1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the Base ARM implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ARMBaseInstrInfo.h" 14 #include "ARMBaseRegisterInfo.h" 15 #include "ARMConstantPoolValue.h" 16 #include "ARMFeatures.h" 17 #include "ARMHazardRecognizer.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMBaseInfo.h" 22 #include "MVETailPredUtils.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/CodeGen/DFAPacketizer.h" 28 #include "llvm/CodeGen/LiveVariables.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineConstantPool.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineMemOperand.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachinePipeliner.h" 39 #include "llvm/CodeGen/MachineRegisterInfo.h" 40 #include "llvm/CodeGen/MachineScheduler.h" 41 #include "llvm/CodeGen/MultiHazardRecognizer.h" 42 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" 43 #include "llvm/CodeGen/SelectionDAGNodes.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSchedule.h" 47 #include "llvm/IR/Attributes.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GlobalValue.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/MC/MCAsmInfo.h" 54 #include "llvm/MC/MCInstrDesc.h" 55 #include "llvm/MC/MCInstrItineraries.h" 56 #include "llvm/Support/BranchProbability.h" 57 #include "llvm/Support/Casting.h" 58 #include "llvm/Support/CommandLine.h" 59 #include "llvm/Support/Compiler.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/raw_ostream.h" 63 #include "llvm/Target/TargetMachine.h" 64 #include "llvm/TargetParser/Triple.h" 65 #include <algorithm> 66 #include <cassert> 67 #include <cstdint> 68 #include <iterator> 69 #include <new> 70 #include <utility> 71 #include <vector> 72 73 using namespace llvm; 74 75 #define DEBUG_TYPE "arm-instrinfo" 76 77 #define GET_INSTRINFO_CTOR_DTOR 78 #include "ARMGenInstrInfo.inc" 79 80 static cl::opt<bool> 81 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden, 82 cl::desc("Enable ARM 2-addr to 3-addr conv")); 83 84 /// ARM_MLxEntry - Record information about MLA / MLS instructions. 85 struct ARM_MLxEntry { 86 uint16_t MLxOpc; // MLA / MLS opcode 87 uint16_t MulOpc; // Expanded multiplication opcode 88 uint16_t AddSubOpc; // Expanded add / sub opcode 89 bool NegAcc; // True if the acc is negated before the add / sub. 90 bool HasLane; // True if instruction has an extra "lane" operand. 91 }; 92 93 static const ARM_MLxEntry ARM_MLxTable[] = { 94 // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane 95 // fp scalar ops 96 { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false }, 97 { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false }, 98 { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false }, 99 { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false }, 100 { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false }, 101 { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false }, 102 { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false }, 103 { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false }, 104 105 // fp SIMD ops 106 { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false }, 107 { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false }, 108 { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false }, 109 { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false }, 110 { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true }, 111 { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true }, 112 { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true }, 113 { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true }, 114 }; 115 116 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI) 117 : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP), 118 Subtarget(STI) { 119 for (unsigned i = 0, e = std::size(ARM_MLxTable); i != e; ++i) { 120 if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second) 121 llvm_unreachable("Duplicated entries?"); 122 MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc); 123 MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc); 124 } 125 } 126 127 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl 128 // currently defaults to no prepass hazard recognizer. 129 ScheduleHazardRecognizer * 130 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 131 const ScheduleDAG *DAG) const { 132 if (usePreRAHazardRecognizer()) { 133 const InstrItineraryData *II = 134 static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData(); 135 return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched"); 136 } 137 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 138 } 139 140 // Called during: 141 // - pre-RA scheduling 142 // - post-RA scheduling when FeatureUseMISched is set 143 ScheduleHazardRecognizer *ARMBaseInstrInfo::CreateTargetMIHazardRecognizer( 144 const InstrItineraryData *II, const ScheduleDAGMI *DAG) const { 145 MultiHazardRecognizer *MHR = new MultiHazardRecognizer(); 146 147 // We would like to restrict this hazard recognizer to only 148 // post-RA scheduling; we can tell that we're post-RA because we don't 149 // track VRegLiveness. 150 // Cortex-M7: TRM indicates that there is a single ITCM bank and two DTCM 151 // banks banked on bit 2. Assume that TCMs are in use. 152 if (Subtarget.isCortexM7() && !DAG->hasVRegLiveness()) 153 MHR->AddHazardRecognizer( 154 std::make_unique<ARMBankConflictHazardRecognizer>(DAG, 0x4, true)); 155 156 // Not inserting ARMHazardRecognizerFPMLx because that would change 157 // legacy behavior 158 159 auto BHR = TargetInstrInfo::CreateTargetMIHazardRecognizer(II, DAG); 160 MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR)); 161 return MHR; 162 } 163 164 // Called during post-RA scheduling when FeatureUseMISched is not set 165 ScheduleHazardRecognizer *ARMBaseInstrInfo:: 166 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 167 const ScheduleDAG *DAG) const { 168 MultiHazardRecognizer *MHR = new MultiHazardRecognizer(); 169 170 if (Subtarget.isThumb2() || Subtarget.hasVFP2Base()) 171 MHR->AddHazardRecognizer(std::make_unique<ARMHazardRecognizerFPMLx>()); 172 173 auto BHR = TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG); 174 if (BHR) 175 MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR)); 176 return MHR; 177 } 178 179 MachineInstr * 180 ARMBaseInstrInfo::convertToThreeAddress(MachineInstr &MI, LiveVariables *LV, 181 LiveIntervals *LIS) const { 182 // FIXME: Thumb2 support. 183 184 if (!EnableARM3Addr) 185 return nullptr; 186 187 MachineFunction &MF = *MI.getParent()->getParent(); 188 uint64_t TSFlags = MI.getDesc().TSFlags; 189 bool isPre = false; 190 switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) { 191 default: return nullptr; 192 case ARMII::IndexModePre: 193 isPre = true; 194 break; 195 case ARMII::IndexModePost: 196 break; 197 } 198 199 // Try splitting an indexed load/store to an un-indexed one plus an add/sub 200 // operation. 201 unsigned MemOpc = getUnindexedOpcode(MI.getOpcode()); 202 if (MemOpc == 0) 203 return nullptr; 204 205 MachineInstr *UpdateMI = nullptr; 206 MachineInstr *MemMI = nullptr; 207 unsigned AddrMode = (TSFlags & ARMII::AddrModeMask); 208 const MCInstrDesc &MCID = MI.getDesc(); 209 unsigned NumOps = MCID.getNumOperands(); 210 bool isLoad = !MI.mayStore(); 211 const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0); 212 const MachineOperand &Base = MI.getOperand(2); 213 const MachineOperand &Offset = MI.getOperand(NumOps - 3); 214 Register WBReg = WB.getReg(); 215 Register BaseReg = Base.getReg(); 216 Register OffReg = Offset.getReg(); 217 unsigned OffImm = MI.getOperand(NumOps - 2).getImm(); 218 ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm(); 219 switch (AddrMode) { 220 default: llvm_unreachable("Unknown indexed op!"); 221 case ARMII::AddrMode2: { 222 bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; 223 unsigned Amt = ARM_AM::getAM2Offset(OffImm); 224 if (OffReg == 0) { 225 if (ARM_AM::getSOImmVal(Amt) == -1) 226 // Can't encode it in a so_imm operand. This transformation will 227 // add more than 1 instruction. Abandon! 228 return nullptr; 229 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 230 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 231 .addReg(BaseReg) 232 .addImm(Amt) 233 .add(predOps(Pred)) 234 .add(condCodeOp()); 235 } else if (Amt != 0) { 236 ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm); 237 unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt); 238 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 239 get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg) 240 .addReg(BaseReg) 241 .addReg(OffReg) 242 .addReg(0) 243 .addImm(SOOpc) 244 .add(predOps(Pred)) 245 .add(condCodeOp()); 246 } else 247 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 248 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 249 .addReg(BaseReg) 250 .addReg(OffReg) 251 .add(predOps(Pred)) 252 .add(condCodeOp()); 253 break; 254 } 255 case ARMII::AddrMode3 : { 256 bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub; 257 unsigned Amt = ARM_AM::getAM3Offset(OffImm); 258 if (OffReg == 0) 259 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand. 260 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 261 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 262 .addReg(BaseReg) 263 .addImm(Amt) 264 .add(predOps(Pred)) 265 .add(condCodeOp()); 266 else 267 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 268 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 269 .addReg(BaseReg) 270 .addReg(OffReg) 271 .add(predOps(Pred)) 272 .add(condCodeOp()); 273 break; 274 } 275 } 276 277 std::vector<MachineInstr*> NewMIs; 278 if (isPre) { 279 if (isLoad) 280 MemMI = 281 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) 282 .addReg(WBReg) 283 .addImm(0) 284 .addImm(Pred); 285 else 286 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) 287 .addReg(MI.getOperand(1).getReg()) 288 .addReg(WBReg) 289 .addReg(0) 290 .addImm(0) 291 .addImm(Pred); 292 NewMIs.push_back(MemMI); 293 NewMIs.push_back(UpdateMI); 294 } else { 295 if (isLoad) 296 MemMI = 297 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) 298 .addReg(BaseReg) 299 .addImm(0) 300 .addImm(Pred); 301 else 302 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) 303 .addReg(MI.getOperand(1).getReg()) 304 .addReg(BaseReg) 305 .addReg(0) 306 .addImm(0) 307 .addImm(Pred); 308 if (WB.isDead()) 309 UpdateMI->getOperand(0).setIsDead(); 310 NewMIs.push_back(UpdateMI); 311 NewMIs.push_back(MemMI); 312 } 313 314 // Transfer LiveVariables states, kill / dead info. 315 if (LV) { 316 for (const MachineOperand &MO : MI.operands()) { 317 if (MO.isReg() && MO.getReg().isVirtual()) { 318 Register Reg = MO.getReg(); 319 320 LiveVariables::VarInfo &VI = LV->getVarInfo(Reg); 321 if (MO.isDef()) { 322 MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI; 323 if (MO.isDead()) 324 LV->addVirtualRegisterDead(Reg, *NewMI); 325 } 326 if (MO.isUse() && MO.isKill()) { 327 for (unsigned j = 0; j < 2; ++j) { 328 // Look at the two new MI's in reverse order. 329 MachineInstr *NewMI = NewMIs[j]; 330 if (!NewMI->readsRegister(Reg, /*TRI=*/nullptr)) 331 continue; 332 LV->addVirtualRegisterKilled(Reg, *NewMI); 333 if (VI.removeKill(MI)) 334 VI.Kills.push_back(NewMI); 335 break; 336 } 337 } 338 } 339 } 340 } 341 342 MachineBasicBlock &MBB = *MI.getParent(); 343 MBB.insert(MI, NewMIs[1]); 344 MBB.insert(MI, NewMIs[0]); 345 return NewMIs[0]; 346 } 347 348 // Branch analysis. 349 // Cond vector output format: 350 // 0 elements indicates an unconditional branch 351 // 2 elements indicates a conditional branch; the elements are 352 // the condition to check and the CPSR. 353 // 3 elements indicates a hardware loop end; the elements 354 // are the opcode, the operand value to test, and a dummy 355 // operand used to pad out to 3 operands. 356 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 357 MachineBasicBlock *&TBB, 358 MachineBasicBlock *&FBB, 359 SmallVectorImpl<MachineOperand> &Cond, 360 bool AllowModify) const { 361 TBB = nullptr; 362 FBB = nullptr; 363 364 MachineBasicBlock::instr_iterator I = MBB.instr_end(); 365 if (I == MBB.instr_begin()) 366 return false; // Empty blocks are easy. 367 --I; 368 369 // Walk backwards from the end of the basic block until the branch is 370 // analyzed or we give up. 371 while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) { 372 // Flag to be raised on unanalyzeable instructions. This is useful in cases 373 // where we want to clean up on the end of the basic block before we bail 374 // out. 375 bool CantAnalyze = false; 376 377 // Skip over DEBUG values, predicated nonterminators and speculation 378 // barrier terminators. 379 while (I->isDebugInstr() || !I->isTerminator() || 380 isSpeculationBarrierEndBBOpcode(I->getOpcode()) || 381 I->getOpcode() == ARM::t2DoLoopStartTP){ 382 if (I == MBB.instr_begin()) 383 return false; 384 --I; 385 } 386 387 if (isIndirectBranchOpcode(I->getOpcode()) || 388 isJumpTableBranchOpcode(I->getOpcode())) { 389 // Indirect branches and jump tables can't be analyzed, but we still want 390 // to clean up any instructions at the tail of the basic block. 391 CantAnalyze = true; 392 } else if (isUncondBranchOpcode(I->getOpcode())) { 393 TBB = I->getOperand(0).getMBB(); 394 } else if (isCondBranchOpcode(I->getOpcode())) { 395 // Bail out if we encounter multiple conditional branches. 396 if (!Cond.empty()) 397 return true; 398 399 assert(!FBB && "FBB should have been null."); 400 FBB = TBB; 401 TBB = I->getOperand(0).getMBB(); 402 Cond.push_back(I->getOperand(1)); 403 Cond.push_back(I->getOperand(2)); 404 } else if (I->isReturn()) { 405 // Returns can't be analyzed, but we should run cleanup. 406 CantAnalyze = true; 407 } else if (I->getOpcode() == ARM::t2LoopEnd && 408 MBB.getParent() 409 ->getSubtarget<ARMSubtarget>() 410 .enableMachinePipeliner()) { 411 if (!Cond.empty()) 412 return true; 413 FBB = TBB; 414 TBB = I->getOperand(1).getMBB(); 415 Cond.push_back(MachineOperand::CreateImm(I->getOpcode())); 416 Cond.push_back(I->getOperand(0)); 417 Cond.push_back(MachineOperand::CreateImm(0)); 418 } else { 419 // We encountered other unrecognized terminator. Bail out immediately. 420 return true; 421 } 422 423 // Cleanup code - to be run for unpredicated unconditional branches and 424 // returns. 425 if (!isPredicated(*I) && 426 (isUncondBranchOpcode(I->getOpcode()) || 427 isIndirectBranchOpcode(I->getOpcode()) || 428 isJumpTableBranchOpcode(I->getOpcode()) || 429 I->isReturn())) { 430 // Forget any previous condition branch information - it no longer applies. 431 Cond.clear(); 432 FBB = nullptr; 433 434 // If we can modify the function, delete everything below this 435 // unconditional branch. 436 if (AllowModify) { 437 MachineBasicBlock::iterator DI = std::next(I); 438 while (DI != MBB.instr_end()) { 439 MachineInstr &InstToDelete = *DI; 440 ++DI; 441 // Speculation barriers must not be deleted. 442 if (isSpeculationBarrierEndBBOpcode(InstToDelete.getOpcode())) 443 continue; 444 InstToDelete.eraseFromParent(); 445 } 446 } 447 } 448 449 if (CantAnalyze) { 450 // We may not be able to analyze the block, but we could still have 451 // an unconditional branch as the last instruction in the block, which 452 // just branches to layout successor. If this is the case, then just 453 // remove it if we're allowed to make modifications. 454 if (AllowModify && !isPredicated(MBB.back()) && 455 isUncondBranchOpcode(MBB.back().getOpcode()) && 456 TBB && MBB.isLayoutSuccessor(TBB)) 457 removeBranch(MBB); 458 return true; 459 } 460 461 if (I == MBB.instr_begin()) 462 return false; 463 464 --I; 465 } 466 467 // We made it past the terminators without bailing out - we must have 468 // analyzed this branch successfully. 469 return false; 470 } 471 472 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB, 473 int *BytesRemoved) const { 474 assert(!BytesRemoved && "code size not handled"); 475 476 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 477 if (I == MBB.end()) 478 return 0; 479 480 if (!isUncondBranchOpcode(I->getOpcode()) && 481 !isCondBranchOpcode(I->getOpcode()) && I->getOpcode() != ARM::t2LoopEnd) 482 return 0; 483 484 // Remove the branch. 485 I->eraseFromParent(); 486 487 I = MBB.end(); 488 489 if (I == MBB.begin()) return 1; 490 --I; 491 if (!isCondBranchOpcode(I->getOpcode()) && I->getOpcode() != ARM::t2LoopEnd) 492 return 1; 493 494 // Remove the branch. 495 I->eraseFromParent(); 496 return 2; 497 } 498 499 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB, 500 MachineBasicBlock *TBB, 501 MachineBasicBlock *FBB, 502 ArrayRef<MachineOperand> Cond, 503 const DebugLoc &DL, 504 int *BytesAdded) const { 505 assert(!BytesAdded && "code size not handled"); 506 ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>(); 507 int BOpc = !AFI->isThumbFunction() 508 ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB); 509 int BccOpc = !AFI->isThumbFunction() 510 ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc); 511 bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function(); 512 513 // Shouldn't be a fall through. 514 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 515 assert((Cond.size() == 2 || Cond.size() == 0 || Cond.size() == 3) && 516 "ARM branch conditions have two or three components!"); 517 518 // For conditional branches, we use addOperand to preserve CPSR flags. 519 520 if (!FBB) { 521 if (Cond.empty()) { // Unconditional branch? 522 if (isThumb) 523 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL)); 524 else 525 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); 526 } else if (Cond.size() == 2) { 527 BuildMI(&MBB, DL, get(BccOpc)) 528 .addMBB(TBB) 529 .addImm(Cond[0].getImm()) 530 .add(Cond[1]); 531 } else 532 BuildMI(&MBB, DL, get(Cond[0].getImm())).add(Cond[1]).addMBB(TBB); 533 return 1; 534 } 535 536 // Two-way conditional branch. 537 if (Cond.size() == 2) 538 BuildMI(&MBB, DL, get(BccOpc)) 539 .addMBB(TBB) 540 .addImm(Cond[0].getImm()) 541 .add(Cond[1]); 542 else if (Cond.size() == 3) 543 BuildMI(&MBB, DL, get(Cond[0].getImm())).add(Cond[1]).addMBB(TBB); 544 if (isThumb) 545 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL)); 546 else 547 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); 548 return 2; 549 } 550 551 bool ARMBaseInstrInfo:: 552 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 553 if (Cond.size() == 2) { 554 ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm(); 555 Cond[0].setImm(ARMCC::getOppositeCondition(CC)); 556 return false; 557 } 558 return true; 559 } 560 561 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const { 562 if (MI.isBundle()) { 563 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 564 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 565 while (++I != E && I->isInsideBundle()) { 566 int PIdx = I->findFirstPredOperandIdx(); 567 if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL) 568 return true; 569 } 570 return false; 571 } 572 573 int PIdx = MI.findFirstPredOperandIdx(); 574 return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL; 575 } 576 577 std::string ARMBaseInstrInfo::createMIROperandComment( 578 const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx, 579 const TargetRegisterInfo *TRI) const { 580 581 // First, let's see if there is a generic comment for this operand 582 std::string GenericComment = 583 TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI); 584 if (!GenericComment.empty()) 585 return GenericComment; 586 587 // If not, check if we have an immediate operand. 588 if (!Op.isImm()) 589 return std::string(); 590 591 // And print its corresponding condition code if the immediate is a 592 // predicate. 593 int FirstPredOp = MI.findFirstPredOperandIdx(); 594 if (FirstPredOp != (int) OpIdx) 595 return std::string(); 596 597 std::string CC = "CC::"; 598 CC += ARMCondCodeToString((ARMCC::CondCodes)Op.getImm()); 599 return CC; 600 } 601 602 bool ARMBaseInstrInfo::PredicateInstruction( 603 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 604 unsigned Opc = MI.getOpcode(); 605 if (isUncondBranchOpcode(Opc)) { 606 MI.setDesc(get(getMatchingCondBranchOpcode(Opc))); 607 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 608 .addImm(Pred[0].getImm()) 609 .addReg(Pred[1].getReg()); 610 return true; 611 } 612 613 int PIdx = MI.findFirstPredOperandIdx(); 614 if (PIdx != -1) { 615 MachineOperand &PMO = MI.getOperand(PIdx); 616 PMO.setImm(Pred[0].getImm()); 617 MI.getOperand(PIdx+1).setReg(Pred[1].getReg()); 618 619 // Thumb 1 arithmetic instructions do not set CPSR when executed inside an 620 // IT block. This affects how they are printed. 621 const MCInstrDesc &MCID = MI.getDesc(); 622 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 623 assert(MCID.operands()[1].isOptionalDef() && 624 "CPSR def isn't expected operand"); 625 assert((MI.getOperand(1).isDead() || 626 MI.getOperand(1).getReg() != ARM::CPSR) && 627 "if conversion tried to stop defining used CPSR"); 628 MI.getOperand(1).setReg(ARM::NoRegister); 629 } 630 631 return true; 632 } 633 return false; 634 } 635 636 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 637 ArrayRef<MachineOperand> Pred2) const { 638 if (Pred1.size() > 2 || Pred2.size() > 2) 639 return false; 640 641 ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm(); 642 ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm(); 643 if (CC1 == CC2) 644 return true; 645 646 switch (CC1) { 647 default: 648 return false; 649 case ARMCC::AL: 650 return true; 651 case ARMCC::HS: 652 return CC2 == ARMCC::HI; 653 case ARMCC::LS: 654 return CC2 == ARMCC::LO || CC2 == ARMCC::EQ; 655 case ARMCC::GE: 656 return CC2 == ARMCC::GT; 657 case ARMCC::LE: 658 return CC2 == ARMCC::LT; 659 } 660 } 661 662 bool ARMBaseInstrInfo::ClobbersPredicate(MachineInstr &MI, 663 std::vector<MachineOperand> &Pred, 664 bool SkipDead) const { 665 bool Found = false; 666 for (const MachineOperand &MO : MI.operands()) { 667 bool ClobbersCPSR = MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR); 668 bool IsCPSR = MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR; 669 if (ClobbersCPSR || IsCPSR) { 670 671 // Filter out T1 instructions that have a dead CPSR, 672 // allowing IT blocks to be generated containing T1 instructions 673 const MCInstrDesc &MCID = MI.getDesc(); 674 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting && MO.isDead() && 675 SkipDead) 676 continue; 677 678 Pred.push_back(MO); 679 Found = true; 680 } 681 } 682 683 return Found; 684 } 685 686 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) { 687 for (const auto &MO : MI.operands()) 688 if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead()) 689 return true; 690 return false; 691 } 692 693 static bool isEligibleForITBlock(const MachineInstr *MI) { 694 switch (MI->getOpcode()) { 695 default: return true; 696 case ARM::tADC: // ADC (register) T1 697 case ARM::tADDi3: // ADD (immediate) T1 698 case ARM::tADDi8: // ADD (immediate) T2 699 case ARM::tADDrr: // ADD (register) T1 700 case ARM::tAND: // AND (register) T1 701 case ARM::tASRri: // ASR (immediate) T1 702 case ARM::tASRrr: // ASR (register) T1 703 case ARM::tBIC: // BIC (register) T1 704 case ARM::tEOR: // EOR (register) T1 705 case ARM::tLSLri: // LSL (immediate) T1 706 case ARM::tLSLrr: // LSL (register) T1 707 case ARM::tLSRri: // LSR (immediate) T1 708 case ARM::tLSRrr: // LSR (register) T1 709 case ARM::tMUL: // MUL T1 710 case ARM::tMVN: // MVN (register) T1 711 case ARM::tORR: // ORR (register) T1 712 case ARM::tROR: // ROR (register) T1 713 case ARM::tRSB: // RSB (immediate) T1 714 case ARM::tSBC: // SBC (register) T1 715 case ARM::tSUBi3: // SUB (immediate) T1 716 case ARM::tSUBi8: // SUB (immediate) T2 717 case ARM::tSUBrr: // SUB (register) T1 718 return !ARMBaseInstrInfo::isCPSRDefined(*MI); 719 } 720 } 721 722 /// isPredicable - Return true if the specified instruction can be predicated. 723 /// By default, this returns true for every instruction with a 724 /// PredicateOperand. 725 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const { 726 if (!MI.isPredicable()) 727 return false; 728 729 if (MI.isBundle()) 730 return false; 731 732 if (!isEligibleForITBlock(&MI)) 733 return false; 734 735 const MachineFunction *MF = MI.getParent()->getParent(); 736 const ARMFunctionInfo *AFI = 737 MF->getInfo<ARMFunctionInfo>(); 738 739 // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM. 740 // In their ARM encoding, they can't be encoded in a conditional form. 741 if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) 742 return false; 743 744 // Make indirect control flow changes unpredicable when SLS mitigation is 745 // enabled. 746 const ARMSubtarget &ST = MF->getSubtarget<ARMSubtarget>(); 747 if (ST.hardenSlsRetBr() && isIndirectControlFlowNotComingBack(MI)) 748 return false; 749 if (ST.hardenSlsBlr() && isIndirectCall(MI)) 750 return false; 751 752 if (AFI->isThumb2Function()) { 753 if (getSubtarget().restrictIT()) 754 return isV8EligibleForIT(&MI); 755 } 756 757 return true; 758 } 759 760 namespace llvm { 761 762 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) { 763 for (const MachineOperand &MO : MI->operands()) { 764 if (!MO.isReg() || MO.isUndef() || MO.isUse()) 765 continue; 766 if (MO.getReg() != ARM::CPSR) 767 continue; 768 if (!MO.isDead()) 769 return false; 770 } 771 // all definitions of CPSR are dead 772 return true; 773 } 774 775 } // end namespace llvm 776 777 /// GetInstSize - Return the size of the specified MachineInstr. 778 /// 779 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 780 const MachineBasicBlock &MBB = *MI.getParent(); 781 const MachineFunction *MF = MBB.getParent(); 782 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); 783 784 const MCInstrDesc &MCID = MI.getDesc(); 785 786 switch (MI.getOpcode()) { 787 default: 788 // Return the size specified in .td file. If there's none, return 0, as we 789 // can't define a default size (Thumb1 instructions are 2 bytes, Thumb2 790 // instructions are 2-4 bytes, and ARM instructions are 4 bytes), in 791 // contrast to AArch64 instructions which have a default size of 4 bytes for 792 // example. 793 return MCID.getSize(); 794 case TargetOpcode::BUNDLE: 795 return getInstBundleLength(MI); 796 case ARM::CONSTPOOL_ENTRY: 797 case ARM::JUMPTABLE_INSTS: 798 case ARM::JUMPTABLE_ADDRS: 799 case ARM::JUMPTABLE_TBB: 800 case ARM::JUMPTABLE_TBH: 801 // If this machine instr is a constant pool entry, its size is recorded as 802 // operand #2. 803 return MI.getOperand(2).getImm(); 804 case ARM::SPACE: 805 return MI.getOperand(1).getImm(); 806 case ARM::INLINEASM: 807 case ARM::INLINEASM_BR: { 808 // If this machine instr is an inline asm, measure it. 809 unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI); 810 if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction()) 811 Size = alignTo(Size, 4); 812 return Size; 813 } 814 } 815 } 816 817 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const { 818 unsigned Size = 0; 819 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 820 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 821 while (++I != E && I->isInsideBundle()) { 822 assert(!I->isBundle() && "No nested bundle!"); 823 Size += getInstSizeInBytes(*I); 824 } 825 return Size; 826 } 827 828 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB, 829 MachineBasicBlock::iterator I, 830 unsigned DestReg, bool KillSrc, 831 const ARMSubtarget &Subtarget) const { 832 unsigned Opc = Subtarget.isThumb() 833 ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR) 834 : ARM::MRS; 835 836 MachineInstrBuilder MIB = 837 BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg); 838 839 // There is only 1 A/R class MRS instruction, and it always refers to 840 // APSR. However, there are lots of other possibilities on M-class cores. 841 if (Subtarget.isMClass()) 842 MIB.addImm(0x800); 843 844 MIB.add(predOps(ARMCC::AL)) 845 .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc)); 846 } 847 848 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB, 849 MachineBasicBlock::iterator I, 850 unsigned SrcReg, bool KillSrc, 851 const ARMSubtarget &Subtarget) const { 852 unsigned Opc = Subtarget.isThumb() 853 ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR) 854 : ARM::MSR; 855 856 MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc)); 857 858 if (Subtarget.isMClass()) 859 MIB.addImm(0x800); 860 else 861 MIB.addImm(8); 862 863 MIB.addReg(SrcReg, getKillRegState(KillSrc)) 864 .add(predOps(ARMCC::AL)) 865 .addReg(ARM::CPSR, RegState::Implicit | RegState::Define); 866 } 867 868 void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) { 869 MIB.addImm(ARMVCC::None); 870 MIB.addReg(0); 871 MIB.addReg(0); // tp_reg 872 } 873 874 void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB, 875 Register DestReg) { 876 addUnpredicatedMveVpredNOp(MIB); 877 MIB.addReg(DestReg, RegState::Undef); 878 } 879 880 void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) { 881 MIB.addImm(Cond); 882 MIB.addReg(ARM::VPR, RegState::Implicit); 883 MIB.addReg(0); // tp_reg 884 } 885 886 void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB, 887 unsigned Cond, unsigned Inactive) { 888 addPredicatedMveVpredNOp(MIB, Cond); 889 MIB.addReg(Inactive); 890 } 891 892 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 893 MachineBasicBlock::iterator I, 894 const DebugLoc &DL, MCRegister DestReg, 895 MCRegister SrcReg, bool KillSrc) const { 896 bool GPRDest = ARM::GPRRegClass.contains(DestReg); 897 bool GPRSrc = ARM::GPRRegClass.contains(SrcReg); 898 899 if (GPRDest && GPRSrc) { 900 BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg) 901 .addReg(SrcReg, getKillRegState(KillSrc)) 902 .add(predOps(ARMCC::AL)) 903 .add(condCodeOp()); 904 return; 905 } 906 907 bool SPRDest = ARM::SPRRegClass.contains(DestReg); 908 bool SPRSrc = ARM::SPRRegClass.contains(SrcReg); 909 910 unsigned Opc = 0; 911 if (SPRDest && SPRSrc) 912 Opc = ARM::VMOVS; 913 else if (GPRDest && SPRSrc) 914 Opc = ARM::VMOVRS; 915 else if (SPRDest && GPRSrc) 916 Opc = ARM::VMOVSR; 917 else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64()) 918 Opc = ARM::VMOVD; 919 else if (ARM::QPRRegClass.contains(DestReg, SrcReg)) 920 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MQPRCopy; 921 922 if (Opc) { 923 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg); 924 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 925 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) 926 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 927 if (Opc == ARM::MVE_VORR) 928 addUnpredicatedMveVpredROp(MIB, DestReg); 929 else if (Opc != ARM::MQPRCopy) 930 MIB.add(predOps(ARMCC::AL)); 931 return; 932 } 933 934 // Handle register classes that require multiple instructions. 935 unsigned BeginIdx = 0; 936 unsigned SubRegs = 0; 937 int Spacing = 1; 938 939 // Use VORRq when possible. 940 if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) { 941 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; 942 BeginIdx = ARM::qsub_0; 943 SubRegs = 2; 944 } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) { 945 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; 946 BeginIdx = ARM::qsub_0; 947 SubRegs = 4; 948 // Fall back to VMOVD. 949 } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) { 950 Opc = ARM::VMOVD; 951 BeginIdx = ARM::dsub_0; 952 SubRegs = 2; 953 } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) { 954 Opc = ARM::VMOVD; 955 BeginIdx = ARM::dsub_0; 956 SubRegs = 3; 957 } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) { 958 Opc = ARM::VMOVD; 959 BeginIdx = ARM::dsub_0; 960 SubRegs = 4; 961 } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) { 962 Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr; 963 BeginIdx = ARM::gsub_0; 964 SubRegs = 2; 965 } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) { 966 Opc = ARM::VMOVD; 967 BeginIdx = ARM::dsub_0; 968 SubRegs = 2; 969 Spacing = 2; 970 } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) { 971 Opc = ARM::VMOVD; 972 BeginIdx = ARM::dsub_0; 973 SubRegs = 3; 974 Spacing = 2; 975 } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) { 976 Opc = ARM::VMOVD; 977 BeginIdx = ARM::dsub_0; 978 SubRegs = 4; 979 Spacing = 2; 980 } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && 981 !Subtarget.hasFP64()) { 982 Opc = ARM::VMOVS; 983 BeginIdx = ARM::ssub_0; 984 SubRegs = 2; 985 } else if (SrcReg == ARM::CPSR) { 986 copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget); 987 return; 988 } else if (DestReg == ARM::CPSR) { 989 copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget); 990 return; 991 } else if (DestReg == ARM::VPR) { 992 assert(ARM::GPRRegClass.contains(SrcReg)); 993 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg) 994 .addReg(SrcReg, getKillRegState(KillSrc)) 995 .add(predOps(ARMCC::AL)); 996 return; 997 } else if (SrcReg == ARM::VPR) { 998 assert(ARM::GPRRegClass.contains(DestReg)); 999 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg) 1000 .addReg(SrcReg, getKillRegState(KillSrc)) 1001 .add(predOps(ARMCC::AL)); 1002 return; 1003 } else if (DestReg == ARM::FPSCR_NZCV) { 1004 assert(ARM::GPRRegClass.contains(SrcReg)); 1005 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg) 1006 .addReg(SrcReg, getKillRegState(KillSrc)) 1007 .add(predOps(ARMCC::AL)); 1008 return; 1009 } else if (SrcReg == ARM::FPSCR_NZCV) { 1010 assert(ARM::GPRRegClass.contains(DestReg)); 1011 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg) 1012 .addReg(SrcReg, getKillRegState(KillSrc)) 1013 .add(predOps(ARMCC::AL)); 1014 return; 1015 } 1016 1017 assert(Opc && "Impossible reg-to-reg copy"); 1018 1019 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1020 MachineInstrBuilder Mov; 1021 1022 // Copy register tuples backward when the first Dest reg overlaps with SrcReg. 1023 if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) { 1024 BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing); 1025 Spacing = -Spacing; 1026 } 1027 #ifndef NDEBUG 1028 SmallSet<unsigned, 4> DstRegs; 1029 #endif 1030 for (unsigned i = 0; i != SubRegs; ++i) { 1031 Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing); 1032 Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing); 1033 assert(Dst && Src && "Bad sub-register"); 1034 #ifndef NDEBUG 1035 assert(!DstRegs.count(Src) && "destructive vector copy"); 1036 DstRegs.insert(Dst); 1037 #endif 1038 Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src); 1039 // VORR (NEON or MVE) takes two source operands. 1040 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) { 1041 Mov.addReg(Src); 1042 } 1043 // MVE VORR takes predicate operands in place of an ordinary condition. 1044 if (Opc == ARM::MVE_VORR) 1045 addUnpredicatedMveVpredROp(Mov, Dst); 1046 else 1047 Mov = Mov.add(predOps(ARMCC::AL)); 1048 // MOVr can set CC. 1049 if (Opc == ARM::MOVr) 1050 Mov = Mov.add(condCodeOp()); 1051 } 1052 // Add implicit super-register defs and kills to the last instruction. 1053 Mov->addRegisterDefined(DestReg, TRI); 1054 if (KillSrc) 1055 Mov->addRegisterKilled(SrcReg, TRI); 1056 } 1057 1058 std::optional<DestSourcePair> 1059 ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const { 1060 // VMOVRRD is also a copy instruction but it requires 1061 // special way of handling. It is more complex copy version 1062 // and since that we are not considering it. For recognition 1063 // of such instruction isExtractSubregLike MI interface fuction 1064 // could be used. 1065 // VORRq is considered as a move only if two inputs are 1066 // the same register. 1067 if (!MI.isMoveReg() || 1068 (MI.getOpcode() == ARM::VORRq && 1069 MI.getOperand(1).getReg() != MI.getOperand(2).getReg())) 1070 return std::nullopt; 1071 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)}; 1072 } 1073 1074 std::optional<ParamLoadedValue> 1075 ARMBaseInstrInfo::describeLoadedValue(const MachineInstr &MI, 1076 Register Reg) const { 1077 if (auto DstSrcPair = isCopyInstrImpl(MI)) { 1078 Register DstReg = DstSrcPair->Destination->getReg(); 1079 1080 // TODO: We don't handle cases where the forwarding reg is narrower/wider 1081 // than the copy registers. Consider for example: 1082 // 1083 // s16 = VMOVS s0 1084 // s17 = VMOVS s1 1085 // call @callee(d0) 1086 // 1087 // We'd like to describe the call site value of d0 as d8, but this requires 1088 // gathering and merging the descriptions for the two VMOVS instructions. 1089 // 1090 // We also don't handle the reverse situation, where the forwarding reg is 1091 // narrower than the copy destination: 1092 // 1093 // d8 = VMOVD d0 1094 // call @callee(s1) 1095 // 1096 // We need to produce a fragment description (the call site value of s1 is 1097 // /not/ just d8). 1098 if (DstReg != Reg) 1099 return std::nullopt; 1100 } 1101 return TargetInstrInfo::describeLoadedValue(MI, Reg); 1102 } 1103 1104 const MachineInstrBuilder & 1105 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg, 1106 unsigned SubIdx, unsigned State, 1107 const TargetRegisterInfo *TRI) const { 1108 if (!SubIdx) 1109 return MIB.addReg(Reg, State); 1110 1111 if (Register::isPhysicalRegister(Reg)) 1112 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State); 1113 return MIB.addReg(Reg, State, SubIdx); 1114 } 1115 1116 void ARMBaseInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1117 MachineBasicBlock::iterator I, 1118 Register SrcReg, bool isKill, int FI, 1119 const TargetRegisterClass *RC, 1120 const TargetRegisterInfo *TRI, 1121 Register VReg) const { 1122 MachineFunction &MF = *MBB.getParent(); 1123 MachineFrameInfo &MFI = MF.getFrameInfo(); 1124 Align Alignment = MFI.getObjectAlign(FI); 1125 1126 MachineMemOperand *MMO = MF.getMachineMemOperand( 1127 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, 1128 MFI.getObjectSize(FI), Alignment); 1129 1130 switch (TRI->getSpillSize(*RC)) { 1131 case 2: 1132 if (ARM::HPRRegClass.hasSubClassEq(RC)) { 1133 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH)) 1134 .addReg(SrcReg, getKillRegState(isKill)) 1135 .addFrameIndex(FI) 1136 .addImm(0) 1137 .addMemOperand(MMO) 1138 .add(predOps(ARMCC::AL)); 1139 } else 1140 llvm_unreachable("Unknown reg class!"); 1141 break; 1142 case 4: 1143 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 1144 BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12)) 1145 .addReg(SrcReg, getKillRegState(isKill)) 1146 .addFrameIndex(FI) 1147 .addImm(0) 1148 .addMemOperand(MMO) 1149 .add(predOps(ARMCC::AL)); 1150 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1151 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS)) 1152 .addReg(SrcReg, getKillRegState(isKill)) 1153 .addFrameIndex(FI) 1154 .addImm(0) 1155 .addMemOperand(MMO) 1156 .add(predOps(ARMCC::AL)); 1157 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) { 1158 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off)) 1159 .addReg(SrcReg, getKillRegState(isKill)) 1160 .addFrameIndex(FI) 1161 .addImm(0) 1162 .addMemOperand(MMO) 1163 .add(predOps(ARMCC::AL)); 1164 } else 1165 llvm_unreachable("Unknown reg class!"); 1166 break; 1167 case 8: 1168 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1169 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD)) 1170 .addReg(SrcReg, getKillRegState(isKill)) 1171 .addFrameIndex(FI) 1172 .addImm(0) 1173 .addMemOperand(MMO) 1174 .add(predOps(ARMCC::AL)); 1175 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1176 if (Subtarget.hasV5TEOps()) { 1177 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD)); 1178 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 1179 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 1180 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) 1181 .add(predOps(ARMCC::AL)); 1182 } else { 1183 // Fallback to STM instruction, which has existed since the dawn of 1184 // time. 1185 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA)) 1186 .addFrameIndex(FI) 1187 .addMemOperand(MMO) 1188 .add(predOps(ARMCC::AL)); 1189 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 1190 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 1191 } 1192 } else 1193 llvm_unreachable("Unknown reg class!"); 1194 break; 1195 case 16: 1196 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) { 1197 // Use aligned spills if the stack can be realigned. 1198 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) { 1199 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64)) 1200 .addFrameIndex(FI) 1201 .addImm(16) 1202 .addReg(SrcReg, getKillRegState(isKill)) 1203 .addMemOperand(MMO) 1204 .add(predOps(ARMCC::AL)); 1205 } else { 1206 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA)) 1207 .addReg(SrcReg, getKillRegState(isKill)) 1208 .addFrameIndex(FI) 1209 .addMemOperand(MMO) 1210 .add(predOps(ARMCC::AL)); 1211 } 1212 } else if (ARM::QPRRegClass.hasSubClassEq(RC) && 1213 Subtarget.hasMVEIntegerOps()) { 1214 auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32)); 1215 MIB.addReg(SrcReg, getKillRegState(isKill)) 1216 .addFrameIndex(FI) 1217 .addImm(0) 1218 .addMemOperand(MMO); 1219 addUnpredicatedMveVpredNOp(MIB); 1220 } else 1221 llvm_unreachable("Unknown reg class!"); 1222 break; 1223 case 24: 1224 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1225 // Use aligned spills if the stack can be realigned. 1226 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1227 Subtarget.hasNEON()) { 1228 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo)) 1229 .addFrameIndex(FI) 1230 .addImm(16) 1231 .addReg(SrcReg, getKillRegState(isKill)) 1232 .addMemOperand(MMO) 1233 .add(predOps(ARMCC::AL)); 1234 } else { 1235 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), 1236 get(ARM::VSTMDIA)) 1237 .addFrameIndex(FI) 1238 .add(predOps(ARMCC::AL)) 1239 .addMemOperand(MMO); 1240 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1241 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1242 AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1243 } 1244 } else 1245 llvm_unreachable("Unknown reg class!"); 1246 break; 1247 case 32: 1248 if (ARM::QQPRRegClass.hasSubClassEq(RC) || 1249 ARM::MQQPRRegClass.hasSubClassEq(RC) || 1250 ARM::DQuadRegClass.hasSubClassEq(RC)) { 1251 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1252 Subtarget.hasNEON()) { 1253 // FIXME: It's possible to only store part of the QQ register if the 1254 // spilled def has a sub-register index. 1255 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo)) 1256 .addFrameIndex(FI) 1257 .addImm(16) 1258 .addReg(SrcReg, getKillRegState(isKill)) 1259 .addMemOperand(MMO) 1260 .add(predOps(ARMCC::AL)); 1261 } else if (Subtarget.hasMVEIntegerOps()) { 1262 BuildMI(MBB, I, DebugLoc(), get(ARM::MQQPRStore)) 1263 .addReg(SrcReg, getKillRegState(isKill)) 1264 .addFrameIndex(FI) 1265 .addMemOperand(MMO); 1266 } else { 1267 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), 1268 get(ARM::VSTMDIA)) 1269 .addFrameIndex(FI) 1270 .add(predOps(ARMCC::AL)) 1271 .addMemOperand(MMO); 1272 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1273 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1274 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1275 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 1276 } 1277 } else 1278 llvm_unreachable("Unknown reg class!"); 1279 break; 1280 case 64: 1281 if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) && 1282 Subtarget.hasMVEIntegerOps()) { 1283 BuildMI(MBB, I, DebugLoc(), get(ARM::MQQQQPRStore)) 1284 .addReg(SrcReg, getKillRegState(isKill)) 1285 .addFrameIndex(FI) 1286 .addMemOperand(MMO); 1287 } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1288 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA)) 1289 .addFrameIndex(FI) 1290 .add(predOps(ARMCC::AL)) 1291 .addMemOperand(MMO); 1292 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1293 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1294 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1295 MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 1296 MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI); 1297 MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI); 1298 MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI); 1299 AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI); 1300 } else 1301 llvm_unreachable("Unknown reg class!"); 1302 break; 1303 default: 1304 llvm_unreachable("Unknown reg class!"); 1305 } 1306 } 1307 1308 Register ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 1309 int &FrameIndex) const { 1310 switch (MI.getOpcode()) { 1311 default: break; 1312 case ARM::STRrs: 1313 case ARM::t2STRs: // FIXME: don't use t2STRs to access frame. 1314 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && 1315 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && 1316 MI.getOperand(3).getImm() == 0) { 1317 FrameIndex = MI.getOperand(1).getIndex(); 1318 return MI.getOperand(0).getReg(); 1319 } 1320 break; 1321 case ARM::STRi12: 1322 case ARM::t2STRi12: 1323 case ARM::tSTRspi: 1324 case ARM::VSTRD: 1325 case ARM::VSTRS: 1326 case ARM::VSTR_P0_off: 1327 case ARM::MVE_VSTRWU32: 1328 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && 1329 MI.getOperand(2).getImm() == 0) { 1330 FrameIndex = MI.getOperand(1).getIndex(); 1331 return MI.getOperand(0).getReg(); 1332 } 1333 break; 1334 case ARM::VST1q64: 1335 case ARM::VST1d64TPseudo: 1336 case ARM::VST1d64QPseudo: 1337 if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) { 1338 FrameIndex = MI.getOperand(0).getIndex(); 1339 return MI.getOperand(2).getReg(); 1340 } 1341 break; 1342 case ARM::VSTMQIA: 1343 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1344 FrameIndex = MI.getOperand(1).getIndex(); 1345 return MI.getOperand(0).getReg(); 1346 } 1347 break; 1348 case ARM::MQQPRStore: 1349 case ARM::MQQQQPRStore: 1350 if (MI.getOperand(1).isFI()) { 1351 FrameIndex = MI.getOperand(1).getIndex(); 1352 return MI.getOperand(0).getReg(); 1353 } 1354 break; 1355 } 1356 1357 return 0; 1358 } 1359 1360 Register ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, 1361 int &FrameIndex) const { 1362 SmallVector<const MachineMemOperand *, 1> Accesses; 1363 if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) && 1364 Accesses.size() == 1) { 1365 FrameIndex = 1366 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 1367 ->getFrameIndex(); 1368 return true; 1369 } 1370 return false; 1371 } 1372 1373 void ARMBaseInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1374 MachineBasicBlock::iterator I, 1375 Register DestReg, int FI, 1376 const TargetRegisterClass *RC, 1377 const TargetRegisterInfo *TRI, 1378 Register VReg) const { 1379 DebugLoc DL; 1380 if (I != MBB.end()) DL = I->getDebugLoc(); 1381 MachineFunction &MF = *MBB.getParent(); 1382 MachineFrameInfo &MFI = MF.getFrameInfo(); 1383 const Align Alignment = MFI.getObjectAlign(FI); 1384 MachineMemOperand *MMO = MF.getMachineMemOperand( 1385 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, 1386 MFI.getObjectSize(FI), Alignment); 1387 1388 switch (TRI->getSpillSize(*RC)) { 1389 case 2: 1390 if (ARM::HPRRegClass.hasSubClassEq(RC)) { 1391 BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg) 1392 .addFrameIndex(FI) 1393 .addImm(0) 1394 .addMemOperand(MMO) 1395 .add(predOps(ARMCC::AL)); 1396 } else 1397 llvm_unreachable("Unknown reg class!"); 1398 break; 1399 case 4: 1400 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 1401 BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg) 1402 .addFrameIndex(FI) 1403 .addImm(0) 1404 .addMemOperand(MMO) 1405 .add(predOps(ARMCC::AL)); 1406 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1407 BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg) 1408 .addFrameIndex(FI) 1409 .addImm(0) 1410 .addMemOperand(MMO) 1411 .add(predOps(ARMCC::AL)); 1412 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) { 1413 BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg) 1414 .addFrameIndex(FI) 1415 .addImm(0) 1416 .addMemOperand(MMO) 1417 .add(predOps(ARMCC::AL)); 1418 } else 1419 llvm_unreachable("Unknown reg class!"); 1420 break; 1421 case 8: 1422 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1423 BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg) 1424 .addFrameIndex(FI) 1425 .addImm(0) 1426 .addMemOperand(MMO) 1427 .add(predOps(ARMCC::AL)); 1428 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1429 MachineInstrBuilder MIB; 1430 1431 if (Subtarget.hasV5TEOps()) { 1432 MIB = BuildMI(MBB, I, DL, get(ARM::LDRD)); 1433 AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1434 AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1435 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) 1436 .add(predOps(ARMCC::AL)); 1437 } else { 1438 // Fallback to LDM instruction, which has existed since the dawn of 1439 // time. 1440 MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA)) 1441 .addFrameIndex(FI) 1442 .addMemOperand(MMO) 1443 .add(predOps(ARMCC::AL)); 1444 MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1445 MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1446 } 1447 1448 if (DestReg.isPhysical()) 1449 MIB.addReg(DestReg, RegState::ImplicitDefine); 1450 } else 1451 llvm_unreachable("Unknown reg class!"); 1452 break; 1453 case 16: 1454 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) { 1455 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) { 1456 BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg) 1457 .addFrameIndex(FI) 1458 .addImm(16) 1459 .addMemOperand(MMO) 1460 .add(predOps(ARMCC::AL)); 1461 } else { 1462 BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg) 1463 .addFrameIndex(FI) 1464 .addMemOperand(MMO) 1465 .add(predOps(ARMCC::AL)); 1466 } 1467 } else if (ARM::QPRRegClass.hasSubClassEq(RC) && 1468 Subtarget.hasMVEIntegerOps()) { 1469 auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg); 1470 MIB.addFrameIndex(FI) 1471 .addImm(0) 1472 .addMemOperand(MMO); 1473 addUnpredicatedMveVpredNOp(MIB); 1474 } else 1475 llvm_unreachable("Unknown reg class!"); 1476 break; 1477 case 24: 1478 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1479 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1480 Subtarget.hasNEON()) { 1481 BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg) 1482 .addFrameIndex(FI) 1483 .addImm(16) 1484 .addMemOperand(MMO) 1485 .add(predOps(ARMCC::AL)); 1486 } else { 1487 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1488 .addFrameIndex(FI) 1489 .addMemOperand(MMO) 1490 .add(predOps(ARMCC::AL)); 1491 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1492 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1493 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1494 if (DestReg.isPhysical()) 1495 MIB.addReg(DestReg, RegState::ImplicitDefine); 1496 } 1497 } else 1498 llvm_unreachable("Unknown reg class!"); 1499 break; 1500 case 32: 1501 if (ARM::QQPRRegClass.hasSubClassEq(RC) || 1502 ARM::MQQPRRegClass.hasSubClassEq(RC) || 1503 ARM::DQuadRegClass.hasSubClassEq(RC)) { 1504 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1505 Subtarget.hasNEON()) { 1506 BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg) 1507 .addFrameIndex(FI) 1508 .addImm(16) 1509 .addMemOperand(MMO) 1510 .add(predOps(ARMCC::AL)); 1511 } else if (Subtarget.hasMVEIntegerOps()) { 1512 BuildMI(MBB, I, DL, get(ARM::MQQPRLoad), DestReg) 1513 .addFrameIndex(FI) 1514 .addMemOperand(MMO); 1515 } else { 1516 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1517 .addFrameIndex(FI) 1518 .add(predOps(ARMCC::AL)) 1519 .addMemOperand(MMO); 1520 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1521 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1522 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1523 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1524 if (DestReg.isPhysical()) 1525 MIB.addReg(DestReg, RegState::ImplicitDefine); 1526 } 1527 } else 1528 llvm_unreachable("Unknown reg class!"); 1529 break; 1530 case 64: 1531 if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) && 1532 Subtarget.hasMVEIntegerOps()) { 1533 BuildMI(MBB, I, DL, get(ARM::MQQQQPRLoad), DestReg) 1534 .addFrameIndex(FI) 1535 .addMemOperand(MMO); 1536 } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1537 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1538 .addFrameIndex(FI) 1539 .add(predOps(ARMCC::AL)) 1540 .addMemOperand(MMO); 1541 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1542 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1543 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1544 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1545 MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI); 1546 MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI); 1547 MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI); 1548 MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI); 1549 if (DestReg.isPhysical()) 1550 MIB.addReg(DestReg, RegState::ImplicitDefine); 1551 } else 1552 llvm_unreachable("Unknown reg class!"); 1553 break; 1554 default: 1555 llvm_unreachable("Unknown regclass!"); 1556 } 1557 } 1558 1559 Register ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 1560 int &FrameIndex) const { 1561 switch (MI.getOpcode()) { 1562 default: break; 1563 case ARM::LDRrs: 1564 case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame. 1565 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && 1566 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && 1567 MI.getOperand(3).getImm() == 0) { 1568 FrameIndex = MI.getOperand(1).getIndex(); 1569 return MI.getOperand(0).getReg(); 1570 } 1571 break; 1572 case ARM::LDRi12: 1573 case ARM::t2LDRi12: 1574 case ARM::tLDRspi: 1575 case ARM::VLDRD: 1576 case ARM::VLDRS: 1577 case ARM::VLDR_P0_off: 1578 case ARM::MVE_VLDRWU32: 1579 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && 1580 MI.getOperand(2).getImm() == 0) { 1581 FrameIndex = MI.getOperand(1).getIndex(); 1582 return MI.getOperand(0).getReg(); 1583 } 1584 break; 1585 case ARM::VLD1q64: 1586 case ARM::VLD1d8TPseudo: 1587 case ARM::VLD1d16TPseudo: 1588 case ARM::VLD1d32TPseudo: 1589 case ARM::VLD1d64TPseudo: 1590 case ARM::VLD1d8QPseudo: 1591 case ARM::VLD1d16QPseudo: 1592 case ARM::VLD1d32QPseudo: 1593 case ARM::VLD1d64QPseudo: 1594 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1595 FrameIndex = MI.getOperand(1).getIndex(); 1596 return MI.getOperand(0).getReg(); 1597 } 1598 break; 1599 case ARM::VLDMQIA: 1600 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1601 FrameIndex = MI.getOperand(1).getIndex(); 1602 return MI.getOperand(0).getReg(); 1603 } 1604 break; 1605 case ARM::MQQPRLoad: 1606 case ARM::MQQQQPRLoad: 1607 if (MI.getOperand(1).isFI()) { 1608 FrameIndex = MI.getOperand(1).getIndex(); 1609 return MI.getOperand(0).getReg(); 1610 } 1611 break; 1612 } 1613 1614 return 0; 1615 } 1616 1617 Register ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, 1618 int &FrameIndex) const { 1619 SmallVector<const MachineMemOperand *, 1> Accesses; 1620 if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) && 1621 Accesses.size() == 1) { 1622 FrameIndex = 1623 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 1624 ->getFrameIndex(); 1625 return true; 1626 } 1627 return false; 1628 } 1629 1630 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD 1631 /// depending on whether the result is used. 1632 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const { 1633 bool isThumb1 = Subtarget.isThumb1Only(); 1634 bool isThumb2 = Subtarget.isThumb2(); 1635 const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo(); 1636 1637 DebugLoc dl = MI->getDebugLoc(); 1638 MachineBasicBlock *BB = MI->getParent(); 1639 1640 MachineInstrBuilder LDM, STM; 1641 if (isThumb1 || !MI->getOperand(1).isDead()) { 1642 MachineOperand LDWb(MI->getOperand(1)); 1643 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD 1644 : isThumb1 ? ARM::tLDMIA_UPD 1645 : ARM::LDMIA_UPD)) 1646 .add(LDWb); 1647 } else { 1648 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA)); 1649 } 1650 1651 if (isThumb1 || !MI->getOperand(0).isDead()) { 1652 MachineOperand STWb(MI->getOperand(0)); 1653 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD 1654 : isThumb1 ? ARM::tSTMIA_UPD 1655 : ARM::STMIA_UPD)) 1656 .add(STWb); 1657 } else { 1658 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA)); 1659 } 1660 1661 MachineOperand LDBase(MI->getOperand(3)); 1662 LDM.add(LDBase).add(predOps(ARMCC::AL)); 1663 1664 MachineOperand STBase(MI->getOperand(2)); 1665 STM.add(STBase).add(predOps(ARMCC::AL)); 1666 1667 // Sort the scratch registers into ascending order. 1668 const TargetRegisterInfo &TRI = getRegisterInfo(); 1669 SmallVector<unsigned, 6> ScratchRegs; 1670 for (MachineOperand &MO : llvm::drop_begin(MI->operands(), 5)) 1671 ScratchRegs.push_back(MO.getReg()); 1672 llvm::sort(ScratchRegs, 1673 [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool { 1674 return TRI.getEncodingValue(Reg1) < 1675 TRI.getEncodingValue(Reg2); 1676 }); 1677 1678 for (const auto &Reg : ScratchRegs) { 1679 LDM.addReg(Reg, RegState::Define); 1680 STM.addReg(Reg, RegState::Kill); 1681 } 1682 1683 BB->erase(MI); 1684 } 1685 1686 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1687 if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) { 1688 expandLoadStackGuard(MI); 1689 MI.getParent()->erase(MI); 1690 return true; 1691 } 1692 1693 if (MI.getOpcode() == ARM::MEMCPY) { 1694 expandMEMCPY(MI); 1695 return true; 1696 } 1697 1698 // This hook gets to expand COPY instructions before they become 1699 // copyPhysReg() calls. Look for VMOVS instructions that can legally be 1700 // widened to VMOVD. We prefer the VMOVD when possible because it may be 1701 // changed into a VORR that can go down the NEON pipeline. 1702 if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64()) 1703 return false; 1704 1705 // Look for a copy between even S-registers. That is where we keep floats 1706 // when using NEON v2f32 instructions for f32 arithmetic. 1707 Register DstRegS = MI.getOperand(0).getReg(); 1708 Register SrcRegS = MI.getOperand(1).getReg(); 1709 if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS)) 1710 return false; 1711 1712 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1713 unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0, 1714 &ARM::DPRRegClass); 1715 unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0, 1716 &ARM::DPRRegClass); 1717 if (!DstRegD || !SrcRegD) 1718 return false; 1719 1720 // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only 1721 // legal if the COPY already defines the full DstRegD, and it isn't a 1722 // sub-register insertion. 1723 if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI)) 1724 return false; 1725 1726 // A dead copy shouldn't show up here, but reject it just in case. 1727 if (MI.getOperand(0).isDead()) 1728 return false; 1729 1730 // All clear, widen the COPY. 1731 LLVM_DEBUG(dbgs() << "widening: " << MI); 1732 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 1733 1734 // Get rid of the old implicit-def of DstRegD. Leave it if it defines a Q-reg 1735 // or some other super-register. 1736 int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD, /*TRI=*/nullptr); 1737 if (ImpDefIdx != -1) 1738 MI.removeOperand(ImpDefIdx); 1739 1740 // Change the opcode and operands. 1741 MI.setDesc(get(ARM::VMOVD)); 1742 MI.getOperand(0).setReg(DstRegD); 1743 MI.getOperand(1).setReg(SrcRegD); 1744 MIB.add(predOps(ARMCC::AL)); 1745 1746 // We are now reading SrcRegD instead of SrcRegS. This may upset the 1747 // register scavenger and machine verifier, so we need to indicate that we 1748 // are reading an undefined value from SrcRegD, but a proper value from 1749 // SrcRegS. 1750 MI.getOperand(1).setIsUndef(); 1751 MIB.addReg(SrcRegS, RegState::Implicit); 1752 1753 // SrcRegD may actually contain an unrelated value in the ssub_1 1754 // sub-register. Don't kill it. Only kill the ssub_0 sub-register. 1755 if (MI.getOperand(1).isKill()) { 1756 MI.getOperand(1).setIsKill(false); 1757 MI.addRegisterKilled(SrcRegS, TRI, true); 1758 } 1759 1760 LLVM_DEBUG(dbgs() << "replaced by: " << MI); 1761 return true; 1762 } 1763 1764 /// Create a copy of a const pool value. Update CPI to the new index and return 1765 /// the label UID. 1766 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) { 1767 MachineConstantPool *MCP = MF.getConstantPool(); 1768 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1769 1770 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI]; 1771 assert(MCPE.isMachineConstantPoolEntry() && 1772 "Expecting a machine constantpool entry!"); 1773 ARMConstantPoolValue *ACPV = 1774 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal); 1775 1776 unsigned PCLabelId = AFI->createPICLabelUId(); 1777 ARMConstantPoolValue *NewCPV = nullptr; 1778 1779 // FIXME: The below assumes PIC relocation model and that the function 1780 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and 1781 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR 1782 // instructions, so that's probably OK, but is PIC always correct when 1783 // we get here? 1784 if (ACPV->isGlobalValue()) 1785 NewCPV = ARMConstantPoolConstant::Create( 1786 cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue, 1787 4, ACPV->getModifier(), ACPV->mustAddCurrentAddress()); 1788 else if (ACPV->isExtSymbol()) 1789 NewCPV = ARMConstantPoolSymbol:: 1790 Create(MF.getFunction().getContext(), 1791 cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4); 1792 else if (ACPV->isBlockAddress()) 1793 NewCPV = ARMConstantPoolConstant:: 1794 Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId, 1795 ARMCP::CPBlockAddress, 4); 1796 else if (ACPV->isLSDA()) 1797 NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId, 1798 ARMCP::CPLSDA, 4); 1799 else if (ACPV->isMachineBasicBlock()) 1800 NewCPV = ARMConstantPoolMBB:: 1801 Create(MF.getFunction().getContext(), 1802 cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4); 1803 else 1804 llvm_unreachable("Unexpected ARM constantpool value type!!"); 1805 CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlign()); 1806 return PCLabelId; 1807 } 1808 1809 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB, 1810 MachineBasicBlock::iterator I, 1811 Register DestReg, unsigned SubIdx, 1812 const MachineInstr &Orig, 1813 const TargetRegisterInfo &TRI) const { 1814 unsigned Opcode = Orig.getOpcode(); 1815 switch (Opcode) { 1816 default: { 1817 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); 1818 MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); 1819 MBB.insert(I, MI); 1820 break; 1821 } 1822 case ARM::tLDRpci_pic: 1823 case ARM::t2LDRpci_pic: { 1824 MachineFunction &MF = *MBB.getParent(); 1825 unsigned CPI = Orig.getOperand(1).getIndex(); 1826 unsigned PCLabelId = duplicateCPV(MF, CPI); 1827 BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg) 1828 .addConstantPoolIndex(CPI) 1829 .addImm(PCLabelId) 1830 .cloneMemRefs(Orig); 1831 break; 1832 } 1833 } 1834 } 1835 1836 MachineInstr & 1837 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB, 1838 MachineBasicBlock::iterator InsertBefore, 1839 const MachineInstr &Orig) const { 1840 MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig); 1841 MachineBasicBlock::instr_iterator I = Cloned.getIterator(); 1842 for (;;) { 1843 switch (I->getOpcode()) { 1844 case ARM::tLDRpci_pic: 1845 case ARM::t2LDRpci_pic: { 1846 MachineFunction &MF = *MBB.getParent(); 1847 unsigned CPI = I->getOperand(1).getIndex(); 1848 unsigned PCLabelId = duplicateCPV(MF, CPI); 1849 I->getOperand(1).setIndex(CPI); 1850 I->getOperand(2).setImm(PCLabelId); 1851 break; 1852 } 1853 } 1854 if (!I->isBundledWithSucc()) 1855 break; 1856 ++I; 1857 } 1858 return Cloned; 1859 } 1860 1861 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0, 1862 const MachineInstr &MI1, 1863 const MachineRegisterInfo *MRI) const { 1864 unsigned Opcode = MI0.getOpcode(); 1865 if (Opcode == ARM::t2LDRpci || Opcode == ARM::t2LDRpci_pic || 1866 Opcode == ARM::tLDRpci || Opcode == ARM::tLDRpci_pic || 1867 Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1868 Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel || 1869 Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr || 1870 Opcode == ARM::t2MOV_ga_pcrel) { 1871 if (MI1.getOpcode() != Opcode) 1872 return false; 1873 if (MI0.getNumOperands() != MI1.getNumOperands()) 1874 return false; 1875 1876 const MachineOperand &MO0 = MI0.getOperand(1); 1877 const MachineOperand &MO1 = MI1.getOperand(1); 1878 if (MO0.getOffset() != MO1.getOffset()) 1879 return false; 1880 1881 if (Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1882 Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel || 1883 Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr || 1884 Opcode == ARM::t2MOV_ga_pcrel) 1885 // Ignore the PC labels. 1886 return MO0.getGlobal() == MO1.getGlobal(); 1887 1888 const MachineFunction *MF = MI0.getParent()->getParent(); 1889 const MachineConstantPool *MCP = MF->getConstantPool(); 1890 int CPI0 = MO0.getIndex(); 1891 int CPI1 = MO1.getIndex(); 1892 const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0]; 1893 const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1]; 1894 bool isARMCP0 = MCPE0.isMachineConstantPoolEntry(); 1895 bool isARMCP1 = MCPE1.isMachineConstantPoolEntry(); 1896 if (isARMCP0 && isARMCP1) { 1897 ARMConstantPoolValue *ACPV0 = 1898 static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal); 1899 ARMConstantPoolValue *ACPV1 = 1900 static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal); 1901 return ACPV0->hasSameValue(ACPV1); 1902 } else if (!isARMCP0 && !isARMCP1) { 1903 return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal; 1904 } 1905 return false; 1906 } else if (Opcode == ARM::PICLDR) { 1907 if (MI1.getOpcode() != Opcode) 1908 return false; 1909 if (MI0.getNumOperands() != MI1.getNumOperands()) 1910 return false; 1911 1912 Register Addr0 = MI0.getOperand(1).getReg(); 1913 Register Addr1 = MI1.getOperand(1).getReg(); 1914 if (Addr0 != Addr1) { 1915 if (!MRI || !Addr0.isVirtual() || !Addr1.isVirtual()) 1916 return false; 1917 1918 // This assumes SSA form. 1919 MachineInstr *Def0 = MRI->getVRegDef(Addr0); 1920 MachineInstr *Def1 = MRI->getVRegDef(Addr1); 1921 // Check if the loaded value, e.g. a constantpool of a global address, are 1922 // the same. 1923 if (!produceSameValue(*Def0, *Def1, MRI)) 1924 return false; 1925 } 1926 1927 for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) { 1928 // %12 = PICLDR %11, 0, 14, %noreg 1929 const MachineOperand &MO0 = MI0.getOperand(i); 1930 const MachineOperand &MO1 = MI1.getOperand(i); 1931 if (!MO0.isIdenticalTo(MO1)) 1932 return false; 1933 } 1934 return true; 1935 } 1936 1937 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 1938 } 1939 1940 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to 1941 /// determine if two loads are loading from the same base address. It should 1942 /// only return true if the base pointers are the same and the only differences 1943 /// between the two addresses is the offset. It also returns the offsets by 1944 /// reference. 1945 /// 1946 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 1947 /// is permanently disabled. 1948 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 1949 int64_t &Offset1, 1950 int64_t &Offset2) const { 1951 // Don't worry about Thumb: just ARM and Thumb2. 1952 if (Subtarget.isThumb1Only()) return false; 1953 1954 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) 1955 return false; 1956 1957 auto IsLoadOpcode = [&](unsigned Opcode) { 1958 switch (Opcode) { 1959 default: 1960 return false; 1961 case ARM::LDRi12: 1962 case ARM::LDRBi12: 1963 case ARM::LDRD: 1964 case ARM::LDRH: 1965 case ARM::LDRSB: 1966 case ARM::LDRSH: 1967 case ARM::VLDRD: 1968 case ARM::VLDRS: 1969 case ARM::t2LDRi8: 1970 case ARM::t2LDRBi8: 1971 case ARM::t2LDRDi8: 1972 case ARM::t2LDRSHi8: 1973 case ARM::t2LDRi12: 1974 case ARM::t2LDRBi12: 1975 case ARM::t2LDRSHi12: 1976 return true; 1977 } 1978 }; 1979 1980 if (!IsLoadOpcode(Load1->getMachineOpcode()) || 1981 !IsLoadOpcode(Load2->getMachineOpcode())) 1982 return false; 1983 1984 // Check if base addresses and chain operands match. 1985 if (Load1->getOperand(0) != Load2->getOperand(0) || 1986 Load1->getOperand(4) != Load2->getOperand(4)) 1987 return false; 1988 1989 // Index should be Reg0. 1990 if (Load1->getOperand(3) != Load2->getOperand(3)) 1991 return false; 1992 1993 // Determine the offsets. 1994 if (isa<ConstantSDNode>(Load1->getOperand(1)) && 1995 isa<ConstantSDNode>(Load2->getOperand(1))) { 1996 Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue(); 1997 Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue(); 1998 return true; 1999 } 2000 2001 return false; 2002 } 2003 2004 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to 2005 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should 2006 /// be scheduled togther. On some targets if two loads are loading from 2007 /// addresses in the same cache line, it's better if they are scheduled 2008 /// together. This function takes two integers that represent the load offsets 2009 /// from the common base address. It returns true if it decides it's desirable 2010 /// to schedule the two loads together. "NumLoads" is the number of loads that 2011 /// have already been scheduled after Load1. 2012 /// 2013 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 2014 /// is permanently disabled. 2015 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 2016 int64_t Offset1, int64_t Offset2, 2017 unsigned NumLoads) const { 2018 // Don't worry about Thumb: just ARM and Thumb2. 2019 if (Subtarget.isThumb1Only()) return false; 2020 2021 assert(Offset2 > Offset1); 2022 2023 if ((Offset2 - Offset1) / 8 > 64) 2024 return false; 2025 2026 // Check if the machine opcodes are different. If they are different 2027 // then we consider them to not be of the same base address, 2028 // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12. 2029 // In this case, they are considered to be the same because they are different 2030 // encoding forms of the same basic instruction. 2031 if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) && 2032 !((Load1->getMachineOpcode() == ARM::t2LDRBi8 && 2033 Load2->getMachineOpcode() == ARM::t2LDRBi12) || 2034 (Load1->getMachineOpcode() == ARM::t2LDRBi12 && 2035 Load2->getMachineOpcode() == ARM::t2LDRBi8))) 2036 return false; // FIXME: overly conservative? 2037 2038 // Four loads in a row should be sufficient. 2039 if (NumLoads >= 3) 2040 return false; 2041 2042 return true; 2043 } 2044 2045 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 2046 const MachineBasicBlock *MBB, 2047 const MachineFunction &MF) const { 2048 // Debug info is never a scheduling boundary. It's necessary to be explicit 2049 // due to the special treatment of IT instructions below, otherwise a 2050 // dbg_value followed by an IT will result in the IT instruction being 2051 // considered a scheduling hazard, which is wrong. It should be the actual 2052 // instruction preceding the dbg_value instruction(s), just like it is 2053 // when debug info is not present. 2054 if (MI.isDebugInstr()) 2055 return false; 2056 2057 // Terminators and labels can't be scheduled around. 2058 if (MI.isTerminator() || MI.isPosition()) 2059 return true; 2060 2061 // INLINEASM_BR can jump to another block 2062 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) 2063 return true; 2064 2065 if (isSEHInstruction(MI)) 2066 return true; 2067 2068 // Treat the start of the IT block as a scheduling boundary, but schedule 2069 // t2IT along with all instructions following it. 2070 // FIXME: This is a big hammer. But the alternative is to add all potential 2071 // true and anti dependencies to IT block instructions as implicit operands 2072 // to the t2IT instruction. The added compile time and complexity does not 2073 // seem worth it. 2074 MachineBasicBlock::const_iterator I = MI; 2075 // Make sure to skip any debug instructions 2076 while (++I != MBB->end() && I->isDebugInstr()) 2077 ; 2078 if (I != MBB->end() && I->getOpcode() == ARM::t2IT) 2079 return true; 2080 2081 // Don't attempt to schedule around any instruction that defines 2082 // a stack-oriented pointer, as it's unlikely to be profitable. This 2083 // saves compile time, because it doesn't require every single 2084 // stack slot reference to depend on the instruction that does the 2085 // modification. 2086 // Calls don't actually change the stack pointer, even if they have imp-defs. 2087 // No ARM calling conventions change the stack pointer. (X86 calling 2088 // conventions sometimes do). 2089 if (!MI.isCall() && MI.definesRegister(ARM::SP, /*TRI=*/nullptr)) 2090 return true; 2091 2092 return false; 2093 } 2094 2095 bool ARMBaseInstrInfo:: 2096 isProfitableToIfCvt(MachineBasicBlock &MBB, 2097 unsigned NumCycles, unsigned ExtraPredCycles, 2098 BranchProbability Probability) const { 2099 if (!NumCycles) 2100 return false; 2101 2102 // If we are optimizing for size, see if the branch in the predecessor can be 2103 // lowered to cbn?z by the constant island lowering pass, and return false if 2104 // so. This results in a shorter instruction sequence. 2105 if (MBB.getParent()->getFunction().hasOptSize()) { 2106 MachineBasicBlock *Pred = *MBB.pred_begin(); 2107 if (!Pred->empty()) { 2108 MachineInstr *LastMI = &*Pred->rbegin(); 2109 if (LastMI->getOpcode() == ARM::t2Bcc) { 2110 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2111 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI); 2112 if (CmpMI) 2113 return false; 2114 } 2115 } 2116 } 2117 return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles, 2118 MBB, 0, 0, Probability); 2119 } 2120 2121 bool ARMBaseInstrInfo:: 2122 isProfitableToIfCvt(MachineBasicBlock &TBB, 2123 unsigned TCycles, unsigned TExtra, 2124 MachineBasicBlock &FBB, 2125 unsigned FCycles, unsigned FExtra, 2126 BranchProbability Probability) const { 2127 if (!TCycles) 2128 return false; 2129 2130 // In thumb code we often end up trading one branch for a IT block, and 2131 // if we are cloning the instruction can increase code size. Prevent 2132 // blocks with multiple predecesors from being ifcvted to prevent this 2133 // cloning. 2134 if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) { 2135 if (TBB.pred_size() != 1 || FBB.pred_size() != 1) 2136 return false; 2137 } 2138 2139 // Attempt to estimate the relative costs of predication versus branching. 2140 // Here we scale up each component of UnpredCost to avoid precision issue when 2141 // scaling TCycles/FCycles by Probability. 2142 const unsigned ScalingUpFactor = 1024; 2143 2144 unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor; 2145 unsigned UnpredCost; 2146 if (!Subtarget.hasBranchPredictor()) { 2147 // When we don't have a branch predictor it's always cheaper to not take a 2148 // branch than take it, so we have to take that into account. 2149 unsigned NotTakenBranchCost = 1; 2150 unsigned TakenBranchCost = Subtarget.getMispredictionPenalty(); 2151 unsigned TUnpredCycles, FUnpredCycles; 2152 if (!FCycles) { 2153 // Triangle: TBB is the fallthrough 2154 TUnpredCycles = TCycles + NotTakenBranchCost; 2155 FUnpredCycles = TakenBranchCost; 2156 } else { 2157 // Diamond: TBB is the block that is branched to, FBB is the fallthrough 2158 TUnpredCycles = TCycles + TakenBranchCost; 2159 FUnpredCycles = FCycles + NotTakenBranchCost; 2160 // The branch at the end of FBB will disappear when it's predicated, so 2161 // discount it from PredCost. 2162 PredCost -= 1 * ScalingUpFactor; 2163 } 2164 // The total cost is the cost of each path scaled by their probabilites 2165 unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor); 2166 unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor); 2167 UnpredCost = TUnpredCost + FUnpredCost; 2168 // When predicating assume that the first IT can be folded away but later 2169 // ones cost one cycle each 2170 if (Subtarget.isThumb2() && TCycles + FCycles > 4) { 2171 PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor; 2172 } 2173 } else { 2174 unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor); 2175 unsigned FUnpredCost = 2176 Probability.getCompl().scale(FCycles * ScalingUpFactor); 2177 UnpredCost = TUnpredCost + FUnpredCost; 2178 UnpredCost += 1 * ScalingUpFactor; // The branch itself 2179 UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10; 2180 } 2181 2182 return PredCost <= UnpredCost; 2183 } 2184 2185 unsigned 2186 ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF, 2187 unsigned NumInsts) const { 2188 // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions. 2189 // ARM has a condition code field in every predicable instruction, using it 2190 // doesn't change code size. 2191 if (!Subtarget.isThumb2()) 2192 return 0; 2193 2194 // It's possible that the size of the IT is restricted to a single block. 2195 unsigned MaxInsts = Subtarget.restrictIT() ? 1 : 4; 2196 return divideCeil(NumInsts, MaxInsts) * 2; 2197 } 2198 2199 unsigned 2200 ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const { 2201 // If this branch is likely to be folded into the comparison to form a 2202 // CB(N)Z, then removing it won't reduce code size at all, because that will 2203 // just replace the CB(N)Z with a CMP. 2204 if (MI.getOpcode() == ARM::t2Bcc && 2205 findCMPToFoldIntoCBZ(&MI, &getRegisterInfo())) 2206 return 0; 2207 2208 unsigned Size = getInstSizeInBytes(MI); 2209 2210 // For Thumb2, all branches are 32-bit instructions during the if conversion 2211 // pass, but may be replaced with 16-bit instructions during size reduction. 2212 // Since the branches considered by if conversion tend to be forward branches 2213 // over small basic blocks, they are very likely to be in range for the 2214 // narrow instructions, so we assume the final code size will be half what it 2215 // currently is. 2216 if (Subtarget.isThumb2()) 2217 Size /= 2; 2218 2219 return Size; 2220 } 2221 2222 bool 2223 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB, 2224 MachineBasicBlock &FMBB) const { 2225 // Reduce false anti-dependencies to let the target's out-of-order execution 2226 // engine do its thing. 2227 return Subtarget.isProfitableToUnpredicate(); 2228 } 2229 2230 /// getInstrPredicate - If instruction is predicated, returns its predicate 2231 /// condition, otherwise returns AL. It also returns the condition code 2232 /// register by reference. 2233 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI, 2234 Register &PredReg) { 2235 int PIdx = MI.findFirstPredOperandIdx(); 2236 if (PIdx == -1) { 2237 PredReg = 0; 2238 return ARMCC::AL; 2239 } 2240 2241 PredReg = MI.getOperand(PIdx+1).getReg(); 2242 return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm(); 2243 } 2244 2245 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) { 2246 if (Opc == ARM::B) 2247 return ARM::Bcc; 2248 if (Opc == ARM::tB) 2249 return ARM::tBcc; 2250 if (Opc == ARM::t2B) 2251 return ARM::t2Bcc; 2252 2253 llvm_unreachable("Unknown unconditional branch opcode!"); 2254 } 2255 2256 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI, 2257 bool NewMI, 2258 unsigned OpIdx1, 2259 unsigned OpIdx2) const { 2260 switch (MI.getOpcode()) { 2261 case ARM::MOVCCr: 2262 case ARM::t2MOVCCr: { 2263 // MOVCC can be commuted by inverting the condition. 2264 Register PredReg; 2265 ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg); 2266 // MOVCC AL can't be inverted. Shouldn't happen. 2267 if (CC == ARMCC::AL || PredReg != ARM::CPSR) 2268 return nullptr; 2269 MachineInstr *CommutedMI = 2270 TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2271 if (!CommutedMI) 2272 return nullptr; 2273 // After swapping the MOVCC operands, also invert the condition. 2274 CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx()) 2275 .setImm(ARMCC::getOppositeCondition(CC)); 2276 return CommutedMI; 2277 } 2278 } 2279 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2280 } 2281 2282 /// Identify instructions that can be folded into a MOVCC instruction, and 2283 /// return the defining instruction. 2284 MachineInstr * 2285 ARMBaseInstrInfo::canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI, 2286 const TargetInstrInfo *TII) const { 2287 if (!Reg.isVirtual()) 2288 return nullptr; 2289 if (!MRI.hasOneNonDBGUse(Reg)) 2290 return nullptr; 2291 MachineInstr *MI = MRI.getVRegDef(Reg); 2292 if (!MI) 2293 return nullptr; 2294 // Check if MI can be predicated and folded into the MOVCC. 2295 if (!isPredicable(*MI)) 2296 return nullptr; 2297 // Check if MI has any non-dead defs or physreg uses. This also detects 2298 // predicated instructions which will be reading CPSR. 2299 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 1)) { 2300 // Reject frame index operands, PEI can't handle the predicated pseudos. 2301 if (MO.isFI() || MO.isCPI() || MO.isJTI()) 2302 return nullptr; 2303 if (!MO.isReg()) 2304 continue; 2305 // MI can't have any tied operands, that would conflict with predication. 2306 if (MO.isTied()) 2307 return nullptr; 2308 if (MO.getReg().isPhysical()) 2309 return nullptr; 2310 if (MO.isDef() && !MO.isDead()) 2311 return nullptr; 2312 } 2313 bool DontMoveAcrossStores = true; 2314 if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores)) 2315 return nullptr; 2316 return MI; 2317 } 2318 2319 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI, 2320 SmallVectorImpl<MachineOperand> &Cond, 2321 unsigned &TrueOp, unsigned &FalseOp, 2322 bool &Optimizable) const { 2323 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && 2324 "Unknown select instruction"); 2325 // MOVCC operands: 2326 // 0: Def. 2327 // 1: True use. 2328 // 2: False use. 2329 // 3: Condition code. 2330 // 4: CPSR use. 2331 TrueOp = 1; 2332 FalseOp = 2; 2333 Cond.push_back(MI.getOperand(3)); 2334 Cond.push_back(MI.getOperand(4)); 2335 // We can always fold a def. 2336 Optimizable = true; 2337 return false; 2338 } 2339 2340 MachineInstr * 2341 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI, 2342 SmallPtrSetImpl<MachineInstr *> &SeenMIs, 2343 bool PreferFalse) const { 2344 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && 2345 "Unknown select instruction"); 2346 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 2347 MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this); 2348 bool Invert = !DefMI; 2349 if (!DefMI) 2350 DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this); 2351 if (!DefMI) 2352 return nullptr; 2353 2354 // Find new register class to use. 2355 MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1); 2356 MachineOperand TrueReg = MI.getOperand(Invert ? 1 : 2); 2357 Register DestReg = MI.getOperand(0).getReg(); 2358 const TargetRegisterClass *FalseClass = MRI.getRegClass(FalseReg.getReg()); 2359 const TargetRegisterClass *TrueClass = MRI.getRegClass(TrueReg.getReg()); 2360 if (!MRI.constrainRegClass(DestReg, FalseClass)) 2361 return nullptr; 2362 if (!MRI.constrainRegClass(DestReg, TrueClass)) 2363 return nullptr; 2364 2365 // Create a new predicated version of DefMI. 2366 // Rfalse is the first use. 2367 MachineInstrBuilder NewMI = 2368 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg); 2369 2370 // Copy all the DefMI operands, excluding its (null) predicate. 2371 const MCInstrDesc &DefDesc = DefMI->getDesc(); 2372 for (unsigned i = 1, e = DefDesc.getNumOperands(); 2373 i != e && !DefDesc.operands()[i].isPredicate(); ++i) 2374 NewMI.add(DefMI->getOperand(i)); 2375 2376 unsigned CondCode = MI.getOperand(3).getImm(); 2377 if (Invert) 2378 NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode))); 2379 else 2380 NewMI.addImm(CondCode); 2381 NewMI.add(MI.getOperand(4)); 2382 2383 // DefMI is not the -S version that sets CPSR, so add an optional %noreg. 2384 if (NewMI->hasOptionalDef()) 2385 NewMI.add(condCodeOp()); 2386 2387 // The output register value when the predicate is false is an implicit 2388 // register operand tied to the first def. 2389 // The tie makes the register allocator ensure the FalseReg is allocated the 2390 // same register as operand 0. 2391 FalseReg.setImplicit(); 2392 NewMI.add(FalseReg); 2393 NewMI->tieOperands(0, NewMI->getNumOperands() - 1); 2394 2395 // Update SeenMIs set: register newly created MI and erase removed DefMI. 2396 SeenMIs.insert(NewMI); 2397 SeenMIs.erase(DefMI); 2398 2399 // If MI is inside a loop, and DefMI is outside the loop, then kill flags on 2400 // DefMI would be invalid when tranferred inside the loop. Checking for a 2401 // loop is expensive, but at least remove kill flags if they are in different 2402 // BBs. 2403 if (DefMI->getParent() != MI.getParent()) 2404 NewMI->clearKillInfo(); 2405 2406 // The caller will erase MI, but not DefMI. 2407 DefMI->eraseFromParent(); 2408 return NewMI; 2409 } 2410 2411 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the 2412 /// instruction is encoded with an 'S' bit is determined by the optional CPSR 2413 /// def operand. 2414 /// 2415 /// This will go away once we can teach tblgen how to set the optional CPSR def 2416 /// operand itself. 2417 struct AddSubFlagsOpcodePair { 2418 uint16_t PseudoOpc; 2419 uint16_t MachineOpc; 2420 }; 2421 2422 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = { 2423 {ARM::ADDSri, ARM::ADDri}, 2424 {ARM::ADDSrr, ARM::ADDrr}, 2425 {ARM::ADDSrsi, ARM::ADDrsi}, 2426 {ARM::ADDSrsr, ARM::ADDrsr}, 2427 2428 {ARM::SUBSri, ARM::SUBri}, 2429 {ARM::SUBSrr, ARM::SUBrr}, 2430 {ARM::SUBSrsi, ARM::SUBrsi}, 2431 {ARM::SUBSrsr, ARM::SUBrsr}, 2432 2433 {ARM::RSBSri, ARM::RSBri}, 2434 {ARM::RSBSrsi, ARM::RSBrsi}, 2435 {ARM::RSBSrsr, ARM::RSBrsr}, 2436 2437 {ARM::tADDSi3, ARM::tADDi3}, 2438 {ARM::tADDSi8, ARM::tADDi8}, 2439 {ARM::tADDSrr, ARM::tADDrr}, 2440 {ARM::tADCS, ARM::tADC}, 2441 2442 {ARM::tSUBSi3, ARM::tSUBi3}, 2443 {ARM::tSUBSi8, ARM::tSUBi8}, 2444 {ARM::tSUBSrr, ARM::tSUBrr}, 2445 {ARM::tSBCS, ARM::tSBC}, 2446 {ARM::tRSBS, ARM::tRSB}, 2447 {ARM::tLSLSri, ARM::tLSLri}, 2448 2449 {ARM::t2ADDSri, ARM::t2ADDri}, 2450 {ARM::t2ADDSrr, ARM::t2ADDrr}, 2451 {ARM::t2ADDSrs, ARM::t2ADDrs}, 2452 2453 {ARM::t2SUBSri, ARM::t2SUBri}, 2454 {ARM::t2SUBSrr, ARM::t2SUBrr}, 2455 {ARM::t2SUBSrs, ARM::t2SUBrs}, 2456 2457 {ARM::t2RSBSri, ARM::t2RSBri}, 2458 {ARM::t2RSBSrs, ARM::t2RSBrs}, 2459 }; 2460 2461 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) { 2462 for (const auto &Entry : AddSubFlagsOpcodeMap) 2463 if (OldOpc == Entry.PseudoOpc) 2464 return Entry.MachineOpc; 2465 return 0; 2466 } 2467 2468 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB, 2469 MachineBasicBlock::iterator &MBBI, 2470 const DebugLoc &dl, Register DestReg, 2471 Register BaseReg, int NumBytes, 2472 ARMCC::CondCodes Pred, Register PredReg, 2473 const ARMBaseInstrInfo &TII, 2474 unsigned MIFlags) { 2475 if (NumBytes == 0 && DestReg != BaseReg) { 2476 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg) 2477 .addReg(BaseReg, RegState::Kill) 2478 .add(predOps(Pred, PredReg)) 2479 .add(condCodeOp()) 2480 .setMIFlags(MIFlags); 2481 return; 2482 } 2483 2484 bool isSub = NumBytes < 0; 2485 if (isSub) NumBytes = -NumBytes; 2486 2487 while (NumBytes) { 2488 unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes); 2489 unsigned ThisVal = NumBytes & llvm::rotr<uint32_t>(0xFF, RotAmt); 2490 assert(ThisVal && "Didn't extract field correctly"); 2491 2492 // We will handle these bits from offset, clear them. 2493 NumBytes &= ~ThisVal; 2494 2495 assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?"); 2496 2497 // Build the new ADD / SUB. 2498 unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri; 2499 BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) 2500 .addReg(BaseReg, RegState::Kill) 2501 .addImm(ThisVal) 2502 .add(predOps(Pred, PredReg)) 2503 .add(condCodeOp()) 2504 .setMIFlags(MIFlags); 2505 BaseReg = DestReg; 2506 } 2507 } 2508 2509 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget, 2510 MachineFunction &MF, MachineInstr *MI, 2511 unsigned NumBytes) { 2512 // This optimisation potentially adds lots of load and store 2513 // micro-operations, it's only really a great benefit to code-size. 2514 if (!Subtarget.hasMinSize()) 2515 return false; 2516 2517 // If only one register is pushed/popped, LLVM can use an LDR/STR 2518 // instead. We can't modify those so make sure we're dealing with an 2519 // instruction we understand. 2520 bool IsPop = isPopOpcode(MI->getOpcode()); 2521 bool IsPush = isPushOpcode(MI->getOpcode()); 2522 if (!IsPush && !IsPop) 2523 return false; 2524 2525 bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD || 2526 MI->getOpcode() == ARM::VLDMDIA_UPD; 2527 bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH || 2528 MI->getOpcode() == ARM::tPOP || 2529 MI->getOpcode() == ARM::tPOP_RET; 2530 2531 assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP && 2532 MI->getOperand(1).getReg() == ARM::SP)) && 2533 "trying to fold sp update into non-sp-updating push/pop"); 2534 2535 // The VFP push & pop act on D-registers, so we can only fold an adjustment 2536 // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try 2537 // if this is violated. 2538 if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0) 2539 return false; 2540 2541 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 2542 // pred) so the list starts at 4. Thumb1 starts after the predicate. 2543 int RegListIdx = IsT1PushPop ? 2 : 4; 2544 2545 // Calculate the space we'll need in terms of registers. 2546 unsigned RegsNeeded; 2547 const TargetRegisterClass *RegClass; 2548 if (IsVFPPushPop) { 2549 RegsNeeded = NumBytes / 8; 2550 RegClass = &ARM::DPRRegClass; 2551 } else { 2552 RegsNeeded = NumBytes / 4; 2553 RegClass = &ARM::GPRRegClass; 2554 } 2555 2556 // We're going to have to strip all list operands off before 2557 // re-adding them since the order matters, so save the existing ones 2558 // for later. 2559 SmallVector<MachineOperand, 4> RegList; 2560 2561 // We're also going to need the first register transferred by this 2562 // instruction, which won't necessarily be the first register in the list. 2563 unsigned FirstRegEnc = -1; 2564 2565 const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo(); 2566 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) { 2567 MachineOperand &MO = MI->getOperand(i); 2568 RegList.push_back(MO); 2569 2570 if (MO.isReg() && !MO.isImplicit() && 2571 TRI->getEncodingValue(MO.getReg()) < FirstRegEnc) 2572 FirstRegEnc = TRI->getEncodingValue(MO.getReg()); 2573 } 2574 2575 const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF); 2576 2577 // Now try to find enough space in the reglist to allocate NumBytes. 2578 for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded; 2579 --CurRegEnc) { 2580 unsigned CurReg = RegClass->getRegister(CurRegEnc); 2581 if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7)) 2582 continue; 2583 if (!IsPop) { 2584 // Pushing any register is completely harmless, mark the register involved 2585 // as undef since we don't care about its value and must not restore it 2586 // during stack unwinding. 2587 RegList.push_back(MachineOperand::CreateReg(CurReg, false, false, 2588 false, false, true)); 2589 --RegsNeeded; 2590 continue; 2591 } 2592 2593 // However, we can only pop an extra register if it's not live. For 2594 // registers live within the function we might clobber a return value 2595 // register; the other way a register can be live here is if it's 2596 // callee-saved. 2597 if (isCalleeSavedRegister(CurReg, CSRegs) || 2598 MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) != 2599 MachineBasicBlock::LQR_Dead) { 2600 // VFP pops don't allow holes in the register list, so any skip is fatal 2601 // for our transformation. GPR pops do, so we should just keep looking. 2602 if (IsVFPPushPop) 2603 return false; 2604 else 2605 continue; 2606 } 2607 2608 // Mark the unimportant registers as <def,dead> in the POP. 2609 RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false, 2610 true)); 2611 --RegsNeeded; 2612 } 2613 2614 if (RegsNeeded > 0) 2615 return false; 2616 2617 // Finally we know we can profitably perform the optimisation so go 2618 // ahead: strip all existing registers off and add them back again 2619 // in the right order. 2620 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) 2621 MI->removeOperand(i); 2622 2623 // Add the complete list back in. 2624 MachineInstrBuilder MIB(MF, &*MI); 2625 for (const MachineOperand &MO : llvm::reverse(RegList)) 2626 MIB.add(MO); 2627 2628 return true; 2629 } 2630 2631 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx, 2632 Register FrameReg, int &Offset, 2633 const ARMBaseInstrInfo &TII) { 2634 unsigned Opcode = MI.getOpcode(); 2635 const MCInstrDesc &Desc = MI.getDesc(); 2636 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); 2637 bool isSub = false; 2638 2639 // Memory operands in inline assembly always use AddrMode2. 2640 if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR) 2641 AddrMode = ARMII::AddrMode2; 2642 2643 if (Opcode == ARM::ADDri) { 2644 Offset += MI.getOperand(FrameRegIdx+1).getImm(); 2645 if (Offset == 0) { 2646 // Turn it into a move. 2647 MI.setDesc(TII.get(ARM::MOVr)); 2648 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2649 MI.removeOperand(FrameRegIdx+1); 2650 Offset = 0; 2651 return true; 2652 } else if (Offset < 0) { 2653 Offset = -Offset; 2654 isSub = true; 2655 MI.setDesc(TII.get(ARM::SUBri)); 2656 } 2657 2658 // Common case: small offset, fits into instruction. 2659 if (ARM_AM::getSOImmVal(Offset) != -1) { 2660 // Replace the FrameIndex with sp / fp 2661 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2662 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); 2663 Offset = 0; 2664 return true; 2665 } 2666 2667 // Otherwise, pull as much of the immedidate into this ADDri/SUBri 2668 // as possible. 2669 unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset); 2670 unsigned ThisImmVal = Offset & llvm::rotr<uint32_t>(0xFF, RotAmt); 2671 2672 // We will handle these bits from offset, clear them. 2673 Offset &= ~ThisImmVal; 2674 2675 // Get the properly encoded SOImmVal field. 2676 assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 && 2677 "Bit extraction didn't work?"); 2678 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal); 2679 } else { 2680 unsigned ImmIdx = 0; 2681 int InstrOffs = 0; 2682 unsigned NumBits = 0; 2683 unsigned Scale = 1; 2684 switch (AddrMode) { 2685 case ARMII::AddrMode_i12: 2686 ImmIdx = FrameRegIdx + 1; 2687 InstrOffs = MI.getOperand(ImmIdx).getImm(); 2688 NumBits = 12; 2689 break; 2690 case ARMII::AddrMode2: 2691 ImmIdx = FrameRegIdx+2; 2692 InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm()); 2693 if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2694 InstrOffs *= -1; 2695 NumBits = 12; 2696 break; 2697 case ARMII::AddrMode3: 2698 ImmIdx = FrameRegIdx+2; 2699 InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm()); 2700 if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2701 InstrOffs *= -1; 2702 NumBits = 8; 2703 break; 2704 case ARMII::AddrMode4: 2705 case ARMII::AddrMode6: 2706 // Can't fold any offset even if it's zero. 2707 return false; 2708 case ARMII::AddrMode5: 2709 ImmIdx = FrameRegIdx+1; 2710 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2711 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2712 InstrOffs *= -1; 2713 NumBits = 8; 2714 Scale = 4; 2715 break; 2716 case ARMII::AddrMode5FP16: 2717 ImmIdx = FrameRegIdx+1; 2718 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2719 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2720 InstrOffs *= -1; 2721 NumBits = 8; 2722 Scale = 2; 2723 break; 2724 case ARMII::AddrModeT2_i7: 2725 case ARMII::AddrModeT2_i7s2: 2726 case ARMII::AddrModeT2_i7s4: 2727 ImmIdx = FrameRegIdx+1; 2728 InstrOffs = MI.getOperand(ImmIdx).getImm(); 2729 NumBits = 7; 2730 Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 : 2731 AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1); 2732 break; 2733 default: 2734 llvm_unreachable("Unsupported addressing mode!"); 2735 } 2736 2737 Offset += InstrOffs * Scale; 2738 assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!"); 2739 if (Offset < 0) { 2740 Offset = -Offset; 2741 isSub = true; 2742 } 2743 2744 // Attempt to fold address comp. if opcode has offset bits 2745 if (NumBits > 0) { 2746 // Common case: small offset, fits into instruction. 2747 MachineOperand &ImmOp = MI.getOperand(ImmIdx); 2748 int ImmedOffset = Offset / Scale; 2749 unsigned Mask = (1 << NumBits) - 1; 2750 if ((unsigned)Offset <= Mask * Scale) { 2751 // Replace the FrameIndex with sp 2752 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2753 // FIXME: When addrmode2 goes away, this will simplify (like the 2754 // T2 version), as the LDR.i12 versions don't need the encoding 2755 // tricks for the offset value. 2756 if (isSub) { 2757 if (AddrMode == ARMII::AddrMode_i12) 2758 ImmedOffset = -ImmedOffset; 2759 else 2760 ImmedOffset |= 1 << NumBits; 2761 } 2762 ImmOp.ChangeToImmediate(ImmedOffset); 2763 Offset = 0; 2764 return true; 2765 } 2766 2767 // Otherwise, it didn't fit. Pull in what we can to simplify the immed. 2768 ImmedOffset = ImmedOffset & Mask; 2769 if (isSub) { 2770 if (AddrMode == ARMII::AddrMode_i12) 2771 ImmedOffset = -ImmedOffset; 2772 else 2773 ImmedOffset |= 1 << NumBits; 2774 } 2775 ImmOp.ChangeToImmediate(ImmedOffset); 2776 Offset &= ~(Mask*Scale); 2777 } 2778 } 2779 2780 Offset = (isSub) ? -Offset : Offset; 2781 return Offset == 0; 2782 } 2783 2784 /// analyzeCompare - For a comparison instruction, return the source registers 2785 /// in SrcReg and SrcReg2 if having two register operands, and the value it 2786 /// compares against in CmpValue. Return true if the comparison instruction 2787 /// can be analyzed. 2788 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 2789 Register &SrcReg2, int64_t &CmpMask, 2790 int64_t &CmpValue) const { 2791 switch (MI.getOpcode()) { 2792 default: break; 2793 case ARM::CMPri: 2794 case ARM::t2CMPri: 2795 case ARM::tCMPi8: 2796 SrcReg = MI.getOperand(0).getReg(); 2797 SrcReg2 = 0; 2798 CmpMask = ~0; 2799 CmpValue = MI.getOperand(1).getImm(); 2800 return true; 2801 case ARM::CMPrr: 2802 case ARM::t2CMPrr: 2803 case ARM::tCMPr: 2804 SrcReg = MI.getOperand(0).getReg(); 2805 SrcReg2 = MI.getOperand(1).getReg(); 2806 CmpMask = ~0; 2807 CmpValue = 0; 2808 return true; 2809 case ARM::TSTri: 2810 case ARM::t2TSTri: 2811 SrcReg = MI.getOperand(0).getReg(); 2812 SrcReg2 = 0; 2813 CmpMask = MI.getOperand(1).getImm(); 2814 CmpValue = 0; 2815 return true; 2816 } 2817 2818 return false; 2819 } 2820 2821 /// isSuitableForMask - Identify a suitable 'and' instruction that 2822 /// operates on the given source register and applies the same mask 2823 /// as a 'tst' instruction. Provide a limited look-through for copies. 2824 /// When successful, MI will hold the found instruction. 2825 static bool isSuitableForMask(MachineInstr *&MI, Register SrcReg, 2826 int CmpMask, bool CommonUse) { 2827 switch (MI->getOpcode()) { 2828 case ARM::ANDri: 2829 case ARM::t2ANDri: 2830 if (CmpMask != MI->getOperand(2).getImm()) 2831 return false; 2832 if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg()) 2833 return true; 2834 break; 2835 } 2836 2837 return false; 2838 } 2839 2840 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return 2841 /// the condition code if we modify the instructions such that flags are 2842 /// set by ADD(a,b,X). 2843 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) { 2844 switch (CC) { 2845 default: return ARMCC::AL; 2846 case ARMCC::HS: return ARMCC::LO; 2847 case ARMCC::LO: return ARMCC::HS; 2848 case ARMCC::VS: return ARMCC::VS; 2849 case ARMCC::VC: return ARMCC::VC; 2850 } 2851 } 2852 2853 /// isRedundantFlagInstr - check whether the first instruction, whose only 2854 /// purpose is to update flags, can be made redundant. 2855 /// CMPrr can be made redundant by SUBrr if the operands are the same. 2856 /// CMPri can be made redundant by SUBri if the operands are the same. 2857 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X). 2858 /// This function can be extended later on. 2859 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI, 2860 Register SrcReg, Register SrcReg2, 2861 int64_t ImmValue, 2862 const MachineInstr *OI, 2863 bool &IsThumb1) { 2864 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && 2865 (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) && 2866 ((OI->getOperand(1).getReg() == SrcReg && 2867 OI->getOperand(2).getReg() == SrcReg2) || 2868 (OI->getOperand(1).getReg() == SrcReg2 && 2869 OI->getOperand(2).getReg() == SrcReg))) { 2870 IsThumb1 = false; 2871 return true; 2872 } 2873 2874 if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr && 2875 ((OI->getOperand(2).getReg() == SrcReg && 2876 OI->getOperand(3).getReg() == SrcReg2) || 2877 (OI->getOperand(2).getReg() == SrcReg2 && 2878 OI->getOperand(3).getReg() == SrcReg))) { 2879 IsThumb1 = true; 2880 return true; 2881 } 2882 2883 if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) && 2884 (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) && 2885 OI->getOperand(1).getReg() == SrcReg && 2886 OI->getOperand(2).getImm() == ImmValue) { 2887 IsThumb1 = false; 2888 return true; 2889 } 2890 2891 if (CmpI->getOpcode() == ARM::tCMPi8 && 2892 (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) && 2893 OI->getOperand(2).getReg() == SrcReg && 2894 OI->getOperand(3).getImm() == ImmValue) { 2895 IsThumb1 = true; 2896 return true; 2897 } 2898 2899 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && 2900 (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr || 2901 OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) && 2902 OI->getOperand(0).isReg() && OI->getOperand(1).isReg() && 2903 OI->getOperand(0).getReg() == SrcReg && 2904 OI->getOperand(1).getReg() == SrcReg2) { 2905 IsThumb1 = false; 2906 return true; 2907 } 2908 2909 if (CmpI->getOpcode() == ARM::tCMPr && 2910 (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 || 2911 OI->getOpcode() == ARM::tADDrr) && 2912 OI->getOperand(0).getReg() == SrcReg && 2913 OI->getOperand(2).getReg() == SrcReg2) { 2914 IsThumb1 = true; 2915 return true; 2916 } 2917 2918 return false; 2919 } 2920 2921 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) { 2922 switch (MI->getOpcode()) { 2923 default: return false; 2924 case ARM::tLSLri: 2925 case ARM::tLSRri: 2926 case ARM::tLSLrr: 2927 case ARM::tLSRrr: 2928 case ARM::tSUBrr: 2929 case ARM::tADDrr: 2930 case ARM::tADDi3: 2931 case ARM::tADDi8: 2932 case ARM::tSUBi3: 2933 case ARM::tSUBi8: 2934 case ARM::tMUL: 2935 case ARM::tADC: 2936 case ARM::tSBC: 2937 case ARM::tRSB: 2938 case ARM::tAND: 2939 case ARM::tORR: 2940 case ARM::tEOR: 2941 case ARM::tBIC: 2942 case ARM::tMVN: 2943 case ARM::tASRri: 2944 case ARM::tASRrr: 2945 case ARM::tROR: 2946 IsThumb1 = true; 2947 [[fallthrough]]; 2948 case ARM::RSBrr: 2949 case ARM::RSBri: 2950 case ARM::RSCrr: 2951 case ARM::RSCri: 2952 case ARM::ADDrr: 2953 case ARM::ADDri: 2954 case ARM::ADCrr: 2955 case ARM::ADCri: 2956 case ARM::SUBrr: 2957 case ARM::SUBri: 2958 case ARM::SBCrr: 2959 case ARM::SBCri: 2960 case ARM::t2RSBri: 2961 case ARM::t2ADDrr: 2962 case ARM::t2ADDri: 2963 case ARM::t2ADCrr: 2964 case ARM::t2ADCri: 2965 case ARM::t2SUBrr: 2966 case ARM::t2SUBri: 2967 case ARM::t2SBCrr: 2968 case ARM::t2SBCri: 2969 case ARM::ANDrr: 2970 case ARM::ANDri: 2971 case ARM::ANDrsr: 2972 case ARM::ANDrsi: 2973 case ARM::t2ANDrr: 2974 case ARM::t2ANDri: 2975 case ARM::t2ANDrs: 2976 case ARM::ORRrr: 2977 case ARM::ORRri: 2978 case ARM::ORRrsr: 2979 case ARM::ORRrsi: 2980 case ARM::t2ORRrr: 2981 case ARM::t2ORRri: 2982 case ARM::t2ORRrs: 2983 case ARM::EORrr: 2984 case ARM::EORri: 2985 case ARM::EORrsr: 2986 case ARM::EORrsi: 2987 case ARM::t2EORrr: 2988 case ARM::t2EORri: 2989 case ARM::t2EORrs: 2990 case ARM::BICri: 2991 case ARM::BICrr: 2992 case ARM::BICrsi: 2993 case ARM::BICrsr: 2994 case ARM::t2BICri: 2995 case ARM::t2BICrr: 2996 case ARM::t2BICrs: 2997 case ARM::t2LSRri: 2998 case ARM::t2LSRrr: 2999 case ARM::t2LSLri: 3000 case ARM::t2LSLrr: 3001 case ARM::MOVsr: 3002 case ARM::MOVsi: 3003 return true; 3004 } 3005 } 3006 3007 /// optimizeCompareInstr - Convert the instruction supplying the argument to the 3008 /// comparison into one that sets the zero bit in the flags register; 3009 /// Remove a redundant Compare instruction if an earlier instruction can set the 3010 /// flags in the same way as Compare. 3011 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two 3012 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the 3013 /// condition code of instructions which use the flags. 3014 bool ARMBaseInstrInfo::optimizeCompareInstr( 3015 MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t CmpMask, 3016 int64_t CmpValue, const MachineRegisterInfo *MRI) const { 3017 // Get the unique definition of SrcReg. 3018 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 3019 if (!MI) return false; 3020 3021 // Masked compares sometimes use the same register as the corresponding 'and'. 3022 if (CmpMask != ~0) { 3023 if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) { 3024 MI = nullptr; 3025 for (MachineRegisterInfo::use_instr_iterator 3026 UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end(); 3027 UI != UE; ++UI) { 3028 if (UI->getParent() != CmpInstr.getParent()) 3029 continue; 3030 MachineInstr *PotentialAND = &*UI; 3031 if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) || 3032 isPredicated(*PotentialAND)) 3033 continue; 3034 MI = PotentialAND; 3035 break; 3036 } 3037 if (!MI) return false; 3038 } 3039 } 3040 3041 // Get ready to iterate backward from CmpInstr. 3042 MachineBasicBlock::iterator I = CmpInstr, E = MI, 3043 B = CmpInstr.getParent()->begin(); 3044 3045 // Early exit if CmpInstr is at the beginning of the BB. 3046 if (I == B) return false; 3047 3048 // There are two possible candidates which can be changed to set CPSR: 3049 // One is MI, the other is a SUB or ADD instruction. 3050 // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or 3051 // ADDr[ri](r1, r2, X). 3052 // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue). 3053 MachineInstr *SubAdd = nullptr; 3054 if (SrcReg2 != 0) 3055 // MI is not a candidate for CMPrr. 3056 MI = nullptr; 3057 else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) { 3058 // Conservatively refuse to convert an instruction which isn't in the same 3059 // BB as the comparison. 3060 // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate. 3061 // Thus we cannot return here. 3062 if (CmpInstr.getOpcode() == ARM::CMPri || 3063 CmpInstr.getOpcode() == ARM::t2CMPri || 3064 CmpInstr.getOpcode() == ARM::tCMPi8) 3065 MI = nullptr; 3066 else 3067 return false; 3068 } 3069 3070 bool IsThumb1 = false; 3071 if (MI && !isOptimizeCompareCandidate(MI, IsThumb1)) 3072 return false; 3073 3074 // We also want to do this peephole for cases like this: if (a*b == 0), 3075 // and optimise away the CMP instruction from the generated code sequence: 3076 // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values 3077 // resulting from the select instruction, but these MOVS instructions for 3078 // Thumb1 (V6M) are flag setting and are thus preventing this optimisation. 3079 // However, if we only have MOVS instructions in between the CMP and the 3080 // other instruction (the MULS in this example), then the CPSR is dead so we 3081 // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this 3082 // reordering and then continue the analysis hoping we can eliminate the 3083 // CMP. This peephole works on the vregs, so is still in SSA form. As a 3084 // consequence, the movs won't redefine/kill the MUL operands which would 3085 // make this reordering illegal. 3086 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3087 if (MI && IsThumb1) { 3088 --I; 3089 if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) { 3090 bool CanReorder = true; 3091 for (; I != E; --I) { 3092 if (I->getOpcode() != ARM::tMOVi8) { 3093 CanReorder = false; 3094 break; 3095 } 3096 } 3097 if (CanReorder) { 3098 MI = MI->removeFromParent(); 3099 E = CmpInstr; 3100 CmpInstr.getParent()->insert(E, MI); 3101 } 3102 } 3103 I = CmpInstr; 3104 E = MI; 3105 } 3106 3107 // Check that CPSR isn't set between the comparison instruction and the one we 3108 // want to change. At the same time, search for SubAdd. 3109 bool SubAddIsThumb1 = false; 3110 do { 3111 const MachineInstr &Instr = *--I; 3112 3113 // Check whether CmpInstr can be made redundant by the current instruction. 3114 if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr, 3115 SubAddIsThumb1)) { 3116 SubAdd = &*I; 3117 break; 3118 } 3119 3120 // Allow E (which was initially MI) to be SubAdd but do not search before E. 3121 if (I == E) 3122 break; 3123 3124 if (Instr.modifiesRegister(ARM::CPSR, TRI) || 3125 Instr.readsRegister(ARM::CPSR, TRI)) 3126 // This instruction modifies or uses CPSR after the one we want to 3127 // change. We can't do this transformation. 3128 return false; 3129 3130 if (I == B) { 3131 // In some cases, we scan the use-list of an instruction for an AND; 3132 // that AND is in the same BB, but may not be scheduled before the 3133 // corresponding TST. In that case, bail out. 3134 // 3135 // FIXME: We could try to reschedule the AND. 3136 return false; 3137 } 3138 } while (true); 3139 3140 // Return false if no candidates exist. 3141 if (!MI && !SubAdd) 3142 return false; 3143 3144 // If we found a SubAdd, use it as it will be closer to the CMP 3145 if (SubAdd) { 3146 MI = SubAdd; 3147 IsThumb1 = SubAddIsThumb1; 3148 } 3149 3150 // We can't use a predicated instruction - it doesn't always write the flags. 3151 if (isPredicated(*MI)) 3152 return false; 3153 3154 // Scan forward for the use of CPSR 3155 // When checking against MI: if it's a conditional code that requires 3156 // checking of the V bit or C bit, then this is not safe to do. 3157 // It is safe to remove CmpInstr if CPSR is redefined or killed. 3158 // If we are done with the basic block, we need to check whether CPSR is 3159 // live-out. 3160 SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4> 3161 OperandsToUpdate; 3162 bool isSafe = false; 3163 I = CmpInstr; 3164 E = CmpInstr.getParent()->end(); 3165 while (!isSafe && ++I != E) { 3166 const MachineInstr &Instr = *I; 3167 for (unsigned IO = 0, EO = Instr.getNumOperands(); 3168 !isSafe && IO != EO; ++IO) { 3169 const MachineOperand &MO = Instr.getOperand(IO); 3170 if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) { 3171 isSafe = true; 3172 break; 3173 } 3174 if (!MO.isReg() || MO.getReg() != ARM::CPSR) 3175 continue; 3176 if (MO.isDef()) { 3177 isSafe = true; 3178 break; 3179 } 3180 // Condition code is after the operand before CPSR except for VSELs. 3181 ARMCC::CondCodes CC; 3182 bool IsInstrVSel = true; 3183 switch (Instr.getOpcode()) { 3184 default: 3185 IsInstrVSel = false; 3186 CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm(); 3187 break; 3188 case ARM::VSELEQD: 3189 case ARM::VSELEQS: 3190 case ARM::VSELEQH: 3191 CC = ARMCC::EQ; 3192 break; 3193 case ARM::VSELGTD: 3194 case ARM::VSELGTS: 3195 case ARM::VSELGTH: 3196 CC = ARMCC::GT; 3197 break; 3198 case ARM::VSELGED: 3199 case ARM::VSELGES: 3200 case ARM::VSELGEH: 3201 CC = ARMCC::GE; 3202 break; 3203 case ARM::VSELVSD: 3204 case ARM::VSELVSS: 3205 case ARM::VSELVSH: 3206 CC = ARMCC::VS; 3207 break; 3208 } 3209 3210 if (SubAdd) { 3211 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based 3212 // on CMP needs to be updated to be based on SUB. 3213 // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also 3214 // needs to be modified. 3215 // Push the condition code operands to OperandsToUpdate. 3216 // If it is safe to remove CmpInstr, the condition code of these 3217 // operands will be modified. 3218 unsigned Opc = SubAdd->getOpcode(); 3219 bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr || 3220 Opc == ARM::SUBri || Opc == ARM::t2SUBri || 3221 Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 || 3222 Opc == ARM::tSUBi8; 3223 unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2; 3224 if (!IsSub || 3225 (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 && 3226 SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) { 3227 // VSel doesn't support condition code update. 3228 if (IsInstrVSel) 3229 return false; 3230 // Ensure we can swap the condition. 3231 ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC)); 3232 if (NewCC == ARMCC::AL) 3233 return false; 3234 OperandsToUpdate.push_back( 3235 std::make_pair(&((*I).getOperand(IO - 1)), NewCC)); 3236 } 3237 } else { 3238 // No SubAdd, so this is x = <op> y, z; cmp x, 0. 3239 switch (CC) { 3240 case ARMCC::EQ: // Z 3241 case ARMCC::NE: // Z 3242 case ARMCC::MI: // N 3243 case ARMCC::PL: // N 3244 case ARMCC::AL: // none 3245 // CPSR can be used multiple times, we should continue. 3246 break; 3247 case ARMCC::HS: // C 3248 case ARMCC::LO: // C 3249 case ARMCC::VS: // V 3250 case ARMCC::VC: // V 3251 case ARMCC::HI: // C Z 3252 case ARMCC::LS: // C Z 3253 case ARMCC::GE: // N V 3254 case ARMCC::LT: // N V 3255 case ARMCC::GT: // Z N V 3256 case ARMCC::LE: // Z N V 3257 // The instruction uses the V bit or C bit which is not safe. 3258 return false; 3259 } 3260 } 3261 } 3262 } 3263 3264 // If CPSR is not killed nor re-defined, we should check whether it is 3265 // live-out. If it is live-out, do not optimize. 3266 if (!isSafe) { 3267 MachineBasicBlock *MBB = CmpInstr.getParent(); 3268 for (MachineBasicBlock *Succ : MBB->successors()) 3269 if (Succ->isLiveIn(ARM::CPSR)) 3270 return false; 3271 } 3272 3273 // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always 3274 // set CPSR so this is represented as an explicit output) 3275 if (!IsThumb1) { 3276 unsigned CPSRRegNum = MI->getNumExplicitOperands() - 1; 3277 MI->getOperand(CPSRRegNum).setReg(ARM::CPSR); 3278 MI->getOperand(CPSRRegNum).setIsDef(true); 3279 } 3280 assert(!isPredicated(*MI) && "Can't use flags from predicated instruction"); 3281 CmpInstr.eraseFromParent(); 3282 3283 // Modify the condition code of operands in OperandsToUpdate. 3284 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 3285 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 3286 for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++) 3287 OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second); 3288 3289 MI->clearRegisterDeads(ARM::CPSR); 3290 3291 return true; 3292 } 3293 3294 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const { 3295 // Do not sink MI if it might be used to optimize a redundant compare. 3296 // We heuristically only look at the instruction immediately following MI to 3297 // avoid potentially searching the entire basic block. 3298 if (isPredicated(MI)) 3299 return true; 3300 MachineBasicBlock::const_iterator Next = &MI; 3301 ++Next; 3302 Register SrcReg, SrcReg2; 3303 int64_t CmpMask, CmpValue; 3304 bool IsThumb1; 3305 if (Next != MI.getParent()->end() && 3306 analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) && 3307 isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1)) 3308 return false; 3309 return true; 3310 } 3311 3312 bool ARMBaseInstrInfo::foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 3313 Register Reg, 3314 MachineRegisterInfo *MRI) const { 3315 // Fold large immediates into add, sub, or, xor. 3316 unsigned DefOpc = DefMI.getOpcode(); 3317 if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm && 3318 DefOpc != ARM::tMOVi32imm) 3319 return false; 3320 if (!DefMI.getOperand(1).isImm()) 3321 // Could be t2MOVi32imm @xx 3322 return false; 3323 3324 if (!MRI->hasOneNonDBGUse(Reg)) 3325 return false; 3326 3327 const MCInstrDesc &DefMCID = DefMI.getDesc(); 3328 if (DefMCID.hasOptionalDef()) { 3329 unsigned NumOps = DefMCID.getNumOperands(); 3330 const MachineOperand &MO = DefMI.getOperand(NumOps - 1); 3331 if (MO.getReg() == ARM::CPSR && !MO.isDead()) 3332 // If DefMI defines CPSR and it is not dead, it's obviously not safe 3333 // to delete DefMI. 3334 return false; 3335 } 3336 3337 const MCInstrDesc &UseMCID = UseMI.getDesc(); 3338 if (UseMCID.hasOptionalDef()) { 3339 unsigned NumOps = UseMCID.getNumOperands(); 3340 if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR) 3341 // If the instruction sets the flag, do not attempt this optimization 3342 // since it may change the semantics of the code. 3343 return false; 3344 } 3345 3346 unsigned UseOpc = UseMI.getOpcode(); 3347 unsigned NewUseOpc = 0; 3348 uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm(); 3349 uint32_t SOImmValV1 = 0, SOImmValV2 = 0; 3350 bool Commute = false; 3351 switch (UseOpc) { 3352 default: return false; 3353 case ARM::SUBrr: 3354 case ARM::ADDrr: 3355 case ARM::ORRrr: 3356 case ARM::EORrr: 3357 case ARM::t2SUBrr: 3358 case ARM::t2ADDrr: 3359 case ARM::t2ORRrr: 3360 case ARM::t2EORrr: { 3361 Commute = UseMI.getOperand(2).getReg() != Reg; 3362 switch (UseOpc) { 3363 default: break; 3364 case ARM::ADDrr: 3365 case ARM::SUBrr: 3366 if (UseOpc == ARM::SUBrr && Commute) 3367 return false; 3368 3369 // ADD/SUB are special because they're essentially the same operation, so 3370 // we can handle a larger range of immediates. 3371 if (ARM_AM::isSOImmTwoPartVal(ImmVal)) 3372 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri; 3373 else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) { 3374 ImmVal = -ImmVal; 3375 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri; 3376 } else 3377 return false; 3378 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 3379 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 3380 break; 3381 case ARM::ORRrr: 3382 case ARM::EORrr: 3383 if (!ARM_AM::isSOImmTwoPartVal(ImmVal)) 3384 return false; 3385 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 3386 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 3387 switch (UseOpc) { 3388 default: break; 3389 case ARM::ORRrr: NewUseOpc = ARM::ORRri; break; 3390 case ARM::EORrr: NewUseOpc = ARM::EORri; break; 3391 } 3392 break; 3393 case ARM::t2ADDrr: 3394 case ARM::t2SUBrr: { 3395 if (UseOpc == ARM::t2SUBrr && Commute) 3396 return false; 3397 3398 // ADD/SUB are special because they're essentially the same operation, so 3399 // we can handle a larger range of immediates. 3400 const bool ToSP = DefMI.getOperand(0).getReg() == ARM::SP; 3401 const unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri; 3402 const unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri; 3403 if (ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 3404 NewUseOpc = UseOpc == ARM::t2ADDrr ? t2ADD : t2SUB; 3405 else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) { 3406 ImmVal = -ImmVal; 3407 NewUseOpc = UseOpc == ARM::t2ADDrr ? t2SUB : t2ADD; 3408 } else 3409 return false; 3410 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 3411 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 3412 break; 3413 } 3414 case ARM::t2ORRrr: 3415 case ARM::t2EORrr: 3416 if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 3417 return false; 3418 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 3419 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 3420 switch (UseOpc) { 3421 default: break; 3422 case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break; 3423 case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break; 3424 } 3425 break; 3426 } 3427 } 3428 } 3429 3430 unsigned OpIdx = Commute ? 2 : 1; 3431 Register Reg1 = UseMI.getOperand(OpIdx).getReg(); 3432 bool isKill = UseMI.getOperand(OpIdx).isKill(); 3433 const TargetRegisterClass *TRC = MRI->getRegClass(Reg); 3434 Register NewReg = MRI->createVirtualRegister(TRC); 3435 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc), 3436 NewReg) 3437 .addReg(Reg1, getKillRegState(isKill)) 3438 .addImm(SOImmValV1) 3439 .add(predOps(ARMCC::AL)) 3440 .add(condCodeOp()); 3441 UseMI.setDesc(get(NewUseOpc)); 3442 UseMI.getOperand(1).setReg(NewReg); 3443 UseMI.getOperand(1).setIsKill(); 3444 UseMI.getOperand(2).ChangeToImmediate(SOImmValV2); 3445 DefMI.eraseFromParent(); 3446 // FIXME: t2ADDrr should be split, as different rulles apply when writing to SP. 3447 // Just as t2ADDri, that was split to [t2ADDri, t2ADDspImm]. 3448 // Then the below code will not be needed, as the input/output register 3449 // classes will be rgpr or gprSP. 3450 // For now, we fix the UseMI operand explicitly here: 3451 switch(NewUseOpc){ 3452 case ARM::t2ADDspImm: 3453 case ARM::t2SUBspImm: 3454 case ARM::t2ADDri: 3455 case ARM::t2SUBri: 3456 MRI->constrainRegClass(UseMI.getOperand(0).getReg(), TRC); 3457 } 3458 return true; 3459 } 3460 3461 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData, 3462 const MachineInstr &MI) { 3463 switch (MI.getOpcode()) { 3464 default: { 3465 const MCInstrDesc &Desc = MI.getDesc(); 3466 int UOps = ItinData->getNumMicroOps(Desc.getSchedClass()); 3467 assert(UOps >= 0 && "bad # UOps"); 3468 return UOps; 3469 } 3470 3471 case ARM::LDRrs: 3472 case ARM::LDRBrs: 3473 case ARM::STRrs: 3474 case ARM::STRBrs: { 3475 unsigned ShOpVal = MI.getOperand(3).getImm(); 3476 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3477 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3478 if (!isSub && 3479 (ShImm == 0 || 3480 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3481 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3482 return 1; 3483 return 2; 3484 } 3485 3486 case ARM::LDRH: 3487 case ARM::STRH: { 3488 if (!MI.getOperand(2).getReg()) 3489 return 1; 3490 3491 unsigned ShOpVal = MI.getOperand(3).getImm(); 3492 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3493 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3494 if (!isSub && 3495 (ShImm == 0 || 3496 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3497 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3498 return 1; 3499 return 2; 3500 } 3501 3502 case ARM::LDRSB: 3503 case ARM::LDRSH: 3504 return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2; 3505 3506 case ARM::LDRSB_POST: 3507 case ARM::LDRSH_POST: { 3508 Register Rt = MI.getOperand(0).getReg(); 3509 Register Rm = MI.getOperand(3).getReg(); 3510 return (Rt == Rm) ? 4 : 3; 3511 } 3512 3513 case ARM::LDR_PRE_REG: 3514 case ARM::LDRB_PRE_REG: { 3515 Register Rt = MI.getOperand(0).getReg(); 3516 Register Rm = MI.getOperand(3).getReg(); 3517 if (Rt == Rm) 3518 return 3; 3519 unsigned ShOpVal = MI.getOperand(4).getImm(); 3520 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3521 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3522 if (!isSub && 3523 (ShImm == 0 || 3524 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3525 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3526 return 2; 3527 return 3; 3528 } 3529 3530 case ARM::STR_PRE_REG: 3531 case ARM::STRB_PRE_REG: { 3532 unsigned ShOpVal = MI.getOperand(4).getImm(); 3533 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3534 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3535 if (!isSub && 3536 (ShImm == 0 || 3537 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3538 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3539 return 2; 3540 return 3; 3541 } 3542 3543 case ARM::LDRH_PRE: 3544 case ARM::STRH_PRE: { 3545 Register Rt = MI.getOperand(0).getReg(); 3546 Register Rm = MI.getOperand(3).getReg(); 3547 if (!Rm) 3548 return 2; 3549 if (Rt == Rm) 3550 return 3; 3551 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2; 3552 } 3553 3554 case ARM::LDR_POST_REG: 3555 case ARM::LDRB_POST_REG: 3556 case ARM::LDRH_POST: { 3557 Register Rt = MI.getOperand(0).getReg(); 3558 Register Rm = MI.getOperand(3).getReg(); 3559 return (Rt == Rm) ? 3 : 2; 3560 } 3561 3562 case ARM::LDR_PRE_IMM: 3563 case ARM::LDRB_PRE_IMM: 3564 case ARM::LDR_POST_IMM: 3565 case ARM::LDRB_POST_IMM: 3566 case ARM::STRB_POST_IMM: 3567 case ARM::STRB_POST_REG: 3568 case ARM::STRB_PRE_IMM: 3569 case ARM::STRH_POST: 3570 case ARM::STR_POST_IMM: 3571 case ARM::STR_POST_REG: 3572 case ARM::STR_PRE_IMM: 3573 return 2; 3574 3575 case ARM::LDRSB_PRE: 3576 case ARM::LDRSH_PRE: { 3577 Register Rm = MI.getOperand(3).getReg(); 3578 if (Rm == 0) 3579 return 3; 3580 Register Rt = MI.getOperand(0).getReg(); 3581 if (Rt == Rm) 3582 return 4; 3583 unsigned ShOpVal = MI.getOperand(4).getImm(); 3584 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3585 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3586 if (!isSub && 3587 (ShImm == 0 || 3588 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3589 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3590 return 3; 3591 return 4; 3592 } 3593 3594 case ARM::LDRD: { 3595 Register Rt = MI.getOperand(0).getReg(); 3596 Register Rn = MI.getOperand(2).getReg(); 3597 Register Rm = MI.getOperand(3).getReg(); 3598 if (Rm) 3599 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 3600 : 3; 3601 return (Rt == Rn) ? 3 : 2; 3602 } 3603 3604 case ARM::STRD: { 3605 Register Rm = MI.getOperand(3).getReg(); 3606 if (Rm) 3607 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 3608 : 3; 3609 return 2; 3610 } 3611 3612 case ARM::LDRD_POST: 3613 case ARM::t2LDRD_POST: 3614 return 3; 3615 3616 case ARM::STRD_POST: 3617 case ARM::t2STRD_POST: 3618 return 4; 3619 3620 case ARM::LDRD_PRE: { 3621 Register Rt = MI.getOperand(0).getReg(); 3622 Register Rn = MI.getOperand(3).getReg(); 3623 Register Rm = MI.getOperand(4).getReg(); 3624 if (Rm) 3625 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 3626 : 4; 3627 return (Rt == Rn) ? 4 : 3; 3628 } 3629 3630 case ARM::t2LDRD_PRE: { 3631 Register Rt = MI.getOperand(0).getReg(); 3632 Register Rn = MI.getOperand(3).getReg(); 3633 return (Rt == Rn) ? 4 : 3; 3634 } 3635 3636 case ARM::STRD_PRE: { 3637 Register Rm = MI.getOperand(4).getReg(); 3638 if (Rm) 3639 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 3640 : 4; 3641 return 3; 3642 } 3643 3644 case ARM::t2STRD_PRE: 3645 return 3; 3646 3647 case ARM::t2LDR_POST: 3648 case ARM::t2LDRB_POST: 3649 case ARM::t2LDRB_PRE: 3650 case ARM::t2LDRSBi12: 3651 case ARM::t2LDRSBi8: 3652 case ARM::t2LDRSBpci: 3653 case ARM::t2LDRSBs: 3654 case ARM::t2LDRH_POST: 3655 case ARM::t2LDRH_PRE: 3656 case ARM::t2LDRSBT: 3657 case ARM::t2LDRSB_POST: 3658 case ARM::t2LDRSB_PRE: 3659 case ARM::t2LDRSH_POST: 3660 case ARM::t2LDRSH_PRE: 3661 case ARM::t2LDRSHi12: 3662 case ARM::t2LDRSHi8: 3663 case ARM::t2LDRSHpci: 3664 case ARM::t2LDRSHs: 3665 return 2; 3666 3667 case ARM::t2LDRDi8: { 3668 Register Rt = MI.getOperand(0).getReg(); 3669 Register Rn = MI.getOperand(2).getReg(); 3670 return (Rt == Rn) ? 3 : 2; 3671 } 3672 3673 case ARM::t2STRB_POST: 3674 case ARM::t2STRB_PRE: 3675 case ARM::t2STRBs: 3676 case ARM::t2STRDi8: 3677 case ARM::t2STRH_POST: 3678 case ARM::t2STRH_PRE: 3679 case ARM::t2STRHs: 3680 case ARM::t2STR_POST: 3681 case ARM::t2STR_PRE: 3682 case ARM::t2STRs: 3683 return 2; 3684 } 3685 } 3686 3687 // Return the number of 32-bit words loaded by LDM or stored by STM. If this 3688 // can't be easily determined return 0 (missing MachineMemOperand). 3689 // 3690 // FIXME: The current MachineInstr design does not support relying on machine 3691 // mem operands to determine the width of a memory access. Instead, we expect 3692 // the target to provide this information based on the instruction opcode and 3693 // operands. However, using MachineMemOperand is the best solution now for 3694 // two reasons: 3695 // 3696 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI 3697 // operands. This is much more dangerous than using the MachineMemOperand 3698 // sizes because CodeGen passes can insert/remove optional machine operands. In 3699 // fact, it's totally incorrect for preRA passes and appears to be wrong for 3700 // postRA passes as well. 3701 // 3702 // 2) getNumLDMAddresses is only used by the scheduling machine model and any 3703 // machine model that calls this should handle the unknown (zero size) case. 3704 // 3705 // Long term, we should require a target hook that verifies MachineMemOperand 3706 // sizes during MC lowering. That target hook should be local to MC lowering 3707 // because we can't ensure that it is aware of other MI forms. Doing this will 3708 // ensure that MachineMemOperands are correctly propagated through all passes. 3709 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const { 3710 unsigned Size = 0; 3711 for (MachineInstr::mmo_iterator I = MI.memoperands_begin(), 3712 E = MI.memoperands_end(); 3713 I != E; ++I) { 3714 Size += (*I)->getSize().getValue(); 3715 } 3716 // FIXME: The scheduler currently can't handle values larger than 16. But 3717 // the values can actually go up to 32 for floating-point load/store 3718 // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory 3719 // operations isn't right; we could end up with "extra" memory operands for 3720 // various reasons, like tail merge merging two memory operations. 3721 return std::min(Size / 4, 16U); 3722 } 3723 3724 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc, 3725 unsigned NumRegs) { 3726 unsigned UOps = 1 + NumRegs; // 1 for address computation. 3727 switch (Opc) { 3728 default: 3729 break; 3730 case ARM::VLDMDIA_UPD: 3731 case ARM::VLDMDDB_UPD: 3732 case ARM::VLDMSIA_UPD: 3733 case ARM::VLDMSDB_UPD: 3734 case ARM::VSTMDIA_UPD: 3735 case ARM::VSTMDDB_UPD: 3736 case ARM::VSTMSIA_UPD: 3737 case ARM::VSTMSDB_UPD: 3738 case ARM::LDMIA_UPD: 3739 case ARM::LDMDA_UPD: 3740 case ARM::LDMDB_UPD: 3741 case ARM::LDMIB_UPD: 3742 case ARM::STMIA_UPD: 3743 case ARM::STMDA_UPD: 3744 case ARM::STMDB_UPD: 3745 case ARM::STMIB_UPD: 3746 case ARM::tLDMIA_UPD: 3747 case ARM::tSTMIA_UPD: 3748 case ARM::t2LDMIA_UPD: 3749 case ARM::t2LDMDB_UPD: 3750 case ARM::t2STMIA_UPD: 3751 case ARM::t2STMDB_UPD: 3752 ++UOps; // One for base register writeback. 3753 break; 3754 case ARM::LDMIA_RET: 3755 case ARM::tPOP_RET: 3756 case ARM::t2LDMIA_RET: 3757 UOps += 2; // One for base reg wb, one for write to pc. 3758 break; 3759 } 3760 return UOps; 3761 } 3762 3763 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 3764 const MachineInstr &MI) const { 3765 if (!ItinData || ItinData->isEmpty()) 3766 return 1; 3767 3768 const MCInstrDesc &Desc = MI.getDesc(); 3769 unsigned Class = Desc.getSchedClass(); 3770 int ItinUOps = ItinData->getNumMicroOps(Class); 3771 if (ItinUOps >= 0) { 3772 if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore())) 3773 return getNumMicroOpsSwiftLdSt(ItinData, MI); 3774 3775 return ItinUOps; 3776 } 3777 3778 unsigned Opc = MI.getOpcode(); 3779 switch (Opc) { 3780 default: 3781 llvm_unreachable("Unexpected multi-uops instruction!"); 3782 case ARM::VLDMQIA: 3783 case ARM::VSTMQIA: 3784 return 2; 3785 3786 // The number of uOps for load / store multiple are determined by the number 3787 // registers. 3788 // 3789 // On Cortex-A8, each pair of register loads / stores can be scheduled on the 3790 // same cycle. The scheduling for the first load / store must be done 3791 // separately by assuming the address is not 64-bit aligned. 3792 // 3793 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address 3794 // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON 3795 // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1. 3796 case ARM::VLDMDIA: 3797 case ARM::VLDMDIA_UPD: 3798 case ARM::VLDMDDB_UPD: 3799 case ARM::VLDMSIA: 3800 case ARM::VLDMSIA_UPD: 3801 case ARM::VLDMSDB_UPD: 3802 case ARM::VSTMDIA: 3803 case ARM::VSTMDIA_UPD: 3804 case ARM::VSTMDDB_UPD: 3805 case ARM::VSTMSIA: 3806 case ARM::VSTMSIA_UPD: 3807 case ARM::VSTMSDB_UPD: { 3808 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands(); 3809 return (NumRegs / 2) + (NumRegs % 2) + 1; 3810 } 3811 3812 case ARM::LDMIA_RET: 3813 case ARM::LDMIA: 3814 case ARM::LDMDA: 3815 case ARM::LDMDB: 3816 case ARM::LDMIB: 3817 case ARM::LDMIA_UPD: 3818 case ARM::LDMDA_UPD: 3819 case ARM::LDMDB_UPD: 3820 case ARM::LDMIB_UPD: 3821 case ARM::STMIA: 3822 case ARM::STMDA: 3823 case ARM::STMDB: 3824 case ARM::STMIB: 3825 case ARM::STMIA_UPD: 3826 case ARM::STMDA_UPD: 3827 case ARM::STMDB_UPD: 3828 case ARM::STMIB_UPD: 3829 case ARM::tLDMIA: 3830 case ARM::tLDMIA_UPD: 3831 case ARM::tSTMIA_UPD: 3832 case ARM::tPOP_RET: 3833 case ARM::tPOP: 3834 case ARM::tPUSH: 3835 case ARM::t2LDMIA_RET: 3836 case ARM::t2LDMIA: 3837 case ARM::t2LDMDB: 3838 case ARM::t2LDMIA_UPD: 3839 case ARM::t2LDMDB_UPD: 3840 case ARM::t2STMIA: 3841 case ARM::t2STMDB: 3842 case ARM::t2STMIA_UPD: 3843 case ARM::t2STMDB_UPD: { 3844 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1; 3845 switch (Subtarget.getLdStMultipleTiming()) { 3846 case ARMSubtarget::SingleIssuePlusExtras: 3847 return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs); 3848 case ARMSubtarget::SingleIssue: 3849 // Assume the worst. 3850 return NumRegs; 3851 case ARMSubtarget::DoubleIssue: { 3852 if (NumRegs < 4) 3853 return 2; 3854 // 4 registers would be issued: 2, 2. 3855 // 5 registers would be issued: 2, 2, 1. 3856 unsigned UOps = (NumRegs / 2); 3857 if (NumRegs % 2) 3858 ++UOps; 3859 return UOps; 3860 } 3861 case ARMSubtarget::DoubleIssueCheckUnalignedAccess: { 3862 unsigned UOps = (NumRegs / 2); 3863 // If there are odd number of registers or if it's not 64-bit aligned, 3864 // then it takes an extra AGU (Address Generation Unit) cycle. 3865 if ((NumRegs % 2) || !MI.hasOneMemOperand() || 3866 (*MI.memoperands_begin())->getAlign() < Align(8)) 3867 ++UOps; 3868 return UOps; 3869 } 3870 } 3871 } 3872 } 3873 llvm_unreachable("Didn't find the number of microops"); 3874 } 3875 3876 std::optional<unsigned> 3877 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData, 3878 const MCInstrDesc &DefMCID, unsigned DefClass, 3879 unsigned DefIdx, unsigned DefAlign) const { 3880 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3881 if (RegNo <= 0) 3882 // Def is the address writeback. 3883 return ItinData->getOperandCycle(DefClass, DefIdx); 3884 3885 unsigned DefCycle; 3886 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3887 // (regno / 2) + (regno % 2) + 1 3888 DefCycle = RegNo / 2 + 1; 3889 if (RegNo % 2) 3890 ++DefCycle; 3891 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3892 DefCycle = RegNo; 3893 bool isSLoad = false; 3894 3895 switch (DefMCID.getOpcode()) { 3896 default: break; 3897 case ARM::VLDMSIA: 3898 case ARM::VLDMSIA_UPD: 3899 case ARM::VLDMSDB_UPD: 3900 isSLoad = true; 3901 break; 3902 } 3903 3904 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3905 // then it takes an extra cycle. 3906 if ((isSLoad && (RegNo % 2)) || DefAlign < 8) 3907 ++DefCycle; 3908 } else { 3909 // Assume the worst. 3910 DefCycle = RegNo + 2; 3911 } 3912 3913 return DefCycle; 3914 } 3915 3916 std::optional<unsigned> 3917 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData, 3918 const MCInstrDesc &DefMCID, unsigned DefClass, 3919 unsigned DefIdx, unsigned DefAlign) const { 3920 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3921 if (RegNo <= 0) 3922 // Def is the address writeback. 3923 return ItinData->getOperandCycle(DefClass, DefIdx); 3924 3925 unsigned DefCycle; 3926 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3927 // 4 registers would be issued: 1, 2, 1. 3928 // 5 registers would be issued: 1, 2, 2. 3929 DefCycle = RegNo / 2; 3930 if (DefCycle < 1) 3931 DefCycle = 1; 3932 // Result latency is issue cycle + 2: E2. 3933 DefCycle += 2; 3934 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3935 DefCycle = (RegNo / 2); 3936 // If there are odd number of registers or if it's not 64-bit aligned, 3937 // then it takes an extra AGU (Address Generation Unit) cycle. 3938 if ((RegNo % 2) || DefAlign < 8) 3939 ++DefCycle; 3940 // Result latency is AGU cycles + 2. 3941 DefCycle += 2; 3942 } else { 3943 // Assume the worst. 3944 DefCycle = RegNo + 2; 3945 } 3946 3947 return DefCycle; 3948 } 3949 3950 std::optional<unsigned> 3951 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData, 3952 const MCInstrDesc &UseMCID, unsigned UseClass, 3953 unsigned UseIdx, unsigned UseAlign) const { 3954 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3955 if (RegNo <= 0) 3956 return ItinData->getOperandCycle(UseClass, UseIdx); 3957 3958 unsigned UseCycle; 3959 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3960 // (regno / 2) + (regno % 2) + 1 3961 UseCycle = RegNo / 2 + 1; 3962 if (RegNo % 2) 3963 ++UseCycle; 3964 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3965 UseCycle = RegNo; 3966 bool isSStore = false; 3967 3968 switch (UseMCID.getOpcode()) { 3969 default: break; 3970 case ARM::VSTMSIA: 3971 case ARM::VSTMSIA_UPD: 3972 case ARM::VSTMSDB_UPD: 3973 isSStore = true; 3974 break; 3975 } 3976 3977 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3978 // then it takes an extra cycle. 3979 if ((isSStore && (RegNo % 2)) || UseAlign < 8) 3980 ++UseCycle; 3981 } else { 3982 // Assume the worst. 3983 UseCycle = RegNo + 2; 3984 } 3985 3986 return UseCycle; 3987 } 3988 3989 std::optional<unsigned> 3990 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData, 3991 const MCInstrDesc &UseMCID, unsigned UseClass, 3992 unsigned UseIdx, unsigned UseAlign) const { 3993 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3994 if (RegNo <= 0) 3995 return ItinData->getOperandCycle(UseClass, UseIdx); 3996 3997 unsigned UseCycle; 3998 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3999 UseCycle = RegNo / 2; 4000 if (UseCycle < 2) 4001 UseCycle = 2; 4002 // Read in E3. 4003 UseCycle += 2; 4004 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 4005 UseCycle = (RegNo / 2); 4006 // If there are odd number of registers or if it's not 64-bit aligned, 4007 // then it takes an extra AGU (Address Generation Unit) cycle. 4008 if ((RegNo % 2) || UseAlign < 8) 4009 ++UseCycle; 4010 } else { 4011 // Assume the worst. 4012 UseCycle = 1; 4013 } 4014 return UseCycle; 4015 } 4016 4017 std::optional<unsigned> ARMBaseInstrInfo::getOperandLatency( 4018 const InstrItineraryData *ItinData, const MCInstrDesc &DefMCID, 4019 unsigned DefIdx, unsigned DefAlign, const MCInstrDesc &UseMCID, 4020 unsigned UseIdx, unsigned UseAlign) const { 4021 unsigned DefClass = DefMCID.getSchedClass(); 4022 unsigned UseClass = UseMCID.getSchedClass(); 4023 4024 if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands()) 4025 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 4026 4027 // This may be a def / use of a variable_ops instruction, the operand 4028 // latency might be determinable dynamically. Let the target try to 4029 // figure it out. 4030 std::optional<unsigned> DefCycle; 4031 bool LdmBypass = false; 4032 switch (DefMCID.getOpcode()) { 4033 default: 4034 DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 4035 break; 4036 4037 case ARM::VLDMDIA: 4038 case ARM::VLDMDIA_UPD: 4039 case ARM::VLDMDDB_UPD: 4040 case ARM::VLDMSIA: 4041 case ARM::VLDMSIA_UPD: 4042 case ARM::VLDMSDB_UPD: 4043 DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 4044 break; 4045 4046 case ARM::LDMIA_RET: 4047 case ARM::LDMIA: 4048 case ARM::LDMDA: 4049 case ARM::LDMDB: 4050 case ARM::LDMIB: 4051 case ARM::LDMIA_UPD: 4052 case ARM::LDMDA_UPD: 4053 case ARM::LDMDB_UPD: 4054 case ARM::LDMIB_UPD: 4055 case ARM::tLDMIA: 4056 case ARM::tLDMIA_UPD: 4057 case ARM::tPUSH: 4058 case ARM::t2LDMIA_RET: 4059 case ARM::t2LDMIA: 4060 case ARM::t2LDMDB: 4061 case ARM::t2LDMIA_UPD: 4062 case ARM::t2LDMDB_UPD: 4063 LdmBypass = true; 4064 DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 4065 break; 4066 } 4067 4068 if (!DefCycle) 4069 // We can't seem to determine the result latency of the def, assume it's 2. 4070 DefCycle = 2; 4071 4072 std::optional<unsigned> UseCycle; 4073 switch (UseMCID.getOpcode()) { 4074 default: 4075 UseCycle = ItinData->getOperandCycle(UseClass, UseIdx); 4076 break; 4077 4078 case ARM::VSTMDIA: 4079 case ARM::VSTMDIA_UPD: 4080 case ARM::VSTMDDB_UPD: 4081 case ARM::VSTMSIA: 4082 case ARM::VSTMSIA_UPD: 4083 case ARM::VSTMSDB_UPD: 4084 UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 4085 break; 4086 4087 case ARM::STMIA: 4088 case ARM::STMDA: 4089 case ARM::STMDB: 4090 case ARM::STMIB: 4091 case ARM::STMIA_UPD: 4092 case ARM::STMDA_UPD: 4093 case ARM::STMDB_UPD: 4094 case ARM::STMIB_UPD: 4095 case ARM::tSTMIA_UPD: 4096 case ARM::tPOP_RET: 4097 case ARM::tPOP: 4098 case ARM::t2STMIA: 4099 case ARM::t2STMDB: 4100 case ARM::t2STMIA_UPD: 4101 case ARM::t2STMDB_UPD: 4102 UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 4103 break; 4104 } 4105 4106 if (!UseCycle) 4107 // Assume it's read in the first stage. 4108 UseCycle = 1; 4109 4110 if (UseCycle > *DefCycle + 1) 4111 return std::nullopt; 4112 4113 UseCycle = *DefCycle - *UseCycle + 1; 4114 if (UseCycle > 0u) { 4115 if (LdmBypass) { 4116 // It's a variable_ops instruction so we can't use DefIdx here. Just use 4117 // first def operand. 4118 if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1, 4119 UseClass, UseIdx)) 4120 UseCycle = *UseCycle - 1; 4121 } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx, 4122 UseClass, UseIdx)) { 4123 UseCycle = *UseCycle - 1; 4124 } 4125 } 4126 4127 return UseCycle; 4128 } 4129 4130 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI, 4131 const MachineInstr *MI, unsigned Reg, 4132 unsigned &DefIdx, unsigned &Dist) { 4133 Dist = 0; 4134 4135 MachineBasicBlock::const_iterator I = MI; ++I; 4136 MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator()); 4137 assert(II->isInsideBundle() && "Empty bundle?"); 4138 4139 int Idx = -1; 4140 while (II->isInsideBundle()) { 4141 Idx = II->findRegisterDefOperandIdx(Reg, TRI, false, true); 4142 if (Idx != -1) 4143 break; 4144 --II; 4145 ++Dist; 4146 } 4147 4148 assert(Idx != -1 && "Cannot find bundled definition!"); 4149 DefIdx = Idx; 4150 return &*II; 4151 } 4152 4153 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI, 4154 const MachineInstr &MI, unsigned Reg, 4155 unsigned &UseIdx, unsigned &Dist) { 4156 Dist = 0; 4157 4158 MachineBasicBlock::const_instr_iterator II = ++MI.getIterator(); 4159 assert(II->isInsideBundle() && "Empty bundle?"); 4160 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 4161 4162 // FIXME: This doesn't properly handle multiple uses. 4163 int Idx = -1; 4164 while (II != E && II->isInsideBundle()) { 4165 Idx = II->findRegisterUseOperandIdx(Reg, TRI, false); 4166 if (Idx != -1) 4167 break; 4168 if (II->getOpcode() != ARM::t2IT) 4169 ++Dist; 4170 ++II; 4171 } 4172 4173 if (Idx == -1) { 4174 Dist = 0; 4175 return nullptr; 4176 } 4177 4178 UseIdx = Idx; 4179 return &*II; 4180 } 4181 4182 /// Return the number of cycles to add to (or subtract from) the static 4183 /// itinerary based on the def opcode and alignment. The caller will ensure that 4184 /// adjusted latency is at least one cycle. 4185 static int adjustDefLatency(const ARMSubtarget &Subtarget, 4186 const MachineInstr &DefMI, 4187 const MCInstrDesc &DefMCID, unsigned DefAlign) { 4188 int Adjust = 0; 4189 if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) { 4190 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 4191 // variants are one cycle cheaper. 4192 switch (DefMCID.getOpcode()) { 4193 default: break; 4194 case ARM::LDRrs: 4195 case ARM::LDRBrs: { 4196 unsigned ShOpVal = DefMI.getOperand(3).getImm(); 4197 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4198 if (ShImm == 0 || 4199 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4200 --Adjust; 4201 break; 4202 } 4203 case ARM::t2LDRs: 4204 case ARM::t2LDRBs: 4205 case ARM::t2LDRHs: 4206 case ARM::t2LDRSHs: { 4207 // Thumb2 mode: lsl only. 4208 unsigned ShAmt = DefMI.getOperand(3).getImm(); 4209 if (ShAmt == 0 || ShAmt == 2) 4210 --Adjust; 4211 break; 4212 } 4213 } 4214 } else if (Subtarget.isSwift()) { 4215 // FIXME: Properly handle all of the latency adjustments for address 4216 // writeback. 4217 switch (DefMCID.getOpcode()) { 4218 default: break; 4219 case ARM::LDRrs: 4220 case ARM::LDRBrs: { 4221 unsigned ShOpVal = DefMI.getOperand(3).getImm(); 4222 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 4223 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4224 if (!isSub && 4225 (ShImm == 0 || 4226 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 4227 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 4228 Adjust -= 2; 4229 else if (!isSub && 4230 ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 4231 --Adjust; 4232 break; 4233 } 4234 case ARM::t2LDRs: 4235 case ARM::t2LDRBs: 4236 case ARM::t2LDRHs: 4237 case ARM::t2LDRSHs: { 4238 // Thumb2 mode: lsl only. 4239 unsigned ShAmt = DefMI.getOperand(3).getImm(); 4240 if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3) 4241 Adjust -= 2; 4242 break; 4243 } 4244 } 4245 } 4246 4247 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) { 4248 switch (DefMCID.getOpcode()) { 4249 default: break; 4250 case ARM::VLD1q8: 4251 case ARM::VLD1q16: 4252 case ARM::VLD1q32: 4253 case ARM::VLD1q64: 4254 case ARM::VLD1q8wb_fixed: 4255 case ARM::VLD1q16wb_fixed: 4256 case ARM::VLD1q32wb_fixed: 4257 case ARM::VLD1q64wb_fixed: 4258 case ARM::VLD1q8wb_register: 4259 case ARM::VLD1q16wb_register: 4260 case ARM::VLD1q32wb_register: 4261 case ARM::VLD1q64wb_register: 4262 case ARM::VLD2d8: 4263 case ARM::VLD2d16: 4264 case ARM::VLD2d32: 4265 case ARM::VLD2q8: 4266 case ARM::VLD2q16: 4267 case ARM::VLD2q32: 4268 case ARM::VLD2d8wb_fixed: 4269 case ARM::VLD2d16wb_fixed: 4270 case ARM::VLD2d32wb_fixed: 4271 case ARM::VLD2q8wb_fixed: 4272 case ARM::VLD2q16wb_fixed: 4273 case ARM::VLD2q32wb_fixed: 4274 case ARM::VLD2d8wb_register: 4275 case ARM::VLD2d16wb_register: 4276 case ARM::VLD2d32wb_register: 4277 case ARM::VLD2q8wb_register: 4278 case ARM::VLD2q16wb_register: 4279 case ARM::VLD2q32wb_register: 4280 case ARM::VLD3d8: 4281 case ARM::VLD3d16: 4282 case ARM::VLD3d32: 4283 case ARM::VLD1d64T: 4284 case ARM::VLD3d8_UPD: 4285 case ARM::VLD3d16_UPD: 4286 case ARM::VLD3d32_UPD: 4287 case ARM::VLD1d64Twb_fixed: 4288 case ARM::VLD1d64Twb_register: 4289 case ARM::VLD3q8_UPD: 4290 case ARM::VLD3q16_UPD: 4291 case ARM::VLD3q32_UPD: 4292 case ARM::VLD4d8: 4293 case ARM::VLD4d16: 4294 case ARM::VLD4d32: 4295 case ARM::VLD1d64Q: 4296 case ARM::VLD4d8_UPD: 4297 case ARM::VLD4d16_UPD: 4298 case ARM::VLD4d32_UPD: 4299 case ARM::VLD1d64Qwb_fixed: 4300 case ARM::VLD1d64Qwb_register: 4301 case ARM::VLD4q8_UPD: 4302 case ARM::VLD4q16_UPD: 4303 case ARM::VLD4q32_UPD: 4304 case ARM::VLD1DUPq8: 4305 case ARM::VLD1DUPq16: 4306 case ARM::VLD1DUPq32: 4307 case ARM::VLD1DUPq8wb_fixed: 4308 case ARM::VLD1DUPq16wb_fixed: 4309 case ARM::VLD1DUPq32wb_fixed: 4310 case ARM::VLD1DUPq8wb_register: 4311 case ARM::VLD1DUPq16wb_register: 4312 case ARM::VLD1DUPq32wb_register: 4313 case ARM::VLD2DUPd8: 4314 case ARM::VLD2DUPd16: 4315 case ARM::VLD2DUPd32: 4316 case ARM::VLD2DUPd8wb_fixed: 4317 case ARM::VLD2DUPd16wb_fixed: 4318 case ARM::VLD2DUPd32wb_fixed: 4319 case ARM::VLD2DUPd8wb_register: 4320 case ARM::VLD2DUPd16wb_register: 4321 case ARM::VLD2DUPd32wb_register: 4322 case ARM::VLD4DUPd8: 4323 case ARM::VLD4DUPd16: 4324 case ARM::VLD4DUPd32: 4325 case ARM::VLD4DUPd8_UPD: 4326 case ARM::VLD4DUPd16_UPD: 4327 case ARM::VLD4DUPd32_UPD: 4328 case ARM::VLD1LNd8: 4329 case ARM::VLD1LNd16: 4330 case ARM::VLD1LNd32: 4331 case ARM::VLD1LNd8_UPD: 4332 case ARM::VLD1LNd16_UPD: 4333 case ARM::VLD1LNd32_UPD: 4334 case ARM::VLD2LNd8: 4335 case ARM::VLD2LNd16: 4336 case ARM::VLD2LNd32: 4337 case ARM::VLD2LNq16: 4338 case ARM::VLD2LNq32: 4339 case ARM::VLD2LNd8_UPD: 4340 case ARM::VLD2LNd16_UPD: 4341 case ARM::VLD2LNd32_UPD: 4342 case ARM::VLD2LNq16_UPD: 4343 case ARM::VLD2LNq32_UPD: 4344 case ARM::VLD4LNd8: 4345 case ARM::VLD4LNd16: 4346 case ARM::VLD4LNd32: 4347 case ARM::VLD4LNq16: 4348 case ARM::VLD4LNq32: 4349 case ARM::VLD4LNd8_UPD: 4350 case ARM::VLD4LNd16_UPD: 4351 case ARM::VLD4LNd32_UPD: 4352 case ARM::VLD4LNq16_UPD: 4353 case ARM::VLD4LNq32_UPD: 4354 // If the address is not 64-bit aligned, the latencies of these 4355 // instructions increases by one. 4356 ++Adjust; 4357 break; 4358 } 4359 } 4360 return Adjust; 4361 } 4362 4363 std::optional<unsigned> ARMBaseInstrInfo::getOperandLatency( 4364 const InstrItineraryData *ItinData, const MachineInstr &DefMI, 4365 unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const { 4366 // No operand latency. The caller may fall back to getInstrLatency. 4367 if (!ItinData || ItinData->isEmpty()) 4368 return std::nullopt; 4369 4370 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 4371 Register Reg = DefMO.getReg(); 4372 4373 const MachineInstr *ResolvedDefMI = &DefMI; 4374 unsigned DefAdj = 0; 4375 if (DefMI.isBundle()) 4376 ResolvedDefMI = 4377 getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj); 4378 if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() || 4379 ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) { 4380 return 1; 4381 } 4382 4383 const MachineInstr *ResolvedUseMI = &UseMI; 4384 unsigned UseAdj = 0; 4385 if (UseMI.isBundle()) { 4386 ResolvedUseMI = 4387 getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj); 4388 if (!ResolvedUseMI) 4389 return std::nullopt; 4390 } 4391 4392 return getOperandLatencyImpl( 4393 ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO, 4394 Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj); 4395 } 4396 4397 std::optional<unsigned> ARMBaseInstrInfo::getOperandLatencyImpl( 4398 const InstrItineraryData *ItinData, const MachineInstr &DefMI, 4399 unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj, 4400 const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI, 4401 unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const { 4402 if (Reg == ARM::CPSR) { 4403 if (DefMI.getOpcode() == ARM::FMSTAT) { 4404 // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?) 4405 return Subtarget.isLikeA9() ? 1 : 20; 4406 } 4407 4408 // CPSR set and branch can be paired in the same cycle. 4409 if (UseMI.isBranch()) 4410 return 0; 4411 4412 // Otherwise it takes the instruction latency (generally one). 4413 unsigned Latency = getInstrLatency(ItinData, DefMI); 4414 4415 // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to 4416 // its uses. Instructions which are otherwise scheduled between them may 4417 // incur a code size penalty (not able to use the CPSR setting 16-bit 4418 // instructions). 4419 if (Latency > 0 && Subtarget.isThumb2()) { 4420 const MachineFunction *MF = DefMI.getParent()->getParent(); 4421 // FIXME: Use Function::hasOptSize(). 4422 if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize)) 4423 --Latency; 4424 } 4425 return Latency; 4426 } 4427 4428 if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit()) 4429 return std::nullopt; 4430 4431 unsigned DefAlign = DefMI.hasOneMemOperand() 4432 ? (*DefMI.memoperands_begin())->getAlign().value() 4433 : 0; 4434 unsigned UseAlign = UseMI.hasOneMemOperand() 4435 ? (*UseMI.memoperands_begin())->getAlign().value() 4436 : 0; 4437 4438 // Get the itinerary's latency if possible, and handle variable_ops. 4439 std::optional<unsigned> Latency = getOperandLatency( 4440 ItinData, DefMCID, DefIdx, DefAlign, UseMCID, UseIdx, UseAlign); 4441 // Unable to find operand latency. The caller may resort to getInstrLatency. 4442 if (!Latency) 4443 return std::nullopt; 4444 4445 // Adjust for IT block position. 4446 int Adj = DefAdj + UseAdj; 4447 4448 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4449 Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign); 4450 if (Adj >= 0 || (int)*Latency > -Adj) { 4451 return *Latency + Adj; 4452 } 4453 // Return the itinerary latency, which may be zero but not less than zero. 4454 return Latency; 4455 } 4456 4457 std::optional<unsigned> 4458 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4459 SDNode *DefNode, unsigned DefIdx, 4460 SDNode *UseNode, unsigned UseIdx) const { 4461 if (!DefNode->isMachineOpcode()) 4462 return 1; 4463 4464 const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode()); 4465 4466 if (isZeroCost(DefMCID.Opcode)) 4467 return 0; 4468 4469 if (!ItinData || ItinData->isEmpty()) 4470 return DefMCID.mayLoad() ? 3 : 1; 4471 4472 if (!UseNode->isMachineOpcode()) { 4473 std::optional<unsigned> Latency = 4474 ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx); 4475 int Adj = Subtarget.getPreISelOperandLatencyAdjustment(); 4476 int Threshold = 1 + Adj; 4477 return !Latency || Latency <= (unsigned)Threshold ? 1 : *Latency - Adj; 4478 } 4479 4480 const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode()); 4481 auto *DefMN = cast<MachineSDNode>(DefNode); 4482 unsigned DefAlign = !DefMN->memoperands_empty() 4483 ? (*DefMN->memoperands_begin())->getAlign().value() 4484 : 0; 4485 auto *UseMN = cast<MachineSDNode>(UseNode); 4486 unsigned UseAlign = !UseMN->memoperands_empty() 4487 ? (*UseMN->memoperands_begin())->getAlign().value() 4488 : 0; 4489 std::optional<unsigned> Latency = getOperandLatency( 4490 ItinData, DefMCID, DefIdx, DefAlign, UseMCID, UseIdx, UseAlign); 4491 if (!Latency) 4492 return std::nullopt; 4493 4494 if (Latency > 1U && 4495 (Subtarget.isCortexA8() || Subtarget.isLikeA9() || 4496 Subtarget.isCortexA7())) { 4497 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 4498 // variants are one cycle cheaper. 4499 switch (DefMCID.getOpcode()) { 4500 default: break; 4501 case ARM::LDRrs: 4502 case ARM::LDRBrs: { 4503 unsigned ShOpVal = DefNode->getConstantOperandVal(2); 4504 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4505 if (ShImm == 0 || 4506 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4507 Latency = *Latency - 1; 4508 break; 4509 } 4510 case ARM::t2LDRs: 4511 case ARM::t2LDRBs: 4512 case ARM::t2LDRHs: 4513 case ARM::t2LDRSHs: { 4514 // Thumb2 mode: lsl only. 4515 unsigned ShAmt = DefNode->getConstantOperandVal(2); 4516 if (ShAmt == 0 || ShAmt == 2) 4517 Latency = *Latency - 1; 4518 break; 4519 } 4520 } 4521 } else if (DefIdx == 0 && Latency > 2U && Subtarget.isSwift()) { 4522 // FIXME: Properly handle all of the latency adjustments for address 4523 // writeback. 4524 switch (DefMCID.getOpcode()) { 4525 default: break; 4526 case ARM::LDRrs: 4527 case ARM::LDRBrs: { 4528 unsigned ShOpVal = DefNode->getConstantOperandVal(2); 4529 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4530 if (ShImm == 0 || 4531 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 4532 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4533 Latency = *Latency - 2; 4534 else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 4535 Latency = *Latency - 1; 4536 break; 4537 } 4538 case ARM::t2LDRs: 4539 case ARM::t2LDRBs: 4540 case ARM::t2LDRHs: 4541 case ARM::t2LDRSHs: 4542 // Thumb2 mode: lsl 0-3 only. 4543 Latency = *Latency - 2; 4544 break; 4545 } 4546 } 4547 4548 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) 4549 switch (DefMCID.getOpcode()) { 4550 default: break; 4551 case ARM::VLD1q8: 4552 case ARM::VLD1q16: 4553 case ARM::VLD1q32: 4554 case ARM::VLD1q64: 4555 case ARM::VLD1q8wb_register: 4556 case ARM::VLD1q16wb_register: 4557 case ARM::VLD1q32wb_register: 4558 case ARM::VLD1q64wb_register: 4559 case ARM::VLD1q8wb_fixed: 4560 case ARM::VLD1q16wb_fixed: 4561 case ARM::VLD1q32wb_fixed: 4562 case ARM::VLD1q64wb_fixed: 4563 case ARM::VLD2d8: 4564 case ARM::VLD2d16: 4565 case ARM::VLD2d32: 4566 case ARM::VLD2q8Pseudo: 4567 case ARM::VLD2q16Pseudo: 4568 case ARM::VLD2q32Pseudo: 4569 case ARM::VLD2d8wb_fixed: 4570 case ARM::VLD2d16wb_fixed: 4571 case ARM::VLD2d32wb_fixed: 4572 case ARM::VLD2q8PseudoWB_fixed: 4573 case ARM::VLD2q16PseudoWB_fixed: 4574 case ARM::VLD2q32PseudoWB_fixed: 4575 case ARM::VLD2d8wb_register: 4576 case ARM::VLD2d16wb_register: 4577 case ARM::VLD2d32wb_register: 4578 case ARM::VLD2q8PseudoWB_register: 4579 case ARM::VLD2q16PseudoWB_register: 4580 case ARM::VLD2q32PseudoWB_register: 4581 case ARM::VLD3d8Pseudo: 4582 case ARM::VLD3d16Pseudo: 4583 case ARM::VLD3d32Pseudo: 4584 case ARM::VLD1d8TPseudo: 4585 case ARM::VLD1d16TPseudo: 4586 case ARM::VLD1d32TPseudo: 4587 case ARM::VLD1d64TPseudo: 4588 case ARM::VLD1d64TPseudoWB_fixed: 4589 case ARM::VLD1d64TPseudoWB_register: 4590 case ARM::VLD3d8Pseudo_UPD: 4591 case ARM::VLD3d16Pseudo_UPD: 4592 case ARM::VLD3d32Pseudo_UPD: 4593 case ARM::VLD3q8Pseudo_UPD: 4594 case ARM::VLD3q16Pseudo_UPD: 4595 case ARM::VLD3q32Pseudo_UPD: 4596 case ARM::VLD3q8oddPseudo: 4597 case ARM::VLD3q16oddPseudo: 4598 case ARM::VLD3q32oddPseudo: 4599 case ARM::VLD3q8oddPseudo_UPD: 4600 case ARM::VLD3q16oddPseudo_UPD: 4601 case ARM::VLD3q32oddPseudo_UPD: 4602 case ARM::VLD4d8Pseudo: 4603 case ARM::VLD4d16Pseudo: 4604 case ARM::VLD4d32Pseudo: 4605 case ARM::VLD1d8QPseudo: 4606 case ARM::VLD1d16QPseudo: 4607 case ARM::VLD1d32QPseudo: 4608 case ARM::VLD1d64QPseudo: 4609 case ARM::VLD1d64QPseudoWB_fixed: 4610 case ARM::VLD1d64QPseudoWB_register: 4611 case ARM::VLD1q8HighQPseudo: 4612 case ARM::VLD1q8LowQPseudo_UPD: 4613 case ARM::VLD1q8HighTPseudo: 4614 case ARM::VLD1q8LowTPseudo_UPD: 4615 case ARM::VLD1q16HighQPseudo: 4616 case ARM::VLD1q16LowQPseudo_UPD: 4617 case ARM::VLD1q16HighTPseudo: 4618 case ARM::VLD1q16LowTPseudo_UPD: 4619 case ARM::VLD1q32HighQPseudo: 4620 case ARM::VLD1q32LowQPseudo_UPD: 4621 case ARM::VLD1q32HighTPseudo: 4622 case ARM::VLD1q32LowTPseudo_UPD: 4623 case ARM::VLD1q64HighQPseudo: 4624 case ARM::VLD1q64LowQPseudo_UPD: 4625 case ARM::VLD1q64HighTPseudo: 4626 case ARM::VLD1q64LowTPseudo_UPD: 4627 case ARM::VLD4d8Pseudo_UPD: 4628 case ARM::VLD4d16Pseudo_UPD: 4629 case ARM::VLD4d32Pseudo_UPD: 4630 case ARM::VLD4q8Pseudo_UPD: 4631 case ARM::VLD4q16Pseudo_UPD: 4632 case ARM::VLD4q32Pseudo_UPD: 4633 case ARM::VLD4q8oddPseudo: 4634 case ARM::VLD4q16oddPseudo: 4635 case ARM::VLD4q32oddPseudo: 4636 case ARM::VLD4q8oddPseudo_UPD: 4637 case ARM::VLD4q16oddPseudo_UPD: 4638 case ARM::VLD4q32oddPseudo_UPD: 4639 case ARM::VLD1DUPq8: 4640 case ARM::VLD1DUPq16: 4641 case ARM::VLD1DUPq32: 4642 case ARM::VLD1DUPq8wb_fixed: 4643 case ARM::VLD1DUPq16wb_fixed: 4644 case ARM::VLD1DUPq32wb_fixed: 4645 case ARM::VLD1DUPq8wb_register: 4646 case ARM::VLD1DUPq16wb_register: 4647 case ARM::VLD1DUPq32wb_register: 4648 case ARM::VLD2DUPd8: 4649 case ARM::VLD2DUPd16: 4650 case ARM::VLD2DUPd32: 4651 case ARM::VLD2DUPd8wb_fixed: 4652 case ARM::VLD2DUPd16wb_fixed: 4653 case ARM::VLD2DUPd32wb_fixed: 4654 case ARM::VLD2DUPd8wb_register: 4655 case ARM::VLD2DUPd16wb_register: 4656 case ARM::VLD2DUPd32wb_register: 4657 case ARM::VLD2DUPq8EvenPseudo: 4658 case ARM::VLD2DUPq8OddPseudo: 4659 case ARM::VLD2DUPq16EvenPseudo: 4660 case ARM::VLD2DUPq16OddPseudo: 4661 case ARM::VLD2DUPq32EvenPseudo: 4662 case ARM::VLD2DUPq32OddPseudo: 4663 case ARM::VLD3DUPq8EvenPseudo: 4664 case ARM::VLD3DUPq8OddPseudo: 4665 case ARM::VLD3DUPq16EvenPseudo: 4666 case ARM::VLD3DUPq16OddPseudo: 4667 case ARM::VLD3DUPq32EvenPseudo: 4668 case ARM::VLD3DUPq32OddPseudo: 4669 case ARM::VLD4DUPd8Pseudo: 4670 case ARM::VLD4DUPd16Pseudo: 4671 case ARM::VLD4DUPd32Pseudo: 4672 case ARM::VLD4DUPd8Pseudo_UPD: 4673 case ARM::VLD4DUPd16Pseudo_UPD: 4674 case ARM::VLD4DUPd32Pseudo_UPD: 4675 case ARM::VLD4DUPq8EvenPseudo: 4676 case ARM::VLD4DUPq8OddPseudo: 4677 case ARM::VLD4DUPq16EvenPseudo: 4678 case ARM::VLD4DUPq16OddPseudo: 4679 case ARM::VLD4DUPq32EvenPseudo: 4680 case ARM::VLD4DUPq32OddPseudo: 4681 case ARM::VLD1LNq8Pseudo: 4682 case ARM::VLD1LNq16Pseudo: 4683 case ARM::VLD1LNq32Pseudo: 4684 case ARM::VLD1LNq8Pseudo_UPD: 4685 case ARM::VLD1LNq16Pseudo_UPD: 4686 case ARM::VLD1LNq32Pseudo_UPD: 4687 case ARM::VLD2LNd8Pseudo: 4688 case ARM::VLD2LNd16Pseudo: 4689 case ARM::VLD2LNd32Pseudo: 4690 case ARM::VLD2LNq16Pseudo: 4691 case ARM::VLD2LNq32Pseudo: 4692 case ARM::VLD2LNd8Pseudo_UPD: 4693 case ARM::VLD2LNd16Pseudo_UPD: 4694 case ARM::VLD2LNd32Pseudo_UPD: 4695 case ARM::VLD2LNq16Pseudo_UPD: 4696 case ARM::VLD2LNq32Pseudo_UPD: 4697 case ARM::VLD4LNd8Pseudo: 4698 case ARM::VLD4LNd16Pseudo: 4699 case ARM::VLD4LNd32Pseudo: 4700 case ARM::VLD4LNq16Pseudo: 4701 case ARM::VLD4LNq32Pseudo: 4702 case ARM::VLD4LNd8Pseudo_UPD: 4703 case ARM::VLD4LNd16Pseudo_UPD: 4704 case ARM::VLD4LNd32Pseudo_UPD: 4705 case ARM::VLD4LNq16Pseudo_UPD: 4706 case ARM::VLD4LNq32Pseudo_UPD: 4707 // If the address is not 64-bit aligned, the latencies of these 4708 // instructions increases by one. 4709 Latency = *Latency + 1; 4710 break; 4711 } 4712 4713 return Latency; 4714 } 4715 4716 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const { 4717 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || 4718 MI.isImplicitDef()) 4719 return 0; 4720 4721 if (MI.isBundle()) 4722 return 0; 4723 4724 const MCInstrDesc &MCID = MI.getDesc(); 4725 4726 if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && 4727 !Subtarget.cheapPredicableCPSRDef())) { 4728 // When predicated, CPSR is an additional source operand for CPSR updating 4729 // instructions, this apparently increases their latencies. 4730 return 1; 4731 } 4732 return 0; 4733 } 4734 4735 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4736 const MachineInstr &MI, 4737 unsigned *PredCost) const { 4738 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || 4739 MI.isImplicitDef()) 4740 return 1; 4741 4742 // An instruction scheduler typically runs on unbundled instructions, however 4743 // other passes may query the latency of a bundled instruction. 4744 if (MI.isBundle()) { 4745 unsigned Latency = 0; 4746 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 4747 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 4748 while (++I != E && I->isInsideBundle()) { 4749 if (I->getOpcode() != ARM::t2IT) 4750 Latency += getInstrLatency(ItinData, *I, PredCost); 4751 } 4752 return Latency; 4753 } 4754 4755 const MCInstrDesc &MCID = MI.getDesc(); 4756 if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && 4757 !Subtarget.cheapPredicableCPSRDef()))) { 4758 // When predicated, CPSR is an additional source operand for CPSR updating 4759 // instructions, this apparently increases their latencies. 4760 *PredCost = 1; 4761 } 4762 // Be sure to call getStageLatency for an empty itinerary in case it has a 4763 // valid MinLatency property. 4764 if (!ItinData) 4765 return MI.mayLoad() ? 3 : 1; 4766 4767 unsigned Class = MCID.getSchedClass(); 4768 4769 // For instructions with variable uops, use uops as latency. 4770 if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0) 4771 return getNumMicroOps(ItinData, MI); 4772 4773 // For the common case, fall back on the itinerary's latency. 4774 unsigned Latency = ItinData->getStageLatency(Class); 4775 4776 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4777 unsigned DefAlign = 4778 MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlign().value() : 0; 4779 int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign); 4780 if (Adj >= 0 || (int)Latency > -Adj) { 4781 return Latency + Adj; 4782 } 4783 return Latency; 4784 } 4785 4786 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4787 SDNode *Node) const { 4788 if (!Node->isMachineOpcode()) 4789 return 1; 4790 4791 if (!ItinData || ItinData->isEmpty()) 4792 return 1; 4793 4794 unsigned Opcode = Node->getMachineOpcode(); 4795 switch (Opcode) { 4796 default: 4797 return ItinData->getStageLatency(get(Opcode).getSchedClass()); 4798 case ARM::VLDMQIA: 4799 case ARM::VSTMQIA: 4800 return 2; 4801 } 4802 } 4803 4804 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, 4805 const MachineRegisterInfo *MRI, 4806 const MachineInstr &DefMI, 4807 unsigned DefIdx, 4808 const MachineInstr &UseMI, 4809 unsigned UseIdx) const { 4810 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; 4811 unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask; 4812 if (Subtarget.nonpipelinedVFP() && 4813 (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP)) 4814 return true; 4815 4816 // Hoist VFP / NEON instructions with 4 or higher latency. 4817 unsigned Latency = 4818 SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx); 4819 if (Latency <= 3) 4820 return false; 4821 return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON || 4822 UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON; 4823 } 4824 4825 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, 4826 const MachineInstr &DefMI, 4827 unsigned DefIdx) const { 4828 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); 4829 if (!ItinData || ItinData->isEmpty()) 4830 return false; 4831 4832 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; 4833 if (DDomain == ARMII::DomainGeneral) { 4834 unsigned DefClass = DefMI.getDesc().getSchedClass(); 4835 std::optional<unsigned> DefCycle = 4836 ItinData->getOperandCycle(DefClass, DefIdx); 4837 return DefCycle && DefCycle <= 2U; 4838 } 4839 return false; 4840 } 4841 4842 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI, 4843 StringRef &ErrInfo) const { 4844 if (convertAddSubFlagsOpcode(MI.getOpcode())) { 4845 ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG"; 4846 return false; 4847 } 4848 if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) { 4849 // Make sure we don't generate a lo-lo mov that isn't supported. 4850 if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) && 4851 !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) { 4852 ErrInfo = "Non-flag-setting Thumb1 mov is v6-only"; 4853 return false; 4854 } 4855 } 4856 if (MI.getOpcode() == ARM::tPUSH || 4857 MI.getOpcode() == ARM::tPOP || 4858 MI.getOpcode() == ARM::tPOP_RET) { 4859 for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), 2)) { 4860 if (MO.isImplicit() || !MO.isReg()) 4861 continue; 4862 Register Reg = MO.getReg(); 4863 if (Reg < ARM::R0 || Reg > ARM::R7) { 4864 if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) && 4865 !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) { 4866 ErrInfo = "Unsupported register in Thumb1 push/pop"; 4867 return false; 4868 } 4869 } 4870 } 4871 } 4872 if (MI.getOpcode() == ARM::MVE_VMOV_q_rr) { 4873 assert(MI.getOperand(4).isImm() && MI.getOperand(5).isImm()); 4874 if ((MI.getOperand(4).getImm() != 2 && MI.getOperand(4).getImm() != 3) || 4875 MI.getOperand(4).getImm() != MI.getOperand(5).getImm() + 2) { 4876 ErrInfo = "Incorrect array index for MVE_VMOV_q_rr"; 4877 return false; 4878 } 4879 } 4880 4881 // Check the address model by taking the first Imm operand and checking it is 4882 // legal for that addressing mode. 4883 ARMII::AddrMode AddrMode = 4884 (ARMII::AddrMode)(MI.getDesc().TSFlags & ARMII::AddrModeMask); 4885 switch (AddrMode) { 4886 default: 4887 break; 4888 case ARMII::AddrModeT2_i7: 4889 case ARMII::AddrModeT2_i7s2: 4890 case ARMII::AddrModeT2_i7s4: 4891 case ARMII::AddrModeT2_i8: 4892 case ARMII::AddrModeT2_i8pos: 4893 case ARMII::AddrModeT2_i8neg: 4894 case ARMII::AddrModeT2_i8s4: 4895 case ARMII::AddrModeT2_i12: { 4896 uint32_t Imm = 0; 4897 for (auto Op : MI.operands()) { 4898 if (Op.isImm()) { 4899 Imm = Op.getImm(); 4900 break; 4901 } 4902 } 4903 if (!isLegalAddressImm(MI.getOpcode(), Imm, this)) { 4904 ErrInfo = "Incorrect AddrMode Imm for instruction"; 4905 return false; 4906 } 4907 break; 4908 } 4909 } 4910 return true; 4911 } 4912 4913 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI, 4914 unsigned LoadImmOpc, 4915 unsigned LoadOpc) const { 4916 assert(!Subtarget.isROPI() && !Subtarget.isRWPI() && 4917 "ROPI/RWPI not currently supported with stack guard"); 4918 4919 MachineBasicBlock &MBB = *MI->getParent(); 4920 DebugLoc DL = MI->getDebugLoc(); 4921 Register Reg = MI->getOperand(0).getReg(); 4922 MachineInstrBuilder MIB; 4923 unsigned int Offset = 0; 4924 4925 if (LoadImmOpc == ARM::MRC || LoadImmOpc == ARM::t2MRC) { 4926 assert(!Subtarget.isReadTPSoft() && 4927 "TLS stack protector requires hardware TLS register"); 4928 4929 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) 4930 .addImm(15) 4931 .addImm(0) 4932 .addImm(13) 4933 .addImm(0) 4934 .addImm(3) 4935 .add(predOps(ARMCC::AL)); 4936 4937 Module &M = *MBB.getParent()->getFunction().getParent(); 4938 Offset = M.getStackProtectorGuardOffset(); 4939 if (Offset & ~0xfffU) { 4940 // The offset won't fit in the LDR's 12-bit immediate field, so emit an 4941 // extra ADD to cover the delta. This gives us a guaranteed 8 additional 4942 // bits, resulting in a range of 0 to +1 MiB for the guard offset. 4943 unsigned AddOpc = (LoadImmOpc == ARM::MRC) ? ARM::ADDri : ARM::t2ADDri; 4944 BuildMI(MBB, MI, DL, get(AddOpc), Reg) 4945 .addReg(Reg, RegState::Kill) 4946 .addImm(Offset & ~0xfffU) 4947 .add(predOps(ARMCC::AL)) 4948 .addReg(0); 4949 Offset &= 0xfffU; 4950 } 4951 } else { 4952 const GlobalValue *GV = 4953 cast<GlobalValue>((*MI->memoperands_begin())->getValue()); 4954 bool IsIndirect = Subtarget.isGVIndirectSymbol(GV); 4955 4956 unsigned TargetFlags = ARMII::MO_NO_FLAG; 4957 if (Subtarget.isTargetMachO()) { 4958 TargetFlags |= ARMII::MO_NONLAZY; 4959 } else if (Subtarget.isTargetCOFF()) { 4960 if (GV->hasDLLImportStorageClass()) 4961 TargetFlags |= ARMII::MO_DLLIMPORT; 4962 else if (IsIndirect) 4963 TargetFlags |= ARMII::MO_COFFSTUB; 4964 } else if (IsIndirect) { 4965 TargetFlags |= ARMII::MO_GOT; 4966 } 4967 4968 if (LoadImmOpc == ARM::tMOVi32imm) { // Thumb-1 execute-only 4969 Register CPSRSaveReg = ARM::R12; // Use R12 as scratch register 4970 auto APSREncoding = 4971 ARMSysReg::lookupMClassSysRegByName("apsr_nzcvq")->Encoding; 4972 BuildMI(MBB, MI, DL, get(ARM::t2MRS_M), CPSRSaveReg) 4973 .addImm(APSREncoding) 4974 .add(predOps(ARMCC::AL)); 4975 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) 4976 .addGlobalAddress(GV, 0, TargetFlags); 4977 BuildMI(MBB, MI, DL, get(ARM::t2MSR_M)) 4978 .addImm(APSREncoding) 4979 .addReg(CPSRSaveReg, RegState::Kill) 4980 .add(predOps(ARMCC::AL)); 4981 } else { 4982 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) 4983 .addGlobalAddress(GV, 0, TargetFlags); 4984 } 4985 4986 if (IsIndirect) { 4987 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4988 MIB.addReg(Reg, RegState::Kill).addImm(0); 4989 auto Flags = MachineMemOperand::MOLoad | 4990 MachineMemOperand::MODereferenceable | 4991 MachineMemOperand::MOInvariant; 4992 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( 4993 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, Align(4)); 4994 MIB.addMemOperand(MMO).add(predOps(ARMCC::AL)); 4995 } 4996 } 4997 4998 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4999 MIB.addReg(Reg, RegState::Kill) 5000 .addImm(Offset) 5001 .cloneMemRefs(*MI) 5002 .add(predOps(ARMCC::AL)); 5003 } 5004 5005 bool 5006 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc, 5007 unsigned &AddSubOpc, 5008 bool &NegAcc, bool &HasLane) const { 5009 DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode); 5010 if (I == MLxEntryMap.end()) 5011 return false; 5012 5013 const ARM_MLxEntry &Entry = ARM_MLxTable[I->second]; 5014 MulOpc = Entry.MulOpc; 5015 AddSubOpc = Entry.AddSubOpc; 5016 NegAcc = Entry.NegAcc; 5017 HasLane = Entry.HasLane; 5018 return true; 5019 } 5020 5021 //===----------------------------------------------------------------------===// 5022 // Execution domains. 5023 //===----------------------------------------------------------------------===// 5024 // 5025 // Some instructions go down the NEON pipeline, some go down the VFP pipeline, 5026 // and some can go down both. The vmov instructions go down the VFP pipeline, 5027 // but they can be changed to vorr equivalents that are executed by the NEON 5028 // pipeline. 5029 // 5030 // We use the following execution domain numbering: 5031 // 5032 enum ARMExeDomain { 5033 ExeGeneric = 0, 5034 ExeVFP = 1, 5035 ExeNEON = 2 5036 }; 5037 5038 // 5039 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h 5040 // 5041 std::pair<uint16_t, uint16_t> 5042 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const { 5043 // If we don't have access to NEON instructions then we won't be able 5044 // to swizzle anything to the NEON domain. Check to make sure. 5045 if (Subtarget.hasNEON()) { 5046 // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON 5047 // if they are not predicated. 5048 if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI)) 5049 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 5050 5051 // CortexA9 is particularly picky about mixing the two and wants these 5052 // converted. 5053 if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) && 5054 (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR || 5055 MI.getOpcode() == ARM::VMOVS)) 5056 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 5057 } 5058 // No other instructions can be swizzled, so just determine their domain. 5059 unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask; 5060 5061 if (Domain & ARMII::DomainNEON) 5062 return std::make_pair(ExeNEON, 0); 5063 5064 // Certain instructions can go either way on Cortex-A8. 5065 // Treat them as NEON instructions. 5066 if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8()) 5067 return std::make_pair(ExeNEON, 0); 5068 5069 if (Domain & ARMII::DomainVFP) 5070 return std::make_pair(ExeVFP, 0); 5071 5072 return std::make_pair(ExeGeneric, 0); 5073 } 5074 5075 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI, 5076 unsigned SReg, unsigned &Lane) { 5077 unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass); 5078 Lane = 0; 5079 5080 if (DReg != ARM::NoRegister) 5081 return DReg; 5082 5083 Lane = 1; 5084 DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass); 5085 5086 assert(DReg && "S-register with no D super-register?"); 5087 return DReg; 5088 } 5089 5090 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane, 5091 /// set ImplicitSReg to a register number that must be marked as implicit-use or 5092 /// zero if no register needs to be defined as implicit-use. 5093 /// 5094 /// If the function cannot determine if an SPR should be marked implicit use or 5095 /// not, it returns false. 5096 /// 5097 /// This function handles cases where an instruction is being modified from taking 5098 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict 5099 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other 5100 /// lane of the DPR). 5101 /// 5102 /// If the other SPR is defined, an implicit-use of it should be added. Else, 5103 /// (including the case where the DPR itself is defined), it should not. 5104 /// 5105 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI, 5106 MachineInstr &MI, unsigned DReg, 5107 unsigned Lane, unsigned &ImplicitSReg) { 5108 // If the DPR is defined or used already, the other SPR lane will be chained 5109 // correctly, so there is nothing to be done. 5110 if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) { 5111 ImplicitSReg = 0; 5112 return true; 5113 } 5114 5115 // Otherwise we need to go searching to see if the SPR is set explicitly. 5116 ImplicitSReg = TRI->getSubReg(DReg, 5117 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1); 5118 MachineBasicBlock::LivenessQueryResult LQR = 5119 MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI); 5120 5121 if (LQR == MachineBasicBlock::LQR_Live) 5122 return true; 5123 else if (LQR == MachineBasicBlock::LQR_Unknown) 5124 return false; 5125 5126 // If the register is known not to be live, there is no need to add an 5127 // implicit-use. 5128 ImplicitSReg = 0; 5129 return true; 5130 } 5131 5132 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI, 5133 unsigned Domain) const { 5134 unsigned DstReg, SrcReg, DReg; 5135 unsigned Lane; 5136 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 5137 const TargetRegisterInfo *TRI = &getRegisterInfo(); 5138 switch (MI.getOpcode()) { 5139 default: 5140 llvm_unreachable("cannot handle opcode!"); 5141 break; 5142 case ARM::VMOVD: 5143 if (Domain != ExeNEON) 5144 break; 5145 5146 // Zap the predicate operands. 5147 assert(!isPredicated(MI) && "Cannot predicate a VORRd"); 5148 5149 // Make sure we've got NEON instructions. 5150 assert(Subtarget.hasNEON() && "VORRd requires NEON"); 5151 5152 // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits) 5153 DstReg = MI.getOperand(0).getReg(); 5154 SrcReg = MI.getOperand(1).getReg(); 5155 5156 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5157 MI.removeOperand(i - 1); 5158 5159 // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits) 5160 MI.setDesc(get(ARM::VORRd)); 5161 MIB.addReg(DstReg, RegState::Define) 5162 .addReg(SrcReg) 5163 .addReg(SrcReg) 5164 .add(predOps(ARMCC::AL)); 5165 break; 5166 case ARM::VMOVRS: 5167 if (Domain != ExeNEON) 5168 break; 5169 assert(!isPredicated(MI) && "Cannot predicate a VGETLN"); 5170 5171 // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits) 5172 DstReg = MI.getOperand(0).getReg(); 5173 SrcReg = MI.getOperand(1).getReg(); 5174 5175 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5176 MI.removeOperand(i - 1); 5177 5178 DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane); 5179 5180 // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps) 5181 // Note that DSrc has been widened and the other lane may be undef, which 5182 // contaminates the entire register. 5183 MI.setDesc(get(ARM::VGETLNi32)); 5184 MIB.addReg(DstReg, RegState::Define) 5185 .addReg(DReg, RegState::Undef) 5186 .addImm(Lane) 5187 .add(predOps(ARMCC::AL)); 5188 5189 // The old source should be an implicit use, otherwise we might think it 5190 // was dead before here. 5191 MIB.addReg(SrcReg, RegState::Implicit); 5192 break; 5193 case ARM::VMOVSR: { 5194 if (Domain != ExeNEON) 5195 break; 5196 assert(!isPredicated(MI) && "Cannot predicate a VSETLN"); 5197 5198 // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits) 5199 DstReg = MI.getOperand(0).getReg(); 5200 SrcReg = MI.getOperand(1).getReg(); 5201 5202 DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane); 5203 5204 unsigned ImplicitSReg; 5205 if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg)) 5206 break; 5207 5208 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5209 MI.removeOperand(i - 1); 5210 5211 // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps) 5212 // Again DDst may be undefined at the beginning of this instruction. 5213 MI.setDesc(get(ARM::VSETLNi32)); 5214 MIB.addReg(DReg, RegState::Define) 5215 .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI))) 5216 .addReg(SrcReg) 5217 .addImm(Lane) 5218 .add(predOps(ARMCC::AL)); 5219 5220 // The narrower destination must be marked as set to keep previous chains 5221 // in place. 5222 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 5223 if (ImplicitSReg != 0) 5224 MIB.addReg(ImplicitSReg, RegState::Implicit); 5225 break; 5226 } 5227 case ARM::VMOVS: { 5228 if (Domain != ExeNEON) 5229 break; 5230 5231 // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits) 5232 DstReg = MI.getOperand(0).getReg(); 5233 SrcReg = MI.getOperand(1).getReg(); 5234 5235 unsigned DstLane = 0, SrcLane = 0, DDst, DSrc; 5236 DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane); 5237 DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane); 5238 5239 unsigned ImplicitSReg; 5240 if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg)) 5241 break; 5242 5243 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5244 MI.removeOperand(i - 1); 5245 5246 if (DSrc == DDst) { 5247 // Destination can be: 5248 // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits) 5249 MI.setDesc(get(ARM::VDUPLN32d)); 5250 MIB.addReg(DDst, RegState::Define) 5251 .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI))) 5252 .addImm(SrcLane) 5253 .add(predOps(ARMCC::AL)); 5254 5255 // Neither the source or the destination are naturally represented any 5256 // more, so add them in manually. 5257 MIB.addReg(DstReg, RegState::Implicit | RegState::Define); 5258 MIB.addReg(SrcReg, RegState::Implicit); 5259 if (ImplicitSReg != 0) 5260 MIB.addReg(ImplicitSReg, RegState::Implicit); 5261 break; 5262 } 5263 5264 // In general there's no single instruction that can perform an S <-> S 5265 // move in NEON space, but a pair of VEXT instructions *can* do the 5266 // job. It turns out that the VEXTs needed will only use DSrc once, with 5267 // the position based purely on the combination of lane-0 and lane-1 5268 // involved. For example 5269 // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1 5270 // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1 5271 // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1 5272 // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1 5273 // 5274 // Pattern of the MachineInstrs is: 5275 // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits) 5276 MachineInstrBuilder NewMIB; 5277 NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32), 5278 DDst); 5279 5280 // On the first instruction, both DSrc and DDst may be undef if present. 5281 // Specifically when the original instruction didn't have them as an 5282 // <imp-use>. 5283 unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst; 5284 bool CurUndef = !MI.readsRegister(CurReg, TRI); 5285 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)); 5286 5287 CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst; 5288 CurUndef = !MI.readsRegister(CurReg, TRI); 5289 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)) 5290 .addImm(1) 5291 .add(predOps(ARMCC::AL)); 5292 5293 if (SrcLane == DstLane) 5294 NewMIB.addReg(SrcReg, RegState::Implicit); 5295 5296 MI.setDesc(get(ARM::VEXTd32)); 5297 MIB.addReg(DDst, RegState::Define); 5298 5299 // On the second instruction, DDst has definitely been defined above, so 5300 // it is not undef. DSrc, if present, can be undef as above. 5301 CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst; 5302 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); 5303 MIB.addReg(CurReg, getUndefRegState(CurUndef)); 5304 5305 CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst; 5306 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); 5307 MIB.addReg(CurReg, getUndefRegState(CurUndef)) 5308 .addImm(1) 5309 .add(predOps(ARMCC::AL)); 5310 5311 if (SrcLane != DstLane) 5312 MIB.addReg(SrcReg, RegState::Implicit); 5313 5314 // As before, the original destination is no longer represented, add it 5315 // implicitly. 5316 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 5317 if (ImplicitSReg != 0) 5318 MIB.addReg(ImplicitSReg, RegState::Implicit); 5319 break; 5320 } 5321 } 5322 } 5323 5324 //===----------------------------------------------------------------------===// 5325 // Partial register updates 5326 //===----------------------------------------------------------------------===// 5327 // 5328 // Swift renames NEON registers with 64-bit granularity. That means any 5329 // instruction writing an S-reg implicitly reads the containing D-reg. The 5330 // problem is mostly avoided by translating f32 operations to v2f32 operations 5331 // on D-registers, but f32 loads are still a problem. 5332 // 5333 // These instructions can load an f32 into a NEON register: 5334 // 5335 // VLDRS - Only writes S, partial D update. 5336 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops. 5337 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops. 5338 // 5339 // FCONSTD can be used as a dependency-breaking instruction. 5340 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance( 5341 const MachineInstr &MI, unsigned OpNum, 5342 const TargetRegisterInfo *TRI) const { 5343 auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance(); 5344 if (!PartialUpdateClearance) 5345 return 0; 5346 5347 assert(TRI && "Need TRI instance"); 5348 5349 const MachineOperand &MO = MI.getOperand(OpNum); 5350 if (MO.readsReg()) 5351 return 0; 5352 Register Reg = MO.getReg(); 5353 int UseOp = -1; 5354 5355 switch (MI.getOpcode()) { 5356 // Normal instructions writing only an S-register. 5357 case ARM::VLDRS: 5358 case ARM::FCONSTS: 5359 case ARM::VMOVSR: 5360 case ARM::VMOVv8i8: 5361 case ARM::VMOVv4i16: 5362 case ARM::VMOVv2i32: 5363 case ARM::VMOVv2f32: 5364 case ARM::VMOVv1i64: 5365 UseOp = MI.findRegisterUseOperandIdx(Reg, TRI, false); 5366 break; 5367 5368 // Explicitly reads the dependency. 5369 case ARM::VLD1LNd32: 5370 UseOp = 3; 5371 break; 5372 default: 5373 return 0; 5374 } 5375 5376 // If this instruction actually reads a value from Reg, there is no unwanted 5377 // dependency. 5378 if (UseOp != -1 && MI.getOperand(UseOp).readsReg()) 5379 return 0; 5380 5381 // We must be able to clobber the whole D-reg. 5382 if (Reg.isVirtual()) { 5383 // Virtual register must be a def undef foo:ssub_0 operand. 5384 if (!MO.getSubReg() || MI.readsVirtualRegister(Reg)) 5385 return 0; 5386 } else if (ARM::SPRRegClass.contains(Reg)) { 5387 // Physical register: MI must define the full D-reg. 5388 unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0, 5389 &ARM::DPRRegClass); 5390 if (!DReg || !MI.definesRegister(DReg, TRI)) 5391 return 0; 5392 } 5393 5394 // MI has an unwanted D-register dependency. 5395 // Avoid defs in the previous N instructrions. 5396 return PartialUpdateClearance; 5397 } 5398 5399 // Break a partial register dependency after getPartialRegUpdateClearance 5400 // returned non-zero. 5401 void ARMBaseInstrInfo::breakPartialRegDependency( 5402 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { 5403 assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def"); 5404 assert(TRI && "Need TRI instance"); 5405 5406 const MachineOperand &MO = MI.getOperand(OpNum); 5407 Register Reg = MO.getReg(); 5408 assert(Reg.isPhysical() && "Can't break virtual register dependencies."); 5409 unsigned DReg = Reg; 5410 5411 // If MI defines an S-reg, find the corresponding D super-register. 5412 if (ARM::SPRRegClass.contains(Reg)) { 5413 DReg = ARM::D0 + (Reg - ARM::S0) / 2; 5414 assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken"); 5415 } 5416 5417 assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps"); 5418 assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg"); 5419 5420 // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines 5421 // the full D-register by loading the same value to both lanes. The 5422 // instruction is micro-coded with 2 uops, so don't do this until we can 5423 // properly schedule micro-coded instructions. The dispatcher stalls cause 5424 // too big regressions. 5425 5426 // Insert the dependency-breaking FCONSTD before MI. 5427 // 96 is the encoding of 0.5, but the actual value doesn't matter here. 5428 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg) 5429 .addImm(96) 5430 .add(predOps(ARMCC::AL)); 5431 MI.addRegisterKilled(DReg, TRI, true); 5432 } 5433 5434 bool ARMBaseInstrInfo::hasNOP() const { 5435 return Subtarget.hasFeature(ARM::HasV6KOps); 5436 } 5437 5438 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const { 5439 if (MI->getNumOperands() < 4) 5440 return true; 5441 unsigned ShOpVal = MI->getOperand(3).getImm(); 5442 unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal); 5443 // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1. 5444 if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) || 5445 ((ShImm == 1 || ShImm == 2) && 5446 ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl)) 5447 return true; 5448 5449 return false; 5450 } 5451 5452 bool ARMBaseInstrInfo::getRegSequenceLikeInputs( 5453 const MachineInstr &MI, unsigned DefIdx, 5454 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 5455 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5456 assert(MI.isRegSequenceLike() && "Invalid kind of instruction"); 5457 5458 switch (MI.getOpcode()) { 5459 case ARM::VMOVDRR: 5460 // dX = VMOVDRR rY, rZ 5461 // is the same as: 5462 // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1 5463 // Populate the InputRegs accordingly. 5464 // rY 5465 const MachineOperand *MOReg = &MI.getOperand(1); 5466 if (!MOReg->isUndef()) 5467 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), 5468 MOReg->getSubReg(), ARM::ssub_0)); 5469 // rZ 5470 MOReg = &MI.getOperand(2); 5471 if (!MOReg->isUndef()) 5472 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), 5473 MOReg->getSubReg(), ARM::ssub_1)); 5474 return true; 5475 } 5476 llvm_unreachable("Target dependent opcode missing"); 5477 } 5478 5479 bool ARMBaseInstrInfo::getExtractSubregLikeInputs( 5480 const MachineInstr &MI, unsigned DefIdx, 5481 RegSubRegPairAndIdx &InputReg) const { 5482 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5483 assert(MI.isExtractSubregLike() && "Invalid kind of instruction"); 5484 5485 switch (MI.getOpcode()) { 5486 case ARM::VMOVRRD: 5487 // rX, rY = VMOVRRD dZ 5488 // is the same as: 5489 // rX = EXTRACT_SUBREG dZ, ssub_0 5490 // rY = EXTRACT_SUBREG dZ, ssub_1 5491 const MachineOperand &MOReg = MI.getOperand(2); 5492 if (MOReg.isUndef()) 5493 return false; 5494 InputReg.Reg = MOReg.getReg(); 5495 InputReg.SubReg = MOReg.getSubReg(); 5496 InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1; 5497 return true; 5498 } 5499 llvm_unreachable("Target dependent opcode missing"); 5500 } 5501 5502 bool ARMBaseInstrInfo::getInsertSubregLikeInputs( 5503 const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, 5504 RegSubRegPairAndIdx &InsertedReg) const { 5505 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5506 assert(MI.isInsertSubregLike() && "Invalid kind of instruction"); 5507 5508 switch (MI.getOpcode()) { 5509 case ARM::VSETLNi32: 5510 case ARM::MVE_VMOV_to_lane_32: 5511 // dX = VSETLNi32 dY, rZ, imm 5512 // qX = MVE_VMOV_to_lane_32 qY, rZ, imm 5513 const MachineOperand &MOBaseReg = MI.getOperand(1); 5514 const MachineOperand &MOInsertedReg = MI.getOperand(2); 5515 if (MOInsertedReg.isUndef()) 5516 return false; 5517 const MachineOperand &MOIndex = MI.getOperand(3); 5518 BaseReg.Reg = MOBaseReg.getReg(); 5519 BaseReg.SubReg = MOBaseReg.getSubReg(); 5520 5521 InsertedReg.Reg = MOInsertedReg.getReg(); 5522 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 5523 InsertedReg.SubIdx = ARM::ssub_0 + MOIndex.getImm(); 5524 return true; 5525 } 5526 llvm_unreachable("Target dependent opcode missing"); 5527 } 5528 5529 std::pair<unsigned, unsigned> 5530 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 5531 const unsigned Mask = ARMII::MO_OPTION_MASK; 5532 return std::make_pair(TF & Mask, TF & ~Mask); 5533 } 5534 5535 ArrayRef<std::pair<unsigned, const char *>> 5536 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 5537 using namespace ARMII; 5538 5539 static const std::pair<unsigned, const char *> TargetFlags[] = { 5540 {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}, 5541 {MO_LO_0_7, "arm-lo-0-7"}, {MO_HI_0_7, "arm-hi-0-7"}, 5542 {MO_LO_8_15, "arm-lo-8-15"}, {MO_HI_8_15, "arm-hi-8-15"}, 5543 }; 5544 return ArrayRef(TargetFlags); 5545 } 5546 5547 ArrayRef<std::pair<unsigned, const char *>> 5548 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 5549 using namespace ARMII; 5550 5551 static const std::pair<unsigned, const char *> TargetFlags[] = { 5552 {MO_COFFSTUB, "arm-coffstub"}, 5553 {MO_GOT, "arm-got"}, 5554 {MO_SBREL, "arm-sbrel"}, 5555 {MO_DLLIMPORT, "arm-dllimport"}, 5556 {MO_SECREL, "arm-secrel"}, 5557 {MO_NONLAZY, "arm-nonlazy"}}; 5558 return ArrayRef(TargetFlags); 5559 } 5560 5561 std::optional<RegImmPair> 5562 ARMBaseInstrInfo::isAddImmediate(const MachineInstr &MI, Register Reg) const { 5563 int Sign = 1; 5564 unsigned Opcode = MI.getOpcode(); 5565 int64_t Offset = 0; 5566 5567 // TODO: Handle cases where Reg is a super- or sub-register of the 5568 // destination register. 5569 const MachineOperand &Op0 = MI.getOperand(0); 5570 if (!Op0.isReg() || Reg != Op0.getReg()) 5571 return std::nullopt; 5572 5573 // We describe SUBri or ADDri instructions. 5574 if (Opcode == ARM::SUBri) 5575 Sign = -1; 5576 else if (Opcode != ARM::ADDri) 5577 return std::nullopt; 5578 5579 // TODO: Third operand can be global address (usually some string). Since 5580 // strings can be relocated we cannot calculate their offsets for 5581 // now. 5582 if (!MI.getOperand(1).isReg() || !MI.getOperand(2).isImm()) 5583 return std::nullopt; 5584 5585 Offset = MI.getOperand(2).getImm() * Sign; 5586 return RegImmPair{MI.getOperand(1).getReg(), Offset}; 5587 } 5588 5589 bool llvm::registerDefinedBetween(unsigned Reg, 5590 MachineBasicBlock::iterator From, 5591 MachineBasicBlock::iterator To, 5592 const TargetRegisterInfo *TRI) { 5593 for (auto I = From; I != To; ++I) 5594 if (I->modifiesRegister(Reg, TRI)) 5595 return true; 5596 return false; 5597 } 5598 5599 MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br, 5600 const TargetRegisterInfo *TRI) { 5601 // Search backwards to the instruction that defines CSPR. This may or not 5602 // be a CMP, we check that after this loop. If we find another instruction 5603 // that reads cpsr, we return nullptr. 5604 MachineBasicBlock::iterator CmpMI = Br; 5605 while (CmpMI != Br->getParent()->begin()) { 5606 --CmpMI; 5607 if (CmpMI->modifiesRegister(ARM::CPSR, TRI)) 5608 break; 5609 if (CmpMI->readsRegister(ARM::CPSR, TRI)) 5610 break; 5611 } 5612 5613 // Check that this inst is a CMP r[0-7], #0 and that the register 5614 // is not redefined between the cmp and the br. 5615 if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri) 5616 return nullptr; 5617 Register Reg = CmpMI->getOperand(0).getReg(); 5618 Register PredReg; 5619 ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg); 5620 if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0) 5621 return nullptr; 5622 if (!isARMLowRegister(Reg)) 5623 return nullptr; 5624 if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI)) 5625 return nullptr; 5626 5627 return &*CmpMI; 5628 } 5629 5630 unsigned llvm::ConstantMaterializationCost(unsigned Val, 5631 const ARMSubtarget *Subtarget, 5632 bool ForCodesize) { 5633 if (Subtarget->isThumb()) { 5634 if (Val <= 255) // MOV 5635 return ForCodesize ? 2 : 1; 5636 if (Subtarget->hasV6T2Ops() && (Val <= 0xffff || // MOV 5637 ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW 5638 ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN 5639 return ForCodesize ? 4 : 1; 5640 if (Val <= 510) // MOV + ADDi8 5641 return ForCodesize ? 4 : 2; 5642 if (~Val <= 255) // MOV + MVN 5643 return ForCodesize ? 4 : 2; 5644 if (ARM_AM::isThumbImmShiftedVal(Val)) // MOV + LSL 5645 return ForCodesize ? 4 : 2; 5646 } else { 5647 if (ARM_AM::getSOImmVal(Val) != -1) // MOV 5648 return ForCodesize ? 4 : 1; 5649 if (ARM_AM::getSOImmVal(~Val) != -1) // MVN 5650 return ForCodesize ? 4 : 1; 5651 if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW 5652 return ForCodesize ? 4 : 1; 5653 if (ARM_AM::isSOImmTwoPartVal(Val)) // two instrs 5654 return ForCodesize ? 8 : 2; 5655 if (ARM_AM::isSOImmTwoPartValNeg(Val)) // two instrs 5656 return ForCodesize ? 8 : 2; 5657 } 5658 if (Subtarget->useMovt()) // MOVW + MOVT 5659 return ForCodesize ? 8 : 2; 5660 return ForCodesize ? 8 : 3; // Literal pool load 5661 } 5662 5663 bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2, 5664 const ARMSubtarget *Subtarget, 5665 bool ForCodesize) { 5666 // Check with ForCodesize 5667 unsigned Cost1 = ConstantMaterializationCost(Val1, Subtarget, ForCodesize); 5668 unsigned Cost2 = ConstantMaterializationCost(Val2, Subtarget, ForCodesize); 5669 if (Cost1 < Cost2) 5670 return true; 5671 if (Cost1 > Cost2) 5672 return false; 5673 5674 // If they are equal, try with !ForCodesize 5675 return ConstantMaterializationCost(Val1, Subtarget, !ForCodesize) < 5676 ConstantMaterializationCost(Val2, Subtarget, !ForCodesize); 5677 } 5678 5679 /// Constants defining how certain sequences should be outlined. 5680 /// This encompasses how an outlined function should be called, and what kind of 5681 /// frame should be emitted for that outlined function. 5682 /// 5683 /// \p MachineOutlinerTailCall implies that the function is being created from 5684 /// a sequence of instructions ending in a return. 5685 /// 5686 /// That is, 5687 /// 5688 /// I1 OUTLINED_FUNCTION: 5689 /// I2 --> B OUTLINED_FUNCTION I1 5690 /// BX LR I2 5691 /// BX LR 5692 /// 5693 /// +-------------------------+--------+-----+ 5694 /// | | Thumb2 | ARM | 5695 /// +-------------------------+--------+-----+ 5696 /// | Call overhead in Bytes | 4 | 4 | 5697 /// | Frame overhead in Bytes | 0 | 0 | 5698 /// | Stack fixup required | No | No | 5699 /// +-------------------------+--------+-----+ 5700 /// 5701 /// \p MachineOutlinerThunk implies that the function is being created from 5702 /// a sequence of instructions ending in a call. The outlined function is 5703 /// called with a BL instruction, and the outlined function tail-calls the 5704 /// original call destination. 5705 /// 5706 /// That is, 5707 /// 5708 /// I1 OUTLINED_FUNCTION: 5709 /// I2 --> BL OUTLINED_FUNCTION I1 5710 /// BL f I2 5711 /// B f 5712 /// 5713 /// +-------------------------+--------+-----+ 5714 /// | | Thumb2 | ARM | 5715 /// +-------------------------+--------+-----+ 5716 /// | Call overhead in Bytes | 4 | 4 | 5717 /// | Frame overhead in Bytes | 0 | 0 | 5718 /// | Stack fixup required | No | No | 5719 /// +-------------------------+--------+-----+ 5720 /// 5721 /// \p MachineOutlinerNoLRSave implies that the function should be called using 5722 /// a BL instruction, but doesn't require LR to be saved and restored. This 5723 /// happens when LR is known to be dead. 5724 /// 5725 /// That is, 5726 /// 5727 /// I1 OUTLINED_FUNCTION: 5728 /// I2 --> BL OUTLINED_FUNCTION I1 5729 /// I3 I2 5730 /// I3 5731 /// BX LR 5732 /// 5733 /// +-------------------------+--------+-----+ 5734 /// | | Thumb2 | ARM | 5735 /// +-------------------------+--------+-----+ 5736 /// | Call overhead in Bytes | 4 | 4 | 5737 /// | Frame overhead in Bytes | 2 | 4 | 5738 /// | Stack fixup required | No | No | 5739 /// +-------------------------+--------+-----+ 5740 /// 5741 /// \p MachineOutlinerRegSave implies that the function should be called with a 5742 /// save and restore of LR to an available register. This allows us to avoid 5743 /// stack fixups. Note that this outlining variant is compatible with the 5744 /// NoLRSave case. 5745 /// 5746 /// That is, 5747 /// 5748 /// I1 Save LR OUTLINED_FUNCTION: 5749 /// I2 --> BL OUTLINED_FUNCTION I1 5750 /// I3 Restore LR I2 5751 /// I3 5752 /// BX LR 5753 /// 5754 /// +-------------------------+--------+-----+ 5755 /// | | Thumb2 | ARM | 5756 /// +-------------------------+--------+-----+ 5757 /// | Call overhead in Bytes | 8 | 12 | 5758 /// | Frame overhead in Bytes | 2 | 4 | 5759 /// | Stack fixup required | No | No | 5760 /// +-------------------------+--------+-----+ 5761 /// 5762 /// \p MachineOutlinerDefault implies that the function should be called with 5763 /// a save and restore of LR to the stack. 5764 /// 5765 /// That is, 5766 /// 5767 /// I1 Save LR OUTLINED_FUNCTION: 5768 /// I2 --> BL OUTLINED_FUNCTION I1 5769 /// I3 Restore LR I2 5770 /// I3 5771 /// BX LR 5772 /// 5773 /// +-------------------------+--------+-----+ 5774 /// | | Thumb2 | ARM | 5775 /// +-------------------------+--------+-----+ 5776 /// | Call overhead in Bytes | 8 | 12 | 5777 /// | Frame overhead in Bytes | 2 | 4 | 5778 /// | Stack fixup required | Yes | Yes | 5779 /// +-------------------------+--------+-----+ 5780 5781 enum MachineOutlinerClass { 5782 MachineOutlinerTailCall, 5783 MachineOutlinerThunk, 5784 MachineOutlinerNoLRSave, 5785 MachineOutlinerRegSave, 5786 MachineOutlinerDefault 5787 }; 5788 5789 enum MachineOutlinerMBBFlags { 5790 LRUnavailableSomewhere = 0x2, 5791 HasCalls = 0x4, 5792 UnsafeRegsDead = 0x8 5793 }; 5794 5795 struct OutlinerCosts { 5796 int CallTailCall; 5797 int FrameTailCall; 5798 int CallThunk; 5799 int FrameThunk; 5800 int CallNoLRSave; 5801 int FrameNoLRSave; 5802 int CallRegSave; 5803 int FrameRegSave; 5804 int CallDefault; 5805 int FrameDefault; 5806 int SaveRestoreLROnStack; 5807 5808 OutlinerCosts(const ARMSubtarget &target) 5809 : CallTailCall(target.isThumb() ? 4 : 4), 5810 FrameTailCall(target.isThumb() ? 0 : 0), 5811 CallThunk(target.isThumb() ? 4 : 4), 5812 FrameThunk(target.isThumb() ? 0 : 0), 5813 CallNoLRSave(target.isThumb() ? 4 : 4), 5814 FrameNoLRSave(target.isThumb() ? 2 : 4), 5815 CallRegSave(target.isThumb() ? 8 : 12), 5816 FrameRegSave(target.isThumb() ? 2 : 4), 5817 CallDefault(target.isThumb() ? 8 : 12), 5818 FrameDefault(target.isThumb() ? 2 : 4), 5819 SaveRestoreLROnStack(target.isThumb() ? 8 : 8) {} 5820 }; 5821 5822 Register 5823 ARMBaseInstrInfo::findRegisterToSaveLRTo(outliner::Candidate &C) const { 5824 MachineFunction *MF = C.getMF(); 5825 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 5826 const ARMBaseRegisterInfo *ARI = 5827 static_cast<const ARMBaseRegisterInfo *>(&TRI); 5828 5829 BitVector regsReserved = ARI->getReservedRegs(*MF); 5830 // Check if there is an available register across the sequence that we can 5831 // use. 5832 for (Register Reg : ARM::rGPRRegClass) { 5833 if (!(Reg < regsReserved.size() && regsReserved.test(Reg)) && 5834 Reg != ARM::LR && // LR is not reserved, but don't use it. 5835 Reg != ARM::R12 && // R12 is not guaranteed to be preserved. 5836 C.isAvailableAcrossAndOutOfSeq(Reg, TRI) && 5837 C.isAvailableInsideSeq(Reg, TRI)) 5838 return Reg; 5839 } 5840 return Register(); 5841 } 5842 5843 // Compute liveness of LR at the point after the interval [I, E), which 5844 // denotes a *backward* iteration through instructions. Used only for return 5845 // basic blocks, which do not end with a tail call. 5846 static bool isLRAvailable(const TargetRegisterInfo &TRI, 5847 MachineBasicBlock::reverse_iterator I, 5848 MachineBasicBlock::reverse_iterator E) { 5849 // At the end of the function LR dead. 5850 bool Live = false; 5851 for (; I != E; ++I) { 5852 const MachineInstr &MI = *I; 5853 5854 // Check defs of LR. 5855 if (MI.modifiesRegister(ARM::LR, &TRI)) 5856 Live = false; 5857 5858 // Check uses of LR. 5859 unsigned Opcode = MI.getOpcode(); 5860 if (Opcode == ARM::BX_RET || Opcode == ARM::MOVPCLR || 5861 Opcode == ARM::SUBS_PC_LR || Opcode == ARM::tBX_RET || 5862 Opcode == ARM::tBXNS_RET) { 5863 // These instructions use LR, but it's not an (explicit or implicit) 5864 // operand. 5865 Live = true; 5866 continue; 5867 } 5868 if (MI.readsRegister(ARM::LR, &TRI)) 5869 Live = true; 5870 } 5871 return !Live; 5872 } 5873 5874 std::optional<outliner::OutlinedFunction> 5875 ARMBaseInstrInfo::getOutliningCandidateInfo( 5876 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const { 5877 unsigned SequenceSize = 0; 5878 for (auto &MI : RepeatedSequenceLocs[0]) 5879 SequenceSize += getInstSizeInBytes(MI); 5880 5881 // Properties about candidate MBBs that hold for all of them. 5882 unsigned FlagsSetInAll = 0xF; 5883 5884 // Compute liveness information for each candidate, and set FlagsSetInAll. 5885 const TargetRegisterInfo &TRI = getRegisterInfo(); 5886 for (outliner::Candidate &C : RepeatedSequenceLocs) 5887 FlagsSetInAll &= C.Flags; 5888 5889 // According to the ARM Procedure Call Standard, the following are 5890 // undefined on entry/exit from a function call: 5891 // 5892 // * Register R12(IP), 5893 // * Condition codes (and thus the CPSR register) 5894 // 5895 // Since we control the instructions which are part of the outlined regions 5896 // we don't need to be fully compliant with the AAPCS, but we have to 5897 // guarantee that if a veneer is inserted at link time the code is still 5898 // correct. Because of this, we can't outline any sequence of instructions 5899 // where one of these registers is live into/across it. Thus, we need to 5900 // delete those candidates. 5901 auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) { 5902 // If the unsafe registers in this block are all dead, then we don't need 5903 // to compute liveness here. 5904 if (C.Flags & UnsafeRegsDead) 5905 return false; 5906 return C.isAnyUnavailableAcrossOrOutOfSeq({ARM::R12, ARM::CPSR}, TRI); 5907 }; 5908 5909 // Are there any candidates where those registers are live? 5910 if (!(FlagsSetInAll & UnsafeRegsDead)) { 5911 // Erase every candidate that violates the restrictions above. (It could be 5912 // true that we have viable candidates, so it's not worth bailing out in 5913 // the case that, say, 1 out of 20 candidates violate the restructions.) 5914 llvm::erase_if(RepeatedSequenceLocs, CantGuaranteeValueAcrossCall); 5915 5916 // If the sequence doesn't have enough candidates left, then we're done. 5917 if (RepeatedSequenceLocs.size() < 2) 5918 return std::nullopt; 5919 } 5920 5921 // We expect the majority of the outlining candidates to be in consensus with 5922 // regard to return address sign and authentication, and branch target 5923 // enforcement, in other words, partitioning according to all the four 5924 // possible combinations of PAC-RET and BTI is going to yield one big subset 5925 // and three small (likely empty) subsets. That allows us to cull incompatible 5926 // candidates separately for PAC-RET and BTI. 5927 5928 // Partition the candidates in two sets: one with BTI enabled and one with BTI 5929 // disabled. Remove the candidates from the smaller set. If they are the same 5930 // number prefer the non-BTI ones for outlining, since they have less 5931 // overhead. 5932 auto NoBTI = 5933 llvm::partition(RepeatedSequenceLocs, [](const outliner::Candidate &C) { 5934 const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>(); 5935 return AFI.branchTargetEnforcement(); 5936 }); 5937 if (std::distance(RepeatedSequenceLocs.begin(), NoBTI) > 5938 std::distance(NoBTI, RepeatedSequenceLocs.end())) 5939 RepeatedSequenceLocs.erase(NoBTI, RepeatedSequenceLocs.end()); 5940 else 5941 RepeatedSequenceLocs.erase(RepeatedSequenceLocs.begin(), NoBTI); 5942 5943 if (RepeatedSequenceLocs.size() < 2) 5944 return std::nullopt; 5945 5946 // Likewise, partition the candidates according to PAC-RET enablement. 5947 auto NoPAC = 5948 llvm::partition(RepeatedSequenceLocs, [](const outliner::Candidate &C) { 5949 const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>(); 5950 // If the function happens to not spill the LR, do not disqualify it 5951 // from the outlining. 5952 return AFI.shouldSignReturnAddress(true); 5953 }); 5954 if (std::distance(RepeatedSequenceLocs.begin(), NoPAC) > 5955 std::distance(NoPAC, RepeatedSequenceLocs.end())) 5956 RepeatedSequenceLocs.erase(NoPAC, RepeatedSequenceLocs.end()); 5957 else 5958 RepeatedSequenceLocs.erase(RepeatedSequenceLocs.begin(), NoPAC); 5959 5960 if (RepeatedSequenceLocs.size() < 2) 5961 return std::nullopt; 5962 5963 // At this point, we have only "safe" candidates to outline. Figure out 5964 // frame + call instruction information. 5965 5966 unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back().getOpcode(); 5967 5968 // Helper lambda which sets call information for every candidate. 5969 auto SetCandidateCallInfo = 5970 [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) { 5971 for (outliner::Candidate &C : RepeatedSequenceLocs) 5972 C.setCallInfo(CallID, NumBytesForCall); 5973 }; 5974 5975 OutlinerCosts Costs(Subtarget); 5976 5977 const auto &SomeMFI = 5978 *RepeatedSequenceLocs.front().getMF()->getInfo<ARMFunctionInfo>(); 5979 // Adjust costs to account for the BTI instructions. 5980 if (SomeMFI.branchTargetEnforcement()) { 5981 Costs.FrameDefault += 4; 5982 Costs.FrameNoLRSave += 4; 5983 Costs.FrameRegSave += 4; 5984 Costs.FrameTailCall += 4; 5985 Costs.FrameThunk += 4; 5986 } 5987 5988 // Adjust costs to account for sign and authentication instructions. 5989 if (SomeMFI.shouldSignReturnAddress(true)) { 5990 Costs.CallDefault += 8; // +PAC instr, +AUT instr 5991 Costs.SaveRestoreLROnStack += 8; // +PAC instr, +AUT instr 5992 } 5993 5994 unsigned FrameID = MachineOutlinerDefault; 5995 unsigned NumBytesToCreateFrame = Costs.FrameDefault; 5996 5997 // If the last instruction in any candidate is a terminator, then we should 5998 // tail call all of the candidates. 5999 if (RepeatedSequenceLocs[0].back().isTerminator()) { 6000 FrameID = MachineOutlinerTailCall; 6001 NumBytesToCreateFrame = Costs.FrameTailCall; 6002 SetCandidateCallInfo(MachineOutlinerTailCall, Costs.CallTailCall); 6003 } else if (LastInstrOpcode == ARM::BL || LastInstrOpcode == ARM::BLX || 6004 LastInstrOpcode == ARM::BLX_noip || LastInstrOpcode == ARM::tBL || 6005 LastInstrOpcode == ARM::tBLXr || 6006 LastInstrOpcode == ARM::tBLXr_noip || 6007 LastInstrOpcode == ARM::tBLXi) { 6008 FrameID = MachineOutlinerThunk; 6009 NumBytesToCreateFrame = Costs.FrameThunk; 6010 SetCandidateCallInfo(MachineOutlinerThunk, Costs.CallThunk); 6011 } else { 6012 // We need to decide how to emit calls + frames. We can always emit the same 6013 // frame if we don't need to save to the stack. If we have to save to the 6014 // stack, then we need a different frame. 6015 unsigned NumBytesNoStackCalls = 0; 6016 std::vector<outliner::Candidate> CandidatesWithoutStackFixups; 6017 6018 for (outliner::Candidate &C : RepeatedSequenceLocs) { 6019 // LR liveness is overestimated in return blocks, unless they end with a 6020 // tail call. 6021 const auto Last = C.getMBB()->rbegin(); 6022 const bool LRIsAvailable = 6023 C.getMBB()->isReturnBlock() && !Last->isCall() 6024 ? isLRAvailable(TRI, Last, 6025 (MachineBasicBlock::reverse_iterator)C.begin()) 6026 : C.isAvailableAcrossAndOutOfSeq(ARM::LR, TRI); 6027 if (LRIsAvailable) { 6028 FrameID = MachineOutlinerNoLRSave; 6029 NumBytesNoStackCalls += Costs.CallNoLRSave; 6030 C.setCallInfo(MachineOutlinerNoLRSave, Costs.CallNoLRSave); 6031 CandidatesWithoutStackFixups.push_back(C); 6032 } 6033 6034 // Is an unused register available? If so, we won't modify the stack, so 6035 // we can outline with the same frame type as those that don't save LR. 6036 else if (findRegisterToSaveLRTo(C)) { 6037 FrameID = MachineOutlinerRegSave; 6038 NumBytesNoStackCalls += Costs.CallRegSave; 6039 C.setCallInfo(MachineOutlinerRegSave, Costs.CallRegSave); 6040 CandidatesWithoutStackFixups.push_back(C); 6041 } 6042 6043 // Is SP used in the sequence at all? If not, we don't have to modify 6044 // the stack, so we are guaranteed to get the same frame. 6045 else if (C.isAvailableInsideSeq(ARM::SP, TRI)) { 6046 NumBytesNoStackCalls += Costs.CallDefault; 6047 C.setCallInfo(MachineOutlinerDefault, Costs.CallDefault); 6048 CandidatesWithoutStackFixups.push_back(C); 6049 } 6050 6051 // If we outline this, we need to modify the stack. Pretend we don't 6052 // outline this by saving all of its bytes. 6053 else 6054 NumBytesNoStackCalls += SequenceSize; 6055 } 6056 6057 // If there are no places where we have to save LR, then note that we don't 6058 // have to update the stack. Otherwise, give every candidate the default 6059 // call type 6060 if (NumBytesNoStackCalls <= 6061 RepeatedSequenceLocs.size() * Costs.CallDefault) { 6062 RepeatedSequenceLocs = CandidatesWithoutStackFixups; 6063 FrameID = MachineOutlinerNoLRSave; 6064 if (RepeatedSequenceLocs.size() < 2) 6065 return std::nullopt; 6066 } else 6067 SetCandidateCallInfo(MachineOutlinerDefault, Costs.CallDefault); 6068 } 6069 6070 // Does every candidate's MBB contain a call? If so, then we might have a 6071 // call in the range. 6072 if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) { 6073 // check if the range contains a call. These require a save + restore of 6074 // the link register. 6075 outliner::Candidate &FirstCand = RepeatedSequenceLocs[0]; 6076 if (std::any_of(FirstCand.begin(), std::prev(FirstCand.end()), 6077 [](const MachineInstr &MI) { return MI.isCall(); })) 6078 NumBytesToCreateFrame += Costs.SaveRestoreLROnStack; 6079 6080 // Handle the last instruction separately. If it is tail call, then the 6081 // last instruction is a call, we don't want to save + restore in this 6082 // case. However, it could be possible that the last instruction is a 6083 // call without it being valid to tail call this sequence. We should 6084 // consider this as well. 6085 else if (FrameID != MachineOutlinerThunk && 6086 FrameID != MachineOutlinerTailCall && FirstCand.back().isCall()) 6087 NumBytesToCreateFrame += Costs.SaveRestoreLROnStack; 6088 } 6089 6090 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 6091 NumBytesToCreateFrame, FrameID); 6092 } 6093 6094 bool ARMBaseInstrInfo::checkAndUpdateStackOffset(MachineInstr *MI, 6095 int64_t Fixup, 6096 bool Updt) const { 6097 int SPIdx = MI->findRegisterUseOperandIdx(ARM::SP, /*TRI=*/nullptr); 6098 unsigned AddrMode = (MI->getDesc().TSFlags & ARMII::AddrModeMask); 6099 if (SPIdx < 0) 6100 // No SP operand 6101 return true; 6102 else if (SPIdx != 1 && (AddrMode != ARMII::AddrModeT2_i8s4 || SPIdx != 2)) 6103 // If SP is not the base register we can't do much 6104 return false; 6105 6106 // Stack might be involved but addressing mode doesn't handle any offset. 6107 // Rq: AddrModeT1_[1|2|4] don't operate on SP 6108 if (AddrMode == ARMII::AddrMode1 || // Arithmetic instructions 6109 AddrMode == ARMII::AddrMode4 || // Load/Store Multiple 6110 AddrMode == ARMII::AddrMode6 || // Neon Load/Store Multiple 6111 AddrMode == ARMII::AddrModeT2_so || // SP can't be used as based register 6112 AddrMode == ARMII::AddrModeT2_pc || // PCrel access 6113 AddrMode == ARMII::AddrMode2 || // Used by PRE and POST indexed LD/ST 6114 AddrMode == ARMII::AddrModeT2_i7 || // v8.1-M MVE 6115 AddrMode == ARMII::AddrModeT2_i7s2 || // v8.1-M MVE 6116 AddrMode == ARMII::AddrModeT2_i7s4 || // v8.1-M sys regs VLDR/VSTR 6117 AddrMode == ARMII::AddrModeNone || 6118 AddrMode == ARMII::AddrModeT2_i8 || // Pre/Post inc instructions 6119 AddrMode == ARMII::AddrModeT2_i8neg) // Always negative imm 6120 return false; 6121 6122 unsigned NumOps = MI->getDesc().getNumOperands(); 6123 unsigned ImmIdx = NumOps - 3; 6124 6125 const MachineOperand &Offset = MI->getOperand(ImmIdx); 6126 assert(Offset.isImm() && "Is not an immediate"); 6127 int64_t OffVal = Offset.getImm(); 6128 6129 if (OffVal < 0) 6130 // Don't override data if the are below SP. 6131 return false; 6132 6133 unsigned NumBits = 0; 6134 unsigned Scale = 1; 6135 6136 switch (AddrMode) { 6137 case ARMII::AddrMode3: 6138 if (ARM_AM::getAM3Op(OffVal) == ARM_AM::sub) 6139 return false; 6140 OffVal = ARM_AM::getAM3Offset(OffVal); 6141 NumBits = 8; 6142 break; 6143 case ARMII::AddrMode5: 6144 if (ARM_AM::getAM5Op(OffVal) == ARM_AM::sub) 6145 return false; 6146 OffVal = ARM_AM::getAM5Offset(OffVal); 6147 NumBits = 8; 6148 Scale = 4; 6149 break; 6150 case ARMII::AddrMode5FP16: 6151 if (ARM_AM::getAM5FP16Op(OffVal) == ARM_AM::sub) 6152 return false; 6153 OffVal = ARM_AM::getAM5FP16Offset(OffVal); 6154 NumBits = 8; 6155 Scale = 2; 6156 break; 6157 case ARMII::AddrModeT2_i8pos: 6158 NumBits = 8; 6159 break; 6160 case ARMII::AddrModeT2_i8s4: 6161 // FIXME: Values are already scaled in this addressing mode. 6162 assert((Fixup & 3) == 0 && "Can't encode this offset!"); 6163 NumBits = 10; 6164 break; 6165 case ARMII::AddrModeT2_ldrex: 6166 NumBits = 8; 6167 Scale = 4; 6168 break; 6169 case ARMII::AddrModeT2_i12: 6170 case ARMII::AddrMode_i12: 6171 NumBits = 12; 6172 break; 6173 case ARMII::AddrModeT1_s: // SP-relative LD/ST 6174 NumBits = 8; 6175 Scale = 4; 6176 break; 6177 default: 6178 llvm_unreachable("Unsupported addressing mode!"); 6179 } 6180 // Make sure the offset is encodable for instructions that scale the 6181 // immediate. 6182 assert(((OffVal * Scale + Fixup) & (Scale - 1)) == 0 && 6183 "Can't encode this offset!"); 6184 OffVal += Fixup / Scale; 6185 6186 unsigned Mask = (1 << NumBits) - 1; 6187 6188 if (OffVal <= Mask) { 6189 if (Updt) 6190 MI->getOperand(ImmIdx).setImm(OffVal); 6191 return true; 6192 } 6193 6194 return false; 6195 } 6196 6197 void ARMBaseInstrInfo::mergeOutliningCandidateAttributes( 6198 Function &F, std::vector<outliner::Candidate> &Candidates) const { 6199 outliner::Candidate &C = Candidates.front(); 6200 // branch-target-enforcement is guaranteed to be consistent between all 6201 // candidates, so we only need to look at one. 6202 const Function &CFn = C.getMF()->getFunction(); 6203 if (CFn.hasFnAttribute("branch-target-enforcement")) 6204 F.addFnAttr(CFn.getFnAttribute("branch-target-enforcement")); 6205 6206 ARMGenInstrInfo::mergeOutliningCandidateAttributes(F, Candidates); 6207 } 6208 6209 bool ARMBaseInstrInfo::isFunctionSafeToOutlineFrom( 6210 MachineFunction &MF, bool OutlineFromLinkOnceODRs) const { 6211 const Function &F = MF.getFunction(); 6212 6213 // Can F be deduplicated by the linker? If it can, don't outline from it. 6214 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage()) 6215 return false; 6216 6217 // Don't outline from functions with section markings; the program could 6218 // expect that all the code is in the named section. 6219 // FIXME: Allow outlining from multiple functions with the same section 6220 // marking. 6221 if (F.hasSection()) 6222 return false; 6223 6224 // FIXME: Thumb1 outlining is not handled 6225 if (MF.getInfo<ARMFunctionInfo>()->isThumb1OnlyFunction()) 6226 return false; 6227 6228 // It's safe to outline from MF. 6229 return true; 6230 } 6231 6232 bool ARMBaseInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, 6233 unsigned &Flags) const { 6234 // Check if LR is available through all of the MBB. If it's not, then set 6235 // a flag. 6236 assert(MBB.getParent()->getRegInfo().tracksLiveness() && 6237 "Suitable Machine Function for outlining must track liveness"); 6238 6239 LiveRegUnits LRU(getRegisterInfo()); 6240 6241 for (MachineInstr &MI : llvm::reverse(MBB)) 6242 LRU.accumulate(MI); 6243 6244 // Check if each of the unsafe registers are available... 6245 bool R12AvailableInBlock = LRU.available(ARM::R12); 6246 bool CPSRAvailableInBlock = LRU.available(ARM::CPSR); 6247 6248 // If all of these are dead (and not live out), we know we don't have to check 6249 // them later. 6250 if (R12AvailableInBlock && CPSRAvailableInBlock) 6251 Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead; 6252 6253 // Now, add the live outs to the set. 6254 LRU.addLiveOuts(MBB); 6255 6256 // If any of these registers is available in the MBB, but also a live out of 6257 // the block, then we know outlining is unsafe. 6258 if (R12AvailableInBlock && !LRU.available(ARM::R12)) 6259 return false; 6260 if (CPSRAvailableInBlock && !LRU.available(ARM::CPSR)) 6261 return false; 6262 6263 // Check if there's a call inside this MachineBasicBlock. If there is, then 6264 // set a flag. 6265 if (any_of(MBB, [](MachineInstr &MI) { return MI.isCall(); })) 6266 Flags |= MachineOutlinerMBBFlags::HasCalls; 6267 6268 // LR liveness is overestimated in return blocks. 6269 6270 bool LRIsAvailable = 6271 MBB.isReturnBlock() && !MBB.back().isCall() 6272 ? isLRAvailable(getRegisterInfo(), MBB.rbegin(), MBB.rend()) 6273 : LRU.available(ARM::LR); 6274 if (!LRIsAvailable) 6275 Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere; 6276 6277 return true; 6278 } 6279 6280 outliner::InstrType 6281 ARMBaseInstrInfo::getOutliningTypeImpl(MachineBasicBlock::iterator &MIT, 6282 unsigned Flags) const { 6283 MachineInstr &MI = *MIT; 6284 const TargetRegisterInfo *TRI = &getRegisterInfo(); 6285 6286 // PIC instructions contain labels, outlining them would break offset 6287 // computing. unsigned Opc = MI.getOpcode(); 6288 unsigned Opc = MI.getOpcode(); 6289 if (Opc == ARM::tPICADD || Opc == ARM::PICADD || Opc == ARM::PICSTR || 6290 Opc == ARM::PICSTRB || Opc == ARM::PICSTRH || Opc == ARM::PICLDR || 6291 Opc == ARM::PICLDRB || Opc == ARM::PICLDRH || Opc == ARM::PICLDRSB || 6292 Opc == ARM::PICLDRSH || Opc == ARM::t2LDRpci_pic || 6293 Opc == ARM::t2MOVi16_ga_pcrel || Opc == ARM::t2MOVTi16_ga_pcrel || 6294 Opc == ARM::t2MOV_ga_pcrel) 6295 return outliner::InstrType::Illegal; 6296 6297 // Be conservative with ARMv8.1 MVE instructions. 6298 if (Opc == ARM::t2BF_LabelPseudo || Opc == ARM::t2DoLoopStart || 6299 Opc == ARM::t2DoLoopStartTP || Opc == ARM::t2WhileLoopStart || 6300 Opc == ARM::t2WhileLoopStartLR || Opc == ARM::t2WhileLoopStartTP || 6301 Opc == ARM::t2LoopDec || Opc == ARM::t2LoopEnd || 6302 Opc == ARM::t2LoopEndDec) 6303 return outliner::InstrType::Illegal; 6304 6305 const MCInstrDesc &MCID = MI.getDesc(); 6306 uint64_t MIFlags = MCID.TSFlags; 6307 if ((MIFlags & ARMII::DomainMask) == ARMII::DomainMVE) 6308 return outliner::InstrType::Illegal; 6309 6310 // Is this a terminator for a basic block? 6311 if (MI.isTerminator()) 6312 // TargetInstrInfo::getOutliningType has already filtered out anything 6313 // that would break this, so we can allow it here. 6314 return outliner::InstrType::Legal; 6315 6316 // Don't outline if link register or program counter value are used. 6317 if (MI.readsRegister(ARM::LR, TRI) || MI.readsRegister(ARM::PC, TRI)) 6318 return outliner::InstrType::Illegal; 6319 6320 if (MI.isCall()) { 6321 // Get the function associated with the call. Look at each operand and find 6322 // the one that represents the calle and get its name. 6323 const Function *Callee = nullptr; 6324 for (const MachineOperand &MOP : MI.operands()) { 6325 if (MOP.isGlobal()) { 6326 Callee = dyn_cast<Function>(MOP.getGlobal()); 6327 break; 6328 } 6329 } 6330 6331 // Dont't outline calls to "mcount" like functions, in particular Linux 6332 // kernel function tracing relies on it. 6333 if (Callee && 6334 (Callee->getName() == "\01__gnu_mcount_nc" || 6335 Callee->getName() == "\01mcount" || Callee->getName() == "__mcount")) 6336 return outliner::InstrType::Illegal; 6337 6338 // If we don't know anything about the callee, assume it depends on the 6339 // stack layout of the caller. In that case, it's only legal to outline 6340 // as a tail-call. Explicitly list the call instructions we know about so 6341 // we don't get unexpected results with call pseudo-instructions. 6342 auto UnknownCallOutlineType = outliner::InstrType::Illegal; 6343 if (Opc == ARM::BL || Opc == ARM::tBL || Opc == ARM::BLX || 6344 Opc == ARM::BLX_noip || Opc == ARM::tBLXr || Opc == ARM::tBLXr_noip || 6345 Opc == ARM::tBLXi) 6346 UnknownCallOutlineType = outliner::InstrType::LegalTerminator; 6347 6348 if (!Callee) 6349 return UnknownCallOutlineType; 6350 6351 // We have a function we have information about. Check if it's something we 6352 // can safely outline. 6353 MachineFunction *MF = MI.getParent()->getParent(); 6354 MachineFunction *CalleeMF = MF->getMMI().getMachineFunction(*Callee); 6355 6356 // We don't know what's going on with the callee at all. Don't touch it. 6357 if (!CalleeMF) 6358 return UnknownCallOutlineType; 6359 6360 // Check if we know anything about the callee saves on the function. If we 6361 // don't, then don't touch it, since that implies that we haven't computed 6362 // anything about its stack frame yet. 6363 MachineFrameInfo &MFI = CalleeMF->getFrameInfo(); 6364 if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 || 6365 MFI.getNumObjects() > 0) 6366 return UnknownCallOutlineType; 6367 6368 // At this point, we can say that CalleeMF ought to not pass anything on the 6369 // stack. Therefore, we can outline it. 6370 return outliner::InstrType::Legal; 6371 } 6372 6373 // Since calls are handled, don't touch LR or PC 6374 if (MI.modifiesRegister(ARM::LR, TRI) || MI.modifiesRegister(ARM::PC, TRI)) 6375 return outliner::InstrType::Illegal; 6376 6377 // Does this use the stack? 6378 if (MI.modifiesRegister(ARM::SP, TRI) || MI.readsRegister(ARM::SP, TRI)) { 6379 // True if there is no chance that any outlined candidate from this range 6380 // could require stack fixups. That is, both 6381 // * LR is available in the range (No save/restore around call) 6382 // * The range doesn't include calls (No save/restore in outlined frame) 6383 // are true. 6384 // These conditions also ensure correctness of the return address 6385 // authentication - we insert sign and authentication instructions only if 6386 // we save/restore LR on stack, but then this condition ensures that the 6387 // outlined range does not modify the SP, therefore the SP value used for 6388 // signing is the same as the one used for authentication. 6389 // FIXME: This is very restrictive; the flags check the whole block, 6390 // not just the bit we will try to outline. 6391 bool MightNeedStackFixUp = 6392 (Flags & (MachineOutlinerMBBFlags::LRUnavailableSomewhere | 6393 MachineOutlinerMBBFlags::HasCalls)); 6394 6395 if (!MightNeedStackFixUp) 6396 return outliner::InstrType::Legal; 6397 6398 // Any modification of SP will break our code to save/restore LR. 6399 // FIXME: We could handle some instructions which add a constant offset to 6400 // SP, with a bit more work. 6401 if (MI.modifiesRegister(ARM::SP, TRI)) 6402 return outliner::InstrType::Illegal; 6403 6404 // At this point, we have a stack instruction that we might need to fix up. 6405 // up. We'll handle it if it's a load or store. 6406 if (checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(), 6407 false)) 6408 return outliner::InstrType::Legal; 6409 6410 // We can't fix it up, so don't outline it. 6411 return outliner::InstrType::Illegal; 6412 } 6413 6414 // Be conservative with IT blocks. 6415 if (MI.readsRegister(ARM::ITSTATE, TRI) || 6416 MI.modifiesRegister(ARM::ITSTATE, TRI)) 6417 return outliner::InstrType::Illegal; 6418 6419 // Don't outline CFI instructions. 6420 if (MI.isCFIInstruction()) 6421 return outliner::InstrType::Illegal; 6422 6423 return outliner::InstrType::Legal; 6424 } 6425 6426 void ARMBaseInstrInfo::fixupPostOutline(MachineBasicBlock &MBB) const { 6427 for (MachineInstr &MI : MBB) { 6428 checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(), true); 6429 } 6430 } 6431 6432 void ARMBaseInstrInfo::saveLROnStack(MachineBasicBlock &MBB, 6433 MachineBasicBlock::iterator It, bool CFI, 6434 bool Auth) const { 6435 int Align = std::max(Subtarget.getStackAlignment().value(), uint64_t(8)); 6436 unsigned MIFlags = CFI ? MachineInstr::FrameSetup : 0; 6437 assert(Align >= 8 && Align <= 256); 6438 if (Auth) { 6439 assert(Subtarget.isThumb2()); 6440 // Compute PAC in R12. Outlining ensures R12 is dead across the outlined 6441 // sequence. 6442 BuildMI(MBB, It, DebugLoc(), get(ARM::t2PAC)).setMIFlags(MIFlags); 6443 BuildMI(MBB, It, DebugLoc(), get(ARM::t2STRD_PRE), ARM::SP) 6444 .addReg(ARM::R12, RegState::Kill) 6445 .addReg(ARM::LR, RegState::Kill) 6446 .addReg(ARM::SP) 6447 .addImm(-Align) 6448 .add(predOps(ARMCC::AL)) 6449 .setMIFlags(MIFlags); 6450 } else { 6451 unsigned Opc = Subtarget.isThumb() ? ARM::t2STR_PRE : ARM::STR_PRE_IMM; 6452 BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::SP) 6453 .addReg(ARM::LR, RegState::Kill) 6454 .addReg(ARM::SP) 6455 .addImm(-Align) 6456 .add(predOps(ARMCC::AL)) 6457 .setMIFlags(MIFlags); 6458 } 6459 6460 if (!CFI) 6461 return; 6462 6463 MachineFunction &MF = *MBB.getParent(); 6464 6465 // Add a CFI, saying CFA is offset by Align bytes from SP. 6466 int64_t StackPosEntry = 6467 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Align)); 6468 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6469 .addCFIIndex(StackPosEntry) 6470 .setMIFlags(MachineInstr::FrameSetup); 6471 6472 // Add a CFI saying that the LR that we want to find is now higher than 6473 // before. 6474 int LROffset = Auth ? Align - 4 : Align; 6475 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6476 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6477 int64_t LRPosEntry = MF.addFrameInst( 6478 MCCFIInstruction::createOffset(nullptr, DwarfLR, -LROffset)); 6479 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6480 .addCFIIndex(LRPosEntry) 6481 .setMIFlags(MachineInstr::FrameSetup); 6482 if (Auth) { 6483 // Add a CFI for the location of the return adddress PAC. 6484 unsigned DwarfRAC = MRI->getDwarfRegNum(ARM::RA_AUTH_CODE, true); 6485 int64_t RACPosEntry = MF.addFrameInst( 6486 MCCFIInstruction::createOffset(nullptr, DwarfRAC, -Align)); 6487 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6488 .addCFIIndex(RACPosEntry) 6489 .setMIFlags(MachineInstr::FrameSetup); 6490 } 6491 } 6492 6493 void ARMBaseInstrInfo::emitCFIForLRSaveToReg(MachineBasicBlock &MBB, 6494 MachineBasicBlock::iterator It, 6495 Register Reg) const { 6496 MachineFunction &MF = *MBB.getParent(); 6497 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6498 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6499 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 6500 6501 int64_t LRPosEntry = MF.addFrameInst( 6502 MCCFIInstruction::createRegister(nullptr, DwarfLR, DwarfReg)); 6503 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6504 .addCFIIndex(LRPosEntry) 6505 .setMIFlags(MachineInstr::FrameSetup); 6506 } 6507 6508 void ARMBaseInstrInfo::restoreLRFromStack(MachineBasicBlock &MBB, 6509 MachineBasicBlock::iterator It, 6510 bool CFI, bool Auth) const { 6511 int Align = Subtarget.getStackAlignment().value(); 6512 unsigned MIFlags = CFI ? MachineInstr::FrameDestroy : 0; 6513 if (Auth) { 6514 assert(Subtarget.isThumb2()); 6515 // Restore return address PAC and LR. 6516 BuildMI(MBB, It, DebugLoc(), get(ARM::t2LDRD_POST)) 6517 .addReg(ARM::R12, RegState::Define) 6518 .addReg(ARM::LR, RegState::Define) 6519 .addReg(ARM::SP, RegState::Define) 6520 .addReg(ARM::SP) 6521 .addImm(Align) 6522 .add(predOps(ARMCC::AL)) 6523 .setMIFlags(MIFlags); 6524 // LR authentication is after the CFI instructions, below. 6525 } else { 6526 unsigned Opc = Subtarget.isThumb() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM; 6527 MachineInstrBuilder MIB = BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::LR) 6528 .addReg(ARM::SP, RegState::Define) 6529 .addReg(ARM::SP); 6530 if (!Subtarget.isThumb()) 6531 MIB.addReg(0); 6532 MIB.addImm(Subtarget.getStackAlignment().value()) 6533 .add(predOps(ARMCC::AL)) 6534 .setMIFlags(MIFlags); 6535 } 6536 6537 if (CFI) { 6538 // Now stack has moved back up... 6539 MachineFunction &MF = *MBB.getParent(); 6540 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6541 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6542 int64_t StackPosEntry = 6543 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 6544 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6545 .addCFIIndex(StackPosEntry) 6546 .setMIFlags(MachineInstr::FrameDestroy); 6547 6548 // ... and we have restored LR. 6549 int64_t LRPosEntry = 6550 MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR)); 6551 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6552 .addCFIIndex(LRPosEntry) 6553 .setMIFlags(MachineInstr::FrameDestroy); 6554 6555 if (Auth) { 6556 unsigned DwarfRAC = MRI->getDwarfRegNum(ARM::RA_AUTH_CODE, true); 6557 int64_t Entry = 6558 MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, DwarfRAC)); 6559 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6560 .addCFIIndex(Entry) 6561 .setMIFlags(MachineInstr::FrameDestroy); 6562 } 6563 } 6564 6565 if (Auth) 6566 BuildMI(MBB, It, DebugLoc(), get(ARM::t2AUT)); 6567 } 6568 6569 void ARMBaseInstrInfo::emitCFIForLRRestoreFromReg( 6570 MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const { 6571 MachineFunction &MF = *MBB.getParent(); 6572 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6573 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6574 6575 int64_t LRPosEntry = 6576 MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR)); 6577 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6578 .addCFIIndex(LRPosEntry) 6579 .setMIFlags(MachineInstr::FrameDestroy); 6580 } 6581 6582 void ARMBaseInstrInfo::buildOutlinedFrame( 6583 MachineBasicBlock &MBB, MachineFunction &MF, 6584 const outliner::OutlinedFunction &OF) const { 6585 // For thunk outlining, rewrite the last instruction from a call to a 6586 // tail-call. 6587 if (OF.FrameConstructionID == MachineOutlinerThunk) { 6588 MachineInstr *Call = &*--MBB.instr_end(); 6589 bool isThumb = Subtarget.isThumb(); 6590 unsigned FuncOp = isThumb ? 2 : 0; 6591 unsigned Opc = Call->getOperand(FuncOp).isReg() 6592 ? isThumb ? ARM::tTAILJMPr : ARM::TAILJMPr 6593 : isThumb ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd 6594 : ARM::tTAILJMPdND 6595 : ARM::TAILJMPd; 6596 MachineInstrBuilder MIB = BuildMI(MBB, MBB.end(), DebugLoc(), get(Opc)) 6597 .add(Call->getOperand(FuncOp)); 6598 if (isThumb && !Call->getOperand(FuncOp).isReg()) 6599 MIB.add(predOps(ARMCC::AL)); 6600 Call->eraseFromParent(); 6601 } 6602 6603 // Is there a call in the outlined range? 6604 auto IsNonTailCall = [](MachineInstr &MI) { 6605 return MI.isCall() && !MI.isReturn(); 6606 }; 6607 if (llvm::any_of(MBB.instrs(), IsNonTailCall)) { 6608 MachineBasicBlock::iterator It = MBB.begin(); 6609 MachineBasicBlock::iterator Et = MBB.end(); 6610 6611 if (OF.FrameConstructionID == MachineOutlinerTailCall || 6612 OF.FrameConstructionID == MachineOutlinerThunk) 6613 Et = std::prev(MBB.end()); 6614 6615 // We have to save and restore LR, we need to add it to the liveins if it 6616 // is not already part of the set. This is suffient since outlined 6617 // functions only have one block. 6618 if (!MBB.isLiveIn(ARM::LR)) 6619 MBB.addLiveIn(ARM::LR); 6620 6621 // Insert a save before the outlined region 6622 bool Auth = OF.Candidates.front() 6623 .getMF() 6624 ->getInfo<ARMFunctionInfo>() 6625 ->shouldSignReturnAddress(true); 6626 saveLROnStack(MBB, It, true, Auth); 6627 6628 // Fix up the instructions in the range, since we're going to modify the 6629 // stack. 6630 assert(OF.FrameConstructionID != MachineOutlinerDefault && 6631 "Can only fix up stack references once"); 6632 fixupPostOutline(MBB); 6633 6634 // Insert a restore before the terminator for the function. Restore LR. 6635 restoreLRFromStack(MBB, Et, true, Auth); 6636 } 6637 6638 // If this is a tail call outlined function, then there's already a return. 6639 if (OF.FrameConstructionID == MachineOutlinerTailCall || 6640 OF.FrameConstructionID == MachineOutlinerThunk) 6641 return; 6642 6643 // Here we have to insert the return ourselves. Get the correct opcode from 6644 // current feature set. 6645 BuildMI(MBB, MBB.end(), DebugLoc(), get(Subtarget.getReturnOpcode())) 6646 .add(predOps(ARMCC::AL)); 6647 6648 // Did we have to modify the stack by saving the link register? 6649 if (OF.FrameConstructionID != MachineOutlinerDefault && 6650 OF.Candidates[0].CallConstructionID != MachineOutlinerDefault) 6651 return; 6652 6653 // We modified the stack. 6654 // Walk over the basic block and fix up all the stack accesses. 6655 fixupPostOutline(MBB); 6656 } 6657 6658 MachineBasicBlock::iterator ARMBaseInstrInfo::insertOutlinedCall( 6659 Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, 6660 MachineFunction &MF, outliner::Candidate &C) const { 6661 MachineInstrBuilder MIB; 6662 MachineBasicBlock::iterator CallPt; 6663 unsigned Opc; 6664 bool isThumb = Subtarget.isThumb(); 6665 6666 // Are we tail calling? 6667 if (C.CallConstructionID == MachineOutlinerTailCall) { 6668 // If yes, then we can just branch to the label. 6669 Opc = isThumb 6670 ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd : ARM::tTAILJMPdND 6671 : ARM::TAILJMPd; 6672 MIB = BuildMI(MF, DebugLoc(), get(Opc)) 6673 .addGlobalAddress(M.getNamedValue(MF.getName())); 6674 if (isThumb) 6675 MIB.add(predOps(ARMCC::AL)); 6676 It = MBB.insert(It, MIB); 6677 return It; 6678 } 6679 6680 // Create the call instruction. 6681 Opc = isThumb ? ARM::tBL : ARM::BL; 6682 MachineInstrBuilder CallMIB = BuildMI(MF, DebugLoc(), get(Opc)); 6683 if (isThumb) 6684 CallMIB.add(predOps(ARMCC::AL)); 6685 CallMIB.addGlobalAddress(M.getNamedValue(MF.getName())); 6686 6687 if (C.CallConstructionID == MachineOutlinerNoLRSave || 6688 C.CallConstructionID == MachineOutlinerThunk) { 6689 // No, so just insert the call. 6690 It = MBB.insert(It, CallMIB); 6691 return It; 6692 } 6693 6694 const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>(); 6695 // Can we save to a register? 6696 if (C.CallConstructionID == MachineOutlinerRegSave) { 6697 Register Reg = findRegisterToSaveLRTo(C); 6698 assert(Reg != 0 && "No callee-saved register available?"); 6699 6700 // Save and restore LR from that register. 6701 copyPhysReg(MBB, It, DebugLoc(), Reg, ARM::LR, true); 6702 if (!AFI.isLRSpilled()) 6703 emitCFIForLRSaveToReg(MBB, It, Reg); 6704 CallPt = MBB.insert(It, CallMIB); 6705 copyPhysReg(MBB, It, DebugLoc(), ARM::LR, Reg, true); 6706 if (!AFI.isLRSpilled()) 6707 emitCFIForLRRestoreFromReg(MBB, It); 6708 It--; 6709 return CallPt; 6710 } 6711 // We have the default case. Save and restore from SP. 6712 if (!MBB.isLiveIn(ARM::LR)) 6713 MBB.addLiveIn(ARM::LR); 6714 bool Auth = !AFI.isLRSpilled() && AFI.shouldSignReturnAddress(true); 6715 saveLROnStack(MBB, It, !AFI.isLRSpilled(), Auth); 6716 CallPt = MBB.insert(It, CallMIB); 6717 restoreLRFromStack(MBB, It, !AFI.isLRSpilled(), Auth); 6718 It--; 6719 return CallPt; 6720 } 6721 6722 bool ARMBaseInstrInfo::shouldOutlineFromFunctionByDefault( 6723 MachineFunction &MF) const { 6724 return Subtarget.isMClass() && MF.getFunction().hasMinSize(); 6725 } 6726 6727 bool ARMBaseInstrInfo::isReallyTriviallyReMaterializable( 6728 const MachineInstr &MI) const { 6729 // Try hard to rematerialize any VCTPs because if we spill P0, it will block 6730 // the tail predication conversion. This means that the element count 6731 // register has to be live for longer, but that has to be better than 6732 // spill/restore and VPT predication. 6733 return (isVCTP(&MI) && !isPredicated(MI)) || 6734 TargetInstrInfo::isReallyTriviallyReMaterializable(MI); 6735 } 6736 6737 unsigned llvm::getBLXOpcode(const MachineFunction &MF) { 6738 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_noip 6739 : ARM::BLX; 6740 } 6741 6742 unsigned llvm::gettBLXrOpcode(const MachineFunction &MF) { 6743 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::tBLXr_noip 6744 : ARM::tBLXr; 6745 } 6746 6747 unsigned llvm::getBLXpredOpcode(const MachineFunction &MF) { 6748 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_pred_noip 6749 : ARM::BLX_pred; 6750 } 6751 6752 namespace { 6753 class ARMPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { 6754 MachineInstr *EndLoop, *LoopCount; 6755 MachineFunction *MF; 6756 const TargetInstrInfo *TII; 6757 6758 // Bitset[0 .. MAX_STAGES-1] ... iterations needed 6759 // [LAST_IS_USE] : last reference to register in schedule is a use 6760 // [SEEN_AS_LIVE] : Normal pressure algorithm believes register is live 6761 static int constexpr MAX_STAGES = 30; 6762 static int constexpr LAST_IS_USE = MAX_STAGES; 6763 static int constexpr SEEN_AS_LIVE = MAX_STAGES + 1; 6764 typedef std::bitset<MAX_STAGES + 2> IterNeed; 6765 typedef std::map<unsigned, IterNeed> IterNeeds; 6766 6767 void bumpCrossIterationPressure(RegPressureTracker &RPT, 6768 const IterNeeds &CIN); 6769 bool tooMuchRegisterPressure(SwingSchedulerDAG &SSD, SMSchedule &SMS); 6770 6771 // Meanings of the various stuff with loop types: 6772 // t2Bcc: 6773 // EndLoop = branch at end of original BB that will become a kernel 6774 // LoopCount = CC setter live into branch 6775 // t2LoopEnd: 6776 // EndLoop = branch at end of original BB 6777 // LoopCount = t2LoopDec 6778 public: 6779 ARMPipelinerLoopInfo(MachineInstr *EndLoop, MachineInstr *LoopCount) 6780 : EndLoop(EndLoop), LoopCount(LoopCount), 6781 MF(EndLoop->getParent()->getParent()), 6782 TII(MF->getSubtarget().getInstrInfo()) {} 6783 6784 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { 6785 // Only ignore the terminator. 6786 return MI == EndLoop || MI == LoopCount; 6787 } 6788 6789 bool shouldUseSchedule(SwingSchedulerDAG &SSD, SMSchedule &SMS) override { 6790 if (tooMuchRegisterPressure(SSD, SMS)) 6791 return false; 6792 6793 return true; 6794 } 6795 6796 std::optional<bool> createTripCountGreaterCondition( 6797 int TC, MachineBasicBlock &MBB, 6798 SmallVectorImpl<MachineOperand> &Cond) override { 6799 6800 if (isCondBranchOpcode(EndLoop->getOpcode())) { 6801 Cond.push_back(EndLoop->getOperand(1)); 6802 Cond.push_back(EndLoop->getOperand(2)); 6803 if (EndLoop->getOperand(0).getMBB() == EndLoop->getParent()) { 6804 TII->reverseBranchCondition(Cond); 6805 } 6806 return {}; 6807 } else if (EndLoop->getOpcode() == ARM::t2LoopEnd) { 6808 // General case just lets the unrolled t2LoopDec do the subtraction and 6809 // therefore just needs to check if zero has been reached. 6810 MachineInstr *LoopDec = nullptr; 6811 for (auto &I : MBB.instrs()) 6812 if (I.getOpcode() == ARM::t2LoopDec) 6813 LoopDec = &I; 6814 assert(LoopDec && "Unable to find copied LoopDec"); 6815 // Check if we're done with the loop. 6816 BuildMI(&MBB, LoopDec->getDebugLoc(), TII->get(ARM::t2CMPri)) 6817 .addReg(LoopDec->getOperand(0).getReg()) 6818 .addImm(0) 6819 .addImm(ARMCC::AL) 6820 .addReg(ARM::NoRegister); 6821 Cond.push_back(MachineOperand::CreateImm(ARMCC::EQ)); 6822 Cond.push_back(MachineOperand::CreateReg(ARM::CPSR, false)); 6823 return {}; 6824 } else 6825 llvm_unreachable("Unknown EndLoop"); 6826 } 6827 6828 void setPreheader(MachineBasicBlock *NewPreheader) override {} 6829 6830 void adjustTripCount(int TripCountAdjust) override {} 6831 6832 void disposed() override {} 6833 }; 6834 6835 void ARMPipelinerLoopInfo::bumpCrossIterationPressure(RegPressureTracker &RPT, 6836 const IterNeeds &CIN) { 6837 // Increase pressure by the amounts in CrossIterationNeeds 6838 for (const auto &N : CIN) { 6839 int Cnt = N.second.count() - N.second[SEEN_AS_LIVE] * 2; 6840 for (int I = 0; I < Cnt; ++I) 6841 RPT.increaseRegPressure(Register(N.first), LaneBitmask::getNone(), 6842 LaneBitmask::getAll()); 6843 } 6844 // Decrease pressure by the amounts in CrossIterationNeeds 6845 for (const auto &N : CIN) { 6846 int Cnt = N.second.count() - N.second[SEEN_AS_LIVE] * 2; 6847 for (int I = 0; I < Cnt; ++I) 6848 RPT.decreaseRegPressure(Register(N.first), LaneBitmask::getAll(), 6849 LaneBitmask::getNone()); 6850 } 6851 } 6852 6853 bool ARMPipelinerLoopInfo::tooMuchRegisterPressure(SwingSchedulerDAG &SSD, 6854 SMSchedule &SMS) { 6855 IterNeeds CrossIterationNeeds; 6856 6857 // Determine which values will be loop-carried after the schedule is 6858 // applied 6859 6860 for (auto &SU : SSD.SUnits) { 6861 const MachineInstr *MI = SU.getInstr(); 6862 int Stg = SMS.stageScheduled(const_cast<SUnit *>(&SU)); 6863 for (auto &S : SU.Succs) 6864 if (MI->isPHI() && S.getKind() == SDep::Anti) { 6865 Register Reg = S.getReg(); 6866 if (Reg.isVirtual()) 6867 CrossIterationNeeds.insert(std::make_pair(Reg.id(), IterNeed())) 6868 .first->second.set(0); 6869 } else if (S.isAssignedRegDep()) { 6870 int OStg = SMS.stageScheduled(S.getSUnit()); 6871 if (OStg >= 0 && OStg != Stg) { 6872 Register Reg = S.getReg(); 6873 if (Reg.isVirtual()) 6874 CrossIterationNeeds.insert(std::make_pair(Reg.id(), IterNeed())) 6875 .first->second |= ((1 << (OStg - Stg)) - 1); 6876 } 6877 } 6878 } 6879 6880 // Determine more-or-less what the proposed schedule (reversed) is going to 6881 // be; it might not be quite the same because the within-cycle ordering 6882 // created by SMSchedule depends upon changes to help with address offsets and 6883 // the like. 6884 std::vector<SUnit *> ProposedSchedule; 6885 for (int Cycle = SMS.getFinalCycle(); Cycle >= SMS.getFirstCycle(); --Cycle) 6886 for (int Stage = 0, StageEnd = SMS.getMaxStageCount(); Stage <= StageEnd; 6887 ++Stage) { 6888 std::deque<SUnit *> Instrs = 6889 SMS.getInstructions(Cycle + Stage * SMS.getInitiationInterval()); 6890 std::sort(Instrs.begin(), Instrs.end(), 6891 [](SUnit *A, SUnit *B) { return A->NodeNum > B->NodeNum; }); 6892 for (SUnit *SU : Instrs) 6893 ProposedSchedule.push_back(SU); 6894 } 6895 6896 // Learn whether the last use/def of each cross-iteration register is a use or 6897 // def. If it is a def, RegisterPressure will implicitly increase max pressure 6898 // and we do not have to add the pressure. 6899 for (auto *SU : ProposedSchedule) 6900 for (ConstMIBundleOperands OperI(*SU->getInstr()); OperI.isValid(); 6901 ++OperI) { 6902 auto MO = *OperI; 6903 if (!MO.isReg() || !MO.getReg()) 6904 continue; 6905 Register Reg = MO.getReg(); 6906 auto CIter = CrossIterationNeeds.find(Reg.id()); 6907 if (CIter == CrossIterationNeeds.end() || CIter->second[LAST_IS_USE] || 6908 CIter->second[SEEN_AS_LIVE]) 6909 continue; 6910 if (MO.isDef() && !MO.isDead()) 6911 CIter->second.set(SEEN_AS_LIVE); 6912 else if (MO.isUse()) 6913 CIter->second.set(LAST_IS_USE); 6914 } 6915 for (auto &CI : CrossIterationNeeds) 6916 CI.second.reset(LAST_IS_USE); 6917 6918 RegionPressure RecRegPressure; 6919 RegPressureTracker RPTracker(RecRegPressure); 6920 RegisterClassInfo RegClassInfo; 6921 RegClassInfo.runOnMachineFunction(*MF); 6922 RPTracker.init(MF, &RegClassInfo, nullptr, EndLoop->getParent(), 6923 EndLoop->getParent()->end(), false, false); 6924 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 6925 6926 bumpCrossIterationPressure(RPTracker, CrossIterationNeeds); 6927 6928 for (auto *SU : ProposedSchedule) { 6929 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 6930 RPTracker.setPos(std::next(CurInstI)); 6931 RPTracker.recede(); 6932 6933 // Track what cross-iteration registers would be seen as live 6934 for (ConstMIBundleOperands OperI(*CurInstI); OperI.isValid(); ++OperI) { 6935 auto MO = *OperI; 6936 if (!MO.isReg() || !MO.getReg()) 6937 continue; 6938 Register Reg = MO.getReg(); 6939 if (MO.isDef() && !MO.isDead()) { 6940 auto CIter = CrossIterationNeeds.find(Reg.id()); 6941 if (CIter != CrossIterationNeeds.end()) { 6942 CIter->second.reset(0); 6943 CIter->second.reset(SEEN_AS_LIVE); 6944 } 6945 } 6946 } 6947 for (auto &S : SU->Preds) { 6948 auto Stg = SMS.stageScheduled(SU); 6949 if (S.isAssignedRegDep()) { 6950 Register Reg = S.getReg(); 6951 auto CIter = CrossIterationNeeds.find(Reg.id()); 6952 if (CIter != CrossIterationNeeds.end()) { 6953 auto Stg2 = SMS.stageScheduled(const_cast<SUnit *>(S.getSUnit())); 6954 assert(Stg2 <= Stg && "Data dependence upon earlier stage"); 6955 if (Stg - Stg2 < MAX_STAGES) 6956 CIter->second.set(Stg - Stg2); 6957 CIter->second.set(SEEN_AS_LIVE); 6958 } 6959 } 6960 } 6961 6962 bumpCrossIterationPressure(RPTracker, CrossIterationNeeds); 6963 } 6964 6965 auto &P = RPTracker.getPressure().MaxSetPressure; 6966 for (unsigned I = 0, E = P.size(); I < E; ++I) 6967 if (P[I] > TRI->getRegPressureSetLimit(*MF, I)) { 6968 return true; 6969 } 6970 return false; 6971 } 6972 6973 } // namespace 6974 6975 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 6976 ARMBaseInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 6977 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); 6978 MachineBasicBlock *Preheader = *LoopBB->pred_begin(); 6979 if (Preheader == LoopBB) 6980 Preheader = *std::next(LoopBB->pred_begin()); 6981 6982 if (I != LoopBB->end() && I->getOpcode() == ARM::t2Bcc) { 6983 // If the branch is a Bcc, then the CPSR should be set somewhere within the 6984 // block. We need to determine the reaching definition of CPSR so that 6985 // it can be marked as non-pipelineable, allowing the pipeliner to force 6986 // it into stage 0 or give up if it cannot or will not do so. 6987 MachineInstr *CCSetter = nullptr; 6988 for (auto &L : LoopBB->instrs()) { 6989 if (L.isCall()) 6990 return nullptr; 6991 if (isCPSRDefined(L)) 6992 CCSetter = &L; 6993 } 6994 if (CCSetter) 6995 return std::make_unique<ARMPipelinerLoopInfo>(&*I, CCSetter); 6996 else 6997 return nullptr; // Unable to find the CC setter, so unable to guarantee 6998 // that pipeline will work 6999 } 7000 7001 // Recognize: 7002 // preheader: 7003 // %1 = t2DoopLoopStart %0 7004 // loop: 7005 // %2 = phi %1, <not loop>, %..., %loop 7006 // %3 = t2LoopDec %2, <imm> 7007 // t2LoopEnd %3, %loop 7008 7009 if (I != LoopBB->end() && I->getOpcode() == ARM::t2LoopEnd) { 7010 for (auto &L : LoopBB->instrs()) 7011 if (L.isCall()) 7012 return nullptr; 7013 else if (isVCTP(&L)) 7014 return nullptr; 7015 Register LoopDecResult = I->getOperand(0).getReg(); 7016 MachineRegisterInfo &MRI = LoopBB->getParent()->getRegInfo(); 7017 MachineInstr *LoopDec = MRI.getUniqueVRegDef(LoopDecResult); 7018 if (!LoopDec || LoopDec->getOpcode() != ARM::t2LoopDec) 7019 return nullptr; 7020 MachineInstr *LoopStart = nullptr; 7021 for (auto &J : Preheader->instrs()) 7022 if (J.getOpcode() == ARM::t2DoLoopStart) 7023 LoopStart = &J; 7024 if (!LoopStart) 7025 return nullptr; 7026 return std::make_unique<ARMPipelinerLoopInfo>(&*I, LoopDec); 7027 } 7028 return nullptr; 7029 } 7030