1 //===- ARMConstantIslandPass.cpp - ARM constant islands -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a pass that splits the constant pool up into 'islands' 10 // which are scattered through-out the function. This is required due to the 11 // limited pc-relative displacements that ARM has. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARM.h" 16 #include "ARMBaseInstrInfo.h" 17 #include "ARMBasicBlockInfo.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMBaseInfo.h" 21 #include "Thumb2InstrInfo.h" 22 #include "Utils/ARMBaseInfo.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Statistic.h" 28 #include "llvm/ADT/StringRef.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineConstantPool.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineFunctionPass.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineJumpTableInfo.h" 35 #include "llvm/CodeGen/MachineOperand.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/Config/llvm-config.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/MC/MCInstrDesc.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Compiler.h" 44 #include "llvm/Support/Debug.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/Format.h" 47 #include "llvm/Support/MathExtras.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstdint> 52 #include <iterator> 53 #include <utility> 54 #include <vector> 55 56 using namespace llvm; 57 58 #define DEBUG_TYPE "arm-cp-islands" 59 60 #define ARM_CP_ISLANDS_OPT_NAME \ 61 "ARM constant island placement and branch shortening pass" 62 STATISTIC(NumCPEs, "Number of constpool entries"); 63 STATISTIC(NumSplit, "Number of uncond branches inserted"); 64 STATISTIC(NumCBrFixed, "Number of cond branches fixed"); 65 STATISTIC(NumUBrFixed, "Number of uncond branches fixed"); 66 STATISTIC(NumTBs, "Number of table branches generated"); 67 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk"); 68 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk"); 69 STATISTIC(NumCBZ, "Number of CBZ / CBNZ formed"); 70 STATISTIC(NumJTMoved, "Number of jump table destination blocks moved"); 71 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted"); 72 73 static cl::opt<bool> 74 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true), 75 cl::desc("Adjust basic block layout to better use TB[BH]")); 76 77 static cl::opt<unsigned> 78 CPMaxIteration("arm-constant-island-max-iteration", cl::Hidden, cl::init(30), 79 cl::desc("The max number of iteration for converge")); 80 81 static cl::opt<bool> SynthesizeThumb1TBB( 82 "arm-synthesize-thumb-1-tbb", cl::Hidden, cl::init(true), 83 cl::desc("Use compressed jump tables in Thumb-1 by synthesizing an " 84 "equivalent to the TBB/TBH instructions")); 85 86 namespace { 87 88 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM 89 /// requires constant pool entries to be scattered among the instructions 90 /// inside a function. To do this, it completely ignores the normal LLVM 91 /// constant pool; instead, it places constants wherever it feels like with 92 /// special instructions. 93 /// 94 /// The terminology used in this pass includes: 95 /// Islands - Clumps of constants placed in the function. 96 /// Water - Potential places where an island could be formed. 97 /// CPE - A constant pool entry that has been placed somewhere, which 98 /// tracks a list of users. 99 class ARMConstantIslands : public MachineFunctionPass { 100 std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr; 101 102 /// WaterList - A sorted list of basic blocks where islands could be placed 103 /// (i.e. blocks that don't fall through to the following block, due 104 /// to a return, unreachable, or unconditional branch). 105 std::vector<MachineBasicBlock*> WaterList; 106 107 /// NewWaterList - The subset of WaterList that was created since the 108 /// previous iteration by inserting unconditional branches. 109 SmallSet<MachineBasicBlock*, 4> NewWaterList; 110 111 using water_iterator = std::vector<MachineBasicBlock *>::iterator; 112 113 /// CPUser - One user of a constant pool, keeping the machine instruction 114 /// pointer, the constant pool being referenced, and the max displacement 115 /// allowed from the instruction to the CP. The HighWaterMark records the 116 /// highest basic block where a new CPEntry can be placed. To ensure this 117 /// pass terminates, the CP entries are initially placed at the end of the 118 /// function and then move monotonically to lower addresses. The 119 /// exception to this rule is when the current CP entry for a particular 120 /// CPUser is out of range, but there is another CP entry for the same 121 /// constant value in range. We want to use the existing in-range CP 122 /// entry, but if it later moves out of range, the search for new water 123 /// should resume where it left off. The HighWaterMark is used to record 124 /// that point. 125 struct CPUser { 126 MachineInstr *MI; 127 MachineInstr *CPEMI; 128 MachineBasicBlock *HighWaterMark; 129 unsigned MaxDisp; 130 bool NegOk; 131 bool IsSoImm; 132 bool KnownAlignment = false; 133 134 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp, 135 bool neg, bool soimm) 136 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) { 137 HighWaterMark = CPEMI->getParent(); 138 } 139 140 /// getMaxDisp - Returns the maximum displacement supported by MI. 141 /// Correct for unknown alignment. 142 /// Conservatively subtract 2 bytes to handle weird alignment effects. 143 unsigned getMaxDisp() const { 144 return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2; 145 } 146 }; 147 148 /// CPUsers - Keep track of all of the machine instructions that use various 149 /// constant pools and their max displacement. 150 std::vector<CPUser> CPUsers; 151 152 /// CPEntry - One per constant pool entry, keeping the machine instruction 153 /// pointer, the constpool index, and the number of CPUser's which 154 /// reference this entry. 155 struct CPEntry { 156 MachineInstr *CPEMI; 157 unsigned CPI; 158 unsigned RefCount; 159 160 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0) 161 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {} 162 }; 163 164 /// CPEntries - Keep track of all of the constant pool entry machine 165 /// instructions. For each original constpool index (i.e. those that existed 166 /// upon entry to this pass), it keeps a vector of entries. Original 167 /// elements are cloned as we go along; the clones are put in the vector of 168 /// the original element, but have distinct CPIs. 169 /// 170 /// The first half of CPEntries contains generic constants, the second half 171 /// contains jump tables. Use getCombinedIndex on a generic CPEMI to look up 172 /// which vector it will be in here. 173 std::vector<std::vector<CPEntry>> CPEntries; 174 175 /// Maps a JT index to the offset in CPEntries containing copies of that 176 /// table. The equivalent map for a CONSTPOOL_ENTRY is the identity. 177 DenseMap<int, int> JumpTableEntryIndices; 178 179 /// Maps a JT index to the LEA that actually uses the index to calculate its 180 /// base address. 181 DenseMap<int, int> JumpTableUserIndices; 182 183 /// ImmBranch - One per immediate branch, keeping the machine instruction 184 /// pointer, conditional or unconditional, the max displacement, 185 /// and (if isCond is true) the corresponding unconditional branch 186 /// opcode. 187 struct ImmBranch { 188 MachineInstr *MI; 189 unsigned MaxDisp : 31; 190 bool isCond : 1; 191 unsigned UncondBr; 192 193 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, unsigned ubr) 194 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {} 195 }; 196 197 /// ImmBranches - Keep track of all the immediate branch instructions. 198 std::vector<ImmBranch> ImmBranches; 199 200 /// PushPopMIs - Keep track of all the Thumb push / pop instructions. 201 SmallVector<MachineInstr*, 4> PushPopMIs; 202 203 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions. 204 SmallVector<MachineInstr*, 4> T2JumpTables; 205 206 /// HasFarJump - True if any far jump instruction has been emitted during 207 /// the branch fix up pass. 208 bool HasFarJump; 209 210 MachineFunction *MF; 211 MachineConstantPool *MCP; 212 const ARMBaseInstrInfo *TII; 213 const ARMSubtarget *STI; 214 ARMFunctionInfo *AFI; 215 bool isThumb; 216 bool isThumb1; 217 bool isThumb2; 218 bool isPositionIndependentOrROPI; 219 220 public: 221 static char ID; 222 223 ARMConstantIslands() : MachineFunctionPass(ID) {} 224 225 bool runOnMachineFunction(MachineFunction &MF) override; 226 227 MachineFunctionProperties getRequiredProperties() const override { 228 return MachineFunctionProperties().set( 229 MachineFunctionProperties::Property::NoVRegs); 230 } 231 232 StringRef getPassName() const override { 233 return ARM_CP_ISLANDS_OPT_NAME; 234 } 235 236 private: 237 void doInitialConstPlacement(std::vector<MachineInstr *> &CPEMIs); 238 void doInitialJumpTablePlacement(std::vector<MachineInstr *> &CPEMIs); 239 bool BBHasFallthrough(MachineBasicBlock *MBB); 240 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI); 241 unsigned getCPELogAlign(const MachineInstr *CPEMI); 242 void scanFunctionJumpTables(); 243 void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs); 244 MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI); 245 void updateForInsertedWaterBlock(MachineBasicBlock *NewBB); 246 bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI); 247 unsigned getCombinedIndex(const MachineInstr *CPEMI); 248 int findInRangeCPEntry(CPUser& U, unsigned UserOffset); 249 bool findAvailableWater(CPUser&U, unsigned UserOffset, 250 water_iterator &WaterIter, bool CloserWater); 251 void createNewWater(unsigned CPUserIndex, unsigned UserOffset, 252 MachineBasicBlock *&NewMBB); 253 bool handleConstantPoolUser(unsigned CPUserIndex, bool CloserWater); 254 void removeDeadCPEMI(MachineInstr *CPEMI); 255 bool removeUnusedCPEntries(); 256 bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 257 MachineInstr *CPEMI, unsigned Disp, bool NegOk, 258 bool DoDump = false); 259 bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water, 260 CPUser &U, unsigned &Growth); 261 bool fixupImmediateBr(ImmBranch &Br); 262 bool fixupConditionalBr(ImmBranch &Br); 263 bool fixupUnconditionalBr(ImmBranch &Br); 264 bool undoLRSpillRestore(); 265 bool optimizeThumb2Instructions(); 266 bool optimizeThumb2Branches(); 267 bool reorderThumb2JumpTables(); 268 bool preserveBaseRegister(MachineInstr *JumpMI, MachineInstr *LEAMI, 269 unsigned &DeadSize, bool &CanDeleteLEA, 270 bool &BaseRegKill); 271 bool optimizeThumb2JumpTables(); 272 MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB, 273 MachineBasicBlock *JTBB); 274 275 unsigned getUserOffset(CPUser&) const; 276 void dumpBBs(); 277 void verify(); 278 279 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 280 unsigned Disp, bool NegativeOK, bool IsSoImm = false); 281 bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset, 282 const CPUser &U) { 283 return isOffsetInRange(UserOffset, TrialOffset, 284 U.getMaxDisp(), U.NegOk, U.IsSoImm); 285 } 286 }; 287 288 } // end anonymous namespace 289 290 char ARMConstantIslands::ID = 0; 291 292 /// verify - check BBOffsets, BBSizes, alignment of islands 293 void ARMConstantIslands::verify() { 294 #ifndef NDEBUG 295 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 296 assert(std::is_sorted(MF->begin(), MF->end(), 297 [&BBInfo](const MachineBasicBlock &LHS, 298 const MachineBasicBlock &RHS) { 299 return BBInfo[LHS.getNumber()].postOffset() < 300 BBInfo[RHS.getNumber()].postOffset(); 301 })); 302 LLVM_DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n"); 303 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 304 CPUser &U = CPUsers[i]; 305 unsigned UserOffset = getUserOffset(U); 306 // Verify offset using the real max displacement without the safety 307 // adjustment. 308 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk, 309 /* DoDump = */ true)) { 310 LLVM_DEBUG(dbgs() << "OK\n"); 311 continue; 312 } 313 LLVM_DEBUG(dbgs() << "Out of range.\n"); 314 dumpBBs(); 315 LLVM_DEBUG(MF->dump()); 316 llvm_unreachable("Constant pool entry out of range!"); 317 } 318 #endif 319 } 320 321 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 322 /// print block size and offset information - debugging 323 LLVM_DUMP_METHOD void ARMConstantIslands::dumpBBs() { 324 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 325 LLVM_DEBUG({ 326 for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) { 327 const BasicBlockInfo &BBI = BBInfo[J]; 328 dbgs() << format("%08x %bb.%u\t", BBI.Offset, J) 329 << " kb=" << unsigned(BBI.KnownBits) 330 << " ua=" << unsigned(BBI.Unalign) 331 << " pa=" << unsigned(BBI.PostAlign) 332 << format(" size=%#x\n", BBInfo[J].Size); 333 } 334 }); 335 } 336 #endif 337 338 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) { 339 MF = &mf; 340 MCP = mf.getConstantPool(); 341 BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(mf)); 342 343 LLVM_DEBUG(dbgs() << "***** ARMConstantIslands: " 344 << MCP->getConstants().size() << " CP entries, aligned to " 345 << MCP->getConstantPoolAlignment() << " bytes *****\n"); 346 347 STI = &static_cast<const ARMSubtarget &>(MF->getSubtarget()); 348 TII = STI->getInstrInfo(); 349 isPositionIndependentOrROPI = 350 STI->getTargetLowering()->isPositionIndependent() || STI->isROPI(); 351 AFI = MF->getInfo<ARMFunctionInfo>(); 352 353 isThumb = AFI->isThumbFunction(); 354 isThumb1 = AFI->isThumb1OnlyFunction(); 355 isThumb2 = AFI->isThumb2Function(); 356 357 HasFarJump = false; 358 bool GenerateTBB = isThumb2 || (isThumb1 && SynthesizeThumb1TBB); 359 360 // This pass invalidates liveness information when it splits basic blocks. 361 MF->getRegInfo().invalidateLiveness(); 362 363 // Renumber all of the machine basic blocks in the function, guaranteeing that 364 // the numbers agree with the position of the block in the function. 365 MF->RenumberBlocks(); 366 367 // Try to reorder and otherwise adjust the block layout to make good use 368 // of the TB[BH] instructions. 369 bool MadeChange = false; 370 if (GenerateTBB && AdjustJumpTableBlocks) { 371 scanFunctionJumpTables(); 372 MadeChange |= reorderThumb2JumpTables(); 373 // Data is out of date, so clear it. It'll be re-computed later. 374 T2JumpTables.clear(); 375 // Blocks may have shifted around. Keep the numbering up to date. 376 MF->RenumberBlocks(); 377 } 378 379 // Perform the initial placement of the constant pool entries. To start with, 380 // we put them all at the end of the function. 381 std::vector<MachineInstr*> CPEMIs; 382 if (!MCP->isEmpty()) 383 doInitialConstPlacement(CPEMIs); 384 385 if (MF->getJumpTableInfo()) 386 doInitialJumpTablePlacement(CPEMIs); 387 388 /// The next UID to take is the first unused one. 389 AFI->initPICLabelUId(CPEMIs.size()); 390 391 // Do the initial scan of the function, building up information about the 392 // sizes of each block, the location of all the water, and finding all of the 393 // constant pool users. 394 initializeFunctionInfo(CPEMIs); 395 CPEMIs.clear(); 396 LLVM_DEBUG(dumpBBs()); 397 398 // Functions with jump tables need an alignment of 4 because they use the ADR 399 // instruction, which aligns the PC to 4 bytes before adding an offset. 400 if (!T2JumpTables.empty()) 401 MF->ensureAlignment(2); 402 403 /// Remove dead constant pool entries. 404 MadeChange |= removeUnusedCPEntries(); 405 406 // Iteratively place constant pool entries and fix up branches until there 407 // is no change. 408 unsigned NoCPIters = 0, NoBRIters = 0; 409 while (true) { 410 LLVM_DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n'); 411 bool CPChange = false; 412 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) 413 // For most inputs, it converges in no more than 5 iterations. 414 // If it doesn't end in 10, the input may have huge BB or many CPEs. 415 // In this case, we will try different heuristics. 416 CPChange |= handleConstantPoolUser(i, NoCPIters >= CPMaxIteration / 2); 417 if (CPChange && ++NoCPIters > CPMaxIteration) 418 report_fatal_error("Constant Island pass failed to converge!"); 419 LLVM_DEBUG(dumpBBs()); 420 421 // Clear NewWaterList now. If we split a block for branches, it should 422 // appear as "new water" for the next iteration of constant pool placement. 423 NewWaterList.clear(); 424 425 LLVM_DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n'); 426 bool BRChange = false; 427 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) 428 BRChange |= fixupImmediateBr(ImmBranches[i]); 429 if (BRChange && ++NoBRIters > 30) 430 report_fatal_error("Branch Fix Up pass failed to converge!"); 431 LLVM_DEBUG(dumpBBs()); 432 433 if (!CPChange && !BRChange) 434 break; 435 MadeChange = true; 436 } 437 438 // Shrink 32-bit Thumb2 load and store instructions. 439 if (isThumb2 && !STI->prefers32BitThumb()) 440 MadeChange |= optimizeThumb2Instructions(); 441 442 // Shrink 32-bit branch instructions. 443 if (isThumb && STI->hasV8MBaselineOps()) 444 MadeChange |= optimizeThumb2Branches(); 445 446 // Optimize jump tables using TBB / TBH. 447 if (GenerateTBB && !STI->genExecuteOnly()) 448 MadeChange |= optimizeThumb2JumpTables(); 449 450 // After a while, this might be made debug-only, but it is not expensive. 451 verify(); 452 453 // If LR has been forced spilled and no far jump (i.e. BL) has been issued, 454 // undo the spill / restore of LR if possible. 455 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump()) 456 MadeChange |= undoLRSpillRestore(); 457 458 // Save the mapping between original and cloned constpool entries. 459 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 460 for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) { 461 const CPEntry & CPE = CPEntries[i][j]; 462 if (CPE.CPEMI && CPE.CPEMI->getOperand(1).isCPI()) 463 AFI->recordCPEClone(i, CPE.CPI); 464 } 465 } 466 467 LLVM_DEBUG(dbgs() << '\n'; dumpBBs()); 468 469 BBUtils->clear(); 470 WaterList.clear(); 471 CPUsers.clear(); 472 CPEntries.clear(); 473 JumpTableEntryIndices.clear(); 474 JumpTableUserIndices.clear(); 475 ImmBranches.clear(); 476 PushPopMIs.clear(); 477 T2JumpTables.clear(); 478 479 return MadeChange; 480 } 481 482 /// Perform the initial placement of the regular constant pool entries. 483 /// To start with, we put them all at the end of the function. 484 void 485 ARMConstantIslands::doInitialConstPlacement(std::vector<MachineInstr*> &CPEMIs) { 486 // Create the basic block to hold the CPE's. 487 MachineBasicBlock *BB = MF->CreateMachineBasicBlock(); 488 MF->push_back(BB); 489 490 // MachineConstantPool measures alignment in bytes. We measure in log2(bytes). 491 unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment()); 492 493 // Mark the basic block as required by the const-pool. 494 BB->setAlignment(MaxAlign); 495 496 // The function needs to be as aligned as the basic blocks. The linker may 497 // move functions around based on their alignment. 498 MF->ensureAlignment(BB->getAlignment()); 499 500 // Order the entries in BB by descending alignment. That ensures correct 501 // alignment of all entries as long as BB is sufficiently aligned. Keep 502 // track of the insertion point for each alignment. We are going to bucket 503 // sort the entries as they are created. 504 SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end()); 505 506 // Add all of the constants from the constant pool to the end block, use an 507 // identity mapping of CPI's to CPE's. 508 const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants(); 509 510 const DataLayout &TD = MF->getDataLayout(); 511 for (unsigned i = 0, e = CPs.size(); i != e; ++i) { 512 unsigned Size = TD.getTypeAllocSize(CPs[i].getType()); 513 unsigned Align = CPs[i].getAlignment(); 514 assert(isPowerOf2_32(Align) && "Invalid alignment"); 515 // Verify that all constant pool entries are a multiple of their alignment. 516 // If not, we would have to pad them out so that instructions stay aligned. 517 assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!"); 518 519 // Insert CONSTPOOL_ENTRY before entries with a smaller alignment. 520 unsigned LogAlign = Log2_32(Align); 521 MachineBasicBlock::iterator InsAt = InsPoint[LogAlign]; 522 MachineInstr *CPEMI = 523 BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY)) 524 .addImm(i).addConstantPoolIndex(i).addImm(Size); 525 CPEMIs.push_back(CPEMI); 526 527 // Ensure that future entries with higher alignment get inserted before 528 // CPEMI. This is bucket sort with iterators. 529 for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a) 530 if (InsPoint[a] == InsAt) 531 InsPoint[a] = CPEMI; 532 533 // Add a new CPEntry, but no corresponding CPUser yet. 534 CPEntries.emplace_back(1, CPEntry(CPEMI, i)); 535 ++NumCPEs; 536 LLVM_DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = " 537 << Size << ", align = " << Align << '\n'); 538 } 539 LLVM_DEBUG(BB->dump()); 540 } 541 542 /// Do initial placement of the jump tables. Because Thumb2's TBB and TBH 543 /// instructions can be made more efficient if the jump table immediately 544 /// follows the instruction, it's best to place them immediately next to their 545 /// jumps to begin with. In almost all cases they'll never be moved from that 546 /// position. 547 void ARMConstantIslands::doInitialJumpTablePlacement( 548 std::vector<MachineInstr *> &CPEMIs) { 549 unsigned i = CPEntries.size(); 550 auto MJTI = MF->getJumpTableInfo(); 551 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 552 553 MachineBasicBlock *LastCorrectlyNumberedBB = nullptr; 554 for (MachineBasicBlock &MBB : *MF) { 555 auto MI = MBB.getLastNonDebugInstr(); 556 if (MI == MBB.end()) 557 continue; 558 559 unsigned JTOpcode; 560 switch (MI->getOpcode()) { 561 default: 562 continue; 563 case ARM::BR_JTadd: 564 case ARM::BR_JTr: 565 case ARM::tBR_JTr: 566 case ARM::BR_JTm_i12: 567 case ARM::BR_JTm_rs: 568 JTOpcode = ARM::JUMPTABLE_ADDRS; 569 break; 570 case ARM::t2BR_JT: 571 JTOpcode = ARM::JUMPTABLE_INSTS; 572 break; 573 case ARM::tTBB_JT: 574 case ARM::t2TBB_JT: 575 JTOpcode = ARM::JUMPTABLE_TBB; 576 break; 577 case ARM::tTBH_JT: 578 case ARM::t2TBH_JT: 579 JTOpcode = ARM::JUMPTABLE_TBH; 580 break; 581 } 582 583 unsigned NumOps = MI->getDesc().getNumOperands(); 584 MachineOperand JTOp = 585 MI->getOperand(NumOps - (MI->isPredicable() ? 2 : 1)); 586 unsigned JTI = JTOp.getIndex(); 587 unsigned Size = JT[JTI].MBBs.size() * sizeof(uint32_t); 588 MachineBasicBlock *JumpTableBB = MF->CreateMachineBasicBlock(); 589 MF->insert(std::next(MachineFunction::iterator(MBB)), JumpTableBB); 590 MachineInstr *CPEMI = BuildMI(*JumpTableBB, JumpTableBB->begin(), 591 DebugLoc(), TII->get(JTOpcode)) 592 .addImm(i++) 593 .addJumpTableIndex(JTI) 594 .addImm(Size); 595 CPEMIs.push_back(CPEMI); 596 CPEntries.emplace_back(1, CPEntry(CPEMI, JTI)); 597 JumpTableEntryIndices.insert(std::make_pair(JTI, CPEntries.size() - 1)); 598 if (!LastCorrectlyNumberedBB) 599 LastCorrectlyNumberedBB = &MBB; 600 } 601 602 // If we did anything then we need to renumber the subsequent blocks. 603 if (LastCorrectlyNumberedBB) 604 MF->RenumberBlocks(LastCorrectlyNumberedBB); 605 } 606 607 /// BBHasFallthrough - Return true if the specified basic block can fallthrough 608 /// into the block immediately after it. 609 bool ARMConstantIslands::BBHasFallthrough(MachineBasicBlock *MBB) { 610 // Get the next machine basic block in the function. 611 MachineFunction::iterator MBBI = MBB->getIterator(); 612 // Can't fall off end of function. 613 if (std::next(MBBI) == MBB->getParent()->end()) 614 return false; 615 616 MachineBasicBlock *NextBB = &*std::next(MBBI); 617 if (!MBB->isSuccessor(NextBB)) 618 return false; 619 620 // Try to analyze the end of the block. A potential fallthrough may already 621 // have an unconditional branch for whatever reason. 622 MachineBasicBlock *TBB, *FBB; 623 SmallVector<MachineOperand, 4> Cond; 624 bool TooDifficult = TII->analyzeBranch(*MBB, TBB, FBB, Cond); 625 return TooDifficult || FBB == nullptr; 626 } 627 628 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI, 629 /// look up the corresponding CPEntry. 630 ARMConstantIslands::CPEntry * 631 ARMConstantIslands::findConstPoolEntry(unsigned CPI, 632 const MachineInstr *CPEMI) { 633 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 634 // Number of entries per constpool index should be small, just do a 635 // linear search. 636 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 637 if (CPEs[i].CPEMI == CPEMI) 638 return &CPEs[i]; 639 } 640 return nullptr; 641 } 642 643 /// getCPELogAlign - Returns the required alignment of the constant pool entry 644 /// represented by CPEMI. Alignment is measured in log2(bytes) units. 645 unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) { 646 switch (CPEMI->getOpcode()) { 647 case ARM::CONSTPOOL_ENTRY: 648 break; 649 case ARM::JUMPTABLE_TBB: 650 return isThumb1 ? 2 : 0; 651 case ARM::JUMPTABLE_TBH: 652 return isThumb1 ? 2 : 1; 653 case ARM::JUMPTABLE_INSTS: 654 return 1; 655 case ARM::JUMPTABLE_ADDRS: 656 return 2; 657 default: 658 llvm_unreachable("unknown constpool entry kind"); 659 } 660 661 unsigned CPI = getCombinedIndex(CPEMI); 662 assert(CPI < MCP->getConstants().size() && "Invalid constant pool index."); 663 unsigned Align = MCP->getConstants()[CPI].getAlignment(); 664 assert(isPowerOf2_32(Align) && "Invalid CPE alignment"); 665 return Log2_32(Align); 666 } 667 668 /// scanFunctionJumpTables - Do a scan of the function, building up 669 /// information about the sizes of each block and the locations of all 670 /// the jump tables. 671 void ARMConstantIslands::scanFunctionJumpTables() { 672 for (MachineBasicBlock &MBB : *MF) { 673 for (MachineInstr &I : MBB) 674 if (I.isBranch() && 675 (I.getOpcode() == ARM::t2BR_JT || I.getOpcode() == ARM::tBR_JTr)) 676 T2JumpTables.push_back(&I); 677 } 678 } 679 680 /// initializeFunctionInfo - Do the initial scan of the function, building up 681 /// information about the sizes of each block, the location of all the water, 682 /// and finding all of the constant pool users. 683 void ARMConstantIslands:: 684 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) { 685 686 BBUtils->computeAllBlockSizes(); 687 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 688 // The known bits of the entry block offset are determined by the function 689 // alignment. 690 BBInfo.front().KnownBits = MF->getAlignment(); 691 692 // Compute block offsets and known bits. 693 BBUtils->adjustBBOffsetsAfter(&MF->front()); 694 695 // Now go back through the instructions and build up our data structures. 696 for (MachineBasicBlock &MBB : *MF) { 697 // If this block doesn't fall through into the next MBB, then this is 698 // 'water' that a constant pool island could be placed. 699 if (!BBHasFallthrough(&MBB)) 700 WaterList.push_back(&MBB); 701 702 for (MachineInstr &I : MBB) { 703 if (I.isDebugInstr()) 704 continue; 705 706 unsigned Opc = I.getOpcode(); 707 if (I.isBranch()) { 708 bool isCond = false; 709 unsigned Bits = 0; 710 unsigned Scale = 1; 711 int UOpc = Opc; 712 switch (Opc) { 713 default: 714 continue; // Ignore other JT branches 715 case ARM::t2BR_JT: 716 case ARM::tBR_JTr: 717 T2JumpTables.push_back(&I); 718 continue; // Does not get an entry in ImmBranches 719 case ARM::Bcc: 720 isCond = true; 721 UOpc = ARM::B; 722 LLVM_FALLTHROUGH; 723 case ARM::B: 724 Bits = 24; 725 Scale = 4; 726 break; 727 case ARM::tBcc: 728 isCond = true; 729 UOpc = ARM::tB; 730 Bits = 8; 731 Scale = 2; 732 break; 733 case ARM::tB: 734 Bits = 11; 735 Scale = 2; 736 break; 737 case ARM::t2Bcc: 738 isCond = true; 739 UOpc = ARM::t2B; 740 Bits = 20; 741 Scale = 2; 742 break; 743 case ARM::t2B: 744 Bits = 24; 745 Scale = 2; 746 break; 747 } 748 749 // Record this immediate branch. 750 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 751 ImmBranches.push_back(ImmBranch(&I, MaxOffs, isCond, UOpc)); 752 } 753 754 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET) 755 PushPopMIs.push_back(&I); 756 757 if (Opc == ARM::CONSTPOOL_ENTRY || Opc == ARM::JUMPTABLE_ADDRS || 758 Opc == ARM::JUMPTABLE_INSTS || Opc == ARM::JUMPTABLE_TBB || 759 Opc == ARM::JUMPTABLE_TBH) 760 continue; 761 762 // Scan the instructions for constant pool operands. 763 for (unsigned op = 0, e = I.getNumOperands(); op != e; ++op) 764 if (I.getOperand(op).isCPI() || I.getOperand(op).isJTI()) { 765 // We found one. The addressing mode tells us the max displacement 766 // from the PC that this instruction permits. 767 768 // Basic size info comes from the TSFlags field. 769 unsigned Bits = 0; 770 unsigned Scale = 1; 771 bool NegOk = false; 772 bool IsSoImm = false; 773 774 switch (Opc) { 775 default: 776 llvm_unreachable("Unknown addressing mode for CP reference!"); 777 778 // Taking the address of a CP entry. 779 case ARM::LEApcrel: 780 case ARM::LEApcrelJT: 781 // This takes a SoImm, which is 8 bit immediate rotated. We'll 782 // pretend the maximum offset is 255 * 4. Since each instruction 783 // 4 byte wide, this is always correct. We'll check for other 784 // displacements that fits in a SoImm as well. 785 Bits = 8; 786 Scale = 4; 787 NegOk = true; 788 IsSoImm = true; 789 break; 790 case ARM::t2LEApcrel: 791 case ARM::t2LEApcrelJT: 792 Bits = 12; 793 NegOk = true; 794 break; 795 case ARM::tLEApcrel: 796 case ARM::tLEApcrelJT: 797 Bits = 8; 798 Scale = 4; 799 break; 800 801 case ARM::LDRBi12: 802 case ARM::LDRi12: 803 case ARM::LDRcp: 804 case ARM::t2LDRpci: 805 case ARM::t2LDRHpci: 806 case ARM::t2LDRBpci: 807 Bits = 12; // +-offset_12 808 NegOk = true; 809 break; 810 811 case ARM::tLDRpci: 812 Bits = 8; 813 Scale = 4; // +(offset_8*4) 814 break; 815 816 case ARM::VLDRD: 817 case ARM::VLDRS: 818 Bits = 8; 819 Scale = 4; // +-(offset_8*4) 820 NegOk = true; 821 break; 822 case ARM::VLDRH: 823 Bits = 8; 824 Scale = 2; // +-(offset_8*2) 825 NegOk = true; 826 break; 827 828 case ARM::tLDRHi: 829 Bits = 5; 830 Scale = 2; // +(offset_5*2) 831 break; 832 } 833 834 // Remember that this is a user of a CP entry. 835 unsigned CPI = I.getOperand(op).getIndex(); 836 if (I.getOperand(op).isJTI()) { 837 JumpTableUserIndices.insert(std::make_pair(CPI, CPUsers.size())); 838 CPI = JumpTableEntryIndices[CPI]; 839 } 840 841 MachineInstr *CPEMI = CPEMIs[CPI]; 842 unsigned MaxOffs = ((1 << Bits)-1) * Scale; 843 CPUsers.push_back(CPUser(&I, CPEMI, MaxOffs, NegOk, IsSoImm)); 844 845 // Increment corresponding CPEntry reference count. 846 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 847 assert(CPE && "Cannot find a corresponding CPEntry!"); 848 CPE->RefCount++; 849 850 // Instructions can only use one CP entry, don't bother scanning the 851 // rest of the operands. 852 break; 853 } 854 } 855 } 856 } 857 858 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB 859 /// ID. 860 static bool CompareMBBNumbers(const MachineBasicBlock *LHS, 861 const MachineBasicBlock *RHS) { 862 return LHS->getNumber() < RHS->getNumber(); 863 } 864 865 /// updateForInsertedWaterBlock - When a block is newly inserted into the 866 /// machine function, it upsets all of the block numbers. Renumber the blocks 867 /// and update the arrays that parallel this numbering. 868 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) { 869 // Renumber the MBB's to keep them consecutive. 870 NewBB->getParent()->RenumberBlocks(NewBB); 871 872 // Insert an entry into BBInfo to align it properly with the (newly 873 // renumbered) block numbers. 874 BBUtils->insert(NewBB->getNumber(), BasicBlockInfo()); 875 876 // Next, update WaterList. Specifically, we need to add NewMBB as having 877 // available water after it. 878 water_iterator IP = llvm::lower_bound(WaterList, NewBB, CompareMBBNumbers); 879 WaterList.insert(IP, NewBB); 880 } 881 882 /// Split the basic block containing MI into two blocks, which are joined by 883 /// an unconditional branch. Update data structures and renumber blocks to 884 /// account for this change and returns the newly created block. 885 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) { 886 MachineBasicBlock *OrigBB = MI->getParent(); 887 888 // Create a new MBB for the code after the OrigBB. 889 MachineBasicBlock *NewBB = 890 MF->CreateMachineBasicBlock(OrigBB->getBasicBlock()); 891 MachineFunction::iterator MBBI = ++OrigBB->getIterator(); 892 MF->insert(MBBI, NewBB); 893 894 // Splice the instructions starting with MI over to NewBB. 895 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end()); 896 897 // Add an unconditional branch from OrigBB to NewBB. 898 // Note the new unconditional branch is not being recorded. 899 // There doesn't seem to be meaningful DebugInfo available; this doesn't 900 // correspond to anything in the source. 901 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B; 902 if (!isThumb) 903 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB); 904 else 905 BuildMI(OrigBB, DebugLoc(), TII->get(Opc)) 906 .addMBB(NewBB) 907 .add(predOps(ARMCC::AL)); 908 ++NumSplit; 909 910 // Update the CFG. All succs of OrigBB are now succs of NewBB. 911 NewBB->transferSuccessors(OrigBB); 912 913 // OrigBB branches to NewBB. 914 OrigBB->addSuccessor(NewBB); 915 916 // Update internal data structures to account for the newly inserted MBB. 917 // This is almost the same as updateForInsertedWaterBlock, except that 918 // the Water goes after OrigBB, not NewBB. 919 MF->RenumberBlocks(NewBB); 920 921 // Insert an entry into BBInfo to align it properly with the (newly 922 // renumbered) block numbers. 923 BBUtils->insert(NewBB->getNumber(), BasicBlockInfo()); 924 925 // Next, update WaterList. Specifically, we need to add OrigMBB as having 926 // available water after it (but not if it's already there, which happens 927 // when splitting before a conditional branch that is followed by an 928 // unconditional branch - in that case we want to insert NewBB). 929 water_iterator IP = llvm::lower_bound(WaterList, OrigBB, CompareMBBNumbers); 930 MachineBasicBlock* WaterBB = *IP; 931 if (WaterBB == OrigBB) 932 WaterList.insert(std::next(IP), NewBB); 933 else 934 WaterList.insert(IP, OrigBB); 935 NewWaterList.insert(OrigBB); 936 937 // Figure out how large the OrigBB is. As the first half of the original 938 // block, it cannot contain a tablejump. The size includes 939 // the new jump we added. (It should be possible to do this without 940 // recounting everything, but it's very confusing, and this is rarely 941 // executed.) 942 BBUtils->computeBlockSize(OrigBB); 943 944 // Figure out how large the NewMBB is. As the second half of the original 945 // block, it may contain a tablejump. 946 BBUtils->computeBlockSize(NewBB); 947 948 // All BBOffsets following these blocks must be modified. 949 BBUtils->adjustBBOffsetsAfter(OrigBB); 950 951 return NewBB; 952 } 953 954 /// getUserOffset - Compute the offset of U.MI as seen by the hardware 955 /// displacement computation. Update U.KnownAlignment to match its current 956 /// basic block location. 957 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const { 958 unsigned UserOffset = BBUtils->getOffsetOf(U.MI); 959 960 SmallVectorImpl<BasicBlockInfo> &BBInfo = BBUtils->getBBInfo(); 961 const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()]; 962 unsigned KnownBits = BBI.internalKnownBits(); 963 964 // The value read from PC is offset from the actual instruction address. 965 UserOffset += (isThumb ? 4 : 8); 966 967 // Because of inline assembly, we may not know the alignment (mod 4) of U.MI. 968 // Make sure U.getMaxDisp() returns a constrained range. 969 U.KnownAlignment = (KnownBits >= 2); 970 971 // On Thumb, offsets==2 mod 4 are rounded down by the hardware for 972 // purposes of the displacement computation; compensate for that here. 973 // For unknown alignments, getMaxDisp() constrains the range instead. 974 if (isThumb && U.KnownAlignment) 975 UserOffset &= ~3u; 976 977 return UserOffset; 978 } 979 980 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool 981 /// reference) is within MaxDisp of TrialOffset (a proposed location of a 982 /// constant pool entry). 983 /// UserOffset is computed by getUserOffset above to include PC adjustments. If 984 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be 985 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that. 986 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset, 987 unsigned TrialOffset, unsigned MaxDisp, 988 bool NegativeOK, bool IsSoImm) { 989 if (UserOffset <= TrialOffset) { 990 // User before the Trial. 991 if (TrialOffset - UserOffset <= MaxDisp) 992 return true; 993 // FIXME: Make use full range of soimm values. 994 } else if (NegativeOK) { 995 if (UserOffset - TrialOffset <= MaxDisp) 996 return true; 997 // FIXME: Make use full range of soimm values. 998 } 999 return false; 1000 } 1001 1002 /// isWaterInRange - Returns true if a CPE placed after the specified 1003 /// Water (a basic block) will be in range for the specific MI. 1004 /// 1005 /// Compute how much the function will grow by inserting a CPE after Water. 1006 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset, 1007 MachineBasicBlock* Water, CPUser &U, 1008 unsigned &Growth) { 1009 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1010 unsigned CPELogAlign = getCPELogAlign(U.CPEMI); 1011 unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign); 1012 unsigned NextBlockOffset, NextBlockAlignment; 1013 MachineFunction::const_iterator NextBlock = Water->getIterator(); 1014 if (++NextBlock == MF->end()) { 1015 NextBlockOffset = BBInfo[Water->getNumber()].postOffset(); 1016 NextBlockAlignment = 0; 1017 } else { 1018 NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset; 1019 NextBlockAlignment = NextBlock->getAlignment(); 1020 } 1021 unsigned Size = U.CPEMI->getOperand(2).getImm(); 1022 unsigned CPEEnd = CPEOffset + Size; 1023 1024 // The CPE may be able to hide in the alignment padding before the next 1025 // block. It may also cause more padding to be required if it is more aligned 1026 // that the next block. 1027 if (CPEEnd > NextBlockOffset) { 1028 Growth = CPEEnd - NextBlockOffset; 1029 // Compute the padding that would go at the end of the CPE to align the next 1030 // block. 1031 Growth += OffsetToAlignment(CPEEnd, 1ULL << NextBlockAlignment); 1032 1033 // If the CPE is to be inserted before the instruction, that will raise 1034 // the offset of the instruction. Also account for unknown alignment padding 1035 // in blocks between CPE and the user. 1036 if (CPEOffset < UserOffset) 1037 UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign); 1038 } else 1039 // CPE fits in existing padding. 1040 Growth = 0; 1041 1042 return isOffsetInRange(UserOffset, CPEOffset, U); 1043 } 1044 1045 /// isCPEntryInRange - Returns true if the distance between specific MI and 1046 /// specific ConstPool entry instruction can fit in MI's displacement field. 1047 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset, 1048 MachineInstr *CPEMI, unsigned MaxDisp, 1049 bool NegOk, bool DoDump) { 1050 unsigned CPEOffset = BBUtils->getOffsetOf(CPEMI); 1051 1052 if (DoDump) { 1053 LLVM_DEBUG({ 1054 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1055 unsigned Block = MI->getParent()->getNumber(); 1056 const BasicBlockInfo &BBI = BBInfo[Block]; 1057 dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm() 1058 << " max delta=" << MaxDisp 1059 << format(" insn address=%#x", UserOffset) << " in " 1060 << printMBBReference(*MI->getParent()) << ": " 1061 << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI 1062 << format("CPE address=%#x offset=%+d: ", CPEOffset, 1063 int(CPEOffset - UserOffset)); 1064 }); 1065 } 1066 1067 return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk); 1068 } 1069 1070 #ifndef NDEBUG 1071 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor 1072 /// unconditionally branches to its only successor. 1073 static bool BBIsJumpedOver(MachineBasicBlock *MBB) { 1074 if (MBB->pred_size() != 1 || MBB->succ_size() != 1) 1075 return false; 1076 1077 MachineBasicBlock *Succ = *MBB->succ_begin(); 1078 MachineBasicBlock *Pred = *MBB->pred_begin(); 1079 MachineInstr *PredMI = &Pred->back(); 1080 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB 1081 || PredMI->getOpcode() == ARM::t2B) 1082 return PredMI->getOperand(0).getMBB() == Succ; 1083 return false; 1084 } 1085 #endif // NDEBUG 1086 1087 /// decrementCPEReferenceCount - find the constant pool entry with index CPI 1088 /// and instruction CPEMI, and decrement its refcount. If the refcount 1089 /// becomes 0 remove the entry and instruction. Returns true if we removed 1090 /// the entry, false if we didn't. 1091 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI, 1092 MachineInstr *CPEMI) { 1093 // Find the old entry. Eliminate it if it is no longer used. 1094 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI); 1095 assert(CPE && "Unexpected!"); 1096 if (--CPE->RefCount == 0) { 1097 removeDeadCPEMI(CPEMI); 1098 CPE->CPEMI = nullptr; 1099 --NumCPEs; 1100 return true; 1101 } 1102 return false; 1103 } 1104 1105 unsigned ARMConstantIslands::getCombinedIndex(const MachineInstr *CPEMI) { 1106 if (CPEMI->getOperand(1).isCPI()) 1107 return CPEMI->getOperand(1).getIndex(); 1108 1109 return JumpTableEntryIndices[CPEMI->getOperand(1).getIndex()]; 1110 } 1111 1112 /// LookForCPEntryInRange - see if the currently referenced CPE is in range; 1113 /// if not, see if an in-range clone of the CPE is in range, and if so, 1114 /// change the data structures so the user references the clone. Returns: 1115 /// 0 = no existing entry found 1116 /// 1 = entry found, and there were no code insertions or deletions 1117 /// 2 = entry found, and there were code insertions or deletions 1118 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset) { 1119 MachineInstr *UserMI = U.MI; 1120 MachineInstr *CPEMI = U.CPEMI; 1121 1122 // Check to see if the CPE is already in-range. 1123 if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk, 1124 true)) { 1125 LLVM_DEBUG(dbgs() << "In range\n"); 1126 return 1; 1127 } 1128 1129 // No. Look for previously created clones of the CPE that are in range. 1130 unsigned CPI = getCombinedIndex(CPEMI); 1131 std::vector<CPEntry> &CPEs = CPEntries[CPI]; 1132 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) { 1133 // We already tried this one 1134 if (CPEs[i].CPEMI == CPEMI) 1135 continue; 1136 // Removing CPEs can leave empty entries, skip 1137 if (CPEs[i].CPEMI == nullptr) 1138 continue; 1139 if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(), 1140 U.NegOk)) { 1141 LLVM_DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#" 1142 << CPEs[i].CPI << "\n"); 1143 // Point the CPUser node to the replacement 1144 U.CPEMI = CPEs[i].CPEMI; 1145 // Change the CPI in the instruction operand to refer to the clone. 1146 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j) 1147 if (UserMI->getOperand(j).isCPI()) { 1148 UserMI->getOperand(j).setIndex(CPEs[i].CPI); 1149 break; 1150 } 1151 // Adjust the refcount of the clone... 1152 CPEs[i].RefCount++; 1153 // ...and the original. If we didn't remove the old entry, none of the 1154 // addresses changed, so we don't need another pass. 1155 return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1; 1156 } 1157 } 1158 return 0; 1159 } 1160 1161 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in 1162 /// the specific unconditional branch instruction. 1163 static inline unsigned getUnconditionalBrDisp(int Opc) { 1164 switch (Opc) { 1165 case ARM::tB: 1166 return ((1<<10)-1)*2; 1167 case ARM::t2B: 1168 return ((1<<23)-1)*2; 1169 default: 1170 break; 1171 } 1172 1173 return ((1<<23)-1)*4; 1174 } 1175 1176 /// findAvailableWater - Look for an existing entry in the WaterList in which 1177 /// we can place the CPE referenced from U so it's within range of U's MI. 1178 /// Returns true if found, false if not. If it returns true, WaterIter 1179 /// is set to the WaterList entry. For Thumb, prefer water that will not 1180 /// introduce padding to water that will. To ensure that this pass 1181 /// terminates, the CPE location for a particular CPUser is only allowed to 1182 /// move to a lower address, so search backward from the end of the list and 1183 /// prefer the first water that is in range. 1184 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset, 1185 water_iterator &WaterIter, 1186 bool CloserWater) { 1187 if (WaterList.empty()) 1188 return false; 1189 1190 unsigned BestGrowth = ~0u; 1191 // The nearest water without splitting the UserBB is right after it. 1192 // If the distance is still large (we have a big BB), then we need to split it 1193 // if we don't converge after certain iterations. This helps the following 1194 // situation to converge: 1195 // BB0: 1196 // Big BB 1197 // BB1: 1198 // Constant Pool 1199 // When a CP access is out of range, BB0 may be used as water. However, 1200 // inserting islands between BB0 and BB1 makes other accesses out of range. 1201 MachineBasicBlock *UserBB = U.MI->getParent(); 1202 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1203 unsigned MinNoSplitDisp = 1204 BBInfo[UserBB->getNumber()].postOffset(getCPELogAlign(U.CPEMI)); 1205 if (CloserWater && MinNoSplitDisp > U.getMaxDisp() / 2) 1206 return false; 1207 for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();; 1208 --IP) { 1209 MachineBasicBlock* WaterBB = *IP; 1210 // Check if water is in range and is either at a lower address than the 1211 // current "high water mark" or a new water block that was created since 1212 // the previous iteration by inserting an unconditional branch. In the 1213 // latter case, we want to allow resetting the high water mark back to 1214 // this new water since we haven't seen it before. Inserting branches 1215 // should be relatively uncommon and when it does happen, we want to be 1216 // sure to take advantage of it for all the CPEs near that block, so that 1217 // we don't insert more branches than necessary. 1218 // When CloserWater is true, we try to find the lowest address after (or 1219 // equal to) user MI's BB no matter of padding growth. 1220 unsigned Growth; 1221 if (isWaterInRange(UserOffset, WaterBB, U, Growth) && 1222 (WaterBB->getNumber() < U.HighWaterMark->getNumber() || 1223 NewWaterList.count(WaterBB) || WaterBB == U.MI->getParent()) && 1224 Growth < BestGrowth) { 1225 // This is the least amount of required padding seen so far. 1226 BestGrowth = Growth; 1227 WaterIter = IP; 1228 LLVM_DEBUG(dbgs() << "Found water after " << printMBBReference(*WaterBB) 1229 << " Growth=" << Growth << '\n'); 1230 1231 if (CloserWater && WaterBB == U.MI->getParent()) 1232 return true; 1233 // Keep looking unless it is perfect and we're not looking for the lowest 1234 // possible address. 1235 if (!CloserWater && BestGrowth == 0) 1236 return true; 1237 } 1238 if (IP == B) 1239 break; 1240 } 1241 return BestGrowth != ~0u; 1242 } 1243 1244 /// createNewWater - No existing WaterList entry will work for 1245 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the 1246 /// block is used if in range, and the conditional branch munged so control 1247 /// flow is correct. Otherwise the block is split to create a hole with an 1248 /// unconditional branch around it. In either case NewMBB is set to a 1249 /// block following which the new island can be inserted (the WaterList 1250 /// is not adjusted). 1251 void ARMConstantIslands::createNewWater(unsigned CPUserIndex, 1252 unsigned UserOffset, 1253 MachineBasicBlock *&NewMBB) { 1254 CPUser &U = CPUsers[CPUserIndex]; 1255 MachineInstr *UserMI = U.MI; 1256 MachineInstr *CPEMI = U.CPEMI; 1257 unsigned CPELogAlign = getCPELogAlign(CPEMI); 1258 MachineBasicBlock *UserMBB = UserMI->getParent(); 1259 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1260 const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()]; 1261 1262 // If the block does not end in an unconditional branch already, and if the 1263 // end of the block is within range, make new water there. (The addition 1264 // below is for the unconditional branch we will be adding: 4 bytes on ARM + 1265 // Thumb2, 2 on Thumb1. 1266 if (BBHasFallthrough(UserMBB)) { 1267 // Size of branch to insert. 1268 unsigned Delta = isThumb1 ? 2 : 4; 1269 // Compute the offset where the CPE will begin. 1270 unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta; 1271 1272 if (isOffsetInRange(UserOffset, CPEOffset, U)) { 1273 LLVM_DEBUG(dbgs() << "Split at end of " << printMBBReference(*UserMBB) 1274 << format(", expected CPE offset %#x\n", CPEOffset)); 1275 NewMBB = &*++UserMBB->getIterator(); 1276 // Add an unconditional branch from UserMBB to fallthrough block. Record 1277 // it for branch lengthening; this new branch will not get out of range, 1278 // but if the preceding conditional branch is out of range, the targets 1279 // will be exchanged, and the altered branch may be out of range, so the 1280 // machinery has to know about it. 1281 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B; 1282 if (!isThumb) 1283 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB); 1284 else 1285 BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)) 1286 .addMBB(NewMBB) 1287 .add(predOps(ARMCC::AL)); 1288 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr); 1289 ImmBranches.push_back(ImmBranch(&UserMBB->back(), 1290 MaxDisp, false, UncondBr)); 1291 BBUtils->computeBlockSize(UserMBB); 1292 BBUtils->adjustBBOffsetsAfter(UserMBB); 1293 return; 1294 } 1295 } 1296 1297 // What a big block. Find a place within the block to split it. This is a 1298 // little tricky on Thumb1 since instructions are 2 bytes and constant pool 1299 // entries are 4 bytes: if instruction I references island CPE, and 1300 // instruction I+1 references CPE', it will not work well to put CPE as far 1301 // forward as possible, since then CPE' cannot immediately follow it (that 1302 // location is 2 bytes farther away from I+1 than CPE was from I) and we'd 1303 // need to create a new island. So, we make a first guess, then walk through 1304 // the instructions between the one currently being looked at and the 1305 // possible insertion point, and make sure any other instructions that 1306 // reference CPEs will be able to use the same island area; if not, we back 1307 // up the insertion point. 1308 1309 // Try to split the block so it's fully aligned. Compute the latest split 1310 // point where we can add a 4-byte branch instruction, and then align to 1311 // LogAlign which is the largest possible alignment in the function. 1312 unsigned LogAlign = MF->getAlignment(); 1313 assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry"); 1314 unsigned KnownBits = UserBBI.internalKnownBits(); 1315 unsigned UPad = UnknownPadding(LogAlign, KnownBits); 1316 unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad; 1317 LLVM_DEBUG(dbgs() << format("Split in middle of big block before %#x", 1318 BaseInsertOffset)); 1319 1320 // The 4 in the following is for the unconditional branch we'll be inserting 1321 // (allows for long branch on Thumb1). Alignment of the island is handled 1322 // inside isOffsetInRange. 1323 BaseInsertOffset -= 4; 1324 1325 LLVM_DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset) 1326 << " la=" << LogAlign << " kb=" << KnownBits 1327 << " up=" << UPad << '\n'); 1328 1329 // This could point off the end of the block if we've already got constant 1330 // pool entries following this block; only the last one is in the water list. 1331 // Back past any possible branches (allow for a conditional and a maximally 1332 // long unconditional). 1333 if (BaseInsertOffset + 8 >= UserBBI.postOffset()) { 1334 // Ensure BaseInsertOffset is larger than the offset of the instruction 1335 // following UserMI so that the loop which searches for the split point 1336 // iterates at least once. 1337 BaseInsertOffset = 1338 std::max(UserBBI.postOffset() - UPad - 8, 1339 UserOffset + TII->getInstSizeInBytes(*UserMI) + 1); 1340 LLVM_DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset)); 1341 } 1342 unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad + 1343 CPEMI->getOperand(2).getImm(); 1344 MachineBasicBlock::iterator MI = UserMI; 1345 ++MI; 1346 unsigned CPUIndex = CPUserIndex+1; 1347 unsigned NumCPUsers = CPUsers.size(); 1348 MachineInstr *LastIT = nullptr; 1349 for (unsigned Offset = UserOffset + TII->getInstSizeInBytes(*UserMI); 1350 Offset < BaseInsertOffset; 1351 Offset += TII->getInstSizeInBytes(*MI), MI = std::next(MI)) { 1352 assert(MI != UserMBB->end() && "Fell off end of block"); 1353 if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == &*MI) { 1354 CPUser &U = CPUsers[CPUIndex]; 1355 if (!isOffsetInRange(Offset, EndInsertOffset, U)) { 1356 // Shift intertion point by one unit of alignment so it is within reach. 1357 BaseInsertOffset -= 1u << LogAlign; 1358 EndInsertOffset -= 1u << LogAlign; 1359 } 1360 // This is overly conservative, as we don't account for CPEMIs being 1361 // reused within the block, but it doesn't matter much. Also assume CPEs 1362 // are added in order with alignment padding. We may eventually be able 1363 // to pack the aligned CPEs better. 1364 EndInsertOffset += U.CPEMI->getOperand(2).getImm(); 1365 CPUIndex++; 1366 } 1367 1368 // Remember the last IT instruction. 1369 if (MI->getOpcode() == ARM::t2IT) 1370 LastIT = &*MI; 1371 } 1372 1373 --MI; 1374 1375 // Avoid splitting an IT block. 1376 if (LastIT) { 1377 unsigned PredReg = 0; 1378 ARMCC::CondCodes CC = getITInstrPredicate(*MI, PredReg); 1379 if (CC != ARMCC::AL) 1380 MI = LastIT; 1381 } 1382 1383 // Avoid splitting a MOVW+MOVT pair with a relocation on Windows. 1384 // On Windows, this instruction pair is covered by one single 1385 // IMAGE_REL_ARM_MOV32T relocation which covers both instructions. If a 1386 // constant island is injected inbetween them, the relocation will clobber 1387 // the instruction and fail to update the MOVT instruction. 1388 // (These instructions are bundled up until right before the ConstantIslands 1389 // pass.) 1390 if (STI->isTargetWindows() && isThumb && MI->getOpcode() == ARM::t2MOVTi16 && 1391 (MI->getOperand(2).getTargetFlags() & ARMII::MO_OPTION_MASK) == 1392 ARMII::MO_HI16) { 1393 --MI; 1394 assert(MI->getOpcode() == ARM::t2MOVi16 && 1395 (MI->getOperand(1).getTargetFlags() & ARMII::MO_OPTION_MASK) == 1396 ARMII::MO_LO16); 1397 } 1398 1399 // We really must not split an IT block. 1400 LLVM_DEBUG(unsigned PredReg; assert( 1401 !isThumb || getITInstrPredicate(*MI, PredReg) == ARMCC::AL)); 1402 1403 NewMBB = splitBlockBeforeInstr(&*MI); 1404 } 1405 1406 /// handleConstantPoolUser - Analyze the specified user, checking to see if it 1407 /// is out-of-range. If so, pick up the constant pool value and move it some 1408 /// place in-range. Return true if we changed any addresses (thus must run 1409 /// another pass of branch lengthening), false otherwise. 1410 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex, 1411 bool CloserWater) { 1412 CPUser &U = CPUsers[CPUserIndex]; 1413 MachineInstr *UserMI = U.MI; 1414 MachineInstr *CPEMI = U.CPEMI; 1415 unsigned CPI = getCombinedIndex(CPEMI); 1416 unsigned Size = CPEMI->getOperand(2).getImm(); 1417 // Compute this only once, it's expensive. 1418 unsigned UserOffset = getUserOffset(U); 1419 1420 // See if the current entry is within range, or there is a clone of it 1421 // in range. 1422 int result = findInRangeCPEntry(U, UserOffset); 1423 if (result==1) return false; 1424 else if (result==2) return true; 1425 1426 // No existing clone of this CPE is within range. 1427 // We will be generating a new clone. Get a UID for it. 1428 unsigned ID = AFI->createPICLabelUId(); 1429 1430 // Look for water where we can place this CPE. 1431 MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock(); 1432 MachineBasicBlock *NewMBB; 1433 water_iterator IP; 1434 if (findAvailableWater(U, UserOffset, IP, CloserWater)) { 1435 LLVM_DEBUG(dbgs() << "Found water in range\n"); 1436 MachineBasicBlock *WaterBB = *IP; 1437 1438 // If the original WaterList entry was "new water" on this iteration, 1439 // propagate that to the new island. This is just keeping NewWaterList 1440 // updated to match the WaterList, which will be updated below. 1441 if (NewWaterList.erase(WaterBB)) 1442 NewWaterList.insert(NewIsland); 1443 1444 // The new CPE goes before the following block (NewMBB). 1445 NewMBB = &*++WaterBB->getIterator(); 1446 } else { 1447 // No water found. 1448 LLVM_DEBUG(dbgs() << "No water found\n"); 1449 createNewWater(CPUserIndex, UserOffset, NewMBB); 1450 1451 // splitBlockBeforeInstr adds to WaterList, which is important when it is 1452 // called while handling branches so that the water will be seen on the 1453 // next iteration for constant pools, but in this context, we don't want 1454 // it. Check for this so it will be removed from the WaterList. 1455 // Also remove any entry from NewWaterList. 1456 MachineBasicBlock *WaterBB = &*--NewMBB->getIterator(); 1457 IP = find(WaterList, WaterBB); 1458 if (IP != WaterList.end()) 1459 NewWaterList.erase(WaterBB); 1460 1461 // We are adding new water. Update NewWaterList. 1462 NewWaterList.insert(NewIsland); 1463 } 1464 // Always align the new block because CP entries can be smaller than 4 1465 // bytes. Be careful not to decrease the existing alignment, e.g. NewMBB may 1466 // be an already aligned constant pool block. 1467 const unsigned Align = isThumb ? 1 : 2; 1468 if (NewMBB->getAlignment() < Align) 1469 NewMBB->setAlignment(Align); 1470 1471 // Remove the original WaterList entry; we want subsequent insertions in 1472 // this vicinity to go after the one we're about to insert. This 1473 // considerably reduces the number of times we have to move the same CPE 1474 // more than once and is also important to ensure the algorithm terminates. 1475 if (IP != WaterList.end()) 1476 WaterList.erase(IP); 1477 1478 // Okay, we know we can put an island before NewMBB now, do it! 1479 MF->insert(NewMBB->getIterator(), NewIsland); 1480 1481 // Update internal data structures to account for the newly inserted MBB. 1482 updateForInsertedWaterBlock(NewIsland); 1483 1484 // Now that we have an island to add the CPE to, clone the original CPE and 1485 // add it to the island. 1486 U.HighWaterMark = NewIsland; 1487 U.CPEMI = BuildMI(NewIsland, DebugLoc(), CPEMI->getDesc()) 1488 .addImm(ID) 1489 .add(CPEMI->getOperand(1)) 1490 .addImm(Size); 1491 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1)); 1492 ++NumCPEs; 1493 1494 // Decrement the old entry, and remove it if refcount becomes 0. 1495 decrementCPEReferenceCount(CPI, CPEMI); 1496 1497 // Mark the basic block as aligned as required by the const-pool entry. 1498 NewIsland->setAlignment(getCPELogAlign(U.CPEMI)); 1499 1500 // Increase the size of the island block to account for the new entry. 1501 BBUtils->adjustBBSize(NewIsland, Size); 1502 BBUtils->adjustBBOffsetsAfter(&*--NewIsland->getIterator()); 1503 1504 // Finally, change the CPI in the instruction operand to be ID. 1505 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i) 1506 if (UserMI->getOperand(i).isCPI()) { 1507 UserMI->getOperand(i).setIndex(ID); 1508 break; 1509 } 1510 1511 LLVM_DEBUG( 1512 dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI 1513 << format(" offset=%#x\n", 1514 BBUtils->getBBInfo()[NewIsland->getNumber()].Offset)); 1515 1516 return true; 1517 } 1518 1519 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update 1520 /// sizes and offsets of impacted basic blocks. 1521 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) { 1522 MachineBasicBlock *CPEBB = CPEMI->getParent(); 1523 unsigned Size = CPEMI->getOperand(2).getImm(); 1524 CPEMI->eraseFromParent(); 1525 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1526 BBUtils->adjustBBSize(CPEBB, -Size); 1527 // All succeeding offsets have the current size value added in, fix this. 1528 if (CPEBB->empty()) { 1529 BBInfo[CPEBB->getNumber()].Size = 0; 1530 1531 // This block no longer needs to be aligned. 1532 CPEBB->setAlignment(0); 1533 } else 1534 // Entries are sorted by descending alignment, so realign from the front. 1535 CPEBB->setAlignment(getCPELogAlign(&*CPEBB->begin())); 1536 1537 BBUtils->adjustBBOffsetsAfter(CPEBB); 1538 // An island has only one predecessor BB and one successor BB. Check if 1539 // this BB's predecessor jumps directly to this BB's successor. This 1540 // shouldn't happen currently. 1541 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?"); 1542 // FIXME: remove the empty blocks after all the work is done? 1543 } 1544 1545 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts 1546 /// are zero. 1547 bool ARMConstantIslands::removeUnusedCPEntries() { 1548 unsigned MadeChange = false; 1549 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) { 1550 std::vector<CPEntry> &CPEs = CPEntries[i]; 1551 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) { 1552 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) { 1553 removeDeadCPEMI(CPEs[j].CPEMI); 1554 CPEs[j].CPEMI = nullptr; 1555 MadeChange = true; 1556 } 1557 } 1558 } 1559 return MadeChange; 1560 } 1561 1562 1563 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far 1564 /// away to fit in its displacement field. 1565 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) { 1566 MachineInstr *MI = Br.MI; 1567 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1568 1569 // Check to see if the DestBB is already in-range. 1570 if (BBUtils->isBBInRange(MI, DestBB, Br.MaxDisp)) 1571 return false; 1572 1573 if (!Br.isCond) 1574 return fixupUnconditionalBr(Br); 1575 return fixupConditionalBr(Br); 1576 } 1577 1578 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is 1579 /// too far away to fit in its displacement field. If the LR register has been 1580 /// spilled in the epilogue, then we can use BL to implement a far jump. 1581 /// Otherwise, add an intermediate branch instruction to a branch. 1582 bool 1583 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) { 1584 MachineInstr *MI = Br.MI; 1585 MachineBasicBlock *MBB = MI->getParent(); 1586 if (!isThumb1) 1587 llvm_unreachable("fixupUnconditionalBr is Thumb1 only!"); 1588 1589 if (!AFI->isLRSpilled()) 1590 report_fatal_error("underestimated function size"); 1591 1592 // Use BL to implement far jump. 1593 Br.MaxDisp = (1 << 21) * 2; 1594 MI->setDesc(TII->get(ARM::tBfar)); 1595 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1596 BBInfo[MBB->getNumber()].Size += 2; 1597 BBUtils->adjustBBOffsetsAfter(MBB); 1598 HasFarJump = true; 1599 ++NumUBrFixed; 1600 1601 LLVM_DEBUG(dbgs() << " Changed B to long jump " << *MI); 1602 1603 return true; 1604 } 1605 1606 /// fixupConditionalBr - Fix up a conditional branch whose destination is too 1607 /// far away to fit in its displacement field. It is converted to an inverse 1608 /// conditional branch + an unconditional branch to the destination. 1609 bool 1610 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) { 1611 MachineInstr *MI = Br.MI; 1612 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB(); 1613 1614 // Add an unconditional branch to the destination and invert the branch 1615 // condition to jump over it: 1616 // blt L1 1617 // => 1618 // bge L2 1619 // b L1 1620 // L2: 1621 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm(); 1622 CC = ARMCC::getOppositeCondition(CC); 1623 unsigned CCReg = MI->getOperand(2).getReg(); 1624 1625 // If the branch is at the end of its MBB and that has a fall-through block, 1626 // direct the updated conditional branch to the fall-through block. Otherwise, 1627 // split the MBB before the next instruction. 1628 MachineBasicBlock *MBB = MI->getParent(); 1629 MachineInstr *BMI = &MBB->back(); 1630 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB); 1631 1632 ++NumCBrFixed; 1633 if (BMI != MI) { 1634 if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) && 1635 BMI->getOpcode() == Br.UncondBr) { 1636 // Last MI in the BB is an unconditional branch. Can we simply invert the 1637 // condition and swap destinations: 1638 // beq L1 1639 // b L2 1640 // => 1641 // bne L2 1642 // b L1 1643 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB(); 1644 if (BBUtils->isBBInRange(MI, NewDest, Br.MaxDisp)) { 1645 LLVM_DEBUG( 1646 dbgs() << " Invert Bcc condition and swap its destination with " 1647 << *BMI); 1648 BMI->getOperand(0).setMBB(DestBB); 1649 MI->getOperand(0).setMBB(NewDest); 1650 MI->getOperand(1).setImm(CC); 1651 return true; 1652 } 1653 } 1654 } 1655 1656 if (NeedSplit) { 1657 splitBlockBeforeInstr(MI); 1658 // No need for the branch to the next block. We're adding an unconditional 1659 // branch to the destination. 1660 int delta = TII->getInstSizeInBytes(MBB->back()); 1661 BBUtils->adjustBBSize(MBB, -delta); 1662 MBB->back().eraseFromParent(); 1663 1664 // The conditional successor will be swapped between the BBs after this, so 1665 // update CFG. 1666 MBB->addSuccessor(DestBB); 1667 std::next(MBB->getIterator())->removeSuccessor(DestBB); 1668 1669 // BBInfo[SplitBB].Offset is wrong temporarily, fixed below 1670 } 1671 MachineBasicBlock *NextBB = &*++MBB->getIterator(); 1672 1673 LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*DestBB) 1674 << " also invert condition and change dest. to " 1675 << printMBBReference(*NextBB) << "\n"); 1676 1677 // Insert a new conditional branch and a new unconditional branch. 1678 // Also update the ImmBranch as well as adding a new entry for the new branch. 1679 BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode())) 1680 .addMBB(NextBB).addImm(CC).addReg(CCReg); 1681 Br.MI = &MBB->back(); 1682 BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back())); 1683 if (isThumb) 1684 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)) 1685 .addMBB(DestBB) 1686 .add(predOps(ARMCC::AL)); 1687 else 1688 BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB); 1689 BBUtils->adjustBBSize(MBB, TII->getInstSizeInBytes(MBB->back())); 1690 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr); 1691 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr)); 1692 1693 // Remove the old conditional branch. It may or may not still be in MBB. 1694 BBUtils->adjustBBSize(MI->getParent(), -TII->getInstSizeInBytes(*MI)); 1695 MI->eraseFromParent(); 1696 BBUtils->adjustBBOffsetsAfter(MBB); 1697 return true; 1698 } 1699 1700 /// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills 1701 /// LR / restores LR to pc. FIXME: This is done here because it's only possible 1702 /// to do this if tBfar is not used. 1703 bool ARMConstantIslands::undoLRSpillRestore() { 1704 bool MadeChange = false; 1705 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) { 1706 MachineInstr *MI = PushPopMIs[i]; 1707 // First two operands are predicates. 1708 if (MI->getOpcode() == ARM::tPOP_RET && 1709 MI->getOperand(2).getReg() == ARM::PC && 1710 MI->getNumExplicitOperands() == 3) { 1711 // Create the new insn and copy the predicate from the old. 1712 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET)) 1713 .add(MI->getOperand(0)) 1714 .add(MI->getOperand(1)); 1715 MI->eraseFromParent(); 1716 MadeChange = true; 1717 } else if (MI->getOpcode() == ARM::tPUSH && 1718 MI->getOperand(2).getReg() == ARM::LR && 1719 MI->getNumExplicitOperands() == 3) { 1720 // Just remove the push. 1721 MI->eraseFromParent(); 1722 MadeChange = true; 1723 } 1724 } 1725 return MadeChange; 1726 } 1727 1728 bool ARMConstantIslands::optimizeThumb2Instructions() { 1729 bool MadeChange = false; 1730 1731 // Shrink ADR and LDR from constantpool. 1732 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) { 1733 CPUser &U = CPUsers[i]; 1734 unsigned Opcode = U.MI->getOpcode(); 1735 unsigned NewOpc = 0; 1736 unsigned Scale = 1; 1737 unsigned Bits = 0; 1738 switch (Opcode) { 1739 default: break; 1740 case ARM::t2LEApcrel: 1741 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1742 NewOpc = ARM::tLEApcrel; 1743 Bits = 8; 1744 Scale = 4; 1745 } 1746 break; 1747 case ARM::t2LDRpci: 1748 if (isARMLowRegister(U.MI->getOperand(0).getReg())) { 1749 NewOpc = ARM::tLDRpci; 1750 Bits = 8; 1751 Scale = 4; 1752 } 1753 break; 1754 } 1755 1756 if (!NewOpc) 1757 continue; 1758 1759 unsigned UserOffset = getUserOffset(U); 1760 unsigned MaxOffs = ((1 << Bits) - 1) * Scale; 1761 1762 // Be conservative with inline asm. 1763 if (!U.KnownAlignment) 1764 MaxOffs -= 2; 1765 1766 // FIXME: Check if offset is multiple of scale if scale is not 4. 1767 if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) { 1768 LLVM_DEBUG(dbgs() << "Shrink: " << *U.MI); 1769 U.MI->setDesc(TII->get(NewOpc)); 1770 MachineBasicBlock *MBB = U.MI->getParent(); 1771 BBUtils->adjustBBSize(MBB, -2); 1772 BBUtils->adjustBBOffsetsAfter(MBB); 1773 ++NumT2CPShrunk; 1774 MadeChange = true; 1775 } 1776 } 1777 1778 return MadeChange; 1779 } 1780 1781 bool ARMConstantIslands::optimizeThumb2Branches() { 1782 bool MadeChange = false; 1783 1784 // The order in which branches appear in ImmBranches is approximately their 1785 // order within the function body. By visiting later branches first, we reduce 1786 // the distance between earlier forward branches and their targets, making it 1787 // more likely that the cbn?z optimization, which can only apply to forward 1788 // branches, will succeed. 1789 for (unsigned i = ImmBranches.size(); i != 0; --i) { 1790 ImmBranch &Br = ImmBranches[i-1]; 1791 unsigned Opcode = Br.MI->getOpcode(); 1792 unsigned NewOpc = 0; 1793 unsigned Scale = 1; 1794 unsigned Bits = 0; 1795 switch (Opcode) { 1796 default: break; 1797 case ARM::t2B: 1798 NewOpc = ARM::tB; 1799 Bits = 11; 1800 Scale = 2; 1801 break; 1802 case ARM::t2Bcc: 1803 NewOpc = ARM::tBcc; 1804 Bits = 8; 1805 Scale = 2; 1806 break; 1807 } 1808 if (NewOpc) { 1809 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale; 1810 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1811 if (BBUtils->isBBInRange(Br.MI, DestBB, MaxOffs)) { 1812 LLVM_DEBUG(dbgs() << "Shrink branch: " << *Br.MI); 1813 Br.MI->setDesc(TII->get(NewOpc)); 1814 MachineBasicBlock *MBB = Br.MI->getParent(); 1815 BBUtils->adjustBBSize(MBB, -2); 1816 BBUtils->adjustBBOffsetsAfter(MBB); 1817 ++NumT2BrShrunk; 1818 MadeChange = true; 1819 } 1820 } 1821 1822 Opcode = Br.MI->getOpcode(); 1823 if (Opcode != ARM::tBcc) 1824 continue; 1825 1826 // If the conditional branch doesn't kill CPSR, then CPSR can be liveout 1827 // so this transformation is not safe. 1828 if (!Br.MI->killsRegister(ARM::CPSR)) 1829 continue; 1830 1831 NewOpc = 0; 1832 unsigned PredReg = 0; 1833 ARMCC::CondCodes Pred = getInstrPredicate(*Br.MI, PredReg); 1834 if (Pred == ARMCC::EQ) 1835 NewOpc = ARM::tCBZ; 1836 else if (Pred == ARMCC::NE) 1837 NewOpc = ARM::tCBNZ; 1838 if (!NewOpc) 1839 continue; 1840 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB(); 1841 // Check if the distance is within 126. Subtract starting offset by 2 1842 // because the cmp will be eliminated. 1843 unsigned BrOffset = BBUtils->getOffsetOf(Br.MI) + 4 - 2; 1844 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 1845 unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset; 1846 if (BrOffset >= DestOffset || (DestOffset - BrOffset) > 126) 1847 continue; 1848 1849 // Search backwards to find a tCMPi8 1850 auto *TRI = STI->getRegisterInfo(); 1851 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(Br.MI, TRI); 1852 if (!CmpMI || CmpMI->getOpcode() != ARM::tCMPi8) 1853 continue; 1854 1855 unsigned Reg = CmpMI->getOperand(0).getReg(); 1856 1857 // Check for Kill flags on Reg. If they are present remove them and set kill 1858 // on the new CBZ. 1859 MachineBasicBlock::iterator KillMI = Br.MI; 1860 bool RegKilled = false; 1861 do { 1862 --KillMI; 1863 if (KillMI->killsRegister(Reg, TRI)) { 1864 KillMI->clearRegisterKills(Reg, TRI); 1865 RegKilled = true; 1866 break; 1867 } 1868 } while (KillMI != CmpMI); 1869 1870 // Create the new CBZ/CBNZ 1871 MachineBasicBlock *MBB = Br.MI->getParent(); 1872 LLVM_DEBUG(dbgs() << "Fold: " << *CmpMI << " and: " << *Br.MI); 1873 MachineInstr *NewBR = 1874 BuildMI(*MBB, Br.MI, Br.MI->getDebugLoc(), TII->get(NewOpc)) 1875 .addReg(Reg, getKillRegState(RegKilled)) 1876 .addMBB(DestBB, Br.MI->getOperand(0).getTargetFlags()); 1877 CmpMI->eraseFromParent(); 1878 Br.MI->eraseFromParent(); 1879 Br.MI = NewBR; 1880 BBInfo[MBB->getNumber()].Size -= 2; 1881 BBUtils->adjustBBOffsetsAfter(MBB); 1882 ++NumCBZ; 1883 MadeChange = true; 1884 } 1885 1886 return MadeChange; 1887 } 1888 1889 static bool isSimpleIndexCalc(MachineInstr &I, unsigned EntryReg, 1890 unsigned BaseReg) { 1891 if (I.getOpcode() != ARM::t2ADDrs) 1892 return false; 1893 1894 if (I.getOperand(0).getReg() != EntryReg) 1895 return false; 1896 1897 if (I.getOperand(1).getReg() != BaseReg) 1898 return false; 1899 1900 // FIXME: what about CC and IdxReg? 1901 return true; 1902 } 1903 1904 /// While trying to form a TBB/TBH instruction, we may (if the table 1905 /// doesn't immediately follow the BR_JT) need access to the start of the 1906 /// jump-table. We know one instruction that produces such a register; this 1907 /// function works out whether that definition can be preserved to the BR_JT, 1908 /// possibly by removing an intervening addition (which is usually needed to 1909 /// calculate the actual entry to jump to). 1910 bool ARMConstantIslands::preserveBaseRegister(MachineInstr *JumpMI, 1911 MachineInstr *LEAMI, 1912 unsigned &DeadSize, 1913 bool &CanDeleteLEA, 1914 bool &BaseRegKill) { 1915 if (JumpMI->getParent() != LEAMI->getParent()) 1916 return false; 1917 1918 // Now we hope that we have at least these instructions in the basic block: 1919 // BaseReg = t2LEA ... 1920 // [...] 1921 // EntryReg = t2ADDrs BaseReg, ... 1922 // [...] 1923 // t2BR_JT EntryReg 1924 // 1925 // We have to be very conservative about what we recognise here though. The 1926 // main perturbing factors to watch out for are: 1927 // + Spills at any point in the chain: not direct problems but we would 1928 // expect a blocking Def of the spilled register so in practice what we 1929 // can do is limited. 1930 // + EntryReg == BaseReg: this is the one situation we should allow a Def 1931 // of BaseReg, but only if the t2ADDrs can be removed. 1932 // + Some instruction other than t2ADDrs computing the entry. Not seen in 1933 // the wild, but we should be careful. 1934 unsigned EntryReg = JumpMI->getOperand(0).getReg(); 1935 unsigned BaseReg = LEAMI->getOperand(0).getReg(); 1936 1937 CanDeleteLEA = true; 1938 BaseRegKill = false; 1939 MachineInstr *RemovableAdd = nullptr; 1940 MachineBasicBlock::iterator I(LEAMI); 1941 for (++I; &*I != JumpMI; ++I) { 1942 if (isSimpleIndexCalc(*I, EntryReg, BaseReg)) { 1943 RemovableAdd = &*I; 1944 break; 1945 } 1946 1947 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 1948 const MachineOperand &MO = I->getOperand(K); 1949 if (!MO.isReg() || !MO.getReg()) 1950 continue; 1951 if (MO.isDef() && MO.getReg() == BaseReg) 1952 return false; 1953 if (MO.isUse() && MO.getReg() == BaseReg) { 1954 BaseRegKill = BaseRegKill || MO.isKill(); 1955 CanDeleteLEA = false; 1956 } 1957 } 1958 } 1959 1960 if (!RemovableAdd) 1961 return true; 1962 1963 // Check the add really is removable, and that nothing else in the block 1964 // clobbers BaseReg. 1965 for (++I; &*I != JumpMI; ++I) { 1966 for (unsigned K = 0, E = I->getNumOperands(); K != E; ++K) { 1967 const MachineOperand &MO = I->getOperand(K); 1968 if (!MO.isReg() || !MO.getReg()) 1969 continue; 1970 if (MO.isDef() && MO.getReg() == BaseReg) 1971 return false; 1972 if (MO.isUse() && MO.getReg() == EntryReg) 1973 RemovableAdd = nullptr; 1974 } 1975 } 1976 1977 if (RemovableAdd) { 1978 RemovableAdd->eraseFromParent(); 1979 DeadSize += isThumb2 ? 4 : 2; 1980 } else if (BaseReg == EntryReg) { 1981 // The add wasn't removable, but clobbered the base for the TBB. So we can't 1982 // preserve it. 1983 return false; 1984 } 1985 1986 // We reached the end of the block without seeing another definition of 1987 // BaseReg (except, possibly the t2ADDrs, which was removed). BaseReg can be 1988 // used in the TBB/TBH if necessary. 1989 return true; 1990 } 1991 1992 /// Returns whether CPEMI is the first instruction in the block 1993 /// immediately following JTMI (assumed to be a TBB or TBH terminator). If so, 1994 /// we can switch the first register to PC and usually remove the address 1995 /// calculation that preceded it. 1996 static bool jumpTableFollowsTB(MachineInstr *JTMI, MachineInstr *CPEMI) { 1997 MachineFunction::iterator MBB = JTMI->getParent()->getIterator(); 1998 MachineFunction *MF = MBB->getParent(); 1999 ++MBB; 2000 2001 return MBB != MF->end() && MBB->begin() != MBB->end() && 2002 &*MBB->begin() == CPEMI; 2003 } 2004 2005 static void RemoveDeadAddBetweenLEAAndJT(MachineInstr *LEAMI, 2006 MachineInstr *JumpMI, 2007 unsigned &DeadSize) { 2008 // Remove a dead add between the LEA and JT, which used to compute EntryReg, 2009 // but the JT now uses PC. Finds the last ADD (if any) that def's EntryReg 2010 // and is not clobbered / used. 2011 MachineInstr *RemovableAdd = nullptr; 2012 unsigned EntryReg = JumpMI->getOperand(0).getReg(); 2013 2014 // Find the last ADD to set EntryReg 2015 MachineBasicBlock::iterator I(LEAMI); 2016 for (++I; &*I != JumpMI; ++I) { 2017 if (I->getOpcode() == ARM::t2ADDrs && I->getOperand(0).getReg() == EntryReg) 2018 RemovableAdd = &*I; 2019 } 2020 2021 if (!RemovableAdd) 2022 return; 2023 2024 // Ensure EntryReg is not clobbered or used. 2025 MachineBasicBlock::iterator J(RemovableAdd); 2026 for (++J; &*J != JumpMI; ++J) { 2027 for (unsigned K = 0, E = J->getNumOperands(); K != E; ++K) { 2028 const MachineOperand &MO = J->getOperand(K); 2029 if (!MO.isReg() || !MO.getReg()) 2030 continue; 2031 if (MO.isDef() && MO.getReg() == EntryReg) 2032 return; 2033 if (MO.isUse() && MO.getReg() == EntryReg) 2034 return; 2035 } 2036 } 2037 2038 LLVM_DEBUG(dbgs() << "Removing Dead Add: " << *RemovableAdd); 2039 RemovableAdd->eraseFromParent(); 2040 DeadSize += 4; 2041 } 2042 2043 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller 2044 /// jumptables when it's possible. 2045 bool ARMConstantIslands::optimizeThumb2JumpTables() { 2046 bool MadeChange = false; 2047 2048 // FIXME: After the tables are shrunk, can we get rid some of the 2049 // constantpool tables? 2050 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2051 if (!MJTI) return false; 2052 2053 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2054 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2055 MachineInstr *MI = T2JumpTables[i]; 2056 const MCInstrDesc &MCID = MI->getDesc(); 2057 unsigned NumOps = MCID.getNumOperands(); 2058 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2059 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2060 unsigned JTI = JTOP.getIndex(); 2061 assert(JTI < JT.size()); 2062 2063 bool ByteOk = true; 2064 bool HalfWordOk = true; 2065 unsigned JTOffset = BBUtils->getOffsetOf(MI) + 4; 2066 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2067 BBInfoVector &BBInfo = BBUtils->getBBInfo(); 2068 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2069 MachineBasicBlock *MBB = JTBBs[j]; 2070 unsigned DstOffset = BBInfo[MBB->getNumber()].Offset; 2071 // Negative offset is not ok. FIXME: We should change BB layout to make 2072 // sure all the branches are forward. 2073 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2) 2074 ByteOk = false; 2075 unsigned TBHLimit = ((1<<16)-1)*2; 2076 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit) 2077 HalfWordOk = false; 2078 if (!ByteOk && !HalfWordOk) 2079 break; 2080 } 2081 2082 if (!ByteOk && !HalfWordOk) 2083 continue; 2084 2085 CPUser &User = CPUsers[JumpTableUserIndices[JTI]]; 2086 MachineBasicBlock *MBB = MI->getParent(); 2087 if (!MI->getOperand(0).isKill()) // FIXME: needed now? 2088 continue; 2089 2090 unsigned DeadSize = 0; 2091 bool CanDeleteLEA = false; 2092 bool BaseRegKill = false; 2093 2094 unsigned IdxReg = ~0U; 2095 bool IdxRegKill = true; 2096 if (isThumb2) { 2097 IdxReg = MI->getOperand(1).getReg(); 2098 IdxRegKill = MI->getOperand(1).isKill(); 2099 2100 bool PreservedBaseReg = 2101 preserveBaseRegister(MI, User.MI, DeadSize, CanDeleteLEA, BaseRegKill); 2102 if (!jumpTableFollowsTB(MI, User.CPEMI) && !PreservedBaseReg) 2103 continue; 2104 } else { 2105 // We're in thumb-1 mode, so we must have something like: 2106 // %idx = tLSLri %idx, 2 2107 // %base = tLEApcrelJT 2108 // %t = tLDRr %base, %idx 2109 unsigned BaseReg = User.MI->getOperand(0).getReg(); 2110 2111 if (User.MI->getIterator() == User.MI->getParent()->begin()) 2112 continue; 2113 MachineInstr *Shift = User.MI->getPrevNode(); 2114 if (Shift->getOpcode() != ARM::tLSLri || 2115 Shift->getOperand(3).getImm() != 2 || 2116 !Shift->getOperand(2).isKill()) 2117 continue; 2118 IdxReg = Shift->getOperand(2).getReg(); 2119 unsigned ShiftedIdxReg = Shift->getOperand(0).getReg(); 2120 2121 // It's important that IdxReg is live until the actual TBB/TBH. Most of 2122 // the range is checked later, but the LEA might still clobber it and not 2123 // actually get removed. 2124 if (BaseReg == IdxReg && !jumpTableFollowsTB(MI, User.CPEMI)) 2125 continue; 2126 2127 MachineInstr *Load = User.MI->getNextNode(); 2128 if (Load->getOpcode() != ARM::tLDRr) 2129 continue; 2130 if (Load->getOperand(1).getReg() != BaseReg || 2131 Load->getOperand(2).getReg() != ShiftedIdxReg || 2132 !Load->getOperand(2).isKill()) 2133 continue; 2134 2135 // If we're in PIC mode, there should be another ADD following. 2136 auto *TRI = STI->getRegisterInfo(); 2137 2138 // %base cannot be redefined after the load as it will appear before 2139 // TBB/TBH like: 2140 // %base = 2141 // %base = 2142 // tBB %base, %idx 2143 if (registerDefinedBetween(BaseReg, Load->getNextNode(), MBB->end(), TRI)) 2144 continue; 2145 2146 if (isPositionIndependentOrROPI) { 2147 MachineInstr *Add = Load->getNextNode(); 2148 if (Add->getOpcode() != ARM::tADDrr || 2149 Add->getOperand(2).getReg() != BaseReg || 2150 Add->getOperand(3).getReg() != Load->getOperand(0).getReg() || 2151 !Add->getOperand(3).isKill()) 2152 continue; 2153 if (Add->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2154 continue; 2155 if (registerDefinedBetween(IdxReg, Add->getNextNode(), MI, TRI)) 2156 // IdxReg gets redefined in the middle of the sequence. 2157 continue; 2158 Add->eraseFromParent(); 2159 DeadSize += 2; 2160 } else { 2161 if (Load->getOperand(0).getReg() != MI->getOperand(0).getReg()) 2162 continue; 2163 if (registerDefinedBetween(IdxReg, Load->getNextNode(), MI, TRI)) 2164 // IdxReg gets redefined in the middle of the sequence. 2165 continue; 2166 } 2167 2168 // Now safe to delete the load and lsl. The LEA will be removed later. 2169 CanDeleteLEA = true; 2170 Shift->eraseFromParent(); 2171 Load->eraseFromParent(); 2172 DeadSize += 4; 2173 } 2174 2175 LLVM_DEBUG(dbgs() << "Shrink JT: " << *MI); 2176 MachineInstr *CPEMI = User.CPEMI; 2177 unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT; 2178 if (!isThumb2) 2179 Opc = ByteOk ? ARM::tTBB_JT : ARM::tTBH_JT; 2180 2181 MachineBasicBlock::iterator MI_JT = MI; 2182 MachineInstr *NewJTMI = 2183 BuildMI(*MBB, MI_JT, MI->getDebugLoc(), TII->get(Opc)) 2184 .addReg(User.MI->getOperand(0).getReg(), 2185 getKillRegState(BaseRegKill)) 2186 .addReg(IdxReg, getKillRegState(IdxRegKill)) 2187 .addJumpTableIndex(JTI, JTOP.getTargetFlags()) 2188 .addImm(CPEMI->getOperand(0).getImm()); 2189 LLVM_DEBUG(dbgs() << printMBBReference(*MBB) << ": " << *NewJTMI); 2190 2191 unsigned JTOpc = ByteOk ? ARM::JUMPTABLE_TBB : ARM::JUMPTABLE_TBH; 2192 CPEMI->setDesc(TII->get(JTOpc)); 2193 2194 if (jumpTableFollowsTB(MI, User.CPEMI)) { 2195 NewJTMI->getOperand(0).setReg(ARM::PC); 2196 NewJTMI->getOperand(0).setIsKill(false); 2197 2198 if (CanDeleteLEA) { 2199 if (isThumb2) 2200 RemoveDeadAddBetweenLEAAndJT(User.MI, MI, DeadSize); 2201 2202 User.MI->eraseFromParent(); 2203 DeadSize += isThumb2 ? 4 : 2; 2204 2205 // The LEA was eliminated, the TBB instruction becomes the only new user 2206 // of the jump table. 2207 User.MI = NewJTMI; 2208 User.MaxDisp = 4; 2209 User.NegOk = false; 2210 User.IsSoImm = false; 2211 User.KnownAlignment = false; 2212 } else { 2213 // The LEA couldn't be eliminated, so we must add another CPUser to 2214 // record the TBB or TBH use. 2215 int CPEntryIdx = JumpTableEntryIndices[JTI]; 2216 auto &CPEs = CPEntries[CPEntryIdx]; 2217 auto Entry = 2218 find_if(CPEs, [&](CPEntry &E) { return E.CPEMI == User.CPEMI; }); 2219 ++Entry->RefCount; 2220 CPUsers.emplace_back(CPUser(NewJTMI, User.CPEMI, 4, false, false)); 2221 } 2222 } 2223 2224 unsigned NewSize = TII->getInstSizeInBytes(*NewJTMI); 2225 unsigned OrigSize = TII->getInstSizeInBytes(*MI); 2226 MI->eraseFromParent(); 2227 2228 int Delta = OrigSize - NewSize + DeadSize; 2229 BBInfo[MBB->getNumber()].Size -= Delta; 2230 BBUtils->adjustBBOffsetsAfter(MBB); 2231 2232 ++NumTBs; 2233 MadeChange = true; 2234 } 2235 2236 return MadeChange; 2237 } 2238 2239 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that 2240 /// jump tables always branch forwards, since that's what tbb and tbh need. 2241 bool ARMConstantIslands::reorderThumb2JumpTables() { 2242 bool MadeChange = false; 2243 2244 MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 2245 if (!MJTI) return false; 2246 2247 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 2248 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) { 2249 MachineInstr *MI = T2JumpTables[i]; 2250 const MCInstrDesc &MCID = MI->getDesc(); 2251 unsigned NumOps = MCID.getNumOperands(); 2252 unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 2 : 1); 2253 MachineOperand JTOP = MI->getOperand(JTOpIdx); 2254 unsigned JTI = JTOP.getIndex(); 2255 assert(JTI < JT.size()); 2256 2257 // We prefer if target blocks for the jump table come after the jump 2258 // instruction so we can use TB[BH]. Loop through the target blocks 2259 // and try to adjust them such that that's true. 2260 int JTNumber = MI->getParent()->getNumber(); 2261 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 2262 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) { 2263 MachineBasicBlock *MBB = JTBBs[j]; 2264 int DTNumber = MBB->getNumber(); 2265 2266 if (DTNumber < JTNumber) { 2267 // The destination precedes the switch. Try to move the block forward 2268 // so we have a positive offset. 2269 MachineBasicBlock *NewBB = 2270 adjustJTTargetBlockForward(MBB, MI->getParent()); 2271 if (NewBB) 2272 MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB); 2273 MadeChange = true; 2274 } 2275 } 2276 } 2277 2278 return MadeChange; 2279 } 2280 2281 MachineBasicBlock *ARMConstantIslands:: 2282 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) { 2283 // If the destination block is terminated by an unconditional branch, 2284 // try to move it; otherwise, create a new block following the jump 2285 // table that branches back to the actual target. This is a very simple 2286 // heuristic. FIXME: We can definitely improve it. 2287 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2288 SmallVector<MachineOperand, 4> Cond; 2289 SmallVector<MachineOperand, 4> CondPrior; 2290 MachineFunction::iterator BBi = BB->getIterator(); 2291 MachineFunction::iterator OldPrior = std::prev(BBi); 2292 2293 // If the block terminator isn't analyzable, don't try to move the block 2294 bool B = TII->analyzeBranch(*BB, TBB, FBB, Cond); 2295 2296 // If the block ends in an unconditional branch, move it. The prior block 2297 // has to have an analyzable terminator for us to move this one. Be paranoid 2298 // and make sure we're not trying to move the entry block of the function. 2299 if (!B && Cond.empty() && BB != &MF->front() && 2300 !TII->analyzeBranch(*OldPrior, TBB, FBB, CondPrior)) { 2301 BB->moveAfter(JTBB); 2302 OldPrior->updateTerminator(); 2303 BB->updateTerminator(); 2304 // Update numbering to account for the block being moved. 2305 MF->RenumberBlocks(); 2306 ++NumJTMoved; 2307 return nullptr; 2308 } 2309 2310 // Create a new MBB for the code after the jump BB. 2311 MachineBasicBlock *NewBB = 2312 MF->CreateMachineBasicBlock(JTBB->getBasicBlock()); 2313 MachineFunction::iterator MBBI = ++JTBB->getIterator(); 2314 MF->insert(MBBI, NewBB); 2315 2316 // Add an unconditional branch from NewBB to BB. 2317 // There doesn't seem to be meaningful DebugInfo available; this doesn't 2318 // correspond directly to anything in the source. 2319 if (isThumb2) 2320 BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)) 2321 .addMBB(BB) 2322 .add(predOps(ARMCC::AL)); 2323 else 2324 BuildMI(NewBB, DebugLoc(), TII->get(ARM::tB)) 2325 .addMBB(BB) 2326 .add(predOps(ARMCC::AL)); 2327 2328 // Update internal data structures to account for the newly inserted MBB. 2329 MF->RenumberBlocks(NewBB); 2330 2331 // Update the CFG. 2332 NewBB->addSuccessor(BB); 2333 JTBB->replaceSuccessor(BB, NewBB); 2334 2335 ++NumJTInserted; 2336 return NewBB; 2337 } 2338 2339 /// createARMConstantIslandPass - returns an instance of the constpool 2340 /// island pass. 2341 FunctionPass *llvm::createARMConstantIslandPass() { 2342 return new ARMConstantIslands(); 2343 } 2344 2345 INITIALIZE_PASS(ARMConstantIslands, "arm-cp-islands", ARM_CP_ISLANDS_OPT_NAME, 2346 false, false) 2347