned NextBlockOffset; 1027 Align NextBlockAlignment; 1028 MachineFunction::const_iterator NextBlock = Water->getIterator(); 1029 if (++NextBlock == MF->end()) { 1030 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 1031 } else { 1032 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 1033 NextBlockAlignment = NextBlock->getAlignment(); 1034 } 1035 unsigned Size = U.CPEMI->getOperand(2).getImm(); 1036 unsigned CPEEnd = CPEOffset + Size; 1037 1038 // The CPE may be able to hide in the alignment padding before the next 1039 // block. It may also cause more padding to be required if it is more aligned 1040 // that the next block. 1041 if (CPEEnd > NextBlockOffset) { 1042 Growth = CPEEnd - NextBlockOffset; 1043 // Compute the padding that would go at the end of the CPE to align the next 1044 // block. 1045 Growth += offsetToAlignment(CPEEnd, NextBlockAlignment); 1046 1047 // If the CPE is to be inserted before the instruction, that will raise 1048 // the offset of the instruction. Also account for unknown alignment padding 1049 // in blocks between CPE and the user. 1050 if (CPEOffset < UserOffset) 1051 UserOffset += Growth + UnknownPadding(MF->getAlignment(), Log2(CPEAlign)); 1052 } else 1053 // CPE fits in existing padding. 1054 Growth = 0; 1055 1056 return isOffsetInRange(UserOffset, CPEOffset, U); 1057 } 1058 1059 /// isCPEntryInRange - Returns true if the distance between specific MI and 1060 /// specific ConstPool entry instruction can fit in MI's displacement field. 1061 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 1062 MachineInstr *CPEMI, unsigned MaxDisp, 1063 bool NegOk, bool DoDump) { 1064 unsigned CPEOffset = BBUtils->getOffsetOf(CPEMI); 1065 1066 if (DoDump) { 1067 LLVM_DEBUG({ 1068 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1069 unsigned Block = MI->getParent()->getNumber(); 1070 const BasicBlockInfo &BBI = BBInfo[Block]; 1071 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 1072 << " max delta=" << MaxDisp 1073 << format(" insn address=%#x", UserOffset) << " in " 1074 << printMBBReference(*MI->getParent()) << ": " 1075 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 1076 << format("CPE address=%#x offset=%+d: ", CPEOffset, 1077 int(CPEOffset - UserOffset)); 1078 }); 1079 } 1080 1081 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 1082 } 1083 1084 #ifndef NDEBUG 1085 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor 1086 /// unconditionally branches to its only successor. 1087 static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 1088 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 1089 return false; 1090 1091 MachineBasicBlock *Succ = *MBB->succ_begin(); 1092 MachineBasicBlock *Pred = *MBB->pred_begin(); 1093 MachineInstr *PredMI = &Pred->back(); 1094 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 1095 || PredMI->getOpcode() == ARM::t2B) 1096 return PredMI->getOperand(0).getMBB() == Succ; 1097 return false; 1098 } 1099 #endif // NDEBUG 1100 1101 /// decrementCPEReferenceCount - find the constant pool entry with index CPI 1102 /// and instruction CPEMI, and decrement its refcount. If the refcount 1103 /// becomes 0 remove the entry and instruction. Returns true if we removed 1104 /// the entry, false if we didn't. 1105 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI, 1106 MachineInstr *CPEMI) { 1107 // Find the old entry. Eliminate it if it is no longer used. 1108 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 1109 assert(CPE && "Unexpected!"); 1110 if (--CPE->RefCount == 0) { 1111 removeDeadCPEMI(CPEMI); 1112 CPE->CPEMI = nullptr; 1113 --NumCPEs; 1114 return true; 1115 } 1116 return false; 1117 } 1118 1119 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) { 1120 if (CPEMI->getOperand(1).isCPI()) 1121 return CPEMI->getOperand(1).getIndex(); 1122 1123 return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()]; 1124 } 1125 1126 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1127 /// if not, see if an in-range clone of the CPE is in range, and if so, 1128 /// change the data structures so the user references the clone. Returns: 1129 /// 0 = no existing entry found 1130 /// 1 = entry found, and there were no code insertions or deletions 1131 /// 2 = entry found, and there were code insertions or deletions 1132 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) { 1133 MachineInstr *UserMI = U.MI; 1134 MachineInstr *CPEMI = U.CPEMI; 1135 1136 // Check to see if the CPE is already in-range. 1137 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, 1138 true)) { 1139 LLVM_DEBUG(dbgs() << "In range\n"); 1140 return 1; 1141 } 1142 1143 // No. Look for previously created clones of the CPE that are in range. 1144 unsigned CPI = getCombinedIndex(CPEMI); 1145 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1146 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1147 // We already tried this one 1148 if (CPEs[i].CPEMI == CPEMI) 1149 continue; 1150 // Removing CPEs can leave empty entries, skip 1151 if (CPEs[i].CPEMI == nullptr) 1152 continue; 1153 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(), 1154 U.NegOk)) { 1155 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 1156 << CPEs[i].CPI << "\n"); 1157 // Point the CPUser node to the replacement 1158 U.CPEMI = CPEs[i].CPEMI; 1159 // Change the CPI in the instruction operand to refer to the clone. 1160 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1161 if (UserMI->getOperand(j).isCPI()) { 1162 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1163 break; 1164 } 1165 // Adjust the refcount of the clone... 1166 CPEs[i].RefCount++; 1167 // ...and the original. If we didn't remove the old entry, none of the 1168 // addresses changed, so we don't need another pass. 1169 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 1170 } 1171 } 1172 return 0; 1173 } 1174 1175 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1176 /// the specific unconditional branch instruction. 1177 static inline unsigned getUnconditionalBrDisp(int Opc) { 1178 switch (Opc) { 1179 case ARM::tB: 1180 return ((1<<10)-1)*2; 1181 case ARM::t2B: 1182 return ((1<<23)-1)*2; 1183 default: 1184 break; 1185 } 1186 1187 return ((1<<23)-1)*4; 1188 } 1189 1190 /// findAvailableWater - Look for an existing entry in the WaterList in which 1191 /// we can place the CPE referenced from U so it's within range of U's MI. 1192 /// Returns true if found, false if not. If it returns true, WaterIter 1193 /// is set to the WaterList entry. For Thumb, prefer water that will not 1194 /// introduce padding to water that will. To ensure that this pass 1195 /// terminates, the CPE location for a particular CPUser is only allowed to 1196 /// move to a lower address, so search backward from the end of the list and 1197 /// prefer the first water that is in range. 1198 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, 1199 water_iterator &WaterIter, 1200 bool CloserWater) { 1201 if (WaterList.empty()) 1202 return false; 1203 1204 unsigned BestGrowth = ~0u; 1205 // The nearest water without splitting the UserBB is right after it. 1206 // If the distance is still large (we have a big BB), then we need to split it 1207 // if we don't converge after certain iterations. This helps the following 1208 // situation to converge: 1209 // BB0: 1210 // Big BB 1211 // BB1: 1212 // Constant Pool 1213 // When a CP access is out of range, BB0 may be used as water. However, 1214 // inserting islands between BB0 and BB1 makes other accesses out of range. 1215 MachineBasicBlock *UserBB = U.MI->getParent(); 1216 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1217 const Align CPEAlign = getCPEAlign(U.CPEMI); 1218 unsigned MinNoSplitDisp = BBInfo[UserBB->getNumber()].postOffset(CPEAlign); 1219 if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2) 1220 return false; 1221 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();; 1222 --IP) { 1223 MachineBasicBlock* WaterBB = *IP; 1224 // Check if water is in range and is either at a lower address than the 1225 // current "high water mark" or a new water block that was created since 1226 // the previous iteration by inserting an unconditional branch. In the 1227 // latter case, we want to allow resetting the high water mark back to 1228 // this new water since we haven't seen it before. Inserting branches 1229 // should be relatively uncommon and when it does happen, we want to be 1230 // sure to take advantage of it for all the CPEs near that block, so that 1231 // we don't insert more branches than necessary. 1232 // When CloserWater is true, we try to find the lowest address after (or 1233 // equal to) user MI's BB no matter of padding growth. 1234 unsigned Growth; 1235 if (isWaterInRange(UserOffset, WaterBB, U, Growth) && 1236 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1237 NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) && 1238 Growth < BestGrowth) { 1239 // This is the least amount of required padding seen so far. 1240 BestGrowth = Growth; 1241 WaterIter = IP; 1242 LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB) 1243 << " Growth=" << Growth << '\n'); 1244 1245 if (CloserWater && WaterBB == U.MI->getParent()) 1246 return true; 1247 // Keep looking unless it is perfect and we're not looking for the lowest 1248 // possible address. 1249 if (!CloserWater && BestGrowth == 0) 1250 return true; 1251 } 1252 if (IP == B) 1253 break; 1254 } 1255 return BestGrowth != ~0u; 1256 } 1257 1258 /// createNewWater - No existing WaterList entry will work for 1259 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1260 /// block is used if in range, and the conditional branch munged so control 1261 /// flow is correct. Otherwise the block is split to create a hole with an 1262 /// unconditional branch around it. In either case NewMBB is set to a 1263 /// block following which the new island can be inserted (the WaterList 1264 /// is not adjusted). 1265 void ARMConstantIslands::createNewWater(unsigned CPUserIndex, 1266 unsigned UserOffset, 1267 MachineBasicBlock *&NewMBB) { 1268 CPUser &U = CPUsers[CPUserIndex]; 1269 MachineInstr *UserMI = U.MI; 1270 MachineInstr *CPEMI = U.CPEMI; 1271 const Align CPEAlign = getCPEAlign(CPEMI); 1272 MachineBasicBlock *UserMBB = UserMI->getParent(); 1273 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1274 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 1275 1276 // If the block does not end in an unconditional branch already, and if the 1277 // end of the block is within range, make new water there. (The addition 1278 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1279 // Thumb2, 2 on Thumb1. 1280 if (BBHasFallthrough(UserMBB)) { 1281 // Size of branch to insert. 1282 unsigned Delta = isThumb1 ? 2 : 4; 1283 // Compute the offset where the CPE will begin. 1284 unsigned CPEOffset = UserBBI.postOffset(CPEAlign) + Delta; 1285 1286 if (isOffsetInRange(UserOffset, CPEOffset, U)) { 1287 LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB) 1288 << format(", expected CPE offset %#x\n", CPEOffset)); 1289 NewMBB = &*++UserMBB->getIterator(); 1290 // Add an unconditional branch from UserMBB to fallthrough block. Record 1291 // it for branch lengthening; this new branch will not get out of range, 1292 // but if the preceding conditional branch is out of range, the targets 1293 // will be exchanged, and the altered branch may be out of range, so the 1294 // machinery has to know about it. 1295 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1296 if (!isThumb) 1297 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1298 else 1299 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)) 1300 .addMBB(NewMBB) 1301 .add(predOps(ARMCC::AL)); 1302 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1303 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1304 MaxDisp, false, UncondBr)); 1305 BBUtils->computeBlockSize(UserMBB); 1306 BBUtils->adjustBBOffsetsAfter(UserMBB); 1307 return; 1308 } 1309 } 1310 1311 // What a big block. Find a place within the block to split it. This is a 1312 // little tricky on Thumb1 since instructions are 2 bytes and constant pool 1313 // entries are 4 bytes: if instruction I references island CPE, and 1314 // instruction I+1 references CPE', it will not work well to put CPE as far 1315 // forward as possible, since then CPE' cannot immediately follow it (that 1316 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd 1317 // need to create a new island. So, we make a first guess, then walk through 1318 // the instructions between the one currently being looked at and the 1319 // possible insertion point, and make sure any other instructions that 1320 // reference CPEs will be able to use the same island area; if not, we back 1321 // up the insertion point. 1322 1323 // Try to split the block so it's fully aligned. Compute the latest split 1324 // point where we can add a 4-byte branch instruction, and then align to 1325 // Align which is the largest possible alignment in the function. 1326 const Align Align = MF->getAlignment(); 1327 assert(Align >= CPEAlign && "Over-aligned constant pool entry"); 1328 unsigned KnownBits = UserBBI.internalKnownBits(); 1329 unsigned UPad = UnknownPadding(Align, KnownBits); 1330 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad; 1331 LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x", 1332 BaseInsertOffset)); 1333 1334 // The 4 in the following is for the unconditional branch we'll be inserting 1335 // (allows for long branch on Thumb1). Alignment of the island is handled 1336 // inside isOffsetInRange. 1337 BaseInsertOffset -= 4; 1338 1339 LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1340 << " la=" << Log2(Align) << " kb=" << KnownBits 1341 << " up=" << UPad << '\n'); 1342 1343 // This could point off the end of the block if we've already got constant 1344 // pool entries following this block; only the last one is in the water list. 1345 // Back past any possible branches (allow for a conditional and a maximally 1346 // long unconditional). 1347 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { 1348 // Ensure BaseInsertOffset is larger than the offset of the instruction 1349 // following UserMI so that the loop which searches for the split point 1350 // iterates at least once. 1351 BaseInsertOffset = 1352 std::max(UserBBI.postOffset() - UPad - 8, 1353 UserOffset + TII->getInstSizeInBytes(*UserMI) + 1); 1354 // If the CP is referenced(ie, UserOffset) is in first four instructions 1355 // after IT, this recalculated BaseInsertOffset could be in the middle of 1356 // an IT block. If it is, change the BaseInsertOffset to just after the 1357 // IT block. This still make the CP Entry is in range becuase of the 1358 // following reasons. 1359 // 1. The initial BaseseInsertOffset calculated is (UserOffset + 1360 // U.getMaxDisp() - UPad). 1361 // 2. An IT block is only at most 4 instructions plus the "it" itself (18 1362 // bytes). 1363 // 3. All the relevant instructions support much larger Maximum 1364 // displacement. 1365 MachineBasicBlock::iterator I = UserMI; 1366 ++I; 1367 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI), 1368 PredReg = 0; 1369 I->getOpcode() != ARM::t2IT && 1370 getITInstrPredicate(*I, PredReg) != ARMCC::AL; 1371 Offset += TII->getInstSizeInBytes(*I), I = std::next(I)) { 1372 BaseInsertOffset = 1373 std::max(BaseInsertOffset, Offset + TII->getInstSizeInBytes(*I) + 1); 1374 assert(I != UserMBB->end() && "Fell off end of block"); 1375 } 1376 LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); 1377 } 1378 unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad + 1379 CPEMI->getOperand(2).getImm(); 1380 MachineBasicBlock::iterator MI = UserMI; 1381 ++MI; 1382 unsigned CPUIndex = CPUserIndex+1; 1383 unsigned NumCPUsers = CPUsers.size(); 1384 MachineInstr *LastIT = nullptr; 1385 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); 1386 Offset < BaseInsertOffset; 1387 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) { 1388 assert(MI != UserMBB->end() && "Fell off end of block"); 1389 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) { 1390 CPUser &U = CPUsers[CPUIndex]; 1391 if (!isOffsetInRange(Offset, EndInsertOffset, U)) { 1392 // Shift intertion point by one unit of alignment so it is within reach. 1393 BaseInsertOffset -= Align.value(); 1394 EndInsertOffset -= Align.value(); 1395 } 1396 // This is overly conservative, as we don't account for CPEMIs being 1397 // reused within the block, but it doesn't matter much. Also assume CPEs 1398 // are added in order with alignment padding. We may eventually be able 1399 // to pack the aligned CPEs better. 1400 EndInsertOffset += U.CPEMI->getOperand(2).getImm(); 1401 CPUIndex++; 1402 } 1403 1404 // Remember the last IT instruction. 1405 if (MI->getOpcode() == ARM::t2IT) 1406 LastIT = &*MI; 1407 } 1408 1409 --MI; 1410 1411 // Avoid splitting an IT block. 1412 if (LastIT) { 1413 unsigned PredReg = 0; 1414 ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg); 1415 if (CC != ARMCC::AL) 1416 MI = LastIT; 1417 } 1418 1419 // Avoid splitting a MOVW+MOVT pair with a relocation on Windows. 1420 // On Windows, this instruction pair is covered by one single 1421 // IMAGE_REL_ARM_MOV32T relocation which covers both instructions. If a 1422 // constant island is injected inbetween them, the relocation will clobber 1423 // the instruction and fail to update the MOVT instruction. 1424 // (These instructions are bundled up until right before the ConstantIslands 1425 // pass.) 1426 if (STI->isTargetWindows() && isThumb && MI->getOpcode() == ARM::t2MOVTi16 && 1427 (MI->getOperand(2).getTargetFlags() & ARMII::MO_OPTION_MASK) == 1428 ARMII::MO_HI16) { 1429 --MI; 1430 assert(MI->getOpcode() == ARM::t2MOVi16 && 1431 (MI->getOperand(1).getTargetFlags() & ARMII::MO_OPTION_MASK) == 1432 ARMII::MO_LO16); 1433 } 1434 1435 // We really must not split an IT block. 1436 #ifndef NDEBUG 1437 unsigned PredReg; 1438 assert(!isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL); 1439 #endif 1440 NewMBB = splitBlockBeforeInstr(&*MI); 1441 } 1442 1443 /// handleConstantPoolUser - Analyze the specified user, checking to see if it 1444 /// is out-of-range. If so, pick up the constant pool value and move it some 1445 /// place in-range. Return true if we changed any addresses (thus must run 1446 /// another pass of branch lengthening), false otherwise. 1447 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex, 1448 bool CloserWater) { 1449 CPUser &U = CPUsers[CPUserIndex]; 1450 MachineInstr *UserMI = U.MI; 1451 MachineInstr *CPEMI = U.CPEMI; 1452 unsigned CPI = getCombinedIndex(CPEMI); 1453 unsigned Size = CPEMI->getOperand(2).getImm(); 1454 // Compute this only once, it's expensive. 1455 unsigned UserOffset = getUserOffset(U); 1456 1457 // See if the current entry is within range, or there is a clone of it 1458 // in range. 1459 int result = findInRangeCPEntry(U, UserOffset); 1460 if (result==1) return false; 1461 else if (result==2) return true; 1462 1463 // No existing clone of this CPE is within range. 1464 // We will be generating a new clone. Get a UID for it. 1465 unsigned ID = AFI->createPICLabelUId(); 1466 1467 // Look for water where we can place this CPE. 1468 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1469 MachineBasicBlock *NewMBB; 1470 water_iterator IP; 1471 if (findAvailableWater(U, UserOffset, IP, CloserWater)) { 1472 LLVM_DEBUG(dbgs() << "Found water in range\n"); 1473 MachineBasicBlock *WaterBB = *IP; 1474 1475 // If the original WaterList entry was "new water" on this iteration, 1476 // propagate that to the new island. This is just keeping NewWaterList 1477 // updated to match the WaterList, which will be updated below. 1478 if (NewWaterList.erase(WaterBB)) 1479 NewWaterList.insert(NewIsland); 1480 1481 // The new CPE goes before the following block (NewMBB). 1482 NewMBB = &*++WaterBB->getIterator(); 1483 } else { 1484 // No water found. 1485 LLVM_DEBUG(dbgs() << "No water found\n"); 1486 createNewWater(CPUserIndex, UserOffset, NewMBB); 1487 1488 // splitBlockBeforeInstr adds to WaterList, which is important when it is 1489 // called while handling branches so that the water will be seen on the 1490 // next iteration for constant pools, but in this context, we don't want 1491 // it. Check for this so it will be removed from the WaterList. 1492 // Also remove any entry from NewWaterList. 1493 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator(); 1494 IP = find(WaterList, WaterBB); 1495 if (IP != WaterList.end()) 1496 NewWaterList.erase(WaterBB); 1497 1498 // We are adding new water. Update NewWaterList. 1499 NewWaterList.insert(NewIsland); 1500 } 1501 // Always align the new block because CP entries can be smaller than 4 1502 // bytes. Be careful not to decrease the existing alignment, e.g. NewMBB may 1503 // be an already aligned constant pool block. 1504 const Align Alignment = isThumb ? Align(2) : Align(4); 1505 if (NewMBB->getAlignment() < Alignment) 1506 NewMBB->setAlignment(Alignment); 1507 1508 // Remove the original WaterList entry; we want subsequent insertions in 1509 // this vicinity to go after the one we're about to insert. This 1510 // considerably reduces the number of times we have to move the same CPE 1511 // more than once and is also important to ensure the algorithm terminates. 1512 if (IP != WaterList.end()) 1513 WaterList.erase(IP); 1514 1515 // Okay, we know we can put an island before NewMBB now, do it! 1516 MF->insert(NewMBB->getIterator(), NewIsland); 1517 1518 // Update internal data structures to account for the newly inserted MBB. 1519 updateForInsertedWaterBlock(NewIsland); 1520 1521 // Now that we have an island to add the CPE to, clone the original CPE and 1522 // add it to the island. 1523 U.HighWaterMark = NewIsland; 1524 U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc()) 1525 .addImm(ID) 1526 .add(CPEMI->getOperand(1)) 1527 .addImm(Size); 1528 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1529 ++NumCPEs; 1530 1531 // Decrement the old entry, and remove it if refcount becomes 0. 1532 decrementCPEReferenceCount(CPI, CPEMI); 1533 1534 // Mark the basic block as aligned as required by the const-pool entry. 1535 NewIsland->setAlignment(getCPEAlign(U.CPEMI)); 1536 1537 // Increase the size of the island block to account for the new entry. 1538 BBUtils->adjustBBSize(NewIsland, Size); 1539 BBUtils->adjustBBOffsetsAfter(&*--NewIsland->getIterator()); 1540 1541 // Finally, change the CPI in the instruction operand to be ID. 1542 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1543 if (UserMI->getOperand(i).isCPI()) { 1544 UserMI->getOperand(i).setIndex(ID); 1545 break; 1546 } 1547 1548 LLVM_DEBUG( 1549 dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1550 << format(" offset=%#x\n", 1551 BBUtils->getBBInfo()[NewIsland->getNumber()].Offset)); 1552 1553 return true; 1554 } 1555 1556 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update 1557 /// sizes and offsets of impacted basic blocks. 1558 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { 1559 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1560 unsigned Size = CPEMI->getOperand(2).getImm(); 1561 CPEMI->eraseFromParent(); 1562 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1563 BBUtils->adjustBBSize(CPEBB, -Size); 1564 // All succeeding offsets have the current size value added in, fix this. 1565 if (CPEBB->empty()) { 1566 BBInfo[CPEBB->getNumber()].Size = 0; 1567 1568 // This block no longer needs to be aligned. 1569 CPEBB->setAlignment(Align::None()); 1570 } else { 1571 // Entries are sorted by descending alignment, so realign from the front. 1572 CPEBB->setAlignment(getCPEAlign(&*CPEBB->begin())); 1573 } 1574 1575 BBUtils->adjustBBOffsetsAfter(CPEBB); 1576 // An island has only one predecessor BB and one successor BB. Check if 1577 // this BB's predecessor jumps directly to this BB's successor. This 1578 // shouldn't happen currently. 1579 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1580 // FIXME: remove the empty blocks after all the work is done? 1581 } 1582 1583 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts 1584 /// are zero. 1585 bool ARMConstantIslands::removeUnusedCPEntries() { 1586 unsigned MadeChange = false; 1587 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1588 std::vector<CPEntry> &CPEs = CPEntries[i]; 1589 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1590 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1591 removeDeadCPEMI(CPEs[j].CPEMI); 1592 CPEs[j].CPEMI = nullptr; 1593 MadeChange = true; 1594 } 1595 } 1596 } 1597 return MadeChange; 1598 } 1599 1600 1601 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far 1602 /// away to fit in its displacement field. 1603 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) { 1604 MachineInstr *MI = Br.MI; 1605 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1606 1607 // Check to see if the DestBB is already in-range. 1608 if (BBUtils->isBBInRange(MI, DestBB, Br.MaxDisp)) 1609 return false; 1610 1611 if (!Br.isCond) 1612 return fixupUnconditionalBr(Br); 1613 return fixupConditionalBr(Br); 1614 } 1615 1616 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is 1617 /// too far away to fit in its displacement field. If the LR register has been 1618 /// spilled in the epilogue, then we can use BL to implement a far jump. 1619 /// Otherwise, add an intermediate branch instruction to a branch. 1620 bool 1621 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { 1622 MachineInstr *MI = Br.MI; 1623 MachineBasicBlock *MBB = MI->getParent(); 1624 if (!isThumb1) 1625 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!"); 1626 1627 if (!AFI->isLRSpilled()) 1628 report_fatal_error("underestimated function size"); 1629 1630 // Use BL to implement far jump. 1631 Br.MaxDisp = (1 << 21) * 2; 1632 MI->setDesc(TII->get(ARM::tBfar)); 1633 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1634 BBInfo[MBB->getNumber()].Size += 2; 1635 BBUtils->adjustBBOffsetsAfter(MBB); 1636 HasFarJump = true; 1637 ++NumUBrFixed; 1638 1639 LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI); 1640 1641 return true; 1642 } 1643 1644 /// fixupConditionalBr - Fix up a conditional branch whose destination is too 1645 /// far away to fit in its displacement field. It is converted to an inverse 1646 /// conditional branch + an unconditional branch to the destination. 1647 bool 1648 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) { 1649 MachineInstr *MI = Br.MI; 1650 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1651 1652 // Add an unconditional branch to the destination and invert the branch 1653 // condition to jump over it: 1654 // blt L1 1655 // => 1656 // bge L2 1657 // b L1 1658 // L2: 1659 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1660 CC = ARMCC::getOppositeCondition(CC); 1661 Register CCReg = MI->getOperand(2).getReg(); 1662 1663 // If the branch is at the end of its MBB and that has a fall-through block, 1664 // direct the updated conditional branch to the fall-through block. Otherwise, 1665 // split the MBB before the next instruction. 1666 MachineBasicBlock *MBB = MI->getParent(); 1667 MachineInstr *BMI = &MBB->back(); 1668 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1669 1670 ++NumCBrFixed; 1671 if (BMI != MI) { 1672 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) && 1673 BMI->getOpcode() == Br.UncondBr) { 1674 // Last MI in the BB is an unconditional branch. Can we simply invert the 1675 // condition and swap destinations: 1676 // beq L1 1677 // b L2 1678 // => 1679 // bne L2 1680 // b L1 1681 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1682 if (BBUtils->isBBInRange(MI, NewDest, Br.MaxDisp)) { 1683 LLVM_DEBUG( 1684 dbgs() << " Invert Bcc condition and swap its destination with " 1685 << *BMI); 1686 BMI->getOperand(0).setMBB(DestBB); 1687 MI->getOperand(0).setMBB(NewDest); 1688 MI->getOperand(1).setImm(CC); 1689 return true; 1690 } 1691 } 1692 } 1693 1694 if (NeedSplit) { 1695 splitBlockBeforeInstr(MI); 1696 // No need for the branch to the next block. We're adding an unconditional 1697 // branch to the destination. 1698 int delta = TII->getInstSizeInBytes(MBB->back()); 1699 BBUtils->adjustBBSize(MBB, -delta); 1700 MBB->back().eraseFromParent(); 1701 1702 // The conditional successor will be swapped between the BBs after this, so 1703 // update CFG. 1704 MBB->addSuccessor(DestBB); 1705 std::next(MBB->getIterator())->removeSuccessor(DestBB); 1706 1707 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1708 } 1709 MachineBasicBlock *NextBB = &*++MBB->getIterator(); 1710 1711 LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB) 1712 << " also invert condition and change dest. to " 1713 << printMBBReference(*NextBB) << "\n"); 1714 1715 // Insert a new conditional branch and a new unconditional branch. 1716 // Also update the ImmBranch as well as adding a new entry for the new branch. 1717 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) 1718 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1719 Br.MI = &MBB->back(); 1720 BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back())); 1721 if (isThumb) 1722 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)) 1723 .addMBB(DestBB) 1724 .add(predOps(ARMCC::AL)); 1725 else 1726 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1727 BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back())); 1728 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1729 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1730 1731 // Remove the old conditional branch. It may or may not still be in MBB. 1732 BBUtils->adjustBBSize(MI->getParent(), -TII->getInstSizeInBytes(*MI)); 1733 MI->eraseFromParent(); 1734 BBUtils->adjustBBOffsetsAfter(MBB); 1735 return true; 1736 } 1737 1738 /// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills 1739 /// LR / restores LR to pc. FIXME: This is done here because it's only possible 1740 /// to do this if tBfar is not used. 1741 bool ARMConstantIslands::undoLRSpillRestore() { 1742 bool MadeChange = false; 1743 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { 1744 MachineInstr *MI = PushPopMIs[i]; 1745 // First two operands are predicates. 1746 if (MI->getOpcode() == ARM::tPOP_RET && 1747 MI->getOperand(2).getReg() == ARM::PC && 1748 MI->getNumExplicitOperands() == 3) { 1749 // Create the new insn and copy the predicate from the old. 1750 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET)) 1751 .add(MI->getOperand(0)) 1752 .add(MI->getOperand(1)); 1753 MI->eraseFromParent(); 1754 MadeChange = true; 1755 } else if (MI->getOpcode() == ARM::tPUSH && 1756 MI->getOperand(2).getReg() == ARM::LR && 1757 MI->getNumExplicitOperands() == 3) { 1758 // Just remove the push. 1759 MI->eraseFromParent(); 1760 MadeChange = true; 1761 } 1762 } 1763 return MadeChange; 1764 } 1765 1766 bool ARMConstantIslands::optimizeThumb2Instructions() { 1767 bool MadeChange = false; 1768 1769 // Shrink ADR and LDR from constantpool. 1770 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1771 CPUser &U = CPUsers[i]; 1772 unsigned Opcode = U.MI->getOpcode(); 1773 unsigned NewOpc = 0; 1774 unsigned Scale = 1; 1775 unsigned Bits = 0; 1776 switch (Opcode) { 1777 default: break; 1778 case ARM::t2LEApcrel: 1779 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1780 NewOpc = ARM::tLEApcrel; 1781 Bits = 8; 1782 Scale = 4; 1783 } 1784 break; 1785 case ARM::t2LDRpci: 1786 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1787 NewOpc = ARM::tLDRpci; 1788 Bits = 8; 1789 Scale = 4; 1790 } 1791 break; 1792 } 1793 1794 if (!NewOpc) 1795 continue; 1796 1797 unsigned UserOffset = getUserOffset(U); 1798 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1799 1800 // Be conservative with inline asm. 1801 if (!U.KnownAlignment) 1802 MaxOffs -= 2; 1803 1804 // FIXME: Check if offset is multiple of scale if scale is not 4. 1805 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1806 LLVM_DEBUG(dbgs() << "Shrink: " << *U.MI); 1807 U.MI->setDesc(TII->get(NewOpc)); 1808 MachineBasicBlock *MBB = U.MI->getParent(); 1809 BBUtils->adjustBBSize(MBB, -2); 1810 BBUtils->adjustBBOffsetsAfter(MBB); 1811 ++NumT2CPShrunk; 1812 MadeChange = true; 1813 } 1814 } 1815 1816 return MadeChange; 1817 } 1818 1819 1820 bool ARMConstantIslands::optimizeThumb2Branches() { 1821 1822 auto TryShrinkBranch = [this](ImmBranch &Br) { 1823 unsigned Opcode = Br.MI->getOpcode(); 1824 unsigned NewOpc = 0; 1825 unsigned Scale = 1; 1826 unsigned Bits = 0; 1827 switch (Opcode) { 1828 default: break; 1829 case ARM::t2B: 1830 NewOpc = ARM::tB; 1831 Bits = 11; 1832 Scale = 2; 1833 break; 1834 case ARM::t2Bcc: 1835 NewOpc = ARM::tBcc; 1836 Bits = 8; 1837 Scale = 2; 1838 break; 1839 } 1840 if (NewOpc) { 1841 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1842 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1843 if (BBUtils->isBBInRange(Br.MI, DestBB, MaxOffs)) { 1844 LLVM_DEBUG(dbgs() << "Shrink branch: " << *Br.MI); 1845 Br.MI->setDesc(TII->get(NewOpc)); 1846 MachineBasicBlock *MBB = Br.MI->getParent(); 1847 BBUtils->adjustBBSize(MBB, -2); 1848 BBUtils->adjustBBOffsetsAfter(MBB); 1849 ++NumT2BrShrunk; 1850 return true; 1851 } 1852 } 1853 return false; 1854 }; 1855 1856 struct ImmCompare { 1857 MachineInstr* MI = nullptr; 1858 unsigned NewOpc = 0; 1859 }; 1860 1861 auto FindCmpForCBZ = [this](ImmBranch &Br, ImmCompare &ImmCmp, 1862 MachineBasicBlock *DestBB) { 1863 ImmCmp.MI = nullptr; 1864 ImmCmp.NewOpc = 0; 1865 1866 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout 1867 // so this transformation is not safe. 1868 if (!Br.MI->killsRegister(ARM::CPSR)) 1869 return false; 1870 1871 unsigned PredReg = 0; 1872 unsigned NewOpc = 0; 1873 ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg); 1874 if (Pred == ARMCC::EQ) 1875 NewOpc = ARM::tCBZ; 1876 else if (Pred == ARMCC::NE) 1877 NewOpc = ARM::tCBNZ; 1878 else 1879 return false; 1880 1881 // Check if the distance is within 126. Subtract starting offset by 2 1882 // because the cmp will be eliminated. 1883 unsigned BrOffset = BBUtils->getOffsetOf(Br.MI) + 4 - 2; 1884 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1885 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1886 if (BrOffset >= DestOffset || (DestOffset - BrOffset) > 126) 1887 return false; 1888 1889 // Search backwards to find a tCMPi8 1890 auto *TRI = STI->getRegisterInfo(); 1891 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(Br.MI, TRI); 1892 if (!CmpMI || CmpMI->getOpcode() != ARM::tCMPi8) 1893 return false; 1894 1895 ImmCmp.MI = CmpMI; 1896 ImmCmp.NewOpc = NewOpc; 1897 return true; 1898 }; 1899 1900 auto TryConvertToLE = [this](ImmBranch &Br, ImmCompare &Cmp) { 1901 if (Br.MI->getOpcode() != ARM::t2Bcc || !STI->hasLOB() || 1902 STI->hasMinSize()) 1903 return false; 1904 1905 MachineBasicBlock *MBB = Br.MI->getParent(); 1906 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1907 if (BBUtils->getOffsetOf(MBB) < BBUtils->getOffsetOf(DestBB) || 1908 !BBUtils->isBBInRange(Br.MI, DestBB, 4094)) 1909 return false; 1910 1911 if (!DT->dominates(DestBB, MBB)) 1912 return false; 1913 1914 // We queried for the CBN?Z opcode based upon the 'ExitBB', the opposite 1915 // target of Br. So now we need to reverse the condition. 1916 Cmp.NewOpc = Cmp.NewOpc == ARM::tCBZ ? ARM::tCBNZ : ARM::tCBZ; 1917 1918 MachineInstrBuilder MIB = BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), 1919 TII->get(ARM::t2LE)); 1920 // Swapped a t2Bcc for a t2LE, so no need to update the size of the block. 1921 MIB.add(Br.MI->getOperand(0)); 1922 Br.MI->eraseFromParent(); 1923 Br.MI = MIB; 1924 ++NumLEInserted; 1925 return true; 1926 }; 1927 1928 bool MadeChange = false; 1929 1930 // The order in which branches appear in ImmBranches is approximately their 1931 // order within the function body. By visiting later branches first, we reduce 1932 // the distance between earlier forward branches and their targets, making it 1933 // more likely that the cbn?z optimization, which can only apply to forward 1934 // branches, will succeed. 1935 for (ImmBranch &Br : reverse(ImmBranches)) { 1936 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1937 MachineBasicBlock *MBB = Br.MI->getParent(); 1938 MachineBasicBlock *ExitBB = &MBB->back() == Br.MI ? 1939 MBB->getFallThrough() : 1940 MBB->back().getOperand(0).getMBB(); 1941 1942 ImmCompare Cmp; 1943 if (FindCmpForCBZ(Br, Cmp, ExitBB) && TryConvertToLE(Br, Cmp)) { 1944 DestBB = ExitBB; 1945 MadeChange = true; 1946 } else { 1947 FindCmpForCBZ(Br, Cmp, DestBB); 1948 MadeChange |= TryShrinkBranch(Br); 1949 } 1950 1951 unsigned Opcode = Br.MI->getOpcode(); 1952 if ((Opcode != ARM::tBcc && Opcode != ARM::t2LE) || !Cmp.NewOpc) 1953 continue; 1954 1955 Register Reg = Cmp.MI->getOperand(0).getReg(); 1956 1957 // Check for Kill flags on Reg. If they are present remove them and set kill 1958 // on the new CBZ. 1959 auto *TRI = STI->getRegisterInfo(); 1960 MachineBasicBlock::iterator KillMI = Br.MI; 1961 bool RegKilled = false; 1962 do { 1963 --KillMI; 1964 if (KillMI->killsRegister(Reg, TRI)) { 1965 KillMI->clearRegisterKills(Reg, TRI); 1966 RegKilled = true; 1967 break; 1968 } 1969 } while (KillMI != Cmp.MI); 1970 1971 // Create the new CBZ/CBNZ 1972 LLVM_DEBUG(dbgs() << "Fold: " << *Cmp.MI << " and: " << *Br.MI); 1973 MachineInstr *NewBR = 1974 BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), TII->get(Cmp.NewOpc)) 1975 .addReg(Reg, getKillRegState(RegKilled)) 1976 .addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags()); 1977 1978 Cmp.MI->eraseFromParent(); 1979 1980 if (Br.MI->getOpcode() == ARM::tBcc) { 1981 Br.MI->eraseFromParent(); 1982 Br.MI = NewBR; 1983 BBUtils->adjustBBSize(MBB, -2); 1984 } else if (MBB->back().getOpcode() != ARM::t2LE) { 1985 // An LE has been generated, but it's not the terminator - that is an 1986 // unconditional branch. However, the logic has now been reversed with the 1987 // CBN?Z being the conditional branch and the LE being the unconditional 1988 // branch. So this means we can remove the redundant unconditional branch 1989 // at the end of the block. 1990 MachineInstr *LastMI = &MBB->back(); 1991 BBUtils->adjustBBSize(MBB, -LastMI->getDesc().getSize()); 1992 LastMI->eraseFromParent(); 1993 } 1994 BBUtils->adjustBBOffsetsAfter(MBB); 1995 ++NumCBZ; 1996 MadeChange = true; 1997 } 1998 1999 return MadeChange; 2000 } 2001 2002 static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg, 2003 unsigned BaseReg) { 2004 if (I.getOpcode() != ARM::t2ADDrs) 2005 return false; 2006 2007 if (I.getOperand(0).getReg() != EntryReg) 2008 return false; 2009 2010 if (I.getOperand(1).getReg() != BaseReg) 2011 return false; 2012 2013 // FIXME: what about CC and IdxReg? 2014 return true; 2015 } 2016 2017 /// While trying to form a TBB/TBH instruction, we may (if the table 2018 /// doesn't immediately follow the BR_JT) need access to the start of the 2019 /// jump-table. We know one instruction that produces such a register; this 2020 /// function works out whether that definition can be preserved to the BR_JT, 2021 /// possibly by removing an intervening addition (which is usually needed to 2022 /// calculate the actual entry to jump to). 2023 bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI, 2024 MachineInstr *LEAMI, 2025 unsigned &DeadSize, 2026 bool &CanDeleteLEA, 2027 bool &BaseRegKill) { 2028 if (JumpMI->getParent() != LEAMI->getParent()) 2029 return false; 2030 2031 // Now we hope that we have at least these instructions in the basic block: 2032 // BaseReg = t2LEA ... 2033 // [...] 2034 // EntryReg = t2ADDrs BaseReg, ... 2035 // [...] 2036 // t2BR_JT EntryReg 2037 // 2038 // We have to be very conservative about what we recognise here though. The 2039 // main perturbing factors to watch out for are: 2040 // + Spills at any point in the chain: not direct problems but we would 2041 // expect a blocking Def of the spilled register so in practice what we 2042 // can do is limited. 2043 // + EntryReg == BaseReg: this is the one situation we should allow a Def 2044 // of BaseReg, but only if the t2ADDrs can be removed. 2045 // + Some instruction other than t2ADDrs computing the entry. Not seen in 2046 // the wild, but we should be careful. 2047 Register EntryReg = JumpMI->getOperand(0).getReg(); 2048 Register BaseReg = LEAMI->getOperand(0).getReg(); 2049 2050 CanDeleteLEA = true; 2051 BaseRegKill = false; 2052 MachineInstr *RemovableAdd = nullptr; 2053 MachineBasicBlock::iterator I(LEAMI); 2054 for (++I; &*I != JumpMI; ++I) { 2055 if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) { 2056 RemovableAdd = &*I; 2057 break; 2058 } 2059 2060 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 2061 const MachineOperand &MO = I->getOperand(K); 2062 if (!MO.isReg() || !MO.getReg()) 2063 continue; 2064 if (MO.isDef() && MO.getReg() == BaseReg) 2065 return false; 2066 if (MO.isUse() && MO.getReg() == BaseReg) { 2067 BaseRegKill = BaseRegKill || MO.isKill(); 2068 CanDeleteLEA = false; 2069 } 2070 } 2071 } 2072 2073 if (!RemovableAdd) 2074 return true; 2075 2076 // Check the add really is removable, and that nothing else in the block 2077 // clobbers BaseReg. 2078 for (++I; &*I != JumpMI; ++I) { 2079 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 2080 const MachineOperand &MO = I->getOperand(K); 2081 if (!MO.isReg() || !MO.getReg()) 2082 continue; 2083 if (MO.isDef() && MO.getReg() == BaseReg) 2084 return false; 2085 if (MO.isUse() && MO.getReg() == EntryReg) 2086 RemovableAdd = nullptr; 2087 } 2088 } 2089 2090 if (RemovableAdd) { 2091 RemovableAdd->eraseFromParent(); 2092 DeadSize += isThumb2 ? 4 : 2; 2093 } else if (BaseReg == EntryReg) { 2094 // The add wasn't removable, but clobbered the base for the TBB. So we can't 2095 // preserve it. 2096 return false; 2097 } 2098 2099 // We reached the end of the block without seeing another definition of 2100 // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be 2101 // used in the TBB/TBH if necessary. 2102 return true; 2103 } 2104 2105 /// Returns whether CPEMI is the first instruction in the block 2106 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so, 2107 /// we can switch the first register to PC and usually remove the address 2108 /// calculation that preceded it. 2109 static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) { 2110 MachineFunction::iterator MBB = JTMI->getParent()->getIterator(); 2111 MachineFunction *MF = MBB->getParent(); 2112 ++MBB; 2113 2114 return MBB != MF->end() && MBB->begin() != MBB->end() && 2115 &*MBB->begin() == CPEMI; 2116 } 2117 2118 static void RemoveDeadAddBetweenLEAAndJT(MachineInstr *LEAMI, 2119 MachineInstr *JumpMI, 2120 unsigned &DeadSize) { 2121 // Remove a dead add between the LEA and JT, which used to compute EntryReg, 2122 // but the JT now uses PC. Finds the last ADD (if any) that def's EntryReg 2123 // and is not clobbered / used. 2124 MachineInstr *RemovableAdd = nullptr; 2125 Register EntryReg = JumpMI->getOperand(0).getReg(); 2126 2127 // Find the last ADD to set EntryReg 2128 MachineBasicBlock::iterator I(LEAMI); 2129 for (++I; &*I != JumpMI; ++I) { 2130 if (I->getOpcode() == ARM::t2ADDrs && I->getOperand(0).getReg() == EntryReg) 2131 RemovableAdd = &*I; 2132 } 2133 2134 if (!RemovableAdd) 2135 return; 2136 2137 // Ensure EntryReg is not clobbered or used. 2138 MachineBasicBlock::iterator J(RemovableAdd); 2139 for (++J; &*J != JumpMI; ++J) { 2140 for (unsigned K = 0, E = J->getNumOperands(); K != E; ++K) { 2141 const MachineOperand &MO = J->getOperand(K); 2142 if (!MO.isReg() || !MO.getReg()) 2143 continue; 2144 if (MO.isDef() && MO.getReg() == EntryReg) 2145 return; 2146 if (MO.isUse() && MO.getReg() == EntryReg) 2147 return; 2148 } 2149 } 2150 2151 LLVM_DEBUG(dbgs() << "Removing Dead Add: " << *RemovableAdd); 2152 RemovableAdd->eraseFromParent(); 2153 DeadSize += 4; 2154 } 2155 2156 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 2157 /// jumptables when it's possible. 2158 bool ARMConstantIslands::optimizeThumb2JumpTables() { 2159 bool MadeChange = false; 2160 2161 // FIXME: After the tables are shrunk, can we get rid some of the 2162 // constantpool tables? 2163 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2164 if (!MJTI) return false; 2165 2166 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2167 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2168 MachineInstr *MI = T2JumpTables[i]; 2169 const MCInstrDesc &MCID = MI->getDesc(); 2170 unsigned NumOps = MCID.getNumOperands(); 2171 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2172 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2173 unsigned JTI = JTOP.getIndex(); 2174 assert(JTI < JT.size()); 2175 2176 bool ByteOk = true; 2177 bool HalfWordOk = true; 2178 unsigned JTOffset = BBUtils->getOffsetOf(MI) + 4; 2179 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2180 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 2181 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2182 MachineBasicBlock *MBB = JTBBs[j]; 2183 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset; 2184 // Negative offset is not ok. FIXME: We should change BB layout to make 2185 // sure all the branches are forward. 2186 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 2187 ByteOk = false; 2188 unsigned TBHLimit = ((1<<16)-1)*2; 2189 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 2190 HalfWordOk = false; 2191 if (!ByteOk && !HalfWordOk) 2192 break; 2193 } 2194 2195 if (!ByteOk && !HalfWordOk) 2196 continue; 2197 2198 CPUser &User = CPUsers[JumpTableUserIndices[JTI]]; 2199 MachineBasicBlock *MBB = MI->getParent(); 2200 if (!MI->getOperand(0).isKill()) // FIXME: needed now? 2201 continue; 2202 2203 unsigned DeadSize = 0; 2204 bool CanDeleteLEA = false; 2205 bool BaseRegKill = false; 2206 2207 unsigned IdxReg = ~0U; 2208 bool IdxRegKill = true; 2209 if (isThumb2) { 2210 IdxReg = MI->getOperand(1).getReg(); 2211 IdxRegKill = MI->getOperand(1).isKill(); 2212 2213 bool PreservedBaseReg = 2214 preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill); 2215 if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg) 2216 continue; 2217 } else { 2218 // We're in thumb-1 mode, so we must have something like: 2219 // %idx = tLSLri %idx, 2 2220 // %base = tLEApcrelJT 2221 // %t = tLDRr %base, %idx 2222 Register BaseReg = User.MI->getOperand(0).getReg(); 2223 2224 if (User.MI->getIterator() == User.MI->getParent()->begin()) 2225 continue; 2226 MachineInstr *Shift = User.MI->getPrevNode(); 2227 if (Shift->getOpcode() != ARM::tLSLri || 2228 Shift->getOperand(3).getImm() != 2 || 2229 !Shift->getOperand(2).isKill()) 2230 continue; 2231 IdxReg = Shift->getOperand(2).getReg(); 2232 Register ShiftedIdxReg = Shift->getOperand(0).getReg(); 2233 2234 // It's important that IdxReg is live until the actual TBB/TBH. Most of 2235 // the range is checked later, but the LEA might still clobber it and not 2236 // actually get removed. 2237 if (BaseReg == IdxReg && !jumpTableFollowsTB(MI, User.CPEMI)) 2238 continue; 2239 2240 MachineInstr *Load = User.MI->getNextNode(); 2241 if (Load->getOpcode() != ARM::tLDRr) 2242 continue; 2243 if (Load->getOperand(1).getReg() != BaseReg || 2244 Load->getOperand(2).getReg() != ShiftedIdxReg || 2245 !Load->getOperand(2).isKill()) 2246 continue; 2247 2248 // If we're in PIC mode, there should be another ADD following. 2249 auto *TRI = STI->getRegisterInfo(); 2250 2251 // %base cannot be redefined after the load as it will appear before 2252 // TBB/TBH like: 2253 // %base = 2254 // %base = 2255 // tBB %base, %idx 2256 if (registerDefinedBetween(BaseReg, Load->getNextNode(), MBB->end(), TRI)) 2257 continue; 2258 2259 if (isPositionIndependentOrROPI) { 2260 MachineInstr *Add = Load->getNextNode(); 2261 if (Add->getOpcode() != ARM::tADDrr || 2262 Add->getOperand(2).getReg() != BaseReg || 2263 Add->getOperand(3).getReg() != Load->getOperand(0).getReg() || 2264 !Add->getOperand(3).isKill()) 2265 continue; 2266 if (Add->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2267 continue; 2268 if (registerDefinedBetween(IdxReg, Add->getNextNode(), MI, TRI)) 2269 // IdxReg gets redefined in the middle of the sequence. 2270 continue; 2271 Add->eraseFromParent(); 2272 DeadSize += 2; 2273 } else { 2274 if (Load->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2275 continue; 2276 if (registerDefinedBetween(IdxReg, Load->getNextNode(), MI, TRI)) 2277 // IdxReg gets redefined in the middle of the sequence. 2278 continue; 2279 } 2280 2281 // Now safe to delete the load and lsl. The LEA will be removed later. 2282 CanDeleteLEA = true; 2283 Shift->eraseFromParent(); 2284 Load->eraseFromParent(); 2285 DeadSize += 4; 2286 } 2287 2288 LLVM_DEBUG(dbgs() << "Shrink JT: " << *MI); 2289 MachineInstr *CPEMI = User.CPEMI; 2290 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; 2291 if (!isThumb2) 2292 Opc = ByteOk ? ARM::tTBB_JT : ARM::tTBH_JT; 2293 2294 MachineBasicBlock::iterator MI_JT = MI; 2295 MachineInstr *NewJTMI = 2296 BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc)) 2297 .addReg(User.MI->getOperand(0).getReg(), 2298 getKillRegState(BaseRegKill)) 2299 .addReg(IdxReg, getKillRegState(IdxRegKill)) 2300 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 2301 .addImm(CPEMI->getOperand(0).getImm()); 2302 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": " << *NewJTMI); 2303 2304 unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH; 2305 CPEMI->setDesc(TII->get(JTOpc)); 2306 2307 if (jumpTableFollowsTB(MI, User.CPEMI)) { 2308 NewJTMI->getOperand(0).setReg(ARM::PC); 2309 NewJTMI->getOperand(0).setIsKill(false); 2310 2311 if (CanDeleteLEA) { 2312 if (isThumb2) 2313 RemoveDeadAddBetweenLEAAndJT(User.MI, MI, DeadSize); 2314 2315 User.MI->eraseFromParent(); 2316 DeadSize += isThumb2 ? 4 : 2; 2317 2318 // The LEA was eliminated, the TBB instruction becomes the only new user 2319 // of the jump table. 2320 User.MI = NewJTMI; 2321 User.MaxDisp = 4; 2322 User.NegOk = false; 2323 User.IsSoImm = false; 2324 User.KnownAlignment = false; 2325 } else { 2326 // The LEA couldn't be eliminated, so we must add another CPUser to 2327 // record the TBB or TBH use. 2328 int CPEntryIdx = JumpTableEntryIndices[JTI]; 2329 auto &CPEs = CPEntries[CPEntryIdx]; 2330 auto Entry = 2331 find_if(CPEs, [&](CPEntry &E) { return E.CPEMI == User.CPEMI; }); 2332 ++Entry->RefCount; 2333 CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false)); 2334 } 2335 } 2336 2337 unsigned NewSize = TII->getInstSizeInBytes(*NewJTMI); 2338 unsigned OrigSize = TII->getInstSizeInBytes(*MI); 2339 MI->eraseFromParent(); 2340 2341 int Delta = OrigSize - NewSize + DeadSize; 2342 BBInfo[MBB->getNumber()].Size -= Delta; 2343 BBUtils->adjustBBOffsetsAfter(MBB); 2344 2345 ++NumTBs; 2346 MadeChange = true; 2347 } 2348 2349 return MadeChange; 2350 } 2351 2352 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that 2353 /// jump tables always branch forwards, since that's what tbb and tbh need. 2354 bool ARMConstantIslands::reorderThumb2JumpTables() { 2355 bool MadeChange = false; 2356 2357 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2358 if (!MJTI) return false; 2359 2360 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2361 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2362 MachineInstr *MI = T2JumpTables[i]; 2363 const MCInstrDesc &MCID = MI->getDesc(); 2364 unsigned NumOps = MCID.getNumOperands(); 2365 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2366 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2367 unsigned JTI = JTOP.getIndex(); 2368 assert(JTI < JT.size()); 2369 2370 // We prefer if target blocks for the jump table come after the jump 2371 // instruction so we can use TB[BH]. Loop through the target blocks 2372 // and try to adjust them such that that's true. 2373 int JTNumber = MI->getParent()->getNumber(); 2374 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2375 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2376 MachineBasicBlock *MBB = JTBBs[j]; 2377 int DTNumber = MBB->getNumber(); 2378 2379 if (DTNumber < JTNumber) { 2380 // The destination precedes the switch. Try to move the block forward 2381 // so we have a positive offset. 2382 MachineBasicBlock *NewBB = 2383 adjustJTTargetBlockForward(MBB, MI->getParent()); 2384 if (NewBB) 2385 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); 2386 MadeChange = true; 2387 } 2388 } 2389 } 2390 2391 return MadeChange; 2392 } 2393 2394 MachineBasicBlock *ARMConstantIslands:: 2395 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) { 2396 // If the destination block is terminated by an unconditional branch, 2397 // try to move it; otherwise, create a new block following the jump 2398 // table that branches back to the actual target. This is a very simple 2399 // heuristic. FIXME: We can definitely improve it. 2400 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2401 SmallVector<MachineOperand, 4> Cond; 2402 SmallVector<MachineOperand, 4> CondPrior; 2403 MachineFunction::iterator BBi = BB->getIterator(); 2404 MachineFunction::iterator OldPrior = std::prev(BBi); 2405 2406 // If the block terminator isn't analyzable, don't try to move the block 2407 bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond); 2408 2409 // If the block ends in an unconditional branch, move it. The prior block 2410 // has to have an analyzable terminator for us to move this one. Be paranoid 2411 // and make sure we're not trying to move the entry block of the function. 2412 if (!B && Cond.empty() && BB != &MF->front() && 2413 !TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 2414 BB->moveAfter(JTBB); 2415 OldPrior->updateTerminator(); 2416 BB->updateTerminator(); 2417 // Update numbering to account for the block being moved. 2418 MF->RenumberBlocks(); 2419 ++NumJTMoved; 2420 return nullptr; 2421 } 2422 2423 // Create a new MBB for the code after the jump BB. 2424 MachineBasicBlock *NewBB = 2425 MF->CreateMachineBasicBlock(JTBB->getBasicBlock()); 2426 MachineFunction::iterator MBBI = ++JTBB->getIterator(); 2427 MF->insert(MBBI, NewBB); 2428 2429 // Copy live-in information to new block. 2430 for (const MachineBasicBlock::RegisterMaskPair &RegMaskPair : BB->liveins()) 2431 NewBB->addLiveIn(RegMaskPair); 2432 2433 // Add an unconditional branch from NewBB to BB. 2434 // There doesn't seem to be meaningful DebugInfo available; this doesn't 2435 // correspond directly to anything in the source. 2436 if (isThumb2) 2437 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)) 2438 .addMBB(BB) 2439 .add(predOps(ARMCC::AL)); 2440 else 2441 BuildMI(NewBB, DebugLoc(), TII->get(ARM::tB)) 2442 .addMBB(BB) 2443 .add(predOps(ARMCC::AL)); 2444 2445 // Update internal data structures to account for the newly inserted MBB. 2446 MF->RenumberBlocks(NewBB); 2447 2448 // Update the CFG. 2449 NewBB->addSuccessor(BB); 2450 JTBB->replaceSuccessor(BB, NewBB); 2451 2452 ++NumJTInserted; 2453 return NewBB; 2454 } 2455 2456 /// createARMConstantIslandPass - returns an instance of the constpool 2457 /// island pass. 2458 FunctionPass *llvm::createARMConstantIslandPass() { 2459 return new ARMConstantIslands(); 2460 } 2461 2462 INITIALIZE_PASS(ARMConstantIslands, "arm-cp-islands", ARM_CP_ISLANDS_OPT_NAME, 2463 false, false) 2464