1 //===- ARMConstantIslandPass.cpp - ARM constant islands -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass that splits the constant pool up into 'islands' 10 // which are scattered through-out the function. This is required due to the 11 // limited pc-relative displacements that ARM has. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARM.h" 16 #include "ARMBaseInstrInfo.h" 17 #include "ARMBasicBlockInfo.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMBaseInfo.h" 21 #include "Thumb2InstrInfo.h" 22 #include "Utils/ARMBaseInfo.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/CodeGen/LivePhysRegs.h" 30 #include "llvm/CodeGen/MachineBasicBlock.h" 31 #include "llvm/CodeGen/MachineConstantPool.h" 32 #include "llvm/CodeGen/MachineDominators.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineFunctionPass.h" 35 #include "llvm/CodeGen/MachineInstr.h" 36 #include "llvm/CodeGen/MachineJumpTableInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/Config/llvm-config.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugLoc.h" 42 #include "llvm/MC/MCInstrDesc.h" 43 #include "llvm/Pass.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Compiler.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include "llvm/Support/Format.h" 49 #include "llvm/Support/MathExtras.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <cstdint> 54 #include <iterator> 55 #include <utility> 56 #include <vector> 57 58 using namespace llvm; 59 60 #define DEBUG_TYPE "arm-cp-islands" 61 62 #define ARM_CP_ISLANDS_OPT_NAME \ 63 "ARM constant island placement and branch shortening pass" 64 STATISTIC(NumCPEs, "Number of constpool entries"); 65 STATISTIC(NumSplit, "Number of uncond branches inserted"); 66 STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 67 STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 68 STATISTIC(NumTBs, "Number of table branches generated"); 69 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 70 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 71 STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 72 STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 73 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 74 STATISTIC(NumLEInserted, "Number of LE backwards branches inserted"); 75 76 static cl::opt<bool> 77 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 78 cl::desc("Adjust basic block layout to better use TB[BH]")); 79 80 static cl::opt<unsigned> 81 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30), 82 cl::desc("The max number of iteration for converge")); 83 84 static cl::opt<bool> SynthesizeThumb1TBB( 85 "arm-synthesize-thumb-1-tbb", cl::Hidden, cl::init(true), 86 cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an " 87 "equivalent to the TBB/TBH instructions")); 88 89 namespace { 90 91 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 92 /// requires constant pool entries to be scattered among the instructions 93 /// inside a function. To do this, it completely ignores the normal LLVM 94 /// constant pool; instead, it places constants wherever it feels like with 95 /// special instructions. 96 /// 97 /// The terminology used in this pass includes: 98 /// Islands - Clumps of constants placed in the function. 99 /// Water - Potential places where an island could be formed. 100 /// CPE - A constant pool entry that has been placed somewhere, which 101 /// tracks a list of users. 102 class ARMConstantIslands : public MachineFunctionPass { 103 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 104 105 /// WaterList - A sorted list of basic blocks where islands could be placed 106 /// (i.e. blocks that don't fall through to the following block, due 107 /// to a return, unreachable, or unconditional branch). 108 std::vector<MachineBasicBlock*> WaterList; 109 110 /// NewWaterList - The subset of WaterList that was created since the 111 /// previous iteration by inserting unconditional branches. 112 SmallSet<MachineBasicBlock*, 4> NewWaterList; 113 114 using water_iterator = std::vector<MachineBasicBlock *>::iterator; 115 116 /// CPUser - One user of a constant pool, keeping the machine instruction 117 /// pointer, the constant pool being referenced, and the max displacement 118 /// allowed from the instruction to the CP. The HighWaterMark records the 119 /// highest basic block where a new CPEntry can be placed. To ensure this 120 /// pass terminates, the CP entries are initially placed at the end of the 121 /// function and then move monotonically to lower addresses. The 122 /// exception to this rule is when the current CP entry for a particular 123 /// CPUser is out of range, but there is another CP entry for the same 124 /// constant value in range. We want to use the existing in-range CP 125 /// entry, but if it later moves out of range, the search for new water 126 /// should resume where it left off. The HighWaterMark is used to record 127 /// that point. 128 struct CPUser { 129 MachineInstr *MI; 130 MachineInstr *CPEMI; 131 MachineBasicBlock *HighWaterMark; 132 unsigned MaxDisp; 133 bool NegOk; 134 bool IsSoImm; 135 bool KnownAlignment = false; 136 137 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 138 bool neg, bool soimm) 139 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) { 140 HighWaterMark = CPEMI->getParent(); 141 } 142 143 /// getMaxDisp - Returns the maximum displacement supported by MI. 144 /// Correct for unknown alignment. 145 /// Conservatively subtract 2 bytes to handle weird alignment effects. 146 unsigned getMaxDisp() const { 147 return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2; 148 } 149 }; 150 151 /// CPUsers - Keep track of all of the machine instructions that use various 152 /// constant pools and their max displacement. 153 std::vector<CPUser> CPUsers; 154 155 /// CPEntry - One per constant pool entry, keeping the machine instruction 156 /// pointer, the constpool index, and the number of CPUser's which 157 /// reference this entry. 158 struct CPEntry { 159 MachineInstr *CPEMI; 160 unsigned CPI; 161 unsigned RefCount; 162 163 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 164 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 165 }; 166 167 /// CPEntries - Keep track of all of the constant pool entry machine 168 /// instructions. For each original constpool index (i.e. those that existed 169 /// upon entry to this pass), it keeps a vector of entries. Original 170 /// elements are cloned as we go along; the clones are put in the vector of 171 /// the original element, but have distinct CPIs. 172 /// 173 /// The first half of CPEntries contains generic constants, the second half 174 /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up 175 /// which vector it will be in here. 176 std::vector<std::vector<CPEntry>> CPEntries; 177 178 /// Maps a JT index to the offset in CPEntries containing copies of that 179 /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity. 180 DenseMap<int, int> JumpTableEntryIndices; 181 182 /// Maps a JT index to the LEA that actually uses the index to calculate its 183 /// base address. 184 DenseMap<int, int> JumpTableUserIndices; 185 186 /// ImmBranch - One per immediate branch, keeping the machine instruction 187 /// pointer, conditional or unconditional, the max displacement, 188 /// and (if isCond is true) the corresponding unconditional branch 189 /// opcode. 190 struct ImmBranch { 191 MachineInstr *MI; 192 unsigned MaxDisp : 31; 193 bool isCond : 1; 194 unsigned UncondBr; 195 196 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr) 197 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 198 }; 199 200 /// ImmBranches - Keep track of all the immediate branch instructions. 201 std::vector<ImmBranch> ImmBranches; 202 203 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 204 SmallVector<MachineInstr*, 4> PushPopMIs; 205 206 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 207 SmallVector<MachineInstr*, 4> T2JumpTables; 208 209 MachineFunction *MF; 210 MachineConstantPool *MCP; 211 const ARMBaseInstrInfo *TII; 212 const ARMSubtarget *STI; 213 ARMFunctionInfo *AFI; 214 MachineDominatorTree *DT = nullptr; 215 bool isThumb; 216 bool isThumb1; 217 bool isThumb2; 218 bool isPositionIndependentOrROPI; 219 220 public: 221 static char ID; 222 223 ARMConstantIslands() : MachineFunctionPass(ID) {} 224 225 bool runOnMachineFunction(MachineFunction &MF) override; 226 227 void getAnalysisUsage(AnalysisUsage &AU) const override { 228 AU.addRequired<MachineDominatorTree>(); 229 MachineFunctionPass::getAnalysisUsage(AU); 230 } 231 232 MachineFunctionProperties getRequiredProperties() const override { 233 return MachineFunctionProperties().set( 234 MachineFunctionProperties::Property::NoVRegs); 235 } 236 237 StringRef getPassName() const override { 238 return ARM_CP_ISLANDS_OPT_NAME; 239 } 240 241 private: 242 void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs); 243 void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs); 244 bool BBHasFallthrough(MachineBasicBlock *MBB); 245 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 246 Align getCPEAlign(const MachineInstr *CPEMI); 247 void scanFunctionJumpTables(); 248 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); 249 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI); 250 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); 251 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); 252 unsigned getCombinedIndex(const MachineInstr *CPEMI); 253 int findInRangeCPEntry(CPUser& U, unsigned UserOffset); 254 bool findAvailableWater(CPUser&U, unsigned UserOffset, 255 water_iterator &WaterIter, bool CloserWater); 256 void createNewWater(unsigned CPUserIndex, unsigned UserOffset, 257 MachineBasicBlock *&NewMBB); 258 bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater); 259 void removeDeadCPEMI(MachineInstr *CPEMI); 260 bool removeUnusedCPEntries(); 261 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 262 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 263 bool DoDump = false); 264 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, 265 CPUser &U, unsigned &Growth); 266 bool fixupImmediateBr(ImmBranch &Br); 267 bool fixupConditionalBr(ImmBranch &Br); 268 bool fixupUnconditionalBr(ImmBranch &Br); 269 bool optimizeThumb2Instructions(); 270 bool optimizeThumb2Branches(); 271 bool reorderThumb2JumpTables(); 272 bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI, 273 unsigned &DeadSize, bool &CanDeleteLEA, 274 bool &BaseRegKill); 275 bool optimizeThumb2JumpTables(); 276 MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB, 277 MachineBasicBlock *JTBB); 278 279 unsigned getUserOffset(CPUser&) const; 280 void dumpBBs(); 281 void verify(); 282 283 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 284 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 285 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 286 const CPUser &U) { 287 return isOffsetInRange(UserOffset, TrialOffset, 288 U.getMaxDisp(), U.NegOk, U.IsSoImm); 289 } 290 }; 291 292 } // end anonymous namespace 293 294 char ARMConstantIslands::ID = 0; 295 296 /// verify - check BBOffsets, BBSizes, alignment of islands 297 void ARMConstantIslands::verify() { 298 #ifndef NDEBUG 299 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 300 assert(std::is_sorted(MF->begin(), MF->end(), 301 [&BBInfo](const MachineBasicBlock &LHS, 302 const MachineBasicBlock &RHS) { 303 return BBInfo[LHS.getNumber()].postOffset() < 304 BBInfo[RHS.getNumber()].postOffset(); 305 })); 306 LLVM_DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n"); 307 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 308 CPUser &U = CPUsers[i]; 309 unsigned UserOffset = getUserOffset(U); 310 // Verify offset using the real max displacement without the safety 311 // adjustment. 312 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk, 313 /* DoDump = */ true)) { 314 LLVM_DEBUG(dbgs() << "OK\n"); 315 continue; 316 } 317 LLVM_DEBUG(dbgs() << "Out of range.\n"); 318 dumpBBs(); 319 LLVM_DEBUG(MF->dump()); 320 llvm_unreachable("Constant pool entry out of range!"); 321 } 322 #endif 323 } 324 325 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 326 /// print block size and offset information - debugging 327 LLVM_DUMP_METHOD void ARMConstantIslands::dumpBBs() { 328 LLVM_DEBUG({ 329 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 330 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { 331 const BasicBlockInfo &BBI = BBInfo[J]; 332 dbgs() << format("%08x %bb.%u\t", BBI.Offset, J) 333 << " kb=" << unsigned(BBI.KnownBits) 334 << " ua=" << unsigned(BBI.Unalign) << " pa=" << Log2(BBI.PostAlign) 335 << format(" size=%#x\n", BBInfo[J].Size); 336 } 337 }); 338 } 339 #endif 340 341 // Align blocks where the previous block does not fall through. This may add 342 // extra NOP's but they will not be executed. It uses the PrefLoopAlignment as a 343 // measure of how much to align, and only runs at CodeGenOpt::Aggressive. 344 static bool AlignBlocks(MachineFunction *MF) { 345 if (MF->getTarget().getOptLevel() != CodeGenOpt::Aggressive || 346 MF->getFunction().hasOptSize()) 347 return false; 348 349 auto *TLI = MF->getSubtarget().getTargetLowering(); 350 const Align Alignment = TLI->getPrefLoopAlignment(); 351 if (Alignment < 4) 352 return false; 353 354 bool Changed = false; 355 bool PrevCanFallthough = true; 356 for (auto &MBB : *MF) { 357 if (!PrevCanFallthough) { 358 Changed = true; 359 MBB.setAlignment(Alignment); 360 } 361 PrevCanFallthough = MBB.canFallThrough(); 362 } 363 364 return Changed; 365 } 366 367 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) { 368 MF = &mf; 369 MCP = mf.getConstantPool(); 370 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(mf)); 371 372 LLVM_DEBUG(dbgs() << "***** ARMConstantIslands: " 373 << MCP->getConstants().size() << " CP entries, aligned to " 374 << MCP->getConstantPoolAlign().value() << " bytes *****\n"); 375 376 STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget()); 377 TII = STI->getInstrInfo(); 378 isPositionIndependentOrROPI = 379 STI->getTargetLowering()->isPositionIndependent() || STI->isROPI(); 380 AFI = MF->getInfo<ARMFunctionInfo>(); 381 DT = &getAnalysis<MachineDominatorTree>(); 382 383 isThumb = AFI->isThumbFunction(); 384 isThumb1 = AFI->isThumb1OnlyFunction(); 385 isThumb2 = AFI->isThumb2Function(); 386 387 bool GenerateTBB = isThumb2 || (isThumb1 && SynthesizeThumb1TBB); 388 // TBB generation code in this constant island pass has not been adapted to 389 // deal with speculation barriers. 390 if (STI->hardenSlsRetBr()) 391 GenerateTBB = false; 392 393 // Renumber all of the machine basic blocks in the function, guaranteeing that 394 // the numbers agree with the position of the block in the function. 395 MF->RenumberBlocks(); 396 397 // Try to reorder and otherwise adjust the block layout to make good use 398 // of the TB[BH] instructions. 399 bool MadeChange = false; 400 if (GenerateTBB && AdjustJumpTableBlocks) { 401 scanFunctionJumpTables(); 402 MadeChange |= reorderThumb2JumpTables(); 403 // Data is out of date, so clear it. It'll be re-computed later. 404 T2JumpTables.clear(); 405 // Blocks may have shifted around. Keep the numbering up to date. 406 MF->RenumberBlocks(); 407 } 408 409 // Align any non-fallthrough blocks 410 MadeChange |= AlignBlocks(MF); 411 412 // Perform the initial placement of the constant pool entries. To start with, 413 // we put them all at the end of the function. 414 std::vector<MachineInstr*> CPEMIs; 415 if (!MCP->isEmpty()) 416 doInitialConstPlacement(CPEMIs); 417 418 if (MF->getJumpTableInfo()) 419 doInitialJumpTablePlacement(CPEMIs); 420 421 /// The next UID to take is the first unused one. 422 AFI->initPICLabelUId(CPEMIs.size()); 423 424 // Do the initial scan of the function, building up information about the 425 // sizes of each block, the location of all the water, and finding all of the 426 // constant pool users. 427 initializeFunctionInfo(CPEMIs); 428 CPEMIs.clear(); 429 LLVM_DEBUG(dumpBBs()); 430 431 // Functions with jump tables need an alignment of 4 because they use the ADR 432 // instruction, which aligns the PC to 4 bytes before adding an offset. 433 if (!T2JumpTables.empty()) 434 MF->ensureAlignment(Align(4)); 435 436 /// Remove dead constant pool entries. 437 MadeChange |= removeUnusedCPEntries(); 438 439 // Iteratively place constant pool entries and fix up branches until there 440 // is no change. 441 unsigned NoCPIters = 0, NoBRIters = 0; 442 while (true) { 443 LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 444 bool CPChange = false; 445 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 446 // For most inputs, it converges in no more than 5 iterations. 447 // If it doesn't end in 10, the input may have huge BB or many CPEs. 448 // In this case, we will try different heuristics. 449 CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2); 450 if (CPChange && ++NoCPIters > CPMaxIteration) 451 report_fatal_error("Constant Island pass failed to converge!"); 452 LLVM_DEBUG(dumpBBs()); 453 454 // Clear NewWaterList now. If we split a block for branches, it should 455 // appear as "new water" for the next iteration of constant pool placement. 456 NewWaterList.clear(); 457 458 LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 459 bool BRChange = false; 460 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 461 BRChange |= fixupImmediateBr(ImmBranches[i]); 462 if (BRChange && ++NoBRIters > 30) 463 report_fatal_error("Branch Fix Up pass failed to converge!"); 464 LLVM_DEBUG(dumpBBs()); 465 466 if (!CPChange && !BRChange) 467 break; 468 MadeChange = true; 469 } 470 471 // Shrink 32-bit Thumb2 load and store instructions. 472 if (isThumb2 && !STI->prefers32BitThumb()) 473 MadeChange |= optimizeThumb2Instructions(); 474 475 // Shrink 32-bit branch instructions. 476 if (isThumb && STI->hasV8MBaselineOps()) 477 MadeChange |= optimizeThumb2Branches(); 478 479 // Optimize jump tables using TBB / TBH. 480 if (GenerateTBB && !STI->genExecuteOnly()) 481 MadeChange |= optimizeThumb2JumpTables(); 482 483 // After a while, this might be made debug-only, but it is not expensive. 484 verify(); 485 486 // Save the mapping between original and cloned constpool entries. 487 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 488 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) { 489 const CPEntry & CPE = CPEntries[i][j]; 490 if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI()) 491 AFI->recordCPEClone(i, CPE.CPI); 492 } 493 } 494 495 LLVM_DEBUG(dbgs() << '\n'; dumpBBs()); 496 497 BBUtils->clear(); 498 WaterList.clear(); 499 CPUsers.clear(); 500 CPEntries.clear(); 501 JumpTableEntryIndices.clear(); 502 JumpTableUserIndices.clear(); 503 ImmBranches.clear(); 504 PushPopMIs.clear(); 505 T2JumpTables.clear(); 506 507 return MadeChange; 508 } 509 510 /// Perform the initial placement of the regular constant pool entries. 511 /// To start with, we put them all at the end of the function. 512 void 513 ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) { 514 // Create the basic block to hold the CPE's. 515 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 516 MF->push_back(BB); 517 518 // MachineConstantPool measures alignment in bytes. 519 const Align MaxAlign = MCP->getConstantPoolAlign(); 520 const unsigned MaxLogAlign = Log2(MaxAlign); 521 522 // Mark the basic block as required by the const-pool. 523 BB->setAlignment(MaxAlign); 524 525 // The function needs to be as aligned as the basic blocks. The linker may 526 // move functions around based on their alignment. 527 // Special case: halfword literals still need word alignment on the function. 528 Align FuncAlign = MaxAlign; 529 if (MaxAlign == 2) 530 FuncAlign = Align(4); 531 MF->ensureAlignment(FuncAlign); 532 533 // Order the entries in BB by descending alignment. That ensures correct 534 // alignment of all entries as long as BB is sufficiently aligned. Keep 535 // track of the insertion point for each alignment. We are going to bucket 536 // sort the entries as they are created. 537 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxLogAlign + 1, 538 BB->end()); 539 540 // Add all of the constants from the constant pool to the end block, use an 541 // identity mapping of CPI's to CPE's. 542 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 543 544 const DataLayout &TD = MF->getDataLayout(); 545 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 546 unsigned Size = CPs[i].getSizeInBytes(TD); 547 Align Alignment = CPs[i].getAlign(); 548 // Verify that all constant pool entries are a multiple of their alignment. 549 // If not, we would have to pad them out so that instructions stay aligned. 550 assert(isAligned(Alignment, Size) && "CP Entry not multiple of 4 bytes!"); 551 552 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 553 unsigned LogAlign = Log2(Alignment); 554 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 555 MachineInstr *CPEMI = 556 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 557 .addImm(i).addConstantPoolIndex(i).addImm(Size); 558 CPEMIs.push_back(CPEMI); 559 560 // Ensure that future entries with higher alignment get inserted before 561 // CPEMI. This is bucket sort with iterators. 562 for (unsigned a = LogAlign + 1; a <= MaxLogAlign; ++a) 563 if (InsPoint[a] == InsAt) 564 InsPoint[a] = CPEMI; 565 566 // Add a new CPEntry, but no corresponding CPUser yet. 567 CPEntries.emplace_back(1, CPEntry(CPEMI, i)); 568 ++NumCPEs; 569 LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " 570 << Size << ", align = " << Alignment.value() << '\n'); 571 } 572 LLVM_DEBUG(BB->dump()); 573 } 574 575 /// Do initial placement of the jump tables. Because Thumb2's TBB and TBH 576 /// instructions can be made more efficient if the jump table immediately 577 /// follows the instruction, it's best to place them immediately next to their 578 /// jumps to begin with. In almost all cases they'll never be moved from that 579 /// position. 580 void ARMConstantIslands::doInitialJumpTablePlacement( 581 std::vector<MachineInstr *> &CPEMIs) { 582 unsigned i = CPEntries.size(); 583 auto MJTI = MF->getJumpTableInfo(); 584 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 585 586 MachineBasicBlock *LastCorrectlyNumberedBB = nullptr; 587 for (MachineBasicBlock &MBB : *MF) { 588 auto MI = MBB.getLastNonDebugInstr(); 589 // Look past potential SpeculationBarriers at end of BB. 590 while (MI != MBB.end() && 591 (isSpeculationBarrierEndBBOpcode(MI->getOpcode()) || 592 MI->isDebugInstr())) 593 --MI; 594 595 if (MI == MBB.end()) 596 continue; 597 598 unsigned JTOpcode; 599 switch (MI->getOpcode()) { 600 default: 601 continue; 602 case ARM::BR_JTadd: 603 case ARM::BR_JTr: 604 case ARM::tBR_JTr: 605 case ARM::BR_JTm_i12: 606 case ARM::BR_JTm_rs: 607 JTOpcode = ARM::JUMPTABLE_ADDRS; 608 break; 609 case ARM::t2BR_JT: 610 JTOpcode = ARM::JUMPTABLE_INSTS; 611 break; 612 case ARM::tTBB_JT: 613 case ARM::t2TBB_JT: 614 JTOpcode = ARM::JUMPTABLE_TBB; 615 break; 616 case ARM::tTBH_JT: 617 case ARM::t2TBH_JT: 618 JTOpcode = ARM::JUMPTABLE_TBH; 619 break; 620 } 621 622 unsigned NumOps = MI->getDesc().getNumOperands(); 623 MachineOperand JTOp = 624 MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1)); 625 unsigned JTI = JTOp.getIndex(); 626 unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t); 627 MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock(); 628 MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB); 629 MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(), 630 DebugLoc(), TII->get(JTOpcode)) 631 .addImm(i++) 632 .addJumpTableIndex(JTI) 633 .addImm(Size); 634 CPEMIs.push_back(CPEMI); 635 CPEntries.emplace_back(1, CPEntry(CPEMI, JTI)); 636 JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1)); 637 if (!LastCorrectlyNumberedBB) 638 LastCorrectlyNumberedBB = &MBB; 639 } 640 641 // If we did anything then we need to renumber the subsequent blocks. 642 if (LastCorrectlyNumberedBB) 643 MF->RenumberBlocks(LastCorrectlyNumberedBB); 644 } 645 646 /// BBHasFallthrough - Return true if the specified basic block can fallthrough 647 /// into the block immediately after it. 648 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) { 649 // Get the next machine basic block in the function. 650 MachineFunction::iterator MBBI = MBB->getIterator(); 651 // Can't fall off end of function. 652 if (std::next(MBBI) == MBB->getParent()->end()) 653 return false; 654 655 MachineBasicBlock *NextBB = &*std::next(MBBI); 656 if (!MBB->isSuccessor(NextBB)) 657 return false; 658 659 // Try to analyze the end of the block. A potential fallthrough may already 660 // have an unconditional branch for whatever reason. 661 MachineBasicBlock *TBB, *FBB; 662 SmallVector<MachineOperand, 4> Cond; 663 bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond); 664 return TooDifficult || FBB == nullptr; 665 } 666 667 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 668 /// look up the corresponding CPEntry. 669 ARMConstantIslands::CPEntry * 670 ARMConstantIslands::findConstPoolEntry(unsigned CPI, 671 const MachineInstr *CPEMI) { 672 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 673 // Number of entries per constpool index should be small, just do a 674 // linear search. 675 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 676 if (CPEs[i].CPEMI == CPEMI) 677 return &CPEs[i]; 678 } 679 return nullptr; 680 } 681 682 /// getCPEAlign - Returns the required alignment of the constant pool entry 683 /// represented by CPEMI. 684 Align ARMConstantIslands::getCPEAlign(const MachineInstr *CPEMI) { 685 switch (CPEMI->getOpcode()) { 686 case ARM::CONSTPOOL_ENTRY: 687 break; 688 case ARM::JUMPTABLE_TBB: 689 return isThumb1 ? Align(4) : Align(1); 690 case ARM::JUMPTABLE_TBH: 691 return isThumb1 ? Align(4) : Align(2); 692 case ARM::JUMPTABLE_INSTS: 693 return Align(2); 694 case ARM::JUMPTABLE_ADDRS: 695 return Align(4); 696 default: 697 llvm_unreachable("unknown constpool entry kind"); 698 } 699 700 unsigned CPI = getCombinedIndex(CPEMI); 701 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 702 return MCP->getConstants()[CPI].getAlign(); 703 } 704 705 /// scanFunctionJumpTables - Do a scan of the function, building up 706 /// information about the sizes of each block and the locations of all 707 /// the jump tables. 708 void ARMConstantIslands::scanFunctionJumpTables() { 709 for (MachineBasicBlock &MBB : *MF) { 710 for (MachineInstr &I : MBB) 711 if (I.isBranch() && 712 (I.getOpcode() == ARM::t2BR_JT || I.getOpcode() == ARM::tBR_JTr)) 713 T2JumpTables.push_back(&I); 714 } 715 } 716 717 /// initializeFunctionInfo - Do the initial scan of the function, building up 718 /// information about the sizes of each block, the location of all the water, 719 /// and finding all of the constant pool users. 720 void ARMConstantIslands:: 721 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { 722 723 BBUtils->computeAllBlockSizes(); 724 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 725 // The known bits of the entry block offset are determined by the function 726 // alignment. 727 BBInfo.front().KnownBits = Log2(MF->getAlignment()); 728 729 // Compute block offsets and known bits. 730 BBUtils->adjustBBOffsetsAfter(&MF->front()); 731 732 // Now go back through the instructions and build up our data structures. 733 for (MachineBasicBlock &MBB : *MF) { 734 // If this block doesn't fall through into the next MBB, then this is 735 // 'water' that a constant pool island could be placed. 736 if (!BBHasFallthrough(&MBB)) 737 WaterList.push_back(&MBB); 738 739 for (MachineInstr &I : MBB) { 740 if (I.isDebugInstr()) 741 continue; 742 743 unsigned Opc = I.getOpcode(); 744 if (I.isBranch()) { 745 bool isCond = false; 746 unsigned Bits = 0; 747 unsigned Scale = 1; 748 int UOpc = Opc; 749 switch (Opc) { 750 default: 751 continue; // Ignore other JT branches 752 case ARM::t2BR_JT: 753 case ARM::tBR_JTr: 754 T2JumpTables.push_back(&I); 755 continue; // Does not get an entry in ImmBranches 756 case ARM::Bcc: 757 isCond = true; 758 UOpc = ARM::B; 759 LLVM_FALLTHROUGH; 760 case ARM::B: 761 Bits = 24; 762 Scale = 4; 763 break; 764 case ARM::tBcc: 765 isCond = true; 766 UOpc = ARM::tB; 767 Bits = 8; 768 Scale = 2; 769 break; 770 case ARM::tB: 771 Bits = 11; 772 Scale = 2; 773 break; 774 case ARM::t2Bcc: 775 isCond = true; 776 UOpc = ARM::t2B; 777 Bits = 20; 778 Scale = 2; 779 break; 780 case ARM::t2B: 781 Bits = 24; 782 Scale = 2; 783 break; 784 } 785 786 // Record this immediate branch. 787 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 788 ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc)); 789 } 790 791 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 792 PushPopMIs.push_back(&I); 793 794 if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS || 795 Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB || 796 Opc == ARM::JUMPTABLE_TBH) 797 continue; 798 799 // Scan the instructions for constant pool operands. 800 for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op) 801 if (I.getOperand(op).isCPI() || I.getOperand(op).isJTI()) { 802 // We found one. The addressing mode tells us the max displacement 803 // from the PC that this instruction permits. 804 805 // Basic size info comes from the TSFlags field. 806 unsigned Bits = 0; 807 unsigned Scale = 1; 808 bool NegOk = false; 809 bool IsSoImm = false; 810 811 switch (Opc) { 812 default: 813 llvm_unreachable("Unknown addressing mode for CP reference!"); 814 815 // Taking the address of a CP entry. 816 case ARM::LEApcrel: 817 case ARM::LEApcrelJT: { 818 // This takes a SoImm, which is 8 bit immediate rotated. We'll 819 // pretend the maximum offset is 255 * 4. Since each instruction 820 // 4 byte wide, this is always correct. We'll check for other 821 // displacements that fits in a SoImm as well. 822 Bits = 8; 823 NegOk = true; 824 IsSoImm = true; 825 unsigned CPI = I.getOperand(op).getIndex(); 826 assert(CPI < CPEMIs.size()); 827 MachineInstr *CPEMI = CPEMIs[CPI]; 828 const Align CPEAlign = getCPEAlign(CPEMI); 829 const unsigned LogCPEAlign = Log2(CPEAlign); 830 if (LogCPEAlign >= 2) 831 Scale = 4; 832 else 833 // For constants with less than 4-byte alignment, 834 // we'll pretend the maximum offset is 255 * 1. 835 Scale = 1; 836 } 837 break; 838 case ARM::t2LEApcrel: 839 case ARM::t2LEApcrelJT: 840 Bits = 12; 841 NegOk = true; 842 break; 843 case ARM::tLEApcrel: 844 case ARM::tLEApcrelJT: 845 Bits = 8; 846 Scale = 4; 847 break; 848 849 case ARM::LDRBi12: 850 case ARM::LDRi12: 851 case ARM::LDRcp: 852 case ARM::t2LDRpci: 853 case ARM::t2LDRHpci: 854 case ARM::t2LDRBpci: 855 Bits = 12; // +-offset_12 856 NegOk = true; 857 break; 858 859 case ARM::tLDRpci: 860 Bits = 8; 861 Scale = 4; // +(offset_8*4) 862 break; 863 864 case ARM::VLDRD: 865 case ARM::VLDRS: 866 Bits = 8; 867 Scale = 4; // +-(offset_8*4) 868 NegOk = true; 869 break; 870 case ARM::VLDRH: 871 Bits = 8; 872 Scale = 2; // +-(offset_8*2) 873 NegOk = true; 874 break; 875 } 876 877 // Remember that this is a user of a CP entry. 878 unsigned CPI = I.getOperand(op).getIndex(); 879 if (I.getOperand(op).isJTI()) { 880 JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size())); 881 CPI = JumpTableEntryIndices[CPI]; 882 } 883 884 MachineInstr *CPEMI = CPEMIs[CPI]; 885 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 886 CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm)); 887 888 // Increment corresponding CPEntry reference count. 889 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 890 assert(CPE && "Cannot find a corresponding CPEntry!"); 891 CPE->RefCount++; 892 893 // Instructions can only use one CP entry, don't bother scanning the 894 // rest of the operands. 895 break; 896 } 897 } 898 } 899 } 900 901 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 902 /// ID. 903 static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 904 const MachineBasicBlock *RHS) { 905 return LHS->getNumber() < RHS->getNumber(); 906 } 907 908 /// updateForInsertedWaterBlock - When a block is newly inserted into the 909 /// machine function, it upsets all of the block numbers. Renumber the blocks 910 /// and update the arrays that parallel this numbering. 911 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 912 // Renumber the MBB's to keep them consecutive. 913 NewBB->getParent()->RenumberBlocks(NewBB); 914 915 // Insert an entry into BBInfo to align it properly with the (newly 916 // renumbered) block numbers. 917 BBUtils->insert(NewBB->getNumber(), BasicBlockInfo()); 918 919 // Next, update WaterList. Specifically, we need to add NewMBB as having 920 // available water after it. 921 water_iterator IP = llvm::lower_bound(WaterList, NewBB, CompareMBBNumbers); 922 WaterList.insert(IP, NewBB); 923 } 924 925 /// Split the basic block containing MI into two blocks, which are joined by 926 /// an unconditional branch. Update data structures and renumber blocks to 927 /// account for this change and returns the newly created block. 928 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) { 929 MachineBasicBlock *OrigBB = MI->getParent(); 930 931 // Collect liveness information at MI. 932 LivePhysRegs LRs(*MF->getSubtarget().getRegisterInfo()); 933 LRs.addLiveOuts(*OrigBB); 934 auto LivenessEnd = ++MachineBasicBlock::iterator(MI).getReverse(); 935 for (MachineInstr &LiveMI : make_range(OrigBB->rbegin(), LivenessEnd)) 936 LRs.stepBackward(LiveMI); 937 938 // Create a new MBB for the code after the OrigBB. 939 MachineBasicBlock *NewBB = 940 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 941 MachineFunction::iterator MBBI = ++OrigBB->getIterator(); 942 MF->insert(MBBI, NewBB); 943 944 // Splice the instructions starting with MI over to NewBB. 945 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 946 947 // Add an unconditional branch from OrigBB to NewBB. 948 // Note the new unconditional branch is not being recorded. 949 // There doesn't seem to be meaningful DebugInfo available; this doesn't 950 // correspond to anything in the source. 951 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 952 if (!isThumb) 953 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); 954 else 955 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)) 956 .addMBB(NewBB) 957 .add(predOps(ARMCC::AL)); 958 ++NumSplit; 959 960 // Update the CFG. All succs of OrigBB are now succs of NewBB. 961 NewBB->transferSuccessors(OrigBB); 962 963 // OrigBB branches to NewBB. 964 OrigBB->addSuccessor(NewBB); 965 966 // Update live-in information in the new block. 967 MachineRegisterInfo &MRI = MF->getRegInfo(); 968 for (MCPhysReg L : LRs) 969 if (!MRI.isReserved(L)) 970 NewBB->addLiveIn(L); 971 972 // Update internal data structures to account for the newly inserted MBB. 973 // This is almost the same as updateForInsertedWaterBlock, except that 974 // the Water goes after OrigBB, not NewBB. 975 MF->RenumberBlocks(NewBB); 976 977 // Insert an entry into BBInfo to align it properly with the (newly 978 // renumbered) block numbers. 979 BBUtils->insert(NewBB->getNumber(), BasicBlockInfo()); 980 981 // Next, update WaterList. Specifically, we need to add OrigMBB as having 982 // available water after it (but not if it's already there, which happens 983 // when splitting before a conditional branch that is followed by an 984 // unconditional branch - in that case we want to insert NewBB). 985 water_iterator IP = llvm::lower_bound(WaterList, OrigBB, CompareMBBNumbers); 986 MachineBasicBlock* WaterBB = *IP; 987 if (WaterBB == OrigBB) 988 WaterList.insert(std::next(IP), NewBB); 989 else 990 WaterList.insert(IP, OrigBB); 991 NewWaterList.insert(OrigBB); 992 993 // Figure out how large the OrigBB is. As the first half of the original 994 // block, it cannot contain a tablejump. The size includes 995 // the new jump we added. (It should be possible to do this without 996 // recounting everything, but it's very confusing, and this is rarely 997 // executed.) 998 BBUtils->computeBlockSize(OrigBB); 999 1000 // Figure out how large the NewMBB is. As the second half of the original 1001 // block, it may contain a tablejump. 1002 BBUtils->computeBlockSize(NewBB); 1003 1004 // All BBOffsets following these blocks must be modified. 1005 BBUtils->adjustBBOffsetsAfter(OrigBB); 1006 1007 return NewBB; 1008 } 1009 1010 /// getUserOffset - Compute the offset of U.MI as seen by the hardware 1011 /// displacement computation. Update U.KnownAlignment to match its current 1012 /// basic block location. 1013 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const { 1014 unsigned UserOffset = BBUtils->getOffsetOf(U.MI); 1015 1016 SmallVectorImpl<BasicBlockInfo> &BBInfo = BBUtils->getBBInfo(); 1017 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()]; 1018 unsigned KnownBits = BBI.internalKnownBits(); 1019 1020 // The value read from PC is offset from the actual instruction address. 1021 UserOffset += (isThumb ? 4 : 8); 1022 1023 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI. 1024 // Make sure U.getMaxDisp() returns a constrained range. 1025 U.KnownAlignment = (KnownBits >= 2); 1026 1027 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for 1028 // purposes of the displacement computation; compensate for that here. 1029 // For unknown alignments, getMaxDisp() constrains the range instead. 1030 if (isThumb && U.KnownAlignment) 1031 UserOffset &= ~3u; 1032 1033 return UserOffset; 1034 } 1035 1036 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool 1037 /// reference) is within MaxDisp of TrialOffset (a proposed location of a 1038 /// constant pool entry). 1039 /// UserOffset is computed by getUserOffset above to include PC adjustments. If 1040 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be 1041 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that. 1042 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset, 1043 unsigned TrialOffset, unsigned MaxDisp, 1044 bool NegativeOK, bool IsSoImm) { 1045 if (UserOffset <= TrialOffset) { 1046 // User before the Trial. 1047 if (TrialOffset - UserOffset <= MaxDisp) 1048 return true; 1049 // FIXME: Make use full range of soimm values. 1050 } else if (NegativeOK) { 1051 if (UserOffset - TrialOffset <= MaxDisp) 1052 return true; 1053 // FIXME: Make use full range of soimm values. 1054 } 1055 return false; 1056 } 1057 1058 /// isWaterInRange - Returns true if a CPE placed after the specified 1059 /// Water (a basic block) will be in range for the specific MI. 1060 /// 1061 /// Compute how much the function will grow by inserting a CPE after Water. 1062 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset, 1063 MachineBasicBlock* Water, CPUser &U, 1064 unsigned &Growth) { 1065 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1066 const Align CPEAlign = getCPEAlign(U.CPEMI); 1067 const unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPEAlign); 1068 unsigned NextBlockOffset; 1069 Align NextBlockAlignment; 1070 MachineFunction::const_iterator NextBlock = Water->getIterator(); 1071 if (++NextBlock == MF->end()) { 1072 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 1073 } else { 1074 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 1075 NextBlockAlignment = NextBlock->getAlignment(); 1076 } 1077 unsigned Size = U.CPEMI->getOperand(2).getImm(); 1078 unsigned CPEEnd = CPEOffset + Size; 1079 1080 // The CPE may be able to hide in the alignment padding before the next 1081 // block. It may also cause more padding to be required if it is more aligned 1082 // that the next block. 1083 if (CPEEnd > NextBlockOffset) { 1084 Growth = CPEEnd - NextBlockOffset; 1085 // Compute the padding that would go at the end of the CPE to align the next 1086 // block. 1087 Growth += offsetToAlignment(CPEEnd, NextBlockAlignment); 1088 1089 // If the CPE is to be inserted before the instruction, that will raise 1090 // the offset of the instruction. Also account for unknown alignment padding 1091 // in blocks between CPE and the user. 1092 if (CPEOffset < UserOffset) 1093 UserOffset += Growth + UnknownPadding(MF->getAlignment(), Log2(CPEAlign)); 1094 } else 1095 // CPE fits in existing padding. 1096 Growth = 0; 1097 1098 return isOffsetInRange(UserOffset, CPEOffset, U); 1099 } 1100 1101 /// isCPEntryInRange - Returns true if the distance between specific MI and 1102 /// specific ConstPool entry instruction can fit in MI's displacement field. 1103 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 1104 MachineInstr *CPEMI, unsigned MaxDisp, 1105 bool NegOk, bool DoDump) { 1106 unsigned CPEOffset = BBUtils->getOffsetOf(CPEMI); 1107 1108 if (DoDump) { 1109 LLVM_DEBUG({ 1110 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1111 unsigned Block = MI->getParent()->getNumber(); 1112 const BasicBlockInfo &BBI = BBInfo[Block]; 1113 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 1114 << " max delta=" << MaxDisp 1115 << format(" insn address=%#x", UserOffset) << " in " 1116 << printMBBReference(*MI->getParent()) << ": " 1117 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 1118 << format("CPE address=%#x offset=%+d: ", CPEOffset, 1119 int(CPEOffset - UserOffset)); 1120 }); 1121 } 1122 1123 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 1124 } 1125 1126 #ifndef NDEBUG 1127 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor 1128 /// unconditionally branches to its only successor. 1129 static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 1130 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 1131 return false; 1132 1133 MachineBasicBlock *Succ = *MBB->succ_begin(); 1134 MachineBasicBlock *Pred = *MBB->pred_begin(); 1135 MachineInstr *PredMI = &Pred->back(); 1136 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 1137 || PredMI->getOpcode() == ARM::t2B) 1138 return PredMI->getOperand(0).getMBB() == Succ; 1139 return false; 1140 } 1141 #endif // NDEBUG 1142 1143 /// decrementCPEReferenceCount - find the constant pool entry with index CPI 1144 /// and instruction CPEMI, and decrement its refcount. If the refcount 1145 /// becomes 0 remove the entry and instruction. Returns true if we removed 1146 /// the entry, false if we didn't. 1147 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI, 1148 MachineInstr *CPEMI) { 1149 // Find the old entry. Eliminate it if it is no longer used. 1150 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 1151 assert(CPE && "Unexpected!"); 1152 if (--CPE->RefCount == 0) { 1153 removeDeadCPEMI(CPEMI); 1154 CPE->CPEMI = nullptr; 1155 --NumCPEs; 1156 return true; 1157 } 1158 return false; 1159 } 1160 1161 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) { 1162 if (CPEMI->getOperand(1).isCPI()) 1163 return CPEMI->getOperand(1).getIndex(); 1164 1165 return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()]; 1166 } 1167 1168 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1169 /// if not, see if an in-range clone of the CPE is in range, and if so, 1170 /// change the data structures so the user references the clone. Returns: 1171 /// 0 = no existing entry found 1172 /// 1 = entry found, and there were no code insertions or deletions 1173 /// 2 = entry found, and there were code insertions or deletions 1174 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) { 1175 MachineInstr *UserMI = U.MI; 1176 MachineInstr *CPEMI = U.CPEMI; 1177 1178 // Check to see if the CPE is already in-range. 1179 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, 1180 true)) { 1181 LLVM_DEBUG(dbgs() << "In range\n"); 1182 return 1; 1183 } 1184 1185 // No. Look for previously created clones of the CPE that are in range. 1186 unsigned CPI = getCombinedIndex(CPEMI); 1187 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1188 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1189 // We already tried this one 1190 if (CPEs[i].CPEMI == CPEMI) 1191 continue; 1192 // Removing CPEs can leave empty entries, skip 1193 if (CPEs[i].CPEMI == nullptr) 1194 continue; 1195 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(), 1196 U.NegOk)) { 1197 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 1198 << CPEs[i].CPI << "\n"); 1199 // Point the CPUser node to the replacement 1200 U.CPEMI = CPEs[i].CPEMI; 1201 // Change the CPI in the instruction operand to refer to the clone. 1202 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1203 if (UserMI->getOperand(j).isCPI()) { 1204 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1205 break; 1206 } 1207 // Adjust the refcount of the clone... 1208 CPEs[i].RefCount++; 1209 // ...and the original. If we didn't remove the old entry, none of the 1210 // addresses changed, so we don't need another pass. 1211 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 1212 } 1213 } 1214 return 0; 1215 } 1216 1217 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1218 /// the specific unconditional branch instruction. 1219 static inline unsigned getUnconditionalBrDisp(int Opc) { 1220 switch (Opc) { 1221 case ARM::tB: 1222 return ((1<<10)-1)*2; 1223 case ARM::t2B: 1224 return ((1<<23)-1)*2; 1225 default: 1226 break; 1227 } 1228 1229 return ((1<<23)-1)*4; 1230 } 1231 1232 /// findAvailableWater - Look for an existing entry in the WaterList in which 1233 /// we can place the CPE referenced from U so it's within range of U's MI. 1234 /// Returns true if found, false if not. If it returns true, WaterIter 1235 /// is set to the WaterList entry. For Thumb, prefer water that will not 1236 /// introduce padding to water that will. To ensure that this pass 1237 /// terminates, the CPE location for a particular CPUser is only allowed to 1238 /// move to a lower address, so search backward from the end of the list and 1239 /// prefer the first water that is in range. 1240 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, 1241 water_iterator &WaterIter, 1242 bool CloserWater) { 1243 if (WaterList.empty()) 1244 return false; 1245 1246 unsigned BestGrowth = ~0u; 1247 // The nearest water without splitting the UserBB is right after it. 1248 // If the distance is still large (we have a big BB), then we need to split it 1249 // if we don't converge after certain iterations. This helps the following 1250 // situation to converge: 1251 // BB0: 1252 // Big BB 1253 // BB1: 1254 // Constant Pool 1255 // When a CP access is out of range, BB0 may be used as water. However, 1256 // inserting islands between BB0 and BB1 makes other accesses out of range. 1257 MachineBasicBlock *UserBB = U.MI->getParent(); 1258 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1259 const Align CPEAlign = getCPEAlign(U.CPEMI); 1260 unsigned MinNoSplitDisp = BBInfo[UserBB->getNumber()].postOffset(CPEAlign); 1261 if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2) 1262 return false; 1263 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();; 1264 --IP) { 1265 MachineBasicBlock* WaterBB = *IP; 1266 // Check if water is in range and is either at a lower address than the 1267 // current "high water mark" or a new water block that was created since 1268 // the previous iteration by inserting an unconditional branch. In the 1269 // latter case, we want to allow resetting the high water mark back to 1270 // this new water since we haven't seen it before. Inserting branches 1271 // should be relatively uncommon and when it does happen, we want to be 1272 // sure to take advantage of it for all the CPEs near that block, so that 1273 // we don't insert more branches than necessary. 1274 // When CloserWater is true, we try to find the lowest address after (or 1275 // equal to) user MI's BB no matter of padding growth. 1276 unsigned Growth; 1277 if (isWaterInRange(UserOffset, WaterBB, U, Growth) && 1278 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1279 NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) && 1280 Growth < BestGrowth) { 1281 // This is the least amount of required padding seen so far. 1282 BestGrowth = Growth; 1283 WaterIter = IP; 1284 LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB) 1285 << " Growth=" << Growth << '\n'); 1286 1287 if (CloserWater && WaterBB == U.MI->getParent()) 1288 return true; 1289 // Keep looking unless it is perfect and we're not looking for the lowest 1290 // possible address. 1291 if (!CloserWater && BestGrowth == 0) 1292 return true; 1293 } 1294 if (IP == B) 1295 break; 1296 } 1297 return BestGrowth != ~0u; 1298 } 1299 1300 /// createNewWater - No existing WaterList entry will work for 1301 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1302 /// block is used if in range, and the conditional branch munged so control 1303 /// flow is correct. Otherwise the block is split to create a hole with an 1304 /// unconditional branch around it. In either case NewMBB is set to a 1305 /// block following which the new island can be inserted (the WaterList 1306 /// is not adjusted). 1307 void ARMConstantIslands::createNewWater(unsigned CPUserIndex, 1308 unsigned UserOffset, 1309 MachineBasicBlock *&NewMBB) { 1310 CPUser &U = CPUsers[CPUserIndex]; 1311 MachineInstr *UserMI = U.MI; 1312 MachineInstr *CPEMI = U.CPEMI; 1313 const Align CPEAlign = getCPEAlign(CPEMI); 1314 MachineBasicBlock *UserMBB = UserMI->getParent(); 1315 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1316 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 1317 1318 // If the block does not end in an unconditional branch already, and if the 1319 // end of the block is within range, make new water there. (The addition 1320 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1321 // Thumb2, 2 on Thumb1. 1322 if (BBHasFallthrough(UserMBB)) { 1323 // Size of branch to insert. 1324 unsigned Delta = isThumb1 ? 2 : 4; 1325 // Compute the offset where the CPE will begin. 1326 unsigned CPEOffset = UserBBI.postOffset(CPEAlign) + Delta; 1327 1328 if (isOffsetInRange(UserOffset, CPEOffset, U)) { 1329 LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB) 1330 << format(", expected CPE offset %#x\n", CPEOffset)); 1331 NewMBB = &*++UserMBB->getIterator(); 1332 // Add an unconditional branch from UserMBB to fallthrough block. Record 1333 // it for branch lengthening; this new branch will not get out of range, 1334 // but if the preceding conditional branch is out of range, the targets 1335 // will be exchanged, and the altered branch may be out of range, so the 1336 // machinery has to know about it. 1337 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1338 if (!isThumb) 1339 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1340 else 1341 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)) 1342 .addMBB(NewMBB) 1343 .add(predOps(ARMCC::AL)); 1344 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1345 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1346 MaxDisp, false, UncondBr)); 1347 BBUtils->computeBlockSize(UserMBB); 1348 BBUtils->adjustBBOffsetsAfter(UserMBB); 1349 return; 1350 } 1351 } 1352 1353 // What a big block. Find a place within the block to split it. This is a 1354 // little tricky on Thumb1 since instructions are 2 bytes and constant pool 1355 // entries are 4 bytes: if instruction I references island CPE, and 1356 // instruction I+1 references CPE', it will not work well to put CPE as far 1357 // forward as possible, since then CPE' cannot immediately follow it (that 1358 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd 1359 // need to create a new island. So, we make a first guess, then walk through 1360 // the instructions between the one currently being looked at and the 1361 // possible insertion point, and make sure any other instructions that 1362 // reference CPEs will be able to use the same island area; if not, we back 1363 // up the insertion point. 1364 1365 // Try to split the block so it's fully aligned. Compute the latest split 1366 // point where we can add a 4-byte branch instruction, and then align to 1367 // Align which is the largest possible alignment in the function. 1368 const Align Align = MF->getAlignment(); 1369 assert(Align >= CPEAlign && "Over-aligned constant pool entry"); 1370 unsigned KnownBits = UserBBI.internalKnownBits(); 1371 unsigned UPad = UnknownPadding(Align, KnownBits); 1372 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad; 1373 LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x", 1374 BaseInsertOffset)); 1375 1376 // The 4 in the following is for the unconditional branch we'll be inserting 1377 // (allows for long branch on Thumb1). Alignment of the island is handled 1378 // inside isOffsetInRange. 1379 BaseInsertOffset -= 4; 1380 1381 LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1382 << " la=" << Log2(Align) << " kb=" << KnownBits 1383 << " up=" << UPad << '\n'); 1384 1385 // This could point off the end of the block if we've already got constant 1386 // pool entries following this block; only the last one is in the water list. 1387 // Back past any possible branches (allow for a conditional and a maximally 1388 // long unconditional). 1389 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { 1390 // Ensure BaseInsertOffset is larger than the offset of the instruction 1391 // following UserMI so that the loop which searches for the split point 1392 // iterates at least once. 1393 BaseInsertOffset = 1394 std::max(UserBBI.postOffset() - UPad - 8, 1395 UserOffset + TII->getInstSizeInBytes(*UserMI) + 1); 1396 // If the CP is referenced(ie, UserOffset) is in first four instructions 1397 // after IT, this recalculated BaseInsertOffset could be in the middle of 1398 // an IT block. If it is, change the BaseInsertOffset to just after the 1399 // IT block. This still make the CP Entry is in range becuase of the 1400 // following reasons. 1401 // 1. The initial BaseseInsertOffset calculated is (UserOffset + 1402 // U.getMaxDisp() - UPad). 1403 // 2. An IT block is only at most 4 instructions plus the "it" itself (18 1404 // bytes). 1405 // 3. All the relevant instructions support much larger Maximum 1406 // displacement. 1407 MachineBasicBlock::iterator I = UserMI; 1408 ++I; 1409 Register PredReg; 1410 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); 1411 I->getOpcode() != ARM::t2IT && 1412 getITInstrPredicate(*I, PredReg) != ARMCC::AL; 1413 Offset += TII->getInstSizeInBytes(*I), I = std::next(I)) { 1414 BaseInsertOffset = 1415 std::max(BaseInsertOffset, Offset + TII->getInstSizeInBytes(*I) + 1); 1416 assert(I != UserMBB->end() && "Fell off end of block"); 1417 } 1418 LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); 1419 } 1420 unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad + 1421 CPEMI->getOperand(2).getImm(); 1422 MachineBasicBlock::iterator MI = UserMI; 1423 ++MI; 1424 unsigned CPUIndex = CPUserIndex+1; 1425 unsigned NumCPUsers = CPUsers.size(); 1426 MachineInstr *LastIT = nullptr; 1427 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); 1428 Offset < BaseInsertOffset; 1429 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) { 1430 assert(MI != UserMBB->end() && "Fell off end of block"); 1431 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) { 1432 CPUser &U = CPUsers[CPUIndex]; 1433 if (!isOffsetInRange(Offset, EndInsertOffset, U)) { 1434 // Shift intertion point by one unit of alignment so it is within reach. 1435 BaseInsertOffset -= Align.value(); 1436 EndInsertOffset -= Align.value(); 1437 } 1438 // This is overly conservative, as we don't account for CPEMIs being 1439 // reused within the block, but it doesn't matter much. Also assume CPEs 1440 // are added in order with alignment padding. We may eventually be able 1441 // to pack the aligned CPEs better. 1442 EndInsertOffset += U.CPEMI->getOperand(2).getImm(); 1443 CPUIndex++; 1444 } 1445 1446 // Remember the last IT instruction. 1447 if (MI->getOpcode() == ARM::t2IT) 1448 LastIT = &*MI; 1449 } 1450 1451 --MI; 1452 1453 // Avoid splitting an IT block. 1454 if (LastIT) { 1455 Register PredReg; 1456 ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg); 1457 if (CC != ARMCC::AL) 1458 MI = LastIT; 1459 } 1460 1461 // Avoid splitting a MOVW+MOVT pair with a relocation on Windows. 1462 // On Windows, this instruction pair is covered by one single 1463 // IMAGE_REL_ARM_MOV32T relocation which covers both instructions. If a 1464 // constant island is injected inbetween them, the relocation will clobber 1465 // the instruction and fail to update the MOVT instruction. 1466 // (These instructions are bundled up until right before the ConstantIslands 1467 // pass.) 1468 if (STI->isTargetWindows() && isThumb && MI->getOpcode() == ARM::t2MOVTi16 && 1469 (MI->getOperand(2).getTargetFlags() & ARMII::MO_OPTION_MASK) == 1470 ARMII::MO_HI16) { 1471 --MI; 1472 assert(MI->getOpcode() == ARM::t2MOVi16 && 1473 (MI->getOperand(1).getTargetFlags() & ARMII::MO_OPTION_MASK) == 1474 ARMII::MO_LO16); 1475 } 1476 1477 // We really must not split an IT block. 1478 #ifndef NDEBUG 1479 Register PredReg; 1480 assert(!isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL); 1481 #endif 1482 NewMBB = splitBlockBeforeInstr(&*MI); 1483 } 1484 1485 /// handleConstantPoolUser - Analyze the specified user, checking to see if it 1486 /// is out-of-range. If so, pick up the constant pool value and move it some 1487 /// place in-range. Return true if we changed any addresses (thus must run 1488 /// another pass of branch lengthening), false otherwise. 1489 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex, 1490 bool CloserWater) { 1491 CPUser &U = CPUsers[CPUserIndex]; 1492 MachineInstr *UserMI = U.MI; 1493 MachineInstr *CPEMI = U.CPEMI; 1494 unsigned CPI = getCombinedIndex(CPEMI); 1495 unsigned Size = CPEMI->getOperand(2).getImm(); 1496 // Compute this only once, it's expensive. 1497 unsigned UserOffset = getUserOffset(U); 1498 1499 // See if the current entry is within range, or there is a clone of it 1500 // in range. 1501 int result = findInRangeCPEntry(U, UserOffset); 1502 if (result==1) return false; 1503 else if (result==2) return true; 1504 1505 // No existing clone of this CPE is within range. 1506 // We will be generating a new clone. Get a UID for it. 1507 unsigned ID = AFI->createPICLabelUId(); 1508 1509 // Look for water where we can place this CPE. 1510 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1511 MachineBasicBlock *NewMBB; 1512 water_iterator IP; 1513 if (findAvailableWater(U, UserOffset, IP, CloserWater)) { 1514 LLVM_DEBUG(dbgs() << "Found water in range\n"); 1515 MachineBasicBlock *WaterBB = *IP; 1516 1517 // If the original WaterList entry was "new water" on this iteration, 1518 // propagate that to the new island. This is just keeping NewWaterList 1519 // updated to match the WaterList, which will be updated below. 1520 if (NewWaterList.erase(WaterBB)) 1521 NewWaterList.insert(NewIsland); 1522 1523 // The new CPE goes before the following block (NewMBB). 1524 NewMBB = &*++WaterBB->getIterator(); 1525 } else { 1526 // No water found. 1527 LLVM_DEBUG(dbgs() << "No water found\n"); 1528 createNewWater(CPUserIndex, UserOffset, NewMBB); 1529 1530 // splitBlockBeforeInstr adds to WaterList, which is important when it is 1531 // called while handling branches so that the water will be seen on the 1532 // next iteration for constant pools, but in this context, we don't want 1533 // it. Check for this so it will be removed from the WaterList. 1534 // Also remove any entry from NewWaterList. 1535 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator(); 1536 IP = find(WaterList, WaterBB); 1537 if (IP != WaterList.end()) 1538 NewWaterList.erase(WaterBB); 1539 1540 // We are adding new water. Update NewWaterList. 1541 NewWaterList.insert(NewIsland); 1542 } 1543 // Always align the new block because CP entries can be smaller than 4 1544 // bytes. Be careful not to decrease the existing alignment, e.g. NewMBB may 1545 // be an already aligned constant pool block. 1546 const Align Alignment = isThumb ? Align(2) : Align(4); 1547 if (NewMBB->getAlignment() < Alignment) 1548 NewMBB->setAlignment(Alignment); 1549 1550 // Remove the original WaterList entry; we want subsequent insertions in 1551 // this vicinity to go after the one we're about to insert. This 1552 // considerably reduces the number of times we have to move the same CPE 1553 // more than once and is also important to ensure the algorithm terminates. 1554 if (IP != WaterList.end()) 1555 WaterList.erase(IP); 1556 1557 // Okay, we know we can put an island before NewMBB now, do it! 1558 MF->insert(NewMBB->getIterator(), NewIsland); 1559 1560 // Update internal data structures to account for the newly inserted MBB. 1561 updateForInsertedWaterBlock(NewIsland); 1562 1563 // Now that we have an island to add the CPE to, clone the original CPE and 1564 // add it to the island. 1565 U.HighWaterMark = NewIsland; 1566 U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc()) 1567 .addImm(ID) 1568 .add(CPEMI->getOperand(1)) 1569 .addImm(Size); 1570 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1571 ++NumCPEs; 1572 1573 // Decrement the old entry, and remove it if refcount becomes 0. 1574 decrementCPEReferenceCount(CPI, CPEMI); 1575 1576 // Mark the basic block as aligned as required by the const-pool entry. 1577 NewIsland->setAlignment(getCPEAlign(U.CPEMI)); 1578 1579 // Increase the size of the island block to account for the new entry. 1580 BBUtils->adjustBBSize(NewIsland, Size); 1581 BBUtils->adjustBBOffsetsAfter(&*--NewIsland->getIterator()); 1582 1583 // Finally, change the CPI in the instruction operand to be ID. 1584 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1585 if (UserMI->getOperand(i).isCPI()) { 1586 UserMI->getOperand(i).setIndex(ID); 1587 break; 1588 } 1589 1590 LLVM_DEBUG( 1591 dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1592 << format(" offset=%#x\n", 1593 BBUtils->getBBInfo()[NewIsland->getNumber()].Offset)); 1594 1595 return true; 1596 } 1597 1598 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update 1599 /// sizes and offsets of impacted basic blocks. 1600 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { 1601 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1602 unsigned Size = CPEMI->getOperand(2).getImm(); 1603 CPEMI->eraseFromParent(); 1604 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1605 BBUtils->adjustBBSize(CPEBB, -Size); 1606 // All succeeding offsets have the current size value added in, fix this. 1607 if (CPEBB->empty()) { 1608 BBInfo[CPEBB->getNumber()].Size = 0; 1609 1610 // This block no longer needs to be aligned. 1611 CPEBB->setAlignment(Align(1)); 1612 } else { 1613 // Entries are sorted by descending alignment, so realign from the front. 1614 CPEBB->setAlignment(getCPEAlign(&*CPEBB->begin())); 1615 } 1616 1617 BBUtils->adjustBBOffsetsAfter(CPEBB); 1618 // An island has only one predecessor BB and one successor BB. Check if 1619 // this BB's predecessor jumps directly to this BB's successor. This 1620 // shouldn't happen currently. 1621 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1622 // FIXME: remove the empty blocks after all the work is done? 1623 } 1624 1625 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts 1626 /// are zero. 1627 bool ARMConstantIslands::removeUnusedCPEntries() { 1628 unsigned MadeChange = false; 1629 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1630 std::vector<CPEntry> &CPEs = CPEntries[i]; 1631 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1632 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1633 removeDeadCPEMI(CPEs[j].CPEMI); 1634 CPEs[j].CPEMI = nullptr; 1635 MadeChange = true; 1636 } 1637 } 1638 } 1639 return MadeChange; 1640 } 1641 1642 1643 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far 1644 /// away to fit in its displacement field. 1645 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) { 1646 MachineInstr *MI = Br.MI; 1647 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1648 1649 // Check to see if the DestBB is already in-range. 1650 if (BBUtils->isBBInRange(MI, DestBB, Br.MaxDisp)) 1651 return false; 1652 1653 if (!Br.isCond) 1654 return fixupUnconditionalBr(Br); 1655 return fixupConditionalBr(Br); 1656 } 1657 1658 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is 1659 /// too far away to fit in its displacement field. If the LR register has been 1660 /// spilled in the epilogue, then we can use BL to implement a far jump. 1661 /// Otherwise, add an intermediate branch instruction to a branch. 1662 bool 1663 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { 1664 MachineInstr *MI = Br.MI; 1665 MachineBasicBlock *MBB = MI->getParent(); 1666 if (!isThumb1) 1667 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!"); 1668 1669 if (!AFI->isLRSpilled()) 1670 report_fatal_error("underestimated function size"); 1671 1672 // Use BL to implement far jump. 1673 Br.MaxDisp = (1 << 21) * 2; 1674 MI->setDesc(TII->get(ARM::tBfar)); 1675 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1676 BBInfo[MBB->getNumber()].Size += 2; 1677 BBUtils->adjustBBOffsetsAfter(MBB); 1678 ++NumUBrFixed; 1679 1680 LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI); 1681 1682 return true; 1683 } 1684 1685 /// fixupConditionalBr - Fix up a conditional branch whose destination is too 1686 /// far away to fit in its displacement field. It is converted to an inverse 1687 /// conditional branch + an unconditional branch to the destination. 1688 bool 1689 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) { 1690 MachineInstr *MI = Br.MI; 1691 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1692 1693 // Add an unconditional branch to the destination and invert the branch 1694 // condition to jump over it: 1695 // blt L1 1696 // => 1697 // bge L2 1698 // b L1 1699 // L2: 1700 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1701 CC = ARMCC::getOppositeCondition(CC); 1702 Register CCReg = MI->getOperand(2).getReg(); 1703 1704 // If the branch is at the end of its MBB and that has a fall-through block, 1705 // direct the updated conditional branch to the fall-through block. Otherwise, 1706 // split the MBB before the next instruction. 1707 MachineBasicBlock *MBB = MI->getParent(); 1708 MachineInstr *BMI = &MBB->back(); 1709 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1710 1711 ++NumCBrFixed; 1712 if (BMI != MI) { 1713 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) && 1714 BMI->getOpcode() == Br.UncondBr) { 1715 // Last MI in the BB is an unconditional branch. Can we simply invert the 1716 // condition and swap destinations: 1717 // beq L1 1718 // b L2 1719 // => 1720 // bne L2 1721 // b L1 1722 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1723 if (BBUtils->isBBInRange(MI, NewDest, Br.MaxDisp)) { 1724 LLVM_DEBUG( 1725 dbgs() << " Invert Bcc condition and swap its destination with " 1726 << *BMI); 1727 BMI->getOperand(0).setMBB(DestBB); 1728 MI->getOperand(0).setMBB(NewDest); 1729 MI->getOperand(1).setImm(CC); 1730 return true; 1731 } 1732 } 1733 } 1734 1735 if (NeedSplit) { 1736 splitBlockBeforeInstr(MI); 1737 // No need for the branch to the next block. We're adding an unconditional 1738 // branch to the destination. 1739 int delta = TII->getInstSizeInBytes(MBB->back()); 1740 BBUtils->adjustBBSize(MBB, -delta); 1741 MBB->back().eraseFromParent(); 1742 1743 // The conditional successor will be swapped between the BBs after this, so 1744 // update CFG. 1745 MBB->addSuccessor(DestBB); 1746 std::next(MBB->getIterator())->removeSuccessor(DestBB); 1747 1748 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1749 } 1750 MachineBasicBlock *NextBB = &*++MBB->getIterator(); 1751 1752 LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB) 1753 << " also invert condition and change dest. to " 1754 << printMBBReference(*NextBB) << "\n"); 1755 1756 // Insert a new conditional branch and a new unconditional branch. 1757 // Also update the ImmBranch as well as adding a new entry for the new branch. 1758 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) 1759 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1760 Br.MI = &MBB->back(); 1761 BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back())); 1762 if (isThumb) 1763 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)) 1764 .addMBB(DestBB) 1765 .add(predOps(ARMCC::AL)); 1766 else 1767 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1768 BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back())); 1769 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1770 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1771 1772 // Remove the old conditional branch. It may or may not still be in MBB. 1773 BBUtils->adjustBBSize(MI->getParent(), -TII->getInstSizeInBytes(*MI)); 1774 MI->eraseFromParent(); 1775 BBUtils->adjustBBOffsetsAfter(MBB); 1776 return true; 1777 } 1778 1779 bool ARMConstantIslands::optimizeThumb2Instructions() { 1780 bool MadeChange = false; 1781 1782 // Shrink ADR and LDR from constantpool. 1783 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1784 CPUser &U = CPUsers[i]; 1785 unsigned Opcode = U.MI->getOpcode(); 1786 unsigned NewOpc = 0; 1787 unsigned Scale = 1; 1788 unsigned Bits = 0; 1789 switch (Opcode) { 1790 default: break; 1791 case ARM::t2LEApcrel: 1792 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1793 NewOpc = ARM::tLEApcrel; 1794 Bits = 8; 1795 Scale = 4; 1796 } 1797 break; 1798 case ARM::t2LDRpci: 1799 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1800 NewOpc = ARM::tLDRpci; 1801 Bits = 8; 1802 Scale = 4; 1803 } 1804 break; 1805 } 1806 1807 if (!NewOpc) 1808 continue; 1809 1810 unsigned UserOffset = getUserOffset(U); 1811 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1812 1813 // Be conservative with inline asm. 1814 if (!U.KnownAlignment) 1815 MaxOffs -= 2; 1816 1817 // FIXME: Check if offset is multiple of scale if scale is not 4. 1818 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1819 LLVM_DEBUG(dbgs() << "Shrink: " << *U.MI); 1820 U.MI->setDesc(TII->get(NewOpc)); 1821 MachineBasicBlock *MBB = U.MI->getParent(); 1822 BBUtils->adjustBBSize(MBB, -2); 1823 BBUtils->adjustBBOffsetsAfter(MBB); 1824 ++NumT2CPShrunk; 1825 MadeChange = true; 1826 } 1827 } 1828 1829 return MadeChange; 1830 } 1831 1832 1833 bool ARMConstantIslands::optimizeThumb2Branches() { 1834 1835 auto TryShrinkBranch = [this](ImmBranch &Br) { 1836 unsigned Opcode = Br.MI->getOpcode(); 1837 unsigned NewOpc = 0; 1838 unsigned Scale = 1; 1839 unsigned Bits = 0; 1840 switch (Opcode) { 1841 default: break; 1842 case ARM::t2B: 1843 NewOpc = ARM::tB; 1844 Bits = 11; 1845 Scale = 2; 1846 break; 1847 case ARM::t2Bcc: 1848 NewOpc = ARM::tBcc; 1849 Bits = 8; 1850 Scale = 2; 1851 break; 1852 } 1853 if (NewOpc) { 1854 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1855 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1856 if (BBUtils->isBBInRange(Br.MI, DestBB, MaxOffs)) { 1857 LLVM_DEBUG(dbgs() << "Shrink branch: " << *Br.MI); 1858 Br.MI->setDesc(TII->get(NewOpc)); 1859 MachineBasicBlock *MBB = Br.MI->getParent(); 1860 BBUtils->adjustBBSize(MBB, -2); 1861 BBUtils->adjustBBOffsetsAfter(MBB); 1862 ++NumT2BrShrunk; 1863 return true; 1864 } 1865 } 1866 return false; 1867 }; 1868 1869 struct ImmCompare { 1870 MachineInstr* MI = nullptr; 1871 unsigned NewOpc = 0; 1872 }; 1873 1874 auto FindCmpForCBZ = [this](ImmBranch &Br, ImmCompare &ImmCmp, 1875 MachineBasicBlock *DestBB) { 1876 ImmCmp.MI = nullptr; 1877 ImmCmp.NewOpc = 0; 1878 1879 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout 1880 // so this transformation is not safe. 1881 if (!Br.MI->killsRegister(ARM::CPSR)) 1882 return false; 1883 1884 Register PredReg; 1885 unsigned NewOpc = 0; 1886 ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg); 1887 if (Pred == ARMCC::EQ) 1888 NewOpc = ARM::tCBZ; 1889 else if (Pred == ARMCC::NE) 1890 NewOpc = ARM::tCBNZ; 1891 else 1892 return false; 1893 1894 // Check if the distance is within 126. Subtract starting offset by 2 1895 // because the cmp will be eliminated. 1896 unsigned BrOffset = BBUtils->getOffsetOf(Br.MI) + 4 - 2; 1897 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1898 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1899 if (BrOffset >= DestOffset || (DestOffset - BrOffset) > 126) 1900 return false; 1901 1902 // Search backwards to find a tCMPi8 1903 auto *TRI = STI->getRegisterInfo(); 1904 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(Br.MI, TRI); 1905 if (!CmpMI || CmpMI->getOpcode() != ARM::tCMPi8) 1906 return false; 1907 1908 ImmCmp.MI = CmpMI; 1909 ImmCmp.NewOpc = NewOpc; 1910 return true; 1911 }; 1912 1913 auto TryConvertToLE = [this](ImmBranch &Br, ImmCompare &Cmp) { 1914 if (Br.MI->getOpcode() != ARM::t2Bcc || !STI->hasLOB() || 1915 STI->hasMinSize()) 1916 return false; 1917 1918 MachineBasicBlock *MBB = Br.MI->getParent(); 1919 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1920 if (BBUtils->getOffsetOf(MBB) < BBUtils->getOffsetOf(DestBB) || 1921 !BBUtils->isBBInRange(Br.MI, DestBB, 4094)) 1922 return false; 1923 1924 if (!DT->dominates(DestBB, MBB)) 1925 return false; 1926 1927 // We queried for the CBN?Z opcode based upon the 'ExitBB', the opposite 1928 // target of Br. So now we need to reverse the condition. 1929 Cmp.NewOpc = Cmp.NewOpc == ARM::tCBZ ? ARM::tCBNZ : ARM::tCBZ; 1930 1931 MachineInstrBuilder MIB = BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), 1932 TII->get(ARM::t2LE)); 1933 // Swapped a t2Bcc for a t2LE, so no need to update the size of the block. 1934 MIB.add(Br.MI->getOperand(0)); 1935 Br.MI->eraseFromParent(); 1936 Br.MI = MIB; 1937 ++NumLEInserted; 1938 return true; 1939 }; 1940 1941 bool MadeChange = false; 1942 1943 // The order in which branches appear in ImmBranches is approximately their 1944 // order within the function body. By visiting later branches first, we reduce 1945 // the distance between earlier forward branches and their targets, making it 1946 // more likely that the cbn?z optimization, which can only apply to forward 1947 // branches, will succeed. 1948 for (ImmBranch &Br : reverse(ImmBranches)) { 1949 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1950 MachineBasicBlock *MBB = Br.MI->getParent(); 1951 MachineBasicBlock *ExitBB = &MBB->back() == Br.MI ? 1952 MBB->getFallThrough() : 1953 MBB->back().getOperand(0).getMBB(); 1954 1955 ImmCompare Cmp; 1956 if (FindCmpForCBZ(Br, Cmp, ExitBB) && TryConvertToLE(Br, Cmp)) { 1957 DestBB = ExitBB; 1958 MadeChange = true; 1959 } else { 1960 FindCmpForCBZ(Br, Cmp, DestBB); 1961 MadeChange |= TryShrinkBranch(Br); 1962 } 1963 1964 unsigned Opcode = Br.MI->getOpcode(); 1965 if ((Opcode != ARM::tBcc && Opcode != ARM::t2LE) || !Cmp.NewOpc) 1966 continue; 1967 1968 Register Reg = Cmp.MI->getOperand(0).getReg(); 1969 1970 // Check for Kill flags on Reg. If they are present remove them and set kill 1971 // on the new CBZ. 1972 auto *TRI = STI->getRegisterInfo(); 1973 MachineBasicBlock::iterator KillMI = Br.MI; 1974 bool RegKilled = false; 1975 do { 1976 --KillMI; 1977 if (KillMI->killsRegister(Reg, TRI)) { 1978 KillMI->clearRegisterKills(Reg, TRI); 1979 RegKilled = true; 1980 break; 1981 } 1982 } while (KillMI != Cmp.MI); 1983 1984 // Create the new CBZ/CBNZ 1985 LLVM_DEBUG(dbgs() << "Fold: " << *Cmp.MI << " and: " << *Br.MI); 1986 MachineInstr *NewBR = 1987 BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), TII->get(Cmp.NewOpc)) 1988 .addReg(Reg, getKillRegState(RegKilled)) 1989 .addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags()); 1990 1991 Cmp.MI->eraseFromParent(); 1992 1993 if (Br.MI->getOpcode() == ARM::tBcc) { 1994 Br.MI->eraseFromParent(); 1995 Br.MI = NewBR; 1996 BBUtils->adjustBBSize(MBB, -2); 1997 } else if (MBB->back().getOpcode() != ARM::t2LE) { 1998 // An LE has been generated, but it's not the terminator - that is an 1999 // unconditional branch. However, the logic has now been reversed with the 2000 // CBN?Z being the conditional branch and the LE being the unconditional 2001 // branch. So this means we can remove the redundant unconditional branch 2002 // at the end of the block. 2003 MachineInstr *LastMI = &MBB->back(); 2004 BBUtils->adjustBBSize(MBB, -LastMI->getDesc().getSize()); 2005 LastMI->eraseFromParent(); 2006 } 2007 BBUtils->adjustBBOffsetsAfter(MBB); 2008 ++NumCBZ; 2009 MadeChange = true; 2010 } 2011 2012 return MadeChange; 2013 } 2014 2015 static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg, 2016 unsigned BaseReg) { 2017 if (I.getOpcode() != ARM::t2ADDrs) 2018 return false; 2019 2020 if (I.getOperand(0).getReg() != EntryReg) 2021 return false; 2022 2023 if (I.getOperand(1).getReg() != BaseReg) 2024 return false; 2025 2026 // FIXME: what about CC and IdxReg? 2027 return true; 2028 } 2029 2030 /// While trying to form a TBB/TBH instruction, we may (if the table 2031 /// doesn't immediately follow the BR_JT) need access to the start of the 2032 /// jump-table. We know one instruction that produces such a register; this 2033 /// function works out whether that definition can be preserved to the BR_JT, 2034 /// possibly by removing an intervening addition (which is usually needed to 2035 /// calculate the actual entry to jump to). 2036 bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI, 2037 MachineInstr *LEAMI, 2038 unsigned &DeadSize, 2039 bool &CanDeleteLEA, 2040 bool &BaseRegKill) { 2041 if (JumpMI->getParent() != LEAMI->getParent()) 2042 return false; 2043 2044 // Now we hope that we have at least these instructions in the basic block: 2045 // BaseReg = t2LEA ... 2046 // [...] 2047 // EntryReg = t2ADDrs BaseReg, ... 2048 // [...] 2049 // t2BR_JT EntryReg 2050 // 2051 // We have to be very conservative about what we recognise here though. The 2052 // main perturbing factors to watch out for are: 2053 // + Spills at any point in the chain: not direct problems but we would 2054 // expect a blocking Def of the spilled register so in practice what we 2055 // can do is limited. 2056 // + EntryReg == BaseReg: this is the one situation we should allow a Def 2057 // of BaseReg, but only if the t2ADDrs can be removed. 2058 // + Some instruction other than t2ADDrs computing the entry. Not seen in 2059 // the wild, but we should be careful. 2060 Register EntryReg = JumpMI->getOperand(0).getReg(); 2061 Register BaseReg = LEAMI->getOperand(0).getReg(); 2062 2063 CanDeleteLEA = true; 2064 BaseRegKill = false; 2065 MachineInstr *RemovableAdd = nullptr; 2066 MachineBasicBlock::iterator I(LEAMI); 2067 for (++I; &*I != JumpMI; ++I) { 2068 if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) { 2069 RemovableAdd = &*I; 2070 break; 2071 } 2072 2073 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 2074 const MachineOperand &MO = I->getOperand(K); 2075 if (!MO.isReg() || !MO.getReg()) 2076 continue; 2077 if (MO.isDef() && MO.getReg() == BaseReg) 2078 return false; 2079 if (MO.isUse() && MO.getReg() == BaseReg) { 2080 BaseRegKill = BaseRegKill || MO.isKill(); 2081 CanDeleteLEA = false; 2082 } 2083 } 2084 } 2085 2086 if (!RemovableAdd) 2087 return true; 2088 2089 // Check the add really is removable, and that nothing else in the block 2090 // clobbers BaseReg. 2091 for (++I; &*I != JumpMI; ++I) { 2092 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 2093 const MachineOperand &MO = I->getOperand(K); 2094 if (!MO.isReg() || !MO.getReg()) 2095 continue; 2096 if (MO.isDef() && MO.getReg() == BaseReg) 2097 return false; 2098 if (MO.isUse() && MO.getReg() == EntryReg) 2099 RemovableAdd = nullptr; 2100 } 2101 } 2102 2103 if (RemovableAdd) { 2104 RemovableAdd->eraseFromParent(); 2105 DeadSize += isThumb2 ? 4 : 2; 2106 } else if (BaseReg == EntryReg) { 2107 // The add wasn't removable, but clobbered the base for the TBB. So we can't 2108 // preserve it. 2109 return false; 2110 } 2111 2112 // We reached the end of the block without seeing another definition of 2113 // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be 2114 // used in the TBB/TBH if necessary. 2115 return true; 2116 } 2117 2118 /// Returns whether CPEMI is the first instruction in the block 2119 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so, 2120 /// we can switch the first register to PC and usually remove the address 2121 /// calculation that preceded it. 2122 static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) { 2123 MachineFunction::iterator MBB = JTMI->getParent()->getIterator(); 2124 MachineFunction *MF = MBB->getParent(); 2125 ++MBB; 2126 2127 return MBB != MF->end() && !MBB->empty() && &*MBB->begin() == CPEMI; 2128 } 2129 2130 static void RemoveDeadAddBetweenLEAAndJT(MachineInstr *LEAMI, 2131 MachineInstr *JumpMI, 2132 unsigned &DeadSize) { 2133 // Remove a dead add between the LEA and JT, which used to compute EntryReg, 2134 // but the JT now uses PC. Finds the last ADD (if any) that def's EntryReg 2135 // and is not clobbered / used. 2136 MachineInstr *RemovableAdd = nullptr; 2137 Register EntryReg = JumpMI->getOperand(0).getReg(); 2138 2139 // Find the last ADD to set EntryReg 2140 MachineBasicBlock::iterator I(LEAMI); 2141 for (++I; &*I != JumpMI; ++I) { 2142 if (I->getOpcode() == ARM::t2ADDrs && I->getOperand(0).getReg() == EntryReg) 2143 RemovableAdd = &*I; 2144 } 2145 2146 if (!RemovableAdd) 2147 return; 2148 2149 // Ensure EntryReg is not clobbered or used. 2150 MachineBasicBlock::iterator J(RemovableAdd); 2151 for (++J; &*J != JumpMI; ++J) { 2152 for (unsigned K = 0, E = J->getNumOperands(); K != E; ++K) { 2153 const MachineOperand &MO = J->getOperand(K); 2154 if (!MO.isReg() || !MO.getReg()) 2155 continue; 2156 if (MO.isDef() && MO.getReg() == EntryReg) 2157 return; 2158 if (MO.isUse() && MO.getReg() == EntryReg) 2159 return; 2160 } 2161 } 2162 2163 LLVM_DEBUG(dbgs() << "Removing Dead Add: " << *RemovableAdd); 2164 RemovableAdd->eraseFromParent(); 2165 DeadSize += 4; 2166 } 2167 2168 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 2169 /// jumptables when it's possible. 2170 bool ARMConstantIslands::optimizeThumb2JumpTables() { 2171 bool MadeChange = false; 2172 2173 // FIXME: After the tables are shrunk, can we get rid some of the 2174 // constantpool tables? 2175 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2176 if (!MJTI) return false; 2177 2178 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2179 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2180 MachineInstr *MI = T2JumpTables[i]; 2181 const MCInstrDesc &MCID = MI->getDesc(); 2182 unsigned NumOps = MCID.getNumOperands(); 2183 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2184 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2185 unsigned JTI = JTOP.getIndex(); 2186 assert(JTI < JT.size()); 2187 2188 bool ByteOk = true; 2189 bool HalfWordOk = true; 2190 unsigned JTOffset = BBUtils->getOffsetOf(MI) + 4; 2191 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2192 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 2193 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2194 MachineBasicBlock *MBB = JTBBs[j]; 2195 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset; 2196 // Negative offset is not ok. FIXME: We should change BB layout to make 2197 // sure all the branches are forward. 2198 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 2199 ByteOk = false; 2200 unsigned TBHLimit = ((1<<16)-1)*2; 2201 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 2202 HalfWordOk = false; 2203 if (!ByteOk && !HalfWordOk) 2204 break; 2205 } 2206 2207 if (!ByteOk && !HalfWordOk) 2208 continue; 2209 2210 CPUser &User = CPUsers[JumpTableUserIndices[JTI]]; 2211 MachineBasicBlock *MBB = MI->getParent(); 2212 if (!MI->getOperand(0).isKill()) // FIXME: needed now? 2213 continue; 2214 2215 unsigned DeadSize = 0; 2216 bool CanDeleteLEA = false; 2217 bool BaseRegKill = false; 2218 2219 unsigned IdxReg = ~0U; 2220 bool IdxRegKill = true; 2221 if (isThumb2) { 2222 IdxReg = MI->getOperand(1).getReg(); 2223 IdxRegKill = MI->getOperand(1).isKill(); 2224 2225 bool PreservedBaseReg = 2226 preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill); 2227 if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg) 2228 continue; 2229 } else { 2230 // We're in thumb-1 mode, so we must have something like: 2231 // %idx = tLSLri %idx, 2 2232 // %base = tLEApcrelJT 2233 // %t = tLDRr %base, %idx 2234 Register BaseReg = User.MI->getOperand(0).getReg(); 2235 2236 if (User.MI->getIterator() == User.MI->getParent()->begin()) 2237 continue; 2238 MachineInstr *Shift = User.MI->getPrevNode(); 2239 if (Shift->getOpcode() != ARM::tLSLri || 2240 Shift->getOperand(3).getImm() != 2 || 2241 !Shift->getOperand(2).isKill()) 2242 continue; 2243 IdxReg = Shift->getOperand(2).getReg(); 2244 Register ShiftedIdxReg = Shift->getOperand(0).getReg(); 2245 2246 // It's important that IdxReg is live until the actual TBB/TBH. Most of 2247 // the range is checked later, but the LEA might still clobber it and not 2248 // actually get removed. 2249 if (BaseReg == IdxReg && !jumpTableFollowsTB(MI, User.CPEMI)) 2250 continue; 2251 2252 MachineInstr *Load = User.MI->getNextNode(); 2253 if (Load->getOpcode() != ARM::tLDRr) 2254 continue; 2255 if (Load->getOperand(1).getReg() != BaseReg || 2256 Load->getOperand(2).getReg() != ShiftedIdxReg || 2257 !Load->getOperand(2).isKill()) 2258 continue; 2259 2260 // If we're in PIC mode, there should be another ADD following. 2261 auto *TRI = STI->getRegisterInfo(); 2262 2263 // %base cannot be redefined after the load as it will appear before 2264 // TBB/TBH like: 2265 // %base = 2266 // %base = 2267 // tBB %base, %idx 2268 if (registerDefinedBetween(BaseReg, Load->getNextNode(), MBB->end(), TRI)) 2269 continue; 2270 2271 if (isPositionIndependentOrROPI) { 2272 MachineInstr *Add = Load->getNextNode(); 2273 if (Add->getOpcode() != ARM::tADDrr || 2274 Add->getOperand(2).getReg() != BaseReg || 2275 Add->getOperand(3).getReg() != Load->getOperand(0).getReg() || 2276 !Add->getOperand(3).isKill()) 2277 continue; 2278 if (Add->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2279 continue; 2280 if (registerDefinedBetween(IdxReg, Add->getNextNode(), MI, TRI)) 2281 // IdxReg gets redefined in the middle of the sequence. 2282 continue; 2283 Add->eraseFromParent(); 2284 DeadSize += 2; 2285 } else { 2286 if (Load->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2287 continue; 2288 if (registerDefinedBetween(IdxReg, Load->getNextNode(), MI, TRI)) 2289 // IdxReg gets redefined in the middle of the sequence. 2290 continue; 2291 } 2292 2293 // Now safe to delete the load and lsl. The LEA will be removed later. 2294 CanDeleteLEA = true; 2295 Shift->eraseFromParent(); 2296 Load->eraseFromParent(); 2297 DeadSize += 4; 2298 } 2299 2300 LLVM_DEBUG(dbgs() << "Shrink JT: " << *MI); 2301 MachineInstr *CPEMI = User.CPEMI; 2302 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; 2303 if (!isThumb2) 2304 Opc = ByteOk ? ARM::tTBB_JT : ARM::tTBH_JT; 2305 2306 MachineBasicBlock::iterator MI_JT = MI; 2307 MachineInstr *NewJTMI = 2308 BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc)) 2309 .addReg(User.MI->getOperand(0).getReg(), 2310 getKillRegState(BaseRegKill)) 2311 .addReg(IdxReg, getKillRegState(IdxRegKill)) 2312 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 2313 .addImm(CPEMI->getOperand(0).getImm()); 2314 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": " << *NewJTMI); 2315 2316 unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH; 2317 CPEMI->setDesc(TII->get(JTOpc)); 2318 2319 if (jumpTableFollowsTB(MI, User.CPEMI)) { 2320 NewJTMI->getOperand(0).setReg(ARM::PC); 2321 NewJTMI->getOperand(0).setIsKill(false); 2322 2323 if (CanDeleteLEA) { 2324 if (isThumb2) 2325 RemoveDeadAddBetweenLEAAndJT(User.MI, MI, DeadSize); 2326 2327 User.MI->eraseFromParent(); 2328 DeadSize += isThumb2 ? 4 : 2; 2329 2330 // The LEA was eliminated, the TBB instruction becomes the only new user 2331 // of the jump table. 2332 User.MI = NewJTMI; 2333 User.MaxDisp = 4; 2334 User.NegOk = false; 2335 User.IsSoImm = false; 2336 User.KnownAlignment = false; 2337 } else { 2338 // The LEA couldn't be eliminated, so we must add another CPUser to 2339 // record the TBB or TBH use. 2340 int CPEntryIdx = JumpTableEntryIndices[JTI]; 2341 auto &CPEs = CPEntries[CPEntryIdx]; 2342 auto Entry = 2343 find_if(CPEs, [&](CPEntry &E) { return E.CPEMI == User.CPEMI; }); 2344 ++Entry->RefCount; 2345 CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false)); 2346 } 2347 } 2348 2349 unsigned NewSize = TII->getInstSizeInBytes(*NewJTMI); 2350 unsigned OrigSize = TII->getInstSizeInBytes(*MI); 2351 MI->eraseFromParent(); 2352 2353 int Delta = OrigSize - NewSize + DeadSize; 2354 BBInfo[MBB->getNumber()].Size -= Delta; 2355 BBUtils->adjustBBOffsetsAfter(MBB); 2356 2357 ++NumTBs; 2358 MadeChange = true; 2359 } 2360 2361 return MadeChange; 2362 } 2363 2364 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that 2365 /// jump tables always branch forwards, since that's what tbb and tbh need. 2366 bool ARMConstantIslands::reorderThumb2JumpTables() { 2367 bool MadeChange = false; 2368 2369 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2370 if (!MJTI) return false; 2371 2372 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2373 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2374 MachineInstr *MI = T2JumpTables[i]; 2375 const MCInstrDesc &MCID = MI->getDesc(); 2376 unsigned NumOps = MCID.getNumOperands(); 2377 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2378 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2379 unsigned JTI = JTOP.getIndex(); 2380 assert(JTI < JT.size()); 2381 2382 // We prefer if target blocks for the jump table come after the jump 2383 // instruction so we can use TB[BH]. Loop through the target blocks 2384 // and try to adjust them such that that's true. 2385 int JTNumber = MI->getParent()->getNumber(); 2386 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2387 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2388 MachineBasicBlock *MBB = JTBBs[j]; 2389 int DTNumber = MBB->getNumber(); 2390 2391 if (DTNumber < JTNumber) { 2392 // The destination precedes the switch. Try to move the block forward 2393 // so we have a positive offset. 2394 MachineBasicBlock *NewBB = 2395 adjustJTTargetBlockForward(MBB, MI->getParent()); 2396 if (NewBB) 2397 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); 2398 MadeChange = true; 2399 } 2400 } 2401 } 2402 2403 return MadeChange; 2404 } 2405 2406 MachineBasicBlock *ARMConstantIslands:: 2407 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) { 2408 // If the destination block is terminated by an unconditional branch, 2409 // try to move it; otherwise, create a new block following the jump 2410 // table that branches back to the actual target. This is a very simple 2411 // heuristic. FIXME: We can definitely improve it. 2412 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2413 SmallVector<MachineOperand, 4> Cond; 2414 SmallVector<MachineOperand, 4> CondPrior; 2415 MachineFunction::iterator BBi = BB->getIterator(); 2416 MachineFunction::iterator OldPrior = std::prev(BBi); 2417 MachineFunction::iterator OldNext = std::next(BBi); 2418 2419 // If the block terminator isn't analyzable, don't try to move the block 2420 bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond); 2421 2422 // If the block ends in an unconditional branch, move it. The prior block 2423 // has to have an analyzable terminator for us to move this one. Be paranoid 2424 // and make sure we're not trying to move the entry block of the function. 2425 if (!B && Cond.empty() && BB != &MF->front() && 2426 !TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 2427 BB->moveAfter(JTBB); 2428 OldPrior->updateTerminator(BB); 2429 BB->updateTerminator(OldNext != MF->end() ? &*OldNext : nullptr); 2430 // Update numbering to account for the block being moved. 2431 MF->RenumberBlocks(); 2432 ++NumJTMoved; 2433 return nullptr; 2434 } 2435 2436 // Create a new MBB for the code after the jump BB. 2437 MachineBasicBlock *NewBB = 2438 MF->CreateMachineBasicBlock(JTBB->getBasicBlock()); 2439 MachineFunction::iterator MBBI = ++JTBB->getIterator(); 2440 MF->insert(MBBI, NewBB); 2441 2442 // Copy live-in information to new block. 2443 for (const MachineBasicBlock::RegisterMaskPair &RegMaskPair : BB->liveins()) 2444 NewBB->addLiveIn(RegMaskPair); 2445 2446 // Add an unconditional branch from NewBB to BB. 2447 // There doesn't seem to be meaningful DebugInfo available; this doesn't 2448 // correspond directly to anything in the source. 2449 if (isThumb2) 2450 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)) 2451 .addMBB(BB) 2452 .add(predOps(ARMCC::AL)); 2453 else 2454 BuildMI(NewBB, DebugLoc(), TII->get(ARM::tB)) 2455 .addMBB(BB) 2456 .add(predOps(ARMCC::AL)); 2457 2458 // Update internal data structures to account for the newly inserted MBB. 2459 MF->RenumberBlocks(NewBB); 2460 2461 // Update the CFG. 2462 NewBB->addSuccessor(BB); 2463 JTBB->replaceSuccessor(BB, NewBB); 2464 2465 ++NumJTInserted; 2466 return NewBB; 2467 } 2468 2469 /// createARMConstantIslandPass - returns an instance of the constpool 2470 /// island pass. 2471 FunctionPass *llvm::createARMConstantIslandPass() { 2472 return new ARMConstantIslands(); 2473 } 2474 2475 INITIALIZE_PASS(ARMConstantIslands, "arm-cp-islands", ARM_CP_ISLANDS_OPT_NAME, 2476 false, false) 2477