xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMCallingConv.cpp (revision 99282790b7d01ec3c4072621d46a0d7302517ad4)
1 //=== ARMCallingConv.cpp - ARM Custom CC Routines ---------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the custom routines for the ARM Calling Convention that
10 // aren't done by tablegen, and includes the table generated implementations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ARM.h"
15 #include "ARMCallingConv.h"
16 #include "ARMSubtarget.h"
17 #include "ARMRegisterInfo.h"
18 using namespace llvm;
19 
20 // APCS f64 is in register pairs, possibly split to stack
21 static bool f64AssignAPCS(unsigned ValNo, MVT ValVT, MVT LocVT,
22                           CCValAssign::LocInfo LocInfo,
23                           CCState &State, bool CanFail) {
24   static const MCPhysReg RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
25 
26   // Try to get the first register.
27   if (unsigned Reg = State.AllocateReg(RegList))
28     State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
29   else {
30     // For the 2nd half of a v2f64, do not fail.
31     if (CanFail)
32       return false;
33 
34     // Put the whole thing on the stack.
35     State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
36                                            State.AllocateStack(8, 4),
37                                            LocVT, LocInfo));
38     return true;
39   }
40 
41   // Try to get the second register.
42   if (unsigned Reg = State.AllocateReg(RegList))
43     State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
44   else
45     State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
46                                            State.AllocateStack(4, 4),
47                                            LocVT, LocInfo));
48   return true;
49 }
50 
51 static bool CC_ARM_APCS_Custom_f64(unsigned ValNo, MVT ValVT, MVT LocVT,
52                                    CCValAssign::LocInfo LocInfo,
53                                    ISD::ArgFlagsTy ArgFlags,
54                                    CCState &State) {
55   if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
56     return false;
57   if (LocVT == MVT::v2f64 &&
58       !f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
59     return false;
60   return true;  // we handled it
61 }
62 
63 // AAPCS f64 is in aligned register pairs
64 static bool f64AssignAAPCS(unsigned ValNo, MVT ValVT, MVT LocVT,
65                            CCValAssign::LocInfo LocInfo,
66                            CCState &State, bool CanFail) {
67   static const MCPhysReg HiRegList[] = { ARM::R0, ARM::R2 };
68   static const MCPhysReg LoRegList[] = { ARM::R1, ARM::R3 };
69   static const MCPhysReg ShadowRegList[] = { ARM::R0, ARM::R1 };
70   static const MCPhysReg GPRArgRegs[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 };
71 
72   unsigned Reg = State.AllocateReg(HiRegList, ShadowRegList);
73   if (Reg == 0) {
74 
75     // If we had R3 unallocated only, now we still must to waste it.
76     Reg = State.AllocateReg(GPRArgRegs);
77     assert((!Reg || Reg == ARM::R3) && "Wrong GPRs usage for f64");
78 
79     // For the 2nd half of a v2f64, do not just fail.
80     if (CanFail)
81       return false;
82 
83     // Put the whole thing on the stack.
84     State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
85                                            State.AllocateStack(8, 8),
86                                            LocVT, LocInfo));
87     return true;
88   }
89 
90   unsigned i;
91   for (i = 0; i < 2; ++i)
92     if (HiRegList[i] == Reg)
93       break;
94 
95   unsigned T = State.AllocateReg(LoRegList[i]);
96   (void)T;
97   assert(T == LoRegList[i] && "Could not allocate register");
98 
99   State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
100   State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
101                                          LocVT, LocInfo));
102   return true;
103 }
104 
105 static bool CC_ARM_AAPCS_Custom_f64(unsigned ValNo, MVT ValVT, MVT LocVT,
106                                     CCValAssign::LocInfo LocInfo,
107                                     ISD::ArgFlagsTy ArgFlags,
108                                     CCState &State) {
109   if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true))
110     return false;
111   if (LocVT == MVT::v2f64 &&
112       !f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false))
113     return false;
114   return true;  // we handled it
115 }
116 
117 static bool f64RetAssign(unsigned ValNo, MVT ValVT, MVT LocVT,
118                          CCValAssign::LocInfo LocInfo, CCState &State) {
119   static const MCPhysReg HiRegList[] = { ARM::R0, ARM::R2 };
120   static const MCPhysReg LoRegList[] = { ARM::R1, ARM::R3 };
121 
122   unsigned Reg = State.AllocateReg(HiRegList, LoRegList);
123   if (Reg == 0)
124     return false; // we didn't handle it
125 
126   unsigned i;
127   for (i = 0; i < 2; ++i)
128     if (HiRegList[i] == Reg)
129       break;
130 
131   State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
132   State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i],
133                                          LocVT, LocInfo));
134   return true;
135 }
136 
137 static bool RetCC_ARM_APCS_Custom_f64(unsigned ValNo, MVT ValVT, MVT LocVT,
138                                       CCValAssign::LocInfo LocInfo,
139                                       ISD::ArgFlagsTy ArgFlags,
140                                       CCState &State) {
141   if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
142     return false;
143   if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State))
144     return false;
145   return true;  // we handled it
146 }
147 
148 static bool RetCC_ARM_AAPCS_Custom_f64(unsigned ValNo, MVT ValVT, MVT LocVT,
149                                        CCValAssign::LocInfo LocInfo,
150                                        ISD::ArgFlagsTy ArgFlags,
151                                        CCState &State) {
152   return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags,
153                                    State);
154 }
155 
156 static const MCPhysReg RRegList[] = { ARM::R0,  ARM::R1,  ARM::R2,  ARM::R3 };
157 
158 static const MCPhysReg SRegList[] = { ARM::S0,  ARM::S1,  ARM::S2,  ARM::S3,
159                                       ARM::S4,  ARM::S5,  ARM::S6,  ARM::S7,
160                                       ARM::S8,  ARM::S9,  ARM::S10, ARM::S11,
161                                       ARM::S12, ARM::S13, ARM::S14,  ARM::S15 };
162 static const MCPhysReg DRegList[] = { ARM::D0, ARM::D1, ARM::D2, ARM::D3,
163                                       ARM::D4, ARM::D5, ARM::D6, ARM::D7 };
164 static const MCPhysReg QRegList[] = { ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3 };
165 
166 
167 // Allocate part of an AAPCS HFA or HVA. We assume that each member of the HA
168 // has InConsecutiveRegs set, and that the last member also has
169 // InConsecutiveRegsLast set. We must process all members of the HA before
170 // we can allocate it, as we need to know the total number of registers that
171 // will be needed in order to (attempt to) allocate a contiguous block.
172 static bool CC_ARM_AAPCS_Custom_Aggregate(unsigned ValNo, MVT ValVT,
173                                           MVT LocVT,
174                                           CCValAssign::LocInfo LocInfo,
175                                           ISD::ArgFlagsTy ArgFlags,
176                                           CCState &State) {
177   SmallVectorImpl<CCValAssign> &PendingMembers = State.getPendingLocs();
178 
179   // AAPCS HFAs must have 1-4 elements, all of the same type
180   if (PendingMembers.size() > 0)
181     assert(PendingMembers[0].getLocVT() == LocVT);
182 
183   // Add the argument to the list to be allocated once we know the size of the
184   // aggregate. Store the type's required alignment as extra info for later: in
185   // the [N x i64] case all trace has been removed by the time we actually get
186   // to do allocation.
187   PendingMembers.push_back(CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo,
188                                                    ArgFlags.getOrigAlign()));
189 
190   if (!ArgFlags.isInConsecutiveRegsLast())
191     return true;
192 
193   // Try to allocate a contiguous block of registers, each of the correct
194   // size to hold one member.
195   auto &DL = State.getMachineFunction().getDataLayout();
196   unsigned StackAlign = DL.getStackAlignment().value();
197   unsigned Align = std::min(PendingMembers[0].getExtraInfo(), StackAlign);
198 
199   ArrayRef<MCPhysReg> RegList;
200   switch (LocVT.SimpleTy) {
201   case MVT::i32: {
202     RegList = RRegList;
203     unsigned RegIdx = State.getFirstUnallocated(RegList);
204 
205     // First consume all registers that would give an unaligned object. Whether
206     // we go on stack or in regs, no-one will be using them in future.
207     unsigned RegAlign = alignTo(Align, 4) / 4;
208     while (RegIdx % RegAlign != 0 && RegIdx < RegList.size())
209       State.AllocateReg(RegList[RegIdx++]);
210 
211     break;
212   }
213   case MVT::f16:
214   case MVT::f32:
215     RegList = SRegList;
216     break;
217   case MVT::v4f16:
218   case MVT::f64:
219     RegList = DRegList;
220     break;
221   case MVT::v8f16:
222   case MVT::v2f64:
223     RegList = QRegList;
224     break;
225   default:
226     llvm_unreachable("Unexpected member type for block aggregate");
227     break;
228   }
229 
230   unsigned RegResult = State.AllocateRegBlock(RegList, PendingMembers.size());
231   if (RegResult) {
232     for (SmallVectorImpl<CCValAssign>::iterator It = PendingMembers.begin();
233          It != PendingMembers.end(); ++It) {
234       It->convertToReg(RegResult);
235       State.addLoc(*It);
236       ++RegResult;
237     }
238     PendingMembers.clear();
239     return true;
240   }
241 
242   // Register allocation failed, we'll be needing the stack
243   unsigned Size = LocVT.getSizeInBits() / 8;
244   if (LocVT == MVT::i32 && State.getNextStackOffset() == 0) {
245     // If nothing else has used the stack until this point, a non-HFA aggregate
246     // can be split between regs and stack.
247     unsigned RegIdx = State.getFirstUnallocated(RegList);
248     for (auto &It : PendingMembers) {
249       if (RegIdx >= RegList.size())
250         It.convertToMem(State.AllocateStack(Size, Size));
251       else
252         It.convertToReg(State.AllocateReg(RegList[RegIdx++]));
253 
254       State.addLoc(It);
255     }
256     PendingMembers.clear();
257     return true;
258   } else if (LocVT != MVT::i32)
259     RegList = SRegList;
260 
261   // Mark all regs as unavailable (AAPCS rule C.2.vfp for VFP, C.6 for core)
262   for (auto Reg : RegList)
263     State.AllocateReg(Reg);
264 
265   // After the first item has been allocated, the rest are packed as tightly as
266   // possible. (E.g. an incoming i64 would have starting Align of 8, but we'll
267   // be allocating a bunch of i32 slots).
268   unsigned RestAlign = std::min(Align, Size);
269 
270   for (auto &It : PendingMembers) {
271     It.convertToMem(State.AllocateStack(Size, Align));
272     State.addLoc(It);
273     Align = RestAlign;
274   }
275 
276   // All pending members have now been allocated
277   PendingMembers.clear();
278 
279   // This will be allocated by the last member of the aggregate
280   return true;
281 }
282 
283 // Include the table generated calling convention implementations.
284 #include "ARMGenCallingConv.inc"
285