xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp (revision 9207f9d206a4017001f01ca27d3d25a26c268a95)
1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the Base ARM implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ARMBaseInstrInfo.h"
14 #include "ARMBaseRegisterInfo.h"
15 #include "ARMConstantPoolValue.h"
16 #include "ARMFeatures.h"
17 #include "ARMHazardRecognizer.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "MCTargetDesc/ARMBaseInfo.h"
22 #include "MVETailPredUtils.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/CodeGen/DFAPacketizer.h"
28 #include "llvm/CodeGen/LiveVariables.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachinePipeliner.h"
39 #include "llvm/CodeGen/MachineRegisterInfo.h"
40 #include "llvm/CodeGen/MachineScheduler.h"
41 #include "llvm/CodeGen/MultiHazardRecognizer.h"
42 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
43 #include "llvm/CodeGen/SelectionDAGNodes.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetRegisterInfo.h"
46 #include "llvm/CodeGen/TargetSchedule.h"
47 #include "llvm/IR/Attributes.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/GlobalValue.h"
52 #include "llvm/MC/MCAsmInfo.h"
53 #include "llvm/MC/MCInstrDesc.h"
54 #include "llvm/MC/MCInstrItineraries.h"
55 #include "llvm/Support/BranchProbability.h"
56 #include "llvm/Support/Casting.h"
57 #include "llvm/Support/CommandLine.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include "llvm/Target/TargetMachine.h"
63 #include "llvm/TargetParser/Triple.h"
64 #include <algorithm>
65 #include <cassert>
66 #include <cstdint>
67 #include <iterator>
68 #include <new>
69 #include <utility>
70 #include <vector>
71 
72 using namespace llvm;
73 
74 #define DEBUG_TYPE "arm-instrinfo"
75 
76 #define GET_INSTRINFO_CTOR_DTOR
77 #include "ARMGenInstrInfo.inc"
78 
79 static cl::opt<bool>
80 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
81                cl::desc("Enable ARM 2-addr to 3-addr conv"));
82 
83 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
84 struct ARM_MLxEntry {
85   uint16_t MLxOpc;     // MLA / MLS opcode
86   uint16_t MulOpc;     // Expanded multiplication opcode
87   uint16_t AddSubOpc;  // Expanded add / sub opcode
88   bool NegAcc;         // True if the acc is negated before the add / sub.
89   bool HasLane;        // True if instruction has an extra "lane" operand.
90 };
91 
92 static const ARM_MLxEntry ARM_MLxTable[] = {
93   // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
94   // fp scalar ops
95   { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
96   { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
97   { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
98   { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
99   { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
100   { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
101   { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
102   { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
103 
104   // fp SIMD ops
105   { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
106   { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
107   { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
108   { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
109   { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
110   { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
111   { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
112   { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
113 };
114 
115 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
116   : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
117     Subtarget(STI) {
118   for (unsigned i = 0, e = std::size(ARM_MLxTable); i != e; ++i) {
119     if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
120       llvm_unreachable("Duplicated entries?");
121     MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
122     MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
123   }
124 }
125 
126 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
127 // currently defaults to no prepass hazard recognizer.
128 ScheduleHazardRecognizer *
129 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
130                                                const ScheduleDAG *DAG) const {
131   if (usePreRAHazardRecognizer()) {
132     const InstrItineraryData *II =
133         static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
134     return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
135   }
136   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
137 }
138 
139 // Called during:
140 // - pre-RA scheduling
141 // - post-RA scheduling when FeatureUseMISched is set
142 ScheduleHazardRecognizer *ARMBaseInstrInfo::CreateTargetMIHazardRecognizer(
143     const InstrItineraryData *II, const ScheduleDAGMI *DAG) const {
144   MultiHazardRecognizer *MHR = new MultiHazardRecognizer();
145 
146   // We would like to restrict this hazard recognizer to only
147   // post-RA scheduling; we can tell that we're post-RA because we don't
148   // track VRegLiveness.
149   // Cortex-M7: TRM indicates that there is a single ITCM bank and two DTCM
150   //            banks banked on bit 2.  Assume that TCMs are in use.
151   if (Subtarget.isCortexM7() && !DAG->hasVRegLiveness())
152     MHR->AddHazardRecognizer(
153         std::make_unique<ARMBankConflictHazardRecognizer>(DAG, 0x4, true));
154 
155   // Not inserting ARMHazardRecognizerFPMLx because that would change
156   // legacy behavior
157 
158   auto BHR = TargetInstrInfo::CreateTargetMIHazardRecognizer(II, DAG);
159   MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR));
160   return MHR;
161 }
162 
163 // Called during post-RA scheduling when FeatureUseMISched is not set
164 ScheduleHazardRecognizer *ARMBaseInstrInfo::
165 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
166                                    const ScheduleDAG *DAG) const {
167   MultiHazardRecognizer *MHR = new MultiHazardRecognizer();
168 
169   if (Subtarget.isThumb2() || Subtarget.hasVFP2Base())
170     MHR->AddHazardRecognizer(std::make_unique<ARMHazardRecognizerFPMLx>());
171 
172   auto BHR = TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
173   if (BHR)
174     MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR));
175   return MHR;
176 }
177 
178 MachineInstr *
179 ARMBaseInstrInfo::convertToThreeAddress(MachineInstr &MI, LiveVariables *LV,
180                                         LiveIntervals *LIS) const {
181   // FIXME: Thumb2 support.
182 
183   if (!EnableARM3Addr)
184     return nullptr;
185 
186   MachineFunction &MF = *MI.getParent()->getParent();
187   uint64_t TSFlags = MI.getDesc().TSFlags;
188   bool isPre = false;
189   switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
190   default: return nullptr;
191   case ARMII::IndexModePre:
192     isPre = true;
193     break;
194   case ARMII::IndexModePost:
195     break;
196   }
197 
198   // Try splitting an indexed load/store to an un-indexed one plus an add/sub
199   // operation.
200   unsigned MemOpc = getUnindexedOpcode(MI.getOpcode());
201   if (MemOpc == 0)
202     return nullptr;
203 
204   MachineInstr *UpdateMI = nullptr;
205   MachineInstr *MemMI = nullptr;
206   unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
207   const MCInstrDesc &MCID = MI.getDesc();
208   unsigned NumOps = MCID.getNumOperands();
209   bool isLoad = !MI.mayStore();
210   const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0);
211   const MachineOperand &Base = MI.getOperand(2);
212   const MachineOperand &Offset = MI.getOperand(NumOps - 3);
213   Register WBReg = WB.getReg();
214   Register BaseReg = Base.getReg();
215   Register OffReg = Offset.getReg();
216   unsigned OffImm = MI.getOperand(NumOps - 2).getImm();
217   ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm();
218   switch (AddrMode) {
219   default: llvm_unreachable("Unknown indexed op!");
220   case ARMII::AddrMode2: {
221     bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
222     unsigned Amt = ARM_AM::getAM2Offset(OffImm);
223     if (OffReg == 0) {
224       if (ARM_AM::getSOImmVal(Amt) == -1)
225         // Can't encode it in a so_imm operand. This transformation will
226         // add more than 1 instruction. Abandon!
227         return nullptr;
228       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
229                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
230                      .addReg(BaseReg)
231                      .addImm(Amt)
232                      .add(predOps(Pred))
233                      .add(condCodeOp());
234     } else if (Amt != 0) {
235       ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
236       unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
237       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
238                          get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
239                      .addReg(BaseReg)
240                      .addReg(OffReg)
241                      .addReg(0)
242                      .addImm(SOOpc)
243                      .add(predOps(Pred))
244                      .add(condCodeOp());
245     } else
246       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
247                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
248                      .addReg(BaseReg)
249                      .addReg(OffReg)
250                      .add(predOps(Pred))
251                      .add(condCodeOp());
252     break;
253   }
254   case ARMII::AddrMode3 : {
255     bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
256     unsigned Amt = ARM_AM::getAM3Offset(OffImm);
257     if (OffReg == 0)
258       // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
259       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
260                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
261                      .addReg(BaseReg)
262                      .addImm(Amt)
263                      .add(predOps(Pred))
264                      .add(condCodeOp());
265     else
266       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
267                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
268                      .addReg(BaseReg)
269                      .addReg(OffReg)
270                      .add(predOps(Pred))
271                      .add(condCodeOp());
272     break;
273   }
274   }
275 
276   std::vector<MachineInstr*> NewMIs;
277   if (isPre) {
278     if (isLoad)
279       MemMI =
280           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
281               .addReg(WBReg)
282               .addImm(0)
283               .addImm(Pred);
284     else
285       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
286                   .addReg(MI.getOperand(1).getReg())
287                   .addReg(WBReg)
288                   .addReg(0)
289                   .addImm(0)
290                   .addImm(Pred);
291     NewMIs.push_back(MemMI);
292     NewMIs.push_back(UpdateMI);
293   } else {
294     if (isLoad)
295       MemMI =
296           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
297               .addReg(BaseReg)
298               .addImm(0)
299               .addImm(Pred);
300     else
301       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
302                   .addReg(MI.getOperand(1).getReg())
303                   .addReg(BaseReg)
304                   .addReg(0)
305                   .addImm(0)
306                   .addImm(Pred);
307     if (WB.isDead())
308       UpdateMI->getOperand(0).setIsDead();
309     NewMIs.push_back(UpdateMI);
310     NewMIs.push_back(MemMI);
311   }
312 
313   // Transfer LiveVariables states, kill / dead info.
314   if (LV) {
315     for (const MachineOperand &MO : MI.operands()) {
316       if (MO.isReg() && MO.getReg().isVirtual()) {
317         Register Reg = MO.getReg();
318 
319         LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
320         if (MO.isDef()) {
321           MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
322           if (MO.isDead())
323             LV->addVirtualRegisterDead(Reg, *NewMI);
324         }
325         if (MO.isUse() && MO.isKill()) {
326           for (unsigned j = 0; j < 2; ++j) {
327             // Look at the two new MI's in reverse order.
328             MachineInstr *NewMI = NewMIs[j];
329             if (!NewMI->readsRegister(Reg))
330               continue;
331             LV->addVirtualRegisterKilled(Reg, *NewMI);
332             if (VI.removeKill(MI))
333               VI.Kills.push_back(NewMI);
334             break;
335           }
336         }
337       }
338     }
339   }
340 
341   MachineBasicBlock &MBB = *MI.getParent();
342   MBB.insert(MI, NewMIs[1]);
343   MBB.insert(MI, NewMIs[0]);
344   return NewMIs[0];
345 }
346 
347 // Branch analysis.
348 // Cond vector output format:
349 //   0 elements indicates an unconditional branch
350 //   2 elements indicates a conditional branch; the elements are
351 //     the condition to check and the CPSR.
352 //   3 elements indicates a hardware loop end; the elements
353 //     are the opcode, the operand value to test, and a dummy
354 //     operand used to pad out to 3 operands.
355 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
356                                      MachineBasicBlock *&TBB,
357                                      MachineBasicBlock *&FBB,
358                                      SmallVectorImpl<MachineOperand> &Cond,
359                                      bool AllowModify) const {
360   TBB = nullptr;
361   FBB = nullptr;
362 
363   MachineBasicBlock::instr_iterator I = MBB.instr_end();
364   if (I == MBB.instr_begin())
365     return false; // Empty blocks are easy.
366   --I;
367 
368   // Walk backwards from the end of the basic block until the branch is
369   // analyzed or we give up.
370   while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
371     // Flag to be raised on unanalyzeable instructions. This is useful in cases
372     // where we want to clean up on the end of the basic block before we bail
373     // out.
374     bool CantAnalyze = false;
375 
376     // Skip over DEBUG values, predicated nonterminators and speculation
377     // barrier terminators.
378     while (I->isDebugInstr() || !I->isTerminator() ||
379            isSpeculationBarrierEndBBOpcode(I->getOpcode()) ||
380            I->getOpcode() == ARM::t2DoLoopStartTP){
381       if (I == MBB.instr_begin())
382         return false;
383       --I;
384     }
385 
386     if (isIndirectBranchOpcode(I->getOpcode()) ||
387         isJumpTableBranchOpcode(I->getOpcode())) {
388       // Indirect branches and jump tables can't be analyzed, but we still want
389       // to clean up any instructions at the tail of the basic block.
390       CantAnalyze = true;
391     } else if (isUncondBranchOpcode(I->getOpcode())) {
392       TBB = I->getOperand(0).getMBB();
393     } else if (isCondBranchOpcode(I->getOpcode())) {
394       // Bail out if we encounter multiple conditional branches.
395       if (!Cond.empty())
396         return true;
397 
398       assert(!FBB && "FBB should have been null.");
399       FBB = TBB;
400       TBB = I->getOperand(0).getMBB();
401       Cond.push_back(I->getOperand(1));
402       Cond.push_back(I->getOperand(2));
403     } else if (I->isReturn()) {
404       // Returns can't be analyzed, but we should run cleanup.
405       CantAnalyze = true;
406     } else if (I->getOpcode() == ARM::t2LoopEnd &&
407                MBB.getParent()
408                    ->getSubtarget<ARMSubtarget>()
409                    .enableMachinePipeliner()) {
410       if (!Cond.empty())
411         return true;
412       FBB = TBB;
413       TBB = I->getOperand(1).getMBB();
414       Cond.push_back(MachineOperand::CreateImm(I->getOpcode()));
415       Cond.push_back(I->getOperand(0));
416       Cond.push_back(MachineOperand::CreateImm(0));
417     } else {
418       // We encountered other unrecognized terminator. Bail out immediately.
419       return true;
420     }
421 
422     // Cleanup code - to be run for unpredicated unconditional branches and
423     //                returns.
424     if (!isPredicated(*I) &&
425           (isUncondBranchOpcode(I->getOpcode()) ||
426            isIndirectBranchOpcode(I->getOpcode()) ||
427            isJumpTableBranchOpcode(I->getOpcode()) ||
428            I->isReturn())) {
429       // Forget any previous condition branch information - it no longer applies.
430       Cond.clear();
431       FBB = nullptr;
432 
433       // If we can modify the function, delete everything below this
434       // unconditional branch.
435       if (AllowModify) {
436         MachineBasicBlock::iterator DI = std::next(I);
437         while (DI != MBB.instr_end()) {
438           MachineInstr &InstToDelete = *DI;
439           ++DI;
440           // Speculation barriers must not be deleted.
441           if (isSpeculationBarrierEndBBOpcode(InstToDelete.getOpcode()))
442             continue;
443           InstToDelete.eraseFromParent();
444         }
445       }
446     }
447 
448     if (CantAnalyze) {
449       // We may not be able to analyze the block, but we could still have
450       // an unconditional branch as the last instruction in the block, which
451       // just branches to layout successor. If this is the case, then just
452       // remove it if we're allowed to make modifications.
453       if (AllowModify && !isPredicated(MBB.back()) &&
454           isUncondBranchOpcode(MBB.back().getOpcode()) &&
455           TBB && MBB.isLayoutSuccessor(TBB))
456         removeBranch(MBB);
457       return true;
458     }
459 
460     if (I == MBB.instr_begin())
461       return false;
462 
463     --I;
464   }
465 
466   // We made it past the terminators without bailing out - we must have
467   // analyzed this branch successfully.
468   return false;
469 }
470 
471 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB,
472                                         int *BytesRemoved) const {
473   assert(!BytesRemoved && "code size not handled");
474 
475   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
476   if (I == MBB.end())
477     return 0;
478 
479   if (!isUncondBranchOpcode(I->getOpcode()) &&
480       !isCondBranchOpcode(I->getOpcode()) && I->getOpcode() != ARM::t2LoopEnd)
481     return 0;
482 
483   // Remove the branch.
484   I->eraseFromParent();
485 
486   I = MBB.end();
487 
488   if (I == MBB.begin()) return 1;
489   --I;
490   if (!isCondBranchOpcode(I->getOpcode()) && I->getOpcode() != ARM::t2LoopEnd)
491     return 1;
492 
493   // Remove the branch.
494   I->eraseFromParent();
495   return 2;
496 }
497 
498 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB,
499                                         MachineBasicBlock *TBB,
500                                         MachineBasicBlock *FBB,
501                                         ArrayRef<MachineOperand> Cond,
502                                         const DebugLoc &DL,
503                                         int *BytesAdded) const {
504   assert(!BytesAdded && "code size not handled");
505   ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
506   int BOpc   = !AFI->isThumbFunction()
507     ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
508   int BccOpc = !AFI->isThumbFunction()
509     ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
510   bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
511 
512   // Shouldn't be a fall through.
513   assert(TBB && "insertBranch must not be told to insert a fallthrough");
514   assert((Cond.size() == 2 || Cond.size() == 0 || Cond.size() == 3) &&
515          "ARM branch conditions have two or three components!");
516 
517   // For conditional branches, we use addOperand to preserve CPSR flags.
518 
519   if (!FBB) {
520     if (Cond.empty()) { // Unconditional branch?
521       if (isThumb)
522         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL));
523       else
524         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
525     } else if (Cond.size() == 2) {
526       BuildMI(&MBB, DL, get(BccOpc))
527           .addMBB(TBB)
528           .addImm(Cond[0].getImm())
529           .add(Cond[1]);
530     } else
531       BuildMI(&MBB, DL, get(Cond[0].getImm())).add(Cond[1]).addMBB(TBB);
532     return 1;
533   }
534 
535   // Two-way conditional branch.
536   if (Cond.size() == 2)
537     BuildMI(&MBB, DL, get(BccOpc))
538         .addMBB(TBB)
539         .addImm(Cond[0].getImm())
540         .add(Cond[1]);
541   else if (Cond.size() == 3)
542     BuildMI(&MBB, DL, get(Cond[0].getImm())).add(Cond[1]).addMBB(TBB);
543   if (isThumb)
544     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL));
545   else
546     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
547   return 2;
548 }
549 
550 bool ARMBaseInstrInfo::
551 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
552   if (Cond.size() == 2) {
553     ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
554     Cond[0].setImm(ARMCC::getOppositeCondition(CC));
555     return false;
556   }
557   return true;
558 }
559 
560 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const {
561   if (MI.isBundle()) {
562     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
563     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
564     while (++I != E && I->isInsideBundle()) {
565       int PIdx = I->findFirstPredOperandIdx();
566       if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
567         return true;
568     }
569     return false;
570   }
571 
572   int PIdx = MI.findFirstPredOperandIdx();
573   return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL;
574 }
575 
576 std::string ARMBaseInstrInfo::createMIROperandComment(
577     const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
578     const TargetRegisterInfo *TRI) const {
579 
580   // First, let's see if there is a generic comment for this operand
581   std::string GenericComment =
582       TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI);
583   if (!GenericComment.empty())
584     return GenericComment;
585 
586   // If not, check if we have an immediate operand.
587   if (!Op.isImm())
588     return std::string();
589 
590   // And print its corresponding condition code if the immediate is a
591   // predicate.
592   int FirstPredOp = MI.findFirstPredOperandIdx();
593   if (FirstPredOp != (int) OpIdx)
594     return std::string();
595 
596   std::string CC = "CC::";
597   CC += ARMCondCodeToString((ARMCC::CondCodes)Op.getImm());
598   return CC;
599 }
600 
601 bool ARMBaseInstrInfo::PredicateInstruction(
602     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
603   unsigned Opc = MI.getOpcode();
604   if (isUncondBranchOpcode(Opc)) {
605     MI.setDesc(get(getMatchingCondBranchOpcode(Opc)));
606     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
607       .addImm(Pred[0].getImm())
608       .addReg(Pred[1].getReg());
609     return true;
610   }
611 
612   int PIdx = MI.findFirstPredOperandIdx();
613   if (PIdx != -1) {
614     MachineOperand &PMO = MI.getOperand(PIdx);
615     PMO.setImm(Pred[0].getImm());
616     MI.getOperand(PIdx+1).setReg(Pred[1].getReg());
617 
618     // Thumb 1 arithmetic instructions do not set CPSR when executed inside an
619     // IT block. This affects how they are printed.
620     const MCInstrDesc &MCID = MI.getDesc();
621     if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
622       assert(MCID.operands()[1].isOptionalDef() &&
623              "CPSR def isn't expected operand");
624       assert((MI.getOperand(1).isDead() ||
625               MI.getOperand(1).getReg() != ARM::CPSR) &&
626              "if conversion tried to stop defining used CPSR");
627       MI.getOperand(1).setReg(ARM::NoRegister);
628     }
629 
630     return true;
631   }
632   return false;
633 }
634 
635 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
636                                          ArrayRef<MachineOperand> Pred2) const {
637   if (Pred1.size() > 2 || Pred2.size() > 2)
638     return false;
639 
640   ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
641   ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
642   if (CC1 == CC2)
643     return true;
644 
645   switch (CC1) {
646   default:
647     return false;
648   case ARMCC::AL:
649     return true;
650   case ARMCC::HS:
651     return CC2 == ARMCC::HI;
652   case ARMCC::LS:
653     return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
654   case ARMCC::GE:
655     return CC2 == ARMCC::GT;
656   case ARMCC::LE:
657     return CC2 == ARMCC::LT;
658   }
659 }
660 
661 bool ARMBaseInstrInfo::ClobbersPredicate(MachineInstr &MI,
662                                          std::vector<MachineOperand> &Pred,
663                                          bool SkipDead) const {
664   bool Found = false;
665   for (const MachineOperand &MO : MI.operands()) {
666     bool ClobbersCPSR = MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR);
667     bool IsCPSR = MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR;
668     if (ClobbersCPSR || IsCPSR) {
669 
670       // Filter out T1 instructions that have a dead CPSR,
671       // allowing IT blocks to be generated containing T1 instructions
672       const MCInstrDesc &MCID = MI.getDesc();
673       if (MCID.TSFlags & ARMII::ThumbArithFlagSetting && MO.isDead() &&
674           SkipDead)
675         continue;
676 
677       Pred.push_back(MO);
678       Found = true;
679     }
680   }
681 
682   return Found;
683 }
684 
685 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) {
686   for (const auto &MO : MI.operands())
687     if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead())
688       return true;
689   return false;
690 }
691 
692 static bool isEligibleForITBlock(const MachineInstr *MI) {
693   switch (MI->getOpcode()) {
694   default: return true;
695   case ARM::tADC:   // ADC (register) T1
696   case ARM::tADDi3: // ADD (immediate) T1
697   case ARM::tADDi8: // ADD (immediate) T2
698   case ARM::tADDrr: // ADD (register) T1
699   case ARM::tAND:   // AND (register) T1
700   case ARM::tASRri: // ASR (immediate) T1
701   case ARM::tASRrr: // ASR (register) T1
702   case ARM::tBIC:   // BIC (register) T1
703   case ARM::tEOR:   // EOR (register) T1
704   case ARM::tLSLri: // LSL (immediate) T1
705   case ARM::tLSLrr: // LSL (register) T1
706   case ARM::tLSRri: // LSR (immediate) T1
707   case ARM::tLSRrr: // LSR (register) T1
708   case ARM::tMUL:   // MUL T1
709   case ARM::tMVN:   // MVN (register) T1
710   case ARM::tORR:   // ORR (register) T1
711   case ARM::tROR:   // ROR (register) T1
712   case ARM::tRSB:   // RSB (immediate) T1
713   case ARM::tSBC:   // SBC (register) T1
714   case ARM::tSUBi3: // SUB (immediate) T1
715   case ARM::tSUBi8: // SUB (immediate) T2
716   case ARM::tSUBrr: // SUB (register) T1
717     return !ARMBaseInstrInfo::isCPSRDefined(*MI);
718   }
719 }
720 
721 /// isPredicable - Return true if the specified instruction can be predicated.
722 /// By default, this returns true for every instruction with a
723 /// PredicateOperand.
724 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const {
725   if (!MI.isPredicable())
726     return false;
727 
728   if (MI.isBundle())
729     return false;
730 
731   if (!isEligibleForITBlock(&MI))
732     return false;
733 
734   const MachineFunction *MF = MI.getParent()->getParent();
735   const ARMFunctionInfo *AFI =
736       MF->getInfo<ARMFunctionInfo>();
737 
738   // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM.
739   // In their ARM encoding, they can't be encoded in a conditional form.
740   if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
741     return false;
742 
743   // Make indirect control flow changes unpredicable when SLS mitigation is
744   // enabled.
745   const ARMSubtarget &ST = MF->getSubtarget<ARMSubtarget>();
746   if (ST.hardenSlsRetBr() && isIndirectControlFlowNotComingBack(MI))
747     return false;
748   if (ST.hardenSlsBlr() && isIndirectCall(MI))
749     return false;
750 
751   if (AFI->isThumb2Function()) {
752     if (getSubtarget().restrictIT())
753       return isV8EligibleForIT(&MI);
754   }
755 
756   return true;
757 }
758 
759 namespace llvm {
760 
761 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) {
762   for (const MachineOperand &MO : MI->operands()) {
763     if (!MO.isReg() || MO.isUndef() || MO.isUse())
764       continue;
765     if (MO.getReg() != ARM::CPSR)
766       continue;
767     if (!MO.isDead())
768       return false;
769   }
770   // all definitions of CPSR are dead
771   return true;
772 }
773 
774 } // end namespace llvm
775 
776 /// GetInstSize - Return the size of the specified MachineInstr.
777 ///
778 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
779   const MachineBasicBlock &MBB = *MI.getParent();
780   const MachineFunction *MF = MBB.getParent();
781   const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
782 
783   const MCInstrDesc &MCID = MI.getDesc();
784 
785   switch (MI.getOpcode()) {
786   default:
787     // Return the size specified in .td file. If there's none, return 0, as we
788     // can't define a default size (Thumb1 instructions are 2 bytes, Thumb2
789     // instructions are 2-4 bytes, and ARM instructions are 4 bytes), in
790     // contrast to AArch64 instructions which have a default size of 4 bytes for
791     // example.
792     return MCID.getSize();
793   case TargetOpcode::BUNDLE:
794     return getInstBundleLength(MI);
795   case ARM::CONSTPOOL_ENTRY:
796   case ARM::JUMPTABLE_INSTS:
797   case ARM::JUMPTABLE_ADDRS:
798   case ARM::JUMPTABLE_TBB:
799   case ARM::JUMPTABLE_TBH:
800     // If this machine instr is a constant pool entry, its size is recorded as
801     // operand #2.
802     return MI.getOperand(2).getImm();
803   case ARM::SPACE:
804     return MI.getOperand(1).getImm();
805   case ARM::INLINEASM:
806   case ARM::INLINEASM_BR: {
807     // If this machine instr is an inline asm, measure it.
808     unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
809     if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction())
810       Size = alignTo(Size, 4);
811     return Size;
812   }
813   }
814 }
815 
816 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
817   unsigned Size = 0;
818   MachineBasicBlock::const_instr_iterator I = MI.getIterator();
819   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
820   while (++I != E && I->isInsideBundle()) {
821     assert(!I->isBundle() && "No nested bundle!");
822     Size += getInstSizeInBytes(*I);
823   }
824   return Size;
825 }
826 
827 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
828                                     MachineBasicBlock::iterator I,
829                                     unsigned DestReg, bool KillSrc,
830                                     const ARMSubtarget &Subtarget) const {
831   unsigned Opc = Subtarget.isThumb()
832                      ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
833                      : ARM::MRS;
834 
835   MachineInstrBuilder MIB =
836       BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
837 
838   // There is only 1 A/R class MRS instruction, and it always refers to
839   // APSR. However, there are lots of other possibilities on M-class cores.
840   if (Subtarget.isMClass())
841     MIB.addImm(0x800);
842 
843   MIB.add(predOps(ARMCC::AL))
844      .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
845 }
846 
847 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
848                                   MachineBasicBlock::iterator I,
849                                   unsigned SrcReg, bool KillSrc,
850                                   const ARMSubtarget &Subtarget) const {
851   unsigned Opc = Subtarget.isThumb()
852                      ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
853                      : ARM::MSR;
854 
855   MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
856 
857   if (Subtarget.isMClass())
858     MIB.addImm(0x800);
859   else
860     MIB.addImm(8);
861 
862   MIB.addReg(SrcReg, getKillRegState(KillSrc))
863      .add(predOps(ARMCC::AL))
864      .addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
865 }
866 
867 void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) {
868   MIB.addImm(ARMVCC::None);
869   MIB.addReg(0);
870   MIB.addReg(0); // tp_reg
871 }
872 
873 void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB,
874                                       Register DestReg) {
875   addUnpredicatedMveVpredNOp(MIB);
876   MIB.addReg(DestReg, RegState::Undef);
877 }
878 
879 void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) {
880   MIB.addImm(Cond);
881   MIB.addReg(ARM::VPR, RegState::Implicit);
882   MIB.addReg(0); // tp_reg
883 }
884 
885 void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB,
886                                     unsigned Cond, unsigned Inactive) {
887   addPredicatedMveVpredNOp(MIB, Cond);
888   MIB.addReg(Inactive);
889 }
890 
891 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
892                                    MachineBasicBlock::iterator I,
893                                    const DebugLoc &DL, MCRegister DestReg,
894                                    MCRegister SrcReg, bool KillSrc) const {
895   bool GPRDest = ARM::GPRRegClass.contains(DestReg);
896   bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
897 
898   if (GPRDest && GPRSrc) {
899     BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
900         .addReg(SrcReg, getKillRegState(KillSrc))
901         .add(predOps(ARMCC::AL))
902         .add(condCodeOp());
903     return;
904   }
905 
906   bool SPRDest = ARM::SPRRegClass.contains(DestReg);
907   bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
908 
909   unsigned Opc = 0;
910   if (SPRDest && SPRSrc)
911     Opc = ARM::VMOVS;
912   else if (GPRDest && SPRSrc)
913     Opc = ARM::VMOVRS;
914   else if (SPRDest && GPRSrc)
915     Opc = ARM::VMOVSR;
916   else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64())
917     Opc = ARM::VMOVD;
918   else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
919     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MQPRCopy;
920 
921   if (Opc) {
922     MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
923     MIB.addReg(SrcReg, getKillRegState(KillSrc));
924     if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR)
925       MIB.addReg(SrcReg, getKillRegState(KillSrc));
926     if (Opc == ARM::MVE_VORR)
927       addUnpredicatedMveVpredROp(MIB, DestReg);
928     else if (Opc != ARM::MQPRCopy)
929       MIB.add(predOps(ARMCC::AL));
930     return;
931   }
932 
933   // Handle register classes that require multiple instructions.
934   unsigned BeginIdx = 0;
935   unsigned SubRegs = 0;
936   int Spacing = 1;
937 
938   // Use VORRq when possible.
939   if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
940     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
941     BeginIdx = ARM::qsub_0;
942     SubRegs = 2;
943   } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
944     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
945     BeginIdx = ARM::qsub_0;
946     SubRegs = 4;
947   // Fall back to VMOVD.
948   } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
949     Opc = ARM::VMOVD;
950     BeginIdx = ARM::dsub_0;
951     SubRegs = 2;
952   } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
953     Opc = ARM::VMOVD;
954     BeginIdx = ARM::dsub_0;
955     SubRegs = 3;
956   } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
957     Opc = ARM::VMOVD;
958     BeginIdx = ARM::dsub_0;
959     SubRegs = 4;
960   } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
961     Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
962     BeginIdx = ARM::gsub_0;
963     SubRegs = 2;
964   } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
965     Opc = ARM::VMOVD;
966     BeginIdx = ARM::dsub_0;
967     SubRegs = 2;
968     Spacing = 2;
969   } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
970     Opc = ARM::VMOVD;
971     BeginIdx = ARM::dsub_0;
972     SubRegs = 3;
973     Spacing = 2;
974   } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
975     Opc = ARM::VMOVD;
976     BeginIdx = ARM::dsub_0;
977     SubRegs = 4;
978     Spacing = 2;
979   } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) &&
980              !Subtarget.hasFP64()) {
981     Opc = ARM::VMOVS;
982     BeginIdx = ARM::ssub_0;
983     SubRegs = 2;
984   } else if (SrcReg == ARM::CPSR) {
985     copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
986     return;
987   } else if (DestReg == ARM::CPSR) {
988     copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
989     return;
990   } else if (DestReg == ARM::VPR) {
991     assert(ARM::GPRRegClass.contains(SrcReg));
992     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg)
993         .addReg(SrcReg, getKillRegState(KillSrc))
994         .add(predOps(ARMCC::AL));
995     return;
996   } else if (SrcReg == ARM::VPR) {
997     assert(ARM::GPRRegClass.contains(DestReg));
998     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg)
999         .addReg(SrcReg, getKillRegState(KillSrc))
1000         .add(predOps(ARMCC::AL));
1001     return;
1002   } else if (DestReg == ARM::FPSCR_NZCV) {
1003     assert(ARM::GPRRegClass.contains(SrcReg));
1004     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg)
1005         .addReg(SrcReg, getKillRegState(KillSrc))
1006         .add(predOps(ARMCC::AL));
1007     return;
1008   } else if (SrcReg == ARM::FPSCR_NZCV) {
1009     assert(ARM::GPRRegClass.contains(DestReg));
1010     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg)
1011         .addReg(SrcReg, getKillRegState(KillSrc))
1012         .add(predOps(ARMCC::AL));
1013     return;
1014   }
1015 
1016   assert(Opc && "Impossible reg-to-reg copy");
1017 
1018   const TargetRegisterInfo *TRI = &getRegisterInfo();
1019   MachineInstrBuilder Mov;
1020 
1021   // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
1022   if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
1023     BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
1024     Spacing = -Spacing;
1025   }
1026 #ifndef NDEBUG
1027   SmallSet<unsigned, 4> DstRegs;
1028 #endif
1029   for (unsigned i = 0; i != SubRegs; ++i) {
1030     Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
1031     Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
1032     assert(Dst && Src && "Bad sub-register");
1033 #ifndef NDEBUG
1034     assert(!DstRegs.count(Src) && "destructive vector copy");
1035     DstRegs.insert(Dst);
1036 #endif
1037     Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
1038     // VORR (NEON or MVE) takes two source operands.
1039     if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) {
1040       Mov.addReg(Src);
1041     }
1042     // MVE VORR takes predicate operands in place of an ordinary condition.
1043     if (Opc == ARM::MVE_VORR)
1044       addUnpredicatedMveVpredROp(Mov, Dst);
1045     else
1046       Mov = Mov.add(predOps(ARMCC::AL));
1047     // MOVr can set CC.
1048     if (Opc == ARM::MOVr)
1049       Mov = Mov.add(condCodeOp());
1050   }
1051   // Add implicit super-register defs and kills to the last instruction.
1052   Mov->addRegisterDefined(DestReg, TRI);
1053   if (KillSrc)
1054     Mov->addRegisterKilled(SrcReg, TRI);
1055 }
1056 
1057 std::optional<DestSourcePair>
1058 ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
1059   // VMOVRRD is also a copy instruction but it requires
1060   // special way of handling. It is more complex copy version
1061   // and since that we are not considering it. For recognition
1062   // of such instruction isExtractSubregLike MI interface fuction
1063   // could be used.
1064   // VORRq is considered as a move only if two inputs are
1065   // the same register.
1066   if (!MI.isMoveReg() ||
1067       (MI.getOpcode() == ARM::VORRq &&
1068        MI.getOperand(1).getReg() != MI.getOperand(2).getReg()))
1069     return std::nullopt;
1070   return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1071 }
1072 
1073 std::optional<ParamLoadedValue>
1074 ARMBaseInstrInfo::describeLoadedValue(const MachineInstr &MI,
1075                                       Register Reg) const {
1076   if (auto DstSrcPair = isCopyInstrImpl(MI)) {
1077     Register DstReg = DstSrcPair->Destination->getReg();
1078 
1079     // TODO: We don't handle cases where the forwarding reg is narrower/wider
1080     // than the copy registers. Consider for example:
1081     //
1082     //   s16 = VMOVS s0
1083     //   s17 = VMOVS s1
1084     //   call @callee(d0)
1085     //
1086     // We'd like to describe the call site value of d0 as d8, but this requires
1087     // gathering and merging the descriptions for the two VMOVS instructions.
1088     //
1089     // We also don't handle the reverse situation, where the forwarding reg is
1090     // narrower than the copy destination:
1091     //
1092     //   d8 = VMOVD d0
1093     //   call @callee(s1)
1094     //
1095     // We need to produce a fragment description (the call site value of s1 is
1096     // /not/ just d8).
1097     if (DstReg != Reg)
1098       return std::nullopt;
1099   }
1100   return TargetInstrInfo::describeLoadedValue(MI, Reg);
1101 }
1102 
1103 const MachineInstrBuilder &
1104 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
1105                           unsigned SubIdx, unsigned State,
1106                           const TargetRegisterInfo *TRI) const {
1107   if (!SubIdx)
1108     return MIB.addReg(Reg, State);
1109 
1110   if (Register::isPhysicalRegister(Reg))
1111     return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
1112   return MIB.addReg(Reg, State, SubIdx);
1113 }
1114 
1115 void ARMBaseInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1116                                            MachineBasicBlock::iterator I,
1117                                            Register SrcReg, bool isKill, int FI,
1118                                            const TargetRegisterClass *RC,
1119                                            const TargetRegisterInfo *TRI,
1120                                            Register VReg) const {
1121   MachineFunction &MF = *MBB.getParent();
1122   MachineFrameInfo &MFI = MF.getFrameInfo();
1123   Align Alignment = MFI.getObjectAlign(FI);
1124 
1125   MachineMemOperand *MMO = MF.getMachineMemOperand(
1126       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
1127       MFI.getObjectSize(FI), Alignment);
1128 
1129   switch (TRI->getSpillSize(*RC)) {
1130     case 2:
1131       if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1132         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH))
1133             .addReg(SrcReg, getKillRegState(isKill))
1134             .addFrameIndex(FI)
1135             .addImm(0)
1136             .addMemOperand(MMO)
1137             .add(predOps(ARMCC::AL));
1138       } else
1139         llvm_unreachable("Unknown reg class!");
1140       break;
1141     case 4:
1142       if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1143         BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12))
1144             .addReg(SrcReg, getKillRegState(isKill))
1145             .addFrameIndex(FI)
1146             .addImm(0)
1147             .addMemOperand(MMO)
1148             .add(predOps(ARMCC::AL));
1149       } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1150         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS))
1151             .addReg(SrcReg, getKillRegState(isKill))
1152             .addFrameIndex(FI)
1153             .addImm(0)
1154             .addMemOperand(MMO)
1155             .add(predOps(ARMCC::AL));
1156       } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1157         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off))
1158             .addReg(SrcReg, getKillRegState(isKill))
1159             .addFrameIndex(FI)
1160             .addImm(0)
1161             .addMemOperand(MMO)
1162             .add(predOps(ARMCC::AL));
1163       } else
1164         llvm_unreachable("Unknown reg class!");
1165       break;
1166     case 8:
1167       if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1168         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD))
1169             .addReg(SrcReg, getKillRegState(isKill))
1170             .addFrameIndex(FI)
1171             .addImm(0)
1172             .addMemOperand(MMO)
1173             .add(predOps(ARMCC::AL));
1174       } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1175         if (Subtarget.hasV5TEOps()) {
1176           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD));
1177           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1178           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1179           MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1180              .add(predOps(ARMCC::AL));
1181         } else {
1182           // Fallback to STM instruction, which has existed since the dawn of
1183           // time.
1184           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA))
1185                                         .addFrameIndex(FI)
1186                                         .addMemOperand(MMO)
1187                                         .add(predOps(ARMCC::AL));
1188           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1189           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1190         }
1191       } else
1192         llvm_unreachable("Unknown reg class!");
1193       break;
1194     case 16:
1195       if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1196         // Use aligned spills if the stack can be realigned.
1197         if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
1198           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64))
1199               .addFrameIndex(FI)
1200               .addImm(16)
1201               .addReg(SrcReg, getKillRegState(isKill))
1202               .addMemOperand(MMO)
1203               .add(predOps(ARMCC::AL));
1204         } else {
1205           BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA))
1206               .addReg(SrcReg, getKillRegState(isKill))
1207               .addFrameIndex(FI)
1208               .addMemOperand(MMO)
1209               .add(predOps(ARMCC::AL));
1210         }
1211       } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1212                  Subtarget.hasMVEIntegerOps()) {
1213         auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32));
1214         MIB.addReg(SrcReg, getKillRegState(isKill))
1215           .addFrameIndex(FI)
1216           .addImm(0)
1217           .addMemOperand(MMO);
1218         addUnpredicatedMveVpredNOp(MIB);
1219       } else
1220         llvm_unreachable("Unknown reg class!");
1221       break;
1222     case 24:
1223       if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1224         // Use aligned spills if the stack can be realigned.
1225         if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1226             Subtarget.hasNEON()) {
1227           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo))
1228               .addFrameIndex(FI)
1229               .addImm(16)
1230               .addReg(SrcReg, getKillRegState(isKill))
1231               .addMemOperand(MMO)
1232               .add(predOps(ARMCC::AL));
1233         } else {
1234           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1235                                             get(ARM::VSTMDIA))
1236                                         .addFrameIndex(FI)
1237                                         .add(predOps(ARMCC::AL))
1238                                         .addMemOperand(MMO);
1239           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1240           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1241           AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1242         }
1243       } else
1244         llvm_unreachable("Unknown reg class!");
1245       break;
1246     case 32:
1247       if (ARM::QQPRRegClass.hasSubClassEq(RC) ||
1248           ARM::MQQPRRegClass.hasSubClassEq(RC) ||
1249           ARM::DQuadRegClass.hasSubClassEq(RC)) {
1250         if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1251             Subtarget.hasNEON()) {
1252           // FIXME: It's possible to only store part of the QQ register if the
1253           // spilled def has a sub-register index.
1254           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo))
1255               .addFrameIndex(FI)
1256               .addImm(16)
1257               .addReg(SrcReg, getKillRegState(isKill))
1258               .addMemOperand(MMO)
1259               .add(predOps(ARMCC::AL));
1260         } else if (Subtarget.hasMVEIntegerOps()) {
1261           BuildMI(MBB, I, DebugLoc(), get(ARM::MQQPRStore))
1262               .addReg(SrcReg, getKillRegState(isKill))
1263               .addFrameIndex(FI)
1264               .addMemOperand(MMO);
1265         } else {
1266           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1267                                             get(ARM::VSTMDIA))
1268                                         .addFrameIndex(FI)
1269                                         .add(predOps(ARMCC::AL))
1270                                         .addMemOperand(MMO);
1271           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1272           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1273           MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1274                 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1275         }
1276       } else
1277         llvm_unreachable("Unknown reg class!");
1278       break;
1279     case 64:
1280       if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) &&
1281           Subtarget.hasMVEIntegerOps()) {
1282         BuildMI(MBB, I, DebugLoc(), get(ARM::MQQQQPRStore))
1283             .addReg(SrcReg, getKillRegState(isKill))
1284             .addFrameIndex(FI)
1285             .addMemOperand(MMO);
1286       } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1287         MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA))
1288                                       .addFrameIndex(FI)
1289                                       .add(predOps(ARMCC::AL))
1290                                       .addMemOperand(MMO);
1291         MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1292         MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1293         MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1294         MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1295         MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
1296         MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
1297         MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
1298               AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
1299       } else
1300         llvm_unreachable("Unknown reg class!");
1301       break;
1302     default:
1303       llvm_unreachable("Unknown reg class!");
1304   }
1305 }
1306 
1307 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1308                                               int &FrameIndex) const {
1309   switch (MI.getOpcode()) {
1310   default: break;
1311   case ARM::STRrs:
1312   case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
1313     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1314         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1315         MI.getOperand(3).getImm() == 0) {
1316       FrameIndex = MI.getOperand(1).getIndex();
1317       return MI.getOperand(0).getReg();
1318     }
1319     break;
1320   case ARM::STRi12:
1321   case ARM::t2STRi12:
1322   case ARM::tSTRspi:
1323   case ARM::VSTRD:
1324   case ARM::VSTRS:
1325   case ARM::VSTR_P0_off:
1326   case ARM::MVE_VSTRWU32:
1327     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1328         MI.getOperand(2).getImm() == 0) {
1329       FrameIndex = MI.getOperand(1).getIndex();
1330       return MI.getOperand(0).getReg();
1331     }
1332     break;
1333   case ARM::VST1q64:
1334   case ARM::VST1d64TPseudo:
1335   case ARM::VST1d64QPseudo:
1336     if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) {
1337       FrameIndex = MI.getOperand(0).getIndex();
1338       return MI.getOperand(2).getReg();
1339     }
1340     break;
1341   case ARM::VSTMQIA:
1342     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1343       FrameIndex = MI.getOperand(1).getIndex();
1344       return MI.getOperand(0).getReg();
1345     }
1346     break;
1347   case ARM::MQQPRStore:
1348   case ARM::MQQQQPRStore:
1349     if (MI.getOperand(1).isFI()) {
1350       FrameIndex = MI.getOperand(1).getIndex();
1351       return MI.getOperand(0).getReg();
1352     }
1353     break;
1354   }
1355 
1356   return 0;
1357 }
1358 
1359 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
1360                                                     int &FrameIndex) const {
1361   SmallVector<const MachineMemOperand *, 1> Accesses;
1362   if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) &&
1363       Accesses.size() == 1) {
1364     FrameIndex =
1365         cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1366             ->getFrameIndex();
1367     return true;
1368   }
1369   return false;
1370 }
1371 
1372 void ARMBaseInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1373                                             MachineBasicBlock::iterator I,
1374                                             Register DestReg, int FI,
1375                                             const TargetRegisterClass *RC,
1376                                             const TargetRegisterInfo *TRI,
1377                                             Register VReg) const {
1378   DebugLoc DL;
1379   if (I != MBB.end()) DL = I->getDebugLoc();
1380   MachineFunction &MF = *MBB.getParent();
1381   MachineFrameInfo &MFI = MF.getFrameInfo();
1382   const Align Alignment = MFI.getObjectAlign(FI);
1383   MachineMemOperand *MMO = MF.getMachineMemOperand(
1384       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
1385       MFI.getObjectSize(FI), Alignment);
1386 
1387   switch (TRI->getSpillSize(*RC)) {
1388   case 2:
1389     if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1390       BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg)
1391           .addFrameIndex(FI)
1392           .addImm(0)
1393           .addMemOperand(MMO)
1394           .add(predOps(ARMCC::AL));
1395     } else
1396       llvm_unreachable("Unknown reg class!");
1397     break;
1398   case 4:
1399     if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1400       BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
1401           .addFrameIndex(FI)
1402           .addImm(0)
1403           .addMemOperand(MMO)
1404           .add(predOps(ARMCC::AL));
1405     } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1406       BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
1407           .addFrameIndex(FI)
1408           .addImm(0)
1409           .addMemOperand(MMO)
1410           .add(predOps(ARMCC::AL));
1411     } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1412       BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg)
1413           .addFrameIndex(FI)
1414           .addImm(0)
1415           .addMemOperand(MMO)
1416           .add(predOps(ARMCC::AL));
1417     } else
1418       llvm_unreachable("Unknown reg class!");
1419     break;
1420   case 8:
1421     if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1422       BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
1423           .addFrameIndex(FI)
1424           .addImm(0)
1425           .addMemOperand(MMO)
1426           .add(predOps(ARMCC::AL));
1427     } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1428       MachineInstrBuilder MIB;
1429 
1430       if (Subtarget.hasV5TEOps()) {
1431         MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
1432         AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1433         AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1434         MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1435            .add(predOps(ARMCC::AL));
1436       } else {
1437         // Fallback to LDM instruction, which has existed since the dawn of
1438         // time.
1439         MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA))
1440                   .addFrameIndex(FI)
1441                   .addMemOperand(MMO)
1442                   .add(predOps(ARMCC::AL));
1443         MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1444         MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1445       }
1446 
1447       if (DestReg.isPhysical())
1448         MIB.addReg(DestReg, RegState::ImplicitDefine);
1449     } else
1450       llvm_unreachable("Unknown reg class!");
1451     break;
1452   case 16:
1453     if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1454       if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
1455         BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
1456             .addFrameIndex(FI)
1457             .addImm(16)
1458             .addMemOperand(MMO)
1459             .add(predOps(ARMCC::AL));
1460       } else {
1461         BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
1462             .addFrameIndex(FI)
1463             .addMemOperand(MMO)
1464             .add(predOps(ARMCC::AL));
1465       }
1466     } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1467                Subtarget.hasMVEIntegerOps()) {
1468       auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg);
1469       MIB.addFrameIndex(FI)
1470         .addImm(0)
1471         .addMemOperand(MMO);
1472       addUnpredicatedMveVpredNOp(MIB);
1473     } else
1474       llvm_unreachable("Unknown reg class!");
1475     break;
1476   case 24:
1477     if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1478       if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1479           Subtarget.hasNEON()) {
1480         BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
1481             .addFrameIndex(FI)
1482             .addImm(16)
1483             .addMemOperand(MMO)
1484             .add(predOps(ARMCC::AL));
1485       } else {
1486         MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1487                                       .addFrameIndex(FI)
1488                                       .addMemOperand(MMO)
1489                                       .add(predOps(ARMCC::AL));
1490         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1491         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1492         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1493         if (DestReg.isPhysical())
1494           MIB.addReg(DestReg, RegState::ImplicitDefine);
1495       }
1496     } else
1497       llvm_unreachable("Unknown reg class!");
1498     break;
1499    case 32:
1500      if (ARM::QQPRRegClass.hasSubClassEq(RC) ||
1501          ARM::MQQPRRegClass.hasSubClassEq(RC) ||
1502          ARM::DQuadRegClass.hasSubClassEq(RC)) {
1503        if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1504            Subtarget.hasNEON()) {
1505          BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1506              .addFrameIndex(FI)
1507              .addImm(16)
1508              .addMemOperand(MMO)
1509              .add(predOps(ARMCC::AL));
1510        } else if (Subtarget.hasMVEIntegerOps()) {
1511          BuildMI(MBB, I, DL, get(ARM::MQQPRLoad), DestReg)
1512              .addFrameIndex(FI)
1513              .addMemOperand(MMO);
1514        } else {
1515          MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1516                                        .addFrameIndex(FI)
1517                                        .add(predOps(ARMCC::AL))
1518                                        .addMemOperand(MMO);
1519          MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1520          MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1521          MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1522          MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1523          if (DestReg.isPhysical())
1524            MIB.addReg(DestReg, RegState::ImplicitDefine);
1525        }
1526      } else
1527        llvm_unreachable("Unknown reg class!");
1528      break;
1529   case 64:
1530     if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) &&
1531         Subtarget.hasMVEIntegerOps()) {
1532       BuildMI(MBB, I, DL, get(ARM::MQQQQPRLoad), DestReg)
1533           .addFrameIndex(FI)
1534           .addMemOperand(MMO);
1535     } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1536       MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1537                                     .addFrameIndex(FI)
1538                                     .add(predOps(ARMCC::AL))
1539                                     .addMemOperand(MMO);
1540       MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1541       MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1542       MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1543       MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1544       MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1545       MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1546       MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1547       MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1548       if (DestReg.isPhysical())
1549         MIB.addReg(DestReg, RegState::ImplicitDefine);
1550     } else
1551       llvm_unreachable("Unknown reg class!");
1552     break;
1553   default:
1554     llvm_unreachable("Unknown regclass!");
1555   }
1556 }
1557 
1558 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1559                                                int &FrameIndex) const {
1560   switch (MI.getOpcode()) {
1561   default: break;
1562   case ARM::LDRrs:
1563   case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
1564     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1565         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1566         MI.getOperand(3).getImm() == 0) {
1567       FrameIndex = MI.getOperand(1).getIndex();
1568       return MI.getOperand(0).getReg();
1569     }
1570     break;
1571   case ARM::LDRi12:
1572   case ARM::t2LDRi12:
1573   case ARM::tLDRspi:
1574   case ARM::VLDRD:
1575   case ARM::VLDRS:
1576   case ARM::VLDR_P0_off:
1577   case ARM::MVE_VLDRWU32:
1578     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1579         MI.getOperand(2).getImm() == 0) {
1580       FrameIndex = MI.getOperand(1).getIndex();
1581       return MI.getOperand(0).getReg();
1582     }
1583     break;
1584   case ARM::VLD1q64:
1585   case ARM::VLD1d8TPseudo:
1586   case ARM::VLD1d16TPseudo:
1587   case ARM::VLD1d32TPseudo:
1588   case ARM::VLD1d64TPseudo:
1589   case ARM::VLD1d8QPseudo:
1590   case ARM::VLD1d16QPseudo:
1591   case ARM::VLD1d32QPseudo:
1592   case ARM::VLD1d64QPseudo:
1593     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1594       FrameIndex = MI.getOperand(1).getIndex();
1595       return MI.getOperand(0).getReg();
1596     }
1597     break;
1598   case ARM::VLDMQIA:
1599     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1600       FrameIndex = MI.getOperand(1).getIndex();
1601       return MI.getOperand(0).getReg();
1602     }
1603     break;
1604   case ARM::MQQPRLoad:
1605   case ARM::MQQQQPRLoad:
1606     if (MI.getOperand(1).isFI()) {
1607       FrameIndex = MI.getOperand(1).getIndex();
1608       return MI.getOperand(0).getReg();
1609     }
1610     break;
1611   }
1612 
1613   return 0;
1614 }
1615 
1616 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
1617                                                      int &FrameIndex) const {
1618   SmallVector<const MachineMemOperand *, 1> Accesses;
1619   if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) &&
1620       Accesses.size() == 1) {
1621     FrameIndex =
1622         cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1623             ->getFrameIndex();
1624     return true;
1625   }
1626   return false;
1627 }
1628 
1629 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
1630 /// depending on whether the result is used.
1631 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const {
1632   bool isThumb1 = Subtarget.isThumb1Only();
1633   bool isThumb2 = Subtarget.isThumb2();
1634   const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo();
1635 
1636   DebugLoc dl = MI->getDebugLoc();
1637   MachineBasicBlock *BB = MI->getParent();
1638 
1639   MachineInstrBuilder LDM, STM;
1640   if (isThumb1 || !MI->getOperand(1).isDead()) {
1641     MachineOperand LDWb(MI->getOperand(1));
1642     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD
1643                                                  : isThumb1 ? ARM::tLDMIA_UPD
1644                                                             : ARM::LDMIA_UPD))
1645               .add(LDWb);
1646   } else {
1647     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA));
1648   }
1649 
1650   if (isThumb1 || !MI->getOperand(0).isDead()) {
1651     MachineOperand STWb(MI->getOperand(0));
1652     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD
1653                                                  : isThumb1 ? ARM::tSTMIA_UPD
1654                                                             : ARM::STMIA_UPD))
1655               .add(STWb);
1656   } else {
1657     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA));
1658   }
1659 
1660   MachineOperand LDBase(MI->getOperand(3));
1661   LDM.add(LDBase).add(predOps(ARMCC::AL));
1662 
1663   MachineOperand STBase(MI->getOperand(2));
1664   STM.add(STBase).add(predOps(ARMCC::AL));
1665 
1666   // Sort the scratch registers into ascending order.
1667   const TargetRegisterInfo &TRI = getRegisterInfo();
1668   SmallVector<unsigned, 6> ScratchRegs;
1669   for (MachineOperand &MO : llvm::drop_begin(MI->operands(), 5))
1670     ScratchRegs.push_back(MO.getReg());
1671   llvm::sort(ScratchRegs,
1672              [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool {
1673                return TRI.getEncodingValue(Reg1) <
1674                       TRI.getEncodingValue(Reg2);
1675              });
1676 
1677   for (const auto &Reg : ScratchRegs) {
1678     LDM.addReg(Reg, RegState::Define);
1679     STM.addReg(Reg, RegState::Kill);
1680   }
1681 
1682   BB->erase(MI);
1683 }
1684 
1685 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1686   if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
1687     expandLoadStackGuard(MI);
1688     MI.getParent()->erase(MI);
1689     return true;
1690   }
1691 
1692   if (MI.getOpcode() == ARM::MEMCPY) {
1693     expandMEMCPY(MI);
1694     return true;
1695   }
1696 
1697   // This hook gets to expand COPY instructions before they become
1698   // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
1699   // widened to VMOVD.  We prefer the VMOVD when possible because it may be
1700   // changed into a VORR that can go down the NEON pipeline.
1701   if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64())
1702     return false;
1703 
1704   // Look for a copy between even S-registers.  That is where we keep floats
1705   // when using NEON v2f32 instructions for f32 arithmetic.
1706   Register DstRegS = MI.getOperand(0).getReg();
1707   Register SrcRegS = MI.getOperand(1).getReg();
1708   if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1709     return false;
1710 
1711   const TargetRegisterInfo *TRI = &getRegisterInfo();
1712   unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1713                                               &ARM::DPRRegClass);
1714   unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1715                                               &ARM::DPRRegClass);
1716   if (!DstRegD || !SrcRegD)
1717     return false;
1718 
1719   // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
1720   // legal if the COPY already defines the full DstRegD, and it isn't a
1721   // sub-register insertion.
1722   if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI))
1723     return false;
1724 
1725   // A dead copy shouldn't show up here, but reject it just in case.
1726   if (MI.getOperand(0).isDead())
1727     return false;
1728 
1729   // All clear, widen the COPY.
1730   LLVM_DEBUG(dbgs() << "widening:    " << MI);
1731   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
1732 
1733   // Get rid of the old implicit-def of DstRegD.  Leave it if it defines a Q-reg
1734   // or some other super-register.
1735   int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD);
1736   if (ImpDefIdx != -1)
1737     MI.removeOperand(ImpDefIdx);
1738 
1739   // Change the opcode and operands.
1740   MI.setDesc(get(ARM::VMOVD));
1741   MI.getOperand(0).setReg(DstRegD);
1742   MI.getOperand(1).setReg(SrcRegD);
1743   MIB.add(predOps(ARMCC::AL));
1744 
1745   // We are now reading SrcRegD instead of SrcRegS.  This may upset the
1746   // register scavenger and machine verifier, so we need to indicate that we
1747   // are reading an undefined value from SrcRegD, but a proper value from
1748   // SrcRegS.
1749   MI.getOperand(1).setIsUndef();
1750   MIB.addReg(SrcRegS, RegState::Implicit);
1751 
1752   // SrcRegD may actually contain an unrelated value in the ssub_1
1753   // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
1754   if (MI.getOperand(1).isKill()) {
1755     MI.getOperand(1).setIsKill(false);
1756     MI.addRegisterKilled(SrcRegS, TRI, true);
1757   }
1758 
1759   LLVM_DEBUG(dbgs() << "replaced by: " << MI);
1760   return true;
1761 }
1762 
1763 /// Create a copy of a const pool value. Update CPI to the new index and return
1764 /// the label UID.
1765 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1766   MachineConstantPool *MCP = MF.getConstantPool();
1767   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1768 
1769   const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1770   assert(MCPE.isMachineConstantPoolEntry() &&
1771          "Expecting a machine constantpool entry!");
1772   ARMConstantPoolValue *ACPV =
1773     static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1774 
1775   unsigned PCLabelId = AFI->createPICLabelUId();
1776   ARMConstantPoolValue *NewCPV = nullptr;
1777 
1778   // FIXME: The below assumes PIC relocation model and that the function
1779   // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1780   // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1781   // instructions, so that's probably OK, but is PIC always correct when
1782   // we get here?
1783   if (ACPV->isGlobalValue())
1784     NewCPV = ARMConstantPoolConstant::Create(
1785         cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue,
1786         4, ACPV->getModifier(), ACPV->mustAddCurrentAddress());
1787   else if (ACPV->isExtSymbol())
1788     NewCPV = ARMConstantPoolSymbol::
1789       Create(MF.getFunction().getContext(),
1790              cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1791   else if (ACPV->isBlockAddress())
1792     NewCPV = ARMConstantPoolConstant::
1793       Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1794              ARMCP::CPBlockAddress, 4);
1795   else if (ACPV->isLSDA())
1796     NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId,
1797                                              ARMCP::CPLSDA, 4);
1798   else if (ACPV->isMachineBasicBlock())
1799     NewCPV = ARMConstantPoolMBB::
1800       Create(MF.getFunction().getContext(),
1801              cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1802   else
1803     llvm_unreachable("Unexpected ARM constantpool value type!!");
1804   CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlign());
1805   return PCLabelId;
1806 }
1807 
1808 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB,
1809                                      MachineBasicBlock::iterator I,
1810                                      Register DestReg, unsigned SubIdx,
1811                                      const MachineInstr &Orig,
1812                                      const TargetRegisterInfo &TRI) const {
1813   unsigned Opcode = Orig.getOpcode();
1814   switch (Opcode) {
1815   default: {
1816     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
1817     MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
1818     MBB.insert(I, MI);
1819     break;
1820   }
1821   case ARM::tLDRpci_pic:
1822   case ARM::t2LDRpci_pic: {
1823     MachineFunction &MF = *MBB.getParent();
1824     unsigned CPI = Orig.getOperand(1).getIndex();
1825     unsigned PCLabelId = duplicateCPV(MF, CPI);
1826     BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg)
1827         .addConstantPoolIndex(CPI)
1828         .addImm(PCLabelId)
1829         .cloneMemRefs(Orig);
1830     break;
1831   }
1832   }
1833 }
1834 
1835 MachineInstr &
1836 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB,
1837     MachineBasicBlock::iterator InsertBefore,
1838     const MachineInstr &Orig) const {
1839   MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig);
1840   MachineBasicBlock::instr_iterator I = Cloned.getIterator();
1841   for (;;) {
1842     switch (I->getOpcode()) {
1843     case ARM::tLDRpci_pic:
1844     case ARM::t2LDRpci_pic: {
1845       MachineFunction &MF = *MBB.getParent();
1846       unsigned CPI = I->getOperand(1).getIndex();
1847       unsigned PCLabelId = duplicateCPV(MF, CPI);
1848       I->getOperand(1).setIndex(CPI);
1849       I->getOperand(2).setImm(PCLabelId);
1850       break;
1851     }
1852     }
1853     if (!I->isBundledWithSucc())
1854       break;
1855     ++I;
1856   }
1857   return Cloned;
1858 }
1859 
1860 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0,
1861                                         const MachineInstr &MI1,
1862                                         const MachineRegisterInfo *MRI) const {
1863   unsigned Opcode = MI0.getOpcode();
1864   if (Opcode == ARM::t2LDRpci || Opcode == ARM::t2LDRpci_pic ||
1865       Opcode == ARM::tLDRpci || Opcode == ARM::tLDRpci_pic ||
1866       Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1867       Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel ||
1868       Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr ||
1869       Opcode == ARM::t2MOV_ga_pcrel) {
1870     if (MI1.getOpcode() != Opcode)
1871       return false;
1872     if (MI0.getNumOperands() != MI1.getNumOperands())
1873       return false;
1874 
1875     const MachineOperand &MO0 = MI0.getOperand(1);
1876     const MachineOperand &MO1 = MI1.getOperand(1);
1877     if (MO0.getOffset() != MO1.getOffset())
1878       return false;
1879 
1880     if (Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1881         Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel ||
1882         Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr ||
1883         Opcode == ARM::t2MOV_ga_pcrel)
1884       // Ignore the PC labels.
1885       return MO0.getGlobal() == MO1.getGlobal();
1886 
1887     const MachineFunction *MF = MI0.getParent()->getParent();
1888     const MachineConstantPool *MCP = MF->getConstantPool();
1889     int CPI0 = MO0.getIndex();
1890     int CPI1 = MO1.getIndex();
1891     const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1892     const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1893     bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1894     bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1895     if (isARMCP0 && isARMCP1) {
1896       ARMConstantPoolValue *ACPV0 =
1897         static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1898       ARMConstantPoolValue *ACPV1 =
1899         static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1900       return ACPV0->hasSameValue(ACPV1);
1901     } else if (!isARMCP0 && !isARMCP1) {
1902       return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1903     }
1904     return false;
1905   } else if (Opcode == ARM::PICLDR) {
1906     if (MI1.getOpcode() != Opcode)
1907       return false;
1908     if (MI0.getNumOperands() != MI1.getNumOperands())
1909       return false;
1910 
1911     Register Addr0 = MI0.getOperand(1).getReg();
1912     Register Addr1 = MI1.getOperand(1).getReg();
1913     if (Addr0 != Addr1) {
1914       if (!MRI || !Addr0.isVirtual() || !Addr1.isVirtual())
1915         return false;
1916 
1917       // This assumes SSA form.
1918       MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1919       MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1920       // Check if the loaded value, e.g. a constantpool of a global address, are
1921       // the same.
1922       if (!produceSameValue(*Def0, *Def1, MRI))
1923         return false;
1924     }
1925 
1926     for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) {
1927       // %12 = PICLDR %11, 0, 14, %noreg
1928       const MachineOperand &MO0 = MI0.getOperand(i);
1929       const MachineOperand &MO1 = MI1.getOperand(i);
1930       if (!MO0.isIdenticalTo(MO1))
1931         return false;
1932     }
1933     return true;
1934   }
1935 
1936   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1937 }
1938 
1939 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1940 /// determine if two loads are loading from the same base address. It should
1941 /// only return true if the base pointers are the same and the only differences
1942 /// between the two addresses is the offset. It also returns the offsets by
1943 /// reference.
1944 ///
1945 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1946 /// is permanently disabled.
1947 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1948                                                int64_t &Offset1,
1949                                                int64_t &Offset2) const {
1950   // Don't worry about Thumb: just ARM and Thumb2.
1951   if (Subtarget.isThumb1Only()) return false;
1952 
1953   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1954     return false;
1955 
1956   auto IsLoadOpcode = [&](unsigned Opcode) {
1957     switch (Opcode) {
1958     default:
1959       return false;
1960     case ARM::LDRi12:
1961     case ARM::LDRBi12:
1962     case ARM::LDRD:
1963     case ARM::LDRH:
1964     case ARM::LDRSB:
1965     case ARM::LDRSH:
1966     case ARM::VLDRD:
1967     case ARM::VLDRS:
1968     case ARM::t2LDRi8:
1969     case ARM::t2LDRBi8:
1970     case ARM::t2LDRDi8:
1971     case ARM::t2LDRSHi8:
1972     case ARM::t2LDRi12:
1973     case ARM::t2LDRBi12:
1974     case ARM::t2LDRSHi12:
1975       return true;
1976     }
1977   };
1978 
1979   if (!IsLoadOpcode(Load1->getMachineOpcode()) ||
1980       !IsLoadOpcode(Load2->getMachineOpcode()))
1981     return false;
1982 
1983   // Check if base addresses and chain operands match.
1984   if (Load1->getOperand(0) != Load2->getOperand(0) ||
1985       Load1->getOperand(4) != Load2->getOperand(4))
1986     return false;
1987 
1988   // Index should be Reg0.
1989   if (Load1->getOperand(3) != Load2->getOperand(3))
1990     return false;
1991 
1992   // Determine the offsets.
1993   if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1994       isa<ConstantSDNode>(Load2->getOperand(1))) {
1995     Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1996     Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1997     return true;
1998   }
1999 
2000   return false;
2001 }
2002 
2003 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
2004 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
2005 /// be scheduled togther. On some targets if two loads are loading from
2006 /// addresses in the same cache line, it's better if they are scheduled
2007 /// together. This function takes two integers that represent the load offsets
2008 /// from the common base address. It returns true if it decides it's desirable
2009 /// to schedule the two loads together. "NumLoads" is the number of loads that
2010 /// have already been scheduled after Load1.
2011 ///
2012 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
2013 /// is permanently disabled.
2014 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
2015                                                int64_t Offset1, int64_t Offset2,
2016                                                unsigned NumLoads) const {
2017   // Don't worry about Thumb: just ARM and Thumb2.
2018   if (Subtarget.isThumb1Only()) return false;
2019 
2020   assert(Offset2 > Offset1);
2021 
2022   if ((Offset2 - Offset1) / 8 > 64)
2023     return false;
2024 
2025   // Check if the machine opcodes are different. If they are different
2026   // then we consider them to not be of the same base address,
2027   // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
2028   // In this case, they are considered to be the same because they are different
2029   // encoding forms of the same basic instruction.
2030   if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
2031       !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
2032          Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
2033         (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
2034          Load2->getMachineOpcode() == ARM::t2LDRBi8)))
2035     return false;  // FIXME: overly conservative?
2036 
2037   // Four loads in a row should be sufficient.
2038   if (NumLoads >= 3)
2039     return false;
2040 
2041   return true;
2042 }
2043 
2044 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
2045                                             const MachineBasicBlock *MBB,
2046                                             const MachineFunction &MF) const {
2047   // Debug info is never a scheduling boundary. It's necessary to be explicit
2048   // due to the special treatment of IT instructions below, otherwise a
2049   // dbg_value followed by an IT will result in the IT instruction being
2050   // considered a scheduling hazard, which is wrong. It should be the actual
2051   // instruction preceding the dbg_value instruction(s), just like it is
2052   // when debug info is not present.
2053   if (MI.isDebugInstr())
2054     return false;
2055 
2056   // Terminators and labels can't be scheduled around.
2057   if (MI.isTerminator() || MI.isPosition())
2058     return true;
2059 
2060   // INLINEASM_BR can jump to another block
2061   if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
2062     return true;
2063 
2064   if (isSEHInstruction(MI))
2065     return true;
2066 
2067   // Treat the start of the IT block as a scheduling boundary, but schedule
2068   // t2IT along with all instructions following it.
2069   // FIXME: This is a big hammer. But the alternative is to add all potential
2070   // true and anti dependencies to IT block instructions as implicit operands
2071   // to the t2IT instruction. The added compile time and complexity does not
2072   // seem worth it.
2073   MachineBasicBlock::const_iterator I = MI;
2074   // Make sure to skip any debug instructions
2075   while (++I != MBB->end() && I->isDebugInstr())
2076     ;
2077   if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
2078     return true;
2079 
2080   // Don't attempt to schedule around any instruction that defines
2081   // a stack-oriented pointer, as it's unlikely to be profitable. This
2082   // saves compile time, because it doesn't require every single
2083   // stack slot reference to depend on the instruction that does the
2084   // modification.
2085   // Calls don't actually change the stack pointer, even if they have imp-defs.
2086   // No ARM calling conventions change the stack pointer. (X86 calling
2087   // conventions sometimes do).
2088   if (!MI.isCall() && MI.definesRegister(ARM::SP))
2089     return true;
2090 
2091   return false;
2092 }
2093 
2094 bool ARMBaseInstrInfo::
2095 isProfitableToIfCvt(MachineBasicBlock &MBB,
2096                     unsigned NumCycles, unsigned ExtraPredCycles,
2097                     BranchProbability Probability) const {
2098   if (!NumCycles)
2099     return false;
2100 
2101   // If we are optimizing for size, see if the branch in the predecessor can be
2102   // lowered to cbn?z by the constant island lowering pass, and return false if
2103   // so. This results in a shorter instruction sequence.
2104   if (MBB.getParent()->getFunction().hasOptSize()) {
2105     MachineBasicBlock *Pred = *MBB.pred_begin();
2106     if (!Pred->empty()) {
2107       MachineInstr *LastMI = &*Pred->rbegin();
2108       if (LastMI->getOpcode() == ARM::t2Bcc) {
2109         const TargetRegisterInfo *TRI = &getRegisterInfo();
2110         MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI);
2111         if (CmpMI)
2112           return false;
2113       }
2114     }
2115   }
2116   return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles,
2117                              MBB, 0, 0, Probability);
2118 }
2119 
2120 bool ARMBaseInstrInfo::
2121 isProfitableToIfCvt(MachineBasicBlock &TBB,
2122                     unsigned TCycles, unsigned TExtra,
2123                     MachineBasicBlock &FBB,
2124                     unsigned FCycles, unsigned FExtra,
2125                     BranchProbability Probability) const {
2126   if (!TCycles)
2127     return false;
2128 
2129   // In thumb code we often end up trading one branch for a IT block, and
2130   // if we are cloning the instruction can increase code size. Prevent
2131   // blocks with multiple predecesors from being ifcvted to prevent this
2132   // cloning.
2133   if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) {
2134     if (TBB.pred_size() != 1 || FBB.pred_size() != 1)
2135       return false;
2136   }
2137 
2138   // Attempt to estimate the relative costs of predication versus branching.
2139   // Here we scale up each component of UnpredCost to avoid precision issue when
2140   // scaling TCycles/FCycles by Probability.
2141   const unsigned ScalingUpFactor = 1024;
2142 
2143   unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor;
2144   unsigned UnpredCost;
2145   if (!Subtarget.hasBranchPredictor()) {
2146     // When we don't have a branch predictor it's always cheaper to not take a
2147     // branch than take it, so we have to take that into account.
2148     unsigned NotTakenBranchCost = 1;
2149     unsigned TakenBranchCost = Subtarget.getMispredictionPenalty();
2150     unsigned TUnpredCycles, FUnpredCycles;
2151     if (!FCycles) {
2152       // Triangle: TBB is the fallthrough
2153       TUnpredCycles = TCycles + NotTakenBranchCost;
2154       FUnpredCycles = TakenBranchCost;
2155     } else {
2156       // Diamond: TBB is the block that is branched to, FBB is the fallthrough
2157       TUnpredCycles = TCycles + TakenBranchCost;
2158       FUnpredCycles = FCycles + NotTakenBranchCost;
2159       // The branch at the end of FBB will disappear when it's predicated, so
2160       // discount it from PredCost.
2161       PredCost -= 1 * ScalingUpFactor;
2162     }
2163     // The total cost is the cost of each path scaled by their probabilites
2164     unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor);
2165     unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor);
2166     UnpredCost = TUnpredCost + FUnpredCost;
2167     // When predicating assume that the first IT can be folded away but later
2168     // ones cost one cycle each
2169     if (Subtarget.isThumb2() && TCycles + FCycles > 4) {
2170       PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor;
2171     }
2172   } else {
2173     unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor);
2174     unsigned FUnpredCost =
2175       Probability.getCompl().scale(FCycles * ScalingUpFactor);
2176     UnpredCost = TUnpredCost + FUnpredCost;
2177     UnpredCost += 1 * ScalingUpFactor; // The branch itself
2178     UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
2179   }
2180 
2181   return PredCost <= UnpredCost;
2182 }
2183 
2184 unsigned
2185 ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF,
2186                                                    unsigned NumInsts) const {
2187   // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions.
2188   // ARM has a condition code field in every predicable instruction, using it
2189   // doesn't change code size.
2190   if (!Subtarget.isThumb2())
2191     return 0;
2192 
2193   // It's possible that the size of the IT is restricted to a single block.
2194   unsigned MaxInsts = Subtarget.restrictIT() ? 1 : 4;
2195   return divideCeil(NumInsts, MaxInsts) * 2;
2196 }
2197 
2198 unsigned
2199 ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const {
2200   // If this branch is likely to be folded into the comparison to form a
2201   // CB(N)Z, then removing it won't reduce code size at all, because that will
2202   // just replace the CB(N)Z with a CMP.
2203   if (MI.getOpcode() == ARM::t2Bcc &&
2204       findCMPToFoldIntoCBZ(&MI, &getRegisterInfo()))
2205     return 0;
2206 
2207   unsigned Size = getInstSizeInBytes(MI);
2208 
2209   // For Thumb2, all branches are 32-bit instructions during the if conversion
2210   // pass, but may be replaced with 16-bit instructions during size reduction.
2211   // Since the branches considered by if conversion tend to be forward branches
2212   // over small basic blocks, they are very likely to be in range for the
2213   // narrow instructions, so we assume the final code size will be half what it
2214   // currently is.
2215   if (Subtarget.isThumb2())
2216     Size /= 2;
2217 
2218   return Size;
2219 }
2220 
2221 bool
2222 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
2223                                             MachineBasicBlock &FMBB) const {
2224   // Reduce false anti-dependencies to let the target's out-of-order execution
2225   // engine do its thing.
2226   return Subtarget.isProfitableToUnpredicate();
2227 }
2228 
2229 /// getInstrPredicate - If instruction is predicated, returns its predicate
2230 /// condition, otherwise returns AL. It also returns the condition code
2231 /// register by reference.
2232 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI,
2233                                          Register &PredReg) {
2234   int PIdx = MI.findFirstPredOperandIdx();
2235   if (PIdx == -1) {
2236     PredReg = 0;
2237     return ARMCC::AL;
2238   }
2239 
2240   PredReg = MI.getOperand(PIdx+1).getReg();
2241   return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
2242 }
2243 
2244 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
2245   if (Opc == ARM::B)
2246     return ARM::Bcc;
2247   if (Opc == ARM::tB)
2248     return ARM::tBcc;
2249   if (Opc == ARM::t2B)
2250     return ARM::t2Bcc;
2251 
2252   llvm_unreachable("Unknown unconditional branch opcode!");
2253 }
2254 
2255 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI,
2256                                                        bool NewMI,
2257                                                        unsigned OpIdx1,
2258                                                        unsigned OpIdx2) const {
2259   switch (MI.getOpcode()) {
2260   case ARM::MOVCCr:
2261   case ARM::t2MOVCCr: {
2262     // MOVCC can be commuted by inverting the condition.
2263     Register PredReg;
2264     ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
2265     // MOVCC AL can't be inverted. Shouldn't happen.
2266     if (CC == ARMCC::AL || PredReg != ARM::CPSR)
2267       return nullptr;
2268     MachineInstr *CommutedMI =
2269         TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2270     if (!CommutedMI)
2271       return nullptr;
2272     // After swapping the MOVCC operands, also invert the condition.
2273     CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx())
2274         .setImm(ARMCC::getOppositeCondition(CC));
2275     return CommutedMI;
2276   }
2277   }
2278   return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2279 }
2280 
2281 /// Identify instructions that can be folded into a MOVCC instruction, and
2282 /// return the defining instruction.
2283 MachineInstr *
2284 ARMBaseInstrInfo::canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI,
2285                                    const TargetInstrInfo *TII) const {
2286   if (!Reg.isVirtual())
2287     return nullptr;
2288   if (!MRI.hasOneNonDBGUse(Reg))
2289     return nullptr;
2290   MachineInstr *MI = MRI.getVRegDef(Reg);
2291   if (!MI)
2292     return nullptr;
2293   // Check if MI can be predicated and folded into the MOVCC.
2294   if (!isPredicable(*MI))
2295     return nullptr;
2296   // Check if MI has any non-dead defs or physreg uses. This also detects
2297   // predicated instructions which will be reading CPSR.
2298   for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 1)) {
2299     // Reject frame index operands, PEI can't handle the predicated pseudos.
2300     if (MO.isFI() || MO.isCPI() || MO.isJTI())
2301       return nullptr;
2302     if (!MO.isReg())
2303       continue;
2304     // MI can't have any tied operands, that would conflict with predication.
2305     if (MO.isTied())
2306       return nullptr;
2307     if (MO.getReg().isPhysical())
2308       return nullptr;
2309     if (MO.isDef() && !MO.isDead())
2310       return nullptr;
2311   }
2312   bool DontMoveAcrossStores = true;
2313   if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores))
2314     return nullptr;
2315   return MI;
2316 }
2317 
2318 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI,
2319                                      SmallVectorImpl<MachineOperand> &Cond,
2320                                      unsigned &TrueOp, unsigned &FalseOp,
2321                                      bool &Optimizable) const {
2322   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2323          "Unknown select instruction");
2324   // MOVCC operands:
2325   // 0: Def.
2326   // 1: True use.
2327   // 2: False use.
2328   // 3: Condition code.
2329   // 4: CPSR use.
2330   TrueOp = 1;
2331   FalseOp = 2;
2332   Cond.push_back(MI.getOperand(3));
2333   Cond.push_back(MI.getOperand(4));
2334   // We can always fold a def.
2335   Optimizable = true;
2336   return false;
2337 }
2338 
2339 MachineInstr *
2340 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI,
2341                                  SmallPtrSetImpl<MachineInstr *> &SeenMIs,
2342                                  bool PreferFalse) const {
2343   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2344          "Unknown select instruction");
2345   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2346   MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this);
2347   bool Invert = !DefMI;
2348   if (!DefMI)
2349     DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this);
2350   if (!DefMI)
2351     return nullptr;
2352 
2353   // Find new register class to use.
2354   MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1);
2355   MachineOperand TrueReg = MI.getOperand(Invert ? 1 : 2);
2356   Register DestReg = MI.getOperand(0).getReg();
2357   const TargetRegisterClass *FalseClass = MRI.getRegClass(FalseReg.getReg());
2358   const TargetRegisterClass *TrueClass = MRI.getRegClass(TrueReg.getReg());
2359   if (!MRI.constrainRegClass(DestReg, FalseClass))
2360     return nullptr;
2361   if (!MRI.constrainRegClass(DestReg, TrueClass))
2362     return nullptr;
2363 
2364   // Create a new predicated version of DefMI.
2365   // Rfalse is the first use.
2366   MachineInstrBuilder NewMI =
2367       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg);
2368 
2369   // Copy all the DefMI operands, excluding its (null) predicate.
2370   const MCInstrDesc &DefDesc = DefMI->getDesc();
2371   for (unsigned i = 1, e = DefDesc.getNumOperands();
2372        i != e && !DefDesc.operands()[i].isPredicate(); ++i)
2373     NewMI.add(DefMI->getOperand(i));
2374 
2375   unsigned CondCode = MI.getOperand(3).getImm();
2376   if (Invert)
2377     NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
2378   else
2379     NewMI.addImm(CondCode);
2380   NewMI.add(MI.getOperand(4));
2381 
2382   // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
2383   if (NewMI->hasOptionalDef())
2384     NewMI.add(condCodeOp());
2385 
2386   // The output register value when the predicate is false is an implicit
2387   // register operand tied to the first def.
2388   // The tie makes the register allocator ensure the FalseReg is allocated the
2389   // same register as operand 0.
2390   FalseReg.setImplicit();
2391   NewMI.add(FalseReg);
2392   NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
2393 
2394   // Update SeenMIs set: register newly created MI and erase removed DefMI.
2395   SeenMIs.insert(NewMI);
2396   SeenMIs.erase(DefMI);
2397 
2398   // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
2399   // DefMI would be invalid when tranferred inside the loop.  Checking for a
2400   // loop is expensive, but at least remove kill flags if they are in different
2401   // BBs.
2402   if (DefMI->getParent() != MI.getParent())
2403     NewMI->clearKillInfo();
2404 
2405   // The caller will erase MI, but not DefMI.
2406   DefMI->eraseFromParent();
2407   return NewMI;
2408 }
2409 
2410 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
2411 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
2412 /// def operand.
2413 ///
2414 /// This will go away once we can teach tblgen how to set the optional CPSR def
2415 /// operand itself.
2416 struct AddSubFlagsOpcodePair {
2417   uint16_t PseudoOpc;
2418   uint16_t MachineOpc;
2419 };
2420 
2421 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
2422   {ARM::ADDSri, ARM::ADDri},
2423   {ARM::ADDSrr, ARM::ADDrr},
2424   {ARM::ADDSrsi, ARM::ADDrsi},
2425   {ARM::ADDSrsr, ARM::ADDrsr},
2426 
2427   {ARM::SUBSri, ARM::SUBri},
2428   {ARM::SUBSrr, ARM::SUBrr},
2429   {ARM::SUBSrsi, ARM::SUBrsi},
2430   {ARM::SUBSrsr, ARM::SUBrsr},
2431 
2432   {ARM::RSBSri, ARM::RSBri},
2433   {ARM::RSBSrsi, ARM::RSBrsi},
2434   {ARM::RSBSrsr, ARM::RSBrsr},
2435 
2436   {ARM::tADDSi3, ARM::tADDi3},
2437   {ARM::tADDSi8, ARM::tADDi8},
2438   {ARM::tADDSrr, ARM::tADDrr},
2439   {ARM::tADCS, ARM::tADC},
2440 
2441   {ARM::tSUBSi3, ARM::tSUBi3},
2442   {ARM::tSUBSi8, ARM::tSUBi8},
2443   {ARM::tSUBSrr, ARM::tSUBrr},
2444   {ARM::tSBCS, ARM::tSBC},
2445   {ARM::tRSBS, ARM::tRSB},
2446   {ARM::tLSLSri, ARM::tLSLri},
2447 
2448   {ARM::t2ADDSri, ARM::t2ADDri},
2449   {ARM::t2ADDSrr, ARM::t2ADDrr},
2450   {ARM::t2ADDSrs, ARM::t2ADDrs},
2451 
2452   {ARM::t2SUBSri, ARM::t2SUBri},
2453   {ARM::t2SUBSrr, ARM::t2SUBrr},
2454   {ARM::t2SUBSrs, ARM::t2SUBrs},
2455 
2456   {ARM::t2RSBSri, ARM::t2RSBri},
2457   {ARM::t2RSBSrs, ARM::t2RSBrs},
2458 };
2459 
2460 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
2461   for (const auto &Entry : AddSubFlagsOpcodeMap)
2462     if (OldOpc == Entry.PseudoOpc)
2463       return Entry.MachineOpc;
2464   return 0;
2465 }
2466 
2467 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
2468                                    MachineBasicBlock::iterator &MBBI,
2469                                    const DebugLoc &dl, Register DestReg,
2470                                    Register BaseReg, int NumBytes,
2471                                    ARMCC::CondCodes Pred, Register PredReg,
2472                                    const ARMBaseInstrInfo &TII,
2473                                    unsigned MIFlags) {
2474   if (NumBytes == 0 && DestReg != BaseReg) {
2475     BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
2476         .addReg(BaseReg, RegState::Kill)
2477         .add(predOps(Pred, PredReg))
2478         .add(condCodeOp())
2479         .setMIFlags(MIFlags);
2480     return;
2481   }
2482 
2483   bool isSub = NumBytes < 0;
2484   if (isSub) NumBytes = -NumBytes;
2485 
2486   while (NumBytes) {
2487     unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
2488     unsigned ThisVal = NumBytes & llvm::rotr<uint32_t>(0xFF, RotAmt);
2489     assert(ThisVal && "Didn't extract field correctly");
2490 
2491     // We will handle these bits from offset, clear them.
2492     NumBytes &= ~ThisVal;
2493 
2494     assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
2495 
2496     // Build the new ADD / SUB.
2497     unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
2498     BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
2499         .addReg(BaseReg, RegState::Kill)
2500         .addImm(ThisVal)
2501         .add(predOps(Pred, PredReg))
2502         .add(condCodeOp())
2503         .setMIFlags(MIFlags);
2504     BaseReg = DestReg;
2505   }
2506 }
2507 
2508 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
2509                                       MachineFunction &MF, MachineInstr *MI,
2510                                       unsigned NumBytes) {
2511   // This optimisation potentially adds lots of load and store
2512   // micro-operations, it's only really a great benefit to code-size.
2513   if (!Subtarget.hasMinSize())
2514     return false;
2515 
2516   // If only one register is pushed/popped, LLVM can use an LDR/STR
2517   // instead. We can't modify those so make sure we're dealing with an
2518   // instruction we understand.
2519   bool IsPop = isPopOpcode(MI->getOpcode());
2520   bool IsPush = isPushOpcode(MI->getOpcode());
2521   if (!IsPush && !IsPop)
2522     return false;
2523 
2524   bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
2525                       MI->getOpcode() == ARM::VLDMDIA_UPD;
2526   bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
2527                      MI->getOpcode() == ARM::tPOP ||
2528                      MI->getOpcode() == ARM::tPOP_RET;
2529 
2530   assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
2531                           MI->getOperand(1).getReg() == ARM::SP)) &&
2532          "trying to fold sp update into non-sp-updating push/pop");
2533 
2534   // The VFP push & pop act on D-registers, so we can only fold an adjustment
2535   // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
2536   // if this is violated.
2537   if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
2538     return false;
2539 
2540   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
2541   // pred) so the list starts at 4. Thumb1 starts after the predicate.
2542   int RegListIdx = IsT1PushPop ? 2 : 4;
2543 
2544   // Calculate the space we'll need in terms of registers.
2545   unsigned RegsNeeded;
2546   const TargetRegisterClass *RegClass;
2547   if (IsVFPPushPop) {
2548     RegsNeeded = NumBytes / 8;
2549     RegClass = &ARM::DPRRegClass;
2550   } else {
2551     RegsNeeded = NumBytes / 4;
2552     RegClass = &ARM::GPRRegClass;
2553   }
2554 
2555   // We're going to have to strip all list operands off before
2556   // re-adding them since the order matters, so save the existing ones
2557   // for later.
2558   SmallVector<MachineOperand, 4> RegList;
2559 
2560   // We're also going to need the first register transferred by this
2561   // instruction, which won't necessarily be the first register in the list.
2562   unsigned FirstRegEnc = -1;
2563 
2564   const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
2565   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) {
2566     MachineOperand &MO = MI->getOperand(i);
2567     RegList.push_back(MO);
2568 
2569     if (MO.isReg() && !MO.isImplicit() &&
2570         TRI->getEncodingValue(MO.getReg()) < FirstRegEnc)
2571       FirstRegEnc = TRI->getEncodingValue(MO.getReg());
2572   }
2573 
2574   const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
2575 
2576   // Now try to find enough space in the reglist to allocate NumBytes.
2577   for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded;
2578        --CurRegEnc) {
2579     unsigned CurReg = RegClass->getRegister(CurRegEnc);
2580     if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7))
2581       continue;
2582     if (!IsPop) {
2583       // Pushing any register is completely harmless, mark the register involved
2584       // as undef since we don't care about its value and must not restore it
2585       // during stack unwinding.
2586       RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
2587                                                   false, false, true));
2588       --RegsNeeded;
2589       continue;
2590     }
2591 
2592     // However, we can only pop an extra register if it's not live. For
2593     // registers live within the function we might clobber a return value
2594     // register; the other way a register can be live here is if it's
2595     // callee-saved.
2596     if (isCalleeSavedRegister(CurReg, CSRegs) ||
2597         MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) !=
2598         MachineBasicBlock::LQR_Dead) {
2599       // VFP pops don't allow holes in the register list, so any skip is fatal
2600       // for our transformation. GPR pops do, so we should just keep looking.
2601       if (IsVFPPushPop)
2602         return false;
2603       else
2604         continue;
2605     }
2606 
2607     // Mark the unimportant registers as <def,dead> in the POP.
2608     RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
2609                                                 true));
2610     --RegsNeeded;
2611   }
2612 
2613   if (RegsNeeded > 0)
2614     return false;
2615 
2616   // Finally we know we can profitably perform the optimisation so go
2617   // ahead: strip all existing registers off and add them back again
2618   // in the right order.
2619   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
2620     MI->removeOperand(i);
2621 
2622   // Add the complete list back in.
2623   MachineInstrBuilder MIB(MF, &*MI);
2624   for (const MachineOperand &MO : llvm::reverse(RegList))
2625     MIB.add(MO);
2626 
2627   return true;
2628 }
2629 
2630 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
2631                                 Register FrameReg, int &Offset,
2632                                 const ARMBaseInstrInfo &TII) {
2633   unsigned Opcode = MI.getOpcode();
2634   const MCInstrDesc &Desc = MI.getDesc();
2635   unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
2636   bool isSub = false;
2637 
2638   // Memory operands in inline assembly always use AddrMode2.
2639   if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR)
2640     AddrMode = ARMII::AddrMode2;
2641 
2642   if (Opcode == ARM::ADDri) {
2643     Offset += MI.getOperand(FrameRegIdx+1).getImm();
2644     if (Offset == 0) {
2645       // Turn it into a move.
2646       MI.setDesc(TII.get(ARM::MOVr));
2647       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2648       MI.removeOperand(FrameRegIdx+1);
2649       Offset = 0;
2650       return true;
2651     } else if (Offset < 0) {
2652       Offset = -Offset;
2653       isSub = true;
2654       MI.setDesc(TII.get(ARM::SUBri));
2655     }
2656 
2657     // Common case: small offset, fits into instruction.
2658     if (ARM_AM::getSOImmVal(Offset) != -1) {
2659       // Replace the FrameIndex with sp / fp
2660       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2661       MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
2662       Offset = 0;
2663       return true;
2664     }
2665 
2666     // Otherwise, pull as much of the immedidate into this ADDri/SUBri
2667     // as possible.
2668     unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
2669     unsigned ThisImmVal = Offset & llvm::rotr<uint32_t>(0xFF, RotAmt);
2670 
2671     // We will handle these bits from offset, clear them.
2672     Offset &= ~ThisImmVal;
2673 
2674     // Get the properly encoded SOImmVal field.
2675     assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
2676            "Bit extraction didn't work?");
2677     MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
2678  } else {
2679     unsigned ImmIdx = 0;
2680     int InstrOffs = 0;
2681     unsigned NumBits = 0;
2682     unsigned Scale = 1;
2683     switch (AddrMode) {
2684     case ARMII::AddrMode_i12:
2685       ImmIdx = FrameRegIdx + 1;
2686       InstrOffs = MI.getOperand(ImmIdx).getImm();
2687       NumBits = 12;
2688       break;
2689     case ARMII::AddrMode2:
2690       ImmIdx = FrameRegIdx+2;
2691       InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
2692       if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2693         InstrOffs *= -1;
2694       NumBits = 12;
2695       break;
2696     case ARMII::AddrMode3:
2697       ImmIdx = FrameRegIdx+2;
2698       InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
2699       if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2700         InstrOffs *= -1;
2701       NumBits = 8;
2702       break;
2703     case ARMII::AddrMode4:
2704     case ARMII::AddrMode6:
2705       // Can't fold any offset even if it's zero.
2706       return false;
2707     case ARMII::AddrMode5:
2708       ImmIdx = FrameRegIdx+1;
2709       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2710       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2711         InstrOffs *= -1;
2712       NumBits = 8;
2713       Scale = 4;
2714       break;
2715     case ARMII::AddrMode5FP16:
2716       ImmIdx = FrameRegIdx+1;
2717       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2718       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2719         InstrOffs *= -1;
2720       NumBits = 8;
2721       Scale = 2;
2722       break;
2723     case ARMII::AddrModeT2_i7:
2724     case ARMII::AddrModeT2_i7s2:
2725     case ARMII::AddrModeT2_i7s4:
2726       ImmIdx = FrameRegIdx+1;
2727       InstrOffs = MI.getOperand(ImmIdx).getImm();
2728       NumBits = 7;
2729       Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 :
2730                AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1);
2731       break;
2732     default:
2733       llvm_unreachable("Unsupported addressing mode!");
2734     }
2735 
2736     Offset += InstrOffs * Scale;
2737     assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
2738     if (Offset < 0) {
2739       Offset = -Offset;
2740       isSub = true;
2741     }
2742 
2743     // Attempt to fold address comp. if opcode has offset bits
2744     if (NumBits > 0) {
2745       // Common case: small offset, fits into instruction.
2746       MachineOperand &ImmOp = MI.getOperand(ImmIdx);
2747       int ImmedOffset = Offset / Scale;
2748       unsigned Mask = (1 << NumBits) - 1;
2749       if ((unsigned)Offset <= Mask * Scale) {
2750         // Replace the FrameIndex with sp
2751         MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2752         // FIXME: When addrmode2 goes away, this will simplify (like the
2753         // T2 version), as the LDR.i12 versions don't need the encoding
2754         // tricks for the offset value.
2755         if (isSub) {
2756           if (AddrMode == ARMII::AddrMode_i12)
2757             ImmedOffset = -ImmedOffset;
2758           else
2759             ImmedOffset |= 1 << NumBits;
2760         }
2761         ImmOp.ChangeToImmediate(ImmedOffset);
2762         Offset = 0;
2763         return true;
2764       }
2765 
2766       // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
2767       ImmedOffset = ImmedOffset & Mask;
2768       if (isSub) {
2769         if (AddrMode == ARMII::AddrMode_i12)
2770           ImmedOffset = -ImmedOffset;
2771         else
2772           ImmedOffset |= 1 << NumBits;
2773       }
2774       ImmOp.ChangeToImmediate(ImmedOffset);
2775       Offset &= ~(Mask*Scale);
2776     }
2777   }
2778 
2779   Offset = (isSub) ? -Offset : Offset;
2780   return Offset == 0;
2781 }
2782 
2783 /// analyzeCompare - For a comparison instruction, return the source registers
2784 /// in SrcReg and SrcReg2 if having two register operands, and the value it
2785 /// compares against in CmpValue. Return true if the comparison instruction
2786 /// can be analyzed.
2787 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
2788                                       Register &SrcReg2, int64_t &CmpMask,
2789                                       int64_t &CmpValue) const {
2790   switch (MI.getOpcode()) {
2791   default: break;
2792   case ARM::CMPri:
2793   case ARM::t2CMPri:
2794   case ARM::tCMPi8:
2795     SrcReg = MI.getOperand(0).getReg();
2796     SrcReg2 = 0;
2797     CmpMask = ~0;
2798     CmpValue = MI.getOperand(1).getImm();
2799     return true;
2800   case ARM::CMPrr:
2801   case ARM::t2CMPrr:
2802   case ARM::tCMPr:
2803     SrcReg = MI.getOperand(0).getReg();
2804     SrcReg2 = MI.getOperand(1).getReg();
2805     CmpMask = ~0;
2806     CmpValue = 0;
2807     return true;
2808   case ARM::TSTri:
2809   case ARM::t2TSTri:
2810     SrcReg = MI.getOperand(0).getReg();
2811     SrcReg2 = 0;
2812     CmpMask = MI.getOperand(1).getImm();
2813     CmpValue = 0;
2814     return true;
2815   }
2816 
2817   return false;
2818 }
2819 
2820 /// isSuitableForMask - Identify a suitable 'and' instruction that
2821 /// operates on the given source register and applies the same mask
2822 /// as a 'tst' instruction. Provide a limited look-through for copies.
2823 /// When successful, MI will hold the found instruction.
2824 static bool isSuitableForMask(MachineInstr *&MI, Register SrcReg,
2825                               int CmpMask, bool CommonUse) {
2826   switch (MI->getOpcode()) {
2827     case ARM::ANDri:
2828     case ARM::t2ANDri:
2829       if (CmpMask != MI->getOperand(2).getImm())
2830         return false;
2831       if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
2832         return true;
2833       break;
2834   }
2835 
2836   return false;
2837 }
2838 
2839 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return
2840 /// the condition code if we modify the instructions such that flags are
2841 /// set by ADD(a,b,X).
2842 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) {
2843   switch (CC) {
2844   default: return ARMCC::AL;
2845   case ARMCC::HS: return ARMCC::LO;
2846   case ARMCC::LO: return ARMCC::HS;
2847   case ARMCC::VS: return ARMCC::VS;
2848   case ARMCC::VC: return ARMCC::VC;
2849   }
2850 }
2851 
2852 /// isRedundantFlagInstr - check whether the first instruction, whose only
2853 /// purpose is to update flags, can be made redundant.
2854 /// CMPrr can be made redundant by SUBrr if the operands are the same.
2855 /// CMPri can be made redundant by SUBri if the operands are the same.
2856 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X).
2857 /// This function can be extended later on.
2858 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI,
2859                                         Register SrcReg, Register SrcReg2,
2860                                         int64_t ImmValue,
2861                                         const MachineInstr *OI,
2862                                         bool &IsThumb1) {
2863   if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2864       (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) &&
2865       ((OI->getOperand(1).getReg() == SrcReg &&
2866         OI->getOperand(2).getReg() == SrcReg2) ||
2867        (OI->getOperand(1).getReg() == SrcReg2 &&
2868         OI->getOperand(2).getReg() == SrcReg))) {
2869     IsThumb1 = false;
2870     return true;
2871   }
2872 
2873   if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr &&
2874       ((OI->getOperand(2).getReg() == SrcReg &&
2875         OI->getOperand(3).getReg() == SrcReg2) ||
2876        (OI->getOperand(2).getReg() == SrcReg2 &&
2877         OI->getOperand(3).getReg() == SrcReg))) {
2878     IsThumb1 = true;
2879     return true;
2880   }
2881 
2882   if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) &&
2883       (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) &&
2884       OI->getOperand(1).getReg() == SrcReg &&
2885       OI->getOperand(2).getImm() == ImmValue) {
2886     IsThumb1 = false;
2887     return true;
2888   }
2889 
2890   if (CmpI->getOpcode() == ARM::tCMPi8 &&
2891       (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) &&
2892       OI->getOperand(2).getReg() == SrcReg &&
2893       OI->getOperand(3).getImm() == ImmValue) {
2894     IsThumb1 = true;
2895     return true;
2896   }
2897 
2898   if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2899       (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr ||
2900        OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) &&
2901       OI->getOperand(0).isReg() && OI->getOperand(1).isReg() &&
2902       OI->getOperand(0).getReg() == SrcReg &&
2903       OI->getOperand(1).getReg() == SrcReg2) {
2904     IsThumb1 = false;
2905     return true;
2906   }
2907 
2908   if (CmpI->getOpcode() == ARM::tCMPr &&
2909       (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 ||
2910        OI->getOpcode() == ARM::tADDrr) &&
2911       OI->getOperand(0).getReg() == SrcReg &&
2912       OI->getOperand(2).getReg() == SrcReg2) {
2913     IsThumb1 = true;
2914     return true;
2915   }
2916 
2917   return false;
2918 }
2919 
2920 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) {
2921   switch (MI->getOpcode()) {
2922   default: return false;
2923   case ARM::tLSLri:
2924   case ARM::tLSRri:
2925   case ARM::tLSLrr:
2926   case ARM::tLSRrr:
2927   case ARM::tSUBrr:
2928   case ARM::tADDrr:
2929   case ARM::tADDi3:
2930   case ARM::tADDi8:
2931   case ARM::tSUBi3:
2932   case ARM::tSUBi8:
2933   case ARM::tMUL:
2934   case ARM::tADC:
2935   case ARM::tSBC:
2936   case ARM::tRSB:
2937   case ARM::tAND:
2938   case ARM::tORR:
2939   case ARM::tEOR:
2940   case ARM::tBIC:
2941   case ARM::tMVN:
2942   case ARM::tASRri:
2943   case ARM::tASRrr:
2944   case ARM::tROR:
2945     IsThumb1 = true;
2946     [[fallthrough]];
2947   case ARM::RSBrr:
2948   case ARM::RSBri:
2949   case ARM::RSCrr:
2950   case ARM::RSCri:
2951   case ARM::ADDrr:
2952   case ARM::ADDri:
2953   case ARM::ADCrr:
2954   case ARM::ADCri:
2955   case ARM::SUBrr:
2956   case ARM::SUBri:
2957   case ARM::SBCrr:
2958   case ARM::SBCri:
2959   case ARM::t2RSBri:
2960   case ARM::t2ADDrr:
2961   case ARM::t2ADDri:
2962   case ARM::t2ADCrr:
2963   case ARM::t2ADCri:
2964   case ARM::t2SUBrr:
2965   case ARM::t2SUBri:
2966   case ARM::t2SBCrr:
2967   case ARM::t2SBCri:
2968   case ARM::ANDrr:
2969   case ARM::ANDri:
2970   case ARM::ANDrsr:
2971   case ARM::ANDrsi:
2972   case ARM::t2ANDrr:
2973   case ARM::t2ANDri:
2974   case ARM::t2ANDrs:
2975   case ARM::ORRrr:
2976   case ARM::ORRri:
2977   case ARM::ORRrsr:
2978   case ARM::ORRrsi:
2979   case ARM::t2ORRrr:
2980   case ARM::t2ORRri:
2981   case ARM::t2ORRrs:
2982   case ARM::EORrr:
2983   case ARM::EORri:
2984   case ARM::EORrsr:
2985   case ARM::EORrsi:
2986   case ARM::t2EORrr:
2987   case ARM::t2EORri:
2988   case ARM::t2EORrs:
2989   case ARM::BICri:
2990   case ARM::BICrr:
2991   case ARM::BICrsi:
2992   case ARM::BICrsr:
2993   case ARM::t2BICri:
2994   case ARM::t2BICrr:
2995   case ARM::t2BICrs:
2996   case ARM::t2LSRri:
2997   case ARM::t2LSRrr:
2998   case ARM::t2LSLri:
2999   case ARM::t2LSLrr:
3000   case ARM::MOVsr:
3001   case ARM::MOVsi:
3002     return true;
3003   }
3004 }
3005 
3006 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
3007 /// comparison into one that sets the zero bit in the flags register;
3008 /// Remove a redundant Compare instruction if an earlier instruction can set the
3009 /// flags in the same way as Compare.
3010 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
3011 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
3012 /// condition code of instructions which use the flags.
3013 bool ARMBaseInstrInfo::optimizeCompareInstr(
3014     MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t CmpMask,
3015     int64_t CmpValue, const MachineRegisterInfo *MRI) const {
3016   // Get the unique definition of SrcReg.
3017   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
3018   if (!MI) return false;
3019 
3020   // Masked compares sometimes use the same register as the corresponding 'and'.
3021   if (CmpMask != ~0) {
3022     if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) {
3023       MI = nullptr;
3024       for (MachineRegisterInfo::use_instr_iterator
3025            UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
3026            UI != UE; ++UI) {
3027         if (UI->getParent() != CmpInstr.getParent())
3028           continue;
3029         MachineInstr *PotentialAND = &*UI;
3030         if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
3031             isPredicated(*PotentialAND))
3032           continue;
3033         MI = PotentialAND;
3034         break;
3035       }
3036       if (!MI) return false;
3037     }
3038   }
3039 
3040   // Get ready to iterate backward from CmpInstr.
3041   MachineBasicBlock::iterator I = CmpInstr, E = MI,
3042                               B = CmpInstr.getParent()->begin();
3043 
3044   // Early exit if CmpInstr is at the beginning of the BB.
3045   if (I == B) return false;
3046 
3047   // There are two possible candidates which can be changed to set CPSR:
3048   // One is MI, the other is a SUB or ADD instruction.
3049   // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or
3050   // ADDr[ri](r1, r2, X).
3051   // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
3052   MachineInstr *SubAdd = nullptr;
3053   if (SrcReg2 != 0)
3054     // MI is not a candidate for CMPrr.
3055     MI = nullptr;
3056   else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) {
3057     // Conservatively refuse to convert an instruction which isn't in the same
3058     // BB as the comparison.
3059     // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate.
3060     // Thus we cannot return here.
3061     if (CmpInstr.getOpcode() == ARM::CMPri ||
3062         CmpInstr.getOpcode() == ARM::t2CMPri ||
3063         CmpInstr.getOpcode() == ARM::tCMPi8)
3064       MI = nullptr;
3065     else
3066       return false;
3067   }
3068 
3069   bool IsThumb1 = false;
3070   if (MI && !isOptimizeCompareCandidate(MI, IsThumb1))
3071     return false;
3072 
3073   // We also want to do this peephole for cases like this: if (a*b == 0),
3074   // and optimise away the CMP instruction from the generated code sequence:
3075   // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values
3076   // resulting from the select instruction, but these MOVS instructions for
3077   // Thumb1 (V6M) are flag setting and are thus preventing this optimisation.
3078   // However, if we only have MOVS instructions in between the CMP and the
3079   // other instruction (the MULS in this example), then the CPSR is dead so we
3080   // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this
3081   // reordering and then continue the analysis hoping we can eliminate the
3082   // CMP. This peephole works on the vregs, so is still in SSA form. As a
3083   // consequence, the movs won't redefine/kill the MUL operands which would
3084   // make this reordering illegal.
3085   const TargetRegisterInfo *TRI = &getRegisterInfo();
3086   if (MI && IsThumb1) {
3087     --I;
3088     if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) {
3089       bool CanReorder = true;
3090       for (; I != E; --I) {
3091         if (I->getOpcode() != ARM::tMOVi8) {
3092           CanReorder = false;
3093           break;
3094         }
3095       }
3096       if (CanReorder) {
3097         MI = MI->removeFromParent();
3098         E = CmpInstr;
3099         CmpInstr.getParent()->insert(E, MI);
3100       }
3101     }
3102     I = CmpInstr;
3103     E = MI;
3104   }
3105 
3106   // Check that CPSR isn't set between the comparison instruction and the one we
3107   // want to change. At the same time, search for SubAdd.
3108   bool SubAddIsThumb1 = false;
3109   do {
3110     const MachineInstr &Instr = *--I;
3111 
3112     // Check whether CmpInstr can be made redundant by the current instruction.
3113     if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr,
3114                              SubAddIsThumb1)) {
3115       SubAdd = &*I;
3116       break;
3117     }
3118 
3119     // Allow E (which was initially MI) to be SubAdd but do not search before E.
3120     if (I == E)
3121       break;
3122 
3123     if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
3124         Instr.readsRegister(ARM::CPSR, TRI))
3125       // This instruction modifies or uses CPSR after the one we want to
3126       // change. We can't do this transformation.
3127       return false;
3128 
3129     if (I == B) {
3130       // In some cases, we scan the use-list of an instruction for an AND;
3131       // that AND is in the same BB, but may not be scheduled before the
3132       // corresponding TST.  In that case, bail out.
3133       //
3134       // FIXME: We could try to reschedule the AND.
3135       return false;
3136     }
3137   } while (true);
3138 
3139   // Return false if no candidates exist.
3140   if (!MI && !SubAdd)
3141     return false;
3142 
3143   // If we found a SubAdd, use it as it will be closer to the CMP
3144   if (SubAdd) {
3145     MI = SubAdd;
3146     IsThumb1 = SubAddIsThumb1;
3147   }
3148 
3149   // We can't use a predicated instruction - it doesn't always write the flags.
3150   if (isPredicated(*MI))
3151     return false;
3152 
3153   // Scan forward for the use of CPSR
3154   // When checking against MI: if it's a conditional code that requires
3155   // checking of the V bit or C bit, then this is not safe to do.
3156   // It is safe to remove CmpInstr if CPSR is redefined or killed.
3157   // If we are done with the basic block, we need to check whether CPSR is
3158   // live-out.
3159   SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
3160       OperandsToUpdate;
3161   bool isSafe = false;
3162   I = CmpInstr;
3163   E = CmpInstr.getParent()->end();
3164   while (!isSafe && ++I != E) {
3165     const MachineInstr &Instr = *I;
3166     for (unsigned IO = 0, EO = Instr.getNumOperands();
3167          !isSafe && IO != EO; ++IO) {
3168       const MachineOperand &MO = Instr.getOperand(IO);
3169       if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
3170         isSafe = true;
3171         break;
3172       }
3173       if (!MO.isReg() || MO.getReg() != ARM::CPSR)
3174         continue;
3175       if (MO.isDef()) {
3176         isSafe = true;
3177         break;
3178       }
3179       // Condition code is after the operand before CPSR except for VSELs.
3180       ARMCC::CondCodes CC;
3181       bool IsInstrVSel = true;
3182       switch (Instr.getOpcode()) {
3183       default:
3184         IsInstrVSel = false;
3185         CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
3186         break;
3187       case ARM::VSELEQD:
3188       case ARM::VSELEQS:
3189       case ARM::VSELEQH:
3190         CC = ARMCC::EQ;
3191         break;
3192       case ARM::VSELGTD:
3193       case ARM::VSELGTS:
3194       case ARM::VSELGTH:
3195         CC = ARMCC::GT;
3196         break;
3197       case ARM::VSELGED:
3198       case ARM::VSELGES:
3199       case ARM::VSELGEH:
3200         CC = ARMCC::GE;
3201         break;
3202       case ARM::VSELVSD:
3203       case ARM::VSELVSS:
3204       case ARM::VSELVSH:
3205         CC = ARMCC::VS;
3206         break;
3207       }
3208 
3209       if (SubAdd) {
3210         // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
3211         // on CMP needs to be updated to be based on SUB.
3212         // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also
3213         // needs to be modified.
3214         // Push the condition code operands to OperandsToUpdate.
3215         // If it is safe to remove CmpInstr, the condition code of these
3216         // operands will be modified.
3217         unsigned Opc = SubAdd->getOpcode();
3218         bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr ||
3219                      Opc == ARM::SUBri || Opc == ARM::t2SUBri ||
3220                      Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 ||
3221                      Opc == ARM::tSUBi8;
3222         unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2;
3223         if (!IsSub ||
3224             (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 &&
3225              SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) {
3226           // VSel doesn't support condition code update.
3227           if (IsInstrVSel)
3228             return false;
3229           // Ensure we can swap the condition.
3230           ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC));
3231           if (NewCC == ARMCC::AL)
3232             return false;
3233           OperandsToUpdate.push_back(
3234               std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
3235         }
3236       } else {
3237         // No SubAdd, so this is x = <op> y, z; cmp x, 0.
3238         switch (CC) {
3239         case ARMCC::EQ: // Z
3240         case ARMCC::NE: // Z
3241         case ARMCC::MI: // N
3242         case ARMCC::PL: // N
3243         case ARMCC::AL: // none
3244           // CPSR can be used multiple times, we should continue.
3245           break;
3246         case ARMCC::HS: // C
3247         case ARMCC::LO: // C
3248         case ARMCC::VS: // V
3249         case ARMCC::VC: // V
3250         case ARMCC::HI: // C Z
3251         case ARMCC::LS: // C Z
3252         case ARMCC::GE: // N V
3253         case ARMCC::LT: // N V
3254         case ARMCC::GT: // Z N V
3255         case ARMCC::LE: // Z N V
3256           // The instruction uses the V bit or C bit which is not safe.
3257           return false;
3258         }
3259       }
3260     }
3261   }
3262 
3263   // If CPSR is not killed nor re-defined, we should check whether it is
3264   // live-out. If it is live-out, do not optimize.
3265   if (!isSafe) {
3266     MachineBasicBlock *MBB = CmpInstr.getParent();
3267     for (MachineBasicBlock *Succ : MBB->successors())
3268       if (Succ->isLiveIn(ARM::CPSR))
3269         return false;
3270   }
3271 
3272   // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always
3273   // set CPSR so this is represented as an explicit output)
3274   if (!IsThumb1) {
3275     unsigned CPSRRegNum = MI->getNumExplicitOperands() - 1;
3276     MI->getOperand(CPSRRegNum).setReg(ARM::CPSR);
3277     MI->getOperand(CPSRRegNum).setIsDef(true);
3278   }
3279   assert(!isPredicated(*MI) && "Can't use flags from predicated instruction");
3280   CmpInstr.eraseFromParent();
3281 
3282   // Modify the condition code of operands in OperandsToUpdate.
3283   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
3284   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3285   for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
3286     OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
3287 
3288   MI->clearRegisterDeads(ARM::CPSR);
3289 
3290   return true;
3291 }
3292 
3293 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const {
3294   // Do not sink MI if it might be used to optimize a redundant compare.
3295   // We heuristically only look at the instruction immediately following MI to
3296   // avoid potentially searching the entire basic block.
3297   if (isPredicated(MI))
3298     return true;
3299   MachineBasicBlock::const_iterator Next = &MI;
3300   ++Next;
3301   Register SrcReg, SrcReg2;
3302   int64_t CmpMask, CmpValue;
3303   bool IsThumb1;
3304   if (Next != MI.getParent()->end() &&
3305       analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) &&
3306       isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1))
3307     return false;
3308   return true;
3309 }
3310 
3311 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
3312                                      Register Reg,
3313                                      MachineRegisterInfo *MRI) const {
3314   // Fold large immediates into add, sub, or, xor.
3315   unsigned DefOpc = DefMI.getOpcode();
3316   if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm &&
3317       DefOpc != ARM::tMOVi32imm)
3318     return false;
3319   if (!DefMI.getOperand(1).isImm())
3320     // Could be t2MOVi32imm @xx
3321     return false;
3322 
3323   if (!MRI->hasOneNonDBGUse(Reg))
3324     return false;
3325 
3326   const MCInstrDesc &DefMCID = DefMI.getDesc();
3327   if (DefMCID.hasOptionalDef()) {
3328     unsigned NumOps = DefMCID.getNumOperands();
3329     const MachineOperand &MO = DefMI.getOperand(NumOps - 1);
3330     if (MO.getReg() == ARM::CPSR && !MO.isDead())
3331       // If DefMI defines CPSR and it is not dead, it's obviously not safe
3332       // to delete DefMI.
3333       return false;
3334   }
3335 
3336   const MCInstrDesc &UseMCID = UseMI.getDesc();
3337   if (UseMCID.hasOptionalDef()) {
3338     unsigned NumOps = UseMCID.getNumOperands();
3339     if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR)
3340       // If the instruction sets the flag, do not attempt this optimization
3341       // since it may change the semantics of the code.
3342       return false;
3343   }
3344 
3345   unsigned UseOpc = UseMI.getOpcode();
3346   unsigned NewUseOpc = 0;
3347   uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm();
3348   uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
3349   bool Commute = false;
3350   switch (UseOpc) {
3351   default: return false;
3352   case ARM::SUBrr:
3353   case ARM::ADDrr:
3354   case ARM::ORRrr:
3355   case ARM::EORrr:
3356   case ARM::t2SUBrr:
3357   case ARM::t2ADDrr:
3358   case ARM::t2ORRrr:
3359   case ARM::t2EORrr: {
3360     Commute = UseMI.getOperand(2).getReg() != Reg;
3361     switch (UseOpc) {
3362     default: break;
3363     case ARM::ADDrr:
3364     case ARM::SUBrr:
3365       if (UseOpc == ARM::SUBrr && Commute)
3366         return false;
3367 
3368       // ADD/SUB are special because they're essentially the same operation, so
3369       // we can handle a larger range of immediates.
3370       if (ARM_AM::isSOImmTwoPartVal(ImmVal))
3371         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri;
3372       else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) {
3373         ImmVal = -ImmVal;
3374         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri;
3375       } else
3376         return false;
3377       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3378       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3379       break;
3380     case ARM::ORRrr:
3381     case ARM::EORrr:
3382       if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
3383         return false;
3384       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3385       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3386       switch (UseOpc) {
3387       default: break;
3388       case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
3389       case ARM::EORrr: NewUseOpc = ARM::EORri; break;
3390       }
3391       break;
3392     case ARM::t2ADDrr:
3393     case ARM::t2SUBrr: {
3394       if (UseOpc == ARM::t2SUBrr && Commute)
3395         return false;
3396 
3397       // ADD/SUB are special because they're essentially the same operation, so
3398       // we can handle a larger range of immediates.
3399       const bool ToSP = DefMI.getOperand(0).getReg() == ARM::SP;
3400       const unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri;
3401       const unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri;
3402       if (ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3403         NewUseOpc = UseOpc == ARM::t2ADDrr ? t2ADD : t2SUB;
3404       else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) {
3405         ImmVal = -ImmVal;
3406         NewUseOpc = UseOpc == ARM::t2ADDrr ? t2SUB : t2ADD;
3407       } else
3408         return false;
3409       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3410       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3411       break;
3412     }
3413     case ARM::t2ORRrr:
3414     case ARM::t2EORrr:
3415       if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3416         return false;
3417       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3418       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3419       switch (UseOpc) {
3420       default: break;
3421       case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
3422       case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
3423       }
3424       break;
3425     }
3426   }
3427   }
3428 
3429   unsigned OpIdx = Commute ? 2 : 1;
3430   Register Reg1 = UseMI.getOperand(OpIdx).getReg();
3431   bool isKill = UseMI.getOperand(OpIdx).isKill();
3432   const TargetRegisterClass *TRC = MRI->getRegClass(Reg);
3433   Register NewReg = MRI->createVirtualRegister(TRC);
3434   BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc),
3435           NewReg)
3436       .addReg(Reg1, getKillRegState(isKill))
3437       .addImm(SOImmValV1)
3438       .add(predOps(ARMCC::AL))
3439       .add(condCodeOp());
3440   UseMI.setDesc(get(NewUseOpc));
3441   UseMI.getOperand(1).setReg(NewReg);
3442   UseMI.getOperand(1).setIsKill();
3443   UseMI.getOperand(2).ChangeToImmediate(SOImmValV2);
3444   DefMI.eraseFromParent();
3445   // FIXME: t2ADDrr should be split, as different rulles apply when writing to SP.
3446   // Just as t2ADDri, that was split to [t2ADDri, t2ADDspImm].
3447   // Then the below code will not be needed, as the input/output register
3448   // classes will be rgpr or gprSP.
3449   // For now, we fix the UseMI operand explicitly here:
3450   switch(NewUseOpc){
3451     case ARM::t2ADDspImm:
3452     case ARM::t2SUBspImm:
3453     case ARM::t2ADDri:
3454     case ARM::t2SUBri:
3455       MRI->constrainRegClass(UseMI.getOperand(0).getReg(), TRC);
3456   }
3457   return true;
3458 }
3459 
3460 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
3461                                         const MachineInstr &MI) {
3462   switch (MI.getOpcode()) {
3463   default: {
3464     const MCInstrDesc &Desc = MI.getDesc();
3465     int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
3466     assert(UOps >= 0 && "bad # UOps");
3467     return UOps;
3468   }
3469 
3470   case ARM::LDRrs:
3471   case ARM::LDRBrs:
3472   case ARM::STRrs:
3473   case ARM::STRBrs: {
3474     unsigned ShOpVal = MI.getOperand(3).getImm();
3475     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3476     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3477     if (!isSub &&
3478         (ShImm == 0 ||
3479          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3480           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3481       return 1;
3482     return 2;
3483   }
3484 
3485   case ARM::LDRH:
3486   case ARM::STRH: {
3487     if (!MI.getOperand(2).getReg())
3488       return 1;
3489 
3490     unsigned ShOpVal = MI.getOperand(3).getImm();
3491     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3492     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3493     if (!isSub &&
3494         (ShImm == 0 ||
3495          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3496           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3497       return 1;
3498     return 2;
3499   }
3500 
3501   case ARM::LDRSB:
3502   case ARM::LDRSH:
3503     return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2;
3504 
3505   case ARM::LDRSB_POST:
3506   case ARM::LDRSH_POST: {
3507     Register Rt = MI.getOperand(0).getReg();
3508     Register Rm = MI.getOperand(3).getReg();
3509     return (Rt == Rm) ? 4 : 3;
3510   }
3511 
3512   case ARM::LDR_PRE_REG:
3513   case ARM::LDRB_PRE_REG: {
3514     Register Rt = MI.getOperand(0).getReg();
3515     Register Rm = MI.getOperand(3).getReg();
3516     if (Rt == Rm)
3517       return 3;
3518     unsigned ShOpVal = MI.getOperand(4).getImm();
3519     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3520     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3521     if (!isSub &&
3522         (ShImm == 0 ||
3523          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3524           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3525       return 2;
3526     return 3;
3527   }
3528 
3529   case ARM::STR_PRE_REG:
3530   case ARM::STRB_PRE_REG: {
3531     unsigned ShOpVal = MI.getOperand(4).getImm();
3532     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3533     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3534     if (!isSub &&
3535         (ShImm == 0 ||
3536          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3537           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3538       return 2;
3539     return 3;
3540   }
3541 
3542   case ARM::LDRH_PRE:
3543   case ARM::STRH_PRE: {
3544     Register Rt = MI.getOperand(0).getReg();
3545     Register Rm = MI.getOperand(3).getReg();
3546     if (!Rm)
3547       return 2;
3548     if (Rt == Rm)
3549       return 3;
3550     return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2;
3551   }
3552 
3553   case ARM::LDR_POST_REG:
3554   case ARM::LDRB_POST_REG:
3555   case ARM::LDRH_POST: {
3556     Register Rt = MI.getOperand(0).getReg();
3557     Register Rm = MI.getOperand(3).getReg();
3558     return (Rt == Rm) ? 3 : 2;
3559   }
3560 
3561   case ARM::LDR_PRE_IMM:
3562   case ARM::LDRB_PRE_IMM:
3563   case ARM::LDR_POST_IMM:
3564   case ARM::LDRB_POST_IMM:
3565   case ARM::STRB_POST_IMM:
3566   case ARM::STRB_POST_REG:
3567   case ARM::STRB_PRE_IMM:
3568   case ARM::STRH_POST:
3569   case ARM::STR_POST_IMM:
3570   case ARM::STR_POST_REG:
3571   case ARM::STR_PRE_IMM:
3572     return 2;
3573 
3574   case ARM::LDRSB_PRE:
3575   case ARM::LDRSH_PRE: {
3576     Register Rm = MI.getOperand(3).getReg();
3577     if (Rm == 0)
3578       return 3;
3579     Register Rt = MI.getOperand(0).getReg();
3580     if (Rt == Rm)
3581       return 4;
3582     unsigned ShOpVal = MI.getOperand(4).getImm();
3583     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3584     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3585     if (!isSub &&
3586         (ShImm == 0 ||
3587          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3588           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3589       return 3;
3590     return 4;
3591   }
3592 
3593   case ARM::LDRD: {
3594     Register Rt = MI.getOperand(0).getReg();
3595     Register Rn = MI.getOperand(2).getReg();
3596     Register Rm = MI.getOperand(3).getReg();
3597     if (Rm)
3598       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3599                                                                           : 3;
3600     return (Rt == Rn) ? 3 : 2;
3601   }
3602 
3603   case ARM::STRD: {
3604     Register Rm = MI.getOperand(3).getReg();
3605     if (Rm)
3606       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3607                                                                           : 3;
3608     return 2;
3609   }
3610 
3611   case ARM::LDRD_POST:
3612   case ARM::t2LDRD_POST:
3613     return 3;
3614 
3615   case ARM::STRD_POST:
3616   case ARM::t2STRD_POST:
3617     return 4;
3618 
3619   case ARM::LDRD_PRE: {
3620     Register Rt = MI.getOperand(0).getReg();
3621     Register Rn = MI.getOperand(3).getReg();
3622     Register Rm = MI.getOperand(4).getReg();
3623     if (Rm)
3624       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3625                                                                           : 4;
3626     return (Rt == Rn) ? 4 : 3;
3627   }
3628 
3629   case ARM::t2LDRD_PRE: {
3630     Register Rt = MI.getOperand(0).getReg();
3631     Register Rn = MI.getOperand(3).getReg();
3632     return (Rt == Rn) ? 4 : 3;
3633   }
3634 
3635   case ARM::STRD_PRE: {
3636     Register Rm = MI.getOperand(4).getReg();
3637     if (Rm)
3638       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3639                                                                           : 4;
3640     return 3;
3641   }
3642 
3643   case ARM::t2STRD_PRE:
3644     return 3;
3645 
3646   case ARM::t2LDR_POST:
3647   case ARM::t2LDRB_POST:
3648   case ARM::t2LDRB_PRE:
3649   case ARM::t2LDRSBi12:
3650   case ARM::t2LDRSBi8:
3651   case ARM::t2LDRSBpci:
3652   case ARM::t2LDRSBs:
3653   case ARM::t2LDRH_POST:
3654   case ARM::t2LDRH_PRE:
3655   case ARM::t2LDRSBT:
3656   case ARM::t2LDRSB_POST:
3657   case ARM::t2LDRSB_PRE:
3658   case ARM::t2LDRSH_POST:
3659   case ARM::t2LDRSH_PRE:
3660   case ARM::t2LDRSHi12:
3661   case ARM::t2LDRSHi8:
3662   case ARM::t2LDRSHpci:
3663   case ARM::t2LDRSHs:
3664     return 2;
3665 
3666   case ARM::t2LDRDi8: {
3667     Register Rt = MI.getOperand(0).getReg();
3668     Register Rn = MI.getOperand(2).getReg();
3669     return (Rt == Rn) ? 3 : 2;
3670   }
3671 
3672   case ARM::t2STRB_POST:
3673   case ARM::t2STRB_PRE:
3674   case ARM::t2STRBs:
3675   case ARM::t2STRDi8:
3676   case ARM::t2STRH_POST:
3677   case ARM::t2STRH_PRE:
3678   case ARM::t2STRHs:
3679   case ARM::t2STR_POST:
3680   case ARM::t2STR_PRE:
3681   case ARM::t2STRs:
3682     return 2;
3683   }
3684 }
3685 
3686 // Return the number of 32-bit words loaded by LDM or stored by STM. If this
3687 // can't be easily determined return 0 (missing MachineMemOperand).
3688 //
3689 // FIXME: The current MachineInstr design does not support relying on machine
3690 // mem operands to determine the width of a memory access. Instead, we expect
3691 // the target to provide this information based on the instruction opcode and
3692 // operands. However, using MachineMemOperand is the best solution now for
3693 // two reasons:
3694 //
3695 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
3696 // operands. This is much more dangerous than using the MachineMemOperand
3697 // sizes because CodeGen passes can insert/remove optional machine operands. In
3698 // fact, it's totally incorrect for preRA passes and appears to be wrong for
3699 // postRA passes as well.
3700 //
3701 // 2) getNumLDMAddresses is only used by the scheduling machine model and any
3702 // machine model that calls this should handle the unknown (zero size) case.
3703 //
3704 // Long term, we should require a target hook that verifies MachineMemOperand
3705 // sizes during MC lowering. That target hook should be local to MC lowering
3706 // because we can't ensure that it is aware of other MI forms. Doing this will
3707 // ensure that MachineMemOperands are correctly propagated through all passes.
3708 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const {
3709   unsigned Size = 0;
3710   for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
3711                                   E = MI.memoperands_end();
3712        I != E; ++I) {
3713     Size += (*I)->getSize();
3714   }
3715   // FIXME: The scheduler currently can't handle values larger than 16. But
3716   // the values can actually go up to 32 for floating-point load/store
3717   // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory
3718   // operations isn't right; we could end up with "extra" memory operands for
3719   // various reasons, like tail merge merging two memory operations.
3720   return std::min(Size / 4, 16U);
3721 }
3722 
3723 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,
3724                                                     unsigned NumRegs) {
3725   unsigned UOps = 1 + NumRegs; // 1 for address computation.
3726   switch (Opc) {
3727   default:
3728     break;
3729   case ARM::VLDMDIA_UPD:
3730   case ARM::VLDMDDB_UPD:
3731   case ARM::VLDMSIA_UPD:
3732   case ARM::VLDMSDB_UPD:
3733   case ARM::VSTMDIA_UPD:
3734   case ARM::VSTMDDB_UPD:
3735   case ARM::VSTMSIA_UPD:
3736   case ARM::VSTMSDB_UPD:
3737   case ARM::LDMIA_UPD:
3738   case ARM::LDMDA_UPD:
3739   case ARM::LDMDB_UPD:
3740   case ARM::LDMIB_UPD:
3741   case ARM::STMIA_UPD:
3742   case ARM::STMDA_UPD:
3743   case ARM::STMDB_UPD:
3744   case ARM::STMIB_UPD:
3745   case ARM::tLDMIA_UPD:
3746   case ARM::tSTMIA_UPD:
3747   case ARM::t2LDMIA_UPD:
3748   case ARM::t2LDMDB_UPD:
3749   case ARM::t2STMIA_UPD:
3750   case ARM::t2STMDB_UPD:
3751     ++UOps; // One for base register writeback.
3752     break;
3753   case ARM::LDMIA_RET:
3754   case ARM::tPOP_RET:
3755   case ARM::t2LDMIA_RET:
3756     UOps += 2; // One for base reg wb, one for write to pc.
3757     break;
3758   }
3759   return UOps;
3760 }
3761 
3762 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
3763                                           const MachineInstr &MI) const {
3764   if (!ItinData || ItinData->isEmpty())
3765     return 1;
3766 
3767   const MCInstrDesc &Desc = MI.getDesc();
3768   unsigned Class = Desc.getSchedClass();
3769   int ItinUOps = ItinData->getNumMicroOps(Class);
3770   if (ItinUOps >= 0) {
3771     if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
3772       return getNumMicroOpsSwiftLdSt(ItinData, MI);
3773 
3774     return ItinUOps;
3775   }
3776 
3777   unsigned Opc = MI.getOpcode();
3778   switch (Opc) {
3779   default:
3780     llvm_unreachable("Unexpected multi-uops instruction!");
3781   case ARM::VLDMQIA:
3782   case ARM::VSTMQIA:
3783     return 2;
3784 
3785   // The number of uOps for load / store multiple are determined by the number
3786   // registers.
3787   //
3788   // On Cortex-A8, each pair of register loads / stores can be scheduled on the
3789   // same cycle. The scheduling for the first load / store must be done
3790   // separately by assuming the address is not 64-bit aligned.
3791   //
3792   // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
3793   // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
3794   // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
3795   case ARM::VLDMDIA:
3796   case ARM::VLDMDIA_UPD:
3797   case ARM::VLDMDDB_UPD:
3798   case ARM::VLDMSIA:
3799   case ARM::VLDMSIA_UPD:
3800   case ARM::VLDMSDB_UPD:
3801   case ARM::VSTMDIA:
3802   case ARM::VSTMDIA_UPD:
3803   case ARM::VSTMDDB_UPD:
3804   case ARM::VSTMSIA:
3805   case ARM::VSTMSIA_UPD:
3806   case ARM::VSTMSDB_UPD: {
3807     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands();
3808     return (NumRegs / 2) + (NumRegs % 2) + 1;
3809   }
3810 
3811   case ARM::LDMIA_RET:
3812   case ARM::LDMIA:
3813   case ARM::LDMDA:
3814   case ARM::LDMDB:
3815   case ARM::LDMIB:
3816   case ARM::LDMIA_UPD:
3817   case ARM::LDMDA_UPD:
3818   case ARM::LDMDB_UPD:
3819   case ARM::LDMIB_UPD:
3820   case ARM::STMIA:
3821   case ARM::STMDA:
3822   case ARM::STMDB:
3823   case ARM::STMIB:
3824   case ARM::STMIA_UPD:
3825   case ARM::STMDA_UPD:
3826   case ARM::STMDB_UPD:
3827   case ARM::STMIB_UPD:
3828   case ARM::tLDMIA:
3829   case ARM::tLDMIA_UPD:
3830   case ARM::tSTMIA_UPD:
3831   case ARM::tPOP_RET:
3832   case ARM::tPOP:
3833   case ARM::tPUSH:
3834   case ARM::t2LDMIA_RET:
3835   case ARM::t2LDMIA:
3836   case ARM::t2LDMDB:
3837   case ARM::t2LDMIA_UPD:
3838   case ARM::t2LDMDB_UPD:
3839   case ARM::t2STMIA:
3840   case ARM::t2STMDB:
3841   case ARM::t2STMIA_UPD:
3842   case ARM::t2STMDB_UPD: {
3843     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1;
3844     switch (Subtarget.getLdStMultipleTiming()) {
3845     case ARMSubtarget::SingleIssuePlusExtras:
3846       return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs);
3847     case ARMSubtarget::SingleIssue:
3848       // Assume the worst.
3849       return NumRegs;
3850     case ARMSubtarget::DoubleIssue: {
3851       if (NumRegs < 4)
3852         return 2;
3853       // 4 registers would be issued: 2, 2.
3854       // 5 registers would be issued: 2, 2, 1.
3855       unsigned UOps = (NumRegs / 2);
3856       if (NumRegs % 2)
3857         ++UOps;
3858       return UOps;
3859     }
3860     case ARMSubtarget::DoubleIssueCheckUnalignedAccess: {
3861       unsigned UOps = (NumRegs / 2);
3862       // If there are odd number of registers or if it's not 64-bit aligned,
3863       // then it takes an extra AGU (Address Generation Unit) cycle.
3864       if ((NumRegs % 2) || !MI.hasOneMemOperand() ||
3865           (*MI.memoperands_begin())->getAlign() < Align(8))
3866         ++UOps;
3867       return UOps;
3868       }
3869     }
3870   }
3871   }
3872   llvm_unreachable("Didn't find the number of microops");
3873 }
3874 
3875 std::optional<unsigned>
3876 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
3877                                   const MCInstrDesc &DefMCID, unsigned DefClass,
3878                                   unsigned DefIdx, unsigned DefAlign) const {
3879   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3880   if (RegNo <= 0)
3881     // Def is the address writeback.
3882     return ItinData->getOperandCycle(DefClass, DefIdx);
3883 
3884   unsigned DefCycle;
3885   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3886     // (regno / 2) + (regno % 2) + 1
3887     DefCycle = RegNo / 2 + 1;
3888     if (RegNo % 2)
3889       ++DefCycle;
3890   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3891     DefCycle = RegNo;
3892     bool isSLoad = false;
3893 
3894     switch (DefMCID.getOpcode()) {
3895     default: break;
3896     case ARM::VLDMSIA:
3897     case ARM::VLDMSIA_UPD:
3898     case ARM::VLDMSDB_UPD:
3899       isSLoad = true;
3900       break;
3901     }
3902 
3903     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3904     // then it takes an extra cycle.
3905     if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
3906       ++DefCycle;
3907   } else {
3908     // Assume the worst.
3909     DefCycle = RegNo + 2;
3910   }
3911 
3912   return DefCycle;
3913 }
3914 
3915 std::optional<unsigned>
3916 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
3917                                  const MCInstrDesc &DefMCID, unsigned DefClass,
3918                                  unsigned DefIdx, unsigned DefAlign) const {
3919   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3920   if (RegNo <= 0)
3921     // Def is the address writeback.
3922     return ItinData->getOperandCycle(DefClass, DefIdx);
3923 
3924   unsigned DefCycle;
3925   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3926     // 4 registers would be issued: 1, 2, 1.
3927     // 5 registers would be issued: 1, 2, 2.
3928     DefCycle = RegNo / 2;
3929     if (DefCycle < 1)
3930       DefCycle = 1;
3931     // Result latency is issue cycle + 2: E2.
3932     DefCycle += 2;
3933   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3934     DefCycle = (RegNo / 2);
3935     // If there are odd number of registers or if it's not 64-bit aligned,
3936     // then it takes an extra AGU (Address Generation Unit) cycle.
3937     if ((RegNo % 2) || DefAlign < 8)
3938       ++DefCycle;
3939     // Result latency is AGU cycles + 2.
3940     DefCycle += 2;
3941   } else {
3942     // Assume the worst.
3943     DefCycle = RegNo + 2;
3944   }
3945 
3946   return DefCycle;
3947 }
3948 
3949 std::optional<unsigned>
3950 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
3951                                   const MCInstrDesc &UseMCID, unsigned UseClass,
3952                                   unsigned UseIdx, unsigned UseAlign) const {
3953   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3954   if (RegNo <= 0)
3955     return ItinData->getOperandCycle(UseClass, UseIdx);
3956 
3957   unsigned UseCycle;
3958   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3959     // (regno / 2) + (regno % 2) + 1
3960     UseCycle = RegNo / 2 + 1;
3961     if (RegNo % 2)
3962       ++UseCycle;
3963   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3964     UseCycle = RegNo;
3965     bool isSStore = false;
3966 
3967     switch (UseMCID.getOpcode()) {
3968     default: break;
3969     case ARM::VSTMSIA:
3970     case ARM::VSTMSIA_UPD:
3971     case ARM::VSTMSDB_UPD:
3972       isSStore = true;
3973       break;
3974     }
3975 
3976     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3977     // then it takes an extra cycle.
3978     if ((isSStore && (RegNo % 2)) || UseAlign < 8)
3979       ++UseCycle;
3980   } else {
3981     // Assume the worst.
3982     UseCycle = RegNo + 2;
3983   }
3984 
3985   return UseCycle;
3986 }
3987 
3988 std::optional<unsigned>
3989 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
3990                                  const MCInstrDesc &UseMCID, unsigned UseClass,
3991                                  unsigned UseIdx, unsigned UseAlign) const {
3992   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3993   if (RegNo <= 0)
3994     return ItinData->getOperandCycle(UseClass, UseIdx);
3995 
3996   unsigned UseCycle;
3997   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3998     UseCycle = RegNo / 2;
3999     if (UseCycle < 2)
4000       UseCycle = 2;
4001     // Read in E3.
4002     UseCycle += 2;
4003   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
4004     UseCycle = (RegNo / 2);
4005     // If there are odd number of registers or if it's not 64-bit aligned,
4006     // then it takes an extra AGU (Address Generation Unit) cycle.
4007     if ((RegNo % 2) || UseAlign < 8)
4008       ++UseCycle;
4009   } else {
4010     // Assume the worst.
4011     UseCycle = 1;
4012   }
4013   return UseCycle;
4014 }
4015 
4016 std::optional<unsigned> ARMBaseInstrInfo::getOperandLatency(
4017     const InstrItineraryData *ItinData, const MCInstrDesc &DefMCID,
4018     unsigned DefIdx, unsigned DefAlign, const MCInstrDesc &UseMCID,
4019     unsigned UseIdx, unsigned UseAlign) const {
4020   unsigned DefClass = DefMCID.getSchedClass();
4021   unsigned UseClass = UseMCID.getSchedClass();
4022 
4023   if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
4024     return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
4025 
4026   // This may be a def / use of a variable_ops instruction, the operand
4027   // latency might be determinable dynamically. Let the target try to
4028   // figure it out.
4029   std::optional<unsigned> DefCycle;
4030   bool LdmBypass = false;
4031   switch (DefMCID.getOpcode()) {
4032   default:
4033     DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4034     break;
4035 
4036   case ARM::VLDMDIA:
4037   case ARM::VLDMDIA_UPD:
4038   case ARM::VLDMDDB_UPD:
4039   case ARM::VLDMSIA:
4040   case ARM::VLDMSIA_UPD:
4041   case ARM::VLDMSDB_UPD:
4042     DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
4043     break;
4044 
4045   case ARM::LDMIA_RET:
4046   case ARM::LDMIA:
4047   case ARM::LDMDA:
4048   case ARM::LDMDB:
4049   case ARM::LDMIB:
4050   case ARM::LDMIA_UPD:
4051   case ARM::LDMDA_UPD:
4052   case ARM::LDMDB_UPD:
4053   case ARM::LDMIB_UPD:
4054   case ARM::tLDMIA:
4055   case ARM::tLDMIA_UPD:
4056   case ARM::tPUSH:
4057   case ARM::t2LDMIA_RET:
4058   case ARM::t2LDMIA:
4059   case ARM::t2LDMDB:
4060   case ARM::t2LDMIA_UPD:
4061   case ARM::t2LDMDB_UPD:
4062     LdmBypass = true;
4063     DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
4064     break;
4065   }
4066 
4067   if (!DefCycle)
4068     // We can't seem to determine the result latency of the def, assume it's 2.
4069     DefCycle = 2;
4070 
4071   std::optional<unsigned> UseCycle;
4072   switch (UseMCID.getOpcode()) {
4073   default:
4074     UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
4075     break;
4076 
4077   case ARM::VSTMDIA:
4078   case ARM::VSTMDIA_UPD:
4079   case ARM::VSTMDDB_UPD:
4080   case ARM::VSTMSIA:
4081   case ARM::VSTMSIA_UPD:
4082   case ARM::VSTMSDB_UPD:
4083     UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
4084     break;
4085 
4086   case ARM::STMIA:
4087   case ARM::STMDA:
4088   case ARM::STMDB:
4089   case ARM::STMIB:
4090   case ARM::STMIA_UPD:
4091   case ARM::STMDA_UPD:
4092   case ARM::STMDB_UPD:
4093   case ARM::STMIB_UPD:
4094   case ARM::tSTMIA_UPD:
4095   case ARM::tPOP_RET:
4096   case ARM::tPOP:
4097   case ARM::t2STMIA:
4098   case ARM::t2STMDB:
4099   case ARM::t2STMIA_UPD:
4100   case ARM::t2STMDB_UPD:
4101     UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
4102     break;
4103   }
4104 
4105   if (!UseCycle)
4106     // Assume it's read in the first stage.
4107     UseCycle = 1;
4108 
4109   if (UseCycle > *DefCycle + 1)
4110     return std::nullopt;
4111 
4112   UseCycle = *DefCycle - *UseCycle + 1;
4113   if (UseCycle > 0u) {
4114     if (LdmBypass) {
4115       // It's a variable_ops instruction so we can't use DefIdx here. Just use
4116       // first def operand.
4117       if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
4118                                           UseClass, UseIdx))
4119         UseCycle = *UseCycle - 1;
4120     } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
4121                                                UseClass, UseIdx)) {
4122       UseCycle = *UseCycle - 1;
4123     }
4124   }
4125 
4126   return UseCycle;
4127 }
4128 
4129 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
4130                                            const MachineInstr *MI, unsigned Reg,
4131                                            unsigned &DefIdx, unsigned &Dist) {
4132   Dist = 0;
4133 
4134   MachineBasicBlock::const_iterator I = MI; ++I;
4135   MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
4136   assert(II->isInsideBundle() && "Empty bundle?");
4137 
4138   int Idx = -1;
4139   while (II->isInsideBundle()) {
4140     Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
4141     if (Idx != -1)
4142       break;
4143     --II;
4144     ++Dist;
4145   }
4146 
4147   assert(Idx != -1 && "Cannot find bundled definition!");
4148   DefIdx = Idx;
4149   return &*II;
4150 }
4151 
4152 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
4153                                            const MachineInstr &MI, unsigned Reg,
4154                                            unsigned &UseIdx, unsigned &Dist) {
4155   Dist = 0;
4156 
4157   MachineBasicBlock::const_instr_iterator II = ++MI.getIterator();
4158   assert(II->isInsideBundle() && "Empty bundle?");
4159   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4160 
4161   // FIXME: This doesn't properly handle multiple uses.
4162   int Idx = -1;
4163   while (II != E && II->isInsideBundle()) {
4164     Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
4165     if (Idx != -1)
4166       break;
4167     if (II->getOpcode() != ARM::t2IT)
4168       ++Dist;
4169     ++II;
4170   }
4171 
4172   if (Idx == -1) {
4173     Dist = 0;
4174     return nullptr;
4175   }
4176 
4177   UseIdx = Idx;
4178   return &*II;
4179 }
4180 
4181 /// Return the number of cycles to add to (or subtract from) the static
4182 /// itinerary based on the def opcode and alignment. The caller will ensure that
4183 /// adjusted latency is at least one cycle.
4184 static int adjustDefLatency(const ARMSubtarget &Subtarget,
4185                             const MachineInstr &DefMI,
4186                             const MCInstrDesc &DefMCID, unsigned DefAlign) {
4187   int Adjust = 0;
4188   if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
4189     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4190     // variants are one cycle cheaper.
4191     switch (DefMCID.getOpcode()) {
4192     default: break;
4193     case ARM::LDRrs:
4194     case ARM::LDRBrs: {
4195       unsigned ShOpVal = DefMI.getOperand(3).getImm();
4196       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4197       if (ShImm == 0 ||
4198           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4199         --Adjust;
4200       break;
4201     }
4202     case ARM::t2LDRs:
4203     case ARM::t2LDRBs:
4204     case ARM::t2LDRHs:
4205     case ARM::t2LDRSHs: {
4206       // Thumb2 mode: lsl only.
4207       unsigned ShAmt = DefMI.getOperand(3).getImm();
4208       if (ShAmt == 0 || ShAmt == 2)
4209         --Adjust;
4210       break;
4211     }
4212     }
4213   } else if (Subtarget.isSwift()) {
4214     // FIXME: Properly handle all of the latency adjustments for address
4215     // writeback.
4216     switch (DefMCID.getOpcode()) {
4217     default: break;
4218     case ARM::LDRrs:
4219     case ARM::LDRBrs: {
4220       unsigned ShOpVal = DefMI.getOperand(3).getImm();
4221       bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
4222       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4223       if (!isSub &&
4224           (ShImm == 0 ||
4225            ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4226             ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
4227         Adjust -= 2;
4228       else if (!isSub &&
4229                ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4230         --Adjust;
4231       break;
4232     }
4233     case ARM::t2LDRs:
4234     case ARM::t2LDRBs:
4235     case ARM::t2LDRHs:
4236     case ARM::t2LDRSHs: {
4237       // Thumb2 mode: lsl only.
4238       unsigned ShAmt = DefMI.getOperand(3).getImm();
4239       if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
4240         Adjust -= 2;
4241       break;
4242     }
4243     }
4244   }
4245 
4246   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) {
4247     switch (DefMCID.getOpcode()) {
4248     default: break;
4249     case ARM::VLD1q8:
4250     case ARM::VLD1q16:
4251     case ARM::VLD1q32:
4252     case ARM::VLD1q64:
4253     case ARM::VLD1q8wb_fixed:
4254     case ARM::VLD1q16wb_fixed:
4255     case ARM::VLD1q32wb_fixed:
4256     case ARM::VLD1q64wb_fixed:
4257     case ARM::VLD1q8wb_register:
4258     case ARM::VLD1q16wb_register:
4259     case ARM::VLD1q32wb_register:
4260     case ARM::VLD1q64wb_register:
4261     case ARM::VLD2d8:
4262     case ARM::VLD2d16:
4263     case ARM::VLD2d32:
4264     case ARM::VLD2q8:
4265     case ARM::VLD2q16:
4266     case ARM::VLD2q32:
4267     case ARM::VLD2d8wb_fixed:
4268     case ARM::VLD2d16wb_fixed:
4269     case ARM::VLD2d32wb_fixed:
4270     case ARM::VLD2q8wb_fixed:
4271     case ARM::VLD2q16wb_fixed:
4272     case ARM::VLD2q32wb_fixed:
4273     case ARM::VLD2d8wb_register:
4274     case ARM::VLD2d16wb_register:
4275     case ARM::VLD2d32wb_register:
4276     case ARM::VLD2q8wb_register:
4277     case ARM::VLD2q16wb_register:
4278     case ARM::VLD2q32wb_register:
4279     case ARM::VLD3d8:
4280     case ARM::VLD3d16:
4281     case ARM::VLD3d32:
4282     case ARM::VLD1d64T:
4283     case ARM::VLD3d8_UPD:
4284     case ARM::VLD3d16_UPD:
4285     case ARM::VLD3d32_UPD:
4286     case ARM::VLD1d64Twb_fixed:
4287     case ARM::VLD1d64Twb_register:
4288     case ARM::VLD3q8_UPD:
4289     case ARM::VLD3q16_UPD:
4290     case ARM::VLD3q32_UPD:
4291     case ARM::VLD4d8:
4292     case ARM::VLD4d16:
4293     case ARM::VLD4d32:
4294     case ARM::VLD1d64Q:
4295     case ARM::VLD4d8_UPD:
4296     case ARM::VLD4d16_UPD:
4297     case ARM::VLD4d32_UPD:
4298     case ARM::VLD1d64Qwb_fixed:
4299     case ARM::VLD1d64Qwb_register:
4300     case ARM::VLD4q8_UPD:
4301     case ARM::VLD4q16_UPD:
4302     case ARM::VLD4q32_UPD:
4303     case ARM::VLD1DUPq8:
4304     case ARM::VLD1DUPq16:
4305     case ARM::VLD1DUPq32:
4306     case ARM::VLD1DUPq8wb_fixed:
4307     case ARM::VLD1DUPq16wb_fixed:
4308     case ARM::VLD1DUPq32wb_fixed:
4309     case ARM::VLD1DUPq8wb_register:
4310     case ARM::VLD1DUPq16wb_register:
4311     case ARM::VLD1DUPq32wb_register:
4312     case ARM::VLD2DUPd8:
4313     case ARM::VLD2DUPd16:
4314     case ARM::VLD2DUPd32:
4315     case ARM::VLD2DUPd8wb_fixed:
4316     case ARM::VLD2DUPd16wb_fixed:
4317     case ARM::VLD2DUPd32wb_fixed:
4318     case ARM::VLD2DUPd8wb_register:
4319     case ARM::VLD2DUPd16wb_register:
4320     case ARM::VLD2DUPd32wb_register:
4321     case ARM::VLD4DUPd8:
4322     case ARM::VLD4DUPd16:
4323     case ARM::VLD4DUPd32:
4324     case ARM::VLD4DUPd8_UPD:
4325     case ARM::VLD4DUPd16_UPD:
4326     case ARM::VLD4DUPd32_UPD:
4327     case ARM::VLD1LNd8:
4328     case ARM::VLD1LNd16:
4329     case ARM::VLD1LNd32:
4330     case ARM::VLD1LNd8_UPD:
4331     case ARM::VLD1LNd16_UPD:
4332     case ARM::VLD1LNd32_UPD:
4333     case ARM::VLD2LNd8:
4334     case ARM::VLD2LNd16:
4335     case ARM::VLD2LNd32:
4336     case ARM::VLD2LNq16:
4337     case ARM::VLD2LNq32:
4338     case ARM::VLD2LNd8_UPD:
4339     case ARM::VLD2LNd16_UPD:
4340     case ARM::VLD2LNd32_UPD:
4341     case ARM::VLD2LNq16_UPD:
4342     case ARM::VLD2LNq32_UPD:
4343     case ARM::VLD4LNd8:
4344     case ARM::VLD4LNd16:
4345     case ARM::VLD4LNd32:
4346     case ARM::VLD4LNq16:
4347     case ARM::VLD4LNq32:
4348     case ARM::VLD4LNd8_UPD:
4349     case ARM::VLD4LNd16_UPD:
4350     case ARM::VLD4LNd32_UPD:
4351     case ARM::VLD4LNq16_UPD:
4352     case ARM::VLD4LNq32_UPD:
4353       // If the address is not 64-bit aligned, the latencies of these
4354       // instructions increases by one.
4355       ++Adjust;
4356       break;
4357     }
4358   }
4359   return Adjust;
4360 }
4361 
4362 std::optional<unsigned> ARMBaseInstrInfo::getOperandLatency(
4363     const InstrItineraryData *ItinData, const MachineInstr &DefMI,
4364     unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const {
4365   // No operand latency. The caller may fall back to getInstrLatency.
4366   if (!ItinData || ItinData->isEmpty())
4367     return std::nullopt;
4368 
4369   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4370   Register Reg = DefMO.getReg();
4371 
4372   const MachineInstr *ResolvedDefMI = &DefMI;
4373   unsigned DefAdj = 0;
4374   if (DefMI.isBundle())
4375     ResolvedDefMI =
4376         getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj);
4377   if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() ||
4378       ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) {
4379     return 1;
4380   }
4381 
4382   const MachineInstr *ResolvedUseMI = &UseMI;
4383   unsigned UseAdj = 0;
4384   if (UseMI.isBundle()) {
4385     ResolvedUseMI =
4386         getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj);
4387     if (!ResolvedUseMI)
4388       return std::nullopt;
4389   }
4390 
4391   return getOperandLatencyImpl(
4392       ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO,
4393       Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj);
4394 }
4395 
4396 std::optional<unsigned> ARMBaseInstrInfo::getOperandLatencyImpl(
4397     const InstrItineraryData *ItinData, const MachineInstr &DefMI,
4398     unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj,
4399     const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI,
4400     unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const {
4401   if (Reg == ARM::CPSR) {
4402     if (DefMI.getOpcode() == ARM::FMSTAT) {
4403       // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
4404       return Subtarget.isLikeA9() ? 1 : 20;
4405     }
4406 
4407     // CPSR set and branch can be paired in the same cycle.
4408     if (UseMI.isBranch())
4409       return 0;
4410 
4411     // Otherwise it takes the instruction latency (generally one).
4412     unsigned Latency = getInstrLatency(ItinData, DefMI);
4413 
4414     // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
4415     // its uses. Instructions which are otherwise scheduled between them may
4416     // incur a code size penalty (not able to use the CPSR setting 16-bit
4417     // instructions).
4418     if (Latency > 0 && Subtarget.isThumb2()) {
4419       const MachineFunction *MF = DefMI.getParent()->getParent();
4420       // FIXME: Use Function::hasOptSize().
4421       if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize))
4422         --Latency;
4423     }
4424     return Latency;
4425   }
4426 
4427   if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit())
4428     return std::nullopt;
4429 
4430   unsigned DefAlign = DefMI.hasOneMemOperand()
4431                           ? (*DefMI.memoperands_begin())->getAlign().value()
4432                           : 0;
4433   unsigned UseAlign = UseMI.hasOneMemOperand()
4434                           ? (*UseMI.memoperands_begin())->getAlign().value()
4435                           : 0;
4436 
4437   // Get the itinerary's latency if possible, and handle variable_ops.
4438   std::optional<unsigned> Latency = getOperandLatency(
4439       ItinData, DefMCID, DefIdx, DefAlign, UseMCID, UseIdx, UseAlign);
4440   // Unable to find operand latency. The caller may resort to getInstrLatency.
4441   if (!Latency)
4442     return std::nullopt;
4443 
4444   // Adjust for IT block position.
4445   int Adj = DefAdj + UseAdj;
4446 
4447   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4448   Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
4449   if (Adj >= 0 || (int)*Latency > -Adj) {
4450     return *Latency + Adj;
4451   }
4452   // Return the itinerary latency, which may be zero but not less than zero.
4453   return Latency;
4454 }
4455 
4456 std::optional<unsigned>
4457 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4458                                     SDNode *DefNode, unsigned DefIdx,
4459                                     SDNode *UseNode, unsigned UseIdx) const {
4460   if (!DefNode->isMachineOpcode())
4461     return 1;
4462 
4463   const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
4464 
4465   if (isZeroCost(DefMCID.Opcode))
4466     return 0;
4467 
4468   if (!ItinData || ItinData->isEmpty())
4469     return DefMCID.mayLoad() ? 3 : 1;
4470 
4471   if (!UseNode->isMachineOpcode()) {
4472     std::optional<unsigned> Latency =
4473         ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
4474     int Adj = Subtarget.getPreISelOperandLatencyAdjustment();
4475     int Threshold = 1 + Adj;
4476     return !Latency || Latency <= (unsigned)Threshold ? 1 : *Latency - Adj;
4477   }
4478 
4479   const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
4480   auto *DefMN = cast<MachineSDNode>(DefNode);
4481   unsigned DefAlign = !DefMN->memoperands_empty()
4482                           ? (*DefMN->memoperands_begin())->getAlign().value()
4483                           : 0;
4484   auto *UseMN = cast<MachineSDNode>(UseNode);
4485   unsigned UseAlign = !UseMN->memoperands_empty()
4486                           ? (*UseMN->memoperands_begin())->getAlign().value()
4487                           : 0;
4488   std::optional<unsigned> Latency = getOperandLatency(
4489       ItinData, DefMCID, DefIdx, DefAlign, UseMCID, UseIdx, UseAlign);
4490   if (!Latency)
4491     return std::nullopt;
4492 
4493   if (Latency > 1U &&
4494       (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
4495        Subtarget.isCortexA7())) {
4496     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4497     // variants are one cycle cheaper.
4498     switch (DefMCID.getOpcode()) {
4499     default: break;
4500     case ARM::LDRrs:
4501     case ARM::LDRBrs: {
4502       unsigned ShOpVal = DefNode->getConstantOperandVal(2);
4503       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4504       if (ShImm == 0 ||
4505           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4506         Latency = *Latency - 1;
4507       break;
4508     }
4509     case ARM::t2LDRs:
4510     case ARM::t2LDRBs:
4511     case ARM::t2LDRHs:
4512     case ARM::t2LDRSHs: {
4513       // Thumb2 mode: lsl only.
4514       unsigned ShAmt = DefNode->getConstantOperandVal(2);
4515       if (ShAmt == 0 || ShAmt == 2)
4516         Latency = *Latency - 1;
4517       break;
4518     }
4519     }
4520   } else if (DefIdx == 0 && Latency > 2U && Subtarget.isSwift()) {
4521     // FIXME: Properly handle all of the latency adjustments for address
4522     // writeback.
4523     switch (DefMCID.getOpcode()) {
4524     default: break;
4525     case ARM::LDRrs:
4526     case ARM::LDRBrs: {
4527       unsigned ShOpVal = DefNode->getConstantOperandVal(2);
4528       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4529       if (ShImm == 0 ||
4530           ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4531            ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4532         Latency = *Latency - 2;
4533       else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4534         Latency = *Latency - 1;
4535       break;
4536     }
4537     case ARM::t2LDRs:
4538     case ARM::t2LDRBs:
4539     case ARM::t2LDRHs:
4540     case ARM::t2LDRSHs:
4541       // Thumb2 mode: lsl 0-3 only.
4542       Latency = *Latency - 2;
4543       break;
4544     }
4545   }
4546 
4547   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment())
4548     switch (DefMCID.getOpcode()) {
4549     default: break;
4550     case ARM::VLD1q8:
4551     case ARM::VLD1q16:
4552     case ARM::VLD1q32:
4553     case ARM::VLD1q64:
4554     case ARM::VLD1q8wb_register:
4555     case ARM::VLD1q16wb_register:
4556     case ARM::VLD1q32wb_register:
4557     case ARM::VLD1q64wb_register:
4558     case ARM::VLD1q8wb_fixed:
4559     case ARM::VLD1q16wb_fixed:
4560     case ARM::VLD1q32wb_fixed:
4561     case ARM::VLD1q64wb_fixed:
4562     case ARM::VLD2d8:
4563     case ARM::VLD2d16:
4564     case ARM::VLD2d32:
4565     case ARM::VLD2q8Pseudo:
4566     case ARM::VLD2q16Pseudo:
4567     case ARM::VLD2q32Pseudo:
4568     case ARM::VLD2d8wb_fixed:
4569     case ARM::VLD2d16wb_fixed:
4570     case ARM::VLD2d32wb_fixed:
4571     case ARM::VLD2q8PseudoWB_fixed:
4572     case ARM::VLD2q16PseudoWB_fixed:
4573     case ARM::VLD2q32PseudoWB_fixed:
4574     case ARM::VLD2d8wb_register:
4575     case ARM::VLD2d16wb_register:
4576     case ARM::VLD2d32wb_register:
4577     case ARM::VLD2q8PseudoWB_register:
4578     case ARM::VLD2q16PseudoWB_register:
4579     case ARM::VLD2q32PseudoWB_register:
4580     case ARM::VLD3d8Pseudo:
4581     case ARM::VLD3d16Pseudo:
4582     case ARM::VLD3d32Pseudo:
4583     case ARM::VLD1d8TPseudo:
4584     case ARM::VLD1d16TPseudo:
4585     case ARM::VLD1d32TPseudo:
4586     case ARM::VLD1d64TPseudo:
4587     case ARM::VLD1d64TPseudoWB_fixed:
4588     case ARM::VLD1d64TPseudoWB_register:
4589     case ARM::VLD3d8Pseudo_UPD:
4590     case ARM::VLD3d16Pseudo_UPD:
4591     case ARM::VLD3d32Pseudo_UPD:
4592     case ARM::VLD3q8Pseudo_UPD:
4593     case ARM::VLD3q16Pseudo_UPD:
4594     case ARM::VLD3q32Pseudo_UPD:
4595     case ARM::VLD3q8oddPseudo:
4596     case ARM::VLD3q16oddPseudo:
4597     case ARM::VLD3q32oddPseudo:
4598     case ARM::VLD3q8oddPseudo_UPD:
4599     case ARM::VLD3q16oddPseudo_UPD:
4600     case ARM::VLD3q32oddPseudo_UPD:
4601     case ARM::VLD4d8Pseudo:
4602     case ARM::VLD4d16Pseudo:
4603     case ARM::VLD4d32Pseudo:
4604     case ARM::VLD1d8QPseudo:
4605     case ARM::VLD1d16QPseudo:
4606     case ARM::VLD1d32QPseudo:
4607     case ARM::VLD1d64QPseudo:
4608     case ARM::VLD1d64QPseudoWB_fixed:
4609     case ARM::VLD1d64QPseudoWB_register:
4610     case ARM::VLD1q8HighQPseudo:
4611     case ARM::VLD1q8LowQPseudo_UPD:
4612     case ARM::VLD1q8HighTPseudo:
4613     case ARM::VLD1q8LowTPseudo_UPD:
4614     case ARM::VLD1q16HighQPseudo:
4615     case ARM::VLD1q16LowQPseudo_UPD:
4616     case ARM::VLD1q16HighTPseudo:
4617     case ARM::VLD1q16LowTPseudo_UPD:
4618     case ARM::VLD1q32HighQPseudo:
4619     case ARM::VLD1q32LowQPseudo_UPD:
4620     case ARM::VLD1q32HighTPseudo:
4621     case ARM::VLD1q32LowTPseudo_UPD:
4622     case ARM::VLD1q64HighQPseudo:
4623     case ARM::VLD1q64LowQPseudo_UPD:
4624     case ARM::VLD1q64HighTPseudo:
4625     case ARM::VLD1q64LowTPseudo_UPD:
4626     case ARM::VLD4d8Pseudo_UPD:
4627     case ARM::VLD4d16Pseudo_UPD:
4628     case ARM::VLD4d32Pseudo_UPD:
4629     case ARM::VLD4q8Pseudo_UPD:
4630     case ARM::VLD4q16Pseudo_UPD:
4631     case ARM::VLD4q32Pseudo_UPD:
4632     case ARM::VLD4q8oddPseudo:
4633     case ARM::VLD4q16oddPseudo:
4634     case ARM::VLD4q32oddPseudo:
4635     case ARM::VLD4q8oddPseudo_UPD:
4636     case ARM::VLD4q16oddPseudo_UPD:
4637     case ARM::VLD4q32oddPseudo_UPD:
4638     case ARM::VLD1DUPq8:
4639     case ARM::VLD1DUPq16:
4640     case ARM::VLD1DUPq32:
4641     case ARM::VLD1DUPq8wb_fixed:
4642     case ARM::VLD1DUPq16wb_fixed:
4643     case ARM::VLD1DUPq32wb_fixed:
4644     case ARM::VLD1DUPq8wb_register:
4645     case ARM::VLD1DUPq16wb_register:
4646     case ARM::VLD1DUPq32wb_register:
4647     case ARM::VLD2DUPd8:
4648     case ARM::VLD2DUPd16:
4649     case ARM::VLD2DUPd32:
4650     case ARM::VLD2DUPd8wb_fixed:
4651     case ARM::VLD2DUPd16wb_fixed:
4652     case ARM::VLD2DUPd32wb_fixed:
4653     case ARM::VLD2DUPd8wb_register:
4654     case ARM::VLD2DUPd16wb_register:
4655     case ARM::VLD2DUPd32wb_register:
4656     case ARM::VLD2DUPq8EvenPseudo:
4657     case ARM::VLD2DUPq8OddPseudo:
4658     case ARM::VLD2DUPq16EvenPseudo:
4659     case ARM::VLD2DUPq16OddPseudo:
4660     case ARM::VLD2DUPq32EvenPseudo:
4661     case ARM::VLD2DUPq32OddPseudo:
4662     case ARM::VLD3DUPq8EvenPseudo:
4663     case ARM::VLD3DUPq8OddPseudo:
4664     case ARM::VLD3DUPq16EvenPseudo:
4665     case ARM::VLD3DUPq16OddPseudo:
4666     case ARM::VLD3DUPq32EvenPseudo:
4667     case ARM::VLD3DUPq32OddPseudo:
4668     case ARM::VLD4DUPd8Pseudo:
4669     case ARM::VLD4DUPd16Pseudo:
4670     case ARM::VLD4DUPd32Pseudo:
4671     case ARM::VLD4DUPd8Pseudo_UPD:
4672     case ARM::VLD4DUPd16Pseudo_UPD:
4673     case ARM::VLD4DUPd32Pseudo_UPD:
4674     case ARM::VLD4DUPq8EvenPseudo:
4675     case ARM::VLD4DUPq8OddPseudo:
4676     case ARM::VLD4DUPq16EvenPseudo:
4677     case ARM::VLD4DUPq16OddPseudo:
4678     case ARM::VLD4DUPq32EvenPseudo:
4679     case ARM::VLD4DUPq32OddPseudo:
4680     case ARM::VLD1LNq8Pseudo:
4681     case ARM::VLD1LNq16Pseudo:
4682     case ARM::VLD1LNq32Pseudo:
4683     case ARM::VLD1LNq8Pseudo_UPD:
4684     case ARM::VLD1LNq16Pseudo_UPD:
4685     case ARM::VLD1LNq32Pseudo_UPD:
4686     case ARM::VLD2LNd8Pseudo:
4687     case ARM::VLD2LNd16Pseudo:
4688     case ARM::VLD2LNd32Pseudo:
4689     case ARM::VLD2LNq16Pseudo:
4690     case ARM::VLD2LNq32Pseudo:
4691     case ARM::VLD2LNd8Pseudo_UPD:
4692     case ARM::VLD2LNd16Pseudo_UPD:
4693     case ARM::VLD2LNd32Pseudo_UPD:
4694     case ARM::VLD2LNq16Pseudo_UPD:
4695     case ARM::VLD2LNq32Pseudo_UPD:
4696     case ARM::VLD4LNd8Pseudo:
4697     case ARM::VLD4LNd16Pseudo:
4698     case ARM::VLD4LNd32Pseudo:
4699     case ARM::VLD4LNq16Pseudo:
4700     case ARM::VLD4LNq32Pseudo:
4701     case ARM::VLD4LNd8Pseudo_UPD:
4702     case ARM::VLD4LNd16Pseudo_UPD:
4703     case ARM::VLD4LNd32Pseudo_UPD:
4704     case ARM::VLD4LNq16Pseudo_UPD:
4705     case ARM::VLD4LNq32Pseudo_UPD:
4706       // If the address is not 64-bit aligned, the latencies of these
4707       // instructions increases by one.
4708       Latency = *Latency + 1;
4709       break;
4710     }
4711 
4712   return Latency;
4713 }
4714 
4715 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const {
4716   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4717       MI.isImplicitDef())
4718     return 0;
4719 
4720   if (MI.isBundle())
4721     return 0;
4722 
4723   const MCInstrDesc &MCID = MI.getDesc();
4724 
4725   if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4726                         !Subtarget.cheapPredicableCPSRDef())) {
4727     // When predicated, CPSR is an additional source operand for CPSR updating
4728     // instructions, this apparently increases their latencies.
4729     return 1;
4730   }
4731   return 0;
4732 }
4733 
4734 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4735                                            const MachineInstr &MI,
4736                                            unsigned *PredCost) const {
4737   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4738       MI.isImplicitDef())
4739     return 1;
4740 
4741   // An instruction scheduler typically runs on unbundled instructions, however
4742   // other passes may query the latency of a bundled instruction.
4743   if (MI.isBundle()) {
4744     unsigned Latency = 0;
4745     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
4746     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4747     while (++I != E && I->isInsideBundle()) {
4748       if (I->getOpcode() != ARM::t2IT)
4749         Latency += getInstrLatency(ItinData, *I, PredCost);
4750     }
4751     return Latency;
4752   }
4753 
4754   const MCInstrDesc &MCID = MI.getDesc();
4755   if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4756                                      !Subtarget.cheapPredicableCPSRDef()))) {
4757     // When predicated, CPSR is an additional source operand for CPSR updating
4758     // instructions, this apparently increases their latencies.
4759     *PredCost = 1;
4760   }
4761   // Be sure to call getStageLatency for an empty itinerary in case it has a
4762   // valid MinLatency property.
4763   if (!ItinData)
4764     return MI.mayLoad() ? 3 : 1;
4765 
4766   unsigned Class = MCID.getSchedClass();
4767 
4768   // For instructions with variable uops, use uops as latency.
4769   if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
4770     return getNumMicroOps(ItinData, MI);
4771 
4772   // For the common case, fall back on the itinerary's latency.
4773   unsigned Latency = ItinData->getStageLatency(Class);
4774 
4775   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4776   unsigned DefAlign =
4777       MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlign().value() : 0;
4778   int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign);
4779   if (Adj >= 0 || (int)Latency > -Adj) {
4780     return Latency + Adj;
4781   }
4782   return Latency;
4783 }
4784 
4785 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4786                                            SDNode *Node) const {
4787   if (!Node->isMachineOpcode())
4788     return 1;
4789 
4790   if (!ItinData || ItinData->isEmpty())
4791     return 1;
4792 
4793   unsigned Opcode = Node->getMachineOpcode();
4794   switch (Opcode) {
4795   default:
4796     return ItinData->getStageLatency(get(Opcode).getSchedClass());
4797   case ARM::VLDMQIA:
4798   case ARM::VSTMQIA:
4799     return 2;
4800   }
4801 }
4802 
4803 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
4804                                              const MachineRegisterInfo *MRI,
4805                                              const MachineInstr &DefMI,
4806                                              unsigned DefIdx,
4807                                              const MachineInstr &UseMI,
4808                                              unsigned UseIdx) const {
4809   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4810   unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask;
4811   if (Subtarget.nonpipelinedVFP() &&
4812       (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
4813     return true;
4814 
4815   // Hoist VFP / NEON instructions with 4 or higher latency.
4816   unsigned Latency =
4817       SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx);
4818   if (Latency <= 3)
4819     return false;
4820   return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
4821          UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
4822 }
4823 
4824 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
4825                                         const MachineInstr &DefMI,
4826                                         unsigned DefIdx) const {
4827   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
4828   if (!ItinData || ItinData->isEmpty())
4829     return false;
4830 
4831   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4832   if (DDomain == ARMII::DomainGeneral) {
4833     unsigned DefClass = DefMI.getDesc().getSchedClass();
4834     std::optional<unsigned> DefCycle =
4835         ItinData->getOperandCycle(DefClass, DefIdx);
4836     return DefCycle && DefCycle <= 2U;
4837   }
4838   return false;
4839 }
4840 
4841 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI,
4842                                          StringRef &ErrInfo) const {
4843   if (convertAddSubFlagsOpcode(MI.getOpcode())) {
4844     ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
4845     return false;
4846   }
4847   if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) {
4848     // Make sure we don't generate a lo-lo mov that isn't supported.
4849     if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) &&
4850         !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) {
4851       ErrInfo = "Non-flag-setting Thumb1 mov is v6-only";
4852       return false;
4853     }
4854   }
4855   if (MI.getOpcode() == ARM::tPUSH ||
4856       MI.getOpcode() == ARM::tPOP ||
4857       MI.getOpcode() == ARM::tPOP_RET) {
4858     for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), 2)) {
4859       if (MO.isImplicit() || !MO.isReg())
4860         continue;
4861       Register Reg = MO.getReg();
4862       if (Reg < ARM::R0 || Reg > ARM::R7) {
4863         if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) &&
4864             !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) {
4865           ErrInfo = "Unsupported register in Thumb1 push/pop";
4866           return false;
4867         }
4868       }
4869     }
4870   }
4871   if (MI.getOpcode() == ARM::MVE_VMOV_q_rr) {
4872     assert(MI.getOperand(4).isImm() && MI.getOperand(5).isImm());
4873     if ((MI.getOperand(4).getImm() != 2 && MI.getOperand(4).getImm() != 3) ||
4874         MI.getOperand(4).getImm() != MI.getOperand(5).getImm() + 2) {
4875       ErrInfo = "Incorrect array index for MVE_VMOV_q_rr";
4876       return false;
4877     }
4878   }
4879 
4880   // Check the address model by taking the first Imm operand and checking it is
4881   // legal for that addressing mode.
4882   ARMII::AddrMode AddrMode =
4883       (ARMII::AddrMode)(MI.getDesc().TSFlags & ARMII::AddrModeMask);
4884   switch (AddrMode) {
4885   default:
4886     break;
4887   case ARMII::AddrModeT2_i7:
4888   case ARMII::AddrModeT2_i7s2:
4889   case ARMII::AddrModeT2_i7s4:
4890   case ARMII::AddrModeT2_i8:
4891   case ARMII::AddrModeT2_i8pos:
4892   case ARMII::AddrModeT2_i8neg:
4893   case ARMII::AddrModeT2_i8s4:
4894   case ARMII::AddrModeT2_i12: {
4895     uint32_t Imm = 0;
4896     for (auto Op : MI.operands()) {
4897       if (Op.isImm()) {
4898         Imm = Op.getImm();
4899         break;
4900       }
4901     }
4902     if (!isLegalAddressImm(MI.getOpcode(), Imm, this)) {
4903       ErrInfo = "Incorrect AddrMode Imm for instruction";
4904       return false;
4905     }
4906     break;
4907   }
4908   }
4909   return true;
4910 }
4911 
4912 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
4913                                                 unsigned LoadImmOpc,
4914                                                 unsigned LoadOpc) const {
4915   assert(!Subtarget.isROPI() && !Subtarget.isRWPI() &&
4916          "ROPI/RWPI not currently supported with stack guard");
4917 
4918   MachineBasicBlock &MBB = *MI->getParent();
4919   DebugLoc DL = MI->getDebugLoc();
4920   Register Reg = MI->getOperand(0).getReg();
4921   MachineInstrBuilder MIB;
4922   unsigned int Offset = 0;
4923 
4924   if (LoadImmOpc == ARM::MRC || LoadImmOpc == ARM::t2MRC) {
4925     assert(!Subtarget.isReadTPSoft() &&
4926            "TLS stack protector requires hardware TLS register");
4927 
4928     BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4929         .addImm(15)
4930         .addImm(0)
4931         .addImm(13)
4932         .addImm(0)
4933         .addImm(3)
4934         .add(predOps(ARMCC::AL));
4935 
4936     Module &M = *MBB.getParent()->getFunction().getParent();
4937     Offset = M.getStackProtectorGuardOffset();
4938     if (Offset & ~0xfffU) {
4939       // The offset won't fit in the LDR's 12-bit immediate field, so emit an
4940       // extra ADD to cover the delta. This gives us a guaranteed 8 additional
4941       // bits, resulting in a range of 0 to +1 MiB for the guard offset.
4942       unsigned AddOpc = (LoadImmOpc == ARM::MRC) ? ARM::ADDri : ARM::t2ADDri;
4943       BuildMI(MBB, MI, DL, get(AddOpc), Reg)
4944           .addReg(Reg, RegState::Kill)
4945           .addImm(Offset & ~0xfffU)
4946           .add(predOps(ARMCC::AL))
4947           .addReg(0);
4948       Offset &= 0xfffU;
4949     }
4950   } else {
4951     const GlobalValue *GV =
4952         cast<GlobalValue>((*MI->memoperands_begin())->getValue());
4953     bool IsIndirect = Subtarget.isGVIndirectSymbol(GV);
4954 
4955     unsigned TargetFlags = ARMII::MO_NO_FLAG;
4956     if (Subtarget.isTargetMachO()) {
4957       TargetFlags |= ARMII::MO_NONLAZY;
4958     } else if (Subtarget.isTargetCOFF()) {
4959       if (GV->hasDLLImportStorageClass())
4960         TargetFlags |= ARMII::MO_DLLIMPORT;
4961       else if (IsIndirect)
4962         TargetFlags |= ARMII::MO_COFFSTUB;
4963     } else if (IsIndirect) {
4964       TargetFlags |= ARMII::MO_GOT;
4965     }
4966 
4967     if (LoadImmOpc == ARM::tMOVi32imm) { // Thumb-1 execute-only
4968       Register CPSRSaveReg = ARM::R12; // Use R12 as scratch register
4969       auto APSREncoding =
4970           ARMSysReg::lookupMClassSysRegByName("apsr_nzcvq")->Encoding;
4971       BuildMI(MBB, MI, DL, get(ARM::t2MRS_M), CPSRSaveReg)
4972           .addImm(APSREncoding)
4973           .add(predOps(ARMCC::AL));
4974       BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4975           .addGlobalAddress(GV, 0, TargetFlags);
4976       BuildMI(MBB, MI, DL, get(ARM::t2MSR_M))
4977           .addImm(APSREncoding)
4978           .addReg(CPSRSaveReg, RegState::Kill)
4979           .add(predOps(ARMCC::AL));
4980     } else {
4981       BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4982           .addGlobalAddress(GV, 0, TargetFlags);
4983     }
4984 
4985     if (IsIndirect) {
4986       MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4987       MIB.addReg(Reg, RegState::Kill).addImm(0);
4988       auto Flags = MachineMemOperand::MOLoad |
4989                    MachineMemOperand::MODereferenceable |
4990                    MachineMemOperand::MOInvariant;
4991       MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4992           MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, Align(4));
4993       MIB.addMemOperand(MMO).add(predOps(ARMCC::AL));
4994     }
4995   }
4996 
4997   MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4998   MIB.addReg(Reg, RegState::Kill)
4999       .addImm(Offset)
5000       .cloneMemRefs(*MI)
5001       .add(predOps(ARMCC::AL));
5002 }
5003 
5004 bool
5005 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
5006                                      unsigned &AddSubOpc,
5007                                      bool &NegAcc, bool &HasLane) const {
5008   DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
5009   if (I == MLxEntryMap.end())
5010     return false;
5011 
5012   const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
5013   MulOpc = Entry.MulOpc;
5014   AddSubOpc = Entry.AddSubOpc;
5015   NegAcc = Entry.NegAcc;
5016   HasLane = Entry.HasLane;
5017   return true;
5018 }
5019 
5020 //===----------------------------------------------------------------------===//
5021 // Execution domains.
5022 //===----------------------------------------------------------------------===//
5023 //
5024 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
5025 // and some can go down both.  The vmov instructions go down the VFP pipeline,
5026 // but they can be changed to vorr equivalents that are executed by the NEON
5027 // pipeline.
5028 //
5029 // We use the following execution domain numbering:
5030 //
5031 enum ARMExeDomain {
5032   ExeGeneric = 0,
5033   ExeVFP = 1,
5034   ExeNEON = 2
5035 };
5036 
5037 //
5038 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
5039 //
5040 std::pair<uint16_t, uint16_t>
5041 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const {
5042   // If we don't have access to NEON instructions then we won't be able
5043   // to swizzle anything to the NEON domain. Check to make sure.
5044   if (Subtarget.hasNEON()) {
5045     // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
5046     // if they are not predicated.
5047     if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI))
5048       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
5049 
5050     // CortexA9 is particularly picky about mixing the two and wants these
5051     // converted.
5052     if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) &&
5053         (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR ||
5054          MI.getOpcode() == ARM::VMOVS))
5055       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
5056   }
5057   // No other instructions can be swizzled, so just determine their domain.
5058   unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask;
5059 
5060   if (Domain & ARMII::DomainNEON)
5061     return std::make_pair(ExeNEON, 0);
5062 
5063   // Certain instructions can go either way on Cortex-A8.
5064   // Treat them as NEON instructions.
5065   if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
5066     return std::make_pair(ExeNEON, 0);
5067 
5068   if (Domain & ARMII::DomainVFP)
5069     return std::make_pair(ExeVFP, 0);
5070 
5071   return std::make_pair(ExeGeneric, 0);
5072 }
5073 
5074 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
5075                                             unsigned SReg, unsigned &Lane) {
5076   unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
5077   Lane = 0;
5078 
5079   if (DReg != ARM::NoRegister)
5080    return DReg;
5081 
5082   Lane = 1;
5083   DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
5084 
5085   assert(DReg && "S-register with no D super-register?");
5086   return DReg;
5087 }
5088 
5089 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
5090 /// set ImplicitSReg to a register number that must be marked as implicit-use or
5091 /// zero if no register needs to be defined as implicit-use.
5092 ///
5093 /// If the function cannot determine if an SPR should be marked implicit use or
5094 /// not, it returns false.
5095 ///
5096 /// This function handles cases where an instruction is being modified from taking
5097 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
5098 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
5099 /// lane of the DPR).
5100 ///
5101 /// If the other SPR is defined, an implicit-use of it should be added. Else,
5102 /// (including the case where the DPR itself is defined), it should not.
5103 ///
5104 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
5105                                        MachineInstr &MI, unsigned DReg,
5106                                        unsigned Lane, unsigned &ImplicitSReg) {
5107   // If the DPR is defined or used already, the other SPR lane will be chained
5108   // correctly, so there is nothing to be done.
5109   if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) {
5110     ImplicitSReg = 0;
5111     return true;
5112   }
5113 
5114   // Otherwise we need to go searching to see if the SPR is set explicitly.
5115   ImplicitSReg = TRI->getSubReg(DReg,
5116                                 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
5117   MachineBasicBlock::LivenessQueryResult LQR =
5118       MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
5119 
5120   if (LQR == MachineBasicBlock::LQR_Live)
5121     return true;
5122   else if (LQR == MachineBasicBlock::LQR_Unknown)
5123     return false;
5124 
5125   // If the register is known not to be live, there is no need to add an
5126   // implicit-use.
5127   ImplicitSReg = 0;
5128   return true;
5129 }
5130 
5131 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI,
5132                                           unsigned Domain) const {
5133   unsigned DstReg, SrcReg, DReg;
5134   unsigned Lane;
5135   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
5136   const TargetRegisterInfo *TRI = &getRegisterInfo();
5137   switch (MI.getOpcode()) {
5138   default:
5139     llvm_unreachable("cannot handle opcode!");
5140     break;
5141   case ARM::VMOVD:
5142     if (Domain != ExeNEON)
5143       break;
5144 
5145     // Zap the predicate operands.
5146     assert(!isPredicated(MI) && "Cannot predicate a VORRd");
5147 
5148     // Make sure we've got NEON instructions.
5149     assert(Subtarget.hasNEON() && "VORRd requires NEON");
5150 
5151     // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
5152     DstReg = MI.getOperand(0).getReg();
5153     SrcReg = MI.getOperand(1).getReg();
5154 
5155     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5156       MI.removeOperand(i - 1);
5157 
5158     // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
5159     MI.setDesc(get(ARM::VORRd));
5160     MIB.addReg(DstReg, RegState::Define)
5161         .addReg(SrcReg)
5162         .addReg(SrcReg)
5163         .add(predOps(ARMCC::AL));
5164     break;
5165   case ARM::VMOVRS:
5166     if (Domain != ExeNEON)
5167       break;
5168     assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
5169 
5170     // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
5171     DstReg = MI.getOperand(0).getReg();
5172     SrcReg = MI.getOperand(1).getReg();
5173 
5174     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5175       MI.removeOperand(i - 1);
5176 
5177     DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
5178 
5179     // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
5180     // Note that DSrc has been widened and the other lane may be undef, which
5181     // contaminates the entire register.
5182     MI.setDesc(get(ARM::VGETLNi32));
5183     MIB.addReg(DstReg, RegState::Define)
5184         .addReg(DReg, RegState::Undef)
5185         .addImm(Lane)
5186         .add(predOps(ARMCC::AL));
5187 
5188     // The old source should be an implicit use, otherwise we might think it
5189     // was dead before here.
5190     MIB.addReg(SrcReg, RegState::Implicit);
5191     break;
5192   case ARM::VMOVSR: {
5193     if (Domain != ExeNEON)
5194       break;
5195     assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
5196 
5197     // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
5198     DstReg = MI.getOperand(0).getReg();
5199     SrcReg = MI.getOperand(1).getReg();
5200 
5201     DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
5202 
5203     unsigned ImplicitSReg;
5204     if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
5205       break;
5206 
5207     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5208       MI.removeOperand(i - 1);
5209 
5210     // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
5211     // Again DDst may be undefined at the beginning of this instruction.
5212     MI.setDesc(get(ARM::VSETLNi32));
5213     MIB.addReg(DReg, RegState::Define)
5214         .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI)))
5215         .addReg(SrcReg)
5216         .addImm(Lane)
5217         .add(predOps(ARMCC::AL));
5218 
5219     // The narrower destination must be marked as set to keep previous chains
5220     // in place.
5221     MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
5222     if (ImplicitSReg != 0)
5223       MIB.addReg(ImplicitSReg, RegState::Implicit);
5224     break;
5225     }
5226     case ARM::VMOVS: {
5227       if (Domain != ExeNEON)
5228         break;
5229 
5230       // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
5231       DstReg = MI.getOperand(0).getReg();
5232       SrcReg = MI.getOperand(1).getReg();
5233 
5234       unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
5235       DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
5236       DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
5237 
5238       unsigned ImplicitSReg;
5239       if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
5240         break;
5241 
5242       for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5243         MI.removeOperand(i - 1);
5244 
5245       if (DSrc == DDst) {
5246         // Destination can be:
5247         //     %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
5248         MI.setDesc(get(ARM::VDUPLN32d));
5249         MIB.addReg(DDst, RegState::Define)
5250             .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI)))
5251             .addImm(SrcLane)
5252             .add(predOps(ARMCC::AL));
5253 
5254         // Neither the source or the destination are naturally represented any
5255         // more, so add them in manually.
5256         MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
5257         MIB.addReg(SrcReg, RegState::Implicit);
5258         if (ImplicitSReg != 0)
5259           MIB.addReg(ImplicitSReg, RegState::Implicit);
5260         break;
5261       }
5262 
5263       // In general there's no single instruction that can perform an S <-> S
5264       // move in NEON space, but a pair of VEXT instructions *can* do the
5265       // job. It turns out that the VEXTs needed will only use DSrc once, with
5266       // the position based purely on the combination of lane-0 and lane-1
5267       // involved. For example
5268       //     vmov s0, s2 -> vext.32 d0, d0, d1, #1  vext.32 d0, d0, d0, #1
5269       //     vmov s1, s3 -> vext.32 d0, d1, d0, #1  vext.32 d0, d0, d0, #1
5270       //     vmov s0, s3 -> vext.32 d0, d0, d0, #1  vext.32 d0, d1, d0, #1
5271       //     vmov s1, s2 -> vext.32 d0, d0, d0, #1  vext.32 d0, d0, d1, #1
5272       //
5273       // Pattern of the MachineInstrs is:
5274       //     %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
5275       MachineInstrBuilder NewMIB;
5276       NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32),
5277                        DDst);
5278 
5279       // On the first instruction, both DSrc and DDst may be undef if present.
5280       // Specifically when the original instruction didn't have them as an
5281       // <imp-use>.
5282       unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
5283       bool CurUndef = !MI.readsRegister(CurReg, TRI);
5284       NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
5285 
5286       CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
5287       CurUndef = !MI.readsRegister(CurReg, TRI);
5288       NewMIB.addReg(CurReg, getUndefRegState(CurUndef))
5289             .addImm(1)
5290             .add(predOps(ARMCC::AL));
5291 
5292       if (SrcLane == DstLane)
5293         NewMIB.addReg(SrcReg, RegState::Implicit);
5294 
5295       MI.setDesc(get(ARM::VEXTd32));
5296       MIB.addReg(DDst, RegState::Define);
5297 
5298       // On the second instruction, DDst has definitely been defined above, so
5299       // it is not undef. DSrc, if present, can be undef as above.
5300       CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
5301       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5302       MIB.addReg(CurReg, getUndefRegState(CurUndef));
5303 
5304       CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
5305       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5306       MIB.addReg(CurReg, getUndefRegState(CurUndef))
5307          .addImm(1)
5308          .add(predOps(ARMCC::AL));
5309 
5310       if (SrcLane != DstLane)
5311         MIB.addReg(SrcReg, RegState::Implicit);
5312 
5313       // As before, the original destination is no longer represented, add it
5314       // implicitly.
5315       MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
5316       if (ImplicitSReg != 0)
5317         MIB.addReg(ImplicitSReg, RegState::Implicit);
5318       break;
5319     }
5320   }
5321 }
5322 
5323 //===----------------------------------------------------------------------===//
5324 // Partial register updates
5325 //===----------------------------------------------------------------------===//
5326 //
5327 // Swift renames NEON registers with 64-bit granularity.  That means any
5328 // instruction writing an S-reg implicitly reads the containing D-reg.  The
5329 // problem is mostly avoided by translating f32 operations to v2f32 operations
5330 // on D-registers, but f32 loads are still a problem.
5331 //
5332 // These instructions can load an f32 into a NEON register:
5333 //
5334 // VLDRS - Only writes S, partial D update.
5335 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
5336 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
5337 //
5338 // FCONSTD can be used as a dependency-breaking instruction.
5339 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance(
5340     const MachineInstr &MI, unsigned OpNum,
5341     const TargetRegisterInfo *TRI) const {
5342   auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance();
5343   if (!PartialUpdateClearance)
5344     return 0;
5345 
5346   assert(TRI && "Need TRI instance");
5347 
5348   const MachineOperand &MO = MI.getOperand(OpNum);
5349   if (MO.readsReg())
5350     return 0;
5351   Register Reg = MO.getReg();
5352   int UseOp = -1;
5353 
5354   switch (MI.getOpcode()) {
5355   // Normal instructions writing only an S-register.
5356   case ARM::VLDRS:
5357   case ARM::FCONSTS:
5358   case ARM::VMOVSR:
5359   case ARM::VMOVv8i8:
5360   case ARM::VMOVv4i16:
5361   case ARM::VMOVv2i32:
5362   case ARM::VMOVv2f32:
5363   case ARM::VMOVv1i64:
5364     UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI);
5365     break;
5366 
5367     // Explicitly reads the dependency.
5368   case ARM::VLD1LNd32:
5369     UseOp = 3;
5370     break;
5371   default:
5372     return 0;
5373   }
5374 
5375   // If this instruction actually reads a value from Reg, there is no unwanted
5376   // dependency.
5377   if (UseOp != -1 && MI.getOperand(UseOp).readsReg())
5378     return 0;
5379 
5380   // We must be able to clobber the whole D-reg.
5381   if (Reg.isVirtual()) {
5382     // Virtual register must be a def undef foo:ssub_0 operand.
5383     if (!MO.getSubReg() || MI.readsVirtualRegister(Reg))
5384       return 0;
5385   } else if (ARM::SPRRegClass.contains(Reg)) {
5386     // Physical register: MI must define the full D-reg.
5387     unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
5388                                              &ARM::DPRRegClass);
5389     if (!DReg || !MI.definesRegister(DReg, TRI))
5390       return 0;
5391   }
5392 
5393   // MI has an unwanted D-register dependency.
5394   // Avoid defs in the previous N instructrions.
5395   return PartialUpdateClearance;
5396 }
5397 
5398 // Break a partial register dependency after getPartialRegUpdateClearance
5399 // returned non-zero.
5400 void ARMBaseInstrInfo::breakPartialRegDependency(
5401     MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
5402   assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def");
5403   assert(TRI && "Need TRI instance");
5404 
5405   const MachineOperand &MO = MI.getOperand(OpNum);
5406   Register Reg = MO.getReg();
5407   assert(Reg.isPhysical() && "Can't break virtual register dependencies.");
5408   unsigned DReg = Reg;
5409 
5410   // If MI defines an S-reg, find the corresponding D super-register.
5411   if (ARM::SPRRegClass.contains(Reg)) {
5412     DReg = ARM::D0 + (Reg - ARM::S0) / 2;
5413     assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
5414   }
5415 
5416   assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
5417   assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
5418 
5419   // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
5420   // the full D-register by loading the same value to both lanes.  The
5421   // instruction is micro-coded with 2 uops, so don't do this until we can
5422   // properly schedule micro-coded instructions.  The dispatcher stalls cause
5423   // too big regressions.
5424 
5425   // Insert the dependency-breaking FCONSTD before MI.
5426   // 96 is the encoding of 0.5, but the actual value doesn't matter here.
5427   BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg)
5428       .addImm(96)
5429       .add(predOps(ARMCC::AL));
5430   MI.addRegisterKilled(DReg, TRI, true);
5431 }
5432 
5433 bool ARMBaseInstrInfo::hasNOP() const {
5434   return Subtarget.hasFeature(ARM::HasV6KOps);
5435 }
5436 
5437 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
5438   if (MI->getNumOperands() < 4)
5439     return true;
5440   unsigned ShOpVal = MI->getOperand(3).getImm();
5441   unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
5442   // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
5443   if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
5444       ((ShImm == 1 || ShImm == 2) &&
5445        ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
5446     return true;
5447 
5448   return false;
5449 }
5450 
5451 bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
5452     const MachineInstr &MI, unsigned DefIdx,
5453     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
5454   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5455   assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
5456 
5457   switch (MI.getOpcode()) {
5458   case ARM::VMOVDRR:
5459     // dX = VMOVDRR rY, rZ
5460     // is the same as:
5461     // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
5462     // Populate the InputRegs accordingly.
5463     // rY
5464     const MachineOperand *MOReg = &MI.getOperand(1);
5465     if (!MOReg->isUndef())
5466       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5467                                               MOReg->getSubReg(), ARM::ssub_0));
5468     // rZ
5469     MOReg = &MI.getOperand(2);
5470     if (!MOReg->isUndef())
5471       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5472                                               MOReg->getSubReg(), ARM::ssub_1));
5473     return true;
5474   }
5475   llvm_unreachable("Target dependent opcode missing");
5476 }
5477 
5478 bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
5479     const MachineInstr &MI, unsigned DefIdx,
5480     RegSubRegPairAndIdx &InputReg) const {
5481   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5482   assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
5483 
5484   switch (MI.getOpcode()) {
5485   case ARM::VMOVRRD:
5486     // rX, rY = VMOVRRD dZ
5487     // is the same as:
5488     // rX = EXTRACT_SUBREG dZ, ssub_0
5489     // rY = EXTRACT_SUBREG dZ, ssub_1
5490     const MachineOperand &MOReg = MI.getOperand(2);
5491     if (MOReg.isUndef())
5492       return false;
5493     InputReg.Reg = MOReg.getReg();
5494     InputReg.SubReg = MOReg.getSubReg();
5495     InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
5496     return true;
5497   }
5498   llvm_unreachable("Target dependent opcode missing");
5499 }
5500 
5501 bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
5502     const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
5503     RegSubRegPairAndIdx &InsertedReg) const {
5504   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5505   assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
5506 
5507   switch (MI.getOpcode()) {
5508   case ARM::VSETLNi32:
5509   case ARM::MVE_VMOV_to_lane_32:
5510     // dX = VSETLNi32 dY, rZ, imm
5511     // qX = MVE_VMOV_to_lane_32 qY, rZ, imm
5512     const MachineOperand &MOBaseReg = MI.getOperand(1);
5513     const MachineOperand &MOInsertedReg = MI.getOperand(2);
5514     if (MOInsertedReg.isUndef())
5515       return false;
5516     const MachineOperand &MOIndex = MI.getOperand(3);
5517     BaseReg.Reg = MOBaseReg.getReg();
5518     BaseReg.SubReg = MOBaseReg.getSubReg();
5519 
5520     InsertedReg.Reg = MOInsertedReg.getReg();
5521     InsertedReg.SubReg = MOInsertedReg.getSubReg();
5522     InsertedReg.SubIdx = ARM::ssub_0 + MOIndex.getImm();
5523     return true;
5524   }
5525   llvm_unreachable("Target dependent opcode missing");
5526 }
5527 
5528 std::pair<unsigned, unsigned>
5529 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
5530   const unsigned Mask = ARMII::MO_OPTION_MASK;
5531   return std::make_pair(TF & Mask, TF & ~Mask);
5532 }
5533 
5534 ArrayRef<std::pair<unsigned, const char *>>
5535 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
5536   using namespace ARMII;
5537 
5538   static const std::pair<unsigned, const char *> TargetFlags[] = {
5539       {MO_LO16, "arm-lo16"},       {MO_HI16, "arm-hi16"},
5540       {MO_LO_0_7, "arm-lo-0-7"},   {MO_HI_0_7, "arm-hi-0-7"},
5541       {MO_LO_8_15, "arm-lo-8-15"}, {MO_HI_8_15, "arm-hi-8-15"},
5542   };
5543   return ArrayRef(TargetFlags);
5544 }
5545 
5546 ArrayRef<std::pair<unsigned, const char *>>
5547 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
5548   using namespace ARMII;
5549 
5550   static const std::pair<unsigned, const char *> TargetFlags[] = {
5551       {MO_COFFSTUB, "arm-coffstub"},
5552       {MO_GOT, "arm-got"},
5553       {MO_SBREL, "arm-sbrel"},
5554       {MO_DLLIMPORT, "arm-dllimport"},
5555       {MO_SECREL, "arm-secrel"},
5556       {MO_NONLAZY, "arm-nonlazy"}};
5557   return ArrayRef(TargetFlags);
5558 }
5559 
5560 std::optional<RegImmPair>
5561 ARMBaseInstrInfo::isAddImmediate(const MachineInstr &MI, Register Reg) const {
5562   int Sign = 1;
5563   unsigned Opcode = MI.getOpcode();
5564   int64_t Offset = 0;
5565 
5566   // TODO: Handle cases where Reg is a super- or sub-register of the
5567   // destination register.
5568   const MachineOperand &Op0 = MI.getOperand(0);
5569   if (!Op0.isReg() || Reg != Op0.getReg())
5570     return std::nullopt;
5571 
5572   // We describe SUBri or ADDri instructions.
5573   if (Opcode == ARM::SUBri)
5574     Sign = -1;
5575   else if (Opcode != ARM::ADDri)
5576     return std::nullopt;
5577 
5578   // TODO: Third operand can be global address (usually some string). Since
5579   //       strings can be relocated we cannot calculate their offsets for
5580   //       now.
5581   if (!MI.getOperand(1).isReg() || !MI.getOperand(2).isImm())
5582     return std::nullopt;
5583 
5584   Offset = MI.getOperand(2).getImm() * Sign;
5585   return RegImmPair{MI.getOperand(1).getReg(), Offset};
5586 }
5587 
5588 bool llvm::registerDefinedBetween(unsigned Reg,
5589                                   MachineBasicBlock::iterator From,
5590                                   MachineBasicBlock::iterator To,
5591                                   const TargetRegisterInfo *TRI) {
5592   for (auto I = From; I != To; ++I)
5593     if (I->modifiesRegister(Reg, TRI))
5594       return true;
5595   return false;
5596 }
5597 
5598 MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br,
5599                                          const TargetRegisterInfo *TRI) {
5600   // Search backwards to the instruction that defines CSPR. This may or not
5601   // be a CMP, we check that after this loop. If we find another instruction
5602   // that reads cpsr, we return nullptr.
5603   MachineBasicBlock::iterator CmpMI = Br;
5604   while (CmpMI != Br->getParent()->begin()) {
5605     --CmpMI;
5606     if (CmpMI->modifiesRegister(ARM::CPSR, TRI))
5607       break;
5608     if (CmpMI->readsRegister(ARM::CPSR, TRI))
5609       break;
5610   }
5611 
5612   // Check that this inst is a CMP r[0-7], #0 and that the register
5613   // is not redefined between the cmp and the br.
5614   if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri)
5615     return nullptr;
5616   Register Reg = CmpMI->getOperand(0).getReg();
5617   Register PredReg;
5618   ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg);
5619   if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0)
5620     return nullptr;
5621   if (!isARMLowRegister(Reg))
5622     return nullptr;
5623   if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI))
5624     return nullptr;
5625 
5626   return &*CmpMI;
5627 }
5628 
5629 unsigned llvm::ConstantMaterializationCost(unsigned Val,
5630                                            const ARMSubtarget *Subtarget,
5631                                            bool ForCodesize) {
5632   if (Subtarget->isThumb()) {
5633     if (Val <= 255) // MOV
5634       return ForCodesize ? 2 : 1;
5635     if (Subtarget->hasV6T2Ops() && (Val <= 0xffff ||                    // MOV
5636                                     ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW
5637                                     ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN
5638       return ForCodesize ? 4 : 1;
5639     if (Val <= 510) // MOV + ADDi8
5640       return ForCodesize ? 4 : 2;
5641     if (~Val <= 255) // MOV + MVN
5642       return ForCodesize ? 4 : 2;
5643     if (ARM_AM::isThumbImmShiftedVal(Val)) // MOV + LSL
5644       return ForCodesize ? 4 : 2;
5645   } else {
5646     if (ARM_AM::getSOImmVal(Val) != -1) // MOV
5647       return ForCodesize ? 4 : 1;
5648     if (ARM_AM::getSOImmVal(~Val) != -1) // MVN
5649       return ForCodesize ? 4 : 1;
5650     if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW
5651       return ForCodesize ? 4 : 1;
5652     if (ARM_AM::isSOImmTwoPartVal(Val)) // two instrs
5653       return ForCodesize ? 8 : 2;
5654     if (ARM_AM::isSOImmTwoPartValNeg(Val)) // two instrs
5655       return ForCodesize ? 8 : 2;
5656   }
5657   if (Subtarget->useMovt()) // MOVW + MOVT
5658     return ForCodesize ? 8 : 2;
5659   return ForCodesize ? 8 : 3; // Literal pool load
5660 }
5661 
5662 bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2,
5663                                                const ARMSubtarget *Subtarget,
5664                                                bool ForCodesize) {
5665   // Check with ForCodesize
5666   unsigned Cost1 = ConstantMaterializationCost(Val1, Subtarget, ForCodesize);
5667   unsigned Cost2 = ConstantMaterializationCost(Val2, Subtarget, ForCodesize);
5668   if (Cost1 < Cost2)
5669     return true;
5670   if (Cost1 > Cost2)
5671     return false;
5672 
5673   // If they are equal, try with !ForCodesize
5674   return ConstantMaterializationCost(Val1, Subtarget, !ForCodesize) <
5675          ConstantMaterializationCost(Val2, Subtarget, !ForCodesize);
5676 }
5677 
5678 /// Constants defining how certain sequences should be outlined.
5679 /// This encompasses how an outlined function should be called, and what kind of
5680 /// frame should be emitted for that outlined function.
5681 ///
5682 /// \p MachineOutlinerTailCall implies that the function is being created from
5683 /// a sequence of instructions ending in a return.
5684 ///
5685 /// That is,
5686 ///
5687 /// I1                                OUTLINED_FUNCTION:
5688 /// I2    --> B OUTLINED_FUNCTION     I1
5689 /// BX LR                             I2
5690 ///                                   BX LR
5691 ///
5692 /// +-------------------------+--------+-----+
5693 /// |                         | Thumb2 | ARM |
5694 /// +-------------------------+--------+-----+
5695 /// | Call overhead in Bytes  |      4 |   4 |
5696 /// | Frame overhead in Bytes |      0 |   0 |
5697 /// | Stack fixup required    |     No |  No |
5698 /// +-------------------------+--------+-----+
5699 ///
5700 /// \p MachineOutlinerThunk implies that the function is being created from
5701 /// a sequence of instructions ending in a call. The outlined function is
5702 /// called with a BL instruction, and the outlined function tail-calls the
5703 /// original call destination.
5704 ///
5705 /// That is,
5706 ///
5707 /// I1                                OUTLINED_FUNCTION:
5708 /// I2   --> BL OUTLINED_FUNCTION     I1
5709 /// BL f                              I2
5710 ///                                   B f
5711 ///
5712 /// +-------------------------+--------+-----+
5713 /// |                         | Thumb2 | ARM |
5714 /// +-------------------------+--------+-----+
5715 /// | Call overhead in Bytes  |      4 |   4 |
5716 /// | Frame overhead in Bytes |      0 |   0 |
5717 /// | Stack fixup required    |     No |  No |
5718 /// +-------------------------+--------+-----+
5719 ///
5720 /// \p MachineOutlinerNoLRSave implies that the function should be called using
5721 /// a BL instruction, but doesn't require LR to be saved and restored. This
5722 /// happens when LR is known to be dead.
5723 ///
5724 /// That is,
5725 ///
5726 /// I1                                OUTLINED_FUNCTION:
5727 /// I2 --> BL OUTLINED_FUNCTION       I1
5728 /// I3                                I2
5729 ///                                   I3
5730 ///                                   BX LR
5731 ///
5732 /// +-------------------------+--------+-----+
5733 /// |                         | Thumb2 | ARM |
5734 /// +-------------------------+--------+-----+
5735 /// | Call overhead in Bytes  |      4 |   4 |
5736 /// | Frame overhead in Bytes |      2 |   4 |
5737 /// | Stack fixup required    |     No |  No |
5738 /// +-------------------------+--------+-----+
5739 ///
5740 /// \p MachineOutlinerRegSave implies that the function should be called with a
5741 /// save and restore of LR to an available register. This allows us to avoid
5742 /// stack fixups. Note that this outlining variant is compatible with the
5743 /// NoLRSave case.
5744 ///
5745 /// That is,
5746 ///
5747 /// I1     Save LR                    OUTLINED_FUNCTION:
5748 /// I2 --> BL OUTLINED_FUNCTION       I1
5749 /// I3     Restore LR                 I2
5750 ///                                   I3
5751 ///                                   BX LR
5752 ///
5753 /// +-------------------------+--------+-----+
5754 /// |                         | Thumb2 | ARM |
5755 /// +-------------------------+--------+-----+
5756 /// | Call overhead in Bytes  |      8 |  12 |
5757 /// | Frame overhead in Bytes |      2 |   4 |
5758 /// | Stack fixup required    |     No |  No |
5759 /// +-------------------------+--------+-----+
5760 ///
5761 /// \p MachineOutlinerDefault implies that the function should be called with
5762 /// a save and restore of LR to the stack.
5763 ///
5764 /// That is,
5765 ///
5766 /// I1     Save LR                    OUTLINED_FUNCTION:
5767 /// I2 --> BL OUTLINED_FUNCTION       I1
5768 /// I3     Restore LR                 I2
5769 ///                                   I3
5770 ///                                   BX LR
5771 ///
5772 /// +-------------------------+--------+-----+
5773 /// |                         | Thumb2 | ARM |
5774 /// +-------------------------+--------+-----+
5775 /// | Call overhead in Bytes  |      8 |  12 |
5776 /// | Frame overhead in Bytes |      2 |   4 |
5777 /// | Stack fixup required    |    Yes | Yes |
5778 /// +-------------------------+--------+-----+
5779 
5780 enum MachineOutlinerClass {
5781   MachineOutlinerTailCall,
5782   MachineOutlinerThunk,
5783   MachineOutlinerNoLRSave,
5784   MachineOutlinerRegSave,
5785   MachineOutlinerDefault
5786 };
5787 
5788 enum MachineOutlinerMBBFlags {
5789   LRUnavailableSomewhere = 0x2,
5790   HasCalls = 0x4,
5791   UnsafeRegsDead = 0x8
5792 };
5793 
5794 struct OutlinerCosts {
5795   int CallTailCall;
5796   int FrameTailCall;
5797   int CallThunk;
5798   int FrameThunk;
5799   int CallNoLRSave;
5800   int FrameNoLRSave;
5801   int CallRegSave;
5802   int FrameRegSave;
5803   int CallDefault;
5804   int FrameDefault;
5805   int SaveRestoreLROnStack;
5806 
5807   OutlinerCosts(const ARMSubtarget &target)
5808       : CallTailCall(target.isThumb() ? 4 : 4),
5809         FrameTailCall(target.isThumb() ? 0 : 0),
5810         CallThunk(target.isThumb() ? 4 : 4),
5811         FrameThunk(target.isThumb() ? 0 : 0),
5812         CallNoLRSave(target.isThumb() ? 4 : 4),
5813         FrameNoLRSave(target.isThumb() ? 2 : 4),
5814         CallRegSave(target.isThumb() ? 8 : 12),
5815         FrameRegSave(target.isThumb() ? 2 : 4),
5816         CallDefault(target.isThumb() ? 8 : 12),
5817         FrameDefault(target.isThumb() ? 2 : 4),
5818         SaveRestoreLROnStack(target.isThumb() ? 8 : 8) {}
5819 };
5820 
5821 Register
5822 ARMBaseInstrInfo::findRegisterToSaveLRTo(outliner::Candidate &C) const {
5823   MachineFunction *MF = C.getMF();
5824   const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
5825   const ARMBaseRegisterInfo *ARI =
5826       static_cast<const ARMBaseRegisterInfo *>(&TRI);
5827 
5828   BitVector regsReserved = ARI->getReservedRegs(*MF);
5829   // Check if there is an available register across the sequence that we can
5830   // use.
5831   for (Register Reg : ARM::rGPRRegClass) {
5832     if (!(Reg < regsReserved.size() && regsReserved.test(Reg)) &&
5833         Reg != ARM::LR &&  // LR is not reserved, but don't use it.
5834         Reg != ARM::R12 && // R12 is not guaranteed to be preserved.
5835         C.isAvailableAcrossAndOutOfSeq(Reg, TRI) &&
5836         C.isAvailableInsideSeq(Reg, TRI))
5837       return Reg;
5838   }
5839   return Register();
5840 }
5841 
5842 // Compute liveness of LR at the point after the interval [I, E), which
5843 // denotes a *backward* iteration through instructions. Used only for return
5844 // basic blocks, which do not end with a tail call.
5845 static bool isLRAvailable(const TargetRegisterInfo &TRI,
5846                           MachineBasicBlock::reverse_iterator I,
5847                           MachineBasicBlock::reverse_iterator E) {
5848   // At the end of the function LR dead.
5849   bool Live = false;
5850   for (; I != E; ++I) {
5851     const MachineInstr &MI = *I;
5852 
5853     // Check defs of LR.
5854     if (MI.modifiesRegister(ARM::LR, &TRI))
5855       Live = false;
5856 
5857     // Check uses of LR.
5858     unsigned Opcode = MI.getOpcode();
5859     if (Opcode == ARM::BX_RET || Opcode == ARM::MOVPCLR ||
5860         Opcode == ARM::SUBS_PC_LR || Opcode == ARM::tBX_RET ||
5861         Opcode == ARM::tBXNS_RET) {
5862       // These instructions use LR, but it's not an (explicit or implicit)
5863       // operand.
5864       Live = true;
5865       continue;
5866     }
5867     if (MI.readsRegister(ARM::LR, &TRI))
5868       Live = true;
5869   }
5870   return !Live;
5871 }
5872 
5873 std::optional<outliner::OutlinedFunction>
5874 ARMBaseInstrInfo::getOutliningCandidateInfo(
5875     std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
5876   outliner::Candidate &FirstCand = RepeatedSequenceLocs[0];
5877 
5878   unsigned SequenceSize = 0;
5879   for (auto &MI : FirstCand)
5880     SequenceSize += getInstSizeInBytes(MI);
5881 
5882   // Properties about candidate MBBs that hold for all of them.
5883   unsigned FlagsSetInAll = 0xF;
5884 
5885   // Compute liveness information for each candidate, and set FlagsSetInAll.
5886   const TargetRegisterInfo &TRI = getRegisterInfo();
5887   for (outliner::Candidate &C : RepeatedSequenceLocs)
5888     FlagsSetInAll &= C.Flags;
5889 
5890   // According to the ARM Procedure Call Standard, the following are
5891   // undefined on entry/exit from a function call:
5892   //
5893   // * Register R12(IP),
5894   // * Condition codes (and thus the CPSR register)
5895   //
5896   // Since we control the instructions which are part of the outlined regions
5897   // we don't need to be fully compliant with the AAPCS, but we have to
5898   // guarantee that if a veneer is inserted at link time the code is still
5899   // correct.  Because of this, we can't outline any sequence of instructions
5900   // where one of these registers is live into/across it. Thus, we need to
5901   // delete those candidates.
5902   auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) {
5903     // If the unsafe registers in this block are all dead, then we don't need
5904     // to compute liveness here.
5905     if (C.Flags & UnsafeRegsDead)
5906       return false;
5907     return C.isAnyUnavailableAcrossOrOutOfSeq({ARM::R12, ARM::CPSR}, TRI);
5908   };
5909 
5910   // Are there any candidates where those registers are live?
5911   if (!(FlagsSetInAll & UnsafeRegsDead)) {
5912     // Erase every candidate that violates the restrictions above. (It could be
5913     // true that we have viable candidates, so it's not worth bailing out in
5914     // the case that, say, 1 out of 20 candidates violate the restructions.)
5915     llvm::erase_if(RepeatedSequenceLocs, CantGuaranteeValueAcrossCall);
5916 
5917     // If the sequence doesn't have enough candidates left, then we're done.
5918     if (RepeatedSequenceLocs.size() < 2)
5919       return std::nullopt;
5920   }
5921 
5922   // We expect the majority of the outlining candidates to be in consensus with
5923   // regard to return address sign and authentication, and branch target
5924   // enforcement, in other words, partitioning according to all the four
5925   // possible combinations of PAC-RET and BTI is going to yield one big subset
5926   // and three small (likely empty) subsets. That allows us to cull incompatible
5927   // candidates separately for PAC-RET and BTI.
5928 
5929   // Partition the candidates in two sets: one with BTI enabled and one with BTI
5930   // disabled. Remove the candidates from the smaller set. If they are the same
5931   // number prefer the non-BTI ones for outlining, since they have less
5932   // overhead.
5933   auto NoBTI =
5934       llvm::partition(RepeatedSequenceLocs, [](const outliner::Candidate &C) {
5935         const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>();
5936         return AFI.branchTargetEnforcement();
5937       });
5938   if (std::distance(RepeatedSequenceLocs.begin(), NoBTI) >
5939       std::distance(NoBTI, RepeatedSequenceLocs.end()))
5940     RepeatedSequenceLocs.erase(NoBTI, RepeatedSequenceLocs.end());
5941   else
5942     RepeatedSequenceLocs.erase(RepeatedSequenceLocs.begin(), NoBTI);
5943 
5944   if (RepeatedSequenceLocs.size() < 2)
5945     return std::nullopt;
5946 
5947   // Likewise, partition the candidates according to PAC-RET enablement.
5948   auto NoPAC =
5949       llvm::partition(RepeatedSequenceLocs, [](const outliner::Candidate &C) {
5950         const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>();
5951         // If the function happens to not spill the LR, do not disqualify it
5952         // from the outlining.
5953         return AFI.shouldSignReturnAddress(true);
5954       });
5955   if (std::distance(RepeatedSequenceLocs.begin(), NoPAC) >
5956       std::distance(NoPAC, RepeatedSequenceLocs.end()))
5957     RepeatedSequenceLocs.erase(NoPAC, RepeatedSequenceLocs.end());
5958   else
5959     RepeatedSequenceLocs.erase(RepeatedSequenceLocs.begin(), NoPAC);
5960 
5961   if (RepeatedSequenceLocs.size() < 2)
5962     return std::nullopt;
5963 
5964   // At this point, we have only "safe" candidates to outline. Figure out
5965   // frame + call instruction information.
5966 
5967   unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back().getOpcode();
5968 
5969   // Helper lambda which sets call information for every candidate.
5970   auto SetCandidateCallInfo =
5971       [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) {
5972         for (outliner::Candidate &C : RepeatedSequenceLocs)
5973           C.setCallInfo(CallID, NumBytesForCall);
5974       };
5975 
5976   OutlinerCosts Costs(Subtarget);
5977 
5978   const auto &SomeMFI =
5979       *RepeatedSequenceLocs.front().getMF()->getInfo<ARMFunctionInfo>();
5980   // Adjust costs to account for the BTI instructions.
5981   if (SomeMFI.branchTargetEnforcement()) {
5982     Costs.FrameDefault += 4;
5983     Costs.FrameNoLRSave += 4;
5984     Costs.FrameRegSave += 4;
5985     Costs.FrameTailCall += 4;
5986     Costs.FrameThunk += 4;
5987   }
5988 
5989   // Adjust costs to account for sign and authentication instructions.
5990   if (SomeMFI.shouldSignReturnAddress(true)) {
5991     Costs.CallDefault += 8;          // +PAC instr, +AUT instr
5992     Costs.SaveRestoreLROnStack += 8; // +PAC instr, +AUT instr
5993   }
5994 
5995   unsigned FrameID = MachineOutlinerDefault;
5996   unsigned NumBytesToCreateFrame = Costs.FrameDefault;
5997 
5998   // If the last instruction in any candidate is a terminator, then we should
5999   // tail call all of the candidates.
6000   if (RepeatedSequenceLocs[0].back().isTerminator()) {
6001     FrameID = MachineOutlinerTailCall;
6002     NumBytesToCreateFrame = Costs.FrameTailCall;
6003     SetCandidateCallInfo(MachineOutlinerTailCall, Costs.CallTailCall);
6004   } else if (LastInstrOpcode == ARM::BL || LastInstrOpcode == ARM::BLX ||
6005              LastInstrOpcode == ARM::BLX_noip || LastInstrOpcode == ARM::tBL ||
6006              LastInstrOpcode == ARM::tBLXr ||
6007              LastInstrOpcode == ARM::tBLXr_noip ||
6008              LastInstrOpcode == ARM::tBLXi) {
6009     FrameID = MachineOutlinerThunk;
6010     NumBytesToCreateFrame = Costs.FrameThunk;
6011     SetCandidateCallInfo(MachineOutlinerThunk, Costs.CallThunk);
6012   } else {
6013     // We need to decide how to emit calls + frames. We can always emit the same
6014     // frame if we don't need to save to the stack. If we have to save to the
6015     // stack, then we need a different frame.
6016     unsigned NumBytesNoStackCalls = 0;
6017     std::vector<outliner::Candidate> CandidatesWithoutStackFixups;
6018 
6019     for (outliner::Candidate &C : RepeatedSequenceLocs) {
6020       // LR liveness is overestimated in return blocks, unless they end with a
6021       // tail call.
6022       const auto Last = C.getMBB()->rbegin();
6023       const bool LRIsAvailable =
6024           C.getMBB()->isReturnBlock() && !Last->isCall()
6025               ? isLRAvailable(TRI, Last,
6026                               (MachineBasicBlock::reverse_iterator)C.begin())
6027               : C.isAvailableAcrossAndOutOfSeq(ARM::LR, TRI);
6028       if (LRIsAvailable) {
6029         FrameID = MachineOutlinerNoLRSave;
6030         NumBytesNoStackCalls += Costs.CallNoLRSave;
6031         C.setCallInfo(MachineOutlinerNoLRSave, Costs.CallNoLRSave);
6032         CandidatesWithoutStackFixups.push_back(C);
6033       }
6034 
6035       // Is an unused register available? If so, we won't modify the stack, so
6036       // we can outline with the same frame type as those that don't save LR.
6037       else if (findRegisterToSaveLRTo(C)) {
6038         FrameID = MachineOutlinerRegSave;
6039         NumBytesNoStackCalls += Costs.CallRegSave;
6040         C.setCallInfo(MachineOutlinerRegSave, Costs.CallRegSave);
6041         CandidatesWithoutStackFixups.push_back(C);
6042       }
6043 
6044       // Is SP used in the sequence at all? If not, we don't have to modify
6045       // the stack, so we are guaranteed to get the same frame.
6046       else if (C.isAvailableInsideSeq(ARM::SP, TRI)) {
6047         NumBytesNoStackCalls += Costs.CallDefault;
6048         C.setCallInfo(MachineOutlinerDefault, Costs.CallDefault);
6049         CandidatesWithoutStackFixups.push_back(C);
6050       }
6051 
6052       // If we outline this, we need to modify the stack. Pretend we don't
6053       // outline this by saving all of its bytes.
6054       else
6055         NumBytesNoStackCalls += SequenceSize;
6056     }
6057 
6058     // If there are no places where we have to save LR, then note that we don't
6059     // have to update the stack. Otherwise, give every candidate the default
6060     // call type
6061     if (NumBytesNoStackCalls <=
6062         RepeatedSequenceLocs.size() * Costs.CallDefault) {
6063       RepeatedSequenceLocs = CandidatesWithoutStackFixups;
6064       FrameID = MachineOutlinerNoLRSave;
6065     } else
6066       SetCandidateCallInfo(MachineOutlinerDefault, Costs.CallDefault);
6067   }
6068 
6069   // Does every candidate's MBB contain a call?  If so, then we might have a
6070   // call in the range.
6071   if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) {
6072     // check if the range contains a call.  These require a save + restore of
6073     // the link register.
6074     if (std::any_of(FirstCand.begin(), std::prev(FirstCand.end()),
6075                     [](const MachineInstr &MI) { return MI.isCall(); }))
6076       NumBytesToCreateFrame += Costs.SaveRestoreLROnStack;
6077 
6078     // Handle the last instruction separately.  If it is tail call, then the
6079     // last instruction is a call, we don't want to save + restore in this
6080     // case.  However, it could be possible that the last instruction is a
6081     // call without it being valid to tail call this sequence.  We should
6082     // consider this as well.
6083     else if (FrameID != MachineOutlinerThunk &&
6084              FrameID != MachineOutlinerTailCall && FirstCand.back().isCall())
6085       NumBytesToCreateFrame += Costs.SaveRestoreLROnStack;
6086   }
6087 
6088   return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
6089                                     NumBytesToCreateFrame, FrameID);
6090 }
6091 
6092 bool ARMBaseInstrInfo::checkAndUpdateStackOffset(MachineInstr *MI,
6093                                                  int64_t Fixup,
6094                                                  bool Updt) const {
6095   int SPIdx = MI->findRegisterUseOperandIdx(ARM::SP);
6096   unsigned AddrMode = (MI->getDesc().TSFlags & ARMII::AddrModeMask);
6097   if (SPIdx < 0)
6098     // No SP operand
6099     return true;
6100   else if (SPIdx != 1 && (AddrMode != ARMII::AddrModeT2_i8s4 || SPIdx != 2))
6101     // If SP is not the base register we can't do much
6102     return false;
6103 
6104   // Stack might be involved but addressing mode doesn't handle any offset.
6105   // Rq: AddrModeT1_[1|2|4] don't operate on SP
6106   if (AddrMode == ARMII::AddrMode1 ||       // Arithmetic instructions
6107       AddrMode == ARMII::AddrMode4 ||       // Load/Store Multiple
6108       AddrMode == ARMII::AddrMode6 ||       // Neon Load/Store Multiple
6109       AddrMode == ARMII::AddrModeT2_so ||   // SP can't be used as based register
6110       AddrMode == ARMII::AddrModeT2_pc ||   // PCrel access
6111       AddrMode == ARMII::AddrMode2 ||       // Used by PRE and POST indexed LD/ST
6112       AddrMode == ARMII::AddrModeT2_i7 ||   // v8.1-M MVE
6113       AddrMode == ARMII::AddrModeT2_i7s2 || // v8.1-M MVE
6114       AddrMode == ARMII::AddrModeT2_i7s4 || // v8.1-M sys regs VLDR/VSTR
6115       AddrMode == ARMII::AddrModeNone ||
6116       AddrMode == ARMII::AddrModeT2_i8 ||   // Pre/Post inc instructions
6117       AddrMode == ARMII::AddrModeT2_i8neg)  // Always negative imm
6118     return false;
6119 
6120   unsigned NumOps = MI->getDesc().getNumOperands();
6121   unsigned ImmIdx = NumOps - 3;
6122 
6123   const MachineOperand &Offset = MI->getOperand(ImmIdx);
6124   assert(Offset.isImm() && "Is not an immediate");
6125   int64_t OffVal = Offset.getImm();
6126 
6127   if (OffVal < 0)
6128     // Don't override data if the are below SP.
6129     return false;
6130 
6131   unsigned NumBits = 0;
6132   unsigned Scale = 1;
6133 
6134   switch (AddrMode) {
6135   case ARMII::AddrMode3:
6136     if (ARM_AM::getAM3Op(OffVal) == ARM_AM::sub)
6137       return false;
6138     OffVal = ARM_AM::getAM3Offset(OffVal);
6139     NumBits = 8;
6140     break;
6141   case ARMII::AddrMode5:
6142     if (ARM_AM::getAM5Op(OffVal) == ARM_AM::sub)
6143       return false;
6144     OffVal = ARM_AM::getAM5Offset(OffVal);
6145     NumBits = 8;
6146     Scale = 4;
6147     break;
6148   case ARMII::AddrMode5FP16:
6149     if (ARM_AM::getAM5FP16Op(OffVal) == ARM_AM::sub)
6150       return false;
6151     OffVal = ARM_AM::getAM5FP16Offset(OffVal);
6152     NumBits = 8;
6153     Scale = 2;
6154     break;
6155   case ARMII::AddrModeT2_i8pos:
6156     NumBits = 8;
6157     break;
6158   case ARMII::AddrModeT2_i8s4:
6159     // FIXME: Values are already scaled in this addressing mode.
6160     assert((Fixup & 3) == 0 && "Can't encode this offset!");
6161     NumBits = 10;
6162     break;
6163   case ARMII::AddrModeT2_ldrex:
6164     NumBits = 8;
6165     Scale = 4;
6166     break;
6167   case ARMII::AddrModeT2_i12:
6168   case ARMII::AddrMode_i12:
6169     NumBits = 12;
6170     break;
6171   case ARMII::AddrModeT1_s: // SP-relative LD/ST
6172     NumBits = 8;
6173     Scale = 4;
6174     break;
6175   default:
6176     llvm_unreachable("Unsupported addressing mode!");
6177   }
6178   // Make sure the offset is encodable for instructions that scale the
6179   // immediate.
6180   assert(((OffVal * Scale + Fixup) & (Scale - 1)) == 0 &&
6181          "Can't encode this offset!");
6182   OffVal += Fixup / Scale;
6183 
6184   unsigned Mask = (1 << NumBits) - 1;
6185 
6186   if (OffVal <= Mask) {
6187     if (Updt)
6188       MI->getOperand(ImmIdx).setImm(OffVal);
6189     return true;
6190   }
6191 
6192   return false;
6193 }
6194 
6195 void ARMBaseInstrInfo::mergeOutliningCandidateAttributes(
6196     Function &F, std::vector<outliner::Candidate> &Candidates) const {
6197   outliner::Candidate &C = Candidates.front();
6198   // branch-target-enforcement is guaranteed to be consistent between all
6199   // candidates, so we only need to look at one.
6200   const Function &CFn = C.getMF()->getFunction();
6201   if (CFn.hasFnAttribute("branch-target-enforcement"))
6202     F.addFnAttr(CFn.getFnAttribute("branch-target-enforcement"));
6203 
6204   ARMGenInstrInfo::mergeOutliningCandidateAttributes(F, Candidates);
6205 }
6206 
6207 bool ARMBaseInstrInfo::isFunctionSafeToOutlineFrom(
6208     MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
6209   const Function &F = MF.getFunction();
6210 
6211   // Can F be deduplicated by the linker? If it can, don't outline from it.
6212   if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
6213     return false;
6214 
6215   // Don't outline from functions with section markings; the program could
6216   // expect that all the code is in the named section.
6217   // FIXME: Allow outlining from multiple functions with the same section
6218   // marking.
6219   if (F.hasSection())
6220     return false;
6221 
6222   // FIXME: Thumb1 outlining is not handled
6223   if (MF.getInfo<ARMFunctionInfo>()->isThumb1OnlyFunction())
6224     return false;
6225 
6226   // It's safe to outline from MF.
6227   return true;
6228 }
6229 
6230 bool ARMBaseInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
6231                                               unsigned &Flags) const {
6232   // Check if LR is available through all of the MBB. If it's not, then set
6233   // a flag.
6234   assert(MBB.getParent()->getRegInfo().tracksLiveness() &&
6235          "Suitable Machine Function for outlining must track liveness");
6236 
6237   LiveRegUnits LRU(getRegisterInfo());
6238 
6239   for (MachineInstr &MI : llvm::reverse(MBB))
6240     LRU.accumulate(MI);
6241 
6242   // Check if each of the unsafe registers are available...
6243   bool R12AvailableInBlock = LRU.available(ARM::R12);
6244   bool CPSRAvailableInBlock = LRU.available(ARM::CPSR);
6245 
6246   // If all of these are dead (and not live out), we know we don't have to check
6247   // them later.
6248   if (R12AvailableInBlock && CPSRAvailableInBlock)
6249     Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead;
6250 
6251   // Now, add the live outs to the set.
6252   LRU.addLiveOuts(MBB);
6253 
6254   // If any of these registers is available in the MBB, but also a live out of
6255   // the block, then we know outlining is unsafe.
6256   if (R12AvailableInBlock && !LRU.available(ARM::R12))
6257     return false;
6258   if (CPSRAvailableInBlock && !LRU.available(ARM::CPSR))
6259     return false;
6260 
6261   // Check if there's a call inside this MachineBasicBlock.  If there is, then
6262   // set a flag.
6263   if (any_of(MBB, [](MachineInstr &MI) { return MI.isCall(); }))
6264     Flags |= MachineOutlinerMBBFlags::HasCalls;
6265 
6266   // LR liveness is overestimated in return blocks.
6267 
6268   bool LRIsAvailable =
6269       MBB.isReturnBlock() && !MBB.back().isCall()
6270           ? isLRAvailable(getRegisterInfo(), MBB.rbegin(), MBB.rend())
6271           : LRU.available(ARM::LR);
6272   if (!LRIsAvailable)
6273     Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere;
6274 
6275   return true;
6276 }
6277 
6278 outliner::InstrType
6279 ARMBaseInstrInfo::getOutliningTypeImpl(MachineBasicBlock::iterator &MIT,
6280                                    unsigned Flags) const {
6281   MachineInstr &MI = *MIT;
6282   const TargetRegisterInfo *TRI = &getRegisterInfo();
6283 
6284   // PIC instructions contain labels, outlining them would break offset
6285   // computing.  unsigned Opc = MI.getOpcode();
6286   unsigned Opc = MI.getOpcode();
6287   if (Opc == ARM::tPICADD || Opc == ARM::PICADD || Opc == ARM::PICSTR ||
6288       Opc == ARM::PICSTRB || Opc == ARM::PICSTRH || Opc == ARM::PICLDR ||
6289       Opc == ARM::PICLDRB || Opc == ARM::PICLDRH || Opc == ARM::PICLDRSB ||
6290       Opc == ARM::PICLDRSH || Opc == ARM::t2LDRpci_pic ||
6291       Opc == ARM::t2MOVi16_ga_pcrel || Opc == ARM::t2MOVTi16_ga_pcrel ||
6292       Opc == ARM::t2MOV_ga_pcrel)
6293     return outliner::InstrType::Illegal;
6294 
6295   // Be conservative with ARMv8.1 MVE instructions.
6296   if (Opc == ARM::t2BF_LabelPseudo || Opc == ARM::t2DoLoopStart ||
6297       Opc == ARM::t2DoLoopStartTP || Opc == ARM::t2WhileLoopStart ||
6298       Opc == ARM::t2WhileLoopStartLR || Opc == ARM::t2WhileLoopStartTP ||
6299       Opc == ARM::t2LoopDec || Opc == ARM::t2LoopEnd ||
6300       Opc == ARM::t2LoopEndDec)
6301     return outliner::InstrType::Illegal;
6302 
6303   const MCInstrDesc &MCID = MI.getDesc();
6304   uint64_t MIFlags = MCID.TSFlags;
6305   if ((MIFlags & ARMII::DomainMask) == ARMII::DomainMVE)
6306     return outliner::InstrType::Illegal;
6307 
6308   // Is this a terminator for a basic block?
6309   if (MI.isTerminator())
6310     // TargetInstrInfo::getOutliningType has already filtered out anything
6311     // that would break this, so we can allow it here.
6312     return outliner::InstrType::Legal;
6313 
6314   // Don't outline if link register or program counter value are used.
6315   if (MI.readsRegister(ARM::LR, TRI) || MI.readsRegister(ARM::PC, TRI))
6316     return outliner::InstrType::Illegal;
6317 
6318   if (MI.isCall()) {
6319     // Get the function associated with the call.  Look at each operand and find
6320     // the one that represents the calle and get its name.
6321     const Function *Callee = nullptr;
6322     for (const MachineOperand &MOP : MI.operands()) {
6323       if (MOP.isGlobal()) {
6324         Callee = dyn_cast<Function>(MOP.getGlobal());
6325         break;
6326       }
6327     }
6328 
6329     // Dont't outline calls to "mcount" like functions, in particular Linux
6330     // kernel function tracing relies on it.
6331     if (Callee &&
6332         (Callee->getName() == "\01__gnu_mcount_nc" ||
6333          Callee->getName() == "\01mcount" || Callee->getName() == "__mcount"))
6334       return outliner::InstrType::Illegal;
6335 
6336     // If we don't know anything about the callee, assume it depends on the
6337     // stack layout of the caller. In that case, it's only legal to outline
6338     // as a tail-call. Explicitly list the call instructions we know about so
6339     // we don't get unexpected results with call pseudo-instructions.
6340     auto UnknownCallOutlineType = outliner::InstrType::Illegal;
6341     if (Opc == ARM::BL || Opc == ARM::tBL || Opc == ARM::BLX ||
6342         Opc == ARM::BLX_noip || Opc == ARM::tBLXr || Opc == ARM::tBLXr_noip ||
6343         Opc == ARM::tBLXi)
6344       UnknownCallOutlineType = outliner::InstrType::LegalTerminator;
6345 
6346     if (!Callee)
6347       return UnknownCallOutlineType;
6348 
6349     // We have a function we have information about.  Check if it's something we
6350     // can safely outline.
6351     MachineFunction *MF = MI.getParent()->getParent();
6352     MachineFunction *CalleeMF = MF->getMMI().getMachineFunction(*Callee);
6353 
6354     // We don't know what's going on with the callee at all.  Don't touch it.
6355     if (!CalleeMF)
6356       return UnknownCallOutlineType;
6357 
6358     // Check if we know anything about the callee saves on the function. If we
6359     // don't, then don't touch it, since that implies that we haven't computed
6360     // anything about its stack frame yet.
6361     MachineFrameInfo &MFI = CalleeMF->getFrameInfo();
6362     if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 ||
6363         MFI.getNumObjects() > 0)
6364       return UnknownCallOutlineType;
6365 
6366     // At this point, we can say that CalleeMF ought to not pass anything on the
6367     // stack. Therefore, we can outline it.
6368     return outliner::InstrType::Legal;
6369   }
6370 
6371   // Since calls are handled, don't touch LR or PC
6372   if (MI.modifiesRegister(ARM::LR, TRI) || MI.modifiesRegister(ARM::PC, TRI))
6373     return outliner::InstrType::Illegal;
6374 
6375   // Does this use the stack?
6376   if (MI.modifiesRegister(ARM::SP, TRI) || MI.readsRegister(ARM::SP, TRI)) {
6377     // True if there is no chance that any outlined candidate from this range
6378     // could require stack fixups. That is, both
6379     // * LR is available in the range (No save/restore around call)
6380     // * The range doesn't include calls (No save/restore in outlined frame)
6381     // are true.
6382     // These conditions also ensure correctness of the return address
6383     // authentication - we insert sign and authentication instructions only if
6384     // we save/restore LR on stack, but then this condition ensures that the
6385     // outlined range does not modify the SP, therefore the SP value used for
6386     // signing is the same as the one used for authentication.
6387     // FIXME: This is very restrictive; the flags check the whole block,
6388     // not just the bit we will try to outline.
6389     bool MightNeedStackFixUp =
6390         (Flags & (MachineOutlinerMBBFlags::LRUnavailableSomewhere |
6391                   MachineOutlinerMBBFlags::HasCalls));
6392 
6393     if (!MightNeedStackFixUp)
6394       return outliner::InstrType::Legal;
6395 
6396     // Any modification of SP will break our code to save/restore LR.
6397     // FIXME: We could handle some instructions which add a constant offset to
6398     // SP, with a bit more work.
6399     if (MI.modifiesRegister(ARM::SP, TRI))
6400       return outliner::InstrType::Illegal;
6401 
6402     // At this point, we have a stack instruction that we might need to fix up.
6403     // up. We'll handle it if it's a load or store.
6404     if (checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(),
6405                                   false))
6406       return outliner::InstrType::Legal;
6407 
6408     // We can't fix it up, so don't outline it.
6409     return outliner::InstrType::Illegal;
6410   }
6411 
6412   // Be conservative with IT blocks.
6413   if (MI.readsRegister(ARM::ITSTATE, TRI) ||
6414       MI.modifiesRegister(ARM::ITSTATE, TRI))
6415     return outliner::InstrType::Illegal;
6416 
6417   // Don't outline CFI instructions.
6418   if (MI.isCFIInstruction())
6419     return outliner::InstrType::Illegal;
6420 
6421   return outliner::InstrType::Legal;
6422 }
6423 
6424 void ARMBaseInstrInfo::fixupPostOutline(MachineBasicBlock &MBB) const {
6425   for (MachineInstr &MI : MBB) {
6426     checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(), true);
6427   }
6428 }
6429 
6430 void ARMBaseInstrInfo::saveLROnStack(MachineBasicBlock &MBB,
6431                                      MachineBasicBlock::iterator It, bool CFI,
6432                                      bool Auth) const {
6433   int Align = std::max(Subtarget.getStackAlignment().value(), uint64_t(8));
6434   unsigned MIFlags = CFI ? MachineInstr::FrameSetup : 0;
6435   assert(Align >= 8 && Align <= 256);
6436   if (Auth) {
6437     assert(Subtarget.isThumb2());
6438     // Compute PAC in R12. Outlining ensures R12 is dead across the outlined
6439     // sequence.
6440     BuildMI(MBB, It, DebugLoc(), get(ARM::t2PAC)).setMIFlags(MIFlags);
6441     BuildMI(MBB, It, DebugLoc(), get(ARM::t2STRD_PRE), ARM::SP)
6442         .addReg(ARM::R12, RegState::Kill)
6443         .addReg(ARM::LR, RegState::Kill)
6444         .addReg(ARM::SP)
6445         .addImm(-Align)
6446         .add(predOps(ARMCC::AL))
6447         .setMIFlags(MIFlags);
6448   } else {
6449     unsigned Opc = Subtarget.isThumb() ? ARM::t2STR_PRE : ARM::STR_PRE_IMM;
6450     BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::SP)
6451         .addReg(ARM::LR, RegState::Kill)
6452         .addReg(ARM::SP)
6453         .addImm(-Align)
6454         .add(predOps(ARMCC::AL))
6455         .setMIFlags(MIFlags);
6456   }
6457 
6458   if (!CFI)
6459     return;
6460 
6461   MachineFunction &MF = *MBB.getParent();
6462 
6463   // Add a CFI, saying CFA is offset by Align bytes from SP.
6464   int64_t StackPosEntry =
6465       MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Align));
6466   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6467       .addCFIIndex(StackPosEntry)
6468       .setMIFlags(MachineInstr::FrameSetup);
6469 
6470   // Add a CFI saying that the LR that we want to find is now higher than
6471   // before.
6472   int LROffset = Auth ? Align - 4 : Align;
6473   const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6474   unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6475   int64_t LRPosEntry = MF.addFrameInst(
6476       MCCFIInstruction::createOffset(nullptr, DwarfLR, -LROffset));
6477   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6478       .addCFIIndex(LRPosEntry)
6479       .setMIFlags(MachineInstr::FrameSetup);
6480   if (Auth) {
6481     // Add a CFI for the location of the return adddress PAC.
6482     unsigned DwarfRAC = MRI->getDwarfRegNum(ARM::RA_AUTH_CODE, true);
6483     int64_t RACPosEntry = MF.addFrameInst(
6484         MCCFIInstruction::createOffset(nullptr, DwarfRAC, -Align));
6485     BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6486         .addCFIIndex(RACPosEntry)
6487         .setMIFlags(MachineInstr::FrameSetup);
6488   }
6489 }
6490 
6491 void ARMBaseInstrInfo::emitCFIForLRSaveToReg(MachineBasicBlock &MBB,
6492                                              MachineBasicBlock::iterator It,
6493                                              Register Reg) const {
6494   MachineFunction &MF = *MBB.getParent();
6495   const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6496   unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6497   unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
6498 
6499   int64_t LRPosEntry = MF.addFrameInst(
6500       MCCFIInstruction::createRegister(nullptr, DwarfLR, DwarfReg));
6501   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6502       .addCFIIndex(LRPosEntry)
6503       .setMIFlags(MachineInstr::FrameSetup);
6504 }
6505 
6506 void ARMBaseInstrInfo::restoreLRFromStack(MachineBasicBlock &MBB,
6507                                           MachineBasicBlock::iterator It,
6508                                           bool CFI, bool Auth) const {
6509   int Align = Subtarget.getStackAlignment().value();
6510   unsigned MIFlags = CFI ? MachineInstr::FrameDestroy : 0;
6511   if (Auth) {
6512     assert(Subtarget.isThumb2());
6513     // Restore return address PAC and LR.
6514     BuildMI(MBB, It, DebugLoc(), get(ARM::t2LDRD_POST))
6515         .addReg(ARM::R12, RegState::Define)
6516         .addReg(ARM::LR, RegState::Define)
6517         .addReg(ARM::SP, RegState::Define)
6518         .addReg(ARM::SP)
6519         .addImm(Align)
6520         .add(predOps(ARMCC::AL))
6521         .setMIFlags(MIFlags);
6522     // LR authentication is after the CFI instructions, below.
6523   } else {
6524     unsigned Opc = Subtarget.isThumb() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
6525     MachineInstrBuilder MIB = BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::LR)
6526                                   .addReg(ARM::SP, RegState::Define)
6527                                   .addReg(ARM::SP);
6528     if (!Subtarget.isThumb())
6529       MIB.addReg(0);
6530     MIB.addImm(Subtarget.getStackAlignment().value())
6531         .add(predOps(ARMCC::AL))
6532         .setMIFlags(MIFlags);
6533   }
6534 
6535   if (CFI) {
6536     // Now stack has moved back up...
6537     MachineFunction &MF = *MBB.getParent();
6538     const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6539     unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6540     int64_t StackPosEntry =
6541         MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
6542     BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6543         .addCFIIndex(StackPosEntry)
6544         .setMIFlags(MachineInstr::FrameDestroy);
6545 
6546     // ... and we have restored LR.
6547     int64_t LRPosEntry =
6548         MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR));
6549     BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6550         .addCFIIndex(LRPosEntry)
6551         .setMIFlags(MachineInstr::FrameDestroy);
6552 
6553     if (Auth) {
6554       unsigned DwarfRAC = MRI->getDwarfRegNum(ARM::RA_AUTH_CODE, true);
6555       int64_t Entry =
6556           MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, DwarfRAC));
6557       BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6558           .addCFIIndex(Entry)
6559           .setMIFlags(MachineInstr::FrameDestroy);
6560     }
6561   }
6562 
6563   if (Auth)
6564     BuildMI(MBB, It, DebugLoc(), get(ARM::t2AUT));
6565 }
6566 
6567 void ARMBaseInstrInfo::emitCFIForLRRestoreFromReg(
6568     MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {
6569   MachineFunction &MF = *MBB.getParent();
6570   const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6571   unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6572 
6573   int64_t LRPosEntry =
6574       MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR));
6575   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6576       .addCFIIndex(LRPosEntry)
6577       .setMIFlags(MachineInstr::FrameDestroy);
6578 }
6579 
6580 void ARMBaseInstrInfo::buildOutlinedFrame(
6581     MachineBasicBlock &MBB, MachineFunction &MF,
6582     const outliner::OutlinedFunction &OF) const {
6583   // For thunk outlining, rewrite the last instruction from a call to a
6584   // tail-call.
6585   if (OF.FrameConstructionID == MachineOutlinerThunk) {
6586     MachineInstr *Call = &*--MBB.instr_end();
6587     bool isThumb = Subtarget.isThumb();
6588     unsigned FuncOp = isThumb ? 2 : 0;
6589     unsigned Opc = Call->getOperand(FuncOp).isReg()
6590                        ? isThumb ? ARM::tTAILJMPr : ARM::TAILJMPr
6591                        : isThumb ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd
6592                                                              : ARM::tTAILJMPdND
6593                                  : ARM::TAILJMPd;
6594     MachineInstrBuilder MIB = BuildMI(MBB, MBB.end(), DebugLoc(), get(Opc))
6595                                   .add(Call->getOperand(FuncOp));
6596     if (isThumb && !Call->getOperand(FuncOp).isReg())
6597       MIB.add(predOps(ARMCC::AL));
6598     Call->eraseFromParent();
6599   }
6600 
6601   // Is there a call in the outlined range?
6602   auto IsNonTailCall = [](MachineInstr &MI) {
6603     return MI.isCall() && !MI.isReturn();
6604   };
6605   if (llvm::any_of(MBB.instrs(), IsNonTailCall)) {
6606     MachineBasicBlock::iterator It = MBB.begin();
6607     MachineBasicBlock::iterator Et = MBB.end();
6608 
6609     if (OF.FrameConstructionID == MachineOutlinerTailCall ||
6610         OF.FrameConstructionID == MachineOutlinerThunk)
6611       Et = std::prev(MBB.end());
6612 
6613     // We have to save and restore LR, we need to add it to the liveins if it
6614     // is not already part of the set.  This is suffient since outlined
6615     // functions only have one block.
6616     if (!MBB.isLiveIn(ARM::LR))
6617       MBB.addLiveIn(ARM::LR);
6618 
6619     // Insert a save before the outlined region
6620     bool Auth = OF.Candidates.front()
6621                     .getMF()
6622                     ->getInfo<ARMFunctionInfo>()
6623                     ->shouldSignReturnAddress(true);
6624     saveLROnStack(MBB, It, true, Auth);
6625 
6626     // Fix up the instructions in the range, since we're going to modify the
6627     // stack.
6628     assert(OF.FrameConstructionID != MachineOutlinerDefault &&
6629            "Can only fix up stack references once");
6630     fixupPostOutline(MBB);
6631 
6632     // Insert a restore before the terminator for the function.  Restore LR.
6633     restoreLRFromStack(MBB, Et, true, Auth);
6634   }
6635 
6636   // If this is a tail call outlined function, then there's already a return.
6637   if (OF.FrameConstructionID == MachineOutlinerTailCall ||
6638       OF.FrameConstructionID == MachineOutlinerThunk)
6639     return;
6640 
6641   // Here we have to insert the return ourselves.  Get the correct opcode from
6642   // current feature set.
6643   BuildMI(MBB, MBB.end(), DebugLoc(), get(Subtarget.getReturnOpcode()))
6644       .add(predOps(ARMCC::AL));
6645 
6646   // Did we have to modify the stack by saving the link register?
6647   if (OF.FrameConstructionID != MachineOutlinerDefault &&
6648       OF.Candidates[0].CallConstructionID != MachineOutlinerDefault)
6649     return;
6650 
6651   // We modified the stack.
6652   // Walk over the basic block and fix up all the stack accesses.
6653   fixupPostOutline(MBB);
6654 }
6655 
6656 MachineBasicBlock::iterator ARMBaseInstrInfo::insertOutlinedCall(
6657     Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It,
6658     MachineFunction &MF, outliner::Candidate &C) const {
6659   MachineInstrBuilder MIB;
6660   MachineBasicBlock::iterator CallPt;
6661   unsigned Opc;
6662   bool isThumb = Subtarget.isThumb();
6663 
6664   // Are we tail calling?
6665   if (C.CallConstructionID == MachineOutlinerTailCall) {
6666     // If yes, then we can just branch to the label.
6667     Opc = isThumb
6668               ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd : ARM::tTAILJMPdND
6669               : ARM::TAILJMPd;
6670     MIB = BuildMI(MF, DebugLoc(), get(Opc))
6671               .addGlobalAddress(M.getNamedValue(MF.getName()));
6672     if (isThumb)
6673       MIB.add(predOps(ARMCC::AL));
6674     It = MBB.insert(It, MIB);
6675     return It;
6676   }
6677 
6678   // Create the call instruction.
6679   Opc = isThumb ? ARM::tBL : ARM::BL;
6680   MachineInstrBuilder CallMIB = BuildMI(MF, DebugLoc(), get(Opc));
6681   if (isThumb)
6682     CallMIB.add(predOps(ARMCC::AL));
6683   CallMIB.addGlobalAddress(M.getNamedValue(MF.getName()));
6684 
6685   if (C.CallConstructionID == MachineOutlinerNoLRSave ||
6686       C.CallConstructionID == MachineOutlinerThunk) {
6687     // No, so just insert the call.
6688     It = MBB.insert(It, CallMIB);
6689     return It;
6690   }
6691 
6692   const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>();
6693   // Can we save to a register?
6694   if (C.CallConstructionID == MachineOutlinerRegSave) {
6695     Register Reg = findRegisterToSaveLRTo(C);
6696     assert(Reg != 0 && "No callee-saved register available?");
6697 
6698     // Save and restore LR from that register.
6699     copyPhysReg(MBB, It, DebugLoc(), Reg, ARM::LR, true);
6700     if (!AFI.isLRSpilled())
6701       emitCFIForLRSaveToReg(MBB, It, Reg);
6702     CallPt = MBB.insert(It, CallMIB);
6703     copyPhysReg(MBB, It, DebugLoc(), ARM::LR, Reg, true);
6704     if (!AFI.isLRSpilled())
6705       emitCFIForLRRestoreFromReg(MBB, It);
6706     It--;
6707     return CallPt;
6708   }
6709   // We have the default case. Save and restore from SP.
6710   if (!MBB.isLiveIn(ARM::LR))
6711     MBB.addLiveIn(ARM::LR);
6712   bool Auth = !AFI.isLRSpilled() && AFI.shouldSignReturnAddress(true);
6713   saveLROnStack(MBB, It, !AFI.isLRSpilled(), Auth);
6714   CallPt = MBB.insert(It, CallMIB);
6715   restoreLRFromStack(MBB, It, !AFI.isLRSpilled(), Auth);
6716   It--;
6717   return CallPt;
6718 }
6719 
6720 bool ARMBaseInstrInfo::shouldOutlineFromFunctionByDefault(
6721     MachineFunction &MF) const {
6722   return Subtarget.isMClass() && MF.getFunction().hasMinSize();
6723 }
6724 
6725 bool ARMBaseInstrInfo::isReallyTriviallyReMaterializable(
6726     const MachineInstr &MI) const {
6727   // Try hard to rematerialize any VCTPs because if we spill P0, it will block
6728   // the tail predication conversion. This means that the element count
6729   // register has to be live for longer, but that has to be better than
6730   // spill/restore and VPT predication.
6731   return (isVCTP(&MI) && !isPredicated(MI)) ||
6732          TargetInstrInfo::isReallyTriviallyReMaterializable(MI);
6733 }
6734 
6735 unsigned llvm::getBLXOpcode(const MachineFunction &MF) {
6736   return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_noip
6737                                                           : ARM::BLX;
6738 }
6739 
6740 unsigned llvm::gettBLXrOpcode(const MachineFunction &MF) {
6741   return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::tBLXr_noip
6742                                                           : ARM::tBLXr;
6743 }
6744 
6745 unsigned llvm::getBLXpredOpcode(const MachineFunction &MF) {
6746   return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_pred_noip
6747                                                           : ARM::BLX_pred;
6748 }
6749 
6750 namespace {
6751 class ARMPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
6752   MachineInstr *EndLoop, *LoopCount;
6753   MachineFunction *MF;
6754   const TargetInstrInfo *TII;
6755 
6756   // Bitset[0 .. MAX_STAGES-1] ... iterations needed
6757   //       [LAST_IS_USE] : last reference to register in schedule is a use
6758   //       [SEEN_AS_LIVE] : Normal pressure algorithm believes register is live
6759   static int constexpr MAX_STAGES = 30;
6760   static int constexpr LAST_IS_USE = MAX_STAGES;
6761   static int constexpr SEEN_AS_LIVE = MAX_STAGES + 1;
6762   typedef std::bitset<MAX_STAGES + 2> IterNeed;
6763   typedef std::map<unsigned, IterNeed> IterNeeds;
6764 
6765   void bumpCrossIterationPressure(RegPressureTracker &RPT,
6766                                   const IterNeeds &CIN);
6767   bool tooMuchRegisterPressure(SwingSchedulerDAG &SSD, SMSchedule &SMS);
6768 
6769   // Meanings of the various stuff with loop types:
6770   // t2Bcc:
6771   //   EndLoop = branch at end of original BB that will become a kernel
6772   //   LoopCount = CC setter live into branch
6773   // t2LoopEnd:
6774   //   EndLoop = branch at end of original BB
6775   //   LoopCount = t2LoopDec
6776 public:
6777   ARMPipelinerLoopInfo(MachineInstr *EndLoop, MachineInstr *LoopCount)
6778       : EndLoop(EndLoop), LoopCount(LoopCount),
6779         MF(EndLoop->getParent()->getParent()),
6780         TII(MF->getSubtarget().getInstrInfo()) {}
6781 
6782   bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
6783     // Only ignore the terminator.
6784     return MI == EndLoop || MI == LoopCount;
6785   }
6786 
6787   bool shouldUseSchedule(SwingSchedulerDAG &SSD, SMSchedule &SMS) override {
6788     if (tooMuchRegisterPressure(SSD, SMS))
6789       return false;
6790 
6791     return true;
6792   }
6793 
6794   std::optional<bool> createTripCountGreaterCondition(
6795       int TC, MachineBasicBlock &MBB,
6796       SmallVectorImpl<MachineOperand> &Cond) override {
6797 
6798     if (isCondBranchOpcode(EndLoop->getOpcode())) {
6799       Cond.push_back(EndLoop->getOperand(1));
6800       Cond.push_back(EndLoop->getOperand(2));
6801       if (EndLoop->getOperand(0).getMBB() == EndLoop->getParent()) {
6802         TII->reverseBranchCondition(Cond);
6803       }
6804       return {};
6805     } else if (EndLoop->getOpcode() == ARM::t2LoopEnd) {
6806       // General case just lets the unrolled t2LoopDec do the subtraction and
6807       // therefore just needs to check if zero has been reached.
6808       MachineInstr *LoopDec = nullptr;
6809       for (auto &I : MBB.instrs())
6810         if (I.getOpcode() == ARM::t2LoopDec)
6811           LoopDec = &I;
6812       assert(LoopDec && "Unable to find copied LoopDec");
6813       // Check if we're done with the loop.
6814       BuildMI(&MBB, LoopDec->getDebugLoc(), TII->get(ARM::t2CMPri))
6815           .addReg(LoopDec->getOperand(0).getReg())
6816           .addImm(0)
6817           .addImm(ARMCC::AL)
6818           .addReg(ARM::NoRegister);
6819       Cond.push_back(MachineOperand::CreateImm(ARMCC::EQ));
6820       Cond.push_back(MachineOperand::CreateReg(ARM::CPSR, false));
6821       return {};
6822     } else
6823       llvm_unreachable("Unknown EndLoop");
6824   }
6825 
6826   void setPreheader(MachineBasicBlock *NewPreheader) override {}
6827 
6828   void adjustTripCount(int TripCountAdjust) override {}
6829 
6830   void disposed() override {}
6831 };
6832 
6833 void ARMPipelinerLoopInfo::bumpCrossIterationPressure(RegPressureTracker &RPT,
6834                                                       const IterNeeds &CIN) {
6835   // Increase pressure by the amounts in CrossIterationNeeds
6836   for (const auto &N : CIN) {
6837     int Cnt = N.second.count() - N.second[SEEN_AS_LIVE] * 2;
6838     for (int I = 0; I < Cnt; ++I)
6839       RPT.increaseRegPressure(Register(N.first), LaneBitmask::getNone(),
6840                               LaneBitmask::getAll());
6841   }
6842   // Decrease pressure by the amounts in CrossIterationNeeds
6843   for (const auto &N : CIN) {
6844     int Cnt = N.second.count() - N.second[SEEN_AS_LIVE] * 2;
6845     for (int I = 0; I < Cnt; ++I)
6846       RPT.decreaseRegPressure(Register(N.first), LaneBitmask::getAll(),
6847                               LaneBitmask::getNone());
6848   }
6849 }
6850 
6851 bool ARMPipelinerLoopInfo::tooMuchRegisterPressure(SwingSchedulerDAG &SSD,
6852                                                    SMSchedule &SMS) {
6853   IterNeeds CrossIterationNeeds;
6854 
6855   // Determine which values will be loop-carried after the schedule is
6856   // applied
6857 
6858   for (auto &SU : SSD.SUnits) {
6859     const MachineInstr *MI = SU.getInstr();
6860     int Stg = SMS.stageScheduled(const_cast<SUnit *>(&SU));
6861     for (auto &S : SU.Succs)
6862       if (MI->isPHI() && S.getKind() == SDep::Anti) {
6863         Register Reg = S.getReg();
6864         if (Reg.isVirtual())
6865           CrossIterationNeeds.insert(std::make_pair(Reg.id(), IterNeed()))
6866               .first->second.set(0);
6867       } else if (S.isAssignedRegDep()) {
6868         int OStg = SMS.stageScheduled(S.getSUnit());
6869         if (OStg >= 0 && OStg != Stg) {
6870           Register Reg = S.getReg();
6871           if (Reg.isVirtual())
6872             CrossIterationNeeds.insert(std::make_pair(Reg.id(), IterNeed()))
6873                 .first->second |= ((1 << (OStg - Stg)) - 1);
6874         }
6875       }
6876   }
6877 
6878   // Determine more-or-less what the proposed schedule (reversed) is going to
6879   // be; it might not be quite the same because the within-cycle ordering
6880   // created by SMSchedule depends upon changes to help with address offsets and
6881   // the like.
6882   std::vector<SUnit *> ProposedSchedule;
6883   for (int Cycle = SMS.getFinalCycle(); Cycle >= SMS.getFirstCycle(); --Cycle)
6884     for (int Stage = 0, StageEnd = SMS.getMaxStageCount(); Stage <= StageEnd;
6885          ++Stage) {
6886       std::deque<SUnit *> Instrs =
6887           SMS.getInstructions(Cycle + Stage * SMS.getInitiationInterval());
6888       std::sort(Instrs.begin(), Instrs.end(),
6889                 [](SUnit *A, SUnit *B) { return A->NodeNum > B->NodeNum; });
6890       for (SUnit *SU : Instrs)
6891         ProposedSchedule.push_back(SU);
6892     }
6893 
6894   // Learn whether the last use/def of each cross-iteration register is a use or
6895   // def. If it is a def, RegisterPressure will implicitly increase max pressure
6896   // and we do not have to add the pressure.
6897   for (auto *SU : ProposedSchedule)
6898     for (ConstMIBundleOperands OperI(*SU->getInstr()); OperI.isValid();
6899          ++OperI) {
6900       auto MO = *OperI;
6901       if (!MO.isReg() || !MO.getReg())
6902         continue;
6903       Register Reg = MO.getReg();
6904       auto CIter = CrossIterationNeeds.find(Reg.id());
6905       if (CIter == CrossIterationNeeds.end() || CIter->second[LAST_IS_USE] ||
6906           CIter->second[SEEN_AS_LIVE])
6907         continue;
6908       if (MO.isDef() && !MO.isDead())
6909         CIter->second.set(SEEN_AS_LIVE);
6910       else if (MO.isUse())
6911         CIter->second.set(LAST_IS_USE);
6912     }
6913   for (auto &CI : CrossIterationNeeds)
6914     CI.second.reset(LAST_IS_USE);
6915 
6916   RegionPressure RecRegPressure;
6917   RegPressureTracker RPTracker(RecRegPressure);
6918   RegisterClassInfo RegClassInfo;
6919   RegClassInfo.runOnMachineFunction(*MF);
6920   RPTracker.init(MF, &RegClassInfo, nullptr, EndLoop->getParent(),
6921                  EndLoop->getParent()->end(), false, false);
6922   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
6923 
6924   bumpCrossIterationPressure(RPTracker, CrossIterationNeeds);
6925 
6926   for (auto *SU : ProposedSchedule) {
6927     MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
6928     RPTracker.setPos(std::next(CurInstI));
6929     RPTracker.recede();
6930 
6931     // Track what cross-iteration registers would be seen as live
6932     for (ConstMIBundleOperands OperI(*CurInstI); OperI.isValid(); ++OperI) {
6933       auto MO = *OperI;
6934       if (!MO.isReg() || !MO.getReg())
6935         continue;
6936       Register Reg = MO.getReg();
6937       if (MO.isDef() && !MO.isDead()) {
6938         auto CIter = CrossIterationNeeds.find(Reg.id());
6939         if (CIter != CrossIterationNeeds.end()) {
6940           CIter->second.reset(0);
6941           CIter->second.reset(SEEN_AS_LIVE);
6942         }
6943       }
6944     }
6945     for (auto &S : SU->Preds) {
6946       auto Stg = SMS.stageScheduled(SU);
6947       if (S.isAssignedRegDep()) {
6948         Register Reg = S.getReg();
6949         auto CIter = CrossIterationNeeds.find(Reg.id());
6950         if (CIter != CrossIterationNeeds.end()) {
6951           auto Stg2 = SMS.stageScheduled(const_cast<SUnit *>(S.getSUnit()));
6952           assert(Stg2 <= Stg && "Data dependence upon earlier stage");
6953           if (Stg - Stg2 < MAX_STAGES)
6954             CIter->second.set(Stg - Stg2);
6955           CIter->second.set(SEEN_AS_LIVE);
6956         }
6957       }
6958     }
6959 
6960     bumpCrossIterationPressure(RPTracker, CrossIterationNeeds);
6961   }
6962 
6963   auto &P = RPTracker.getPressure().MaxSetPressure;
6964   for (unsigned I = 0, E = P.size(); I < E; ++I)
6965     if (P[I] > TRI->getRegPressureSetLimit(*MF, I)) {
6966       return true;
6967     }
6968   return false;
6969 }
6970 
6971 } // namespace
6972 
6973 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
6974 ARMBaseInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
6975   MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
6976   MachineBasicBlock *Preheader = *LoopBB->pred_begin();
6977   if (Preheader == LoopBB)
6978     Preheader = *std::next(LoopBB->pred_begin());
6979 
6980   if (I != LoopBB->end() && I->getOpcode() == ARM::t2Bcc) {
6981     // If the branch is a Bcc, then the CPSR should be set somewhere within the
6982     // block.  We need to determine the reaching definition of CPSR so that
6983     // it can be marked as non-pipelineable, allowing the pipeliner to force
6984     // it into stage 0 or give up if it cannot or will not do so.
6985     MachineInstr *CCSetter = nullptr;
6986     for (auto &L : LoopBB->instrs()) {
6987       if (L.isCall())
6988         return nullptr;
6989       if (isCPSRDefined(L))
6990         CCSetter = &L;
6991     }
6992     if (CCSetter)
6993       return std::make_unique<ARMPipelinerLoopInfo>(&*I, CCSetter);
6994     else
6995       return nullptr; // Unable to find the CC setter, so unable to guarantee
6996                       // that pipeline will work
6997   }
6998 
6999   // Recognize:
7000   //   preheader:
7001   //     %1 = t2DoopLoopStart %0
7002   //   loop:
7003   //     %2 = phi %1, <not loop>, %..., %loop
7004   //     %3 = t2LoopDec %2, <imm>
7005   //     t2LoopEnd %3, %loop
7006 
7007   if (I != LoopBB->end() && I->getOpcode() == ARM::t2LoopEnd) {
7008     for (auto &L : LoopBB->instrs())
7009       if (L.isCall())
7010         return nullptr;
7011       else if (isVCTP(&L))
7012         return nullptr;
7013     Register LoopDecResult = I->getOperand(0).getReg();
7014     MachineRegisterInfo &MRI = LoopBB->getParent()->getRegInfo();
7015     MachineInstr *LoopDec = MRI.getUniqueVRegDef(LoopDecResult);
7016     if (!LoopDec || LoopDec->getOpcode() != ARM::t2LoopDec)
7017       return nullptr;
7018     MachineInstr *LoopStart = nullptr;
7019     for (auto &J : Preheader->instrs())
7020       if (J.getOpcode() == ARM::t2DoLoopStart)
7021         LoopStart = &J;
7022     if (!LoopStart)
7023       return nullptr;
7024     return std::make_unique<ARMPipelinerLoopInfo>(&*I, LoopDec);
7025   }
7026   return nullptr;
7027 }
7028