xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMConstantIslandPass.cpp (revision 963f5dc7a30624e95d72fb7f87b8892651164e46)
1 //===- ARMConstantIslandPass.cpp - ARM constant islands -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass that splits the constant pool up into 'islands'
10 // which are scattered through-out the function.  This is required due to the
11 // limited pc-relative displacements that ARM has.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ARM.h"
16 #include "ARMBaseInstrInfo.h"
17 #include "ARMBasicBlockInfo.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMBaseInfo.h"
21 #include "Thumb2InstrInfo.h"
22 #include "Utils/ARMBaseInfo.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/CodeGen/LivePhysRegs.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineConstantPool.h"
32 #include "llvm/CodeGen/MachineDominators.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineJumpTableInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/Config/llvm-config.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/MC/MCInstrDesc.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/Format.h"
49 #include "llvm/Support/MathExtras.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <cstdint>
54 #include <iterator>
55 #include <utility>
56 #include <vector>
57 
58 using namespace llvm;
59 
60 #define DEBUG_TYPE "arm-cp-islands"
61 
62 #define ARM_CP_ISLANDS_OPT_NAME \
63   "ARM constant island placement and branch shortening pass"
64 STATISTIC(NumCPEs,       "Number of constpool entries");
65 STATISTIC(NumSplit,      "Number of uncond branches inserted");
66 STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
67 STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");
68 STATISTIC(NumTBs,        "Number of table branches generated");
69 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
70 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
71 STATISTIC(NumCBZ,        "Number of CBZ / CBNZ formed");
72 STATISTIC(NumJTMoved,    "Number of jump table destination blocks moved");
73 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted");
74 STATISTIC(NumLEInserted, "Number of LE backwards branches inserted");
75 
76 static cl::opt<bool>
77 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true),
78           cl::desc("Adjust basic block layout to better use TB[BH]"));
79 
80 static cl::opt<unsigned>
81 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30),
82           cl::desc("The max number of iteration for converge"));
83 
84 static cl::opt<bool> SynthesizeThumb1TBB(
85     "arm-synthesize-thumb-1-tbb", cl::Hidden, cl::init(true),
86     cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an "
87              "equivalent to the TBB/TBH instructions"));
88 
89 namespace {
90 
91   /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
92   /// requires constant pool entries to be scattered among the instructions
93   /// inside a function.  To do this, it completely ignores the normal LLVM
94   /// constant pool; instead, it places constants wherever it feels like with
95   /// special instructions.
96   ///
97   /// The terminology used in this pass includes:
98   ///   Islands - Clumps of constants placed in the function.
99   ///   Water   - Potential places where an island could be formed.
100   ///   CPE     - A constant pool entry that has been placed somewhere, which
101   ///             tracks a list of users.
102   class ARMConstantIslands : public MachineFunctionPass {
103     std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr;
104 
105     /// WaterList - A sorted list of basic blocks where islands could be placed
106     /// (i.e. blocks that don't fall through to the following block, due
107     /// to a return, unreachable, or unconditional branch).
108     std::vector<MachineBasicBlock*> WaterList;
109 
110     /// NewWaterList - The subset of WaterList that was created since the
111     /// previous iteration by inserting unconditional branches.
112     SmallSet<MachineBasicBlock*, 4> NewWaterList;
113 
114     using water_iterator = std::vector<MachineBasicBlock *>::iterator;
115 
116     /// CPUser - One user of a constant pool, keeping the machine instruction
117     /// pointer, the constant pool being referenced, and the max displacement
118     /// allowed from the instruction to the CP.  The HighWaterMark records the
119     /// highest basic block where a new CPEntry can be placed.  To ensure this
120     /// pass terminates, the CP entries are initially placed at the end of the
121     /// function and then move monotonically to lower addresses.  The
122     /// exception to this rule is when the current CP entry for a particular
123     /// CPUser is out of range, but there is another CP entry for the same
124     /// constant value in range.  We want to use the existing in-range CP
125     /// entry, but if it later moves out of range, the search for new water
126     /// should resume where it left off.  The HighWaterMark is used to record
127     /// that point.
128     struct CPUser {
129       MachineInstr *MI;
130       MachineInstr *CPEMI;
131       MachineBasicBlock *HighWaterMark;
132       unsigned MaxDisp;
133       bool NegOk;
134       bool IsSoImm;
135       bool KnownAlignment = false;
136 
137       CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
138              bool neg, bool soimm)
139         : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) {
140         HighWaterMark = CPEMI->getParent();
141       }
142 
143       /// getMaxDisp - Returns the maximum displacement supported by MI.
144       /// Correct for unknown alignment.
145       /// Conservatively subtract 2 bytes to handle weird alignment effects.
146       unsigned getMaxDisp() const {
147         return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2;
148       }
149     };
150 
151     /// CPUsers - Keep track of all of the machine instructions that use various
152     /// constant pools and their max displacement.
153     std::vector<CPUser> CPUsers;
154 
155     /// CPEntry - One per constant pool entry, keeping the machine instruction
156     /// pointer, the constpool index, and the number of CPUser's which
157     /// reference this entry.
158     struct CPEntry {
159       MachineInstr *CPEMI;
160       unsigned CPI;
161       unsigned RefCount;
162 
163       CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
164         : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
165     };
166 
167     /// CPEntries - Keep track of all of the constant pool entry machine
168     /// instructions. For each original constpool index (i.e. those that existed
169     /// upon entry to this pass), it keeps a vector of entries.  Original
170     /// elements are cloned as we go along; the clones are put in the vector of
171     /// the original element, but have distinct CPIs.
172     ///
173     /// The first half of CPEntries contains generic constants, the second half
174     /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up
175     /// which vector it will be in here.
176     std::vector<std::vector<CPEntry>> CPEntries;
177 
178     /// Maps a JT index to the offset in CPEntries containing copies of that
179     /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity.
180     DenseMap<int, int> JumpTableEntryIndices;
181 
182     /// Maps a JT index to the LEA that actually uses the index to calculate its
183     /// base address.
184     DenseMap<int, int> JumpTableUserIndices;
185 
186     /// ImmBranch - One per immediate branch, keeping the machine instruction
187     /// pointer, conditional or unconditional, the max displacement,
188     /// and (if isCond is true) the corresponding unconditional branch
189     /// opcode.
190     struct ImmBranch {
191       MachineInstr *MI;
192       unsigned MaxDisp : 31;
193       bool isCond : 1;
194       unsigned UncondBr;
195 
196       ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr)
197         : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
198     };
199 
200     /// ImmBranches - Keep track of all the immediate branch instructions.
201     std::vector<ImmBranch> ImmBranches;
202 
203     /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
204     SmallVector<MachineInstr*, 4> PushPopMIs;
205 
206     /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
207     SmallVector<MachineInstr*, 4> T2JumpTables;
208 
209     MachineFunction *MF;
210     MachineConstantPool *MCP;
211     const ARMBaseInstrInfo *TII;
212     const ARMSubtarget *STI;
213     ARMFunctionInfo *AFI;
214     MachineDominatorTree *DT = nullptr;
215     bool isThumb;
216     bool isThumb1;
217     bool isThumb2;
218     bool isPositionIndependentOrROPI;
219 
220   public:
221     static char ID;
222 
223     ARMConstantIslands() : MachineFunctionPass(ID) {}
224 
225     bool runOnMachineFunction(MachineFunction &MF) override;
226 
227     void getAnalysisUsage(AnalysisUsage &AU) const override {
228       AU.addRequired<MachineDominatorTree>();
229       MachineFunctionPass::getAnalysisUsage(AU);
230     }
231 
232     MachineFunctionProperties getRequiredProperties() const override {
233       return MachineFunctionProperties().set(
234           MachineFunctionProperties::Property::NoVRegs);
235     }
236 
237     StringRef getPassName() const override {
238       return ARM_CP_ISLANDS_OPT_NAME;
239     }
240 
241   private:
242     void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs);
243     void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs);
244     bool BBHasFallthrough(MachineBasicBlock *MBB);
245     CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
246     Align getCPEAlign(const MachineInstr *CPEMI);
247     void scanFunctionJumpTables();
248     void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
249     MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
250     void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
251     bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
252     unsigned getCombinedIndex(const MachineInstr *CPEMI);
253     int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
254     bool findAvailableWater(CPUser&U, unsigned UserOffset,
255                             water_iterator &WaterIter, bool CloserWater);
256     void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
257                         MachineBasicBlock *&NewMBB);
258     bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater);
259     void removeDeadCPEMI(MachineInstr *CPEMI);
260     bool removeUnusedCPEntries();
261     bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
262                           MachineInstr *CPEMI, unsigned Disp, bool NegOk,
263                           bool DoDump = false);
264     bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
265                         CPUser &U, unsigned &Growth);
266     bool fixupImmediateBr(ImmBranch &Br);
267     bool fixupConditionalBr(ImmBranch &Br);
268     bool fixupUnconditionalBr(ImmBranch &Br);
269     bool optimizeThumb2Instructions();
270     bool optimizeThumb2Branches();
271     bool reorderThumb2JumpTables();
272     bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI,
273                               unsigned &DeadSize, bool &CanDeleteLEA,
274                               bool &BaseRegKill);
275     bool optimizeThumb2JumpTables();
276     MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB,
277                                                   MachineBasicBlock *JTBB);
278 
279     unsigned getUserOffset(CPUser&) const;
280     void dumpBBs();
281     void verify();
282 
283     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
284                          unsigned Disp, bool NegativeOK, bool IsSoImm = false);
285     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
286                          const CPUser &U) {
287       return isOffsetInRange(UserOffset, TrialOffset,
288                              U.getMaxDisp(), U.NegOk, U.IsSoImm);
289     }
290   };
291 
292 } // end anonymous namespace
293 
294 char ARMConstantIslands::ID = 0;
295 
296 /// verify - check BBOffsets, BBSizes, alignment of islands
297 void ARMConstantIslands::verify() {
298 #ifndef NDEBUG
299   BBInfoVector &BBInfo = BBUtils->getBBInfo();
300   assert(is_sorted(*MF, [&BBInfo](const MachineBasicBlock &LHS,
301                                   const MachineBasicBlock &RHS) {
302     return BBInfo[LHS.getNumber()].postOffset() <
303            BBInfo[RHS.getNumber()].postOffset();
304   }));
305   LLVM_DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n");
306   for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
307     CPUser &U = CPUsers[i];
308     unsigned UserOffset = getUserOffset(U);
309     // Verify offset using the real max displacement without the safety
310     // adjustment.
311     if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk,
312                          /* DoDump = */ true)) {
313       LLVM_DEBUG(dbgs() << "OK\n");
314       continue;
315     }
316     LLVM_DEBUG(dbgs() << "Out of range.\n");
317     dumpBBs();
318     LLVM_DEBUG(MF->dump());
319     llvm_unreachable("Constant pool entry out of range!");
320   }
321 #endif
322 }
323 
324 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
325 /// print block size and offset information - debugging
326 LLVM_DUMP_METHOD void ARMConstantIslands::dumpBBs() {
327   LLVM_DEBUG({
328     BBInfoVector &BBInfo = BBUtils->getBBInfo();
329     for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
330       const BasicBlockInfo &BBI = BBInfo[J];
331       dbgs() << format("%08x %bb.%u\t", BBI.Offset, J)
332              << " kb=" << unsigned(BBI.KnownBits)
333              << " ua=" << unsigned(BBI.Unalign) << " pa=" << Log2(BBI.PostAlign)
334              << format(" size=%#x\n", BBInfo[J].Size);
335     }
336   });
337 }
338 #endif
339 
340 // Align blocks where the previous block does not fall through. This may add
341 // extra NOP's but they will not be executed. It uses the PrefLoopAlignment as a
342 // measure of how much to align, and only runs at CodeGenOpt::Aggressive.
343 static bool AlignBlocks(MachineFunction *MF) {
344   if (MF->getTarget().getOptLevel() != CodeGenOpt::Aggressive ||
345       MF->getFunction().hasOptSize())
346     return false;
347 
348   auto *TLI = MF->getSubtarget().getTargetLowering();
349   const Align Alignment = TLI->getPrefLoopAlignment();
350   if (Alignment < 4)
351     return false;
352 
353   bool Changed = false;
354   bool PrevCanFallthough = true;
355   for (auto &MBB : *MF) {
356     if (!PrevCanFallthough) {
357       Changed = true;
358       MBB.setAlignment(Alignment);
359     }
360     PrevCanFallthough = MBB.canFallThrough();
361   }
362 
363   return Changed;
364 }
365 
366 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) {
367   MF = &mf;
368   MCP = mf.getConstantPool();
369   BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(mf));
370 
371   LLVM_DEBUG(dbgs() << "***** ARMConstantIslands: "
372                     << MCP->getConstants().size() << " CP entries, aligned to "
373                     << MCP->getConstantPoolAlign().value() << " bytes *****\n");
374 
375   STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget());
376   TII = STI->getInstrInfo();
377   isPositionIndependentOrROPI =
378       STI->getTargetLowering()->isPositionIndependent() || STI->isROPI();
379   AFI = MF->getInfo<ARMFunctionInfo>();
380   DT = &getAnalysis<MachineDominatorTree>();
381 
382   isThumb = AFI->isThumbFunction();
383   isThumb1 = AFI->isThumb1OnlyFunction();
384   isThumb2 = AFI->isThumb2Function();
385 
386   bool GenerateTBB = isThumb2 || (isThumb1 && SynthesizeThumb1TBB);
387   // TBB generation code in this constant island pass has not been adapted to
388   // deal with speculation barriers.
389   if (STI->hardenSlsRetBr())
390     GenerateTBB = false;
391 
392   // Renumber all of the machine basic blocks in the function, guaranteeing that
393   // the numbers agree with the position of the block in the function.
394   MF->RenumberBlocks();
395 
396   // Try to reorder and otherwise adjust the block layout to make good use
397   // of the TB[BH] instructions.
398   bool MadeChange = false;
399   if (GenerateTBB && AdjustJumpTableBlocks) {
400     scanFunctionJumpTables();
401     MadeChange |= reorderThumb2JumpTables();
402     // Data is out of date, so clear it. It'll be re-computed later.
403     T2JumpTables.clear();
404     // Blocks may have shifted around. Keep the numbering up to date.
405     MF->RenumberBlocks();
406   }
407 
408   // Align any non-fallthrough blocks
409   MadeChange |= AlignBlocks(MF);
410 
411   // Perform the initial placement of the constant pool entries.  To start with,
412   // we put them all at the end of the function.
413   std::vector<MachineInstr*> CPEMIs;
414   if (!MCP->isEmpty())
415     doInitialConstPlacement(CPEMIs);
416 
417   if (MF->getJumpTableInfo())
418     doInitialJumpTablePlacement(CPEMIs);
419 
420   /// The next UID to take is the first unused one.
421   AFI->initPICLabelUId(CPEMIs.size());
422 
423   // Do the initial scan of the function, building up information about the
424   // sizes of each block, the location of all the water, and finding all of the
425   // constant pool users.
426   initializeFunctionInfo(CPEMIs);
427   CPEMIs.clear();
428   LLVM_DEBUG(dumpBBs());
429 
430   // Functions with jump tables need an alignment of 4 because they use the ADR
431   // instruction, which aligns the PC to 4 bytes before adding an offset.
432   if (!T2JumpTables.empty())
433     MF->ensureAlignment(Align(4));
434 
435   /// Remove dead constant pool entries.
436   MadeChange |= removeUnusedCPEntries();
437 
438   // Iteratively place constant pool entries and fix up branches until there
439   // is no change.
440   unsigned NoCPIters = 0, NoBRIters = 0;
441   while (true) {
442     LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
443     bool CPChange = false;
444     for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
445       // For most inputs, it converges in no more than 5 iterations.
446       // If it doesn't end in 10, the input may have huge BB or many CPEs.
447       // In this case, we will try different heuristics.
448       CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2);
449     if (CPChange && ++NoCPIters > CPMaxIteration)
450       report_fatal_error("Constant Island pass failed to converge!");
451     LLVM_DEBUG(dumpBBs());
452 
453     // Clear NewWaterList now.  If we split a block for branches, it should
454     // appear as "new water" for the next iteration of constant pool placement.
455     NewWaterList.clear();
456 
457     LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
458     bool BRChange = false;
459     for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
460       BRChange |= fixupImmediateBr(ImmBranches[i]);
461     if (BRChange && ++NoBRIters > 30)
462       report_fatal_error("Branch Fix Up pass failed to converge!");
463     LLVM_DEBUG(dumpBBs());
464 
465     if (!CPChange && !BRChange)
466       break;
467     MadeChange = true;
468   }
469 
470   // Shrink 32-bit Thumb2 load and store instructions.
471   if (isThumb2 && !STI->prefers32BitThumb())
472     MadeChange |= optimizeThumb2Instructions();
473 
474   // Shrink 32-bit branch instructions.
475   if (isThumb && STI->hasV8MBaselineOps())
476     MadeChange |= optimizeThumb2Branches();
477 
478   // Optimize jump tables using TBB / TBH.
479   if (GenerateTBB && !STI->genExecuteOnly())
480     MadeChange |= optimizeThumb2JumpTables();
481 
482   // After a while, this might be made debug-only, but it is not expensive.
483   verify();
484 
485   // Save the mapping between original and cloned constpool entries.
486   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
487     for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) {
488       const CPEntry & CPE = CPEntries[i][j];
489       if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI())
490         AFI->recordCPEClone(i, CPE.CPI);
491     }
492   }
493 
494   LLVM_DEBUG(dbgs() << '\n'; dumpBBs());
495 
496   BBUtils->clear();
497   WaterList.clear();
498   CPUsers.clear();
499   CPEntries.clear();
500   JumpTableEntryIndices.clear();
501   JumpTableUserIndices.clear();
502   ImmBranches.clear();
503   PushPopMIs.clear();
504   T2JumpTables.clear();
505 
506   return MadeChange;
507 }
508 
509 /// Perform the initial placement of the regular constant pool entries.
510 /// To start with, we put them all at the end of the function.
511 void
512 ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) {
513   // Create the basic block to hold the CPE's.
514   MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
515   MF->push_back(BB);
516 
517   // MachineConstantPool measures alignment in bytes.
518   const Align MaxAlign = MCP->getConstantPoolAlign();
519   const unsigned MaxLogAlign = Log2(MaxAlign);
520 
521   // Mark the basic block as required by the const-pool.
522   BB->setAlignment(MaxAlign);
523 
524   // The function needs to be as aligned as the basic blocks. The linker may
525   // move functions around based on their alignment.
526   // Special case: halfword literals still need word alignment on the function.
527   Align FuncAlign = MaxAlign;
528   if (MaxAlign == 2)
529     FuncAlign = Align(4);
530   MF->ensureAlignment(FuncAlign);
531 
532   // Order the entries in BB by descending alignment.  That ensures correct
533   // alignment of all entries as long as BB is sufficiently aligned.  Keep
534   // track of the insertion point for each alignment.  We are going to bucket
535   // sort the entries as they are created.
536   SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxLogAlign + 1,
537                                                        BB->end());
538 
539   // Add all of the constants from the constant pool to the end block, use an
540   // identity mapping of CPI's to CPE's.
541   const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
542 
543   const DataLayout &TD = MF->getDataLayout();
544   for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
545     unsigned Size = CPs[i].getSizeInBytes(TD);
546     Align Alignment = CPs[i].getAlign();
547     // Verify that all constant pool entries are a multiple of their alignment.
548     // If not, we would have to pad them out so that instructions stay aligned.
549     assert(isAligned(Alignment, Size) && "CP Entry not multiple of 4 bytes!");
550 
551     // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
552     unsigned LogAlign = Log2(Alignment);
553     MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
554     MachineInstr *CPEMI =
555       BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
556         .addImm(i).addConstantPoolIndex(i).addImm(Size);
557     CPEMIs.push_back(CPEMI);
558 
559     // Ensure that future entries with higher alignment get inserted before
560     // CPEMI. This is bucket sort with iterators.
561     for (unsigned a = LogAlign + 1; a <= MaxLogAlign; ++a)
562       if (InsPoint[a] == InsAt)
563         InsPoint[a] = CPEMI;
564 
565     // Add a new CPEntry, but no corresponding CPUser yet.
566     CPEntries.emplace_back(1, CPEntry(CPEMI, i));
567     ++NumCPEs;
568     LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
569                       << Size << ", align = " << Alignment.value() << '\n');
570   }
571   LLVM_DEBUG(BB->dump());
572 }
573 
574 /// Do initial placement of the jump tables. Because Thumb2's TBB and TBH
575 /// instructions can be made more efficient if the jump table immediately
576 /// follows the instruction, it's best to place them immediately next to their
577 /// jumps to begin with. In almost all cases they'll never be moved from that
578 /// position.
579 void ARMConstantIslands::doInitialJumpTablePlacement(
580     std::vector<MachineInstr *> &CPEMIs) {
581   unsigned i = CPEntries.size();
582   auto MJTI = MF->getJumpTableInfo();
583   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
584 
585   MachineBasicBlock *LastCorrectlyNumberedBB = nullptr;
586   for (MachineBasicBlock &MBB : *MF) {
587     auto MI = MBB.getLastNonDebugInstr();
588     // Look past potential SpeculationBarriers at end of BB.
589     while (MI != MBB.end() &&
590            (isSpeculationBarrierEndBBOpcode(MI->getOpcode()) ||
591             MI->isDebugInstr()))
592       --MI;
593 
594     if (MI == MBB.end())
595       continue;
596 
597     unsigned JTOpcode;
598     switch (MI->getOpcode()) {
599     default:
600       continue;
601     case ARM::BR_JTadd:
602     case ARM::BR_JTr:
603     case ARM::tBR_JTr:
604     case ARM::BR_JTm_i12:
605     case ARM::BR_JTm_rs:
606       JTOpcode = ARM::JUMPTABLE_ADDRS;
607       break;
608     case ARM::t2BR_JT:
609       JTOpcode = ARM::JUMPTABLE_INSTS;
610       break;
611     case ARM::tTBB_JT:
612     case ARM::t2TBB_JT:
613       JTOpcode = ARM::JUMPTABLE_TBB;
614       break;
615     case ARM::tTBH_JT:
616     case ARM::t2TBH_JT:
617       JTOpcode = ARM::JUMPTABLE_TBH;
618       break;
619     }
620 
621     unsigned NumOps = MI->getDesc().getNumOperands();
622     MachineOperand JTOp =
623       MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1));
624     unsigned JTI = JTOp.getIndex();
625     unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t);
626     MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock();
627     MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB);
628     MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(),
629                                   DebugLoc(), TII->get(JTOpcode))
630                               .addImm(i++)
631                               .addJumpTableIndex(JTI)
632                               .addImm(Size);
633     CPEMIs.push_back(CPEMI);
634     CPEntries.emplace_back(1, CPEntry(CPEMI, JTI));
635     JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1));
636     if (!LastCorrectlyNumberedBB)
637       LastCorrectlyNumberedBB = &MBB;
638   }
639 
640   // If we did anything then we need to renumber the subsequent blocks.
641   if (LastCorrectlyNumberedBB)
642     MF->RenumberBlocks(LastCorrectlyNumberedBB);
643 }
644 
645 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
646 /// into the block immediately after it.
647 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) {
648   // Get the next machine basic block in the function.
649   MachineFunction::iterator MBBI = MBB->getIterator();
650   // Can't fall off end of function.
651   if (std::next(MBBI) == MBB->getParent()->end())
652     return false;
653 
654   MachineBasicBlock *NextBB = &*std::next(MBBI);
655   if (!MBB->isSuccessor(NextBB))
656     return false;
657 
658   // Try to analyze the end of the block. A potential fallthrough may already
659   // have an unconditional branch for whatever reason.
660   MachineBasicBlock *TBB, *FBB;
661   SmallVector<MachineOperand, 4> Cond;
662   bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond);
663   return TooDifficult || FBB == nullptr;
664 }
665 
666 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
667 /// look up the corresponding CPEntry.
668 ARMConstantIslands::CPEntry *
669 ARMConstantIslands::findConstPoolEntry(unsigned CPI,
670                                        const MachineInstr *CPEMI) {
671   std::vector<CPEntry> &CPEs = CPEntries[CPI];
672   // Number of entries per constpool index should be small, just do a
673   // linear search.
674   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
675     if (CPEs[i].CPEMI == CPEMI)
676       return &CPEs[i];
677   }
678   return nullptr;
679 }
680 
681 /// getCPEAlign - Returns the required alignment of the constant pool entry
682 /// represented by CPEMI.
683 Align ARMConstantIslands::getCPEAlign(const MachineInstr *CPEMI) {
684   switch (CPEMI->getOpcode()) {
685   case ARM::CONSTPOOL_ENTRY:
686     break;
687   case ARM::JUMPTABLE_TBB:
688     return isThumb1 ? Align(4) : Align(1);
689   case ARM::JUMPTABLE_TBH:
690     return isThumb1 ? Align(4) : Align(2);
691   case ARM::JUMPTABLE_INSTS:
692     return Align(2);
693   case ARM::JUMPTABLE_ADDRS:
694     return Align(4);
695   default:
696     llvm_unreachable("unknown constpool entry kind");
697   }
698 
699   unsigned CPI = getCombinedIndex(CPEMI);
700   assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
701   return MCP->getConstants()[CPI].getAlign();
702 }
703 
704 /// scanFunctionJumpTables - Do a scan of the function, building up
705 /// information about the sizes of each block and the locations of all
706 /// the jump tables.
707 void ARMConstantIslands::scanFunctionJumpTables() {
708   for (MachineBasicBlock &MBB : *MF) {
709     for (MachineInstr &I : MBB)
710       if (I.isBranch() &&
711           (I.getOpcode() == ARM::t2BR_JT || I.getOpcode() == ARM::tBR_JTr))
712         T2JumpTables.push_back(&I);
713   }
714 }
715 
716 /// initializeFunctionInfo - Do the initial scan of the function, building up
717 /// information about the sizes of each block, the location of all the water,
718 /// and finding all of the constant pool users.
719 void ARMConstantIslands::
720 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
721 
722   BBUtils->computeAllBlockSizes();
723   BBInfoVector &BBInfo = BBUtils->getBBInfo();
724   // The known bits of the entry block offset are determined by the function
725   // alignment.
726   BBInfo.front().KnownBits = Log2(MF->getAlignment());
727 
728   // Compute block offsets and known bits.
729   BBUtils->adjustBBOffsetsAfter(&MF->front());
730 
731   // Now go back through the instructions and build up our data structures.
732   for (MachineBasicBlock &MBB : *MF) {
733     // If this block doesn't fall through into the next MBB, then this is
734     // 'water' that a constant pool island could be placed.
735     if (!BBHasFallthrough(&MBB))
736       WaterList.push_back(&MBB);
737 
738     for (MachineInstr &I : MBB) {
739       if (I.isDebugInstr())
740         continue;
741 
742       unsigned Opc = I.getOpcode();
743       if (I.isBranch()) {
744         bool isCond = false;
745         unsigned Bits = 0;
746         unsigned Scale = 1;
747         int UOpc = Opc;
748         switch (Opc) {
749         default:
750           continue;  // Ignore other JT branches
751         case ARM::t2BR_JT:
752         case ARM::tBR_JTr:
753           T2JumpTables.push_back(&I);
754           continue;   // Does not get an entry in ImmBranches
755         case ARM::Bcc:
756           isCond = true;
757           UOpc = ARM::B;
758           LLVM_FALLTHROUGH;
759         case ARM::B:
760           Bits = 24;
761           Scale = 4;
762           break;
763         case ARM::tBcc:
764           isCond = true;
765           UOpc = ARM::tB;
766           Bits = 8;
767           Scale = 2;
768           break;
769         case ARM::tB:
770           Bits = 11;
771           Scale = 2;
772           break;
773         case ARM::t2Bcc:
774           isCond = true;
775           UOpc = ARM::t2B;
776           Bits = 20;
777           Scale = 2;
778           break;
779         case ARM::t2B:
780           Bits = 24;
781           Scale = 2;
782           break;
783         }
784 
785         // Record this immediate branch.
786         unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
787         ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc));
788       }
789 
790       if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
791         PushPopMIs.push_back(&I);
792 
793       if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS ||
794           Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB ||
795           Opc == ARM::JUMPTABLE_TBH)
796         continue;
797 
798       // Scan the instructions for constant pool operands.
799       for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op)
800         if (I.getOperand(op).isCPI() || I.getOperand(op).isJTI()) {
801           // We found one.  The addressing mode tells us the max displacement
802           // from the PC that this instruction permits.
803 
804           // Basic size info comes from the TSFlags field.
805           unsigned Bits = 0;
806           unsigned Scale = 1;
807           bool NegOk = false;
808           bool IsSoImm = false;
809 
810           switch (Opc) {
811           default:
812             llvm_unreachable("Unknown addressing mode for CP reference!");
813 
814           // Taking the address of a CP entry.
815           case ARM::LEApcrel:
816           case ARM::LEApcrelJT: {
817               // This takes a SoImm, which is 8 bit immediate rotated. We'll
818               // pretend the maximum offset is 255 * 4. Since each instruction
819               // 4 byte wide, this is always correct. We'll check for other
820               // displacements that fits in a SoImm as well.
821               Bits = 8;
822               NegOk = true;
823               IsSoImm = true;
824               unsigned CPI = I.getOperand(op).getIndex();
825               assert(CPI < CPEMIs.size());
826               MachineInstr *CPEMI = CPEMIs[CPI];
827               const Align CPEAlign = getCPEAlign(CPEMI);
828               const unsigned LogCPEAlign = Log2(CPEAlign);
829               if (LogCPEAlign >= 2)
830                 Scale = 4;
831               else
832                 // For constants with less than 4-byte alignment,
833                 // we'll pretend the maximum offset is 255 * 1.
834                 Scale = 1;
835             }
836             break;
837           case ARM::t2LEApcrel:
838           case ARM::t2LEApcrelJT:
839             Bits = 12;
840             NegOk = true;
841             break;
842           case ARM::tLEApcrel:
843           case ARM::tLEApcrelJT:
844             Bits = 8;
845             Scale = 4;
846             break;
847 
848           case ARM::LDRBi12:
849           case ARM::LDRi12:
850           case ARM::LDRcp:
851           case ARM::t2LDRpci:
852           case ARM::t2LDRHpci:
853           case ARM::t2LDRSHpci:
854           case ARM::t2LDRBpci:
855           case ARM::t2LDRSBpci:
856             Bits = 12;  // +-offset_12
857             NegOk = true;
858             break;
859 
860           case ARM::tLDRpci:
861             Bits = 8;
862             Scale = 4;  // +(offset_8*4)
863             break;
864 
865           case ARM::VLDRD:
866           case ARM::VLDRS:
867             Bits = 8;
868             Scale = 4;  // +-(offset_8*4)
869             NegOk = true;
870             break;
871           case ARM::VLDRH:
872             Bits = 8;
873             Scale = 2;  // +-(offset_8*2)
874             NegOk = true;
875             break;
876           }
877 
878           // Remember that this is a user of a CP entry.
879           unsigned CPI = I.getOperand(op).getIndex();
880           if (I.getOperand(op).isJTI()) {
881             JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size()));
882             CPI = JumpTableEntryIndices[CPI];
883           }
884 
885           MachineInstr *CPEMI = CPEMIs[CPI];
886           unsigned MaxOffs = ((1 << Bits)-1) * Scale;
887           CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm));
888 
889           // Increment corresponding CPEntry reference count.
890           CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
891           assert(CPE && "Cannot find a corresponding CPEntry!");
892           CPE->RefCount++;
893 
894           // Instructions can only use one CP entry, don't bother scanning the
895           // rest of the operands.
896           break;
897         }
898     }
899   }
900 }
901 
902 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
903 /// ID.
904 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
905                               const MachineBasicBlock *RHS) {
906   return LHS->getNumber() < RHS->getNumber();
907 }
908 
909 /// updateForInsertedWaterBlock - When a block is newly inserted into the
910 /// machine function, it upsets all of the block numbers.  Renumber the blocks
911 /// and update the arrays that parallel this numbering.
912 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
913   // Renumber the MBB's to keep them consecutive.
914   NewBB->getParent()->RenumberBlocks(NewBB);
915 
916   // Insert an entry into BBInfo to align it properly with the (newly
917   // renumbered) block numbers.
918   BBUtils->insert(NewBB->getNumber(), BasicBlockInfo());
919 
920   // Next, update WaterList.  Specifically, we need to add NewMBB as having
921   // available water after it.
922   water_iterator IP = llvm::lower_bound(WaterList, NewBB, CompareMBBNumbers);
923   WaterList.insert(IP, NewBB);
924 }
925 
926 /// Split the basic block containing MI into two blocks, which are joined by
927 /// an unconditional branch.  Update data structures and renumber blocks to
928 /// account for this change and returns the newly created block.
929 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) {
930   MachineBasicBlock *OrigBB = MI->getParent();
931 
932   // Collect liveness information at MI.
933   LivePhysRegs LRs(*MF->getSubtarget().getRegisterInfo());
934   LRs.addLiveOuts(*OrigBB);
935   auto LivenessEnd = ++MachineBasicBlock::iterator(MI).getReverse();
936   for (MachineInstr &LiveMI : make_range(OrigBB->rbegin(), LivenessEnd))
937     LRs.stepBackward(LiveMI);
938 
939   // Create a new MBB for the code after the OrigBB.
940   MachineBasicBlock *NewBB =
941     MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
942   MachineFunction::iterator MBBI = ++OrigBB->getIterator();
943   MF->insert(MBBI, NewBB);
944 
945   // Splice the instructions starting with MI over to NewBB.
946   NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
947 
948   // Add an unconditional branch from OrigBB to NewBB.
949   // Note the new unconditional branch is not being recorded.
950   // There doesn't seem to be meaningful DebugInfo available; this doesn't
951   // correspond to anything in the source.
952   unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
953   if (!isThumb)
954     BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB);
955   else
956     BuildMI(OrigBB, DebugLoc(), TII->get(Opc))
957         .addMBB(NewBB)
958         .add(predOps(ARMCC::AL));
959   ++NumSplit;
960 
961   // Update the CFG.  All succs of OrigBB are now succs of NewBB.
962   NewBB->transferSuccessors(OrigBB);
963 
964   // OrigBB branches to NewBB.
965   OrigBB->addSuccessor(NewBB);
966 
967   // Update live-in information in the new block.
968   MachineRegisterInfo &MRI = MF->getRegInfo();
969   for (MCPhysReg L : LRs)
970     if (!MRI.isReserved(L))
971       NewBB->addLiveIn(L);
972 
973   // Update internal data structures to account for the newly inserted MBB.
974   // This is almost the same as updateForInsertedWaterBlock, except that
975   // the Water goes after OrigBB, not NewBB.
976   MF->RenumberBlocks(NewBB);
977 
978   // Insert an entry into BBInfo to align it properly with the (newly
979   // renumbered) block numbers.
980   BBUtils->insert(NewBB->getNumber(), BasicBlockInfo());
981 
982   // Next, update WaterList.  Specifically, we need to add OrigMBB as having
983   // available water after it (but not if it's already there, which happens
984   // when splitting before a conditional branch that is followed by an
985   // unconditional branch - in that case we want to insert NewBB).
986   water_iterator IP = llvm::lower_bound(WaterList, OrigBB, CompareMBBNumbers);
987   MachineBasicBlock* WaterBB = *IP;
988   if (WaterBB == OrigBB)
989     WaterList.insert(std::next(IP), NewBB);
990   else
991     WaterList.insert(IP, OrigBB);
992   NewWaterList.insert(OrigBB);
993 
994   // Figure out how large the OrigBB is.  As the first half of the original
995   // block, it cannot contain a tablejump.  The size includes
996   // the new jump we added.  (It should be possible to do this without
997   // recounting everything, but it's very confusing, and this is rarely
998   // executed.)
999   BBUtils->computeBlockSize(OrigBB);
1000 
1001   // Figure out how large the NewMBB is.  As the second half of the original
1002   // block, it may contain a tablejump.
1003   BBUtils->computeBlockSize(NewBB);
1004 
1005   // All BBOffsets following these blocks must be modified.
1006   BBUtils->adjustBBOffsetsAfter(OrigBB);
1007 
1008   return NewBB;
1009 }
1010 
1011 /// getUserOffset - Compute the offset of U.MI as seen by the hardware
1012 /// displacement computation.  Update U.KnownAlignment to match its current
1013 /// basic block location.
1014 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const {
1015   unsigned UserOffset = BBUtils->getOffsetOf(U.MI);
1016 
1017   SmallVectorImpl<BasicBlockInfo> &BBInfo = BBUtils->getBBInfo();
1018   const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()];
1019   unsigned KnownBits = BBI.internalKnownBits();
1020 
1021   // The value read from PC is offset from the actual instruction address.
1022   UserOffset += (isThumb ? 4 : 8);
1023 
1024   // Because of inline assembly, we may not know the alignment (mod 4) of U.MI.
1025   // Make sure U.getMaxDisp() returns a constrained range.
1026   U.KnownAlignment = (KnownBits >= 2);
1027 
1028   // On Thumb, offsets==2 mod 4 are rounded down by the hardware for
1029   // purposes of the displacement computation; compensate for that here.
1030   // For unknown alignments, getMaxDisp() constrains the range instead.
1031   if (isThumb && U.KnownAlignment)
1032     UserOffset &= ~3u;
1033 
1034   return UserOffset;
1035 }
1036 
1037 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
1038 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
1039 /// constant pool entry).
1040 /// UserOffset is computed by getUserOffset above to include PC adjustments. If
1041 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be
1042 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that.
1043 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset,
1044                                          unsigned TrialOffset, unsigned MaxDisp,
1045                                          bool NegativeOK, bool IsSoImm) {
1046   if (UserOffset <= TrialOffset) {
1047     // User before the Trial.
1048     if (TrialOffset - UserOffset <= MaxDisp)
1049       return true;
1050     // FIXME: Make use full range of soimm values.
1051   } else if (NegativeOK) {
1052     if (UserOffset - TrialOffset <= MaxDisp)
1053       return true;
1054     // FIXME: Make use full range of soimm values.
1055   }
1056   return false;
1057 }
1058 
1059 /// isWaterInRange - Returns true if a CPE placed after the specified
1060 /// Water (a basic block) will be in range for the specific MI.
1061 ///
1062 /// Compute how much the function will grow by inserting a CPE after Water.
1063 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset,
1064                                         MachineBasicBlock* Water, CPUser &U,
1065                                         unsigned &Growth) {
1066   BBInfoVector &BBInfo = BBUtils->getBBInfo();
1067   const Align CPEAlign = getCPEAlign(U.CPEMI);
1068   const unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPEAlign);
1069   unsigned NextBlockOffset;
1070   Align NextBlockAlignment;
1071   MachineFunction::const_iterator NextBlock = Water->getIterator();
1072   if (++NextBlock == MF->end()) {
1073     NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
1074   } else {
1075     NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
1076     NextBlockAlignment = NextBlock->getAlignment();
1077   }
1078   unsigned Size = U.CPEMI->getOperand(2).getImm();
1079   unsigned CPEEnd = CPEOffset + Size;
1080 
1081   // The CPE may be able to hide in the alignment padding before the next
1082   // block. It may also cause more padding to be required if it is more aligned
1083   // that the next block.
1084   if (CPEEnd > NextBlockOffset) {
1085     Growth = CPEEnd - NextBlockOffset;
1086     // Compute the padding that would go at the end of the CPE to align the next
1087     // block.
1088     Growth += offsetToAlignment(CPEEnd, NextBlockAlignment);
1089 
1090     // If the CPE is to be inserted before the instruction, that will raise
1091     // the offset of the instruction. Also account for unknown alignment padding
1092     // in blocks between CPE and the user.
1093     if (CPEOffset < UserOffset)
1094       UserOffset += Growth + UnknownPadding(MF->getAlignment(), Log2(CPEAlign));
1095   } else
1096     // CPE fits in existing padding.
1097     Growth = 0;
1098 
1099   return isOffsetInRange(UserOffset, CPEOffset, U);
1100 }
1101 
1102 /// isCPEntryInRange - Returns true if the distance between specific MI and
1103 /// specific ConstPool entry instruction can fit in MI's displacement field.
1104 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
1105                                       MachineInstr *CPEMI, unsigned MaxDisp,
1106                                       bool NegOk, bool DoDump) {
1107   unsigned CPEOffset = BBUtils->getOffsetOf(CPEMI);
1108 
1109   if (DoDump) {
1110     LLVM_DEBUG({
1111         BBInfoVector &BBInfo = BBUtils->getBBInfo();
1112       unsigned Block = MI->getParent()->getNumber();
1113       const BasicBlockInfo &BBI = BBInfo[Block];
1114       dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
1115              << " max delta=" << MaxDisp
1116              << format(" insn address=%#x", UserOffset) << " in "
1117              << printMBBReference(*MI->getParent()) << ": "
1118              << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
1119              << format("CPE address=%#x offset=%+d: ", CPEOffset,
1120                        int(CPEOffset - UserOffset));
1121     });
1122   }
1123 
1124   return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
1125 }
1126 
1127 #ifndef NDEBUG
1128 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
1129 /// unconditionally branches to its only successor.
1130 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
1131   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
1132     return false;
1133 
1134   MachineBasicBlock *Succ = *MBB->succ_begin();
1135   MachineBasicBlock *Pred = *MBB->pred_begin();
1136   MachineInstr *PredMI = &Pred->back();
1137   if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
1138       || PredMI->getOpcode() == ARM::t2B)
1139     return PredMI->getOperand(0).getMBB() == Succ;
1140   return false;
1141 }
1142 #endif // NDEBUG
1143 
1144 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
1145 /// and instruction CPEMI, and decrement its refcount.  If the refcount
1146 /// becomes 0 remove the entry and instruction.  Returns true if we removed
1147 /// the entry, false if we didn't.
1148 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI,
1149                                                     MachineInstr *CPEMI) {
1150   // Find the old entry. Eliminate it if it is no longer used.
1151   CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
1152   assert(CPE && "Unexpected!");
1153   if (--CPE->RefCount == 0) {
1154     removeDeadCPEMI(CPEMI);
1155     CPE->CPEMI = nullptr;
1156     --NumCPEs;
1157     return true;
1158   }
1159   return false;
1160 }
1161 
1162 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) {
1163   if (CPEMI->getOperand(1).isCPI())
1164     return CPEMI->getOperand(1).getIndex();
1165 
1166   return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()];
1167 }
1168 
1169 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1170 /// if not, see if an in-range clone of the CPE is in range, and if so,
1171 /// change the data structures so the user references the clone.  Returns:
1172 /// 0 = no existing entry found
1173 /// 1 = entry found, and there were no code insertions or deletions
1174 /// 2 = entry found, and there were code insertions or deletions
1175 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) {
1176   MachineInstr *UserMI = U.MI;
1177   MachineInstr *CPEMI  = U.CPEMI;
1178 
1179   // Check to see if the CPE is already in-range.
1180   if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
1181                        true)) {
1182     LLVM_DEBUG(dbgs() << "In range\n");
1183     return 1;
1184   }
1185 
1186   // No.  Look for previously created clones of the CPE that are in range.
1187   unsigned CPI = getCombinedIndex(CPEMI);
1188   std::vector<CPEntry> &CPEs = CPEntries[CPI];
1189   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1190     // We already tried this one
1191     if (CPEs[i].CPEMI == CPEMI)
1192       continue;
1193     // Removing CPEs can leave empty entries, skip
1194     if (CPEs[i].CPEMI == nullptr)
1195       continue;
1196     if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
1197                      U.NegOk)) {
1198       LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1199                         << CPEs[i].CPI << "\n");
1200       // Point the CPUser node to the replacement
1201       U.CPEMI = CPEs[i].CPEMI;
1202       // Change the CPI in the instruction operand to refer to the clone.
1203       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1204         if (UserMI->getOperand(j).isCPI()) {
1205           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1206           break;
1207         }
1208       // Adjust the refcount of the clone...
1209       CPEs[i].RefCount++;
1210       // ...and the original.  If we didn't remove the old entry, none of the
1211       // addresses changed, so we don't need another pass.
1212       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1213     }
1214   }
1215   return 0;
1216 }
1217 
1218 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1219 /// the specific unconditional branch instruction.
1220 static inline unsigned getUnconditionalBrDisp(int Opc) {
1221   switch (Opc) {
1222   case ARM::tB:
1223     return ((1<<10)-1)*2;
1224   case ARM::t2B:
1225     return ((1<<23)-1)*2;
1226   default:
1227     break;
1228   }
1229 
1230   return ((1<<23)-1)*4;
1231 }
1232 
1233 /// findAvailableWater - Look for an existing entry in the WaterList in which
1234 /// we can place the CPE referenced from U so it's within range of U's MI.
1235 /// Returns true if found, false if not.  If it returns true, WaterIter
1236 /// is set to the WaterList entry.  For Thumb, prefer water that will not
1237 /// introduce padding to water that will.  To ensure that this pass
1238 /// terminates, the CPE location for a particular CPUser is only allowed to
1239 /// move to a lower address, so search backward from the end of the list and
1240 /// prefer the first water that is in range.
1241 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1242                                             water_iterator &WaterIter,
1243                                             bool CloserWater) {
1244   if (WaterList.empty())
1245     return false;
1246 
1247   unsigned BestGrowth = ~0u;
1248   // The nearest water without splitting the UserBB is right after it.
1249   // If the distance is still large (we have a big BB), then we need to split it
1250   // if we don't converge after certain iterations. This helps the following
1251   // situation to converge:
1252   //   BB0:
1253   //      Big BB
1254   //   BB1:
1255   //      Constant Pool
1256   // When a CP access is out of range, BB0 may be used as water. However,
1257   // inserting islands between BB0 and BB1 makes other accesses out of range.
1258   MachineBasicBlock *UserBB = U.MI->getParent();
1259   BBInfoVector &BBInfo = BBUtils->getBBInfo();
1260   const Align CPEAlign = getCPEAlign(U.CPEMI);
1261   unsigned MinNoSplitDisp = BBInfo[UserBB->getNumber()].postOffset(CPEAlign);
1262   if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2)
1263     return false;
1264   for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
1265        --IP) {
1266     MachineBasicBlock* WaterBB = *IP;
1267     // Check if water is in range and is either at a lower address than the
1268     // current "high water mark" or a new water block that was created since
1269     // the previous iteration by inserting an unconditional branch.  In the
1270     // latter case, we want to allow resetting the high water mark back to
1271     // this new water since we haven't seen it before.  Inserting branches
1272     // should be relatively uncommon and when it does happen, we want to be
1273     // sure to take advantage of it for all the CPEs near that block, so that
1274     // we don't insert more branches than necessary.
1275     // When CloserWater is true, we try to find the lowest address after (or
1276     // equal to) user MI's BB no matter of padding growth.
1277     unsigned Growth;
1278     if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
1279         (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1280          NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) &&
1281         Growth < BestGrowth) {
1282       // This is the least amount of required padding seen so far.
1283       BestGrowth = Growth;
1284       WaterIter = IP;
1285       LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB)
1286                         << " Growth=" << Growth << '\n');
1287 
1288       if (CloserWater && WaterBB == U.MI->getParent())
1289         return true;
1290       // Keep looking unless it is perfect and we're not looking for the lowest
1291       // possible address.
1292       if (!CloserWater && BestGrowth == 0)
1293         return true;
1294     }
1295     if (IP == B)
1296       break;
1297   }
1298   return BestGrowth != ~0u;
1299 }
1300 
1301 /// createNewWater - No existing WaterList entry will work for
1302 /// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
1303 /// block is used if in range, and the conditional branch munged so control
1304 /// flow is correct.  Otherwise the block is split to create a hole with an
1305 /// unconditional branch around it.  In either case NewMBB is set to a
1306 /// block following which the new island can be inserted (the WaterList
1307 /// is not adjusted).
1308 void ARMConstantIslands::createNewWater(unsigned CPUserIndex,
1309                                         unsigned UserOffset,
1310                                         MachineBasicBlock *&NewMBB) {
1311   CPUser &U = CPUsers[CPUserIndex];
1312   MachineInstr *UserMI = U.MI;
1313   MachineInstr *CPEMI  = U.CPEMI;
1314   const Align CPEAlign = getCPEAlign(CPEMI);
1315   MachineBasicBlock *UserMBB = UserMI->getParent();
1316   BBInfoVector &BBInfo = BBUtils->getBBInfo();
1317   const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1318 
1319   // If the block does not end in an unconditional branch already, and if the
1320   // end of the block is within range, make new water there.  (The addition
1321   // below is for the unconditional branch we will be adding: 4 bytes on ARM +
1322   // Thumb2, 2 on Thumb1.
1323   if (BBHasFallthrough(UserMBB)) {
1324     // Size of branch to insert.
1325     unsigned Delta = isThumb1 ? 2 : 4;
1326     // Compute the offset where the CPE will begin.
1327     unsigned CPEOffset = UserBBI.postOffset(CPEAlign) + Delta;
1328 
1329     if (isOffsetInRange(UserOffset, CPEOffset, U)) {
1330       LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB)
1331                         << format(", expected CPE offset %#x\n", CPEOffset));
1332       NewMBB = &*++UserMBB->getIterator();
1333       // Add an unconditional branch from UserMBB to fallthrough block.  Record
1334       // it for branch lengthening; this new branch will not get out of range,
1335       // but if the preceding conditional branch is out of range, the targets
1336       // will be exchanged, and the altered branch may be out of range, so the
1337       // machinery has to know about it.
1338       int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
1339       if (!isThumb)
1340         BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1341       else
1342         BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr))
1343             .addMBB(NewMBB)
1344             .add(predOps(ARMCC::AL));
1345       unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1346       ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1347                                       MaxDisp, false, UncondBr));
1348       BBUtils->computeBlockSize(UserMBB);
1349       BBUtils->adjustBBOffsetsAfter(UserMBB);
1350       return;
1351     }
1352   }
1353 
1354   // What a big block.  Find a place within the block to split it.  This is a
1355   // little tricky on Thumb1 since instructions are 2 bytes and constant pool
1356   // entries are 4 bytes: if instruction I references island CPE, and
1357   // instruction I+1 references CPE', it will not work well to put CPE as far
1358   // forward as possible, since then CPE' cannot immediately follow it (that
1359   // location is 2 bytes farther away from I+1 than CPE was from I) and we'd
1360   // need to create a new island.  So, we make a first guess, then walk through
1361   // the instructions between the one currently being looked at and the
1362   // possible insertion point, and make sure any other instructions that
1363   // reference CPEs will be able to use the same island area; if not, we back
1364   // up the insertion point.
1365 
1366   // Try to split the block so it's fully aligned.  Compute the latest split
1367   // point where we can add a 4-byte branch instruction, and then align to
1368   // Align which is the largest possible alignment in the function.
1369   const Align Align = MF->getAlignment();
1370   assert(Align >= CPEAlign && "Over-aligned constant pool entry");
1371   unsigned KnownBits = UserBBI.internalKnownBits();
1372   unsigned UPad = UnknownPadding(Align, KnownBits);
1373   unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad;
1374   LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x",
1375                               BaseInsertOffset));
1376 
1377   // The 4 in the following is for the unconditional branch we'll be inserting
1378   // (allows for long branch on Thumb1).  Alignment of the island is handled
1379   // inside isOffsetInRange.
1380   BaseInsertOffset -= 4;
1381 
1382   LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1383                     << " la=" << Log2(Align) << " kb=" << KnownBits
1384                     << " up=" << UPad << '\n');
1385 
1386   // This could point off the end of the block if we've already got constant
1387   // pool entries following this block; only the last one is in the water list.
1388   // Back past any possible branches (allow for a conditional and a maximally
1389   // long unconditional).
1390   if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1391     // Ensure BaseInsertOffset is larger than the offset of the instruction
1392     // following UserMI so that the loop which searches for the split point
1393     // iterates at least once.
1394     BaseInsertOffset =
1395         std::max(UserBBI.postOffset() - UPad - 8,
1396                  UserOffset + TII->getInstSizeInBytes(*UserMI) + 1);
1397     // If the CP is referenced(ie, UserOffset) is in first four instructions
1398     // after IT, this recalculated BaseInsertOffset could be in the middle of
1399     // an IT block. If it is, change the BaseInsertOffset to just after the
1400     // IT block. This still make the CP Entry is in range becuase of the
1401     // following reasons.
1402     //   1. The initial BaseseInsertOffset calculated is (UserOffset +
1403     //   U.getMaxDisp() - UPad).
1404     //   2. An IT block is only at most 4 instructions plus the "it" itself (18
1405     //   bytes).
1406     //   3. All the relevant instructions support much larger Maximum
1407     //   displacement.
1408     MachineBasicBlock::iterator I = UserMI;
1409     ++I;
1410     Register PredReg;
1411     for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI);
1412          I->getOpcode() != ARM::t2IT &&
1413          getITInstrPredicate(*I, PredReg) != ARMCC::AL;
1414          Offset += TII->getInstSizeInBytes(*I), I = std::next(I)) {
1415       BaseInsertOffset =
1416           std::max(BaseInsertOffset, Offset + TII->getInstSizeInBytes(*I) + 1);
1417       assert(I != UserMBB->end() && "Fell off end of block");
1418     }
1419     LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1420   }
1421   unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad +
1422     CPEMI->getOperand(2).getImm();
1423   MachineBasicBlock::iterator MI = UserMI;
1424   ++MI;
1425   unsigned CPUIndex = CPUserIndex+1;
1426   unsigned NumCPUsers = CPUsers.size();
1427   MachineInstr *LastIT = nullptr;
1428   for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI);
1429        Offset < BaseInsertOffset;
1430        Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) {
1431     assert(MI != UserMBB->end() && "Fell off end of block");
1432     if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) {
1433       CPUser &U = CPUsers[CPUIndex];
1434       if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1435         // Shift intertion point by one unit of alignment so it is within reach.
1436         BaseInsertOffset -= Align.value();
1437         EndInsertOffset -= Align.value();
1438       }
1439       // This is overly conservative, as we don't account for CPEMIs being
1440       // reused within the block, but it doesn't matter much.  Also assume CPEs
1441       // are added in order with alignment padding.  We may eventually be able
1442       // to pack the aligned CPEs better.
1443       EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1444       CPUIndex++;
1445     }
1446 
1447     // Remember the last IT instruction.
1448     if (MI->getOpcode() == ARM::t2IT)
1449       LastIT = &*MI;
1450   }
1451 
1452   --MI;
1453 
1454   // Avoid splitting an IT block.
1455   if (LastIT) {
1456     Register PredReg;
1457     ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg);
1458     if (CC != ARMCC::AL)
1459       MI = LastIT;
1460   }
1461 
1462   // Avoid splitting a MOVW+MOVT pair with a relocation on Windows.
1463   // On Windows, this instruction pair is covered by one single
1464   // IMAGE_REL_ARM_MOV32T relocation which covers both instructions. If a
1465   // constant island is injected inbetween them, the relocation will clobber
1466   // the instruction and fail to update the MOVT instruction.
1467   // (These instructions are bundled up until right before the ConstantIslands
1468   // pass.)
1469   if (STI->isTargetWindows() && isThumb && MI->getOpcode() == ARM::t2MOVTi16 &&
1470       (MI->getOperand(2).getTargetFlags() & ARMII::MO_OPTION_MASK) ==
1471           ARMII::MO_HI16) {
1472     --MI;
1473     assert(MI->getOpcode() == ARM::t2MOVi16 &&
1474            (MI->getOperand(1).getTargetFlags() & ARMII::MO_OPTION_MASK) ==
1475                ARMII::MO_LO16);
1476   }
1477 
1478   // We really must not split an IT block.
1479 #ifndef NDEBUG
1480   Register PredReg;
1481   assert(!isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL);
1482 #endif
1483   NewMBB = splitBlockBeforeInstr(&*MI);
1484 }
1485 
1486 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
1487 /// is out-of-range.  If so, pick up the constant pool value and move it some
1488 /// place in-range.  Return true if we changed any addresses (thus must run
1489 /// another pass of branch lengthening), false otherwise.
1490 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex,
1491                                                 bool CloserWater) {
1492   CPUser &U = CPUsers[CPUserIndex];
1493   MachineInstr *UserMI = U.MI;
1494   MachineInstr *CPEMI  = U.CPEMI;
1495   unsigned CPI = getCombinedIndex(CPEMI);
1496   unsigned Size = CPEMI->getOperand(2).getImm();
1497   // Compute this only once, it's expensive.
1498   unsigned UserOffset = getUserOffset(U);
1499 
1500   // See if the current entry is within range, or there is a clone of it
1501   // in range.
1502   int result = findInRangeCPEntry(U, UserOffset);
1503   if (result==1) return false;
1504   else if (result==2) return true;
1505 
1506   // No existing clone of this CPE is within range.
1507   // We will be generating a new clone.  Get a UID for it.
1508   unsigned ID = AFI->createPICLabelUId();
1509 
1510   // Look for water where we can place this CPE.
1511   MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1512   MachineBasicBlock *NewMBB;
1513   water_iterator IP;
1514   if (findAvailableWater(U, UserOffset, IP, CloserWater)) {
1515     LLVM_DEBUG(dbgs() << "Found water in range\n");
1516     MachineBasicBlock *WaterBB = *IP;
1517 
1518     // If the original WaterList entry was "new water" on this iteration,
1519     // propagate that to the new island.  This is just keeping NewWaterList
1520     // updated to match the WaterList, which will be updated below.
1521     if (NewWaterList.erase(WaterBB))
1522       NewWaterList.insert(NewIsland);
1523 
1524     // The new CPE goes before the following block (NewMBB).
1525     NewMBB = &*++WaterBB->getIterator();
1526   } else {
1527     // No water found.
1528     LLVM_DEBUG(dbgs() << "No water found\n");
1529     createNewWater(CPUserIndex, UserOffset, NewMBB);
1530 
1531     // splitBlockBeforeInstr adds to WaterList, which is important when it is
1532     // called while handling branches so that the water will be seen on the
1533     // next iteration for constant pools, but in this context, we don't want
1534     // it.  Check for this so it will be removed from the WaterList.
1535     // Also remove any entry from NewWaterList.
1536     MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
1537     IP = find(WaterList, WaterBB);
1538     if (IP != WaterList.end())
1539       NewWaterList.erase(WaterBB);
1540 
1541     // We are adding new water.  Update NewWaterList.
1542     NewWaterList.insert(NewIsland);
1543   }
1544   // Always align the new block because CP entries can be smaller than 4
1545   // bytes. Be careful not to decrease the existing alignment, e.g. NewMBB may
1546   // be an already aligned constant pool block.
1547   const Align Alignment = isThumb ? Align(2) : Align(4);
1548   if (NewMBB->getAlignment() < Alignment)
1549     NewMBB->setAlignment(Alignment);
1550 
1551   // Remove the original WaterList entry; we want subsequent insertions in
1552   // this vicinity to go after the one we're about to insert.  This
1553   // considerably reduces the number of times we have to move the same CPE
1554   // more than once and is also important to ensure the algorithm terminates.
1555   if (IP != WaterList.end())
1556     WaterList.erase(IP);
1557 
1558   // Okay, we know we can put an island before NewMBB now, do it!
1559   MF->insert(NewMBB->getIterator(), NewIsland);
1560 
1561   // Update internal data structures to account for the newly inserted MBB.
1562   updateForInsertedWaterBlock(NewIsland);
1563 
1564   // Now that we have an island to add the CPE to, clone the original CPE and
1565   // add it to the island.
1566   U.HighWaterMark = NewIsland;
1567   U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc())
1568                 .addImm(ID)
1569                 .add(CPEMI->getOperand(1))
1570                 .addImm(Size);
1571   CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1572   ++NumCPEs;
1573 
1574   // Decrement the old entry, and remove it if refcount becomes 0.
1575   decrementCPEReferenceCount(CPI, CPEMI);
1576 
1577   // Mark the basic block as aligned as required by the const-pool entry.
1578   NewIsland->setAlignment(getCPEAlign(U.CPEMI));
1579 
1580   // Increase the size of the island block to account for the new entry.
1581   BBUtils->adjustBBSize(NewIsland, Size);
1582   BBUtils->adjustBBOffsetsAfter(&*--NewIsland->getIterator());
1583 
1584   // Finally, change the CPI in the instruction operand to be ID.
1585   for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1586     if (UserMI->getOperand(i).isCPI()) {
1587       UserMI->getOperand(i).setIndex(ID);
1588       break;
1589     }
1590 
1591   LLVM_DEBUG(
1592       dbgs() << "  Moved CPE to #" << ID << " CPI=" << CPI
1593              << format(" offset=%#x\n",
1594                        BBUtils->getBBInfo()[NewIsland->getNumber()].Offset));
1595 
1596   return true;
1597 }
1598 
1599 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1600 /// sizes and offsets of impacted basic blocks.
1601 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1602   MachineBasicBlock *CPEBB = CPEMI->getParent();
1603   unsigned Size = CPEMI->getOperand(2).getImm();
1604   CPEMI->eraseFromParent();
1605   BBInfoVector &BBInfo = BBUtils->getBBInfo();
1606   BBUtils->adjustBBSize(CPEBB, -Size);
1607   // All succeeding offsets have the current size value added in, fix this.
1608   if (CPEBB->empty()) {
1609     BBInfo[CPEBB->getNumber()].Size = 0;
1610 
1611     // This block no longer needs to be aligned.
1612     CPEBB->setAlignment(Align(1));
1613   } else {
1614     // Entries are sorted by descending alignment, so realign from the front.
1615     CPEBB->setAlignment(getCPEAlign(&*CPEBB->begin()));
1616   }
1617 
1618   BBUtils->adjustBBOffsetsAfter(CPEBB);
1619   // An island has only one predecessor BB and one successor BB. Check if
1620   // this BB's predecessor jumps directly to this BB's successor. This
1621   // shouldn't happen currently.
1622   assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1623   // FIXME: remove the empty blocks after all the work is done?
1624 }
1625 
1626 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1627 /// are zero.
1628 bool ARMConstantIslands::removeUnusedCPEntries() {
1629   unsigned MadeChange = false;
1630   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1631       std::vector<CPEntry> &CPEs = CPEntries[i];
1632       for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1633         if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1634           removeDeadCPEMI(CPEs[j].CPEMI);
1635           CPEs[j].CPEMI = nullptr;
1636           MadeChange = true;
1637         }
1638       }
1639   }
1640   return MadeChange;
1641 }
1642 
1643 
1644 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1645 /// away to fit in its displacement field.
1646 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1647   MachineInstr *MI = Br.MI;
1648   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1649 
1650   // Check to see if the DestBB is already in-range.
1651   if (BBUtils->isBBInRange(MI, DestBB, Br.MaxDisp))
1652     return false;
1653 
1654   if (!Br.isCond)
1655     return fixupUnconditionalBr(Br);
1656   return fixupConditionalBr(Br);
1657 }
1658 
1659 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1660 /// too far away to fit in its displacement field. If the LR register has been
1661 /// spilled in the epilogue, then we can use BL to implement a far jump.
1662 /// Otherwise, add an intermediate branch instruction to a branch.
1663 bool
1664 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1665   MachineInstr *MI = Br.MI;
1666   MachineBasicBlock *MBB = MI->getParent();
1667   if (!isThumb1)
1668     llvm_unreachable("fixupUnconditionalBr is Thumb1 only!");
1669 
1670   if (!AFI->isLRSpilled())
1671     report_fatal_error("underestimated function size");
1672 
1673   // Use BL to implement far jump.
1674   Br.MaxDisp = (1 << 21) * 2;
1675   MI->setDesc(TII->get(ARM::tBfar));
1676   BBInfoVector &BBInfo = BBUtils->getBBInfo();
1677   BBInfo[MBB->getNumber()].Size += 2;
1678   BBUtils->adjustBBOffsetsAfter(MBB);
1679   ++NumUBrFixed;
1680 
1681   LLVM_DEBUG(dbgs() << "  Changed B to long jump " << *MI);
1682 
1683   return true;
1684 }
1685 
1686 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
1687 /// far away to fit in its displacement field. It is converted to an inverse
1688 /// conditional branch + an unconditional branch to the destination.
1689 bool
1690 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1691   MachineInstr *MI = Br.MI;
1692   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1693 
1694   // Add an unconditional branch to the destination and invert the branch
1695   // condition to jump over it:
1696   // blt L1
1697   // =>
1698   // bge L2
1699   // b   L1
1700   // L2:
1701   ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
1702   CC = ARMCC::getOppositeCondition(CC);
1703   Register CCReg = MI->getOperand(2).getReg();
1704 
1705   // If the branch is at the end of its MBB and that has a fall-through block,
1706   // direct the updated conditional branch to the fall-through block. Otherwise,
1707   // split the MBB before the next instruction.
1708   MachineBasicBlock *MBB = MI->getParent();
1709   MachineInstr *BMI = &MBB->back();
1710   bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1711 
1712   ++NumCBrFixed;
1713   if (BMI != MI) {
1714     if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
1715         BMI->getOpcode() == Br.UncondBr) {
1716       // Last MI in the BB is an unconditional branch. Can we simply invert the
1717       // condition and swap destinations:
1718       // beq L1
1719       // b   L2
1720       // =>
1721       // bne L2
1722       // b   L1
1723       MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
1724       if (BBUtils->isBBInRange(MI, NewDest, Br.MaxDisp)) {
1725         LLVM_DEBUG(
1726             dbgs() << "  Invert Bcc condition and swap its destination with "
1727                    << *BMI);
1728         BMI->getOperand(0).setMBB(DestBB);
1729         MI->getOperand(0).setMBB(NewDest);
1730         MI->getOperand(1).setImm(CC);
1731         return true;
1732       }
1733     }
1734   }
1735 
1736   if (NeedSplit) {
1737     splitBlockBeforeInstr(MI);
1738     // No need for the branch to the next block. We're adding an unconditional
1739     // branch to the destination.
1740     int delta = TII->getInstSizeInBytes(MBB->back());
1741     BBUtils->adjustBBSize(MBB, -delta);
1742     MBB->back().eraseFromParent();
1743 
1744     // The conditional successor will be swapped between the BBs after this, so
1745     // update CFG.
1746     MBB->addSuccessor(DestBB);
1747     std::next(MBB->getIterator())->removeSuccessor(DestBB);
1748 
1749     // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1750   }
1751   MachineBasicBlock *NextBB = &*++MBB->getIterator();
1752 
1753   LLVM_DEBUG(dbgs() << "  Insert B to " << printMBBReference(*DestBB)
1754                     << " also invert condition and change dest. to "
1755                     << printMBBReference(*NextBB) << "\n");
1756 
1757   // Insert a new conditional branch and a new unconditional branch.
1758   // Also update the ImmBranch as well as adding a new entry for the new branch.
1759   BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
1760     .addMBB(NextBB).addImm(CC).addReg(CCReg);
1761   Br.MI = &MBB->back();
1762   BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back()));
1763   if (isThumb)
1764     BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr))
1765         .addMBB(DestBB)
1766         .add(predOps(ARMCC::AL));
1767   else
1768     BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1769   BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back()));
1770   unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1771   ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1772 
1773   // Remove the old conditional branch.  It may or may not still be in MBB.
1774   BBUtils->adjustBBSize(MI->getParent(), -TII->getInstSizeInBytes(*MI));
1775   MI->eraseFromParent();
1776   BBUtils->adjustBBOffsetsAfter(MBB);
1777   return true;
1778 }
1779 
1780 bool ARMConstantIslands::optimizeThumb2Instructions() {
1781   bool MadeChange = false;
1782 
1783   // Shrink ADR and LDR from constantpool.
1784   for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
1785     CPUser &U = CPUsers[i];
1786     unsigned Opcode = U.MI->getOpcode();
1787     unsigned NewOpc = 0;
1788     unsigned Scale = 1;
1789     unsigned Bits = 0;
1790     switch (Opcode) {
1791     default: break;
1792     case ARM::t2LEApcrel:
1793       if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1794         NewOpc = ARM::tLEApcrel;
1795         Bits = 8;
1796         Scale = 4;
1797       }
1798       break;
1799     case ARM::t2LDRpci:
1800       if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1801         NewOpc = ARM::tLDRpci;
1802         Bits = 8;
1803         Scale = 4;
1804       }
1805       break;
1806     }
1807 
1808     if (!NewOpc)
1809       continue;
1810 
1811     unsigned UserOffset = getUserOffset(U);
1812     unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
1813 
1814     // Be conservative with inline asm.
1815     if (!U.KnownAlignment)
1816       MaxOffs -= 2;
1817 
1818     // FIXME: Check if offset is multiple of scale if scale is not 4.
1819     if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
1820       LLVM_DEBUG(dbgs() << "Shrink: " << *U.MI);
1821       U.MI->setDesc(TII->get(NewOpc));
1822       MachineBasicBlock *MBB = U.MI->getParent();
1823       BBUtils->adjustBBSize(MBB, -2);
1824       BBUtils->adjustBBOffsetsAfter(MBB);
1825       ++NumT2CPShrunk;
1826       MadeChange = true;
1827     }
1828   }
1829 
1830   return MadeChange;
1831 }
1832 
1833 
1834 bool ARMConstantIslands::optimizeThumb2Branches() {
1835 
1836   auto TryShrinkBranch = [this](ImmBranch &Br) {
1837     unsigned Opcode = Br.MI->getOpcode();
1838     unsigned NewOpc = 0;
1839     unsigned Scale = 1;
1840     unsigned Bits = 0;
1841     switch (Opcode) {
1842     default: break;
1843     case ARM::t2B:
1844       NewOpc = ARM::tB;
1845       Bits = 11;
1846       Scale = 2;
1847       break;
1848     case ARM::t2Bcc:
1849       NewOpc = ARM::tBcc;
1850       Bits = 8;
1851       Scale = 2;
1852       break;
1853     }
1854     if (NewOpc) {
1855       unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
1856       MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1857       if (BBUtils->isBBInRange(Br.MI, DestBB, MaxOffs)) {
1858         LLVM_DEBUG(dbgs() << "Shrink branch: " << *Br.MI);
1859         Br.MI->setDesc(TII->get(NewOpc));
1860         MachineBasicBlock *MBB = Br.MI->getParent();
1861         BBUtils->adjustBBSize(MBB, -2);
1862         BBUtils->adjustBBOffsetsAfter(MBB);
1863         ++NumT2BrShrunk;
1864         return true;
1865       }
1866     }
1867     return false;
1868   };
1869 
1870   struct ImmCompare {
1871     MachineInstr* MI = nullptr;
1872     unsigned NewOpc = 0;
1873   };
1874 
1875   auto FindCmpForCBZ = [this](ImmBranch &Br, ImmCompare &ImmCmp,
1876                               MachineBasicBlock *DestBB) {
1877     ImmCmp.MI = nullptr;
1878     ImmCmp.NewOpc = 0;
1879 
1880     // If the conditional branch doesn't kill CPSR, then CPSR can be liveout
1881     // so this transformation is not safe.
1882     if (!Br.MI->killsRegister(ARM::CPSR))
1883       return false;
1884 
1885     Register PredReg;
1886     unsigned NewOpc = 0;
1887     ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg);
1888     if (Pred == ARMCC::EQ)
1889       NewOpc = ARM::tCBZ;
1890     else if (Pred == ARMCC::NE)
1891       NewOpc = ARM::tCBNZ;
1892     else
1893       return false;
1894 
1895     // Check if the distance is within 126. Subtract starting offset by 2
1896     // because the cmp will be eliminated.
1897     unsigned BrOffset = BBUtils->getOffsetOf(Br.MI) + 4 - 2;
1898     BBInfoVector &BBInfo = BBUtils->getBBInfo();
1899     unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1900     if (BrOffset >= DestOffset || (DestOffset - BrOffset) > 126)
1901       return false;
1902 
1903     // Search backwards to find a tCMPi8
1904     auto *TRI = STI->getRegisterInfo();
1905     MachineInstr *CmpMI = findCMPToFoldIntoCBZ(Br.MI, TRI);
1906     if (!CmpMI || CmpMI->getOpcode() != ARM::tCMPi8)
1907       return false;
1908 
1909     ImmCmp.MI = CmpMI;
1910     ImmCmp.NewOpc = NewOpc;
1911     return true;
1912   };
1913 
1914   auto TryConvertToLE = [this](ImmBranch &Br, ImmCompare &Cmp) {
1915     if (Br.MI->getOpcode() != ARM::t2Bcc || !STI->hasLOB() ||
1916         STI->hasMinSize())
1917       return false;
1918 
1919     MachineBasicBlock *MBB = Br.MI->getParent();
1920     MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1921     if (BBUtils->getOffsetOf(MBB) < BBUtils->getOffsetOf(DestBB) ||
1922         !BBUtils->isBBInRange(Br.MI, DestBB, 4094))
1923       return false;
1924 
1925     if (!DT->dominates(DestBB, MBB))
1926       return false;
1927 
1928     // We queried for the CBN?Z opcode based upon the 'ExitBB', the opposite
1929     // target of Br. So now we need to reverse the condition.
1930     Cmp.NewOpc = Cmp.NewOpc == ARM::tCBZ ? ARM::tCBNZ : ARM::tCBZ;
1931 
1932     MachineInstrBuilder MIB = BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(),
1933                                       TII->get(ARM::t2LE));
1934     // Swapped a t2Bcc for a t2LE, so no need to update the size of the block.
1935     MIB.add(Br.MI->getOperand(0));
1936     Br.MI->eraseFromParent();
1937     Br.MI = MIB;
1938     ++NumLEInserted;
1939     return true;
1940   };
1941 
1942   bool MadeChange = false;
1943 
1944   // The order in which branches appear in ImmBranches is approximately their
1945   // order within the function body. By visiting later branches first, we reduce
1946   // the distance between earlier forward branches and their targets, making it
1947   // more likely that the cbn?z optimization, which can only apply to forward
1948   // branches, will succeed.
1949   for (ImmBranch &Br : reverse(ImmBranches)) {
1950     MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1951     MachineBasicBlock *MBB = Br.MI->getParent();
1952     MachineBasicBlock *ExitBB = &MBB->back() == Br.MI ?
1953       MBB->getFallThrough() :
1954       MBB->back().getOperand(0).getMBB();
1955 
1956     ImmCompare Cmp;
1957     if (FindCmpForCBZ(Br, Cmp, ExitBB) && TryConvertToLE(Br, Cmp)) {
1958       DestBB = ExitBB;
1959       MadeChange = true;
1960     } else {
1961       FindCmpForCBZ(Br, Cmp, DestBB);
1962       MadeChange |= TryShrinkBranch(Br);
1963     }
1964 
1965     unsigned Opcode = Br.MI->getOpcode();
1966     if ((Opcode != ARM::tBcc && Opcode != ARM::t2LE) || !Cmp.NewOpc)
1967       continue;
1968 
1969     Register Reg = Cmp.MI->getOperand(0).getReg();
1970 
1971     // Check for Kill flags on Reg. If they are present remove them and set kill
1972     // on the new CBZ.
1973     auto *TRI = STI->getRegisterInfo();
1974     MachineBasicBlock::iterator KillMI = Br.MI;
1975     bool RegKilled = false;
1976     do {
1977       --KillMI;
1978       if (KillMI->killsRegister(Reg, TRI)) {
1979         KillMI->clearRegisterKills(Reg, TRI);
1980         RegKilled = true;
1981         break;
1982       }
1983     } while (KillMI != Cmp.MI);
1984 
1985     // Create the new CBZ/CBNZ
1986     LLVM_DEBUG(dbgs() << "Fold: " << *Cmp.MI << " and: " << *Br.MI);
1987     MachineInstr *NewBR =
1988         BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), TII->get(Cmp.NewOpc))
1989             .addReg(Reg, getKillRegState(RegKilled) |
1990                              getRegState(Cmp.MI->getOperand(0)))
1991             .addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags());
1992 
1993     Cmp.MI->eraseFromParent();
1994 
1995     if (Br.MI->getOpcode() == ARM::tBcc) {
1996       Br.MI->eraseFromParent();
1997       Br.MI = NewBR;
1998       BBUtils->adjustBBSize(MBB, -2);
1999     } else if (MBB->back().getOpcode() != ARM::t2LE) {
2000       // An LE has been generated, but it's not the terminator - that is an
2001       // unconditional branch. However, the logic has now been reversed with the
2002       // CBN?Z being the conditional branch and the LE being the unconditional
2003       // branch. So this means we can remove the redundant unconditional branch
2004       // at the end of the block.
2005       MachineInstr *LastMI = &MBB->back();
2006       BBUtils->adjustBBSize(MBB, -LastMI->getDesc().getSize());
2007       LastMI->eraseFromParent();
2008     }
2009     BBUtils->adjustBBOffsetsAfter(MBB);
2010     ++NumCBZ;
2011     MadeChange = true;
2012   }
2013 
2014   return MadeChange;
2015 }
2016 
2017 static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg,
2018                               unsigned BaseReg) {
2019   if (I.getOpcode() != ARM::t2ADDrs)
2020     return false;
2021 
2022   if (I.getOperand(0).getReg() != EntryReg)
2023     return false;
2024 
2025   if (I.getOperand(1).getReg() != BaseReg)
2026     return false;
2027 
2028   // FIXME: what about CC and IdxReg?
2029   return true;
2030 }
2031 
2032 /// While trying to form a TBB/TBH instruction, we may (if the table
2033 /// doesn't immediately follow the BR_JT) need access to the start of the
2034 /// jump-table. We know one instruction that produces such a register; this
2035 /// function works out whether that definition can be preserved to the BR_JT,
2036 /// possibly by removing an intervening addition (which is usually needed to
2037 /// calculate the actual entry to jump to).
2038 bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI,
2039                                               MachineInstr *LEAMI,
2040                                               unsigned &DeadSize,
2041                                               bool &CanDeleteLEA,
2042                                               bool &BaseRegKill) {
2043   if (JumpMI->getParent() != LEAMI->getParent())
2044     return false;
2045 
2046   // Now we hope that we have at least these instructions in the basic block:
2047   //     BaseReg = t2LEA ...
2048   //     [...]
2049   //     EntryReg = t2ADDrs BaseReg, ...
2050   //     [...]
2051   //     t2BR_JT EntryReg
2052   //
2053   // We have to be very conservative about what we recognise here though. The
2054   // main perturbing factors to watch out for are:
2055   //    + Spills at any point in the chain: not direct problems but we would
2056   //      expect a blocking Def of the spilled register so in practice what we
2057   //      can do is limited.
2058   //    + EntryReg == BaseReg: this is the one situation we should allow a Def
2059   //      of BaseReg, but only if the t2ADDrs can be removed.
2060   //    + Some instruction other than t2ADDrs computing the entry. Not seen in
2061   //      the wild, but we should be careful.
2062   Register EntryReg = JumpMI->getOperand(0).getReg();
2063   Register BaseReg = LEAMI->getOperand(0).getReg();
2064 
2065   CanDeleteLEA = true;
2066   BaseRegKill = false;
2067   MachineInstr *RemovableAdd = nullptr;
2068   MachineBasicBlock::iterator I(LEAMI);
2069   for (++I; &*I != JumpMI; ++I) {
2070     if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) {
2071       RemovableAdd = &*I;
2072       break;
2073     }
2074 
2075     for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) {
2076       const MachineOperand &MO = I->getOperand(K);
2077       if (!MO.isReg() || !MO.getReg())
2078         continue;
2079       if (MO.isDef() && MO.getReg() == BaseReg)
2080         return false;
2081       if (MO.isUse() && MO.getReg() == BaseReg) {
2082         BaseRegKill = BaseRegKill || MO.isKill();
2083         CanDeleteLEA = false;
2084       }
2085     }
2086   }
2087 
2088   if (!RemovableAdd)
2089     return true;
2090 
2091   // Check the add really is removable, and that nothing else in the block
2092   // clobbers BaseReg.
2093   for (++I; &*I != JumpMI; ++I) {
2094     for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) {
2095       const MachineOperand &MO = I->getOperand(K);
2096       if (!MO.isReg() || !MO.getReg())
2097         continue;
2098       if (MO.isDef() && MO.getReg() == BaseReg)
2099         return false;
2100       if (MO.isUse() && MO.getReg() == EntryReg)
2101         RemovableAdd = nullptr;
2102     }
2103   }
2104 
2105   if (RemovableAdd) {
2106     RemovableAdd->eraseFromParent();
2107     DeadSize += isThumb2 ? 4 : 2;
2108   } else if (BaseReg == EntryReg) {
2109     // The add wasn't removable, but clobbered the base for the TBB. So we can't
2110     // preserve it.
2111     return false;
2112   }
2113 
2114   // We reached the end of the block without seeing another definition of
2115   // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be
2116   // used in the TBB/TBH if necessary.
2117   return true;
2118 }
2119 
2120 /// Returns whether CPEMI is the first instruction in the block
2121 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so,
2122 /// we can switch the first register to PC and usually remove the address
2123 /// calculation that preceded it.
2124 static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) {
2125   MachineFunction::iterator MBB = JTMI->getParent()->getIterator();
2126   MachineFunction *MF = MBB->getParent();
2127   ++MBB;
2128 
2129   return MBB != MF->end() && !MBB->empty() && &*MBB->begin() == CPEMI;
2130 }
2131 
2132 static void RemoveDeadAddBetweenLEAAndJT(MachineInstr *LEAMI,
2133                                          MachineInstr *JumpMI,
2134                                          unsigned &DeadSize) {
2135   // Remove a dead add between the LEA and JT, which used to compute EntryReg,
2136   // but the JT now uses PC. Finds the last ADD (if any) that def's EntryReg
2137   // and is not clobbered / used.
2138   MachineInstr *RemovableAdd = nullptr;
2139   Register EntryReg = JumpMI->getOperand(0).getReg();
2140 
2141   // Find the last ADD to set EntryReg
2142   MachineBasicBlock::iterator I(LEAMI);
2143   for (++I; &*I != JumpMI; ++I) {
2144     if (I->getOpcode() == ARM::t2ADDrs && I->getOperand(0).getReg() == EntryReg)
2145       RemovableAdd = &*I;
2146   }
2147 
2148   if (!RemovableAdd)
2149     return;
2150 
2151   // Ensure EntryReg is not clobbered or used.
2152   MachineBasicBlock::iterator J(RemovableAdd);
2153   for (++J; &*J != JumpMI; ++J) {
2154     for (unsigned K = 0, E = J->getNumOperands(); K != E; ++K) {
2155       const MachineOperand &MO = J->getOperand(K);
2156       if (!MO.isReg() || !MO.getReg())
2157         continue;
2158       if (MO.isDef() && MO.getReg() == EntryReg)
2159         return;
2160       if (MO.isUse() && MO.getReg() == EntryReg)
2161         return;
2162     }
2163   }
2164 
2165   LLVM_DEBUG(dbgs() << "Removing Dead Add: " << *RemovableAdd);
2166   RemovableAdd->eraseFromParent();
2167   DeadSize += 4;
2168 }
2169 
2170 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
2171 /// jumptables when it's possible.
2172 bool ARMConstantIslands::optimizeThumb2JumpTables() {
2173   bool MadeChange = false;
2174 
2175   // FIXME: After the tables are shrunk, can we get rid some of the
2176   // constantpool tables?
2177   MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2178   if (!MJTI) return false;
2179 
2180   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2181   for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
2182     MachineInstr *MI = T2JumpTables[i];
2183     const MCInstrDesc &MCID = MI->getDesc();
2184     unsigned NumOps = MCID.getNumOperands();
2185     unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1);
2186     MachineOperand JTOP = MI->getOperand(JTOpIdx);
2187     unsigned JTI = JTOP.getIndex();
2188     assert(JTI < JT.size());
2189 
2190     bool ByteOk = true;
2191     bool HalfWordOk = true;
2192     unsigned JTOffset = BBUtils->getOffsetOf(MI) + 4;
2193     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2194     BBInfoVector &BBInfo = BBUtils->getBBInfo();
2195     for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
2196       MachineBasicBlock *MBB = JTBBs[j];
2197       unsigned DstOffset = BBInfo[MBB->getNumber()].Offset;
2198       // Negative offset is not ok. FIXME: We should change BB layout to make
2199       // sure all the branches are forward.
2200       if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
2201         ByteOk = false;
2202       unsigned TBHLimit = ((1<<16)-1)*2;
2203       if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
2204         HalfWordOk = false;
2205       if (!ByteOk && !HalfWordOk)
2206         break;
2207     }
2208 
2209     if (!ByteOk && !HalfWordOk)
2210       continue;
2211 
2212     CPUser &User = CPUsers[JumpTableUserIndices[JTI]];
2213     MachineBasicBlock *MBB = MI->getParent();
2214     if (!MI->getOperand(0).isKill()) // FIXME: needed now?
2215       continue;
2216 
2217     unsigned DeadSize = 0;
2218     bool CanDeleteLEA = false;
2219     bool BaseRegKill = false;
2220 
2221     unsigned IdxReg = ~0U;
2222     bool IdxRegKill = true;
2223     if (isThumb2) {
2224       IdxReg = MI->getOperand(1).getReg();
2225       IdxRegKill = MI->getOperand(1).isKill();
2226 
2227       bool PreservedBaseReg =
2228         preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill);
2229       if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg)
2230         continue;
2231     } else {
2232       // We're in thumb-1 mode, so we must have something like:
2233       //   %idx = tLSLri %idx, 2
2234       //   %base = tLEApcrelJT
2235       //   %t = tLDRr %base, %idx
2236       Register BaseReg = User.MI->getOperand(0).getReg();
2237 
2238       if (User.MI->getIterator() == User.MI->getParent()->begin())
2239         continue;
2240       MachineInstr *Shift = User.MI->getPrevNode();
2241       if (Shift->getOpcode() != ARM::tLSLri ||
2242           Shift->getOperand(3).getImm() != 2 ||
2243           !Shift->getOperand(2).isKill())
2244         continue;
2245       IdxReg = Shift->getOperand(2).getReg();
2246       Register ShiftedIdxReg = Shift->getOperand(0).getReg();
2247 
2248       // It's important that IdxReg is live until the actual TBB/TBH. Most of
2249       // the range is checked later, but the LEA might still clobber it and not
2250       // actually get removed.
2251       if (BaseReg == IdxReg && !jumpTableFollowsTB(MI, User.CPEMI))
2252         continue;
2253 
2254       MachineInstr *Load = User.MI->getNextNode();
2255       if (Load->getOpcode() != ARM::tLDRr)
2256         continue;
2257       if (Load->getOperand(1).getReg() != BaseReg ||
2258           Load->getOperand(2).getReg() != ShiftedIdxReg ||
2259           !Load->getOperand(2).isKill())
2260         continue;
2261 
2262       // If we're in PIC mode, there should be another ADD following.
2263       auto *TRI = STI->getRegisterInfo();
2264 
2265       // %base cannot be redefined after the load as it will appear before
2266       // TBB/TBH like:
2267       //      %base =
2268       //      %base =
2269       //      tBB %base, %idx
2270       if (registerDefinedBetween(BaseReg, Load->getNextNode(), MBB->end(), TRI))
2271         continue;
2272 
2273       if (isPositionIndependentOrROPI) {
2274         MachineInstr *Add = Load->getNextNode();
2275         if (Add->getOpcode() != ARM::tADDrr ||
2276             Add->getOperand(2).getReg() != BaseReg ||
2277             Add->getOperand(3).getReg() != Load->getOperand(0).getReg() ||
2278             !Add->getOperand(3).isKill())
2279           continue;
2280         if (Add->getOperand(0).getReg() != MI->getOperand(0).getReg())
2281           continue;
2282         if (registerDefinedBetween(IdxReg, Add->getNextNode(), MI, TRI))
2283           // IdxReg gets redefined in the middle of the sequence.
2284           continue;
2285         Add->eraseFromParent();
2286         DeadSize += 2;
2287       } else {
2288         if (Load->getOperand(0).getReg() != MI->getOperand(0).getReg())
2289           continue;
2290         if (registerDefinedBetween(IdxReg, Load->getNextNode(), MI, TRI))
2291           // IdxReg gets redefined in the middle of the sequence.
2292           continue;
2293       }
2294 
2295       // Now safe to delete the load and lsl. The LEA will be removed later.
2296       CanDeleteLEA = true;
2297       Shift->eraseFromParent();
2298       Load->eraseFromParent();
2299       DeadSize += 4;
2300     }
2301 
2302     LLVM_DEBUG(dbgs() << "Shrink JT: " << *MI);
2303     MachineInstr *CPEMI = User.CPEMI;
2304     unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT;
2305     if (!isThumb2)
2306       Opc = ByteOk ? ARM::tTBB_JT : ARM::tTBH_JT;
2307 
2308     MachineBasicBlock::iterator MI_JT = MI;
2309     MachineInstr *NewJTMI =
2310         BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc))
2311             .addReg(User.MI->getOperand(0).getReg(),
2312                     getKillRegState(BaseRegKill))
2313             .addReg(IdxReg, getKillRegState(IdxRegKill))
2314             .addJumpTableIndex(JTI, JTOP.getTargetFlags())
2315             .addImm(CPEMI->getOperand(0).getImm());
2316     LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": " << *NewJTMI);
2317 
2318     unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH;
2319     CPEMI->setDesc(TII->get(JTOpc));
2320 
2321     if (jumpTableFollowsTB(MI, User.CPEMI)) {
2322       NewJTMI->getOperand(0).setReg(ARM::PC);
2323       NewJTMI->getOperand(0).setIsKill(false);
2324 
2325       if (CanDeleteLEA) {
2326         if (isThumb2)
2327           RemoveDeadAddBetweenLEAAndJT(User.MI, MI, DeadSize);
2328 
2329         User.MI->eraseFromParent();
2330         DeadSize += isThumb2 ? 4 : 2;
2331 
2332         // The LEA was eliminated, the TBB instruction becomes the only new user
2333         // of the jump table.
2334         User.MI = NewJTMI;
2335         User.MaxDisp = 4;
2336         User.NegOk = false;
2337         User.IsSoImm = false;
2338         User.KnownAlignment = false;
2339       } else {
2340         // The LEA couldn't be eliminated, so we must add another CPUser to
2341         // record the TBB or TBH use.
2342         int CPEntryIdx = JumpTableEntryIndices[JTI];
2343         auto &CPEs = CPEntries[CPEntryIdx];
2344         auto Entry =
2345             find_if(CPEs, [&](CPEntry &E) { return E.CPEMI == User.CPEMI; });
2346         ++Entry->RefCount;
2347         CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false));
2348       }
2349     }
2350 
2351     unsigned NewSize = TII->getInstSizeInBytes(*NewJTMI);
2352     unsigned OrigSize = TII->getInstSizeInBytes(*MI);
2353     MI->eraseFromParent();
2354 
2355     int Delta = OrigSize - NewSize + DeadSize;
2356     BBInfo[MBB->getNumber()].Size -= Delta;
2357     BBUtils->adjustBBOffsetsAfter(MBB);
2358 
2359     ++NumTBs;
2360     MadeChange = true;
2361   }
2362 
2363   return MadeChange;
2364 }
2365 
2366 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that
2367 /// jump tables always branch forwards, since that's what tbb and tbh need.
2368 bool ARMConstantIslands::reorderThumb2JumpTables() {
2369   bool MadeChange = false;
2370 
2371   MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2372   if (!MJTI) return false;
2373 
2374   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2375   for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
2376     MachineInstr *MI = T2JumpTables[i];
2377     const MCInstrDesc &MCID = MI->getDesc();
2378     unsigned NumOps = MCID.getNumOperands();
2379     unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1);
2380     MachineOperand JTOP = MI->getOperand(JTOpIdx);
2381     unsigned JTI = JTOP.getIndex();
2382     assert(JTI < JT.size());
2383 
2384     // We prefer if target blocks for the jump table come after the jump
2385     // instruction so we can use TB[BH]. Loop through the target blocks
2386     // and try to adjust them such that that's true.
2387     int JTNumber = MI->getParent()->getNumber();
2388     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2389     for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
2390       MachineBasicBlock *MBB = JTBBs[j];
2391       int DTNumber = MBB->getNumber();
2392 
2393       if (DTNumber < JTNumber) {
2394         // The destination precedes the switch. Try to move the block forward
2395         // so we have a positive offset.
2396         MachineBasicBlock *NewBB =
2397           adjustJTTargetBlockForward(MBB, MI->getParent());
2398         if (NewBB)
2399           MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB);
2400         MadeChange = true;
2401       }
2402     }
2403   }
2404 
2405   return MadeChange;
2406 }
2407 
2408 MachineBasicBlock *ARMConstantIslands::
2409 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) {
2410   // If the destination block is terminated by an unconditional branch,
2411   // try to move it; otherwise, create a new block following the jump
2412   // table that branches back to the actual target. This is a very simple
2413   // heuristic. FIXME: We can definitely improve it.
2414   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2415   SmallVector<MachineOperand, 4> Cond;
2416   SmallVector<MachineOperand, 4> CondPrior;
2417   MachineFunction::iterator BBi = BB->getIterator();
2418   MachineFunction::iterator OldPrior = std::prev(BBi);
2419   MachineFunction::iterator OldNext = std::next(BBi);
2420 
2421   // If the block terminator isn't analyzable, don't try to move the block
2422   bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond);
2423 
2424   // If the block ends in an unconditional branch, move it. The prior block
2425   // has to have an analyzable terminator for us to move this one. Be paranoid
2426   // and make sure we're not trying to move the entry block of the function.
2427   if (!B && Cond.empty() && BB != &MF->front() &&
2428       !TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) {
2429     BB->moveAfter(JTBB);
2430     OldPrior->updateTerminator(BB);
2431     BB->updateTerminator(OldNext != MF->end() ? &*OldNext : nullptr);
2432     // Update numbering to account for the block being moved.
2433     MF->RenumberBlocks();
2434     ++NumJTMoved;
2435     return nullptr;
2436   }
2437 
2438   // Create a new MBB for the code after the jump BB.
2439   MachineBasicBlock *NewBB =
2440     MF->CreateMachineBasicBlock(JTBB->getBasicBlock());
2441   MachineFunction::iterator MBBI = ++JTBB->getIterator();
2442   MF->insert(MBBI, NewBB);
2443 
2444   // Copy live-in information to new block.
2445   for (const MachineBasicBlock::RegisterMaskPair &RegMaskPair : BB->liveins())
2446     NewBB->addLiveIn(RegMaskPair);
2447 
2448   // Add an unconditional branch from NewBB to BB.
2449   // There doesn't seem to be meaningful DebugInfo available; this doesn't
2450   // correspond directly to anything in the source.
2451   if (isThumb2)
2452     BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B))
2453         .addMBB(BB)
2454         .add(predOps(ARMCC::AL));
2455   else
2456     BuildMI(NewBB, DebugLoc(), TII->get(ARM::tB))
2457         .addMBB(BB)
2458         .add(predOps(ARMCC::AL));
2459 
2460   // Update internal data structures to account for the newly inserted MBB.
2461   MF->RenumberBlocks(NewBB);
2462 
2463   // Update the CFG.
2464   NewBB->addSuccessor(BB);
2465   JTBB->replaceSuccessor(BB, NewBB);
2466 
2467   ++NumJTInserted;
2468   return NewBB;
2469 }
2470 
2471 /// createARMConstantIslandPass - returns an instance of the constpool
2472 /// island pass.
2473 FunctionPass *llvm::createARMConstantIslandPass() {
2474   return new ARMConstantIslands();
2475 }
2476 
2477 INITIALIZE_PASS(ARMConstantIslands, "arm-cp-islands", ARM_CP_ISLANDS_OPT_NAME,
2478                 false, false)
2479