1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the Base ARM implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ARMBaseInstrInfo.h" 14 #include "ARMBaseRegisterInfo.h" 15 #include "ARMConstantPoolValue.h" 16 #include "ARMFeatures.h" 17 #include "ARMHazardRecognizer.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMBaseInfo.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/CodeGen/LiveVariables.h" 28 #include "llvm/CodeGen/MachineBasicBlock.h" 29 #include "llvm/CodeGen/MachineConstantPool.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstr.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineMemOperand.h" 35 #include "llvm/CodeGen/MachineOperand.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" 38 #include "llvm/CodeGen/SelectionDAGNodes.h" 39 #include "llvm/CodeGen/TargetInstrInfo.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSchedule.h" 42 #include "llvm/IR/Attributes.h" 43 #include "llvm/IR/Constants.h" 44 #include "llvm/IR/DebugLoc.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/MC/MCAsmInfo.h" 48 #include "llvm/MC/MCInstrDesc.h" 49 #include "llvm/MC/MCInstrItineraries.h" 50 #include "llvm/Support/BranchProbability.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Compiler.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include "llvm/Target/TargetMachine.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <cstdint> 61 #include <iterator> 62 #include <new> 63 #include <utility> 64 #include <vector> 65 66 using namespace llvm; 67 68 #define DEBUG_TYPE "arm-instrinfo" 69 70 #define GET_INSTRINFO_CTOR_DTOR 71 #include "ARMGenInstrInfo.inc" 72 73 static cl::opt<bool> 74 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden, 75 cl::desc("Enable ARM 2-addr to 3-addr conv")); 76 77 /// ARM_MLxEntry - Record information about MLA / MLS instructions. 78 struct ARM_MLxEntry { 79 uint16_t MLxOpc; // MLA / MLS opcode 80 uint16_t MulOpc; // Expanded multiplication opcode 81 uint16_t AddSubOpc; // Expanded add / sub opcode 82 bool NegAcc; // True if the acc is negated before the add / sub. 83 bool HasLane; // True if instruction has an extra "lane" operand. 84 }; 85 86 static const ARM_MLxEntry ARM_MLxTable[] = { 87 // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane 88 // fp scalar ops 89 { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false }, 90 { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false }, 91 { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false }, 92 { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false }, 93 { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false }, 94 { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false }, 95 { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false }, 96 { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false }, 97 98 // fp SIMD ops 99 { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false }, 100 { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false }, 101 { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false }, 102 { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false }, 103 { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true }, 104 { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true }, 105 { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true }, 106 { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true }, 107 }; 108 109 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI) 110 : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP), 111 Subtarget(STI) { 112 for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) { 113 if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second) 114 llvm_unreachable("Duplicated entries?"); 115 MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc); 116 MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc); 117 } 118 } 119 120 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl 121 // currently defaults to no prepass hazard recognizer. 122 ScheduleHazardRecognizer * 123 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 124 const ScheduleDAG *DAG) const { 125 if (usePreRAHazardRecognizer()) { 126 const InstrItineraryData *II = 127 static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData(); 128 return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched"); 129 } 130 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 131 } 132 133 ScheduleHazardRecognizer *ARMBaseInstrInfo:: 134 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 135 const ScheduleDAG *DAG) const { 136 if (Subtarget.isThumb2() || Subtarget.hasVFP2Base()) 137 return new ARMHazardRecognizer(II, DAG); 138 return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG); 139 } 140 141 MachineInstr *ARMBaseInstrInfo::convertToThreeAddress( 142 MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const { 143 // FIXME: Thumb2 support. 144 145 if (!EnableARM3Addr) 146 return nullptr; 147 148 MachineFunction &MF = *MI.getParent()->getParent(); 149 uint64_t TSFlags = MI.getDesc().TSFlags; 150 bool isPre = false; 151 switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) { 152 default: return nullptr; 153 case ARMII::IndexModePre: 154 isPre = true; 155 break; 156 case ARMII::IndexModePost: 157 break; 158 } 159 160 // Try splitting an indexed load/store to an un-indexed one plus an add/sub 161 // operation. 162 unsigned MemOpc = getUnindexedOpcode(MI.getOpcode()); 163 if (MemOpc == 0) 164 return nullptr; 165 166 MachineInstr *UpdateMI = nullptr; 167 MachineInstr *MemMI = nullptr; 168 unsigned AddrMode = (TSFlags & ARMII::AddrModeMask); 169 const MCInstrDesc &MCID = MI.getDesc(); 170 unsigned NumOps = MCID.getNumOperands(); 171 bool isLoad = !MI.mayStore(); 172 const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0); 173 const MachineOperand &Base = MI.getOperand(2); 174 const MachineOperand &Offset = MI.getOperand(NumOps - 3); 175 Register WBReg = WB.getReg(); 176 Register BaseReg = Base.getReg(); 177 Register OffReg = Offset.getReg(); 178 unsigned OffImm = MI.getOperand(NumOps - 2).getImm(); 179 ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm(); 180 switch (AddrMode) { 181 default: llvm_unreachable("Unknown indexed op!"); 182 case ARMII::AddrMode2: { 183 bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; 184 unsigned Amt = ARM_AM::getAM2Offset(OffImm); 185 if (OffReg == 0) { 186 if (ARM_AM::getSOImmVal(Amt) == -1) 187 // Can't encode it in a so_imm operand. This transformation will 188 // add more than 1 instruction. Abandon! 189 return nullptr; 190 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 191 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 192 .addReg(BaseReg) 193 .addImm(Amt) 194 .add(predOps(Pred)) 195 .add(condCodeOp()); 196 } else if (Amt != 0) { 197 ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm); 198 unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt); 199 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 200 get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg) 201 .addReg(BaseReg) 202 .addReg(OffReg) 203 .addReg(0) 204 .addImm(SOOpc) 205 .add(predOps(Pred)) 206 .add(condCodeOp()); 207 } else 208 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 209 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 210 .addReg(BaseReg) 211 .addReg(OffReg) 212 .add(predOps(Pred)) 213 .add(condCodeOp()); 214 break; 215 } 216 case ARMII::AddrMode3 : { 217 bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub; 218 unsigned Amt = ARM_AM::getAM3Offset(OffImm); 219 if (OffReg == 0) 220 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand. 221 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 222 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 223 .addReg(BaseReg) 224 .addImm(Amt) 225 .add(predOps(Pred)) 226 .add(condCodeOp()); 227 else 228 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 229 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 230 .addReg(BaseReg) 231 .addReg(OffReg) 232 .add(predOps(Pred)) 233 .add(condCodeOp()); 234 break; 235 } 236 } 237 238 std::vector<MachineInstr*> NewMIs; 239 if (isPre) { 240 if (isLoad) 241 MemMI = 242 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) 243 .addReg(WBReg) 244 .addImm(0) 245 .addImm(Pred); 246 else 247 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) 248 .addReg(MI.getOperand(1).getReg()) 249 .addReg(WBReg) 250 .addReg(0) 251 .addImm(0) 252 .addImm(Pred); 253 NewMIs.push_back(MemMI); 254 NewMIs.push_back(UpdateMI); 255 } else { 256 if (isLoad) 257 MemMI = 258 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) 259 .addReg(BaseReg) 260 .addImm(0) 261 .addImm(Pred); 262 else 263 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) 264 .addReg(MI.getOperand(1).getReg()) 265 .addReg(BaseReg) 266 .addReg(0) 267 .addImm(0) 268 .addImm(Pred); 269 if (WB.isDead()) 270 UpdateMI->getOperand(0).setIsDead(); 271 NewMIs.push_back(UpdateMI); 272 NewMIs.push_back(MemMI); 273 } 274 275 // Transfer LiveVariables states, kill / dead info. 276 if (LV) { 277 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 278 MachineOperand &MO = MI.getOperand(i); 279 if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) { 280 Register Reg = MO.getReg(); 281 282 LiveVariables::VarInfo &VI = LV->getVarInfo(Reg); 283 if (MO.isDef()) { 284 MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI; 285 if (MO.isDead()) 286 LV->addVirtualRegisterDead(Reg, *NewMI); 287 } 288 if (MO.isUse() && MO.isKill()) { 289 for (unsigned j = 0; j < 2; ++j) { 290 // Look at the two new MI's in reverse order. 291 MachineInstr *NewMI = NewMIs[j]; 292 if (!NewMI->readsRegister(Reg)) 293 continue; 294 LV->addVirtualRegisterKilled(Reg, *NewMI); 295 if (VI.removeKill(MI)) 296 VI.Kills.push_back(NewMI); 297 break; 298 } 299 } 300 } 301 } 302 } 303 304 MachineBasicBlock::iterator MBBI = MI.getIterator(); 305 MFI->insert(MBBI, NewMIs[1]); 306 MFI->insert(MBBI, NewMIs[0]); 307 return NewMIs[0]; 308 } 309 310 // Branch analysis. 311 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 312 MachineBasicBlock *&TBB, 313 MachineBasicBlock *&FBB, 314 SmallVectorImpl<MachineOperand> &Cond, 315 bool AllowModify) const { 316 TBB = nullptr; 317 FBB = nullptr; 318 319 MachineBasicBlock::iterator I = MBB.end(); 320 if (I == MBB.begin()) 321 return false; // Empty blocks are easy. 322 --I; 323 324 // Walk backwards from the end of the basic block until the branch is 325 // analyzed or we give up. 326 while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) { 327 // Flag to be raised on unanalyzeable instructions. This is useful in cases 328 // where we want to clean up on the end of the basic block before we bail 329 // out. 330 bool CantAnalyze = false; 331 332 // Skip over DEBUG values and predicated nonterminators. 333 while (I->isDebugInstr() || !I->isTerminator()) { 334 if (I == MBB.begin()) 335 return false; 336 --I; 337 } 338 339 if (isIndirectBranchOpcode(I->getOpcode()) || 340 isJumpTableBranchOpcode(I->getOpcode())) { 341 // Indirect branches and jump tables can't be analyzed, but we still want 342 // to clean up any instructions at the tail of the basic block. 343 CantAnalyze = true; 344 } else if (isUncondBranchOpcode(I->getOpcode())) { 345 TBB = I->getOperand(0).getMBB(); 346 } else if (isCondBranchOpcode(I->getOpcode())) { 347 // Bail out if we encounter multiple conditional branches. 348 if (!Cond.empty()) 349 return true; 350 351 assert(!FBB && "FBB should have been null."); 352 FBB = TBB; 353 TBB = I->getOperand(0).getMBB(); 354 Cond.push_back(I->getOperand(1)); 355 Cond.push_back(I->getOperand(2)); 356 } else if (I->isReturn()) { 357 // Returns can't be analyzed, but we should run cleanup. 358 CantAnalyze = !isPredicated(*I); 359 } else { 360 // We encountered other unrecognized terminator. Bail out immediately. 361 return true; 362 } 363 364 // Cleanup code - to be run for unpredicated unconditional branches and 365 // returns. 366 if (!isPredicated(*I) && 367 (isUncondBranchOpcode(I->getOpcode()) || 368 isIndirectBranchOpcode(I->getOpcode()) || 369 isJumpTableBranchOpcode(I->getOpcode()) || 370 I->isReturn())) { 371 // Forget any previous condition branch information - it no longer applies. 372 Cond.clear(); 373 FBB = nullptr; 374 375 // If we can modify the function, delete everything below this 376 // unconditional branch. 377 if (AllowModify) { 378 MachineBasicBlock::iterator DI = std::next(I); 379 while (DI != MBB.end()) { 380 MachineInstr &InstToDelete = *DI; 381 ++DI; 382 InstToDelete.eraseFromParent(); 383 } 384 } 385 } 386 387 if (CantAnalyze) 388 return true; 389 390 if (I == MBB.begin()) 391 return false; 392 393 --I; 394 } 395 396 // We made it past the terminators without bailing out - we must have 397 // analyzed this branch successfully. 398 return false; 399 } 400 401 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB, 402 int *BytesRemoved) const { 403 assert(!BytesRemoved && "code size not handled"); 404 405 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 406 if (I == MBB.end()) 407 return 0; 408 409 if (!isUncondBranchOpcode(I->getOpcode()) && 410 !isCondBranchOpcode(I->getOpcode())) 411 return 0; 412 413 // Remove the branch. 414 I->eraseFromParent(); 415 416 I = MBB.end(); 417 418 if (I == MBB.begin()) return 1; 419 --I; 420 if (!isCondBranchOpcode(I->getOpcode())) 421 return 1; 422 423 // Remove the branch. 424 I->eraseFromParent(); 425 return 2; 426 } 427 428 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB, 429 MachineBasicBlock *TBB, 430 MachineBasicBlock *FBB, 431 ArrayRef<MachineOperand> Cond, 432 const DebugLoc &DL, 433 int *BytesAdded) const { 434 assert(!BytesAdded && "code size not handled"); 435 ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>(); 436 int BOpc = !AFI->isThumbFunction() 437 ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB); 438 int BccOpc = !AFI->isThumbFunction() 439 ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc); 440 bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function(); 441 442 // Shouldn't be a fall through. 443 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 444 assert((Cond.size() == 2 || Cond.size() == 0) && 445 "ARM branch conditions have two components!"); 446 447 // For conditional branches, we use addOperand to preserve CPSR flags. 448 449 if (!FBB) { 450 if (Cond.empty()) { // Unconditional branch? 451 if (isThumb) 452 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL)); 453 else 454 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); 455 } else 456 BuildMI(&MBB, DL, get(BccOpc)) 457 .addMBB(TBB) 458 .addImm(Cond[0].getImm()) 459 .add(Cond[1]); 460 return 1; 461 } 462 463 // Two-way conditional branch. 464 BuildMI(&MBB, DL, get(BccOpc)) 465 .addMBB(TBB) 466 .addImm(Cond[0].getImm()) 467 .add(Cond[1]); 468 if (isThumb) 469 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL)); 470 else 471 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); 472 return 2; 473 } 474 475 bool ARMBaseInstrInfo:: 476 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 477 ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm(); 478 Cond[0].setImm(ARMCC::getOppositeCondition(CC)); 479 return false; 480 } 481 482 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const { 483 if (MI.isBundle()) { 484 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 485 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 486 while (++I != E && I->isInsideBundle()) { 487 int PIdx = I->findFirstPredOperandIdx(); 488 if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL) 489 return true; 490 } 491 return false; 492 } 493 494 int PIdx = MI.findFirstPredOperandIdx(); 495 return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL; 496 } 497 498 bool ARMBaseInstrInfo::PredicateInstruction( 499 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 500 unsigned Opc = MI.getOpcode(); 501 if (isUncondBranchOpcode(Opc)) { 502 MI.setDesc(get(getMatchingCondBranchOpcode(Opc))); 503 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 504 .addImm(Pred[0].getImm()) 505 .addReg(Pred[1].getReg()); 506 return true; 507 } 508 509 int PIdx = MI.findFirstPredOperandIdx(); 510 if (PIdx != -1) { 511 MachineOperand &PMO = MI.getOperand(PIdx); 512 PMO.setImm(Pred[0].getImm()); 513 MI.getOperand(PIdx+1).setReg(Pred[1].getReg()); 514 return true; 515 } 516 return false; 517 } 518 519 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 520 ArrayRef<MachineOperand> Pred2) const { 521 if (Pred1.size() > 2 || Pred2.size() > 2) 522 return false; 523 524 ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm(); 525 ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm(); 526 if (CC1 == CC2) 527 return true; 528 529 switch (CC1) { 530 default: 531 return false; 532 case ARMCC::AL: 533 return true; 534 case ARMCC::HS: 535 return CC2 == ARMCC::HI; 536 case ARMCC::LS: 537 return CC2 == ARMCC::LO || CC2 == ARMCC::EQ; 538 case ARMCC::GE: 539 return CC2 == ARMCC::GT; 540 case ARMCC::LE: 541 return CC2 == ARMCC::LT; 542 } 543 } 544 545 bool ARMBaseInstrInfo::DefinesPredicate( 546 MachineInstr &MI, std::vector<MachineOperand> &Pred) const { 547 bool Found = false; 548 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 549 const MachineOperand &MO = MI.getOperand(i); 550 if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) || 551 (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) { 552 Pred.push_back(MO); 553 Found = true; 554 } 555 } 556 557 return Found; 558 } 559 560 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) { 561 for (const auto &MO : MI.operands()) 562 if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead()) 563 return true; 564 return false; 565 } 566 567 bool ARMBaseInstrInfo::isAddrMode3OpImm(const MachineInstr &MI, 568 unsigned Op) const { 569 const MachineOperand &Offset = MI.getOperand(Op + 1); 570 return Offset.getReg() != 0; 571 } 572 573 // Load with negative register offset requires additional 1cyc and +I unit 574 // for Cortex A57 575 bool ARMBaseInstrInfo::isAddrMode3OpMinusReg(const MachineInstr &MI, 576 unsigned Op) const { 577 const MachineOperand &Offset = MI.getOperand(Op + 1); 578 const MachineOperand &Opc = MI.getOperand(Op + 2); 579 assert(Opc.isImm()); 580 assert(Offset.isReg()); 581 int64_t OpcImm = Opc.getImm(); 582 583 bool isSub = ARM_AM::getAM3Op(OpcImm) == ARM_AM::sub; 584 return (isSub && Offset.getReg() != 0); 585 } 586 587 bool ARMBaseInstrInfo::isLdstScaledReg(const MachineInstr &MI, 588 unsigned Op) const { 589 const MachineOperand &Opc = MI.getOperand(Op + 2); 590 unsigned OffImm = Opc.getImm(); 591 return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift; 592 } 593 594 // Load, scaled register offset, not plus LSL2 595 bool ARMBaseInstrInfo::isLdstScaledRegNotPlusLsl2(const MachineInstr &MI, 596 unsigned Op) const { 597 const MachineOperand &Opc = MI.getOperand(Op + 2); 598 unsigned OffImm = Opc.getImm(); 599 600 bool isAdd = ARM_AM::getAM2Op(OffImm) == ARM_AM::add; 601 unsigned Amt = ARM_AM::getAM2Offset(OffImm); 602 ARM_AM::ShiftOpc ShiftOpc = ARM_AM::getAM2ShiftOpc(OffImm); 603 if (ShiftOpc == ARM_AM::no_shift) return false; // not scaled 604 bool SimpleScaled = (isAdd && ShiftOpc == ARM_AM::lsl && Amt == 2); 605 return !SimpleScaled; 606 } 607 608 // Minus reg for ldstso addr mode 609 bool ARMBaseInstrInfo::isLdstSoMinusReg(const MachineInstr &MI, 610 unsigned Op) const { 611 unsigned OffImm = MI.getOperand(Op + 2).getImm(); 612 return ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; 613 } 614 615 // Load, scaled register offset 616 bool ARMBaseInstrInfo::isAm2ScaledReg(const MachineInstr &MI, 617 unsigned Op) const { 618 unsigned OffImm = MI.getOperand(Op + 2).getImm(); 619 return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift; 620 } 621 622 static bool isEligibleForITBlock(const MachineInstr *MI) { 623 switch (MI->getOpcode()) { 624 default: return true; 625 case ARM::tADC: // ADC (register) T1 626 case ARM::tADDi3: // ADD (immediate) T1 627 case ARM::tADDi8: // ADD (immediate) T2 628 case ARM::tADDrr: // ADD (register) T1 629 case ARM::tAND: // AND (register) T1 630 case ARM::tASRri: // ASR (immediate) T1 631 case ARM::tASRrr: // ASR (register) T1 632 case ARM::tBIC: // BIC (register) T1 633 case ARM::tEOR: // EOR (register) T1 634 case ARM::tLSLri: // LSL (immediate) T1 635 case ARM::tLSLrr: // LSL (register) T1 636 case ARM::tLSRri: // LSR (immediate) T1 637 case ARM::tLSRrr: // LSR (register) T1 638 case ARM::tMUL: // MUL T1 639 case ARM::tMVN: // MVN (register) T1 640 case ARM::tORR: // ORR (register) T1 641 case ARM::tROR: // ROR (register) T1 642 case ARM::tRSB: // RSB (immediate) T1 643 case ARM::tSBC: // SBC (register) T1 644 case ARM::tSUBi3: // SUB (immediate) T1 645 case ARM::tSUBi8: // SUB (immediate) T2 646 case ARM::tSUBrr: // SUB (register) T1 647 return !ARMBaseInstrInfo::isCPSRDefined(*MI); 648 } 649 } 650 651 /// isPredicable - Return true if the specified instruction can be predicated. 652 /// By default, this returns true for every instruction with a 653 /// PredicateOperand. 654 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const { 655 if (!MI.isPredicable()) 656 return false; 657 658 if (MI.isBundle()) 659 return false; 660 661 if (!isEligibleForITBlock(&MI)) 662 return false; 663 664 const ARMFunctionInfo *AFI = 665 MI.getParent()->getParent()->getInfo<ARMFunctionInfo>(); 666 667 // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM. 668 // In their ARM encoding, they can't be encoded in a conditional form. 669 if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) 670 return false; 671 672 if (AFI->isThumb2Function()) { 673 if (getSubtarget().restrictIT()) 674 return isV8EligibleForIT(&MI); 675 } 676 677 return true; 678 } 679 680 namespace llvm { 681 682 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) { 683 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 684 const MachineOperand &MO = MI->getOperand(i); 685 if (!MO.isReg() || MO.isUndef() || MO.isUse()) 686 continue; 687 if (MO.getReg() != ARM::CPSR) 688 continue; 689 if (!MO.isDead()) 690 return false; 691 } 692 // all definitions of CPSR are dead 693 return true; 694 } 695 696 } // end namespace llvm 697 698 /// GetInstSize - Return the size of the specified MachineInstr. 699 /// 700 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 701 const MachineBasicBlock &MBB = *MI.getParent(); 702 const MachineFunction *MF = MBB.getParent(); 703 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); 704 705 const MCInstrDesc &MCID = MI.getDesc(); 706 if (MCID.getSize()) 707 return MCID.getSize(); 708 709 switch (MI.getOpcode()) { 710 default: 711 // pseudo-instruction sizes are zero. 712 return 0; 713 case TargetOpcode::BUNDLE: 714 return getInstBundleLength(MI); 715 case ARM::MOVi16_ga_pcrel: 716 case ARM::MOVTi16_ga_pcrel: 717 case ARM::t2MOVi16_ga_pcrel: 718 case ARM::t2MOVTi16_ga_pcrel: 719 return 4; 720 case ARM::MOVi32imm: 721 case ARM::t2MOVi32imm: 722 return 8; 723 case ARM::CONSTPOOL_ENTRY: 724 case ARM::JUMPTABLE_INSTS: 725 case ARM::JUMPTABLE_ADDRS: 726 case ARM::JUMPTABLE_TBB: 727 case ARM::JUMPTABLE_TBH: 728 // If this machine instr is a constant pool entry, its size is recorded as 729 // operand #2. 730 return MI.getOperand(2).getImm(); 731 case ARM::Int_eh_sjlj_longjmp: 732 return 16; 733 case ARM::tInt_eh_sjlj_longjmp: 734 return 10; 735 case ARM::tInt_WIN_eh_sjlj_longjmp: 736 return 12; 737 case ARM::Int_eh_sjlj_setjmp: 738 case ARM::Int_eh_sjlj_setjmp_nofp: 739 return 20; 740 case ARM::tInt_eh_sjlj_setjmp: 741 case ARM::t2Int_eh_sjlj_setjmp: 742 case ARM::t2Int_eh_sjlj_setjmp_nofp: 743 return 12; 744 case ARM::SPACE: 745 return MI.getOperand(1).getImm(); 746 case ARM::INLINEASM: 747 case ARM::INLINEASM_BR: { 748 // If this machine instr is an inline asm, measure it. 749 unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI); 750 if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction()) 751 Size = alignTo(Size, 4); 752 return Size; 753 } 754 } 755 } 756 757 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const { 758 unsigned Size = 0; 759 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 760 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 761 while (++I != E && I->isInsideBundle()) { 762 assert(!I->isBundle() && "No nested bundle!"); 763 Size += getInstSizeInBytes(*I); 764 } 765 return Size; 766 } 767 768 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB, 769 MachineBasicBlock::iterator I, 770 unsigned DestReg, bool KillSrc, 771 const ARMSubtarget &Subtarget) const { 772 unsigned Opc = Subtarget.isThumb() 773 ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR) 774 : ARM::MRS; 775 776 MachineInstrBuilder MIB = 777 BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg); 778 779 // There is only 1 A/R class MRS instruction, and it always refers to 780 // APSR. However, there are lots of other possibilities on M-class cores. 781 if (Subtarget.isMClass()) 782 MIB.addImm(0x800); 783 784 MIB.add(predOps(ARMCC::AL)) 785 .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc)); 786 } 787 788 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB, 789 MachineBasicBlock::iterator I, 790 unsigned SrcReg, bool KillSrc, 791 const ARMSubtarget &Subtarget) const { 792 unsigned Opc = Subtarget.isThumb() 793 ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR) 794 : ARM::MSR; 795 796 MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc)); 797 798 if (Subtarget.isMClass()) 799 MIB.addImm(0x800); 800 else 801 MIB.addImm(8); 802 803 MIB.addReg(SrcReg, getKillRegState(KillSrc)) 804 .add(predOps(ARMCC::AL)) 805 .addReg(ARM::CPSR, RegState::Implicit | RegState::Define); 806 } 807 808 void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) { 809 MIB.addImm(ARMVCC::None); 810 MIB.addReg(0); 811 } 812 813 void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB, 814 unsigned DestReg) { 815 addUnpredicatedMveVpredNOp(MIB); 816 MIB.addReg(DestReg, RegState::Undef); 817 } 818 819 void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) { 820 MIB.addImm(Cond); 821 MIB.addReg(ARM::VPR, RegState::Implicit); 822 } 823 824 void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB, 825 unsigned Cond, unsigned Inactive) { 826 addPredicatedMveVpredNOp(MIB, Cond); 827 MIB.addReg(Inactive); 828 } 829 830 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 831 MachineBasicBlock::iterator I, 832 const DebugLoc &DL, MCRegister DestReg, 833 MCRegister SrcReg, bool KillSrc) const { 834 bool GPRDest = ARM::GPRRegClass.contains(DestReg); 835 bool GPRSrc = ARM::GPRRegClass.contains(SrcReg); 836 837 if (GPRDest && GPRSrc) { 838 BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg) 839 .addReg(SrcReg, getKillRegState(KillSrc)) 840 .add(predOps(ARMCC::AL)) 841 .add(condCodeOp()); 842 return; 843 } 844 845 bool SPRDest = ARM::SPRRegClass.contains(DestReg); 846 bool SPRSrc = ARM::SPRRegClass.contains(SrcReg); 847 848 unsigned Opc = 0; 849 if (SPRDest && SPRSrc) 850 Opc = ARM::VMOVS; 851 else if (GPRDest && SPRSrc) 852 Opc = ARM::VMOVRS; 853 else if (SPRDest && GPRSrc) 854 Opc = ARM::VMOVSR; 855 else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64()) 856 Opc = ARM::VMOVD; 857 else if (ARM::QPRRegClass.contains(DestReg, SrcReg)) 858 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; 859 860 if (Opc) { 861 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg); 862 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 863 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) 864 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 865 if (Opc == ARM::MVE_VORR) 866 addUnpredicatedMveVpredROp(MIB, DestReg); 867 else 868 MIB.add(predOps(ARMCC::AL)); 869 return; 870 } 871 872 // Handle register classes that require multiple instructions. 873 unsigned BeginIdx = 0; 874 unsigned SubRegs = 0; 875 int Spacing = 1; 876 877 // Use VORRq when possible. 878 if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) { 879 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; 880 BeginIdx = ARM::qsub_0; 881 SubRegs = 2; 882 } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) { 883 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; 884 BeginIdx = ARM::qsub_0; 885 SubRegs = 4; 886 // Fall back to VMOVD. 887 } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) { 888 Opc = ARM::VMOVD; 889 BeginIdx = ARM::dsub_0; 890 SubRegs = 2; 891 } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) { 892 Opc = ARM::VMOVD; 893 BeginIdx = ARM::dsub_0; 894 SubRegs = 3; 895 } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) { 896 Opc = ARM::VMOVD; 897 BeginIdx = ARM::dsub_0; 898 SubRegs = 4; 899 } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) { 900 Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr; 901 BeginIdx = ARM::gsub_0; 902 SubRegs = 2; 903 } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) { 904 Opc = ARM::VMOVD; 905 BeginIdx = ARM::dsub_0; 906 SubRegs = 2; 907 Spacing = 2; 908 } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) { 909 Opc = ARM::VMOVD; 910 BeginIdx = ARM::dsub_0; 911 SubRegs = 3; 912 Spacing = 2; 913 } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) { 914 Opc = ARM::VMOVD; 915 BeginIdx = ARM::dsub_0; 916 SubRegs = 4; 917 Spacing = 2; 918 } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && 919 !Subtarget.hasFP64()) { 920 Opc = ARM::VMOVS; 921 BeginIdx = ARM::ssub_0; 922 SubRegs = 2; 923 } else if (SrcReg == ARM::CPSR) { 924 copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget); 925 return; 926 } else if (DestReg == ARM::CPSR) { 927 copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget); 928 return; 929 } else if (DestReg == ARM::VPR) { 930 assert(ARM::GPRRegClass.contains(SrcReg)); 931 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg) 932 .addReg(SrcReg, getKillRegState(KillSrc)) 933 .add(predOps(ARMCC::AL)); 934 return; 935 } else if (SrcReg == ARM::VPR) { 936 assert(ARM::GPRRegClass.contains(DestReg)); 937 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg) 938 .addReg(SrcReg, getKillRegState(KillSrc)) 939 .add(predOps(ARMCC::AL)); 940 return; 941 } else if (DestReg == ARM::FPSCR_NZCV) { 942 assert(ARM::GPRRegClass.contains(SrcReg)); 943 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg) 944 .addReg(SrcReg, getKillRegState(KillSrc)) 945 .add(predOps(ARMCC::AL)); 946 return; 947 } else if (SrcReg == ARM::FPSCR_NZCV) { 948 assert(ARM::GPRRegClass.contains(DestReg)); 949 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg) 950 .addReg(SrcReg, getKillRegState(KillSrc)) 951 .add(predOps(ARMCC::AL)); 952 return; 953 } 954 955 assert(Opc && "Impossible reg-to-reg copy"); 956 957 const TargetRegisterInfo *TRI = &getRegisterInfo(); 958 MachineInstrBuilder Mov; 959 960 // Copy register tuples backward when the first Dest reg overlaps with SrcReg. 961 if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) { 962 BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing); 963 Spacing = -Spacing; 964 } 965 #ifndef NDEBUG 966 SmallSet<unsigned, 4> DstRegs; 967 #endif 968 for (unsigned i = 0; i != SubRegs; ++i) { 969 Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing); 970 Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing); 971 assert(Dst && Src && "Bad sub-register"); 972 #ifndef NDEBUG 973 assert(!DstRegs.count(Src) && "destructive vector copy"); 974 DstRegs.insert(Dst); 975 #endif 976 Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src); 977 // VORR (NEON or MVE) takes two source operands. 978 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) { 979 Mov.addReg(Src); 980 } 981 // MVE VORR takes predicate operands in place of an ordinary condition. 982 if (Opc == ARM::MVE_VORR) 983 addUnpredicatedMveVpredROp(Mov, Dst); 984 else 985 Mov = Mov.add(predOps(ARMCC::AL)); 986 // MOVr can set CC. 987 if (Opc == ARM::MOVr) 988 Mov = Mov.add(condCodeOp()); 989 } 990 // Add implicit super-register defs and kills to the last instruction. 991 Mov->addRegisterDefined(DestReg, TRI); 992 if (KillSrc) 993 Mov->addRegisterKilled(SrcReg, TRI); 994 } 995 996 Optional<DestSourcePair> 997 ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const { 998 // VMOVRRD is also a copy instruction but it requires 999 // special way of handling. It is more complex copy version 1000 // and since that we are not considering it. For recognition 1001 // of such instruction isExtractSubregLike MI interface fuction 1002 // could be used. 1003 // VORRq is considered as a move only if two inputs are 1004 // the same register. 1005 if (!MI.isMoveReg() || 1006 (MI.getOpcode() == ARM::VORRq && 1007 MI.getOperand(1).getReg() != MI.getOperand(2).getReg())) 1008 return None; 1009 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)}; 1010 } 1011 1012 const MachineInstrBuilder & 1013 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg, 1014 unsigned SubIdx, unsigned State, 1015 const TargetRegisterInfo *TRI) const { 1016 if (!SubIdx) 1017 return MIB.addReg(Reg, State); 1018 1019 if (Register::isPhysicalRegister(Reg)) 1020 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State); 1021 return MIB.addReg(Reg, State, SubIdx); 1022 } 1023 1024 void ARMBaseInstrInfo:: 1025 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 1026 unsigned SrcReg, bool isKill, int FI, 1027 const TargetRegisterClass *RC, 1028 const TargetRegisterInfo *TRI) const { 1029 MachineFunction &MF = *MBB.getParent(); 1030 MachineFrameInfo &MFI = MF.getFrameInfo(); 1031 unsigned Align = MFI.getObjectAlignment(FI); 1032 1033 MachineMemOperand *MMO = MF.getMachineMemOperand( 1034 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, 1035 MFI.getObjectSize(FI), Align); 1036 1037 switch (TRI->getSpillSize(*RC)) { 1038 case 2: 1039 if (ARM::HPRRegClass.hasSubClassEq(RC)) { 1040 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH)) 1041 .addReg(SrcReg, getKillRegState(isKill)) 1042 .addFrameIndex(FI) 1043 .addImm(0) 1044 .addMemOperand(MMO) 1045 .add(predOps(ARMCC::AL)); 1046 } else 1047 llvm_unreachable("Unknown reg class!"); 1048 break; 1049 case 4: 1050 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 1051 BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12)) 1052 .addReg(SrcReg, getKillRegState(isKill)) 1053 .addFrameIndex(FI) 1054 .addImm(0) 1055 .addMemOperand(MMO) 1056 .add(predOps(ARMCC::AL)); 1057 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1058 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS)) 1059 .addReg(SrcReg, getKillRegState(isKill)) 1060 .addFrameIndex(FI) 1061 .addImm(0) 1062 .addMemOperand(MMO) 1063 .add(predOps(ARMCC::AL)); 1064 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) { 1065 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off)) 1066 .addReg(SrcReg, getKillRegState(isKill)) 1067 .addFrameIndex(FI) 1068 .addImm(0) 1069 .addMemOperand(MMO) 1070 .add(predOps(ARMCC::AL)); 1071 } else 1072 llvm_unreachable("Unknown reg class!"); 1073 break; 1074 case 8: 1075 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1076 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD)) 1077 .addReg(SrcReg, getKillRegState(isKill)) 1078 .addFrameIndex(FI) 1079 .addImm(0) 1080 .addMemOperand(MMO) 1081 .add(predOps(ARMCC::AL)); 1082 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1083 if (Subtarget.hasV5TEOps()) { 1084 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD)); 1085 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 1086 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 1087 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) 1088 .add(predOps(ARMCC::AL)); 1089 } else { 1090 // Fallback to STM instruction, which has existed since the dawn of 1091 // time. 1092 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA)) 1093 .addFrameIndex(FI) 1094 .addMemOperand(MMO) 1095 .add(predOps(ARMCC::AL)); 1096 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 1097 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 1098 } 1099 } else 1100 llvm_unreachable("Unknown reg class!"); 1101 break; 1102 case 16: 1103 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) { 1104 // Use aligned spills if the stack can be realigned. 1105 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1106 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64)) 1107 .addFrameIndex(FI) 1108 .addImm(16) 1109 .addReg(SrcReg, getKillRegState(isKill)) 1110 .addMemOperand(MMO) 1111 .add(predOps(ARMCC::AL)); 1112 } else { 1113 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA)) 1114 .addReg(SrcReg, getKillRegState(isKill)) 1115 .addFrameIndex(FI) 1116 .addMemOperand(MMO) 1117 .add(predOps(ARMCC::AL)); 1118 } 1119 } else if (ARM::QPRRegClass.hasSubClassEq(RC) && 1120 Subtarget.hasMVEIntegerOps()) { 1121 auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32)); 1122 MIB.addReg(SrcReg, getKillRegState(isKill)) 1123 .addFrameIndex(FI) 1124 .addImm(0) 1125 .addMemOperand(MMO); 1126 addUnpredicatedMveVpredNOp(MIB); 1127 } else 1128 llvm_unreachable("Unknown reg class!"); 1129 break; 1130 case 24: 1131 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1132 // Use aligned spills if the stack can be realigned. 1133 if (Align >= 16 && getRegisterInfo().canRealignStack(MF) && 1134 Subtarget.hasNEON()) { 1135 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo)) 1136 .addFrameIndex(FI) 1137 .addImm(16) 1138 .addReg(SrcReg, getKillRegState(isKill)) 1139 .addMemOperand(MMO) 1140 .add(predOps(ARMCC::AL)); 1141 } else { 1142 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), 1143 get(ARM::VSTMDIA)) 1144 .addFrameIndex(FI) 1145 .add(predOps(ARMCC::AL)) 1146 .addMemOperand(MMO); 1147 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1148 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1149 AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1150 } 1151 } else 1152 llvm_unreachable("Unknown reg class!"); 1153 break; 1154 case 32: 1155 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) { 1156 if (Align >= 16 && getRegisterInfo().canRealignStack(MF) && 1157 Subtarget.hasNEON()) { 1158 // FIXME: It's possible to only store part of the QQ register if the 1159 // spilled def has a sub-register index. 1160 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo)) 1161 .addFrameIndex(FI) 1162 .addImm(16) 1163 .addReg(SrcReg, getKillRegState(isKill)) 1164 .addMemOperand(MMO) 1165 .add(predOps(ARMCC::AL)); 1166 } else { 1167 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), 1168 get(ARM::VSTMDIA)) 1169 .addFrameIndex(FI) 1170 .add(predOps(ARMCC::AL)) 1171 .addMemOperand(MMO); 1172 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1173 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1174 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1175 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 1176 } 1177 } else 1178 llvm_unreachable("Unknown reg class!"); 1179 break; 1180 case 64: 1181 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1182 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA)) 1183 .addFrameIndex(FI) 1184 .add(predOps(ARMCC::AL)) 1185 .addMemOperand(MMO); 1186 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1187 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1188 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1189 MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 1190 MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI); 1191 MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI); 1192 MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI); 1193 AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI); 1194 } else 1195 llvm_unreachable("Unknown reg class!"); 1196 break; 1197 default: 1198 llvm_unreachable("Unknown reg class!"); 1199 } 1200 } 1201 1202 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 1203 int &FrameIndex) const { 1204 switch (MI.getOpcode()) { 1205 default: break; 1206 case ARM::STRrs: 1207 case ARM::t2STRs: // FIXME: don't use t2STRs to access frame. 1208 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && 1209 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && 1210 MI.getOperand(3).getImm() == 0) { 1211 FrameIndex = MI.getOperand(1).getIndex(); 1212 return MI.getOperand(0).getReg(); 1213 } 1214 break; 1215 case ARM::STRi12: 1216 case ARM::t2STRi12: 1217 case ARM::tSTRspi: 1218 case ARM::VSTRD: 1219 case ARM::VSTRS: 1220 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && 1221 MI.getOperand(2).getImm() == 0) { 1222 FrameIndex = MI.getOperand(1).getIndex(); 1223 return MI.getOperand(0).getReg(); 1224 } 1225 break; 1226 case ARM::VSTR_P0_off: 1227 if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() && 1228 MI.getOperand(1).getImm() == 0) { 1229 FrameIndex = MI.getOperand(0).getIndex(); 1230 return ARM::P0; 1231 } 1232 break; 1233 case ARM::VST1q64: 1234 case ARM::VST1d64TPseudo: 1235 case ARM::VST1d64QPseudo: 1236 if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) { 1237 FrameIndex = MI.getOperand(0).getIndex(); 1238 return MI.getOperand(2).getReg(); 1239 } 1240 break; 1241 case ARM::VSTMQIA: 1242 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1243 FrameIndex = MI.getOperand(1).getIndex(); 1244 return MI.getOperand(0).getReg(); 1245 } 1246 break; 1247 } 1248 1249 return 0; 1250 } 1251 1252 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, 1253 int &FrameIndex) const { 1254 SmallVector<const MachineMemOperand *, 1> Accesses; 1255 if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) && 1256 Accesses.size() == 1) { 1257 FrameIndex = 1258 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 1259 ->getFrameIndex(); 1260 return true; 1261 } 1262 return false; 1263 } 1264 1265 void ARMBaseInstrInfo:: 1266 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 1267 unsigned DestReg, int FI, 1268 const TargetRegisterClass *RC, 1269 const TargetRegisterInfo *TRI) const { 1270 DebugLoc DL; 1271 if (I != MBB.end()) DL = I->getDebugLoc(); 1272 MachineFunction &MF = *MBB.getParent(); 1273 MachineFrameInfo &MFI = MF.getFrameInfo(); 1274 unsigned Align = MFI.getObjectAlignment(FI); 1275 MachineMemOperand *MMO = MF.getMachineMemOperand( 1276 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, 1277 MFI.getObjectSize(FI), Align); 1278 1279 switch (TRI->getSpillSize(*RC)) { 1280 case 2: 1281 if (ARM::HPRRegClass.hasSubClassEq(RC)) { 1282 BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg) 1283 .addFrameIndex(FI) 1284 .addImm(0) 1285 .addMemOperand(MMO) 1286 .add(predOps(ARMCC::AL)); 1287 } else 1288 llvm_unreachable("Unknown reg class!"); 1289 break; 1290 case 4: 1291 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 1292 BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg) 1293 .addFrameIndex(FI) 1294 .addImm(0) 1295 .addMemOperand(MMO) 1296 .add(predOps(ARMCC::AL)); 1297 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1298 BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg) 1299 .addFrameIndex(FI) 1300 .addImm(0) 1301 .addMemOperand(MMO) 1302 .add(predOps(ARMCC::AL)); 1303 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) { 1304 BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg) 1305 .addFrameIndex(FI) 1306 .addImm(0) 1307 .addMemOperand(MMO) 1308 .add(predOps(ARMCC::AL)); 1309 } else 1310 llvm_unreachable("Unknown reg class!"); 1311 break; 1312 case 8: 1313 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1314 BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg) 1315 .addFrameIndex(FI) 1316 .addImm(0) 1317 .addMemOperand(MMO) 1318 .add(predOps(ARMCC::AL)); 1319 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1320 MachineInstrBuilder MIB; 1321 1322 if (Subtarget.hasV5TEOps()) { 1323 MIB = BuildMI(MBB, I, DL, get(ARM::LDRD)); 1324 AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1325 AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1326 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) 1327 .add(predOps(ARMCC::AL)); 1328 } else { 1329 // Fallback to LDM instruction, which has existed since the dawn of 1330 // time. 1331 MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA)) 1332 .addFrameIndex(FI) 1333 .addMemOperand(MMO) 1334 .add(predOps(ARMCC::AL)); 1335 MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1336 MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1337 } 1338 1339 if (Register::isPhysicalRegister(DestReg)) 1340 MIB.addReg(DestReg, RegState::ImplicitDefine); 1341 } else 1342 llvm_unreachable("Unknown reg class!"); 1343 break; 1344 case 16: 1345 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) { 1346 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1347 BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg) 1348 .addFrameIndex(FI) 1349 .addImm(16) 1350 .addMemOperand(MMO) 1351 .add(predOps(ARMCC::AL)); 1352 } else { 1353 BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg) 1354 .addFrameIndex(FI) 1355 .addMemOperand(MMO) 1356 .add(predOps(ARMCC::AL)); 1357 } 1358 } else if (ARM::QPRRegClass.hasSubClassEq(RC) && 1359 Subtarget.hasMVEIntegerOps()) { 1360 auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg); 1361 MIB.addFrameIndex(FI) 1362 .addImm(0) 1363 .addMemOperand(MMO); 1364 addUnpredicatedMveVpredNOp(MIB); 1365 } else 1366 llvm_unreachable("Unknown reg class!"); 1367 break; 1368 case 24: 1369 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1370 if (Align >= 16 && getRegisterInfo().canRealignStack(MF) && 1371 Subtarget.hasNEON()) { 1372 BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg) 1373 .addFrameIndex(FI) 1374 .addImm(16) 1375 .addMemOperand(MMO) 1376 .add(predOps(ARMCC::AL)); 1377 } else { 1378 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1379 .addFrameIndex(FI) 1380 .addMemOperand(MMO) 1381 .add(predOps(ARMCC::AL)); 1382 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1383 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1384 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1385 if (Register::isPhysicalRegister(DestReg)) 1386 MIB.addReg(DestReg, RegState::ImplicitDefine); 1387 } 1388 } else 1389 llvm_unreachable("Unknown reg class!"); 1390 break; 1391 case 32: 1392 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) { 1393 if (Align >= 16 && getRegisterInfo().canRealignStack(MF) && 1394 Subtarget.hasNEON()) { 1395 BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg) 1396 .addFrameIndex(FI) 1397 .addImm(16) 1398 .addMemOperand(MMO) 1399 .add(predOps(ARMCC::AL)); 1400 } else { 1401 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1402 .addFrameIndex(FI) 1403 .add(predOps(ARMCC::AL)) 1404 .addMemOperand(MMO); 1405 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1406 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1407 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1408 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1409 if (Register::isPhysicalRegister(DestReg)) 1410 MIB.addReg(DestReg, RegState::ImplicitDefine); 1411 } 1412 } else 1413 llvm_unreachable("Unknown reg class!"); 1414 break; 1415 case 64: 1416 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1417 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1418 .addFrameIndex(FI) 1419 .add(predOps(ARMCC::AL)) 1420 .addMemOperand(MMO); 1421 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1422 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1423 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1424 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1425 MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI); 1426 MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI); 1427 MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI); 1428 MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI); 1429 if (Register::isPhysicalRegister(DestReg)) 1430 MIB.addReg(DestReg, RegState::ImplicitDefine); 1431 } else 1432 llvm_unreachable("Unknown reg class!"); 1433 break; 1434 default: 1435 llvm_unreachable("Unknown regclass!"); 1436 } 1437 } 1438 1439 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 1440 int &FrameIndex) const { 1441 switch (MI.getOpcode()) { 1442 default: break; 1443 case ARM::LDRrs: 1444 case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame. 1445 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && 1446 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && 1447 MI.getOperand(3).getImm() == 0) { 1448 FrameIndex = MI.getOperand(1).getIndex(); 1449 return MI.getOperand(0).getReg(); 1450 } 1451 break; 1452 case ARM::LDRi12: 1453 case ARM::t2LDRi12: 1454 case ARM::tLDRspi: 1455 case ARM::VLDRD: 1456 case ARM::VLDRS: 1457 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && 1458 MI.getOperand(2).getImm() == 0) { 1459 FrameIndex = MI.getOperand(1).getIndex(); 1460 return MI.getOperand(0).getReg(); 1461 } 1462 break; 1463 case ARM::VLDR_P0_off: 1464 if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() && 1465 MI.getOperand(1).getImm() == 0) { 1466 FrameIndex = MI.getOperand(0).getIndex(); 1467 return ARM::P0; 1468 } 1469 break; 1470 case ARM::VLD1q64: 1471 case ARM::VLD1d8TPseudo: 1472 case ARM::VLD1d16TPseudo: 1473 case ARM::VLD1d32TPseudo: 1474 case ARM::VLD1d64TPseudo: 1475 case ARM::VLD1d8QPseudo: 1476 case ARM::VLD1d16QPseudo: 1477 case ARM::VLD1d32QPseudo: 1478 case ARM::VLD1d64QPseudo: 1479 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1480 FrameIndex = MI.getOperand(1).getIndex(); 1481 return MI.getOperand(0).getReg(); 1482 } 1483 break; 1484 case ARM::VLDMQIA: 1485 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1486 FrameIndex = MI.getOperand(1).getIndex(); 1487 return MI.getOperand(0).getReg(); 1488 } 1489 break; 1490 } 1491 1492 return 0; 1493 } 1494 1495 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, 1496 int &FrameIndex) const { 1497 SmallVector<const MachineMemOperand *, 1> Accesses; 1498 if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) && 1499 Accesses.size() == 1) { 1500 FrameIndex = 1501 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 1502 ->getFrameIndex(); 1503 return true; 1504 } 1505 return false; 1506 } 1507 1508 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD 1509 /// depending on whether the result is used. 1510 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const { 1511 bool isThumb1 = Subtarget.isThumb1Only(); 1512 bool isThumb2 = Subtarget.isThumb2(); 1513 const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo(); 1514 1515 DebugLoc dl = MI->getDebugLoc(); 1516 MachineBasicBlock *BB = MI->getParent(); 1517 1518 MachineInstrBuilder LDM, STM; 1519 if (isThumb1 || !MI->getOperand(1).isDead()) { 1520 MachineOperand LDWb(MI->getOperand(1)); 1521 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD 1522 : isThumb1 ? ARM::tLDMIA_UPD 1523 : ARM::LDMIA_UPD)) 1524 .add(LDWb); 1525 } else { 1526 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA)); 1527 } 1528 1529 if (isThumb1 || !MI->getOperand(0).isDead()) { 1530 MachineOperand STWb(MI->getOperand(0)); 1531 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD 1532 : isThumb1 ? ARM::tSTMIA_UPD 1533 : ARM::STMIA_UPD)) 1534 .add(STWb); 1535 } else { 1536 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA)); 1537 } 1538 1539 MachineOperand LDBase(MI->getOperand(3)); 1540 LDM.add(LDBase).add(predOps(ARMCC::AL)); 1541 1542 MachineOperand STBase(MI->getOperand(2)); 1543 STM.add(STBase).add(predOps(ARMCC::AL)); 1544 1545 // Sort the scratch registers into ascending order. 1546 const TargetRegisterInfo &TRI = getRegisterInfo(); 1547 SmallVector<unsigned, 6> ScratchRegs; 1548 for(unsigned I = 5; I < MI->getNumOperands(); ++I) 1549 ScratchRegs.push_back(MI->getOperand(I).getReg()); 1550 llvm::sort(ScratchRegs, 1551 [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool { 1552 return TRI.getEncodingValue(Reg1) < 1553 TRI.getEncodingValue(Reg2); 1554 }); 1555 1556 for (const auto &Reg : ScratchRegs) { 1557 LDM.addReg(Reg, RegState::Define); 1558 STM.addReg(Reg, RegState::Kill); 1559 } 1560 1561 BB->erase(MI); 1562 } 1563 1564 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1565 if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) { 1566 assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() && 1567 "LOAD_STACK_GUARD currently supported only for MachO."); 1568 expandLoadStackGuard(MI); 1569 MI.getParent()->erase(MI); 1570 return true; 1571 } 1572 1573 if (MI.getOpcode() == ARM::MEMCPY) { 1574 expandMEMCPY(MI); 1575 return true; 1576 } 1577 1578 // This hook gets to expand COPY instructions before they become 1579 // copyPhysReg() calls. Look for VMOVS instructions that can legally be 1580 // widened to VMOVD. We prefer the VMOVD when possible because it may be 1581 // changed into a VORR that can go down the NEON pipeline. 1582 if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64()) 1583 return false; 1584 1585 // Look for a copy between even S-registers. That is where we keep floats 1586 // when using NEON v2f32 instructions for f32 arithmetic. 1587 Register DstRegS = MI.getOperand(0).getReg(); 1588 Register SrcRegS = MI.getOperand(1).getReg(); 1589 if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS)) 1590 return false; 1591 1592 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1593 unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0, 1594 &ARM::DPRRegClass); 1595 unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0, 1596 &ARM::DPRRegClass); 1597 if (!DstRegD || !SrcRegD) 1598 return false; 1599 1600 // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only 1601 // legal if the COPY already defines the full DstRegD, and it isn't a 1602 // sub-register insertion. 1603 if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI)) 1604 return false; 1605 1606 // A dead copy shouldn't show up here, but reject it just in case. 1607 if (MI.getOperand(0).isDead()) 1608 return false; 1609 1610 // All clear, widen the COPY. 1611 LLVM_DEBUG(dbgs() << "widening: " << MI); 1612 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 1613 1614 // Get rid of the old implicit-def of DstRegD. Leave it if it defines a Q-reg 1615 // or some other super-register. 1616 int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD); 1617 if (ImpDefIdx != -1) 1618 MI.RemoveOperand(ImpDefIdx); 1619 1620 // Change the opcode and operands. 1621 MI.setDesc(get(ARM::VMOVD)); 1622 MI.getOperand(0).setReg(DstRegD); 1623 MI.getOperand(1).setReg(SrcRegD); 1624 MIB.add(predOps(ARMCC::AL)); 1625 1626 // We are now reading SrcRegD instead of SrcRegS. This may upset the 1627 // register scavenger and machine verifier, so we need to indicate that we 1628 // are reading an undefined value from SrcRegD, but a proper value from 1629 // SrcRegS. 1630 MI.getOperand(1).setIsUndef(); 1631 MIB.addReg(SrcRegS, RegState::Implicit); 1632 1633 // SrcRegD may actually contain an unrelated value in the ssub_1 1634 // sub-register. Don't kill it. Only kill the ssub_0 sub-register. 1635 if (MI.getOperand(1).isKill()) { 1636 MI.getOperand(1).setIsKill(false); 1637 MI.addRegisterKilled(SrcRegS, TRI, true); 1638 } 1639 1640 LLVM_DEBUG(dbgs() << "replaced by: " << MI); 1641 return true; 1642 } 1643 1644 /// Create a copy of a const pool value. Update CPI to the new index and return 1645 /// the label UID. 1646 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) { 1647 MachineConstantPool *MCP = MF.getConstantPool(); 1648 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1649 1650 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI]; 1651 assert(MCPE.isMachineConstantPoolEntry() && 1652 "Expecting a machine constantpool entry!"); 1653 ARMConstantPoolValue *ACPV = 1654 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal); 1655 1656 unsigned PCLabelId = AFI->createPICLabelUId(); 1657 ARMConstantPoolValue *NewCPV = nullptr; 1658 1659 // FIXME: The below assumes PIC relocation model and that the function 1660 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and 1661 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR 1662 // instructions, so that's probably OK, but is PIC always correct when 1663 // we get here? 1664 if (ACPV->isGlobalValue()) 1665 NewCPV = ARMConstantPoolConstant::Create( 1666 cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue, 1667 4, ACPV->getModifier(), ACPV->mustAddCurrentAddress()); 1668 else if (ACPV->isExtSymbol()) 1669 NewCPV = ARMConstantPoolSymbol:: 1670 Create(MF.getFunction().getContext(), 1671 cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4); 1672 else if (ACPV->isBlockAddress()) 1673 NewCPV = ARMConstantPoolConstant:: 1674 Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId, 1675 ARMCP::CPBlockAddress, 4); 1676 else if (ACPV->isLSDA()) 1677 NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId, 1678 ARMCP::CPLSDA, 4); 1679 else if (ACPV->isMachineBasicBlock()) 1680 NewCPV = ARMConstantPoolMBB:: 1681 Create(MF.getFunction().getContext(), 1682 cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4); 1683 else 1684 llvm_unreachable("Unexpected ARM constantpool value type!!"); 1685 CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment()); 1686 return PCLabelId; 1687 } 1688 1689 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB, 1690 MachineBasicBlock::iterator I, 1691 unsigned DestReg, unsigned SubIdx, 1692 const MachineInstr &Orig, 1693 const TargetRegisterInfo &TRI) const { 1694 unsigned Opcode = Orig.getOpcode(); 1695 switch (Opcode) { 1696 default: { 1697 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); 1698 MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); 1699 MBB.insert(I, MI); 1700 break; 1701 } 1702 case ARM::tLDRpci_pic: 1703 case ARM::t2LDRpci_pic: { 1704 MachineFunction &MF = *MBB.getParent(); 1705 unsigned CPI = Orig.getOperand(1).getIndex(); 1706 unsigned PCLabelId = duplicateCPV(MF, CPI); 1707 BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg) 1708 .addConstantPoolIndex(CPI) 1709 .addImm(PCLabelId) 1710 .cloneMemRefs(Orig); 1711 break; 1712 } 1713 } 1714 } 1715 1716 MachineInstr & 1717 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB, 1718 MachineBasicBlock::iterator InsertBefore, 1719 const MachineInstr &Orig) const { 1720 MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig); 1721 MachineBasicBlock::instr_iterator I = Cloned.getIterator(); 1722 for (;;) { 1723 switch (I->getOpcode()) { 1724 case ARM::tLDRpci_pic: 1725 case ARM::t2LDRpci_pic: { 1726 MachineFunction &MF = *MBB.getParent(); 1727 unsigned CPI = I->getOperand(1).getIndex(); 1728 unsigned PCLabelId = duplicateCPV(MF, CPI); 1729 I->getOperand(1).setIndex(CPI); 1730 I->getOperand(2).setImm(PCLabelId); 1731 break; 1732 } 1733 } 1734 if (!I->isBundledWithSucc()) 1735 break; 1736 ++I; 1737 } 1738 return Cloned; 1739 } 1740 1741 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0, 1742 const MachineInstr &MI1, 1743 const MachineRegisterInfo *MRI) const { 1744 unsigned Opcode = MI0.getOpcode(); 1745 if (Opcode == ARM::t2LDRpci || 1746 Opcode == ARM::t2LDRpci_pic || 1747 Opcode == ARM::tLDRpci || 1748 Opcode == ARM::tLDRpci_pic || 1749 Opcode == ARM::LDRLIT_ga_pcrel || 1750 Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1751 Opcode == ARM::tLDRLIT_ga_pcrel || 1752 Opcode == ARM::MOV_ga_pcrel || 1753 Opcode == ARM::MOV_ga_pcrel_ldr || 1754 Opcode == ARM::t2MOV_ga_pcrel) { 1755 if (MI1.getOpcode() != Opcode) 1756 return false; 1757 if (MI0.getNumOperands() != MI1.getNumOperands()) 1758 return false; 1759 1760 const MachineOperand &MO0 = MI0.getOperand(1); 1761 const MachineOperand &MO1 = MI1.getOperand(1); 1762 if (MO0.getOffset() != MO1.getOffset()) 1763 return false; 1764 1765 if (Opcode == ARM::LDRLIT_ga_pcrel || 1766 Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1767 Opcode == ARM::tLDRLIT_ga_pcrel || 1768 Opcode == ARM::MOV_ga_pcrel || 1769 Opcode == ARM::MOV_ga_pcrel_ldr || 1770 Opcode == ARM::t2MOV_ga_pcrel) 1771 // Ignore the PC labels. 1772 return MO0.getGlobal() == MO1.getGlobal(); 1773 1774 const MachineFunction *MF = MI0.getParent()->getParent(); 1775 const MachineConstantPool *MCP = MF->getConstantPool(); 1776 int CPI0 = MO0.getIndex(); 1777 int CPI1 = MO1.getIndex(); 1778 const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0]; 1779 const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1]; 1780 bool isARMCP0 = MCPE0.isMachineConstantPoolEntry(); 1781 bool isARMCP1 = MCPE1.isMachineConstantPoolEntry(); 1782 if (isARMCP0 && isARMCP1) { 1783 ARMConstantPoolValue *ACPV0 = 1784 static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal); 1785 ARMConstantPoolValue *ACPV1 = 1786 static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal); 1787 return ACPV0->hasSameValue(ACPV1); 1788 } else if (!isARMCP0 && !isARMCP1) { 1789 return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal; 1790 } 1791 return false; 1792 } else if (Opcode == ARM::PICLDR) { 1793 if (MI1.getOpcode() != Opcode) 1794 return false; 1795 if (MI0.getNumOperands() != MI1.getNumOperands()) 1796 return false; 1797 1798 Register Addr0 = MI0.getOperand(1).getReg(); 1799 Register Addr1 = MI1.getOperand(1).getReg(); 1800 if (Addr0 != Addr1) { 1801 if (!MRI || !Register::isVirtualRegister(Addr0) || 1802 !Register::isVirtualRegister(Addr1)) 1803 return false; 1804 1805 // This assumes SSA form. 1806 MachineInstr *Def0 = MRI->getVRegDef(Addr0); 1807 MachineInstr *Def1 = MRI->getVRegDef(Addr1); 1808 // Check if the loaded value, e.g. a constantpool of a global address, are 1809 // the same. 1810 if (!produceSameValue(*Def0, *Def1, MRI)) 1811 return false; 1812 } 1813 1814 for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) { 1815 // %12 = PICLDR %11, 0, 14, %noreg 1816 const MachineOperand &MO0 = MI0.getOperand(i); 1817 const MachineOperand &MO1 = MI1.getOperand(i); 1818 if (!MO0.isIdenticalTo(MO1)) 1819 return false; 1820 } 1821 return true; 1822 } 1823 1824 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 1825 } 1826 1827 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to 1828 /// determine if two loads are loading from the same base address. It should 1829 /// only return true if the base pointers are the same and the only differences 1830 /// between the two addresses is the offset. It also returns the offsets by 1831 /// reference. 1832 /// 1833 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 1834 /// is permanently disabled. 1835 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 1836 int64_t &Offset1, 1837 int64_t &Offset2) const { 1838 // Don't worry about Thumb: just ARM and Thumb2. 1839 if (Subtarget.isThumb1Only()) return false; 1840 1841 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) 1842 return false; 1843 1844 switch (Load1->getMachineOpcode()) { 1845 default: 1846 return false; 1847 case ARM::LDRi12: 1848 case ARM::LDRBi12: 1849 case ARM::LDRD: 1850 case ARM::LDRH: 1851 case ARM::LDRSB: 1852 case ARM::LDRSH: 1853 case ARM::VLDRD: 1854 case ARM::VLDRS: 1855 case ARM::t2LDRi8: 1856 case ARM::t2LDRBi8: 1857 case ARM::t2LDRDi8: 1858 case ARM::t2LDRSHi8: 1859 case ARM::t2LDRi12: 1860 case ARM::t2LDRBi12: 1861 case ARM::t2LDRSHi12: 1862 break; 1863 } 1864 1865 switch (Load2->getMachineOpcode()) { 1866 default: 1867 return false; 1868 case ARM::LDRi12: 1869 case ARM::LDRBi12: 1870 case ARM::LDRD: 1871 case ARM::LDRH: 1872 case ARM::LDRSB: 1873 case ARM::LDRSH: 1874 case ARM::VLDRD: 1875 case ARM::VLDRS: 1876 case ARM::t2LDRi8: 1877 case ARM::t2LDRBi8: 1878 case ARM::t2LDRSHi8: 1879 case ARM::t2LDRi12: 1880 case ARM::t2LDRBi12: 1881 case ARM::t2LDRSHi12: 1882 break; 1883 } 1884 1885 // Check if base addresses and chain operands match. 1886 if (Load1->getOperand(0) != Load2->getOperand(0) || 1887 Load1->getOperand(4) != Load2->getOperand(4)) 1888 return false; 1889 1890 // Index should be Reg0. 1891 if (Load1->getOperand(3) != Load2->getOperand(3)) 1892 return false; 1893 1894 // Determine the offsets. 1895 if (isa<ConstantSDNode>(Load1->getOperand(1)) && 1896 isa<ConstantSDNode>(Load2->getOperand(1))) { 1897 Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue(); 1898 Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue(); 1899 return true; 1900 } 1901 1902 return false; 1903 } 1904 1905 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to 1906 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should 1907 /// be scheduled togther. On some targets if two loads are loading from 1908 /// addresses in the same cache line, it's better if they are scheduled 1909 /// together. This function takes two integers that represent the load offsets 1910 /// from the common base address. It returns true if it decides it's desirable 1911 /// to schedule the two loads together. "NumLoads" is the number of loads that 1912 /// have already been scheduled after Load1. 1913 /// 1914 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 1915 /// is permanently disabled. 1916 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 1917 int64_t Offset1, int64_t Offset2, 1918 unsigned NumLoads) const { 1919 // Don't worry about Thumb: just ARM and Thumb2. 1920 if (Subtarget.isThumb1Only()) return false; 1921 1922 assert(Offset2 > Offset1); 1923 1924 if ((Offset2 - Offset1) / 8 > 64) 1925 return false; 1926 1927 // Check if the machine opcodes are different. If they are different 1928 // then we consider them to not be of the same base address, 1929 // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12. 1930 // In this case, they are considered to be the same because they are different 1931 // encoding forms of the same basic instruction. 1932 if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) && 1933 !((Load1->getMachineOpcode() == ARM::t2LDRBi8 && 1934 Load2->getMachineOpcode() == ARM::t2LDRBi12) || 1935 (Load1->getMachineOpcode() == ARM::t2LDRBi12 && 1936 Load2->getMachineOpcode() == ARM::t2LDRBi8))) 1937 return false; // FIXME: overly conservative? 1938 1939 // Four loads in a row should be sufficient. 1940 if (NumLoads >= 3) 1941 return false; 1942 1943 return true; 1944 } 1945 1946 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 1947 const MachineBasicBlock *MBB, 1948 const MachineFunction &MF) const { 1949 // Debug info is never a scheduling boundary. It's necessary to be explicit 1950 // due to the special treatment of IT instructions below, otherwise a 1951 // dbg_value followed by an IT will result in the IT instruction being 1952 // considered a scheduling hazard, which is wrong. It should be the actual 1953 // instruction preceding the dbg_value instruction(s), just like it is 1954 // when debug info is not present. 1955 if (MI.isDebugInstr()) 1956 return false; 1957 1958 // Terminators and labels can't be scheduled around. 1959 if (MI.isTerminator() || MI.isPosition()) 1960 return true; 1961 1962 // Treat the start of the IT block as a scheduling boundary, but schedule 1963 // t2IT along with all instructions following it. 1964 // FIXME: This is a big hammer. But the alternative is to add all potential 1965 // true and anti dependencies to IT block instructions as implicit operands 1966 // to the t2IT instruction. The added compile time and complexity does not 1967 // seem worth it. 1968 MachineBasicBlock::const_iterator I = MI; 1969 // Make sure to skip any debug instructions 1970 while (++I != MBB->end() && I->isDebugInstr()) 1971 ; 1972 if (I != MBB->end() && I->getOpcode() == ARM::t2IT) 1973 return true; 1974 1975 // Don't attempt to schedule around any instruction that defines 1976 // a stack-oriented pointer, as it's unlikely to be profitable. This 1977 // saves compile time, because it doesn't require every single 1978 // stack slot reference to depend on the instruction that does the 1979 // modification. 1980 // Calls don't actually change the stack pointer, even if they have imp-defs. 1981 // No ARM calling conventions change the stack pointer. (X86 calling 1982 // conventions sometimes do). 1983 if (!MI.isCall() && MI.definesRegister(ARM::SP)) 1984 return true; 1985 1986 return false; 1987 } 1988 1989 bool ARMBaseInstrInfo:: 1990 isProfitableToIfCvt(MachineBasicBlock &MBB, 1991 unsigned NumCycles, unsigned ExtraPredCycles, 1992 BranchProbability Probability) const { 1993 if (!NumCycles) 1994 return false; 1995 1996 // If we are optimizing for size, see if the branch in the predecessor can be 1997 // lowered to cbn?z by the constant island lowering pass, and return false if 1998 // so. This results in a shorter instruction sequence. 1999 if (MBB.getParent()->getFunction().hasOptSize()) { 2000 MachineBasicBlock *Pred = *MBB.pred_begin(); 2001 if (!Pred->empty()) { 2002 MachineInstr *LastMI = &*Pred->rbegin(); 2003 if (LastMI->getOpcode() == ARM::t2Bcc) { 2004 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2005 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI); 2006 if (CmpMI) 2007 return false; 2008 } 2009 } 2010 } 2011 return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles, 2012 MBB, 0, 0, Probability); 2013 } 2014 2015 bool ARMBaseInstrInfo:: 2016 isProfitableToIfCvt(MachineBasicBlock &TBB, 2017 unsigned TCycles, unsigned TExtra, 2018 MachineBasicBlock &FBB, 2019 unsigned FCycles, unsigned FExtra, 2020 BranchProbability Probability) const { 2021 if (!TCycles) 2022 return false; 2023 2024 // In thumb code we often end up trading one branch for a IT block, and 2025 // if we are cloning the instruction can increase code size. Prevent 2026 // blocks with multiple predecesors from being ifcvted to prevent this 2027 // cloning. 2028 if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) { 2029 if (TBB.pred_size() != 1 || FBB.pred_size() != 1) 2030 return false; 2031 } 2032 2033 // Attempt to estimate the relative costs of predication versus branching. 2034 // Here we scale up each component of UnpredCost to avoid precision issue when 2035 // scaling TCycles/FCycles by Probability. 2036 const unsigned ScalingUpFactor = 1024; 2037 2038 unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor; 2039 unsigned UnpredCost; 2040 if (!Subtarget.hasBranchPredictor()) { 2041 // When we don't have a branch predictor it's always cheaper to not take a 2042 // branch than take it, so we have to take that into account. 2043 unsigned NotTakenBranchCost = 1; 2044 unsigned TakenBranchCost = Subtarget.getMispredictionPenalty(); 2045 unsigned TUnpredCycles, FUnpredCycles; 2046 if (!FCycles) { 2047 // Triangle: TBB is the fallthrough 2048 TUnpredCycles = TCycles + NotTakenBranchCost; 2049 FUnpredCycles = TakenBranchCost; 2050 } else { 2051 // Diamond: TBB is the block that is branched to, FBB is the fallthrough 2052 TUnpredCycles = TCycles + TakenBranchCost; 2053 FUnpredCycles = FCycles + NotTakenBranchCost; 2054 // The branch at the end of FBB will disappear when it's predicated, so 2055 // discount it from PredCost. 2056 PredCost -= 1 * ScalingUpFactor; 2057 } 2058 // The total cost is the cost of each path scaled by their probabilites 2059 unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor); 2060 unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor); 2061 UnpredCost = TUnpredCost + FUnpredCost; 2062 // When predicating assume that the first IT can be folded away but later 2063 // ones cost one cycle each 2064 if (Subtarget.isThumb2() && TCycles + FCycles > 4) { 2065 PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor; 2066 } 2067 } else { 2068 unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor); 2069 unsigned FUnpredCost = 2070 Probability.getCompl().scale(FCycles * ScalingUpFactor); 2071 UnpredCost = TUnpredCost + FUnpredCost; 2072 UnpredCost += 1 * ScalingUpFactor; // The branch itself 2073 UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10; 2074 } 2075 2076 return PredCost <= UnpredCost; 2077 } 2078 2079 unsigned 2080 ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF, 2081 unsigned NumInsts) const { 2082 // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions. 2083 // ARM has a condition code field in every predicable instruction, using it 2084 // doesn't change code size. 2085 return Subtarget.isThumb2() ? divideCeil(NumInsts, 4) * 2 : 0; 2086 } 2087 2088 unsigned 2089 ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const { 2090 // If this branch is likely to be folded into the comparison to form a 2091 // CB(N)Z, then removing it won't reduce code size at all, because that will 2092 // just replace the CB(N)Z with a CMP. 2093 if (MI.getOpcode() == ARM::t2Bcc && 2094 findCMPToFoldIntoCBZ(&MI, &getRegisterInfo())) 2095 return 0; 2096 2097 unsigned Size = getInstSizeInBytes(MI); 2098 2099 // For Thumb2, all branches are 32-bit instructions during the if conversion 2100 // pass, but may be replaced with 16-bit instructions during size reduction. 2101 // Since the branches considered by if conversion tend to be forward branches 2102 // over small basic blocks, they are very likely to be in range for the 2103 // narrow instructions, so we assume the final code size will be half what it 2104 // currently is. 2105 if (Subtarget.isThumb2()) 2106 Size /= 2; 2107 2108 return Size; 2109 } 2110 2111 bool 2112 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB, 2113 MachineBasicBlock &FMBB) const { 2114 // Reduce false anti-dependencies to let the target's out-of-order execution 2115 // engine do its thing. 2116 return Subtarget.isProfitableToUnpredicate(); 2117 } 2118 2119 /// getInstrPredicate - If instruction is predicated, returns its predicate 2120 /// condition, otherwise returns AL. It also returns the condition code 2121 /// register by reference. 2122 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI, 2123 unsigned &PredReg) { 2124 int PIdx = MI.findFirstPredOperandIdx(); 2125 if (PIdx == -1) { 2126 PredReg = 0; 2127 return ARMCC::AL; 2128 } 2129 2130 PredReg = MI.getOperand(PIdx+1).getReg(); 2131 return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm(); 2132 } 2133 2134 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) { 2135 if (Opc == ARM::B) 2136 return ARM::Bcc; 2137 if (Opc == ARM::tB) 2138 return ARM::tBcc; 2139 if (Opc == ARM::t2B) 2140 return ARM::t2Bcc; 2141 2142 llvm_unreachable("Unknown unconditional branch opcode!"); 2143 } 2144 2145 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI, 2146 bool NewMI, 2147 unsigned OpIdx1, 2148 unsigned OpIdx2) const { 2149 switch (MI.getOpcode()) { 2150 case ARM::MOVCCr: 2151 case ARM::t2MOVCCr: { 2152 // MOVCC can be commuted by inverting the condition. 2153 unsigned PredReg = 0; 2154 ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg); 2155 // MOVCC AL can't be inverted. Shouldn't happen. 2156 if (CC == ARMCC::AL || PredReg != ARM::CPSR) 2157 return nullptr; 2158 MachineInstr *CommutedMI = 2159 TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2160 if (!CommutedMI) 2161 return nullptr; 2162 // After swapping the MOVCC operands, also invert the condition. 2163 CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx()) 2164 .setImm(ARMCC::getOppositeCondition(CC)); 2165 return CommutedMI; 2166 } 2167 } 2168 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2169 } 2170 2171 /// Identify instructions that can be folded into a MOVCC instruction, and 2172 /// return the defining instruction. 2173 MachineInstr * 2174 ARMBaseInstrInfo::canFoldIntoMOVCC(unsigned Reg, const MachineRegisterInfo &MRI, 2175 const TargetInstrInfo *TII) const { 2176 if (!Register::isVirtualRegister(Reg)) 2177 return nullptr; 2178 if (!MRI.hasOneNonDBGUse(Reg)) 2179 return nullptr; 2180 MachineInstr *MI = MRI.getVRegDef(Reg); 2181 if (!MI) 2182 return nullptr; 2183 // Check if MI can be predicated and folded into the MOVCC. 2184 if (!isPredicable(*MI)) 2185 return nullptr; 2186 // Check if MI has any non-dead defs or physreg uses. This also detects 2187 // predicated instructions which will be reading CPSR. 2188 for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) { 2189 const MachineOperand &MO = MI->getOperand(i); 2190 // Reject frame index operands, PEI can't handle the predicated pseudos. 2191 if (MO.isFI() || MO.isCPI() || MO.isJTI()) 2192 return nullptr; 2193 if (!MO.isReg()) 2194 continue; 2195 // MI can't have any tied operands, that would conflict with predication. 2196 if (MO.isTied()) 2197 return nullptr; 2198 if (Register::isPhysicalRegister(MO.getReg())) 2199 return nullptr; 2200 if (MO.isDef() && !MO.isDead()) 2201 return nullptr; 2202 } 2203 bool DontMoveAcrossStores = true; 2204 if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores)) 2205 return nullptr; 2206 return MI; 2207 } 2208 2209 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI, 2210 SmallVectorImpl<MachineOperand> &Cond, 2211 unsigned &TrueOp, unsigned &FalseOp, 2212 bool &Optimizable) const { 2213 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && 2214 "Unknown select instruction"); 2215 // MOVCC operands: 2216 // 0: Def. 2217 // 1: True use. 2218 // 2: False use. 2219 // 3: Condition code. 2220 // 4: CPSR use. 2221 TrueOp = 1; 2222 FalseOp = 2; 2223 Cond.push_back(MI.getOperand(3)); 2224 Cond.push_back(MI.getOperand(4)); 2225 // We can always fold a def. 2226 Optimizable = true; 2227 return false; 2228 } 2229 2230 MachineInstr * 2231 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI, 2232 SmallPtrSetImpl<MachineInstr *> &SeenMIs, 2233 bool PreferFalse) const { 2234 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && 2235 "Unknown select instruction"); 2236 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 2237 MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this); 2238 bool Invert = !DefMI; 2239 if (!DefMI) 2240 DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this); 2241 if (!DefMI) 2242 return nullptr; 2243 2244 // Find new register class to use. 2245 MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1); 2246 Register DestReg = MI.getOperand(0).getReg(); 2247 const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg()); 2248 if (!MRI.constrainRegClass(DestReg, PreviousClass)) 2249 return nullptr; 2250 2251 // Create a new predicated version of DefMI. 2252 // Rfalse is the first use. 2253 MachineInstrBuilder NewMI = 2254 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg); 2255 2256 // Copy all the DefMI operands, excluding its (null) predicate. 2257 const MCInstrDesc &DefDesc = DefMI->getDesc(); 2258 for (unsigned i = 1, e = DefDesc.getNumOperands(); 2259 i != e && !DefDesc.OpInfo[i].isPredicate(); ++i) 2260 NewMI.add(DefMI->getOperand(i)); 2261 2262 unsigned CondCode = MI.getOperand(3).getImm(); 2263 if (Invert) 2264 NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode))); 2265 else 2266 NewMI.addImm(CondCode); 2267 NewMI.add(MI.getOperand(4)); 2268 2269 // DefMI is not the -S version that sets CPSR, so add an optional %noreg. 2270 if (NewMI->hasOptionalDef()) 2271 NewMI.add(condCodeOp()); 2272 2273 // The output register value when the predicate is false is an implicit 2274 // register operand tied to the first def. 2275 // The tie makes the register allocator ensure the FalseReg is allocated the 2276 // same register as operand 0. 2277 FalseReg.setImplicit(); 2278 NewMI.add(FalseReg); 2279 NewMI->tieOperands(0, NewMI->getNumOperands() - 1); 2280 2281 // Update SeenMIs set: register newly created MI and erase removed DefMI. 2282 SeenMIs.insert(NewMI); 2283 SeenMIs.erase(DefMI); 2284 2285 // If MI is inside a loop, and DefMI is outside the loop, then kill flags on 2286 // DefMI would be invalid when tranferred inside the loop. Checking for a 2287 // loop is expensive, but at least remove kill flags if they are in different 2288 // BBs. 2289 if (DefMI->getParent() != MI.getParent()) 2290 NewMI->clearKillInfo(); 2291 2292 // The caller will erase MI, but not DefMI. 2293 DefMI->eraseFromParent(); 2294 return NewMI; 2295 } 2296 2297 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the 2298 /// instruction is encoded with an 'S' bit is determined by the optional CPSR 2299 /// def operand. 2300 /// 2301 /// This will go away once we can teach tblgen how to set the optional CPSR def 2302 /// operand itself. 2303 struct AddSubFlagsOpcodePair { 2304 uint16_t PseudoOpc; 2305 uint16_t MachineOpc; 2306 }; 2307 2308 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = { 2309 {ARM::ADDSri, ARM::ADDri}, 2310 {ARM::ADDSrr, ARM::ADDrr}, 2311 {ARM::ADDSrsi, ARM::ADDrsi}, 2312 {ARM::ADDSrsr, ARM::ADDrsr}, 2313 2314 {ARM::SUBSri, ARM::SUBri}, 2315 {ARM::SUBSrr, ARM::SUBrr}, 2316 {ARM::SUBSrsi, ARM::SUBrsi}, 2317 {ARM::SUBSrsr, ARM::SUBrsr}, 2318 2319 {ARM::RSBSri, ARM::RSBri}, 2320 {ARM::RSBSrsi, ARM::RSBrsi}, 2321 {ARM::RSBSrsr, ARM::RSBrsr}, 2322 2323 {ARM::tADDSi3, ARM::tADDi3}, 2324 {ARM::tADDSi8, ARM::tADDi8}, 2325 {ARM::tADDSrr, ARM::tADDrr}, 2326 {ARM::tADCS, ARM::tADC}, 2327 2328 {ARM::tSUBSi3, ARM::tSUBi3}, 2329 {ARM::tSUBSi8, ARM::tSUBi8}, 2330 {ARM::tSUBSrr, ARM::tSUBrr}, 2331 {ARM::tSBCS, ARM::tSBC}, 2332 {ARM::tRSBS, ARM::tRSB}, 2333 {ARM::tLSLSri, ARM::tLSLri}, 2334 2335 {ARM::t2ADDSri, ARM::t2ADDri}, 2336 {ARM::t2ADDSrr, ARM::t2ADDrr}, 2337 {ARM::t2ADDSrs, ARM::t2ADDrs}, 2338 2339 {ARM::t2SUBSri, ARM::t2SUBri}, 2340 {ARM::t2SUBSrr, ARM::t2SUBrr}, 2341 {ARM::t2SUBSrs, ARM::t2SUBrs}, 2342 2343 {ARM::t2RSBSri, ARM::t2RSBri}, 2344 {ARM::t2RSBSrs, ARM::t2RSBrs}, 2345 }; 2346 2347 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) { 2348 for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i) 2349 if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc) 2350 return AddSubFlagsOpcodeMap[i].MachineOpc; 2351 return 0; 2352 } 2353 2354 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB, 2355 MachineBasicBlock::iterator &MBBI, 2356 const DebugLoc &dl, unsigned DestReg, 2357 unsigned BaseReg, int NumBytes, 2358 ARMCC::CondCodes Pred, unsigned PredReg, 2359 const ARMBaseInstrInfo &TII, 2360 unsigned MIFlags) { 2361 if (NumBytes == 0 && DestReg != BaseReg) { 2362 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg) 2363 .addReg(BaseReg, RegState::Kill) 2364 .add(predOps(Pred, PredReg)) 2365 .add(condCodeOp()) 2366 .setMIFlags(MIFlags); 2367 return; 2368 } 2369 2370 bool isSub = NumBytes < 0; 2371 if (isSub) NumBytes = -NumBytes; 2372 2373 while (NumBytes) { 2374 unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes); 2375 unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt); 2376 assert(ThisVal && "Didn't extract field correctly"); 2377 2378 // We will handle these bits from offset, clear them. 2379 NumBytes &= ~ThisVal; 2380 2381 assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?"); 2382 2383 // Build the new ADD / SUB. 2384 unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri; 2385 BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) 2386 .addReg(BaseReg, RegState::Kill) 2387 .addImm(ThisVal) 2388 .add(predOps(Pred, PredReg)) 2389 .add(condCodeOp()) 2390 .setMIFlags(MIFlags); 2391 BaseReg = DestReg; 2392 } 2393 } 2394 2395 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget, 2396 MachineFunction &MF, MachineInstr *MI, 2397 unsigned NumBytes) { 2398 // This optimisation potentially adds lots of load and store 2399 // micro-operations, it's only really a great benefit to code-size. 2400 if (!Subtarget.hasMinSize()) 2401 return false; 2402 2403 // If only one register is pushed/popped, LLVM can use an LDR/STR 2404 // instead. We can't modify those so make sure we're dealing with an 2405 // instruction we understand. 2406 bool IsPop = isPopOpcode(MI->getOpcode()); 2407 bool IsPush = isPushOpcode(MI->getOpcode()); 2408 if (!IsPush && !IsPop) 2409 return false; 2410 2411 bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD || 2412 MI->getOpcode() == ARM::VLDMDIA_UPD; 2413 bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH || 2414 MI->getOpcode() == ARM::tPOP || 2415 MI->getOpcode() == ARM::tPOP_RET; 2416 2417 assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP && 2418 MI->getOperand(1).getReg() == ARM::SP)) && 2419 "trying to fold sp update into non-sp-updating push/pop"); 2420 2421 // The VFP push & pop act on D-registers, so we can only fold an adjustment 2422 // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try 2423 // if this is violated. 2424 if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0) 2425 return false; 2426 2427 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 2428 // pred) so the list starts at 4. Thumb1 starts after the predicate. 2429 int RegListIdx = IsT1PushPop ? 2 : 4; 2430 2431 // Calculate the space we'll need in terms of registers. 2432 unsigned RegsNeeded; 2433 const TargetRegisterClass *RegClass; 2434 if (IsVFPPushPop) { 2435 RegsNeeded = NumBytes / 8; 2436 RegClass = &ARM::DPRRegClass; 2437 } else { 2438 RegsNeeded = NumBytes / 4; 2439 RegClass = &ARM::GPRRegClass; 2440 } 2441 2442 // We're going to have to strip all list operands off before 2443 // re-adding them since the order matters, so save the existing ones 2444 // for later. 2445 SmallVector<MachineOperand, 4> RegList; 2446 2447 // We're also going to need the first register transferred by this 2448 // instruction, which won't necessarily be the first register in the list. 2449 unsigned FirstRegEnc = -1; 2450 2451 const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo(); 2452 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) { 2453 MachineOperand &MO = MI->getOperand(i); 2454 RegList.push_back(MO); 2455 2456 if (MO.isReg() && !MO.isImplicit() && 2457 TRI->getEncodingValue(MO.getReg()) < FirstRegEnc) 2458 FirstRegEnc = TRI->getEncodingValue(MO.getReg()); 2459 } 2460 2461 const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF); 2462 2463 // Now try to find enough space in the reglist to allocate NumBytes. 2464 for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded; 2465 --CurRegEnc) { 2466 unsigned CurReg = RegClass->getRegister(CurRegEnc); 2467 if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7)) 2468 continue; 2469 if (!IsPop) { 2470 // Pushing any register is completely harmless, mark the register involved 2471 // as undef since we don't care about its value and must not restore it 2472 // during stack unwinding. 2473 RegList.push_back(MachineOperand::CreateReg(CurReg, false, false, 2474 false, false, true)); 2475 --RegsNeeded; 2476 continue; 2477 } 2478 2479 // However, we can only pop an extra register if it's not live. For 2480 // registers live within the function we might clobber a return value 2481 // register; the other way a register can be live here is if it's 2482 // callee-saved. 2483 if (isCalleeSavedRegister(CurReg, CSRegs) || 2484 MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) != 2485 MachineBasicBlock::LQR_Dead) { 2486 // VFP pops don't allow holes in the register list, so any skip is fatal 2487 // for our transformation. GPR pops do, so we should just keep looking. 2488 if (IsVFPPushPop) 2489 return false; 2490 else 2491 continue; 2492 } 2493 2494 // Mark the unimportant registers as <def,dead> in the POP. 2495 RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false, 2496 true)); 2497 --RegsNeeded; 2498 } 2499 2500 if (RegsNeeded > 0) 2501 return false; 2502 2503 // Finally we know we can profitably perform the optimisation so go 2504 // ahead: strip all existing registers off and add them back again 2505 // in the right order. 2506 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) 2507 MI->RemoveOperand(i); 2508 2509 // Add the complete list back in. 2510 MachineInstrBuilder MIB(MF, &*MI); 2511 for (int i = RegList.size() - 1; i >= 0; --i) 2512 MIB.add(RegList[i]); 2513 2514 return true; 2515 } 2516 2517 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx, 2518 unsigned FrameReg, int &Offset, 2519 const ARMBaseInstrInfo &TII) { 2520 unsigned Opcode = MI.getOpcode(); 2521 const MCInstrDesc &Desc = MI.getDesc(); 2522 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); 2523 bool isSub = false; 2524 2525 // Memory operands in inline assembly always use AddrMode2. 2526 if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR) 2527 AddrMode = ARMII::AddrMode2; 2528 2529 if (Opcode == ARM::ADDri) { 2530 Offset += MI.getOperand(FrameRegIdx+1).getImm(); 2531 if (Offset == 0) { 2532 // Turn it into a move. 2533 MI.setDesc(TII.get(ARM::MOVr)); 2534 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2535 MI.RemoveOperand(FrameRegIdx+1); 2536 Offset = 0; 2537 return true; 2538 } else if (Offset < 0) { 2539 Offset = -Offset; 2540 isSub = true; 2541 MI.setDesc(TII.get(ARM::SUBri)); 2542 } 2543 2544 // Common case: small offset, fits into instruction. 2545 if (ARM_AM::getSOImmVal(Offset) != -1) { 2546 // Replace the FrameIndex with sp / fp 2547 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2548 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); 2549 Offset = 0; 2550 return true; 2551 } 2552 2553 // Otherwise, pull as much of the immedidate into this ADDri/SUBri 2554 // as possible. 2555 unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset); 2556 unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt); 2557 2558 // We will handle these bits from offset, clear them. 2559 Offset &= ~ThisImmVal; 2560 2561 // Get the properly encoded SOImmVal field. 2562 assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 && 2563 "Bit extraction didn't work?"); 2564 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal); 2565 } else { 2566 unsigned ImmIdx = 0; 2567 int InstrOffs = 0; 2568 unsigned NumBits = 0; 2569 unsigned Scale = 1; 2570 switch (AddrMode) { 2571 case ARMII::AddrMode_i12: 2572 ImmIdx = FrameRegIdx + 1; 2573 InstrOffs = MI.getOperand(ImmIdx).getImm(); 2574 NumBits = 12; 2575 break; 2576 case ARMII::AddrMode2: 2577 ImmIdx = FrameRegIdx+2; 2578 InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm()); 2579 if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2580 InstrOffs *= -1; 2581 NumBits = 12; 2582 break; 2583 case ARMII::AddrMode3: 2584 ImmIdx = FrameRegIdx+2; 2585 InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm()); 2586 if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2587 InstrOffs *= -1; 2588 NumBits = 8; 2589 break; 2590 case ARMII::AddrMode4: 2591 case ARMII::AddrMode6: 2592 // Can't fold any offset even if it's zero. 2593 return false; 2594 case ARMII::AddrMode5: 2595 ImmIdx = FrameRegIdx+1; 2596 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2597 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2598 InstrOffs *= -1; 2599 NumBits = 8; 2600 Scale = 4; 2601 break; 2602 case ARMII::AddrMode5FP16: 2603 ImmIdx = FrameRegIdx+1; 2604 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2605 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2606 InstrOffs *= -1; 2607 NumBits = 8; 2608 Scale = 2; 2609 break; 2610 case ARMII::AddrModeT2_i7: 2611 case ARMII::AddrModeT2_i7s2: 2612 case ARMII::AddrModeT2_i7s4: 2613 ImmIdx = FrameRegIdx+1; 2614 InstrOffs = MI.getOperand(ImmIdx).getImm(); 2615 NumBits = 7; 2616 Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 : 2617 AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1); 2618 break; 2619 default: 2620 llvm_unreachable("Unsupported addressing mode!"); 2621 } 2622 2623 Offset += InstrOffs * Scale; 2624 assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!"); 2625 if (Offset < 0) { 2626 Offset = -Offset; 2627 isSub = true; 2628 } 2629 2630 // Attempt to fold address comp. if opcode has offset bits 2631 if (NumBits > 0) { 2632 // Common case: small offset, fits into instruction. 2633 MachineOperand &ImmOp = MI.getOperand(ImmIdx); 2634 int ImmedOffset = Offset / Scale; 2635 unsigned Mask = (1 << NumBits) - 1; 2636 if ((unsigned)Offset <= Mask * Scale) { 2637 // Replace the FrameIndex with sp 2638 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2639 // FIXME: When addrmode2 goes away, this will simplify (like the 2640 // T2 version), as the LDR.i12 versions don't need the encoding 2641 // tricks for the offset value. 2642 if (isSub) { 2643 if (AddrMode == ARMII::AddrMode_i12) 2644 ImmedOffset = -ImmedOffset; 2645 else 2646 ImmedOffset |= 1 << NumBits; 2647 } 2648 ImmOp.ChangeToImmediate(ImmedOffset); 2649 Offset = 0; 2650 return true; 2651 } 2652 2653 // Otherwise, it didn't fit. Pull in what we can to simplify the immed. 2654 ImmedOffset = ImmedOffset & Mask; 2655 if (isSub) { 2656 if (AddrMode == ARMII::AddrMode_i12) 2657 ImmedOffset = -ImmedOffset; 2658 else 2659 ImmedOffset |= 1 << NumBits; 2660 } 2661 ImmOp.ChangeToImmediate(ImmedOffset); 2662 Offset &= ~(Mask*Scale); 2663 } 2664 } 2665 2666 Offset = (isSub) ? -Offset : Offset; 2667 return Offset == 0; 2668 } 2669 2670 /// analyzeCompare - For a comparison instruction, return the source registers 2671 /// in SrcReg and SrcReg2 if having two register operands, and the value it 2672 /// compares against in CmpValue. Return true if the comparison instruction 2673 /// can be analyzed. 2674 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 2675 unsigned &SrcReg2, int &CmpMask, 2676 int &CmpValue) const { 2677 switch (MI.getOpcode()) { 2678 default: break; 2679 case ARM::CMPri: 2680 case ARM::t2CMPri: 2681 case ARM::tCMPi8: 2682 SrcReg = MI.getOperand(0).getReg(); 2683 SrcReg2 = 0; 2684 CmpMask = ~0; 2685 CmpValue = MI.getOperand(1).getImm(); 2686 return true; 2687 case ARM::CMPrr: 2688 case ARM::t2CMPrr: 2689 case ARM::tCMPr: 2690 SrcReg = MI.getOperand(0).getReg(); 2691 SrcReg2 = MI.getOperand(1).getReg(); 2692 CmpMask = ~0; 2693 CmpValue = 0; 2694 return true; 2695 case ARM::TSTri: 2696 case ARM::t2TSTri: 2697 SrcReg = MI.getOperand(0).getReg(); 2698 SrcReg2 = 0; 2699 CmpMask = MI.getOperand(1).getImm(); 2700 CmpValue = 0; 2701 return true; 2702 } 2703 2704 return false; 2705 } 2706 2707 /// isSuitableForMask - Identify a suitable 'and' instruction that 2708 /// operates on the given source register and applies the same mask 2709 /// as a 'tst' instruction. Provide a limited look-through for copies. 2710 /// When successful, MI will hold the found instruction. 2711 static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg, 2712 int CmpMask, bool CommonUse) { 2713 switch (MI->getOpcode()) { 2714 case ARM::ANDri: 2715 case ARM::t2ANDri: 2716 if (CmpMask != MI->getOperand(2).getImm()) 2717 return false; 2718 if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg()) 2719 return true; 2720 break; 2721 } 2722 2723 return false; 2724 } 2725 2726 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return 2727 /// the condition code if we modify the instructions such that flags are 2728 /// set by ADD(a,b,X). 2729 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) { 2730 switch (CC) { 2731 default: return ARMCC::AL; 2732 case ARMCC::HS: return ARMCC::LO; 2733 case ARMCC::LO: return ARMCC::HS; 2734 case ARMCC::VS: return ARMCC::VS; 2735 case ARMCC::VC: return ARMCC::VC; 2736 } 2737 } 2738 2739 /// isRedundantFlagInstr - check whether the first instruction, whose only 2740 /// purpose is to update flags, can be made redundant. 2741 /// CMPrr can be made redundant by SUBrr if the operands are the same. 2742 /// CMPri can be made redundant by SUBri if the operands are the same. 2743 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X). 2744 /// This function can be extended later on. 2745 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI, 2746 unsigned SrcReg, unsigned SrcReg2, 2747 int ImmValue, const MachineInstr *OI, 2748 bool &IsThumb1) { 2749 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && 2750 (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) && 2751 ((OI->getOperand(1).getReg() == SrcReg && 2752 OI->getOperand(2).getReg() == SrcReg2) || 2753 (OI->getOperand(1).getReg() == SrcReg2 && 2754 OI->getOperand(2).getReg() == SrcReg))) { 2755 IsThumb1 = false; 2756 return true; 2757 } 2758 2759 if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr && 2760 ((OI->getOperand(2).getReg() == SrcReg && 2761 OI->getOperand(3).getReg() == SrcReg2) || 2762 (OI->getOperand(2).getReg() == SrcReg2 && 2763 OI->getOperand(3).getReg() == SrcReg))) { 2764 IsThumb1 = true; 2765 return true; 2766 } 2767 2768 if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) && 2769 (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) && 2770 OI->getOperand(1).getReg() == SrcReg && 2771 OI->getOperand(2).getImm() == ImmValue) { 2772 IsThumb1 = false; 2773 return true; 2774 } 2775 2776 if (CmpI->getOpcode() == ARM::tCMPi8 && 2777 (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) && 2778 OI->getOperand(2).getReg() == SrcReg && 2779 OI->getOperand(3).getImm() == ImmValue) { 2780 IsThumb1 = true; 2781 return true; 2782 } 2783 2784 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && 2785 (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr || 2786 OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) && 2787 OI->getOperand(0).isReg() && OI->getOperand(1).isReg() && 2788 OI->getOperand(0).getReg() == SrcReg && 2789 OI->getOperand(1).getReg() == SrcReg2) { 2790 IsThumb1 = false; 2791 return true; 2792 } 2793 2794 if (CmpI->getOpcode() == ARM::tCMPr && 2795 (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 || 2796 OI->getOpcode() == ARM::tADDrr) && 2797 OI->getOperand(0).getReg() == SrcReg && 2798 OI->getOperand(2).getReg() == SrcReg2) { 2799 IsThumb1 = true; 2800 return true; 2801 } 2802 2803 return false; 2804 } 2805 2806 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) { 2807 switch (MI->getOpcode()) { 2808 default: return false; 2809 case ARM::tLSLri: 2810 case ARM::tLSRri: 2811 case ARM::tLSLrr: 2812 case ARM::tLSRrr: 2813 case ARM::tSUBrr: 2814 case ARM::tADDrr: 2815 case ARM::tADDi3: 2816 case ARM::tADDi8: 2817 case ARM::tSUBi3: 2818 case ARM::tSUBi8: 2819 case ARM::tMUL: 2820 case ARM::tADC: 2821 case ARM::tSBC: 2822 case ARM::tRSB: 2823 case ARM::tAND: 2824 case ARM::tORR: 2825 case ARM::tEOR: 2826 case ARM::tBIC: 2827 case ARM::tMVN: 2828 case ARM::tASRri: 2829 case ARM::tASRrr: 2830 case ARM::tROR: 2831 IsThumb1 = true; 2832 LLVM_FALLTHROUGH; 2833 case ARM::RSBrr: 2834 case ARM::RSBri: 2835 case ARM::RSCrr: 2836 case ARM::RSCri: 2837 case ARM::ADDrr: 2838 case ARM::ADDri: 2839 case ARM::ADCrr: 2840 case ARM::ADCri: 2841 case ARM::SUBrr: 2842 case ARM::SUBri: 2843 case ARM::SBCrr: 2844 case ARM::SBCri: 2845 case ARM::t2RSBri: 2846 case ARM::t2ADDrr: 2847 case ARM::t2ADDri: 2848 case ARM::t2ADCrr: 2849 case ARM::t2ADCri: 2850 case ARM::t2SUBrr: 2851 case ARM::t2SUBri: 2852 case ARM::t2SBCrr: 2853 case ARM::t2SBCri: 2854 case ARM::ANDrr: 2855 case ARM::ANDri: 2856 case ARM::t2ANDrr: 2857 case ARM::t2ANDri: 2858 case ARM::ORRrr: 2859 case ARM::ORRri: 2860 case ARM::t2ORRrr: 2861 case ARM::t2ORRri: 2862 case ARM::EORrr: 2863 case ARM::EORri: 2864 case ARM::t2EORrr: 2865 case ARM::t2EORri: 2866 case ARM::t2LSRri: 2867 case ARM::t2LSRrr: 2868 case ARM::t2LSLri: 2869 case ARM::t2LSLrr: 2870 return true; 2871 } 2872 } 2873 2874 /// optimizeCompareInstr - Convert the instruction supplying the argument to the 2875 /// comparison into one that sets the zero bit in the flags register; 2876 /// Remove a redundant Compare instruction if an earlier instruction can set the 2877 /// flags in the same way as Compare. 2878 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two 2879 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the 2880 /// condition code of instructions which use the flags. 2881 bool ARMBaseInstrInfo::optimizeCompareInstr( 2882 MachineInstr &CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask, 2883 int CmpValue, const MachineRegisterInfo *MRI) const { 2884 // Get the unique definition of SrcReg. 2885 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 2886 if (!MI) return false; 2887 2888 // Masked compares sometimes use the same register as the corresponding 'and'. 2889 if (CmpMask != ~0) { 2890 if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) { 2891 MI = nullptr; 2892 for (MachineRegisterInfo::use_instr_iterator 2893 UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end(); 2894 UI != UE; ++UI) { 2895 if (UI->getParent() != CmpInstr.getParent()) 2896 continue; 2897 MachineInstr *PotentialAND = &*UI; 2898 if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) || 2899 isPredicated(*PotentialAND)) 2900 continue; 2901 MI = PotentialAND; 2902 break; 2903 } 2904 if (!MI) return false; 2905 } 2906 } 2907 2908 // Get ready to iterate backward from CmpInstr. 2909 MachineBasicBlock::iterator I = CmpInstr, E = MI, 2910 B = CmpInstr.getParent()->begin(); 2911 2912 // Early exit if CmpInstr is at the beginning of the BB. 2913 if (I == B) return false; 2914 2915 // There are two possible candidates which can be changed to set CPSR: 2916 // One is MI, the other is a SUB or ADD instruction. 2917 // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or 2918 // ADDr[ri](r1, r2, X). 2919 // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue). 2920 MachineInstr *SubAdd = nullptr; 2921 if (SrcReg2 != 0) 2922 // MI is not a candidate for CMPrr. 2923 MI = nullptr; 2924 else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) { 2925 // Conservatively refuse to convert an instruction which isn't in the same 2926 // BB as the comparison. 2927 // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate. 2928 // Thus we cannot return here. 2929 if (CmpInstr.getOpcode() == ARM::CMPri || 2930 CmpInstr.getOpcode() == ARM::t2CMPri || 2931 CmpInstr.getOpcode() == ARM::tCMPi8) 2932 MI = nullptr; 2933 else 2934 return false; 2935 } 2936 2937 bool IsThumb1 = false; 2938 if (MI && !isOptimizeCompareCandidate(MI, IsThumb1)) 2939 return false; 2940 2941 // We also want to do this peephole for cases like this: if (a*b == 0), 2942 // and optimise away the CMP instruction from the generated code sequence: 2943 // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values 2944 // resulting from the select instruction, but these MOVS instructions for 2945 // Thumb1 (V6M) are flag setting and are thus preventing this optimisation. 2946 // However, if we only have MOVS instructions in between the CMP and the 2947 // other instruction (the MULS in this example), then the CPSR is dead so we 2948 // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this 2949 // reordering and then continue the analysis hoping we can eliminate the 2950 // CMP. This peephole works on the vregs, so is still in SSA form. As a 2951 // consequence, the movs won't redefine/kill the MUL operands which would 2952 // make this reordering illegal. 2953 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2954 if (MI && IsThumb1) { 2955 --I; 2956 if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) { 2957 bool CanReorder = true; 2958 for (; I != E; --I) { 2959 if (I->getOpcode() != ARM::tMOVi8) { 2960 CanReorder = false; 2961 break; 2962 } 2963 } 2964 if (CanReorder) { 2965 MI = MI->removeFromParent(); 2966 E = CmpInstr; 2967 CmpInstr.getParent()->insert(E, MI); 2968 } 2969 } 2970 I = CmpInstr; 2971 E = MI; 2972 } 2973 2974 // Check that CPSR isn't set between the comparison instruction and the one we 2975 // want to change. At the same time, search for SubAdd. 2976 bool SubAddIsThumb1 = false; 2977 do { 2978 const MachineInstr &Instr = *--I; 2979 2980 // Check whether CmpInstr can be made redundant by the current instruction. 2981 if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr, 2982 SubAddIsThumb1)) { 2983 SubAdd = &*I; 2984 break; 2985 } 2986 2987 // Allow E (which was initially MI) to be SubAdd but do not search before E. 2988 if (I == E) 2989 break; 2990 2991 if (Instr.modifiesRegister(ARM::CPSR, TRI) || 2992 Instr.readsRegister(ARM::CPSR, TRI)) 2993 // This instruction modifies or uses CPSR after the one we want to 2994 // change. We can't do this transformation. 2995 return false; 2996 2997 if (I == B) { 2998 // In some cases, we scan the use-list of an instruction for an AND; 2999 // that AND is in the same BB, but may not be scheduled before the 3000 // corresponding TST. In that case, bail out. 3001 // 3002 // FIXME: We could try to reschedule the AND. 3003 return false; 3004 } 3005 } while (true); 3006 3007 // Return false if no candidates exist. 3008 if (!MI && !SubAdd) 3009 return false; 3010 3011 // If we found a SubAdd, use it as it will be closer to the CMP 3012 if (SubAdd) { 3013 MI = SubAdd; 3014 IsThumb1 = SubAddIsThumb1; 3015 } 3016 3017 // We can't use a predicated instruction - it doesn't always write the flags. 3018 if (isPredicated(*MI)) 3019 return false; 3020 3021 // Scan forward for the use of CPSR 3022 // When checking against MI: if it's a conditional code that requires 3023 // checking of the V bit or C bit, then this is not safe to do. 3024 // It is safe to remove CmpInstr if CPSR is redefined or killed. 3025 // If we are done with the basic block, we need to check whether CPSR is 3026 // live-out. 3027 SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4> 3028 OperandsToUpdate; 3029 bool isSafe = false; 3030 I = CmpInstr; 3031 E = CmpInstr.getParent()->end(); 3032 while (!isSafe && ++I != E) { 3033 const MachineInstr &Instr = *I; 3034 for (unsigned IO = 0, EO = Instr.getNumOperands(); 3035 !isSafe && IO != EO; ++IO) { 3036 const MachineOperand &MO = Instr.getOperand(IO); 3037 if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) { 3038 isSafe = true; 3039 break; 3040 } 3041 if (!MO.isReg() || MO.getReg() != ARM::CPSR) 3042 continue; 3043 if (MO.isDef()) { 3044 isSafe = true; 3045 break; 3046 } 3047 // Condition code is after the operand before CPSR except for VSELs. 3048 ARMCC::CondCodes CC; 3049 bool IsInstrVSel = true; 3050 switch (Instr.getOpcode()) { 3051 default: 3052 IsInstrVSel = false; 3053 CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm(); 3054 break; 3055 case ARM::VSELEQD: 3056 case ARM::VSELEQS: 3057 case ARM::VSELEQH: 3058 CC = ARMCC::EQ; 3059 break; 3060 case ARM::VSELGTD: 3061 case ARM::VSELGTS: 3062 case ARM::VSELGTH: 3063 CC = ARMCC::GT; 3064 break; 3065 case ARM::VSELGED: 3066 case ARM::VSELGES: 3067 case ARM::VSELGEH: 3068 CC = ARMCC::GE; 3069 break; 3070 case ARM::VSELVSD: 3071 case ARM::VSELVSS: 3072 case ARM::VSELVSH: 3073 CC = ARMCC::VS; 3074 break; 3075 } 3076 3077 if (SubAdd) { 3078 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based 3079 // on CMP needs to be updated to be based on SUB. 3080 // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also 3081 // needs to be modified. 3082 // Push the condition code operands to OperandsToUpdate. 3083 // If it is safe to remove CmpInstr, the condition code of these 3084 // operands will be modified. 3085 unsigned Opc = SubAdd->getOpcode(); 3086 bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr || 3087 Opc == ARM::SUBri || Opc == ARM::t2SUBri || 3088 Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 || 3089 Opc == ARM::tSUBi8; 3090 unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2; 3091 if (!IsSub || 3092 (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 && 3093 SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) { 3094 // VSel doesn't support condition code update. 3095 if (IsInstrVSel) 3096 return false; 3097 // Ensure we can swap the condition. 3098 ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC)); 3099 if (NewCC == ARMCC::AL) 3100 return false; 3101 OperandsToUpdate.push_back( 3102 std::make_pair(&((*I).getOperand(IO - 1)), NewCC)); 3103 } 3104 } else { 3105 // No SubAdd, so this is x = <op> y, z; cmp x, 0. 3106 switch (CC) { 3107 case ARMCC::EQ: // Z 3108 case ARMCC::NE: // Z 3109 case ARMCC::MI: // N 3110 case ARMCC::PL: // N 3111 case ARMCC::AL: // none 3112 // CPSR can be used multiple times, we should continue. 3113 break; 3114 case ARMCC::HS: // C 3115 case ARMCC::LO: // C 3116 case ARMCC::VS: // V 3117 case ARMCC::VC: // V 3118 case ARMCC::HI: // C Z 3119 case ARMCC::LS: // C Z 3120 case ARMCC::GE: // N V 3121 case ARMCC::LT: // N V 3122 case ARMCC::GT: // Z N V 3123 case ARMCC::LE: // Z N V 3124 // The instruction uses the V bit or C bit which is not safe. 3125 return false; 3126 } 3127 } 3128 } 3129 } 3130 3131 // If CPSR is not killed nor re-defined, we should check whether it is 3132 // live-out. If it is live-out, do not optimize. 3133 if (!isSafe) { 3134 MachineBasicBlock *MBB = CmpInstr.getParent(); 3135 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), 3136 SE = MBB->succ_end(); SI != SE; ++SI) 3137 if ((*SI)->isLiveIn(ARM::CPSR)) 3138 return false; 3139 } 3140 3141 // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always 3142 // set CPSR so this is represented as an explicit output) 3143 if (!IsThumb1) { 3144 MI->getOperand(5).setReg(ARM::CPSR); 3145 MI->getOperand(5).setIsDef(true); 3146 } 3147 assert(!isPredicated(*MI) && "Can't use flags from predicated instruction"); 3148 CmpInstr.eraseFromParent(); 3149 3150 // Modify the condition code of operands in OperandsToUpdate. 3151 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 3152 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 3153 for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++) 3154 OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second); 3155 3156 MI->clearRegisterDeads(ARM::CPSR); 3157 3158 return true; 3159 } 3160 3161 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const { 3162 // Do not sink MI if it might be used to optimize a redundant compare. 3163 // We heuristically only look at the instruction immediately following MI to 3164 // avoid potentially searching the entire basic block. 3165 if (isPredicated(MI)) 3166 return true; 3167 MachineBasicBlock::const_iterator Next = &MI; 3168 ++Next; 3169 unsigned SrcReg, SrcReg2; 3170 int CmpMask, CmpValue; 3171 bool IsThumb1; 3172 if (Next != MI.getParent()->end() && 3173 analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) && 3174 isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1)) 3175 return false; 3176 return true; 3177 } 3178 3179 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 3180 unsigned Reg, 3181 MachineRegisterInfo *MRI) const { 3182 // Fold large immediates into add, sub, or, xor. 3183 unsigned DefOpc = DefMI.getOpcode(); 3184 if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm) 3185 return false; 3186 if (!DefMI.getOperand(1).isImm()) 3187 // Could be t2MOVi32imm @xx 3188 return false; 3189 3190 if (!MRI->hasOneNonDBGUse(Reg)) 3191 return false; 3192 3193 const MCInstrDesc &DefMCID = DefMI.getDesc(); 3194 if (DefMCID.hasOptionalDef()) { 3195 unsigned NumOps = DefMCID.getNumOperands(); 3196 const MachineOperand &MO = DefMI.getOperand(NumOps - 1); 3197 if (MO.getReg() == ARM::CPSR && !MO.isDead()) 3198 // If DefMI defines CPSR and it is not dead, it's obviously not safe 3199 // to delete DefMI. 3200 return false; 3201 } 3202 3203 const MCInstrDesc &UseMCID = UseMI.getDesc(); 3204 if (UseMCID.hasOptionalDef()) { 3205 unsigned NumOps = UseMCID.getNumOperands(); 3206 if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR) 3207 // If the instruction sets the flag, do not attempt this optimization 3208 // since it may change the semantics of the code. 3209 return false; 3210 } 3211 3212 unsigned UseOpc = UseMI.getOpcode(); 3213 unsigned NewUseOpc = 0; 3214 uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm(); 3215 uint32_t SOImmValV1 = 0, SOImmValV2 = 0; 3216 bool Commute = false; 3217 switch (UseOpc) { 3218 default: return false; 3219 case ARM::SUBrr: 3220 case ARM::ADDrr: 3221 case ARM::ORRrr: 3222 case ARM::EORrr: 3223 case ARM::t2SUBrr: 3224 case ARM::t2ADDrr: 3225 case ARM::t2ORRrr: 3226 case ARM::t2EORrr: { 3227 Commute = UseMI.getOperand(2).getReg() != Reg; 3228 switch (UseOpc) { 3229 default: break; 3230 case ARM::ADDrr: 3231 case ARM::SUBrr: 3232 if (UseOpc == ARM::SUBrr && Commute) 3233 return false; 3234 3235 // ADD/SUB are special because they're essentially the same operation, so 3236 // we can handle a larger range of immediates. 3237 if (ARM_AM::isSOImmTwoPartVal(ImmVal)) 3238 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri; 3239 else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) { 3240 ImmVal = -ImmVal; 3241 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri; 3242 } else 3243 return false; 3244 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 3245 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 3246 break; 3247 case ARM::ORRrr: 3248 case ARM::EORrr: 3249 if (!ARM_AM::isSOImmTwoPartVal(ImmVal)) 3250 return false; 3251 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 3252 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 3253 switch (UseOpc) { 3254 default: break; 3255 case ARM::ORRrr: NewUseOpc = ARM::ORRri; break; 3256 case ARM::EORrr: NewUseOpc = ARM::EORri; break; 3257 } 3258 break; 3259 case ARM::t2ADDrr: 3260 case ARM::t2SUBrr: { 3261 if (UseOpc == ARM::t2SUBrr && Commute) 3262 return false; 3263 3264 // ADD/SUB are special because they're essentially the same operation, so 3265 // we can handle a larger range of immediates. 3266 const bool ToSP = DefMI.getOperand(0).getReg() == ARM::SP; 3267 const unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri; 3268 const unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri; 3269 if (ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 3270 NewUseOpc = UseOpc == ARM::t2ADDrr ? t2ADD : t2SUB; 3271 else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) { 3272 ImmVal = -ImmVal; 3273 NewUseOpc = UseOpc == ARM::t2ADDrr ? t2SUB : t2ADD; 3274 } else 3275 return false; 3276 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 3277 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 3278 break; 3279 } 3280 case ARM::t2ORRrr: 3281 case ARM::t2EORrr: 3282 if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 3283 return false; 3284 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 3285 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 3286 switch (UseOpc) { 3287 default: break; 3288 case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break; 3289 case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break; 3290 } 3291 break; 3292 } 3293 } 3294 } 3295 3296 unsigned OpIdx = Commute ? 2 : 1; 3297 Register Reg1 = UseMI.getOperand(OpIdx).getReg(); 3298 bool isKill = UseMI.getOperand(OpIdx).isKill(); 3299 const TargetRegisterClass *TRC = MRI->getRegClass(Reg); 3300 Register NewReg = MRI->createVirtualRegister(TRC); 3301 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc), 3302 NewReg) 3303 .addReg(Reg1, getKillRegState(isKill)) 3304 .addImm(SOImmValV1) 3305 .add(predOps(ARMCC::AL)) 3306 .add(condCodeOp()); 3307 UseMI.setDesc(get(NewUseOpc)); 3308 UseMI.getOperand(1).setReg(NewReg); 3309 UseMI.getOperand(1).setIsKill(); 3310 UseMI.getOperand(2).ChangeToImmediate(SOImmValV2); 3311 DefMI.eraseFromParent(); 3312 // FIXME: t2ADDrr should be split, as different rulles apply when writing to SP. 3313 // Just as t2ADDri, that was split to [t2ADDri, t2ADDspImm]. 3314 // Then the below code will not be needed, as the input/output register 3315 // classes will be rgpr or gprSP. 3316 // For now, we fix the UseMI operand explicitly here: 3317 switch(NewUseOpc){ 3318 case ARM::t2ADDspImm: 3319 case ARM::t2SUBspImm: 3320 case ARM::t2ADDri: 3321 case ARM::t2SUBri: 3322 MRI->setRegClass(UseMI.getOperand(0).getReg(), TRC); 3323 } 3324 return true; 3325 } 3326 3327 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData, 3328 const MachineInstr &MI) { 3329 switch (MI.getOpcode()) { 3330 default: { 3331 const MCInstrDesc &Desc = MI.getDesc(); 3332 int UOps = ItinData->getNumMicroOps(Desc.getSchedClass()); 3333 assert(UOps >= 0 && "bad # UOps"); 3334 return UOps; 3335 } 3336 3337 case ARM::LDRrs: 3338 case ARM::LDRBrs: 3339 case ARM::STRrs: 3340 case ARM::STRBrs: { 3341 unsigned ShOpVal = MI.getOperand(3).getImm(); 3342 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3343 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3344 if (!isSub && 3345 (ShImm == 0 || 3346 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3347 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3348 return 1; 3349 return 2; 3350 } 3351 3352 case ARM::LDRH: 3353 case ARM::STRH: { 3354 if (!MI.getOperand(2).getReg()) 3355 return 1; 3356 3357 unsigned ShOpVal = MI.getOperand(3).getImm(); 3358 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3359 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3360 if (!isSub && 3361 (ShImm == 0 || 3362 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3363 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3364 return 1; 3365 return 2; 3366 } 3367 3368 case ARM::LDRSB: 3369 case ARM::LDRSH: 3370 return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2; 3371 3372 case ARM::LDRSB_POST: 3373 case ARM::LDRSH_POST: { 3374 Register Rt = MI.getOperand(0).getReg(); 3375 Register Rm = MI.getOperand(3).getReg(); 3376 return (Rt == Rm) ? 4 : 3; 3377 } 3378 3379 case ARM::LDR_PRE_REG: 3380 case ARM::LDRB_PRE_REG: { 3381 Register Rt = MI.getOperand(0).getReg(); 3382 Register Rm = MI.getOperand(3).getReg(); 3383 if (Rt == Rm) 3384 return 3; 3385 unsigned ShOpVal = MI.getOperand(4).getImm(); 3386 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3387 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3388 if (!isSub && 3389 (ShImm == 0 || 3390 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3391 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3392 return 2; 3393 return 3; 3394 } 3395 3396 case ARM::STR_PRE_REG: 3397 case ARM::STRB_PRE_REG: { 3398 unsigned ShOpVal = MI.getOperand(4).getImm(); 3399 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3400 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3401 if (!isSub && 3402 (ShImm == 0 || 3403 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3404 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3405 return 2; 3406 return 3; 3407 } 3408 3409 case ARM::LDRH_PRE: 3410 case ARM::STRH_PRE: { 3411 Register Rt = MI.getOperand(0).getReg(); 3412 Register Rm = MI.getOperand(3).getReg(); 3413 if (!Rm) 3414 return 2; 3415 if (Rt == Rm) 3416 return 3; 3417 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2; 3418 } 3419 3420 case ARM::LDR_POST_REG: 3421 case ARM::LDRB_POST_REG: 3422 case ARM::LDRH_POST: { 3423 Register Rt = MI.getOperand(0).getReg(); 3424 Register Rm = MI.getOperand(3).getReg(); 3425 return (Rt == Rm) ? 3 : 2; 3426 } 3427 3428 case ARM::LDR_PRE_IMM: 3429 case ARM::LDRB_PRE_IMM: 3430 case ARM::LDR_POST_IMM: 3431 case ARM::LDRB_POST_IMM: 3432 case ARM::STRB_POST_IMM: 3433 case ARM::STRB_POST_REG: 3434 case ARM::STRB_PRE_IMM: 3435 case ARM::STRH_POST: 3436 case ARM::STR_POST_IMM: 3437 case ARM::STR_POST_REG: 3438 case ARM::STR_PRE_IMM: 3439 return 2; 3440 3441 case ARM::LDRSB_PRE: 3442 case ARM::LDRSH_PRE: { 3443 Register Rm = MI.getOperand(3).getReg(); 3444 if (Rm == 0) 3445 return 3; 3446 Register Rt = MI.getOperand(0).getReg(); 3447 if (Rt == Rm) 3448 return 4; 3449 unsigned ShOpVal = MI.getOperand(4).getImm(); 3450 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3451 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3452 if (!isSub && 3453 (ShImm == 0 || 3454 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3455 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3456 return 3; 3457 return 4; 3458 } 3459 3460 case ARM::LDRD: { 3461 Register Rt = MI.getOperand(0).getReg(); 3462 Register Rn = MI.getOperand(2).getReg(); 3463 Register Rm = MI.getOperand(3).getReg(); 3464 if (Rm) 3465 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 3466 : 3; 3467 return (Rt == Rn) ? 3 : 2; 3468 } 3469 3470 case ARM::STRD: { 3471 Register Rm = MI.getOperand(3).getReg(); 3472 if (Rm) 3473 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 3474 : 3; 3475 return 2; 3476 } 3477 3478 case ARM::LDRD_POST: 3479 case ARM::t2LDRD_POST: 3480 return 3; 3481 3482 case ARM::STRD_POST: 3483 case ARM::t2STRD_POST: 3484 return 4; 3485 3486 case ARM::LDRD_PRE: { 3487 Register Rt = MI.getOperand(0).getReg(); 3488 Register Rn = MI.getOperand(3).getReg(); 3489 Register Rm = MI.getOperand(4).getReg(); 3490 if (Rm) 3491 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 3492 : 4; 3493 return (Rt == Rn) ? 4 : 3; 3494 } 3495 3496 case ARM::t2LDRD_PRE: { 3497 Register Rt = MI.getOperand(0).getReg(); 3498 Register Rn = MI.getOperand(3).getReg(); 3499 return (Rt == Rn) ? 4 : 3; 3500 } 3501 3502 case ARM::STRD_PRE: { 3503 Register Rm = MI.getOperand(4).getReg(); 3504 if (Rm) 3505 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 3506 : 4; 3507 return 3; 3508 } 3509 3510 case ARM::t2STRD_PRE: 3511 return 3; 3512 3513 case ARM::t2LDR_POST: 3514 case ARM::t2LDRB_POST: 3515 case ARM::t2LDRB_PRE: 3516 case ARM::t2LDRSBi12: 3517 case ARM::t2LDRSBi8: 3518 case ARM::t2LDRSBpci: 3519 case ARM::t2LDRSBs: 3520 case ARM::t2LDRH_POST: 3521 case ARM::t2LDRH_PRE: 3522 case ARM::t2LDRSBT: 3523 case ARM::t2LDRSB_POST: 3524 case ARM::t2LDRSB_PRE: 3525 case ARM::t2LDRSH_POST: 3526 case ARM::t2LDRSH_PRE: 3527 case ARM::t2LDRSHi12: 3528 case ARM::t2LDRSHi8: 3529 case ARM::t2LDRSHpci: 3530 case ARM::t2LDRSHs: 3531 return 2; 3532 3533 case ARM::t2LDRDi8: { 3534 Register Rt = MI.getOperand(0).getReg(); 3535 Register Rn = MI.getOperand(2).getReg(); 3536 return (Rt == Rn) ? 3 : 2; 3537 } 3538 3539 case ARM::t2STRB_POST: 3540 case ARM::t2STRB_PRE: 3541 case ARM::t2STRBs: 3542 case ARM::t2STRDi8: 3543 case ARM::t2STRH_POST: 3544 case ARM::t2STRH_PRE: 3545 case ARM::t2STRHs: 3546 case ARM::t2STR_POST: 3547 case ARM::t2STR_PRE: 3548 case ARM::t2STRs: 3549 return 2; 3550 } 3551 } 3552 3553 // Return the number of 32-bit words loaded by LDM or stored by STM. If this 3554 // can't be easily determined return 0 (missing MachineMemOperand). 3555 // 3556 // FIXME: The current MachineInstr design does not support relying on machine 3557 // mem operands to determine the width of a memory access. Instead, we expect 3558 // the target to provide this information based on the instruction opcode and 3559 // operands. However, using MachineMemOperand is the best solution now for 3560 // two reasons: 3561 // 3562 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI 3563 // operands. This is much more dangerous than using the MachineMemOperand 3564 // sizes because CodeGen passes can insert/remove optional machine operands. In 3565 // fact, it's totally incorrect for preRA passes and appears to be wrong for 3566 // postRA passes as well. 3567 // 3568 // 2) getNumLDMAddresses is only used by the scheduling machine model and any 3569 // machine model that calls this should handle the unknown (zero size) case. 3570 // 3571 // Long term, we should require a target hook that verifies MachineMemOperand 3572 // sizes during MC lowering. That target hook should be local to MC lowering 3573 // because we can't ensure that it is aware of other MI forms. Doing this will 3574 // ensure that MachineMemOperands are correctly propagated through all passes. 3575 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const { 3576 unsigned Size = 0; 3577 for (MachineInstr::mmo_iterator I = MI.memoperands_begin(), 3578 E = MI.memoperands_end(); 3579 I != E; ++I) { 3580 Size += (*I)->getSize(); 3581 } 3582 // FIXME: The scheduler currently can't handle values larger than 16. But 3583 // the values can actually go up to 32 for floating-point load/store 3584 // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory 3585 // operations isn't right; we could end up with "extra" memory operands for 3586 // various reasons, like tail merge merging two memory operations. 3587 return std::min(Size / 4, 16U); 3588 } 3589 3590 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc, 3591 unsigned NumRegs) { 3592 unsigned UOps = 1 + NumRegs; // 1 for address computation. 3593 switch (Opc) { 3594 default: 3595 break; 3596 case ARM::VLDMDIA_UPD: 3597 case ARM::VLDMDDB_UPD: 3598 case ARM::VLDMSIA_UPD: 3599 case ARM::VLDMSDB_UPD: 3600 case ARM::VSTMDIA_UPD: 3601 case ARM::VSTMDDB_UPD: 3602 case ARM::VSTMSIA_UPD: 3603 case ARM::VSTMSDB_UPD: 3604 case ARM::LDMIA_UPD: 3605 case ARM::LDMDA_UPD: 3606 case ARM::LDMDB_UPD: 3607 case ARM::LDMIB_UPD: 3608 case ARM::STMIA_UPD: 3609 case ARM::STMDA_UPD: 3610 case ARM::STMDB_UPD: 3611 case ARM::STMIB_UPD: 3612 case ARM::tLDMIA_UPD: 3613 case ARM::tSTMIA_UPD: 3614 case ARM::t2LDMIA_UPD: 3615 case ARM::t2LDMDB_UPD: 3616 case ARM::t2STMIA_UPD: 3617 case ARM::t2STMDB_UPD: 3618 ++UOps; // One for base register writeback. 3619 break; 3620 case ARM::LDMIA_RET: 3621 case ARM::tPOP_RET: 3622 case ARM::t2LDMIA_RET: 3623 UOps += 2; // One for base reg wb, one for write to pc. 3624 break; 3625 } 3626 return UOps; 3627 } 3628 3629 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 3630 const MachineInstr &MI) const { 3631 if (!ItinData || ItinData->isEmpty()) 3632 return 1; 3633 3634 const MCInstrDesc &Desc = MI.getDesc(); 3635 unsigned Class = Desc.getSchedClass(); 3636 int ItinUOps = ItinData->getNumMicroOps(Class); 3637 if (ItinUOps >= 0) { 3638 if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore())) 3639 return getNumMicroOpsSwiftLdSt(ItinData, MI); 3640 3641 return ItinUOps; 3642 } 3643 3644 unsigned Opc = MI.getOpcode(); 3645 switch (Opc) { 3646 default: 3647 llvm_unreachable("Unexpected multi-uops instruction!"); 3648 case ARM::VLDMQIA: 3649 case ARM::VSTMQIA: 3650 return 2; 3651 3652 // The number of uOps for load / store multiple are determined by the number 3653 // registers. 3654 // 3655 // On Cortex-A8, each pair of register loads / stores can be scheduled on the 3656 // same cycle. The scheduling for the first load / store must be done 3657 // separately by assuming the address is not 64-bit aligned. 3658 // 3659 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address 3660 // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON 3661 // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1. 3662 case ARM::VLDMDIA: 3663 case ARM::VLDMDIA_UPD: 3664 case ARM::VLDMDDB_UPD: 3665 case ARM::VLDMSIA: 3666 case ARM::VLDMSIA_UPD: 3667 case ARM::VLDMSDB_UPD: 3668 case ARM::VSTMDIA: 3669 case ARM::VSTMDIA_UPD: 3670 case ARM::VSTMDDB_UPD: 3671 case ARM::VSTMSIA: 3672 case ARM::VSTMSIA_UPD: 3673 case ARM::VSTMSDB_UPD: { 3674 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands(); 3675 return (NumRegs / 2) + (NumRegs % 2) + 1; 3676 } 3677 3678 case ARM::LDMIA_RET: 3679 case ARM::LDMIA: 3680 case ARM::LDMDA: 3681 case ARM::LDMDB: 3682 case ARM::LDMIB: 3683 case ARM::LDMIA_UPD: 3684 case ARM::LDMDA_UPD: 3685 case ARM::LDMDB_UPD: 3686 case ARM::LDMIB_UPD: 3687 case ARM::STMIA: 3688 case ARM::STMDA: 3689 case ARM::STMDB: 3690 case ARM::STMIB: 3691 case ARM::STMIA_UPD: 3692 case ARM::STMDA_UPD: 3693 case ARM::STMDB_UPD: 3694 case ARM::STMIB_UPD: 3695 case ARM::tLDMIA: 3696 case ARM::tLDMIA_UPD: 3697 case ARM::tSTMIA_UPD: 3698 case ARM::tPOP_RET: 3699 case ARM::tPOP: 3700 case ARM::tPUSH: 3701 case ARM::t2LDMIA_RET: 3702 case ARM::t2LDMIA: 3703 case ARM::t2LDMDB: 3704 case ARM::t2LDMIA_UPD: 3705 case ARM::t2LDMDB_UPD: 3706 case ARM::t2STMIA: 3707 case ARM::t2STMDB: 3708 case ARM::t2STMIA_UPD: 3709 case ARM::t2STMDB_UPD: { 3710 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1; 3711 switch (Subtarget.getLdStMultipleTiming()) { 3712 case ARMSubtarget::SingleIssuePlusExtras: 3713 return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs); 3714 case ARMSubtarget::SingleIssue: 3715 // Assume the worst. 3716 return NumRegs; 3717 case ARMSubtarget::DoubleIssue: { 3718 if (NumRegs < 4) 3719 return 2; 3720 // 4 registers would be issued: 2, 2. 3721 // 5 registers would be issued: 2, 2, 1. 3722 unsigned UOps = (NumRegs / 2); 3723 if (NumRegs % 2) 3724 ++UOps; 3725 return UOps; 3726 } 3727 case ARMSubtarget::DoubleIssueCheckUnalignedAccess: { 3728 unsigned UOps = (NumRegs / 2); 3729 // If there are odd number of registers or if it's not 64-bit aligned, 3730 // then it takes an extra AGU (Address Generation Unit) cycle. 3731 if ((NumRegs % 2) || !MI.hasOneMemOperand() || 3732 (*MI.memoperands_begin())->getAlignment() < 8) 3733 ++UOps; 3734 return UOps; 3735 } 3736 } 3737 } 3738 } 3739 llvm_unreachable("Didn't find the number of microops"); 3740 } 3741 3742 int 3743 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData, 3744 const MCInstrDesc &DefMCID, 3745 unsigned DefClass, 3746 unsigned DefIdx, unsigned DefAlign) const { 3747 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3748 if (RegNo <= 0) 3749 // Def is the address writeback. 3750 return ItinData->getOperandCycle(DefClass, DefIdx); 3751 3752 int DefCycle; 3753 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3754 // (regno / 2) + (regno % 2) + 1 3755 DefCycle = RegNo / 2 + 1; 3756 if (RegNo % 2) 3757 ++DefCycle; 3758 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3759 DefCycle = RegNo; 3760 bool isSLoad = false; 3761 3762 switch (DefMCID.getOpcode()) { 3763 default: break; 3764 case ARM::VLDMSIA: 3765 case ARM::VLDMSIA_UPD: 3766 case ARM::VLDMSDB_UPD: 3767 isSLoad = true; 3768 break; 3769 } 3770 3771 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3772 // then it takes an extra cycle. 3773 if ((isSLoad && (RegNo % 2)) || DefAlign < 8) 3774 ++DefCycle; 3775 } else { 3776 // Assume the worst. 3777 DefCycle = RegNo + 2; 3778 } 3779 3780 return DefCycle; 3781 } 3782 3783 bool ARMBaseInstrInfo::isLDMBaseRegInList(const MachineInstr &MI) const { 3784 Register BaseReg = MI.getOperand(0).getReg(); 3785 for (unsigned i = 1, sz = MI.getNumOperands(); i < sz; ++i) { 3786 const auto &Op = MI.getOperand(i); 3787 if (Op.isReg() && Op.getReg() == BaseReg) 3788 return true; 3789 } 3790 return false; 3791 } 3792 unsigned 3793 ARMBaseInstrInfo::getLDMVariableDefsSize(const MachineInstr &MI) const { 3794 // ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops 3795 // (outs GPR:$wb), (ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops) 3796 return MI.getNumOperands() + 1 - MI.getDesc().getNumOperands(); 3797 } 3798 3799 int 3800 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData, 3801 const MCInstrDesc &DefMCID, 3802 unsigned DefClass, 3803 unsigned DefIdx, unsigned DefAlign) const { 3804 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3805 if (RegNo <= 0) 3806 // Def is the address writeback. 3807 return ItinData->getOperandCycle(DefClass, DefIdx); 3808 3809 int DefCycle; 3810 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3811 // 4 registers would be issued: 1, 2, 1. 3812 // 5 registers would be issued: 1, 2, 2. 3813 DefCycle = RegNo / 2; 3814 if (DefCycle < 1) 3815 DefCycle = 1; 3816 // Result latency is issue cycle + 2: E2. 3817 DefCycle += 2; 3818 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3819 DefCycle = (RegNo / 2); 3820 // If there are odd number of registers or if it's not 64-bit aligned, 3821 // then it takes an extra AGU (Address Generation Unit) cycle. 3822 if ((RegNo % 2) || DefAlign < 8) 3823 ++DefCycle; 3824 // Result latency is AGU cycles + 2. 3825 DefCycle += 2; 3826 } else { 3827 // Assume the worst. 3828 DefCycle = RegNo + 2; 3829 } 3830 3831 return DefCycle; 3832 } 3833 3834 int 3835 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData, 3836 const MCInstrDesc &UseMCID, 3837 unsigned UseClass, 3838 unsigned UseIdx, unsigned UseAlign) const { 3839 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3840 if (RegNo <= 0) 3841 return ItinData->getOperandCycle(UseClass, UseIdx); 3842 3843 int UseCycle; 3844 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3845 // (regno / 2) + (regno % 2) + 1 3846 UseCycle = RegNo / 2 + 1; 3847 if (RegNo % 2) 3848 ++UseCycle; 3849 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3850 UseCycle = RegNo; 3851 bool isSStore = false; 3852 3853 switch (UseMCID.getOpcode()) { 3854 default: break; 3855 case ARM::VSTMSIA: 3856 case ARM::VSTMSIA_UPD: 3857 case ARM::VSTMSDB_UPD: 3858 isSStore = true; 3859 break; 3860 } 3861 3862 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3863 // then it takes an extra cycle. 3864 if ((isSStore && (RegNo % 2)) || UseAlign < 8) 3865 ++UseCycle; 3866 } else { 3867 // Assume the worst. 3868 UseCycle = RegNo + 2; 3869 } 3870 3871 return UseCycle; 3872 } 3873 3874 int 3875 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData, 3876 const MCInstrDesc &UseMCID, 3877 unsigned UseClass, 3878 unsigned UseIdx, unsigned UseAlign) const { 3879 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3880 if (RegNo <= 0) 3881 return ItinData->getOperandCycle(UseClass, UseIdx); 3882 3883 int UseCycle; 3884 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3885 UseCycle = RegNo / 2; 3886 if (UseCycle < 2) 3887 UseCycle = 2; 3888 // Read in E3. 3889 UseCycle += 2; 3890 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3891 UseCycle = (RegNo / 2); 3892 // If there are odd number of registers or if it's not 64-bit aligned, 3893 // then it takes an extra AGU (Address Generation Unit) cycle. 3894 if ((RegNo % 2) || UseAlign < 8) 3895 ++UseCycle; 3896 } else { 3897 // Assume the worst. 3898 UseCycle = 1; 3899 } 3900 return UseCycle; 3901 } 3902 3903 int 3904 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 3905 const MCInstrDesc &DefMCID, 3906 unsigned DefIdx, unsigned DefAlign, 3907 const MCInstrDesc &UseMCID, 3908 unsigned UseIdx, unsigned UseAlign) const { 3909 unsigned DefClass = DefMCID.getSchedClass(); 3910 unsigned UseClass = UseMCID.getSchedClass(); 3911 3912 if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands()) 3913 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 3914 3915 // This may be a def / use of a variable_ops instruction, the operand 3916 // latency might be determinable dynamically. Let the target try to 3917 // figure it out. 3918 int DefCycle = -1; 3919 bool LdmBypass = false; 3920 switch (DefMCID.getOpcode()) { 3921 default: 3922 DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 3923 break; 3924 3925 case ARM::VLDMDIA: 3926 case ARM::VLDMDIA_UPD: 3927 case ARM::VLDMDDB_UPD: 3928 case ARM::VLDMSIA: 3929 case ARM::VLDMSIA_UPD: 3930 case ARM::VLDMSDB_UPD: 3931 DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 3932 break; 3933 3934 case ARM::LDMIA_RET: 3935 case ARM::LDMIA: 3936 case ARM::LDMDA: 3937 case ARM::LDMDB: 3938 case ARM::LDMIB: 3939 case ARM::LDMIA_UPD: 3940 case ARM::LDMDA_UPD: 3941 case ARM::LDMDB_UPD: 3942 case ARM::LDMIB_UPD: 3943 case ARM::tLDMIA: 3944 case ARM::tLDMIA_UPD: 3945 case ARM::tPUSH: 3946 case ARM::t2LDMIA_RET: 3947 case ARM::t2LDMIA: 3948 case ARM::t2LDMDB: 3949 case ARM::t2LDMIA_UPD: 3950 case ARM::t2LDMDB_UPD: 3951 LdmBypass = true; 3952 DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 3953 break; 3954 } 3955 3956 if (DefCycle == -1) 3957 // We can't seem to determine the result latency of the def, assume it's 2. 3958 DefCycle = 2; 3959 3960 int UseCycle = -1; 3961 switch (UseMCID.getOpcode()) { 3962 default: 3963 UseCycle = ItinData->getOperandCycle(UseClass, UseIdx); 3964 break; 3965 3966 case ARM::VSTMDIA: 3967 case ARM::VSTMDIA_UPD: 3968 case ARM::VSTMDDB_UPD: 3969 case ARM::VSTMSIA: 3970 case ARM::VSTMSIA_UPD: 3971 case ARM::VSTMSDB_UPD: 3972 UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 3973 break; 3974 3975 case ARM::STMIA: 3976 case ARM::STMDA: 3977 case ARM::STMDB: 3978 case ARM::STMIB: 3979 case ARM::STMIA_UPD: 3980 case ARM::STMDA_UPD: 3981 case ARM::STMDB_UPD: 3982 case ARM::STMIB_UPD: 3983 case ARM::tSTMIA_UPD: 3984 case ARM::tPOP_RET: 3985 case ARM::tPOP: 3986 case ARM::t2STMIA: 3987 case ARM::t2STMDB: 3988 case ARM::t2STMIA_UPD: 3989 case ARM::t2STMDB_UPD: 3990 UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 3991 break; 3992 } 3993 3994 if (UseCycle == -1) 3995 // Assume it's read in the first stage. 3996 UseCycle = 1; 3997 3998 UseCycle = DefCycle - UseCycle + 1; 3999 if (UseCycle > 0) { 4000 if (LdmBypass) { 4001 // It's a variable_ops instruction so we can't use DefIdx here. Just use 4002 // first def operand. 4003 if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1, 4004 UseClass, UseIdx)) 4005 --UseCycle; 4006 } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx, 4007 UseClass, UseIdx)) { 4008 --UseCycle; 4009 } 4010 } 4011 4012 return UseCycle; 4013 } 4014 4015 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI, 4016 const MachineInstr *MI, unsigned Reg, 4017 unsigned &DefIdx, unsigned &Dist) { 4018 Dist = 0; 4019 4020 MachineBasicBlock::const_iterator I = MI; ++I; 4021 MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator()); 4022 assert(II->isInsideBundle() && "Empty bundle?"); 4023 4024 int Idx = -1; 4025 while (II->isInsideBundle()) { 4026 Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI); 4027 if (Idx != -1) 4028 break; 4029 --II; 4030 ++Dist; 4031 } 4032 4033 assert(Idx != -1 && "Cannot find bundled definition!"); 4034 DefIdx = Idx; 4035 return &*II; 4036 } 4037 4038 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI, 4039 const MachineInstr &MI, unsigned Reg, 4040 unsigned &UseIdx, unsigned &Dist) { 4041 Dist = 0; 4042 4043 MachineBasicBlock::const_instr_iterator II = ++MI.getIterator(); 4044 assert(II->isInsideBundle() && "Empty bundle?"); 4045 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 4046 4047 // FIXME: This doesn't properly handle multiple uses. 4048 int Idx = -1; 4049 while (II != E && II->isInsideBundle()) { 4050 Idx = II->findRegisterUseOperandIdx(Reg, false, TRI); 4051 if (Idx != -1) 4052 break; 4053 if (II->getOpcode() != ARM::t2IT) 4054 ++Dist; 4055 ++II; 4056 } 4057 4058 if (Idx == -1) { 4059 Dist = 0; 4060 return nullptr; 4061 } 4062 4063 UseIdx = Idx; 4064 return &*II; 4065 } 4066 4067 /// Return the number of cycles to add to (or subtract from) the static 4068 /// itinerary based on the def opcode and alignment. The caller will ensure that 4069 /// adjusted latency is at least one cycle. 4070 static int adjustDefLatency(const ARMSubtarget &Subtarget, 4071 const MachineInstr &DefMI, 4072 const MCInstrDesc &DefMCID, unsigned DefAlign) { 4073 int Adjust = 0; 4074 if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) { 4075 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 4076 // variants are one cycle cheaper. 4077 switch (DefMCID.getOpcode()) { 4078 default: break; 4079 case ARM::LDRrs: 4080 case ARM::LDRBrs: { 4081 unsigned ShOpVal = DefMI.getOperand(3).getImm(); 4082 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4083 if (ShImm == 0 || 4084 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4085 --Adjust; 4086 break; 4087 } 4088 case ARM::t2LDRs: 4089 case ARM::t2LDRBs: 4090 case ARM::t2LDRHs: 4091 case ARM::t2LDRSHs: { 4092 // Thumb2 mode: lsl only. 4093 unsigned ShAmt = DefMI.getOperand(3).getImm(); 4094 if (ShAmt == 0 || ShAmt == 2) 4095 --Adjust; 4096 break; 4097 } 4098 } 4099 } else if (Subtarget.isSwift()) { 4100 // FIXME: Properly handle all of the latency adjustments for address 4101 // writeback. 4102 switch (DefMCID.getOpcode()) { 4103 default: break; 4104 case ARM::LDRrs: 4105 case ARM::LDRBrs: { 4106 unsigned ShOpVal = DefMI.getOperand(3).getImm(); 4107 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 4108 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4109 if (!isSub && 4110 (ShImm == 0 || 4111 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 4112 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 4113 Adjust -= 2; 4114 else if (!isSub && 4115 ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 4116 --Adjust; 4117 break; 4118 } 4119 case ARM::t2LDRs: 4120 case ARM::t2LDRBs: 4121 case ARM::t2LDRHs: 4122 case ARM::t2LDRSHs: { 4123 // Thumb2 mode: lsl only. 4124 unsigned ShAmt = DefMI.getOperand(3).getImm(); 4125 if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3) 4126 Adjust -= 2; 4127 break; 4128 } 4129 } 4130 } 4131 4132 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) { 4133 switch (DefMCID.getOpcode()) { 4134 default: break; 4135 case ARM::VLD1q8: 4136 case ARM::VLD1q16: 4137 case ARM::VLD1q32: 4138 case ARM::VLD1q64: 4139 case ARM::VLD1q8wb_fixed: 4140 case ARM::VLD1q16wb_fixed: 4141 case ARM::VLD1q32wb_fixed: 4142 case ARM::VLD1q64wb_fixed: 4143 case ARM::VLD1q8wb_register: 4144 case ARM::VLD1q16wb_register: 4145 case ARM::VLD1q32wb_register: 4146 case ARM::VLD1q64wb_register: 4147 case ARM::VLD2d8: 4148 case ARM::VLD2d16: 4149 case ARM::VLD2d32: 4150 case ARM::VLD2q8: 4151 case ARM::VLD2q16: 4152 case ARM::VLD2q32: 4153 case ARM::VLD2d8wb_fixed: 4154 case ARM::VLD2d16wb_fixed: 4155 case ARM::VLD2d32wb_fixed: 4156 case ARM::VLD2q8wb_fixed: 4157 case ARM::VLD2q16wb_fixed: 4158 case ARM::VLD2q32wb_fixed: 4159 case ARM::VLD2d8wb_register: 4160 case ARM::VLD2d16wb_register: 4161 case ARM::VLD2d32wb_register: 4162 case ARM::VLD2q8wb_register: 4163 case ARM::VLD2q16wb_register: 4164 case ARM::VLD2q32wb_register: 4165 case ARM::VLD3d8: 4166 case ARM::VLD3d16: 4167 case ARM::VLD3d32: 4168 case ARM::VLD1d64T: 4169 case ARM::VLD3d8_UPD: 4170 case ARM::VLD3d16_UPD: 4171 case ARM::VLD3d32_UPD: 4172 case ARM::VLD1d64Twb_fixed: 4173 case ARM::VLD1d64Twb_register: 4174 case ARM::VLD3q8_UPD: 4175 case ARM::VLD3q16_UPD: 4176 case ARM::VLD3q32_UPD: 4177 case ARM::VLD4d8: 4178 case ARM::VLD4d16: 4179 case ARM::VLD4d32: 4180 case ARM::VLD1d64Q: 4181 case ARM::VLD4d8_UPD: 4182 case ARM::VLD4d16_UPD: 4183 case ARM::VLD4d32_UPD: 4184 case ARM::VLD1d64Qwb_fixed: 4185 case ARM::VLD1d64Qwb_register: 4186 case ARM::VLD4q8_UPD: 4187 case ARM::VLD4q16_UPD: 4188 case ARM::VLD4q32_UPD: 4189 case ARM::VLD1DUPq8: 4190 case ARM::VLD1DUPq16: 4191 case ARM::VLD1DUPq32: 4192 case ARM::VLD1DUPq8wb_fixed: 4193 case ARM::VLD1DUPq16wb_fixed: 4194 case ARM::VLD1DUPq32wb_fixed: 4195 case ARM::VLD1DUPq8wb_register: 4196 case ARM::VLD1DUPq16wb_register: 4197 case ARM::VLD1DUPq32wb_register: 4198 case ARM::VLD2DUPd8: 4199 case ARM::VLD2DUPd16: 4200 case ARM::VLD2DUPd32: 4201 case ARM::VLD2DUPd8wb_fixed: 4202 case ARM::VLD2DUPd16wb_fixed: 4203 case ARM::VLD2DUPd32wb_fixed: 4204 case ARM::VLD2DUPd8wb_register: 4205 case ARM::VLD2DUPd16wb_register: 4206 case ARM::VLD2DUPd32wb_register: 4207 case ARM::VLD4DUPd8: 4208 case ARM::VLD4DUPd16: 4209 case ARM::VLD4DUPd32: 4210 case ARM::VLD4DUPd8_UPD: 4211 case ARM::VLD4DUPd16_UPD: 4212 case ARM::VLD4DUPd32_UPD: 4213 case ARM::VLD1LNd8: 4214 case ARM::VLD1LNd16: 4215 case ARM::VLD1LNd32: 4216 case ARM::VLD1LNd8_UPD: 4217 case ARM::VLD1LNd16_UPD: 4218 case ARM::VLD1LNd32_UPD: 4219 case ARM::VLD2LNd8: 4220 case ARM::VLD2LNd16: 4221 case ARM::VLD2LNd32: 4222 case ARM::VLD2LNq16: 4223 case ARM::VLD2LNq32: 4224 case ARM::VLD2LNd8_UPD: 4225 case ARM::VLD2LNd16_UPD: 4226 case ARM::VLD2LNd32_UPD: 4227 case ARM::VLD2LNq16_UPD: 4228 case ARM::VLD2LNq32_UPD: 4229 case ARM::VLD4LNd8: 4230 case ARM::VLD4LNd16: 4231 case ARM::VLD4LNd32: 4232 case ARM::VLD4LNq16: 4233 case ARM::VLD4LNq32: 4234 case ARM::VLD4LNd8_UPD: 4235 case ARM::VLD4LNd16_UPD: 4236 case ARM::VLD4LNd32_UPD: 4237 case ARM::VLD4LNq16_UPD: 4238 case ARM::VLD4LNq32_UPD: 4239 // If the address is not 64-bit aligned, the latencies of these 4240 // instructions increases by one. 4241 ++Adjust; 4242 break; 4243 } 4244 } 4245 return Adjust; 4246 } 4247 4248 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4249 const MachineInstr &DefMI, 4250 unsigned DefIdx, 4251 const MachineInstr &UseMI, 4252 unsigned UseIdx) const { 4253 // No operand latency. The caller may fall back to getInstrLatency. 4254 if (!ItinData || ItinData->isEmpty()) 4255 return -1; 4256 4257 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 4258 Register Reg = DefMO.getReg(); 4259 4260 const MachineInstr *ResolvedDefMI = &DefMI; 4261 unsigned DefAdj = 0; 4262 if (DefMI.isBundle()) 4263 ResolvedDefMI = 4264 getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj); 4265 if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() || 4266 ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) { 4267 return 1; 4268 } 4269 4270 const MachineInstr *ResolvedUseMI = &UseMI; 4271 unsigned UseAdj = 0; 4272 if (UseMI.isBundle()) { 4273 ResolvedUseMI = 4274 getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj); 4275 if (!ResolvedUseMI) 4276 return -1; 4277 } 4278 4279 return getOperandLatencyImpl( 4280 ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO, 4281 Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj); 4282 } 4283 4284 int ARMBaseInstrInfo::getOperandLatencyImpl( 4285 const InstrItineraryData *ItinData, const MachineInstr &DefMI, 4286 unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj, 4287 const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI, 4288 unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const { 4289 if (Reg == ARM::CPSR) { 4290 if (DefMI.getOpcode() == ARM::FMSTAT) { 4291 // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?) 4292 return Subtarget.isLikeA9() ? 1 : 20; 4293 } 4294 4295 // CPSR set and branch can be paired in the same cycle. 4296 if (UseMI.isBranch()) 4297 return 0; 4298 4299 // Otherwise it takes the instruction latency (generally one). 4300 unsigned Latency = getInstrLatency(ItinData, DefMI); 4301 4302 // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to 4303 // its uses. Instructions which are otherwise scheduled between them may 4304 // incur a code size penalty (not able to use the CPSR setting 16-bit 4305 // instructions). 4306 if (Latency > 0 && Subtarget.isThumb2()) { 4307 const MachineFunction *MF = DefMI.getParent()->getParent(); 4308 // FIXME: Use Function::hasOptSize(). 4309 if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize)) 4310 --Latency; 4311 } 4312 return Latency; 4313 } 4314 4315 if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit()) 4316 return -1; 4317 4318 unsigned DefAlign = DefMI.hasOneMemOperand() 4319 ? (*DefMI.memoperands_begin())->getAlignment() 4320 : 0; 4321 unsigned UseAlign = UseMI.hasOneMemOperand() 4322 ? (*UseMI.memoperands_begin())->getAlignment() 4323 : 0; 4324 4325 // Get the itinerary's latency if possible, and handle variable_ops. 4326 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID, 4327 UseIdx, UseAlign); 4328 // Unable to find operand latency. The caller may resort to getInstrLatency. 4329 if (Latency < 0) 4330 return Latency; 4331 4332 // Adjust for IT block position. 4333 int Adj = DefAdj + UseAdj; 4334 4335 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4336 Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign); 4337 if (Adj >= 0 || (int)Latency > -Adj) { 4338 return Latency + Adj; 4339 } 4340 // Return the itinerary latency, which may be zero but not less than zero. 4341 return Latency; 4342 } 4343 4344 int 4345 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4346 SDNode *DefNode, unsigned DefIdx, 4347 SDNode *UseNode, unsigned UseIdx) const { 4348 if (!DefNode->isMachineOpcode()) 4349 return 1; 4350 4351 const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode()); 4352 4353 if (isZeroCost(DefMCID.Opcode)) 4354 return 0; 4355 4356 if (!ItinData || ItinData->isEmpty()) 4357 return DefMCID.mayLoad() ? 3 : 1; 4358 4359 if (!UseNode->isMachineOpcode()) { 4360 int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx); 4361 int Adj = Subtarget.getPreISelOperandLatencyAdjustment(); 4362 int Threshold = 1 + Adj; 4363 return Latency <= Threshold ? 1 : Latency - Adj; 4364 } 4365 4366 const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode()); 4367 auto *DefMN = cast<MachineSDNode>(DefNode); 4368 unsigned DefAlign = !DefMN->memoperands_empty() 4369 ? (*DefMN->memoperands_begin())->getAlignment() : 0; 4370 auto *UseMN = cast<MachineSDNode>(UseNode); 4371 unsigned UseAlign = !UseMN->memoperands_empty() 4372 ? (*UseMN->memoperands_begin())->getAlignment() : 0; 4373 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, 4374 UseMCID, UseIdx, UseAlign); 4375 4376 if (Latency > 1 && 4377 (Subtarget.isCortexA8() || Subtarget.isLikeA9() || 4378 Subtarget.isCortexA7())) { 4379 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 4380 // variants are one cycle cheaper. 4381 switch (DefMCID.getOpcode()) { 4382 default: break; 4383 case ARM::LDRrs: 4384 case ARM::LDRBrs: { 4385 unsigned ShOpVal = 4386 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4387 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4388 if (ShImm == 0 || 4389 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4390 --Latency; 4391 break; 4392 } 4393 case ARM::t2LDRs: 4394 case ARM::t2LDRBs: 4395 case ARM::t2LDRHs: 4396 case ARM::t2LDRSHs: { 4397 // Thumb2 mode: lsl only. 4398 unsigned ShAmt = 4399 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4400 if (ShAmt == 0 || ShAmt == 2) 4401 --Latency; 4402 break; 4403 } 4404 } 4405 } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) { 4406 // FIXME: Properly handle all of the latency adjustments for address 4407 // writeback. 4408 switch (DefMCID.getOpcode()) { 4409 default: break; 4410 case ARM::LDRrs: 4411 case ARM::LDRBrs: { 4412 unsigned ShOpVal = 4413 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4414 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4415 if (ShImm == 0 || 4416 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 4417 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4418 Latency -= 2; 4419 else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 4420 --Latency; 4421 break; 4422 } 4423 case ARM::t2LDRs: 4424 case ARM::t2LDRBs: 4425 case ARM::t2LDRHs: 4426 case ARM::t2LDRSHs: 4427 // Thumb2 mode: lsl 0-3 only. 4428 Latency -= 2; 4429 break; 4430 } 4431 } 4432 4433 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) 4434 switch (DefMCID.getOpcode()) { 4435 default: break; 4436 case ARM::VLD1q8: 4437 case ARM::VLD1q16: 4438 case ARM::VLD1q32: 4439 case ARM::VLD1q64: 4440 case ARM::VLD1q8wb_register: 4441 case ARM::VLD1q16wb_register: 4442 case ARM::VLD1q32wb_register: 4443 case ARM::VLD1q64wb_register: 4444 case ARM::VLD1q8wb_fixed: 4445 case ARM::VLD1q16wb_fixed: 4446 case ARM::VLD1q32wb_fixed: 4447 case ARM::VLD1q64wb_fixed: 4448 case ARM::VLD2d8: 4449 case ARM::VLD2d16: 4450 case ARM::VLD2d32: 4451 case ARM::VLD2q8Pseudo: 4452 case ARM::VLD2q16Pseudo: 4453 case ARM::VLD2q32Pseudo: 4454 case ARM::VLD2d8wb_fixed: 4455 case ARM::VLD2d16wb_fixed: 4456 case ARM::VLD2d32wb_fixed: 4457 case ARM::VLD2q8PseudoWB_fixed: 4458 case ARM::VLD2q16PseudoWB_fixed: 4459 case ARM::VLD2q32PseudoWB_fixed: 4460 case ARM::VLD2d8wb_register: 4461 case ARM::VLD2d16wb_register: 4462 case ARM::VLD2d32wb_register: 4463 case ARM::VLD2q8PseudoWB_register: 4464 case ARM::VLD2q16PseudoWB_register: 4465 case ARM::VLD2q32PseudoWB_register: 4466 case ARM::VLD3d8Pseudo: 4467 case ARM::VLD3d16Pseudo: 4468 case ARM::VLD3d32Pseudo: 4469 case ARM::VLD1d8TPseudo: 4470 case ARM::VLD1d16TPseudo: 4471 case ARM::VLD1d32TPseudo: 4472 case ARM::VLD1d64TPseudo: 4473 case ARM::VLD1d64TPseudoWB_fixed: 4474 case ARM::VLD1d64TPseudoWB_register: 4475 case ARM::VLD3d8Pseudo_UPD: 4476 case ARM::VLD3d16Pseudo_UPD: 4477 case ARM::VLD3d32Pseudo_UPD: 4478 case ARM::VLD3q8Pseudo_UPD: 4479 case ARM::VLD3q16Pseudo_UPD: 4480 case ARM::VLD3q32Pseudo_UPD: 4481 case ARM::VLD3q8oddPseudo: 4482 case ARM::VLD3q16oddPseudo: 4483 case ARM::VLD3q32oddPseudo: 4484 case ARM::VLD3q8oddPseudo_UPD: 4485 case ARM::VLD3q16oddPseudo_UPD: 4486 case ARM::VLD3q32oddPseudo_UPD: 4487 case ARM::VLD4d8Pseudo: 4488 case ARM::VLD4d16Pseudo: 4489 case ARM::VLD4d32Pseudo: 4490 case ARM::VLD1d8QPseudo: 4491 case ARM::VLD1d16QPseudo: 4492 case ARM::VLD1d32QPseudo: 4493 case ARM::VLD1d64QPseudo: 4494 case ARM::VLD1d64QPseudoWB_fixed: 4495 case ARM::VLD1d64QPseudoWB_register: 4496 case ARM::VLD1q8HighQPseudo: 4497 case ARM::VLD1q8LowQPseudo_UPD: 4498 case ARM::VLD1q8HighTPseudo: 4499 case ARM::VLD1q8LowTPseudo_UPD: 4500 case ARM::VLD1q16HighQPseudo: 4501 case ARM::VLD1q16LowQPseudo_UPD: 4502 case ARM::VLD1q16HighTPseudo: 4503 case ARM::VLD1q16LowTPseudo_UPD: 4504 case ARM::VLD1q32HighQPseudo: 4505 case ARM::VLD1q32LowQPseudo_UPD: 4506 case ARM::VLD1q32HighTPseudo: 4507 case ARM::VLD1q32LowTPseudo_UPD: 4508 case ARM::VLD1q64HighQPseudo: 4509 case ARM::VLD1q64LowQPseudo_UPD: 4510 case ARM::VLD1q64HighTPseudo: 4511 case ARM::VLD1q64LowTPseudo_UPD: 4512 case ARM::VLD4d8Pseudo_UPD: 4513 case ARM::VLD4d16Pseudo_UPD: 4514 case ARM::VLD4d32Pseudo_UPD: 4515 case ARM::VLD4q8Pseudo_UPD: 4516 case ARM::VLD4q16Pseudo_UPD: 4517 case ARM::VLD4q32Pseudo_UPD: 4518 case ARM::VLD4q8oddPseudo: 4519 case ARM::VLD4q16oddPseudo: 4520 case ARM::VLD4q32oddPseudo: 4521 case ARM::VLD4q8oddPseudo_UPD: 4522 case ARM::VLD4q16oddPseudo_UPD: 4523 case ARM::VLD4q32oddPseudo_UPD: 4524 case ARM::VLD1DUPq8: 4525 case ARM::VLD1DUPq16: 4526 case ARM::VLD1DUPq32: 4527 case ARM::VLD1DUPq8wb_fixed: 4528 case ARM::VLD1DUPq16wb_fixed: 4529 case ARM::VLD1DUPq32wb_fixed: 4530 case ARM::VLD1DUPq8wb_register: 4531 case ARM::VLD1DUPq16wb_register: 4532 case ARM::VLD1DUPq32wb_register: 4533 case ARM::VLD2DUPd8: 4534 case ARM::VLD2DUPd16: 4535 case ARM::VLD2DUPd32: 4536 case ARM::VLD2DUPd8wb_fixed: 4537 case ARM::VLD2DUPd16wb_fixed: 4538 case ARM::VLD2DUPd32wb_fixed: 4539 case ARM::VLD2DUPd8wb_register: 4540 case ARM::VLD2DUPd16wb_register: 4541 case ARM::VLD2DUPd32wb_register: 4542 case ARM::VLD2DUPq8EvenPseudo: 4543 case ARM::VLD2DUPq8OddPseudo: 4544 case ARM::VLD2DUPq16EvenPseudo: 4545 case ARM::VLD2DUPq16OddPseudo: 4546 case ARM::VLD2DUPq32EvenPseudo: 4547 case ARM::VLD2DUPq32OddPseudo: 4548 case ARM::VLD3DUPq8EvenPseudo: 4549 case ARM::VLD3DUPq8OddPseudo: 4550 case ARM::VLD3DUPq16EvenPseudo: 4551 case ARM::VLD3DUPq16OddPseudo: 4552 case ARM::VLD3DUPq32EvenPseudo: 4553 case ARM::VLD3DUPq32OddPseudo: 4554 case ARM::VLD4DUPd8Pseudo: 4555 case ARM::VLD4DUPd16Pseudo: 4556 case ARM::VLD4DUPd32Pseudo: 4557 case ARM::VLD4DUPd8Pseudo_UPD: 4558 case ARM::VLD4DUPd16Pseudo_UPD: 4559 case ARM::VLD4DUPd32Pseudo_UPD: 4560 case ARM::VLD4DUPq8EvenPseudo: 4561 case ARM::VLD4DUPq8OddPseudo: 4562 case ARM::VLD4DUPq16EvenPseudo: 4563 case ARM::VLD4DUPq16OddPseudo: 4564 case ARM::VLD4DUPq32EvenPseudo: 4565 case ARM::VLD4DUPq32OddPseudo: 4566 case ARM::VLD1LNq8Pseudo: 4567 case ARM::VLD1LNq16Pseudo: 4568 case ARM::VLD1LNq32Pseudo: 4569 case ARM::VLD1LNq8Pseudo_UPD: 4570 case ARM::VLD1LNq16Pseudo_UPD: 4571 case ARM::VLD1LNq32Pseudo_UPD: 4572 case ARM::VLD2LNd8Pseudo: 4573 case ARM::VLD2LNd16Pseudo: 4574 case ARM::VLD2LNd32Pseudo: 4575 case ARM::VLD2LNq16Pseudo: 4576 case ARM::VLD2LNq32Pseudo: 4577 case ARM::VLD2LNd8Pseudo_UPD: 4578 case ARM::VLD2LNd16Pseudo_UPD: 4579 case ARM::VLD2LNd32Pseudo_UPD: 4580 case ARM::VLD2LNq16Pseudo_UPD: 4581 case ARM::VLD2LNq32Pseudo_UPD: 4582 case ARM::VLD4LNd8Pseudo: 4583 case ARM::VLD4LNd16Pseudo: 4584 case ARM::VLD4LNd32Pseudo: 4585 case ARM::VLD4LNq16Pseudo: 4586 case ARM::VLD4LNq32Pseudo: 4587 case ARM::VLD4LNd8Pseudo_UPD: 4588 case ARM::VLD4LNd16Pseudo_UPD: 4589 case ARM::VLD4LNd32Pseudo_UPD: 4590 case ARM::VLD4LNq16Pseudo_UPD: 4591 case ARM::VLD4LNq32Pseudo_UPD: 4592 // If the address is not 64-bit aligned, the latencies of these 4593 // instructions increases by one. 4594 ++Latency; 4595 break; 4596 } 4597 4598 return Latency; 4599 } 4600 4601 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const { 4602 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || 4603 MI.isImplicitDef()) 4604 return 0; 4605 4606 if (MI.isBundle()) 4607 return 0; 4608 4609 const MCInstrDesc &MCID = MI.getDesc(); 4610 4611 if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && 4612 !Subtarget.cheapPredicableCPSRDef())) { 4613 // When predicated, CPSR is an additional source operand for CPSR updating 4614 // instructions, this apparently increases their latencies. 4615 return 1; 4616 } 4617 return 0; 4618 } 4619 4620 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4621 const MachineInstr &MI, 4622 unsigned *PredCost) const { 4623 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || 4624 MI.isImplicitDef()) 4625 return 1; 4626 4627 // An instruction scheduler typically runs on unbundled instructions, however 4628 // other passes may query the latency of a bundled instruction. 4629 if (MI.isBundle()) { 4630 unsigned Latency = 0; 4631 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 4632 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 4633 while (++I != E && I->isInsideBundle()) { 4634 if (I->getOpcode() != ARM::t2IT) 4635 Latency += getInstrLatency(ItinData, *I, PredCost); 4636 } 4637 return Latency; 4638 } 4639 4640 const MCInstrDesc &MCID = MI.getDesc(); 4641 if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && 4642 !Subtarget.cheapPredicableCPSRDef()))) { 4643 // When predicated, CPSR is an additional source operand for CPSR updating 4644 // instructions, this apparently increases their latencies. 4645 *PredCost = 1; 4646 } 4647 // Be sure to call getStageLatency for an empty itinerary in case it has a 4648 // valid MinLatency property. 4649 if (!ItinData) 4650 return MI.mayLoad() ? 3 : 1; 4651 4652 unsigned Class = MCID.getSchedClass(); 4653 4654 // For instructions with variable uops, use uops as latency. 4655 if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0) 4656 return getNumMicroOps(ItinData, MI); 4657 4658 // For the common case, fall back on the itinerary's latency. 4659 unsigned Latency = ItinData->getStageLatency(Class); 4660 4661 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4662 unsigned DefAlign = 4663 MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlignment() : 0; 4664 int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign); 4665 if (Adj >= 0 || (int)Latency > -Adj) { 4666 return Latency + Adj; 4667 } 4668 return Latency; 4669 } 4670 4671 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4672 SDNode *Node) const { 4673 if (!Node->isMachineOpcode()) 4674 return 1; 4675 4676 if (!ItinData || ItinData->isEmpty()) 4677 return 1; 4678 4679 unsigned Opcode = Node->getMachineOpcode(); 4680 switch (Opcode) { 4681 default: 4682 return ItinData->getStageLatency(get(Opcode).getSchedClass()); 4683 case ARM::VLDMQIA: 4684 case ARM::VSTMQIA: 4685 return 2; 4686 } 4687 } 4688 4689 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, 4690 const MachineRegisterInfo *MRI, 4691 const MachineInstr &DefMI, 4692 unsigned DefIdx, 4693 const MachineInstr &UseMI, 4694 unsigned UseIdx) const { 4695 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; 4696 unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask; 4697 if (Subtarget.nonpipelinedVFP() && 4698 (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP)) 4699 return true; 4700 4701 // Hoist VFP / NEON instructions with 4 or higher latency. 4702 unsigned Latency = 4703 SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx); 4704 if (Latency <= 3) 4705 return false; 4706 return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON || 4707 UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON; 4708 } 4709 4710 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, 4711 const MachineInstr &DefMI, 4712 unsigned DefIdx) const { 4713 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); 4714 if (!ItinData || ItinData->isEmpty()) 4715 return false; 4716 4717 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; 4718 if (DDomain == ARMII::DomainGeneral) { 4719 unsigned DefClass = DefMI.getDesc().getSchedClass(); 4720 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 4721 return (DefCycle != -1 && DefCycle <= 2); 4722 } 4723 return false; 4724 } 4725 4726 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI, 4727 StringRef &ErrInfo) const { 4728 if (convertAddSubFlagsOpcode(MI.getOpcode())) { 4729 ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG"; 4730 return false; 4731 } 4732 if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) { 4733 // Make sure we don't generate a lo-lo mov that isn't supported. 4734 if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) && 4735 !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) { 4736 ErrInfo = "Non-flag-setting Thumb1 mov is v6-only"; 4737 return false; 4738 } 4739 } 4740 if (MI.getOpcode() == ARM::tPUSH || 4741 MI.getOpcode() == ARM::tPOP || 4742 MI.getOpcode() == ARM::tPOP_RET) { 4743 for (int i = 2, e = MI.getNumOperands(); i < e; ++i) { 4744 if (MI.getOperand(i).isImplicit() || 4745 !MI.getOperand(i).isReg()) 4746 continue; 4747 Register Reg = MI.getOperand(i).getReg(); 4748 if (Reg < ARM::R0 || Reg > ARM::R7) { 4749 if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) && 4750 !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) { 4751 ErrInfo = "Unsupported register in Thumb1 push/pop"; 4752 return false; 4753 } 4754 } 4755 } 4756 } 4757 return true; 4758 } 4759 4760 // LoadStackGuard has so far only been implemented for MachO. Different code 4761 // sequence is needed for other targets. 4762 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI, 4763 unsigned LoadImmOpc, 4764 unsigned LoadOpc) const { 4765 assert(!Subtarget.isROPI() && !Subtarget.isRWPI() && 4766 "ROPI/RWPI not currently supported with stack guard"); 4767 4768 MachineBasicBlock &MBB = *MI->getParent(); 4769 DebugLoc DL = MI->getDebugLoc(); 4770 Register Reg = MI->getOperand(0).getReg(); 4771 const GlobalValue *GV = 4772 cast<GlobalValue>((*MI->memoperands_begin())->getValue()); 4773 MachineInstrBuilder MIB; 4774 4775 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) 4776 .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY); 4777 4778 if (Subtarget.isGVIndirectSymbol(GV)) { 4779 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4780 MIB.addReg(Reg, RegState::Kill).addImm(0); 4781 auto Flags = MachineMemOperand::MOLoad | 4782 MachineMemOperand::MODereferenceable | 4783 MachineMemOperand::MOInvariant; 4784 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( 4785 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, 4); 4786 MIB.addMemOperand(MMO).add(predOps(ARMCC::AL)); 4787 } 4788 4789 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4790 MIB.addReg(Reg, RegState::Kill) 4791 .addImm(0) 4792 .cloneMemRefs(*MI) 4793 .add(predOps(ARMCC::AL)); 4794 } 4795 4796 bool 4797 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc, 4798 unsigned &AddSubOpc, 4799 bool &NegAcc, bool &HasLane) const { 4800 DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode); 4801 if (I == MLxEntryMap.end()) 4802 return false; 4803 4804 const ARM_MLxEntry &Entry = ARM_MLxTable[I->second]; 4805 MulOpc = Entry.MulOpc; 4806 AddSubOpc = Entry.AddSubOpc; 4807 NegAcc = Entry.NegAcc; 4808 HasLane = Entry.HasLane; 4809 return true; 4810 } 4811 4812 //===----------------------------------------------------------------------===// 4813 // Execution domains. 4814 //===----------------------------------------------------------------------===// 4815 // 4816 // Some instructions go down the NEON pipeline, some go down the VFP pipeline, 4817 // and some can go down both. The vmov instructions go down the VFP pipeline, 4818 // but they can be changed to vorr equivalents that are executed by the NEON 4819 // pipeline. 4820 // 4821 // We use the following execution domain numbering: 4822 // 4823 enum ARMExeDomain { 4824 ExeGeneric = 0, 4825 ExeVFP = 1, 4826 ExeNEON = 2 4827 }; 4828 4829 // 4830 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h 4831 // 4832 std::pair<uint16_t, uint16_t> 4833 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const { 4834 // If we don't have access to NEON instructions then we won't be able 4835 // to swizzle anything to the NEON domain. Check to make sure. 4836 if (Subtarget.hasNEON()) { 4837 // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON 4838 // if they are not predicated. 4839 if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI)) 4840 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 4841 4842 // CortexA9 is particularly picky about mixing the two and wants these 4843 // converted. 4844 if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) && 4845 (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR || 4846 MI.getOpcode() == ARM::VMOVS)) 4847 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 4848 } 4849 // No other instructions can be swizzled, so just determine their domain. 4850 unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask; 4851 4852 if (Domain & ARMII::DomainNEON) 4853 return std::make_pair(ExeNEON, 0); 4854 4855 // Certain instructions can go either way on Cortex-A8. 4856 // Treat them as NEON instructions. 4857 if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8()) 4858 return std::make_pair(ExeNEON, 0); 4859 4860 if (Domain & ARMII::DomainVFP) 4861 return std::make_pair(ExeVFP, 0); 4862 4863 return std::make_pair(ExeGeneric, 0); 4864 } 4865 4866 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI, 4867 unsigned SReg, unsigned &Lane) { 4868 unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass); 4869 Lane = 0; 4870 4871 if (DReg != ARM::NoRegister) 4872 return DReg; 4873 4874 Lane = 1; 4875 DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass); 4876 4877 assert(DReg && "S-register with no D super-register?"); 4878 return DReg; 4879 } 4880 4881 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane, 4882 /// set ImplicitSReg to a register number that must be marked as implicit-use or 4883 /// zero if no register needs to be defined as implicit-use. 4884 /// 4885 /// If the function cannot determine if an SPR should be marked implicit use or 4886 /// not, it returns false. 4887 /// 4888 /// This function handles cases where an instruction is being modified from taking 4889 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict 4890 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other 4891 /// lane of the DPR). 4892 /// 4893 /// If the other SPR is defined, an implicit-use of it should be added. Else, 4894 /// (including the case where the DPR itself is defined), it should not. 4895 /// 4896 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI, 4897 MachineInstr &MI, unsigned DReg, 4898 unsigned Lane, unsigned &ImplicitSReg) { 4899 // If the DPR is defined or used already, the other SPR lane will be chained 4900 // correctly, so there is nothing to be done. 4901 if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) { 4902 ImplicitSReg = 0; 4903 return true; 4904 } 4905 4906 // Otherwise we need to go searching to see if the SPR is set explicitly. 4907 ImplicitSReg = TRI->getSubReg(DReg, 4908 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1); 4909 MachineBasicBlock::LivenessQueryResult LQR = 4910 MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI); 4911 4912 if (LQR == MachineBasicBlock::LQR_Live) 4913 return true; 4914 else if (LQR == MachineBasicBlock::LQR_Unknown) 4915 return false; 4916 4917 // If the register is known not to be live, there is no need to add an 4918 // implicit-use. 4919 ImplicitSReg = 0; 4920 return true; 4921 } 4922 4923 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI, 4924 unsigned Domain) const { 4925 unsigned DstReg, SrcReg, DReg; 4926 unsigned Lane; 4927 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 4928 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4929 switch (MI.getOpcode()) { 4930 default: 4931 llvm_unreachable("cannot handle opcode!"); 4932 break; 4933 case ARM::VMOVD: 4934 if (Domain != ExeNEON) 4935 break; 4936 4937 // Zap the predicate operands. 4938 assert(!isPredicated(MI) && "Cannot predicate a VORRd"); 4939 4940 // Make sure we've got NEON instructions. 4941 assert(Subtarget.hasNEON() && "VORRd requires NEON"); 4942 4943 // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits) 4944 DstReg = MI.getOperand(0).getReg(); 4945 SrcReg = MI.getOperand(1).getReg(); 4946 4947 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 4948 MI.RemoveOperand(i - 1); 4949 4950 // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits) 4951 MI.setDesc(get(ARM::VORRd)); 4952 MIB.addReg(DstReg, RegState::Define) 4953 .addReg(SrcReg) 4954 .addReg(SrcReg) 4955 .add(predOps(ARMCC::AL)); 4956 break; 4957 case ARM::VMOVRS: 4958 if (Domain != ExeNEON) 4959 break; 4960 assert(!isPredicated(MI) && "Cannot predicate a VGETLN"); 4961 4962 // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits) 4963 DstReg = MI.getOperand(0).getReg(); 4964 SrcReg = MI.getOperand(1).getReg(); 4965 4966 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 4967 MI.RemoveOperand(i - 1); 4968 4969 DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane); 4970 4971 // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps) 4972 // Note that DSrc has been widened and the other lane may be undef, which 4973 // contaminates the entire register. 4974 MI.setDesc(get(ARM::VGETLNi32)); 4975 MIB.addReg(DstReg, RegState::Define) 4976 .addReg(DReg, RegState::Undef) 4977 .addImm(Lane) 4978 .add(predOps(ARMCC::AL)); 4979 4980 // The old source should be an implicit use, otherwise we might think it 4981 // was dead before here. 4982 MIB.addReg(SrcReg, RegState::Implicit); 4983 break; 4984 case ARM::VMOVSR: { 4985 if (Domain != ExeNEON) 4986 break; 4987 assert(!isPredicated(MI) && "Cannot predicate a VSETLN"); 4988 4989 // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits) 4990 DstReg = MI.getOperand(0).getReg(); 4991 SrcReg = MI.getOperand(1).getReg(); 4992 4993 DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane); 4994 4995 unsigned ImplicitSReg; 4996 if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg)) 4997 break; 4998 4999 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5000 MI.RemoveOperand(i - 1); 5001 5002 // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps) 5003 // Again DDst may be undefined at the beginning of this instruction. 5004 MI.setDesc(get(ARM::VSETLNi32)); 5005 MIB.addReg(DReg, RegState::Define) 5006 .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI))) 5007 .addReg(SrcReg) 5008 .addImm(Lane) 5009 .add(predOps(ARMCC::AL)); 5010 5011 // The narrower destination must be marked as set to keep previous chains 5012 // in place. 5013 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 5014 if (ImplicitSReg != 0) 5015 MIB.addReg(ImplicitSReg, RegState::Implicit); 5016 break; 5017 } 5018 case ARM::VMOVS: { 5019 if (Domain != ExeNEON) 5020 break; 5021 5022 // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits) 5023 DstReg = MI.getOperand(0).getReg(); 5024 SrcReg = MI.getOperand(1).getReg(); 5025 5026 unsigned DstLane = 0, SrcLane = 0, DDst, DSrc; 5027 DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane); 5028 DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane); 5029 5030 unsigned ImplicitSReg; 5031 if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg)) 5032 break; 5033 5034 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5035 MI.RemoveOperand(i - 1); 5036 5037 if (DSrc == DDst) { 5038 // Destination can be: 5039 // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits) 5040 MI.setDesc(get(ARM::VDUPLN32d)); 5041 MIB.addReg(DDst, RegState::Define) 5042 .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI))) 5043 .addImm(SrcLane) 5044 .add(predOps(ARMCC::AL)); 5045 5046 // Neither the source or the destination are naturally represented any 5047 // more, so add them in manually. 5048 MIB.addReg(DstReg, RegState::Implicit | RegState::Define); 5049 MIB.addReg(SrcReg, RegState::Implicit); 5050 if (ImplicitSReg != 0) 5051 MIB.addReg(ImplicitSReg, RegState::Implicit); 5052 break; 5053 } 5054 5055 // In general there's no single instruction that can perform an S <-> S 5056 // move in NEON space, but a pair of VEXT instructions *can* do the 5057 // job. It turns out that the VEXTs needed will only use DSrc once, with 5058 // the position based purely on the combination of lane-0 and lane-1 5059 // involved. For example 5060 // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1 5061 // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1 5062 // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1 5063 // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1 5064 // 5065 // Pattern of the MachineInstrs is: 5066 // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits) 5067 MachineInstrBuilder NewMIB; 5068 NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32), 5069 DDst); 5070 5071 // On the first instruction, both DSrc and DDst may be undef if present. 5072 // Specifically when the original instruction didn't have them as an 5073 // <imp-use>. 5074 unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst; 5075 bool CurUndef = !MI.readsRegister(CurReg, TRI); 5076 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)); 5077 5078 CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst; 5079 CurUndef = !MI.readsRegister(CurReg, TRI); 5080 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)) 5081 .addImm(1) 5082 .add(predOps(ARMCC::AL)); 5083 5084 if (SrcLane == DstLane) 5085 NewMIB.addReg(SrcReg, RegState::Implicit); 5086 5087 MI.setDesc(get(ARM::VEXTd32)); 5088 MIB.addReg(DDst, RegState::Define); 5089 5090 // On the second instruction, DDst has definitely been defined above, so 5091 // it is not undef. DSrc, if present, can be undef as above. 5092 CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst; 5093 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); 5094 MIB.addReg(CurReg, getUndefRegState(CurUndef)); 5095 5096 CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst; 5097 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); 5098 MIB.addReg(CurReg, getUndefRegState(CurUndef)) 5099 .addImm(1) 5100 .add(predOps(ARMCC::AL)); 5101 5102 if (SrcLane != DstLane) 5103 MIB.addReg(SrcReg, RegState::Implicit); 5104 5105 // As before, the original destination is no longer represented, add it 5106 // implicitly. 5107 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 5108 if (ImplicitSReg != 0) 5109 MIB.addReg(ImplicitSReg, RegState::Implicit); 5110 break; 5111 } 5112 } 5113 } 5114 5115 //===----------------------------------------------------------------------===// 5116 // Partial register updates 5117 //===----------------------------------------------------------------------===// 5118 // 5119 // Swift renames NEON registers with 64-bit granularity. That means any 5120 // instruction writing an S-reg implicitly reads the containing D-reg. The 5121 // problem is mostly avoided by translating f32 operations to v2f32 operations 5122 // on D-registers, but f32 loads are still a problem. 5123 // 5124 // These instructions can load an f32 into a NEON register: 5125 // 5126 // VLDRS - Only writes S, partial D update. 5127 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops. 5128 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops. 5129 // 5130 // FCONSTD can be used as a dependency-breaking instruction. 5131 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance( 5132 const MachineInstr &MI, unsigned OpNum, 5133 const TargetRegisterInfo *TRI) const { 5134 auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance(); 5135 if (!PartialUpdateClearance) 5136 return 0; 5137 5138 assert(TRI && "Need TRI instance"); 5139 5140 const MachineOperand &MO = MI.getOperand(OpNum); 5141 if (MO.readsReg()) 5142 return 0; 5143 Register Reg = MO.getReg(); 5144 int UseOp = -1; 5145 5146 switch (MI.getOpcode()) { 5147 // Normal instructions writing only an S-register. 5148 case ARM::VLDRS: 5149 case ARM::FCONSTS: 5150 case ARM::VMOVSR: 5151 case ARM::VMOVv8i8: 5152 case ARM::VMOVv4i16: 5153 case ARM::VMOVv2i32: 5154 case ARM::VMOVv2f32: 5155 case ARM::VMOVv1i64: 5156 UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI); 5157 break; 5158 5159 // Explicitly reads the dependency. 5160 case ARM::VLD1LNd32: 5161 UseOp = 3; 5162 break; 5163 default: 5164 return 0; 5165 } 5166 5167 // If this instruction actually reads a value from Reg, there is no unwanted 5168 // dependency. 5169 if (UseOp != -1 && MI.getOperand(UseOp).readsReg()) 5170 return 0; 5171 5172 // We must be able to clobber the whole D-reg. 5173 if (Register::isVirtualRegister(Reg)) { 5174 // Virtual register must be a def undef foo:ssub_0 operand. 5175 if (!MO.getSubReg() || MI.readsVirtualRegister(Reg)) 5176 return 0; 5177 } else if (ARM::SPRRegClass.contains(Reg)) { 5178 // Physical register: MI must define the full D-reg. 5179 unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0, 5180 &ARM::DPRRegClass); 5181 if (!DReg || !MI.definesRegister(DReg, TRI)) 5182 return 0; 5183 } 5184 5185 // MI has an unwanted D-register dependency. 5186 // Avoid defs in the previous N instructrions. 5187 return PartialUpdateClearance; 5188 } 5189 5190 // Break a partial register dependency after getPartialRegUpdateClearance 5191 // returned non-zero. 5192 void ARMBaseInstrInfo::breakPartialRegDependency( 5193 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { 5194 assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def"); 5195 assert(TRI && "Need TRI instance"); 5196 5197 const MachineOperand &MO = MI.getOperand(OpNum); 5198 Register Reg = MO.getReg(); 5199 assert(Register::isPhysicalRegister(Reg) && 5200 "Can't break virtual register dependencies."); 5201 unsigned DReg = Reg; 5202 5203 // If MI defines an S-reg, find the corresponding D super-register. 5204 if (ARM::SPRRegClass.contains(Reg)) { 5205 DReg = ARM::D0 + (Reg - ARM::S0) / 2; 5206 assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken"); 5207 } 5208 5209 assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps"); 5210 assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg"); 5211 5212 // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines 5213 // the full D-register by loading the same value to both lanes. The 5214 // instruction is micro-coded with 2 uops, so don't do this until we can 5215 // properly schedule micro-coded instructions. The dispatcher stalls cause 5216 // too big regressions. 5217 5218 // Insert the dependency-breaking FCONSTD before MI. 5219 // 96 is the encoding of 0.5, but the actual value doesn't matter here. 5220 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg) 5221 .addImm(96) 5222 .add(predOps(ARMCC::AL)); 5223 MI.addRegisterKilled(DReg, TRI, true); 5224 } 5225 5226 bool ARMBaseInstrInfo::hasNOP() const { 5227 return Subtarget.getFeatureBits()[ARM::HasV6KOps]; 5228 } 5229 5230 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const { 5231 if (MI->getNumOperands() < 4) 5232 return true; 5233 unsigned ShOpVal = MI->getOperand(3).getImm(); 5234 unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal); 5235 // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1. 5236 if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) || 5237 ((ShImm == 1 || ShImm == 2) && 5238 ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl)) 5239 return true; 5240 5241 return false; 5242 } 5243 5244 bool ARMBaseInstrInfo::getRegSequenceLikeInputs( 5245 const MachineInstr &MI, unsigned DefIdx, 5246 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 5247 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5248 assert(MI.isRegSequenceLike() && "Invalid kind of instruction"); 5249 5250 switch (MI.getOpcode()) { 5251 case ARM::VMOVDRR: 5252 // dX = VMOVDRR rY, rZ 5253 // is the same as: 5254 // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1 5255 // Populate the InputRegs accordingly. 5256 // rY 5257 const MachineOperand *MOReg = &MI.getOperand(1); 5258 if (!MOReg->isUndef()) 5259 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), 5260 MOReg->getSubReg(), ARM::ssub_0)); 5261 // rZ 5262 MOReg = &MI.getOperand(2); 5263 if (!MOReg->isUndef()) 5264 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), 5265 MOReg->getSubReg(), ARM::ssub_1)); 5266 return true; 5267 } 5268 llvm_unreachable("Target dependent opcode missing"); 5269 } 5270 5271 bool ARMBaseInstrInfo::getExtractSubregLikeInputs( 5272 const MachineInstr &MI, unsigned DefIdx, 5273 RegSubRegPairAndIdx &InputReg) const { 5274 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5275 assert(MI.isExtractSubregLike() && "Invalid kind of instruction"); 5276 5277 switch (MI.getOpcode()) { 5278 case ARM::VMOVRRD: 5279 // rX, rY = VMOVRRD dZ 5280 // is the same as: 5281 // rX = EXTRACT_SUBREG dZ, ssub_0 5282 // rY = EXTRACT_SUBREG dZ, ssub_1 5283 const MachineOperand &MOReg = MI.getOperand(2); 5284 if (MOReg.isUndef()) 5285 return false; 5286 InputReg.Reg = MOReg.getReg(); 5287 InputReg.SubReg = MOReg.getSubReg(); 5288 InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1; 5289 return true; 5290 } 5291 llvm_unreachable("Target dependent opcode missing"); 5292 } 5293 5294 bool ARMBaseInstrInfo::getInsertSubregLikeInputs( 5295 const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, 5296 RegSubRegPairAndIdx &InsertedReg) const { 5297 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5298 assert(MI.isInsertSubregLike() && "Invalid kind of instruction"); 5299 5300 switch (MI.getOpcode()) { 5301 case ARM::VSETLNi32: 5302 // dX = VSETLNi32 dY, rZ, imm 5303 const MachineOperand &MOBaseReg = MI.getOperand(1); 5304 const MachineOperand &MOInsertedReg = MI.getOperand(2); 5305 if (MOInsertedReg.isUndef()) 5306 return false; 5307 const MachineOperand &MOIndex = MI.getOperand(3); 5308 BaseReg.Reg = MOBaseReg.getReg(); 5309 BaseReg.SubReg = MOBaseReg.getSubReg(); 5310 5311 InsertedReg.Reg = MOInsertedReg.getReg(); 5312 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 5313 InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1; 5314 return true; 5315 } 5316 llvm_unreachable("Target dependent opcode missing"); 5317 } 5318 5319 std::pair<unsigned, unsigned> 5320 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 5321 const unsigned Mask = ARMII::MO_OPTION_MASK; 5322 return std::make_pair(TF & Mask, TF & ~Mask); 5323 } 5324 5325 ArrayRef<std::pair<unsigned, const char *>> 5326 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 5327 using namespace ARMII; 5328 5329 static const std::pair<unsigned, const char *> TargetFlags[] = { 5330 {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}}; 5331 return makeArrayRef(TargetFlags); 5332 } 5333 5334 ArrayRef<std::pair<unsigned, const char *>> 5335 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 5336 using namespace ARMII; 5337 5338 static const std::pair<unsigned, const char *> TargetFlags[] = { 5339 {MO_COFFSTUB, "arm-coffstub"}, 5340 {MO_GOT, "arm-got"}, 5341 {MO_SBREL, "arm-sbrel"}, 5342 {MO_DLLIMPORT, "arm-dllimport"}, 5343 {MO_SECREL, "arm-secrel"}, 5344 {MO_NONLAZY, "arm-nonlazy"}}; 5345 return makeArrayRef(TargetFlags); 5346 } 5347 5348 Optional<RegImmPair> ARMBaseInstrInfo::isAddImmediate(const MachineInstr &MI, 5349 Register Reg) const { 5350 int Sign = 1; 5351 unsigned Opcode = MI.getOpcode(); 5352 int64_t Offset = 0; 5353 5354 // TODO: Handle cases where Reg is a super- or sub-register of the 5355 // destination register. 5356 if (Reg != MI.getOperand(0).getReg()) 5357 return None; 5358 5359 // We describe SUBri or ADDri instructions. 5360 if (Opcode == ARM::SUBri) 5361 Sign = -1; 5362 else if (Opcode != ARM::ADDri) 5363 return None; 5364 5365 // TODO: Third operand can be global address (usually some string). Since 5366 // strings can be relocated we cannot calculate their offsets for 5367 // now. 5368 if (!MI.getOperand(0).isReg() || !MI.getOperand(1).isReg() || 5369 !MI.getOperand(2).isImm()) 5370 return None; 5371 5372 Offset = MI.getOperand(2).getImm() * Sign; 5373 return RegImmPair{MI.getOperand(1).getReg(), Offset}; 5374 } 5375 5376 bool llvm::registerDefinedBetween(unsigned Reg, 5377 MachineBasicBlock::iterator From, 5378 MachineBasicBlock::iterator To, 5379 const TargetRegisterInfo *TRI) { 5380 for (auto I = From; I != To; ++I) 5381 if (I->modifiesRegister(Reg, TRI)) 5382 return true; 5383 return false; 5384 } 5385 5386 MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br, 5387 const TargetRegisterInfo *TRI) { 5388 // Search backwards to the instruction that defines CSPR. This may or not 5389 // be a CMP, we check that after this loop. If we find another instruction 5390 // that reads cpsr, we return nullptr. 5391 MachineBasicBlock::iterator CmpMI = Br; 5392 while (CmpMI != Br->getParent()->begin()) { 5393 --CmpMI; 5394 if (CmpMI->modifiesRegister(ARM::CPSR, TRI)) 5395 break; 5396 if (CmpMI->readsRegister(ARM::CPSR, TRI)) 5397 break; 5398 } 5399 5400 // Check that this inst is a CMP r[0-7], #0 and that the register 5401 // is not redefined between the cmp and the br. 5402 if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri) 5403 return nullptr; 5404 Register Reg = CmpMI->getOperand(0).getReg(); 5405 unsigned PredReg = 0; 5406 ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg); 5407 if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0) 5408 return nullptr; 5409 if (!isARMLowRegister(Reg)) 5410 return nullptr; 5411 if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI)) 5412 return nullptr; 5413 5414 return &*CmpMI; 5415 } 5416 5417 unsigned llvm::ConstantMaterializationCost(unsigned Val, 5418 const ARMSubtarget *Subtarget, 5419 bool ForCodesize) { 5420 if (Subtarget->isThumb()) { 5421 if (Val <= 255) // MOV 5422 return ForCodesize ? 2 : 1; 5423 if (Subtarget->hasV6T2Ops() && (Val <= 0xffff || // MOV 5424 ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW 5425 ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN 5426 return ForCodesize ? 4 : 1; 5427 if (Val <= 510) // MOV + ADDi8 5428 return ForCodesize ? 4 : 2; 5429 if (~Val <= 255) // MOV + MVN 5430 return ForCodesize ? 4 : 2; 5431 if (ARM_AM::isThumbImmShiftedVal(Val)) // MOV + LSL 5432 return ForCodesize ? 4 : 2; 5433 } else { 5434 if (ARM_AM::getSOImmVal(Val) != -1) // MOV 5435 return ForCodesize ? 4 : 1; 5436 if (ARM_AM::getSOImmVal(~Val) != -1) // MVN 5437 return ForCodesize ? 4 : 1; 5438 if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW 5439 return ForCodesize ? 4 : 1; 5440 if (ARM_AM::isSOImmTwoPartVal(Val)) // two instrs 5441 return ForCodesize ? 8 : 2; 5442 } 5443 if (Subtarget->useMovt()) // MOVW + MOVT 5444 return ForCodesize ? 8 : 2; 5445 return ForCodesize ? 8 : 3; // Literal pool load 5446 } 5447 5448 bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2, 5449 const ARMSubtarget *Subtarget, 5450 bool ForCodesize) { 5451 // Check with ForCodesize 5452 unsigned Cost1 = ConstantMaterializationCost(Val1, Subtarget, ForCodesize); 5453 unsigned Cost2 = ConstantMaterializationCost(Val2, Subtarget, ForCodesize); 5454 if (Cost1 < Cost2) 5455 return true; 5456 if (Cost1 > Cost2) 5457 return false; 5458 5459 // If they are equal, try with !ForCodesize 5460 return ConstantMaterializationCost(Val1, Subtarget, !ForCodesize) < 5461 ConstantMaterializationCost(Val2, Subtarget, !ForCodesize); 5462 } 5463