xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp (revision d9a42747950146bf03cda7f6e25d219253f8a57a)
1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the Base ARM implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ARMBaseInstrInfo.h"
14 #include "ARMBaseRegisterInfo.h"
15 #include "ARMConstantPoolValue.h"
16 #include "ARMFeatures.h"
17 #include "ARMHazardRecognizer.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "MCTargetDesc/ARMBaseInfo.h"
22 #include "MVETailPredUtils.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/CodeGen/LiveVariables.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/MachineScheduler.h"
40 #include "llvm/CodeGen/MultiHazardRecognizer.h"
41 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
42 #include "llvm/CodeGen/SelectionDAGNodes.h"
43 #include "llvm/CodeGen/TargetInstrInfo.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSchedule.h"
46 #include "llvm/IR/Attributes.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/MC/MCAsmInfo.h"
52 #include "llvm/MC/MCInstrDesc.h"
53 #include "llvm/MC/MCInstrItineraries.h"
54 #include "llvm/Support/BranchProbability.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Target/TargetMachine.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstdint>
65 #include <iterator>
66 #include <new>
67 #include <utility>
68 #include <vector>
69 
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "arm-instrinfo"
73 
74 #define GET_INSTRINFO_CTOR_DTOR
75 #include "ARMGenInstrInfo.inc"
76 
77 static cl::opt<bool>
78 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
79                cl::desc("Enable ARM 2-addr to 3-addr conv"));
80 
81 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
82 struct ARM_MLxEntry {
83   uint16_t MLxOpc;     // MLA / MLS opcode
84   uint16_t MulOpc;     // Expanded multiplication opcode
85   uint16_t AddSubOpc;  // Expanded add / sub opcode
86   bool NegAcc;         // True if the acc is negated before the add / sub.
87   bool HasLane;        // True if instruction has an extra "lane" operand.
88 };
89 
90 static const ARM_MLxEntry ARM_MLxTable[] = {
91   // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
92   // fp scalar ops
93   { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
94   { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
95   { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
96   { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
97   { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
98   { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
99   { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
100   { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
101 
102   // fp SIMD ops
103   { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
104   { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
105   { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
106   { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
107   { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
108   { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
109   { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
110   { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
111 };
112 
113 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
114   : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
115     Subtarget(STI) {
116   for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
117     if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
118       llvm_unreachable("Duplicated entries?");
119     MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
120     MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
121   }
122 }
123 
124 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
125 // currently defaults to no prepass hazard recognizer.
126 ScheduleHazardRecognizer *
127 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
128                                                const ScheduleDAG *DAG) const {
129   if (usePreRAHazardRecognizer()) {
130     const InstrItineraryData *II =
131         static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
132     return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
133   }
134   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
135 }
136 
137 // Called during:
138 // - pre-RA scheduling
139 // - post-RA scheduling when FeatureUseMISched is set
140 ScheduleHazardRecognizer *ARMBaseInstrInfo::CreateTargetMIHazardRecognizer(
141     const InstrItineraryData *II, const ScheduleDAGMI *DAG) const {
142   MultiHazardRecognizer *MHR = new MultiHazardRecognizer();
143 
144   // We would like to restrict this hazard recognizer to only
145   // post-RA scheduling; we can tell that we're post-RA because we don't
146   // track VRegLiveness.
147   // Cortex-M7: TRM indicates that there is a single ITCM bank and two DTCM
148   //            banks banked on bit 2.  Assume that TCMs are in use.
149   if (Subtarget.isCortexM7() && !DAG->hasVRegLiveness())
150     MHR->AddHazardRecognizer(
151         std::make_unique<ARMBankConflictHazardRecognizer>(DAG, 0x4, true));
152 
153   // Not inserting ARMHazardRecognizerFPMLx because that would change
154   // legacy behavior
155 
156   auto BHR = TargetInstrInfo::CreateTargetMIHazardRecognizer(II, DAG);
157   MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR));
158   return MHR;
159 }
160 
161 // Called during post-RA scheduling when FeatureUseMISched is not set
162 ScheduleHazardRecognizer *ARMBaseInstrInfo::
163 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
164                                    const ScheduleDAG *DAG) const {
165   MultiHazardRecognizer *MHR = new MultiHazardRecognizer();
166 
167   if (Subtarget.isThumb2() || Subtarget.hasVFP2Base())
168     MHR->AddHazardRecognizer(std::make_unique<ARMHazardRecognizerFPMLx>());
169 
170   auto BHR = TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
171   if (BHR)
172     MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR));
173   return MHR;
174 }
175 
176 MachineInstr *
177 ARMBaseInstrInfo::convertToThreeAddress(MachineInstr &MI, LiveVariables *LV,
178                                         LiveIntervals *LIS) const {
179   // FIXME: Thumb2 support.
180 
181   if (!EnableARM3Addr)
182     return nullptr;
183 
184   MachineFunction &MF = *MI.getParent()->getParent();
185   uint64_t TSFlags = MI.getDesc().TSFlags;
186   bool isPre = false;
187   switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
188   default: return nullptr;
189   case ARMII::IndexModePre:
190     isPre = true;
191     break;
192   case ARMII::IndexModePost:
193     break;
194   }
195 
196   // Try splitting an indexed load/store to an un-indexed one plus an add/sub
197   // operation.
198   unsigned MemOpc = getUnindexedOpcode(MI.getOpcode());
199   if (MemOpc == 0)
200     return nullptr;
201 
202   MachineInstr *UpdateMI = nullptr;
203   MachineInstr *MemMI = nullptr;
204   unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
205   const MCInstrDesc &MCID = MI.getDesc();
206   unsigned NumOps = MCID.getNumOperands();
207   bool isLoad = !MI.mayStore();
208   const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0);
209   const MachineOperand &Base = MI.getOperand(2);
210   const MachineOperand &Offset = MI.getOperand(NumOps - 3);
211   Register WBReg = WB.getReg();
212   Register BaseReg = Base.getReg();
213   Register OffReg = Offset.getReg();
214   unsigned OffImm = MI.getOperand(NumOps - 2).getImm();
215   ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm();
216   switch (AddrMode) {
217   default: llvm_unreachable("Unknown indexed op!");
218   case ARMII::AddrMode2: {
219     bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
220     unsigned Amt = ARM_AM::getAM2Offset(OffImm);
221     if (OffReg == 0) {
222       if (ARM_AM::getSOImmVal(Amt) == -1)
223         // Can't encode it in a so_imm operand. This transformation will
224         // add more than 1 instruction. Abandon!
225         return nullptr;
226       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
227                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
228                      .addReg(BaseReg)
229                      .addImm(Amt)
230                      .add(predOps(Pred))
231                      .add(condCodeOp());
232     } else if (Amt != 0) {
233       ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
234       unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
235       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
236                          get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
237                      .addReg(BaseReg)
238                      .addReg(OffReg)
239                      .addReg(0)
240                      .addImm(SOOpc)
241                      .add(predOps(Pred))
242                      .add(condCodeOp());
243     } else
244       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
245                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
246                      .addReg(BaseReg)
247                      .addReg(OffReg)
248                      .add(predOps(Pred))
249                      .add(condCodeOp());
250     break;
251   }
252   case ARMII::AddrMode3 : {
253     bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
254     unsigned Amt = ARM_AM::getAM3Offset(OffImm);
255     if (OffReg == 0)
256       // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
257       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
258                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
259                      .addReg(BaseReg)
260                      .addImm(Amt)
261                      .add(predOps(Pred))
262                      .add(condCodeOp());
263     else
264       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
265                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
266                      .addReg(BaseReg)
267                      .addReg(OffReg)
268                      .add(predOps(Pred))
269                      .add(condCodeOp());
270     break;
271   }
272   }
273 
274   std::vector<MachineInstr*> NewMIs;
275   if (isPre) {
276     if (isLoad)
277       MemMI =
278           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
279               .addReg(WBReg)
280               .addImm(0)
281               .addImm(Pred);
282     else
283       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
284                   .addReg(MI.getOperand(1).getReg())
285                   .addReg(WBReg)
286                   .addReg(0)
287                   .addImm(0)
288                   .addImm(Pred);
289     NewMIs.push_back(MemMI);
290     NewMIs.push_back(UpdateMI);
291   } else {
292     if (isLoad)
293       MemMI =
294           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
295               .addReg(BaseReg)
296               .addImm(0)
297               .addImm(Pred);
298     else
299       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
300                   .addReg(MI.getOperand(1).getReg())
301                   .addReg(BaseReg)
302                   .addReg(0)
303                   .addImm(0)
304                   .addImm(Pred);
305     if (WB.isDead())
306       UpdateMI->getOperand(0).setIsDead();
307     NewMIs.push_back(UpdateMI);
308     NewMIs.push_back(MemMI);
309   }
310 
311   // Transfer LiveVariables states, kill / dead info.
312   if (LV) {
313     for (const MachineOperand &MO : MI.operands()) {
314       if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) {
315         Register Reg = MO.getReg();
316 
317         LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
318         if (MO.isDef()) {
319           MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
320           if (MO.isDead())
321             LV->addVirtualRegisterDead(Reg, *NewMI);
322         }
323         if (MO.isUse() && MO.isKill()) {
324           for (unsigned j = 0; j < 2; ++j) {
325             // Look at the two new MI's in reverse order.
326             MachineInstr *NewMI = NewMIs[j];
327             if (!NewMI->readsRegister(Reg))
328               continue;
329             LV->addVirtualRegisterKilled(Reg, *NewMI);
330             if (VI.removeKill(MI))
331               VI.Kills.push_back(NewMI);
332             break;
333           }
334         }
335       }
336     }
337   }
338 
339   MachineBasicBlock &MBB = *MI.getParent();
340   MBB.insert(MI, NewMIs[1]);
341   MBB.insert(MI, NewMIs[0]);
342   return NewMIs[0];
343 }
344 
345 // Branch analysis.
346 // Cond vector output format:
347 //   0 elements indicates an unconditional branch
348 //   2 elements indicates a conditional branch; the elements are
349 //     the condition to check and the CPSR.
350 //   3 elements indicates a hardware loop end; the elements
351 //     are the opcode, the operand value to test, and a dummy
352 //     operand used to pad out to 3 operands.
353 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
354                                      MachineBasicBlock *&TBB,
355                                      MachineBasicBlock *&FBB,
356                                      SmallVectorImpl<MachineOperand> &Cond,
357                                      bool AllowModify) const {
358   TBB = nullptr;
359   FBB = nullptr;
360 
361   MachineBasicBlock::instr_iterator I = MBB.instr_end();
362   if (I == MBB.instr_begin())
363     return false; // Empty blocks are easy.
364   --I;
365 
366   // Walk backwards from the end of the basic block until the branch is
367   // analyzed or we give up.
368   while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
369     // Flag to be raised on unanalyzeable instructions. This is useful in cases
370     // where we want to clean up on the end of the basic block before we bail
371     // out.
372     bool CantAnalyze = false;
373 
374     // Skip over DEBUG values, predicated nonterminators and speculation
375     // barrier terminators.
376     while (I->isDebugInstr() || !I->isTerminator() ||
377            isSpeculationBarrierEndBBOpcode(I->getOpcode()) ||
378            I->getOpcode() == ARM::t2DoLoopStartTP){
379       if (I == MBB.instr_begin())
380         return false;
381       --I;
382     }
383 
384     if (isIndirectBranchOpcode(I->getOpcode()) ||
385         isJumpTableBranchOpcode(I->getOpcode())) {
386       // Indirect branches and jump tables can't be analyzed, but we still want
387       // to clean up any instructions at the tail of the basic block.
388       CantAnalyze = true;
389     } else if (isUncondBranchOpcode(I->getOpcode())) {
390       TBB = I->getOperand(0).getMBB();
391     } else if (isCondBranchOpcode(I->getOpcode())) {
392       // Bail out if we encounter multiple conditional branches.
393       if (!Cond.empty())
394         return true;
395 
396       assert(!FBB && "FBB should have been null.");
397       FBB = TBB;
398       TBB = I->getOperand(0).getMBB();
399       Cond.push_back(I->getOperand(1));
400       Cond.push_back(I->getOperand(2));
401     } else if (I->isReturn()) {
402       // Returns can't be analyzed, but we should run cleanup.
403       CantAnalyze = true;
404     } else if (I->getOpcode() == ARM::t2LoopEnd &&
405                MBB.getParent()
406                    ->getSubtarget<ARMSubtarget>()
407                    .enableMachinePipeliner()) {
408       if (!Cond.empty())
409         return true;
410       FBB = TBB;
411       TBB = I->getOperand(1).getMBB();
412       Cond.push_back(MachineOperand::CreateImm(I->getOpcode()));
413       Cond.push_back(I->getOperand(0));
414       Cond.push_back(MachineOperand::CreateImm(0));
415     } else {
416       // We encountered other unrecognized terminator. Bail out immediately.
417       return true;
418     }
419 
420     // Cleanup code - to be run for unpredicated unconditional branches and
421     //                returns.
422     if (!isPredicated(*I) &&
423           (isUncondBranchOpcode(I->getOpcode()) ||
424            isIndirectBranchOpcode(I->getOpcode()) ||
425            isJumpTableBranchOpcode(I->getOpcode()) ||
426            I->isReturn())) {
427       // Forget any previous condition branch information - it no longer applies.
428       Cond.clear();
429       FBB = nullptr;
430 
431       // If we can modify the function, delete everything below this
432       // unconditional branch.
433       if (AllowModify) {
434         MachineBasicBlock::iterator DI = std::next(I);
435         while (DI != MBB.instr_end()) {
436           MachineInstr &InstToDelete = *DI;
437           ++DI;
438           // Speculation barriers must not be deleted.
439           if (isSpeculationBarrierEndBBOpcode(InstToDelete.getOpcode()))
440             continue;
441           InstToDelete.eraseFromParent();
442         }
443       }
444     }
445 
446     if (CantAnalyze) {
447       // We may not be able to analyze the block, but we could still have
448       // an unconditional branch as the last instruction in the block, which
449       // just branches to layout successor. If this is the case, then just
450       // remove it if we're allowed to make modifications.
451       if (AllowModify && !isPredicated(MBB.back()) &&
452           isUncondBranchOpcode(MBB.back().getOpcode()) &&
453           TBB && MBB.isLayoutSuccessor(TBB))
454         removeBranch(MBB);
455       return true;
456     }
457 
458     if (I == MBB.instr_begin())
459       return false;
460 
461     --I;
462   }
463 
464   // We made it past the terminators without bailing out - we must have
465   // analyzed this branch successfully.
466   return false;
467 }
468 
469 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB,
470                                         int *BytesRemoved) const {
471   assert(!BytesRemoved && "code size not handled");
472 
473   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
474   if (I == MBB.end())
475     return 0;
476 
477   if (!isUncondBranchOpcode(I->getOpcode()) &&
478       !isCondBranchOpcode(I->getOpcode()) && I->getOpcode() != ARM::t2LoopEnd)
479     return 0;
480 
481   // Remove the branch.
482   I->eraseFromParent();
483 
484   I = MBB.end();
485 
486   if (I == MBB.begin()) return 1;
487   --I;
488   if (!isCondBranchOpcode(I->getOpcode()) && I->getOpcode() != ARM::t2LoopEnd)
489     return 1;
490 
491   // Remove the branch.
492   I->eraseFromParent();
493   return 2;
494 }
495 
496 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB,
497                                         MachineBasicBlock *TBB,
498                                         MachineBasicBlock *FBB,
499                                         ArrayRef<MachineOperand> Cond,
500                                         const DebugLoc &DL,
501                                         int *BytesAdded) const {
502   assert(!BytesAdded && "code size not handled");
503   ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
504   int BOpc   = !AFI->isThumbFunction()
505     ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
506   int BccOpc = !AFI->isThumbFunction()
507     ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
508   bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
509 
510   // Shouldn't be a fall through.
511   assert(TBB && "insertBranch must not be told to insert a fallthrough");
512   assert((Cond.size() == 2 || Cond.size() == 0 || Cond.size() == 3) &&
513          "ARM branch conditions have two or three components!");
514 
515   // For conditional branches, we use addOperand to preserve CPSR flags.
516 
517   if (!FBB) {
518     if (Cond.empty()) { // Unconditional branch?
519       if (isThumb)
520         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL));
521       else
522         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
523     } else if (Cond.size() == 2) {
524       BuildMI(&MBB, DL, get(BccOpc))
525           .addMBB(TBB)
526           .addImm(Cond[0].getImm())
527           .add(Cond[1]);
528     } else
529       BuildMI(&MBB, DL, get(Cond[0].getImm())).add(Cond[1]).addMBB(TBB);
530     return 1;
531   }
532 
533   // Two-way conditional branch.
534   if (Cond.size() == 2)
535     BuildMI(&MBB, DL, get(BccOpc))
536         .addMBB(TBB)
537         .addImm(Cond[0].getImm())
538         .add(Cond[1]);
539   else if (Cond.size() == 3)
540     BuildMI(&MBB, DL, get(Cond[0].getImm())).add(Cond[1]).addMBB(TBB);
541   if (isThumb)
542     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL));
543   else
544     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
545   return 2;
546 }
547 
548 bool ARMBaseInstrInfo::
549 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
550   if (Cond.size() == 2) {
551     ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
552     Cond[0].setImm(ARMCC::getOppositeCondition(CC));
553     return false;
554   }
555   return true;
556 }
557 
558 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const {
559   if (MI.isBundle()) {
560     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
561     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
562     while (++I != E && I->isInsideBundle()) {
563       int PIdx = I->findFirstPredOperandIdx();
564       if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
565         return true;
566     }
567     return false;
568   }
569 
570   int PIdx = MI.findFirstPredOperandIdx();
571   return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL;
572 }
573 
574 std::string ARMBaseInstrInfo::createMIROperandComment(
575     const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
576     const TargetRegisterInfo *TRI) const {
577 
578   // First, let's see if there is a generic comment for this operand
579   std::string GenericComment =
580       TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI);
581   if (!GenericComment.empty())
582     return GenericComment;
583 
584   // If not, check if we have an immediate operand.
585   if (!Op.isImm())
586     return std::string();
587 
588   // And print its corresponding condition code if the immediate is a
589   // predicate.
590   int FirstPredOp = MI.findFirstPredOperandIdx();
591   if (FirstPredOp != (int) OpIdx)
592     return std::string();
593 
594   std::string CC = "CC::";
595   CC += ARMCondCodeToString((ARMCC::CondCodes)Op.getImm());
596   return CC;
597 }
598 
599 bool ARMBaseInstrInfo::PredicateInstruction(
600     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
601   unsigned Opc = MI.getOpcode();
602   if (isUncondBranchOpcode(Opc)) {
603     MI.setDesc(get(getMatchingCondBranchOpcode(Opc)));
604     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
605       .addImm(Pred[0].getImm())
606       .addReg(Pred[1].getReg());
607     return true;
608   }
609 
610   int PIdx = MI.findFirstPredOperandIdx();
611   if (PIdx != -1) {
612     MachineOperand &PMO = MI.getOperand(PIdx);
613     PMO.setImm(Pred[0].getImm());
614     MI.getOperand(PIdx+1).setReg(Pred[1].getReg());
615 
616     // Thumb 1 arithmetic instructions do not set CPSR when executed inside an
617     // IT block. This affects how they are printed.
618     const MCInstrDesc &MCID = MI.getDesc();
619     if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
620       assert(MCID.OpInfo[1].isOptionalDef() && "CPSR def isn't expected operand");
621       assert((MI.getOperand(1).isDead() ||
622               MI.getOperand(1).getReg() != ARM::CPSR) &&
623              "if conversion tried to stop defining used CPSR");
624       MI.getOperand(1).setReg(ARM::NoRegister);
625     }
626 
627     return true;
628   }
629   return false;
630 }
631 
632 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
633                                          ArrayRef<MachineOperand> Pred2) const {
634   if (Pred1.size() > 2 || Pred2.size() > 2)
635     return false;
636 
637   ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
638   ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
639   if (CC1 == CC2)
640     return true;
641 
642   switch (CC1) {
643   default:
644     return false;
645   case ARMCC::AL:
646     return true;
647   case ARMCC::HS:
648     return CC2 == ARMCC::HI;
649   case ARMCC::LS:
650     return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
651   case ARMCC::GE:
652     return CC2 == ARMCC::GT;
653   case ARMCC::LE:
654     return CC2 == ARMCC::LT;
655   }
656 }
657 
658 bool ARMBaseInstrInfo::ClobbersPredicate(MachineInstr &MI,
659                                          std::vector<MachineOperand> &Pred,
660                                          bool SkipDead) const {
661   bool Found = false;
662   for (const MachineOperand &MO : MI.operands()) {
663     bool ClobbersCPSR = MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR);
664     bool IsCPSR = MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR;
665     if (ClobbersCPSR || IsCPSR) {
666 
667       // Filter out T1 instructions that have a dead CPSR,
668       // allowing IT blocks to be generated containing T1 instructions
669       const MCInstrDesc &MCID = MI.getDesc();
670       if (MCID.TSFlags & ARMII::ThumbArithFlagSetting && MO.isDead() &&
671           SkipDead)
672         continue;
673 
674       Pred.push_back(MO);
675       Found = true;
676     }
677   }
678 
679   return Found;
680 }
681 
682 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) {
683   for (const auto &MO : MI.operands())
684     if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead())
685       return true;
686   return false;
687 }
688 
689 static bool isEligibleForITBlock(const MachineInstr *MI) {
690   switch (MI->getOpcode()) {
691   default: return true;
692   case ARM::tADC:   // ADC (register) T1
693   case ARM::tADDi3: // ADD (immediate) T1
694   case ARM::tADDi8: // ADD (immediate) T2
695   case ARM::tADDrr: // ADD (register) T1
696   case ARM::tAND:   // AND (register) T1
697   case ARM::tASRri: // ASR (immediate) T1
698   case ARM::tASRrr: // ASR (register) T1
699   case ARM::tBIC:   // BIC (register) T1
700   case ARM::tEOR:   // EOR (register) T1
701   case ARM::tLSLri: // LSL (immediate) T1
702   case ARM::tLSLrr: // LSL (register) T1
703   case ARM::tLSRri: // LSR (immediate) T1
704   case ARM::tLSRrr: // LSR (register) T1
705   case ARM::tMUL:   // MUL T1
706   case ARM::tMVN:   // MVN (register) T1
707   case ARM::tORR:   // ORR (register) T1
708   case ARM::tROR:   // ROR (register) T1
709   case ARM::tRSB:   // RSB (immediate) T1
710   case ARM::tSBC:   // SBC (register) T1
711   case ARM::tSUBi3: // SUB (immediate) T1
712   case ARM::tSUBi8: // SUB (immediate) T2
713   case ARM::tSUBrr: // SUB (register) T1
714     return !ARMBaseInstrInfo::isCPSRDefined(*MI);
715   }
716 }
717 
718 /// isPredicable - Return true if the specified instruction can be predicated.
719 /// By default, this returns true for every instruction with a
720 /// PredicateOperand.
721 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const {
722   if (!MI.isPredicable())
723     return false;
724 
725   if (MI.isBundle())
726     return false;
727 
728   if (!isEligibleForITBlock(&MI))
729     return false;
730 
731   const MachineFunction *MF = MI.getParent()->getParent();
732   const ARMFunctionInfo *AFI =
733       MF->getInfo<ARMFunctionInfo>();
734 
735   // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM.
736   // In their ARM encoding, they can't be encoded in a conditional form.
737   if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
738     return false;
739 
740   // Make indirect control flow changes unpredicable when SLS mitigation is
741   // enabled.
742   const ARMSubtarget &ST = MF->getSubtarget<ARMSubtarget>();
743   if (ST.hardenSlsRetBr() && isIndirectControlFlowNotComingBack(MI))
744     return false;
745   if (ST.hardenSlsBlr() && isIndirectCall(MI))
746     return false;
747 
748   if (AFI->isThumb2Function()) {
749     if (getSubtarget().restrictIT())
750       return isV8EligibleForIT(&MI);
751   }
752 
753   return true;
754 }
755 
756 namespace llvm {
757 
758 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) {
759   for (const MachineOperand &MO : MI->operands()) {
760     if (!MO.isReg() || MO.isUndef() || MO.isUse())
761       continue;
762     if (MO.getReg() != ARM::CPSR)
763       continue;
764     if (!MO.isDead())
765       return false;
766   }
767   // all definitions of CPSR are dead
768   return true;
769 }
770 
771 } // end namespace llvm
772 
773 /// GetInstSize - Return the size of the specified MachineInstr.
774 ///
775 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
776   const MachineBasicBlock &MBB = *MI.getParent();
777   const MachineFunction *MF = MBB.getParent();
778   const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
779 
780   const MCInstrDesc &MCID = MI.getDesc();
781 
782   switch (MI.getOpcode()) {
783   default:
784     // Return the size specified in .td file. If there's none, return 0, as we
785     // can't define a default size (Thumb1 instructions are 2 bytes, Thumb2
786     // instructions are 2-4 bytes, and ARM instructions are 4 bytes), in
787     // contrast to AArch64 instructions which have a default size of 4 bytes for
788     // example.
789     return MCID.getSize();
790   case TargetOpcode::BUNDLE:
791     return getInstBundleLength(MI);
792   case ARM::CONSTPOOL_ENTRY:
793   case ARM::JUMPTABLE_INSTS:
794   case ARM::JUMPTABLE_ADDRS:
795   case ARM::JUMPTABLE_TBB:
796   case ARM::JUMPTABLE_TBH:
797     // If this machine instr is a constant pool entry, its size is recorded as
798     // operand #2.
799     return MI.getOperand(2).getImm();
800   case ARM::SPACE:
801     return MI.getOperand(1).getImm();
802   case ARM::INLINEASM:
803   case ARM::INLINEASM_BR: {
804     // If this machine instr is an inline asm, measure it.
805     unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
806     if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction())
807       Size = alignTo(Size, 4);
808     return Size;
809   }
810   }
811 }
812 
813 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
814   unsigned Size = 0;
815   MachineBasicBlock::const_instr_iterator I = MI.getIterator();
816   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
817   while (++I != E && I->isInsideBundle()) {
818     assert(!I->isBundle() && "No nested bundle!");
819     Size += getInstSizeInBytes(*I);
820   }
821   return Size;
822 }
823 
824 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
825                                     MachineBasicBlock::iterator I,
826                                     unsigned DestReg, bool KillSrc,
827                                     const ARMSubtarget &Subtarget) const {
828   unsigned Opc = Subtarget.isThumb()
829                      ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
830                      : ARM::MRS;
831 
832   MachineInstrBuilder MIB =
833       BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
834 
835   // There is only 1 A/R class MRS instruction, and it always refers to
836   // APSR. However, there are lots of other possibilities on M-class cores.
837   if (Subtarget.isMClass())
838     MIB.addImm(0x800);
839 
840   MIB.add(predOps(ARMCC::AL))
841      .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
842 }
843 
844 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
845                                   MachineBasicBlock::iterator I,
846                                   unsigned SrcReg, bool KillSrc,
847                                   const ARMSubtarget &Subtarget) const {
848   unsigned Opc = Subtarget.isThumb()
849                      ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
850                      : ARM::MSR;
851 
852   MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
853 
854   if (Subtarget.isMClass())
855     MIB.addImm(0x800);
856   else
857     MIB.addImm(8);
858 
859   MIB.addReg(SrcReg, getKillRegState(KillSrc))
860      .add(predOps(ARMCC::AL))
861      .addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
862 }
863 
864 void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) {
865   MIB.addImm(ARMVCC::None);
866   MIB.addReg(0);
867   MIB.addReg(0); // tp_reg
868 }
869 
870 void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB,
871                                       Register DestReg) {
872   addUnpredicatedMveVpredNOp(MIB);
873   MIB.addReg(DestReg, RegState::Undef);
874 }
875 
876 void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) {
877   MIB.addImm(Cond);
878   MIB.addReg(ARM::VPR, RegState::Implicit);
879   MIB.addReg(0); // tp_reg
880 }
881 
882 void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB,
883                                     unsigned Cond, unsigned Inactive) {
884   addPredicatedMveVpredNOp(MIB, Cond);
885   MIB.addReg(Inactive);
886 }
887 
888 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
889                                    MachineBasicBlock::iterator I,
890                                    const DebugLoc &DL, MCRegister DestReg,
891                                    MCRegister SrcReg, bool KillSrc) const {
892   bool GPRDest = ARM::GPRRegClass.contains(DestReg);
893   bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
894 
895   if (GPRDest && GPRSrc) {
896     BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
897         .addReg(SrcReg, getKillRegState(KillSrc))
898         .add(predOps(ARMCC::AL))
899         .add(condCodeOp());
900     return;
901   }
902 
903   bool SPRDest = ARM::SPRRegClass.contains(DestReg);
904   bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
905 
906   unsigned Opc = 0;
907   if (SPRDest && SPRSrc)
908     Opc = ARM::VMOVS;
909   else if (GPRDest && SPRSrc)
910     Opc = ARM::VMOVRS;
911   else if (SPRDest && GPRSrc)
912     Opc = ARM::VMOVSR;
913   else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64())
914     Opc = ARM::VMOVD;
915   else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
916     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MQPRCopy;
917 
918   if (Opc) {
919     MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
920     MIB.addReg(SrcReg, getKillRegState(KillSrc));
921     if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR)
922       MIB.addReg(SrcReg, getKillRegState(KillSrc));
923     if (Opc == ARM::MVE_VORR)
924       addUnpredicatedMveVpredROp(MIB, DestReg);
925     else if (Opc != ARM::MQPRCopy)
926       MIB.add(predOps(ARMCC::AL));
927     return;
928   }
929 
930   // Handle register classes that require multiple instructions.
931   unsigned BeginIdx = 0;
932   unsigned SubRegs = 0;
933   int Spacing = 1;
934 
935   // Use VORRq when possible.
936   if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
937     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
938     BeginIdx = ARM::qsub_0;
939     SubRegs = 2;
940   } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
941     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
942     BeginIdx = ARM::qsub_0;
943     SubRegs = 4;
944   // Fall back to VMOVD.
945   } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
946     Opc = ARM::VMOVD;
947     BeginIdx = ARM::dsub_0;
948     SubRegs = 2;
949   } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
950     Opc = ARM::VMOVD;
951     BeginIdx = ARM::dsub_0;
952     SubRegs = 3;
953   } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
954     Opc = ARM::VMOVD;
955     BeginIdx = ARM::dsub_0;
956     SubRegs = 4;
957   } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
958     Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
959     BeginIdx = ARM::gsub_0;
960     SubRegs = 2;
961   } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
962     Opc = ARM::VMOVD;
963     BeginIdx = ARM::dsub_0;
964     SubRegs = 2;
965     Spacing = 2;
966   } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
967     Opc = ARM::VMOVD;
968     BeginIdx = ARM::dsub_0;
969     SubRegs = 3;
970     Spacing = 2;
971   } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
972     Opc = ARM::VMOVD;
973     BeginIdx = ARM::dsub_0;
974     SubRegs = 4;
975     Spacing = 2;
976   } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) &&
977              !Subtarget.hasFP64()) {
978     Opc = ARM::VMOVS;
979     BeginIdx = ARM::ssub_0;
980     SubRegs = 2;
981   } else if (SrcReg == ARM::CPSR) {
982     copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
983     return;
984   } else if (DestReg == ARM::CPSR) {
985     copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
986     return;
987   } else if (DestReg == ARM::VPR) {
988     assert(ARM::GPRRegClass.contains(SrcReg));
989     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg)
990         .addReg(SrcReg, getKillRegState(KillSrc))
991         .add(predOps(ARMCC::AL));
992     return;
993   } else if (SrcReg == ARM::VPR) {
994     assert(ARM::GPRRegClass.contains(DestReg));
995     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg)
996         .addReg(SrcReg, getKillRegState(KillSrc))
997         .add(predOps(ARMCC::AL));
998     return;
999   } else if (DestReg == ARM::FPSCR_NZCV) {
1000     assert(ARM::GPRRegClass.contains(SrcReg));
1001     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg)
1002         .addReg(SrcReg, getKillRegState(KillSrc))
1003         .add(predOps(ARMCC::AL));
1004     return;
1005   } else if (SrcReg == ARM::FPSCR_NZCV) {
1006     assert(ARM::GPRRegClass.contains(DestReg));
1007     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg)
1008         .addReg(SrcReg, getKillRegState(KillSrc))
1009         .add(predOps(ARMCC::AL));
1010     return;
1011   }
1012 
1013   assert(Opc && "Impossible reg-to-reg copy");
1014 
1015   const TargetRegisterInfo *TRI = &getRegisterInfo();
1016   MachineInstrBuilder Mov;
1017 
1018   // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
1019   if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
1020     BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
1021     Spacing = -Spacing;
1022   }
1023 #ifndef NDEBUG
1024   SmallSet<unsigned, 4> DstRegs;
1025 #endif
1026   for (unsigned i = 0; i != SubRegs; ++i) {
1027     Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
1028     Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
1029     assert(Dst && Src && "Bad sub-register");
1030 #ifndef NDEBUG
1031     assert(!DstRegs.count(Src) && "destructive vector copy");
1032     DstRegs.insert(Dst);
1033 #endif
1034     Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
1035     // VORR (NEON or MVE) takes two source operands.
1036     if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) {
1037       Mov.addReg(Src);
1038     }
1039     // MVE VORR takes predicate operands in place of an ordinary condition.
1040     if (Opc == ARM::MVE_VORR)
1041       addUnpredicatedMveVpredROp(Mov, Dst);
1042     else
1043       Mov = Mov.add(predOps(ARMCC::AL));
1044     // MOVr can set CC.
1045     if (Opc == ARM::MOVr)
1046       Mov = Mov.add(condCodeOp());
1047   }
1048   // Add implicit super-register defs and kills to the last instruction.
1049   Mov->addRegisterDefined(DestReg, TRI);
1050   if (KillSrc)
1051     Mov->addRegisterKilled(SrcReg, TRI);
1052 }
1053 
1054 Optional<DestSourcePair>
1055 ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
1056   // VMOVRRD is also a copy instruction but it requires
1057   // special way of handling. It is more complex copy version
1058   // and since that we are not considering it. For recognition
1059   // of such instruction isExtractSubregLike MI interface fuction
1060   // could be used.
1061   // VORRq is considered as a move only if two inputs are
1062   // the same register.
1063   if (!MI.isMoveReg() ||
1064       (MI.getOpcode() == ARM::VORRq &&
1065        MI.getOperand(1).getReg() != MI.getOperand(2).getReg()))
1066     return None;
1067   return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1068 }
1069 
1070 Optional<ParamLoadedValue>
1071 ARMBaseInstrInfo::describeLoadedValue(const MachineInstr &MI,
1072                                       Register Reg) const {
1073   if (auto DstSrcPair = isCopyInstrImpl(MI)) {
1074     Register DstReg = DstSrcPair->Destination->getReg();
1075 
1076     // TODO: We don't handle cases where the forwarding reg is narrower/wider
1077     // than the copy registers. Consider for example:
1078     //
1079     //   s16 = VMOVS s0
1080     //   s17 = VMOVS s1
1081     //   call @callee(d0)
1082     //
1083     // We'd like to describe the call site value of d0 as d8, but this requires
1084     // gathering and merging the descriptions for the two VMOVS instructions.
1085     //
1086     // We also don't handle the reverse situation, where the forwarding reg is
1087     // narrower than the copy destination:
1088     //
1089     //   d8 = VMOVD d0
1090     //   call @callee(s1)
1091     //
1092     // We need to produce a fragment description (the call site value of s1 is
1093     // /not/ just d8).
1094     if (DstReg != Reg)
1095       return None;
1096   }
1097   return TargetInstrInfo::describeLoadedValue(MI, Reg);
1098 }
1099 
1100 const MachineInstrBuilder &
1101 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
1102                           unsigned SubIdx, unsigned State,
1103                           const TargetRegisterInfo *TRI) const {
1104   if (!SubIdx)
1105     return MIB.addReg(Reg, State);
1106 
1107   if (Register::isPhysicalRegister(Reg))
1108     return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
1109   return MIB.addReg(Reg, State, SubIdx);
1110 }
1111 
1112 void ARMBaseInstrInfo::
1113 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1114                     Register SrcReg, bool isKill, int FI,
1115                     const TargetRegisterClass *RC,
1116                     const TargetRegisterInfo *TRI) const {
1117   MachineFunction &MF = *MBB.getParent();
1118   MachineFrameInfo &MFI = MF.getFrameInfo();
1119   Align Alignment = MFI.getObjectAlign(FI);
1120 
1121   MachineMemOperand *MMO = MF.getMachineMemOperand(
1122       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
1123       MFI.getObjectSize(FI), Alignment);
1124 
1125   switch (TRI->getSpillSize(*RC)) {
1126     case 2:
1127       if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1128         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH))
1129             .addReg(SrcReg, getKillRegState(isKill))
1130             .addFrameIndex(FI)
1131             .addImm(0)
1132             .addMemOperand(MMO)
1133             .add(predOps(ARMCC::AL));
1134       } else
1135         llvm_unreachable("Unknown reg class!");
1136       break;
1137     case 4:
1138       if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1139         BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12))
1140             .addReg(SrcReg, getKillRegState(isKill))
1141             .addFrameIndex(FI)
1142             .addImm(0)
1143             .addMemOperand(MMO)
1144             .add(predOps(ARMCC::AL));
1145       } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1146         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS))
1147             .addReg(SrcReg, getKillRegState(isKill))
1148             .addFrameIndex(FI)
1149             .addImm(0)
1150             .addMemOperand(MMO)
1151             .add(predOps(ARMCC::AL));
1152       } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1153         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off))
1154             .addReg(SrcReg, getKillRegState(isKill))
1155             .addFrameIndex(FI)
1156             .addImm(0)
1157             .addMemOperand(MMO)
1158             .add(predOps(ARMCC::AL));
1159       } else
1160         llvm_unreachable("Unknown reg class!");
1161       break;
1162     case 8:
1163       if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1164         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD))
1165             .addReg(SrcReg, getKillRegState(isKill))
1166             .addFrameIndex(FI)
1167             .addImm(0)
1168             .addMemOperand(MMO)
1169             .add(predOps(ARMCC::AL));
1170       } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1171         if (Subtarget.hasV5TEOps()) {
1172           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD));
1173           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1174           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1175           MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1176              .add(predOps(ARMCC::AL));
1177         } else {
1178           // Fallback to STM instruction, which has existed since the dawn of
1179           // time.
1180           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA))
1181                                         .addFrameIndex(FI)
1182                                         .addMemOperand(MMO)
1183                                         .add(predOps(ARMCC::AL));
1184           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1185           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1186         }
1187       } else
1188         llvm_unreachable("Unknown reg class!");
1189       break;
1190     case 16:
1191       if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1192         // Use aligned spills if the stack can be realigned.
1193         if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
1194           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64))
1195               .addFrameIndex(FI)
1196               .addImm(16)
1197               .addReg(SrcReg, getKillRegState(isKill))
1198               .addMemOperand(MMO)
1199               .add(predOps(ARMCC::AL));
1200         } else {
1201           BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA))
1202               .addReg(SrcReg, getKillRegState(isKill))
1203               .addFrameIndex(FI)
1204               .addMemOperand(MMO)
1205               .add(predOps(ARMCC::AL));
1206         }
1207       } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1208                  Subtarget.hasMVEIntegerOps()) {
1209         auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32));
1210         MIB.addReg(SrcReg, getKillRegState(isKill))
1211           .addFrameIndex(FI)
1212           .addImm(0)
1213           .addMemOperand(MMO);
1214         addUnpredicatedMveVpredNOp(MIB);
1215       } else
1216         llvm_unreachable("Unknown reg class!");
1217       break;
1218     case 24:
1219       if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1220         // Use aligned spills if the stack can be realigned.
1221         if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1222             Subtarget.hasNEON()) {
1223           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo))
1224               .addFrameIndex(FI)
1225               .addImm(16)
1226               .addReg(SrcReg, getKillRegState(isKill))
1227               .addMemOperand(MMO)
1228               .add(predOps(ARMCC::AL));
1229         } else {
1230           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1231                                             get(ARM::VSTMDIA))
1232                                         .addFrameIndex(FI)
1233                                         .add(predOps(ARMCC::AL))
1234                                         .addMemOperand(MMO);
1235           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1236           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1237           AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1238         }
1239       } else
1240         llvm_unreachable("Unknown reg class!");
1241       break;
1242     case 32:
1243       if (ARM::QQPRRegClass.hasSubClassEq(RC) ||
1244           ARM::MQQPRRegClass.hasSubClassEq(RC) ||
1245           ARM::DQuadRegClass.hasSubClassEq(RC)) {
1246         if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1247             Subtarget.hasNEON()) {
1248           // FIXME: It's possible to only store part of the QQ register if the
1249           // spilled def has a sub-register index.
1250           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo))
1251               .addFrameIndex(FI)
1252               .addImm(16)
1253               .addReg(SrcReg, getKillRegState(isKill))
1254               .addMemOperand(MMO)
1255               .add(predOps(ARMCC::AL));
1256         } else if (Subtarget.hasMVEIntegerOps()) {
1257           BuildMI(MBB, I, DebugLoc(), get(ARM::MQQPRStore))
1258               .addReg(SrcReg, getKillRegState(isKill))
1259               .addFrameIndex(FI)
1260               .addMemOperand(MMO);
1261         } else {
1262           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1263                                             get(ARM::VSTMDIA))
1264                                         .addFrameIndex(FI)
1265                                         .add(predOps(ARMCC::AL))
1266                                         .addMemOperand(MMO);
1267           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1268           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1269           MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1270                 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1271         }
1272       } else
1273         llvm_unreachable("Unknown reg class!");
1274       break;
1275     case 64:
1276       if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) &&
1277           Subtarget.hasMVEIntegerOps()) {
1278         BuildMI(MBB, I, DebugLoc(), get(ARM::MQQQQPRStore))
1279             .addReg(SrcReg, getKillRegState(isKill))
1280             .addFrameIndex(FI)
1281             .addMemOperand(MMO);
1282       } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1283         MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA))
1284                                       .addFrameIndex(FI)
1285                                       .add(predOps(ARMCC::AL))
1286                                       .addMemOperand(MMO);
1287         MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1288         MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1289         MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1290         MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1291         MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
1292         MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
1293         MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
1294               AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
1295       } else
1296         llvm_unreachable("Unknown reg class!");
1297       break;
1298     default:
1299       llvm_unreachable("Unknown reg class!");
1300   }
1301 }
1302 
1303 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1304                                               int &FrameIndex) const {
1305   switch (MI.getOpcode()) {
1306   default: break;
1307   case ARM::STRrs:
1308   case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
1309     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1310         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1311         MI.getOperand(3).getImm() == 0) {
1312       FrameIndex = MI.getOperand(1).getIndex();
1313       return MI.getOperand(0).getReg();
1314     }
1315     break;
1316   case ARM::STRi12:
1317   case ARM::t2STRi12:
1318   case ARM::tSTRspi:
1319   case ARM::VSTRD:
1320   case ARM::VSTRS:
1321   case ARM::VSTR_P0_off:
1322   case ARM::MVE_VSTRWU32:
1323     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1324         MI.getOperand(2).getImm() == 0) {
1325       FrameIndex = MI.getOperand(1).getIndex();
1326       return MI.getOperand(0).getReg();
1327     }
1328     break;
1329   case ARM::VST1q64:
1330   case ARM::VST1d64TPseudo:
1331   case ARM::VST1d64QPseudo:
1332     if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) {
1333       FrameIndex = MI.getOperand(0).getIndex();
1334       return MI.getOperand(2).getReg();
1335     }
1336     break;
1337   case ARM::VSTMQIA:
1338     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1339       FrameIndex = MI.getOperand(1).getIndex();
1340       return MI.getOperand(0).getReg();
1341     }
1342     break;
1343   case ARM::MQQPRStore:
1344   case ARM::MQQQQPRStore:
1345     if (MI.getOperand(1).isFI()) {
1346       FrameIndex = MI.getOperand(1).getIndex();
1347       return MI.getOperand(0).getReg();
1348     }
1349     break;
1350   }
1351 
1352   return 0;
1353 }
1354 
1355 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
1356                                                     int &FrameIndex) const {
1357   SmallVector<const MachineMemOperand *, 1> Accesses;
1358   if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) &&
1359       Accesses.size() == 1) {
1360     FrameIndex =
1361         cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1362             ->getFrameIndex();
1363     return true;
1364   }
1365   return false;
1366 }
1367 
1368 void ARMBaseInstrInfo::
1369 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1370                      Register DestReg, int FI,
1371                      const TargetRegisterClass *RC,
1372                      const TargetRegisterInfo *TRI) const {
1373   DebugLoc DL;
1374   if (I != MBB.end()) DL = I->getDebugLoc();
1375   MachineFunction &MF = *MBB.getParent();
1376   MachineFrameInfo &MFI = MF.getFrameInfo();
1377   const Align Alignment = MFI.getObjectAlign(FI);
1378   MachineMemOperand *MMO = MF.getMachineMemOperand(
1379       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
1380       MFI.getObjectSize(FI), Alignment);
1381 
1382   switch (TRI->getSpillSize(*RC)) {
1383   case 2:
1384     if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1385       BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg)
1386           .addFrameIndex(FI)
1387           .addImm(0)
1388           .addMemOperand(MMO)
1389           .add(predOps(ARMCC::AL));
1390     } else
1391       llvm_unreachable("Unknown reg class!");
1392     break;
1393   case 4:
1394     if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1395       BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
1396           .addFrameIndex(FI)
1397           .addImm(0)
1398           .addMemOperand(MMO)
1399           .add(predOps(ARMCC::AL));
1400     } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1401       BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
1402           .addFrameIndex(FI)
1403           .addImm(0)
1404           .addMemOperand(MMO)
1405           .add(predOps(ARMCC::AL));
1406     } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1407       BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg)
1408           .addFrameIndex(FI)
1409           .addImm(0)
1410           .addMemOperand(MMO)
1411           .add(predOps(ARMCC::AL));
1412     } else
1413       llvm_unreachable("Unknown reg class!");
1414     break;
1415   case 8:
1416     if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1417       BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
1418           .addFrameIndex(FI)
1419           .addImm(0)
1420           .addMemOperand(MMO)
1421           .add(predOps(ARMCC::AL));
1422     } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1423       MachineInstrBuilder MIB;
1424 
1425       if (Subtarget.hasV5TEOps()) {
1426         MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
1427         AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1428         AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1429         MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1430            .add(predOps(ARMCC::AL));
1431       } else {
1432         // Fallback to LDM instruction, which has existed since the dawn of
1433         // time.
1434         MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA))
1435                   .addFrameIndex(FI)
1436                   .addMemOperand(MMO)
1437                   .add(predOps(ARMCC::AL));
1438         MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1439         MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1440       }
1441 
1442       if (Register::isPhysicalRegister(DestReg))
1443         MIB.addReg(DestReg, RegState::ImplicitDefine);
1444     } else
1445       llvm_unreachable("Unknown reg class!");
1446     break;
1447   case 16:
1448     if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1449       if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
1450         BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
1451             .addFrameIndex(FI)
1452             .addImm(16)
1453             .addMemOperand(MMO)
1454             .add(predOps(ARMCC::AL));
1455       } else {
1456         BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
1457             .addFrameIndex(FI)
1458             .addMemOperand(MMO)
1459             .add(predOps(ARMCC::AL));
1460       }
1461     } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1462                Subtarget.hasMVEIntegerOps()) {
1463       auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg);
1464       MIB.addFrameIndex(FI)
1465         .addImm(0)
1466         .addMemOperand(MMO);
1467       addUnpredicatedMveVpredNOp(MIB);
1468     } else
1469       llvm_unreachable("Unknown reg class!");
1470     break;
1471   case 24:
1472     if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1473       if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1474           Subtarget.hasNEON()) {
1475         BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
1476             .addFrameIndex(FI)
1477             .addImm(16)
1478             .addMemOperand(MMO)
1479             .add(predOps(ARMCC::AL));
1480       } else {
1481         MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1482                                       .addFrameIndex(FI)
1483                                       .addMemOperand(MMO)
1484                                       .add(predOps(ARMCC::AL));
1485         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1486         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1487         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1488         if (Register::isPhysicalRegister(DestReg))
1489           MIB.addReg(DestReg, RegState::ImplicitDefine);
1490       }
1491     } else
1492       llvm_unreachable("Unknown reg class!");
1493     break;
1494    case 32:
1495      if (ARM::QQPRRegClass.hasSubClassEq(RC) ||
1496          ARM::MQQPRRegClass.hasSubClassEq(RC) ||
1497          ARM::DQuadRegClass.hasSubClassEq(RC)) {
1498        if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1499            Subtarget.hasNEON()) {
1500          BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1501              .addFrameIndex(FI)
1502              .addImm(16)
1503              .addMemOperand(MMO)
1504              .add(predOps(ARMCC::AL));
1505        } else if (Subtarget.hasMVEIntegerOps()) {
1506          BuildMI(MBB, I, DL, get(ARM::MQQPRLoad), DestReg)
1507              .addFrameIndex(FI)
1508              .addMemOperand(MMO);
1509        } else {
1510          MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1511                                        .addFrameIndex(FI)
1512                                        .add(predOps(ARMCC::AL))
1513                                        .addMemOperand(MMO);
1514          MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1515          MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1516          MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1517          MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1518          if (Register::isPhysicalRegister(DestReg))
1519            MIB.addReg(DestReg, RegState::ImplicitDefine);
1520        }
1521      } else
1522        llvm_unreachable("Unknown reg class!");
1523      break;
1524   case 64:
1525     if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) &&
1526         Subtarget.hasMVEIntegerOps()) {
1527       BuildMI(MBB, I, DL, get(ARM::MQQQQPRLoad), DestReg)
1528           .addFrameIndex(FI)
1529           .addMemOperand(MMO);
1530     } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1531       MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1532                                     .addFrameIndex(FI)
1533                                     .add(predOps(ARMCC::AL))
1534                                     .addMemOperand(MMO);
1535       MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1536       MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1537       MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1538       MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1539       MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1540       MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1541       MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1542       MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1543       if (Register::isPhysicalRegister(DestReg))
1544         MIB.addReg(DestReg, RegState::ImplicitDefine);
1545     } else
1546       llvm_unreachable("Unknown reg class!");
1547     break;
1548   default:
1549     llvm_unreachable("Unknown regclass!");
1550   }
1551 }
1552 
1553 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1554                                                int &FrameIndex) const {
1555   switch (MI.getOpcode()) {
1556   default: break;
1557   case ARM::LDRrs:
1558   case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
1559     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1560         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1561         MI.getOperand(3).getImm() == 0) {
1562       FrameIndex = MI.getOperand(1).getIndex();
1563       return MI.getOperand(0).getReg();
1564     }
1565     break;
1566   case ARM::LDRi12:
1567   case ARM::t2LDRi12:
1568   case ARM::tLDRspi:
1569   case ARM::VLDRD:
1570   case ARM::VLDRS:
1571   case ARM::VLDR_P0_off:
1572   case ARM::MVE_VLDRWU32:
1573     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1574         MI.getOperand(2).getImm() == 0) {
1575       FrameIndex = MI.getOperand(1).getIndex();
1576       return MI.getOperand(0).getReg();
1577     }
1578     break;
1579   case ARM::VLD1q64:
1580   case ARM::VLD1d8TPseudo:
1581   case ARM::VLD1d16TPseudo:
1582   case ARM::VLD1d32TPseudo:
1583   case ARM::VLD1d64TPseudo:
1584   case ARM::VLD1d8QPseudo:
1585   case ARM::VLD1d16QPseudo:
1586   case ARM::VLD1d32QPseudo:
1587   case ARM::VLD1d64QPseudo:
1588     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1589       FrameIndex = MI.getOperand(1).getIndex();
1590       return MI.getOperand(0).getReg();
1591     }
1592     break;
1593   case ARM::VLDMQIA:
1594     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1595       FrameIndex = MI.getOperand(1).getIndex();
1596       return MI.getOperand(0).getReg();
1597     }
1598     break;
1599   case ARM::MQQPRLoad:
1600   case ARM::MQQQQPRLoad:
1601     if (MI.getOperand(1).isFI()) {
1602       FrameIndex = MI.getOperand(1).getIndex();
1603       return MI.getOperand(0).getReg();
1604     }
1605     break;
1606   }
1607 
1608   return 0;
1609 }
1610 
1611 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
1612                                                      int &FrameIndex) const {
1613   SmallVector<const MachineMemOperand *, 1> Accesses;
1614   if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) &&
1615       Accesses.size() == 1) {
1616     FrameIndex =
1617         cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1618             ->getFrameIndex();
1619     return true;
1620   }
1621   return false;
1622 }
1623 
1624 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
1625 /// depending on whether the result is used.
1626 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const {
1627   bool isThumb1 = Subtarget.isThumb1Only();
1628   bool isThumb2 = Subtarget.isThumb2();
1629   const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo();
1630 
1631   DebugLoc dl = MI->getDebugLoc();
1632   MachineBasicBlock *BB = MI->getParent();
1633 
1634   MachineInstrBuilder LDM, STM;
1635   if (isThumb1 || !MI->getOperand(1).isDead()) {
1636     MachineOperand LDWb(MI->getOperand(1));
1637     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD
1638                                                  : isThumb1 ? ARM::tLDMIA_UPD
1639                                                             : ARM::LDMIA_UPD))
1640               .add(LDWb);
1641   } else {
1642     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA));
1643   }
1644 
1645   if (isThumb1 || !MI->getOperand(0).isDead()) {
1646     MachineOperand STWb(MI->getOperand(0));
1647     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD
1648                                                  : isThumb1 ? ARM::tSTMIA_UPD
1649                                                             : ARM::STMIA_UPD))
1650               .add(STWb);
1651   } else {
1652     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA));
1653   }
1654 
1655   MachineOperand LDBase(MI->getOperand(3));
1656   LDM.add(LDBase).add(predOps(ARMCC::AL));
1657 
1658   MachineOperand STBase(MI->getOperand(2));
1659   STM.add(STBase).add(predOps(ARMCC::AL));
1660 
1661   // Sort the scratch registers into ascending order.
1662   const TargetRegisterInfo &TRI = getRegisterInfo();
1663   SmallVector<unsigned, 6> ScratchRegs;
1664   for(unsigned I = 5; I < MI->getNumOperands(); ++I)
1665     ScratchRegs.push_back(MI->getOperand(I).getReg());
1666   llvm::sort(ScratchRegs,
1667              [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool {
1668                return TRI.getEncodingValue(Reg1) <
1669                       TRI.getEncodingValue(Reg2);
1670              });
1671 
1672   for (const auto &Reg : ScratchRegs) {
1673     LDM.addReg(Reg, RegState::Define);
1674     STM.addReg(Reg, RegState::Kill);
1675   }
1676 
1677   BB->erase(MI);
1678 }
1679 
1680 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1681   if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
1682     expandLoadStackGuard(MI);
1683     MI.getParent()->erase(MI);
1684     return true;
1685   }
1686 
1687   if (MI.getOpcode() == ARM::MEMCPY) {
1688     expandMEMCPY(MI);
1689     return true;
1690   }
1691 
1692   // This hook gets to expand COPY instructions before they become
1693   // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
1694   // widened to VMOVD.  We prefer the VMOVD when possible because it may be
1695   // changed into a VORR that can go down the NEON pipeline.
1696   if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64())
1697     return false;
1698 
1699   // Look for a copy between even S-registers.  That is where we keep floats
1700   // when using NEON v2f32 instructions for f32 arithmetic.
1701   Register DstRegS = MI.getOperand(0).getReg();
1702   Register SrcRegS = MI.getOperand(1).getReg();
1703   if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1704     return false;
1705 
1706   const TargetRegisterInfo *TRI = &getRegisterInfo();
1707   unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1708                                               &ARM::DPRRegClass);
1709   unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1710                                               &ARM::DPRRegClass);
1711   if (!DstRegD || !SrcRegD)
1712     return false;
1713 
1714   // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
1715   // legal if the COPY already defines the full DstRegD, and it isn't a
1716   // sub-register insertion.
1717   if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI))
1718     return false;
1719 
1720   // A dead copy shouldn't show up here, but reject it just in case.
1721   if (MI.getOperand(0).isDead())
1722     return false;
1723 
1724   // All clear, widen the COPY.
1725   LLVM_DEBUG(dbgs() << "widening:    " << MI);
1726   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
1727 
1728   // Get rid of the old implicit-def of DstRegD.  Leave it if it defines a Q-reg
1729   // or some other super-register.
1730   int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD);
1731   if (ImpDefIdx != -1)
1732     MI.removeOperand(ImpDefIdx);
1733 
1734   // Change the opcode and operands.
1735   MI.setDesc(get(ARM::VMOVD));
1736   MI.getOperand(0).setReg(DstRegD);
1737   MI.getOperand(1).setReg(SrcRegD);
1738   MIB.add(predOps(ARMCC::AL));
1739 
1740   // We are now reading SrcRegD instead of SrcRegS.  This may upset the
1741   // register scavenger and machine verifier, so we need to indicate that we
1742   // are reading an undefined value from SrcRegD, but a proper value from
1743   // SrcRegS.
1744   MI.getOperand(1).setIsUndef();
1745   MIB.addReg(SrcRegS, RegState::Implicit);
1746 
1747   // SrcRegD may actually contain an unrelated value in the ssub_1
1748   // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
1749   if (MI.getOperand(1).isKill()) {
1750     MI.getOperand(1).setIsKill(false);
1751     MI.addRegisterKilled(SrcRegS, TRI, true);
1752   }
1753 
1754   LLVM_DEBUG(dbgs() << "replaced by: " << MI);
1755   return true;
1756 }
1757 
1758 /// Create a copy of a const pool value. Update CPI to the new index and return
1759 /// the label UID.
1760 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1761   MachineConstantPool *MCP = MF.getConstantPool();
1762   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1763 
1764   const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1765   assert(MCPE.isMachineConstantPoolEntry() &&
1766          "Expecting a machine constantpool entry!");
1767   ARMConstantPoolValue *ACPV =
1768     static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1769 
1770   unsigned PCLabelId = AFI->createPICLabelUId();
1771   ARMConstantPoolValue *NewCPV = nullptr;
1772 
1773   // FIXME: The below assumes PIC relocation model and that the function
1774   // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1775   // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1776   // instructions, so that's probably OK, but is PIC always correct when
1777   // we get here?
1778   if (ACPV->isGlobalValue())
1779     NewCPV = ARMConstantPoolConstant::Create(
1780         cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue,
1781         4, ACPV->getModifier(), ACPV->mustAddCurrentAddress());
1782   else if (ACPV->isExtSymbol())
1783     NewCPV = ARMConstantPoolSymbol::
1784       Create(MF.getFunction().getContext(),
1785              cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1786   else if (ACPV->isBlockAddress())
1787     NewCPV = ARMConstantPoolConstant::
1788       Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1789              ARMCP::CPBlockAddress, 4);
1790   else if (ACPV->isLSDA())
1791     NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId,
1792                                              ARMCP::CPLSDA, 4);
1793   else if (ACPV->isMachineBasicBlock())
1794     NewCPV = ARMConstantPoolMBB::
1795       Create(MF.getFunction().getContext(),
1796              cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1797   else
1798     llvm_unreachable("Unexpected ARM constantpool value type!!");
1799   CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlign());
1800   return PCLabelId;
1801 }
1802 
1803 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB,
1804                                      MachineBasicBlock::iterator I,
1805                                      Register DestReg, unsigned SubIdx,
1806                                      const MachineInstr &Orig,
1807                                      const TargetRegisterInfo &TRI) const {
1808   unsigned Opcode = Orig.getOpcode();
1809   switch (Opcode) {
1810   default: {
1811     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
1812     MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
1813     MBB.insert(I, MI);
1814     break;
1815   }
1816   case ARM::tLDRpci_pic:
1817   case ARM::t2LDRpci_pic: {
1818     MachineFunction &MF = *MBB.getParent();
1819     unsigned CPI = Orig.getOperand(1).getIndex();
1820     unsigned PCLabelId = duplicateCPV(MF, CPI);
1821     BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg)
1822         .addConstantPoolIndex(CPI)
1823         .addImm(PCLabelId)
1824         .cloneMemRefs(Orig);
1825     break;
1826   }
1827   }
1828 }
1829 
1830 MachineInstr &
1831 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB,
1832     MachineBasicBlock::iterator InsertBefore,
1833     const MachineInstr &Orig) const {
1834   MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig);
1835   MachineBasicBlock::instr_iterator I = Cloned.getIterator();
1836   for (;;) {
1837     switch (I->getOpcode()) {
1838     case ARM::tLDRpci_pic:
1839     case ARM::t2LDRpci_pic: {
1840       MachineFunction &MF = *MBB.getParent();
1841       unsigned CPI = I->getOperand(1).getIndex();
1842       unsigned PCLabelId = duplicateCPV(MF, CPI);
1843       I->getOperand(1).setIndex(CPI);
1844       I->getOperand(2).setImm(PCLabelId);
1845       break;
1846     }
1847     }
1848     if (!I->isBundledWithSucc())
1849       break;
1850     ++I;
1851   }
1852   return Cloned;
1853 }
1854 
1855 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0,
1856                                         const MachineInstr &MI1,
1857                                         const MachineRegisterInfo *MRI) const {
1858   unsigned Opcode = MI0.getOpcode();
1859   if (Opcode == ARM::t2LDRpci || Opcode == ARM::t2LDRpci_pic ||
1860       Opcode == ARM::tLDRpci || Opcode == ARM::tLDRpci_pic ||
1861       Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1862       Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel ||
1863       Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr ||
1864       Opcode == ARM::t2MOV_ga_pcrel) {
1865     if (MI1.getOpcode() != Opcode)
1866       return false;
1867     if (MI0.getNumOperands() != MI1.getNumOperands())
1868       return false;
1869 
1870     const MachineOperand &MO0 = MI0.getOperand(1);
1871     const MachineOperand &MO1 = MI1.getOperand(1);
1872     if (MO0.getOffset() != MO1.getOffset())
1873       return false;
1874 
1875     if (Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1876         Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel ||
1877         Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr ||
1878         Opcode == ARM::t2MOV_ga_pcrel)
1879       // Ignore the PC labels.
1880       return MO0.getGlobal() == MO1.getGlobal();
1881 
1882     const MachineFunction *MF = MI0.getParent()->getParent();
1883     const MachineConstantPool *MCP = MF->getConstantPool();
1884     int CPI0 = MO0.getIndex();
1885     int CPI1 = MO1.getIndex();
1886     const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1887     const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1888     bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1889     bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1890     if (isARMCP0 && isARMCP1) {
1891       ARMConstantPoolValue *ACPV0 =
1892         static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1893       ARMConstantPoolValue *ACPV1 =
1894         static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1895       return ACPV0->hasSameValue(ACPV1);
1896     } else if (!isARMCP0 && !isARMCP1) {
1897       return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1898     }
1899     return false;
1900   } else if (Opcode == ARM::PICLDR) {
1901     if (MI1.getOpcode() != Opcode)
1902       return false;
1903     if (MI0.getNumOperands() != MI1.getNumOperands())
1904       return false;
1905 
1906     Register Addr0 = MI0.getOperand(1).getReg();
1907     Register Addr1 = MI1.getOperand(1).getReg();
1908     if (Addr0 != Addr1) {
1909       if (!MRI || !Register::isVirtualRegister(Addr0) ||
1910           !Register::isVirtualRegister(Addr1))
1911         return false;
1912 
1913       // This assumes SSA form.
1914       MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1915       MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1916       // Check if the loaded value, e.g. a constantpool of a global address, are
1917       // the same.
1918       if (!produceSameValue(*Def0, *Def1, MRI))
1919         return false;
1920     }
1921 
1922     for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) {
1923       // %12 = PICLDR %11, 0, 14, %noreg
1924       const MachineOperand &MO0 = MI0.getOperand(i);
1925       const MachineOperand &MO1 = MI1.getOperand(i);
1926       if (!MO0.isIdenticalTo(MO1))
1927         return false;
1928     }
1929     return true;
1930   }
1931 
1932   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1933 }
1934 
1935 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1936 /// determine if two loads are loading from the same base address. It should
1937 /// only return true if the base pointers are the same and the only differences
1938 /// between the two addresses is the offset. It also returns the offsets by
1939 /// reference.
1940 ///
1941 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1942 /// is permanently disabled.
1943 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1944                                                int64_t &Offset1,
1945                                                int64_t &Offset2) const {
1946   // Don't worry about Thumb: just ARM and Thumb2.
1947   if (Subtarget.isThumb1Only()) return false;
1948 
1949   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1950     return false;
1951 
1952   switch (Load1->getMachineOpcode()) {
1953   default:
1954     return false;
1955   case ARM::LDRi12:
1956   case ARM::LDRBi12:
1957   case ARM::LDRD:
1958   case ARM::LDRH:
1959   case ARM::LDRSB:
1960   case ARM::LDRSH:
1961   case ARM::VLDRD:
1962   case ARM::VLDRS:
1963   case ARM::t2LDRi8:
1964   case ARM::t2LDRBi8:
1965   case ARM::t2LDRDi8:
1966   case ARM::t2LDRSHi8:
1967   case ARM::t2LDRi12:
1968   case ARM::t2LDRBi12:
1969   case ARM::t2LDRSHi12:
1970     break;
1971   }
1972 
1973   switch (Load2->getMachineOpcode()) {
1974   default:
1975     return false;
1976   case ARM::LDRi12:
1977   case ARM::LDRBi12:
1978   case ARM::LDRD:
1979   case ARM::LDRH:
1980   case ARM::LDRSB:
1981   case ARM::LDRSH:
1982   case ARM::VLDRD:
1983   case ARM::VLDRS:
1984   case ARM::t2LDRi8:
1985   case ARM::t2LDRBi8:
1986   case ARM::t2LDRSHi8:
1987   case ARM::t2LDRi12:
1988   case ARM::t2LDRBi12:
1989   case ARM::t2LDRSHi12:
1990     break;
1991   }
1992 
1993   // Check if base addresses and chain operands match.
1994   if (Load1->getOperand(0) != Load2->getOperand(0) ||
1995       Load1->getOperand(4) != Load2->getOperand(4))
1996     return false;
1997 
1998   // Index should be Reg0.
1999   if (Load1->getOperand(3) != Load2->getOperand(3))
2000     return false;
2001 
2002   // Determine the offsets.
2003   if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
2004       isa<ConstantSDNode>(Load2->getOperand(1))) {
2005     Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
2006     Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
2007     return true;
2008   }
2009 
2010   return false;
2011 }
2012 
2013 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
2014 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
2015 /// be scheduled togther. On some targets if two loads are loading from
2016 /// addresses in the same cache line, it's better if they are scheduled
2017 /// together. This function takes two integers that represent the load offsets
2018 /// from the common base address. It returns true if it decides it's desirable
2019 /// to schedule the two loads together. "NumLoads" is the number of loads that
2020 /// have already been scheduled after Load1.
2021 ///
2022 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
2023 /// is permanently disabled.
2024 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
2025                                                int64_t Offset1, int64_t Offset2,
2026                                                unsigned NumLoads) const {
2027   // Don't worry about Thumb: just ARM and Thumb2.
2028   if (Subtarget.isThumb1Only()) return false;
2029 
2030   assert(Offset2 > Offset1);
2031 
2032   if ((Offset2 - Offset1) / 8 > 64)
2033     return false;
2034 
2035   // Check if the machine opcodes are different. If they are different
2036   // then we consider them to not be of the same base address,
2037   // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
2038   // In this case, they are considered to be the same because they are different
2039   // encoding forms of the same basic instruction.
2040   if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
2041       !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
2042          Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
2043         (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
2044          Load2->getMachineOpcode() == ARM::t2LDRBi8)))
2045     return false;  // FIXME: overly conservative?
2046 
2047   // Four loads in a row should be sufficient.
2048   if (NumLoads >= 3)
2049     return false;
2050 
2051   return true;
2052 }
2053 
2054 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
2055                                             const MachineBasicBlock *MBB,
2056                                             const MachineFunction &MF) const {
2057   // Debug info is never a scheduling boundary. It's necessary to be explicit
2058   // due to the special treatment of IT instructions below, otherwise a
2059   // dbg_value followed by an IT will result in the IT instruction being
2060   // considered a scheduling hazard, which is wrong. It should be the actual
2061   // instruction preceding the dbg_value instruction(s), just like it is
2062   // when debug info is not present.
2063   if (MI.isDebugInstr())
2064     return false;
2065 
2066   // Terminators and labels can't be scheduled around.
2067   if (MI.isTerminator() || MI.isPosition())
2068     return true;
2069 
2070   // INLINEASM_BR can jump to another block
2071   if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
2072     return true;
2073 
2074   if (isSEHInstruction(MI))
2075     return true;
2076 
2077   // Treat the start of the IT block as a scheduling boundary, but schedule
2078   // t2IT along with all instructions following it.
2079   // FIXME: This is a big hammer. But the alternative is to add all potential
2080   // true and anti dependencies to IT block instructions as implicit operands
2081   // to the t2IT instruction. The added compile time and complexity does not
2082   // seem worth it.
2083   MachineBasicBlock::const_iterator I = MI;
2084   // Make sure to skip any debug instructions
2085   while (++I != MBB->end() && I->isDebugInstr())
2086     ;
2087   if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
2088     return true;
2089 
2090   // Don't attempt to schedule around any instruction that defines
2091   // a stack-oriented pointer, as it's unlikely to be profitable. This
2092   // saves compile time, because it doesn't require every single
2093   // stack slot reference to depend on the instruction that does the
2094   // modification.
2095   // Calls don't actually change the stack pointer, even if they have imp-defs.
2096   // No ARM calling conventions change the stack pointer. (X86 calling
2097   // conventions sometimes do).
2098   if (!MI.isCall() && MI.definesRegister(ARM::SP))
2099     return true;
2100 
2101   return false;
2102 }
2103 
2104 bool ARMBaseInstrInfo::
2105 isProfitableToIfCvt(MachineBasicBlock &MBB,
2106                     unsigned NumCycles, unsigned ExtraPredCycles,
2107                     BranchProbability Probability) const {
2108   if (!NumCycles)
2109     return false;
2110 
2111   // If we are optimizing for size, see if the branch in the predecessor can be
2112   // lowered to cbn?z by the constant island lowering pass, and return false if
2113   // so. This results in a shorter instruction sequence.
2114   if (MBB.getParent()->getFunction().hasOptSize()) {
2115     MachineBasicBlock *Pred = *MBB.pred_begin();
2116     if (!Pred->empty()) {
2117       MachineInstr *LastMI = &*Pred->rbegin();
2118       if (LastMI->getOpcode() == ARM::t2Bcc) {
2119         const TargetRegisterInfo *TRI = &getRegisterInfo();
2120         MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI);
2121         if (CmpMI)
2122           return false;
2123       }
2124     }
2125   }
2126   return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles,
2127                              MBB, 0, 0, Probability);
2128 }
2129 
2130 bool ARMBaseInstrInfo::
2131 isProfitableToIfCvt(MachineBasicBlock &TBB,
2132                     unsigned TCycles, unsigned TExtra,
2133                     MachineBasicBlock &FBB,
2134                     unsigned FCycles, unsigned FExtra,
2135                     BranchProbability Probability) const {
2136   if (!TCycles)
2137     return false;
2138 
2139   // In thumb code we often end up trading one branch for a IT block, and
2140   // if we are cloning the instruction can increase code size. Prevent
2141   // blocks with multiple predecesors from being ifcvted to prevent this
2142   // cloning.
2143   if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) {
2144     if (TBB.pred_size() != 1 || FBB.pred_size() != 1)
2145       return false;
2146   }
2147 
2148   // Attempt to estimate the relative costs of predication versus branching.
2149   // Here we scale up each component of UnpredCost to avoid precision issue when
2150   // scaling TCycles/FCycles by Probability.
2151   const unsigned ScalingUpFactor = 1024;
2152 
2153   unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor;
2154   unsigned UnpredCost;
2155   if (!Subtarget.hasBranchPredictor()) {
2156     // When we don't have a branch predictor it's always cheaper to not take a
2157     // branch than take it, so we have to take that into account.
2158     unsigned NotTakenBranchCost = 1;
2159     unsigned TakenBranchCost = Subtarget.getMispredictionPenalty();
2160     unsigned TUnpredCycles, FUnpredCycles;
2161     if (!FCycles) {
2162       // Triangle: TBB is the fallthrough
2163       TUnpredCycles = TCycles + NotTakenBranchCost;
2164       FUnpredCycles = TakenBranchCost;
2165     } else {
2166       // Diamond: TBB is the block that is branched to, FBB is the fallthrough
2167       TUnpredCycles = TCycles + TakenBranchCost;
2168       FUnpredCycles = FCycles + NotTakenBranchCost;
2169       // The branch at the end of FBB will disappear when it's predicated, so
2170       // discount it from PredCost.
2171       PredCost -= 1 * ScalingUpFactor;
2172     }
2173     // The total cost is the cost of each path scaled by their probabilites
2174     unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor);
2175     unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor);
2176     UnpredCost = TUnpredCost + FUnpredCost;
2177     // When predicating assume that the first IT can be folded away but later
2178     // ones cost one cycle each
2179     if (Subtarget.isThumb2() && TCycles + FCycles > 4) {
2180       PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor;
2181     }
2182   } else {
2183     unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor);
2184     unsigned FUnpredCost =
2185       Probability.getCompl().scale(FCycles * ScalingUpFactor);
2186     UnpredCost = TUnpredCost + FUnpredCost;
2187     UnpredCost += 1 * ScalingUpFactor; // The branch itself
2188     UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
2189   }
2190 
2191   return PredCost <= UnpredCost;
2192 }
2193 
2194 unsigned
2195 ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF,
2196                                                    unsigned NumInsts) const {
2197   // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions.
2198   // ARM has a condition code field in every predicable instruction, using it
2199   // doesn't change code size.
2200   if (!Subtarget.isThumb2())
2201     return 0;
2202 
2203   // It's possible that the size of the IT is restricted to a single block.
2204   unsigned MaxInsts = Subtarget.restrictIT() ? 1 : 4;
2205   return divideCeil(NumInsts, MaxInsts) * 2;
2206 }
2207 
2208 unsigned
2209 ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const {
2210   // If this branch is likely to be folded into the comparison to form a
2211   // CB(N)Z, then removing it won't reduce code size at all, because that will
2212   // just replace the CB(N)Z with a CMP.
2213   if (MI.getOpcode() == ARM::t2Bcc &&
2214       findCMPToFoldIntoCBZ(&MI, &getRegisterInfo()))
2215     return 0;
2216 
2217   unsigned Size = getInstSizeInBytes(MI);
2218 
2219   // For Thumb2, all branches are 32-bit instructions during the if conversion
2220   // pass, but may be replaced with 16-bit instructions during size reduction.
2221   // Since the branches considered by if conversion tend to be forward branches
2222   // over small basic blocks, they are very likely to be in range for the
2223   // narrow instructions, so we assume the final code size will be half what it
2224   // currently is.
2225   if (Subtarget.isThumb2())
2226     Size /= 2;
2227 
2228   return Size;
2229 }
2230 
2231 bool
2232 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
2233                                             MachineBasicBlock &FMBB) const {
2234   // Reduce false anti-dependencies to let the target's out-of-order execution
2235   // engine do its thing.
2236   return Subtarget.isProfitableToUnpredicate();
2237 }
2238 
2239 /// getInstrPredicate - If instruction is predicated, returns its predicate
2240 /// condition, otherwise returns AL. It also returns the condition code
2241 /// register by reference.
2242 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI,
2243                                          Register &PredReg) {
2244   int PIdx = MI.findFirstPredOperandIdx();
2245   if (PIdx == -1) {
2246     PredReg = 0;
2247     return ARMCC::AL;
2248   }
2249 
2250   PredReg = MI.getOperand(PIdx+1).getReg();
2251   return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
2252 }
2253 
2254 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
2255   if (Opc == ARM::B)
2256     return ARM::Bcc;
2257   if (Opc == ARM::tB)
2258     return ARM::tBcc;
2259   if (Opc == ARM::t2B)
2260     return ARM::t2Bcc;
2261 
2262   llvm_unreachable("Unknown unconditional branch opcode!");
2263 }
2264 
2265 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI,
2266                                                        bool NewMI,
2267                                                        unsigned OpIdx1,
2268                                                        unsigned OpIdx2) const {
2269   switch (MI.getOpcode()) {
2270   case ARM::MOVCCr:
2271   case ARM::t2MOVCCr: {
2272     // MOVCC can be commuted by inverting the condition.
2273     Register PredReg;
2274     ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
2275     // MOVCC AL can't be inverted. Shouldn't happen.
2276     if (CC == ARMCC::AL || PredReg != ARM::CPSR)
2277       return nullptr;
2278     MachineInstr *CommutedMI =
2279         TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2280     if (!CommutedMI)
2281       return nullptr;
2282     // After swapping the MOVCC operands, also invert the condition.
2283     CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx())
2284         .setImm(ARMCC::getOppositeCondition(CC));
2285     return CommutedMI;
2286   }
2287   }
2288   return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2289 }
2290 
2291 /// Identify instructions that can be folded into a MOVCC instruction, and
2292 /// return the defining instruction.
2293 MachineInstr *
2294 ARMBaseInstrInfo::canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI,
2295                                    const TargetInstrInfo *TII) const {
2296   if (!Reg.isVirtual())
2297     return nullptr;
2298   if (!MRI.hasOneNonDBGUse(Reg))
2299     return nullptr;
2300   MachineInstr *MI = MRI.getVRegDef(Reg);
2301   if (!MI)
2302     return nullptr;
2303   // Check if MI can be predicated and folded into the MOVCC.
2304   if (!isPredicable(*MI))
2305     return nullptr;
2306   // Check if MI has any non-dead defs or physreg uses. This also detects
2307   // predicated instructions which will be reading CPSR.
2308   for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 1)) {
2309     // Reject frame index operands, PEI can't handle the predicated pseudos.
2310     if (MO.isFI() || MO.isCPI() || MO.isJTI())
2311       return nullptr;
2312     if (!MO.isReg())
2313       continue;
2314     // MI can't have any tied operands, that would conflict with predication.
2315     if (MO.isTied())
2316       return nullptr;
2317     if (Register::isPhysicalRegister(MO.getReg()))
2318       return nullptr;
2319     if (MO.isDef() && !MO.isDead())
2320       return nullptr;
2321   }
2322   bool DontMoveAcrossStores = true;
2323   if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores))
2324     return nullptr;
2325   return MI;
2326 }
2327 
2328 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI,
2329                                      SmallVectorImpl<MachineOperand> &Cond,
2330                                      unsigned &TrueOp, unsigned &FalseOp,
2331                                      bool &Optimizable) const {
2332   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2333          "Unknown select instruction");
2334   // MOVCC operands:
2335   // 0: Def.
2336   // 1: True use.
2337   // 2: False use.
2338   // 3: Condition code.
2339   // 4: CPSR use.
2340   TrueOp = 1;
2341   FalseOp = 2;
2342   Cond.push_back(MI.getOperand(3));
2343   Cond.push_back(MI.getOperand(4));
2344   // We can always fold a def.
2345   Optimizable = true;
2346   return false;
2347 }
2348 
2349 MachineInstr *
2350 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI,
2351                                  SmallPtrSetImpl<MachineInstr *> &SeenMIs,
2352                                  bool PreferFalse) const {
2353   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2354          "Unknown select instruction");
2355   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2356   MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this);
2357   bool Invert = !DefMI;
2358   if (!DefMI)
2359     DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this);
2360   if (!DefMI)
2361     return nullptr;
2362 
2363   // Find new register class to use.
2364   MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1);
2365   MachineOperand TrueReg = MI.getOperand(Invert ? 1 : 2);
2366   Register DestReg = MI.getOperand(0).getReg();
2367   const TargetRegisterClass *FalseClass = MRI.getRegClass(FalseReg.getReg());
2368   const TargetRegisterClass *TrueClass = MRI.getRegClass(TrueReg.getReg());
2369   if (!MRI.constrainRegClass(DestReg, FalseClass))
2370     return nullptr;
2371   if (!MRI.constrainRegClass(DestReg, TrueClass))
2372     return nullptr;
2373 
2374   // Create a new predicated version of DefMI.
2375   // Rfalse is the first use.
2376   MachineInstrBuilder NewMI =
2377       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg);
2378 
2379   // Copy all the DefMI operands, excluding its (null) predicate.
2380   const MCInstrDesc &DefDesc = DefMI->getDesc();
2381   for (unsigned i = 1, e = DefDesc.getNumOperands();
2382        i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
2383     NewMI.add(DefMI->getOperand(i));
2384 
2385   unsigned CondCode = MI.getOperand(3).getImm();
2386   if (Invert)
2387     NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
2388   else
2389     NewMI.addImm(CondCode);
2390   NewMI.add(MI.getOperand(4));
2391 
2392   // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
2393   if (NewMI->hasOptionalDef())
2394     NewMI.add(condCodeOp());
2395 
2396   // The output register value when the predicate is false is an implicit
2397   // register operand tied to the first def.
2398   // The tie makes the register allocator ensure the FalseReg is allocated the
2399   // same register as operand 0.
2400   FalseReg.setImplicit();
2401   NewMI.add(FalseReg);
2402   NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
2403 
2404   // Update SeenMIs set: register newly created MI and erase removed DefMI.
2405   SeenMIs.insert(NewMI);
2406   SeenMIs.erase(DefMI);
2407 
2408   // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
2409   // DefMI would be invalid when tranferred inside the loop.  Checking for a
2410   // loop is expensive, but at least remove kill flags if they are in different
2411   // BBs.
2412   if (DefMI->getParent() != MI.getParent())
2413     NewMI->clearKillInfo();
2414 
2415   // The caller will erase MI, but not DefMI.
2416   DefMI->eraseFromParent();
2417   return NewMI;
2418 }
2419 
2420 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
2421 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
2422 /// def operand.
2423 ///
2424 /// This will go away once we can teach tblgen how to set the optional CPSR def
2425 /// operand itself.
2426 struct AddSubFlagsOpcodePair {
2427   uint16_t PseudoOpc;
2428   uint16_t MachineOpc;
2429 };
2430 
2431 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
2432   {ARM::ADDSri, ARM::ADDri},
2433   {ARM::ADDSrr, ARM::ADDrr},
2434   {ARM::ADDSrsi, ARM::ADDrsi},
2435   {ARM::ADDSrsr, ARM::ADDrsr},
2436 
2437   {ARM::SUBSri, ARM::SUBri},
2438   {ARM::SUBSrr, ARM::SUBrr},
2439   {ARM::SUBSrsi, ARM::SUBrsi},
2440   {ARM::SUBSrsr, ARM::SUBrsr},
2441 
2442   {ARM::RSBSri, ARM::RSBri},
2443   {ARM::RSBSrsi, ARM::RSBrsi},
2444   {ARM::RSBSrsr, ARM::RSBrsr},
2445 
2446   {ARM::tADDSi3, ARM::tADDi3},
2447   {ARM::tADDSi8, ARM::tADDi8},
2448   {ARM::tADDSrr, ARM::tADDrr},
2449   {ARM::tADCS, ARM::tADC},
2450 
2451   {ARM::tSUBSi3, ARM::tSUBi3},
2452   {ARM::tSUBSi8, ARM::tSUBi8},
2453   {ARM::tSUBSrr, ARM::tSUBrr},
2454   {ARM::tSBCS, ARM::tSBC},
2455   {ARM::tRSBS, ARM::tRSB},
2456   {ARM::tLSLSri, ARM::tLSLri},
2457 
2458   {ARM::t2ADDSri, ARM::t2ADDri},
2459   {ARM::t2ADDSrr, ARM::t2ADDrr},
2460   {ARM::t2ADDSrs, ARM::t2ADDrs},
2461 
2462   {ARM::t2SUBSri, ARM::t2SUBri},
2463   {ARM::t2SUBSrr, ARM::t2SUBrr},
2464   {ARM::t2SUBSrs, ARM::t2SUBrs},
2465 
2466   {ARM::t2RSBSri, ARM::t2RSBri},
2467   {ARM::t2RSBSrs, ARM::t2RSBrs},
2468 };
2469 
2470 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
2471   for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
2472     if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
2473       return AddSubFlagsOpcodeMap[i].MachineOpc;
2474   return 0;
2475 }
2476 
2477 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
2478                                    MachineBasicBlock::iterator &MBBI,
2479                                    const DebugLoc &dl, Register DestReg,
2480                                    Register BaseReg, int NumBytes,
2481                                    ARMCC::CondCodes Pred, Register PredReg,
2482                                    const ARMBaseInstrInfo &TII,
2483                                    unsigned MIFlags) {
2484   if (NumBytes == 0 && DestReg != BaseReg) {
2485     BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
2486         .addReg(BaseReg, RegState::Kill)
2487         .add(predOps(Pred, PredReg))
2488         .add(condCodeOp())
2489         .setMIFlags(MIFlags);
2490     return;
2491   }
2492 
2493   bool isSub = NumBytes < 0;
2494   if (isSub) NumBytes = -NumBytes;
2495 
2496   while (NumBytes) {
2497     unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
2498     unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
2499     assert(ThisVal && "Didn't extract field correctly");
2500 
2501     // We will handle these bits from offset, clear them.
2502     NumBytes &= ~ThisVal;
2503 
2504     assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
2505 
2506     // Build the new ADD / SUB.
2507     unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
2508     BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
2509         .addReg(BaseReg, RegState::Kill)
2510         .addImm(ThisVal)
2511         .add(predOps(Pred, PredReg))
2512         .add(condCodeOp())
2513         .setMIFlags(MIFlags);
2514     BaseReg = DestReg;
2515   }
2516 }
2517 
2518 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
2519                                       MachineFunction &MF, MachineInstr *MI,
2520                                       unsigned NumBytes) {
2521   // This optimisation potentially adds lots of load and store
2522   // micro-operations, it's only really a great benefit to code-size.
2523   if (!Subtarget.hasMinSize())
2524     return false;
2525 
2526   // If only one register is pushed/popped, LLVM can use an LDR/STR
2527   // instead. We can't modify those so make sure we're dealing with an
2528   // instruction we understand.
2529   bool IsPop = isPopOpcode(MI->getOpcode());
2530   bool IsPush = isPushOpcode(MI->getOpcode());
2531   if (!IsPush && !IsPop)
2532     return false;
2533 
2534   bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
2535                       MI->getOpcode() == ARM::VLDMDIA_UPD;
2536   bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
2537                      MI->getOpcode() == ARM::tPOP ||
2538                      MI->getOpcode() == ARM::tPOP_RET;
2539 
2540   assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
2541                           MI->getOperand(1).getReg() == ARM::SP)) &&
2542          "trying to fold sp update into non-sp-updating push/pop");
2543 
2544   // The VFP push & pop act on D-registers, so we can only fold an adjustment
2545   // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
2546   // if this is violated.
2547   if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
2548     return false;
2549 
2550   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
2551   // pred) so the list starts at 4. Thumb1 starts after the predicate.
2552   int RegListIdx = IsT1PushPop ? 2 : 4;
2553 
2554   // Calculate the space we'll need in terms of registers.
2555   unsigned RegsNeeded;
2556   const TargetRegisterClass *RegClass;
2557   if (IsVFPPushPop) {
2558     RegsNeeded = NumBytes / 8;
2559     RegClass = &ARM::DPRRegClass;
2560   } else {
2561     RegsNeeded = NumBytes / 4;
2562     RegClass = &ARM::GPRRegClass;
2563   }
2564 
2565   // We're going to have to strip all list operands off before
2566   // re-adding them since the order matters, so save the existing ones
2567   // for later.
2568   SmallVector<MachineOperand, 4> RegList;
2569 
2570   // We're also going to need the first register transferred by this
2571   // instruction, which won't necessarily be the first register in the list.
2572   unsigned FirstRegEnc = -1;
2573 
2574   const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
2575   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) {
2576     MachineOperand &MO = MI->getOperand(i);
2577     RegList.push_back(MO);
2578 
2579     if (MO.isReg() && !MO.isImplicit() &&
2580         TRI->getEncodingValue(MO.getReg()) < FirstRegEnc)
2581       FirstRegEnc = TRI->getEncodingValue(MO.getReg());
2582   }
2583 
2584   const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
2585 
2586   // Now try to find enough space in the reglist to allocate NumBytes.
2587   for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded;
2588        --CurRegEnc) {
2589     unsigned CurReg = RegClass->getRegister(CurRegEnc);
2590     if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7))
2591       continue;
2592     if (!IsPop) {
2593       // Pushing any register is completely harmless, mark the register involved
2594       // as undef since we don't care about its value and must not restore it
2595       // during stack unwinding.
2596       RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
2597                                                   false, false, true));
2598       --RegsNeeded;
2599       continue;
2600     }
2601 
2602     // However, we can only pop an extra register if it's not live. For
2603     // registers live within the function we might clobber a return value
2604     // register; the other way a register can be live here is if it's
2605     // callee-saved.
2606     if (isCalleeSavedRegister(CurReg, CSRegs) ||
2607         MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) !=
2608         MachineBasicBlock::LQR_Dead) {
2609       // VFP pops don't allow holes in the register list, so any skip is fatal
2610       // for our transformation. GPR pops do, so we should just keep looking.
2611       if (IsVFPPushPop)
2612         return false;
2613       else
2614         continue;
2615     }
2616 
2617     // Mark the unimportant registers as <def,dead> in the POP.
2618     RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
2619                                                 true));
2620     --RegsNeeded;
2621   }
2622 
2623   if (RegsNeeded > 0)
2624     return false;
2625 
2626   // Finally we know we can profitably perform the optimisation so go
2627   // ahead: strip all existing registers off and add them back again
2628   // in the right order.
2629   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
2630     MI->removeOperand(i);
2631 
2632   // Add the complete list back in.
2633   MachineInstrBuilder MIB(MF, &*MI);
2634   for (const MachineOperand &MO : llvm::reverse(RegList))
2635     MIB.add(MO);
2636 
2637   return true;
2638 }
2639 
2640 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
2641                                 Register FrameReg, int &Offset,
2642                                 const ARMBaseInstrInfo &TII) {
2643   unsigned Opcode = MI.getOpcode();
2644   const MCInstrDesc &Desc = MI.getDesc();
2645   unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
2646   bool isSub = false;
2647 
2648   // Memory operands in inline assembly always use AddrMode2.
2649   if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR)
2650     AddrMode = ARMII::AddrMode2;
2651 
2652   if (Opcode == ARM::ADDri) {
2653     Offset += MI.getOperand(FrameRegIdx+1).getImm();
2654     if (Offset == 0) {
2655       // Turn it into a move.
2656       MI.setDesc(TII.get(ARM::MOVr));
2657       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2658       MI.removeOperand(FrameRegIdx+1);
2659       Offset = 0;
2660       return true;
2661     } else if (Offset < 0) {
2662       Offset = -Offset;
2663       isSub = true;
2664       MI.setDesc(TII.get(ARM::SUBri));
2665     }
2666 
2667     // Common case: small offset, fits into instruction.
2668     if (ARM_AM::getSOImmVal(Offset) != -1) {
2669       // Replace the FrameIndex with sp / fp
2670       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2671       MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
2672       Offset = 0;
2673       return true;
2674     }
2675 
2676     // Otherwise, pull as much of the immedidate into this ADDri/SUBri
2677     // as possible.
2678     unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
2679     unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
2680 
2681     // We will handle these bits from offset, clear them.
2682     Offset &= ~ThisImmVal;
2683 
2684     // Get the properly encoded SOImmVal field.
2685     assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
2686            "Bit extraction didn't work?");
2687     MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
2688  } else {
2689     unsigned ImmIdx = 0;
2690     int InstrOffs = 0;
2691     unsigned NumBits = 0;
2692     unsigned Scale = 1;
2693     switch (AddrMode) {
2694     case ARMII::AddrMode_i12:
2695       ImmIdx = FrameRegIdx + 1;
2696       InstrOffs = MI.getOperand(ImmIdx).getImm();
2697       NumBits = 12;
2698       break;
2699     case ARMII::AddrMode2:
2700       ImmIdx = FrameRegIdx+2;
2701       InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
2702       if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2703         InstrOffs *= -1;
2704       NumBits = 12;
2705       break;
2706     case ARMII::AddrMode3:
2707       ImmIdx = FrameRegIdx+2;
2708       InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
2709       if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2710         InstrOffs *= -1;
2711       NumBits = 8;
2712       break;
2713     case ARMII::AddrMode4:
2714     case ARMII::AddrMode6:
2715       // Can't fold any offset even if it's zero.
2716       return false;
2717     case ARMII::AddrMode5:
2718       ImmIdx = FrameRegIdx+1;
2719       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2720       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2721         InstrOffs *= -1;
2722       NumBits = 8;
2723       Scale = 4;
2724       break;
2725     case ARMII::AddrMode5FP16:
2726       ImmIdx = FrameRegIdx+1;
2727       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2728       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2729         InstrOffs *= -1;
2730       NumBits = 8;
2731       Scale = 2;
2732       break;
2733     case ARMII::AddrModeT2_i7:
2734     case ARMII::AddrModeT2_i7s2:
2735     case ARMII::AddrModeT2_i7s4:
2736       ImmIdx = FrameRegIdx+1;
2737       InstrOffs = MI.getOperand(ImmIdx).getImm();
2738       NumBits = 7;
2739       Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 :
2740                AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1);
2741       break;
2742     default:
2743       llvm_unreachable("Unsupported addressing mode!");
2744     }
2745 
2746     Offset += InstrOffs * Scale;
2747     assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
2748     if (Offset < 0) {
2749       Offset = -Offset;
2750       isSub = true;
2751     }
2752 
2753     // Attempt to fold address comp. if opcode has offset bits
2754     if (NumBits > 0) {
2755       // Common case: small offset, fits into instruction.
2756       MachineOperand &ImmOp = MI.getOperand(ImmIdx);
2757       int ImmedOffset = Offset / Scale;
2758       unsigned Mask = (1 << NumBits) - 1;
2759       if ((unsigned)Offset <= Mask * Scale) {
2760         // Replace the FrameIndex with sp
2761         MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2762         // FIXME: When addrmode2 goes away, this will simplify (like the
2763         // T2 version), as the LDR.i12 versions don't need the encoding
2764         // tricks for the offset value.
2765         if (isSub) {
2766           if (AddrMode == ARMII::AddrMode_i12)
2767             ImmedOffset = -ImmedOffset;
2768           else
2769             ImmedOffset |= 1 << NumBits;
2770         }
2771         ImmOp.ChangeToImmediate(ImmedOffset);
2772         Offset = 0;
2773         return true;
2774       }
2775 
2776       // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
2777       ImmedOffset = ImmedOffset & Mask;
2778       if (isSub) {
2779         if (AddrMode == ARMII::AddrMode_i12)
2780           ImmedOffset = -ImmedOffset;
2781         else
2782           ImmedOffset |= 1 << NumBits;
2783       }
2784       ImmOp.ChangeToImmediate(ImmedOffset);
2785       Offset &= ~(Mask*Scale);
2786     }
2787   }
2788 
2789   Offset = (isSub) ? -Offset : Offset;
2790   return Offset == 0;
2791 }
2792 
2793 /// analyzeCompare - For a comparison instruction, return the source registers
2794 /// in SrcReg and SrcReg2 if having two register operands, and the value it
2795 /// compares against in CmpValue. Return true if the comparison instruction
2796 /// can be analyzed.
2797 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
2798                                       Register &SrcReg2, int64_t &CmpMask,
2799                                       int64_t &CmpValue) const {
2800   switch (MI.getOpcode()) {
2801   default: break;
2802   case ARM::CMPri:
2803   case ARM::t2CMPri:
2804   case ARM::tCMPi8:
2805     SrcReg = MI.getOperand(0).getReg();
2806     SrcReg2 = 0;
2807     CmpMask = ~0;
2808     CmpValue = MI.getOperand(1).getImm();
2809     return true;
2810   case ARM::CMPrr:
2811   case ARM::t2CMPrr:
2812   case ARM::tCMPr:
2813     SrcReg = MI.getOperand(0).getReg();
2814     SrcReg2 = MI.getOperand(1).getReg();
2815     CmpMask = ~0;
2816     CmpValue = 0;
2817     return true;
2818   case ARM::TSTri:
2819   case ARM::t2TSTri:
2820     SrcReg = MI.getOperand(0).getReg();
2821     SrcReg2 = 0;
2822     CmpMask = MI.getOperand(1).getImm();
2823     CmpValue = 0;
2824     return true;
2825   }
2826 
2827   return false;
2828 }
2829 
2830 /// isSuitableForMask - Identify a suitable 'and' instruction that
2831 /// operates on the given source register and applies the same mask
2832 /// as a 'tst' instruction. Provide a limited look-through for copies.
2833 /// When successful, MI will hold the found instruction.
2834 static bool isSuitableForMask(MachineInstr *&MI, Register SrcReg,
2835                               int CmpMask, bool CommonUse) {
2836   switch (MI->getOpcode()) {
2837     case ARM::ANDri:
2838     case ARM::t2ANDri:
2839       if (CmpMask != MI->getOperand(2).getImm())
2840         return false;
2841       if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
2842         return true;
2843       break;
2844   }
2845 
2846   return false;
2847 }
2848 
2849 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return
2850 /// the condition code if we modify the instructions such that flags are
2851 /// set by ADD(a,b,X).
2852 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) {
2853   switch (CC) {
2854   default: return ARMCC::AL;
2855   case ARMCC::HS: return ARMCC::LO;
2856   case ARMCC::LO: return ARMCC::HS;
2857   case ARMCC::VS: return ARMCC::VS;
2858   case ARMCC::VC: return ARMCC::VC;
2859   }
2860 }
2861 
2862 /// isRedundantFlagInstr - check whether the first instruction, whose only
2863 /// purpose is to update flags, can be made redundant.
2864 /// CMPrr can be made redundant by SUBrr if the operands are the same.
2865 /// CMPri can be made redundant by SUBri if the operands are the same.
2866 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X).
2867 /// This function can be extended later on.
2868 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI,
2869                                         Register SrcReg, Register SrcReg2,
2870                                         int64_t ImmValue,
2871                                         const MachineInstr *OI,
2872                                         bool &IsThumb1) {
2873   if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2874       (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) &&
2875       ((OI->getOperand(1).getReg() == SrcReg &&
2876         OI->getOperand(2).getReg() == SrcReg2) ||
2877        (OI->getOperand(1).getReg() == SrcReg2 &&
2878         OI->getOperand(2).getReg() == SrcReg))) {
2879     IsThumb1 = false;
2880     return true;
2881   }
2882 
2883   if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr &&
2884       ((OI->getOperand(2).getReg() == SrcReg &&
2885         OI->getOperand(3).getReg() == SrcReg2) ||
2886        (OI->getOperand(2).getReg() == SrcReg2 &&
2887         OI->getOperand(3).getReg() == SrcReg))) {
2888     IsThumb1 = true;
2889     return true;
2890   }
2891 
2892   if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) &&
2893       (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) &&
2894       OI->getOperand(1).getReg() == SrcReg &&
2895       OI->getOperand(2).getImm() == ImmValue) {
2896     IsThumb1 = false;
2897     return true;
2898   }
2899 
2900   if (CmpI->getOpcode() == ARM::tCMPi8 &&
2901       (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) &&
2902       OI->getOperand(2).getReg() == SrcReg &&
2903       OI->getOperand(3).getImm() == ImmValue) {
2904     IsThumb1 = true;
2905     return true;
2906   }
2907 
2908   if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2909       (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr ||
2910        OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) &&
2911       OI->getOperand(0).isReg() && OI->getOperand(1).isReg() &&
2912       OI->getOperand(0).getReg() == SrcReg &&
2913       OI->getOperand(1).getReg() == SrcReg2) {
2914     IsThumb1 = false;
2915     return true;
2916   }
2917 
2918   if (CmpI->getOpcode() == ARM::tCMPr &&
2919       (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 ||
2920        OI->getOpcode() == ARM::tADDrr) &&
2921       OI->getOperand(0).getReg() == SrcReg &&
2922       OI->getOperand(2).getReg() == SrcReg2) {
2923     IsThumb1 = true;
2924     return true;
2925   }
2926 
2927   return false;
2928 }
2929 
2930 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) {
2931   switch (MI->getOpcode()) {
2932   default: return false;
2933   case ARM::tLSLri:
2934   case ARM::tLSRri:
2935   case ARM::tLSLrr:
2936   case ARM::tLSRrr:
2937   case ARM::tSUBrr:
2938   case ARM::tADDrr:
2939   case ARM::tADDi3:
2940   case ARM::tADDi8:
2941   case ARM::tSUBi3:
2942   case ARM::tSUBi8:
2943   case ARM::tMUL:
2944   case ARM::tADC:
2945   case ARM::tSBC:
2946   case ARM::tRSB:
2947   case ARM::tAND:
2948   case ARM::tORR:
2949   case ARM::tEOR:
2950   case ARM::tBIC:
2951   case ARM::tMVN:
2952   case ARM::tASRri:
2953   case ARM::tASRrr:
2954   case ARM::tROR:
2955     IsThumb1 = true;
2956     LLVM_FALLTHROUGH;
2957   case ARM::RSBrr:
2958   case ARM::RSBri:
2959   case ARM::RSCrr:
2960   case ARM::RSCri:
2961   case ARM::ADDrr:
2962   case ARM::ADDri:
2963   case ARM::ADCrr:
2964   case ARM::ADCri:
2965   case ARM::SUBrr:
2966   case ARM::SUBri:
2967   case ARM::SBCrr:
2968   case ARM::SBCri:
2969   case ARM::t2RSBri:
2970   case ARM::t2ADDrr:
2971   case ARM::t2ADDri:
2972   case ARM::t2ADCrr:
2973   case ARM::t2ADCri:
2974   case ARM::t2SUBrr:
2975   case ARM::t2SUBri:
2976   case ARM::t2SBCrr:
2977   case ARM::t2SBCri:
2978   case ARM::ANDrr:
2979   case ARM::ANDri:
2980   case ARM::t2ANDrr:
2981   case ARM::t2ANDri:
2982   case ARM::ORRrr:
2983   case ARM::ORRri:
2984   case ARM::t2ORRrr:
2985   case ARM::t2ORRri:
2986   case ARM::EORrr:
2987   case ARM::EORri:
2988   case ARM::t2EORrr:
2989   case ARM::t2EORri:
2990   case ARM::t2LSRri:
2991   case ARM::t2LSRrr:
2992   case ARM::t2LSLri:
2993   case ARM::t2LSLrr:
2994     return true;
2995   }
2996 }
2997 
2998 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
2999 /// comparison into one that sets the zero bit in the flags register;
3000 /// Remove a redundant Compare instruction if an earlier instruction can set the
3001 /// flags in the same way as Compare.
3002 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
3003 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
3004 /// condition code of instructions which use the flags.
3005 bool ARMBaseInstrInfo::optimizeCompareInstr(
3006     MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t CmpMask,
3007     int64_t CmpValue, const MachineRegisterInfo *MRI) const {
3008   // Get the unique definition of SrcReg.
3009   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
3010   if (!MI) return false;
3011 
3012   // Masked compares sometimes use the same register as the corresponding 'and'.
3013   if (CmpMask != ~0) {
3014     if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) {
3015       MI = nullptr;
3016       for (MachineRegisterInfo::use_instr_iterator
3017            UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
3018            UI != UE; ++UI) {
3019         if (UI->getParent() != CmpInstr.getParent())
3020           continue;
3021         MachineInstr *PotentialAND = &*UI;
3022         if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
3023             isPredicated(*PotentialAND))
3024           continue;
3025         MI = PotentialAND;
3026         break;
3027       }
3028       if (!MI) return false;
3029     }
3030   }
3031 
3032   // Get ready to iterate backward from CmpInstr.
3033   MachineBasicBlock::iterator I = CmpInstr, E = MI,
3034                               B = CmpInstr.getParent()->begin();
3035 
3036   // Early exit if CmpInstr is at the beginning of the BB.
3037   if (I == B) return false;
3038 
3039   // There are two possible candidates which can be changed to set CPSR:
3040   // One is MI, the other is a SUB or ADD instruction.
3041   // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or
3042   // ADDr[ri](r1, r2, X).
3043   // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
3044   MachineInstr *SubAdd = nullptr;
3045   if (SrcReg2 != 0)
3046     // MI is not a candidate for CMPrr.
3047     MI = nullptr;
3048   else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) {
3049     // Conservatively refuse to convert an instruction which isn't in the same
3050     // BB as the comparison.
3051     // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate.
3052     // Thus we cannot return here.
3053     if (CmpInstr.getOpcode() == ARM::CMPri ||
3054         CmpInstr.getOpcode() == ARM::t2CMPri ||
3055         CmpInstr.getOpcode() == ARM::tCMPi8)
3056       MI = nullptr;
3057     else
3058       return false;
3059   }
3060 
3061   bool IsThumb1 = false;
3062   if (MI && !isOptimizeCompareCandidate(MI, IsThumb1))
3063     return false;
3064 
3065   // We also want to do this peephole for cases like this: if (a*b == 0),
3066   // and optimise away the CMP instruction from the generated code sequence:
3067   // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values
3068   // resulting from the select instruction, but these MOVS instructions for
3069   // Thumb1 (V6M) are flag setting and are thus preventing this optimisation.
3070   // However, if we only have MOVS instructions in between the CMP and the
3071   // other instruction (the MULS in this example), then the CPSR is dead so we
3072   // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this
3073   // reordering and then continue the analysis hoping we can eliminate the
3074   // CMP. This peephole works on the vregs, so is still in SSA form. As a
3075   // consequence, the movs won't redefine/kill the MUL operands which would
3076   // make this reordering illegal.
3077   const TargetRegisterInfo *TRI = &getRegisterInfo();
3078   if (MI && IsThumb1) {
3079     --I;
3080     if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) {
3081       bool CanReorder = true;
3082       for (; I != E; --I) {
3083         if (I->getOpcode() != ARM::tMOVi8) {
3084           CanReorder = false;
3085           break;
3086         }
3087       }
3088       if (CanReorder) {
3089         MI = MI->removeFromParent();
3090         E = CmpInstr;
3091         CmpInstr.getParent()->insert(E, MI);
3092       }
3093     }
3094     I = CmpInstr;
3095     E = MI;
3096   }
3097 
3098   // Check that CPSR isn't set between the comparison instruction and the one we
3099   // want to change. At the same time, search for SubAdd.
3100   bool SubAddIsThumb1 = false;
3101   do {
3102     const MachineInstr &Instr = *--I;
3103 
3104     // Check whether CmpInstr can be made redundant by the current instruction.
3105     if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr,
3106                              SubAddIsThumb1)) {
3107       SubAdd = &*I;
3108       break;
3109     }
3110 
3111     // Allow E (which was initially MI) to be SubAdd but do not search before E.
3112     if (I == E)
3113       break;
3114 
3115     if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
3116         Instr.readsRegister(ARM::CPSR, TRI))
3117       // This instruction modifies or uses CPSR after the one we want to
3118       // change. We can't do this transformation.
3119       return false;
3120 
3121     if (I == B) {
3122       // In some cases, we scan the use-list of an instruction for an AND;
3123       // that AND is in the same BB, but may not be scheduled before the
3124       // corresponding TST.  In that case, bail out.
3125       //
3126       // FIXME: We could try to reschedule the AND.
3127       return false;
3128     }
3129   } while (true);
3130 
3131   // Return false if no candidates exist.
3132   if (!MI && !SubAdd)
3133     return false;
3134 
3135   // If we found a SubAdd, use it as it will be closer to the CMP
3136   if (SubAdd) {
3137     MI = SubAdd;
3138     IsThumb1 = SubAddIsThumb1;
3139   }
3140 
3141   // We can't use a predicated instruction - it doesn't always write the flags.
3142   if (isPredicated(*MI))
3143     return false;
3144 
3145   // Scan forward for the use of CPSR
3146   // When checking against MI: if it's a conditional code that requires
3147   // checking of the V bit or C bit, then this is not safe to do.
3148   // It is safe to remove CmpInstr if CPSR is redefined or killed.
3149   // If we are done with the basic block, we need to check whether CPSR is
3150   // live-out.
3151   SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
3152       OperandsToUpdate;
3153   bool isSafe = false;
3154   I = CmpInstr;
3155   E = CmpInstr.getParent()->end();
3156   while (!isSafe && ++I != E) {
3157     const MachineInstr &Instr = *I;
3158     for (unsigned IO = 0, EO = Instr.getNumOperands();
3159          !isSafe && IO != EO; ++IO) {
3160       const MachineOperand &MO = Instr.getOperand(IO);
3161       if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
3162         isSafe = true;
3163         break;
3164       }
3165       if (!MO.isReg() || MO.getReg() != ARM::CPSR)
3166         continue;
3167       if (MO.isDef()) {
3168         isSafe = true;
3169         break;
3170       }
3171       // Condition code is after the operand before CPSR except for VSELs.
3172       ARMCC::CondCodes CC;
3173       bool IsInstrVSel = true;
3174       switch (Instr.getOpcode()) {
3175       default:
3176         IsInstrVSel = false;
3177         CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
3178         break;
3179       case ARM::VSELEQD:
3180       case ARM::VSELEQS:
3181       case ARM::VSELEQH:
3182         CC = ARMCC::EQ;
3183         break;
3184       case ARM::VSELGTD:
3185       case ARM::VSELGTS:
3186       case ARM::VSELGTH:
3187         CC = ARMCC::GT;
3188         break;
3189       case ARM::VSELGED:
3190       case ARM::VSELGES:
3191       case ARM::VSELGEH:
3192         CC = ARMCC::GE;
3193         break;
3194       case ARM::VSELVSD:
3195       case ARM::VSELVSS:
3196       case ARM::VSELVSH:
3197         CC = ARMCC::VS;
3198         break;
3199       }
3200 
3201       if (SubAdd) {
3202         // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
3203         // on CMP needs to be updated to be based on SUB.
3204         // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also
3205         // needs to be modified.
3206         // Push the condition code operands to OperandsToUpdate.
3207         // If it is safe to remove CmpInstr, the condition code of these
3208         // operands will be modified.
3209         unsigned Opc = SubAdd->getOpcode();
3210         bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr ||
3211                      Opc == ARM::SUBri || Opc == ARM::t2SUBri ||
3212                      Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 ||
3213                      Opc == ARM::tSUBi8;
3214         unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2;
3215         if (!IsSub ||
3216             (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 &&
3217              SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) {
3218           // VSel doesn't support condition code update.
3219           if (IsInstrVSel)
3220             return false;
3221           // Ensure we can swap the condition.
3222           ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC));
3223           if (NewCC == ARMCC::AL)
3224             return false;
3225           OperandsToUpdate.push_back(
3226               std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
3227         }
3228       } else {
3229         // No SubAdd, so this is x = <op> y, z; cmp x, 0.
3230         switch (CC) {
3231         case ARMCC::EQ: // Z
3232         case ARMCC::NE: // Z
3233         case ARMCC::MI: // N
3234         case ARMCC::PL: // N
3235         case ARMCC::AL: // none
3236           // CPSR can be used multiple times, we should continue.
3237           break;
3238         case ARMCC::HS: // C
3239         case ARMCC::LO: // C
3240         case ARMCC::VS: // V
3241         case ARMCC::VC: // V
3242         case ARMCC::HI: // C Z
3243         case ARMCC::LS: // C Z
3244         case ARMCC::GE: // N V
3245         case ARMCC::LT: // N V
3246         case ARMCC::GT: // Z N V
3247         case ARMCC::LE: // Z N V
3248           // The instruction uses the V bit or C bit which is not safe.
3249           return false;
3250         }
3251       }
3252     }
3253   }
3254 
3255   // If CPSR is not killed nor re-defined, we should check whether it is
3256   // live-out. If it is live-out, do not optimize.
3257   if (!isSafe) {
3258     MachineBasicBlock *MBB = CmpInstr.getParent();
3259     for (MachineBasicBlock *Succ : MBB->successors())
3260       if (Succ->isLiveIn(ARM::CPSR))
3261         return false;
3262   }
3263 
3264   // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always
3265   // set CPSR so this is represented as an explicit output)
3266   if (!IsThumb1) {
3267     MI->getOperand(5).setReg(ARM::CPSR);
3268     MI->getOperand(5).setIsDef(true);
3269   }
3270   assert(!isPredicated(*MI) && "Can't use flags from predicated instruction");
3271   CmpInstr.eraseFromParent();
3272 
3273   // Modify the condition code of operands in OperandsToUpdate.
3274   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
3275   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3276   for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
3277     OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
3278 
3279   MI->clearRegisterDeads(ARM::CPSR);
3280 
3281   return true;
3282 }
3283 
3284 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const {
3285   // Do not sink MI if it might be used to optimize a redundant compare.
3286   // We heuristically only look at the instruction immediately following MI to
3287   // avoid potentially searching the entire basic block.
3288   if (isPredicated(MI))
3289     return true;
3290   MachineBasicBlock::const_iterator Next = &MI;
3291   ++Next;
3292   Register SrcReg, SrcReg2;
3293   int64_t CmpMask, CmpValue;
3294   bool IsThumb1;
3295   if (Next != MI.getParent()->end() &&
3296       analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) &&
3297       isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1))
3298     return false;
3299   return true;
3300 }
3301 
3302 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
3303                                      Register Reg,
3304                                      MachineRegisterInfo *MRI) const {
3305   // Fold large immediates into add, sub, or, xor.
3306   unsigned DefOpc = DefMI.getOpcode();
3307   if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
3308     return false;
3309   if (!DefMI.getOperand(1).isImm())
3310     // Could be t2MOVi32imm @xx
3311     return false;
3312 
3313   if (!MRI->hasOneNonDBGUse(Reg))
3314     return false;
3315 
3316   const MCInstrDesc &DefMCID = DefMI.getDesc();
3317   if (DefMCID.hasOptionalDef()) {
3318     unsigned NumOps = DefMCID.getNumOperands();
3319     const MachineOperand &MO = DefMI.getOperand(NumOps - 1);
3320     if (MO.getReg() == ARM::CPSR && !MO.isDead())
3321       // If DefMI defines CPSR and it is not dead, it's obviously not safe
3322       // to delete DefMI.
3323       return false;
3324   }
3325 
3326   const MCInstrDesc &UseMCID = UseMI.getDesc();
3327   if (UseMCID.hasOptionalDef()) {
3328     unsigned NumOps = UseMCID.getNumOperands();
3329     if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR)
3330       // If the instruction sets the flag, do not attempt this optimization
3331       // since it may change the semantics of the code.
3332       return false;
3333   }
3334 
3335   unsigned UseOpc = UseMI.getOpcode();
3336   unsigned NewUseOpc = 0;
3337   uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm();
3338   uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
3339   bool Commute = false;
3340   switch (UseOpc) {
3341   default: return false;
3342   case ARM::SUBrr:
3343   case ARM::ADDrr:
3344   case ARM::ORRrr:
3345   case ARM::EORrr:
3346   case ARM::t2SUBrr:
3347   case ARM::t2ADDrr:
3348   case ARM::t2ORRrr:
3349   case ARM::t2EORrr: {
3350     Commute = UseMI.getOperand(2).getReg() != Reg;
3351     switch (UseOpc) {
3352     default: break;
3353     case ARM::ADDrr:
3354     case ARM::SUBrr:
3355       if (UseOpc == ARM::SUBrr && Commute)
3356         return false;
3357 
3358       // ADD/SUB are special because they're essentially the same operation, so
3359       // we can handle a larger range of immediates.
3360       if (ARM_AM::isSOImmTwoPartVal(ImmVal))
3361         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri;
3362       else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) {
3363         ImmVal = -ImmVal;
3364         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri;
3365       } else
3366         return false;
3367       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3368       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3369       break;
3370     case ARM::ORRrr:
3371     case ARM::EORrr:
3372       if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
3373         return false;
3374       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3375       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3376       switch (UseOpc) {
3377       default: break;
3378       case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
3379       case ARM::EORrr: NewUseOpc = ARM::EORri; break;
3380       }
3381       break;
3382     case ARM::t2ADDrr:
3383     case ARM::t2SUBrr: {
3384       if (UseOpc == ARM::t2SUBrr && Commute)
3385         return false;
3386 
3387       // ADD/SUB are special because they're essentially the same operation, so
3388       // we can handle a larger range of immediates.
3389       const bool ToSP = DefMI.getOperand(0).getReg() == ARM::SP;
3390       const unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri;
3391       const unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri;
3392       if (ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3393         NewUseOpc = UseOpc == ARM::t2ADDrr ? t2ADD : t2SUB;
3394       else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) {
3395         ImmVal = -ImmVal;
3396         NewUseOpc = UseOpc == ARM::t2ADDrr ? t2SUB : t2ADD;
3397       } else
3398         return false;
3399       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3400       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3401       break;
3402     }
3403     case ARM::t2ORRrr:
3404     case ARM::t2EORrr:
3405       if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3406         return false;
3407       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3408       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3409       switch (UseOpc) {
3410       default: break;
3411       case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
3412       case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
3413       }
3414       break;
3415     }
3416   }
3417   }
3418 
3419   unsigned OpIdx = Commute ? 2 : 1;
3420   Register Reg1 = UseMI.getOperand(OpIdx).getReg();
3421   bool isKill = UseMI.getOperand(OpIdx).isKill();
3422   const TargetRegisterClass *TRC = MRI->getRegClass(Reg);
3423   Register NewReg = MRI->createVirtualRegister(TRC);
3424   BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc),
3425           NewReg)
3426       .addReg(Reg1, getKillRegState(isKill))
3427       .addImm(SOImmValV1)
3428       .add(predOps(ARMCC::AL))
3429       .add(condCodeOp());
3430   UseMI.setDesc(get(NewUseOpc));
3431   UseMI.getOperand(1).setReg(NewReg);
3432   UseMI.getOperand(1).setIsKill();
3433   UseMI.getOperand(2).ChangeToImmediate(SOImmValV2);
3434   DefMI.eraseFromParent();
3435   // FIXME: t2ADDrr should be split, as different rulles apply when writing to SP.
3436   // Just as t2ADDri, that was split to [t2ADDri, t2ADDspImm].
3437   // Then the below code will not be needed, as the input/output register
3438   // classes will be rgpr or gprSP.
3439   // For now, we fix the UseMI operand explicitly here:
3440   switch(NewUseOpc){
3441     case ARM::t2ADDspImm:
3442     case ARM::t2SUBspImm:
3443     case ARM::t2ADDri:
3444     case ARM::t2SUBri:
3445       MRI->constrainRegClass(UseMI.getOperand(0).getReg(), TRC);
3446   }
3447   return true;
3448 }
3449 
3450 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
3451                                         const MachineInstr &MI) {
3452   switch (MI.getOpcode()) {
3453   default: {
3454     const MCInstrDesc &Desc = MI.getDesc();
3455     int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
3456     assert(UOps >= 0 && "bad # UOps");
3457     return UOps;
3458   }
3459 
3460   case ARM::LDRrs:
3461   case ARM::LDRBrs:
3462   case ARM::STRrs:
3463   case ARM::STRBrs: {
3464     unsigned ShOpVal = MI.getOperand(3).getImm();
3465     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3466     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3467     if (!isSub &&
3468         (ShImm == 0 ||
3469          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3470           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3471       return 1;
3472     return 2;
3473   }
3474 
3475   case ARM::LDRH:
3476   case ARM::STRH: {
3477     if (!MI.getOperand(2).getReg())
3478       return 1;
3479 
3480     unsigned ShOpVal = MI.getOperand(3).getImm();
3481     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3482     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3483     if (!isSub &&
3484         (ShImm == 0 ||
3485          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3486           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3487       return 1;
3488     return 2;
3489   }
3490 
3491   case ARM::LDRSB:
3492   case ARM::LDRSH:
3493     return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2;
3494 
3495   case ARM::LDRSB_POST:
3496   case ARM::LDRSH_POST: {
3497     Register Rt = MI.getOperand(0).getReg();
3498     Register Rm = MI.getOperand(3).getReg();
3499     return (Rt == Rm) ? 4 : 3;
3500   }
3501 
3502   case ARM::LDR_PRE_REG:
3503   case ARM::LDRB_PRE_REG: {
3504     Register Rt = MI.getOperand(0).getReg();
3505     Register Rm = MI.getOperand(3).getReg();
3506     if (Rt == Rm)
3507       return 3;
3508     unsigned ShOpVal = MI.getOperand(4).getImm();
3509     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3510     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3511     if (!isSub &&
3512         (ShImm == 0 ||
3513          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3514           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3515       return 2;
3516     return 3;
3517   }
3518 
3519   case ARM::STR_PRE_REG:
3520   case ARM::STRB_PRE_REG: {
3521     unsigned ShOpVal = MI.getOperand(4).getImm();
3522     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3523     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3524     if (!isSub &&
3525         (ShImm == 0 ||
3526          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3527           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3528       return 2;
3529     return 3;
3530   }
3531 
3532   case ARM::LDRH_PRE:
3533   case ARM::STRH_PRE: {
3534     Register Rt = MI.getOperand(0).getReg();
3535     Register Rm = MI.getOperand(3).getReg();
3536     if (!Rm)
3537       return 2;
3538     if (Rt == Rm)
3539       return 3;
3540     return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2;
3541   }
3542 
3543   case ARM::LDR_POST_REG:
3544   case ARM::LDRB_POST_REG:
3545   case ARM::LDRH_POST: {
3546     Register Rt = MI.getOperand(0).getReg();
3547     Register Rm = MI.getOperand(3).getReg();
3548     return (Rt == Rm) ? 3 : 2;
3549   }
3550 
3551   case ARM::LDR_PRE_IMM:
3552   case ARM::LDRB_PRE_IMM:
3553   case ARM::LDR_POST_IMM:
3554   case ARM::LDRB_POST_IMM:
3555   case ARM::STRB_POST_IMM:
3556   case ARM::STRB_POST_REG:
3557   case ARM::STRB_PRE_IMM:
3558   case ARM::STRH_POST:
3559   case ARM::STR_POST_IMM:
3560   case ARM::STR_POST_REG:
3561   case ARM::STR_PRE_IMM:
3562     return 2;
3563 
3564   case ARM::LDRSB_PRE:
3565   case ARM::LDRSH_PRE: {
3566     Register Rm = MI.getOperand(3).getReg();
3567     if (Rm == 0)
3568       return 3;
3569     Register Rt = MI.getOperand(0).getReg();
3570     if (Rt == Rm)
3571       return 4;
3572     unsigned ShOpVal = MI.getOperand(4).getImm();
3573     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3574     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3575     if (!isSub &&
3576         (ShImm == 0 ||
3577          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3578           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3579       return 3;
3580     return 4;
3581   }
3582 
3583   case ARM::LDRD: {
3584     Register Rt = MI.getOperand(0).getReg();
3585     Register Rn = MI.getOperand(2).getReg();
3586     Register Rm = MI.getOperand(3).getReg();
3587     if (Rm)
3588       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3589                                                                           : 3;
3590     return (Rt == Rn) ? 3 : 2;
3591   }
3592 
3593   case ARM::STRD: {
3594     Register Rm = MI.getOperand(3).getReg();
3595     if (Rm)
3596       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3597                                                                           : 3;
3598     return 2;
3599   }
3600 
3601   case ARM::LDRD_POST:
3602   case ARM::t2LDRD_POST:
3603     return 3;
3604 
3605   case ARM::STRD_POST:
3606   case ARM::t2STRD_POST:
3607     return 4;
3608 
3609   case ARM::LDRD_PRE: {
3610     Register Rt = MI.getOperand(0).getReg();
3611     Register Rn = MI.getOperand(3).getReg();
3612     Register Rm = MI.getOperand(4).getReg();
3613     if (Rm)
3614       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3615                                                                           : 4;
3616     return (Rt == Rn) ? 4 : 3;
3617   }
3618 
3619   case ARM::t2LDRD_PRE: {
3620     Register Rt = MI.getOperand(0).getReg();
3621     Register Rn = MI.getOperand(3).getReg();
3622     return (Rt == Rn) ? 4 : 3;
3623   }
3624 
3625   case ARM::STRD_PRE: {
3626     Register Rm = MI.getOperand(4).getReg();
3627     if (Rm)
3628       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3629                                                                           : 4;
3630     return 3;
3631   }
3632 
3633   case ARM::t2STRD_PRE:
3634     return 3;
3635 
3636   case ARM::t2LDR_POST:
3637   case ARM::t2LDRB_POST:
3638   case ARM::t2LDRB_PRE:
3639   case ARM::t2LDRSBi12:
3640   case ARM::t2LDRSBi8:
3641   case ARM::t2LDRSBpci:
3642   case ARM::t2LDRSBs:
3643   case ARM::t2LDRH_POST:
3644   case ARM::t2LDRH_PRE:
3645   case ARM::t2LDRSBT:
3646   case ARM::t2LDRSB_POST:
3647   case ARM::t2LDRSB_PRE:
3648   case ARM::t2LDRSH_POST:
3649   case ARM::t2LDRSH_PRE:
3650   case ARM::t2LDRSHi12:
3651   case ARM::t2LDRSHi8:
3652   case ARM::t2LDRSHpci:
3653   case ARM::t2LDRSHs:
3654     return 2;
3655 
3656   case ARM::t2LDRDi8: {
3657     Register Rt = MI.getOperand(0).getReg();
3658     Register Rn = MI.getOperand(2).getReg();
3659     return (Rt == Rn) ? 3 : 2;
3660   }
3661 
3662   case ARM::t2STRB_POST:
3663   case ARM::t2STRB_PRE:
3664   case ARM::t2STRBs:
3665   case ARM::t2STRDi8:
3666   case ARM::t2STRH_POST:
3667   case ARM::t2STRH_PRE:
3668   case ARM::t2STRHs:
3669   case ARM::t2STR_POST:
3670   case ARM::t2STR_PRE:
3671   case ARM::t2STRs:
3672     return 2;
3673   }
3674 }
3675 
3676 // Return the number of 32-bit words loaded by LDM or stored by STM. If this
3677 // can't be easily determined return 0 (missing MachineMemOperand).
3678 //
3679 // FIXME: The current MachineInstr design does not support relying on machine
3680 // mem operands to determine the width of a memory access. Instead, we expect
3681 // the target to provide this information based on the instruction opcode and
3682 // operands. However, using MachineMemOperand is the best solution now for
3683 // two reasons:
3684 //
3685 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
3686 // operands. This is much more dangerous than using the MachineMemOperand
3687 // sizes because CodeGen passes can insert/remove optional machine operands. In
3688 // fact, it's totally incorrect for preRA passes and appears to be wrong for
3689 // postRA passes as well.
3690 //
3691 // 2) getNumLDMAddresses is only used by the scheduling machine model and any
3692 // machine model that calls this should handle the unknown (zero size) case.
3693 //
3694 // Long term, we should require a target hook that verifies MachineMemOperand
3695 // sizes during MC lowering. That target hook should be local to MC lowering
3696 // because we can't ensure that it is aware of other MI forms. Doing this will
3697 // ensure that MachineMemOperands are correctly propagated through all passes.
3698 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const {
3699   unsigned Size = 0;
3700   for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
3701                                   E = MI.memoperands_end();
3702        I != E; ++I) {
3703     Size += (*I)->getSize();
3704   }
3705   // FIXME: The scheduler currently can't handle values larger than 16. But
3706   // the values can actually go up to 32 for floating-point load/store
3707   // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory
3708   // operations isn't right; we could end up with "extra" memory operands for
3709   // various reasons, like tail merge merging two memory operations.
3710   return std::min(Size / 4, 16U);
3711 }
3712 
3713 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,
3714                                                     unsigned NumRegs) {
3715   unsigned UOps = 1 + NumRegs; // 1 for address computation.
3716   switch (Opc) {
3717   default:
3718     break;
3719   case ARM::VLDMDIA_UPD:
3720   case ARM::VLDMDDB_UPD:
3721   case ARM::VLDMSIA_UPD:
3722   case ARM::VLDMSDB_UPD:
3723   case ARM::VSTMDIA_UPD:
3724   case ARM::VSTMDDB_UPD:
3725   case ARM::VSTMSIA_UPD:
3726   case ARM::VSTMSDB_UPD:
3727   case ARM::LDMIA_UPD:
3728   case ARM::LDMDA_UPD:
3729   case ARM::LDMDB_UPD:
3730   case ARM::LDMIB_UPD:
3731   case ARM::STMIA_UPD:
3732   case ARM::STMDA_UPD:
3733   case ARM::STMDB_UPD:
3734   case ARM::STMIB_UPD:
3735   case ARM::tLDMIA_UPD:
3736   case ARM::tSTMIA_UPD:
3737   case ARM::t2LDMIA_UPD:
3738   case ARM::t2LDMDB_UPD:
3739   case ARM::t2STMIA_UPD:
3740   case ARM::t2STMDB_UPD:
3741     ++UOps; // One for base register writeback.
3742     break;
3743   case ARM::LDMIA_RET:
3744   case ARM::tPOP_RET:
3745   case ARM::t2LDMIA_RET:
3746     UOps += 2; // One for base reg wb, one for write to pc.
3747     break;
3748   }
3749   return UOps;
3750 }
3751 
3752 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
3753                                           const MachineInstr &MI) const {
3754   if (!ItinData || ItinData->isEmpty())
3755     return 1;
3756 
3757   const MCInstrDesc &Desc = MI.getDesc();
3758   unsigned Class = Desc.getSchedClass();
3759   int ItinUOps = ItinData->getNumMicroOps(Class);
3760   if (ItinUOps >= 0) {
3761     if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
3762       return getNumMicroOpsSwiftLdSt(ItinData, MI);
3763 
3764     return ItinUOps;
3765   }
3766 
3767   unsigned Opc = MI.getOpcode();
3768   switch (Opc) {
3769   default:
3770     llvm_unreachable("Unexpected multi-uops instruction!");
3771   case ARM::VLDMQIA:
3772   case ARM::VSTMQIA:
3773     return 2;
3774 
3775   // The number of uOps for load / store multiple are determined by the number
3776   // registers.
3777   //
3778   // On Cortex-A8, each pair of register loads / stores can be scheduled on the
3779   // same cycle. The scheduling for the first load / store must be done
3780   // separately by assuming the address is not 64-bit aligned.
3781   //
3782   // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
3783   // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
3784   // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
3785   case ARM::VLDMDIA:
3786   case ARM::VLDMDIA_UPD:
3787   case ARM::VLDMDDB_UPD:
3788   case ARM::VLDMSIA:
3789   case ARM::VLDMSIA_UPD:
3790   case ARM::VLDMSDB_UPD:
3791   case ARM::VSTMDIA:
3792   case ARM::VSTMDIA_UPD:
3793   case ARM::VSTMDDB_UPD:
3794   case ARM::VSTMSIA:
3795   case ARM::VSTMSIA_UPD:
3796   case ARM::VSTMSDB_UPD: {
3797     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands();
3798     return (NumRegs / 2) + (NumRegs % 2) + 1;
3799   }
3800 
3801   case ARM::LDMIA_RET:
3802   case ARM::LDMIA:
3803   case ARM::LDMDA:
3804   case ARM::LDMDB:
3805   case ARM::LDMIB:
3806   case ARM::LDMIA_UPD:
3807   case ARM::LDMDA_UPD:
3808   case ARM::LDMDB_UPD:
3809   case ARM::LDMIB_UPD:
3810   case ARM::STMIA:
3811   case ARM::STMDA:
3812   case ARM::STMDB:
3813   case ARM::STMIB:
3814   case ARM::STMIA_UPD:
3815   case ARM::STMDA_UPD:
3816   case ARM::STMDB_UPD:
3817   case ARM::STMIB_UPD:
3818   case ARM::tLDMIA:
3819   case ARM::tLDMIA_UPD:
3820   case ARM::tSTMIA_UPD:
3821   case ARM::tPOP_RET:
3822   case ARM::tPOP:
3823   case ARM::tPUSH:
3824   case ARM::t2LDMIA_RET:
3825   case ARM::t2LDMIA:
3826   case ARM::t2LDMDB:
3827   case ARM::t2LDMIA_UPD:
3828   case ARM::t2LDMDB_UPD:
3829   case ARM::t2STMIA:
3830   case ARM::t2STMDB:
3831   case ARM::t2STMIA_UPD:
3832   case ARM::t2STMDB_UPD: {
3833     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1;
3834     switch (Subtarget.getLdStMultipleTiming()) {
3835     case ARMSubtarget::SingleIssuePlusExtras:
3836       return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs);
3837     case ARMSubtarget::SingleIssue:
3838       // Assume the worst.
3839       return NumRegs;
3840     case ARMSubtarget::DoubleIssue: {
3841       if (NumRegs < 4)
3842         return 2;
3843       // 4 registers would be issued: 2, 2.
3844       // 5 registers would be issued: 2, 2, 1.
3845       unsigned UOps = (NumRegs / 2);
3846       if (NumRegs % 2)
3847         ++UOps;
3848       return UOps;
3849     }
3850     case ARMSubtarget::DoubleIssueCheckUnalignedAccess: {
3851       unsigned UOps = (NumRegs / 2);
3852       // If there are odd number of registers or if it's not 64-bit aligned,
3853       // then it takes an extra AGU (Address Generation Unit) cycle.
3854       if ((NumRegs % 2) || !MI.hasOneMemOperand() ||
3855           (*MI.memoperands_begin())->getAlign() < Align(8))
3856         ++UOps;
3857       return UOps;
3858       }
3859     }
3860   }
3861   }
3862   llvm_unreachable("Didn't find the number of microops");
3863 }
3864 
3865 int
3866 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
3867                                   const MCInstrDesc &DefMCID,
3868                                   unsigned DefClass,
3869                                   unsigned DefIdx, unsigned DefAlign) const {
3870   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3871   if (RegNo <= 0)
3872     // Def is the address writeback.
3873     return ItinData->getOperandCycle(DefClass, DefIdx);
3874 
3875   int DefCycle;
3876   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3877     // (regno / 2) + (regno % 2) + 1
3878     DefCycle = RegNo / 2 + 1;
3879     if (RegNo % 2)
3880       ++DefCycle;
3881   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3882     DefCycle = RegNo;
3883     bool isSLoad = false;
3884 
3885     switch (DefMCID.getOpcode()) {
3886     default: break;
3887     case ARM::VLDMSIA:
3888     case ARM::VLDMSIA_UPD:
3889     case ARM::VLDMSDB_UPD:
3890       isSLoad = true;
3891       break;
3892     }
3893 
3894     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3895     // then it takes an extra cycle.
3896     if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
3897       ++DefCycle;
3898   } else {
3899     // Assume the worst.
3900     DefCycle = RegNo + 2;
3901   }
3902 
3903   return DefCycle;
3904 }
3905 
3906 int
3907 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
3908                                  const MCInstrDesc &DefMCID,
3909                                  unsigned DefClass,
3910                                  unsigned DefIdx, unsigned DefAlign) const {
3911   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3912   if (RegNo <= 0)
3913     // Def is the address writeback.
3914     return ItinData->getOperandCycle(DefClass, DefIdx);
3915 
3916   int DefCycle;
3917   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3918     // 4 registers would be issued: 1, 2, 1.
3919     // 5 registers would be issued: 1, 2, 2.
3920     DefCycle = RegNo / 2;
3921     if (DefCycle < 1)
3922       DefCycle = 1;
3923     // Result latency is issue cycle + 2: E2.
3924     DefCycle += 2;
3925   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3926     DefCycle = (RegNo / 2);
3927     // If there are odd number of registers or if it's not 64-bit aligned,
3928     // then it takes an extra AGU (Address Generation Unit) cycle.
3929     if ((RegNo % 2) || DefAlign < 8)
3930       ++DefCycle;
3931     // Result latency is AGU cycles + 2.
3932     DefCycle += 2;
3933   } else {
3934     // Assume the worst.
3935     DefCycle = RegNo + 2;
3936   }
3937 
3938   return DefCycle;
3939 }
3940 
3941 int
3942 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
3943                                   const MCInstrDesc &UseMCID,
3944                                   unsigned UseClass,
3945                                   unsigned UseIdx, unsigned UseAlign) const {
3946   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3947   if (RegNo <= 0)
3948     return ItinData->getOperandCycle(UseClass, UseIdx);
3949 
3950   int UseCycle;
3951   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3952     // (regno / 2) + (regno % 2) + 1
3953     UseCycle = RegNo / 2 + 1;
3954     if (RegNo % 2)
3955       ++UseCycle;
3956   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3957     UseCycle = RegNo;
3958     bool isSStore = false;
3959 
3960     switch (UseMCID.getOpcode()) {
3961     default: break;
3962     case ARM::VSTMSIA:
3963     case ARM::VSTMSIA_UPD:
3964     case ARM::VSTMSDB_UPD:
3965       isSStore = true;
3966       break;
3967     }
3968 
3969     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3970     // then it takes an extra cycle.
3971     if ((isSStore && (RegNo % 2)) || UseAlign < 8)
3972       ++UseCycle;
3973   } else {
3974     // Assume the worst.
3975     UseCycle = RegNo + 2;
3976   }
3977 
3978   return UseCycle;
3979 }
3980 
3981 int
3982 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
3983                                  const MCInstrDesc &UseMCID,
3984                                  unsigned UseClass,
3985                                  unsigned UseIdx, unsigned UseAlign) const {
3986   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3987   if (RegNo <= 0)
3988     return ItinData->getOperandCycle(UseClass, UseIdx);
3989 
3990   int UseCycle;
3991   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3992     UseCycle = RegNo / 2;
3993     if (UseCycle < 2)
3994       UseCycle = 2;
3995     // Read in E3.
3996     UseCycle += 2;
3997   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3998     UseCycle = (RegNo / 2);
3999     // If there are odd number of registers or if it's not 64-bit aligned,
4000     // then it takes an extra AGU (Address Generation Unit) cycle.
4001     if ((RegNo % 2) || UseAlign < 8)
4002       ++UseCycle;
4003   } else {
4004     // Assume the worst.
4005     UseCycle = 1;
4006   }
4007   return UseCycle;
4008 }
4009 
4010 int
4011 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4012                                     const MCInstrDesc &DefMCID,
4013                                     unsigned DefIdx, unsigned DefAlign,
4014                                     const MCInstrDesc &UseMCID,
4015                                     unsigned UseIdx, unsigned UseAlign) const {
4016   unsigned DefClass = DefMCID.getSchedClass();
4017   unsigned UseClass = UseMCID.getSchedClass();
4018 
4019   if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
4020     return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
4021 
4022   // This may be a def / use of a variable_ops instruction, the operand
4023   // latency might be determinable dynamically. Let the target try to
4024   // figure it out.
4025   int DefCycle = -1;
4026   bool LdmBypass = false;
4027   switch (DefMCID.getOpcode()) {
4028   default:
4029     DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4030     break;
4031 
4032   case ARM::VLDMDIA:
4033   case ARM::VLDMDIA_UPD:
4034   case ARM::VLDMDDB_UPD:
4035   case ARM::VLDMSIA:
4036   case ARM::VLDMSIA_UPD:
4037   case ARM::VLDMSDB_UPD:
4038     DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
4039     break;
4040 
4041   case ARM::LDMIA_RET:
4042   case ARM::LDMIA:
4043   case ARM::LDMDA:
4044   case ARM::LDMDB:
4045   case ARM::LDMIB:
4046   case ARM::LDMIA_UPD:
4047   case ARM::LDMDA_UPD:
4048   case ARM::LDMDB_UPD:
4049   case ARM::LDMIB_UPD:
4050   case ARM::tLDMIA:
4051   case ARM::tLDMIA_UPD:
4052   case ARM::tPUSH:
4053   case ARM::t2LDMIA_RET:
4054   case ARM::t2LDMIA:
4055   case ARM::t2LDMDB:
4056   case ARM::t2LDMIA_UPD:
4057   case ARM::t2LDMDB_UPD:
4058     LdmBypass = true;
4059     DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
4060     break;
4061   }
4062 
4063   if (DefCycle == -1)
4064     // We can't seem to determine the result latency of the def, assume it's 2.
4065     DefCycle = 2;
4066 
4067   int UseCycle = -1;
4068   switch (UseMCID.getOpcode()) {
4069   default:
4070     UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
4071     break;
4072 
4073   case ARM::VSTMDIA:
4074   case ARM::VSTMDIA_UPD:
4075   case ARM::VSTMDDB_UPD:
4076   case ARM::VSTMSIA:
4077   case ARM::VSTMSIA_UPD:
4078   case ARM::VSTMSDB_UPD:
4079     UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
4080     break;
4081 
4082   case ARM::STMIA:
4083   case ARM::STMDA:
4084   case ARM::STMDB:
4085   case ARM::STMIB:
4086   case ARM::STMIA_UPD:
4087   case ARM::STMDA_UPD:
4088   case ARM::STMDB_UPD:
4089   case ARM::STMIB_UPD:
4090   case ARM::tSTMIA_UPD:
4091   case ARM::tPOP_RET:
4092   case ARM::tPOP:
4093   case ARM::t2STMIA:
4094   case ARM::t2STMDB:
4095   case ARM::t2STMIA_UPD:
4096   case ARM::t2STMDB_UPD:
4097     UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
4098     break;
4099   }
4100 
4101   if (UseCycle == -1)
4102     // Assume it's read in the first stage.
4103     UseCycle = 1;
4104 
4105   UseCycle = DefCycle - UseCycle + 1;
4106   if (UseCycle > 0) {
4107     if (LdmBypass) {
4108       // It's a variable_ops instruction so we can't use DefIdx here. Just use
4109       // first def operand.
4110       if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
4111                                           UseClass, UseIdx))
4112         --UseCycle;
4113     } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
4114                                                UseClass, UseIdx)) {
4115       --UseCycle;
4116     }
4117   }
4118 
4119   return UseCycle;
4120 }
4121 
4122 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
4123                                            const MachineInstr *MI, unsigned Reg,
4124                                            unsigned &DefIdx, unsigned &Dist) {
4125   Dist = 0;
4126 
4127   MachineBasicBlock::const_iterator I = MI; ++I;
4128   MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
4129   assert(II->isInsideBundle() && "Empty bundle?");
4130 
4131   int Idx = -1;
4132   while (II->isInsideBundle()) {
4133     Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
4134     if (Idx != -1)
4135       break;
4136     --II;
4137     ++Dist;
4138   }
4139 
4140   assert(Idx != -1 && "Cannot find bundled definition!");
4141   DefIdx = Idx;
4142   return &*II;
4143 }
4144 
4145 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
4146                                            const MachineInstr &MI, unsigned Reg,
4147                                            unsigned &UseIdx, unsigned &Dist) {
4148   Dist = 0;
4149 
4150   MachineBasicBlock::const_instr_iterator II = ++MI.getIterator();
4151   assert(II->isInsideBundle() && "Empty bundle?");
4152   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4153 
4154   // FIXME: This doesn't properly handle multiple uses.
4155   int Idx = -1;
4156   while (II != E && II->isInsideBundle()) {
4157     Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
4158     if (Idx != -1)
4159       break;
4160     if (II->getOpcode() != ARM::t2IT)
4161       ++Dist;
4162     ++II;
4163   }
4164 
4165   if (Idx == -1) {
4166     Dist = 0;
4167     return nullptr;
4168   }
4169 
4170   UseIdx = Idx;
4171   return &*II;
4172 }
4173 
4174 /// Return the number of cycles to add to (or subtract from) the static
4175 /// itinerary based on the def opcode and alignment. The caller will ensure that
4176 /// adjusted latency is at least one cycle.
4177 static int adjustDefLatency(const ARMSubtarget &Subtarget,
4178                             const MachineInstr &DefMI,
4179                             const MCInstrDesc &DefMCID, unsigned DefAlign) {
4180   int Adjust = 0;
4181   if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
4182     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4183     // variants are one cycle cheaper.
4184     switch (DefMCID.getOpcode()) {
4185     default: break;
4186     case ARM::LDRrs:
4187     case ARM::LDRBrs: {
4188       unsigned ShOpVal = DefMI.getOperand(3).getImm();
4189       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4190       if (ShImm == 0 ||
4191           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4192         --Adjust;
4193       break;
4194     }
4195     case ARM::t2LDRs:
4196     case ARM::t2LDRBs:
4197     case ARM::t2LDRHs:
4198     case ARM::t2LDRSHs: {
4199       // Thumb2 mode: lsl only.
4200       unsigned ShAmt = DefMI.getOperand(3).getImm();
4201       if (ShAmt == 0 || ShAmt == 2)
4202         --Adjust;
4203       break;
4204     }
4205     }
4206   } else if (Subtarget.isSwift()) {
4207     // FIXME: Properly handle all of the latency adjustments for address
4208     // writeback.
4209     switch (DefMCID.getOpcode()) {
4210     default: break;
4211     case ARM::LDRrs:
4212     case ARM::LDRBrs: {
4213       unsigned ShOpVal = DefMI.getOperand(3).getImm();
4214       bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
4215       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4216       if (!isSub &&
4217           (ShImm == 0 ||
4218            ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4219             ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
4220         Adjust -= 2;
4221       else if (!isSub &&
4222                ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4223         --Adjust;
4224       break;
4225     }
4226     case ARM::t2LDRs:
4227     case ARM::t2LDRBs:
4228     case ARM::t2LDRHs:
4229     case ARM::t2LDRSHs: {
4230       // Thumb2 mode: lsl only.
4231       unsigned ShAmt = DefMI.getOperand(3).getImm();
4232       if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
4233         Adjust -= 2;
4234       break;
4235     }
4236     }
4237   }
4238 
4239   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) {
4240     switch (DefMCID.getOpcode()) {
4241     default: break;
4242     case ARM::VLD1q8:
4243     case ARM::VLD1q16:
4244     case ARM::VLD1q32:
4245     case ARM::VLD1q64:
4246     case ARM::VLD1q8wb_fixed:
4247     case ARM::VLD1q16wb_fixed:
4248     case ARM::VLD1q32wb_fixed:
4249     case ARM::VLD1q64wb_fixed:
4250     case ARM::VLD1q8wb_register:
4251     case ARM::VLD1q16wb_register:
4252     case ARM::VLD1q32wb_register:
4253     case ARM::VLD1q64wb_register:
4254     case ARM::VLD2d8:
4255     case ARM::VLD2d16:
4256     case ARM::VLD2d32:
4257     case ARM::VLD2q8:
4258     case ARM::VLD2q16:
4259     case ARM::VLD2q32:
4260     case ARM::VLD2d8wb_fixed:
4261     case ARM::VLD2d16wb_fixed:
4262     case ARM::VLD2d32wb_fixed:
4263     case ARM::VLD2q8wb_fixed:
4264     case ARM::VLD2q16wb_fixed:
4265     case ARM::VLD2q32wb_fixed:
4266     case ARM::VLD2d8wb_register:
4267     case ARM::VLD2d16wb_register:
4268     case ARM::VLD2d32wb_register:
4269     case ARM::VLD2q8wb_register:
4270     case ARM::VLD2q16wb_register:
4271     case ARM::VLD2q32wb_register:
4272     case ARM::VLD3d8:
4273     case ARM::VLD3d16:
4274     case ARM::VLD3d32:
4275     case ARM::VLD1d64T:
4276     case ARM::VLD3d8_UPD:
4277     case ARM::VLD3d16_UPD:
4278     case ARM::VLD3d32_UPD:
4279     case ARM::VLD1d64Twb_fixed:
4280     case ARM::VLD1d64Twb_register:
4281     case ARM::VLD3q8_UPD:
4282     case ARM::VLD3q16_UPD:
4283     case ARM::VLD3q32_UPD:
4284     case ARM::VLD4d8:
4285     case ARM::VLD4d16:
4286     case ARM::VLD4d32:
4287     case ARM::VLD1d64Q:
4288     case ARM::VLD4d8_UPD:
4289     case ARM::VLD4d16_UPD:
4290     case ARM::VLD4d32_UPD:
4291     case ARM::VLD1d64Qwb_fixed:
4292     case ARM::VLD1d64Qwb_register:
4293     case ARM::VLD4q8_UPD:
4294     case ARM::VLD4q16_UPD:
4295     case ARM::VLD4q32_UPD:
4296     case ARM::VLD1DUPq8:
4297     case ARM::VLD1DUPq16:
4298     case ARM::VLD1DUPq32:
4299     case ARM::VLD1DUPq8wb_fixed:
4300     case ARM::VLD1DUPq16wb_fixed:
4301     case ARM::VLD1DUPq32wb_fixed:
4302     case ARM::VLD1DUPq8wb_register:
4303     case ARM::VLD1DUPq16wb_register:
4304     case ARM::VLD1DUPq32wb_register:
4305     case ARM::VLD2DUPd8:
4306     case ARM::VLD2DUPd16:
4307     case ARM::VLD2DUPd32:
4308     case ARM::VLD2DUPd8wb_fixed:
4309     case ARM::VLD2DUPd16wb_fixed:
4310     case ARM::VLD2DUPd32wb_fixed:
4311     case ARM::VLD2DUPd8wb_register:
4312     case ARM::VLD2DUPd16wb_register:
4313     case ARM::VLD2DUPd32wb_register:
4314     case ARM::VLD4DUPd8:
4315     case ARM::VLD4DUPd16:
4316     case ARM::VLD4DUPd32:
4317     case ARM::VLD4DUPd8_UPD:
4318     case ARM::VLD4DUPd16_UPD:
4319     case ARM::VLD4DUPd32_UPD:
4320     case ARM::VLD1LNd8:
4321     case ARM::VLD1LNd16:
4322     case ARM::VLD1LNd32:
4323     case ARM::VLD1LNd8_UPD:
4324     case ARM::VLD1LNd16_UPD:
4325     case ARM::VLD1LNd32_UPD:
4326     case ARM::VLD2LNd8:
4327     case ARM::VLD2LNd16:
4328     case ARM::VLD2LNd32:
4329     case ARM::VLD2LNq16:
4330     case ARM::VLD2LNq32:
4331     case ARM::VLD2LNd8_UPD:
4332     case ARM::VLD2LNd16_UPD:
4333     case ARM::VLD2LNd32_UPD:
4334     case ARM::VLD2LNq16_UPD:
4335     case ARM::VLD2LNq32_UPD:
4336     case ARM::VLD4LNd8:
4337     case ARM::VLD4LNd16:
4338     case ARM::VLD4LNd32:
4339     case ARM::VLD4LNq16:
4340     case ARM::VLD4LNq32:
4341     case ARM::VLD4LNd8_UPD:
4342     case ARM::VLD4LNd16_UPD:
4343     case ARM::VLD4LNd32_UPD:
4344     case ARM::VLD4LNq16_UPD:
4345     case ARM::VLD4LNq32_UPD:
4346       // If the address is not 64-bit aligned, the latencies of these
4347       // instructions increases by one.
4348       ++Adjust;
4349       break;
4350     }
4351   }
4352   return Adjust;
4353 }
4354 
4355 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4356                                         const MachineInstr &DefMI,
4357                                         unsigned DefIdx,
4358                                         const MachineInstr &UseMI,
4359                                         unsigned UseIdx) const {
4360   // No operand latency. The caller may fall back to getInstrLatency.
4361   if (!ItinData || ItinData->isEmpty())
4362     return -1;
4363 
4364   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4365   Register Reg = DefMO.getReg();
4366 
4367   const MachineInstr *ResolvedDefMI = &DefMI;
4368   unsigned DefAdj = 0;
4369   if (DefMI.isBundle())
4370     ResolvedDefMI =
4371         getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj);
4372   if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() ||
4373       ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) {
4374     return 1;
4375   }
4376 
4377   const MachineInstr *ResolvedUseMI = &UseMI;
4378   unsigned UseAdj = 0;
4379   if (UseMI.isBundle()) {
4380     ResolvedUseMI =
4381         getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj);
4382     if (!ResolvedUseMI)
4383       return -1;
4384   }
4385 
4386   return getOperandLatencyImpl(
4387       ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO,
4388       Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj);
4389 }
4390 
4391 int ARMBaseInstrInfo::getOperandLatencyImpl(
4392     const InstrItineraryData *ItinData, const MachineInstr &DefMI,
4393     unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj,
4394     const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI,
4395     unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const {
4396   if (Reg == ARM::CPSR) {
4397     if (DefMI.getOpcode() == ARM::FMSTAT) {
4398       // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
4399       return Subtarget.isLikeA9() ? 1 : 20;
4400     }
4401 
4402     // CPSR set and branch can be paired in the same cycle.
4403     if (UseMI.isBranch())
4404       return 0;
4405 
4406     // Otherwise it takes the instruction latency (generally one).
4407     unsigned Latency = getInstrLatency(ItinData, DefMI);
4408 
4409     // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
4410     // its uses. Instructions which are otherwise scheduled between them may
4411     // incur a code size penalty (not able to use the CPSR setting 16-bit
4412     // instructions).
4413     if (Latency > 0 && Subtarget.isThumb2()) {
4414       const MachineFunction *MF = DefMI.getParent()->getParent();
4415       // FIXME: Use Function::hasOptSize().
4416       if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize))
4417         --Latency;
4418     }
4419     return Latency;
4420   }
4421 
4422   if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit())
4423     return -1;
4424 
4425   unsigned DefAlign = DefMI.hasOneMemOperand()
4426                           ? (*DefMI.memoperands_begin())->getAlign().value()
4427                           : 0;
4428   unsigned UseAlign = UseMI.hasOneMemOperand()
4429                           ? (*UseMI.memoperands_begin())->getAlign().value()
4430                           : 0;
4431 
4432   // Get the itinerary's latency if possible, and handle variable_ops.
4433   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID,
4434                                   UseIdx, UseAlign);
4435   // Unable to find operand latency. The caller may resort to getInstrLatency.
4436   if (Latency < 0)
4437     return Latency;
4438 
4439   // Adjust for IT block position.
4440   int Adj = DefAdj + UseAdj;
4441 
4442   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4443   Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
4444   if (Adj >= 0 || (int)Latency > -Adj) {
4445     return Latency + Adj;
4446   }
4447   // Return the itinerary latency, which may be zero but not less than zero.
4448   return Latency;
4449 }
4450 
4451 int
4452 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4453                                     SDNode *DefNode, unsigned DefIdx,
4454                                     SDNode *UseNode, unsigned UseIdx) const {
4455   if (!DefNode->isMachineOpcode())
4456     return 1;
4457 
4458   const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
4459 
4460   if (isZeroCost(DefMCID.Opcode))
4461     return 0;
4462 
4463   if (!ItinData || ItinData->isEmpty())
4464     return DefMCID.mayLoad() ? 3 : 1;
4465 
4466   if (!UseNode->isMachineOpcode()) {
4467     int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
4468     int Adj = Subtarget.getPreISelOperandLatencyAdjustment();
4469     int Threshold = 1 + Adj;
4470     return Latency <= Threshold ? 1 : Latency - Adj;
4471   }
4472 
4473   const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
4474   auto *DefMN = cast<MachineSDNode>(DefNode);
4475   unsigned DefAlign = !DefMN->memoperands_empty()
4476                           ? (*DefMN->memoperands_begin())->getAlign().value()
4477                           : 0;
4478   auto *UseMN = cast<MachineSDNode>(UseNode);
4479   unsigned UseAlign = !UseMN->memoperands_empty()
4480                           ? (*UseMN->memoperands_begin())->getAlign().value()
4481                           : 0;
4482   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
4483                                   UseMCID, UseIdx, UseAlign);
4484 
4485   if (Latency > 1 &&
4486       (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
4487        Subtarget.isCortexA7())) {
4488     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4489     // variants are one cycle cheaper.
4490     switch (DefMCID.getOpcode()) {
4491     default: break;
4492     case ARM::LDRrs:
4493     case ARM::LDRBrs: {
4494       unsigned ShOpVal =
4495         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4496       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4497       if (ShImm == 0 ||
4498           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4499         --Latency;
4500       break;
4501     }
4502     case ARM::t2LDRs:
4503     case ARM::t2LDRBs:
4504     case ARM::t2LDRHs:
4505     case ARM::t2LDRSHs: {
4506       // Thumb2 mode: lsl only.
4507       unsigned ShAmt =
4508         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4509       if (ShAmt == 0 || ShAmt == 2)
4510         --Latency;
4511       break;
4512     }
4513     }
4514   } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
4515     // FIXME: Properly handle all of the latency adjustments for address
4516     // writeback.
4517     switch (DefMCID.getOpcode()) {
4518     default: break;
4519     case ARM::LDRrs:
4520     case ARM::LDRBrs: {
4521       unsigned ShOpVal =
4522         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4523       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4524       if (ShImm == 0 ||
4525           ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4526            ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4527         Latency -= 2;
4528       else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4529         --Latency;
4530       break;
4531     }
4532     case ARM::t2LDRs:
4533     case ARM::t2LDRBs:
4534     case ARM::t2LDRHs:
4535     case ARM::t2LDRSHs:
4536       // Thumb2 mode: lsl 0-3 only.
4537       Latency -= 2;
4538       break;
4539     }
4540   }
4541 
4542   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment())
4543     switch (DefMCID.getOpcode()) {
4544     default: break;
4545     case ARM::VLD1q8:
4546     case ARM::VLD1q16:
4547     case ARM::VLD1q32:
4548     case ARM::VLD1q64:
4549     case ARM::VLD1q8wb_register:
4550     case ARM::VLD1q16wb_register:
4551     case ARM::VLD1q32wb_register:
4552     case ARM::VLD1q64wb_register:
4553     case ARM::VLD1q8wb_fixed:
4554     case ARM::VLD1q16wb_fixed:
4555     case ARM::VLD1q32wb_fixed:
4556     case ARM::VLD1q64wb_fixed:
4557     case ARM::VLD2d8:
4558     case ARM::VLD2d16:
4559     case ARM::VLD2d32:
4560     case ARM::VLD2q8Pseudo:
4561     case ARM::VLD2q16Pseudo:
4562     case ARM::VLD2q32Pseudo:
4563     case ARM::VLD2d8wb_fixed:
4564     case ARM::VLD2d16wb_fixed:
4565     case ARM::VLD2d32wb_fixed:
4566     case ARM::VLD2q8PseudoWB_fixed:
4567     case ARM::VLD2q16PseudoWB_fixed:
4568     case ARM::VLD2q32PseudoWB_fixed:
4569     case ARM::VLD2d8wb_register:
4570     case ARM::VLD2d16wb_register:
4571     case ARM::VLD2d32wb_register:
4572     case ARM::VLD2q8PseudoWB_register:
4573     case ARM::VLD2q16PseudoWB_register:
4574     case ARM::VLD2q32PseudoWB_register:
4575     case ARM::VLD3d8Pseudo:
4576     case ARM::VLD3d16Pseudo:
4577     case ARM::VLD3d32Pseudo:
4578     case ARM::VLD1d8TPseudo:
4579     case ARM::VLD1d16TPseudo:
4580     case ARM::VLD1d32TPseudo:
4581     case ARM::VLD1d64TPseudo:
4582     case ARM::VLD1d64TPseudoWB_fixed:
4583     case ARM::VLD1d64TPseudoWB_register:
4584     case ARM::VLD3d8Pseudo_UPD:
4585     case ARM::VLD3d16Pseudo_UPD:
4586     case ARM::VLD3d32Pseudo_UPD:
4587     case ARM::VLD3q8Pseudo_UPD:
4588     case ARM::VLD3q16Pseudo_UPD:
4589     case ARM::VLD3q32Pseudo_UPD:
4590     case ARM::VLD3q8oddPseudo:
4591     case ARM::VLD3q16oddPseudo:
4592     case ARM::VLD3q32oddPseudo:
4593     case ARM::VLD3q8oddPseudo_UPD:
4594     case ARM::VLD3q16oddPseudo_UPD:
4595     case ARM::VLD3q32oddPseudo_UPD:
4596     case ARM::VLD4d8Pseudo:
4597     case ARM::VLD4d16Pseudo:
4598     case ARM::VLD4d32Pseudo:
4599     case ARM::VLD1d8QPseudo:
4600     case ARM::VLD1d16QPseudo:
4601     case ARM::VLD1d32QPseudo:
4602     case ARM::VLD1d64QPseudo:
4603     case ARM::VLD1d64QPseudoWB_fixed:
4604     case ARM::VLD1d64QPseudoWB_register:
4605     case ARM::VLD1q8HighQPseudo:
4606     case ARM::VLD1q8LowQPseudo_UPD:
4607     case ARM::VLD1q8HighTPseudo:
4608     case ARM::VLD1q8LowTPseudo_UPD:
4609     case ARM::VLD1q16HighQPseudo:
4610     case ARM::VLD1q16LowQPseudo_UPD:
4611     case ARM::VLD1q16HighTPseudo:
4612     case ARM::VLD1q16LowTPseudo_UPD:
4613     case ARM::VLD1q32HighQPseudo:
4614     case ARM::VLD1q32LowQPseudo_UPD:
4615     case ARM::VLD1q32HighTPseudo:
4616     case ARM::VLD1q32LowTPseudo_UPD:
4617     case ARM::VLD1q64HighQPseudo:
4618     case ARM::VLD1q64LowQPseudo_UPD:
4619     case ARM::VLD1q64HighTPseudo:
4620     case ARM::VLD1q64LowTPseudo_UPD:
4621     case ARM::VLD4d8Pseudo_UPD:
4622     case ARM::VLD4d16Pseudo_UPD:
4623     case ARM::VLD4d32Pseudo_UPD:
4624     case ARM::VLD4q8Pseudo_UPD:
4625     case ARM::VLD4q16Pseudo_UPD:
4626     case ARM::VLD4q32Pseudo_UPD:
4627     case ARM::VLD4q8oddPseudo:
4628     case ARM::VLD4q16oddPseudo:
4629     case ARM::VLD4q32oddPseudo:
4630     case ARM::VLD4q8oddPseudo_UPD:
4631     case ARM::VLD4q16oddPseudo_UPD:
4632     case ARM::VLD4q32oddPseudo_UPD:
4633     case ARM::VLD1DUPq8:
4634     case ARM::VLD1DUPq16:
4635     case ARM::VLD1DUPq32:
4636     case ARM::VLD1DUPq8wb_fixed:
4637     case ARM::VLD1DUPq16wb_fixed:
4638     case ARM::VLD1DUPq32wb_fixed:
4639     case ARM::VLD1DUPq8wb_register:
4640     case ARM::VLD1DUPq16wb_register:
4641     case ARM::VLD1DUPq32wb_register:
4642     case ARM::VLD2DUPd8:
4643     case ARM::VLD2DUPd16:
4644     case ARM::VLD2DUPd32:
4645     case ARM::VLD2DUPd8wb_fixed:
4646     case ARM::VLD2DUPd16wb_fixed:
4647     case ARM::VLD2DUPd32wb_fixed:
4648     case ARM::VLD2DUPd8wb_register:
4649     case ARM::VLD2DUPd16wb_register:
4650     case ARM::VLD2DUPd32wb_register:
4651     case ARM::VLD2DUPq8EvenPseudo:
4652     case ARM::VLD2DUPq8OddPseudo:
4653     case ARM::VLD2DUPq16EvenPseudo:
4654     case ARM::VLD2DUPq16OddPseudo:
4655     case ARM::VLD2DUPq32EvenPseudo:
4656     case ARM::VLD2DUPq32OddPseudo:
4657     case ARM::VLD3DUPq8EvenPseudo:
4658     case ARM::VLD3DUPq8OddPseudo:
4659     case ARM::VLD3DUPq16EvenPseudo:
4660     case ARM::VLD3DUPq16OddPseudo:
4661     case ARM::VLD3DUPq32EvenPseudo:
4662     case ARM::VLD3DUPq32OddPseudo:
4663     case ARM::VLD4DUPd8Pseudo:
4664     case ARM::VLD4DUPd16Pseudo:
4665     case ARM::VLD4DUPd32Pseudo:
4666     case ARM::VLD4DUPd8Pseudo_UPD:
4667     case ARM::VLD4DUPd16Pseudo_UPD:
4668     case ARM::VLD4DUPd32Pseudo_UPD:
4669     case ARM::VLD4DUPq8EvenPseudo:
4670     case ARM::VLD4DUPq8OddPseudo:
4671     case ARM::VLD4DUPq16EvenPseudo:
4672     case ARM::VLD4DUPq16OddPseudo:
4673     case ARM::VLD4DUPq32EvenPseudo:
4674     case ARM::VLD4DUPq32OddPseudo:
4675     case ARM::VLD1LNq8Pseudo:
4676     case ARM::VLD1LNq16Pseudo:
4677     case ARM::VLD1LNq32Pseudo:
4678     case ARM::VLD1LNq8Pseudo_UPD:
4679     case ARM::VLD1LNq16Pseudo_UPD:
4680     case ARM::VLD1LNq32Pseudo_UPD:
4681     case ARM::VLD2LNd8Pseudo:
4682     case ARM::VLD2LNd16Pseudo:
4683     case ARM::VLD2LNd32Pseudo:
4684     case ARM::VLD2LNq16Pseudo:
4685     case ARM::VLD2LNq32Pseudo:
4686     case ARM::VLD2LNd8Pseudo_UPD:
4687     case ARM::VLD2LNd16Pseudo_UPD:
4688     case ARM::VLD2LNd32Pseudo_UPD:
4689     case ARM::VLD2LNq16Pseudo_UPD:
4690     case ARM::VLD2LNq32Pseudo_UPD:
4691     case ARM::VLD4LNd8Pseudo:
4692     case ARM::VLD4LNd16Pseudo:
4693     case ARM::VLD4LNd32Pseudo:
4694     case ARM::VLD4LNq16Pseudo:
4695     case ARM::VLD4LNq32Pseudo:
4696     case ARM::VLD4LNd8Pseudo_UPD:
4697     case ARM::VLD4LNd16Pseudo_UPD:
4698     case ARM::VLD4LNd32Pseudo_UPD:
4699     case ARM::VLD4LNq16Pseudo_UPD:
4700     case ARM::VLD4LNq32Pseudo_UPD:
4701       // If the address is not 64-bit aligned, the latencies of these
4702       // instructions increases by one.
4703       ++Latency;
4704       break;
4705     }
4706 
4707   return Latency;
4708 }
4709 
4710 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const {
4711   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4712       MI.isImplicitDef())
4713     return 0;
4714 
4715   if (MI.isBundle())
4716     return 0;
4717 
4718   const MCInstrDesc &MCID = MI.getDesc();
4719 
4720   if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4721                         !Subtarget.cheapPredicableCPSRDef())) {
4722     // When predicated, CPSR is an additional source operand for CPSR updating
4723     // instructions, this apparently increases their latencies.
4724     return 1;
4725   }
4726   return 0;
4727 }
4728 
4729 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4730                                            const MachineInstr &MI,
4731                                            unsigned *PredCost) const {
4732   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4733       MI.isImplicitDef())
4734     return 1;
4735 
4736   // An instruction scheduler typically runs on unbundled instructions, however
4737   // other passes may query the latency of a bundled instruction.
4738   if (MI.isBundle()) {
4739     unsigned Latency = 0;
4740     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
4741     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4742     while (++I != E && I->isInsideBundle()) {
4743       if (I->getOpcode() != ARM::t2IT)
4744         Latency += getInstrLatency(ItinData, *I, PredCost);
4745     }
4746     return Latency;
4747   }
4748 
4749   const MCInstrDesc &MCID = MI.getDesc();
4750   if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4751                                      !Subtarget.cheapPredicableCPSRDef()))) {
4752     // When predicated, CPSR is an additional source operand for CPSR updating
4753     // instructions, this apparently increases their latencies.
4754     *PredCost = 1;
4755   }
4756   // Be sure to call getStageLatency for an empty itinerary in case it has a
4757   // valid MinLatency property.
4758   if (!ItinData)
4759     return MI.mayLoad() ? 3 : 1;
4760 
4761   unsigned Class = MCID.getSchedClass();
4762 
4763   // For instructions with variable uops, use uops as latency.
4764   if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
4765     return getNumMicroOps(ItinData, MI);
4766 
4767   // For the common case, fall back on the itinerary's latency.
4768   unsigned Latency = ItinData->getStageLatency(Class);
4769 
4770   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4771   unsigned DefAlign =
4772       MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlign().value() : 0;
4773   int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign);
4774   if (Adj >= 0 || (int)Latency > -Adj) {
4775     return Latency + Adj;
4776   }
4777   return Latency;
4778 }
4779 
4780 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4781                                       SDNode *Node) const {
4782   if (!Node->isMachineOpcode())
4783     return 1;
4784 
4785   if (!ItinData || ItinData->isEmpty())
4786     return 1;
4787 
4788   unsigned Opcode = Node->getMachineOpcode();
4789   switch (Opcode) {
4790   default:
4791     return ItinData->getStageLatency(get(Opcode).getSchedClass());
4792   case ARM::VLDMQIA:
4793   case ARM::VSTMQIA:
4794     return 2;
4795   }
4796 }
4797 
4798 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
4799                                              const MachineRegisterInfo *MRI,
4800                                              const MachineInstr &DefMI,
4801                                              unsigned DefIdx,
4802                                              const MachineInstr &UseMI,
4803                                              unsigned UseIdx) const {
4804   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4805   unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask;
4806   if (Subtarget.nonpipelinedVFP() &&
4807       (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
4808     return true;
4809 
4810   // Hoist VFP / NEON instructions with 4 or higher latency.
4811   unsigned Latency =
4812       SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx);
4813   if (Latency <= 3)
4814     return false;
4815   return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
4816          UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
4817 }
4818 
4819 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
4820                                         const MachineInstr &DefMI,
4821                                         unsigned DefIdx) const {
4822   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
4823   if (!ItinData || ItinData->isEmpty())
4824     return false;
4825 
4826   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4827   if (DDomain == ARMII::DomainGeneral) {
4828     unsigned DefClass = DefMI.getDesc().getSchedClass();
4829     int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4830     return (DefCycle != -1 && DefCycle <= 2);
4831   }
4832   return false;
4833 }
4834 
4835 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI,
4836                                          StringRef &ErrInfo) const {
4837   if (convertAddSubFlagsOpcode(MI.getOpcode())) {
4838     ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
4839     return false;
4840   }
4841   if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) {
4842     // Make sure we don't generate a lo-lo mov that isn't supported.
4843     if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) &&
4844         !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) {
4845       ErrInfo = "Non-flag-setting Thumb1 mov is v6-only";
4846       return false;
4847     }
4848   }
4849   if (MI.getOpcode() == ARM::tPUSH ||
4850       MI.getOpcode() == ARM::tPOP ||
4851       MI.getOpcode() == ARM::tPOP_RET) {
4852     for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), 2)) {
4853       if (MO.isImplicit() || !MO.isReg())
4854         continue;
4855       Register Reg = MO.getReg();
4856       if (Reg < ARM::R0 || Reg > ARM::R7) {
4857         if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) &&
4858             !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) {
4859           ErrInfo = "Unsupported register in Thumb1 push/pop";
4860           return false;
4861         }
4862       }
4863     }
4864   }
4865   if (MI.getOpcode() == ARM::MVE_VMOV_q_rr) {
4866     assert(MI.getOperand(4).isImm() && MI.getOperand(5).isImm());
4867     if ((MI.getOperand(4).getImm() != 2 && MI.getOperand(4).getImm() != 3) ||
4868         MI.getOperand(4).getImm() != MI.getOperand(5).getImm() + 2) {
4869       ErrInfo = "Incorrect array index for MVE_VMOV_q_rr";
4870       return false;
4871     }
4872   }
4873 
4874   // Check the address model by taking the first Imm operand and checking it is
4875   // legal for that addressing mode.
4876   ARMII::AddrMode AddrMode =
4877       (ARMII::AddrMode)(MI.getDesc().TSFlags & ARMII::AddrModeMask);
4878   switch (AddrMode) {
4879   default:
4880     break;
4881   case ARMII::AddrModeT2_i7:
4882   case ARMII::AddrModeT2_i7s2:
4883   case ARMII::AddrModeT2_i7s4:
4884   case ARMII::AddrModeT2_i8:
4885   case ARMII::AddrModeT2_i8pos:
4886   case ARMII::AddrModeT2_i8neg:
4887   case ARMII::AddrModeT2_i8s4:
4888   case ARMII::AddrModeT2_i12: {
4889     uint32_t Imm = 0;
4890     for (auto Op : MI.operands()) {
4891       if (Op.isImm()) {
4892         Imm = Op.getImm();
4893         break;
4894       }
4895     }
4896     if (!isLegalAddressImm(MI.getOpcode(), Imm, this)) {
4897       ErrInfo = "Incorrect AddrMode Imm for instruction";
4898       return false;
4899     }
4900     break;
4901   }
4902   }
4903   return true;
4904 }
4905 
4906 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
4907                                                 unsigned LoadImmOpc,
4908                                                 unsigned LoadOpc) const {
4909   assert(!Subtarget.isROPI() && !Subtarget.isRWPI() &&
4910          "ROPI/RWPI not currently supported with stack guard");
4911 
4912   MachineBasicBlock &MBB = *MI->getParent();
4913   DebugLoc DL = MI->getDebugLoc();
4914   Register Reg = MI->getOperand(0).getReg();
4915   MachineInstrBuilder MIB;
4916   unsigned int Offset = 0;
4917 
4918   if (LoadImmOpc == ARM::MRC || LoadImmOpc == ARM::t2MRC) {
4919     assert(Subtarget.isReadTPHard() &&
4920            "TLS stack protector requires hardware TLS register");
4921 
4922     BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4923         .addImm(15)
4924         .addImm(0)
4925         .addImm(13)
4926         .addImm(0)
4927         .addImm(3)
4928         .add(predOps(ARMCC::AL));
4929 
4930     Module &M = *MBB.getParent()->getFunction().getParent();
4931     Offset = M.getStackProtectorGuardOffset();
4932     if (Offset & ~0xfffU) {
4933       // The offset won't fit in the LDR's 12-bit immediate field, so emit an
4934       // extra ADD to cover the delta. This gives us a guaranteed 8 additional
4935       // bits, resulting in a range of 0 to +1 MiB for the guard offset.
4936       unsigned AddOpc = (LoadImmOpc == ARM::MRC) ? ARM::ADDri : ARM::t2ADDri;
4937       BuildMI(MBB, MI, DL, get(AddOpc), Reg)
4938           .addReg(Reg, RegState::Kill)
4939           .addImm(Offset & ~0xfffU)
4940           .add(predOps(ARMCC::AL))
4941           .addReg(0);
4942       Offset &= 0xfffU;
4943     }
4944   } else {
4945     const GlobalValue *GV =
4946         cast<GlobalValue>((*MI->memoperands_begin())->getValue());
4947     bool IsIndirect = Subtarget.isGVIndirectSymbol(GV);
4948 
4949     unsigned TargetFlags = ARMII::MO_NO_FLAG;
4950     if (Subtarget.isTargetMachO()) {
4951       TargetFlags |= ARMII::MO_NONLAZY;
4952     } else if (Subtarget.isTargetCOFF()) {
4953       if (GV->hasDLLImportStorageClass())
4954         TargetFlags |= ARMII::MO_DLLIMPORT;
4955       else if (IsIndirect)
4956         TargetFlags |= ARMII::MO_COFFSTUB;
4957     } else if (Subtarget.isGVInGOT(GV)) {
4958       TargetFlags |= ARMII::MO_GOT;
4959     }
4960 
4961     BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4962         .addGlobalAddress(GV, 0, TargetFlags);
4963 
4964     if (IsIndirect) {
4965       MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4966       MIB.addReg(Reg, RegState::Kill).addImm(0);
4967       auto Flags = MachineMemOperand::MOLoad |
4968                    MachineMemOperand::MODereferenceable |
4969                    MachineMemOperand::MOInvariant;
4970       MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4971           MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, Align(4));
4972       MIB.addMemOperand(MMO).add(predOps(ARMCC::AL));
4973     }
4974   }
4975 
4976   MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4977   MIB.addReg(Reg, RegState::Kill)
4978       .addImm(Offset)
4979       .cloneMemRefs(*MI)
4980       .add(predOps(ARMCC::AL));
4981 }
4982 
4983 bool
4984 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
4985                                      unsigned &AddSubOpc,
4986                                      bool &NegAcc, bool &HasLane) const {
4987   DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
4988   if (I == MLxEntryMap.end())
4989     return false;
4990 
4991   const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
4992   MulOpc = Entry.MulOpc;
4993   AddSubOpc = Entry.AddSubOpc;
4994   NegAcc = Entry.NegAcc;
4995   HasLane = Entry.HasLane;
4996   return true;
4997 }
4998 
4999 //===----------------------------------------------------------------------===//
5000 // Execution domains.
5001 //===----------------------------------------------------------------------===//
5002 //
5003 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
5004 // and some can go down both.  The vmov instructions go down the VFP pipeline,
5005 // but they can be changed to vorr equivalents that are executed by the NEON
5006 // pipeline.
5007 //
5008 // We use the following execution domain numbering:
5009 //
5010 enum ARMExeDomain {
5011   ExeGeneric = 0,
5012   ExeVFP = 1,
5013   ExeNEON = 2
5014 };
5015 
5016 //
5017 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
5018 //
5019 std::pair<uint16_t, uint16_t>
5020 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const {
5021   // If we don't have access to NEON instructions then we won't be able
5022   // to swizzle anything to the NEON domain. Check to make sure.
5023   if (Subtarget.hasNEON()) {
5024     // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
5025     // if they are not predicated.
5026     if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI))
5027       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
5028 
5029     // CortexA9 is particularly picky about mixing the two and wants these
5030     // converted.
5031     if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) &&
5032         (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR ||
5033          MI.getOpcode() == ARM::VMOVS))
5034       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
5035   }
5036   // No other instructions can be swizzled, so just determine their domain.
5037   unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask;
5038 
5039   if (Domain & ARMII::DomainNEON)
5040     return std::make_pair(ExeNEON, 0);
5041 
5042   // Certain instructions can go either way on Cortex-A8.
5043   // Treat them as NEON instructions.
5044   if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
5045     return std::make_pair(ExeNEON, 0);
5046 
5047   if (Domain & ARMII::DomainVFP)
5048     return std::make_pair(ExeVFP, 0);
5049 
5050   return std::make_pair(ExeGeneric, 0);
5051 }
5052 
5053 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
5054                                             unsigned SReg, unsigned &Lane) {
5055   unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
5056   Lane = 0;
5057 
5058   if (DReg != ARM::NoRegister)
5059    return DReg;
5060 
5061   Lane = 1;
5062   DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
5063 
5064   assert(DReg && "S-register with no D super-register?");
5065   return DReg;
5066 }
5067 
5068 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
5069 /// set ImplicitSReg to a register number that must be marked as implicit-use or
5070 /// zero if no register needs to be defined as implicit-use.
5071 ///
5072 /// If the function cannot determine if an SPR should be marked implicit use or
5073 /// not, it returns false.
5074 ///
5075 /// This function handles cases where an instruction is being modified from taking
5076 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
5077 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
5078 /// lane of the DPR).
5079 ///
5080 /// If the other SPR is defined, an implicit-use of it should be added. Else,
5081 /// (including the case where the DPR itself is defined), it should not.
5082 ///
5083 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
5084                                        MachineInstr &MI, unsigned DReg,
5085                                        unsigned Lane, unsigned &ImplicitSReg) {
5086   // If the DPR is defined or used already, the other SPR lane will be chained
5087   // correctly, so there is nothing to be done.
5088   if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) {
5089     ImplicitSReg = 0;
5090     return true;
5091   }
5092 
5093   // Otherwise we need to go searching to see if the SPR is set explicitly.
5094   ImplicitSReg = TRI->getSubReg(DReg,
5095                                 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
5096   MachineBasicBlock::LivenessQueryResult LQR =
5097       MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
5098 
5099   if (LQR == MachineBasicBlock::LQR_Live)
5100     return true;
5101   else if (LQR == MachineBasicBlock::LQR_Unknown)
5102     return false;
5103 
5104   // If the register is known not to be live, there is no need to add an
5105   // implicit-use.
5106   ImplicitSReg = 0;
5107   return true;
5108 }
5109 
5110 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI,
5111                                           unsigned Domain) const {
5112   unsigned DstReg, SrcReg, DReg;
5113   unsigned Lane;
5114   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
5115   const TargetRegisterInfo *TRI = &getRegisterInfo();
5116   switch (MI.getOpcode()) {
5117   default:
5118     llvm_unreachable("cannot handle opcode!");
5119     break;
5120   case ARM::VMOVD:
5121     if (Domain != ExeNEON)
5122       break;
5123 
5124     // Zap the predicate operands.
5125     assert(!isPredicated(MI) && "Cannot predicate a VORRd");
5126 
5127     // Make sure we've got NEON instructions.
5128     assert(Subtarget.hasNEON() && "VORRd requires NEON");
5129 
5130     // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
5131     DstReg = MI.getOperand(0).getReg();
5132     SrcReg = MI.getOperand(1).getReg();
5133 
5134     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5135       MI.removeOperand(i - 1);
5136 
5137     // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
5138     MI.setDesc(get(ARM::VORRd));
5139     MIB.addReg(DstReg, RegState::Define)
5140         .addReg(SrcReg)
5141         .addReg(SrcReg)
5142         .add(predOps(ARMCC::AL));
5143     break;
5144   case ARM::VMOVRS:
5145     if (Domain != ExeNEON)
5146       break;
5147     assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
5148 
5149     // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
5150     DstReg = MI.getOperand(0).getReg();
5151     SrcReg = MI.getOperand(1).getReg();
5152 
5153     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5154       MI.removeOperand(i - 1);
5155 
5156     DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
5157 
5158     // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
5159     // Note that DSrc has been widened and the other lane may be undef, which
5160     // contaminates the entire register.
5161     MI.setDesc(get(ARM::VGETLNi32));
5162     MIB.addReg(DstReg, RegState::Define)
5163         .addReg(DReg, RegState::Undef)
5164         .addImm(Lane)
5165         .add(predOps(ARMCC::AL));
5166 
5167     // The old source should be an implicit use, otherwise we might think it
5168     // was dead before here.
5169     MIB.addReg(SrcReg, RegState::Implicit);
5170     break;
5171   case ARM::VMOVSR: {
5172     if (Domain != ExeNEON)
5173       break;
5174     assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
5175 
5176     // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
5177     DstReg = MI.getOperand(0).getReg();
5178     SrcReg = MI.getOperand(1).getReg();
5179 
5180     DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
5181 
5182     unsigned ImplicitSReg;
5183     if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
5184       break;
5185 
5186     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5187       MI.removeOperand(i - 1);
5188 
5189     // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
5190     // Again DDst may be undefined at the beginning of this instruction.
5191     MI.setDesc(get(ARM::VSETLNi32));
5192     MIB.addReg(DReg, RegState::Define)
5193         .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI)))
5194         .addReg(SrcReg)
5195         .addImm(Lane)
5196         .add(predOps(ARMCC::AL));
5197 
5198     // The narrower destination must be marked as set to keep previous chains
5199     // in place.
5200     MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
5201     if (ImplicitSReg != 0)
5202       MIB.addReg(ImplicitSReg, RegState::Implicit);
5203     break;
5204     }
5205     case ARM::VMOVS: {
5206       if (Domain != ExeNEON)
5207         break;
5208 
5209       // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
5210       DstReg = MI.getOperand(0).getReg();
5211       SrcReg = MI.getOperand(1).getReg();
5212 
5213       unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
5214       DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
5215       DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
5216 
5217       unsigned ImplicitSReg;
5218       if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
5219         break;
5220 
5221       for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5222         MI.removeOperand(i - 1);
5223 
5224       if (DSrc == DDst) {
5225         // Destination can be:
5226         //     %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
5227         MI.setDesc(get(ARM::VDUPLN32d));
5228         MIB.addReg(DDst, RegState::Define)
5229             .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI)))
5230             .addImm(SrcLane)
5231             .add(predOps(ARMCC::AL));
5232 
5233         // Neither the source or the destination are naturally represented any
5234         // more, so add them in manually.
5235         MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
5236         MIB.addReg(SrcReg, RegState::Implicit);
5237         if (ImplicitSReg != 0)
5238           MIB.addReg(ImplicitSReg, RegState::Implicit);
5239         break;
5240       }
5241 
5242       // In general there's no single instruction that can perform an S <-> S
5243       // move in NEON space, but a pair of VEXT instructions *can* do the
5244       // job. It turns out that the VEXTs needed will only use DSrc once, with
5245       // the position based purely on the combination of lane-0 and lane-1
5246       // involved. For example
5247       //     vmov s0, s2 -> vext.32 d0, d0, d1, #1  vext.32 d0, d0, d0, #1
5248       //     vmov s1, s3 -> vext.32 d0, d1, d0, #1  vext.32 d0, d0, d0, #1
5249       //     vmov s0, s3 -> vext.32 d0, d0, d0, #1  vext.32 d0, d1, d0, #1
5250       //     vmov s1, s2 -> vext.32 d0, d0, d0, #1  vext.32 d0, d0, d1, #1
5251       //
5252       // Pattern of the MachineInstrs is:
5253       //     %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
5254       MachineInstrBuilder NewMIB;
5255       NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32),
5256                        DDst);
5257 
5258       // On the first instruction, both DSrc and DDst may be undef if present.
5259       // Specifically when the original instruction didn't have them as an
5260       // <imp-use>.
5261       unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
5262       bool CurUndef = !MI.readsRegister(CurReg, TRI);
5263       NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
5264 
5265       CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
5266       CurUndef = !MI.readsRegister(CurReg, TRI);
5267       NewMIB.addReg(CurReg, getUndefRegState(CurUndef))
5268             .addImm(1)
5269             .add(predOps(ARMCC::AL));
5270 
5271       if (SrcLane == DstLane)
5272         NewMIB.addReg(SrcReg, RegState::Implicit);
5273 
5274       MI.setDesc(get(ARM::VEXTd32));
5275       MIB.addReg(DDst, RegState::Define);
5276 
5277       // On the second instruction, DDst has definitely been defined above, so
5278       // it is not undef. DSrc, if present, can be undef as above.
5279       CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
5280       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5281       MIB.addReg(CurReg, getUndefRegState(CurUndef));
5282 
5283       CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
5284       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5285       MIB.addReg(CurReg, getUndefRegState(CurUndef))
5286          .addImm(1)
5287          .add(predOps(ARMCC::AL));
5288 
5289       if (SrcLane != DstLane)
5290         MIB.addReg(SrcReg, RegState::Implicit);
5291 
5292       // As before, the original destination is no longer represented, add it
5293       // implicitly.
5294       MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
5295       if (ImplicitSReg != 0)
5296         MIB.addReg(ImplicitSReg, RegState::Implicit);
5297       break;
5298     }
5299   }
5300 }
5301 
5302 //===----------------------------------------------------------------------===//
5303 // Partial register updates
5304 //===----------------------------------------------------------------------===//
5305 //
5306 // Swift renames NEON registers with 64-bit granularity.  That means any
5307 // instruction writing an S-reg implicitly reads the containing D-reg.  The
5308 // problem is mostly avoided by translating f32 operations to v2f32 operations
5309 // on D-registers, but f32 loads are still a problem.
5310 //
5311 // These instructions can load an f32 into a NEON register:
5312 //
5313 // VLDRS - Only writes S, partial D update.
5314 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
5315 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
5316 //
5317 // FCONSTD can be used as a dependency-breaking instruction.
5318 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance(
5319     const MachineInstr &MI, unsigned OpNum,
5320     const TargetRegisterInfo *TRI) const {
5321   auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance();
5322   if (!PartialUpdateClearance)
5323     return 0;
5324 
5325   assert(TRI && "Need TRI instance");
5326 
5327   const MachineOperand &MO = MI.getOperand(OpNum);
5328   if (MO.readsReg())
5329     return 0;
5330   Register Reg = MO.getReg();
5331   int UseOp = -1;
5332 
5333   switch (MI.getOpcode()) {
5334   // Normal instructions writing only an S-register.
5335   case ARM::VLDRS:
5336   case ARM::FCONSTS:
5337   case ARM::VMOVSR:
5338   case ARM::VMOVv8i8:
5339   case ARM::VMOVv4i16:
5340   case ARM::VMOVv2i32:
5341   case ARM::VMOVv2f32:
5342   case ARM::VMOVv1i64:
5343     UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI);
5344     break;
5345 
5346     // Explicitly reads the dependency.
5347   case ARM::VLD1LNd32:
5348     UseOp = 3;
5349     break;
5350   default:
5351     return 0;
5352   }
5353 
5354   // If this instruction actually reads a value from Reg, there is no unwanted
5355   // dependency.
5356   if (UseOp != -1 && MI.getOperand(UseOp).readsReg())
5357     return 0;
5358 
5359   // We must be able to clobber the whole D-reg.
5360   if (Register::isVirtualRegister(Reg)) {
5361     // Virtual register must be a def undef foo:ssub_0 operand.
5362     if (!MO.getSubReg() || MI.readsVirtualRegister(Reg))
5363       return 0;
5364   } else if (ARM::SPRRegClass.contains(Reg)) {
5365     // Physical register: MI must define the full D-reg.
5366     unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
5367                                              &ARM::DPRRegClass);
5368     if (!DReg || !MI.definesRegister(DReg, TRI))
5369       return 0;
5370   }
5371 
5372   // MI has an unwanted D-register dependency.
5373   // Avoid defs in the previous N instructrions.
5374   return PartialUpdateClearance;
5375 }
5376 
5377 // Break a partial register dependency after getPartialRegUpdateClearance
5378 // returned non-zero.
5379 void ARMBaseInstrInfo::breakPartialRegDependency(
5380     MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
5381   assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def");
5382   assert(TRI && "Need TRI instance");
5383 
5384   const MachineOperand &MO = MI.getOperand(OpNum);
5385   Register Reg = MO.getReg();
5386   assert(Register::isPhysicalRegister(Reg) &&
5387          "Can't break virtual register dependencies.");
5388   unsigned DReg = Reg;
5389 
5390   // If MI defines an S-reg, find the corresponding D super-register.
5391   if (ARM::SPRRegClass.contains(Reg)) {
5392     DReg = ARM::D0 + (Reg - ARM::S0) / 2;
5393     assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
5394   }
5395 
5396   assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
5397   assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
5398 
5399   // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
5400   // the full D-register by loading the same value to both lanes.  The
5401   // instruction is micro-coded with 2 uops, so don't do this until we can
5402   // properly schedule micro-coded instructions.  The dispatcher stalls cause
5403   // too big regressions.
5404 
5405   // Insert the dependency-breaking FCONSTD before MI.
5406   // 96 is the encoding of 0.5, but the actual value doesn't matter here.
5407   BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg)
5408       .addImm(96)
5409       .add(predOps(ARMCC::AL));
5410   MI.addRegisterKilled(DReg, TRI, true);
5411 }
5412 
5413 bool ARMBaseInstrInfo::hasNOP() const {
5414   return Subtarget.getFeatureBits()[ARM::HasV6KOps];
5415 }
5416 
5417 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
5418   if (MI->getNumOperands() < 4)
5419     return true;
5420   unsigned ShOpVal = MI->getOperand(3).getImm();
5421   unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
5422   // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
5423   if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
5424       ((ShImm == 1 || ShImm == 2) &&
5425        ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
5426     return true;
5427 
5428   return false;
5429 }
5430 
5431 bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
5432     const MachineInstr &MI, unsigned DefIdx,
5433     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
5434   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5435   assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
5436 
5437   switch (MI.getOpcode()) {
5438   case ARM::VMOVDRR:
5439     // dX = VMOVDRR rY, rZ
5440     // is the same as:
5441     // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
5442     // Populate the InputRegs accordingly.
5443     // rY
5444     const MachineOperand *MOReg = &MI.getOperand(1);
5445     if (!MOReg->isUndef())
5446       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5447                                               MOReg->getSubReg(), ARM::ssub_0));
5448     // rZ
5449     MOReg = &MI.getOperand(2);
5450     if (!MOReg->isUndef())
5451       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5452                                               MOReg->getSubReg(), ARM::ssub_1));
5453     return true;
5454   }
5455   llvm_unreachable("Target dependent opcode missing");
5456 }
5457 
5458 bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
5459     const MachineInstr &MI, unsigned DefIdx,
5460     RegSubRegPairAndIdx &InputReg) const {
5461   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5462   assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
5463 
5464   switch (MI.getOpcode()) {
5465   case ARM::VMOVRRD:
5466     // rX, rY = VMOVRRD dZ
5467     // is the same as:
5468     // rX = EXTRACT_SUBREG dZ, ssub_0
5469     // rY = EXTRACT_SUBREG dZ, ssub_1
5470     const MachineOperand &MOReg = MI.getOperand(2);
5471     if (MOReg.isUndef())
5472       return false;
5473     InputReg.Reg = MOReg.getReg();
5474     InputReg.SubReg = MOReg.getSubReg();
5475     InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
5476     return true;
5477   }
5478   llvm_unreachable("Target dependent opcode missing");
5479 }
5480 
5481 bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
5482     const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
5483     RegSubRegPairAndIdx &InsertedReg) const {
5484   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5485   assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
5486 
5487   switch (MI.getOpcode()) {
5488   case ARM::VSETLNi32:
5489   case ARM::MVE_VMOV_to_lane_32:
5490     // dX = VSETLNi32 dY, rZ, imm
5491     // qX = MVE_VMOV_to_lane_32 qY, rZ, imm
5492     const MachineOperand &MOBaseReg = MI.getOperand(1);
5493     const MachineOperand &MOInsertedReg = MI.getOperand(2);
5494     if (MOInsertedReg.isUndef())
5495       return false;
5496     const MachineOperand &MOIndex = MI.getOperand(3);
5497     BaseReg.Reg = MOBaseReg.getReg();
5498     BaseReg.SubReg = MOBaseReg.getSubReg();
5499 
5500     InsertedReg.Reg = MOInsertedReg.getReg();
5501     InsertedReg.SubReg = MOInsertedReg.getSubReg();
5502     InsertedReg.SubIdx = ARM::ssub_0 + MOIndex.getImm();
5503     return true;
5504   }
5505   llvm_unreachable("Target dependent opcode missing");
5506 }
5507 
5508 std::pair<unsigned, unsigned>
5509 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
5510   const unsigned Mask = ARMII::MO_OPTION_MASK;
5511   return std::make_pair(TF & Mask, TF & ~Mask);
5512 }
5513 
5514 ArrayRef<std::pair<unsigned, const char *>>
5515 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
5516   using namespace ARMII;
5517 
5518   static const std::pair<unsigned, const char *> TargetFlags[] = {
5519       {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}};
5520   return makeArrayRef(TargetFlags);
5521 }
5522 
5523 ArrayRef<std::pair<unsigned, const char *>>
5524 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
5525   using namespace ARMII;
5526 
5527   static const std::pair<unsigned, const char *> TargetFlags[] = {
5528       {MO_COFFSTUB, "arm-coffstub"},
5529       {MO_GOT, "arm-got"},
5530       {MO_SBREL, "arm-sbrel"},
5531       {MO_DLLIMPORT, "arm-dllimport"},
5532       {MO_SECREL, "arm-secrel"},
5533       {MO_NONLAZY, "arm-nonlazy"}};
5534   return makeArrayRef(TargetFlags);
5535 }
5536 
5537 Optional<RegImmPair> ARMBaseInstrInfo::isAddImmediate(const MachineInstr &MI,
5538                                                       Register Reg) const {
5539   int Sign = 1;
5540   unsigned Opcode = MI.getOpcode();
5541   int64_t Offset = 0;
5542 
5543   // TODO: Handle cases where Reg is a super- or sub-register of the
5544   // destination register.
5545   const MachineOperand &Op0 = MI.getOperand(0);
5546   if (!Op0.isReg() || Reg != Op0.getReg())
5547     return None;
5548 
5549   // We describe SUBri or ADDri instructions.
5550   if (Opcode == ARM::SUBri)
5551     Sign = -1;
5552   else if (Opcode != ARM::ADDri)
5553     return None;
5554 
5555   // TODO: Third operand can be global address (usually some string). Since
5556   //       strings can be relocated we cannot calculate their offsets for
5557   //       now.
5558   if (!MI.getOperand(1).isReg() || !MI.getOperand(2).isImm())
5559     return None;
5560 
5561   Offset = MI.getOperand(2).getImm() * Sign;
5562   return RegImmPair{MI.getOperand(1).getReg(), Offset};
5563 }
5564 
5565 bool llvm::registerDefinedBetween(unsigned Reg,
5566                                   MachineBasicBlock::iterator From,
5567                                   MachineBasicBlock::iterator To,
5568                                   const TargetRegisterInfo *TRI) {
5569   for (auto I = From; I != To; ++I)
5570     if (I->modifiesRegister(Reg, TRI))
5571       return true;
5572   return false;
5573 }
5574 
5575 MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br,
5576                                          const TargetRegisterInfo *TRI) {
5577   // Search backwards to the instruction that defines CSPR. This may or not
5578   // be a CMP, we check that after this loop. If we find another instruction
5579   // that reads cpsr, we return nullptr.
5580   MachineBasicBlock::iterator CmpMI = Br;
5581   while (CmpMI != Br->getParent()->begin()) {
5582     --CmpMI;
5583     if (CmpMI->modifiesRegister(ARM::CPSR, TRI))
5584       break;
5585     if (CmpMI->readsRegister(ARM::CPSR, TRI))
5586       break;
5587   }
5588 
5589   // Check that this inst is a CMP r[0-7], #0 and that the register
5590   // is not redefined between the cmp and the br.
5591   if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri)
5592     return nullptr;
5593   Register Reg = CmpMI->getOperand(0).getReg();
5594   Register PredReg;
5595   ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg);
5596   if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0)
5597     return nullptr;
5598   if (!isARMLowRegister(Reg))
5599     return nullptr;
5600   if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI))
5601     return nullptr;
5602 
5603   return &*CmpMI;
5604 }
5605 
5606 unsigned llvm::ConstantMaterializationCost(unsigned Val,
5607                                            const ARMSubtarget *Subtarget,
5608                                            bool ForCodesize) {
5609   if (Subtarget->isThumb()) {
5610     if (Val <= 255) // MOV
5611       return ForCodesize ? 2 : 1;
5612     if (Subtarget->hasV6T2Ops() && (Val <= 0xffff ||                    // MOV
5613                                     ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW
5614                                     ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN
5615       return ForCodesize ? 4 : 1;
5616     if (Val <= 510) // MOV + ADDi8
5617       return ForCodesize ? 4 : 2;
5618     if (~Val <= 255) // MOV + MVN
5619       return ForCodesize ? 4 : 2;
5620     if (ARM_AM::isThumbImmShiftedVal(Val)) // MOV + LSL
5621       return ForCodesize ? 4 : 2;
5622   } else {
5623     if (ARM_AM::getSOImmVal(Val) != -1) // MOV
5624       return ForCodesize ? 4 : 1;
5625     if (ARM_AM::getSOImmVal(~Val) != -1) // MVN
5626       return ForCodesize ? 4 : 1;
5627     if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW
5628       return ForCodesize ? 4 : 1;
5629     if (ARM_AM::isSOImmTwoPartVal(Val)) // two instrs
5630       return ForCodesize ? 8 : 2;
5631     if (ARM_AM::isSOImmTwoPartValNeg(Val)) // two instrs
5632       return ForCodesize ? 8 : 2;
5633   }
5634   if (Subtarget->useMovt()) // MOVW + MOVT
5635     return ForCodesize ? 8 : 2;
5636   return ForCodesize ? 8 : 3; // Literal pool load
5637 }
5638 
5639 bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2,
5640                                                const ARMSubtarget *Subtarget,
5641                                                bool ForCodesize) {
5642   // Check with ForCodesize
5643   unsigned Cost1 = ConstantMaterializationCost(Val1, Subtarget, ForCodesize);
5644   unsigned Cost2 = ConstantMaterializationCost(Val2, Subtarget, ForCodesize);
5645   if (Cost1 < Cost2)
5646     return true;
5647   if (Cost1 > Cost2)
5648     return false;
5649 
5650   // If they are equal, try with !ForCodesize
5651   return ConstantMaterializationCost(Val1, Subtarget, !ForCodesize) <
5652          ConstantMaterializationCost(Val2, Subtarget, !ForCodesize);
5653 }
5654 
5655 /// Constants defining how certain sequences should be outlined.
5656 /// This encompasses how an outlined function should be called, and what kind of
5657 /// frame should be emitted for that outlined function.
5658 ///
5659 /// \p MachineOutlinerTailCall implies that the function is being created from
5660 /// a sequence of instructions ending in a return.
5661 ///
5662 /// That is,
5663 ///
5664 /// I1                                OUTLINED_FUNCTION:
5665 /// I2    --> B OUTLINED_FUNCTION     I1
5666 /// BX LR                             I2
5667 ///                                   BX LR
5668 ///
5669 /// +-------------------------+--------+-----+
5670 /// |                         | Thumb2 | ARM |
5671 /// +-------------------------+--------+-----+
5672 /// | Call overhead in Bytes  |      4 |   4 |
5673 /// | Frame overhead in Bytes |      0 |   0 |
5674 /// | Stack fixup required    |     No |  No |
5675 /// +-------------------------+--------+-----+
5676 ///
5677 /// \p MachineOutlinerThunk implies that the function is being created from
5678 /// a sequence of instructions ending in a call. The outlined function is
5679 /// called with a BL instruction, and the outlined function tail-calls the
5680 /// original call destination.
5681 ///
5682 /// That is,
5683 ///
5684 /// I1                                OUTLINED_FUNCTION:
5685 /// I2   --> BL OUTLINED_FUNCTION     I1
5686 /// BL f                              I2
5687 ///                                   B f
5688 ///
5689 /// +-------------------------+--------+-----+
5690 /// |                         | Thumb2 | ARM |
5691 /// +-------------------------+--------+-----+
5692 /// | Call overhead in Bytes  |      4 |   4 |
5693 /// | Frame overhead in Bytes |      0 |   0 |
5694 /// | Stack fixup required    |     No |  No |
5695 /// +-------------------------+--------+-----+
5696 ///
5697 /// \p MachineOutlinerNoLRSave implies that the function should be called using
5698 /// a BL instruction, but doesn't require LR to be saved and restored. This
5699 /// happens when LR is known to be dead.
5700 ///
5701 /// That is,
5702 ///
5703 /// I1                                OUTLINED_FUNCTION:
5704 /// I2 --> BL OUTLINED_FUNCTION       I1
5705 /// I3                                I2
5706 ///                                   I3
5707 ///                                   BX LR
5708 ///
5709 /// +-------------------------+--------+-----+
5710 /// |                         | Thumb2 | ARM |
5711 /// +-------------------------+--------+-----+
5712 /// | Call overhead in Bytes  |      4 |   4 |
5713 /// | Frame overhead in Bytes |      2 |   4 |
5714 /// | Stack fixup required    |     No |  No |
5715 /// +-------------------------+--------+-----+
5716 ///
5717 /// \p MachineOutlinerRegSave implies that the function should be called with a
5718 /// save and restore of LR to an available register. This allows us to avoid
5719 /// stack fixups. Note that this outlining variant is compatible with the
5720 /// NoLRSave case.
5721 ///
5722 /// That is,
5723 ///
5724 /// I1     Save LR                    OUTLINED_FUNCTION:
5725 /// I2 --> BL OUTLINED_FUNCTION       I1
5726 /// I3     Restore LR                 I2
5727 ///                                   I3
5728 ///                                   BX LR
5729 ///
5730 /// +-------------------------+--------+-----+
5731 /// |                         | Thumb2 | ARM |
5732 /// +-------------------------+--------+-----+
5733 /// | Call overhead in Bytes  |      8 |  12 |
5734 /// | Frame overhead in Bytes |      2 |   4 |
5735 /// | Stack fixup required    |     No |  No |
5736 /// +-------------------------+--------+-----+
5737 ///
5738 /// \p MachineOutlinerDefault implies that the function should be called with
5739 /// a save and restore of LR to the stack.
5740 ///
5741 /// That is,
5742 ///
5743 /// I1     Save LR                    OUTLINED_FUNCTION:
5744 /// I2 --> BL OUTLINED_FUNCTION       I1
5745 /// I3     Restore LR                 I2
5746 ///                                   I3
5747 ///                                   BX LR
5748 ///
5749 /// +-------------------------+--------+-----+
5750 /// |                         | Thumb2 | ARM |
5751 /// +-------------------------+--------+-----+
5752 /// | Call overhead in Bytes  |      8 |  12 |
5753 /// | Frame overhead in Bytes |      2 |   4 |
5754 /// | Stack fixup required    |    Yes | Yes |
5755 /// +-------------------------+--------+-----+
5756 
5757 enum MachineOutlinerClass {
5758   MachineOutlinerTailCall,
5759   MachineOutlinerThunk,
5760   MachineOutlinerNoLRSave,
5761   MachineOutlinerRegSave,
5762   MachineOutlinerDefault
5763 };
5764 
5765 enum MachineOutlinerMBBFlags {
5766   LRUnavailableSomewhere = 0x2,
5767   HasCalls = 0x4,
5768   UnsafeRegsDead = 0x8
5769 };
5770 
5771 struct OutlinerCosts {
5772   int CallTailCall;
5773   int FrameTailCall;
5774   int CallThunk;
5775   int FrameThunk;
5776   int CallNoLRSave;
5777   int FrameNoLRSave;
5778   int CallRegSave;
5779   int FrameRegSave;
5780   int CallDefault;
5781   int FrameDefault;
5782   int SaveRestoreLROnStack;
5783 
5784   OutlinerCosts(const ARMSubtarget &target)
5785       : CallTailCall(target.isThumb() ? 4 : 4),
5786         FrameTailCall(target.isThumb() ? 0 : 0),
5787         CallThunk(target.isThumb() ? 4 : 4),
5788         FrameThunk(target.isThumb() ? 0 : 0),
5789         CallNoLRSave(target.isThumb() ? 4 : 4),
5790         FrameNoLRSave(target.isThumb() ? 2 : 4),
5791         CallRegSave(target.isThumb() ? 8 : 12),
5792         FrameRegSave(target.isThumb() ? 2 : 4),
5793         CallDefault(target.isThumb() ? 8 : 12),
5794         FrameDefault(target.isThumb() ? 2 : 4),
5795         SaveRestoreLROnStack(target.isThumb() ? 8 : 8) {}
5796 };
5797 
5798 Register
5799 ARMBaseInstrInfo::findRegisterToSaveLRTo(outliner::Candidate &C) const {
5800   MachineFunction *MF = C.getMF();
5801   const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
5802   const ARMBaseRegisterInfo *ARI =
5803       static_cast<const ARMBaseRegisterInfo *>(&TRI);
5804 
5805   BitVector regsReserved = ARI->getReservedRegs(*MF);
5806   // Check if there is an available register across the sequence that we can
5807   // use.
5808   for (Register Reg : ARM::rGPRRegClass) {
5809     if (!(Reg < regsReserved.size() && regsReserved.test(Reg)) &&
5810         Reg != ARM::LR &&  // LR is not reserved, but don't use it.
5811         Reg != ARM::R12 && // R12 is not guaranteed to be preserved.
5812         C.isAvailableAcrossAndOutOfSeq(Reg, TRI) &&
5813         C.isAvailableInsideSeq(Reg, TRI))
5814       return Reg;
5815   }
5816   return Register();
5817 }
5818 
5819 // Compute liveness of LR at the point after the interval [I, E), which
5820 // denotes a *backward* iteration through instructions. Used only for return
5821 // basic blocks, which do not end with a tail call.
5822 static bool isLRAvailable(const TargetRegisterInfo &TRI,
5823                           MachineBasicBlock::reverse_iterator I,
5824                           MachineBasicBlock::reverse_iterator E) {
5825   // At the end of the function LR dead.
5826   bool Live = false;
5827   for (; I != E; ++I) {
5828     const MachineInstr &MI = *I;
5829 
5830     // Check defs of LR.
5831     if (MI.modifiesRegister(ARM::LR, &TRI))
5832       Live = false;
5833 
5834     // Check uses of LR.
5835     unsigned Opcode = MI.getOpcode();
5836     if (Opcode == ARM::BX_RET || Opcode == ARM::MOVPCLR ||
5837         Opcode == ARM::SUBS_PC_LR || Opcode == ARM::tBX_RET ||
5838         Opcode == ARM::tBXNS_RET) {
5839       // These instructions use LR, but it's not an (explicit or implicit)
5840       // operand.
5841       Live = true;
5842       continue;
5843     }
5844     if (MI.readsRegister(ARM::LR, &TRI))
5845       Live = true;
5846   }
5847   return !Live;
5848 }
5849 
5850 outliner::OutlinedFunction ARMBaseInstrInfo::getOutliningCandidateInfo(
5851     std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
5852   outliner::Candidate &FirstCand = RepeatedSequenceLocs[0];
5853   unsigned SequenceSize =
5854       std::accumulate(FirstCand.front(), std::next(FirstCand.back()), 0,
5855                       [this](unsigned Sum, const MachineInstr &MI) {
5856                         return Sum + getInstSizeInBytes(MI);
5857                       });
5858 
5859   // Properties about candidate MBBs that hold for all of them.
5860   unsigned FlagsSetInAll = 0xF;
5861 
5862   // Compute liveness information for each candidate, and set FlagsSetInAll.
5863   const TargetRegisterInfo &TRI = getRegisterInfo();
5864   for (outliner::Candidate &C : RepeatedSequenceLocs)
5865     FlagsSetInAll &= C.Flags;
5866 
5867   // According to the ARM Procedure Call Standard, the following are
5868   // undefined on entry/exit from a function call:
5869   //
5870   // * Register R12(IP),
5871   // * Condition codes (and thus the CPSR register)
5872   //
5873   // Since we control the instructions which are part of the outlined regions
5874   // we don't need to be fully compliant with the AAPCS, but we have to
5875   // guarantee that if a veneer is inserted at link time the code is still
5876   // correct.  Because of this, we can't outline any sequence of instructions
5877   // where one of these registers is live into/across it. Thus, we need to
5878   // delete those candidates.
5879   auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) {
5880     // If the unsafe registers in this block are all dead, then we don't need
5881     // to compute liveness here.
5882     if (C.Flags & UnsafeRegsDead)
5883       return false;
5884     return C.isAnyUnavailableAcrossOrOutOfSeq({ARM::R12, ARM::CPSR}, TRI);
5885   };
5886 
5887   // Are there any candidates where those registers are live?
5888   if (!(FlagsSetInAll & UnsafeRegsDead)) {
5889     // Erase every candidate that violates the restrictions above. (It could be
5890     // true that we have viable candidates, so it's not worth bailing out in
5891     // the case that, say, 1 out of 20 candidates violate the restructions.)
5892     llvm::erase_if(RepeatedSequenceLocs, CantGuaranteeValueAcrossCall);
5893 
5894     // If the sequence doesn't have enough candidates left, then we're done.
5895     if (RepeatedSequenceLocs.size() < 2)
5896       return outliner::OutlinedFunction();
5897   }
5898 
5899   // We expect the majority of the outlining candidates to be in consensus with
5900   // regard to return address sign and authentication, and branch target
5901   // enforcement, in other words, partitioning according to all the four
5902   // possible combinations of PAC-RET and BTI is going to yield one big subset
5903   // and three small (likely empty) subsets. That allows us to cull incompatible
5904   // candidates separately for PAC-RET and BTI.
5905 
5906   // Partition the candidates in two sets: one with BTI enabled and one with BTI
5907   // disabled. Remove the candidates from the smaller set. If they are the same
5908   // number prefer the non-BTI ones for outlining, since they have less
5909   // overhead.
5910   auto NoBTI =
5911       llvm::partition(RepeatedSequenceLocs, [](const outliner::Candidate &C) {
5912         const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>();
5913         return AFI.branchTargetEnforcement();
5914       });
5915   if (std::distance(RepeatedSequenceLocs.begin(), NoBTI) >
5916       std::distance(NoBTI, RepeatedSequenceLocs.end()))
5917     RepeatedSequenceLocs.erase(NoBTI, RepeatedSequenceLocs.end());
5918   else
5919     RepeatedSequenceLocs.erase(RepeatedSequenceLocs.begin(), NoBTI);
5920 
5921   if (RepeatedSequenceLocs.size() < 2)
5922     return outliner::OutlinedFunction();
5923 
5924   // Likewise, partition the candidates according to PAC-RET enablement.
5925   auto NoPAC =
5926       llvm::partition(RepeatedSequenceLocs, [](const outliner::Candidate &C) {
5927         const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>();
5928         // If the function happens to not spill the LR, do not disqualify it
5929         // from the outlining.
5930         return AFI.shouldSignReturnAddress(true);
5931       });
5932   if (std::distance(RepeatedSequenceLocs.begin(), NoPAC) >
5933       std::distance(NoPAC, RepeatedSequenceLocs.end()))
5934     RepeatedSequenceLocs.erase(NoPAC, RepeatedSequenceLocs.end());
5935   else
5936     RepeatedSequenceLocs.erase(RepeatedSequenceLocs.begin(), NoPAC);
5937 
5938   if (RepeatedSequenceLocs.size() < 2)
5939     return outliner::OutlinedFunction();
5940 
5941   // At this point, we have only "safe" candidates to outline. Figure out
5942   // frame + call instruction information.
5943 
5944   unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back()->getOpcode();
5945 
5946   // Helper lambda which sets call information for every candidate.
5947   auto SetCandidateCallInfo =
5948       [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) {
5949         for (outliner::Candidate &C : RepeatedSequenceLocs)
5950           C.setCallInfo(CallID, NumBytesForCall);
5951       };
5952 
5953   OutlinerCosts Costs(Subtarget);
5954 
5955   const auto &SomeMFI =
5956       *RepeatedSequenceLocs.front().getMF()->getInfo<ARMFunctionInfo>();
5957   // Adjust costs to account for the BTI instructions.
5958   if (SomeMFI.branchTargetEnforcement()) {
5959     Costs.FrameDefault += 4;
5960     Costs.FrameNoLRSave += 4;
5961     Costs.FrameRegSave += 4;
5962     Costs.FrameTailCall += 4;
5963     Costs.FrameThunk += 4;
5964   }
5965 
5966   // Adjust costs to account for sign and authentication instructions.
5967   if (SomeMFI.shouldSignReturnAddress(true)) {
5968     Costs.CallDefault += 8;          // +PAC instr, +AUT instr
5969     Costs.SaveRestoreLROnStack += 8; // +PAC instr, +AUT instr
5970   }
5971 
5972   unsigned FrameID = MachineOutlinerDefault;
5973   unsigned NumBytesToCreateFrame = Costs.FrameDefault;
5974 
5975   // If the last instruction in any candidate is a terminator, then we should
5976   // tail call all of the candidates.
5977   if (RepeatedSequenceLocs[0].back()->isTerminator()) {
5978     FrameID = MachineOutlinerTailCall;
5979     NumBytesToCreateFrame = Costs.FrameTailCall;
5980     SetCandidateCallInfo(MachineOutlinerTailCall, Costs.CallTailCall);
5981   } else if (LastInstrOpcode == ARM::BL || LastInstrOpcode == ARM::BLX ||
5982              LastInstrOpcode == ARM::BLX_noip || LastInstrOpcode == ARM::tBL ||
5983              LastInstrOpcode == ARM::tBLXr ||
5984              LastInstrOpcode == ARM::tBLXr_noip ||
5985              LastInstrOpcode == ARM::tBLXi) {
5986     FrameID = MachineOutlinerThunk;
5987     NumBytesToCreateFrame = Costs.FrameThunk;
5988     SetCandidateCallInfo(MachineOutlinerThunk, Costs.CallThunk);
5989   } else {
5990     // We need to decide how to emit calls + frames. We can always emit the same
5991     // frame if we don't need to save to the stack. If we have to save to the
5992     // stack, then we need a different frame.
5993     unsigned NumBytesNoStackCalls = 0;
5994     std::vector<outliner::Candidate> CandidatesWithoutStackFixups;
5995 
5996     for (outliner::Candidate &C : RepeatedSequenceLocs) {
5997       // LR liveness is overestimated in return blocks, unless they end with a
5998       // tail call.
5999       const auto Last = C.getMBB()->rbegin();
6000       const bool LRIsAvailable =
6001           C.getMBB()->isReturnBlock() && !Last->isCall()
6002               ? isLRAvailable(TRI, Last,
6003                               (MachineBasicBlock::reverse_iterator)C.front())
6004               : C.isAvailableAcrossAndOutOfSeq(ARM::LR, TRI);
6005       if (LRIsAvailable) {
6006         FrameID = MachineOutlinerNoLRSave;
6007         NumBytesNoStackCalls += Costs.CallNoLRSave;
6008         C.setCallInfo(MachineOutlinerNoLRSave, Costs.CallNoLRSave);
6009         CandidatesWithoutStackFixups.push_back(C);
6010       }
6011 
6012       // Is an unused register available? If so, we won't modify the stack, so
6013       // we can outline with the same frame type as those that don't save LR.
6014       else if (findRegisterToSaveLRTo(C)) {
6015         FrameID = MachineOutlinerRegSave;
6016         NumBytesNoStackCalls += Costs.CallRegSave;
6017         C.setCallInfo(MachineOutlinerRegSave, Costs.CallRegSave);
6018         CandidatesWithoutStackFixups.push_back(C);
6019       }
6020 
6021       // Is SP used in the sequence at all? If not, we don't have to modify
6022       // the stack, so we are guaranteed to get the same frame.
6023       else if (C.isAvailableInsideSeq(ARM::SP, TRI)) {
6024         NumBytesNoStackCalls += Costs.CallDefault;
6025         C.setCallInfo(MachineOutlinerDefault, Costs.CallDefault);
6026         CandidatesWithoutStackFixups.push_back(C);
6027       }
6028 
6029       // If we outline this, we need to modify the stack. Pretend we don't
6030       // outline this by saving all of its bytes.
6031       else
6032         NumBytesNoStackCalls += SequenceSize;
6033     }
6034 
6035     // If there are no places where we have to save LR, then note that we don't
6036     // have to update the stack. Otherwise, give every candidate the default
6037     // call type
6038     if (NumBytesNoStackCalls <=
6039         RepeatedSequenceLocs.size() * Costs.CallDefault) {
6040       RepeatedSequenceLocs = CandidatesWithoutStackFixups;
6041       FrameID = MachineOutlinerNoLRSave;
6042     } else
6043       SetCandidateCallInfo(MachineOutlinerDefault, Costs.CallDefault);
6044   }
6045 
6046   // Does every candidate's MBB contain a call?  If so, then we might have a
6047   // call in the range.
6048   if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) {
6049     // check if the range contains a call.  These require a save + restore of
6050     // the link register.
6051     if (std::any_of(FirstCand.front(), FirstCand.back(),
6052                     [](const MachineInstr &MI) { return MI.isCall(); }))
6053       NumBytesToCreateFrame += Costs.SaveRestoreLROnStack;
6054 
6055     // Handle the last instruction separately.  If it is tail call, then the
6056     // last instruction is a call, we don't want to save + restore in this
6057     // case.  However, it could be possible that the last instruction is a
6058     // call without it being valid to tail call this sequence.  We should
6059     // consider this as well.
6060     else if (FrameID != MachineOutlinerThunk &&
6061              FrameID != MachineOutlinerTailCall && FirstCand.back()->isCall())
6062       NumBytesToCreateFrame += Costs.SaveRestoreLROnStack;
6063   }
6064 
6065   return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
6066                                     NumBytesToCreateFrame, FrameID);
6067 }
6068 
6069 bool ARMBaseInstrInfo::checkAndUpdateStackOffset(MachineInstr *MI,
6070                                                  int64_t Fixup,
6071                                                  bool Updt) const {
6072   int SPIdx = MI->findRegisterUseOperandIdx(ARM::SP);
6073   unsigned AddrMode = (MI->getDesc().TSFlags & ARMII::AddrModeMask);
6074   if (SPIdx < 0)
6075     // No SP operand
6076     return true;
6077   else if (SPIdx != 1 && (AddrMode != ARMII::AddrModeT2_i8s4 || SPIdx != 2))
6078     // If SP is not the base register we can't do much
6079     return false;
6080 
6081   // Stack might be involved but addressing mode doesn't handle any offset.
6082   // Rq: AddrModeT1_[1|2|4] don't operate on SP
6083   if (AddrMode == ARMII::AddrMode1 ||       // Arithmetic instructions
6084       AddrMode == ARMII::AddrMode4 ||       // Load/Store Multiple
6085       AddrMode == ARMII::AddrMode6 ||       // Neon Load/Store Multiple
6086       AddrMode == ARMII::AddrModeT2_so ||   // SP can't be used as based register
6087       AddrMode == ARMII::AddrModeT2_pc ||   // PCrel access
6088       AddrMode == ARMII::AddrMode2 ||       // Used by PRE and POST indexed LD/ST
6089       AddrMode == ARMII::AddrModeT2_i7 ||   // v8.1-M MVE
6090       AddrMode == ARMII::AddrModeT2_i7s2 || // v8.1-M MVE
6091       AddrMode == ARMII::AddrModeT2_i7s4 || // v8.1-M sys regs VLDR/VSTR
6092       AddrMode == ARMII::AddrModeNone ||
6093       AddrMode == ARMII::AddrModeT2_i8 ||   // Pre/Post inc instructions
6094       AddrMode == ARMII::AddrModeT2_i8neg)  // Always negative imm
6095     return false;
6096 
6097   unsigned NumOps = MI->getDesc().getNumOperands();
6098   unsigned ImmIdx = NumOps - 3;
6099 
6100   const MachineOperand &Offset = MI->getOperand(ImmIdx);
6101   assert(Offset.isImm() && "Is not an immediate");
6102   int64_t OffVal = Offset.getImm();
6103 
6104   if (OffVal < 0)
6105     // Don't override data if the are below SP.
6106     return false;
6107 
6108   unsigned NumBits = 0;
6109   unsigned Scale = 1;
6110 
6111   switch (AddrMode) {
6112   case ARMII::AddrMode3:
6113     if (ARM_AM::getAM3Op(OffVal) == ARM_AM::sub)
6114       return false;
6115     OffVal = ARM_AM::getAM3Offset(OffVal);
6116     NumBits = 8;
6117     break;
6118   case ARMII::AddrMode5:
6119     if (ARM_AM::getAM5Op(OffVal) == ARM_AM::sub)
6120       return false;
6121     OffVal = ARM_AM::getAM5Offset(OffVal);
6122     NumBits = 8;
6123     Scale = 4;
6124     break;
6125   case ARMII::AddrMode5FP16:
6126     if (ARM_AM::getAM5FP16Op(OffVal) == ARM_AM::sub)
6127       return false;
6128     OffVal = ARM_AM::getAM5FP16Offset(OffVal);
6129     NumBits = 8;
6130     Scale = 2;
6131     break;
6132   case ARMII::AddrModeT2_i8pos:
6133     NumBits = 8;
6134     break;
6135   case ARMII::AddrModeT2_i8s4:
6136     // FIXME: Values are already scaled in this addressing mode.
6137     assert((Fixup & 3) == 0 && "Can't encode this offset!");
6138     NumBits = 10;
6139     break;
6140   case ARMII::AddrModeT2_ldrex:
6141     NumBits = 8;
6142     Scale = 4;
6143     break;
6144   case ARMII::AddrModeT2_i12:
6145   case ARMII::AddrMode_i12:
6146     NumBits = 12;
6147     break;
6148   case ARMII::AddrModeT1_s: // SP-relative LD/ST
6149     NumBits = 8;
6150     Scale = 4;
6151     break;
6152   default:
6153     llvm_unreachable("Unsupported addressing mode!");
6154   }
6155   // Make sure the offset is encodable for instructions that scale the
6156   // immediate.
6157   assert(((OffVal * Scale + Fixup) & (Scale - 1)) == 0 &&
6158          "Can't encode this offset!");
6159   OffVal += Fixup / Scale;
6160 
6161   unsigned Mask = (1 << NumBits) - 1;
6162 
6163   if (OffVal <= Mask) {
6164     if (Updt)
6165       MI->getOperand(ImmIdx).setImm(OffVal);
6166     return true;
6167   }
6168 
6169   return false;
6170 }
6171 
6172 void ARMBaseInstrInfo::mergeOutliningCandidateAttributes(
6173     Function &F, std::vector<outliner::Candidate> &Candidates) const {
6174   outliner::Candidate &C = Candidates.front();
6175   // branch-target-enforcement is guaranteed to be consistent between all
6176   // candidates, so we only need to look at one.
6177   const Function &CFn = C.getMF()->getFunction();
6178   if (CFn.hasFnAttribute("branch-target-enforcement"))
6179     F.addFnAttr(CFn.getFnAttribute("branch-target-enforcement"));
6180 
6181   ARMGenInstrInfo::mergeOutliningCandidateAttributes(F, Candidates);
6182 }
6183 
6184 bool ARMBaseInstrInfo::isFunctionSafeToOutlineFrom(
6185     MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
6186   const Function &F = MF.getFunction();
6187 
6188   // Can F be deduplicated by the linker? If it can, don't outline from it.
6189   if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
6190     return false;
6191 
6192   // Don't outline from functions with section markings; the program could
6193   // expect that all the code is in the named section.
6194   // FIXME: Allow outlining from multiple functions with the same section
6195   // marking.
6196   if (F.hasSection())
6197     return false;
6198 
6199   // FIXME: Thumb1 outlining is not handled
6200   if (MF.getInfo<ARMFunctionInfo>()->isThumb1OnlyFunction())
6201     return false;
6202 
6203   // It's safe to outline from MF.
6204   return true;
6205 }
6206 
6207 bool ARMBaseInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
6208                                               unsigned &Flags) const {
6209   // Check if LR is available through all of the MBB. If it's not, then set
6210   // a flag.
6211   assert(MBB.getParent()->getRegInfo().tracksLiveness() &&
6212          "Suitable Machine Function for outlining must track liveness");
6213 
6214   LiveRegUnits LRU(getRegisterInfo());
6215 
6216   for (MachineInstr &MI : llvm::reverse(MBB))
6217     LRU.accumulate(MI);
6218 
6219   // Check if each of the unsafe registers are available...
6220   bool R12AvailableInBlock = LRU.available(ARM::R12);
6221   bool CPSRAvailableInBlock = LRU.available(ARM::CPSR);
6222 
6223   // If all of these are dead (and not live out), we know we don't have to check
6224   // them later.
6225   if (R12AvailableInBlock && CPSRAvailableInBlock)
6226     Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead;
6227 
6228   // Now, add the live outs to the set.
6229   LRU.addLiveOuts(MBB);
6230 
6231   // If any of these registers is available in the MBB, but also a live out of
6232   // the block, then we know outlining is unsafe.
6233   if (R12AvailableInBlock && !LRU.available(ARM::R12))
6234     return false;
6235   if (CPSRAvailableInBlock && !LRU.available(ARM::CPSR))
6236     return false;
6237 
6238   // Check if there's a call inside this MachineBasicBlock.  If there is, then
6239   // set a flag.
6240   if (any_of(MBB, [](MachineInstr &MI) { return MI.isCall(); }))
6241     Flags |= MachineOutlinerMBBFlags::HasCalls;
6242 
6243   // LR liveness is overestimated in return blocks.
6244 
6245   bool LRIsAvailable =
6246       MBB.isReturnBlock() && !MBB.back().isCall()
6247           ? isLRAvailable(getRegisterInfo(), MBB.rbegin(), MBB.rend())
6248           : LRU.available(ARM::LR);
6249   if (!LRIsAvailable)
6250     Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere;
6251 
6252   return true;
6253 }
6254 
6255 outliner::InstrType
6256 ARMBaseInstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT,
6257                                    unsigned Flags) const {
6258   MachineInstr &MI = *MIT;
6259   const TargetRegisterInfo *TRI = &getRegisterInfo();
6260 
6261   // Be conservative with inline ASM
6262   if (MI.isInlineAsm())
6263     return outliner::InstrType::Illegal;
6264 
6265   // Don't allow debug values to impact outlining type.
6266   if (MI.isDebugInstr() || MI.isIndirectDebugValue())
6267     return outliner::InstrType::Invisible;
6268 
6269   // At this point, KILL or IMPLICIT_DEF instructions don't really tell us much
6270   // so we can go ahead and skip over them.
6271   if (MI.isKill() || MI.isImplicitDef())
6272     return outliner::InstrType::Invisible;
6273 
6274   // PIC instructions contain labels, outlining them would break offset
6275   // computing.  unsigned Opc = MI.getOpcode();
6276   unsigned Opc = MI.getOpcode();
6277   if (Opc == ARM::tPICADD || Opc == ARM::PICADD || Opc == ARM::PICSTR ||
6278       Opc == ARM::PICSTRB || Opc == ARM::PICSTRH || Opc == ARM::PICLDR ||
6279       Opc == ARM::PICLDRB || Opc == ARM::PICLDRH || Opc == ARM::PICLDRSB ||
6280       Opc == ARM::PICLDRSH || Opc == ARM::t2LDRpci_pic ||
6281       Opc == ARM::t2MOVi16_ga_pcrel || Opc == ARM::t2MOVTi16_ga_pcrel ||
6282       Opc == ARM::t2MOV_ga_pcrel)
6283     return outliner::InstrType::Illegal;
6284 
6285   // Be conservative with ARMv8.1 MVE instructions.
6286   if (Opc == ARM::t2BF_LabelPseudo || Opc == ARM::t2DoLoopStart ||
6287       Opc == ARM::t2DoLoopStartTP || Opc == ARM::t2WhileLoopStart ||
6288       Opc == ARM::t2WhileLoopStartLR || Opc == ARM::t2WhileLoopStartTP ||
6289       Opc == ARM::t2LoopDec || Opc == ARM::t2LoopEnd ||
6290       Opc == ARM::t2LoopEndDec)
6291     return outliner::InstrType::Illegal;
6292 
6293   const MCInstrDesc &MCID = MI.getDesc();
6294   uint64_t MIFlags = MCID.TSFlags;
6295   if ((MIFlags & ARMII::DomainMask) == ARMII::DomainMVE)
6296     return outliner::InstrType::Illegal;
6297 
6298   // Is this a terminator for a basic block?
6299   if (MI.isTerminator()) {
6300     // Don't outline if the branch is not unconditional.
6301     if (isPredicated(MI))
6302       return outliner::InstrType::Illegal;
6303 
6304     // Is this the end of a function?
6305     if (MI.getParent()->succ_empty())
6306       return outliner::InstrType::Legal;
6307 
6308     // It's not, so don't outline it.
6309     return outliner::InstrType::Illegal;
6310   }
6311 
6312   // Make sure none of the operands are un-outlinable.
6313   for (const MachineOperand &MOP : MI.operands()) {
6314     if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
6315         MOP.isTargetIndex())
6316       return outliner::InstrType::Illegal;
6317   }
6318 
6319   // Don't outline if link register or program counter value are used.
6320   if (MI.readsRegister(ARM::LR, TRI) || MI.readsRegister(ARM::PC, TRI))
6321     return outliner::InstrType::Illegal;
6322 
6323   if (MI.isCall()) {
6324     // Get the function associated with the call.  Look at each operand and find
6325     // the one that represents the calle and get its name.
6326     const Function *Callee = nullptr;
6327     for (const MachineOperand &MOP : MI.operands()) {
6328       if (MOP.isGlobal()) {
6329         Callee = dyn_cast<Function>(MOP.getGlobal());
6330         break;
6331       }
6332     }
6333 
6334     // Dont't outline calls to "mcount" like functions, in particular Linux
6335     // kernel function tracing relies on it.
6336     if (Callee &&
6337         (Callee->getName() == "\01__gnu_mcount_nc" ||
6338          Callee->getName() == "\01mcount" || Callee->getName() == "__mcount"))
6339       return outliner::InstrType::Illegal;
6340 
6341     // If we don't know anything about the callee, assume it depends on the
6342     // stack layout of the caller. In that case, it's only legal to outline
6343     // as a tail-call. Explicitly list the call instructions we know about so
6344     // we don't get unexpected results with call pseudo-instructions.
6345     auto UnknownCallOutlineType = outliner::InstrType::Illegal;
6346     if (Opc == ARM::BL || Opc == ARM::tBL || Opc == ARM::BLX ||
6347         Opc == ARM::BLX_noip || Opc == ARM::tBLXr || Opc == ARM::tBLXr_noip ||
6348         Opc == ARM::tBLXi)
6349       UnknownCallOutlineType = outliner::InstrType::LegalTerminator;
6350 
6351     if (!Callee)
6352       return UnknownCallOutlineType;
6353 
6354     // We have a function we have information about.  Check if it's something we
6355     // can safely outline.
6356     MachineFunction *MF = MI.getParent()->getParent();
6357     MachineFunction *CalleeMF = MF->getMMI().getMachineFunction(*Callee);
6358 
6359     // We don't know what's going on with the callee at all.  Don't touch it.
6360     if (!CalleeMF)
6361       return UnknownCallOutlineType;
6362 
6363     // Check if we know anything about the callee saves on the function. If we
6364     // don't, then don't touch it, since that implies that we haven't computed
6365     // anything about its stack frame yet.
6366     MachineFrameInfo &MFI = CalleeMF->getFrameInfo();
6367     if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 ||
6368         MFI.getNumObjects() > 0)
6369       return UnknownCallOutlineType;
6370 
6371     // At this point, we can say that CalleeMF ought to not pass anything on the
6372     // stack. Therefore, we can outline it.
6373     return outliner::InstrType::Legal;
6374   }
6375 
6376   // Since calls are handled, don't touch LR or PC
6377   if (MI.modifiesRegister(ARM::LR, TRI) || MI.modifiesRegister(ARM::PC, TRI))
6378     return outliner::InstrType::Illegal;
6379 
6380   // Does this use the stack?
6381   if (MI.modifiesRegister(ARM::SP, TRI) || MI.readsRegister(ARM::SP, TRI)) {
6382     // True if there is no chance that any outlined candidate from this range
6383     // could require stack fixups. That is, both
6384     // * LR is available in the range (No save/restore around call)
6385     // * The range doesn't include calls (No save/restore in outlined frame)
6386     // are true.
6387     // These conditions also ensure correctness of the return address
6388     // authentication - we insert sign and authentication instructions only if
6389     // we save/restore LR on stack, but then this condition ensures that the
6390     // outlined range does not modify the SP, therefore the SP value used for
6391     // signing is the same as the one used for authentication.
6392     // FIXME: This is very restrictive; the flags check the whole block,
6393     // not just the bit we will try to outline.
6394     bool MightNeedStackFixUp =
6395         (Flags & (MachineOutlinerMBBFlags::LRUnavailableSomewhere |
6396                   MachineOutlinerMBBFlags::HasCalls));
6397 
6398     if (!MightNeedStackFixUp)
6399       return outliner::InstrType::Legal;
6400 
6401     // Any modification of SP will break our code to save/restore LR.
6402     // FIXME: We could handle some instructions which add a constant offset to
6403     // SP, with a bit more work.
6404     if (MI.modifiesRegister(ARM::SP, TRI))
6405       return outliner::InstrType::Illegal;
6406 
6407     // At this point, we have a stack instruction that we might need to fix up.
6408     // up. We'll handle it if it's a load or store.
6409     if (checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(),
6410                                   false))
6411       return outliner::InstrType::Legal;
6412 
6413     // We can't fix it up, so don't outline it.
6414     return outliner::InstrType::Illegal;
6415   }
6416 
6417   // Be conservative with IT blocks.
6418   if (MI.readsRegister(ARM::ITSTATE, TRI) ||
6419       MI.modifiesRegister(ARM::ITSTATE, TRI))
6420     return outliner::InstrType::Illegal;
6421 
6422   // Don't outline positions.
6423   if (MI.isPosition())
6424     return outliner::InstrType::Illegal;
6425 
6426   return outliner::InstrType::Legal;
6427 }
6428 
6429 void ARMBaseInstrInfo::fixupPostOutline(MachineBasicBlock &MBB) const {
6430   for (MachineInstr &MI : MBB) {
6431     checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(), true);
6432   }
6433 }
6434 
6435 void ARMBaseInstrInfo::saveLROnStack(MachineBasicBlock &MBB,
6436                                      MachineBasicBlock::iterator It, bool CFI,
6437                                      bool Auth) const {
6438   int Align = std::max(Subtarget.getStackAlignment().value(), uint64_t(8));
6439   assert(Align >= 8 && Align <= 256);
6440   if (Auth) {
6441     assert(Subtarget.isThumb2());
6442     // Compute PAC in R12. Outlining ensures R12 is dead across the outlined
6443     // sequence.
6444     BuildMI(MBB, It, DebugLoc(), get(ARM::t2PAC))
6445         .setMIFlags(MachineInstr::FrameSetup);
6446     BuildMI(MBB, It, DebugLoc(), get(ARM::t2STRD_PRE), ARM::SP)
6447         .addReg(ARM::R12, RegState::Kill)
6448         .addReg(ARM::LR, RegState::Kill)
6449         .addReg(ARM::SP)
6450         .addImm(-Align)
6451         .add(predOps(ARMCC::AL))
6452         .setMIFlags(MachineInstr::FrameSetup);
6453   } else {
6454     unsigned Opc = Subtarget.isThumb() ? ARM::t2STR_PRE : ARM::STR_PRE_IMM;
6455     BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::SP)
6456         .addReg(ARM::LR, RegState::Kill)
6457         .addReg(ARM::SP)
6458         .addImm(-Align)
6459         .add(predOps(ARMCC::AL))
6460         .setMIFlags(MachineInstr::FrameSetup);
6461   }
6462 
6463   if (!CFI)
6464     return;
6465 
6466   MachineFunction &MF = *MBB.getParent();
6467 
6468   // Add a CFI, saying CFA is offset by Align bytes from SP.
6469   int64_t StackPosEntry =
6470       MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Align));
6471   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6472       .addCFIIndex(StackPosEntry)
6473       .setMIFlags(MachineInstr::FrameSetup);
6474 
6475   // Add a CFI saying that the LR that we want to find is now higher than
6476   // before.
6477   int LROffset = Auth ? Align - 4 : Align;
6478   const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6479   unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6480   int64_t LRPosEntry = MF.addFrameInst(
6481       MCCFIInstruction::createOffset(nullptr, DwarfLR, -LROffset));
6482   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6483       .addCFIIndex(LRPosEntry)
6484       .setMIFlags(MachineInstr::FrameSetup);
6485   if (Auth) {
6486     // Add a CFI for the location of the return adddress PAC.
6487     unsigned DwarfRAC = MRI->getDwarfRegNum(ARM::RA_AUTH_CODE, true);
6488     int64_t RACPosEntry = MF.addFrameInst(
6489         MCCFIInstruction::createOffset(nullptr, DwarfRAC, -Align));
6490     BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6491         .addCFIIndex(RACPosEntry)
6492         .setMIFlags(MachineInstr::FrameSetup);
6493   }
6494 }
6495 
6496 void ARMBaseInstrInfo::emitCFIForLRSaveToReg(MachineBasicBlock &MBB,
6497                                              MachineBasicBlock::iterator It,
6498                                              Register Reg) const {
6499   MachineFunction &MF = *MBB.getParent();
6500   const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6501   unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6502   unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
6503 
6504   int64_t LRPosEntry = MF.addFrameInst(
6505       MCCFIInstruction::createRegister(nullptr, DwarfLR, DwarfReg));
6506   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6507       .addCFIIndex(LRPosEntry)
6508       .setMIFlags(MachineInstr::FrameSetup);
6509 }
6510 
6511 void ARMBaseInstrInfo::restoreLRFromStack(MachineBasicBlock &MBB,
6512                                           MachineBasicBlock::iterator It,
6513                                           bool CFI, bool Auth) const {
6514   int Align = Subtarget.getStackAlignment().value();
6515   if (Auth) {
6516     assert(Subtarget.isThumb2());
6517     // Restore return address PAC and LR.
6518     BuildMI(MBB, It, DebugLoc(), get(ARM::t2LDRD_POST))
6519         .addReg(ARM::R12, RegState::Define)
6520         .addReg(ARM::LR, RegState::Define)
6521         .addReg(ARM::SP, RegState::Define)
6522         .addReg(ARM::SP)
6523         .addImm(Align)
6524         .add(predOps(ARMCC::AL))
6525         .setMIFlags(MachineInstr::FrameDestroy);
6526     // LR authentication is after the CFI instructions, below.
6527   } else {
6528     unsigned Opc = Subtarget.isThumb() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
6529     MachineInstrBuilder MIB = BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::LR)
6530                                   .addReg(ARM::SP, RegState::Define)
6531                                   .addReg(ARM::SP);
6532     if (!Subtarget.isThumb())
6533       MIB.addReg(0);
6534     MIB.addImm(Subtarget.getStackAlignment().value())
6535         .add(predOps(ARMCC::AL))
6536         .setMIFlags(MachineInstr::FrameDestroy);
6537   }
6538 
6539   if (CFI) {
6540     // Now stack has moved back up...
6541     MachineFunction &MF = *MBB.getParent();
6542     const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6543     unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6544     int64_t StackPosEntry =
6545         MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
6546     BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6547         .addCFIIndex(StackPosEntry)
6548         .setMIFlags(MachineInstr::FrameDestroy);
6549 
6550     // ... and we have restored LR.
6551     int64_t LRPosEntry =
6552         MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR));
6553     BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6554         .addCFIIndex(LRPosEntry)
6555         .setMIFlags(MachineInstr::FrameDestroy);
6556 
6557     if (Auth) {
6558       unsigned DwarfRAC = MRI->getDwarfRegNum(ARM::RA_AUTH_CODE, true);
6559       int64_t Entry =
6560           MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, DwarfRAC));
6561       BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6562           .addCFIIndex(Entry)
6563           .setMIFlags(MachineInstr::FrameDestroy);
6564     }
6565   }
6566 
6567   if (Auth)
6568     BuildMI(MBB, It, DebugLoc(), get(ARM::t2AUT));
6569 }
6570 
6571 void ARMBaseInstrInfo::emitCFIForLRRestoreFromReg(
6572     MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {
6573   MachineFunction &MF = *MBB.getParent();
6574   const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6575   unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6576 
6577   int64_t LRPosEntry =
6578       MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR));
6579   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6580       .addCFIIndex(LRPosEntry)
6581       .setMIFlags(MachineInstr::FrameDestroy);
6582 }
6583 
6584 void ARMBaseInstrInfo::buildOutlinedFrame(
6585     MachineBasicBlock &MBB, MachineFunction &MF,
6586     const outliner::OutlinedFunction &OF) const {
6587   // For thunk outlining, rewrite the last instruction from a call to a
6588   // tail-call.
6589   if (OF.FrameConstructionID == MachineOutlinerThunk) {
6590     MachineInstr *Call = &*--MBB.instr_end();
6591     bool isThumb = Subtarget.isThumb();
6592     unsigned FuncOp = isThumb ? 2 : 0;
6593     unsigned Opc = Call->getOperand(FuncOp).isReg()
6594                        ? isThumb ? ARM::tTAILJMPr : ARM::TAILJMPr
6595                        : isThumb ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd
6596                                                              : ARM::tTAILJMPdND
6597                                  : ARM::TAILJMPd;
6598     MachineInstrBuilder MIB = BuildMI(MBB, MBB.end(), DebugLoc(), get(Opc))
6599                                   .add(Call->getOperand(FuncOp));
6600     if (isThumb && !Call->getOperand(FuncOp).isReg())
6601       MIB.add(predOps(ARMCC::AL));
6602     Call->eraseFromParent();
6603   }
6604 
6605   // Is there a call in the outlined range?
6606   auto IsNonTailCall = [](MachineInstr &MI) {
6607     return MI.isCall() && !MI.isReturn();
6608   };
6609   if (llvm::any_of(MBB.instrs(), IsNonTailCall)) {
6610     MachineBasicBlock::iterator It = MBB.begin();
6611     MachineBasicBlock::iterator Et = MBB.end();
6612 
6613     if (OF.FrameConstructionID == MachineOutlinerTailCall ||
6614         OF.FrameConstructionID == MachineOutlinerThunk)
6615       Et = std::prev(MBB.end());
6616 
6617     // We have to save and restore LR, we need to add it to the liveins if it
6618     // is not already part of the set.  This is suffient since outlined
6619     // functions only have one block.
6620     if (!MBB.isLiveIn(ARM::LR))
6621       MBB.addLiveIn(ARM::LR);
6622 
6623     // Insert a save before the outlined region
6624     bool Auth = OF.Candidates.front()
6625                     .getMF()
6626                     ->getInfo<ARMFunctionInfo>()
6627                     ->shouldSignReturnAddress(true);
6628     saveLROnStack(MBB, It, true, Auth);
6629 
6630     // Fix up the instructions in the range, since we're going to modify the
6631     // stack.
6632     assert(OF.FrameConstructionID != MachineOutlinerDefault &&
6633            "Can only fix up stack references once");
6634     fixupPostOutline(MBB);
6635 
6636     // Insert a restore before the terminator for the function.  Restore LR.
6637     restoreLRFromStack(MBB, Et, true, Auth);
6638   }
6639 
6640   // If this is a tail call outlined function, then there's already a return.
6641   if (OF.FrameConstructionID == MachineOutlinerTailCall ||
6642       OF.FrameConstructionID == MachineOutlinerThunk)
6643     return;
6644 
6645   // Here we have to insert the return ourselves.  Get the correct opcode from
6646   // current feature set.
6647   BuildMI(MBB, MBB.end(), DebugLoc(), get(Subtarget.getReturnOpcode()))
6648       .add(predOps(ARMCC::AL));
6649 
6650   // Did we have to modify the stack by saving the link register?
6651   if (OF.FrameConstructionID != MachineOutlinerDefault &&
6652       OF.Candidates[0].CallConstructionID != MachineOutlinerDefault)
6653     return;
6654 
6655   // We modified the stack.
6656   // Walk over the basic block and fix up all the stack accesses.
6657   fixupPostOutline(MBB);
6658 }
6659 
6660 MachineBasicBlock::iterator ARMBaseInstrInfo::insertOutlinedCall(
6661     Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It,
6662     MachineFunction &MF, outliner::Candidate &C) const {
6663   MachineInstrBuilder MIB;
6664   MachineBasicBlock::iterator CallPt;
6665   unsigned Opc;
6666   bool isThumb = Subtarget.isThumb();
6667 
6668   // Are we tail calling?
6669   if (C.CallConstructionID == MachineOutlinerTailCall) {
6670     // If yes, then we can just branch to the label.
6671     Opc = isThumb
6672               ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd : ARM::tTAILJMPdND
6673               : ARM::TAILJMPd;
6674     MIB = BuildMI(MF, DebugLoc(), get(Opc))
6675               .addGlobalAddress(M.getNamedValue(MF.getName()));
6676     if (isThumb)
6677       MIB.add(predOps(ARMCC::AL));
6678     It = MBB.insert(It, MIB);
6679     return It;
6680   }
6681 
6682   // Create the call instruction.
6683   Opc = isThumb ? ARM::tBL : ARM::BL;
6684   MachineInstrBuilder CallMIB = BuildMI(MF, DebugLoc(), get(Opc));
6685   if (isThumb)
6686     CallMIB.add(predOps(ARMCC::AL));
6687   CallMIB.addGlobalAddress(M.getNamedValue(MF.getName()));
6688 
6689   if (C.CallConstructionID == MachineOutlinerNoLRSave ||
6690       C.CallConstructionID == MachineOutlinerThunk) {
6691     // No, so just insert the call.
6692     It = MBB.insert(It, CallMIB);
6693     return It;
6694   }
6695 
6696   const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>();
6697   // Can we save to a register?
6698   if (C.CallConstructionID == MachineOutlinerRegSave) {
6699     unsigned Reg = findRegisterToSaveLRTo(C);
6700     assert(Reg != 0 && "No callee-saved register available?");
6701 
6702     // Save and restore LR from that register.
6703     copyPhysReg(MBB, It, DebugLoc(), Reg, ARM::LR, true);
6704     if (!AFI.isLRSpilled())
6705       emitCFIForLRSaveToReg(MBB, It, Reg);
6706     CallPt = MBB.insert(It, CallMIB);
6707     copyPhysReg(MBB, It, DebugLoc(), ARM::LR, Reg, true);
6708     if (!AFI.isLRSpilled())
6709       emitCFIForLRRestoreFromReg(MBB, It);
6710     It--;
6711     return CallPt;
6712   }
6713   // We have the default case. Save and restore from SP.
6714   if (!MBB.isLiveIn(ARM::LR))
6715     MBB.addLiveIn(ARM::LR);
6716   bool Auth = !AFI.isLRSpilled() && AFI.shouldSignReturnAddress(true);
6717   saveLROnStack(MBB, It, !AFI.isLRSpilled(), Auth);
6718   CallPt = MBB.insert(It, CallMIB);
6719   restoreLRFromStack(MBB, It, !AFI.isLRSpilled(), Auth);
6720   It--;
6721   return CallPt;
6722 }
6723 
6724 bool ARMBaseInstrInfo::shouldOutlineFromFunctionByDefault(
6725     MachineFunction &MF) const {
6726   return Subtarget.isMClass() && MF.getFunction().hasMinSize();
6727 }
6728 
6729 bool ARMBaseInstrInfo::isReallyTriviallyReMaterializable(
6730     const MachineInstr &MI) const {
6731   // Try hard to rematerialize any VCTPs because if we spill P0, it will block
6732   // the tail predication conversion. This means that the element count
6733   // register has to be live for longer, but that has to be better than
6734   // spill/restore and VPT predication.
6735   return isVCTP(&MI) && !isPredicated(MI);
6736 }
6737 
6738 unsigned llvm::getBLXOpcode(const MachineFunction &MF) {
6739   return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_noip
6740                                                           : ARM::BLX;
6741 }
6742 
6743 unsigned llvm::gettBLXrOpcode(const MachineFunction &MF) {
6744   return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::tBLXr_noip
6745                                                           : ARM::tBLXr;
6746 }
6747 
6748 unsigned llvm::getBLXpredOpcode(const MachineFunction &MF) {
6749   return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_pred_noip
6750                                                           : ARM::BLX_pred;
6751 }
6752 
6753 namespace {
6754 class ARMPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
6755   MachineInstr *EndLoop, *LoopCount;
6756   MachineFunction *MF;
6757   const TargetInstrInfo *TII;
6758 
6759   // Meanings of the various stuff with loop types:
6760   // t2Bcc:
6761   //   EndLoop = branch at end of original BB that will become a kernel
6762   //   LoopCount = CC setter live into branch
6763   // t2LoopEnd:
6764   //   EndLoop = branch at end of original BB
6765   //   LoopCount = t2LoopDec
6766 public:
6767   ARMPipelinerLoopInfo(MachineInstr *EndLoop, MachineInstr *LoopCount)
6768       : EndLoop(EndLoop), LoopCount(LoopCount),
6769         MF(EndLoop->getParent()->getParent()),
6770         TII(MF->getSubtarget().getInstrInfo()) {}
6771 
6772   bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
6773     // Only ignore the terminator.
6774     return MI == EndLoop || MI == LoopCount;
6775   }
6776 
6777   Optional<bool> createTripCountGreaterCondition(
6778       int TC, MachineBasicBlock &MBB,
6779       SmallVectorImpl<MachineOperand> &Cond) override {
6780 
6781     if (isCondBranchOpcode(EndLoop->getOpcode())) {
6782       Cond.push_back(EndLoop->getOperand(1));
6783       Cond.push_back(EndLoop->getOperand(2));
6784       if (EndLoop->getOperand(0).getMBB() == EndLoop->getParent()) {
6785         TII->reverseBranchCondition(Cond);
6786       }
6787       return {};
6788     } else if (EndLoop->getOpcode() == ARM::t2LoopEnd) {
6789       // General case just lets the unrolled t2LoopDec do the subtraction and
6790       // therefore just needs to check if zero has been reached.
6791       MachineInstr *LoopDec = nullptr;
6792       for (auto &I : MBB.instrs())
6793         if (I.getOpcode() == ARM::t2LoopDec)
6794           LoopDec = &I;
6795       assert(LoopDec && "Unable to find copied LoopDec");
6796       // Check if we're done with the loop.
6797       BuildMI(&MBB, LoopDec->getDebugLoc(), TII->get(ARM::t2CMPri))
6798           .addReg(LoopDec->getOperand(0).getReg())
6799           .addImm(0)
6800           .addImm(ARMCC::AL)
6801           .addReg(ARM::NoRegister);
6802       Cond.push_back(MachineOperand::CreateImm(ARMCC::EQ));
6803       Cond.push_back(MachineOperand::CreateReg(ARM::CPSR, false));
6804       return {};
6805     } else
6806       llvm_unreachable("Unknown EndLoop");
6807   }
6808 
6809   void setPreheader(MachineBasicBlock *NewPreheader) override {}
6810 
6811   void adjustTripCount(int TripCountAdjust) override {}
6812 
6813   void disposed() override {}
6814 };
6815 } // namespace
6816 
6817 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
6818 ARMBaseInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
6819   MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
6820   MachineBasicBlock *Preheader = *LoopBB->pred_begin();
6821   if (Preheader == LoopBB)
6822     Preheader = *std::next(LoopBB->pred_begin());
6823 
6824   if (I != LoopBB->end() && I->getOpcode() == ARM::t2Bcc) {
6825     // If the branch is a Bcc, then the CPSR should be set somewhere within the
6826     // block.  We need to determine the reaching definition of CPSR so that
6827     // it can be marked as non-pipelineable, allowing the pipeliner to force
6828     // it into stage 0 or give up if it cannot or will not do so.
6829     MachineInstr *CCSetter = nullptr;
6830     for (auto &L : LoopBB->instrs()) {
6831       if (L.isCall())
6832         return nullptr;
6833       if (isCPSRDefined(L))
6834         CCSetter = &L;
6835     }
6836     if (CCSetter)
6837       return std::make_unique<ARMPipelinerLoopInfo>(&*I, CCSetter);
6838     else
6839       return nullptr; // Unable to find the CC setter, so unable to guarantee
6840                       // that pipeline will work
6841   }
6842 
6843   // Recognize:
6844   //   preheader:
6845   //     %1 = t2DoopLoopStart %0
6846   //   loop:
6847   //     %2 = phi %1, <not loop>, %..., %loop
6848   //     %3 = t2LoopDec %2, <imm>
6849   //     t2LoopEnd %3, %loop
6850 
6851   if (I != LoopBB->end() && I->getOpcode() == ARM::t2LoopEnd) {
6852     for (auto &L : LoopBB->instrs())
6853       if (L.isCall())
6854         return nullptr;
6855       else if (isVCTP(&L))
6856         return nullptr;
6857     Register LoopDecResult = I->getOperand(0).getReg();
6858     MachineRegisterInfo &MRI = LoopBB->getParent()->getRegInfo();
6859     MachineInstr *LoopDec = MRI.getUniqueVRegDef(LoopDecResult);
6860     if (!LoopDec || LoopDec->getOpcode() != ARM::t2LoopDec)
6861       return nullptr;
6862     MachineInstr *LoopStart = nullptr;
6863     for (auto &J : Preheader->instrs())
6864       if (J.getOpcode() == ARM::t2DoLoopStart)
6865         LoopStart = &J;
6866     if (!LoopStart)
6867       return nullptr;
6868     return std::make_unique<ARMPipelinerLoopInfo>(&*I, LoopDec);
6869   }
6870   return nullptr;
6871 }
6872