1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the Base ARM implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ARMBaseInstrInfo.h" 14 #include "ARMBaseRegisterInfo.h" 15 #include "ARMConstantPoolValue.h" 16 #include "ARMFeatures.h" 17 #include "ARMHazardRecognizer.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMBaseInfo.h" 22 #include "MVETailPredUtils.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/CodeGen/LiveVariables.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineConstantPool.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineMemOperand.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/CodeGen/MachineScheduler.h" 40 #include "llvm/CodeGen/MultiHazardRecognizer.h" 41 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" 42 #include "llvm/CodeGen/SelectionDAGNodes.h" 43 #include "llvm/CodeGen/TargetInstrInfo.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSchedule.h" 46 #include "llvm/IR/Attributes.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/GlobalValue.h" 51 #include "llvm/MC/MCAsmInfo.h" 52 #include "llvm/MC/MCInstrDesc.h" 53 #include "llvm/MC/MCInstrItineraries.h" 54 #include "llvm/Support/BranchProbability.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Target/TargetMachine.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <cstdint> 65 #include <iterator> 66 #include <new> 67 #include <utility> 68 #include <vector> 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "arm-instrinfo" 73 74 #define GET_INSTRINFO_CTOR_DTOR 75 #include "ARMGenInstrInfo.inc" 76 77 static cl::opt<bool> 78 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden, 79 cl::desc("Enable ARM 2-addr to 3-addr conv")); 80 81 /// ARM_MLxEntry - Record information about MLA / MLS instructions. 82 struct ARM_MLxEntry { 83 uint16_t MLxOpc; // MLA / MLS opcode 84 uint16_t MulOpc; // Expanded multiplication opcode 85 uint16_t AddSubOpc; // Expanded add / sub opcode 86 bool NegAcc; // True if the acc is negated before the add / sub. 87 bool HasLane; // True if instruction has an extra "lane" operand. 88 }; 89 90 static const ARM_MLxEntry ARM_MLxTable[] = { 91 // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane 92 // fp scalar ops 93 { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false }, 94 { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false }, 95 { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false }, 96 { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false }, 97 { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false }, 98 { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false }, 99 { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false }, 100 { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false }, 101 102 // fp SIMD ops 103 { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false }, 104 { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false }, 105 { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false }, 106 { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false }, 107 { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true }, 108 { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true }, 109 { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true }, 110 { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true }, 111 }; 112 113 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI) 114 : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP), 115 Subtarget(STI) { 116 for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) { 117 if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second) 118 llvm_unreachable("Duplicated entries?"); 119 MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc); 120 MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc); 121 } 122 } 123 124 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl 125 // currently defaults to no prepass hazard recognizer. 126 ScheduleHazardRecognizer * 127 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 128 const ScheduleDAG *DAG) const { 129 if (usePreRAHazardRecognizer()) { 130 const InstrItineraryData *II = 131 static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData(); 132 return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched"); 133 } 134 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 135 } 136 137 // Called during: 138 // - pre-RA scheduling 139 // - post-RA scheduling when FeatureUseMISched is set 140 ScheduleHazardRecognizer *ARMBaseInstrInfo::CreateTargetMIHazardRecognizer( 141 const InstrItineraryData *II, const ScheduleDAGMI *DAG) const { 142 MultiHazardRecognizer *MHR = new MultiHazardRecognizer(); 143 144 // We would like to restrict this hazard recognizer to only 145 // post-RA scheduling; we can tell that we're post-RA because we don't 146 // track VRegLiveness. 147 // Cortex-M7: TRM indicates that there is a single ITCM bank and two DTCM 148 // banks banked on bit 2. Assume that TCMs are in use. 149 if (Subtarget.isCortexM7() && !DAG->hasVRegLiveness()) 150 MHR->AddHazardRecognizer( 151 std::make_unique<ARMBankConflictHazardRecognizer>(DAG, 0x4, true)); 152 153 // Not inserting ARMHazardRecognizerFPMLx because that would change 154 // legacy behavior 155 156 auto BHR = TargetInstrInfo::CreateTargetMIHazardRecognizer(II, DAG); 157 MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR)); 158 return MHR; 159 } 160 161 // Called during post-RA scheduling when FeatureUseMISched is not set 162 ScheduleHazardRecognizer *ARMBaseInstrInfo:: 163 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 164 const ScheduleDAG *DAG) const { 165 MultiHazardRecognizer *MHR = new MultiHazardRecognizer(); 166 167 if (Subtarget.isThumb2() || Subtarget.hasVFP2Base()) 168 MHR->AddHazardRecognizer(std::make_unique<ARMHazardRecognizerFPMLx>()); 169 170 auto BHR = TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG); 171 if (BHR) 172 MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR)); 173 return MHR; 174 } 175 176 MachineInstr * 177 ARMBaseInstrInfo::convertToThreeAddress(MachineInstr &MI, LiveVariables *LV, 178 LiveIntervals *LIS) const { 179 // FIXME: Thumb2 support. 180 181 if (!EnableARM3Addr) 182 return nullptr; 183 184 MachineFunction &MF = *MI.getParent()->getParent(); 185 uint64_t TSFlags = MI.getDesc().TSFlags; 186 bool isPre = false; 187 switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) { 188 default: return nullptr; 189 case ARMII::IndexModePre: 190 isPre = true; 191 break; 192 case ARMII::IndexModePost: 193 break; 194 } 195 196 // Try splitting an indexed load/store to an un-indexed one plus an add/sub 197 // operation. 198 unsigned MemOpc = getUnindexedOpcode(MI.getOpcode()); 199 if (MemOpc == 0) 200 return nullptr; 201 202 MachineInstr *UpdateMI = nullptr; 203 MachineInstr *MemMI = nullptr; 204 unsigned AddrMode = (TSFlags & ARMII::AddrModeMask); 205 const MCInstrDesc &MCID = MI.getDesc(); 206 unsigned NumOps = MCID.getNumOperands(); 207 bool isLoad = !MI.mayStore(); 208 const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0); 209 const MachineOperand &Base = MI.getOperand(2); 210 const MachineOperand &Offset = MI.getOperand(NumOps - 3); 211 Register WBReg = WB.getReg(); 212 Register BaseReg = Base.getReg(); 213 Register OffReg = Offset.getReg(); 214 unsigned OffImm = MI.getOperand(NumOps - 2).getImm(); 215 ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm(); 216 switch (AddrMode) { 217 default: llvm_unreachable("Unknown indexed op!"); 218 case ARMII::AddrMode2: { 219 bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; 220 unsigned Amt = ARM_AM::getAM2Offset(OffImm); 221 if (OffReg == 0) { 222 if (ARM_AM::getSOImmVal(Amt) == -1) 223 // Can't encode it in a so_imm operand. This transformation will 224 // add more than 1 instruction. Abandon! 225 return nullptr; 226 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 227 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 228 .addReg(BaseReg) 229 .addImm(Amt) 230 .add(predOps(Pred)) 231 .add(condCodeOp()); 232 } else if (Amt != 0) { 233 ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm); 234 unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt); 235 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 236 get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg) 237 .addReg(BaseReg) 238 .addReg(OffReg) 239 .addReg(0) 240 .addImm(SOOpc) 241 .add(predOps(Pred)) 242 .add(condCodeOp()); 243 } else 244 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 245 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 246 .addReg(BaseReg) 247 .addReg(OffReg) 248 .add(predOps(Pred)) 249 .add(condCodeOp()); 250 break; 251 } 252 case ARMII::AddrMode3 : { 253 bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub; 254 unsigned Amt = ARM_AM::getAM3Offset(OffImm); 255 if (OffReg == 0) 256 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand. 257 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 258 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 259 .addReg(BaseReg) 260 .addImm(Amt) 261 .add(predOps(Pred)) 262 .add(condCodeOp()); 263 else 264 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 265 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 266 .addReg(BaseReg) 267 .addReg(OffReg) 268 .add(predOps(Pred)) 269 .add(condCodeOp()); 270 break; 271 } 272 } 273 274 std::vector<MachineInstr*> NewMIs; 275 if (isPre) { 276 if (isLoad) 277 MemMI = 278 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) 279 .addReg(WBReg) 280 .addImm(0) 281 .addImm(Pred); 282 else 283 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) 284 .addReg(MI.getOperand(1).getReg()) 285 .addReg(WBReg) 286 .addReg(0) 287 .addImm(0) 288 .addImm(Pred); 289 NewMIs.push_back(MemMI); 290 NewMIs.push_back(UpdateMI); 291 } else { 292 if (isLoad) 293 MemMI = 294 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) 295 .addReg(BaseReg) 296 .addImm(0) 297 .addImm(Pred); 298 else 299 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) 300 .addReg(MI.getOperand(1).getReg()) 301 .addReg(BaseReg) 302 .addReg(0) 303 .addImm(0) 304 .addImm(Pred); 305 if (WB.isDead()) 306 UpdateMI->getOperand(0).setIsDead(); 307 NewMIs.push_back(UpdateMI); 308 NewMIs.push_back(MemMI); 309 } 310 311 // Transfer LiveVariables states, kill / dead info. 312 if (LV) { 313 for (const MachineOperand &MO : MI.operands()) { 314 if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) { 315 Register Reg = MO.getReg(); 316 317 LiveVariables::VarInfo &VI = LV->getVarInfo(Reg); 318 if (MO.isDef()) { 319 MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI; 320 if (MO.isDead()) 321 LV->addVirtualRegisterDead(Reg, *NewMI); 322 } 323 if (MO.isUse() && MO.isKill()) { 324 for (unsigned j = 0; j < 2; ++j) { 325 // Look at the two new MI's in reverse order. 326 MachineInstr *NewMI = NewMIs[j]; 327 if (!NewMI->readsRegister(Reg)) 328 continue; 329 LV->addVirtualRegisterKilled(Reg, *NewMI); 330 if (VI.removeKill(MI)) 331 VI.Kills.push_back(NewMI); 332 break; 333 } 334 } 335 } 336 } 337 } 338 339 MachineBasicBlock &MBB = *MI.getParent(); 340 MBB.insert(MI, NewMIs[1]); 341 MBB.insert(MI, NewMIs[0]); 342 return NewMIs[0]; 343 } 344 345 // Branch analysis. 346 // Cond vector output format: 347 // 0 elements indicates an unconditional branch 348 // 2 elements indicates a conditional branch; the elements are 349 // the condition to check and the CPSR. 350 // 3 elements indicates a hardware loop end; the elements 351 // are the opcode, the operand value to test, and a dummy 352 // operand used to pad out to 3 operands. 353 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 354 MachineBasicBlock *&TBB, 355 MachineBasicBlock *&FBB, 356 SmallVectorImpl<MachineOperand> &Cond, 357 bool AllowModify) const { 358 TBB = nullptr; 359 FBB = nullptr; 360 361 MachineBasicBlock::instr_iterator I = MBB.instr_end(); 362 if (I == MBB.instr_begin()) 363 return false; // Empty blocks are easy. 364 --I; 365 366 // Walk backwards from the end of the basic block until the branch is 367 // analyzed or we give up. 368 while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) { 369 // Flag to be raised on unanalyzeable instructions. This is useful in cases 370 // where we want to clean up on the end of the basic block before we bail 371 // out. 372 bool CantAnalyze = false; 373 374 // Skip over DEBUG values, predicated nonterminators and speculation 375 // barrier terminators. 376 while (I->isDebugInstr() || !I->isTerminator() || 377 isSpeculationBarrierEndBBOpcode(I->getOpcode()) || 378 I->getOpcode() == ARM::t2DoLoopStartTP){ 379 if (I == MBB.instr_begin()) 380 return false; 381 --I; 382 } 383 384 if (isIndirectBranchOpcode(I->getOpcode()) || 385 isJumpTableBranchOpcode(I->getOpcode())) { 386 // Indirect branches and jump tables can't be analyzed, but we still want 387 // to clean up any instructions at the tail of the basic block. 388 CantAnalyze = true; 389 } else if (isUncondBranchOpcode(I->getOpcode())) { 390 TBB = I->getOperand(0).getMBB(); 391 } else if (isCondBranchOpcode(I->getOpcode())) { 392 // Bail out if we encounter multiple conditional branches. 393 if (!Cond.empty()) 394 return true; 395 396 assert(!FBB && "FBB should have been null."); 397 FBB = TBB; 398 TBB = I->getOperand(0).getMBB(); 399 Cond.push_back(I->getOperand(1)); 400 Cond.push_back(I->getOperand(2)); 401 } else if (I->isReturn()) { 402 // Returns can't be analyzed, but we should run cleanup. 403 CantAnalyze = true; 404 } else if (I->getOpcode() == ARM::t2LoopEnd && 405 MBB.getParent() 406 ->getSubtarget<ARMSubtarget>() 407 .enableMachinePipeliner()) { 408 if (!Cond.empty()) 409 return true; 410 FBB = TBB; 411 TBB = I->getOperand(1).getMBB(); 412 Cond.push_back(MachineOperand::CreateImm(I->getOpcode())); 413 Cond.push_back(I->getOperand(0)); 414 Cond.push_back(MachineOperand::CreateImm(0)); 415 } else { 416 // We encountered other unrecognized terminator. Bail out immediately. 417 return true; 418 } 419 420 // Cleanup code - to be run for unpredicated unconditional branches and 421 // returns. 422 if (!isPredicated(*I) && 423 (isUncondBranchOpcode(I->getOpcode()) || 424 isIndirectBranchOpcode(I->getOpcode()) || 425 isJumpTableBranchOpcode(I->getOpcode()) || 426 I->isReturn())) { 427 // Forget any previous condition branch information - it no longer applies. 428 Cond.clear(); 429 FBB = nullptr; 430 431 // If we can modify the function, delete everything below this 432 // unconditional branch. 433 if (AllowModify) { 434 MachineBasicBlock::iterator DI = std::next(I); 435 while (DI != MBB.instr_end()) { 436 MachineInstr &InstToDelete = *DI; 437 ++DI; 438 // Speculation barriers must not be deleted. 439 if (isSpeculationBarrierEndBBOpcode(InstToDelete.getOpcode())) 440 continue; 441 InstToDelete.eraseFromParent(); 442 } 443 } 444 } 445 446 if (CantAnalyze) { 447 // We may not be able to analyze the block, but we could still have 448 // an unconditional branch as the last instruction in the block, which 449 // just branches to layout successor. If this is the case, then just 450 // remove it if we're allowed to make modifications. 451 if (AllowModify && !isPredicated(MBB.back()) && 452 isUncondBranchOpcode(MBB.back().getOpcode()) && 453 TBB && MBB.isLayoutSuccessor(TBB)) 454 removeBranch(MBB); 455 return true; 456 } 457 458 if (I == MBB.instr_begin()) 459 return false; 460 461 --I; 462 } 463 464 // We made it past the terminators without bailing out - we must have 465 // analyzed this branch successfully. 466 return false; 467 } 468 469 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB, 470 int *BytesRemoved) const { 471 assert(!BytesRemoved && "code size not handled"); 472 473 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 474 if (I == MBB.end()) 475 return 0; 476 477 if (!isUncondBranchOpcode(I->getOpcode()) && 478 !isCondBranchOpcode(I->getOpcode()) && I->getOpcode() != ARM::t2LoopEnd) 479 return 0; 480 481 // Remove the branch. 482 I->eraseFromParent(); 483 484 I = MBB.end(); 485 486 if (I == MBB.begin()) return 1; 487 --I; 488 if (!isCondBranchOpcode(I->getOpcode()) && I->getOpcode() != ARM::t2LoopEnd) 489 return 1; 490 491 // Remove the branch. 492 I->eraseFromParent(); 493 return 2; 494 } 495 496 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB, 497 MachineBasicBlock *TBB, 498 MachineBasicBlock *FBB, 499 ArrayRef<MachineOperand> Cond, 500 const DebugLoc &DL, 501 int *BytesAdded) const { 502 assert(!BytesAdded && "code size not handled"); 503 ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>(); 504 int BOpc = !AFI->isThumbFunction() 505 ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB); 506 int BccOpc = !AFI->isThumbFunction() 507 ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc); 508 bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function(); 509 510 // Shouldn't be a fall through. 511 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 512 assert((Cond.size() == 2 || Cond.size() == 0 || Cond.size() == 3) && 513 "ARM branch conditions have two or three components!"); 514 515 // For conditional branches, we use addOperand to preserve CPSR flags. 516 517 if (!FBB) { 518 if (Cond.empty()) { // Unconditional branch? 519 if (isThumb) 520 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL)); 521 else 522 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); 523 } else if (Cond.size() == 2) { 524 BuildMI(&MBB, DL, get(BccOpc)) 525 .addMBB(TBB) 526 .addImm(Cond[0].getImm()) 527 .add(Cond[1]); 528 } else 529 BuildMI(&MBB, DL, get(Cond[0].getImm())).add(Cond[1]).addMBB(TBB); 530 return 1; 531 } 532 533 // Two-way conditional branch. 534 if (Cond.size() == 2) 535 BuildMI(&MBB, DL, get(BccOpc)) 536 .addMBB(TBB) 537 .addImm(Cond[0].getImm()) 538 .add(Cond[1]); 539 else if (Cond.size() == 3) 540 BuildMI(&MBB, DL, get(Cond[0].getImm())).add(Cond[1]).addMBB(TBB); 541 if (isThumb) 542 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL)); 543 else 544 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); 545 return 2; 546 } 547 548 bool ARMBaseInstrInfo:: 549 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 550 if (Cond.size() == 2) { 551 ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm(); 552 Cond[0].setImm(ARMCC::getOppositeCondition(CC)); 553 return false; 554 } 555 return true; 556 } 557 558 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const { 559 if (MI.isBundle()) { 560 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 561 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 562 while (++I != E && I->isInsideBundle()) { 563 int PIdx = I->findFirstPredOperandIdx(); 564 if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL) 565 return true; 566 } 567 return false; 568 } 569 570 int PIdx = MI.findFirstPredOperandIdx(); 571 return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL; 572 } 573 574 std::string ARMBaseInstrInfo::createMIROperandComment( 575 const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx, 576 const TargetRegisterInfo *TRI) const { 577 578 // First, let's see if there is a generic comment for this operand 579 std::string GenericComment = 580 TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI); 581 if (!GenericComment.empty()) 582 return GenericComment; 583 584 // If not, check if we have an immediate operand. 585 if (!Op.isImm()) 586 return std::string(); 587 588 // And print its corresponding condition code if the immediate is a 589 // predicate. 590 int FirstPredOp = MI.findFirstPredOperandIdx(); 591 if (FirstPredOp != (int) OpIdx) 592 return std::string(); 593 594 std::string CC = "CC::"; 595 CC += ARMCondCodeToString((ARMCC::CondCodes)Op.getImm()); 596 return CC; 597 } 598 599 bool ARMBaseInstrInfo::PredicateInstruction( 600 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 601 unsigned Opc = MI.getOpcode(); 602 if (isUncondBranchOpcode(Opc)) { 603 MI.setDesc(get(getMatchingCondBranchOpcode(Opc))); 604 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 605 .addImm(Pred[0].getImm()) 606 .addReg(Pred[1].getReg()); 607 return true; 608 } 609 610 int PIdx = MI.findFirstPredOperandIdx(); 611 if (PIdx != -1) { 612 MachineOperand &PMO = MI.getOperand(PIdx); 613 PMO.setImm(Pred[0].getImm()); 614 MI.getOperand(PIdx+1).setReg(Pred[1].getReg()); 615 616 // Thumb 1 arithmetic instructions do not set CPSR when executed inside an 617 // IT block. This affects how they are printed. 618 const MCInstrDesc &MCID = MI.getDesc(); 619 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 620 assert(MCID.OpInfo[1].isOptionalDef() && "CPSR def isn't expected operand"); 621 assert((MI.getOperand(1).isDead() || 622 MI.getOperand(1).getReg() != ARM::CPSR) && 623 "if conversion tried to stop defining used CPSR"); 624 MI.getOperand(1).setReg(ARM::NoRegister); 625 } 626 627 return true; 628 } 629 return false; 630 } 631 632 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 633 ArrayRef<MachineOperand> Pred2) const { 634 if (Pred1.size() > 2 || Pred2.size() > 2) 635 return false; 636 637 ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm(); 638 ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm(); 639 if (CC1 == CC2) 640 return true; 641 642 switch (CC1) { 643 default: 644 return false; 645 case ARMCC::AL: 646 return true; 647 case ARMCC::HS: 648 return CC2 == ARMCC::HI; 649 case ARMCC::LS: 650 return CC2 == ARMCC::LO || CC2 == ARMCC::EQ; 651 case ARMCC::GE: 652 return CC2 == ARMCC::GT; 653 case ARMCC::LE: 654 return CC2 == ARMCC::LT; 655 } 656 } 657 658 bool ARMBaseInstrInfo::ClobbersPredicate(MachineInstr &MI, 659 std::vector<MachineOperand> &Pred, 660 bool SkipDead) const { 661 bool Found = false; 662 for (const MachineOperand &MO : MI.operands()) { 663 bool ClobbersCPSR = MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR); 664 bool IsCPSR = MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR; 665 if (ClobbersCPSR || IsCPSR) { 666 667 // Filter out T1 instructions that have a dead CPSR, 668 // allowing IT blocks to be generated containing T1 instructions 669 const MCInstrDesc &MCID = MI.getDesc(); 670 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting && MO.isDead() && 671 SkipDead) 672 continue; 673 674 Pred.push_back(MO); 675 Found = true; 676 } 677 } 678 679 return Found; 680 } 681 682 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) { 683 for (const auto &MO : MI.operands()) 684 if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead()) 685 return true; 686 return false; 687 } 688 689 static bool isEligibleForITBlock(const MachineInstr *MI) { 690 switch (MI->getOpcode()) { 691 default: return true; 692 case ARM::tADC: // ADC (register) T1 693 case ARM::tADDi3: // ADD (immediate) T1 694 case ARM::tADDi8: // ADD (immediate) T2 695 case ARM::tADDrr: // ADD (register) T1 696 case ARM::tAND: // AND (register) T1 697 case ARM::tASRri: // ASR (immediate) T1 698 case ARM::tASRrr: // ASR (register) T1 699 case ARM::tBIC: // BIC (register) T1 700 case ARM::tEOR: // EOR (register) T1 701 case ARM::tLSLri: // LSL (immediate) T1 702 case ARM::tLSLrr: // LSL (register) T1 703 case ARM::tLSRri: // LSR (immediate) T1 704 case ARM::tLSRrr: // LSR (register) T1 705 case ARM::tMUL: // MUL T1 706 case ARM::tMVN: // MVN (register) T1 707 case ARM::tORR: // ORR (register) T1 708 case ARM::tROR: // ROR (register) T1 709 case ARM::tRSB: // RSB (immediate) T1 710 case ARM::tSBC: // SBC (register) T1 711 case ARM::tSUBi3: // SUB (immediate) T1 712 case ARM::tSUBi8: // SUB (immediate) T2 713 case ARM::tSUBrr: // SUB (register) T1 714 return !ARMBaseInstrInfo::isCPSRDefined(*MI); 715 } 716 } 717 718 /// isPredicable - Return true if the specified instruction can be predicated. 719 /// By default, this returns true for every instruction with a 720 /// PredicateOperand. 721 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const { 722 if (!MI.isPredicable()) 723 return false; 724 725 if (MI.isBundle()) 726 return false; 727 728 if (!isEligibleForITBlock(&MI)) 729 return false; 730 731 const MachineFunction *MF = MI.getParent()->getParent(); 732 const ARMFunctionInfo *AFI = 733 MF->getInfo<ARMFunctionInfo>(); 734 735 // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM. 736 // In their ARM encoding, they can't be encoded in a conditional form. 737 if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) 738 return false; 739 740 // Make indirect control flow changes unpredicable when SLS mitigation is 741 // enabled. 742 const ARMSubtarget &ST = MF->getSubtarget<ARMSubtarget>(); 743 if (ST.hardenSlsRetBr() && isIndirectControlFlowNotComingBack(MI)) 744 return false; 745 if (ST.hardenSlsBlr() && isIndirectCall(MI)) 746 return false; 747 748 if (AFI->isThumb2Function()) { 749 if (getSubtarget().restrictIT()) 750 return isV8EligibleForIT(&MI); 751 } 752 753 return true; 754 } 755 756 namespace llvm { 757 758 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) { 759 for (const MachineOperand &MO : MI->operands()) { 760 if (!MO.isReg() || MO.isUndef() || MO.isUse()) 761 continue; 762 if (MO.getReg() != ARM::CPSR) 763 continue; 764 if (!MO.isDead()) 765 return false; 766 } 767 // all definitions of CPSR are dead 768 return true; 769 } 770 771 } // end namespace llvm 772 773 /// GetInstSize - Return the size of the specified MachineInstr. 774 /// 775 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 776 const MachineBasicBlock &MBB = *MI.getParent(); 777 const MachineFunction *MF = MBB.getParent(); 778 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); 779 780 const MCInstrDesc &MCID = MI.getDesc(); 781 782 switch (MI.getOpcode()) { 783 default: 784 // Return the size specified in .td file. If there's none, return 0, as we 785 // can't define a default size (Thumb1 instructions are 2 bytes, Thumb2 786 // instructions are 2-4 bytes, and ARM instructions are 4 bytes), in 787 // contrast to AArch64 instructions which have a default size of 4 bytes for 788 // example. 789 return MCID.getSize(); 790 case TargetOpcode::BUNDLE: 791 return getInstBundleLength(MI); 792 case ARM::CONSTPOOL_ENTRY: 793 case ARM::JUMPTABLE_INSTS: 794 case ARM::JUMPTABLE_ADDRS: 795 case ARM::JUMPTABLE_TBB: 796 case ARM::JUMPTABLE_TBH: 797 // If this machine instr is a constant pool entry, its size is recorded as 798 // operand #2. 799 return MI.getOperand(2).getImm(); 800 case ARM::SPACE: 801 return MI.getOperand(1).getImm(); 802 case ARM::INLINEASM: 803 case ARM::INLINEASM_BR: { 804 // If this machine instr is an inline asm, measure it. 805 unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI); 806 if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction()) 807 Size = alignTo(Size, 4); 808 return Size; 809 } 810 } 811 } 812 813 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const { 814 unsigned Size = 0; 815 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 816 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 817 while (++I != E && I->isInsideBundle()) { 818 assert(!I->isBundle() && "No nested bundle!"); 819 Size += getInstSizeInBytes(*I); 820 } 821 return Size; 822 } 823 824 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB, 825 MachineBasicBlock::iterator I, 826 unsigned DestReg, bool KillSrc, 827 const ARMSubtarget &Subtarget) const { 828 unsigned Opc = Subtarget.isThumb() 829 ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR) 830 : ARM::MRS; 831 832 MachineInstrBuilder MIB = 833 BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg); 834 835 // There is only 1 A/R class MRS instruction, and it always refers to 836 // APSR. However, there are lots of other possibilities on M-class cores. 837 if (Subtarget.isMClass()) 838 MIB.addImm(0x800); 839 840 MIB.add(predOps(ARMCC::AL)) 841 .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc)); 842 } 843 844 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB, 845 MachineBasicBlock::iterator I, 846 unsigned SrcReg, bool KillSrc, 847 const ARMSubtarget &Subtarget) const { 848 unsigned Opc = Subtarget.isThumb() 849 ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR) 850 : ARM::MSR; 851 852 MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc)); 853 854 if (Subtarget.isMClass()) 855 MIB.addImm(0x800); 856 else 857 MIB.addImm(8); 858 859 MIB.addReg(SrcReg, getKillRegState(KillSrc)) 860 .add(predOps(ARMCC::AL)) 861 .addReg(ARM::CPSR, RegState::Implicit | RegState::Define); 862 } 863 864 void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) { 865 MIB.addImm(ARMVCC::None); 866 MIB.addReg(0); 867 MIB.addReg(0); // tp_reg 868 } 869 870 void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB, 871 Register DestReg) { 872 addUnpredicatedMveVpredNOp(MIB); 873 MIB.addReg(DestReg, RegState::Undef); 874 } 875 876 void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) { 877 MIB.addImm(Cond); 878 MIB.addReg(ARM::VPR, RegState::Implicit); 879 MIB.addReg(0); // tp_reg 880 } 881 882 void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB, 883 unsigned Cond, unsigned Inactive) { 884 addPredicatedMveVpredNOp(MIB, Cond); 885 MIB.addReg(Inactive); 886 } 887 888 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 889 MachineBasicBlock::iterator I, 890 const DebugLoc &DL, MCRegister DestReg, 891 MCRegister SrcReg, bool KillSrc) const { 892 bool GPRDest = ARM::GPRRegClass.contains(DestReg); 893 bool GPRSrc = ARM::GPRRegClass.contains(SrcReg); 894 895 if (GPRDest && GPRSrc) { 896 BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg) 897 .addReg(SrcReg, getKillRegState(KillSrc)) 898 .add(predOps(ARMCC::AL)) 899 .add(condCodeOp()); 900 return; 901 } 902 903 bool SPRDest = ARM::SPRRegClass.contains(DestReg); 904 bool SPRSrc = ARM::SPRRegClass.contains(SrcReg); 905 906 unsigned Opc = 0; 907 if (SPRDest && SPRSrc) 908 Opc = ARM::VMOVS; 909 else if (GPRDest && SPRSrc) 910 Opc = ARM::VMOVRS; 911 else if (SPRDest && GPRSrc) 912 Opc = ARM::VMOVSR; 913 else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64()) 914 Opc = ARM::VMOVD; 915 else if (ARM::QPRRegClass.contains(DestReg, SrcReg)) 916 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MQPRCopy; 917 918 if (Opc) { 919 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg); 920 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 921 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) 922 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 923 if (Opc == ARM::MVE_VORR) 924 addUnpredicatedMveVpredROp(MIB, DestReg); 925 else if (Opc != ARM::MQPRCopy) 926 MIB.add(predOps(ARMCC::AL)); 927 return; 928 } 929 930 // Handle register classes that require multiple instructions. 931 unsigned BeginIdx = 0; 932 unsigned SubRegs = 0; 933 int Spacing = 1; 934 935 // Use VORRq when possible. 936 if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) { 937 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; 938 BeginIdx = ARM::qsub_0; 939 SubRegs = 2; 940 } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) { 941 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; 942 BeginIdx = ARM::qsub_0; 943 SubRegs = 4; 944 // Fall back to VMOVD. 945 } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) { 946 Opc = ARM::VMOVD; 947 BeginIdx = ARM::dsub_0; 948 SubRegs = 2; 949 } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) { 950 Opc = ARM::VMOVD; 951 BeginIdx = ARM::dsub_0; 952 SubRegs = 3; 953 } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) { 954 Opc = ARM::VMOVD; 955 BeginIdx = ARM::dsub_0; 956 SubRegs = 4; 957 } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) { 958 Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr; 959 BeginIdx = ARM::gsub_0; 960 SubRegs = 2; 961 } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) { 962 Opc = ARM::VMOVD; 963 BeginIdx = ARM::dsub_0; 964 SubRegs = 2; 965 Spacing = 2; 966 } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) { 967 Opc = ARM::VMOVD; 968 BeginIdx = ARM::dsub_0; 969 SubRegs = 3; 970 Spacing = 2; 971 } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) { 972 Opc = ARM::VMOVD; 973 BeginIdx = ARM::dsub_0; 974 SubRegs = 4; 975 Spacing = 2; 976 } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && 977 !Subtarget.hasFP64()) { 978 Opc = ARM::VMOVS; 979 BeginIdx = ARM::ssub_0; 980 SubRegs = 2; 981 } else if (SrcReg == ARM::CPSR) { 982 copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget); 983 return; 984 } else if (DestReg == ARM::CPSR) { 985 copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget); 986 return; 987 } else if (DestReg == ARM::VPR) { 988 assert(ARM::GPRRegClass.contains(SrcReg)); 989 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg) 990 .addReg(SrcReg, getKillRegState(KillSrc)) 991 .add(predOps(ARMCC::AL)); 992 return; 993 } else if (SrcReg == ARM::VPR) { 994 assert(ARM::GPRRegClass.contains(DestReg)); 995 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg) 996 .addReg(SrcReg, getKillRegState(KillSrc)) 997 .add(predOps(ARMCC::AL)); 998 return; 999 } else if (DestReg == ARM::FPSCR_NZCV) { 1000 assert(ARM::GPRRegClass.contains(SrcReg)); 1001 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg) 1002 .addReg(SrcReg, getKillRegState(KillSrc)) 1003 .add(predOps(ARMCC::AL)); 1004 return; 1005 } else if (SrcReg == ARM::FPSCR_NZCV) { 1006 assert(ARM::GPRRegClass.contains(DestReg)); 1007 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg) 1008 .addReg(SrcReg, getKillRegState(KillSrc)) 1009 .add(predOps(ARMCC::AL)); 1010 return; 1011 } 1012 1013 assert(Opc && "Impossible reg-to-reg copy"); 1014 1015 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1016 MachineInstrBuilder Mov; 1017 1018 // Copy register tuples backward when the first Dest reg overlaps with SrcReg. 1019 if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) { 1020 BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing); 1021 Spacing = -Spacing; 1022 } 1023 #ifndef NDEBUG 1024 SmallSet<unsigned, 4> DstRegs; 1025 #endif 1026 for (unsigned i = 0; i != SubRegs; ++i) { 1027 Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing); 1028 Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing); 1029 assert(Dst && Src && "Bad sub-register"); 1030 #ifndef NDEBUG 1031 assert(!DstRegs.count(Src) && "destructive vector copy"); 1032 DstRegs.insert(Dst); 1033 #endif 1034 Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src); 1035 // VORR (NEON or MVE) takes two source operands. 1036 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) { 1037 Mov.addReg(Src); 1038 } 1039 // MVE VORR takes predicate operands in place of an ordinary condition. 1040 if (Opc == ARM::MVE_VORR) 1041 addUnpredicatedMveVpredROp(Mov, Dst); 1042 else 1043 Mov = Mov.add(predOps(ARMCC::AL)); 1044 // MOVr can set CC. 1045 if (Opc == ARM::MOVr) 1046 Mov = Mov.add(condCodeOp()); 1047 } 1048 // Add implicit super-register defs and kills to the last instruction. 1049 Mov->addRegisterDefined(DestReg, TRI); 1050 if (KillSrc) 1051 Mov->addRegisterKilled(SrcReg, TRI); 1052 } 1053 1054 Optional<DestSourcePair> 1055 ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const { 1056 // VMOVRRD is also a copy instruction but it requires 1057 // special way of handling. It is more complex copy version 1058 // and since that we are not considering it. For recognition 1059 // of such instruction isExtractSubregLike MI interface fuction 1060 // could be used. 1061 // VORRq is considered as a move only if two inputs are 1062 // the same register. 1063 if (!MI.isMoveReg() || 1064 (MI.getOpcode() == ARM::VORRq && 1065 MI.getOperand(1).getReg() != MI.getOperand(2).getReg())) 1066 return None; 1067 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)}; 1068 } 1069 1070 Optional<ParamLoadedValue> 1071 ARMBaseInstrInfo::describeLoadedValue(const MachineInstr &MI, 1072 Register Reg) const { 1073 if (auto DstSrcPair = isCopyInstrImpl(MI)) { 1074 Register DstReg = DstSrcPair->Destination->getReg(); 1075 1076 // TODO: We don't handle cases where the forwarding reg is narrower/wider 1077 // than the copy registers. Consider for example: 1078 // 1079 // s16 = VMOVS s0 1080 // s17 = VMOVS s1 1081 // call @callee(d0) 1082 // 1083 // We'd like to describe the call site value of d0 as d8, but this requires 1084 // gathering and merging the descriptions for the two VMOVS instructions. 1085 // 1086 // We also don't handle the reverse situation, where the forwarding reg is 1087 // narrower than the copy destination: 1088 // 1089 // d8 = VMOVD d0 1090 // call @callee(s1) 1091 // 1092 // We need to produce a fragment description (the call site value of s1 is 1093 // /not/ just d8). 1094 if (DstReg != Reg) 1095 return None; 1096 } 1097 return TargetInstrInfo::describeLoadedValue(MI, Reg); 1098 } 1099 1100 const MachineInstrBuilder & 1101 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg, 1102 unsigned SubIdx, unsigned State, 1103 const TargetRegisterInfo *TRI) const { 1104 if (!SubIdx) 1105 return MIB.addReg(Reg, State); 1106 1107 if (Register::isPhysicalRegister(Reg)) 1108 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State); 1109 return MIB.addReg(Reg, State, SubIdx); 1110 } 1111 1112 void ARMBaseInstrInfo:: 1113 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 1114 Register SrcReg, bool isKill, int FI, 1115 const TargetRegisterClass *RC, 1116 const TargetRegisterInfo *TRI) const { 1117 MachineFunction &MF = *MBB.getParent(); 1118 MachineFrameInfo &MFI = MF.getFrameInfo(); 1119 Align Alignment = MFI.getObjectAlign(FI); 1120 1121 MachineMemOperand *MMO = MF.getMachineMemOperand( 1122 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, 1123 MFI.getObjectSize(FI), Alignment); 1124 1125 switch (TRI->getSpillSize(*RC)) { 1126 case 2: 1127 if (ARM::HPRRegClass.hasSubClassEq(RC)) { 1128 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH)) 1129 .addReg(SrcReg, getKillRegState(isKill)) 1130 .addFrameIndex(FI) 1131 .addImm(0) 1132 .addMemOperand(MMO) 1133 .add(predOps(ARMCC::AL)); 1134 } else 1135 llvm_unreachable("Unknown reg class!"); 1136 break; 1137 case 4: 1138 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 1139 BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12)) 1140 .addReg(SrcReg, getKillRegState(isKill)) 1141 .addFrameIndex(FI) 1142 .addImm(0) 1143 .addMemOperand(MMO) 1144 .add(predOps(ARMCC::AL)); 1145 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1146 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS)) 1147 .addReg(SrcReg, getKillRegState(isKill)) 1148 .addFrameIndex(FI) 1149 .addImm(0) 1150 .addMemOperand(MMO) 1151 .add(predOps(ARMCC::AL)); 1152 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) { 1153 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off)) 1154 .addReg(SrcReg, getKillRegState(isKill)) 1155 .addFrameIndex(FI) 1156 .addImm(0) 1157 .addMemOperand(MMO) 1158 .add(predOps(ARMCC::AL)); 1159 } else 1160 llvm_unreachable("Unknown reg class!"); 1161 break; 1162 case 8: 1163 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1164 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD)) 1165 .addReg(SrcReg, getKillRegState(isKill)) 1166 .addFrameIndex(FI) 1167 .addImm(0) 1168 .addMemOperand(MMO) 1169 .add(predOps(ARMCC::AL)); 1170 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1171 if (Subtarget.hasV5TEOps()) { 1172 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD)); 1173 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 1174 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 1175 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) 1176 .add(predOps(ARMCC::AL)); 1177 } else { 1178 // Fallback to STM instruction, which has existed since the dawn of 1179 // time. 1180 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA)) 1181 .addFrameIndex(FI) 1182 .addMemOperand(MMO) 1183 .add(predOps(ARMCC::AL)); 1184 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 1185 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 1186 } 1187 } else 1188 llvm_unreachable("Unknown reg class!"); 1189 break; 1190 case 16: 1191 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) { 1192 // Use aligned spills if the stack can be realigned. 1193 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) { 1194 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64)) 1195 .addFrameIndex(FI) 1196 .addImm(16) 1197 .addReg(SrcReg, getKillRegState(isKill)) 1198 .addMemOperand(MMO) 1199 .add(predOps(ARMCC::AL)); 1200 } else { 1201 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA)) 1202 .addReg(SrcReg, getKillRegState(isKill)) 1203 .addFrameIndex(FI) 1204 .addMemOperand(MMO) 1205 .add(predOps(ARMCC::AL)); 1206 } 1207 } else if (ARM::QPRRegClass.hasSubClassEq(RC) && 1208 Subtarget.hasMVEIntegerOps()) { 1209 auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32)); 1210 MIB.addReg(SrcReg, getKillRegState(isKill)) 1211 .addFrameIndex(FI) 1212 .addImm(0) 1213 .addMemOperand(MMO); 1214 addUnpredicatedMveVpredNOp(MIB); 1215 } else 1216 llvm_unreachable("Unknown reg class!"); 1217 break; 1218 case 24: 1219 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1220 // Use aligned spills if the stack can be realigned. 1221 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1222 Subtarget.hasNEON()) { 1223 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo)) 1224 .addFrameIndex(FI) 1225 .addImm(16) 1226 .addReg(SrcReg, getKillRegState(isKill)) 1227 .addMemOperand(MMO) 1228 .add(predOps(ARMCC::AL)); 1229 } else { 1230 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), 1231 get(ARM::VSTMDIA)) 1232 .addFrameIndex(FI) 1233 .add(predOps(ARMCC::AL)) 1234 .addMemOperand(MMO); 1235 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1236 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1237 AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1238 } 1239 } else 1240 llvm_unreachable("Unknown reg class!"); 1241 break; 1242 case 32: 1243 if (ARM::QQPRRegClass.hasSubClassEq(RC) || 1244 ARM::MQQPRRegClass.hasSubClassEq(RC) || 1245 ARM::DQuadRegClass.hasSubClassEq(RC)) { 1246 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1247 Subtarget.hasNEON()) { 1248 // FIXME: It's possible to only store part of the QQ register if the 1249 // spilled def has a sub-register index. 1250 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo)) 1251 .addFrameIndex(FI) 1252 .addImm(16) 1253 .addReg(SrcReg, getKillRegState(isKill)) 1254 .addMemOperand(MMO) 1255 .add(predOps(ARMCC::AL)); 1256 } else if (Subtarget.hasMVEIntegerOps()) { 1257 BuildMI(MBB, I, DebugLoc(), get(ARM::MQQPRStore)) 1258 .addReg(SrcReg, getKillRegState(isKill)) 1259 .addFrameIndex(FI) 1260 .addMemOperand(MMO); 1261 } else { 1262 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), 1263 get(ARM::VSTMDIA)) 1264 .addFrameIndex(FI) 1265 .add(predOps(ARMCC::AL)) 1266 .addMemOperand(MMO); 1267 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1268 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1269 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1270 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 1271 } 1272 } else 1273 llvm_unreachable("Unknown reg class!"); 1274 break; 1275 case 64: 1276 if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) && 1277 Subtarget.hasMVEIntegerOps()) { 1278 BuildMI(MBB, I, DebugLoc(), get(ARM::MQQQQPRStore)) 1279 .addReg(SrcReg, getKillRegState(isKill)) 1280 .addFrameIndex(FI) 1281 .addMemOperand(MMO); 1282 } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1283 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA)) 1284 .addFrameIndex(FI) 1285 .add(predOps(ARMCC::AL)) 1286 .addMemOperand(MMO); 1287 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1288 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1289 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1290 MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 1291 MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI); 1292 MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI); 1293 MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI); 1294 AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI); 1295 } else 1296 llvm_unreachable("Unknown reg class!"); 1297 break; 1298 default: 1299 llvm_unreachable("Unknown reg class!"); 1300 } 1301 } 1302 1303 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 1304 int &FrameIndex) const { 1305 switch (MI.getOpcode()) { 1306 default: break; 1307 case ARM::STRrs: 1308 case ARM::t2STRs: // FIXME: don't use t2STRs to access frame. 1309 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && 1310 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && 1311 MI.getOperand(3).getImm() == 0) { 1312 FrameIndex = MI.getOperand(1).getIndex(); 1313 return MI.getOperand(0).getReg(); 1314 } 1315 break; 1316 case ARM::STRi12: 1317 case ARM::t2STRi12: 1318 case ARM::tSTRspi: 1319 case ARM::VSTRD: 1320 case ARM::VSTRS: 1321 case ARM::VSTR_P0_off: 1322 case ARM::MVE_VSTRWU32: 1323 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && 1324 MI.getOperand(2).getImm() == 0) { 1325 FrameIndex = MI.getOperand(1).getIndex(); 1326 return MI.getOperand(0).getReg(); 1327 } 1328 break; 1329 case ARM::VST1q64: 1330 case ARM::VST1d64TPseudo: 1331 case ARM::VST1d64QPseudo: 1332 if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) { 1333 FrameIndex = MI.getOperand(0).getIndex(); 1334 return MI.getOperand(2).getReg(); 1335 } 1336 break; 1337 case ARM::VSTMQIA: 1338 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1339 FrameIndex = MI.getOperand(1).getIndex(); 1340 return MI.getOperand(0).getReg(); 1341 } 1342 break; 1343 case ARM::MQQPRStore: 1344 case ARM::MQQQQPRStore: 1345 if (MI.getOperand(1).isFI()) { 1346 FrameIndex = MI.getOperand(1).getIndex(); 1347 return MI.getOperand(0).getReg(); 1348 } 1349 break; 1350 } 1351 1352 return 0; 1353 } 1354 1355 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, 1356 int &FrameIndex) const { 1357 SmallVector<const MachineMemOperand *, 1> Accesses; 1358 if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) && 1359 Accesses.size() == 1) { 1360 FrameIndex = 1361 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 1362 ->getFrameIndex(); 1363 return true; 1364 } 1365 return false; 1366 } 1367 1368 void ARMBaseInstrInfo:: 1369 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 1370 Register DestReg, int FI, 1371 const TargetRegisterClass *RC, 1372 const TargetRegisterInfo *TRI) const { 1373 DebugLoc DL; 1374 if (I != MBB.end()) DL = I->getDebugLoc(); 1375 MachineFunction &MF = *MBB.getParent(); 1376 MachineFrameInfo &MFI = MF.getFrameInfo(); 1377 const Align Alignment = MFI.getObjectAlign(FI); 1378 MachineMemOperand *MMO = MF.getMachineMemOperand( 1379 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, 1380 MFI.getObjectSize(FI), Alignment); 1381 1382 switch (TRI->getSpillSize(*RC)) { 1383 case 2: 1384 if (ARM::HPRRegClass.hasSubClassEq(RC)) { 1385 BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg) 1386 .addFrameIndex(FI) 1387 .addImm(0) 1388 .addMemOperand(MMO) 1389 .add(predOps(ARMCC::AL)); 1390 } else 1391 llvm_unreachable("Unknown reg class!"); 1392 break; 1393 case 4: 1394 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 1395 BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg) 1396 .addFrameIndex(FI) 1397 .addImm(0) 1398 .addMemOperand(MMO) 1399 .add(predOps(ARMCC::AL)); 1400 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1401 BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg) 1402 .addFrameIndex(FI) 1403 .addImm(0) 1404 .addMemOperand(MMO) 1405 .add(predOps(ARMCC::AL)); 1406 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) { 1407 BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg) 1408 .addFrameIndex(FI) 1409 .addImm(0) 1410 .addMemOperand(MMO) 1411 .add(predOps(ARMCC::AL)); 1412 } else 1413 llvm_unreachable("Unknown reg class!"); 1414 break; 1415 case 8: 1416 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1417 BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg) 1418 .addFrameIndex(FI) 1419 .addImm(0) 1420 .addMemOperand(MMO) 1421 .add(predOps(ARMCC::AL)); 1422 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1423 MachineInstrBuilder MIB; 1424 1425 if (Subtarget.hasV5TEOps()) { 1426 MIB = BuildMI(MBB, I, DL, get(ARM::LDRD)); 1427 AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1428 AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1429 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) 1430 .add(predOps(ARMCC::AL)); 1431 } else { 1432 // Fallback to LDM instruction, which has existed since the dawn of 1433 // time. 1434 MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA)) 1435 .addFrameIndex(FI) 1436 .addMemOperand(MMO) 1437 .add(predOps(ARMCC::AL)); 1438 MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1439 MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1440 } 1441 1442 if (Register::isPhysicalRegister(DestReg)) 1443 MIB.addReg(DestReg, RegState::ImplicitDefine); 1444 } else 1445 llvm_unreachable("Unknown reg class!"); 1446 break; 1447 case 16: 1448 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) { 1449 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) { 1450 BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg) 1451 .addFrameIndex(FI) 1452 .addImm(16) 1453 .addMemOperand(MMO) 1454 .add(predOps(ARMCC::AL)); 1455 } else { 1456 BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg) 1457 .addFrameIndex(FI) 1458 .addMemOperand(MMO) 1459 .add(predOps(ARMCC::AL)); 1460 } 1461 } else if (ARM::QPRRegClass.hasSubClassEq(RC) && 1462 Subtarget.hasMVEIntegerOps()) { 1463 auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg); 1464 MIB.addFrameIndex(FI) 1465 .addImm(0) 1466 .addMemOperand(MMO); 1467 addUnpredicatedMveVpredNOp(MIB); 1468 } else 1469 llvm_unreachable("Unknown reg class!"); 1470 break; 1471 case 24: 1472 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1473 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1474 Subtarget.hasNEON()) { 1475 BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg) 1476 .addFrameIndex(FI) 1477 .addImm(16) 1478 .addMemOperand(MMO) 1479 .add(predOps(ARMCC::AL)); 1480 } else { 1481 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1482 .addFrameIndex(FI) 1483 .addMemOperand(MMO) 1484 .add(predOps(ARMCC::AL)); 1485 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1486 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1487 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1488 if (Register::isPhysicalRegister(DestReg)) 1489 MIB.addReg(DestReg, RegState::ImplicitDefine); 1490 } 1491 } else 1492 llvm_unreachable("Unknown reg class!"); 1493 break; 1494 case 32: 1495 if (ARM::QQPRRegClass.hasSubClassEq(RC) || 1496 ARM::MQQPRRegClass.hasSubClassEq(RC) || 1497 ARM::DQuadRegClass.hasSubClassEq(RC)) { 1498 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1499 Subtarget.hasNEON()) { 1500 BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg) 1501 .addFrameIndex(FI) 1502 .addImm(16) 1503 .addMemOperand(MMO) 1504 .add(predOps(ARMCC::AL)); 1505 } else if (Subtarget.hasMVEIntegerOps()) { 1506 BuildMI(MBB, I, DL, get(ARM::MQQPRLoad), DestReg) 1507 .addFrameIndex(FI) 1508 .addMemOperand(MMO); 1509 } else { 1510 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1511 .addFrameIndex(FI) 1512 .add(predOps(ARMCC::AL)) 1513 .addMemOperand(MMO); 1514 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1515 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1516 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1517 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1518 if (Register::isPhysicalRegister(DestReg)) 1519 MIB.addReg(DestReg, RegState::ImplicitDefine); 1520 } 1521 } else 1522 llvm_unreachable("Unknown reg class!"); 1523 break; 1524 case 64: 1525 if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) && 1526 Subtarget.hasMVEIntegerOps()) { 1527 BuildMI(MBB, I, DL, get(ARM::MQQQQPRLoad), DestReg) 1528 .addFrameIndex(FI) 1529 .addMemOperand(MMO); 1530 } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1531 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1532 .addFrameIndex(FI) 1533 .add(predOps(ARMCC::AL)) 1534 .addMemOperand(MMO); 1535 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1536 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1537 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1538 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1539 MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI); 1540 MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI); 1541 MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI); 1542 MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI); 1543 if (Register::isPhysicalRegister(DestReg)) 1544 MIB.addReg(DestReg, RegState::ImplicitDefine); 1545 } else 1546 llvm_unreachable("Unknown reg class!"); 1547 break; 1548 default: 1549 llvm_unreachable("Unknown regclass!"); 1550 } 1551 } 1552 1553 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 1554 int &FrameIndex) const { 1555 switch (MI.getOpcode()) { 1556 default: break; 1557 case ARM::LDRrs: 1558 case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame. 1559 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && 1560 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && 1561 MI.getOperand(3).getImm() == 0) { 1562 FrameIndex = MI.getOperand(1).getIndex(); 1563 return MI.getOperand(0).getReg(); 1564 } 1565 break; 1566 case ARM::LDRi12: 1567 case ARM::t2LDRi12: 1568 case ARM::tLDRspi: 1569 case ARM::VLDRD: 1570 case ARM::VLDRS: 1571 case ARM::VLDR_P0_off: 1572 case ARM::MVE_VLDRWU32: 1573 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && 1574 MI.getOperand(2).getImm() == 0) { 1575 FrameIndex = MI.getOperand(1).getIndex(); 1576 return MI.getOperand(0).getReg(); 1577 } 1578 break; 1579 case ARM::VLD1q64: 1580 case ARM::VLD1d8TPseudo: 1581 case ARM::VLD1d16TPseudo: 1582 case ARM::VLD1d32TPseudo: 1583 case ARM::VLD1d64TPseudo: 1584 case ARM::VLD1d8QPseudo: 1585 case ARM::VLD1d16QPseudo: 1586 case ARM::VLD1d32QPseudo: 1587 case ARM::VLD1d64QPseudo: 1588 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1589 FrameIndex = MI.getOperand(1).getIndex(); 1590 return MI.getOperand(0).getReg(); 1591 } 1592 break; 1593 case ARM::VLDMQIA: 1594 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1595 FrameIndex = MI.getOperand(1).getIndex(); 1596 return MI.getOperand(0).getReg(); 1597 } 1598 break; 1599 case ARM::MQQPRLoad: 1600 case ARM::MQQQQPRLoad: 1601 if (MI.getOperand(1).isFI()) { 1602 FrameIndex = MI.getOperand(1).getIndex(); 1603 return MI.getOperand(0).getReg(); 1604 } 1605 break; 1606 } 1607 1608 return 0; 1609 } 1610 1611 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, 1612 int &FrameIndex) const { 1613 SmallVector<const MachineMemOperand *, 1> Accesses; 1614 if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) && 1615 Accesses.size() == 1) { 1616 FrameIndex = 1617 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 1618 ->getFrameIndex(); 1619 return true; 1620 } 1621 return false; 1622 } 1623 1624 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD 1625 /// depending on whether the result is used. 1626 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const { 1627 bool isThumb1 = Subtarget.isThumb1Only(); 1628 bool isThumb2 = Subtarget.isThumb2(); 1629 const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo(); 1630 1631 DebugLoc dl = MI->getDebugLoc(); 1632 MachineBasicBlock *BB = MI->getParent(); 1633 1634 MachineInstrBuilder LDM, STM; 1635 if (isThumb1 || !MI->getOperand(1).isDead()) { 1636 MachineOperand LDWb(MI->getOperand(1)); 1637 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD 1638 : isThumb1 ? ARM::tLDMIA_UPD 1639 : ARM::LDMIA_UPD)) 1640 .add(LDWb); 1641 } else { 1642 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA)); 1643 } 1644 1645 if (isThumb1 || !MI->getOperand(0).isDead()) { 1646 MachineOperand STWb(MI->getOperand(0)); 1647 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD 1648 : isThumb1 ? ARM::tSTMIA_UPD 1649 : ARM::STMIA_UPD)) 1650 .add(STWb); 1651 } else { 1652 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA)); 1653 } 1654 1655 MachineOperand LDBase(MI->getOperand(3)); 1656 LDM.add(LDBase).add(predOps(ARMCC::AL)); 1657 1658 MachineOperand STBase(MI->getOperand(2)); 1659 STM.add(STBase).add(predOps(ARMCC::AL)); 1660 1661 // Sort the scratch registers into ascending order. 1662 const TargetRegisterInfo &TRI = getRegisterInfo(); 1663 SmallVector<unsigned, 6> ScratchRegs; 1664 for(unsigned I = 5; I < MI->getNumOperands(); ++I) 1665 ScratchRegs.push_back(MI->getOperand(I).getReg()); 1666 llvm::sort(ScratchRegs, 1667 [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool { 1668 return TRI.getEncodingValue(Reg1) < 1669 TRI.getEncodingValue(Reg2); 1670 }); 1671 1672 for (const auto &Reg : ScratchRegs) { 1673 LDM.addReg(Reg, RegState::Define); 1674 STM.addReg(Reg, RegState::Kill); 1675 } 1676 1677 BB->erase(MI); 1678 } 1679 1680 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1681 if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) { 1682 expandLoadStackGuard(MI); 1683 MI.getParent()->erase(MI); 1684 return true; 1685 } 1686 1687 if (MI.getOpcode() == ARM::MEMCPY) { 1688 expandMEMCPY(MI); 1689 return true; 1690 } 1691 1692 // This hook gets to expand COPY instructions before they become 1693 // copyPhysReg() calls. Look for VMOVS instructions that can legally be 1694 // widened to VMOVD. We prefer the VMOVD when possible because it may be 1695 // changed into a VORR that can go down the NEON pipeline. 1696 if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64()) 1697 return false; 1698 1699 // Look for a copy between even S-registers. That is where we keep floats 1700 // when using NEON v2f32 instructions for f32 arithmetic. 1701 Register DstRegS = MI.getOperand(0).getReg(); 1702 Register SrcRegS = MI.getOperand(1).getReg(); 1703 if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS)) 1704 return false; 1705 1706 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1707 unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0, 1708 &ARM::DPRRegClass); 1709 unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0, 1710 &ARM::DPRRegClass); 1711 if (!DstRegD || !SrcRegD) 1712 return false; 1713 1714 // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only 1715 // legal if the COPY already defines the full DstRegD, and it isn't a 1716 // sub-register insertion. 1717 if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI)) 1718 return false; 1719 1720 // A dead copy shouldn't show up here, but reject it just in case. 1721 if (MI.getOperand(0).isDead()) 1722 return false; 1723 1724 // All clear, widen the COPY. 1725 LLVM_DEBUG(dbgs() << "widening: " << MI); 1726 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 1727 1728 // Get rid of the old implicit-def of DstRegD. Leave it if it defines a Q-reg 1729 // or some other super-register. 1730 int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD); 1731 if (ImpDefIdx != -1) 1732 MI.removeOperand(ImpDefIdx); 1733 1734 // Change the opcode and operands. 1735 MI.setDesc(get(ARM::VMOVD)); 1736 MI.getOperand(0).setReg(DstRegD); 1737 MI.getOperand(1).setReg(SrcRegD); 1738 MIB.add(predOps(ARMCC::AL)); 1739 1740 // We are now reading SrcRegD instead of SrcRegS. This may upset the 1741 // register scavenger and machine verifier, so we need to indicate that we 1742 // are reading an undefined value from SrcRegD, but a proper value from 1743 // SrcRegS. 1744 MI.getOperand(1).setIsUndef(); 1745 MIB.addReg(SrcRegS, RegState::Implicit); 1746 1747 // SrcRegD may actually contain an unrelated value in the ssub_1 1748 // sub-register. Don't kill it. Only kill the ssub_0 sub-register. 1749 if (MI.getOperand(1).isKill()) { 1750 MI.getOperand(1).setIsKill(false); 1751 MI.addRegisterKilled(SrcRegS, TRI, true); 1752 } 1753 1754 LLVM_DEBUG(dbgs() << "replaced by: " << MI); 1755 return true; 1756 } 1757 1758 /// Create a copy of a const pool value. Update CPI to the new index and return 1759 /// the label UID. 1760 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) { 1761 MachineConstantPool *MCP = MF.getConstantPool(); 1762 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1763 1764 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI]; 1765 assert(MCPE.isMachineConstantPoolEntry() && 1766 "Expecting a machine constantpool entry!"); 1767 ARMConstantPoolValue *ACPV = 1768 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal); 1769 1770 unsigned PCLabelId = AFI->createPICLabelUId(); 1771 ARMConstantPoolValue *NewCPV = nullptr; 1772 1773 // FIXME: The below assumes PIC relocation model and that the function 1774 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and 1775 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR 1776 // instructions, so that's probably OK, but is PIC always correct when 1777 // we get here? 1778 if (ACPV->isGlobalValue()) 1779 NewCPV = ARMConstantPoolConstant::Create( 1780 cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue, 1781 4, ACPV->getModifier(), ACPV->mustAddCurrentAddress()); 1782 else if (ACPV->isExtSymbol()) 1783 NewCPV = ARMConstantPoolSymbol:: 1784 Create(MF.getFunction().getContext(), 1785 cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4); 1786 else if (ACPV->isBlockAddress()) 1787 NewCPV = ARMConstantPoolConstant:: 1788 Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId, 1789 ARMCP::CPBlockAddress, 4); 1790 else if (ACPV->isLSDA()) 1791 NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId, 1792 ARMCP::CPLSDA, 4); 1793 else if (ACPV->isMachineBasicBlock()) 1794 NewCPV = ARMConstantPoolMBB:: 1795 Create(MF.getFunction().getContext(), 1796 cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4); 1797 else 1798 llvm_unreachable("Unexpected ARM constantpool value type!!"); 1799 CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlign()); 1800 return PCLabelId; 1801 } 1802 1803 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB, 1804 MachineBasicBlock::iterator I, 1805 Register DestReg, unsigned SubIdx, 1806 const MachineInstr &Orig, 1807 const TargetRegisterInfo &TRI) const { 1808 unsigned Opcode = Orig.getOpcode(); 1809 switch (Opcode) { 1810 default: { 1811 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); 1812 MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); 1813 MBB.insert(I, MI); 1814 break; 1815 } 1816 case ARM::tLDRpci_pic: 1817 case ARM::t2LDRpci_pic: { 1818 MachineFunction &MF = *MBB.getParent(); 1819 unsigned CPI = Orig.getOperand(1).getIndex(); 1820 unsigned PCLabelId = duplicateCPV(MF, CPI); 1821 BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg) 1822 .addConstantPoolIndex(CPI) 1823 .addImm(PCLabelId) 1824 .cloneMemRefs(Orig); 1825 break; 1826 } 1827 } 1828 } 1829 1830 MachineInstr & 1831 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB, 1832 MachineBasicBlock::iterator InsertBefore, 1833 const MachineInstr &Orig) const { 1834 MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig); 1835 MachineBasicBlock::instr_iterator I = Cloned.getIterator(); 1836 for (;;) { 1837 switch (I->getOpcode()) { 1838 case ARM::tLDRpci_pic: 1839 case ARM::t2LDRpci_pic: { 1840 MachineFunction &MF = *MBB.getParent(); 1841 unsigned CPI = I->getOperand(1).getIndex(); 1842 unsigned PCLabelId = duplicateCPV(MF, CPI); 1843 I->getOperand(1).setIndex(CPI); 1844 I->getOperand(2).setImm(PCLabelId); 1845 break; 1846 } 1847 } 1848 if (!I->isBundledWithSucc()) 1849 break; 1850 ++I; 1851 } 1852 return Cloned; 1853 } 1854 1855 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0, 1856 const MachineInstr &MI1, 1857 const MachineRegisterInfo *MRI) const { 1858 unsigned Opcode = MI0.getOpcode(); 1859 if (Opcode == ARM::t2LDRpci || Opcode == ARM::t2LDRpci_pic || 1860 Opcode == ARM::tLDRpci || Opcode == ARM::tLDRpci_pic || 1861 Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1862 Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel || 1863 Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr || 1864 Opcode == ARM::t2MOV_ga_pcrel) { 1865 if (MI1.getOpcode() != Opcode) 1866 return false; 1867 if (MI0.getNumOperands() != MI1.getNumOperands()) 1868 return false; 1869 1870 const MachineOperand &MO0 = MI0.getOperand(1); 1871 const MachineOperand &MO1 = MI1.getOperand(1); 1872 if (MO0.getOffset() != MO1.getOffset()) 1873 return false; 1874 1875 if (Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1876 Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel || 1877 Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr || 1878 Opcode == ARM::t2MOV_ga_pcrel) 1879 // Ignore the PC labels. 1880 return MO0.getGlobal() == MO1.getGlobal(); 1881 1882 const MachineFunction *MF = MI0.getParent()->getParent(); 1883 const MachineConstantPool *MCP = MF->getConstantPool(); 1884 int CPI0 = MO0.getIndex(); 1885 int CPI1 = MO1.getIndex(); 1886 const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0]; 1887 const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1]; 1888 bool isARMCP0 = MCPE0.isMachineConstantPoolEntry(); 1889 bool isARMCP1 = MCPE1.isMachineConstantPoolEntry(); 1890 if (isARMCP0 && isARMCP1) { 1891 ARMConstantPoolValue *ACPV0 = 1892 static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal); 1893 ARMConstantPoolValue *ACPV1 = 1894 static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal); 1895 return ACPV0->hasSameValue(ACPV1); 1896 } else if (!isARMCP0 && !isARMCP1) { 1897 return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal; 1898 } 1899 return false; 1900 } else if (Opcode == ARM::PICLDR) { 1901 if (MI1.getOpcode() != Opcode) 1902 return false; 1903 if (MI0.getNumOperands() != MI1.getNumOperands()) 1904 return false; 1905 1906 Register Addr0 = MI0.getOperand(1).getReg(); 1907 Register Addr1 = MI1.getOperand(1).getReg(); 1908 if (Addr0 != Addr1) { 1909 if (!MRI || !Register::isVirtualRegister(Addr0) || 1910 !Register::isVirtualRegister(Addr1)) 1911 return false; 1912 1913 // This assumes SSA form. 1914 MachineInstr *Def0 = MRI->getVRegDef(Addr0); 1915 MachineInstr *Def1 = MRI->getVRegDef(Addr1); 1916 // Check if the loaded value, e.g. a constantpool of a global address, are 1917 // the same. 1918 if (!produceSameValue(*Def0, *Def1, MRI)) 1919 return false; 1920 } 1921 1922 for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) { 1923 // %12 = PICLDR %11, 0, 14, %noreg 1924 const MachineOperand &MO0 = MI0.getOperand(i); 1925 const MachineOperand &MO1 = MI1.getOperand(i); 1926 if (!MO0.isIdenticalTo(MO1)) 1927 return false; 1928 } 1929 return true; 1930 } 1931 1932 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 1933 } 1934 1935 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to 1936 /// determine if two loads are loading from the same base address. It should 1937 /// only return true if the base pointers are the same and the only differences 1938 /// between the two addresses is the offset. It also returns the offsets by 1939 /// reference. 1940 /// 1941 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 1942 /// is permanently disabled. 1943 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 1944 int64_t &Offset1, 1945 int64_t &Offset2) const { 1946 // Don't worry about Thumb: just ARM and Thumb2. 1947 if (Subtarget.isThumb1Only()) return false; 1948 1949 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) 1950 return false; 1951 1952 switch (Load1->getMachineOpcode()) { 1953 default: 1954 return false; 1955 case ARM::LDRi12: 1956 case ARM::LDRBi12: 1957 case ARM::LDRD: 1958 case ARM::LDRH: 1959 case ARM::LDRSB: 1960 case ARM::LDRSH: 1961 case ARM::VLDRD: 1962 case ARM::VLDRS: 1963 case ARM::t2LDRi8: 1964 case ARM::t2LDRBi8: 1965 case ARM::t2LDRDi8: 1966 case ARM::t2LDRSHi8: 1967 case ARM::t2LDRi12: 1968 case ARM::t2LDRBi12: 1969 case ARM::t2LDRSHi12: 1970 break; 1971 } 1972 1973 switch (Load2->getMachineOpcode()) { 1974 default: 1975 return false; 1976 case ARM::LDRi12: 1977 case ARM::LDRBi12: 1978 case ARM::LDRD: 1979 case ARM::LDRH: 1980 case ARM::LDRSB: 1981 case ARM::LDRSH: 1982 case ARM::VLDRD: 1983 case ARM::VLDRS: 1984 case ARM::t2LDRi8: 1985 case ARM::t2LDRBi8: 1986 case ARM::t2LDRSHi8: 1987 case ARM::t2LDRi12: 1988 case ARM::t2LDRBi12: 1989 case ARM::t2LDRSHi12: 1990 break; 1991 } 1992 1993 // Check if base addresses and chain operands match. 1994 if (Load1->getOperand(0) != Load2->getOperand(0) || 1995 Load1->getOperand(4) != Load2->getOperand(4)) 1996 return false; 1997 1998 // Index should be Reg0. 1999 if (Load1->getOperand(3) != Load2->getOperand(3)) 2000 return false; 2001 2002 // Determine the offsets. 2003 if (isa<ConstantSDNode>(Load1->getOperand(1)) && 2004 isa<ConstantSDNode>(Load2->getOperand(1))) { 2005 Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue(); 2006 Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue(); 2007 return true; 2008 } 2009 2010 return false; 2011 } 2012 2013 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to 2014 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should 2015 /// be scheduled togther. On some targets if two loads are loading from 2016 /// addresses in the same cache line, it's better if they are scheduled 2017 /// together. This function takes two integers that represent the load offsets 2018 /// from the common base address. It returns true if it decides it's desirable 2019 /// to schedule the two loads together. "NumLoads" is the number of loads that 2020 /// have already been scheduled after Load1. 2021 /// 2022 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 2023 /// is permanently disabled. 2024 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 2025 int64_t Offset1, int64_t Offset2, 2026 unsigned NumLoads) const { 2027 // Don't worry about Thumb: just ARM and Thumb2. 2028 if (Subtarget.isThumb1Only()) return false; 2029 2030 assert(Offset2 > Offset1); 2031 2032 if ((Offset2 - Offset1) / 8 > 64) 2033 return false; 2034 2035 // Check if the machine opcodes are different. If they are different 2036 // then we consider them to not be of the same base address, 2037 // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12. 2038 // In this case, they are considered to be the same because they are different 2039 // encoding forms of the same basic instruction. 2040 if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) && 2041 !((Load1->getMachineOpcode() == ARM::t2LDRBi8 && 2042 Load2->getMachineOpcode() == ARM::t2LDRBi12) || 2043 (Load1->getMachineOpcode() == ARM::t2LDRBi12 && 2044 Load2->getMachineOpcode() == ARM::t2LDRBi8))) 2045 return false; // FIXME: overly conservative? 2046 2047 // Four loads in a row should be sufficient. 2048 if (NumLoads >= 3) 2049 return false; 2050 2051 return true; 2052 } 2053 2054 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 2055 const MachineBasicBlock *MBB, 2056 const MachineFunction &MF) const { 2057 // Debug info is never a scheduling boundary. It's necessary to be explicit 2058 // due to the special treatment of IT instructions below, otherwise a 2059 // dbg_value followed by an IT will result in the IT instruction being 2060 // considered a scheduling hazard, which is wrong. It should be the actual 2061 // instruction preceding the dbg_value instruction(s), just like it is 2062 // when debug info is not present. 2063 if (MI.isDebugInstr()) 2064 return false; 2065 2066 // Terminators and labels can't be scheduled around. 2067 if (MI.isTerminator() || MI.isPosition()) 2068 return true; 2069 2070 // INLINEASM_BR can jump to another block 2071 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) 2072 return true; 2073 2074 if (isSEHInstruction(MI)) 2075 return true; 2076 2077 // Treat the start of the IT block as a scheduling boundary, but schedule 2078 // t2IT along with all instructions following it. 2079 // FIXME: This is a big hammer. But the alternative is to add all potential 2080 // true and anti dependencies to IT block instructions as implicit operands 2081 // to the t2IT instruction. The added compile time and complexity does not 2082 // seem worth it. 2083 MachineBasicBlock::const_iterator I = MI; 2084 // Make sure to skip any debug instructions 2085 while (++I != MBB->end() && I->isDebugInstr()) 2086 ; 2087 if (I != MBB->end() && I->getOpcode() == ARM::t2IT) 2088 return true; 2089 2090 // Don't attempt to schedule around any instruction that defines 2091 // a stack-oriented pointer, as it's unlikely to be profitable. This 2092 // saves compile time, because it doesn't require every single 2093 // stack slot reference to depend on the instruction that does the 2094 // modification. 2095 // Calls don't actually change the stack pointer, even if they have imp-defs. 2096 // No ARM calling conventions change the stack pointer. (X86 calling 2097 // conventions sometimes do). 2098 if (!MI.isCall() && MI.definesRegister(ARM::SP)) 2099 return true; 2100 2101 return false; 2102 } 2103 2104 bool ARMBaseInstrInfo:: 2105 isProfitableToIfCvt(MachineBasicBlock &MBB, 2106 unsigned NumCycles, unsigned ExtraPredCycles, 2107 BranchProbability Probability) const { 2108 if (!NumCycles) 2109 return false; 2110 2111 // If we are optimizing for size, see if the branch in the predecessor can be 2112 // lowered to cbn?z by the constant island lowering pass, and return false if 2113 // so. This results in a shorter instruction sequence. 2114 if (MBB.getParent()->getFunction().hasOptSize()) { 2115 MachineBasicBlock *Pred = *MBB.pred_begin(); 2116 if (!Pred->empty()) { 2117 MachineInstr *LastMI = &*Pred->rbegin(); 2118 if (LastMI->getOpcode() == ARM::t2Bcc) { 2119 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2120 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI); 2121 if (CmpMI) 2122 return false; 2123 } 2124 } 2125 } 2126 return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles, 2127 MBB, 0, 0, Probability); 2128 } 2129 2130 bool ARMBaseInstrInfo:: 2131 isProfitableToIfCvt(MachineBasicBlock &TBB, 2132 unsigned TCycles, unsigned TExtra, 2133 MachineBasicBlock &FBB, 2134 unsigned FCycles, unsigned FExtra, 2135 BranchProbability Probability) const { 2136 if (!TCycles) 2137 return false; 2138 2139 // In thumb code we often end up trading one branch for a IT block, and 2140 // if we are cloning the instruction can increase code size. Prevent 2141 // blocks with multiple predecesors from being ifcvted to prevent this 2142 // cloning. 2143 if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) { 2144 if (TBB.pred_size() != 1 || FBB.pred_size() != 1) 2145 return false; 2146 } 2147 2148 // Attempt to estimate the relative costs of predication versus branching. 2149 // Here we scale up each component of UnpredCost to avoid precision issue when 2150 // scaling TCycles/FCycles by Probability. 2151 const unsigned ScalingUpFactor = 1024; 2152 2153 unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor; 2154 unsigned UnpredCost; 2155 if (!Subtarget.hasBranchPredictor()) { 2156 // When we don't have a branch predictor it's always cheaper to not take a 2157 // branch than take it, so we have to take that into account. 2158 unsigned NotTakenBranchCost = 1; 2159 unsigned TakenBranchCost = Subtarget.getMispredictionPenalty(); 2160 unsigned TUnpredCycles, FUnpredCycles; 2161 if (!FCycles) { 2162 // Triangle: TBB is the fallthrough 2163 TUnpredCycles = TCycles + NotTakenBranchCost; 2164 FUnpredCycles = TakenBranchCost; 2165 } else { 2166 // Diamond: TBB is the block that is branched to, FBB is the fallthrough 2167 TUnpredCycles = TCycles + TakenBranchCost; 2168 FUnpredCycles = FCycles + NotTakenBranchCost; 2169 // The branch at the end of FBB will disappear when it's predicated, so 2170 // discount it from PredCost. 2171 PredCost -= 1 * ScalingUpFactor; 2172 } 2173 // The total cost is the cost of each path scaled by their probabilites 2174 unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor); 2175 unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor); 2176 UnpredCost = TUnpredCost + FUnpredCost; 2177 // When predicating assume that the first IT can be folded away but later 2178 // ones cost one cycle each 2179 if (Subtarget.isThumb2() && TCycles + FCycles > 4) { 2180 PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor; 2181 } 2182 } else { 2183 unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor); 2184 unsigned FUnpredCost = 2185 Probability.getCompl().scale(FCycles * ScalingUpFactor); 2186 UnpredCost = TUnpredCost + FUnpredCost; 2187 UnpredCost += 1 * ScalingUpFactor; // The branch itself 2188 UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10; 2189 } 2190 2191 return PredCost <= UnpredCost; 2192 } 2193 2194 unsigned 2195 ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF, 2196 unsigned NumInsts) const { 2197 // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions. 2198 // ARM has a condition code field in every predicable instruction, using it 2199 // doesn't change code size. 2200 if (!Subtarget.isThumb2()) 2201 return 0; 2202 2203 // It's possible that the size of the IT is restricted to a single block. 2204 unsigned MaxInsts = Subtarget.restrictIT() ? 1 : 4; 2205 return divideCeil(NumInsts, MaxInsts) * 2; 2206 } 2207 2208 unsigned 2209 ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const { 2210 // If this branch is likely to be folded into the comparison to form a 2211 // CB(N)Z, then removing it won't reduce code size at all, because that will 2212 // just replace the CB(N)Z with a CMP. 2213 if (MI.getOpcode() == ARM::t2Bcc && 2214 findCMPToFoldIntoCBZ(&MI, &getRegisterInfo())) 2215 return 0; 2216 2217 unsigned Size = getInstSizeInBytes(MI); 2218 2219 // For Thumb2, all branches are 32-bit instructions during the if conversion 2220 // pass, but may be replaced with 16-bit instructions during size reduction. 2221 // Since the branches considered by if conversion tend to be forward branches 2222 // over small basic blocks, they are very likely to be in range for the 2223 // narrow instructions, so we assume the final code size will be half what it 2224 // currently is. 2225 if (Subtarget.isThumb2()) 2226 Size /= 2; 2227 2228 return Size; 2229 } 2230 2231 bool 2232 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB, 2233 MachineBasicBlock &FMBB) const { 2234 // Reduce false anti-dependencies to let the target's out-of-order execution 2235 // engine do its thing. 2236 return Subtarget.isProfitableToUnpredicate(); 2237 } 2238 2239 /// getInstrPredicate - If instruction is predicated, returns its predicate 2240 /// condition, otherwise returns AL. It also returns the condition code 2241 /// register by reference. 2242 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI, 2243 Register &PredReg) { 2244 int PIdx = MI.findFirstPredOperandIdx(); 2245 if (PIdx == -1) { 2246 PredReg = 0; 2247 return ARMCC::AL; 2248 } 2249 2250 PredReg = MI.getOperand(PIdx+1).getReg(); 2251 return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm(); 2252 } 2253 2254 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) { 2255 if (Opc == ARM::B) 2256 return ARM::Bcc; 2257 if (Opc == ARM::tB) 2258 return ARM::tBcc; 2259 if (Opc == ARM::t2B) 2260 return ARM::t2Bcc; 2261 2262 llvm_unreachable("Unknown unconditional branch opcode!"); 2263 } 2264 2265 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI, 2266 bool NewMI, 2267 unsigned OpIdx1, 2268 unsigned OpIdx2) const { 2269 switch (MI.getOpcode()) { 2270 case ARM::MOVCCr: 2271 case ARM::t2MOVCCr: { 2272 // MOVCC can be commuted by inverting the condition. 2273 Register PredReg; 2274 ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg); 2275 // MOVCC AL can't be inverted. Shouldn't happen. 2276 if (CC == ARMCC::AL || PredReg != ARM::CPSR) 2277 return nullptr; 2278 MachineInstr *CommutedMI = 2279 TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2280 if (!CommutedMI) 2281 return nullptr; 2282 // After swapping the MOVCC operands, also invert the condition. 2283 CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx()) 2284 .setImm(ARMCC::getOppositeCondition(CC)); 2285 return CommutedMI; 2286 } 2287 } 2288 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2289 } 2290 2291 /// Identify instructions that can be folded into a MOVCC instruction, and 2292 /// return the defining instruction. 2293 MachineInstr * 2294 ARMBaseInstrInfo::canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI, 2295 const TargetInstrInfo *TII) const { 2296 if (!Reg.isVirtual()) 2297 return nullptr; 2298 if (!MRI.hasOneNonDBGUse(Reg)) 2299 return nullptr; 2300 MachineInstr *MI = MRI.getVRegDef(Reg); 2301 if (!MI) 2302 return nullptr; 2303 // Check if MI can be predicated and folded into the MOVCC. 2304 if (!isPredicable(*MI)) 2305 return nullptr; 2306 // Check if MI has any non-dead defs or physreg uses. This also detects 2307 // predicated instructions which will be reading CPSR. 2308 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 1)) { 2309 // Reject frame index operands, PEI can't handle the predicated pseudos. 2310 if (MO.isFI() || MO.isCPI() || MO.isJTI()) 2311 return nullptr; 2312 if (!MO.isReg()) 2313 continue; 2314 // MI can't have any tied operands, that would conflict with predication. 2315 if (MO.isTied()) 2316 return nullptr; 2317 if (Register::isPhysicalRegister(MO.getReg())) 2318 return nullptr; 2319 if (MO.isDef() && !MO.isDead()) 2320 return nullptr; 2321 } 2322 bool DontMoveAcrossStores = true; 2323 if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores)) 2324 return nullptr; 2325 return MI; 2326 } 2327 2328 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI, 2329 SmallVectorImpl<MachineOperand> &Cond, 2330 unsigned &TrueOp, unsigned &FalseOp, 2331 bool &Optimizable) const { 2332 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && 2333 "Unknown select instruction"); 2334 // MOVCC operands: 2335 // 0: Def. 2336 // 1: True use. 2337 // 2: False use. 2338 // 3: Condition code. 2339 // 4: CPSR use. 2340 TrueOp = 1; 2341 FalseOp = 2; 2342 Cond.push_back(MI.getOperand(3)); 2343 Cond.push_back(MI.getOperand(4)); 2344 // We can always fold a def. 2345 Optimizable = true; 2346 return false; 2347 } 2348 2349 MachineInstr * 2350 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI, 2351 SmallPtrSetImpl<MachineInstr *> &SeenMIs, 2352 bool PreferFalse) const { 2353 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && 2354 "Unknown select instruction"); 2355 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 2356 MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this); 2357 bool Invert = !DefMI; 2358 if (!DefMI) 2359 DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this); 2360 if (!DefMI) 2361 return nullptr; 2362 2363 // Find new register class to use. 2364 MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1); 2365 MachineOperand TrueReg = MI.getOperand(Invert ? 1 : 2); 2366 Register DestReg = MI.getOperand(0).getReg(); 2367 const TargetRegisterClass *FalseClass = MRI.getRegClass(FalseReg.getReg()); 2368 const TargetRegisterClass *TrueClass = MRI.getRegClass(TrueReg.getReg()); 2369 if (!MRI.constrainRegClass(DestReg, FalseClass)) 2370 return nullptr; 2371 if (!MRI.constrainRegClass(DestReg, TrueClass)) 2372 return nullptr; 2373 2374 // Create a new predicated version of DefMI. 2375 // Rfalse is the first use. 2376 MachineInstrBuilder NewMI = 2377 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg); 2378 2379 // Copy all the DefMI operands, excluding its (null) predicate. 2380 const MCInstrDesc &DefDesc = DefMI->getDesc(); 2381 for (unsigned i = 1, e = DefDesc.getNumOperands(); 2382 i != e && !DefDesc.OpInfo[i].isPredicate(); ++i) 2383 NewMI.add(DefMI->getOperand(i)); 2384 2385 unsigned CondCode = MI.getOperand(3).getImm(); 2386 if (Invert) 2387 NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode))); 2388 else 2389 NewMI.addImm(CondCode); 2390 NewMI.add(MI.getOperand(4)); 2391 2392 // DefMI is not the -S version that sets CPSR, so add an optional %noreg. 2393 if (NewMI->hasOptionalDef()) 2394 NewMI.add(condCodeOp()); 2395 2396 // The output register value when the predicate is false is an implicit 2397 // register operand tied to the first def. 2398 // The tie makes the register allocator ensure the FalseReg is allocated the 2399 // same register as operand 0. 2400 FalseReg.setImplicit(); 2401 NewMI.add(FalseReg); 2402 NewMI->tieOperands(0, NewMI->getNumOperands() - 1); 2403 2404 // Update SeenMIs set: register newly created MI and erase removed DefMI. 2405 SeenMIs.insert(NewMI); 2406 SeenMIs.erase(DefMI); 2407 2408 // If MI is inside a loop, and DefMI is outside the loop, then kill flags on 2409 // DefMI would be invalid when tranferred inside the loop. Checking for a 2410 // loop is expensive, but at least remove kill flags if they are in different 2411 // BBs. 2412 if (DefMI->getParent() != MI.getParent()) 2413 NewMI->clearKillInfo(); 2414 2415 // The caller will erase MI, but not DefMI. 2416 DefMI->eraseFromParent(); 2417 return NewMI; 2418 } 2419 2420 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the 2421 /// instruction is encoded with an 'S' bit is determined by the optional CPSR 2422 /// def operand. 2423 /// 2424 /// This will go away once we can teach tblgen how to set the optional CPSR def 2425 /// operand itself. 2426 struct AddSubFlagsOpcodePair { 2427 uint16_t PseudoOpc; 2428 uint16_t MachineOpc; 2429 }; 2430 2431 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = { 2432 {ARM::ADDSri, ARM::ADDri}, 2433 {ARM::ADDSrr, ARM::ADDrr}, 2434 {ARM::ADDSrsi, ARM::ADDrsi}, 2435 {ARM::ADDSrsr, ARM::ADDrsr}, 2436 2437 {ARM::SUBSri, ARM::SUBri}, 2438 {ARM::SUBSrr, ARM::SUBrr}, 2439 {ARM::SUBSrsi, ARM::SUBrsi}, 2440 {ARM::SUBSrsr, ARM::SUBrsr}, 2441 2442 {ARM::RSBSri, ARM::RSBri}, 2443 {ARM::RSBSrsi, ARM::RSBrsi}, 2444 {ARM::RSBSrsr, ARM::RSBrsr}, 2445 2446 {ARM::tADDSi3, ARM::tADDi3}, 2447 {ARM::tADDSi8, ARM::tADDi8}, 2448 {ARM::tADDSrr, ARM::tADDrr}, 2449 {ARM::tADCS, ARM::tADC}, 2450 2451 {ARM::tSUBSi3, ARM::tSUBi3}, 2452 {ARM::tSUBSi8, ARM::tSUBi8}, 2453 {ARM::tSUBSrr, ARM::tSUBrr}, 2454 {ARM::tSBCS, ARM::tSBC}, 2455 {ARM::tRSBS, ARM::tRSB}, 2456 {ARM::tLSLSri, ARM::tLSLri}, 2457 2458 {ARM::t2ADDSri, ARM::t2ADDri}, 2459 {ARM::t2ADDSrr, ARM::t2ADDrr}, 2460 {ARM::t2ADDSrs, ARM::t2ADDrs}, 2461 2462 {ARM::t2SUBSri, ARM::t2SUBri}, 2463 {ARM::t2SUBSrr, ARM::t2SUBrr}, 2464 {ARM::t2SUBSrs, ARM::t2SUBrs}, 2465 2466 {ARM::t2RSBSri, ARM::t2RSBri}, 2467 {ARM::t2RSBSrs, ARM::t2RSBrs}, 2468 }; 2469 2470 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) { 2471 for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i) 2472 if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc) 2473 return AddSubFlagsOpcodeMap[i].MachineOpc; 2474 return 0; 2475 } 2476 2477 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB, 2478 MachineBasicBlock::iterator &MBBI, 2479 const DebugLoc &dl, Register DestReg, 2480 Register BaseReg, int NumBytes, 2481 ARMCC::CondCodes Pred, Register PredReg, 2482 const ARMBaseInstrInfo &TII, 2483 unsigned MIFlags) { 2484 if (NumBytes == 0 && DestReg != BaseReg) { 2485 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg) 2486 .addReg(BaseReg, RegState::Kill) 2487 .add(predOps(Pred, PredReg)) 2488 .add(condCodeOp()) 2489 .setMIFlags(MIFlags); 2490 return; 2491 } 2492 2493 bool isSub = NumBytes < 0; 2494 if (isSub) NumBytes = -NumBytes; 2495 2496 while (NumBytes) { 2497 unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes); 2498 unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt); 2499 assert(ThisVal && "Didn't extract field correctly"); 2500 2501 // We will handle these bits from offset, clear them. 2502 NumBytes &= ~ThisVal; 2503 2504 assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?"); 2505 2506 // Build the new ADD / SUB. 2507 unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri; 2508 BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) 2509 .addReg(BaseReg, RegState::Kill) 2510 .addImm(ThisVal) 2511 .add(predOps(Pred, PredReg)) 2512 .add(condCodeOp()) 2513 .setMIFlags(MIFlags); 2514 BaseReg = DestReg; 2515 } 2516 } 2517 2518 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget, 2519 MachineFunction &MF, MachineInstr *MI, 2520 unsigned NumBytes) { 2521 // This optimisation potentially adds lots of load and store 2522 // micro-operations, it's only really a great benefit to code-size. 2523 if (!Subtarget.hasMinSize()) 2524 return false; 2525 2526 // If only one register is pushed/popped, LLVM can use an LDR/STR 2527 // instead. We can't modify those so make sure we're dealing with an 2528 // instruction we understand. 2529 bool IsPop = isPopOpcode(MI->getOpcode()); 2530 bool IsPush = isPushOpcode(MI->getOpcode()); 2531 if (!IsPush && !IsPop) 2532 return false; 2533 2534 bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD || 2535 MI->getOpcode() == ARM::VLDMDIA_UPD; 2536 bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH || 2537 MI->getOpcode() == ARM::tPOP || 2538 MI->getOpcode() == ARM::tPOP_RET; 2539 2540 assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP && 2541 MI->getOperand(1).getReg() == ARM::SP)) && 2542 "trying to fold sp update into non-sp-updating push/pop"); 2543 2544 // The VFP push & pop act on D-registers, so we can only fold an adjustment 2545 // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try 2546 // if this is violated. 2547 if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0) 2548 return false; 2549 2550 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 2551 // pred) so the list starts at 4. Thumb1 starts after the predicate. 2552 int RegListIdx = IsT1PushPop ? 2 : 4; 2553 2554 // Calculate the space we'll need in terms of registers. 2555 unsigned RegsNeeded; 2556 const TargetRegisterClass *RegClass; 2557 if (IsVFPPushPop) { 2558 RegsNeeded = NumBytes / 8; 2559 RegClass = &ARM::DPRRegClass; 2560 } else { 2561 RegsNeeded = NumBytes / 4; 2562 RegClass = &ARM::GPRRegClass; 2563 } 2564 2565 // We're going to have to strip all list operands off before 2566 // re-adding them since the order matters, so save the existing ones 2567 // for later. 2568 SmallVector<MachineOperand, 4> RegList; 2569 2570 // We're also going to need the first register transferred by this 2571 // instruction, which won't necessarily be the first register in the list. 2572 unsigned FirstRegEnc = -1; 2573 2574 const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo(); 2575 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) { 2576 MachineOperand &MO = MI->getOperand(i); 2577 RegList.push_back(MO); 2578 2579 if (MO.isReg() && !MO.isImplicit() && 2580 TRI->getEncodingValue(MO.getReg()) < FirstRegEnc) 2581 FirstRegEnc = TRI->getEncodingValue(MO.getReg()); 2582 } 2583 2584 const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF); 2585 2586 // Now try to find enough space in the reglist to allocate NumBytes. 2587 for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded; 2588 --CurRegEnc) { 2589 unsigned CurReg = RegClass->getRegister(CurRegEnc); 2590 if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7)) 2591 continue; 2592 if (!IsPop) { 2593 // Pushing any register is completely harmless, mark the register involved 2594 // as undef since we don't care about its value and must not restore it 2595 // during stack unwinding. 2596 RegList.push_back(MachineOperand::CreateReg(CurReg, false, false, 2597 false, false, true)); 2598 --RegsNeeded; 2599 continue; 2600 } 2601 2602 // However, we can only pop an extra register if it's not live. For 2603 // registers live within the function we might clobber a return value 2604 // register; the other way a register can be live here is if it's 2605 // callee-saved. 2606 if (isCalleeSavedRegister(CurReg, CSRegs) || 2607 MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) != 2608 MachineBasicBlock::LQR_Dead) { 2609 // VFP pops don't allow holes in the register list, so any skip is fatal 2610 // for our transformation. GPR pops do, so we should just keep looking. 2611 if (IsVFPPushPop) 2612 return false; 2613 else 2614 continue; 2615 } 2616 2617 // Mark the unimportant registers as <def,dead> in the POP. 2618 RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false, 2619 true)); 2620 --RegsNeeded; 2621 } 2622 2623 if (RegsNeeded > 0) 2624 return false; 2625 2626 // Finally we know we can profitably perform the optimisation so go 2627 // ahead: strip all existing registers off and add them back again 2628 // in the right order. 2629 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) 2630 MI->removeOperand(i); 2631 2632 // Add the complete list back in. 2633 MachineInstrBuilder MIB(MF, &*MI); 2634 for (const MachineOperand &MO : llvm::reverse(RegList)) 2635 MIB.add(MO); 2636 2637 return true; 2638 } 2639 2640 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx, 2641 Register FrameReg, int &Offset, 2642 const ARMBaseInstrInfo &TII) { 2643 unsigned Opcode = MI.getOpcode(); 2644 const MCInstrDesc &Desc = MI.getDesc(); 2645 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); 2646 bool isSub = false; 2647 2648 // Memory operands in inline assembly always use AddrMode2. 2649 if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR) 2650 AddrMode = ARMII::AddrMode2; 2651 2652 if (Opcode == ARM::ADDri) { 2653 Offset += MI.getOperand(FrameRegIdx+1).getImm(); 2654 if (Offset == 0) { 2655 // Turn it into a move. 2656 MI.setDesc(TII.get(ARM::MOVr)); 2657 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2658 MI.removeOperand(FrameRegIdx+1); 2659 Offset = 0; 2660 return true; 2661 } else if (Offset < 0) { 2662 Offset = -Offset; 2663 isSub = true; 2664 MI.setDesc(TII.get(ARM::SUBri)); 2665 } 2666 2667 // Common case: small offset, fits into instruction. 2668 if (ARM_AM::getSOImmVal(Offset) != -1) { 2669 // Replace the FrameIndex with sp / fp 2670 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2671 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); 2672 Offset = 0; 2673 return true; 2674 } 2675 2676 // Otherwise, pull as much of the immedidate into this ADDri/SUBri 2677 // as possible. 2678 unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset); 2679 unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt); 2680 2681 // We will handle these bits from offset, clear them. 2682 Offset &= ~ThisImmVal; 2683 2684 // Get the properly encoded SOImmVal field. 2685 assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 && 2686 "Bit extraction didn't work?"); 2687 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal); 2688 } else { 2689 unsigned ImmIdx = 0; 2690 int InstrOffs = 0; 2691 unsigned NumBits = 0; 2692 unsigned Scale = 1; 2693 switch (AddrMode) { 2694 case ARMII::AddrMode_i12: 2695 ImmIdx = FrameRegIdx + 1; 2696 InstrOffs = MI.getOperand(ImmIdx).getImm(); 2697 NumBits = 12; 2698 break; 2699 case ARMII::AddrMode2: 2700 ImmIdx = FrameRegIdx+2; 2701 InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm()); 2702 if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2703 InstrOffs *= -1; 2704 NumBits = 12; 2705 break; 2706 case ARMII::AddrMode3: 2707 ImmIdx = FrameRegIdx+2; 2708 InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm()); 2709 if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2710 InstrOffs *= -1; 2711 NumBits = 8; 2712 break; 2713 case ARMII::AddrMode4: 2714 case ARMII::AddrMode6: 2715 // Can't fold any offset even if it's zero. 2716 return false; 2717 case ARMII::AddrMode5: 2718 ImmIdx = FrameRegIdx+1; 2719 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2720 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2721 InstrOffs *= -1; 2722 NumBits = 8; 2723 Scale = 4; 2724 break; 2725 case ARMII::AddrMode5FP16: 2726 ImmIdx = FrameRegIdx+1; 2727 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2728 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2729 InstrOffs *= -1; 2730 NumBits = 8; 2731 Scale = 2; 2732 break; 2733 case ARMII::AddrModeT2_i7: 2734 case ARMII::AddrModeT2_i7s2: 2735 case ARMII::AddrModeT2_i7s4: 2736 ImmIdx = FrameRegIdx+1; 2737 InstrOffs = MI.getOperand(ImmIdx).getImm(); 2738 NumBits = 7; 2739 Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 : 2740 AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1); 2741 break; 2742 default: 2743 llvm_unreachable("Unsupported addressing mode!"); 2744 } 2745 2746 Offset += InstrOffs * Scale; 2747 assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!"); 2748 if (Offset < 0) { 2749 Offset = -Offset; 2750 isSub = true; 2751 } 2752 2753 // Attempt to fold address comp. if opcode has offset bits 2754 if (NumBits > 0) { 2755 // Common case: small offset, fits into instruction. 2756 MachineOperand &ImmOp = MI.getOperand(ImmIdx); 2757 int ImmedOffset = Offset / Scale; 2758 unsigned Mask = (1 << NumBits) - 1; 2759 if ((unsigned)Offset <= Mask * Scale) { 2760 // Replace the FrameIndex with sp 2761 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2762 // FIXME: When addrmode2 goes away, this will simplify (like the 2763 // T2 version), as the LDR.i12 versions don't need the encoding 2764 // tricks for the offset value. 2765 if (isSub) { 2766 if (AddrMode == ARMII::AddrMode_i12) 2767 ImmedOffset = -ImmedOffset; 2768 else 2769 ImmedOffset |= 1 << NumBits; 2770 } 2771 ImmOp.ChangeToImmediate(ImmedOffset); 2772 Offset = 0; 2773 return true; 2774 } 2775 2776 // Otherwise, it didn't fit. Pull in what we can to simplify the immed. 2777 ImmedOffset = ImmedOffset & Mask; 2778 if (isSub) { 2779 if (AddrMode == ARMII::AddrMode_i12) 2780 ImmedOffset = -ImmedOffset; 2781 else 2782 ImmedOffset |= 1 << NumBits; 2783 } 2784 ImmOp.ChangeToImmediate(ImmedOffset); 2785 Offset &= ~(Mask*Scale); 2786 } 2787 } 2788 2789 Offset = (isSub) ? -Offset : Offset; 2790 return Offset == 0; 2791 } 2792 2793 /// analyzeCompare - For a comparison instruction, return the source registers 2794 /// in SrcReg and SrcReg2 if having two register operands, and the value it 2795 /// compares against in CmpValue. Return true if the comparison instruction 2796 /// can be analyzed. 2797 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 2798 Register &SrcReg2, int64_t &CmpMask, 2799 int64_t &CmpValue) const { 2800 switch (MI.getOpcode()) { 2801 default: break; 2802 case ARM::CMPri: 2803 case ARM::t2CMPri: 2804 case ARM::tCMPi8: 2805 SrcReg = MI.getOperand(0).getReg(); 2806 SrcReg2 = 0; 2807 CmpMask = ~0; 2808 CmpValue = MI.getOperand(1).getImm(); 2809 return true; 2810 case ARM::CMPrr: 2811 case ARM::t2CMPrr: 2812 case ARM::tCMPr: 2813 SrcReg = MI.getOperand(0).getReg(); 2814 SrcReg2 = MI.getOperand(1).getReg(); 2815 CmpMask = ~0; 2816 CmpValue = 0; 2817 return true; 2818 case ARM::TSTri: 2819 case ARM::t2TSTri: 2820 SrcReg = MI.getOperand(0).getReg(); 2821 SrcReg2 = 0; 2822 CmpMask = MI.getOperand(1).getImm(); 2823 CmpValue = 0; 2824 return true; 2825 } 2826 2827 return false; 2828 } 2829 2830 /// isSuitableForMask - Identify a suitable 'and' instruction that 2831 /// operates on the given source register and applies the same mask 2832 /// as a 'tst' instruction. Provide a limited look-through for copies. 2833 /// When successful, MI will hold the found instruction. 2834 static bool isSuitableForMask(MachineInstr *&MI, Register SrcReg, 2835 int CmpMask, bool CommonUse) { 2836 switch (MI->getOpcode()) { 2837 case ARM::ANDri: 2838 case ARM::t2ANDri: 2839 if (CmpMask != MI->getOperand(2).getImm()) 2840 return false; 2841 if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg()) 2842 return true; 2843 break; 2844 } 2845 2846 return false; 2847 } 2848 2849 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return 2850 /// the condition code if we modify the instructions such that flags are 2851 /// set by ADD(a,b,X). 2852 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) { 2853 switch (CC) { 2854 default: return ARMCC::AL; 2855 case ARMCC::HS: return ARMCC::LO; 2856 case ARMCC::LO: return ARMCC::HS; 2857 case ARMCC::VS: return ARMCC::VS; 2858 case ARMCC::VC: return ARMCC::VC; 2859 } 2860 } 2861 2862 /// isRedundantFlagInstr - check whether the first instruction, whose only 2863 /// purpose is to update flags, can be made redundant. 2864 /// CMPrr can be made redundant by SUBrr if the operands are the same. 2865 /// CMPri can be made redundant by SUBri if the operands are the same. 2866 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X). 2867 /// This function can be extended later on. 2868 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI, 2869 Register SrcReg, Register SrcReg2, 2870 int64_t ImmValue, 2871 const MachineInstr *OI, 2872 bool &IsThumb1) { 2873 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && 2874 (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) && 2875 ((OI->getOperand(1).getReg() == SrcReg && 2876 OI->getOperand(2).getReg() == SrcReg2) || 2877 (OI->getOperand(1).getReg() == SrcReg2 && 2878 OI->getOperand(2).getReg() == SrcReg))) { 2879 IsThumb1 = false; 2880 return true; 2881 } 2882 2883 if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr && 2884 ((OI->getOperand(2).getReg() == SrcReg && 2885 OI->getOperand(3).getReg() == SrcReg2) || 2886 (OI->getOperand(2).getReg() == SrcReg2 && 2887 OI->getOperand(3).getReg() == SrcReg))) { 2888 IsThumb1 = true; 2889 return true; 2890 } 2891 2892 if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) && 2893 (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) && 2894 OI->getOperand(1).getReg() == SrcReg && 2895 OI->getOperand(2).getImm() == ImmValue) { 2896 IsThumb1 = false; 2897 return true; 2898 } 2899 2900 if (CmpI->getOpcode() == ARM::tCMPi8 && 2901 (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) && 2902 OI->getOperand(2).getReg() == SrcReg && 2903 OI->getOperand(3).getImm() == ImmValue) { 2904 IsThumb1 = true; 2905 return true; 2906 } 2907 2908 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && 2909 (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr || 2910 OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) && 2911 OI->getOperand(0).isReg() && OI->getOperand(1).isReg() && 2912 OI->getOperand(0).getReg() == SrcReg && 2913 OI->getOperand(1).getReg() == SrcReg2) { 2914 IsThumb1 = false; 2915 return true; 2916 } 2917 2918 if (CmpI->getOpcode() == ARM::tCMPr && 2919 (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 || 2920 OI->getOpcode() == ARM::tADDrr) && 2921 OI->getOperand(0).getReg() == SrcReg && 2922 OI->getOperand(2).getReg() == SrcReg2) { 2923 IsThumb1 = true; 2924 return true; 2925 } 2926 2927 return false; 2928 } 2929 2930 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) { 2931 switch (MI->getOpcode()) { 2932 default: return false; 2933 case ARM::tLSLri: 2934 case ARM::tLSRri: 2935 case ARM::tLSLrr: 2936 case ARM::tLSRrr: 2937 case ARM::tSUBrr: 2938 case ARM::tADDrr: 2939 case ARM::tADDi3: 2940 case ARM::tADDi8: 2941 case ARM::tSUBi3: 2942 case ARM::tSUBi8: 2943 case ARM::tMUL: 2944 case ARM::tADC: 2945 case ARM::tSBC: 2946 case ARM::tRSB: 2947 case ARM::tAND: 2948 case ARM::tORR: 2949 case ARM::tEOR: 2950 case ARM::tBIC: 2951 case ARM::tMVN: 2952 case ARM::tASRri: 2953 case ARM::tASRrr: 2954 case ARM::tROR: 2955 IsThumb1 = true; 2956 LLVM_FALLTHROUGH; 2957 case ARM::RSBrr: 2958 case ARM::RSBri: 2959 case ARM::RSCrr: 2960 case ARM::RSCri: 2961 case ARM::ADDrr: 2962 case ARM::ADDri: 2963 case ARM::ADCrr: 2964 case ARM::ADCri: 2965 case ARM::SUBrr: 2966 case ARM::SUBri: 2967 case ARM::SBCrr: 2968 case ARM::SBCri: 2969 case ARM::t2RSBri: 2970 case ARM::t2ADDrr: 2971 case ARM::t2ADDri: 2972 case ARM::t2ADCrr: 2973 case ARM::t2ADCri: 2974 case ARM::t2SUBrr: 2975 case ARM::t2SUBri: 2976 case ARM::t2SBCrr: 2977 case ARM::t2SBCri: 2978 case ARM::ANDrr: 2979 case ARM::ANDri: 2980 case ARM::t2ANDrr: 2981 case ARM::t2ANDri: 2982 case ARM::ORRrr: 2983 case ARM::ORRri: 2984 case ARM::t2ORRrr: 2985 case ARM::t2ORRri: 2986 case ARM::EORrr: 2987 case ARM::EORri: 2988 case ARM::t2EORrr: 2989 case ARM::t2EORri: 2990 case ARM::t2LSRri: 2991 case ARM::t2LSRrr: 2992 case ARM::t2LSLri: 2993 case ARM::t2LSLrr: 2994 return true; 2995 } 2996 } 2997 2998 /// optimizeCompareInstr - Convert the instruction supplying the argument to the 2999 /// comparison into one that sets the zero bit in the flags register; 3000 /// Remove a redundant Compare instruction if an earlier instruction can set the 3001 /// flags in the same way as Compare. 3002 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two 3003 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the 3004 /// condition code of instructions which use the flags. 3005 bool ARMBaseInstrInfo::optimizeCompareInstr( 3006 MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t CmpMask, 3007 int64_t CmpValue, const MachineRegisterInfo *MRI) const { 3008 // Get the unique definition of SrcReg. 3009 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 3010 if (!MI) return false; 3011 3012 // Masked compares sometimes use the same register as the corresponding 'and'. 3013 if (CmpMask != ~0) { 3014 if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) { 3015 MI = nullptr; 3016 for (MachineRegisterInfo::use_instr_iterator 3017 UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end(); 3018 UI != UE; ++UI) { 3019 if (UI->getParent() != CmpInstr.getParent()) 3020 continue; 3021 MachineInstr *PotentialAND = &*UI; 3022 if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) || 3023 isPredicated(*PotentialAND)) 3024 continue; 3025 MI = PotentialAND; 3026 break; 3027 } 3028 if (!MI) return false; 3029 } 3030 } 3031 3032 // Get ready to iterate backward from CmpInstr. 3033 MachineBasicBlock::iterator I = CmpInstr, E = MI, 3034 B = CmpInstr.getParent()->begin(); 3035 3036 // Early exit if CmpInstr is at the beginning of the BB. 3037 if (I == B) return false; 3038 3039 // There are two possible candidates which can be changed to set CPSR: 3040 // One is MI, the other is a SUB or ADD instruction. 3041 // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or 3042 // ADDr[ri](r1, r2, X). 3043 // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue). 3044 MachineInstr *SubAdd = nullptr; 3045 if (SrcReg2 != 0) 3046 // MI is not a candidate for CMPrr. 3047 MI = nullptr; 3048 else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) { 3049 // Conservatively refuse to convert an instruction which isn't in the same 3050 // BB as the comparison. 3051 // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate. 3052 // Thus we cannot return here. 3053 if (CmpInstr.getOpcode() == ARM::CMPri || 3054 CmpInstr.getOpcode() == ARM::t2CMPri || 3055 CmpInstr.getOpcode() == ARM::tCMPi8) 3056 MI = nullptr; 3057 else 3058 return false; 3059 } 3060 3061 bool IsThumb1 = false; 3062 if (MI && !isOptimizeCompareCandidate(MI, IsThumb1)) 3063 return false; 3064 3065 // We also want to do this peephole for cases like this: if (a*b == 0), 3066 // and optimise away the CMP instruction from the generated code sequence: 3067 // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values 3068 // resulting from the select instruction, but these MOVS instructions for 3069 // Thumb1 (V6M) are flag setting and are thus preventing this optimisation. 3070 // However, if we only have MOVS instructions in between the CMP and the 3071 // other instruction (the MULS in this example), then the CPSR is dead so we 3072 // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this 3073 // reordering and then continue the analysis hoping we can eliminate the 3074 // CMP. This peephole works on the vregs, so is still in SSA form. As a 3075 // consequence, the movs won't redefine/kill the MUL operands which would 3076 // make this reordering illegal. 3077 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3078 if (MI && IsThumb1) { 3079 --I; 3080 if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) { 3081 bool CanReorder = true; 3082 for (; I != E; --I) { 3083 if (I->getOpcode() != ARM::tMOVi8) { 3084 CanReorder = false; 3085 break; 3086 } 3087 } 3088 if (CanReorder) { 3089 MI = MI->removeFromParent(); 3090 E = CmpInstr; 3091 CmpInstr.getParent()->insert(E, MI); 3092 } 3093 } 3094 I = CmpInstr; 3095 E = MI; 3096 } 3097 3098 // Check that CPSR isn't set between the comparison instruction and the one we 3099 // want to change. At the same time, search for SubAdd. 3100 bool SubAddIsThumb1 = false; 3101 do { 3102 const MachineInstr &Instr = *--I; 3103 3104 // Check whether CmpInstr can be made redundant by the current instruction. 3105 if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr, 3106 SubAddIsThumb1)) { 3107 SubAdd = &*I; 3108 break; 3109 } 3110 3111 // Allow E (which was initially MI) to be SubAdd but do not search before E. 3112 if (I == E) 3113 break; 3114 3115 if (Instr.modifiesRegister(ARM::CPSR, TRI) || 3116 Instr.readsRegister(ARM::CPSR, TRI)) 3117 // This instruction modifies or uses CPSR after the one we want to 3118 // change. We can't do this transformation. 3119 return false; 3120 3121 if (I == B) { 3122 // In some cases, we scan the use-list of an instruction for an AND; 3123 // that AND is in the same BB, but may not be scheduled before the 3124 // corresponding TST. In that case, bail out. 3125 // 3126 // FIXME: We could try to reschedule the AND. 3127 return false; 3128 } 3129 } while (true); 3130 3131 // Return false if no candidates exist. 3132 if (!MI && !SubAdd) 3133 return false; 3134 3135 // If we found a SubAdd, use it as it will be closer to the CMP 3136 if (SubAdd) { 3137 MI = SubAdd; 3138 IsThumb1 = SubAddIsThumb1; 3139 } 3140 3141 // We can't use a predicated instruction - it doesn't always write the flags. 3142 if (isPredicated(*MI)) 3143 return false; 3144 3145 // Scan forward for the use of CPSR 3146 // When checking against MI: if it's a conditional code that requires 3147 // checking of the V bit or C bit, then this is not safe to do. 3148 // It is safe to remove CmpInstr if CPSR is redefined or killed. 3149 // If we are done with the basic block, we need to check whether CPSR is 3150 // live-out. 3151 SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4> 3152 OperandsToUpdate; 3153 bool isSafe = false; 3154 I = CmpInstr; 3155 E = CmpInstr.getParent()->end(); 3156 while (!isSafe && ++I != E) { 3157 const MachineInstr &Instr = *I; 3158 for (unsigned IO = 0, EO = Instr.getNumOperands(); 3159 !isSafe && IO != EO; ++IO) { 3160 const MachineOperand &MO = Instr.getOperand(IO); 3161 if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) { 3162 isSafe = true; 3163 break; 3164 } 3165 if (!MO.isReg() || MO.getReg() != ARM::CPSR) 3166 continue; 3167 if (MO.isDef()) { 3168 isSafe = true; 3169 break; 3170 } 3171 // Condition code is after the operand before CPSR except for VSELs. 3172 ARMCC::CondCodes CC; 3173 bool IsInstrVSel = true; 3174 switch (Instr.getOpcode()) { 3175 default: 3176 IsInstrVSel = false; 3177 CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm(); 3178 break; 3179 case ARM::VSELEQD: 3180 case ARM::VSELEQS: 3181 case ARM::VSELEQH: 3182 CC = ARMCC::EQ; 3183 break; 3184 case ARM::VSELGTD: 3185 case ARM::VSELGTS: 3186 case ARM::VSELGTH: 3187 CC = ARMCC::GT; 3188 break; 3189 case ARM::VSELGED: 3190 case ARM::VSELGES: 3191 case ARM::VSELGEH: 3192 CC = ARMCC::GE; 3193 break; 3194 case ARM::VSELVSD: 3195 case ARM::VSELVSS: 3196 case ARM::VSELVSH: 3197 CC = ARMCC::VS; 3198 break; 3199 } 3200 3201 if (SubAdd) { 3202 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based 3203 // on CMP needs to be updated to be based on SUB. 3204 // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also 3205 // needs to be modified. 3206 // Push the condition code operands to OperandsToUpdate. 3207 // If it is safe to remove CmpInstr, the condition code of these 3208 // operands will be modified. 3209 unsigned Opc = SubAdd->getOpcode(); 3210 bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr || 3211 Opc == ARM::SUBri || Opc == ARM::t2SUBri || 3212 Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 || 3213 Opc == ARM::tSUBi8; 3214 unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2; 3215 if (!IsSub || 3216 (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 && 3217 SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) { 3218 // VSel doesn't support condition code update. 3219 if (IsInstrVSel) 3220 return false; 3221 // Ensure we can swap the condition. 3222 ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC)); 3223 if (NewCC == ARMCC::AL) 3224 return false; 3225 OperandsToUpdate.push_back( 3226 std::make_pair(&((*I).getOperand(IO - 1)), NewCC)); 3227 } 3228 } else { 3229 // No SubAdd, so this is x = <op> y, z; cmp x, 0. 3230 switch (CC) { 3231 case ARMCC::EQ: // Z 3232 case ARMCC::NE: // Z 3233 case ARMCC::MI: // N 3234 case ARMCC::PL: // N 3235 case ARMCC::AL: // none 3236 // CPSR can be used multiple times, we should continue. 3237 break; 3238 case ARMCC::HS: // C 3239 case ARMCC::LO: // C 3240 case ARMCC::VS: // V 3241 case ARMCC::VC: // V 3242 case ARMCC::HI: // C Z 3243 case ARMCC::LS: // C Z 3244 case ARMCC::GE: // N V 3245 case ARMCC::LT: // N V 3246 case ARMCC::GT: // Z N V 3247 case ARMCC::LE: // Z N V 3248 // The instruction uses the V bit or C bit which is not safe. 3249 return false; 3250 } 3251 } 3252 } 3253 } 3254 3255 // If CPSR is not killed nor re-defined, we should check whether it is 3256 // live-out. If it is live-out, do not optimize. 3257 if (!isSafe) { 3258 MachineBasicBlock *MBB = CmpInstr.getParent(); 3259 for (MachineBasicBlock *Succ : MBB->successors()) 3260 if (Succ->isLiveIn(ARM::CPSR)) 3261 return false; 3262 } 3263 3264 // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always 3265 // set CPSR so this is represented as an explicit output) 3266 if (!IsThumb1) { 3267 MI->getOperand(5).setReg(ARM::CPSR); 3268 MI->getOperand(5).setIsDef(true); 3269 } 3270 assert(!isPredicated(*MI) && "Can't use flags from predicated instruction"); 3271 CmpInstr.eraseFromParent(); 3272 3273 // Modify the condition code of operands in OperandsToUpdate. 3274 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 3275 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 3276 for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++) 3277 OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second); 3278 3279 MI->clearRegisterDeads(ARM::CPSR); 3280 3281 return true; 3282 } 3283 3284 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const { 3285 // Do not sink MI if it might be used to optimize a redundant compare. 3286 // We heuristically only look at the instruction immediately following MI to 3287 // avoid potentially searching the entire basic block. 3288 if (isPredicated(MI)) 3289 return true; 3290 MachineBasicBlock::const_iterator Next = &MI; 3291 ++Next; 3292 Register SrcReg, SrcReg2; 3293 int64_t CmpMask, CmpValue; 3294 bool IsThumb1; 3295 if (Next != MI.getParent()->end() && 3296 analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) && 3297 isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1)) 3298 return false; 3299 return true; 3300 } 3301 3302 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 3303 Register Reg, 3304 MachineRegisterInfo *MRI) const { 3305 // Fold large immediates into add, sub, or, xor. 3306 unsigned DefOpc = DefMI.getOpcode(); 3307 if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm) 3308 return false; 3309 if (!DefMI.getOperand(1).isImm()) 3310 // Could be t2MOVi32imm @xx 3311 return false; 3312 3313 if (!MRI->hasOneNonDBGUse(Reg)) 3314 return false; 3315 3316 const MCInstrDesc &DefMCID = DefMI.getDesc(); 3317 if (DefMCID.hasOptionalDef()) { 3318 unsigned NumOps = DefMCID.getNumOperands(); 3319 const MachineOperand &MO = DefMI.getOperand(NumOps - 1); 3320 if (MO.getReg() == ARM::CPSR && !MO.isDead()) 3321 // If DefMI defines CPSR and it is not dead, it's obviously not safe 3322 // to delete DefMI. 3323 return false; 3324 } 3325 3326 const MCInstrDesc &UseMCID = UseMI.getDesc(); 3327 if (UseMCID.hasOptionalDef()) { 3328 unsigned NumOps = UseMCID.getNumOperands(); 3329 if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR) 3330 // If the instruction sets the flag, do not attempt this optimization 3331 // since it may change the semantics of the code. 3332 return false; 3333 } 3334 3335 unsigned UseOpc = UseMI.getOpcode(); 3336 unsigned NewUseOpc = 0; 3337 uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm(); 3338 uint32_t SOImmValV1 = 0, SOImmValV2 = 0; 3339 bool Commute = false; 3340 switch (UseOpc) { 3341 default: return false; 3342 case ARM::SUBrr: 3343 case ARM::ADDrr: 3344 case ARM::ORRrr: 3345 case ARM::EORrr: 3346 case ARM::t2SUBrr: 3347 case ARM::t2ADDrr: 3348 case ARM::t2ORRrr: 3349 case ARM::t2EORrr: { 3350 Commute = UseMI.getOperand(2).getReg() != Reg; 3351 switch (UseOpc) { 3352 default: break; 3353 case ARM::ADDrr: 3354 case ARM::SUBrr: 3355 if (UseOpc == ARM::SUBrr && Commute) 3356 return false; 3357 3358 // ADD/SUB are special because they're essentially the same operation, so 3359 // we can handle a larger range of immediates. 3360 if (ARM_AM::isSOImmTwoPartVal(ImmVal)) 3361 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri; 3362 else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) { 3363 ImmVal = -ImmVal; 3364 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri; 3365 } else 3366 return false; 3367 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 3368 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 3369 break; 3370 case ARM::ORRrr: 3371 case ARM::EORrr: 3372 if (!ARM_AM::isSOImmTwoPartVal(ImmVal)) 3373 return false; 3374 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 3375 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 3376 switch (UseOpc) { 3377 default: break; 3378 case ARM::ORRrr: NewUseOpc = ARM::ORRri; break; 3379 case ARM::EORrr: NewUseOpc = ARM::EORri; break; 3380 } 3381 break; 3382 case ARM::t2ADDrr: 3383 case ARM::t2SUBrr: { 3384 if (UseOpc == ARM::t2SUBrr && Commute) 3385 return false; 3386 3387 // ADD/SUB are special because they're essentially the same operation, so 3388 // we can handle a larger range of immediates. 3389 const bool ToSP = DefMI.getOperand(0).getReg() == ARM::SP; 3390 const unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri; 3391 const unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri; 3392 if (ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 3393 NewUseOpc = UseOpc == ARM::t2ADDrr ? t2ADD : t2SUB; 3394 else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) { 3395 ImmVal = -ImmVal; 3396 NewUseOpc = UseOpc == ARM::t2ADDrr ? t2SUB : t2ADD; 3397 } else 3398 return false; 3399 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 3400 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 3401 break; 3402 } 3403 case ARM::t2ORRrr: 3404 case ARM::t2EORrr: 3405 if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 3406 return false; 3407 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 3408 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 3409 switch (UseOpc) { 3410 default: break; 3411 case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break; 3412 case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break; 3413 } 3414 break; 3415 } 3416 } 3417 } 3418 3419 unsigned OpIdx = Commute ? 2 : 1; 3420 Register Reg1 = UseMI.getOperand(OpIdx).getReg(); 3421 bool isKill = UseMI.getOperand(OpIdx).isKill(); 3422 const TargetRegisterClass *TRC = MRI->getRegClass(Reg); 3423 Register NewReg = MRI->createVirtualRegister(TRC); 3424 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc), 3425 NewReg) 3426 .addReg(Reg1, getKillRegState(isKill)) 3427 .addImm(SOImmValV1) 3428 .add(predOps(ARMCC::AL)) 3429 .add(condCodeOp()); 3430 UseMI.setDesc(get(NewUseOpc)); 3431 UseMI.getOperand(1).setReg(NewReg); 3432 UseMI.getOperand(1).setIsKill(); 3433 UseMI.getOperand(2).ChangeToImmediate(SOImmValV2); 3434 DefMI.eraseFromParent(); 3435 // FIXME: t2ADDrr should be split, as different rulles apply when writing to SP. 3436 // Just as t2ADDri, that was split to [t2ADDri, t2ADDspImm]. 3437 // Then the below code will not be needed, as the input/output register 3438 // classes will be rgpr or gprSP. 3439 // For now, we fix the UseMI operand explicitly here: 3440 switch(NewUseOpc){ 3441 case ARM::t2ADDspImm: 3442 case ARM::t2SUBspImm: 3443 case ARM::t2ADDri: 3444 case ARM::t2SUBri: 3445 MRI->constrainRegClass(UseMI.getOperand(0).getReg(), TRC); 3446 } 3447 return true; 3448 } 3449 3450 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData, 3451 const MachineInstr &MI) { 3452 switch (MI.getOpcode()) { 3453 default: { 3454 const MCInstrDesc &Desc = MI.getDesc(); 3455 int UOps = ItinData->getNumMicroOps(Desc.getSchedClass()); 3456 assert(UOps >= 0 && "bad # UOps"); 3457 return UOps; 3458 } 3459 3460 case ARM::LDRrs: 3461 case ARM::LDRBrs: 3462 case ARM::STRrs: 3463 case ARM::STRBrs: { 3464 unsigned ShOpVal = MI.getOperand(3).getImm(); 3465 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3466 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3467 if (!isSub && 3468 (ShImm == 0 || 3469 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3470 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3471 return 1; 3472 return 2; 3473 } 3474 3475 case ARM::LDRH: 3476 case ARM::STRH: { 3477 if (!MI.getOperand(2).getReg()) 3478 return 1; 3479 3480 unsigned ShOpVal = MI.getOperand(3).getImm(); 3481 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3482 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3483 if (!isSub && 3484 (ShImm == 0 || 3485 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3486 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3487 return 1; 3488 return 2; 3489 } 3490 3491 case ARM::LDRSB: 3492 case ARM::LDRSH: 3493 return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2; 3494 3495 case ARM::LDRSB_POST: 3496 case ARM::LDRSH_POST: { 3497 Register Rt = MI.getOperand(0).getReg(); 3498 Register Rm = MI.getOperand(3).getReg(); 3499 return (Rt == Rm) ? 4 : 3; 3500 } 3501 3502 case ARM::LDR_PRE_REG: 3503 case ARM::LDRB_PRE_REG: { 3504 Register Rt = MI.getOperand(0).getReg(); 3505 Register Rm = MI.getOperand(3).getReg(); 3506 if (Rt == Rm) 3507 return 3; 3508 unsigned ShOpVal = MI.getOperand(4).getImm(); 3509 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3510 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3511 if (!isSub && 3512 (ShImm == 0 || 3513 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3514 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3515 return 2; 3516 return 3; 3517 } 3518 3519 case ARM::STR_PRE_REG: 3520 case ARM::STRB_PRE_REG: { 3521 unsigned ShOpVal = MI.getOperand(4).getImm(); 3522 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3523 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3524 if (!isSub && 3525 (ShImm == 0 || 3526 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3527 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3528 return 2; 3529 return 3; 3530 } 3531 3532 case ARM::LDRH_PRE: 3533 case ARM::STRH_PRE: { 3534 Register Rt = MI.getOperand(0).getReg(); 3535 Register Rm = MI.getOperand(3).getReg(); 3536 if (!Rm) 3537 return 2; 3538 if (Rt == Rm) 3539 return 3; 3540 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2; 3541 } 3542 3543 case ARM::LDR_POST_REG: 3544 case ARM::LDRB_POST_REG: 3545 case ARM::LDRH_POST: { 3546 Register Rt = MI.getOperand(0).getReg(); 3547 Register Rm = MI.getOperand(3).getReg(); 3548 return (Rt == Rm) ? 3 : 2; 3549 } 3550 3551 case ARM::LDR_PRE_IMM: 3552 case ARM::LDRB_PRE_IMM: 3553 case ARM::LDR_POST_IMM: 3554 case ARM::LDRB_POST_IMM: 3555 case ARM::STRB_POST_IMM: 3556 case ARM::STRB_POST_REG: 3557 case ARM::STRB_PRE_IMM: 3558 case ARM::STRH_POST: 3559 case ARM::STR_POST_IMM: 3560 case ARM::STR_POST_REG: 3561 case ARM::STR_PRE_IMM: 3562 return 2; 3563 3564 case ARM::LDRSB_PRE: 3565 case ARM::LDRSH_PRE: { 3566 Register Rm = MI.getOperand(3).getReg(); 3567 if (Rm == 0) 3568 return 3; 3569 Register Rt = MI.getOperand(0).getReg(); 3570 if (Rt == Rm) 3571 return 4; 3572 unsigned ShOpVal = MI.getOperand(4).getImm(); 3573 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3574 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3575 if (!isSub && 3576 (ShImm == 0 || 3577 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3578 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3579 return 3; 3580 return 4; 3581 } 3582 3583 case ARM::LDRD: { 3584 Register Rt = MI.getOperand(0).getReg(); 3585 Register Rn = MI.getOperand(2).getReg(); 3586 Register Rm = MI.getOperand(3).getReg(); 3587 if (Rm) 3588 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 3589 : 3; 3590 return (Rt == Rn) ? 3 : 2; 3591 } 3592 3593 case ARM::STRD: { 3594 Register Rm = MI.getOperand(3).getReg(); 3595 if (Rm) 3596 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 3597 : 3; 3598 return 2; 3599 } 3600 3601 case ARM::LDRD_POST: 3602 case ARM::t2LDRD_POST: 3603 return 3; 3604 3605 case ARM::STRD_POST: 3606 case ARM::t2STRD_POST: 3607 return 4; 3608 3609 case ARM::LDRD_PRE: { 3610 Register Rt = MI.getOperand(0).getReg(); 3611 Register Rn = MI.getOperand(3).getReg(); 3612 Register Rm = MI.getOperand(4).getReg(); 3613 if (Rm) 3614 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 3615 : 4; 3616 return (Rt == Rn) ? 4 : 3; 3617 } 3618 3619 case ARM::t2LDRD_PRE: { 3620 Register Rt = MI.getOperand(0).getReg(); 3621 Register Rn = MI.getOperand(3).getReg(); 3622 return (Rt == Rn) ? 4 : 3; 3623 } 3624 3625 case ARM::STRD_PRE: { 3626 Register Rm = MI.getOperand(4).getReg(); 3627 if (Rm) 3628 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 3629 : 4; 3630 return 3; 3631 } 3632 3633 case ARM::t2STRD_PRE: 3634 return 3; 3635 3636 case ARM::t2LDR_POST: 3637 case ARM::t2LDRB_POST: 3638 case ARM::t2LDRB_PRE: 3639 case ARM::t2LDRSBi12: 3640 case ARM::t2LDRSBi8: 3641 case ARM::t2LDRSBpci: 3642 case ARM::t2LDRSBs: 3643 case ARM::t2LDRH_POST: 3644 case ARM::t2LDRH_PRE: 3645 case ARM::t2LDRSBT: 3646 case ARM::t2LDRSB_POST: 3647 case ARM::t2LDRSB_PRE: 3648 case ARM::t2LDRSH_POST: 3649 case ARM::t2LDRSH_PRE: 3650 case ARM::t2LDRSHi12: 3651 case ARM::t2LDRSHi8: 3652 case ARM::t2LDRSHpci: 3653 case ARM::t2LDRSHs: 3654 return 2; 3655 3656 case ARM::t2LDRDi8: { 3657 Register Rt = MI.getOperand(0).getReg(); 3658 Register Rn = MI.getOperand(2).getReg(); 3659 return (Rt == Rn) ? 3 : 2; 3660 } 3661 3662 case ARM::t2STRB_POST: 3663 case ARM::t2STRB_PRE: 3664 case ARM::t2STRBs: 3665 case ARM::t2STRDi8: 3666 case ARM::t2STRH_POST: 3667 case ARM::t2STRH_PRE: 3668 case ARM::t2STRHs: 3669 case ARM::t2STR_POST: 3670 case ARM::t2STR_PRE: 3671 case ARM::t2STRs: 3672 return 2; 3673 } 3674 } 3675 3676 // Return the number of 32-bit words loaded by LDM or stored by STM. If this 3677 // can't be easily determined return 0 (missing MachineMemOperand). 3678 // 3679 // FIXME: The current MachineInstr design does not support relying on machine 3680 // mem operands to determine the width of a memory access. Instead, we expect 3681 // the target to provide this information based on the instruction opcode and 3682 // operands. However, using MachineMemOperand is the best solution now for 3683 // two reasons: 3684 // 3685 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI 3686 // operands. This is much more dangerous than using the MachineMemOperand 3687 // sizes because CodeGen passes can insert/remove optional machine operands. In 3688 // fact, it's totally incorrect for preRA passes and appears to be wrong for 3689 // postRA passes as well. 3690 // 3691 // 2) getNumLDMAddresses is only used by the scheduling machine model and any 3692 // machine model that calls this should handle the unknown (zero size) case. 3693 // 3694 // Long term, we should require a target hook that verifies MachineMemOperand 3695 // sizes during MC lowering. That target hook should be local to MC lowering 3696 // because we can't ensure that it is aware of other MI forms. Doing this will 3697 // ensure that MachineMemOperands are correctly propagated through all passes. 3698 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const { 3699 unsigned Size = 0; 3700 for (MachineInstr::mmo_iterator I = MI.memoperands_begin(), 3701 E = MI.memoperands_end(); 3702 I != E; ++I) { 3703 Size += (*I)->getSize(); 3704 } 3705 // FIXME: The scheduler currently can't handle values larger than 16. But 3706 // the values can actually go up to 32 for floating-point load/store 3707 // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory 3708 // operations isn't right; we could end up with "extra" memory operands for 3709 // various reasons, like tail merge merging two memory operations. 3710 return std::min(Size / 4, 16U); 3711 } 3712 3713 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc, 3714 unsigned NumRegs) { 3715 unsigned UOps = 1 + NumRegs; // 1 for address computation. 3716 switch (Opc) { 3717 default: 3718 break; 3719 case ARM::VLDMDIA_UPD: 3720 case ARM::VLDMDDB_UPD: 3721 case ARM::VLDMSIA_UPD: 3722 case ARM::VLDMSDB_UPD: 3723 case ARM::VSTMDIA_UPD: 3724 case ARM::VSTMDDB_UPD: 3725 case ARM::VSTMSIA_UPD: 3726 case ARM::VSTMSDB_UPD: 3727 case ARM::LDMIA_UPD: 3728 case ARM::LDMDA_UPD: 3729 case ARM::LDMDB_UPD: 3730 case ARM::LDMIB_UPD: 3731 case ARM::STMIA_UPD: 3732 case ARM::STMDA_UPD: 3733 case ARM::STMDB_UPD: 3734 case ARM::STMIB_UPD: 3735 case ARM::tLDMIA_UPD: 3736 case ARM::tSTMIA_UPD: 3737 case ARM::t2LDMIA_UPD: 3738 case ARM::t2LDMDB_UPD: 3739 case ARM::t2STMIA_UPD: 3740 case ARM::t2STMDB_UPD: 3741 ++UOps; // One for base register writeback. 3742 break; 3743 case ARM::LDMIA_RET: 3744 case ARM::tPOP_RET: 3745 case ARM::t2LDMIA_RET: 3746 UOps += 2; // One for base reg wb, one for write to pc. 3747 break; 3748 } 3749 return UOps; 3750 } 3751 3752 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 3753 const MachineInstr &MI) const { 3754 if (!ItinData || ItinData->isEmpty()) 3755 return 1; 3756 3757 const MCInstrDesc &Desc = MI.getDesc(); 3758 unsigned Class = Desc.getSchedClass(); 3759 int ItinUOps = ItinData->getNumMicroOps(Class); 3760 if (ItinUOps >= 0) { 3761 if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore())) 3762 return getNumMicroOpsSwiftLdSt(ItinData, MI); 3763 3764 return ItinUOps; 3765 } 3766 3767 unsigned Opc = MI.getOpcode(); 3768 switch (Opc) { 3769 default: 3770 llvm_unreachable("Unexpected multi-uops instruction!"); 3771 case ARM::VLDMQIA: 3772 case ARM::VSTMQIA: 3773 return 2; 3774 3775 // The number of uOps for load / store multiple are determined by the number 3776 // registers. 3777 // 3778 // On Cortex-A8, each pair of register loads / stores can be scheduled on the 3779 // same cycle. The scheduling for the first load / store must be done 3780 // separately by assuming the address is not 64-bit aligned. 3781 // 3782 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address 3783 // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON 3784 // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1. 3785 case ARM::VLDMDIA: 3786 case ARM::VLDMDIA_UPD: 3787 case ARM::VLDMDDB_UPD: 3788 case ARM::VLDMSIA: 3789 case ARM::VLDMSIA_UPD: 3790 case ARM::VLDMSDB_UPD: 3791 case ARM::VSTMDIA: 3792 case ARM::VSTMDIA_UPD: 3793 case ARM::VSTMDDB_UPD: 3794 case ARM::VSTMSIA: 3795 case ARM::VSTMSIA_UPD: 3796 case ARM::VSTMSDB_UPD: { 3797 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands(); 3798 return (NumRegs / 2) + (NumRegs % 2) + 1; 3799 } 3800 3801 case ARM::LDMIA_RET: 3802 case ARM::LDMIA: 3803 case ARM::LDMDA: 3804 case ARM::LDMDB: 3805 case ARM::LDMIB: 3806 case ARM::LDMIA_UPD: 3807 case ARM::LDMDA_UPD: 3808 case ARM::LDMDB_UPD: 3809 case ARM::LDMIB_UPD: 3810 case ARM::STMIA: 3811 case ARM::STMDA: 3812 case ARM::STMDB: 3813 case ARM::STMIB: 3814 case ARM::STMIA_UPD: 3815 case ARM::STMDA_UPD: 3816 case ARM::STMDB_UPD: 3817 case ARM::STMIB_UPD: 3818 case ARM::tLDMIA: 3819 case ARM::tLDMIA_UPD: 3820 case ARM::tSTMIA_UPD: 3821 case ARM::tPOP_RET: 3822 case ARM::tPOP: 3823 case ARM::tPUSH: 3824 case ARM::t2LDMIA_RET: 3825 case ARM::t2LDMIA: 3826 case ARM::t2LDMDB: 3827 case ARM::t2LDMIA_UPD: 3828 case ARM::t2LDMDB_UPD: 3829 case ARM::t2STMIA: 3830 case ARM::t2STMDB: 3831 case ARM::t2STMIA_UPD: 3832 case ARM::t2STMDB_UPD: { 3833 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1; 3834 switch (Subtarget.getLdStMultipleTiming()) { 3835 case ARMSubtarget::SingleIssuePlusExtras: 3836 return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs); 3837 case ARMSubtarget::SingleIssue: 3838 // Assume the worst. 3839 return NumRegs; 3840 case ARMSubtarget::DoubleIssue: { 3841 if (NumRegs < 4) 3842 return 2; 3843 // 4 registers would be issued: 2, 2. 3844 // 5 registers would be issued: 2, 2, 1. 3845 unsigned UOps = (NumRegs / 2); 3846 if (NumRegs % 2) 3847 ++UOps; 3848 return UOps; 3849 } 3850 case ARMSubtarget::DoubleIssueCheckUnalignedAccess: { 3851 unsigned UOps = (NumRegs / 2); 3852 // If there are odd number of registers or if it's not 64-bit aligned, 3853 // then it takes an extra AGU (Address Generation Unit) cycle. 3854 if ((NumRegs % 2) || !MI.hasOneMemOperand() || 3855 (*MI.memoperands_begin())->getAlign() < Align(8)) 3856 ++UOps; 3857 return UOps; 3858 } 3859 } 3860 } 3861 } 3862 llvm_unreachable("Didn't find the number of microops"); 3863 } 3864 3865 int 3866 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData, 3867 const MCInstrDesc &DefMCID, 3868 unsigned DefClass, 3869 unsigned DefIdx, unsigned DefAlign) const { 3870 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3871 if (RegNo <= 0) 3872 // Def is the address writeback. 3873 return ItinData->getOperandCycle(DefClass, DefIdx); 3874 3875 int DefCycle; 3876 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3877 // (regno / 2) + (regno % 2) + 1 3878 DefCycle = RegNo / 2 + 1; 3879 if (RegNo % 2) 3880 ++DefCycle; 3881 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3882 DefCycle = RegNo; 3883 bool isSLoad = false; 3884 3885 switch (DefMCID.getOpcode()) { 3886 default: break; 3887 case ARM::VLDMSIA: 3888 case ARM::VLDMSIA_UPD: 3889 case ARM::VLDMSDB_UPD: 3890 isSLoad = true; 3891 break; 3892 } 3893 3894 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3895 // then it takes an extra cycle. 3896 if ((isSLoad && (RegNo % 2)) || DefAlign < 8) 3897 ++DefCycle; 3898 } else { 3899 // Assume the worst. 3900 DefCycle = RegNo + 2; 3901 } 3902 3903 return DefCycle; 3904 } 3905 3906 int 3907 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData, 3908 const MCInstrDesc &DefMCID, 3909 unsigned DefClass, 3910 unsigned DefIdx, unsigned DefAlign) const { 3911 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3912 if (RegNo <= 0) 3913 // Def is the address writeback. 3914 return ItinData->getOperandCycle(DefClass, DefIdx); 3915 3916 int DefCycle; 3917 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3918 // 4 registers would be issued: 1, 2, 1. 3919 // 5 registers would be issued: 1, 2, 2. 3920 DefCycle = RegNo / 2; 3921 if (DefCycle < 1) 3922 DefCycle = 1; 3923 // Result latency is issue cycle + 2: E2. 3924 DefCycle += 2; 3925 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3926 DefCycle = (RegNo / 2); 3927 // If there are odd number of registers or if it's not 64-bit aligned, 3928 // then it takes an extra AGU (Address Generation Unit) cycle. 3929 if ((RegNo % 2) || DefAlign < 8) 3930 ++DefCycle; 3931 // Result latency is AGU cycles + 2. 3932 DefCycle += 2; 3933 } else { 3934 // Assume the worst. 3935 DefCycle = RegNo + 2; 3936 } 3937 3938 return DefCycle; 3939 } 3940 3941 int 3942 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData, 3943 const MCInstrDesc &UseMCID, 3944 unsigned UseClass, 3945 unsigned UseIdx, unsigned UseAlign) const { 3946 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3947 if (RegNo <= 0) 3948 return ItinData->getOperandCycle(UseClass, UseIdx); 3949 3950 int UseCycle; 3951 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3952 // (regno / 2) + (regno % 2) + 1 3953 UseCycle = RegNo / 2 + 1; 3954 if (RegNo % 2) 3955 ++UseCycle; 3956 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3957 UseCycle = RegNo; 3958 bool isSStore = false; 3959 3960 switch (UseMCID.getOpcode()) { 3961 default: break; 3962 case ARM::VSTMSIA: 3963 case ARM::VSTMSIA_UPD: 3964 case ARM::VSTMSDB_UPD: 3965 isSStore = true; 3966 break; 3967 } 3968 3969 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3970 // then it takes an extra cycle. 3971 if ((isSStore && (RegNo % 2)) || UseAlign < 8) 3972 ++UseCycle; 3973 } else { 3974 // Assume the worst. 3975 UseCycle = RegNo + 2; 3976 } 3977 3978 return UseCycle; 3979 } 3980 3981 int 3982 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData, 3983 const MCInstrDesc &UseMCID, 3984 unsigned UseClass, 3985 unsigned UseIdx, unsigned UseAlign) const { 3986 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3987 if (RegNo <= 0) 3988 return ItinData->getOperandCycle(UseClass, UseIdx); 3989 3990 int UseCycle; 3991 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3992 UseCycle = RegNo / 2; 3993 if (UseCycle < 2) 3994 UseCycle = 2; 3995 // Read in E3. 3996 UseCycle += 2; 3997 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3998 UseCycle = (RegNo / 2); 3999 // If there are odd number of registers or if it's not 64-bit aligned, 4000 // then it takes an extra AGU (Address Generation Unit) cycle. 4001 if ((RegNo % 2) || UseAlign < 8) 4002 ++UseCycle; 4003 } else { 4004 // Assume the worst. 4005 UseCycle = 1; 4006 } 4007 return UseCycle; 4008 } 4009 4010 int 4011 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4012 const MCInstrDesc &DefMCID, 4013 unsigned DefIdx, unsigned DefAlign, 4014 const MCInstrDesc &UseMCID, 4015 unsigned UseIdx, unsigned UseAlign) const { 4016 unsigned DefClass = DefMCID.getSchedClass(); 4017 unsigned UseClass = UseMCID.getSchedClass(); 4018 4019 if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands()) 4020 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 4021 4022 // This may be a def / use of a variable_ops instruction, the operand 4023 // latency might be determinable dynamically. Let the target try to 4024 // figure it out. 4025 int DefCycle = -1; 4026 bool LdmBypass = false; 4027 switch (DefMCID.getOpcode()) { 4028 default: 4029 DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 4030 break; 4031 4032 case ARM::VLDMDIA: 4033 case ARM::VLDMDIA_UPD: 4034 case ARM::VLDMDDB_UPD: 4035 case ARM::VLDMSIA: 4036 case ARM::VLDMSIA_UPD: 4037 case ARM::VLDMSDB_UPD: 4038 DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 4039 break; 4040 4041 case ARM::LDMIA_RET: 4042 case ARM::LDMIA: 4043 case ARM::LDMDA: 4044 case ARM::LDMDB: 4045 case ARM::LDMIB: 4046 case ARM::LDMIA_UPD: 4047 case ARM::LDMDA_UPD: 4048 case ARM::LDMDB_UPD: 4049 case ARM::LDMIB_UPD: 4050 case ARM::tLDMIA: 4051 case ARM::tLDMIA_UPD: 4052 case ARM::tPUSH: 4053 case ARM::t2LDMIA_RET: 4054 case ARM::t2LDMIA: 4055 case ARM::t2LDMDB: 4056 case ARM::t2LDMIA_UPD: 4057 case ARM::t2LDMDB_UPD: 4058 LdmBypass = true; 4059 DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 4060 break; 4061 } 4062 4063 if (DefCycle == -1) 4064 // We can't seem to determine the result latency of the def, assume it's 2. 4065 DefCycle = 2; 4066 4067 int UseCycle = -1; 4068 switch (UseMCID.getOpcode()) { 4069 default: 4070 UseCycle = ItinData->getOperandCycle(UseClass, UseIdx); 4071 break; 4072 4073 case ARM::VSTMDIA: 4074 case ARM::VSTMDIA_UPD: 4075 case ARM::VSTMDDB_UPD: 4076 case ARM::VSTMSIA: 4077 case ARM::VSTMSIA_UPD: 4078 case ARM::VSTMSDB_UPD: 4079 UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 4080 break; 4081 4082 case ARM::STMIA: 4083 case ARM::STMDA: 4084 case ARM::STMDB: 4085 case ARM::STMIB: 4086 case ARM::STMIA_UPD: 4087 case ARM::STMDA_UPD: 4088 case ARM::STMDB_UPD: 4089 case ARM::STMIB_UPD: 4090 case ARM::tSTMIA_UPD: 4091 case ARM::tPOP_RET: 4092 case ARM::tPOP: 4093 case ARM::t2STMIA: 4094 case ARM::t2STMDB: 4095 case ARM::t2STMIA_UPD: 4096 case ARM::t2STMDB_UPD: 4097 UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 4098 break; 4099 } 4100 4101 if (UseCycle == -1) 4102 // Assume it's read in the first stage. 4103 UseCycle = 1; 4104 4105 UseCycle = DefCycle - UseCycle + 1; 4106 if (UseCycle > 0) { 4107 if (LdmBypass) { 4108 // It's a variable_ops instruction so we can't use DefIdx here. Just use 4109 // first def operand. 4110 if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1, 4111 UseClass, UseIdx)) 4112 --UseCycle; 4113 } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx, 4114 UseClass, UseIdx)) { 4115 --UseCycle; 4116 } 4117 } 4118 4119 return UseCycle; 4120 } 4121 4122 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI, 4123 const MachineInstr *MI, unsigned Reg, 4124 unsigned &DefIdx, unsigned &Dist) { 4125 Dist = 0; 4126 4127 MachineBasicBlock::const_iterator I = MI; ++I; 4128 MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator()); 4129 assert(II->isInsideBundle() && "Empty bundle?"); 4130 4131 int Idx = -1; 4132 while (II->isInsideBundle()) { 4133 Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI); 4134 if (Idx != -1) 4135 break; 4136 --II; 4137 ++Dist; 4138 } 4139 4140 assert(Idx != -1 && "Cannot find bundled definition!"); 4141 DefIdx = Idx; 4142 return &*II; 4143 } 4144 4145 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI, 4146 const MachineInstr &MI, unsigned Reg, 4147 unsigned &UseIdx, unsigned &Dist) { 4148 Dist = 0; 4149 4150 MachineBasicBlock::const_instr_iterator II = ++MI.getIterator(); 4151 assert(II->isInsideBundle() && "Empty bundle?"); 4152 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 4153 4154 // FIXME: This doesn't properly handle multiple uses. 4155 int Idx = -1; 4156 while (II != E && II->isInsideBundle()) { 4157 Idx = II->findRegisterUseOperandIdx(Reg, false, TRI); 4158 if (Idx != -1) 4159 break; 4160 if (II->getOpcode() != ARM::t2IT) 4161 ++Dist; 4162 ++II; 4163 } 4164 4165 if (Idx == -1) { 4166 Dist = 0; 4167 return nullptr; 4168 } 4169 4170 UseIdx = Idx; 4171 return &*II; 4172 } 4173 4174 /// Return the number of cycles to add to (or subtract from) the static 4175 /// itinerary based on the def opcode and alignment. The caller will ensure that 4176 /// adjusted latency is at least one cycle. 4177 static int adjustDefLatency(const ARMSubtarget &Subtarget, 4178 const MachineInstr &DefMI, 4179 const MCInstrDesc &DefMCID, unsigned DefAlign) { 4180 int Adjust = 0; 4181 if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) { 4182 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 4183 // variants are one cycle cheaper. 4184 switch (DefMCID.getOpcode()) { 4185 default: break; 4186 case ARM::LDRrs: 4187 case ARM::LDRBrs: { 4188 unsigned ShOpVal = DefMI.getOperand(3).getImm(); 4189 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4190 if (ShImm == 0 || 4191 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4192 --Adjust; 4193 break; 4194 } 4195 case ARM::t2LDRs: 4196 case ARM::t2LDRBs: 4197 case ARM::t2LDRHs: 4198 case ARM::t2LDRSHs: { 4199 // Thumb2 mode: lsl only. 4200 unsigned ShAmt = DefMI.getOperand(3).getImm(); 4201 if (ShAmt == 0 || ShAmt == 2) 4202 --Adjust; 4203 break; 4204 } 4205 } 4206 } else if (Subtarget.isSwift()) { 4207 // FIXME: Properly handle all of the latency adjustments for address 4208 // writeback. 4209 switch (DefMCID.getOpcode()) { 4210 default: break; 4211 case ARM::LDRrs: 4212 case ARM::LDRBrs: { 4213 unsigned ShOpVal = DefMI.getOperand(3).getImm(); 4214 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 4215 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4216 if (!isSub && 4217 (ShImm == 0 || 4218 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 4219 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 4220 Adjust -= 2; 4221 else if (!isSub && 4222 ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 4223 --Adjust; 4224 break; 4225 } 4226 case ARM::t2LDRs: 4227 case ARM::t2LDRBs: 4228 case ARM::t2LDRHs: 4229 case ARM::t2LDRSHs: { 4230 // Thumb2 mode: lsl only. 4231 unsigned ShAmt = DefMI.getOperand(3).getImm(); 4232 if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3) 4233 Adjust -= 2; 4234 break; 4235 } 4236 } 4237 } 4238 4239 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) { 4240 switch (DefMCID.getOpcode()) { 4241 default: break; 4242 case ARM::VLD1q8: 4243 case ARM::VLD1q16: 4244 case ARM::VLD1q32: 4245 case ARM::VLD1q64: 4246 case ARM::VLD1q8wb_fixed: 4247 case ARM::VLD1q16wb_fixed: 4248 case ARM::VLD1q32wb_fixed: 4249 case ARM::VLD1q64wb_fixed: 4250 case ARM::VLD1q8wb_register: 4251 case ARM::VLD1q16wb_register: 4252 case ARM::VLD1q32wb_register: 4253 case ARM::VLD1q64wb_register: 4254 case ARM::VLD2d8: 4255 case ARM::VLD2d16: 4256 case ARM::VLD2d32: 4257 case ARM::VLD2q8: 4258 case ARM::VLD2q16: 4259 case ARM::VLD2q32: 4260 case ARM::VLD2d8wb_fixed: 4261 case ARM::VLD2d16wb_fixed: 4262 case ARM::VLD2d32wb_fixed: 4263 case ARM::VLD2q8wb_fixed: 4264 case ARM::VLD2q16wb_fixed: 4265 case ARM::VLD2q32wb_fixed: 4266 case ARM::VLD2d8wb_register: 4267 case ARM::VLD2d16wb_register: 4268 case ARM::VLD2d32wb_register: 4269 case ARM::VLD2q8wb_register: 4270 case ARM::VLD2q16wb_register: 4271 case ARM::VLD2q32wb_register: 4272 case ARM::VLD3d8: 4273 case ARM::VLD3d16: 4274 case ARM::VLD3d32: 4275 case ARM::VLD1d64T: 4276 case ARM::VLD3d8_UPD: 4277 case ARM::VLD3d16_UPD: 4278 case ARM::VLD3d32_UPD: 4279 case ARM::VLD1d64Twb_fixed: 4280 case ARM::VLD1d64Twb_register: 4281 case ARM::VLD3q8_UPD: 4282 case ARM::VLD3q16_UPD: 4283 case ARM::VLD3q32_UPD: 4284 case ARM::VLD4d8: 4285 case ARM::VLD4d16: 4286 case ARM::VLD4d32: 4287 case ARM::VLD1d64Q: 4288 case ARM::VLD4d8_UPD: 4289 case ARM::VLD4d16_UPD: 4290 case ARM::VLD4d32_UPD: 4291 case ARM::VLD1d64Qwb_fixed: 4292 case ARM::VLD1d64Qwb_register: 4293 case ARM::VLD4q8_UPD: 4294 case ARM::VLD4q16_UPD: 4295 case ARM::VLD4q32_UPD: 4296 case ARM::VLD1DUPq8: 4297 case ARM::VLD1DUPq16: 4298 case ARM::VLD1DUPq32: 4299 case ARM::VLD1DUPq8wb_fixed: 4300 case ARM::VLD1DUPq16wb_fixed: 4301 case ARM::VLD1DUPq32wb_fixed: 4302 case ARM::VLD1DUPq8wb_register: 4303 case ARM::VLD1DUPq16wb_register: 4304 case ARM::VLD1DUPq32wb_register: 4305 case ARM::VLD2DUPd8: 4306 case ARM::VLD2DUPd16: 4307 case ARM::VLD2DUPd32: 4308 case ARM::VLD2DUPd8wb_fixed: 4309 case ARM::VLD2DUPd16wb_fixed: 4310 case ARM::VLD2DUPd32wb_fixed: 4311 case ARM::VLD2DUPd8wb_register: 4312 case ARM::VLD2DUPd16wb_register: 4313 case ARM::VLD2DUPd32wb_register: 4314 case ARM::VLD4DUPd8: 4315 case ARM::VLD4DUPd16: 4316 case ARM::VLD4DUPd32: 4317 case ARM::VLD4DUPd8_UPD: 4318 case ARM::VLD4DUPd16_UPD: 4319 case ARM::VLD4DUPd32_UPD: 4320 case ARM::VLD1LNd8: 4321 case ARM::VLD1LNd16: 4322 case ARM::VLD1LNd32: 4323 case ARM::VLD1LNd8_UPD: 4324 case ARM::VLD1LNd16_UPD: 4325 case ARM::VLD1LNd32_UPD: 4326 case ARM::VLD2LNd8: 4327 case ARM::VLD2LNd16: 4328 case ARM::VLD2LNd32: 4329 case ARM::VLD2LNq16: 4330 case ARM::VLD2LNq32: 4331 case ARM::VLD2LNd8_UPD: 4332 case ARM::VLD2LNd16_UPD: 4333 case ARM::VLD2LNd32_UPD: 4334 case ARM::VLD2LNq16_UPD: 4335 case ARM::VLD2LNq32_UPD: 4336 case ARM::VLD4LNd8: 4337 case ARM::VLD4LNd16: 4338 case ARM::VLD4LNd32: 4339 case ARM::VLD4LNq16: 4340 case ARM::VLD4LNq32: 4341 case ARM::VLD4LNd8_UPD: 4342 case ARM::VLD4LNd16_UPD: 4343 case ARM::VLD4LNd32_UPD: 4344 case ARM::VLD4LNq16_UPD: 4345 case ARM::VLD4LNq32_UPD: 4346 // If the address is not 64-bit aligned, the latencies of these 4347 // instructions increases by one. 4348 ++Adjust; 4349 break; 4350 } 4351 } 4352 return Adjust; 4353 } 4354 4355 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4356 const MachineInstr &DefMI, 4357 unsigned DefIdx, 4358 const MachineInstr &UseMI, 4359 unsigned UseIdx) const { 4360 // No operand latency. The caller may fall back to getInstrLatency. 4361 if (!ItinData || ItinData->isEmpty()) 4362 return -1; 4363 4364 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 4365 Register Reg = DefMO.getReg(); 4366 4367 const MachineInstr *ResolvedDefMI = &DefMI; 4368 unsigned DefAdj = 0; 4369 if (DefMI.isBundle()) 4370 ResolvedDefMI = 4371 getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj); 4372 if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() || 4373 ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) { 4374 return 1; 4375 } 4376 4377 const MachineInstr *ResolvedUseMI = &UseMI; 4378 unsigned UseAdj = 0; 4379 if (UseMI.isBundle()) { 4380 ResolvedUseMI = 4381 getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj); 4382 if (!ResolvedUseMI) 4383 return -1; 4384 } 4385 4386 return getOperandLatencyImpl( 4387 ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO, 4388 Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj); 4389 } 4390 4391 int ARMBaseInstrInfo::getOperandLatencyImpl( 4392 const InstrItineraryData *ItinData, const MachineInstr &DefMI, 4393 unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj, 4394 const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI, 4395 unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const { 4396 if (Reg == ARM::CPSR) { 4397 if (DefMI.getOpcode() == ARM::FMSTAT) { 4398 // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?) 4399 return Subtarget.isLikeA9() ? 1 : 20; 4400 } 4401 4402 // CPSR set and branch can be paired in the same cycle. 4403 if (UseMI.isBranch()) 4404 return 0; 4405 4406 // Otherwise it takes the instruction latency (generally one). 4407 unsigned Latency = getInstrLatency(ItinData, DefMI); 4408 4409 // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to 4410 // its uses. Instructions which are otherwise scheduled between them may 4411 // incur a code size penalty (not able to use the CPSR setting 16-bit 4412 // instructions). 4413 if (Latency > 0 && Subtarget.isThumb2()) { 4414 const MachineFunction *MF = DefMI.getParent()->getParent(); 4415 // FIXME: Use Function::hasOptSize(). 4416 if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize)) 4417 --Latency; 4418 } 4419 return Latency; 4420 } 4421 4422 if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit()) 4423 return -1; 4424 4425 unsigned DefAlign = DefMI.hasOneMemOperand() 4426 ? (*DefMI.memoperands_begin())->getAlign().value() 4427 : 0; 4428 unsigned UseAlign = UseMI.hasOneMemOperand() 4429 ? (*UseMI.memoperands_begin())->getAlign().value() 4430 : 0; 4431 4432 // Get the itinerary's latency if possible, and handle variable_ops. 4433 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID, 4434 UseIdx, UseAlign); 4435 // Unable to find operand latency. The caller may resort to getInstrLatency. 4436 if (Latency < 0) 4437 return Latency; 4438 4439 // Adjust for IT block position. 4440 int Adj = DefAdj + UseAdj; 4441 4442 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4443 Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign); 4444 if (Adj >= 0 || (int)Latency > -Adj) { 4445 return Latency + Adj; 4446 } 4447 // Return the itinerary latency, which may be zero but not less than zero. 4448 return Latency; 4449 } 4450 4451 int 4452 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4453 SDNode *DefNode, unsigned DefIdx, 4454 SDNode *UseNode, unsigned UseIdx) const { 4455 if (!DefNode->isMachineOpcode()) 4456 return 1; 4457 4458 const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode()); 4459 4460 if (isZeroCost(DefMCID.Opcode)) 4461 return 0; 4462 4463 if (!ItinData || ItinData->isEmpty()) 4464 return DefMCID.mayLoad() ? 3 : 1; 4465 4466 if (!UseNode->isMachineOpcode()) { 4467 int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx); 4468 int Adj = Subtarget.getPreISelOperandLatencyAdjustment(); 4469 int Threshold = 1 + Adj; 4470 return Latency <= Threshold ? 1 : Latency - Adj; 4471 } 4472 4473 const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode()); 4474 auto *DefMN = cast<MachineSDNode>(DefNode); 4475 unsigned DefAlign = !DefMN->memoperands_empty() 4476 ? (*DefMN->memoperands_begin())->getAlign().value() 4477 : 0; 4478 auto *UseMN = cast<MachineSDNode>(UseNode); 4479 unsigned UseAlign = !UseMN->memoperands_empty() 4480 ? (*UseMN->memoperands_begin())->getAlign().value() 4481 : 0; 4482 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, 4483 UseMCID, UseIdx, UseAlign); 4484 4485 if (Latency > 1 && 4486 (Subtarget.isCortexA8() || Subtarget.isLikeA9() || 4487 Subtarget.isCortexA7())) { 4488 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 4489 // variants are one cycle cheaper. 4490 switch (DefMCID.getOpcode()) { 4491 default: break; 4492 case ARM::LDRrs: 4493 case ARM::LDRBrs: { 4494 unsigned ShOpVal = 4495 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4496 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4497 if (ShImm == 0 || 4498 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4499 --Latency; 4500 break; 4501 } 4502 case ARM::t2LDRs: 4503 case ARM::t2LDRBs: 4504 case ARM::t2LDRHs: 4505 case ARM::t2LDRSHs: { 4506 // Thumb2 mode: lsl only. 4507 unsigned ShAmt = 4508 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4509 if (ShAmt == 0 || ShAmt == 2) 4510 --Latency; 4511 break; 4512 } 4513 } 4514 } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) { 4515 // FIXME: Properly handle all of the latency adjustments for address 4516 // writeback. 4517 switch (DefMCID.getOpcode()) { 4518 default: break; 4519 case ARM::LDRrs: 4520 case ARM::LDRBrs: { 4521 unsigned ShOpVal = 4522 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4523 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4524 if (ShImm == 0 || 4525 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 4526 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4527 Latency -= 2; 4528 else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 4529 --Latency; 4530 break; 4531 } 4532 case ARM::t2LDRs: 4533 case ARM::t2LDRBs: 4534 case ARM::t2LDRHs: 4535 case ARM::t2LDRSHs: 4536 // Thumb2 mode: lsl 0-3 only. 4537 Latency -= 2; 4538 break; 4539 } 4540 } 4541 4542 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) 4543 switch (DefMCID.getOpcode()) { 4544 default: break; 4545 case ARM::VLD1q8: 4546 case ARM::VLD1q16: 4547 case ARM::VLD1q32: 4548 case ARM::VLD1q64: 4549 case ARM::VLD1q8wb_register: 4550 case ARM::VLD1q16wb_register: 4551 case ARM::VLD1q32wb_register: 4552 case ARM::VLD1q64wb_register: 4553 case ARM::VLD1q8wb_fixed: 4554 case ARM::VLD1q16wb_fixed: 4555 case ARM::VLD1q32wb_fixed: 4556 case ARM::VLD1q64wb_fixed: 4557 case ARM::VLD2d8: 4558 case ARM::VLD2d16: 4559 case ARM::VLD2d32: 4560 case ARM::VLD2q8Pseudo: 4561 case ARM::VLD2q16Pseudo: 4562 case ARM::VLD2q32Pseudo: 4563 case ARM::VLD2d8wb_fixed: 4564 case ARM::VLD2d16wb_fixed: 4565 case ARM::VLD2d32wb_fixed: 4566 case ARM::VLD2q8PseudoWB_fixed: 4567 case ARM::VLD2q16PseudoWB_fixed: 4568 case ARM::VLD2q32PseudoWB_fixed: 4569 case ARM::VLD2d8wb_register: 4570 case ARM::VLD2d16wb_register: 4571 case ARM::VLD2d32wb_register: 4572 case ARM::VLD2q8PseudoWB_register: 4573 case ARM::VLD2q16PseudoWB_register: 4574 case ARM::VLD2q32PseudoWB_register: 4575 case ARM::VLD3d8Pseudo: 4576 case ARM::VLD3d16Pseudo: 4577 case ARM::VLD3d32Pseudo: 4578 case ARM::VLD1d8TPseudo: 4579 case ARM::VLD1d16TPseudo: 4580 case ARM::VLD1d32TPseudo: 4581 case ARM::VLD1d64TPseudo: 4582 case ARM::VLD1d64TPseudoWB_fixed: 4583 case ARM::VLD1d64TPseudoWB_register: 4584 case ARM::VLD3d8Pseudo_UPD: 4585 case ARM::VLD3d16Pseudo_UPD: 4586 case ARM::VLD3d32Pseudo_UPD: 4587 case ARM::VLD3q8Pseudo_UPD: 4588 case ARM::VLD3q16Pseudo_UPD: 4589 case ARM::VLD3q32Pseudo_UPD: 4590 case ARM::VLD3q8oddPseudo: 4591 case ARM::VLD3q16oddPseudo: 4592 case ARM::VLD3q32oddPseudo: 4593 case ARM::VLD3q8oddPseudo_UPD: 4594 case ARM::VLD3q16oddPseudo_UPD: 4595 case ARM::VLD3q32oddPseudo_UPD: 4596 case ARM::VLD4d8Pseudo: 4597 case ARM::VLD4d16Pseudo: 4598 case ARM::VLD4d32Pseudo: 4599 case ARM::VLD1d8QPseudo: 4600 case ARM::VLD1d16QPseudo: 4601 case ARM::VLD1d32QPseudo: 4602 case ARM::VLD1d64QPseudo: 4603 case ARM::VLD1d64QPseudoWB_fixed: 4604 case ARM::VLD1d64QPseudoWB_register: 4605 case ARM::VLD1q8HighQPseudo: 4606 case ARM::VLD1q8LowQPseudo_UPD: 4607 case ARM::VLD1q8HighTPseudo: 4608 case ARM::VLD1q8LowTPseudo_UPD: 4609 case ARM::VLD1q16HighQPseudo: 4610 case ARM::VLD1q16LowQPseudo_UPD: 4611 case ARM::VLD1q16HighTPseudo: 4612 case ARM::VLD1q16LowTPseudo_UPD: 4613 case ARM::VLD1q32HighQPseudo: 4614 case ARM::VLD1q32LowQPseudo_UPD: 4615 case ARM::VLD1q32HighTPseudo: 4616 case ARM::VLD1q32LowTPseudo_UPD: 4617 case ARM::VLD1q64HighQPseudo: 4618 case ARM::VLD1q64LowQPseudo_UPD: 4619 case ARM::VLD1q64HighTPseudo: 4620 case ARM::VLD1q64LowTPseudo_UPD: 4621 case ARM::VLD4d8Pseudo_UPD: 4622 case ARM::VLD4d16Pseudo_UPD: 4623 case ARM::VLD4d32Pseudo_UPD: 4624 case ARM::VLD4q8Pseudo_UPD: 4625 case ARM::VLD4q16Pseudo_UPD: 4626 case ARM::VLD4q32Pseudo_UPD: 4627 case ARM::VLD4q8oddPseudo: 4628 case ARM::VLD4q16oddPseudo: 4629 case ARM::VLD4q32oddPseudo: 4630 case ARM::VLD4q8oddPseudo_UPD: 4631 case ARM::VLD4q16oddPseudo_UPD: 4632 case ARM::VLD4q32oddPseudo_UPD: 4633 case ARM::VLD1DUPq8: 4634 case ARM::VLD1DUPq16: 4635 case ARM::VLD1DUPq32: 4636 case ARM::VLD1DUPq8wb_fixed: 4637 case ARM::VLD1DUPq16wb_fixed: 4638 case ARM::VLD1DUPq32wb_fixed: 4639 case ARM::VLD1DUPq8wb_register: 4640 case ARM::VLD1DUPq16wb_register: 4641 case ARM::VLD1DUPq32wb_register: 4642 case ARM::VLD2DUPd8: 4643 case ARM::VLD2DUPd16: 4644 case ARM::VLD2DUPd32: 4645 case ARM::VLD2DUPd8wb_fixed: 4646 case ARM::VLD2DUPd16wb_fixed: 4647 case ARM::VLD2DUPd32wb_fixed: 4648 case ARM::VLD2DUPd8wb_register: 4649 case ARM::VLD2DUPd16wb_register: 4650 case ARM::VLD2DUPd32wb_register: 4651 case ARM::VLD2DUPq8EvenPseudo: 4652 case ARM::VLD2DUPq8OddPseudo: 4653 case ARM::VLD2DUPq16EvenPseudo: 4654 case ARM::VLD2DUPq16OddPseudo: 4655 case ARM::VLD2DUPq32EvenPseudo: 4656 case ARM::VLD2DUPq32OddPseudo: 4657 case ARM::VLD3DUPq8EvenPseudo: 4658 case ARM::VLD3DUPq8OddPseudo: 4659 case ARM::VLD3DUPq16EvenPseudo: 4660 case ARM::VLD3DUPq16OddPseudo: 4661 case ARM::VLD3DUPq32EvenPseudo: 4662 case ARM::VLD3DUPq32OddPseudo: 4663 case ARM::VLD4DUPd8Pseudo: 4664 case ARM::VLD4DUPd16Pseudo: 4665 case ARM::VLD4DUPd32Pseudo: 4666 case ARM::VLD4DUPd8Pseudo_UPD: 4667 case ARM::VLD4DUPd16Pseudo_UPD: 4668 case ARM::VLD4DUPd32Pseudo_UPD: 4669 case ARM::VLD4DUPq8EvenPseudo: 4670 case ARM::VLD4DUPq8OddPseudo: 4671 case ARM::VLD4DUPq16EvenPseudo: 4672 case ARM::VLD4DUPq16OddPseudo: 4673 case ARM::VLD4DUPq32EvenPseudo: 4674 case ARM::VLD4DUPq32OddPseudo: 4675 case ARM::VLD1LNq8Pseudo: 4676 case ARM::VLD1LNq16Pseudo: 4677 case ARM::VLD1LNq32Pseudo: 4678 case ARM::VLD1LNq8Pseudo_UPD: 4679 case ARM::VLD1LNq16Pseudo_UPD: 4680 case ARM::VLD1LNq32Pseudo_UPD: 4681 case ARM::VLD2LNd8Pseudo: 4682 case ARM::VLD2LNd16Pseudo: 4683 case ARM::VLD2LNd32Pseudo: 4684 case ARM::VLD2LNq16Pseudo: 4685 case ARM::VLD2LNq32Pseudo: 4686 case ARM::VLD2LNd8Pseudo_UPD: 4687 case ARM::VLD2LNd16Pseudo_UPD: 4688 case ARM::VLD2LNd32Pseudo_UPD: 4689 case ARM::VLD2LNq16Pseudo_UPD: 4690 case ARM::VLD2LNq32Pseudo_UPD: 4691 case ARM::VLD4LNd8Pseudo: 4692 case ARM::VLD4LNd16Pseudo: 4693 case ARM::VLD4LNd32Pseudo: 4694 case ARM::VLD4LNq16Pseudo: 4695 case ARM::VLD4LNq32Pseudo: 4696 case ARM::VLD4LNd8Pseudo_UPD: 4697 case ARM::VLD4LNd16Pseudo_UPD: 4698 case ARM::VLD4LNd32Pseudo_UPD: 4699 case ARM::VLD4LNq16Pseudo_UPD: 4700 case ARM::VLD4LNq32Pseudo_UPD: 4701 // If the address is not 64-bit aligned, the latencies of these 4702 // instructions increases by one. 4703 ++Latency; 4704 break; 4705 } 4706 4707 return Latency; 4708 } 4709 4710 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const { 4711 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || 4712 MI.isImplicitDef()) 4713 return 0; 4714 4715 if (MI.isBundle()) 4716 return 0; 4717 4718 const MCInstrDesc &MCID = MI.getDesc(); 4719 4720 if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && 4721 !Subtarget.cheapPredicableCPSRDef())) { 4722 // When predicated, CPSR is an additional source operand for CPSR updating 4723 // instructions, this apparently increases their latencies. 4724 return 1; 4725 } 4726 return 0; 4727 } 4728 4729 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4730 const MachineInstr &MI, 4731 unsigned *PredCost) const { 4732 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || 4733 MI.isImplicitDef()) 4734 return 1; 4735 4736 // An instruction scheduler typically runs on unbundled instructions, however 4737 // other passes may query the latency of a bundled instruction. 4738 if (MI.isBundle()) { 4739 unsigned Latency = 0; 4740 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 4741 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 4742 while (++I != E && I->isInsideBundle()) { 4743 if (I->getOpcode() != ARM::t2IT) 4744 Latency += getInstrLatency(ItinData, *I, PredCost); 4745 } 4746 return Latency; 4747 } 4748 4749 const MCInstrDesc &MCID = MI.getDesc(); 4750 if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && 4751 !Subtarget.cheapPredicableCPSRDef()))) { 4752 // When predicated, CPSR is an additional source operand for CPSR updating 4753 // instructions, this apparently increases their latencies. 4754 *PredCost = 1; 4755 } 4756 // Be sure to call getStageLatency for an empty itinerary in case it has a 4757 // valid MinLatency property. 4758 if (!ItinData) 4759 return MI.mayLoad() ? 3 : 1; 4760 4761 unsigned Class = MCID.getSchedClass(); 4762 4763 // For instructions with variable uops, use uops as latency. 4764 if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0) 4765 return getNumMicroOps(ItinData, MI); 4766 4767 // For the common case, fall back on the itinerary's latency. 4768 unsigned Latency = ItinData->getStageLatency(Class); 4769 4770 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4771 unsigned DefAlign = 4772 MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlign().value() : 0; 4773 int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign); 4774 if (Adj >= 0 || (int)Latency > -Adj) { 4775 return Latency + Adj; 4776 } 4777 return Latency; 4778 } 4779 4780 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4781 SDNode *Node) const { 4782 if (!Node->isMachineOpcode()) 4783 return 1; 4784 4785 if (!ItinData || ItinData->isEmpty()) 4786 return 1; 4787 4788 unsigned Opcode = Node->getMachineOpcode(); 4789 switch (Opcode) { 4790 default: 4791 return ItinData->getStageLatency(get(Opcode).getSchedClass()); 4792 case ARM::VLDMQIA: 4793 case ARM::VSTMQIA: 4794 return 2; 4795 } 4796 } 4797 4798 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, 4799 const MachineRegisterInfo *MRI, 4800 const MachineInstr &DefMI, 4801 unsigned DefIdx, 4802 const MachineInstr &UseMI, 4803 unsigned UseIdx) const { 4804 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; 4805 unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask; 4806 if (Subtarget.nonpipelinedVFP() && 4807 (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP)) 4808 return true; 4809 4810 // Hoist VFP / NEON instructions with 4 or higher latency. 4811 unsigned Latency = 4812 SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx); 4813 if (Latency <= 3) 4814 return false; 4815 return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON || 4816 UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON; 4817 } 4818 4819 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, 4820 const MachineInstr &DefMI, 4821 unsigned DefIdx) const { 4822 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); 4823 if (!ItinData || ItinData->isEmpty()) 4824 return false; 4825 4826 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; 4827 if (DDomain == ARMII::DomainGeneral) { 4828 unsigned DefClass = DefMI.getDesc().getSchedClass(); 4829 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 4830 return (DefCycle != -1 && DefCycle <= 2); 4831 } 4832 return false; 4833 } 4834 4835 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI, 4836 StringRef &ErrInfo) const { 4837 if (convertAddSubFlagsOpcode(MI.getOpcode())) { 4838 ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG"; 4839 return false; 4840 } 4841 if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) { 4842 // Make sure we don't generate a lo-lo mov that isn't supported. 4843 if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) && 4844 !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) { 4845 ErrInfo = "Non-flag-setting Thumb1 mov is v6-only"; 4846 return false; 4847 } 4848 } 4849 if (MI.getOpcode() == ARM::tPUSH || 4850 MI.getOpcode() == ARM::tPOP || 4851 MI.getOpcode() == ARM::tPOP_RET) { 4852 for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), 2)) { 4853 if (MO.isImplicit() || !MO.isReg()) 4854 continue; 4855 Register Reg = MO.getReg(); 4856 if (Reg < ARM::R0 || Reg > ARM::R7) { 4857 if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) && 4858 !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) { 4859 ErrInfo = "Unsupported register in Thumb1 push/pop"; 4860 return false; 4861 } 4862 } 4863 } 4864 } 4865 if (MI.getOpcode() == ARM::MVE_VMOV_q_rr) { 4866 assert(MI.getOperand(4).isImm() && MI.getOperand(5).isImm()); 4867 if ((MI.getOperand(4).getImm() != 2 && MI.getOperand(4).getImm() != 3) || 4868 MI.getOperand(4).getImm() != MI.getOperand(5).getImm() + 2) { 4869 ErrInfo = "Incorrect array index for MVE_VMOV_q_rr"; 4870 return false; 4871 } 4872 } 4873 4874 // Check the address model by taking the first Imm operand and checking it is 4875 // legal for that addressing mode. 4876 ARMII::AddrMode AddrMode = 4877 (ARMII::AddrMode)(MI.getDesc().TSFlags & ARMII::AddrModeMask); 4878 switch (AddrMode) { 4879 default: 4880 break; 4881 case ARMII::AddrModeT2_i7: 4882 case ARMII::AddrModeT2_i7s2: 4883 case ARMII::AddrModeT2_i7s4: 4884 case ARMII::AddrModeT2_i8: 4885 case ARMII::AddrModeT2_i8pos: 4886 case ARMII::AddrModeT2_i8neg: 4887 case ARMII::AddrModeT2_i8s4: 4888 case ARMII::AddrModeT2_i12: { 4889 uint32_t Imm = 0; 4890 for (auto Op : MI.operands()) { 4891 if (Op.isImm()) { 4892 Imm = Op.getImm(); 4893 break; 4894 } 4895 } 4896 if (!isLegalAddressImm(MI.getOpcode(), Imm, this)) { 4897 ErrInfo = "Incorrect AddrMode Imm for instruction"; 4898 return false; 4899 } 4900 break; 4901 } 4902 } 4903 return true; 4904 } 4905 4906 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI, 4907 unsigned LoadImmOpc, 4908 unsigned LoadOpc) const { 4909 assert(!Subtarget.isROPI() && !Subtarget.isRWPI() && 4910 "ROPI/RWPI not currently supported with stack guard"); 4911 4912 MachineBasicBlock &MBB = *MI->getParent(); 4913 DebugLoc DL = MI->getDebugLoc(); 4914 Register Reg = MI->getOperand(0).getReg(); 4915 MachineInstrBuilder MIB; 4916 unsigned int Offset = 0; 4917 4918 if (LoadImmOpc == ARM::MRC || LoadImmOpc == ARM::t2MRC) { 4919 assert(Subtarget.isReadTPHard() && 4920 "TLS stack protector requires hardware TLS register"); 4921 4922 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) 4923 .addImm(15) 4924 .addImm(0) 4925 .addImm(13) 4926 .addImm(0) 4927 .addImm(3) 4928 .add(predOps(ARMCC::AL)); 4929 4930 Module &M = *MBB.getParent()->getFunction().getParent(); 4931 Offset = M.getStackProtectorGuardOffset(); 4932 if (Offset & ~0xfffU) { 4933 // The offset won't fit in the LDR's 12-bit immediate field, so emit an 4934 // extra ADD to cover the delta. This gives us a guaranteed 8 additional 4935 // bits, resulting in a range of 0 to +1 MiB for the guard offset. 4936 unsigned AddOpc = (LoadImmOpc == ARM::MRC) ? ARM::ADDri : ARM::t2ADDri; 4937 BuildMI(MBB, MI, DL, get(AddOpc), Reg) 4938 .addReg(Reg, RegState::Kill) 4939 .addImm(Offset & ~0xfffU) 4940 .add(predOps(ARMCC::AL)) 4941 .addReg(0); 4942 Offset &= 0xfffU; 4943 } 4944 } else { 4945 const GlobalValue *GV = 4946 cast<GlobalValue>((*MI->memoperands_begin())->getValue()); 4947 bool IsIndirect = Subtarget.isGVIndirectSymbol(GV); 4948 4949 unsigned TargetFlags = ARMII::MO_NO_FLAG; 4950 if (Subtarget.isTargetMachO()) { 4951 TargetFlags |= ARMII::MO_NONLAZY; 4952 } else if (Subtarget.isTargetCOFF()) { 4953 if (GV->hasDLLImportStorageClass()) 4954 TargetFlags |= ARMII::MO_DLLIMPORT; 4955 else if (IsIndirect) 4956 TargetFlags |= ARMII::MO_COFFSTUB; 4957 } else if (Subtarget.isGVInGOT(GV)) { 4958 TargetFlags |= ARMII::MO_GOT; 4959 } 4960 4961 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) 4962 .addGlobalAddress(GV, 0, TargetFlags); 4963 4964 if (IsIndirect) { 4965 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4966 MIB.addReg(Reg, RegState::Kill).addImm(0); 4967 auto Flags = MachineMemOperand::MOLoad | 4968 MachineMemOperand::MODereferenceable | 4969 MachineMemOperand::MOInvariant; 4970 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( 4971 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, Align(4)); 4972 MIB.addMemOperand(MMO).add(predOps(ARMCC::AL)); 4973 } 4974 } 4975 4976 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4977 MIB.addReg(Reg, RegState::Kill) 4978 .addImm(Offset) 4979 .cloneMemRefs(*MI) 4980 .add(predOps(ARMCC::AL)); 4981 } 4982 4983 bool 4984 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc, 4985 unsigned &AddSubOpc, 4986 bool &NegAcc, bool &HasLane) const { 4987 DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode); 4988 if (I == MLxEntryMap.end()) 4989 return false; 4990 4991 const ARM_MLxEntry &Entry = ARM_MLxTable[I->second]; 4992 MulOpc = Entry.MulOpc; 4993 AddSubOpc = Entry.AddSubOpc; 4994 NegAcc = Entry.NegAcc; 4995 HasLane = Entry.HasLane; 4996 return true; 4997 } 4998 4999 //===----------------------------------------------------------------------===// 5000 // Execution domains. 5001 //===----------------------------------------------------------------------===// 5002 // 5003 // Some instructions go down the NEON pipeline, some go down the VFP pipeline, 5004 // and some can go down both. The vmov instructions go down the VFP pipeline, 5005 // but they can be changed to vorr equivalents that are executed by the NEON 5006 // pipeline. 5007 // 5008 // We use the following execution domain numbering: 5009 // 5010 enum ARMExeDomain { 5011 ExeGeneric = 0, 5012 ExeVFP = 1, 5013 ExeNEON = 2 5014 }; 5015 5016 // 5017 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h 5018 // 5019 std::pair<uint16_t, uint16_t> 5020 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const { 5021 // If we don't have access to NEON instructions then we won't be able 5022 // to swizzle anything to the NEON domain. Check to make sure. 5023 if (Subtarget.hasNEON()) { 5024 // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON 5025 // if they are not predicated. 5026 if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI)) 5027 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 5028 5029 // CortexA9 is particularly picky about mixing the two and wants these 5030 // converted. 5031 if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) && 5032 (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR || 5033 MI.getOpcode() == ARM::VMOVS)) 5034 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 5035 } 5036 // No other instructions can be swizzled, so just determine their domain. 5037 unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask; 5038 5039 if (Domain & ARMII::DomainNEON) 5040 return std::make_pair(ExeNEON, 0); 5041 5042 // Certain instructions can go either way on Cortex-A8. 5043 // Treat them as NEON instructions. 5044 if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8()) 5045 return std::make_pair(ExeNEON, 0); 5046 5047 if (Domain & ARMII::DomainVFP) 5048 return std::make_pair(ExeVFP, 0); 5049 5050 return std::make_pair(ExeGeneric, 0); 5051 } 5052 5053 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI, 5054 unsigned SReg, unsigned &Lane) { 5055 unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass); 5056 Lane = 0; 5057 5058 if (DReg != ARM::NoRegister) 5059 return DReg; 5060 5061 Lane = 1; 5062 DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass); 5063 5064 assert(DReg && "S-register with no D super-register?"); 5065 return DReg; 5066 } 5067 5068 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane, 5069 /// set ImplicitSReg to a register number that must be marked as implicit-use or 5070 /// zero if no register needs to be defined as implicit-use. 5071 /// 5072 /// If the function cannot determine if an SPR should be marked implicit use or 5073 /// not, it returns false. 5074 /// 5075 /// This function handles cases where an instruction is being modified from taking 5076 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict 5077 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other 5078 /// lane of the DPR). 5079 /// 5080 /// If the other SPR is defined, an implicit-use of it should be added. Else, 5081 /// (including the case where the DPR itself is defined), it should not. 5082 /// 5083 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI, 5084 MachineInstr &MI, unsigned DReg, 5085 unsigned Lane, unsigned &ImplicitSReg) { 5086 // If the DPR is defined or used already, the other SPR lane will be chained 5087 // correctly, so there is nothing to be done. 5088 if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) { 5089 ImplicitSReg = 0; 5090 return true; 5091 } 5092 5093 // Otherwise we need to go searching to see if the SPR is set explicitly. 5094 ImplicitSReg = TRI->getSubReg(DReg, 5095 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1); 5096 MachineBasicBlock::LivenessQueryResult LQR = 5097 MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI); 5098 5099 if (LQR == MachineBasicBlock::LQR_Live) 5100 return true; 5101 else if (LQR == MachineBasicBlock::LQR_Unknown) 5102 return false; 5103 5104 // If the register is known not to be live, there is no need to add an 5105 // implicit-use. 5106 ImplicitSReg = 0; 5107 return true; 5108 } 5109 5110 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI, 5111 unsigned Domain) const { 5112 unsigned DstReg, SrcReg, DReg; 5113 unsigned Lane; 5114 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 5115 const TargetRegisterInfo *TRI = &getRegisterInfo(); 5116 switch (MI.getOpcode()) { 5117 default: 5118 llvm_unreachable("cannot handle opcode!"); 5119 break; 5120 case ARM::VMOVD: 5121 if (Domain != ExeNEON) 5122 break; 5123 5124 // Zap the predicate operands. 5125 assert(!isPredicated(MI) && "Cannot predicate a VORRd"); 5126 5127 // Make sure we've got NEON instructions. 5128 assert(Subtarget.hasNEON() && "VORRd requires NEON"); 5129 5130 // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits) 5131 DstReg = MI.getOperand(0).getReg(); 5132 SrcReg = MI.getOperand(1).getReg(); 5133 5134 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5135 MI.removeOperand(i - 1); 5136 5137 // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits) 5138 MI.setDesc(get(ARM::VORRd)); 5139 MIB.addReg(DstReg, RegState::Define) 5140 .addReg(SrcReg) 5141 .addReg(SrcReg) 5142 .add(predOps(ARMCC::AL)); 5143 break; 5144 case ARM::VMOVRS: 5145 if (Domain != ExeNEON) 5146 break; 5147 assert(!isPredicated(MI) && "Cannot predicate a VGETLN"); 5148 5149 // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits) 5150 DstReg = MI.getOperand(0).getReg(); 5151 SrcReg = MI.getOperand(1).getReg(); 5152 5153 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5154 MI.removeOperand(i - 1); 5155 5156 DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane); 5157 5158 // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps) 5159 // Note that DSrc has been widened and the other lane may be undef, which 5160 // contaminates the entire register. 5161 MI.setDesc(get(ARM::VGETLNi32)); 5162 MIB.addReg(DstReg, RegState::Define) 5163 .addReg(DReg, RegState::Undef) 5164 .addImm(Lane) 5165 .add(predOps(ARMCC::AL)); 5166 5167 // The old source should be an implicit use, otherwise we might think it 5168 // was dead before here. 5169 MIB.addReg(SrcReg, RegState::Implicit); 5170 break; 5171 case ARM::VMOVSR: { 5172 if (Domain != ExeNEON) 5173 break; 5174 assert(!isPredicated(MI) && "Cannot predicate a VSETLN"); 5175 5176 // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits) 5177 DstReg = MI.getOperand(0).getReg(); 5178 SrcReg = MI.getOperand(1).getReg(); 5179 5180 DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane); 5181 5182 unsigned ImplicitSReg; 5183 if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg)) 5184 break; 5185 5186 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5187 MI.removeOperand(i - 1); 5188 5189 // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps) 5190 // Again DDst may be undefined at the beginning of this instruction. 5191 MI.setDesc(get(ARM::VSETLNi32)); 5192 MIB.addReg(DReg, RegState::Define) 5193 .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI))) 5194 .addReg(SrcReg) 5195 .addImm(Lane) 5196 .add(predOps(ARMCC::AL)); 5197 5198 // The narrower destination must be marked as set to keep previous chains 5199 // in place. 5200 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 5201 if (ImplicitSReg != 0) 5202 MIB.addReg(ImplicitSReg, RegState::Implicit); 5203 break; 5204 } 5205 case ARM::VMOVS: { 5206 if (Domain != ExeNEON) 5207 break; 5208 5209 // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits) 5210 DstReg = MI.getOperand(0).getReg(); 5211 SrcReg = MI.getOperand(1).getReg(); 5212 5213 unsigned DstLane = 0, SrcLane = 0, DDst, DSrc; 5214 DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane); 5215 DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane); 5216 5217 unsigned ImplicitSReg; 5218 if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg)) 5219 break; 5220 5221 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5222 MI.removeOperand(i - 1); 5223 5224 if (DSrc == DDst) { 5225 // Destination can be: 5226 // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits) 5227 MI.setDesc(get(ARM::VDUPLN32d)); 5228 MIB.addReg(DDst, RegState::Define) 5229 .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI))) 5230 .addImm(SrcLane) 5231 .add(predOps(ARMCC::AL)); 5232 5233 // Neither the source or the destination are naturally represented any 5234 // more, so add them in manually. 5235 MIB.addReg(DstReg, RegState::Implicit | RegState::Define); 5236 MIB.addReg(SrcReg, RegState::Implicit); 5237 if (ImplicitSReg != 0) 5238 MIB.addReg(ImplicitSReg, RegState::Implicit); 5239 break; 5240 } 5241 5242 // In general there's no single instruction that can perform an S <-> S 5243 // move in NEON space, but a pair of VEXT instructions *can* do the 5244 // job. It turns out that the VEXTs needed will only use DSrc once, with 5245 // the position based purely on the combination of lane-0 and lane-1 5246 // involved. For example 5247 // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1 5248 // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1 5249 // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1 5250 // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1 5251 // 5252 // Pattern of the MachineInstrs is: 5253 // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits) 5254 MachineInstrBuilder NewMIB; 5255 NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32), 5256 DDst); 5257 5258 // On the first instruction, both DSrc and DDst may be undef if present. 5259 // Specifically when the original instruction didn't have them as an 5260 // <imp-use>. 5261 unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst; 5262 bool CurUndef = !MI.readsRegister(CurReg, TRI); 5263 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)); 5264 5265 CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst; 5266 CurUndef = !MI.readsRegister(CurReg, TRI); 5267 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)) 5268 .addImm(1) 5269 .add(predOps(ARMCC::AL)); 5270 5271 if (SrcLane == DstLane) 5272 NewMIB.addReg(SrcReg, RegState::Implicit); 5273 5274 MI.setDesc(get(ARM::VEXTd32)); 5275 MIB.addReg(DDst, RegState::Define); 5276 5277 // On the second instruction, DDst has definitely been defined above, so 5278 // it is not undef. DSrc, if present, can be undef as above. 5279 CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst; 5280 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); 5281 MIB.addReg(CurReg, getUndefRegState(CurUndef)); 5282 5283 CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst; 5284 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); 5285 MIB.addReg(CurReg, getUndefRegState(CurUndef)) 5286 .addImm(1) 5287 .add(predOps(ARMCC::AL)); 5288 5289 if (SrcLane != DstLane) 5290 MIB.addReg(SrcReg, RegState::Implicit); 5291 5292 // As before, the original destination is no longer represented, add it 5293 // implicitly. 5294 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 5295 if (ImplicitSReg != 0) 5296 MIB.addReg(ImplicitSReg, RegState::Implicit); 5297 break; 5298 } 5299 } 5300 } 5301 5302 //===----------------------------------------------------------------------===// 5303 // Partial register updates 5304 //===----------------------------------------------------------------------===// 5305 // 5306 // Swift renames NEON registers with 64-bit granularity. That means any 5307 // instruction writing an S-reg implicitly reads the containing D-reg. The 5308 // problem is mostly avoided by translating f32 operations to v2f32 operations 5309 // on D-registers, but f32 loads are still a problem. 5310 // 5311 // These instructions can load an f32 into a NEON register: 5312 // 5313 // VLDRS - Only writes S, partial D update. 5314 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops. 5315 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops. 5316 // 5317 // FCONSTD can be used as a dependency-breaking instruction. 5318 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance( 5319 const MachineInstr &MI, unsigned OpNum, 5320 const TargetRegisterInfo *TRI) const { 5321 auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance(); 5322 if (!PartialUpdateClearance) 5323 return 0; 5324 5325 assert(TRI && "Need TRI instance"); 5326 5327 const MachineOperand &MO = MI.getOperand(OpNum); 5328 if (MO.readsReg()) 5329 return 0; 5330 Register Reg = MO.getReg(); 5331 int UseOp = -1; 5332 5333 switch (MI.getOpcode()) { 5334 // Normal instructions writing only an S-register. 5335 case ARM::VLDRS: 5336 case ARM::FCONSTS: 5337 case ARM::VMOVSR: 5338 case ARM::VMOVv8i8: 5339 case ARM::VMOVv4i16: 5340 case ARM::VMOVv2i32: 5341 case ARM::VMOVv2f32: 5342 case ARM::VMOVv1i64: 5343 UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI); 5344 break; 5345 5346 // Explicitly reads the dependency. 5347 case ARM::VLD1LNd32: 5348 UseOp = 3; 5349 break; 5350 default: 5351 return 0; 5352 } 5353 5354 // If this instruction actually reads a value from Reg, there is no unwanted 5355 // dependency. 5356 if (UseOp != -1 && MI.getOperand(UseOp).readsReg()) 5357 return 0; 5358 5359 // We must be able to clobber the whole D-reg. 5360 if (Register::isVirtualRegister(Reg)) { 5361 // Virtual register must be a def undef foo:ssub_0 operand. 5362 if (!MO.getSubReg() || MI.readsVirtualRegister(Reg)) 5363 return 0; 5364 } else if (ARM::SPRRegClass.contains(Reg)) { 5365 // Physical register: MI must define the full D-reg. 5366 unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0, 5367 &ARM::DPRRegClass); 5368 if (!DReg || !MI.definesRegister(DReg, TRI)) 5369 return 0; 5370 } 5371 5372 // MI has an unwanted D-register dependency. 5373 // Avoid defs in the previous N instructrions. 5374 return PartialUpdateClearance; 5375 } 5376 5377 // Break a partial register dependency after getPartialRegUpdateClearance 5378 // returned non-zero. 5379 void ARMBaseInstrInfo::breakPartialRegDependency( 5380 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { 5381 assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def"); 5382 assert(TRI && "Need TRI instance"); 5383 5384 const MachineOperand &MO = MI.getOperand(OpNum); 5385 Register Reg = MO.getReg(); 5386 assert(Register::isPhysicalRegister(Reg) && 5387 "Can't break virtual register dependencies."); 5388 unsigned DReg = Reg; 5389 5390 // If MI defines an S-reg, find the corresponding D super-register. 5391 if (ARM::SPRRegClass.contains(Reg)) { 5392 DReg = ARM::D0 + (Reg - ARM::S0) / 2; 5393 assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken"); 5394 } 5395 5396 assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps"); 5397 assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg"); 5398 5399 // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines 5400 // the full D-register by loading the same value to both lanes. The 5401 // instruction is micro-coded with 2 uops, so don't do this until we can 5402 // properly schedule micro-coded instructions. The dispatcher stalls cause 5403 // too big regressions. 5404 5405 // Insert the dependency-breaking FCONSTD before MI. 5406 // 96 is the encoding of 0.5, but the actual value doesn't matter here. 5407 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg) 5408 .addImm(96) 5409 .add(predOps(ARMCC::AL)); 5410 MI.addRegisterKilled(DReg, TRI, true); 5411 } 5412 5413 bool ARMBaseInstrInfo::hasNOP() const { 5414 return Subtarget.getFeatureBits()[ARM::HasV6KOps]; 5415 } 5416 5417 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const { 5418 if (MI->getNumOperands() < 4) 5419 return true; 5420 unsigned ShOpVal = MI->getOperand(3).getImm(); 5421 unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal); 5422 // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1. 5423 if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) || 5424 ((ShImm == 1 || ShImm == 2) && 5425 ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl)) 5426 return true; 5427 5428 return false; 5429 } 5430 5431 bool ARMBaseInstrInfo::getRegSequenceLikeInputs( 5432 const MachineInstr &MI, unsigned DefIdx, 5433 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 5434 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5435 assert(MI.isRegSequenceLike() && "Invalid kind of instruction"); 5436 5437 switch (MI.getOpcode()) { 5438 case ARM::VMOVDRR: 5439 // dX = VMOVDRR rY, rZ 5440 // is the same as: 5441 // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1 5442 // Populate the InputRegs accordingly. 5443 // rY 5444 const MachineOperand *MOReg = &MI.getOperand(1); 5445 if (!MOReg->isUndef()) 5446 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), 5447 MOReg->getSubReg(), ARM::ssub_0)); 5448 // rZ 5449 MOReg = &MI.getOperand(2); 5450 if (!MOReg->isUndef()) 5451 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), 5452 MOReg->getSubReg(), ARM::ssub_1)); 5453 return true; 5454 } 5455 llvm_unreachable("Target dependent opcode missing"); 5456 } 5457 5458 bool ARMBaseInstrInfo::getExtractSubregLikeInputs( 5459 const MachineInstr &MI, unsigned DefIdx, 5460 RegSubRegPairAndIdx &InputReg) const { 5461 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5462 assert(MI.isExtractSubregLike() && "Invalid kind of instruction"); 5463 5464 switch (MI.getOpcode()) { 5465 case ARM::VMOVRRD: 5466 // rX, rY = VMOVRRD dZ 5467 // is the same as: 5468 // rX = EXTRACT_SUBREG dZ, ssub_0 5469 // rY = EXTRACT_SUBREG dZ, ssub_1 5470 const MachineOperand &MOReg = MI.getOperand(2); 5471 if (MOReg.isUndef()) 5472 return false; 5473 InputReg.Reg = MOReg.getReg(); 5474 InputReg.SubReg = MOReg.getSubReg(); 5475 InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1; 5476 return true; 5477 } 5478 llvm_unreachable("Target dependent opcode missing"); 5479 } 5480 5481 bool ARMBaseInstrInfo::getInsertSubregLikeInputs( 5482 const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, 5483 RegSubRegPairAndIdx &InsertedReg) const { 5484 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5485 assert(MI.isInsertSubregLike() && "Invalid kind of instruction"); 5486 5487 switch (MI.getOpcode()) { 5488 case ARM::VSETLNi32: 5489 case ARM::MVE_VMOV_to_lane_32: 5490 // dX = VSETLNi32 dY, rZ, imm 5491 // qX = MVE_VMOV_to_lane_32 qY, rZ, imm 5492 const MachineOperand &MOBaseReg = MI.getOperand(1); 5493 const MachineOperand &MOInsertedReg = MI.getOperand(2); 5494 if (MOInsertedReg.isUndef()) 5495 return false; 5496 const MachineOperand &MOIndex = MI.getOperand(3); 5497 BaseReg.Reg = MOBaseReg.getReg(); 5498 BaseReg.SubReg = MOBaseReg.getSubReg(); 5499 5500 InsertedReg.Reg = MOInsertedReg.getReg(); 5501 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 5502 InsertedReg.SubIdx = ARM::ssub_0 + MOIndex.getImm(); 5503 return true; 5504 } 5505 llvm_unreachable("Target dependent opcode missing"); 5506 } 5507 5508 std::pair<unsigned, unsigned> 5509 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 5510 const unsigned Mask = ARMII::MO_OPTION_MASK; 5511 return std::make_pair(TF & Mask, TF & ~Mask); 5512 } 5513 5514 ArrayRef<std::pair<unsigned, const char *>> 5515 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 5516 using namespace ARMII; 5517 5518 static const std::pair<unsigned, const char *> TargetFlags[] = { 5519 {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}}; 5520 return makeArrayRef(TargetFlags); 5521 } 5522 5523 ArrayRef<std::pair<unsigned, const char *>> 5524 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 5525 using namespace ARMII; 5526 5527 static const std::pair<unsigned, const char *> TargetFlags[] = { 5528 {MO_COFFSTUB, "arm-coffstub"}, 5529 {MO_GOT, "arm-got"}, 5530 {MO_SBREL, "arm-sbrel"}, 5531 {MO_DLLIMPORT, "arm-dllimport"}, 5532 {MO_SECREL, "arm-secrel"}, 5533 {MO_NONLAZY, "arm-nonlazy"}}; 5534 return makeArrayRef(TargetFlags); 5535 } 5536 5537 Optional<RegImmPair> ARMBaseInstrInfo::isAddImmediate(const MachineInstr &MI, 5538 Register Reg) const { 5539 int Sign = 1; 5540 unsigned Opcode = MI.getOpcode(); 5541 int64_t Offset = 0; 5542 5543 // TODO: Handle cases where Reg is a super- or sub-register of the 5544 // destination register. 5545 const MachineOperand &Op0 = MI.getOperand(0); 5546 if (!Op0.isReg() || Reg != Op0.getReg()) 5547 return None; 5548 5549 // We describe SUBri or ADDri instructions. 5550 if (Opcode == ARM::SUBri) 5551 Sign = -1; 5552 else if (Opcode != ARM::ADDri) 5553 return None; 5554 5555 // TODO: Third operand can be global address (usually some string). Since 5556 // strings can be relocated we cannot calculate their offsets for 5557 // now. 5558 if (!MI.getOperand(1).isReg() || !MI.getOperand(2).isImm()) 5559 return None; 5560 5561 Offset = MI.getOperand(2).getImm() * Sign; 5562 return RegImmPair{MI.getOperand(1).getReg(), Offset}; 5563 } 5564 5565 bool llvm::registerDefinedBetween(unsigned Reg, 5566 MachineBasicBlock::iterator From, 5567 MachineBasicBlock::iterator To, 5568 const TargetRegisterInfo *TRI) { 5569 for (auto I = From; I != To; ++I) 5570 if (I->modifiesRegister(Reg, TRI)) 5571 return true; 5572 return false; 5573 } 5574 5575 MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br, 5576 const TargetRegisterInfo *TRI) { 5577 // Search backwards to the instruction that defines CSPR. This may or not 5578 // be a CMP, we check that after this loop. If we find another instruction 5579 // that reads cpsr, we return nullptr. 5580 MachineBasicBlock::iterator CmpMI = Br; 5581 while (CmpMI != Br->getParent()->begin()) { 5582 --CmpMI; 5583 if (CmpMI->modifiesRegister(ARM::CPSR, TRI)) 5584 break; 5585 if (CmpMI->readsRegister(ARM::CPSR, TRI)) 5586 break; 5587 } 5588 5589 // Check that this inst is a CMP r[0-7], #0 and that the register 5590 // is not redefined between the cmp and the br. 5591 if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri) 5592 return nullptr; 5593 Register Reg = CmpMI->getOperand(0).getReg(); 5594 Register PredReg; 5595 ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg); 5596 if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0) 5597 return nullptr; 5598 if (!isARMLowRegister(Reg)) 5599 return nullptr; 5600 if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI)) 5601 return nullptr; 5602 5603 return &*CmpMI; 5604 } 5605 5606 unsigned llvm::ConstantMaterializationCost(unsigned Val, 5607 const ARMSubtarget *Subtarget, 5608 bool ForCodesize) { 5609 if (Subtarget->isThumb()) { 5610 if (Val <= 255) // MOV 5611 return ForCodesize ? 2 : 1; 5612 if (Subtarget->hasV6T2Ops() && (Val <= 0xffff || // MOV 5613 ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW 5614 ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN 5615 return ForCodesize ? 4 : 1; 5616 if (Val <= 510) // MOV + ADDi8 5617 return ForCodesize ? 4 : 2; 5618 if (~Val <= 255) // MOV + MVN 5619 return ForCodesize ? 4 : 2; 5620 if (ARM_AM::isThumbImmShiftedVal(Val)) // MOV + LSL 5621 return ForCodesize ? 4 : 2; 5622 } else { 5623 if (ARM_AM::getSOImmVal(Val) != -1) // MOV 5624 return ForCodesize ? 4 : 1; 5625 if (ARM_AM::getSOImmVal(~Val) != -1) // MVN 5626 return ForCodesize ? 4 : 1; 5627 if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW 5628 return ForCodesize ? 4 : 1; 5629 if (ARM_AM::isSOImmTwoPartVal(Val)) // two instrs 5630 return ForCodesize ? 8 : 2; 5631 if (ARM_AM::isSOImmTwoPartValNeg(Val)) // two instrs 5632 return ForCodesize ? 8 : 2; 5633 } 5634 if (Subtarget->useMovt()) // MOVW + MOVT 5635 return ForCodesize ? 8 : 2; 5636 return ForCodesize ? 8 : 3; // Literal pool load 5637 } 5638 5639 bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2, 5640 const ARMSubtarget *Subtarget, 5641 bool ForCodesize) { 5642 // Check with ForCodesize 5643 unsigned Cost1 = ConstantMaterializationCost(Val1, Subtarget, ForCodesize); 5644 unsigned Cost2 = ConstantMaterializationCost(Val2, Subtarget, ForCodesize); 5645 if (Cost1 < Cost2) 5646 return true; 5647 if (Cost1 > Cost2) 5648 return false; 5649 5650 // If they are equal, try with !ForCodesize 5651 return ConstantMaterializationCost(Val1, Subtarget, !ForCodesize) < 5652 ConstantMaterializationCost(Val2, Subtarget, !ForCodesize); 5653 } 5654 5655 /// Constants defining how certain sequences should be outlined. 5656 /// This encompasses how an outlined function should be called, and what kind of 5657 /// frame should be emitted for that outlined function. 5658 /// 5659 /// \p MachineOutlinerTailCall implies that the function is being created from 5660 /// a sequence of instructions ending in a return. 5661 /// 5662 /// That is, 5663 /// 5664 /// I1 OUTLINED_FUNCTION: 5665 /// I2 --> B OUTLINED_FUNCTION I1 5666 /// BX LR I2 5667 /// BX LR 5668 /// 5669 /// +-------------------------+--------+-----+ 5670 /// | | Thumb2 | ARM | 5671 /// +-------------------------+--------+-----+ 5672 /// | Call overhead in Bytes | 4 | 4 | 5673 /// | Frame overhead in Bytes | 0 | 0 | 5674 /// | Stack fixup required | No | No | 5675 /// +-------------------------+--------+-----+ 5676 /// 5677 /// \p MachineOutlinerThunk implies that the function is being created from 5678 /// a sequence of instructions ending in a call. The outlined function is 5679 /// called with a BL instruction, and the outlined function tail-calls the 5680 /// original call destination. 5681 /// 5682 /// That is, 5683 /// 5684 /// I1 OUTLINED_FUNCTION: 5685 /// I2 --> BL OUTLINED_FUNCTION I1 5686 /// BL f I2 5687 /// B f 5688 /// 5689 /// +-------------------------+--------+-----+ 5690 /// | | Thumb2 | ARM | 5691 /// +-------------------------+--------+-----+ 5692 /// | Call overhead in Bytes | 4 | 4 | 5693 /// | Frame overhead in Bytes | 0 | 0 | 5694 /// | Stack fixup required | No | No | 5695 /// +-------------------------+--------+-----+ 5696 /// 5697 /// \p MachineOutlinerNoLRSave implies that the function should be called using 5698 /// a BL instruction, but doesn't require LR to be saved and restored. This 5699 /// happens when LR is known to be dead. 5700 /// 5701 /// That is, 5702 /// 5703 /// I1 OUTLINED_FUNCTION: 5704 /// I2 --> BL OUTLINED_FUNCTION I1 5705 /// I3 I2 5706 /// I3 5707 /// BX LR 5708 /// 5709 /// +-------------------------+--------+-----+ 5710 /// | | Thumb2 | ARM | 5711 /// +-------------------------+--------+-----+ 5712 /// | Call overhead in Bytes | 4 | 4 | 5713 /// | Frame overhead in Bytes | 2 | 4 | 5714 /// | Stack fixup required | No | No | 5715 /// +-------------------------+--------+-----+ 5716 /// 5717 /// \p MachineOutlinerRegSave implies that the function should be called with a 5718 /// save and restore of LR to an available register. This allows us to avoid 5719 /// stack fixups. Note that this outlining variant is compatible with the 5720 /// NoLRSave case. 5721 /// 5722 /// That is, 5723 /// 5724 /// I1 Save LR OUTLINED_FUNCTION: 5725 /// I2 --> BL OUTLINED_FUNCTION I1 5726 /// I3 Restore LR I2 5727 /// I3 5728 /// BX LR 5729 /// 5730 /// +-------------------------+--------+-----+ 5731 /// | | Thumb2 | ARM | 5732 /// +-------------------------+--------+-----+ 5733 /// | Call overhead in Bytes | 8 | 12 | 5734 /// | Frame overhead in Bytes | 2 | 4 | 5735 /// | Stack fixup required | No | No | 5736 /// +-------------------------+--------+-----+ 5737 /// 5738 /// \p MachineOutlinerDefault implies that the function should be called with 5739 /// a save and restore of LR to the stack. 5740 /// 5741 /// That is, 5742 /// 5743 /// I1 Save LR OUTLINED_FUNCTION: 5744 /// I2 --> BL OUTLINED_FUNCTION I1 5745 /// I3 Restore LR I2 5746 /// I3 5747 /// BX LR 5748 /// 5749 /// +-------------------------+--------+-----+ 5750 /// | | Thumb2 | ARM | 5751 /// +-------------------------+--------+-----+ 5752 /// | Call overhead in Bytes | 8 | 12 | 5753 /// | Frame overhead in Bytes | 2 | 4 | 5754 /// | Stack fixup required | Yes | Yes | 5755 /// +-------------------------+--------+-----+ 5756 5757 enum MachineOutlinerClass { 5758 MachineOutlinerTailCall, 5759 MachineOutlinerThunk, 5760 MachineOutlinerNoLRSave, 5761 MachineOutlinerRegSave, 5762 MachineOutlinerDefault 5763 }; 5764 5765 enum MachineOutlinerMBBFlags { 5766 LRUnavailableSomewhere = 0x2, 5767 HasCalls = 0x4, 5768 UnsafeRegsDead = 0x8 5769 }; 5770 5771 struct OutlinerCosts { 5772 int CallTailCall; 5773 int FrameTailCall; 5774 int CallThunk; 5775 int FrameThunk; 5776 int CallNoLRSave; 5777 int FrameNoLRSave; 5778 int CallRegSave; 5779 int FrameRegSave; 5780 int CallDefault; 5781 int FrameDefault; 5782 int SaveRestoreLROnStack; 5783 5784 OutlinerCosts(const ARMSubtarget &target) 5785 : CallTailCall(target.isThumb() ? 4 : 4), 5786 FrameTailCall(target.isThumb() ? 0 : 0), 5787 CallThunk(target.isThumb() ? 4 : 4), 5788 FrameThunk(target.isThumb() ? 0 : 0), 5789 CallNoLRSave(target.isThumb() ? 4 : 4), 5790 FrameNoLRSave(target.isThumb() ? 2 : 4), 5791 CallRegSave(target.isThumb() ? 8 : 12), 5792 FrameRegSave(target.isThumb() ? 2 : 4), 5793 CallDefault(target.isThumb() ? 8 : 12), 5794 FrameDefault(target.isThumb() ? 2 : 4), 5795 SaveRestoreLROnStack(target.isThumb() ? 8 : 8) {} 5796 }; 5797 5798 Register 5799 ARMBaseInstrInfo::findRegisterToSaveLRTo(outliner::Candidate &C) const { 5800 MachineFunction *MF = C.getMF(); 5801 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 5802 const ARMBaseRegisterInfo *ARI = 5803 static_cast<const ARMBaseRegisterInfo *>(&TRI); 5804 5805 BitVector regsReserved = ARI->getReservedRegs(*MF); 5806 // Check if there is an available register across the sequence that we can 5807 // use. 5808 for (Register Reg : ARM::rGPRRegClass) { 5809 if (!(Reg < regsReserved.size() && regsReserved.test(Reg)) && 5810 Reg != ARM::LR && // LR is not reserved, but don't use it. 5811 Reg != ARM::R12 && // R12 is not guaranteed to be preserved. 5812 C.isAvailableAcrossAndOutOfSeq(Reg, TRI) && 5813 C.isAvailableInsideSeq(Reg, TRI)) 5814 return Reg; 5815 } 5816 return Register(); 5817 } 5818 5819 // Compute liveness of LR at the point after the interval [I, E), which 5820 // denotes a *backward* iteration through instructions. Used only for return 5821 // basic blocks, which do not end with a tail call. 5822 static bool isLRAvailable(const TargetRegisterInfo &TRI, 5823 MachineBasicBlock::reverse_iterator I, 5824 MachineBasicBlock::reverse_iterator E) { 5825 // At the end of the function LR dead. 5826 bool Live = false; 5827 for (; I != E; ++I) { 5828 const MachineInstr &MI = *I; 5829 5830 // Check defs of LR. 5831 if (MI.modifiesRegister(ARM::LR, &TRI)) 5832 Live = false; 5833 5834 // Check uses of LR. 5835 unsigned Opcode = MI.getOpcode(); 5836 if (Opcode == ARM::BX_RET || Opcode == ARM::MOVPCLR || 5837 Opcode == ARM::SUBS_PC_LR || Opcode == ARM::tBX_RET || 5838 Opcode == ARM::tBXNS_RET) { 5839 // These instructions use LR, but it's not an (explicit or implicit) 5840 // operand. 5841 Live = true; 5842 continue; 5843 } 5844 if (MI.readsRegister(ARM::LR, &TRI)) 5845 Live = true; 5846 } 5847 return !Live; 5848 } 5849 5850 outliner::OutlinedFunction ARMBaseInstrInfo::getOutliningCandidateInfo( 5851 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const { 5852 outliner::Candidate &FirstCand = RepeatedSequenceLocs[0]; 5853 unsigned SequenceSize = 5854 std::accumulate(FirstCand.front(), std::next(FirstCand.back()), 0, 5855 [this](unsigned Sum, const MachineInstr &MI) { 5856 return Sum + getInstSizeInBytes(MI); 5857 }); 5858 5859 // Properties about candidate MBBs that hold for all of them. 5860 unsigned FlagsSetInAll = 0xF; 5861 5862 // Compute liveness information for each candidate, and set FlagsSetInAll. 5863 const TargetRegisterInfo &TRI = getRegisterInfo(); 5864 for (outliner::Candidate &C : RepeatedSequenceLocs) 5865 FlagsSetInAll &= C.Flags; 5866 5867 // According to the ARM Procedure Call Standard, the following are 5868 // undefined on entry/exit from a function call: 5869 // 5870 // * Register R12(IP), 5871 // * Condition codes (and thus the CPSR register) 5872 // 5873 // Since we control the instructions which are part of the outlined regions 5874 // we don't need to be fully compliant with the AAPCS, but we have to 5875 // guarantee that if a veneer is inserted at link time the code is still 5876 // correct. Because of this, we can't outline any sequence of instructions 5877 // where one of these registers is live into/across it. Thus, we need to 5878 // delete those candidates. 5879 auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) { 5880 // If the unsafe registers in this block are all dead, then we don't need 5881 // to compute liveness here. 5882 if (C.Flags & UnsafeRegsDead) 5883 return false; 5884 return C.isAnyUnavailableAcrossOrOutOfSeq({ARM::R12, ARM::CPSR}, TRI); 5885 }; 5886 5887 // Are there any candidates where those registers are live? 5888 if (!(FlagsSetInAll & UnsafeRegsDead)) { 5889 // Erase every candidate that violates the restrictions above. (It could be 5890 // true that we have viable candidates, so it's not worth bailing out in 5891 // the case that, say, 1 out of 20 candidates violate the restructions.) 5892 llvm::erase_if(RepeatedSequenceLocs, CantGuaranteeValueAcrossCall); 5893 5894 // If the sequence doesn't have enough candidates left, then we're done. 5895 if (RepeatedSequenceLocs.size() < 2) 5896 return outliner::OutlinedFunction(); 5897 } 5898 5899 // We expect the majority of the outlining candidates to be in consensus with 5900 // regard to return address sign and authentication, and branch target 5901 // enforcement, in other words, partitioning according to all the four 5902 // possible combinations of PAC-RET and BTI is going to yield one big subset 5903 // and three small (likely empty) subsets. That allows us to cull incompatible 5904 // candidates separately for PAC-RET and BTI. 5905 5906 // Partition the candidates in two sets: one with BTI enabled and one with BTI 5907 // disabled. Remove the candidates from the smaller set. If they are the same 5908 // number prefer the non-BTI ones for outlining, since they have less 5909 // overhead. 5910 auto NoBTI = 5911 llvm::partition(RepeatedSequenceLocs, [](const outliner::Candidate &C) { 5912 const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>(); 5913 return AFI.branchTargetEnforcement(); 5914 }); 5915 if (std::distance(RepeatedSequenceLocs.begin(), NoBTI) > 5916 std::distance(NoBTI, RepeatedSequenceLocs.end())) 5917 RepeatedSequenceLocs.erase(NoBTI, RepeatedSequenceLocs.end()); 5918 else 5919 RepeatedSequenceLocs.erase(RepeatedSequenceLocs.begin(), NoBTI); 5920 5921 if (RepeatedSequenceLocs.size() < 2) 5922 return outliner::OutlinedFunction(); 5923 5924 // Likewise, partition the candidates according to PAC-RET enablement. 5925 auto NoPAC = 5926 llvm::partition(RepeatedSequenceLocs, [](const outliner::Candidate &C) { 5927 const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>(); 5928 // If the function happens to not spill the LR, do not disqualify it 5929 // from the outlining. 5930 return AFI.shouldSignReturnAddress(true); 5931 }); 5932 if (std::distance(RepeatedSequenceLocs.begin(), NoPAC) > 5933 std::distance(NoPAC, RepeatedSequenceLocs.end())) 5934 RepeatedSequenceLocs.erase(NoPAC, RepeatedSequenceLocs.end()); 5935 else 5936 RepeatedSequenceLocs.erase(RepeatedSequenceLocs.begin(), NoPAC); 5937 5938 if (RepeatedSequenceLocs.size() < 2) 5939 return outliner::OutlinedFunction(); 5940 5941 // At this point, we have only "safe" candidates to outline. Figure out 5942 // frame + call instruction information. 5943 5944 unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back()->getOpcode(); 5945 5946 // Helper lambda which sets call information for every candidate. 5947 auto SetCandidateCallInfo = 5948 [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) { 5949 for (outliner::Candidate &C : RepeatedSequenceLocs) 5950 C.setCallInfo(CallID, NumBytesForCall); 5951 }; 5952 5953 OutlinerCosts Costs(Subtarget); 5954 5955 const auto &SomeMFI = 5956 *RepeatedSequenceLocs.front().getMF()->getInfo<ARMFunctionInfo>(); 5957 // Adjust costs to account for the BTI instructions. 5958 if (SomeMFI.branchTargetEnforcement()) { 5959 Costs.FrameDefault += 4; 5960 Costs.FrameNoLRSave += 4; 5961 Costs.FrameRegSave += 4; 5962 Costs.FrameTailCall += 4; 5963 Costs.FrameThunk += 4; 5964 } 5965 5966 // Adjust costs to account for sign and authentication instructions. 5967 if (SomeMFI.shouldSignReturnAddress(true)) { 5968 Costs.CallDefault += 8; // +PAC instr, +AUT instr 5969 Costs.SaveRestoreLROnStack += 8; // +PAC instr, +AUT instr 5970 } 5971 5972 unsigned FrameID = MachineOutlinerDefault; 5973 unsigned NumBytesToCreateFrame = Costs.FrameDefault; 5974 5975 // If the last instruction in any candidate is a terminator, then we should 5976 // tail call all of the candidates. 5977 if (RepeatedSequenceLocs[0].back()->isTerminator()) { 5978 FrameID = MachineOutlinerTailCall; 5979 NumBytesToCreateFrame = Costs.FrameTailCall; 5980 SetCandidateCallInfo(MachineOutlinerTailCall, Costs.CallTailCall); 5981 } else if (LastInstrOpcode == ARM::BL || LastInstrOpcode == ARM::BLX || 5982 LastInstrOpcode == ARM::BLX_noip || LastInstrOpcode == ARM::tBL || 5983 LastInstrOpcode == ARM::tBLXr || 5984 LastInstrOpcode == ARM::tBLXr_noip || 5985 LastInstrOpcode == ARM::tBLXi) { 5986 FrameID = MachineOutlinerThunk; 5987 NumBytesToCreateFrame = Costs.FrameThunk; 5988 SetCandidateCallInfo(MachineOutlinerThunk, Costs.CallThunk); 5989 } else { 5990 // We need to decide how to emit calls + frames. We can always emit the same 5991 // frame if we don't need to save to the stack. If we have to save to the 5992 // stack, then we need a different frame. 5993 unsigned NumBytesNoStackCalls = 0; 5994 std::vector<outliner::Candidate> CandidatesWithoutStackFixups; 5995 5996 for (outliner::Candidate &C : RepeatedSequenceLocs) { 5997 // LR liveness is overestimated in return blocks, unless they end with a 5998 // tail call. 5999 const auto Last = C.getMBB()->rbegin(); 6000 const bool LRIsAvailable = 6001 C.getMBB()->isReturnBlock() && !Last->isCall() 6002 ? isLRAvailable(TRI, Last, 6003 (MachineBasicBlock::reverse_iterator)C.front()) 6004 : C.isAvailableAcrossAndOutOfSeq(ARM::LR, TRI); 6005 if (LRIsAvailable) { 6006 FrameID = MachineOutlinerNoLRSave; 6007 NumBytesNoStackCalls += Costs.CallNoLRSave; 6008 C.setCallInfo(MachineOutlinerNoLRSave, Costs.CallNoLRSave); 6009 CandidatesWithoutStackFixups.push_back(C); 6010 } 6011 6012 // Is an unused register available? If so, we won't modify the stack, so 6013 // we can outline with the same frame type as those that don't save LR. 6014 else if (findRegisterToSaveLRTo(C)) { 6015 FrameID = MachineOutlinerRegSave; 6016 NumBytesNoStackCalls += Costs.CallRegSave; 6017 C.setCallInfo(MachineOutlinerRegSave, Costs.CallRegSave); 6018 CandidatesWithoutStackFixups.push_back(C); 6019 } 6020 6021 // Is SP used in the sequence at all? If not, we don't have to modify 6022 // the stack, so we are guaranteed to get the same frame. 6023 else if (C.isAvailableInsideSeq(ARM::SP, TRI)) { 6024 NumBytesNoStackCalls += Costs.CallDefault; 6025 C.setCallInfo(MachineOutlinerDefault, Costs.CallDefault); 6026 CandidatesWithoutStackFixups.push_back(C); 6027 } 6028 6029 // If we outline this, we need to modify the stack. Pretend we don't 6030 // outline this by saving all of its bytes. 6031 else 6032 NumBytesNoStackCalls += SequenceSize; 6033 } 6034 6035 // If there are no places where we have to save LR, then note that we don't 6036 // have to update the stack. Otherwise, give every candidate the default 6037 // call type 6038 if (NumBytesNoStackCalls <= 6039 RepeatedSequenceLocs.size() * Costs.CallDefault) { 6040 RepeatedSequenceLocs = CandidatesWithoutStackFixups; 6041 FrameID = MachineOutlinerNoLRSave; 6042 } else 6043 SetCandidateCallInfo(MachineOutlinerDefault, Costs.CallDefault); 6044 } 6045 6046 // Does every candidate's MBB contain a call? If so, then we might have a 6047 // call in the range. 6048 if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) { 6049 // check if the range contains a call. These require a save + restore of 6050 // the link register. 6051 if (std::any_of(FirstCand.front(), FirstCand.back(), 6052 [](const MachineInstr &MI) { return MI.isCall(); })) 6053 NumBytesToCreateFrame += Costs.SaveRestoreLROnStack; 6054 6055 // Handle the last instruction separately. If it is tail call, then the 6056 // last instruction is a call, we don't want to save + restore in this 6057 // case. However, it could be possible that the last instruction is a 6058 // call without it being valid to tail call this sequence. We should 6059 // consider this as well. 6060 else if (FrameID != MachineOutlinerThunk && 6061 FrameID != MachineOutlinerTailCall && FirstCand.back()->isCall()) 6062 NumBytesToCreateFrame += Costs.SaveRestoreLROnStack; 6063 } 6064 6065 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 6066 NumBytesToCreateFrame, FrameID); 6067 } 6068 6069 bool ARMBaseInstrInfo::checkAndUpdateStackOffset(MachineInstr *MI, 6070 int64_t Fixup, 6071 bool Updt) const { 6072 int SPIdx = MI->findRegisterUseOperandIdx(ARM::SP); 6073 unsigned AddrMode = (MI->getDesc().TSFlags & ARMII::AddrModeMask); 6074 if (SPIdx < 0) 6075 // No SP operand 6076 return true; 6077 else if (SPIdx != 1 && (AddrMode != ARMII::AddrModeT2_i8s4 || SPIdx != 2)) 6078 // If SP is not the base register we can't do much 6079 return false; 6080 6081 // Stack might be involved but addressing mode doesn't handle any offset. 6082 // Rq: AddrModeT1_[1|2|4] don't operate on SP 6083 if (AddrMode == ARMII::AddrMode1 || // Arithmetic instructions 6084 AddrMode == ARMII::AddrMode4 || // Load/Store Multiple 6085 AddrMode == ARMII::AddrMode6 || // Neon Load/Store Multiple 6086 AddrMode == ARMII::AddrModeT2_so || // SP can't be used as based register 6087 AddrMode == ARMII::AddrModeT2_pc || // PCrel access 6088 AddrMode == ARMII::AddrMode2 || // Used by PRE and POST indexed LD/ST 6089 AddrMode == ARMII::AddrModeT2_i7 || // v8.1-M MVE 6090 AddrMode == ARMII::AddrModeT2_i7s2 || // v8.1-M MVE 6091 AddrMode == ARMII::AddrModeT2_i7s4 || // v8.1-M sys regs VLDR/VSTR 6092 AddrMode == ARMII::AddrModeNone || 6093 AddrMode == ARMII::AddrModeT2_i8 || // Pre/Post inc instructions 6094 AddrMode == ARMII::AddrModeT2_i8neg) // Always negative imm 6095 return false; 6096 6097 unsigned NumOps = MI->getDesc().getNumOperands(); 6098 unsigned ImmIdx = NumOps - 3; 6099 6100 const MachineOperand &Offset = MI->getOperand(ImmIdx); 6101 assert(Offset.isImm() && "Is not an immediate"); 6102 int64_t OffVal = Offset.getImm(); 6103 6104 if (OffVal < 0) 6105 // Don't override data if the are below SP. 6106 return false; 6107 6108 unsigned NumBits = 0; 6109 unsigned Scale = 1; 6110 6111 switch (AddrMode) { 6112 case ARMII::AddrMode3: 6113 if (ARM_AM::getAM3Op(OffVal) == ARM_AM::sub) 6114 return false; 6115 OffVal = ARM_AM::getAM3Offset(OffVal); 6116 NumBits = 8; 6117 break; 6118 case ARMII::AddrMode5: 6119 if (ARM_AM::getAM5Op(OffVal) == ARM_AM::sub) 6120 return false; 6121 OffVal = ARM_AM::getAM5Offset(OffVal); 6122 NumBits = 8; 6123 Scale = 4; 6124 break; 6125 case ARMII::AddrMode5FP16: 6126 if (ARM_AM::getAM5FP16Op(OffVal) == ARM_AM::sub) 6127 return false; 6128 OffVal = ARM_AM::getAM5FP16Offset(OffVal); 6129 NumBits = 8; 6130 Scale = 2; 6131 break; 6132 case ARMII::AddrModeT2_i8pos: 6133 NumBits = 8; 6134 break; 6135 case ARMII::AddrModeT2_i8s4: 6136 // FIXME: Values are already scaled in this addressing mode. 6137 assert((Fixup & 3) == 0 && "Can't encode this offset!"); 6138 NumBits = 10; 6139 break; 6140 case ARMII::AddrModeT2_ldrex: 6141 NumBits = 8; 6142 Scale = 4; 6143 break; 6144 case ARMII::AddrModeT2_i12: 6145 case ARMII::AddrMode_i12: 6146 NumBits = 12; 6147 break; 6148 case ARMII::AddrModeT1_s: // SP-relative LD/ST 6149 NumBits = 8; 6150 Scale = 4; 6151 break; 6152 default: 6153 llvm_unreachable("Unsupported addressing mode!"); 6154 } 6155 // Make sure the offset is encodable for instructions that scale the 6156 // immediate. 6157 assert(((OffVal * Scale + Fixup) & (Scale - 1)) == 0 && 6158 "Can't encode this offset!"); 6159 OffVal += Fixup / Scale; 6160 6161 unsigned Mask = (1 << NumBits) - 1; 6162 6163 if (OffVal <= Mask) { 6164 if (Updt) 6165 MI->getOperand(ImmIdx).setImm(OffVal); 6166 return true; 6167 } 6168 6169 return false; 6170 } 6171 6172 void ARMBaseInstrInfo::mergeOutliningCandidateAttributes( 6173 Function &F, std::vector<outliner::Candidate> &Candidates) const { 6174 outliner::Candidate &C = Candidates.front(); 6175 // branch-target-enforcement is guaranteed to be consistent between all 6176 // candidates, so we only need to look at one. 6177 const Function &CFn = C.getMF()->getFunction(); 6178 if (CFn.hasFnAttribute("branch-target-enforcement")) 6179 F.addFnAttr(CFn.getFnAttribute("branch-target-enforcement")); 6180 6181 ARMGenInstrInfo::mergeOutliningCandidateAttributes(F, Candidates); 6182 } 6183 6184 bool ARMBaseInstrInfo::isFunctionSafeToOutlineFrom( 6185 MachineFunction &MF, bool OutlineFromLinkOnceODRs) const { 6186 const Function &F = MF.getFunction(); 6187 6188 // Can F be deduplicated by the linker? If it can, don't outline from it. 6189 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage()) 6190 return false; 6191 6192 // Don't outline from functions with section markings; the program could 6193 // expect that all the code is in the named section. 6194 // FIXME: Allow outlining from multiple functions with the same section 6195 // marking. 6196 if (F.hasSection()) 6197 return false; 6198 6199 // FIXME: Thumb1 outlining is not handled 6200 if (MF.getInfo<ARMFunctionInfo>()->isThumb1OnlyFunction()) 6201 return false; 6202 6203 // It's safe to outline from MF. 6204 return true; 6205 } 6206 6207 bool ARMBaseInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, 6208 unsigned &Flags) const { 6209 // Check if LR is available through all of the MBB. If it's not, then set 6210 // a flag. 6211 assert(MBB.getParent()->getRegInfo().tracksLiveness() && 6212 "Suitable Machine Function for outlining must track liveness"); 6213 6214 LiveRegUnits LRU(getRegisterInfo()); 6215 6216 for (MachineInstr &MI : llvm::reverse(MBB)) 6217 LRU.accumulate(MI); 6218 6219 // Check if each of the unsafe registers are available... 6220 bool R12AvailableInBlock = LRU.available(ARM::R12); 6221 bool CPSRAvailableInBlock = LRU.available(ARM::CPSR); 6222 6223 // If all of these are dead (and not live out), we know we don't have to check 6224 // them later. 6225 if (R12AvailableInBlock && CPSRAvailableInBlock) 6226 Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead; 6227 6228 // Now, add the live outs to the set. 6229 LRU.addLiveOuts(MBB); 6230 6231 // If any of these registers is available in the MBB, but also a live out of 6232 // the block, then we know outlining is unsafe. 6233 if (R12AvailableInBlock && !LRU.available(ARM::R12)) 6234 return false; 6235 if (CPSRAvailableInBlock && !LRU.available(ARM::CPSR)) 6236 return false; 6237 6238 // Check if there's a call inside this MachineBasicBlock. If there is, then 6239 // set a flag. 6240 if (any_of(MBB, [](MachineInstr &MI) { return MI.isCall(); })) 6241 Flags |= MachineOutlinerMBBFlags::HasCalls; 6242 6243 // LR liveness is overestimated in return blocks. 6244 6245 bool LRIsAvailable = 6246 MBB.isReturnBlock() && !MBB.back().isCall() 6247 ? isLRAvailable(getRegisterInfo(), MBB.rbegin(), MBB.rend()) 6248 : LRU.available(ARM::LR); 6249 if (!LRIsAvailable) 6250 Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere; 6251 6252 return true; 6253 } 6254 6255 outliner::InstrType 6256 ARMBaseInstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT, 6257 unsigned Flags) const { 6258 MachineInstr &MI = *MIT; 6259 const TargetRegisterInfo *TRI = &getRegisterInfo(); 6260 6261 // Be conservative with inline ASM 6262 if (MI.isInlineAsm()) 6263 return outliner::InstrType::Illegal; 6264 6265 // Don't allow debug values to impact outlining type. 6266 if (MI.isDebugInstr() || MI.isIndirectDebugValue()) 6267 return outliner::InstrType::Invisible; 6268 6269 // At this point, KILL or IMPLICIT_DEF instructions don't really tell us much 6270 // so we can go ahead and skip over them. 6271 if (MI.isKill() || MI.isImplicitDef()) 6272 return outliner::InstrType::Invisible; 6273 6274 // PIC instructions contain labels, outlining them would break offset 6275 // computing. unsigned Opc = MI.getOpcode(); 6276 unsigned Opc = MI.getOpcode(); 6277 if (Opc == ARM::tPICADD || Opc == ARM::PICADD || Opc == ARM::PICSTR || 6278 Opc == ARM::PICSTRB || Opc == ARM::PICSTRH || Opc == ARM::PICLDR || 6279 Opc == ARM::PICLDRB || Opc == ARM::PICLDRH || Opc == ARM::PICLDRSB || 6280 Opc == ARM::PICLDRSH || Opc == ARM::t2LDRpci_pic || 6281 Opc == ARM::t2MOVi16_ga_pcrel || Opc == ARM::t2MOVTi16_ga_pcrel || 6282 Opc == ARM::t2MOV_ga_pcrel) 6283 return outliner::InstrType::Illegal; 6284 6285 // Be conservative with ARMv8.1 MVE instructions. 6286 if (Opc == ARM::t2BF_LabelPseudo || Opc == ARM::t2DoLoopStart || 6287 Opc == ARM::t2DoLoopStartTP || Opc == ARM::t2WhileLoopStart || 6288 Opc == ARM::t2WhileLoopStartLR || Opc == ARM::t2WhileLoopStartTP || 6289 Opc == ARM::t2LoopDec || Opc == ARM::t2LoopEnd || 6290 Opc == ARM::t2LoopEndDec) 6291 return outliner::InstrType::Illegal; 6292 6293 const MCInstrDesc &MCID = MI.getDesc(); 6294 uint64_t MIFlags = MCID.TSFlags; 6295 if ((MIFlags & ARMII::DomainMask) == ARMII::DomainMVE) 6296 return outliner::InstrType::Illegal; 6297 6298 // Is this a terminator for a basic block? 6299 if (MI.isTerminator()) { 6300 // Don't outline if the branch is not unconditional. 6301 if (isPredicated(MI)) 6302 return outliner::InstrType::Illegal; 6303 6304 // Is this the end of a function? 6305 if (MI.getParent()->succ_empty()) 6306 return outliner::InstrType::Legal; 6307 6308 // It's not, so don't outline it. 6309 return outliner::InstrType::Illegal; 6310 } 6311 6312 // Make sure none of the operands are un-outlinable. 6313 for (const MachineOperand &MOP : MI.operands()) { 6314 if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() || 6315 MOP.isTargetIndex()) 6316 return outliner::InstrType::Illegal; 6317 } 6318 6319 // Don't outline if link register or program counter value are used. 6320 if (MI.readsRegister(ARM::LR, TRI) || MI.readsRegister(ARM::PC, TRI)) 6321 return outliner::InstrType::Illegal; 6322 6323 if (MI.isCall()) { 6324 // Get the function associated with the call. Look at each operand and find 6325 // the one that represents the calle and get its name. 6326 const Function *Callee = nullptr; 6327 for (const MachineOperand &MOP : MI.operands()) { 6328 if (MOP.isGlobal()) { 6329 Callee = dyn_cast<Function>(MOP.getGlobal()); 6330 break; 6331 } 6332 } 6333 6334 // Dont't outline calls to "mcount" like functions, in particular Linux 6335 // kernel function tracing relies on it. 6336 if (Callee && 6337 (Callee->getName() == "\01__gnu_mcount_nc" || 6338 Callee->getName() == "\01mcount" || Callee->getName() == "__mcount")) 6339 return outliner::InstrType::Illegal; 6340 6341 // If we don't know anything about the callee, assume it depends on the 6342 // stack layout of the caller. In that case, it's only legal to outline 6343 // as a tail-call. Explicitly list the call instructions we know about so 6344 // we don't get unexpected results with call pseudo-instructions. 6345 auto UnknownCallOutlineType = outliner::InstrType::Illegal; 6346 if (Opc == ARM::BL || Opc == ARM::tBL || Opc == ARM::BLX || 6347 Opc == ARM::BLX_noip || Opc == ARM::tBLXr || Opc == ARM::tBLXr_noip || 6348 Opc == ARM::tBLXi) 6349 UnknownCallOutlineType = outliner::InstrType::LegalTerminator; 6350 6351 if (!Callee) 6352 return UnknownCallOutlineType; 6353 6354 // We have a function we have information about. Check if it's something we 6355 // can safely outline. 6356 MachineFunction *MF = MI.getParent()->getParent(); 6357 MachineFunction *CalleeMF = MF->getMMI().getMachineFunction(*Callee); 6358 6359 // We don't know what's going on with the callee at all. Don't touch it. 6360 if (!CalleeMF) 6361 return UnknownCallOutlineType; 6362 6363 // Check if we know anything about the callee saves on the function. If we 6364 // don't, then don't touch it, since that implies that we haven't computed 6365 // anything about its stack frame yet. 6366 MachineFrameInfo &MFI = CalleeMF->getFrameInfo(); 6367 if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 || 6368 MFI.getNumObjects() > 0) 6369 return UnknownCallOutlineType; 6370 6371 // At this point, we can say that CalleeMF ought to not pass anything on the 6372 // stack. Therefore, we can outline it. 6373 return outliner::InstrType::Legal; 6374 } 6375 6376 // Since calls are handled, don't touch LR or PC 6377 if (MI.modifiesRegister(ARM::LR, TRI) || MI.modifiesRegister(ARM::PC, TRI)) 6378 return outliner::InstrType::Illegal; 6379 6380 // Does this use the stack? 6381 if (MI.modifiesRegister(ARM::SP, TRI) || MI.readsRegister(ARM::SP, TRI)) { 6382 // True if there is no chance that any outlined candidate from this range 6383 // could require stack fixups. That is, both 6384 // * LR is available in the range (No save/restore around call) 6385 // * The range doesn't include calls (No save/restore in outlined frame) 6386 // are true. 6387 // These conditions also ensure correctness of the return address 6388 // authentication - we insert sign and authentication instructions only if 6389 // we save/restore LR on stack, but then this condition ensures that the 6390 // outlined range does not modify the SP, therefore the SP value used for 6391 // signing is the same as the one used for authentication. 6392 // FIXME: This is very restrictive; the flags check the whole block, 6393 // not just the bit we will try to outline. 6394 bool MightNeedStackFixUp = 6395 (Flags & (MachineOutlinerMBBFlags::LRUnavailableSomewhere | 6396 MachineOutlinerMBBFlags::HasCalls)); 6397 6398 if (!MightNeedStackFixUp) 6399 return outliner::InstrType::Legal; 6400 6401 // Any modification of SP will break our code to save/restore LR. 6402 // FIXME: We could handle some instructions which add a constant offset to 6403 // SP, with a bit more work. 6404 if (MI.modifiesRegister(ARM::SP, TRI)) 6405 return outliner::InstrType::Illegal; 6406 6407 // At this point, we have a stack instruction that we might need to fix up. 6408 // up. We'll handle it if it's a load or store. 6409 if (checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(), 6410 false)) 6411 return outliner::InstrType::Legal; 6412 6413 // We can't fix it up, so don't outline it. 6414 return outliner::InstrType::Illegal; 6415 } 6416 6417 // Be conservative with IT blocks. 6418 if (MI.readsRegister(ARM::ITSTATE, TRI) || 6419 MI.modifiesRegister(ARM::ITSTATE, TRI)) 6420 return outliner::InstrType::Illegal; 6421 6422 // Don't outline positions. 6423 if (MI.isPosition()) 6424 return outliner::InstrType::Illegal; 6425 6426 return outliner::InstrType::Legal; 6427 } 6428 6429 void ARMBaseInstrInfo::fixupPostOutline(MachineBasicBlock &MBB) const { 6430 for (MachineInstr &MI : MBB) { 6431 checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(), true); 6432 } 6433 } 6434 6435 void ARMBaseInstrInfo::saveLROnStack(MachineBasicBlock &MBB, 6436 MachineBasicBlock::iterator It, bool CFI, 6437 bool Auth) const { 6438 int Align = std::max(Subtarget.getStackAlignment().value(), uint64_t(8)); 6439 assert(Align >= 8 && Align <= 256); 6440 if (Auth) { 6441 assert(Subtarget.isThumb2()); 6442 // Compute PAC in R12. Outlining ensures R12 is dead across the outlined 6443 // sequence. 6444 BuildMI(MBB, It, DebugLoc(), get(ARM::t2PAC)) 6445 .setMIFlags(MachineInstr::FrameSetup); 6446 BuildMI(MBB, It, DebugLoc(), get(ARM::t2STRD_PRE), ARM::SP) 6447 .addReg(ARM::R12, RegState::Kill) 6448 .addReg(ARM::LR, RegState::Kill) 6449 .addReg(ARM::SP) 6450 .addImm(-Align) 6451 .add(predOps(ARMCC::AL)) 6452 .setMIFlags(MachineInstr::FrameSetup); 6453 } else { 6454 unsigned Opc = Subtarget.isThumb() ? ARM::t2STR_PRE : ARM::STR_PRE_IMM; 6455 BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::SP) 6456 .addReg(ARM::LR, RegState::Kill) 6457 .addReg(ARM::SP) 6458 .addImm(-Align) 6459 .add(predOps(ARMCC::AL)) 6460 .setMIFlags(MachineInstr::FrameSetup); 6461 } 6462 6463 if (!CFI) 6464 return; 6465 6466 MachineFunction &MF = *MBB.getParent(); 6467 6468 // Add a CFI, saying CFA is offset by Align bytes from SP. 6469 int64_t StackPosEntry = 6470 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Align)); 6471 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6472 .addCFIIndex(StackPosEntry) 6473 .setMIFlags(MachineInstr::FrameSetup); 6474 6475 // Add a CFI saying that the LR that we want to find is now higher than 6476 // before. 6477 int LROffset = Auth ? Align - 4 : Align; 6478 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6479 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6480 int64_t LRPosEntry = MF.addFrameInst( 6481 MCCFIInstruction::createOffset(nullptr, DwarfLR, -LROffset)); 6482 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6483 .addCFIIndex(LRPosEntry) 6484 .setMIFlags(MachineInstr::FrameSetup); 6485 if (Auth) { 6486 // Add a CFI for the location of the return adddress PAC. 6487 unsigned DwarfRAC = MRI->getDwarfRegNum(ARM::RA_AUTH_CODE, true); 6488 int64_t RACPosEntry = MF.addFrameInst( 6489 MCCFIInstruction::createOffset(nullptr, DwarfRAC, -Align)); 6490 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6491 .addCFIIndex(RACPosEntry) 6492 .setMIFlags(MachineInstr::FrameSetup); 6493 } 6494 } 6495 6496 void ARMBaseInstrInfo::emitCFIForLRSaveToReg(MachineBasicBlock &MBB, 6497 MachineBasicBlock::iterator It, 6498 Register Reg) const { 6499 MachineFunction &MF = *MBB.getParent(); 6500 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6501 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6502 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 6503 6504 int64_t LRPosEntry = MF.addFrameInst( 6505 MCCFIInstruction::createRegister(nullptr, DwarfLR, DwarfReg)); 6506 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6507 .addCFIIndex(LRPosEntry) 6508 .setMIFlags(MachineInstr::FrameSetup); 6509 } 6510 6511 void ARMBaseInstrInfo::restoreLRFromStack(MachineBasicBlock &MBB, 6512 MachineBasicBlock::iterator It, 6513 bool CFI, bool Auth) const { 6514 int Align = Subtarget.getStackAlignment().value(); 6515 if (Auth) { 6516 assert(Subtarget.isThumb2()); 6517 // Restore return address PAC and LR. 6518 BuildMI(MBB, It, DebugLoc(), get(ARM::t2LDRD_POST)) 6519 .addReg(ARM::R12, RegState::Define) 6520 .addReg(ARM::LR, RegState::Define) 6521 .addReg(ARM::SP, RegState::Define) 6522 .addReg(ARM::SP) 6523 .addImm(Align) 6524 .add(predOps(ARMCC::AL)) 6525 .setMIFlags(MachineInstr::FrameDestroy); 6526 // LR authentication is after the CFI instructions, below. 6527 } else { 6528 unsigned Opc = Subtarget.isThumb() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM; 6529 MachineInstrBuilder MIB = BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::LR) 6530 .addReg(ARM::SP, RegState::Define) 6531 .addReg(ARM::SP); 6532 if (!Subtarget.isThumb()) 6533 MIB.addReg(0); 6534 MIB.addImm(Subtarget.getStackAlignment().value()) 6535 .add(predOps(ARMCC::AL)) 6536 .setMIFlags(MachineInstr::FrameDestroy); 6537 } 6538 6539 if (CFI) { 6540 // Now stack has moved back up... 6541 MachineFunction &MF = *MBB.getParent(); 6542 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6543 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6544 int64_t StackPosEntry = 6545 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 6546 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6547 .addCFIIndex(StackPosEntry) 6548 .setMIFlags(MachineInstr::FrameDestroy); 6549 6550 // ... and we have restored LR. 6551 int64_t LRPosEntry = 6552 MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR)); 6553 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6554 .addCFIIndex(LRPosEntry) 6555 .setMIFlags(MachineInstr::FrameDestroy); 6556 6557 if (Auth) { 6558 unsigned DwarfRAC = MRI->getDwarfRegNum(ARM::RA_AUTH_CODE, true); 6559 int64_t Entry = 6560 MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, DwarfRAC)); 6561 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6562 .addCFIIndex(Entry) 6563 .setMIFlags(MachineInstr::FrameDestroy); 6564 } 6565 } 6566 6567 if (Auth) 6568 BuildMI(MBB, It, DebugLoc(), get(ARM::t2AUT)); 6569 } 6570 6571 void ARMBaseInstrInfo::emitCFIForLRRestoreFromReg( 6572 MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const { 6573 MachineFunction &MF = *MBB.getParent(); 6574 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6575 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6576 6577 int64_t LRPosEntry = 6578 MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR)); 6579 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6580 .addCFIIndex(LRPosEntry) 6581 .setMIFlags(MachineInstr::FrameDestroy); 6582 } 6583 6584 void ARMBaseInstrInfo::buildOutlinedFrame( 6585 MachineBasicBlock &MBB, MachineFunction &MF, 6586 const outliner::OutlinedFunction &OF) const { 6587 // For thunk outlining, rewrite the last instruction from a call to a 6588 // tail-call. 6589 if (OF.FrameConstructionID == MachineOutlinerThunk) { 6590 MachineInstr *Call = &*--MBB.instr_end(); 6591 bool isThumb = Subtarget.isThumb(); 6592 unsigned FuncOp = isThumb ? 2 : 0; 6593 unsigned Opc = Call->getOperand(FuncOp).isReg() 6594 ? isThumb ? ARM::tTAILJMPr : ARM::TAILJMPr 6595 : isThumb ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd 6596 : ARM::tTAILJMPdND 6597 : ARM::TAILJMPd; 6598 MachineInstrBuilder MIB = BuildMI(MBB, MBB.end(), DebugLoc(), get(Opc)) 6599 .add(Call->getOperand(FuncOp)); 6600 if (isThumb && !Call->getOperand(FuncOp).isReg()) 6601 MIB.add(predOps(ARMCC::AL)); 6602 Call->eraseFromParent(); 6603 } 6604 6605 // Is there a call in the outlined range? 6606 auto IsNonTailCall = [](MachineInstr &MI) { 6607 return MI.isCall() && !MI.isReturn(); 6608 }; 6609 if (llvm::any_of(MBB.instrs(), IsNonTailCall)) { 6610 MachineBasicBlock::iterator It = MBB.begin(); 6611 MachineBasicBlock::iterator Et = MBB.end(); 6612 6613 if (OF.FrameConstructionID == MachineOutlinerTailCall || 6614 OF.FrameConstructionID == MachineOutlinerThunk) 6615 Et = std::prev(MBB.end()); 6616 6617 // We have to save and restore LR, we need to add it to the liveins if it 6618 // is not already part of the set. This is suffient since outlined 6619 // functions only have one block. 6620 if (!MBB.isLiveIn(ARM::LR)) 6621 MBB.addLiveIn(ARM::LR); 6622 6623 // Insert a save before the outlined region 6624 bool Auth = OF.Candidates.front() 6625 .getMF() 6626 ->getInfo<ARMFunctionInfo>() 6627 ->shouldSignReturnAddress(true); 6628 saveLROnStack(MBB, It, true, Auth); 6629 6630 // Fix up the instructions in the range, since we're going to modify the 6631 // stack. 6632 assert(OF.FrameConstructionID != MachineOutlinerDefault && 6633 "Can only fix up stack references once"); 6634 fixupPostOutline(MBB); 6635 6636 // Insert a restore before the terminator for the function. Restore LR. 6637 restoreLRFromStack(MBB, Et, true, Auth); 6638 } 6639 6640 // If this is a tail call outlined function, then there's already a return. 6641 if (OF.FrameConstructionID == MachineOutlinerTailCall || 6642 OF.FrameConstructionID == MachineOutlinerThunk) 6643 return; 6644 6645 // Here we have to insert the return ourselves. Get the correct opcode from 6646 // current feature set. 6647 BuildMI(MBB, MBB.end(), DebugLoc(), get(Subtarget.getReturnOpcode())) 6648 .add(predOps(ARMCC::AL)); 6649 6650 // Did we have to modify the stack by saving the link register? 6651 if (OF.FrameConstructionID != MachineOutlinerDefault && 6652 OF.Candidates[0].CallConstructionID != MachineOutlinerDefault) 6653 return; 6654 6655 // We modified the stack. 6656 // Walk over the basic block and fix up all the stack accesses. 6657 fixupPostOutline(MBB); 6658 } 6659 6660 MachineBasicBlock::iterator ARMBaseInstrInfo::insertOutlinedCall( 6661 Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, 6662 MachineFunction &MF, outliner::Candidate &C) const { 6663 MachineInstrBuilder MIB; 6664 MachineBasicBlock::iterator CallPt; 6665 unsigned Opc; 6666 bool isThumb = Subtarget.isThumb(); 6667 6668 // Are we tail calling? 6669 if (C.CallConstructionID == MachineOutlinerTailCall) { 6670 // If yes, then we can just branch to the label. 6671 Opc = isThumb 6672 ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd : ARM::tTAILJMPdND 6673 : ARM::TAILJMPd; 6674 MIB = BuildMI(MF, DebugLoc(), get(Opc)) 6675 .addGlobalAddress(M.getNamedValue(MF.getName())); 6676 if (isThumb) 6677 MIB.add(predOps(ARMCC::AL)); 6678 It = MBB.insert(It, MIB); 6679 return It; 6680 } 6681 6682 // Create the call instruction. 6683 Opc = isThumb ? ARM::tBL : ARM::BL; 6684 MachineInstrBuilder CallMIB = BuildMI(MF, DebugLoc(), get(Opc)); 6685 if (isThumb) 6686 CallMIB.add(predOps(ARMCC::AL)); 6687 CallMIB.addGlobalAddress(M.getNamedValue(MF.getName())); 6688 6689 if (C.CallConstructionID == MachineOutlinerNoLRSave || 6690 C.CallConstructionID == MachineOutlinerThunk) { 6691 // No, so just insert the call. 6692 It = MBB.insert(It, CallMIB); 6693 return It; 6694 } 6695 6696 const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>(); 6697 // Can we save to a register? 6698 if (C.CallConstructionID == MachineOutlinerRegSave) { 6699 unsigned Reg = findRegisterToSaveLRTo(C); 6700 assert(Reg != 0 && "No callee-saved register available?"); 6701 6702 // Save and restore LR from that register. 6703 copyPhysReg(MBB, It, DebugLoc(), Reg, ARM::LR, true); 6704 if (!AFI.isLRSpilled()) 6705 emitCFIForLRSaveToReg(MBB, It, Reg); 6706 CallPt = MBB.insert(It, CallMIB); 6707 copyPhysReg(MBB, It, DebugLoc(), ARM::LR, Reg, true); 6708 if (!AFI.isLRSpilled()) 6709 emitCFIForLRRestoreFromReg(MBB, It); 6710 It--; 6711 return CallPt; 6712 } 6713 // We have the default case. Save and restore from SP. 6714 if (!MBB.isLiveIn(ARM::LR)) 6715 MBB.addLiveIn(ARM::LR); 6716 bool Auth = !AFI.isLRSpilled() && AFI.shouldSignReturnAddress(true); 6717 saveLROnStack(MBB, It, !AFI.isLRSpilled(), Auth); 6718 CallPt = MBB.insert(It, CallMIB); 6719 restoreLRFromStack(MBB, It, !AFI.isLRSpilled(), Auth); 6720 It--; 6721 return CallPt; 6722 } 6723 6724 bool ARMBaseInstrInfo::shouldOutlineFromFunctionByDefault( 6725 MachineFunction &MF) const { 6726 return Subtarget.isMClass() && MF.getFunction().hasMinSize(); 6727 } 6728 6729 bool ARMBaseInstrInfo::isReallyTriviallyReMaterializable( 6730 const MachineInstr &MI) const { 6731 // Try hard to rematerialize any VCTPs because if we spill P0, it will block 6732 // the tail predication conversion. This means that the element count 6733 // register has to be live for longer, but that has to be better than 6734 // spill/restore and VPT predication. 6735 return isVCTP(&MI) && !isPredicated(MI); 6736 } 6737 6738 unsigned llvm::getBLXOpcode(const MachineFunction &MF) { 6739 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_noip 6740 : ARM::BLX; 6741 } 6742 6743 unsigned llvm::gettBLXrOpcode(const MachineFunction &MF) { 6744 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::tBLXr_noip 6745 : ARM::tBLXr; 6746 } 6747 6748 unsigned llvm::getBLXpredOpcode(const MachineFunction &MF) { 6749 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_pred_noip 6750 : ARM::BLX_pred; 6751 } 6752 6753 namespace { 6754 class ARMPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { 6755 MachineInstr *EndLoop, *LoopCount; 6756 MachineFunction *MF; 6757 const TargetInstrInfo *TII; 6758 6759 // Meanings of the various stuff with loop types: 6760 // t2Bcc: 6761 // EndLoop = branch at end of original BB that will become a kernel 6762 // LoopCount = CC setter live into branch 6763 // t2LoopEnd: 6764 // EndLoop = branch at end of original BB 6765 // LoopCount = t2LoopDec 6766 public: 6767 ARMPipelinerLoopInfo(MachineInstr *EndLoop, MachineInstr *LoopCount) 6768 : EndLoop(EndLoop), LoopCount(LoopCount), 6769 MF(EndLoop->getParent()->getParent()), 6770 TII(MF->getSubtarget().getInstrInfo()) {} 6771 6772 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { 6773 // Only ignore the terminator. 6774 return MI == EndLoop || MI == LoopCount; 6775 } 6776 6777 Optional<bool> createTripCountGreaterCondition( 6778 int TC, MachineBasicBlock &MBB, 6779 SmallVectorImpl<MachineOperand> &Cond) override { 6780 6781 if (isCondBranchOpcode(EndLoop->getOpcode())) { 6782 Cond.push_back(EndLoop->getOperand(1)); 6783 Cond.push_back(EndLoop->getOperand(2)); 6784 if (EndLoop->getOperand(0).getMBB() == EndLoop->getParent()) { 6785 TII->reverseBranchCondition(Cond); 6786 } 6787 return {}; 6788 } else if (EndLoop->getOpcode() == ARM::t2LoopEnd) { 6789 // General case just lets the unrolled t2LoopDec do the subtraction and 6790 // therefore just needs to check if zero has been reached. 6791 MachineInstr *LoopDec = nullptr; 6792 for (auto &I : MBB.instrs()) 6793 if (I.getOpcode() == ARM::t2LoopDec) 6794 LoopDec = &I; 6795 assert(LoopDec && "Unable to find copied LoopDec"); 6796 // Check if we're done with the loop. 6797 BuildMI(&MBB, LoopDec->getDebugLoc(), TII->get(ARM::t2CMPri)) 6798 .addReg(LoopDec->getOperand(0).getReg()) 6799 .addImm(0) 6800 .addImm(ARMCC::AL) 6801 .addReg(ARM::NoRegister); 6802 Cond.push_back(MachineOperand::CreateImm(ARMCC::EQ)); 6803 Cond.push_back(MachineOperand::CreateReg(ARM::CPSR, false)); 6804 return {}; 6805 } else 6806 llvm_unreachable("Unknown EndLoop"); 6807 } 6808 6809 void setPreheader(MachineBasicBlock *NewPreheader) override {} 6810 6811 void adjustTripCount(int TripCountAdjust) override {} 6812 6813 void disposed() override {} 6814 }; 6815 } // namespace 6816 6817 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 6818 ARMBaseInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 6819 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); 6820 MachineBasicBlock *Preheader = *LoopBB->pred_begin(); 6821 if (Preheader == LoopBB) 6822 Preheader = *std::next(LoopBB->pred_begin()); 6823 6824 if (I != LoopBB->end() && I->getOpcode() == ARM::t2Bcc) { 6825 // If the branch is a Bcc, then the CPSR should be set somewhere within the 6826 // block. We need to determine the reaching definition of CPSR so that 6827 // it can be marked as non-pipelineable, allowing the pipeliner to force 6828 // it into stage 0 or give up if it cannot or will not do so. 6829 MachineInstr *CCSetter = nullptr; 6830 for (auto &L : LoopBB->instrs()) { 6831 if (L.isCall()) 6832 return nullptr; 6833 if (isCPSRDefined(L)) 6834 CCSetter = &L; 6835 } 6836 if (CCSetter) 6837 return std::make_unique<ARMPipelinerLoopInfo>(&*I, CCSetter); 6838 else 6839 return nullptr; // Unable to find the CC setter, so unable to guarantee 6840 // that pipeline will work 6841 } 6842 6843 // Recognize: 6844 // preheader: 6845 // %1 = t2DoopLoopStart %0 6846 // loop: 6847 // %2 = phi %1, <not loop>, %..., %loop 6848 // %3 = t2LoopDec %2, <imm> 6849 // t2LoopEnd %3, %loop 6850 6851 if (I != LoopBB->end() && I->getOpcode() == ARM::t2LoopEnd) { 6852 for (auto &L : LoopBB->instrs()) 6853 if (L.isCall()) 6854 return nullptr; 6855 else if (isVCTP(&L)) 6856 return nullptr; 6857 Register LoopDecResult = I->getOperand(0).getReg(); 6858 MachineRegisterInfo &MRI = LoopBB->getParent()->getRegInfo(); 6859 MachineInstr *LoopDec = MRI.getUniqueVRegDef(LoopDecResult); 6860 if (!LoopDec || LoopDec->getOpcode() != ARM::t2LoopDec) 6861 return nullptr; 6862 MachineInstr *LoopStart = nullptr; 6863 for (auto &J : Preheader->instrs()) 6864 if (J.getOpcode() == ARM::t2DoLoopStart) 6865 LoopStart = &J; 6866 if (!LoopStart) 6867 return nullptr; 6868 return std::make_unique<ARMPipelinerLoopInfo>(&*I, LoopDec); 6869 } 6870 return nullptr; 6871 } 6872