1 //=== ARMCallingConv.cpp - ARM Custom CC Routines ---------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the custom routines for the ARM Calling Convention that 10 // aren't done by tablegen, and includes the table generated implementations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARM.h" 15 #include "ARMCallingConv.h" 16 #include "ARMSubtarget.h" 17 #include "ARMRegisterInfo.h" 18 using namespace llvm; 19 20 // APCS f64 is in register pairs, possibly split to stack 21 static bool f64AssignAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 22 CCValAssign::LocInfo &LocInfo, 23 CCState &State, bool CanFail) { 24 static const MCPhysReg RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 }; 25 26 // Try to get the first register. 27 if (unsigned Reg = State.AllocateReg(RegList)) 28 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 29 else { 30 // For the 2nd half of a v2f64, do not fail. 31 if (CanFail) 32 return false; 33 34 // Put the whole thing on the stack. 35 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, 36 State.AllocateStack(8, 4), 37 LocVT, LocInfo)); 38 return true; 39 } 40 41 // Try to get the second register. 42 if (unsigned Reg = State.AllocateReg(RegList)) 43 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 44 else 45 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, 46 State.AllocateStack(4, 4), 47 LocVT, LocInfo)); 48 return true; 49 } 50 51 static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 52 CCValAssign::LocInfo &LocInfo, 53 ISD::ArgFlagsTy &ArgFlags, 54 CCState &State) { 55 if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true)) 56 return false; 57 if (LocVT == MVT::v2f64 && 58 !f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false)) 59 return false; 60 return true; // we handled it 61 } 62 63 // AAPCS f64 is in aligned register pairs 64 static bool f64AssignAAPCS(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 65 CCValAssign::LocInfo &LocInfo, 66 CCState &State, bool CanFail) { 67 static const MCPhysReg HiRegList[] = { ARM::R0, ARM::R2 }; 68 static const MCPhysReg LoRegList[] = { ARM::R1, ARM::R3 }; 69 static const MCPhysReg ShadowRegList[] = { ARM::R0, ARM::R1 }; 70 static const MCPhysReg GPRArgRegs[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 }; 71 72 unsigned Reg = State.AllocateReg(HiRegList, ShadowRegList); 73 if (Reg == 0) { 74 75 // If we had R3 unallocated only, now we still must to waste it. 76 Reg = State.AllocateReg(GPRArgRegs); 77 assert((!Reg || Reg == ARM::R3) && "Wrong GPRs usage for f64"); 78 79 // For the 2nd half of a v2f64, do not just fail. 80 if (CanFail) 81 return false; 82 83 // Put the whole thing on the stack. 84 State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, 85 State.AllocateStack(8, 8), 86 LocVT, LocInfo)); 87 return true; 88 } 89 90 unsigned i; 91 for (i = 0; i < 2; ++i) 92 if (HiRegList[i] == Reg) 93 break; 94 95 unsigned T = State.AllocateReg(LoRegList[i]); 96 (void)T; 97 assert(T == LoRegList[i] && "Could not allocate register"); 98 99 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 100 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i], 101 LocVT, LocInfo)); 102 return true; 103 } 104 105 static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 106 CCValAssign::LocInfo &LocInfo, 107 ISD::ArgFlagsTy &ArgFlags, 108 CCState &State) { 109 if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true)) 110 return false; 111 if (LocVT == MVT::v2f64 && 112 !f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false)) 113 return false; 114 return true; // we handled it 115 } 116 117 static bool f64RetAssign(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 118 CCValAssign::LocInfo &LocInfo, CCState &State) { 119 static const MCPhysReg HiRegList[] = { ARM::R0, ARM::R2 }; 120 static const MCPhysReg LoRegList[] = { ARM::R1, ARM::R3 }; 121 122 unsigned Reg = State.AllocateReg(HiRegList, LoRegList); 123 if (Reg == 0) 124 return false; // we didn't handle it 125 126 unsigned i; 127 for (i = 0; i < 2; ++i) 128 if (HiRegList[i] == Reg) 129 break; 130 131 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); 132 State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i], 133 LocVT, LocInfo)); 134 return true; 135 } 136 137 static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 138 CCValAssign::LocInfo &LocInfo, 139 ISD::ArgFlagsTy &ArgFlags, 140 CCState &State) { 141 if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State)) 142 return false; 143 if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State)) 144 return false; 145 return true; // we handled it 146 } 147 148 static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, MVT &ValVT, MVT &LocVT, 149 CCValAssign::LocInfo &LocInfo, 150 ISD::ArgFlagsTy &ArgFlags, 151 CCState &State) { 152 return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, 153 State); 154 } 155 156 static const MCPhysReg RRegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 }; 157 158 static const MCPhysReg SRegList[] = { ARM::S0, ARM::S1, ARM::S2, ARM::S3, 159 ARM::S4, ARM::S5, ARM::S6, ARM::S7, 160 ARM::S8, ARM::S9, ARM::S10, ARM::S11, 161 ARM::S12, ARM::S13, ARM::S14, ARM::S15 }; 162 static const MCPhysReg DRegList[] = { ARM::D0, ARM::D1, ARM::D2, ARM::D3, 163 ARM::D4, ARM::D5, ARM::D6, ARM::D7 }; 164 static const MCPhysReg QRegList[] = { ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3 }; 165 166 167 // Allocate part of an AAPCS HFA or HVA. We assume that each member of the HA 168 // has InConsecutiveRegs set, and that the last member also has 169 // InConsecutiveRegsLast set. We must process all members of the HA before 170 // we can allocate it, as we need to know the total number of registers that 171 // will be needed in order to (attempt to) allocate a contiguous block. 172 static bool CC_ARM_AAPCS_Custom_Aggregate(unsigned &ValNo, MVT &ValVT, 173 MVT &LocVT, 174 CCValAssign::LocInfo &LocInfo, 175 ISD::ArgFlagsTy &ArgFlags, 176 CCState &State) { 177 SmallVectorImpl<CCValAssign> &PendingMembers = State.getPendingLocs(); 178 179 // AAPCS HFAs must have 1-4 elements, all of the same type 180 if (PendingMembers.size() > 0) 181 assert(PendingMembers[0].getLocVT() == LocVT); 182 183 // Add the argument to the list to be allocated once we know the size of the 184 // aggregate. Store the type's required alignmnent as extra info for later: in 185 // the [N x i64] case all trace has been removed by the time we actually get 186 // to do allocation. 187 PendingMembers.push_back(CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo, 188 ArgFlags.getOrigAlign())); 189 190 if (!ArgFlags.isInConsecutiveRegsLast()) 191 return true; 192 193 // Try to allocate a contiguous block of registers, each of the correct 194 // size to hold one member. 195 auto &DL = State.getMachineFunction().getDataLayout(); 196 unsigned StackAlign = DL.getStackAlignment(); 197 unsigned Align = std::min(PendingMembers[0].getExtraInfo(), StackAlign); 198 199 ArrayRef<MCPhysReg> RegList; 200 switch (LocVT.SimpleTy) { 201 case MVT::i32: { 202 RegList = RRegList; 203 unsigned RegIdx = State.getFirstUnallocated(RegList); 204 205 // First consume all registers that would give an unaligned object. Whether 206 // we go on stack or in regs, no-one will be using them in future. 207 unsigned RegAlign = alignTo(Align, 4) / 4; 208 while (RegIdx % RegAlign != 0 && RegIdx < RegList.size()) 209 State.AllocateReg(RegList[RegIdx++]); 210 211 break; 212 } 213 case MVT::f16: 214 case MVT::f32: 215 RegList = SRegList; 216 break; 217 case MVT::v4f16: 218 case MVT::f64: 219 RegList = DRegList; 220 break; 221 case MVT::v8f16: 222 case MVT::v2f64: 223 RegList = QRegList; 224 break; 225 default: 226 llvm_unreachable("Unexpected member type for block aggregate"); 227 break; 228 } 229 230 unsigned RegResult = State.AllocateRegBlock(RegList, PendingMembers.size()); 231 if (RegResult) { 232 for (SmallVectorImpl<CCValAssign>::iterator It = PendingMembers.begin(); 233 It != PendingMembers.end(); ++It) { 234 It->convertToReg(RegResult); 235 State.addLoc(*It); 236 ++RegResult; 237 } 238 PendingMembers.clear(); 239 return true; 240 } 241 242 // Register allocation failed, we'll be needing the stack 243 unsigned Size = LocVT.getSizeInBits() / 8; 244 if (LocVT == MVT::i32 && State.getNextStackOffset() == 0) { 245 // If nothing else has used the stack until this point, a non-HFA aggregate 246 // can be split between regs and stack. 247 unsigned RegIdx = State.getFirstUnallocated(RegList); 248 for (auto &It : PendingMembers) { 249 if (RegIdx >= RegList.size()) 250 It.convertToMem(State.AllocateStack(Size, Size)); 251 else 252 It.convertToReg(State.AllocateReg(RegList[RegIdx++])); 253 254 State.addLoc(It); 255 } 256 PendingMembers.clear(); 257 return true; 258 } else if (LocVT != MVT::i32) 259 RegList = SRegList; 260 261 // Mark all regs as unavailable (AAPCS rule C.2.vfp for VFP, C.6 for core) 262 for (auto Reg : RegList) 263 State.AllocateReg(Reg); 264 265 // After the first item has been allocated, the rest are packed as tightly as 266 // possible. (E.g. an incoming i64 would have starting Align of 8, but we'll 267 // be allocating a bunch of i32 slots). 268 unsigned RestAlign = std::min(Align, Size); 269 270 for (auto &It : PendingMembers) { 271 It.convertToMem(State.AllocateStack(Size, Align)); 272 State.addLoc(It); 273 Align = RestAlign; 274 } 275 276 // All pending members have now been allocated 277 PendingMembers.clear(); 278 279 // This will be allocated by the last member of the aggregate 280 return true; 281 } 282 283 // Include the table generated calling convention implementations. 284 #include "ARMGenCallingConv.inc" 285