xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMConstantIslandPass.cpp (revision 5def4c47d4bd90b209b9b4a4ba9faec15846d8fd)
1 //===- ARMConstantIslandPass.cpp - ARM constant islands -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass that splits the constant pool up into 'islands'
10 // which are scattered through-out the function.  This is required due to the
11 // limited pc-relative displacements that ARM has.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ARM.h"
16 #include "ARMBaseInstrInfo.h"
17 #include "ARMBasicBlockInfo.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMBaseInfo.h"
21 #include "Thumb2InstrInfo.h"
22 #include "Utils/ARMBaseInfo.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/ADT/StringRef.h"
29 #include "llvm/CodeGen/LivePhysRegs.h"
30 #include "llvm/CodeGen/MachineBasicBlock.h"
31 #include "llvm/CodeGen/MachineConstantPool.h"
32 #include "llvm/CodeGen/MachineDominators.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineJumpTableInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/Config/llvm-config.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DebugLoc.h"
42 #include "llvm/MC/MCInstrDesc.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/Format.h"
49 #include "llvm/Support/MathExtras.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <cstdint>
54 #include <iterator>
55 #include <utility>
56 #include <vector>
57 
58 using namespace llvm;
59 
60 #define DEBUG_TYPE "arm-cp-islands"
61 
62 #define ARM_CP_ISLANDS_OPT_NAME \
63   "ARM constant island placement and branch shortening pass"
64 STATISTIC(NumCPEs,       "Number of constpool entries");
65 STATISTIC(NumSplit,      "Number of uncond branches inserted");
66 STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
67 STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");
68 STATISTIC(NumTBs,        "Number of table branches generated");
69 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
70 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
71 STATISTIC(NumCBZ,        "Number of CBZ / CBNZ formed");
72 STATISTIC(NumJTMoved,    "Number of jump table destination blocks moved");
73 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted");
74 STATISTIC(NumLEInserted, "Number of LE backwards branches inserted");
75 
76 static cl::opt<bool>
77 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true),
78           cl::desc("Adjust basic block layout to better use TB[BH]"));
79 
80 static cl::opt<unsigned>
81 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30),
82           cl::desc("The max number of iteration for converge"));
83 
84 static cl::opt<bool> SynthesizeThumb1TBB(
85     "arm-synthesize-thumb-1-tbb", cl::Hidden, cl::init(true),
86     cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an "
87              "equivalent to the TBB/TBH instructions"));
88 
89 namespace {
90 
91   /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
92   /// requires constant pool entries to be scattered among the instructions
93   /// inside a function.  To do this, it completely ignores the normal LLVM
94   /// constant pool; instead, it places constants wherever it feels like with
95   /// special instructions.
96   ///
97   /// The terminology used in this pass includes:
98   ///   Islands - Clumps of constants placed in the function.
99   ///   Water   - Potential places where an island could be formed.
100   ///   CPE     - A constant pool entry that has been placed somewhere, which
101   ///             tracks a list of users.
102   class ARMConstantIslands : public MachineFunctionPass {
103     std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr;
104 
105     /// WaterList - A sorted list of basic blocks where islands could be placed
106     /// (i.e. blocks that don't fall through to the following block, due
107     /// to a return, unreachable, or unconditional branch).
108     std::vector<MachineBasicBlock*> WaterList;
109 
110     /// NewWaterList - The subset of WaterList that was created since the
111     /// previous iteration by inserting unconditional branches.
112     SmallSet<MachineBasicBlock*, 4> NewWaterList;
113 
114     using water_iterator = std::vector<MachineBasicBlock *>::iterator;
115 
116     /// CPUser - One user of a constant pool, keeping the machine instruction
117     /// pointer, the constant pool being referenced, and the max displacement
118     /// allowed from the instruction to the CP.  The HighWaterMark records the
119     /// highest basic block where a new CPEntry can be placed.  To ensure this
120     /// pass terminates, the CP entries are initially placed at the end of the
121     /// function and then move monotonically to lower addresses.  The
122     /// exception to this rule is when the current CP entry for a particular
123     /// CPUser is out of range, but there is another CP entry for the same
124     /// constant value in range.  We want to use the existing in-range CP
125     /// entry, but if it later moves out of range, the search for new water
126     /// should resume where it left off.  The HighWaterMark is used to record
127     /// that point.
128     struct CPUser {
129       MachineInstr *MI;
130       MachineInstr *CPEMI;
131       MachineBasicBlock *HighWaterMark;
132       unsigned MaxDisp;
133       bool NegOk;
134       bool IsSoImm;
135       bool KnownAlignment = false;
136 
137       CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
138              bool neg, bool soimm)
139         : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) {
140         HighWaterMark = CPEMI->getParent();
141       }
142 
143       /// getMaxDisp - Returns the maximum displacement supported by MI.
144       /// Correct for unknown alignment.
145       /// Conservatively subtract 2 bytes to handle weird alignment effects.
146       unsigned getMaxDisp() const {
147         return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2;
148       }
149     };
150 
151     /// CPUsers - Keep track of all of the machine instructions that use various
152     /// constant pools and their max displacement.
153     std::vector<CPUser> CPUsers;
154 
155     /// CPEntry - One per constant pool entry, keeping the machine instruction
156     /// pointer, the constpool index, and the number of CPUser's which
157     /// reference this entry.
158     struct CPEntry {
159       MachineInstr *CPEMI;
160       unsigned CPI;
161       unsigned RefCount;
162 
163       CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
164         : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
165     };
166 
167     /// CPEntries - Keep track of all of the constant pool entry machine
168     /// instructions. For each original constpool index (i.e. those that existed
169     /// upon entry to this pass), it keeps a vector of entries.  Original
170     /// elements are cloned as we go along; the clones are put in the vector of
171     /// the original element, but have distinct CPIs.
172     ///
173     /// The first half of CPEntries contains generic constants, the second half
174     /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up
175     /// which vector it will be in here.
176     std::vector<std::vector<CPEntry>> CPEntries;
177 
178     /// Maps a JT index to the offset in CPEntries containing copies of that
179     /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity.
180     DenseMap<int, int> JumpTableEntryIndices;
181 
182     /// Maps a JT index to the LEA that actually uses the index to calculate its
183     /// base address.
184     DenseMap<int, int> JumpTableUserIndices;
185 
186     /// ImmBranch - One per immediate branch, keeping the machine instruction
187     /// pointer, conditional or unconditional, the max displacement,
188     /// and (if isCond is true) the corresponding unconditional branch
189     /// opcode.
190     struct ImmBranch {
191       MachineInstr *MI;
192       unsigned MaxDisp : 31;
193       bool isCond : 1;
194       unsigned UncondBr;
195 
196       ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr)
197         : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
198     };
199 
200     /// ImmBranches - Keep track of all the immediate branch instructions.
201     std::vector<ImmBranch> ImmBranches;
202 
203     /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
204     SmallVector<MachineInstr*, 4> PushPopMIs;
205 
206     /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
207     SmallVector<MachineInstr*, 4> T2JumpTables;
208 
209     MachineFunction *MF;
210     MachineConstantPool *MCP;
211     const ARMBaseInstrInfo *TII;
212     const ARMSubtarget *STI;
213     ARMFunctionInfo *AFI;
214     MachineDominatorTree *DT = nullptr;
215     bool isThumb;
216     bool isThumb1;
217     bool isThumb2;
218     bool isPositionIndependentOrROPI;
219 
220   public:
221     static char ID;
222 
223     ARMConstantIslands() : MachineFunctionPass(ID) {}
224 
225     bool runOnMachineFunction(MachineFunction &MF) override;
226 
227     void getAnalysisUsage(AnalysisUsage &AU) const override {
228       AU.addRequired<MachineDominatorTree>();
229       MachineFunctionPass::getAnalysisUsage(AU);
230     }
231 
232     MachineFunctionProperties getRequiredProperties() const override {
233       return MachineFunctionProperties().set(
234           MachineFunctionProperties::Property::NoVRegs);
235     }
236 
237     StringRef getPassName() const override {
238       return ARM_CP_ISLANDS_OPT_NAME;
239     }
240 
241   private:
242     void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs);
243     void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs);
244     bool BBHasFallthrough(MachineBasicBlock *MBB);
245     CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
246     Align getCPEAlign(const MachineInstr *CPEMI);
247     void scanFunctionJumpTables();
248     void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
249     MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
250     void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
251     bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
252     unsigned getCombinedIndex(const MachineInstr *CPEMI);
253     int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
254     bool findAvailableWater(CPUser&U, unsigned UserOffset,
255                             water_iterator &WaterIter, bool CloserWater);
256     void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
257                         MachineBasicBlock *&NewMBB);
258     bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater);
259     void removeDeadCPEMI(MachineInstr *CPEMI);
260     bool removeUnusedCPEntries();
261     bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
262                           MachineInstr *CPEMI, unsigned Disp, bool NegOk,
263                           bool DoDump = false);
264     bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
265                         CPUser &U, unsigned &Growth);
266     bool fixupImmediateBr(ImmBranch &Br);
267     bool fixupConditionalBr(ImmBranch &Br);
268     bool fixupUnconditionalBr(ImmBranch &Br);
269     bool optimizeThumb2Instructions();
270     bool optimizeThumb2Branches();
271     bool reorderThumb2JumpTables();
272     bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI,
273                               unsigned &DeadSize, bool &CanDeleteLEA,
274                               bool &BaseRegKill);
275     bool optimizeThumb2JumpTables();
276     MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB,
277                                                   MachineBasicBlock *JTBB);
278 
279     unsigned getUserOffset(CPUser&) const;
280     void dumpBBs();
281     void verify();
282 
283     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
284                          unsigned Disp, bool NegativeOK, bool IsSoImm = false);
285     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
286                          const CPUser &U) {
287       return isOffsetInRange(UserOffset, TrialOffset,
288                              U.getMaxDisp(), U.NegOk, U.IsSoImm);
289     }
290   };
291 
292 } // end anonymous namespace
293 
294 char ARMConstantIslands::ID = 0;
295 
296 /// verify - check BBOffsets, BBSizes, alignment of islands
297 void ARMConstantIslands::verify() {
298 #ifndef NDEBUG
299   BBInfoVector &BBInfo = BBUtils->getBBInfo();
300   assert(std::is_sorted(MF->begin(), MF->end(),
301                         [&BBInfo](const MachineBasicBlock &LHS,
302                                   const MachineBasicBlock &RHS) {
303                           return BBInfo[LHS.getNumber()].postOffset() <
304                                  BBInfo[RHS.getNumber()].postOffset();
305                         }));
306   LLVM_DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n");
307   for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
308     CPUser &U = CPUsers[i];
309     unsigned UserOffset = getUserOffset(U);
310     // Verify offset using the real max displacement without the safety
311     // adjustment.
312     if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk,
313                          /* DoDump = */ true)) {
314       LLVM_DEBUG(dbgs() << "OK\n");
315       continue;
316     }
317     LLVM_DEBUG(dbgs() << "Out of range.\n");
318     dumpBBs();
319     LLVM_DEBUG(MF->dump());
320     llvm_unreachable("Constant pool entry out of range!");
321   }
322 #endif
323 }
324 
325 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
326 /// print block size and offset information - debugging
327 LLVM_DUMP_METHOD void ARMConstantIslands::dumpBBs() {
328   LLVM_DEBUG({
329     BBInfoVector &BBInfo = BBUtils->getBBInfo();
330     for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
331       const BasicBlockInfo &BBI = BBInfo[J];
332       dbgs() << format("%08x %bb.%u\t", BBI.Offset, J)
333              << " kb=" << unsigned(BBI.KnownBits)
334              << " ua=" << unsigned(BBI.Unalign) << " pa=" << Log2(BBI.PostAlign)
335              << format(" size=%#x\n", BBInfo[J].Size);
336     }
337   });
338 }
339 #endif
340 
341 // Align blocks where the previous block does not fall through. This may add
342 // extra NOP's but they will not be executed. It uses the PrefLoopAlignment as a
343 // measure of how much to align, and only runs at CodeGenOpt::Aggressive.
344 static bool AlignBlocks(MachineFunction *MF) {
345   if (MF->getTarget().getOptLevel() != CodeGenOpt::Aggressive ||
346       MF->getFunction().hasOptSize())
347     return false;
348 
349   auto *TLI = MF->getSubtarget().getTargetLowering();
350   const Align Alignment = TLI->getPrefLoopAlignment();
351   if (Alignment < 4)
352     return false;
353 
354   bool Changed = false;
355   bool PrevCanFallthough = true;
356   for (auto &MBB : *MF) {
357     if (!PrevCanFallthough) {
358       Changed = true;
359       MBB.setAlignment(Alignment);
360     }
361     PrevCanFallthough = MBB.canFallThrough();
362   }
363 
364   return Changed;
365 }
366 
367 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) {
368   MF = &mf;
369   MCP = mf.getConstantPool();
370   BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(mf));
371 
372   LLVM_DEBUG(dbgs() << "***** ARMConstantIslands: "
373                     << MCP->getConstants().size() << " CP entries, aligned to "
374                     << MCP->getConstantPoolAlign().value() << " bytes *****\n");
375 
376   STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget());
377   TII = STI->getInstrInfo();
378   isPositionIndependentOrROPI =
379       STI->getTargetLowering()->isPositionIndependent() || STI->isROPI();
380   AFI = MF->getInfo<ARMFunctionInfo>();
381   DT = &getAnalysis<MachineDominatorTree>();
382 
383   isThumb = AFI->isThumbFunction();
384   isThumb1 = AFI->isThumb1OnlyFunction();
385   isThumb2 = AFI->isThumb2Function();
386 
387   bool GenerateTBB = isThumb2 || (isThumb1 && SynthesizeThumb1TBB);
388   // TBB generation code in this constant island pass has not been adapted to
389   // deal with speculation barriers.
390   if (STI->hardenSlsRetBr())
391     GenerateTBB = false;
392 
393   // Renumber all of the machine basic blocks in the function, guaranteeing that
394   // the numbers agree with the position of the block in the function.
395   MF->RenumberBlocks();
396 
397   // Try to reorder and otherwise adjust the block layout to make good use
398   // of the TB[BH] instructions.
399   bool MadeChange = false;
400   if (GenerateTBB && AdjustJumpTableBlocks) {
401     scanFunctionJumpTables();
402     MadeChange |= reorderThumb2JumpTables();
403     // Data is out of date, so clear it. It'll be re-computed later.
404     T2JumpTables.clear();
405     // Blocks may have shifted around. Keep the numbering up to date.
406     MF->RenumberBlocks();
407   }
408 
409   // Align any non-fallthrough blocks
410   MadeChange |= AlignBlocks(MF);
411 
412   // Perform the initial placement of the constant pool entries.  To start with,
413   // we put them all at the end of the function.
414   std::vector<MachineInstr*> CPEMIs;
415   if (!MCP->isEmpty())
416     doInitialConstPlacement(CPEMIs);
417 
418   if (MF->getJumpTableInfo())
419     doInitialJumpTablePlacement(CPEMIs);
420 
421   /// The next UID to take is the first unused one.
422   AFI->initPICLabelUId(CPEMIs.size());
423 
424   // Do the initial scan of the function, building up information about the
425   // sizes of each block, the location of all the water, and finding all of the
426   // constant pool users.
427   initializeFunctionInfo(CPEMIs);
428   CPEMIs.clear();
429   LLVM_DEBUG(dumpBBs());
430 
431   // Functions with jump tables need an alignment of 4 because they use the ADR
432   // instruction, which aligns the PC to 4 bytes before adding an offset.
433   if (!T2JumpTables.empty())
434     MF->ensureAlignment(Align(4));
435 
436   /// Remove dead constant pool entries.
437   MadeChange |= removeUnusedCPEntries();
438 
439   // Iteratively place constant pool entries and fix up branches until there
440   // is no change.
441   unsigned NoCPIters = 0, NoBRIters = 0;
442   while (true) {
443     LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
444     bool CPChange = false;
445     for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
446       // For most inputs, it converges in no more than 5 iterations.
447       // If it doesn't end in 10, the input may have huge BB or many CPEs.
448       // In this case, we will try different heuristics.
449       CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2);
450     if (CPChange && ++NoCPIters > CPMaxIteration)
451       report_fatal_error("Constant Island pass failed to converge!");
452     LLVM_DEBUG(dumpBBs());
453 
454     // Clear NewWaterList now.  If we split a block for branches, it should
455     // appear as "new water" for the next iteration of constant pool placement.
456     NewWaterList.clear();
457 
458     LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
459     bool BRChange = false;
460     for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
461       BRChange |= fixupImmediateBr(ImmBranches[i]);
462     if (BRChange && ++NoBRIters > 30)
463       report_fatal_error("Branch Fix Up pass failed to converge!");
464     LLVM_DEBUG(dumpBBs());
465 
466     if (!CPChange && !BRChange)
467       break;
468     MadeChange = true;
469   }
470 
471   // Shrink 32-bit Thumb2 load and store instructions.
472   if (isThumb2 && !STI->prefers32BitThumb())
473     MadeChange |= optimizeThumb2Instructions();
474 
475   // Shrink 32-bit branch instructions.
476   if (isThumb && STI->hasV8MBaselineOps())
477     MadeChange |= optimizeThumb2Branches();
478 
479   // Optimize jump tables using TBB / TBH.
480   if (GenerateTBB && !STI->genExecuteOnly())
481     MadeChange |= optimizeThumb2JumpTables();
482 
483   // After a while, this might be made debug-only, but it is not expensive.
484   verify();
485 
486   // Save the mapping between original and cloned constpool entries.
487   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
488     for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) {
489       const CPEntry & CPE = CPEntries[i][j];
490       if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI())
491         AFI->recordCPEClone(i, CPE.CPI);
492     }
493   }
494 
495   LLVM_DEBUG(dbgs() << '\n'; dumpBBs());
496 
497   BBUtils->clear();
498   WaterList.clear();
499   CPUsers.clear();
500   CPEntries.clear();
501   JumpTableEntryIndices.clear();
502   JumpTableUserIndices.clear();
503   ImmBranches.clear();
504   PushPopMIs.clear();
505   T2JumpTables.clear();
506 
507   return MadeChange;
508 }
509 
510 /// Perform the initial placement of the regular constant pool entries.
511 /// To start with, we put them all at the end of the function.
512 void
513 ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) {
514   // Create the basic block to hold the CPE's.
515   MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
516   MF->push_back(BB);
517 
518   // MachineConstantPool measures alignment in bytes.
519   const Align MaxAlign = MCP->getConstantPoolAlign();
520   const unsigned MaxLogAlign = Log2(MaxAlign);
521 
522   // Mark the basic block as required by the const-pool.
523   BB->setAlignment(MaxAlign);
524 
525   // The function needs to be as aligned as the basic blocks. The linker may
526   // move functions around based on their alignment.
527   // Special case: halfword literals still need word alignment on the function.
528   Align FuncAlign = MaxAlign;
529   if (MaxAlign == 2)
530     FuncAlign = Align(4);
531   MF->ensureAlignment(FuncAlign);
532 
533   // Order the entries in BB by descending alignment.  That ensures correct
534   // alignment of all entries as long as BB is sufficiently aligned.  Keep
535   // track of the insertion point for each alignment.  We are going to bucket
536   // sort the entries as they are created.
537   SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxLogAlign + 1,
538                                                        BB->end());
539 
540   // Add all of the constants from the constant pool to the end block, use an
541   // identity mapping of CPI's to CPE's.
542   const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
543 
544   const DataLayout &TD = MF->getDataLayout();
545   for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
546     unsigned Size = CPs[i].getSizeInBytes(TD);
547     Align Alignment = CPs[i].getAlign();
548     // Verify that all constant pool entries are a multiple of their alignment.
549     // If not, we would have to pad them out so that instructions stay aligned.
550     assert(isAligned(Alignment, Size) && "CP Entry not multiple of 4 bytes!");
551 
552     // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
553     unsigned LogAlign = Log2(Alignment);
554     MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
555     MachineInstr *CPEMI =
556       BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
557         .addImm(i).addConstantPoolIndex(i).addImm(Size);
558     CPEMIs.push_back(CPEMI);
559 
560     // Ensure that future entries with higher alignment get inserted before
561     // CPEMI. This is bucket sort with iterators.
562     for (unsigned a = LogAlign + 1; a <= MaxLogAlign; ++a)
563       if (InsPoint[a] == InsAt)
564         InsPoint[a] = CPEMI;
565 
566     // Add a new CPEntry, but no corresponding CPUser yet.
567     CPEntries.emplace_back(1, CPEntry(CPEMI, i));
568     ++NumCPEs;
569     LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
570                       << Size << ", align = " << Alignment.value() << '\n');
571   }
572   LLVM_DEBUG(BB->dump());
573 }
574 
575 /// Do initial placement of the jump tables. Because Thumb2's TBB and TBH
576 /// instructions can be made more efficient if the jump table immediately
577 /// follows the instruction, it's best to place them immediately next to their
578 /// jumps to begin with. In almost all cases they'll never be moved from that
579 /// position.
580 void ARMConstantIslands::doInitialJumpTablePlacement(
581     std::vector<MachineInstr *> &CPEMIs) {
582   unsigned i = CPEntries.size();
583   auto MJTI = MF->getJumpTableInfo();
584   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
585 
586   MachineBasicBlock *LastCorrectlyNumberedBB = nullptr;
587   for (MachineBasicBlock &MBB : *MF) {
588     auto MI = MBB.getLastNonDebugInstr();
589     // Look past potential SpeculationBarriers at end of BB.
590     while (MI != MBB.end() &&
591            (isSpeculationBarrierEndBBOpcode(MI->getOpcode()) ||
592             MI->isDebugInstr()))
593       --MI;
594 
595     if (MI == MBB.end())
596       continue;
597 
598     unsigned JTOpcode;
599     switch (MI->getOpcode()) {
600     default:
601       continue;
602     case ARM::BR_JTadd:
603     case ARM::BR_JTr:
604     case ARM::tBR_JTr:
605     case ARM::BR_JTm_i12:
606     case ARM::BR_JTm_rs:
607       JTOpcode = ARM::JUMPTABLE_ADDRS;
608       break;
609     case ARM::t2BR_JT:
610       JTOpcode = ARM::JUMPTABLE_INSTS;
611       break;
612     case ARM::tTBB_JT:
613     case ARM::t2TBB_JT:
614       JTOpcode = ARM::JUMPTABLE_TBB;
615       break;
616     case ARM::tTBH_JT:
617     case ARM::t2TBH_JT:
618       JTOpcode = ARM::JUMPTABLE_TBH;
619       break;
620     }
621 
622     unsigned NumOps = MI->getDesc().getNumOperands();
623     MachineOperand JTOp =
624       MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1));
625     unsigned JTI = JTOp.getIndex();
626     unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t);
627     MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock();
628     MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB);
629     MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(),
630                                   DebugLoc(), TII->get(JTOpcode))
631                               .addImm(i++)
632                               .addJumpTableIndex(JTI)
633                               .addImm(Size);
634     CPEMIs.push_back(CPEMI);
635     CPEntries.emplace_back(1, CPEntry(CPEMI, JTI));
636     JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1));
637     if (!LastCorrectlyNumberedBB)
638       LastCorrectlyNumberedBB = &MBB;
639   }
640 
641   // If we did anything then we need to renumber the subsequent blocks.
642   if (LastCorrectlyNumberedBB)
643     MF->RenumberBlocks(LastCorrectlyNumberedBB);
644 }
645 
646 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
647 /// into the block immediately after it.
648 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) {
649   // Get the next machine basic block in the function.
650   MachineFunction::iterator MBBI = MBB->getIterator();
651   // Can't fall off end of function.
652   if (std::next(MBBI) == MBB->getParent()->end())
653     return false;
654 
655   MachineBasicBlock *NextBB = &*std::next(MBBI);
656   if (!MBB->isSuccessor(NextBB))
657     return false;
658 
659   // Try to analyze the end of the block. A potential fallthrough may already
660   // have an unconditional branch for whatever reason.
661   MachineBasicBlock *TBB, *FBB;
662   SmallVector<MachineOperand, 4> Cond;
663   bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond);
664   return TooDifficult || FBB == nullptr;
665 }
666 
667 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
668 /// look up the corresponding CPEntry.
669 ARMConstantIslands::CPEntry *
670 ARMConstantIslands::findConstPoolEntry(unsigned CPI,
671                                        const MachineInstr *CPEMI) {
672   std::vector<CPEntry> &CPEs = CPEntries[CPI];
673   // Number of entries per constpool index should be small, just do a
674   // linear search.
675   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
676     if (CPEs[i].CPEMI == CPEMI)
677       return &CPEs[i];
678   }
679   return nullptr;
680 }
681 
682 /// getCPEAlign - Returns the required alignment of the constant pool entry
683 /// represented by CPEMI.
684 Align ARMConstantIslands::getCPEAlign(const MachineInstr *CPEMI) {
685   switch (CPEMI->getOpcode()) {
686   case ARM::CONSTPOOL_ENTRY:
687     break;
688   case ARM::JUMPTABLE_TBB:
689     return isThumb1 ? Align(4) : Align(1);
690   case ARM::JUMPTABLE_TBH:
691     return isThumb1 ? Align(4) : Align(2);
692   case ARM::JUMPTABLE_INSTS:
693     return Align(2);
694   case ARM::JUMPTABLE_ADDRS:
695     return Align(4);
696   default:
697     llvm_unreachable("unknown constpool entry kind");
698   }
699 
700   unsigned CPI = getCombinedIndex(CPEMI);
701   assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
702   return MCP->getConstants()[CPI].getAlign();
703 }
704 
705 /// scanFunctionJumpTables - Do a scan of the function, building up
706 /// information about the sizes of each block and the locations of all
707 /// the jump tables.
708 void ARMConstantIslands::scanFunctionJumpTables() {
709   for (MachineBasicBlock &MBB : *MF) {
710     for (MachineInstr &I : MBB)
711       if (I.isBranch() &&
712           (I.getOpcode() == ARM::t2BR_JT || I.getOpcode() == ARM::tBR_JTr))
713         T2JumpTables.push_back(&I);
714   }
715 }
716 
717 /// initializeFunctionInfo - Do the initial scan of the function, building up
718 /// information about the sizes of each block, the location of all the water,
719 /// and finding all of the constant pool users.
720 void ARMConstantIslands::
721 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
722 
723   BBUtils->computeAllBlockSizes();
724   BBInfoVector &BBInfo = BBUtils->getBBInfo();
725   // The known bits of the entry block offset are determined by the function
726   // alignment.
727   BBInfo.front().KnownBits = Log2(MF->getAlignment());
728 
729   // Compute block offsets and known bits.
730   BBUtils->adjustBBOffsetsAfter(&MF->front());
731 
732   // Now go back through the instructions and build up our data structures.
733   for (MachineBasicBlock &MBB : *MF) {
734     // If this block doesn't fall through into the next MBB, then this is
735     // 'water' that a constant pool island could be placed.
736     if (!BBHasFallthrough(&MBB))
737       WaterList.push_back(&MBB);
738 
739     for (MachineInstr &I : MBB) {
740       if (I.isDebugInstr())
741         continue;
742 
743       unsigned Opc = I.getOpcode();
744       if (I.isBranch()) {
745         bool isCond = false;
746         unsigned Bits = 0;
747         unsigned Scale = 1;
748         int UOpc = Opc;
749         switch (Opc) {
750         default:
751           continue;  // Ignore other JT branches
752         case ARM::t2BR_JT:
753         case ARM::tBR_JTr:
754           T2JumpTables.push_back(&I);
755           continue;   // Does not get an entry in ImmBranches
756         case ARM::Bcc:
757           isCond = true;
758           UOpc = ARM::B;
759           LLVM_FALLTHROUGH;
760         case ARM::B:
761           Bits = 24;
762           Scale = 4;
763           break;
764         case ARM::tBcc:
765           isCond = true;
766           UOpc = ARM::tB;
767           Bits = 8;
768           Scale = 2;
769           break;
770         case ARM::tB:
771           Bits = 11;
772           Scale = 2;
773           break;
774         case ARM::t2Bcc:
775           isCond = true;
776           UOpc = ARM::t2B;
777           Bits = 20;
778           Scale = 2;
779           break;
780         case ARM::t2B:
781           Bits = 24;
782           Scale = 2;
783           break;
784         }
785 
786         // Record this immediate branch.
787         unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
788         ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc));
789       }
790 
791       if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
792         PushPopMIs.push_back(&I);
793 
794       if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS ||
795           Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB ||
796           Opc == ARM::JUMPTABLE_TBH)
797         continue;
798 
799       // Scan the instructions for constant pool operands.
800       for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op)
801         if (I.getOperand(op).isCPI() || I.getOperand(op).isJTI()) {
802           // We found one.  The addressing mode tells us the max displacement
803           // from the PC that this instruction permits.
804 
805           // Basic size info comes from the TSFlags field.
806           unsigned Bits = 0;
807           unsigned Scale = 1;
808           bool NegOk = false;
809           bool IsSoImm = false;
810 
811           switch (Opc) {
812           default:
813             llvm_unreachable("Unknown addressing mode for CP reference!");
814 
815           // Taking the address of a CP entry.
816           case ARM::LEApcrel:
817           case ARM::LEApcrelJT: {
818               // This takes a SoImm, which is 8 bit immediate rotated. We'll
819               // pretend the maximum offset is 255 * 4. Since each instruction
820               // 4 byte wide, this is always correct. We'll check for other
821               // displacements that fits in a SoImm as well.
822               Bits = 8;
823               NegOk = true;
824               IsSoImm = true;
825               unsigned CPI = I.getOperand(op).getIndex();
826               assert(CPI < CPEMIs.size());
827               MachineInstr *CPEMI = CPEMIs[CPI];
828               const Align CPEAlign = getCPEAlign(CPEMI);
829               const unsigned LogCPEAlign = Log2(CPEAlign);
830               if (LogCPEAlign >= 2)
831                 Scale = 4;
832               else
833                 // For constants with less than 4-byte alignment,
834                 // we'll pretend the maximum offset is 255 * 1.
835                 Scale = 1;
836             }
837             break;
838           case ARM::t2LEApcrel:
839           case ARM::t2LEApcrelJT:
840             Bits = 12;
841             NegOk = true;
842             break;
843           case ARM::tLEApcrel:
844           case ARM::tLEApcrelJT:
845             Bits = 8;
846             Scale = 4;
847             break;
848 
849           case ARM::LDRBi12:
850           case ARM::LDRi12:
851           case ARM::LDRcp:
852           case ARM::t2LDRpci:
853           case ARM::t2LDRHpci:
854           case ARM::t2LDRBpci:
855             Bits = 12;  // +-offset_12
856             NegOk = true;
857             break;
858 
859           case ARM::tLDRpci:
860             Bits = 8;
861             Scale = 4;  // +(offset_8*4)
862             break;
863 
864           case ARM::VLDRD:
865           case ARM::VLDRS:
866             Bits = 8;
867             Scale = 4;  // +-(offset_8*4)
868             NegOk = true;
869             break;
870           case ARM::VLDRH:
871             Bits = 8;
872             Scale = 2;  // +-(offset_8*2)
873             NegOk = true;
874             break;
875           }
876 
877           // Remember that this is a user of a CP entry.
878           unsigned CPI = I.getOperand(op).getIndex();
879           if (I.getOperand(op).isJTI()) {
880             JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size()));
881             CPI = JumpTableEntryIndices[CPI];
882           }
883 
884           MachineInstr *CPEMI = CPEMIs[CPI];
885           unsigned MaxOffs = ((1 << Bits)-1) * Scale;
886           CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm));
887 
888           // Increment corresponding CPEntry reference count.
889           CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
890           assert(CPE && "Cannot find a corresponding CPEntry!");
891           CPE->RefCount++;
892 
893           // Instructions can only use one CP entry, don't bother scanning the
894           // rest of the operands.
895           break;
896         }
897     }
898   }
899 }
900 
901 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
902 /// ID.
903 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
904                               const MachineBasicBlock *RHS) {
905   return LHS->getNumber() < RHS->getNumber();
906 }
907 
908 /// updateForInsertedWaterBlock - When a block is newly inserted into the
909 /// machine function, it upsets all of the block numbers.  Renumber the blocks
910 /// and update the arrays that parallel this numbering.
911 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
912   // Renumber the MBB's to keep them consecutive.
913   NewBB->getParent()->RenumberBlocks(NewBB);
914 
915   // Insert an entry into BBInfo to align it properly with the (newly
916   // renumbered) block numbers.
917   BBUtils->insert(NewBB->getNumber(), BasicBlockInfo());
918 
919   // Next, update WaterList.  Specifically, we need to add NewMBB as having
920   // available water after it.
921   water_iterator IP = llvm::lower_bound(WaterList, NewBB, CompareMBBNumbers);
922   WaterList.insert(IP, NewBB);
923 }
924 
925 /// Split the basic block containing MI into two blocks, which are joined by
926 /// an unconditional branch.  Update data structures and renumber blocks to
927 /// account for this change and returns the newly created block.
928 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) {
929   MachineBasicBlock *OrigBB = MI->getParent();
930 
931   // Collect liveness information at MI.
932   LivePhysRegs LRs(*MF->getSubtarget().getRegisterInfo());
933   LRs.addLiveOuts(*OrigBB);
934   auto LivenessEnd = ++MachineBasicBlock::iterator(MI).getReverse();
935   for (MachineInstr &LiveMI : make_range(OrigBB->rbegin(), LivenessEnd))
936     LRs.stepBackward(LiveMI);
937 
938   // Create a new MBB for the code after the OrigBB.
939   MachineBasicBlock *NewBB =
940     MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
941   MachineFunction::iterator MBBI = ++OrigBB->getIterator();
942   MF->insert(MBBI, NewBB);
943 
944   // Splice the instructions starting with MI over to NewBB.
945   NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
946 
947   // Add an unconditional branch from OrigBB to NewBB.
948   // Note the new unconditional branch is not being recorded.
949   // There doesn't seem to be meaningful DebugInfo available; this doesn't
950   // correspond to anything in the source.
951   unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
952   if (!isThumb)
953     BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB);
954   else
955     BuildMI(OrigBB, DebugLoc(), TII->get(Opc))
956         .addMBB(NewBB)
957         .add(predOps(ARMCC::AL));
958   ++NumSplit;
959 
960   // Update the CFG.  All succs of OrigBB are now succs of NewBB.
961   NewBB->transferSuccessors(OrigBB);
962 
963   // OrigBB branches to NewBB.
964   OrigBB->addSuccessor(NewBB);
965 
966   // Update live-in information in the new block.
967   MachineRegisterInfo &MRI = MF->getRegInfo();
968   for (MCPhysReg L : LRs)
969     if (!MRI.isReserved(L))
970       NewBB->addLiveIn(L);
971 
972   // Update internal data structures to account for the newly inserted MBB.
973   // This is almost the same as updateForInsertedWaterBlock, except that
974   // the Water goes after OrigBB, not NewBB.
975   MF->RenumberBlocks(NewBB);
976 
977   // Insert an entry into BBInfo to align it properly with the (newly
978   // renumbered) block numbers.
979   BBUtils->insert(NewBB->getNumber(), BasicBlockInfo());
980 
981   // Next, update WaterList.  Specifically, we need to add OrigMBB as having
982   // available water after it (but not if it's already there, which happens
983   // when splitting before a conditional branch that is followed by an
984   // unconditional branch - in that case we want to insert NewBB).
985   water_iterator IP = llvm::lower_bound(WaterList, OrigBB, CompareMBBNumbers);
986   MachineBasicBlock* WaterBB = *IP;
987   if (WaterBB == OrigBB)
988     WaterList.insert(std::next(IP), NewBB);
989   else
990     WaterList.insert(IP, OrigBB);
991   NewWaterList.insert(OrigBB);
992 
993   // Figure out how large the OrigBB is.  As the first half of the original
994   // block, it cannot contain a tablejump.  The size includes
995   // the new jump we added.  (It should be possible to do this without
996   // recounting everything, but it's very confusing, and this is rarely
997   // executed.)
998   BBUtils->computeBlockSize(OrigBB);
999 
1000   // Figure out how large the NewMBB is.  As the second half of the original
1001   // block, it may contain a tablejump.
1002   BBUtils->computeBlockSize(NewBB);
1003 
1004   // All BBOffsets following these blocks must be modified.
1005   BBUtils->adjustBBOffsetsAfter(OrigBB);
1006 
1007   return NewBB;
1008 }
1009 
1010 /// getUserOffset - Compute the offset of U.MI as seen by the hardware
1011 /// displacement computation.  Update U.KnownAlignment to match its current
1012 /// basic block location.
1013 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const {
1014   unsigned UserOffset = BBUtils->getOffsetOf(U.MI);
1015 
1016   SmallVectorImpl<BasicBlockInfo> &BBInfo = BBUtils->getBBInfo();
1017   const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()];
1018   unsigned KnownBits = BBI.internalKnownBits();
1019 
1020   // The value read from PC is offset from the actual instruction address.
1021   UserOffset += (isThumb ? 4 : 8);
1022 
1023   // Because of inline assembly, we may not know the alignment (mod 4) of U.MI.
1024   // Make sure U.getMaxDisp() returns a constrained range.
1025   U.KnownAlignment = (KnownBits >= 2);
1026 
1027   // On Thumb, offsets==2 mod 4 are rounded down by the hardware for
1028   // purposes of the displacement computation; compensate for that here.
1029   // For unknown alignments, getMaxDisp() constrains the range instead.
1030   if (isThumb && U.KnownAlignment)
1031     UserOffset &= ~3u;
1032 
1033   return UserOffset;
1034 }
1035 
1036 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
1037 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
1038 /// constant pool entry).
1039 /// UserOffset is computed by getUserOffset above to include PC adjustments. If
1040 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be
1041 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that.
1042 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset,
1043                                          unsigned TrialOffset, unsigned MaxDisp,
1044                                          bool NegativeOK, bool IsSoImm) {
1045   if (UserOffset <= TrialOffset) {
1046     // User before the Trial.
1047     if (TrialOffset - UserOffset <= MaxDisp)
1048       return true;
1049     // FIXME: Make use full range of soimm values.
1050   } else if (NegativeOK) {
1051     if (UserOffset - TrialOffset <= MaxDisp)
1052       return true;
1053     // FIXME: Make use full range of soimm values.
1054   }
1055   return false;
1056 }
1057 
1058 /// isWaterInRange - Returns true if a CPE placed after the specified
1059 /// Water (a basic block) will be in range for the specific MI.
1060 ///
1061 /// Compute how much the function will grow by inserting a CPE after Water.
1062 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset,
1063                                         MachineBasicBlock* Water, CPUser &U,
1064                                         unsigned &Growth) {
1065   BBInfoVector &BBInfo = BBUtils->getBBInfo();
1066   const Align CPEAlign = getCPEAlign(U.CPEMI);
1067   const unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPEAlign);
1068   unsigned NextBlockOffset;
1069   Align NextBlockAlignment;
1070   MachineFunction::const_iterator NextBlock = Water->getIterator();
1071   if (++NextBlock == MF->end()) {
1072     NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
1073   } else {
1074     NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
1075     NextBlockAlignment = NextBlock->getAlignment();
1076   }
1077   unsigned Size = U.CPEMI->getOperand(2).getImm();
1078   unsigned CPEEnd = CPEOffset + Size;
1079 
1080   // The CPE may be able to hide in the alignment padding before the next
1081   // block. It may also cause more padding to be required if it is more aligned
1082   // that the next block.
1083   if (CPEEnd > NextBlockOffset) {
1084     Growth = CPEEnd - NextBlockOffset;
1085     // Compute the padding that would go at the end of the CPE to align the next
1086     // block.
1087     Growth += offsetToAlignment(CPEEnd, NextBlockAlignment);
1088 
1089     // If the CPE is to be inserted before the instruction, that will raise
1090     // the offset of the instruction. Also account for unknown alignment padding
1091     // in blocks between CPE and the user.
1092     if (CPEOffset < UserOffset)
1093       UserOffset += Growth + UnknownPadding(MF->getAlignment(), Log2(CPEAlign));
1094   } else
1095     // CPE fits in existing padding.
1096     Growth = 0;
1097 
1098   return isOffsetInRange(UserOffset, CPEOffset, U);
1099 }
1100 
1101 /// isCPEntryInRange - Returns true if the distance between specific MI and
1102 /// specific ConstPool entry instruction can fit in MI's displacement field.
1103 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
1104                                       MachineInstr *CPEMI, unsigned MaxDisp,
1105                                       bool NegOk, bool DoDump) {
1106   unsigned CPEOffset = BBUtils->getOffsetOf(CPEMI);
1107 
1108   if (DoDump) {
1109     LLVM_DEBUG({
1110         BBInfoVector &BBInfo = BBUtils->getBBInfo();
1111       unsigned Block = MI->getParent()->getNumber();
1112       const BasicBlockInfo &BBI = BBInfo[Block];
1113       dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
1114              << " max delta=" << MaxDisp
1115              << format(" insn address=%#x", UserOffset) << " in "
1116              << printMBBReference(*MI->getParent()) << ": "
1117              << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
1118              << format("CPE address=%#x offset=%+d: ", CPEOffset,
1119                        int(CPEOffset - UserOffset));
1120     });
1121   }
1122 
1123   return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
1124 }
1125 
1126 #ifndef NDEBUG
1127 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
1128 /// unconditionally branches to its only successor.
1129 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
1130   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
1131     return false;
1132 
1133   MachineBasicBlock *Succ = *MBB->succ_begin();
1134   MachineBasicBlock *Pred = *MBB->pred_begin();
1135   MachineInstr *PredMI = &Pred->back();
1136   if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
1137       || PredMI->getOpcode() == ARM::t2B)
1138     return PredMI->getOperand(0).getMBB() == Succ;
1139   return false;
1140 }
1141 #endif // NDEBUG
1142 
1143 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
1144 /// and instruction CPEMI, and decrement its refcount.  If the refcount
1145 /// becomes 0 remove the entry and instruction.  Returns true if we removed
1146 /// the entry, false if we didn't.
1147 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI,
1148                                                     MachineInstr *CPEMI) {
1149   // Find the old entry. Eliminate it if it is no longer used.
1150   CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
1151   assert(CPE && "Unexpected!");
1152   if (--CPE->RefCount == 0) {
1153     removeDeadCPEMI(CPEMI);
1154     CPE->CPEMI = nullptr;
1155     --NumCPEs;
1156     return true;
1157   }
1158   return false;
1159 }
1160 
1161 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) {
1162   if (CPEMI->getOperand(1).isCPI())
1163     return CPEMI->getOperand(1).getIndex();
1164 
1165   return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()];
1166 }
1167 
1168 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
1169 /// if not, see if an in-range clone of the CPE is in range, and if so,
1170 /// change the data structures so the user references the clone.  Returns:
1171 /// 0 = no existing entry found
1172 /// 1 = entry found, and there were no code insertions or deletions
1173 /// 2 = entry found, and there were code insertions or deletions
1174 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) {
1175   MachineInstr *UserMI = U.MI;
1176   MachineInstr *CPEMI  = U.CPEMI;
1177 
1178   // Check to see if the CPE is already in-range.
1179   if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
1180                        true)) {
1181     LLVM_DEBUG(dbgs() << "In range\n");
1182     return 1;
1183   }
1184 
1185   // No.  Look for previously created clones of the CPE that are in range.
1186   unsigned CPI = getCombinedIndex(CPEMI);
1187   std::vector<CPEntry> &CPEs = CPEntries[CPI];
1188   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
1189     // We already tried this one
1190     if (CPEs[i].CPEMI == CPEMI)
1191       continue;
1192     // Removing CPEs can leave empty entries, skip
1193     if (CPEs[i].CPEMI == nullptr)
1194       continue;
1195     if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
1196                      U.NegOk)) {
1197       LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
1198                         << CPEs[i].CPI << "\n");
1199       // Point the CPUser node to the replacement
1200       U.CPEMI = CPEs[i].CPEMI;
1201       // Change the CPI in the instruction operand to refer to the clone.
1202       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
1203         if (UserMI->getOperand(j).isCPI()) {
1204           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
1205           break;
1206         }
1207       // Adjust the refcount of the clone...
1208       CPEs[i].RefCount++;
1209       // ...and the original.  If we didn't remove the old entry, none of the
1210       // addresses changed, so we don't need another pass.
1211       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
1212     }
1213   }
1214   return 0;
1215 }
1216 
1217 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
1218 /// the specific unconditional branch instruction.
1219 static inline unsigned getUnconditionalBrDisp(int Opc) {
1220   switch (Opc) {
1221   case ARM::tB:
1222     return ((1<<10)-1)*2;
1223   case ARM::t2B:
1224     return ((1<<23)-1)*2;
1225   default:
1226     break;
1227   }
1228 
1229   return ((1<<23)-1)*4;
1230 }
1231 
1232 /// findAvailableWater - Look for an existing entry in the WaterList in which
1233 /// we can place the CPE referenced from U so it's within range of U's MI.
1234 /// Returns true if found, false if not.  If it returns true, WaterIter
1235 /// is set to the WaterList entry.  For Thumb, prefer water that will not
1236 /// introduce padding to water that will.  To ensure that this pass
1237 /// terminates, the CPE location for a particular CPUser is only allowed to
1238 /// move to a lower address, so search backward from the end of the list and
1239 /// prefer the first water that is in range.
1240 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
1241                                             water_iterator &WaterIter,
1242                                             bool CloserWater) {
1243   if (WaterList.empty())
1244     return false;
1245 
1246   unsigned BestGrowth = ~0u;
1247   // The nearest water without splitting the UserBB is right after it.
1248   // If the distance is still large (we have a big BB), then we need to split it
1249   // if we don't converge after certain iterations. This helps the following
1250   // situation to converge:
1251   //   BB0:
1252   //      Big BB
1253   //   BB1:
1254   //      Constant Pool
1255   // When a CP access is out of range, BB0 may be used as water. However,
1256   // inserting islands between BB0 and BB1 makes other accesses out of range.
1257   MachineBasicBlock *UserBB = U.MI->getParent();
1258   BBInfoVector &BBInfo = BBUtils->getBBInfo();
1259   const Align CPEAlign = getCPEAlign(U.CPEMI);
1260   unsigned MinNoSplitDisp = BBInfo[UserBB->getNumber()].postOffset(CPEAlign);
1261   if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2)
1262     return false;
1263   for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
1264        --IP) {
1265     MachineBasicBlock* WaterBB = *IP;
1266     // Check if water is in range and is either at a lower address than the
1267     // current "high water mark" or a new water block that was created since
1268     // the previous iteration by inserting an unconditional branch.  In the
1269     // latter case, we want to allow resetting the high water mark back to
1270     // this new water since we haven't seen it before.  Inserting branches
1271     // should be relatively uncommon and when it does happen, we want to be
1272     // sure to take advantage of it for all the CPEs near that block, so that
1273     // we don't insert more branches than necessary.
1274     // When CloserWater is true, we try to find the lowest address after (or
1275     // equal to) user MI's BB no matter of padding growth.
1276     unsigned Growth;
1277     if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
1278         (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
1279          NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) &&
1280         Growth < BestGrowth) {
1281       // This is the least amount of required padding seen so far.
1282       BestGrowth = Growth;
1283       WaterIter = IP;
1284       LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB)
1285                         << " Growth=" << Growth << '\n');
1286 
1287       if (CloserWater && WaterBB == U.MI->getParent())
1288         return true;
1289       // Keep looking unless it is perfect and we're not looking for the lowest
1290       // possible address.
1291       if (!CloserWater && BestGrowth == 0)
1292         return true;
1293     }
1294     if (IP == B)
1295       break;
1296   }
1297   return BestGrowth != ~0u;
1298 }
1299 
1300 /// createNewWater - No existing WaterList entry will work for
1301 /// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
1302 /// block is used if in range, and the conditional branch munged so control
1303 /// flow is correct.  Otherwise the block is split to create a hole with an
1304 /// unconditional branch around it.  In either case NewMBB is set to a
1305 /// block following which the new island can be inserted (the WaterList
1306 /// is not adjusted).
1307 void ARMConstantIslands::createNewWater(unsigned CPUserIndex,
1308                                         unsigned UserOffset,
1309                                         MachineBasicBlock *&NewMBB) {
1310   CPUser &U = CPUsers[CPUserIndex];
1311   MachineInstr *UserMI = U.MI;
1312   MachineInstr *CPEMI  = U.CPEMI;
1313   const Align CPEAlign = getCPEAlign(CPEMI);
1314   MachineBasicBlock *UserMBB = UserMI->getParent();
1315   BBInfoVector &BBInfo = BBUtils->getBBInfo();
1316   const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
1317 
1318   // If the block does not end in an unconditional branch already, and if the
1319   // end of the block is within range, make new water there.  (The addition
1320   // below is for the unconditional branch we will be adding: 4 bytes on ARM +
1321   // Thumb2, 2 on Thumb1.
1322   if (BBHasFallthrough(UserMBB)) {
1323     // Size of branch to insert.
1324     unsigned Delta = isThumb1 ? 2 : 4;
1325     // Compute the offset where the CPE will begin.
1326     unsigned CPEOffset = UserBBI.postOffset(CPEAlign) + Delta;
1327 
1328     if (isOffsetInRange(UserOffset, CPEOffset, U)) {
1329       LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB)
1330                         << format(", expected CPE offset %#x\n", CPEOffset));
1331       NewMBB = &*++UserMBB->getIterator();
1332       // Add an unconditional branch from UserMBB to fallthrough block.  Record
1333       // it for branch lengthening; this new branch will not get out of range,
1334       // but if the preceding conditional branch is out of range, the targets
1335       // will be exchanged, and the altered branch may be out of range, so the
1336       // machinery has to know about it.
1337       int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
1338       if (!isThumb)
1339         BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
1340       else
1341         BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr))
1342             .addMBB(NewMBB)
1343             .add(predOps(ARMCC::AL));
1344       unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1345       ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1346                                       MaxDisp, false, UncondBr));
1347       BBUtils->computeBlockSize(UserMBB);
1348       BBUtils->adjustBBOffsetsAfter(UserMBB);
1349       return;
1350     }
1351   }
1352 
1353   // What a big block.  Find a place within the block to split it.  This is a
1354   // little tricky on Thumb1 since instructions are 2 bytes and constant pool
1355   // entries are 4 bytes: if instruction I references island CPE, and
1356   // instruction I+1 references CPE', it will not work well to put CPE as far
1357   // forward as possible, since then CPE' cannot immediately follow it (that
1358   // location is 2 bytes farther away from I+1 than CPE was from I) and we'd
1359   // need to create a new island.  So, we make a first guess, then walk through
1360   // the instructions between the one currently being looked at and the
1361   // possible insertion point, and make sure any other instructions that
1362   // reference CPEs will be able to use the same island area; if not, we back
1363   // up the insertion point.
1364 
1365   // Try to split the block so it's fully aligned.  Compute the latest split
1366   // point where we can add a 4-byte branch instruction, and then align to
1367   // Align which is the largest possible alignment in the function.
1368   const Align Align = MF->getAlignment();
1369   assert(Align >= CPEAlign && "Over-aligned constant pool entry");
1370   unsigned KnownBits = UserBBI.internalKnownBits();
1371   unsigned UPad = UnknownPadding(Align, KnownBits);
1372   unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad;
1373   LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x",
1374                               BaseInsertOffset));
1375 
1376   // The 4 in the following is for the unconditional branch we'll be inserting
1377   // (allows for long branch on Thumb1).  Alignment of the island is handled
1378   // inside isOffsetInRange.
1379   BaseInsertOffset -= 4;
1380 
1381   LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
1382                     << " la=" << Log2(Align) << " kb=" << KnownBits
1383                     << " up=" << UPad << '\n');
1384 
1385   // This could point off the end of the block if we've already got constant
1386   // pool entries following this block; only the last one is in the water list.
1387   // Back past any possible branches (allow for a conditional and a maximally
1388   // long unconditional).
1389   if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
1390     // Ensure BaseInsertOffset is larger than the offset of the instruction
1391     // following UserMI so that the loop which searches for the split point
1392     // iterates at least once.
1393     BaseInsertOffset =
1394         std::max(UserBBI.postOffset() - UPad - 8,
1395                  UserOffset + TII->getInstSizeInBytes(*UserMI) + 1);
1396     // If the CP is referenced(ie, UserOffset) is in first four instructions
1397     // after IT, this recalculated BaseInsertOffset could be in the middle of
1398     // an IT block. If it is, change the BaseInsertOffset to just after the
1399     // IT block. This still make the CP Entry is in range becuase of the
1400     // following reasons.
1401     //   1. The initial BaseseInsertOffset calculated is (UserOffset +
1402     //   U.getMaxDisp() - UPad).
1403     //   2. An IT block is only at most 4 instructions plus the "it" itself (18
1404     //   bytes).
1405     //   3. All the relevant instructions support much larger Maximum
1406     //   displacement.
1407     MachineBasicBlock::iterator I = UserMI;
1408     ++I;
1409     Register PredReg;
1410     for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI);
1411          I->getOpcode() != ARM::t2IT &&
1412          getITInstrPredicate(*I, PredReg) != ARMCC::AL;
1413          Offset += TII->getInstSizeInBytes(*I), I = std::next(I)) {
1414       BaseInsertOffset =
1415           std::max(BaseInsertOffset, Offset + TII->getInstSizeInBytes(*I) + 1);
1416       assert(I != UserMBB->end() && "Fell off end of block");
1417     }
1418     LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
1419   }
1420   unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad +
1421     CPEMI->getOperand(2).getImm();
1422   MachineBasicBlock::iterator MI = UserMI;
1423   ++MI;
1424   unsigned CPUIndex = CPUserIndex+1;
1425   unsigned NumCPUsers = CPUsers.size();
1426   MachineInstr *LastIT = nullptr;
1427   for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI);
1428        Offset < BaseInsertOffset;
1429        Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) {
1430     assert(MI != UserMBB->end() && "Fell off end of block");
1431     if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) {
1432       CPUser &U = CPUsers[CPUIndex];
1433       if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
1434         // Shift intertion point by one unit of alignment so it is within reach.
1435         BaseInsertOffset -= Align.value();
1436         EndInsertOffset -= Align.value();
1437       }
1438       // This is overly conservative, as we don't account for CPEMIs being
1439       // reused within the block, but it doesn't matter much.  Also assume CPEs
1440       // are added in order with alignment padding.  We may eventually be able
1441       // to pack the aligned CPEs better.
1442       EndInsertOffset += U.CPEMI->getOperand(2).getImm();
1443       CPUIndex++;
1444     }
1445 
1446     // Remember the last IT instruction.
1447     if (MI->getOpcode() == ARM::t2IT)
1448       LastIT = &*MI;
1449   }
1450 
1451   --MI;
1452 
1453   // Avoid splitting an IT block.
1454   if (LastIT) {
1455     Register PredReg;
1456     ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg);
1457     if (CC != ARMCC::AL)
1458       MI = LastIT;
1459   }
1460 
1461   // Avoid splitting a MOVW+MOVT pair with a relocation on Windows.
1462   // On Windows, this instruction pair is covered by one single
1463   // IMAGE_REL_ARM_MOV32T relocation which covers both instructions. If a
1464   // constant island is injected inbetween them, the relocation will clobber
1465   // the instruction and fail to update the MOVT instruction.
1466   // (These instructions are bundled up until right before the ConstantIslands
1467   // pass.)
1468   if (STI->isTargetWindows() && isThumb && MI->getOpcode() == ARM::t2MOVTi16 &&
1469       (MI->getOperand(2).getTargetFlags() & ARMII::MO_OPTION_MASK) ==
1470           ARMII::MO_HI16) {
1471     --MI;
1472     assert(MI->getOpcode() == ARM::t2MOVi16 &&
1473            (MI->getOperand(1).getTargetFlags() & ARMII::MO_OPTION_MASK) ==
1474                ARMII::MO_LO16);
1475   }
1476 
1477   // We really must not split an IT block.
1478 #ifndef NDEBUG
1479   Register PredReg;
1480   assert(!isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL);
1481 #endif
1482   NewMBB = splitBlockBeforeInstr(&*MI);
1483 }
1484 
1485 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
1486 /// is out-of-range.  If so, pick up the constant pool value and move it some
1487 /// place in-range.  Return true if we changed any addresses (thus must run
1488 /// another pass of branch lengthening), false otherwise.
1489 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex,
1490                                                 bool CloserWater) {
1491   CPUser &U = CPUsers[CPUserIndex];
1492   MachineInstr *UserMI = U.MI;
1493   MachineInstr *CPEMI  = U.CPEMI;
1494   unsigned CPI = getCombinedIndex(CPEMI);
1495   unsigned Size = CPEMI->getOperand(2).getImm();
1496   // Compute this only once, it's expensive.
1497   unsigned UserOffset = getUserOffset(U);
1498 
1499   // See if the current entry is within range, or there is a clone of it
1500   // in range.
1501   int result = findInRangeCPEntry(U, UserOffset);
1502   if (result==1) return false;
1503   else if (result==2) return true;
1504 
1505   // No existing clone of this CPE is within range.
1506   // We will be generating a new clone.  Get a UID for it.
1507   unsigned ID = AFI->createPICLabelUId();
1508 
1509   // Look for water where we can place this CPE.
1510   MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
1511   MachineBasicBlock *NewMBB;
1512   water_iterator IP;
1513   if (findAvailableWater(U, UserOffset, IP, CloserWater)) {
1514     LLVM_DEBUG(dbgs() << "Found water in range\n");
1515     MachineBasicBlock *WaterBB = *IP;
1516 
1517     // If the original WaterList entry was "new water" on this iteration,
1518     // propagate that to the new island.  This is just keeping NewWaterList
1519     // updated to match the WaterList, which will be updated below.
1520     if (NewWaterList.erase(WaterBB))
1521       NewWaterList.insert(NewIsland);
1522 
1523     // The new CPE goes before the following block (NewMBB).
1524     NewMBB = &*++WaterBB->getIterator();
1525   } else {
1526     // No water found.
1527     LLVM_DEBUG(dbgs() << "No water found\n");
1528     createNewWater(CPUserIndex, UserOffset, NewMBB);
1529 
1530     // splitBlockBeforeInstr adds to WaterList, which is important when it is
1531     // called while handling branches so that the water will be seen on the
1532     // next iteration for constant pools, but in this context, we don't want
1533     // it.  Check for this so it will be removed from the WaterList.
1534     // Also remove any entry from NewWaterList.
1535     MachineBasicBlock *WaterBB = &*--NewMBB->getIterator();
1536     IP = find(WaterList, WaterBB);
1537     if (IP != WaterList.end())
1538       NewWaterList.erase(WaterBB);
1539 
1540     // We are adding new water.  Update NewWaterList.
1541     NewWaterList.insert(NewIsland);
1542   }
1543   // Always align the new block because CP entries can be smaller than 4
1544   // bytes. Be careful not to decrease the existing alignment, e.g. NewMBB may
1545   // be an already aligned constant pool block.
1546   const Align Alignment = isThumb ? Align(2) : Align(4);
1547   if (NewMBB->getAlignment() < Alignment)
1548     NewMBB->setAlignment(Alignment);
1549 
1550   // Remove the original WaterList entry; we want subsequent insertions in
1551   // this vicinity to go after the one we're about to insert.  This
1552   // considerably reduces the number of times we have to move the same CPE
1553   // more than once and is also important to ensure the algorithm terminates.
1554   if (IP != WaterList.end())
1555     WaterList.erase(IP);
1556 
1557   // Okay, we know we can put an island before NewMBB now, do it!
1558   MF->insert(NewMBB->getIterator(), NewIsland);
1559 
1560   // Update internal data structures to account for the newly inserted MBB.
1561   updateForInsertedWaterBlock(NewIsland);
1562 
1563   // Now that we have an island to add the CPE to, clone the original CPE and
1564   // add it to the island.
1565   U.HighWaterMark = NewIsland;
1566   U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc())
1567                 .addImm(ID)
1568                 .add(CPEMI->getOperand(1))
1569                 .addImm(Size);
1570   CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1571   ++NumCPEs;
1572 
1573   // Decrement the old entry, and remove it if refcount becomes 0.
1574   decrementCPEReferenceCount(CPI, CPEMI);
1575 
1576   // Mark the basic block as aligned as required by the const-pool entry.
1577   NewIsland->setAlignment(getCPEAlign(U.CPEMI));
1578 
1579   // Increase the size of the island block to account for the new entry.
1580   BBUtils->adjustBBSize(NewIsland, Size);
1581   BBUtils->adjustBBOffsetsAfter(&*--NewIsland->getIterator());
1582 
1583   // Finally, change the CPI in the instruction operand to be ID.
1584   for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1585     if (UserMI->getOperand(i).isCPI()) {
1586       UserMI->getOperand(i).setIndex(ID);
1587       break;
1588     }
1589 
1590   LLVM_DEBUG(
1591       dbgs() << "  Moved CPE to #" << ID << " CPI=" << CPI
1592              << format(" offset=%#x\n",
1593                        BBUtils->getBBInfo()[NewIsland->getNumber()].Offset));
1594 
1595   return true;
1596 }
1597 
1598 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
1599 /// sizes and offsets of impacted basic blocks.
1600 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
1601   MachineBasicBlock *CPEBB = CPEMI->getParent();
1602   unsigned Size = CPEMI->getOperand(2).getImm();
1603   CPEMI->eraseFromParent();
1604   BBInfoVector &BBInfo = BBUtils->getBBInfo();
1605   BBUtils->adjustBBSize(CPEBB, -Size);
1606   // All succeeding offsets have the current size value added in, fix this.
1607   if (CPEBB->empty()) {
1608     BBInfo[CPEBB->getNumber()].Size = 0;
1609 
1610     // This block no longer needs to be aligned.
1611     CPEBB->setAlignment(Align(1));
1612   } else {
1613     // Entries are sorted by descending alignment, so realign from the front.
1614     CPEBB->setAlignment(getCPEAlign(&*CPEBB->begin()));
1615   }
1616 
1617   BBUtils->adjustBBOffsetsAfter(CPEBB);
1618   // An island has only one predecessor BB and one successor BB. Check if
1619   // this BB's predecessor jumps directly to this BB's successor. This
1620   // shouldn't happen currently.
1621   assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1622   // FIXME: remove the empty blocks after all the work is done?
1623 }
1624 
1625 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
1626 /// are zero.
1627 bool ARMConstantIslands::removeUnusedCPEntries() {
1628   unsigned MadeChange = false;
1629   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1630       std::vector<CPEntry> &CPEs = CPEntries[i];
1631       for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1632         if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1633           removeDeadCPEMI(CPEs[j].CPEMI);
1634           CPEs[j].CPEMI = nullptr;
1635           MadeChange = true;
1636         }
1637       }
1638   }
1639   return MadeChange;
1640 }
1641 
1642 
1643 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
1644 /// away to fit in its displacement field.
1645 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) {
1646   MachineInstr *MI = Br.MI;
1647   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1648 
1649   // Check to see if the DestBB is already in-range.
1650   if (BBUtils->isBBInRange(MI, DestBB, Br.MaxDisp))
1651     return false;
1652 
1653   if (!Br.isCond)
1654     return fixupUnconditionalBr(Br);
1655   return fixupConditionalBr(Br);
1656 }
1657 
1658 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
1659 /// too far away to fit in its displacement field. If the LR register has been
1660 /// spilled in the epilogue, then we can use BL to implement a far jump.
1661 /// Otherwise, add an intermediate branch instruction to a branch.
1662 bool
1663 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
1664   MachineInstr *MI = Br.MI;
1665   MachineBasicBlock *MBB = MI->getParent();
1666   if (!isThumb1)
1667     llvm_unreachable("fixupUnconditionalBr is Thumb1 only!");
1668 
1669   if (!AFI->isLRSpilled())
1670     report_fatal_error("underestimated function size");
1671 
1672   // Use BL to implement far jump.
1673   Br.MaxDisp = (1 << 21) * 2;
1674   MI->setDesc(TII->get(ARM::tBfar));
1675   BBInfoVector &BBInfo = BBUtils->getBBInfo();
1676   BBInfo[MBB->getNumber()].Size += 2;
1677   BBUtils->adjustBBOffsetsAfter(MBB);
1678   ++NumUBrFixed;
1679 
1680   LLVM_DEBUG(dbgs() << "  Changed B to long jump " << *MI);
1681 
1682   return true;
1683 }
1684 
1685 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
1686 /// far away to fit in its displacement field. It is converted to an inverse
1687 /// conditional branch + an unconditional branch to the destination.
1688 bool
1689 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) {
1690   MachineInstr *MI = Br.MI;
1691   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1692 
1693   // Add an unconditional branch to the destination and invert the branch
1694   // condition to jump over it:
1695   // blt L1
1696   // =>
1697   // bge L2
1698   // b   L1
1699   // L2:
1700   ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
1701   CC = ARMCC::getOppositeCondition(CC);
1702   Register CCReg = MI->getOperand(2).getReg();
1703 
1704   // If the branch is at the end of its MBB and that has a fall-through block,
1705   // direct the updated conditional branch to the fall-through block. Otherwise,
1706   // split the MBB before the next instruction.
1707   MachineBasicBlock *MBB = MI->getParent();
1708   MachineInstr *BMI = &MBB->back();
1709   bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1710 
1711   ++NumCBrFixed;
1712   if (BMI != MI) {
1713     if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
1714         BMI->getOpcode() == Br.UncondBr) {
1715       // Last MI in the BB is an unconditional branch. Can we simply invert the
1716       // condition and swap destinations:
1717       // beq L1
1718       // b   L2
1719       // =>
1720       // bne L2
1721       // b   L1
1722       MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
1723       if (BBUtils->isBBInRange(MI, NewDest, Br.MaxDisp)) {
1724         LLVM_DEBUG(
1725             dbgs() << "  Invert Bcc condition and swap its destination with "
1726                    << *BMI);
1727         BMI->getOperand(0).setMBB(DestBB);
1728         MI->getOperand(0).setMBB(NewDest);
1729         MI->getOperand(1).setImm(CC);
1730         return true;
1731       }
1732     }
1733   }
1734 
1735   if (NeedSplit) {
1736     splitBlockBeforeInstr(MI);
1737     // No need for the branch to the next block. We're adding an unconditional
1738     // branch to the destination.
1739     int delta = TII->getInstSizeInBytes(MBB->back());
1740     BBUtils->adjustBBSize(MBB, -delta);
1741     MBB->back().eraseFromParent();
1742 
1743     // The conditional successor will be swapped between the BBs after this, so
1744     // update CFG.
1745     MBB->addSuccessor(DestBB);
1746     std::next(MBB->getIterator())->removeSuccessor(DestBB);
1747 
1748     // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
1749   }
1750   MachineBasicBlock *NextBB = &*++MBB->getIterator();
1751 
1752   LLVM_DEBUG(dbgs() << "  Insert B to " << printMBBReference(*DestBB)
1753                     << " also invert condition and change dest. to "
1754                     << printMBBReference(*NextBB) << "\n");
1755 
1756   // Insert a new conditional branch and a new unconditional branch.
1757   // Also update the ImmBranch as well as adding a new entry for the new branch.
1758   BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
1759     .addMBB(NextBB).addImm(CC).addReg(CCReg);
1760   Br.MI = &MBB->back();
1761   BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back()));
1762   if (isThumb)
1763     BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr))
1764         .addMBB(DestBB)
1765         .add(predOps(ARMCC::AL));
1766   else
1767     BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1768   BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back()));
1769   unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1770   ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1771 
1772   // Remove the old conditional branch.  It may or may not still be in MBB.
1773   BBUtils->adjustBBSize(MI->getParent(), -TII->getInstSizeInBytes(*MI));
1774   MI->eraseFromParent();
1775   BBUtils->adjustBBOffsetsAfter(MBB);
1776   return true;
1777 }
1778 
1779 bool ARMConstantIslands::optimizeThumb2Instructions() {
1780   bool MadeChange = false;
1781 
1782   // Shrink ADR and LDR from constantpool.
1783   for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
1784     CPUser &U = CPUsers[i];
1785     unsigned Opcode = U.MI->getOpcode();
1786     unsigned NewOpc = 0;
1787     unsigned Scale = 1;
1788     unsigned Bits = 0;
1789     switch (Opcode) {
1790     default: break;
1791     case ARM::t2LEApcrel:
1792       if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1793         NewOpc = ARM::tLEApcrel;
1794         Bits = 8;
1795         Scale = 4;
1796       }
1797       break;
1798     case ARM::t2LDRpci:
1799       if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1800         NewOpc = ARM::tLDRpci;
1801         Bits = 8;
1802         Scale = 4;
1803       }
1804       break;
1805     }
1806 
1807     if (!NewOpc)
1808       continue;
1809 
1810     unsigned UserOffset = getUserOffset(U);
1811     unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
1812 
1813     // Be conservative with inline asm.
1814     if (!U.KnownAlignment)
1815       MaxOffs -= 2;
1816 
1817     // FIXME: Check if offset is multiple of scale if scale is not 4.
1818     if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
1819       LLVM_DEBUG(dbgs() << "Shrink: " << *U.MI);
1820       U.MI->setDesc(TII->get(NewOpc));
1821       MachineBasicBlock *MBB = U.MI->getParent();
1822       BBUtils->adjustBBSize(MBB, -2);
1823       BBUtils->adjustBBOffsetsAfter(MBB);
1824       ++NumT2CPShrunk;
1825       MadeChange = true;
1826     }
1827   }
1828 
1829   return MadeChange;
1830 }
1831 
1832 
1833 bool ARMConstantIslands::optimizeThumb2Branches() {
1834 
1835   auto TryShrinkBranch = [this](ImmBranch &Br) {
1836     unsigned Opcode = Br.MI->getOpcode();
1837     unsigned NewOpc = 0;
1838     unsigned Scale = 1;
1839     unsigned Bits = 0;
1840     switch (Opcode) {
1841     default: break;
1842     case ARM::t2B:
1843       NewOpc = ARM::tB;
1844       Bits = 11;
1845       Scale = 2;
1846       break;
1847     case ARM::t2Bcc:
1848       NewOpc = ARM::tBcc;
1849       Bits = 8;
1850       Scale = 2;
1851       break;
1852     }
1853     if (NewOpc) {
1854       unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
1855       MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1856       if (BBUtils->isBBInRange(Br.MI, DestBB, MaxOffs)) {
1857         LLVM_DEBUG(dbgs() << "Shrink branch: " << *Br.MI);
1858         Br.MI->setDesc(TII->get(NewOpc));
1859         MachineBasicBlock *MBB = Br.MI->getParent();
1860         BBUtils->adjustBBSize(MBB, -2);
1861         BBUtils->adjustBBOffsetsAfter(MBB);
1862         ++NumT2BrShrunk;
1863         return true;
1864       }
1865     }
1866     return false;
1867   };
1868 
1869   struct ImmCompare {
1870     MachineInstr* MI = nullptr;
1871     unsigned NewOpc = 0;
1872   };
1873 
1874   auto FindCmpForCBZ = [this](ImmBranch &Br, ImmCompare &ImmCmp,
1875                               MachineBasicBlock *DestBB) {
1876     ImmCmp.MI = nullptr;
1877     ImmCmp.NewOpc = 0;
1878 
1879     // If the conditional branch doesn't kill CPSR, then CPSR can be liveout
1880     // so this transformation is not safe.
1881     if (!Br.MI->killsRegister(ARM::CPSR))
1882       return false;
1883 
1884     Register PredReg;
1885     unsigned NewOpc = 0;
1886     ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg);
1887     if (Pred == ARMCC::EQ)
1888       NewOpc = ARM::tCBZ;
1889     else if (Pred == ARMCC::NE)
1890       NewOpc = ARM::tCBNZ;
1891     else
1892       return false;
1893 
1894     // Check if the distance is within 126. Subtract starting offset by 2
1895     // because the cmp will be eliminated.
1896     unsigned BrOffset = BBUtils->getOffsetOf(Br.MI) + 4 - 2;
1897     BBInfoVector &BBInfo = BBUtils->getBBInfo();
1898     unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
1899     if (BrOffset >= DestOffset || (DestOffset - BrOffset) > 126)
1900       return false;
1901 
1902     // Search backwards to find a tCMPi8
1903     auto *TRI = STI->getRegisterInfo();
1904     MachineInstr *CmpMI = findCMPToFoldIntoCBZ(Br.MI, TRI);
1905     if (!CmpMI || CmpMI->getOpcode() != ARM::tCMPi8)
1906       return false;
1907 
1908     ImmCmp.MI = CmpMI;
1909     ImmCmp.NewOpc = NewOpc;
1910     return true;
1911   };
1912 
1913   auto TryConvertToLE = [this](ImmBranch &Br, ImmCompare &Cmp) {
1914     if (Br.MI->getOpcode() != ARM::t2Bcc || !STI->hasLOB() ||
1915         STI->hasMinSize())
1916       return false;
1917 
1918     MachineBasicBlock *MBB = Br.MI->getParent();
1919     MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1920     if (BBUtils->getOffsetOf(MBB) < BBUtils->getOffsetOf(DestBB) ||
1921         !BBUtils->isBBInRange(Br.MI, DestBB, 4094))
1922       return false;
1923 
1924     if (!DT->dominates(DestBB, MBB))
1925       return false;
1926 
1927     // We queried for the CBN?Z opcode based upon the 'ExitBB', the opposite
1928     // target of Br. So now we need to reverse the condition.
1929     Cmp.NewOpc = Cmp.NewOpc == ARM::tCBZ ? ARM::tCBNZ : ARM::tCBZ;
1930 
1931     MachineInstrBuilder MIB = BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(),
1932                                       TII->get(ARM::t2LE));
1933     // Swapped a t2Bcc for a t2LE, so no need to update the size of the block.
1934     MIB.add(Br.MI->getOperand(0));
1935     Br.MI->eraseFromParent();
1936     Br.MI = MIB;
1937     ++NumLEInserted;
1938     return true;
1939   };
1940 
1941   bool MadeChange = false;
1942 
1943   // The order in which branches appear in ImmBranches is approximately their
1944   // order within the function body. By visiting later branches first, we reduce
1945   // the distance between earlier forward branches and their targets, making it
1946   // more likely that the cbn?z optimization, which can only apply to forward
1947   // branches, will succeed.
1948   for (ImmBranch &Br : reverse(ImmBranches)) {
1949     MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1950     MachineBasicBlock *MBB = Br.MI->getParent();
1951     MachineBasicBlock *ExitBB = &MBB->back() == Br.MI ?
1952       MBB->getFallThrough() :
1953       MBB->back().getOperand(0).getMBB();
1954 
1955     ImmCompare Cmp;
1956     if (FindCmpForCBZ(Br, Cmp, ExitBB) && TryConvertToLE(Br, Cmp)) {
1957       DestBB = ExitBB;
1958       MadeChange = true;
1959     } else {
1960       FindCmpForCBZ(Br, Cmp, DestBB);
1961       MadeChange |= TryShrinkBranch(Br);
1962     }
1963 
1964     unsigned Opcode = Br.MI->getOpcode();
1965     if ((Opcode != ARM::tBcc && Opcode != ARM::t2LE) || !Cmp.NewOpc)
1966       continue;
1967 
1968     Register Reg = Cmp.MI->getOperand(0).getReg();
1969 
1970     // Check for Kill flags on Reg. If they are present remove them and set kill
1971     // on the new CBZ.
1972     auto *TRI = STI->getRegisterInfo();
1973     MachineBasicBlock::iterator KillMI = Br.MI;
1974     bool RegKilled = false;
1975     do {
1976       --KillMI;
1977       if (KillMI->killsRegister(Reg, TRI)) {
1978         KillMI->clearRegisterKills(Reg, TRI);
1979         RegKilled = true;
1980         break;
1981       }
1982     } while (KillMI != Cmp.MI);
1983 
1984     // Create the new CBZ/CBNZ
1985     LLVM_DEBUG(dbgs() << "Fold: " << *Cmp.MI << " and: " << *Br.MI);
1986     MachineInstr *NewBR =
1987         BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), TII->get(Cmp.NewOpc))
1988             .addReg(Reg, getKillRegState(RegKilled))
1989             .addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags());
1990 
1991     Cmp.MI->eraseFromParent();
1992 
1993     if (Br.MI->getOpcode() == ARM::tBcc) {
1994       Br.MI->eraseFromParent();
1995       Br.MI = NewBR;
1996       BBUtils->adjustBBSize(MBB, -2);
1997     } else if (MBB->back().getOpcode() != ARM::t2LE) {
1998       // An LE has been generated, but it's not the terminator - that is an
1999       // unconditional branch. However, the logic has now been reversed with the
2000       // CBN?Z being the conditional branch and the LE being the unconditional
2001       // branch. So this means we can remove the redundant unconditional branch
2002       // at the end of the block.
2003       MachineInstr *LastMI = &MBB->back();
2004       BBUtils->adjustBBSize(MBB, -LastMI->getDesc().getSize());
2005       LastMI->eraseFromParent();
2006     }
2007     BBUtils->adjustBBOffsetsAfter(MBB);
2008     ++NumCBZ;
2009     MadeChange = true;
2010   }
2011 
2012   return MadeChange;
2013 }
2014 
2015 static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg,
2016                               unsigned BaseReg) {
2017   if (I.getOpcode() != ARM::t2ADDrs)
2018     return false;
2019 
2020   if (I.getOperand(0).getReg() != EntryReg)
2021     return false;
2022 
2023   if (I.getOperand(1).getReg() != BaseReg)
2024     return false;
2025 
2026   // FIXME: what about CC and IdxReg?
2027   return true;
2028 }
2029 
2030 /// While trying to form a TBB/TBH instruction, we may (if the table
2031 /// doesn't immediately follow the BR_JT) need access to the start of the
2032 /// jump-table. We know one instruction that produces such a register; this
2033 /// function works out whether that definition can be preserved to the BR_JT,
2034 /// possibly by removing an intervening addition (which is usually needed to
2035 /// calculate the actual entry to jump to).
2036 bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI,
2037                                               MachineInstr *LEAMI,
2038                                               unsigned &DeadSize,
2039                                               bool &CanDeleteLEA,
2040                                               bool &BaseRegKill) {
2041   if (JumpMI->getParent() != LEAMI->getParent())
2042     return false;
2043 
2044   // Now we hope that we have at least these instructions in the basic block:
2045   //     BaseReg = t2LEA ...
2046   //     [...]
2047   //     EntryReg = t2ADDrs BaseReg, ...
2048   //     [...]
2049   //     t2BR_JT EntryReg
2050   //
2051   // We have to be very conservative about what we recognise here though. The
2052   // main perturbing factors to watch out for are:
2053   //    + Spills at any point in the chain: not direct problems but we would
2054   //      expect a blocking Def of the spilled register so in practice what we
2055   //      can do is limited.
2056   //    + EntryReg == BaseReg: this is the one situation we should allow a Def
2057   //      of BaseReg, but only if the t2ADDrs can be removed.
2058   //    + Some instruction other than t2ADDrs computing the entry. Not seen in
2059   //      the wild, but we should be careful.
2060   Register EntryReg = JumpMI->getOperand(0).getReg();
2061   Register BaseReg = LEAMI->getOperand(0).getReg();
2062 
2063   CanDeleteLEA = true;
2064   BaseRegKill = false;
2065   MachineInstr *RemovableAdd = nullptr;
2066   MachineBasicBlock::iterator I(LEAMI);
2067   for (++I; &*I != JumpMI; ++I) {
2068     if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) {
2069       RemovableAdd = &*I;
2070       break;
2071     }
2072 
2073     for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) {
2074       const MachineOperand &MO = I->getOperand(K);
2075       if (!MO.isReg() || !MO.getReg())
2076         continue;
2077       if (MO.isDef() && MO.getReg() == BaseReg)
2078         return false;
2079       if (MO.isUse() && MO.getReg() == BaseReg) {
2080         BaseRegKill = BaseRegKill || MO.isKill();
2081         CanDeleteLEA = false;
2082       }
2083     }
2084   }
2085 
2086   if (!RemovableAdd)
2087     return true;
2088 
2089   // Check the add really is removable, and that nothing else in the block
2090   // clobbers BaseReg.
2091   for (++I; &*I != JumpMI; ++I) {
2092     for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) {
2093       const MachineOperand &MO = I->getOperand(K);
2094       if (!MO.isReg() || !MO.getReg())
2095         continue;
2096       if (MO.isDef() && MO.getReg() == BaseReg)
2097         return false;
2098       if (MO.isUse() && MO.getReg() == EntryReg)
2099         RemovableAdd = nullptr;
2100     }
2101   }
2102 
2103   if (RemovableAdd) {
2104     RemovableAdd->eraseFromParent();
2105     DeadSize += isThumb2 ? 4 : 2;
2106   } else if (BaseReg == EntryReg) {
2107     // The add wasn't removable, but clobbered the base for the TBB. So we can't
2108     // preserve it.
2109     return false;
2110   }
2111 
2112   // We reached the end of the block without seeing another definition of
2113   // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be
2114   // used in the TBB/TBH if necessary.
2115   return true;
2116 }
2117 
2118 /// Returns whether CPEMI is the first instruction in the block
2119 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so,
2120 /// we can switch the first register to PC and usually remove the address
2121 /// calculation that preceded it.
2122 static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) {
2123   MachineFunction::iterator MBB = JTMI->getParent()->getIterator();
2124   MachineFunction *MF = MBB->getParent();
2125   ++MBB;
2126 
2127   return MBB != MF->end() && !MBB->empty() && &*MBB->begin() == CPEMI;
2128 }
2129 
2130 static void RemoveDeadAddBetweenLEAAndJT(MachineInstr *LEAMI,
2131                                          MachineInstr *JumpMI,
2132                                          unsigned &DeadSize) {
2133   // Remove a dead add between the LEA and JT, which used to compute EntryReg,
2134   // but the JT now uses PC. Finds the last ADD (if any) that def's EntryReg
2135   // and is not clobbered / used.
2136   MachineInstr *RemovableAdd = nullptr;
2137   Register EntryReg = JumpMI->getOperand(0).getReg();
2138 
2139   // Find the last ADD to set EntryReg
2140   MachineBasicBlock::iterator I(LEAMI);
2141   for (++I; &*I != JumpMI; ++I) {
2142     if (I->getOpcode() == ARM::t2ADDrs && I->getOperand(0).getReg() == EntryReg)
2143       RemovableAdd = &*I;
2144   }
2145 
2146   if (!RemovableAdd)
2147     return;
2148 
2149   // Ensure EntryReg is not clobbered or used.
2150   MachineBasicBlock::iterator J(RemovableAdd);
2151   for (++J; &*J != JumpMI; ++J) {
2152     for (unsigned K = 0, E = J->getNumOperands(); K != E; ++K) {
2153       const MachineOperand &MO = J->getOperand(K);
2154       if (!MO.isReg() || !MO.getReg())
2155         continue;
2156       if (MO.isDef() && MO.getReg() == EntryReg)
2157         return;
2158       if (MO.isUse() && MO.getReg() == EntryReg)
2159         return;
2160     }
2161   }
2162 
2163   LLVM_DEBUG(dbgs() << "Removing Dead Add: " << *RemovableAdd);
2164   RemovableAdd->eraseFromParent();
2165   DeadSize += 4;
2166 }
2167 
2168 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
2169 /// jumptables when it's possible.
2170 bool ARMConstantIslands::optimizeThumb2JumpTables() {
2171   bool MadeChange = false;
2172 
2173   // FIXME: After the tables are shrunk, can we get rid some of the
2174   // constantpool tables?
2175   MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2176   if (!MJTI) return false;
2177 
2178   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2179   for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
2180     MachineInstr *MI = T2JumpTables[i];
2181     const MCInstrDesc &MCID = MI->getDesc();
2182     unsigned NumOps = MCID.getNumOperands();
2183     unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1);
2184     MachineOperand JTOP = MI->getOperand(JTOpIdx);
2185     unsigned JTI = JTOP.getIndex();
2186     assert(JTI < JT.size());
2187 
2188     bool ByteOk = true;
2189     bool HalfWordOk = true;
2190     unsigned JTOffset = BBUtils->getOffsetOf(MI) + 4;
2191     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2192     BBInfoVector &BBInfo = BBUtils->getBBInfo();
2193     for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
2194       MachineBasicBlock *MBB = JTBBs[j];
2195       unsigned DstOffset = BBInfo[MBB->getNumber()].Offset;
2196       // Negative offset is not ok. FIXME: We should change BB layout to make
2197       // sure all the branches are forward.
2198       if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
2199         ByteOk = false;
2200       unsigned TBHLimit = ((1<<16)-1)*2;
2201       if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
2202         HalfWordOk = false;
2203       if (!ByteOk && !HalfWordOk)
2204         break;
2205     }
2206 
2207     if (!ByteOk && !HalfWordOk)
2208       continue;
2209 
2210     CPUser &User = CPUsers[JumpTableUserIndices[JTI]];
2211     MachineBasicBlock *MBB = MI->getParent();
2212     if (!MI->getOperand(0).isKill()) // FIXME: needed now?
2213       continue;
2214 
2215     unsigned DeadSize = 0;
2216     bool CanDeleteLEA = false;
2217     bool BaseRegKill = false;
2218 
2219     unsigned IdxReg = ~0U;
2220     bool IdxRegKill = true;
2221     if (isThumb2) {
2222       IdxReg = MI->getOperand(1).getReg();
2223       IdxRegKill = MI->getOperand(1).isKill();
2224 
2225       bool PreservedBaseReg =
2226         preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill);
2227       if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg)
2228         continue;
2229     } else {
2230       // We're in thumb-1 mode, so we must have something like:
2231       //   %idx = tLSLri %idx, 2
2232       //   %base = tLEApcrelJT
2233       //   %t = tLDRr %base, %idx
2234       Register BaseReg = User.MI->getOperand(0).getReg();
2235 
2236       if (User.MI->getIterator() == User.MI->getParent()->begin())
2237         continue;
2238       MachineInstr *Shift = User.MI->getPrevNode();
2239       if (Shift->getOpcode() != ARM::tLSLri ||
2240           Shift->getOperand(3).getImm() != 2 ||
2241           !Shift->getOperand(2).isKill())
2242         continue;
2243       IdxReg = Shift->getOperand(2).getReg();
2244       Register ShiftedIdxReg = Shift->getOperand(0).getReg();
2245 
2246       // It's important that IdxReg is live until the actual TBB/TBH. Most of
2247       // the range is checked later, but the LEA might still clobber it and not
2248       // actually get removed.
2249       if (BaseReg == IdxReg && !jumpTableFollowsTB(MI, User.CPEMI))
2250         continue;
2251 
2252       MachineInstr *Load = User.MI->getNextNode();
2253       if (Load->getOpcode() != ARM::tLDRr)
2254         continue;
2255       if (Load->getOperand(1).getReg() != BaseReg ||
2256           Load->getOperand(2).getReg() != ShiftedIdxReg ||
2257           !Load->getOperand(2).isKill())
2258         continue;
2259 
2260       // If we're in PIC mode, there should be another ADD following.
2261       auto *TRI = STI->getRegisterInfo();
2262 
2263       // %base cannot be redefined after the load as it will appear before
2264       // TBB/TBH like:
2265       //      %base =
2266       //      %base =
2267       //      tBB %base, %idx
2268       if (registerDefinedBetween(BaseReg, Load->getNextNode(), MBB->end(), TRI))
2269         continue;
2270 
2271       if (isPositionIndependentOrROPI) {
2272         MachineInstr *Add = Load->getNextNode();
2273         if (Add->getOpcode() != ARM::tADDrr ||
2274             Add->getOperand(2).getReg() != BaseReg ||
2275             Add->getOperand(3).getReg() != Load->getOperand(0).getReg() ||
2276             !Add->getOperand(3).isKill())
2277           continue;
2278         if (Add->getOperand(0).getReg() != MI->getOperand(0).getReg())
2279           continue;
2280         if (registerDefinedBetween(IdxReg, Add->getNextNode(), MI, TRI))
2281           // IdxReg gets redefined in the middle of the sequence.
2282           continue;
2283         Add->eraseFromParent();
2284         DeadSize += 2;
2285       } else {
2286         if (Load->getOperand(0).getReg() != MI->getOperand(0).getReg())
2287           continue;
2288         if (registerDefinedBetween(IdxReg, Load->getNextNode(), MI, TRI))
2289           // IdxReg gets redefined in the middle of the sequence.
2290           continue;
2291       }
2292 
2293       // Now safe to delete the load and lsl. The LEA will be removed later.
2294       CanDeleteLEA = true;
2295       Shift->eraseFromParent();
2296       Load->eraseFromParent();
2297       DeadSize += 4;
2298     }
2299 
2300     LLVM_DEBUG(dbgs() << "Shrink JT: " << *MI);
2301     MachineInstr *CPEMI = User.CPEMI;
2302     unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT;
2303     if (!isThumb2)
2304       Opc = ByteOk ? ARM::tTBB_JT : ARM::tTBH_JT;
2305 
2306     MachineBasicBlock::iterator MI_JT = MI;
2307     MachineInstr *NewJTMI =
2308         BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc))
2309             .addReg(User.MI->getOperand(0).getReg(),
2310                     getKillRegState(BaseRegKill))
2311             .addReg(IdxReg, getKillRegState(IdxRegKill))
2312             .addJumpTableIndex(JTI, JTOP.getTargetFlags())
2313             .addImm(CPEMI->getOperand(0).getImm());
2314     LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": " << *NewJTMI);
2315 
2316     unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH;
2317     CPEMI->setDesc(TII->get(JTOpc));
2318 
2319     if (jumpTableFollowsTB(MI, User.CPEMI)) {
2320       NewJTMI->getOperand(0).setReg(ARM::PC);
2321       NewJTMI->getOperand(0).setIsKill(false);
2322 
2323       if (CanDeleteLEA) {
2324         if (isThumb2)
2325           RemoveDeadAddBetweenLEAAndJT(User.MI, MI, DeadSize);
2326 
2327         User.MI->eraseFromParent();
2328         DeadSize += isThumb2 ? 4 : 2;
2329 
2330         // The LEA was eliminated, the TBB instruction becomes the only new user
2331         // of the jump table.
2332         User.MI = NewJTMI;
2333         User.MaxDisp = 4;
2334         User.NegOk = false;
2335         User.IsSoImm = false;
2336         User.KnownAlignment = false;
2337       } else {
2338         // The LEA couldn't be eliminated, so we must add another CPUser to
2339         // record the TBB or TBH use.
2340         int CPEntryIdx = JumpTableEntryIndices[JTI];
2341         auto &CPEs = CPEntries[CPEntryIdx];
2342         auto Entry =
2343             find_if(CPEs, [&](CPEntry &E) { return E.CPEMI == User.CPEMI; });
2344         ++Entry->RefCount;
2345         CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false));
2346       }
2347     }
2348 
2349     unsigned NewSize = TII->getInstSizeInBytes(*NewJTMI);
2350     unsigned OrigSize = TII->getInstSizeInBytes(*MI);
2351     MI->eraseFromParent();
2352 
2353     int Delta = OrigSize - NewSize + DeadSize;
2354     BBInfo[MBB->getNumber()].Size -= Delta;
2355     BBUtils->adjustBBOffsetsAfter(MBB);
2356 
2357     ++NumTBs;
2358     MadeChange = true;
2359   }
2360 
2361   return MadeChange;
2362 }
2363 
2364 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that
2365 /// jump tables always branch forwards, since that's what tbb and tbh need.
2366 bool ARMConstantIslands::reorderThumb2JumpTables() {
2367   bool MadeChange = false;
2368 
2369   MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
2370   if (!MJTI) return false;
2371 
2372   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
2373   for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
2374     MachineInstr *MI = T2JumpTables[i];
2375     const MCInstrDesc &MCID = MI->getDesc();
2376     unsigned NumOps = MCID.getNumOperands();
2377     unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1);
2378     MachineOperand JTOP = MI->getOperand(JTOpIdx);
2379     unsigned JTI = JTOP.getIndex();
2380     assert(JTI < JT.size());
2381 
2382     // We prefer if target blocks for the jump table come after the jump
2383     // instruction so we can use TB[BH]. Loop through the target blocks
2384     // and try to adjust them such that that's true.
2385     int JTNumber = MI->getParent()->getNumber();
2386     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
2387     for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
2388       MachineBasicBlock *MBB = JTBBs[j];
2389       int DTNumber = MBB->getNumber();
2390 
2391       if (DTNumber < JTNumber) {
2392         // The destination precedes the switch. Try to move the block forward
2393         // so we have a positive offset.
2394         MachineBasicBlock *NewBB =
2395           adjustJTTargetBlockForward(MBB, MI->getParent());
2396         if (NewBB)
2397           MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB);
2398         MadeChange = true;
2399       }
2400     }
2401   }
2402 
2403   return MadeChange;
2404 }
2405 
2406 MachineBasicBlock *ARMConstantIslands::
2407 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) {
2408   // If the destination block is terminated by an unconditional branch,
2409   // try to move it; otherwise, create a new block following the jump
2410   // table that branches back to the actual target. This is a very simple
2411   // heuristic. FIXME: We can definitely improve it.
2412   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2413   SmallVector<MachineOperand, 4> Cond;
2414   SmallVector<MachineOperand, 4> CondPrior;
2415   MachineFunction::iterator BBi = BB->getIterator();
2416   MachineFunction::iterator OldPrior = std::prev(BBi);
2417   MachineFunction::iterator OldNext = std::next(BBi);
2418 
2419   // If the block terminator isn't analyzable, don't try to move the block
2420   bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond);
2421 
2422   // If the block ends in an unconditional branch, move it. The prior block
2423   // has to have an analyzable terminator for us to move this one. Be paranoid
2424   // and make sure we're not trying to move the entry block of the function.
2425   if (!B && Cond.empty() && BB != &MF->front() &&
2426       !TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) {
2427     BB->moveAfter(JTBB);
2428     OldPrior->updateTerminator(BB);
2429     BB->updateTerminator(OldNext != MF->end() ? &*OldNext : nullptr);
2430     // Update numbering to account for the block being moved.
2431     MF->RenumberBlocks();
2432     ++NumJTMoved;
2433     return nullptr;
2434   }
2435 
2436   // Create a new MBB for the code after the jump BB.
2437   MachineBasicBlock *NewBB =
2438     MF->CreateMachineBasicBlock(JTBB->getBasicBlock());
2439   MachineFunction::iterator MBBI = ++JTBB->getIterator();
2440   MF->insert(MBBI, NewBB);
2441 
2442   // Copy live-in information to new block.
2443   for (const MachineBasicBlock::RegisterMaskPair &RegMaskPair : BB->liveins())
2444     NewBB->addLiveIn(RegMaskPair);
2445 
2446   // Add an unconditional branch from NewBB to BB.
2447   // There doesn't seem to be meaningful DebugInfo available; this doesn't
2448   // correspond directly to anything in the source.
2449   if (isThumb2)
2450     BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B))
2451         .addMBB(BB)
2452         .add(predOps(ARMCC::AL));
2453   else
2454     BuildMI(NewBB, DebugLoc(), TII->get(ARM::tB))
2455         .addMBB(BB)
2456         .add(predOps(ARMCC::AL));
2457 
2458   // Update internal data structures to account for the newly inserted MBB.
2459   MF->RenumberBlocks(NewBB);
2460 
2461   // Update the CFG.
2462   NewBB->addSuccessor(BB);
2463   JTBB->replaceSuccessor(BB, NewBB);
2464 
2465   ++NumJTInserted;
2466   return NewBB;
2467 }
2468 
2469 /// createARMConstantIslandPass - returns an instance of the constpool
2470 /// island pass.
2471 FunctionPass *llvm::createARMConstantIslandPass() {
2472   return new ARMConstantIslands();
2473 }
2474 
2475 INITIALIZE_PASS(ARMConstantIslands, "arm-cp-islands", ARM_CP_ISLANDS_OPT_NAME,
2476                 false, false)
2477