1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the Base ARM implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ARMBaseInstrInfo.h" 14 #include "ARMBaseRegisterInfo.h" 15 #include "ARMConstantPoolValue.h" 16 #include "ARMFeatures.h" 17 #include "ARMHazardRecognizer.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMBaseInfo.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/CodeGen/LiveVariables.h" 28 #include "llvm/CodeGen/MachineBasicBlock.h" 29 #include "llvm/CodeGen/MachineConstantPool.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstr.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineMemOperand.h" 35 #include "llvm/CodeGen/MachineModuleInfo.h" 36 #include "llvm/CodeGen/MachineOperand.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" 39 #include "llvm/CodeGen/SelectionDAGNodes.h" 40 #include "llvm/CodeGen/TargetInstrInfo.h" 41 #include "llvm/CodeGen/TargetRegisterInfo.h" 42 #include "llvm/CodeGen/TargetSchedule.h" 43 #include "llvm/IR/Attributes.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DebugLoc.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/MC/MCAsmInfo.h" 49 #include "llvm/MC/MCInstrDesc.h" 50 #include "llvm/MC/MCInstrItineraries.h" 51 #include "llvm/Support/BranchProbability.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Compiler.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetMachine.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <cstdint> 62 #include <iterator> 63 #include <new> 64 #include <utility> 65 #include <vector> 66 67 using namespace llvm; 68 69 #define DEBUG_TYPE "arm-instrinfo" 70 71 #define GET_INSTRINFO_CTOR_DTOR 72 #include "ARMGenInstrInfo.inc" 73 74 static cl::opt<bool> 75 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden, 76 cl::desc("Enable ARM 2-addr to 3-addr conv")); 77 78 /// ARM_MLxEntry - Record information about MLA / MLS instructions. 79 struct ARM_MLxEntry { 80 uint16_t MLxOpc; // MLA / MLS opcode 81 uint16_t MulOpc; // Expanded multiplication opcode 82 uint16_t AddSubOpc; // Expanded add / sub opcode 83 bool NegAcc; // True if the acc is negated before the add / sub. 84 bool HasLane; // True if instruction has an extra "lane" operand. 85 }; 86 87 static const ARM_MLxEntry ARM_MLxTable[] = { 88 // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane 89 // fp scalar ops 90 { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false }, 91 { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false }, 92 { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false }, 93 { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false }, 94 { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false }, 95 { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false }, 96 { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false }, 97 { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false }, 98 99 // fp SIMD ops 100 { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false }, 101 { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false }, 102 { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false }, 103 { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false }, 104 { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true }, 105 { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true }, 106 { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true }, 107 { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true }, 108 }; 109 110 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI) 111 : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP), 112 Subtarget(STI) { 113 for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) { 114 if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second) 115 llvm_unreachable("Duplicated entries?"); 116 MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc); 117 MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc); 118 } 119 } 120 121 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl 122 // currently defaults to no prepass hazard recognizer. 123 ScheduleHazardRecognizer * 124 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 125 const ScheduleDAG *DAG) const { 126 if (usePreRAHazardRecognizer()) { 127 const InstrItineraryData *II = 128 static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData(); 129 return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched"); 130 } 131 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 132 } 133 134 ScheduleHazardRecognizer *ARMBaseInstrInfo:: 135 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 136 const ScheduleDAG *DAG) const { 137 if (Subtarget.isThumb2() || Subtarget.hasVFP2Base()) 138 return new ARMHazardRecognizer(II, DAG); 139 return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG); 140 } 141 142 MachineInstr *ARMBaseInstrInfo::convertToThreeAddress( 143 MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const { 144 // FIXME: Thumb2 support. 145 146 if (!EnableARM3Addr) 147 return nullptr; 148 149 MachineFunction &MF = *MI.getParent()->getParent(); 150 uint64_t TSFlags = MI.getDesc().TSFlags; 151 bool isPre = false; 152 switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) { 153 default: return nullptr; 154 case ARMII::IndexModePre: 155 isPre = true; 156 break; 157 case ARMII::IndexModePost: 158 break; 159 } 160 161 // Try splitting an indexed load/store to an un-indexed one plus an add/sub 162 // operation. 163 unsigned MemOpc = getUnindexedOpcode(MI.getOpcode()); 164 if (MemOpc == 0) 165 return nullptr; 166 167 MachineInstr *UpdateMI = nullptr; 168 MachineInstr *MemMI = nullptr; 169 unsigned AddrMode = (TSFlags & ARMII::AddrModeMask); 170 const MCInstrDesc &MCID = MI.getDesc(); 171 unsigned NumOps = MCID.getNumOperands(); 172 bool isLoad = !MI.mayStore(); 173 const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0); 174 const MachineOperand &Base = MI.getOperand(2); 175 const MachineOperand &Offset = MI.getOperand(NumOps - 3); 176 Register WBReg = WB.getReg(); 177 Register BaseReg = Base.getReg(); 178 Register OffReg = Offset.getReg(); 179 unsigned OffImm = MI.getOperand(NumOps - 2).getImm(); 180 ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm(); 181 switch (AddrMode) { 182 default: llvm_unreachable("Unknown indexed op!"); 183 case ARMII::AddrMode2: { 184 bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; 185 unsigned Amt = ARM_AM::getAM2Offset(OffImm); 186 if (OffReg == 0) { 187 if (ARM_AM::getSOImmVal(Amt) == -1) 188 // Can't encode it in a so_imm operand. This transformation will 189 // add more than 1 instruction. Abandon! 190 return nullptr; 191 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 192 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 193 .addReg(BaseReg) 194 .addImm(Amt) 195 .add(predOps(Pred)) 196 .add(condCodeOp()); 197 } else if (Amt != 0) { 198 ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm); 199 unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt); 200 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 201 get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg) 202 .addReg(BaseReg) 203 .addReg(OffReg) 204 .addReg(0) 205 .addImm(SOOpc) 206 .add(predOps(Pred)) 207 .add(condCodeOp()); 208 } else 209 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 210 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 211 .addReg(BaseReg) 212 .addReg(OffReg) 213 .add(predOps(Pred)) 214 .add(condCodeOp()); 215 break; 216 } 217 case ARMII::AddrMode3 : { 218 bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub; 219 unsigned Amt = ARM_AM::getAM3Offset(OffImm); 220 if (OffReg == 0) 221 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand. 222 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 223 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 224 .addReg(BaseReg) 225 .addImm(Amt) 226 .add(predOps(Pred)) 227 .add(condCodeOp()); 228 else 229 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 230 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 231 .addReg(BaseReg) 232 .addReg(OffReg) 233 .add(predOps(Pred)) 234 .add(condCodeOp()); 235 break; 236 } 237 } 238 239 std::vector<MachineInstr*> NewMIs; 240 if (isPre) { 241 if (isLoad) 242 MemMI = 243 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) 244 .addReg(WBReg) 245 .addImm(0) 246 .addImm(Pred); 247 else 248 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) 249 .addReg(MI.getOperand(1).getReg()) 250 .addReg(WBReg) 251 .addReg(0) 252 .addImm(0) 253 .addImm(Pred); 254 NewMIs.push_back(MemMI); 255 NewMIs.push_back(UpdateMI); 256 } else { 257 if (isLoad) 258 MemMI = 259 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) 260 .addReg(BaseReg) 261 .addImm(0) 262 .addImm(Pred); 263 else 264 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) 265 .addReg(MI.getOperand(1).getReg()) 266 .addReg(BaseReg) 267 .addReg(0) 268 .addImm(0) 269 .addImm(Pred); 270 if (WB.isDead()) 271 UpdateMI->getOperand(0).setIsDead(); 272 NewMIs.push_back(UpdateMI); 273 NewMIs.push_back(MemMI); 274 } 275 276 // Transfer LiveVariables states, kill / dead info. 277 if (LV) { 278 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 279 MachineOperand &MO = MI.getOperand(i); 280 if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) { 281 Register Reg = MO.getReg(); 282 283 LiveVariables::VarInfo &VI = LV->getVarInfo(Reg); 284 if (MO.isDef()) { 285 MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI; 286 if (MO.isDead()) 287 LV->addVirtualRegisterDead(Reg, *NewMI); 288 } 289 if (MO.isUse() && MO.isKill()) { 290 for (unsigned j = 0; j < 2; ++j) { 291 // Look at the two new MI's in reverse order. 292 MachineInstr *NewMI = NewMIs[j]; 293 if (!NewMI->readsRegister(Reg)) 294 continue; 295 LV->addVirtualRegisterKilled(Reg, *NewMI); 296 if (VI.removeKill(MI)) 297 VI.Kills.push_back(NewMI); 298 break; 299 } 300 } 301 } 302 } 303 } 304 305 MachineBasicBlock::iterator MBBI = MI.getIterator(); 306 MFI->insert(MBBI, NewMIs[1]); 307 MFI->insert(MBBI, NewMIs[0]); 308 return NewMIs[0]; 309 } 310 311 // Branch analysis. 312 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 313 MachineBasicBlock *&TBB, 314 MachineBasicBlock *&FBB, 315 SmallVectorImpl<MachineOperand> &Cond, 316 bool AllowModify) const { 317 TBB = nullptr; 318 FBB = nullptr; 319 320 MachineBasicBlock::iterator I = MBB.end(); 321 if (I == MBB.begin()) 322 return false; // Empty blocks are easy. 323 --I; 324 325 // Walk backwards from the end of the basic block until the branch is 326 // analyzed or we give up. 327 while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) { 328 // Flag to be raised on unanalyzeable instructions. This is useful in cases 329 // where we want to clean up on the end of the basic block before we bail 330 // out. 331 bool CantAnalyze = false; 332 333 // Skip over DEBUG values and predicated nonterminators. 334 while (I->isDebugInstr() || !I->isTerminator()) { 335 if (I == MBB.begin()) 336 return false; 337 --I; 338 } 339 340 if (isIndirectBranchOpcode(I->getOpcode()) || 341 isJumpTableBranchOpcode(I->getOpcode())) { 342 // Indirect branches and jump tables can't be analyzed, but we still want 343 // to clean up any instructions at the tail of the basic block. 344 CantAnalyze = true; 345 } else if (isUncondBranchOpcode(I->getOpcode())) { 346 TBB = I->getOperand(0).getMBB(); 347 } else if (isCondBranchOpcode(I->getOpcode())) { 348 // Bail out if we encounter multiple conditional branches. 349 if (!Cond.empty()) 350 return true; 351 352 assert(!FBB && "FBB should have been null."); 353 FBB = TBB; 354 TBB = I->getOperand(0).getMBB(); 355 Cond.push_back(I->getOperand(1)); 356 Cond.push_back(I->getOperand(2)); 357 } else if (I->isReturn()) { 358 // Returns can't be analyzed, but we should run cleanup. 359 CantAnalyze = !isPredicated(*I); 360 } else { 361 // We encountered other unrecognized terminator. Bail out immediately. 362 return true; 363 } 364 365 // Cleanup code - to be run for unpredicated unconditional branches and 366 // returns. 367 if (!isPredicated(*I) && 368 (isUncondBranchOpcode(I->getOpcode()) || 369 isIndirectBranchOpcode(I->getOpcode()) || 370 isJumpTableBranchOpcode(I->getOpcode()) || 371 I->isReturn())) { 372 // Forget any previous condition branch information - it no longer applies. 373 Cond.clear(); 374 FBB = nullptr; 375 376 // If we can modify the function, delete everything below this 377 // unconditional branch. 378 if (AllowModify) { 379 MachineBasicBlock::iterator DI = std::next(I); 380 while (DI != MBB.end()) { 381 MachineInstr &InstToDelete = *DI; 382 ++DI; 383 InstToDelete.eraseFromParent(); 384 } 385 } 386 } 387 388 if (CantAnalyze) 389 return true; 390 391 if (I == MBB.begin()) 392 return false; 393 394 --I; 395 } 396 397 // We made it past the terminators without bailing out - we must have 398 // analyzed this branch successfully. 399 return false; 400 } 401 402 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB, 403 int *BytesRemoved) const { 404 assert(!BytesRemoved && "code size not handled"); 405 406 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 407 if (I == MBB.end()) 408 return 0; 409 410 if (!isUncondBranchOpcode(I->getOpcode()) && 411 !isCondBranchOpcode(I->getOpcode())) 412 return 0; 413 414 // Remove the branch. 415 I->eraseFromParent(); 416 417 I = MBB.end(); 418 419 if (I == MBB.begin()) return 1; 420 --I; 421 if (!isCondBranchOpcode(I->getOpcode())) 422 return 1; 423 424 // Remove the branch. 425 I->eraseFromParent(); 426 return 2; 427 } 428 429 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB, 430 MachineBasicBlock *TBB, 431 MachineBasicBlock *FBB, 432 ArrayRef<MachineOperand> Cond, 433 const DebugLoc &DL, 434 int *BytesAdded) const { 435 assert(!BytesAdded && "code size not handled"); 436 ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>(); 437 int BOpc = !AFI->isThumbFunction() 438 ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB); 439 int BccOpc = !AFI->isThumbFunction() 440 ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc); 441 bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function(); 442 443 // Shouldn't be a fall through. 444 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 445 assert((Cond.size() == 2 || Cond.size() == 0) && 446 "ARM branch conditions have two components!"); 447 448 // For conditional branches, we use addOperand to preserve CPSR flags. 449 450 if (!FBB) { 451 if (Cond.empty()) { // Unconditional branch? 452 if (isThumb) 453 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL)); 454 else 455 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); 456 } else 457 BuildMI(&MBB, DL, get(BccOpc)) 458 .addMBB(TBB) 459 .addImm(Cond[0].getImm()) 460 .add(Cond[1]); 461 return 1; 462 } 463 464 // Two-way conditional branch. 465 BuildMI(&MBB, DL, get(BccOpc)) 466 .addMBB(TBB) 467 .addImm(Cond[0].getImm()) 468 .add(Cond[1]); 469 if (isThumb) 470 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL)); 471 else 472 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); 473 return 2; 474 } 475 476 bool ARMBaseInstrInfo:: 477 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 478 ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm(); 479 Cond[0].setImm(ARMCC::getOppositeCondition(CC)); 480 return false; 481 } 482 483 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const { 484 if (MI.isBundle()) { 485 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 486 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 487 while (++I != E && I->isInsideBundle()) { 488 int PIdx = I->findFirstPredOperandIdx(); 489 if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL) 490 return true; 491 } 492 return false; 493 } 494 495 int PIdx = MI.findFirstPredOperandIdx(); 496 return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL; 497 } 498 499 std::string ARMBaseInstrInfo::createMIROperandComment( 500 const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx, 501 const TargetRegisterInfo *TRI) const { 502 503 // First, let's see if there is a generic comment for this operand 504 std::string GenericComment = 505 TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI); 506 if (!GenericComment.empty()) 507 return GenericComment; 508 509 // If not, check if we have an immediate operand. 510 if (Op.getType() != MachineOperand::MO_Immediate) 511 return std::string(); 512 513 // And print its corresponding condition code if the immediate is a 514 // predicate. 515 int FirstPredOp = MI.findFirstPredOperandIdx(); 516 if (FirstPredOp != (int) OpIdx) 517 return std::string(); 518 519 std::string CC = "CC::"; 520 CC += ARMCondCodeToString((ARMCC::CondCodes)Op.getImm()); 521 return CC; 522 } 523 524 bool ARMBaseInstrInfo::PredicateInstruction( 525 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 526 unsigned Opc = MI.getOpcode(); 527 if (isUncondBranchOpcode(Opc)) { 528 MI.setDesc(get(getMatchingCondBranchOpcode(Opc))); 529 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 530 .addImm(Pred[0].getImm()) 531 .addReg(Pred[1].getReg()); 532 return true; 533 } 534 535 int PIdx = MI.findFirstPredOperandIdx(); 536 if (PIdx != -1) { 537 MachineOperand &PMO = MI.getOperand(PIdx); 538 PMO.setImm(Pred[0].getImm()); 539 MI.getOperand(PIdx+1).setReg(Pred[1].getReg()); 540 return true; 541 } 542 return false; 543 } 544 545 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 546 ArrayRef<MachineOperand> Pred2) const { 547 if (Pred1.size() > 2 || Pred2.size() > 2) 548 return false; 549 550 ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm(); 551 ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm(); 552 if (CC1 == CC2) 553 return true; 554 555 switch (CC1) { 556 default: 557 return false; 558 case ARMCC::AL: 559 return true; 560 case ARMCC::HS: 561 return CC2 == ARMCC::HI; 562 case ARMCC::LS: 563 return CC2 == ARMCC::LO || CC2 == ARMCC::EQ; 564 case ARMCC::GE: 565 return CC2 == ARMCC::GT; 566 case ARMCC::LE: 567 return CC2 == ARMCC::LT; 568 } 569 } 570 571 bool ARMBaseInstrInfo::DefinesPredicate( 572 MachineInstr &MI, std::vector<MachineOperand> &Pred) const { 573 bool Found = false; 574 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 575 const MachineOperand &MO = MI.getOperand(i); 576 if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) || 577 (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) { 578 Pred.push_back(MO); 579 Found = true; 580 } 581 } 582 583 return Found; 584 } 585 586 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) { 587 for (const auto &MO : MI.operands()) 588 if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead()) 589 return true; 590 return false; 591 } 592 593 bool ARMBaseInstrInfo::isAddrMode3OpImm(const MachineInstr &MI, 594 unsigned Op) const { 595 const MachineOperand &Offset = MI.getOperand(Op + 1); 596 return Offset.getReg() != 0; 597 } 598 599 // Load with negative register offset requires additional 1cyc and +I unit 600 // for Cortex A57 601 bool ARMBaseInstrInfo::isAddrMode3OpMinusReg(const MachineInstr &MI, 602 unsigned Op) const { 603 const MachineOperand &Offset = MI.getOperand(Op + 1); 604 const MachineOperand &Opc = MI.getOperand(Op + 2); 605 assert(Opc.isImm()); 606 assert(Offset.isReg()); 607 int64_t OpcImm = Opc.getImm(); 608 609 bool isSub = ARM_AM::getAM3Op(OpcImm) == ARM_AM::sub; 610 return (isSub && Offset.getReg() != 0); 611 } 612 613 bool ARMBaseInstrInfo::isLdstScaledReg(const MachineInstr &MI, 614 unsigned Op) const { 615 const MachineOperand &Opc = MI.getOperand(Op + 2); 616 unsigned OffImm = Opc.getImm(); 617 return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift; 618 } 619 620 // Load, scaled register offset, not plus LSL2 621 bool ARMBaseInstrInfo::isLdstScaledRegNotPlusLsl2(const MachineInstr &MI, 622 unsigned Op) const { 623 const MachineOperand &Opc = MI.getOperand(Op + 2); 624 unsigned OffImm = Opc.getImm(); 625 626 bool isAdd = ARM_AM::getAM2Op(OffImm) == ARM_AM::add; 627 unsigned Amt = ARM_AM::getAM2Offset(OffImm); 628 ARM_AM::ShiftOpc ShiftOpc = ARM_AM::getAM2ShiftOpc(OffImm); 629 if (ShiftOpc == ARM_AM::no_shift) return false; // not scaled 630 bool SimpleScaled = (isAdd && ShiftOpc == ARM_AM::lsl && Amt == 2); 631 return !SimpleScaled; 632 } 633 634 // Minus reg for ldstso addr mode 635 bool ARMBaseInstrInfo::isLdstSoMinusReg(const MachineInstr &MI, 636 unsigned Op) const { 637 unsigned OffImm = MI.getOperand(Op + 2).getImm(); 638 return ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; 639 } 640 641 // Load, scaled register offset 642 bool ARMBaseInstrInfo::isAm2ScaledReg(const MachineInstr &MI, 643 unsigned Op) const { 644 unsigned OffImm = MI.getOperand(Op + 2).getImm(); 645 return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift; 646 } 647 648 static bool isEligibleForITBlock(const MachineInstr *MI) { 649 switch (MI->getOpcode()) { 650 default: return true; 651 case ARM::tADC: // ADC (register) T1 652 case ARM::tADDi3: // ADD (immediate) T1 653 case ARM::tADDi8: // ADD (immediate) T2 654 case ARM::tADDrr: // ADD (register) T1 655 case ARM::tAND: // AND (register) T1 656 case ARM::tASRri: // ASR (immediate) T1 657 case ARM::tASRrr: // ASR (register) T1 658 case ARM::tBIC: // BIC (register) T1 659 case ARM::tEOR: // EOR (register) T1 660 case ARM::tLSLri: // LSL (immediate) T1 661 case ARM::tLSLrr: // LSL (register) T1 662 case ARM::tLSRri: // LSR (immediate) T1 663 case ARM::tLSRrr: // LSR (register) T1 664 case ARM::tMUL: // MUL T1 665 case ARM::tMVN: // MVN (register) T1 666 case ARM::tORR: // ORR (register) T1 667 case ARM::tROR: // ROR (register) T1 668 case ARM::tRSB: // RSB (immediate) T1 669 case ARM::tSBC: // SBC (register) T1 670 case ARM::tSUBi3: // SUB (immediate) T1 671 case ARM::tSUBi8: // SUB (immediate) T2 672 case ARM::tSUBrr: // SUB (register) T1 673 return !ARMBaseInstrInfo::isCPSRDefined(*MI); 674 } 675 } 676 677 /// isPredicable - Return true if the specified instruction can be predicated. 678 /// By default, this returns true for every instruction with a 679 /// PredicateOperand. 680 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const { 681 if (!MI.isPredicable()) 682 return false; 683 684 if (MI.isBundle()) 685 return false; 686 687 if (!isEligibleForITBlock(&MI)) 688 return false; 689 690 const ARMFunctionInfo *AFI = 691 MI.getParent()->getParent()->getInfo<ARMFunctionInfo>(); 692 693 // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM. 694 // In their ARM encoding, they can't be encoded in a conditional form. 695 if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) 696 return false; 697 698 if (AFI->isThumb2Function()) { 699 if (getSubtarget().restrictIT()) 700 return isV8EligibleForIT(&MI); 701 } 702 703 return true; 704 } 705 706 namespace llvm { 707 708 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) { 709 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 710 const MachineOperand &MO = MI->getOperand(i); 711 if (!MO.isReg() || MO.isUndef() || MO.isUse()) 712 continue; 713 if (MO.getReg() != ARM::CPSR) 714 continue; 715 if (!MO.isDead()) 716 return false; 717 } 718 // all definitions of CPSR are dead 719 return true; 720 } 721 722 } // end namespace llvm 723 724 /// GetInstSize - Return the size of the specified MachineInstr. 725 /// 726 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 727 const MachineBasicBlock &MBB = *MI.getParent(); 728 const MachineFunction *MF = MBB.getParent(); 729 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); 730 731 const MCInstrDesc &MCID = MI.getDesc(); 732 if (MCID.getSize()) 733 return MCID.getSize(); 734 735 switch (MI.getOpcode()) { 736 default: 737 // pseudo-instruction sizes are zero. 738 return 0; 739 case TargetOpcode::BUNDLE: 740 return getInstBundleLength(MI); 741 case ARM::MOVi16_ga_pcrel: 742 case ARM::MOVTi16_ga_pcrel: 743 case ARM::t2MOVi16_ga_pcrel: 744 case ARM::t2MOVTi16_ga_pcrel: 745 return 4; 746 case ARM::MOVi32imm: 747 case ARM::t2MOVi32imm: 748 return 8; 749 case ARM::CONSTPOOL_ENTRY: 750 case ARM::JUMPTABLE_INSTS: 751 case ARM::JUMPTABLE_ADDRS: 752 case ARM::JUMPTABLE_TBB: 753 case ARM::JUMPTABLE_TBH: 754 // If this machine instr is a constant pool entry, its size is recorded as 755 // operand #2. 756 return MI.getOperand(2).getImm(); 757 case ARM::Int_eh_sjlj_longjmp: 758 return 16; 759 case ARM::tInt_eh_sjlj_longjmp: 760 return 10; 761 case ARM::tInt_WIN_eh_sjlj_longjmp: 762 return 12; 763 case ARM::Int_eh_sjlj_setjmp: 764 case ARM::Int_eh_sjlj_setjmp_nofp: 765 return 20; 766 case ARM::tInt_eh_sjlj_setjmp: 767 case ARM::t2Int_eh_sjlj_setjmp: 768 case ARM::t2Int_eh_sjlj_setjmp_nofp: 769 return 12; 770 case ARM::SPACE: 771 return MI.getOperand(1).getImm(); 772 case ARM::INLINEASM: 773 case ARM::INLINEASM_BR: { 774 // If this machine instr is an inline asm, measure it. 775 unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI); 776 if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction()) 777 Size = alignTo(Size, 4); 778 return Size; 779 } 780 } 781 } 782 783 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const { 784 unsigned Size = 0; 785 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 786 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 787 while (++I != E && I->isInsideBundle()) { 788 assert(!I->isBundle() && "No nested bundle!"); 789 Size += getInstSizeInBytes(*I); 790 } 791 return Size; 792 } 793 794 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB, 795 MachineBasicBlock::iterator I, 796 unsigned DestReg, bool KillSrc, 797 const ARMSubtarget &Subtarget) const { 798 unsigned Opc = Subtarget.isThumb() 799 ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR) 800 : ARM::MRS; 801 802 MachineInstrBuilder MIB = 803 BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg); 804 805 // There is only 1 A/R class MRS instruction, and it always refers to 806 // APSR. However, there are lots of other possibilities on M-class cores. 807 if (Subtarget.isMClass()) 808 MIB.addImm(0x800); 809 810 MIB.add(predOps(ARMCC::AL)) 811 .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc)); 812 } 813 814 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB, 815 MachineBasicBlock::iterator I, 816 unsigned SrcReg, bool KillSrc, 817 const ARMSubtarget &Subtarget) const { 818 unsigned Opc = Subtarget.isThumb() 819 ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR) 820 : ARM::MSR; 821 822 MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc)); 823 824 if (Subtarget.isMClass()) 825 MIB.addImm(0x800); 826 else 827 MIB.addImm(8); 828 829 MIB.addReg(SrcReg, getKillRegState(KillSrc)) 830 .add(predOps(ARMCC::AL)) 831 .addReg(ARM::CPSR, RegState::Implicit | RegState::Define); 832 } 833 834 void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) { 835 MIB.addImm(ARMVCC::None); 836 MIB.addReg(0); 837 } 838 839 void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB, 840 Register DestReg) { 841 addUnpredicatedMveVpredNOp(MIB); 842 MIB.addReg(DestReg, RegState::Undef); 843 } 844 845 void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) { 846 MIB.addImm(Cond); 847 MIB.addReg(ARM::VPR, RegState::Implicit); 848 } 849 850 void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB, 851 unsigned Cond, unsigned Inactive) { 852 addPredicatedMveVpredNOp(MIB, Cond); 853 MIB.addReg(Inactive); 854 } 855 856 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 857 MachineBasicBlock::iterator I, 858 const DebugLoc &DL, MCRegister DestReg, 859 MCRegister SrcReg, bool KillSrc) const { 860 bool GPRDest = ARM::GPRRegClass.contains(DestReg); 861 bool GPRSrc = ARM::GPRRegClass.contains(SrcReg); 862 863 if (GPRDest && GPRSrc) { 864 BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg) 865 .addReg(SrcReg, getKillRegState(KillSrc)) 866 .add(predOps(ARMCC::AL)) 867 .add(condCodeOp()); 868 return; 869 } 870 871 bool SPRDest = ARM::SPRRegClass.contains(DestReg); 872 bool SPRSrc = ARM::SPRRegClass.contains(SrcReg); 873 874 unsigned Opc = 0; 875 if (SPRDest && SPRSrc) 876 Opc = ARM::VMOVS; 877 else if (GPRDest && SPRSrc) 878 Opc = ARM::VMOVRS; 879 else if (SPRDest && GPRSrc) 880 Opc = ARM::VMOVSR; 881 else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64()) 882 Opc = ARM::VMOVD; 883 else if (ARM::QPRRegClass.contains(DestReg, SrcReg)) 884 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; 885 886 if (Opc) { 887 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg); 888 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 889 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) 890 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 891 if (Opc == ARM::MVE_VORR) 892 addUnpredicatedMveVpredROp(MIB, DestReg); 893 else 894 MIB.add(predOps(ARMCC::AL)); 895 return; 896 } 897 898 // Handle register classes that require multiple instructions. 899 unsigned BeginIdx = 0; 900 unsigned SubRegs = 0; 901 int Spacing = 1; 902 903 // Use VORRq when possible. 904 if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) { 905 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; 906 BeginIdx = ARM::qsub_0; 907 SubRegs = 2; 908 } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) { 909 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; 910 BeginIdx = ARM::qsub_0; 911 SubRegs = 4; 912 // Fall back to VMOVD. 913 } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) { 914 Opc = ARM::VMOVD; 915 BeginIdx = ARM::dsub_0; 916 SubRegs = 2; 917 } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) { 918 Opc = ARM::VMOVD; 919 BeginIdx = ARM::dsub_0; 920 SubRegs = 3; 921 } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) { 922 Opc = ARM::VMOVD; 923 BeginIdx = ARM::dsub_0; 924 SubRegs = 4; 925 } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) { 926 Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr; 927 BeginIdx = ARM::gsub_0; 928 SubRegs = 2; 929 } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) { 930 Opc = ARM::VMOVD; 931 BeginIdx = ARM::dsub_0; 932 SubRegs = 2; 933 Spacing = 2; 934 } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) { 935 Opc = ARM::VMOVD; 936 BeginIdx = ARM::dsub_0; 937 SubRegs = 3; 938 Spacing = 2; 939 } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) { 940 Opc = ARM::VMOVD; 941 BeginIdx = ARM::dsub_0; 942 SubRegs = 4; 943 Spacing = 2; 944 } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && 945 !Subtarget.hasFP64()) { 946 Opc = ARM::VMOVS; 947 BeginIdx = ARM::ssub_0; 948 SubRegs = 2; 949 } else if (SrcReg == ARM::CPSR) { 950 copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget); 951 return; 952 } else if (DestReg == ARM::CPSR) { 953 copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget); 954 return; 955 } else if (DestReg == ARM::VPR) { 956 assert(ARM::GPRRegClass.contains(SrcReg)); 957 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg) 958 .addReg(SrcReg, getKillRegState(KillSrc)) 959 .add(predOps(ARMCC::AL)); 960 return; 961 } else if (SrcReg == ARM::VPR) { 962 assert(ARM::GPRRegClass.contains(DestReg)); 963 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg) 964 .addReg(SrcReg, getKillRegState(KillSrc)) 965 .add(predOps(ARMCC::AL)); 966 return; 967 } else if (DestReg == ARM::FPSCR_NZCV) { 968 assert(ARM::GPRRegClass.contains(SrcReg)); 969 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg) 970 .addReg(SrcReg, getKillRegState(KillSrc)) 971 .add(predOps(ARMCC::AL)); 972 return; 973 } else if (SrcReg == ARM::FPSCR_NZCV) { 974 assert(ARM::GPRRegClass.contains(DestReg)); 975 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg) 976 .addReg(SrcReg, getKillRegState(KillSrc)) 977 .add(predOps(ARMCC::AL)); 978 return; 979 } 980 981 assert(Opc && "Impossible reg-to-reg copy"); 982 983 const TargetRegisterInfo *TRI = &getRegisterInfo(); 984 MachineInstrBuilder Mov; 985 986 // Copy register tuples backward when the first Dest reg overlaps with SrcReg. 987 if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) { 988 BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing); 989 Spacing = -Spacing; 990 } 991 #ifndef NDEBUG 992 SmallSet<unsigned, 4> DstRegs; 993 #endif 994 for (unsigned i = 0; i != SubRegs; ++i) { 995 Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing); 996 Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing); 997 assert(Dst && Src && "Bad sub-register"); 998 #ifndef NDEBUG 999 assert(!DstRegs.count(Src) && "destructive vector copy"); 1000 DstRegs.insert(Dst); 1001 #endif 1002 Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src); 1003 // VORR (NEON or MVE) takes two source operands. 1004 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) { 1005 Mov.addReg(Src); 1006 } 1007 // MVE VORR takes predicate operands in place of an ordinary condition. 1008 if (Opc == ARM::MVE_VORR) 1009 addUnpredicatedMveVpredROp(Mov, Dst); 1010 else 1011 Mov = Mov.add(predOps(ARMCC::AL)); 1012 // MOVr can set CC. 1013 if (Opc == ARM::MOVr) 1014 Mov = Mov.add(condCodeOp()); 1015 } 1016 // Add implicit super-register defs and kills to the last instruction. 1017 Mov->addRegisterDefined(DestReg, TRI); 1018 if (KillSrc) 1019 Mov->addRegisterKilled(SrcReg, TRI); 1020 } 1021 1022 Optional<DestSourcePair> 1023 ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const { 1024 // VMOVRRD is also a copy instruction but it requires 1025 // special way of handling. It is more complex copy version 1026 // and since that we are not considering it. For recognition 1027 // of such instruction isExtractSubregLike MI interface fuction 1028 // could be used. 1029 // VORRq is considered as a move only if two inputs are 1030 // the same register. 1031 if (!MI.isMoveReg() || 1032 (MI.getOpcode() == ARM::VORRq && 1033 MI.getOperand(1).getReg() != MI.getOperand(2).getReg())) 1034 return None; 1035 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)}; 1036 } 1037 1038 Optional<ParamLoadedValue> 1039 ARMBaseInstrInfo::describeLoadedValue(const MachineInstr &MI, 1040 Register Reg) const { 1041 if (auto DstSrcPair = isCopyInstrImpl(MI)) { 1042 Register DstReg = DstSrcPair->Destination->getReg(); 1043 1044 // TODO: We don't handle cases where the forwarding reg is narrower/wider 1045 // than the copy registers. Consider for example: 1046 // 1047 // s16 = VMOVS s0 1048 // s17 = VMOVS s1 1049 // call @callee(d0) 1050 // 1051 // We'd like to describe the call site value of d0 as d8, but this requires 1052 // gathering and merging the descriptions for the two VMOVS instructions. 1053 // 1054 // We also don't handle the reverse situation, where the forwarding reg is 1055 // narrower than the copy destination: 1056 // 1057 // d8 = VMOVD d0 1058 // call @callee(s1) 1059 // 1060 // We need to produce a fragment description (the call site value of s1 is 1061 // /not/ just d8). 1062 if (DstReg != Reg) 1063 return None; 1064 } 1065 return TargetInstrInfo::describeLoadedValue(MI, Reg); 1066 } 1067 1068 const MachineInstrBuilder & 1069 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg, 1070 unsigned SubIdx, unsigned State, 1071 const TargetRegisterInfo *TRI) const { 1072 if (!SubIdx) 1073 return MIB.addReg(Reg, State); 1074 1075 if (Register::isPhysicalRegister(Reg)) 1076 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State); 1077 return MIB.addReg(Reg, State, SubIdx); 1078 } 1079 1080 void ARMBaseInstrInfo:: 1081 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 1082 Register SrcReg, bool isKill, int FI, 1083 const TargetRegisterClass *RC, 1084 const TargetRegisterInfo *TRI) const { 1085 MachineFunction &MF = *MBB.getParent(); 1086 MachineFrameInfo &MFI = MF.getFrameInfo(); 1087 Align Alignment = MFI.getObjectAlign(FI); 1088 1089 MachineMemOperand *MMO = MF.getMachineMemOperand( 1090 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, 1091 MFI.getObjectSize(FI), Alignment); 1092 1093 switch (TRI->getSpillSize(*RC)) { 1094 case 2: 1095 if (ARM::HPRRegClass.hasSubClassEq(RC)) { 1096 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH)) 1097 .addReg(SrcReg, getKillRegState(isKill)) 1098 .addFrameIndex(FI) 1099 .addImm(0) 1100 .addMemOperand(MMO) 1101 .add(predOps(ARMCC::AL)); 1102 } else 1103 llvm_unreachable("Unknown reg class!"); 1104 break; 1105 case 4: 1106 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 1107 BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12)) 1108 .addReg(SrcReg, getKillRegState(isKill)) 1109 .addFrameIndex(FI) 1110 .addImm(0) 1111 .addMemOperand(MMO) 1112 .add(predOps(ARMCC::AL)); 1113 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1114 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS)) 1115 .addReg(SrcReg, getKillRegState(isKill)) 1116 .addFrameIndex(FI) 1117 .addImm(0) 1118 .addMemOperand(MMO) 1119 .add(predOps(ARMCC::AL)); 1120 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) { 1121 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off)) 1122 .addReg(SrcReg, getKillRegState(isKill)) 1123 .addFrameIndex(FI) 1124 .addImm(0) 1125 .addMemOperand(MMO) 1126 .add(predOps(ARMCC::AL)); 1127 } else 1128 llvm_unreachable("Unknown reg class!"); 1129 break; 1130 case 8: 1131 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1132 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD)) 1133 .addReg(SrcReg, getKillRegState(isKill)) 1134 .addFrameIndex(FI) 1135 .addImm(0) 1136 .addMemOperand(MMO) 1137 .add(predOps(ARMCC::AL)); 1138 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1139 if (Subtarget.hasV5TEOps()) { 1140 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD)); 1141 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 1142 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 1143 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) 1144 .add(predOps(ARMCC::AL)); 1145 } else { 1146 // Fallback to STM instruction, which has existed since the dawn of 1147 // time. 1148 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA)) 1149 .addFrameIndex(FI) 1150 .addMemOperand(MMO) 1151 .add(predOps(ARMCC::AL)); 1152 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 1153 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 1154 } 1155 } else 1156 llvm_unreachable("Unknown reg class!"); 1157 break; 1158 case 16: 1159 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) { 1160 // Use aligned spills if the stack can be realigned. 1161 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) { 1162 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64)) 1163 .addFrameIndex(FI) 1164 .addImm(16) 1165 .addReg(SrcReg, getKillRegState(isKill)) 1166 .addMemOperand(MMO) 1167 .add(predOps(ARMCC::AL)); 1168 } else { 1169 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA)) 1170 .addReg(SrcReg, getKillRegState(isKill)) 1171 .addFrameIndex(FI) 1172 .addMemOperand(MMO) 1173 .add(predOps(ARMCC::AL)); 1174 } 1175 } else if (ARM::QPRRegClass.hasSubClassEq(RC) && 1176 Subtarget.hasMVEIntegerOps()) { 1177 auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32)); 1178 MIB.addReg(SrcReg, getKillRegState(isKill)) 1179 .addFrameIndex(FI) 1180 .addImm(0) 1181 .addMemOperand(MMO); 1182 addUnpredicatedMveVpredNOp(MIB); 1183 } else 1184 llvm_unreachable("Unknown reg class!"); 1185 break; 1186 case 24: 1187 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1188 // Use aligned spills if the stack can be realigned. 1189 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1190 Subtarget.hasNEON()) { 1191 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo)) 1192 .addFrameIndex(FI) 1193 .addImm(16) 1194 .addReg(SrcReg, getKillRegState(isKill)) 1195 .addMemOperand(MMO) 1196 .add(predOps(ARMCC::AL)); 1197 } else { 1198 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), 1199 get(ARM::VSTMDIA)) 1200 .addFrameIndex(FI) 1201 .add(predOps(ARMCC::AL)) 1202 .addMemOperand(MMO); 1203 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1204 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1205 AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1206 } 1207 } else 1208 llvm_unreachable("Unknown reg class!"); 1209 break; 1210 case 32: 1211 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) { 1212 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1213 Subtarget.hasNEON()) { 1214 // FIXME: It's possible to only store part of the QQ register if the 1215 // spilled def has a sub-register index. 1216 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo)) 1217 .addFrameIndex(FI) 1218 .addImm(16) 1219 .addReg(SrcReg, getKillRegState(isKill)) 1220 .addMemOperand(MMO) 1221 .add(predOps(ARMCC::AL)); 1222 } else { 1223 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), 1224 get(ARM::VSTMDIA)) 1225 .addFrameIndex(FI) 1226 .add(predOps(ARMCC::AL)) 1227 .addMemOperand(MMO); 1228 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1229 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1230 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1231 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 1232 } 1233 } else 1234 llvm_unreachable("Unknown reg class!"); 1235 break; 1236 case 64: 1237 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1238 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA)) 1239 .addFrameIndex(FI) 1240 .add(predOps(ARMCC::AL)) 1241 .addMemOperand(MMO); 1242 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1243 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1244 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1245 MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 1246 MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI); 1247 MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI); 1248 MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI); 1249 AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI); 1250 } else 1251 llvm_unreachable("Unknown reg class!"); 1252 break; 1253 default: 1254 llvm_unreachable("Unknown reg class!"); 1255 } 1256 } 1257 1258 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 1259 int &FrameIndex) const { 1260 switch (MI.getOpcode()) { 1261 default: break; 1262 case ARM::STRrs: 1263 case ARM::t2STRs: // FIXME: don't use t2STRs to access frame. 1264 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && 1265 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && 1266 MI.getOperand(3).getImm() == 0) { 1267 FrameIndex = MI.getOperand(1).getIndex(); 1268 return MI.getOperand(0).getReg(); 1269 } 1270 break; 1271 case ARM::STRi12: 1272 case ARM::t2STRi12: 1273 case ARM::tSTRspi: 1274 case ARM::VSTRD: 1275 case ARM::VSTRS: 1276 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && 1277 MI.getOperand(2).getImm() == 0) { 1278 FrameIndex = MI.getOperand(1).getIndex(); 1279 return MI.getOperand(0).getReg(); 1280 } 1281 break; 1282 case ARM::VSTR_P0_off: 1283 if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() && 1284 MI.getOperand(1).getImm() == 0) { 1285 FrameIndex = MI.getOperand(0).getIndex(); 1286 return ARM::P0; 1287 } 1288 break; 1289 case ARM::VST1q64: 1290 case ARM::VST1d64TPseudo: 1291 case ARM::VST1d64QPseudo: 1292 if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) { 1293 FrameIndex = MI.getOperand(0).getIndex(); 1294 return MI.getOperand(2).getReg(); 1295 } 1296 break; 1297 case ARM::VSTMQIA: 1298 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1299 FrameIndex = MI.getOperand(1).getIndex(); 1300 return MI.getOperand(0).getReg(); 1301 } 1302 break; 1303 } 1304 1305 return 0; 1306 } 1307 1308 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, 1309 int &FrameIndex) const { 1310 SmallVector<const MachineMemOperand *, 1> Accesses; 1311 if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) && 1312 Accesses.size() == 1) { 1313 FrameIndex = 1314 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 1315 ->getFrameIndex(); 1316 return true; 1317 } 1318 return false; 1319 } 1320 1321 void ARMBaseInstrInfo:: 1322 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 1323 Register DestReg, int FI, 1324 const TargetRegisterClass *RC, 1325 const TargetRegisterInfo *TRI) const { 1326 DebugLoc DL; 1327 if (I != MBB.end()) DL = I->getDebugLoc(); 1328 MachineFunction &MF = *MBB.getParent(); 1329 MachineFrameInfo &MFI = MF.getFrameInfo(); 1330 const Align Alignment = MFI.getObjectAlign(FI); 1331 MachineMemOperand *MMO = MF.getMachineMemOperand( 1332 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, 1333 MFI.getObjectSize(FI), Alignment); 1334 1335 switch (TRI->getSpillSize(*RC)) { 1336 case 2: 1337 if (ARM::HPRRegClass.hasSubClassEq(RC)) { 1338 BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg) 1339 .addFrameIndex(FI) 1340 .addImm(0) 1341 .addMemOperand(MMO) 1342 .add(predOps(ARMCC::AL)); 1343 } else 1344 llvm_unreachable("Unknown reg class!"); 1345 break; 1346 case 4: 1347 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 1348 BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg) 1349 .addFrameIndex(FI) 1350 .addImm(0) 1351 .addMemOperand(MMO) 1352 .add(predOps(ARMCC::AL)); 1353 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1354 BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg) 1355 .addFrameIndex(FI) 1356 .addImm(0) 1357 .addMemOperand(MMO) 1358 .add(predOps(ARMCC::AL)); 1359 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) { 1360 BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg) 1361 .addFrameIndex(FI) 1362 .addImm(0) 1363 .addMemOperand(MMO) 1364 .add(predOps(ARMCC::AL)); 1365 } else 1366 llvm_unreachable("Unknown reg class!"); 1367 break; 1368 case 8: 1369 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1370 BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg) 1371 .addFrameIndex(FI) 1372 .addImm(0) 1373 .addMemOperand(MMO) 1374 .add(predOps(ARMCC::AL)); 1375 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1376 MachineInstrBuilder MIB; 1377 1378 if (Subtarget.hasV5TEOps()) { 1379 MIB = BuildMI(MBB, I, DL, get(ARM::LDRD)); 1380 AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1381 AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1382 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) 1383 .add(predOps(ARMCC::AL)); 1384 } else { 1385 // Fallback to LDM instruction, which has existed since the dawn of 1386 // time. 1387 MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA)) 1388 .addFrameIndex(FI) 1389 .addMemOperand(MMO) 1390 .add(predOps(ARMCC::AL)); 1391 MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1392 MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1393 } 1394 1395 if (Register::isPhysicalRegister(DestReg)) 1396 MIB.addReg(DestReg, RegState::ImplicitDefine); 1397 } else 1398 llvm_unreachable("Unknown reg class!"); 1399 break; 1400 case 16: 1401 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) { 1402 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) { 1403 BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg) 1404 .addFrameIndex(FI) 1405 .addImm(16) 1406 .addMemOperand(MMO) 1407 .add(predOps(ARMCC::AL)); 1408 } else { 1409 BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg) 1410 .addFrameIndex(FI) 1411 .addMemOperand(MMO) 1412 .add(predOps(ARMCC::AL)); 1413 } 1414 } else if (ARM::QPRRegClass.hasSubClassEq(RC) && 1415 Subtarget.hasMVEIntegerOps()) { 1416 auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg); 1417 MIB.addFrameIndex(FI) 1418 .addImm(0) 1419 .addMemOperand(MMO); 1420 addUnpredicatedMveVpredNOp(MIB); 1421 } else 1422 llvm_unreachable("Unknown reg class!"); 1423 break; 1424 case 24: 1425 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1426 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1427 Subtarget.hasNEON()) { 1428 BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg) 1429 .addFrameIndex(FI) 1430 .addImm(16) 1431 .addMemOperand(MMO) 1432 .add(predOps(ARMCC::AL)); 1433 } else { 1434 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1435 .addFrameIndex(FI) 1436 .addMemOperand(MMO) 1437 .add(predOps(ARMCC::AL)); 1438 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1439 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1440 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1441 if (Register::isPhysicalRegister(DestReg)) 1442 MIB.addReg(DestReg, RegState::ImplicitDefine); 1443 } 1444 } else 1445 llvm_unreachable("Unknown reg class!"); 1446 break; 1447 case 32: 1448 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) { 1449 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1450 Subtarget.hasNEON()) { 1451 BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg) 1452 .addFrameIndex(FI) 1453 .addImm(16) 1454 .addMemOperand(MMO) 1455 .add(predOps(ARMCC::AL)); 1456 } else { 1457 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1458 .addFrameIndex(FI) 1459 .add(predOps(ARMCC::AL)) 1460 .addMemOperand(MMO); 1461 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1462 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1463 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1464 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1465 if (Register::isPhysicalRegister(DestReg)) 1466 MIB.addReg(DestReg, RegState::ImplicitDefine); 1467 } 1468 } else 1469 llvm_unreachable("Unknown reg class!"); 1470 break; 1471 case 64: 1472 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1473 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1474 .addFrameIndex(FI) 1475 .add(predOps(ARMCC::AL)) 1476 .addMemOperand(MMO); 1477 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1478 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1479 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1480 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1481 MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI); 1482 MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI); 1483 MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI); 1484 MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI); 1485 if (Register::isPhysicalRegister(DestReg)) 1486 MIB.addReg(DestReg, RegState::ImplicitDefine); 1487 } else 1488 llvm_unreachable("Unknown reg class!"); 1489 break; 1490 default: 1491 llvm_unreachable("Unknown regclass!"); 1492 } 1493 } 1494 1495 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 1496 int &FrameIndex) const { 1497 switch (MI.getOpcode()) { 1498 default: break; 1499 case ARM::LDRrs: 1500 case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame. 1501 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && 1502 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && 1503 MI.getOperand(3).getImm() == 0) { 1504 FrameIndex = MI.getOperand(1).getIndex(); 1505 return MI.getOperand(0).getReg(); 1506 } 1507 break; 1508 case ARM::LDRi12: 1509 case ARM::t2LDRi12: 1510 case ARM::tLDRspi: 1511 case ARM::VLDRD: 1512 case ARM::VLDRS: 1513 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && 1514 MI.getOperand(2).getImm() == 0) { 1515 FrameIndex = MI.getOperand(1).getIndex(); 1516 return MI.getOperand(0).getReg(); 1517 } 1518 break; 1519 case ARM::VLDR_P0_off: 1520 if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() && 1521 MI.getOperand(1).getImm() == 0) { 1522 FrameIndex = MI.getOperand(0).getIndex(); 1523 return ARM::P0; 1524 } 1525 break; 1526 case ARM::VLD1q64: 1527 case ARM::VLD1d8TPseudo: 1528 case ARM::VLD1d16TPseudo: 1529 case ARM::VLD1d32TPseudo: 1530 case ARM::VLD1d64TPseudo: 1531 case ARM::VLD1d8QPseudo: 1532 case ARM::VLD1d16QPseudo: 1533 case ARM::VLD1d32QPseudo: 1534 case ARM::VLD1d64QPseudo: 1535 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1536 FrameIndex = MI.getOperand(1).getIndex(); 1537 return MI.getOperand(0).getReg(); 1538 } 1539 break; 1540 case ARM::VLDMQIA: 1541 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1542 FrameIndex = MI.getOperand(1).getIndex(); 1543 return MI.getOperand(0).getReg(); 1544 } 1545 break; 1546 } 1547 1548 return 0; 1549 } 1550 1551 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, 1552 int &FrameIndex) const { 1553 SmallVector<const MachineMemOperand *, 1> Accesses; 1554 if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) && 1555 Accesses.size() == 1) { 1556 FrameIndex = 1557 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 1558 ->getFrameIndex(); 1559 return true; 1560 } 1561 return false; 1562 } 1563 1564 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD 1565 /// depending on whether the result is used. 1566 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const { 1567 bool isThumb1 = Subtarget.isThumb1Only(); 1568 bool isThumb2 = Subtarget.isThumb2(); 1569 const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo(); 1570 1571 DebugLoc dl = MI->getDebugLoc(); 1572 MachineBasicBlock *BB = MI->getParent(); 1573 1574 MachineInstrBuilder LDM, STM; 1575 if (isThumb1 || !MI->getOperand(1).isDead()) { 1576 MachineOperand LDWb(MI->getOperand(1)); 1577 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD 1578 : isThumb1 ? ARM::tLDMIA_UPD 1579 : ARM::LDMIA_UPD)) 1580 .add(LDWb); 1581 } else { 1582 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA)); 1583 } 1584 1585 if (isThumb1 || !MI->getOperand(0).isDead()) { 1586 MachineOperand STWb(MI->getOperand(0)); 1587 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD 1588 : isThumb1 ? ARM::tSTMIA_UPD 1589 : ARM::STMIA_UPD)) 1590 .add(STWb); 1591 } else { 1592 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA)); 1593 } 1594 1595 MachineOperand LDBase(MI->getOperand(3)); 1596 LDM.add(LDBase).add(predOps(ARMCC::AL)); 1597 1598 MachineOperand STBase(MI->getOperand(2)); 1599 STM.add(STBase).add(predOps(ARMCC::AL)); 1600 1601 // Sort the scratch registers into ascending order. 1602 const TargetRegisterInfo &TRI = getRegisterInfo(); 1603 SmallVector<unsigned, 6> ScratchRegs; 1604 for(unsigned I = 5; I < MI->getNumOperands(); ++I) 1605 ScratchRegs.push_back(MI->getOperand(I).getReg()); 1606 llvm::sort(ScratchRegs, 1607 [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool { 1608 return TRI.getEncodingValue(Reg1) < 1609 TRI.getEncodingValue(Reg2); 1610 }); 1611 1612 for (const auto &Reg : ScratchRegs) { 1613 LDM.addReg(Reg, RegState::Define); 1614 STM.addReg(Reg, RegState::Kill); 1615 } 1616 1617 BB->erase(MI); 1618 } 1619 1620 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1621 if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) { 1622 assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() && 1623 "LOAD_STACK_GUARD currently supported only for MachO."); 1624 expandLoadStackGuard(MI); 1625 MI.getParent()->erase(MI); 1626 return true; 1627 } 1628 1629 if (MI.getOpcode() == ARM::MEMCPY) { 1630 expandMEMCPY(MI); 1631 return true; 1632 } 1633 1634 // This hook gets to expand COPY instructions before they become 1635 // copyPhysReg() calls. Look for VMOVS instructions that can legally be 1636 // widened to VMOVD. We prefer the VMOVD when possible because it may be 1637 // changed into a VORR that can go down the NEON pipeline. 1638 if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64()) 1639 return false; 1640 1641 // Look for a copy between even S-registers. That is where we keep floats 1642 // when using NEON v2f32 instructions for f32 arithmetic. 1643 Register DstRegS = MI.getOperand(0).getReg(); 1644 Register SrcRegS = MI.getOperand(1).getReg(); 1645 if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS)) 1646 return false; 1647 1648 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1649 unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0, 1650 &ARM::DPRRegClass); 1651 unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0, 1652 &ARM::DPRRegClass); 1653 if (!DstRegD || !SrcRegD) 1654 return false; 1655 1656 // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only 1657 // legal if the COPY already defines the full DstRegD, and it isn't a 1658 // sub-register insertion. 1659 if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI)) 1660 return false; 1661 1662 // A dead copy shouldn't show up here, but reject it just in case. 1663 if (MI.getOperand(0).isDead()) 1664 return false; 1665 1666 // All clear, widen the COPY. 1667 LLVM_DEBUG(dbgs() << "widening: " << MI); 1668 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 1669 1670 // Get rid of the old implicit-def of DstRegD. Leave it if it defines a Q-reg 1671 // or some other super-register. 1672 int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD); 1673 if (ImpDefIdx != -1) 1674 MI.RemoveOperand(ImpDefIdx); 1675 1676 // Change the opcode and operands. 1677 MI.setDesc(get(ARM::VMOVD)); 1678 MI.getOperand(0).setReg(DstRegD); 1679 MI.getOperand(1).setReg(SrcRegD); 1680 MIB.add(predOps(ARMCC::AL)); 1681 1682 // We are now reading SrcRegD instead of SrcRegS. This may upset the 1683 // register scavenger and machine verifier, so we need to indicate that we 1684 // are reading an undefined value from SrcRegD, but a proper value from 1685 // SrcRegS. 1686 MI.getOperand(1).setIsUndef(); 1687 MIB.addReg(SrcRegS, RegState::Implicit); 1688 1689 // SrcRegD may actually contain an unrelated value in the ssub_1 1690 // sub-register. Don't kill it. Only kill the ssub_0 sub-register. 1691 if (MI.getOperand(1).isKill()) { 1692 MI.getOperand(1).setIsKill(false); 1693 MI.addRegisterKilled(SrcRegS, TRI, true); 1694 } 1695 1696 LLVM_DEBUG(dbgs() << "replaced by: " << MI); 1697 return true; 1698 } 1699 1700 /// Create a copy of a const pool value. Update CPI to the new index and return 1701 /// the label UID. 1702 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) { 1703 MachineConstantPool *MCP = MF.getConstantPool(); 1704 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1705 1706 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI]; 1707 assert(MCPE.isMachineConstantPoolEntry() && 1708 "Expecting a machine constantpool entry!"); 1709 ARMConstantPoolValue *ACPV = 1710 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal); 1711 1712 unsigned PCLabelId = AFI->createPICLabelUId(); 1713 ARMConstantPoolValue *NewCPV = nullptr; 1714 1715 // FIXME: The below assumes PIC relocation model and that the function 1716 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and 1717 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR 1718 // instructions, so that's probably OK, but is PIC always correct when 1719 // we get here? 1720 if (ACPV->isGlobalValue()) 1721 NewCPV = ARMConstantPoolConstant::Create( 1722 cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue, 1723 4, ACPV->getModifier(), ACPV->mustAddCurrentAddress()); 1724 else if (ACPV->isExtSymbol()) 1725 NewCPV = ARMConstantPoolSymbol:: 1726 Create(MF.getFunction().getContext(), 1727 cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4); 1728 else if (ACPV->isBlockAddress()) 1729 NewCPV = ARMConstantPoolConstant:: 1730 Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId, 1731 ARMCP::CPBlockAddress, 4); 1732 else if (ACPV->isLSDA()) 1733 NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId, 1734 ARMCP::CPLSDA, 4); 1735 else if (ACPV->isMachineBasicBlock()) 1736 NewCPV = ARMConstantPoolMBB:: 1737 Create(MF.getFunction().getContext(), 1738 cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4); 1739 else 1740 llvm_unreachable("Unexpected ARM constantpool value type!!"); 1741 CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlign()); 1742 return PCLabelId; 1743 } 1744 1745 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB, 1746 MachineBasicBlock::iterator I, 1747 Register DestReg, unsigned SubIdx, 1748 const MachineInstr &Orig, 1749 const TargetRegisterInfo &TRI) const { 1750 unsigned Opcode = Orig.getOpcode(); 1751 switch (Opcode) { 1752 default: { 1753 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); 1754 MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); 1755 MBB.insert(I, MI); 1756 break; 1757 } 1758 case ARM::tLDRpci_pic: 1759 case ARM::t2LDRpci_pic: { 1760 MachineFunction &MF = *MBB.getParent(); 1761 unsigned CPI = Orig.getOperand(1).getIndex(); 1762 unsigned PCLabelId = duplicateCPV(MF, CPI); 1763 BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg) 1764 .addConstantPoolIndex(CPI) 1765 .addImm(PCLabelId) 1766 .cloneMemRefs(Orig); 1767 break; 1768 } 1769 } 1770 } 1771 1772 MachineInstr & 1773 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB, 1774 MachineBasicBlock::iterator InsertBefore, 1775 const MachineInstr &Orig) const { 1776 MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig); 1777 MachineBasicBlock::instr_iterator I = Cloned.getIterator(); 1778 for (;;) { 1779 switch (I->getOpcode()) { 1780 case ARM::tLDRpci_pic: 1781 case ARM::t2LDRpci_pic: { 1782 MachineFunction &MF = *MBB.getParent(); 1783 unsigned CPI = I->getOperand(1).getIndex(); 1784 unsigned PCLabelId = duplicateCPV(MF, CPI); 1785 I->getOperand(1).setIndex(CPI); 1786 I->getOperand(2).setImm(PCLabelId); 1787 break; 1788 } 1789 } 1790 if (!I->isBundledWithSucc()) 1791 break; 1792 ++I; 1793 } 1794 return Cloned; 1795 } 1796 1797 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0, 1798 const MachineInstr &MI1, 1799 const MachineRegisterInfo *MRI) const { 1800 unsigned Opcode = MI0.getOpcode(); 1801 if (Opcode == ARM::t2LDRpci || 1802 Opcode == ARM::t2LDRpci_pic || 1803 Opcode == ARM::tLDRpci || 1804 Opcode == ARM::tLDRpci_pic || 1805 Opcode == ARM::LDRLIT_ga_pcrel || 1806 Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1807 Opcode == ARM::tLDRLIT_ga_pcrel || 1808 Opcode == ARM::MOV_ga_pcrel || 1809 Opcode == ARM::MOV_ga_pcrel_ldr || 1810 Opcode == ARM::t2MOV_ga_pcrel) { 1811 if (MI1.getOpcode() != Opcode) 1812 return false; 1813 if (MI0.getNumOperands() != MI1.getNumOperands()) 1814 return false; 1815 1816 const MachineOperand &MO0 = MI0.getOperand(1); 1817 const MachineOperand &MO1 = MI1.getOperand(1); 1818 if (MO0.getOffset() != MO1.getOffset()) 1819 return false; 1820 1821 if (Opcode == ARM::LDRLIT_ga_pcrel || 1822 Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1823 Opcode == ARM::tLDRLIT_ga_pcrel || 1824 Opcode == ARM::MOV_ga_pcrel || 1825 Opcode == ARM::MOV_ga_pcrel_ldr || 1826 Opcode == ARM::t2MOV_ga_pcrel) 1827 // Ignore the PC labels. 1828 return MO0.getGlobal() == MO1.getGlobal(); 1829 1830 const MachineFunction *MF = MI0.getParent()->getParent(); 1831 const MachineConstantPool *MCP = MF->getConstantPool(); 1832 int CPI0 = MO0.getIndex(); 1833 int CPI1 = MO1.getIndex(); 1834 const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0]; 1835 const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1]; 1836 bool isARMCP0 = MCPE0.isMachineConstantPoolEntry(); 1837 bool isARMCP1 = MCPE1.isMachineConstantPoolEntry(); 1838 if (isARMCP0 && isARMCP1) { 1839 ARMConstantPoolValue *ACPV0 = 1840 static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal); 1841 ARMConstantPoolValue *ACPV1 = 1842 static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal); 1843 return ACPV0->hasSameValue(ACPV1); 1844 } else if (!isARMCP0 && !isARMCP1) { 1845 return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal; 1846 } 1847 return false; 1848 } else if (Opcode == ARM::PICLDR) { 1849 if (MI1.getOpcode() != Opcode) 1850 return false; 1851 if (MI0.getNumOperands() != MI1.getNumOperands()) 1852 return false; 1853 1854 Register Addr0 = MI0.getOperand(1).getReg(); 1855 Register Addr1 = MI1.getOperand(1).getReg(); 1856 if (Addr0 != Addr1) { 1857 if (!MRI || !Register::isVirtualRegister(Addr0) || 1858 !Register::isVirtualRegister(Addr1)) 1859 return false; 1860 1861 // This assumes SSA form. 1862 MachineInstr *Def0 = MRI->getVRegDef(Addr0); 1863 MachineInstr *Def1 = MRI->getVRegDef(Addr1); 1864 // Check if the loaded value, e.g. a constantpool of a global address, are 1865 // the same. 1866 if (!produceSameValue(*Def0, *Def1, MRI)) 1867 return false; 1868 } 1869 1870 for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) { 1871 // %12 = PICLDR %11, 0, 14, %noreg 1872 const MachineOperand &MO0 = MI0.getOperand(i); 1873 const MachineOperand &MO1 = MI1.getOperand(i); 1874 if (!MO0.isIdenticalTo(MO1)) 1875 return false; 1876 } 1877 return true; 1878 } 1879 1880 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 1881 } 1882 1883 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to 1884 /// determine if two loads are loading from the same base address. It should 1885 /// only return true if the base pointers are the same and the only differences 1886 /// between the two addresses is the offset. It also returns the offsets by 1887 /// reference. 1888 /// 1889 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 1890 /// is permanently disabled. 1891 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 1892 int64_t &Offset1, 1893 int64_t &Offset2) const { 1894 // Don't worry about Thumb: just ARM and Thumb2. 1895 if (Subtarget.isThumb1Only()) return false; 1896 1897 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) 1898 return false; 1899 1900 switch (Load1->getMachineOpcode()) { 1901 default: 1902 return false; 1903 case ARM::LDRi12: 1904 case ARM::LDRBi12: 1905 case ARM::LDRD: 1906 case ARM::LDRH: 1907 case ARM::LDRSB: 1908 case ARM::LDRSH: 1909 case ARM::VLDRD: 1910 case ARM::VLDRS: 1911 case ARM::t2LDRi8: 1912 case ARM::t2LDRBi8: 1913 case ARM::t2LDRDi8: 1914 case ARM::t2LDRSHi8: 1915 case ARM::t2LDRi12: 1916 case ARM::t2LDRBi12: 1917 case ARM::t2LDRSHi12: 1918 break; 1919 } 1920 1921 switch (Load2->getMachineOpcode()) { 1922 default: 1923 return false; 1924 case ARM::LDRi12: 1925 case ARM::LDRBi12: 1926 case ARM::LDRD: 1927 case ARM::LDRH: 1928 case ARM::LDRSB: 1929 case ARM::LDRSH: 1930 case ARM::VLDRD: 1931 case ARM::VLDRS: 1932 case ARM::t2LDRi8: 1933 case ARM::t2LDRBi8: 1934 case ARM::t2LDRSHi8: 1935 case ARM::t2LDRi12: 1936 case ARM::t2LDRBi12: 1937 case ARM::t2LDRSHi12: 1938 break; 1939 } 1940 1941 // Check if base addresses and chain operands match. 1942 if (Load1->getOperand(0) != Load2->getOperand(0) || 1943 Load1->getOperand(4) != Load2->getOperand(4)) 1944 return false; 1945 1946 // Index should be Reg0. 1947 if (Load1->getOperand(3) != Load2->getOperand(3)) 1948 return false; 1949 1950 // Determine the offsets. 1951 if (isa<ConstantSDNode>(Load1->getOperand(1)) && 1952 isa<ConstantSDNode>(Load2->getOperand(1))) { 1953 Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue(); 1954 Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue(); 1955 return true; 1956 } 1957 1958 return false; 1959 } 1960 1961 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to 1962 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should 1963 /// be scheduled togther. On some targets if two loads are loading from 1964 /// addresses in the same cache line, it's better if they are scheduled 1965 /// together. This function takes two integers that represent the load offsets 1966 /// from the common base address. It returns true if it decides it's desirable 1967 /// to schedule the two loads together. "NumLoads" is the number of loads that 1968 /// have already been scheduled after Load1. 1969 /// 1970 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 1971 /// is permanently disabled. 1972 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 1973 int64_t Offset1, int64_t Offset2, 1974 unsigned NumLoads) const { 1975 // Don't worry about Thumb: just ARM and Thumb2. 1976 if (Subtarget.isThumb1Only()) return false; 1977 1978 assert(Offset2 > Offset1); 1979 1980 if ((Offset2 - Offset1) / 8 > 64) 1981 return false; 1982 1983 // Check if the machine opcodes are different. If they are different 1984 // then we consider them to not be of the same base address, 1985 // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12. 1986 // In this case, they are considered to be the same because they are different 1987 // encoding forms of the same basic instruction. 1988 if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) && 1989 !((Load1->getMachineOpcode() == ARM::t2LDRBi8 && 1990 Load2->getMachineOpcode() == ARM::t2LDRBi12) || 1991 (Load1->getMachineOpcode() == ARM::t2LDRBi12 && 1992 Load2->getMachineOpcode() == ARM::t2LDRBi8))) 1993 return false; // FIXME: overly conservative? 1994 1995 // Four loads in a row should be sufficient. 1996 if (NumLoads >= 3) 1997 return false; 1998 1999 return true; 2000 } 2001 2002 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 2003 const MachineBasicBlock *MBB, 2004 const MachineFunction &MF) const { 2005 // Debug info is never a scheduling boundary. It's necessary to be explicit 2006 // due to the special treatment of IT instructions below, otherwise a 2007 // dbg_value followed by an IT will result in the IT instruction being 2008 // considered a scheduling hazard, which is wrong. It should be the actual 2009 // instruction preceding the dbg_value instruction(s), just like it is 2010 // when debug info is not present. 2011 if (MI.isDebugInstr()) 2012 return false; 2013 2014 // Terminators and labels can't be scheduled around. 2015 if (MI.isTerminator() || MI.isPosition()) 2016 return true; 2017 2018 // INLINEASM_BR can jump to another block 2019 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) 2020 return true; 2021 2022 // Treat the start of the IT block as a scheduling boundary, but schedule 2023 // t2IT along with all instructions following it. 2024 // FIXME: This is a big hammer. But the alternative is to add all potential 2025 // true and anti dependencies to IT block instructions as implicit operands 2026 // to the t2IT instruction. The added compile time and complexity does not 2027 // seem worth it. 2028 MachineBasicBlock::const_iterator I = MI; 2029 // Make sure to skip any debug instructions 2030 while (++I != MBB->end() && I->isDebugInstr()) 2031 ; 2032 if (I != MBB->end() && I->getOpcode() == ARM::t2IT) 2033 return true; 2034 2035 // Don't attempt to schedule around any instruction that defines 2036 // a stack-oriented pointer, as it's unlikely to be profitable. This 2037 // saves compile time, because it doesn't require every single 2038 // stack slot reference to depend on the instruction that does the 2039 // modification. 2040 // Calls don't actually change the stack pointer, even if they have imp-defs. 2041 // No ARM calling conventions change the stack pointer. (X86 calling 2042 // conventions sometimes do). 2043 if (!MI.isCall() && MI.definesRegister(ARM::SP)) 2044 return true; 2045 2046 return false; 2047 } 2048 2049 bool ARMBaseInstrInfo:: 2050 isProfitableToIfCvt(MachineBasicBlock &MBB, 2051 unsigned NumCycles, unsigned ExtraPredCycles, 2052 BranchProbability Probability) const { 2053 if (!NumCycles) 2054 return false; 2055 2056 // If we are optimizing for size, see if the branch in the predecessor can be 2057 // lowered to cbn?z by the constant island lowering pass, and return false if 2058 // so. This results in a shorter instruction sequence. 2059 if (MBB.getParent()->getFunction().hasOptSize()) { 2060 MachineBasicBlock *Pred = *MBB.pred_begin(); 2061 if (!Pred->empty()) { 2062 MachineInstr *LastMI = &*Pred->rbegin(); 2063 if (LastMI->getOpcode() == ARM::t2Bcc) { 2064 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2065 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI); 2066 if (CmpMI) 2067 return false; 2068 } 2069 } 2070 } 2071 return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles, 2072 MBB, 0, 0, Probability); 2073 } 2074 2075 bool ARMBaseInstrInfo:: 2076 isProfitableToIfCvt(MachineBasicBlock &TBB, 2077 unsigned TCycles, unsigned TExtra, 2078 MachineBasicBlock &FBB, 2079 unsigned FCycles, unsigned FExtra, 2080 BranchProbability Probability) const { 2081 if (!TCycles) 2082 return false; 2083 2084 // In thumb code we often end up trading one branch for a IT block, and 2085 // if we are cloning the instruction can increase code size. Prevent 2086 // blocks with multiple predecesors from being ifcvted to prevent this 2087 // cloning. 2088 if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) { 2089 if (TBB.pred_size() != 1 || FBB.pred_size() != 1) 2090 return false; 2091 } 2092 2093 // Attempt to estimate the relative costs of predication versus branching. 2094 // Here we scale up each component of UnpredCost to avoid precision issue when 2095 // scaling TCycles/FCycles by Probability. 2096 const unsigned ScalingUpFactor = 1024; 2097 2098 unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor; 2099 unsigned UnpredCost; 2100 if (!Subtarget.hasBranchPredictor()) { 2101 // When we don't have a branch predictor it's always cheaper to not take a 2102 // branch than take it, so we have to take that into account. 2103 unsigned NotTakenBranchCost = 1; 2104 unsigned TakenBranchCost = Subtarget.getMispredictionPenalty(); 2105 unsigned TUnpredCycles, FUnpredCycles; 2106 if (!FCycles) { 2107 // Triangle: TBB is the fallthrough 2108 TUnpredCycles = TCycles + NotTakenBranchCost; 2109 FUnpredCycles = TakenBranchCost; 2110 } else { 2111 // Diamond: TBB is the block that is branched to, FBB is the fallthrough 2112 TUnpredCycles = TCycles + TakenBranchCost; 2113 FUnpredCycles = FCycles + NotTakenBranchCost; 2114 // The branch at the end of FBB will disappear when it's predicated, so 2115 // discount it from PredCost. 2116 PredCost -= 1 * ScalingUpFactor; 2117 } 2118 // The total cost is the cost of each path scaled by their probabilites 2119 unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor); 2120 unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor); 2121 UnpredCost = TUnpredCost + FUnpredCost; 2122 // When predicating assume that the first IT can be folded away but later 2123 // ones cost one cycle each 2124 if (Subtarget.isThumb2() && TCycles + FCycles > 4) { 2125 PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor; 2126 } 2127 } else { 2128 unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor); 2129 unsigned FUnpredCost = 2130 Probability.getCompl().scale(FCycles * ScalingUpFactor); 2131 UnpredCost = TUnpredCost + FUnpredCost; 2132 UnpredCost += 1 * ScalingUpFactor; // The branch itself 2133 UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10; 2134 } 2135 2136 return PredCost <= UnpredCost; 2137 } 2138 2139 unsigned 2140 ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF, 2141 unsigned NumInsts) const { 2142 // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions. 2143 // ARM has a condition code field in every predicable instruction, using it 2144 // doesn't change code size. 2145 return Subtarget.isThumb2() ? divideCeil(NumInsts, 4) * 2 : 0; 2146 } 2147 2148 unsigned 2149 ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const { 2150 // If this branch is likely to be folded into the comparison to form a 2151 // CB(N)Z, then removing it won't reduce code size at all, because that will 2152 // just replace the CB(N)Z with a CMP. 2153 if (MI.getOpcode() == ARM::t2Bcc && 2154 findCMPToFoldIntoCBZ(&MI, &getRegisterInfo())) 2155 return 0; 2156 2157 unsigned Size = getInstSizeInBytes(MI); 2158 2159 // For Thumb2, all branches are 32-bit instructions during the if conversion 2160 // pass, but may be replaced with 16-bit instructions during size reduction. 2161 // Since the branches considered by if conversion tend to be forward branches 2162 // over small basic blocks, they are very likely to be in range for the 2163 // narrow instructions, so we assume the final code size will be half what it 2164 // currently is. 2165 if (Subtarget.isThumb2()) 2166 Size /= 2; 2167 2168 return Size; 2169 } 2170 2171 bool 2172 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB, 2173 MachineBasicBlock &FMBB) const { 2174 // Reduce false anti-dependencies to let the target's out-of-order execution 2175 // engine do its thing. 2176 return Subtarget.isProfitableToUnpredicate(); 2177 } 2178 2179 /// getInstrPredicate - If instruction is predicated, returns its predicate 2180 /// condition, otherwise returns AL. It also returns the condition code 2181 /// register by reference. 2182 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI, 2183 Register &PredReg) { 2184 int PIdx = MI.findFirstPredOperandIdx(); 2185 if (PIdx == -1) { 2186 PredReg = 0; 2187 return ARMCC::AL; 2188 } 2189 2190 PredReg = MI.getOperand(PIdx+1).getReg(); 2191 return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm(); 2192 } 2193 2194 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) { 2195 if (Opc == ARM::B) 2196 return ARM::Bcc; 2197 if (Opc == ARM::tB) 2198 return ARM::tBcc; 2199 if (Opc == ARM::t2B) 2200 return ARM::t2Bcc; 2201 2202 llvm_unreachable("Unknown unconditional branch opcode!"); 2203 } 2204 2205 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI, 2206 bool NewMI, 2207 unsigned OpIdx1, 2208 unsigned OpIdx2) const { 2209 switch (MI.getOpcode()) { 2210 case ARM::MOVCCr: 2211 case ARM::t2MOVCCr: { 2212 // MOVCC can be commuted by inverting the condition. 2213 Register PredReg; 2214 ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg); 2215 // MOVCC AL can't be inverted. Shouldn't happen. 2216 if (CC == ARMCC::AL || PredReg != ARM::CPSR) 2217 return nullptr; 2218 MachineInstr *CommutedMI = 2219 TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2220 if (!CommutedMI) 2221 return nullptr; 2222 // After swapping the MOVCC operands, also invert the condition. 2223 CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx()) 2224 .setImm(ARMCC::getOppositeCondition(CC)); 2225 return CommutedMI; 2226 } 2227 } 2228 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2229 } 2230 2231 /// Identify instructions that can be folded into a MOVCC instruction, and 2232 /// return the defining instruction. 2233 MachineInstr * 2234 ARMBaseInstrInfo::canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI, 2235 const TargetInstrInfo *TII) const { 2236 if (!Reg.isVirtual()) 2237 return nullptr; 2238 if (!MRI.hasOneNonDBGUse(Reg)) 2239 return nullptr; 2240 MachineInstr *MI = MRI.getVRegDef(Reg); 2241 if (!MI) 2242 return nullptr; 2243 // Check if MI can be predicated and folded into the MOVCC. 2244 if (!isPredicable(*MI)) 2245 return nullptr; 2246 // Check if MI has any non-dead defs or physreg uses. This also detects 2247 // predicated instructions which will be reading CPSR. 2248 for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) { 2249 const MachineOperand &MO = MI->getOperand(i); 2250 // Reject frame index operands, PEI can't handle the predicated pseudos. 2251 if (MO.isFI() || MO.isCPI() || MO.isJTI()) 2252 return nullptr; 2253 if (!MO.isReg()) 2254 continue; 2255 // MI can't have any tied operands, that would conflict with predication. 2256 if (MO.isTied()) 2257 return nullptr; 2258 if (Register::isPhysicalRegister(MO.getReg())) 2259 return nullptr; 2260 if (MO.isDef() && !MO.isDead()) 2261 return nullptr; 2262 } 2263 bool DontMoveAcrossStores = true; 2264 if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores)) 2265 return nullptr; 2266 return MI; 2267 } 2268 2269 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI, 2270 SmallVectorImpl<MachineOperand> &Cond, 2271 unsigned &TrueOp, unsigned &FalseOp, 2272 bool &Optimizable) const { 2273 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && 2274 "Unknown select instruction"); 2275 // MOVCC operands: 2276 // 0: Def. 2277 // 1: True use. 2278 // 2: False use. 2279 // 3: Condition code. 2280 // 4: CPSR use. 2281 TrueOp = 1; 2282 FalseOp = 2; 2283 Cond.push_back(MI.getOperand(3)); 2284 Cond.push_back(MI.getOperand(4)); 2285 // We can always fold a def. 2286 Optimizable = true; 2287 return false; 2288 } 2289 2290 MachineInstr * 2291 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI, 2292 SmallPtrSetImpl<MachineInstr *> &SeenMIs, 2293 bool PreferFalse) const { 2294 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && 2295 "Unknown select instruction"); 2296 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 2297 MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this); 2298 bool Invert = !DefMI; 2299 if (!DefMI) 2300 DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this); 2301 if (!DefMI) 2302 return nullptr; 2303 2304 // Find new register class to use. 2305 MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1); 2306 Register DestReg = MI.getOperand(0).getReg(); 2307 const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg()); 2308 if (!MRI.constrainRegClass(DestReg, PreviousClass)) 2309 return nullptr; 2310 2311 // Create a new predicated version of DefMI. 2312 // Rfalse is the first use. 2313 MachineInstrBuilder NewMI = 2314 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg); 2315 2316 // Copy all the DefMI operands, excluding its (null) predicate. 2317 const MCInstrDesc &DefDesc = DefMI->getDesc(); 2318 for (unsigned i = 1, e = DefDesc.getNumOperands(); 2319 i != e && !DefDesc.OpInfo[i].isPredicate(); ++i) 2320 NewMI.add(DefMI->getOperand(i)); 2321 2322 unsigned CondCode = MI.getOperand(3).getImm(); 2323 if (Invert) 2324 NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode))); 2325 else 2326 NewMI.addImm(CondCode); 2327 NewMI.add(MI.getOperand(4)); 2328 2329 // DefMI is not the -S version that sets CPSR, so add an optional %noreg. 2330 if (NewMI->hasOptionalDef()) 2331 NewMI.add(condCodeOp()); 2332 2333 // The output register value when the predicate is false is an implicit 2334 // register operand tied to the first def. 2335 // The tie makes the register allocator ensure the FalseReg is allocated the 2336 // same register as operand 0. 2337 FalseReg.setImplicit(); 2338 NewMI.add(FalseReg); 2339 NewMI->tieOperands(0, NewMI->getNumOperands() - 1); 2340 2341 // Update SeenMIs set: register newly created MI and erase removed DefMI. 2342 SeenMIs.insert(NewMI); 2343 SeenMIs.erase(DefMI); 2344 2345 // If MI is inside a loop, and DefMI is outside the loop, then kill flags on 2346 // DefMI would be invalid when tranferred inside the loop. Checking for a 2347 // loop is expensive, but at least remove kill flags if they are in different 2348 // BBs. 2349 if (DefMI->getParent() != MI.getParent()) 2350 NewMI->clearKillInfo(); 2351 2352 // The caller will erase MI, but not DefMI. 2353 DefMI->eraseFromParent(); 2354 return NewMI; 2355 } 2356 2357 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the 2358 /// instruction is encoded with an 'S' bit is determined by the optional CPSR 2359 /// def operand. 2360 /// 2361 /// This will go away once we can teach tblgen how to set the optional CPSR def 2362 /// operand itself. 2363 struct AddSubFlagsOpcodePair { 2364 uint16_t PseudoOpc; 2365 uint16_t MachineOpc; 2366 }; 2367 2368 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = { 2369 {ARM::ADDSri, ARM::ADDri}, 2370 {ARM::ADDSrr, ARM::ADDrr}, 2371 {ARM::ADDSrsi, ARM::ADDrsi}, 2372 {ARM::ADDSrsr, ARM::ADDrsr}, 2373 2374 {ARM::SUBSri, ARM::SUBri}, 2375 {ARM::SUBSrr, ARM::SUBrr}, 2376 {ARM::SUBSrsi, ARM::SUBrsi}, 2377 {ARM::SUBSrsr, ARM::SUBrsr}, 2378 2379 {ARM::RSBSri, ARM::RSBri}, 2380 {ARM::RSBSrsi, ARM::RSBrsi}, 2381 {ARM::RSBSrsr, ARM::RSBrsr}, 2382 2383 {ARM::tADDSi3, ARM::tADDi3}, 2384 {ARM::tADDSi8, ARM::tADDi8}, 2385 {ARM::tADDSrr, ARM::tADDrr}, 2386 {ARM::tADCS, ARM::tADC}, 2387 2388 {ARM::tSUBSi3, ARM::tSUBi3}, 2389 {ARM::tSUBSi8, ARM::tSUBi8}, 2390 {ARM::tSUBSrr, ARM::tSUBrr}, 2391 {ARM::tSBCS, ARM::tSBC}, 2392 {ARM::tRSBS, ARM::tRSB}, 2393 {ARM::tLSLSri, ARM::tLSLri}, 2394 2395 {ARM::t2ADDSri, ARM::t2ADDri}, 2396 {ARM::t2ADDSrr, ARM::t2ADDrr}, 2397 {ARM::t2ADDSrs, ARM::t2ADDrs}, 2398 2399 {ARM::t2SUBSri, ARM::t2SUBri}, 2400 {ARM::t2SUBSrr, ARM::t2SUBrr}, 2401 {ARM::t2SUBSrs, ARM::t2SUBrs}, 2402 2403 {ARM::t2RSBSri, ARM::t2RSBri}, 2404 {ARM::t2RSBSrs, ARM::t2RSBrs}, 2405 }; 2406 2407 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) { 2408 for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i) 2409 if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc) 2410 return AddSubFlagsOpcodeMap[i].MachineOpc; 2411 return 0; 2412 } 2413 2414 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB, 2415 MachineBasicBlock::iterator &MBBI, 2416 const DebugLoc &dl, Register DestReg, 2417 Register BaseReg, int NumBytes, 2418 ARMCC::CondCodes Pred, Register PredReg, 2419 const ARMBaseInstrInfo &TII, 2420 unsigned MIFlags) { 2421 if (NumBytes == 0 && DestReg != BaseReg) { 2422 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg) 2423 .addReg(BaseReg, RegState::Kill) 2424 .add(predOps(Pred, PredReg)) 2425 .add(condCodeOp()) 2426 .setMIFlags(MIFlags); 2427 return; 2428 } 2429 2430 bool isSub = NumBytes < 0; 2431 if (isSub) NumBytes = -NumBytes; 2432 2433 while (NumBytes) { 2434 unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes); 2435 unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt); 2436 assert(ThisVal && "Didn't extract field correctly"); 2437 2438 // We will handle these bits from offset, clear them. 2439 NumBytes &= ~ThisVal; 2440 2441 assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?"); 2442 2443 // Build the new ADD / SUB. 2444 unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri; 2445 BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) 2446 .addReg(BaseReg, RegState::Kill) 2447 .addImm(ThisVal) 2448 .add(predOps(Pred, PredReg)) 2449 .add(condCodeOp()) 2450 .setMIFlags(MIFlags); 2451 BaseReg = DestReg; 2452 } 2453 } 2454 2455 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget, 2456 MachineFunction &MF, MachineInstr *MI, 2457 unsigned NumBytes) { 2458 // This optimisation potentially adds lots of load and store 2459 // micro-operations, it's only really a great benefit to code-size. 2460 if (!Subtarget.hasMinSize()) 2461 return false; 2462 2463 // If only one register is pushed/popped, LLVM can use an LDR/STR 2464 // instead. We can't modify those so make sure we're dealing with an 2465 // instruction we understand. 2466 bool IsPop = isPopOpcode(MI->getOpcode()); 2467 bool IsPush = isPushOpcode(MI->getOpcode()); 2468 if (!IsPush && !IsPop) 2469 return false; 2470 2471 bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD || 2472 MI->getOpcode() == ARM::VLDMDIA_UPD; 2473 bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH || 2474 MI->getOpcode() == ARM::tPOP || 2475 MI->getOpcode() == ARM::tPOP_RET; 2476 2477 assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP && 2478 MI->getOperand(1).getReg() == ARM::SP)) && 2479 "trying to fold sp update into non-sp-updating push/pop"); 2480 2481 // The VFP push & pop act on D-registers, so we can only fold an adjustment 2482 // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try 2483 // if this is violated. 2484 if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0) 2485 return false; 2486 2487 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 2488 // pred) so the list starts at 4. Thumb1 starts after the predicate. 2489 int RegListIdx = IsT1PushPop ? 2 : 4; 2490 2491 // Calculate the space we'll need in terms of registers. 2492 unsigned RegsNeeded; 2493 const TargetRegisterClass *RegClass; 2494 if (IsVFPPushPop) { 2495 RegsNeeded = NumBytes / 8; 2496 RegClass = &ARM::DPRRegClass; 2497 } else { 2498 RegsNeeded = NumBytes / 4; 2499 RegClass = &ARM::GPRRegClass; 2500 } 2501 2502 // We're going to have to strip all list operands off before 2503 // re-adding them since the order matters, so save the existing ones 2504 // for later. 2505 SmallVector<MachineOperand, 4> RegList; 2506 2507 // We're also going to need the first register transferred by this 2508 // instruction, which won't necessarily be the first register in the list. 2509 unsigned FirstRegEnc = -1; 2510 2511 const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo(); 2512 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) { 2513 MachineOperand &MO = MI->getOperand(i); 2514 RegList.push_back(MO); 2515 2516 if (MO.isReg() && !MO.isImplicit() && 2517 TRI->getEncodingValue(MO.getReg()) < FirstRegEnc) 2518 FirstRegEnc = TRI->getEncodingValue(MO.getReg()); 2519 } 2520 2521 const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF); 2522 2523 // Now try to find enough space in the reglist to allocate NumBytes. 2524 for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded; 2525 --CurRegEnc) { 2526 unsigned CurReg = RegClass->getRegister(CurRegEnc); 2527 if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7)) 2528 continue; 2529 if (!IsPop) { 2530 // Pushing any register is completely harmless, mark the register involved 2531 // as undef since we don't care about its value and must not restore it 2532 // during stack unwinding. 2533 RegList.push_back(MachineOperand::CreateReg(CurReg, false, false, 2534 false, false, true)); 2535 --RegsNeeded; 2536 continue; 2537 } 2538 2539 // However, we can only pop an extra register if it's not live. For 2540 // registers live within the function we might clobber a return value 2541 // register; the other way a register can be live here is if it's 2542 // callee-saved. 2543 if (isCalleeSavedRegister(CurReg, CSRegs) || 2544 MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) != 2545 MachineBasicBlock::LQR_Dead) { 2546 // VFP pops don't allow holes in the register list, so any skip is fatal 2547 // for our transformation. GPR pops do, so we should just keep looking. 2548 if (IsVFPPushPop) 2549 return false; 2550 else 2551 continue; 2552 } 2553 2554 // Mark the unimportant registers as <def,dead> in the POP. 2555 RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false, 2556 true)); 2557 --RegsNeeded; 2558 } 2559 2560 if (RegsNeeded > 0) 2561 return false; 2562 2563 // Finally we know we can profitably perform the optimisation so go 2564 // ahead: strip all existing registers off and add them back again 2565 // in the right order. 2566 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) 2567 MI->RemoveOperand(i); 2568 2569 // Add the complete list back in. 2570 MachineInstrBuilder MIB(MF, &*MI); 2571 for (int i = RegList.size() - 1; i >= 0; --i) 2572 MIB.add(RegList[i]); 2573 2574 return true; 2575 } 2576 2577 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx, 2578 Register FrameReg, int &Offset, 2579 const ARMBaseInstrInfo &TII) { 2580 unsigned Opcode = MI.getOpcode(); 2581 const MCInstrDesc &Desc = MI.getDesc(); 2582 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); 2583 bool isSub = false; 2584 2585 // Memory operands in inline assembly always use AddrMode2. 2586 if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR) 2587 AddrMode = ARMII::AddrMode2; 2588 2589 if (Opcode == ARM::ADDri) { 2590 Offset += MI.getOperand(FrameRegIdx+1).getImm(); 2591 if (Offset == 0) { 2592 // Turn it into a move. 2593 MI.setDesc(TII.get(ARM::MOVr)); 2594 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2595 MI.RemoveOperand(FrameRegIdx+1); 2596 Offset = 0; 2597 return true; 2598 } else if (Offset < 0) { 2599 Offset = -Offset; 2600 isSub = true; 2601 MI.setDesc(TII.get(ARM::SUBri)); 2602 } 2603 2604 // Common case: small offset, fits into instruction. 2605 if (ARM_AM::getSOImmVal(Offset) != -1) { 2606 // Replace the FrameIndex with sp / fp 2607 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2608 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); 2609 Offset = 0; 2610 return true; 2611 } 2612 2613 // Otherwise, pull as much of the immedidate into this ADDri/SUBri 2614 // as possible. 2615 unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset); 2616 unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt); 2617 2618 // We will handle these bits from offset, clear them. 2619 Offset &= ~ThisImmVal; 2620 2621 // Get the properly encoded SOImmVal field. 2622 assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 && 2623 "Bit extraction didn't work?"); 2624 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal); 2625 } else { 2626 unsigned ImmIdx = 0; 2627 int InstrOffs = 0; 2628 unsigned NumBits = 0; 2629 unsigned Scale = 1; 2630 switch (AddrMode) { 2631 case ARMII::AddrMode_i12: 2632 ImmIdx = FrameRegIdx + 1; 2633 InstrOffs = MI.getOperand(ImmIdx).getImm(); 2634 NumBits = 12; 2635 break; 2636 case ARMII::AddrMode2: 2637 ImmIdx = FrameRegIdx+2; 2638 InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm()); 2639 if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2640 InstrOffs *= -1; 2641 NumBits = 12; 2642 break; 2643 case ARMII::AddrMode3: 2644 ImmIdx = FrameRegIdx+2; 2645 InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm()); 2646 if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2647 InstrOffs *= -1; 2648 NumBits = 8; 2649 break; 2650 case ARMII::AddrMode4: 2651 case ARMII::AddrMode6: 2652 // Can't fold any offset even if it's zero. 2653 return false; 2654 case ARMII::AddrMode5: 2655 ImmIdx = FrameRegIdx+1; 2656 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2657 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2658 InstrOffs *= -1; 2659 NumBits = 8; 2660 Scale = 4; 2661 break; 2662 case ARMII::AddrMode5FP16: 2663 ImmIdx = FrameRegIdx+1; 2664 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2665 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2666 InstrOffs *= -1; 2667 NumBits = 8; 2668 Scale = 2; 2669 break; 2670 case ARMII::AddrModeT2_i7: 2671 case ARMII::AddrModeT2_i7s2: 2672 case ARMII::AddrModeT2_i7s4: 2673 ImmIdx = FrameRegIdx+1; 2674 InstrOffs = MI.getOperand(ImmIdx).getImm(); 2675 NumBits = 7; 2676 Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 : 2677 AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1); 2678 break; 2679 default: 2680 llvm_unreachable("Unsupported addressing mode!"); 2681 } 2682 2683 Offset += InstrOffs * Scale; 2684 assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!"); 2685 if (Offset < 0) { 2686 Offset = -Offset; 2687 isSub = true; 2688 } 2689 2690 // Attempt to fold address comp. if opcode has offset bits 2691 if (NumBits > 0) { 2692 // Common case: small offset, fits into instruction. 2693 MachineOperand &ImmOp = MI.getOperand(ImmIdx); 2694 int ImmedOffset = Offset / Scale; 2695 unsigned Mask = (1 << NumBits) - 1; 2696 if ((unsigned)Offset <= Mask * Scale) { 2697 // Replace the FrameIndex with sp 2698 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2699 // FIXME: When addrmode2 goes away, this will simplify (like the 2700 // T2 version), as the LDR.i12 versions don't need the encoding 2701 // tricks for the offset value. 2702 if (isSub) { 2703 if (AddrMode == ARMII::AddrMode_i12) 2704 ImmedOffset = -ImmedOffset; 2705 else 2706 ImmedOffset |= 1 << NumBits; 2707 } 2708 ImmOp.ChangeToImmediate(ImmedOffset); 2709 Offset = 0; 2710 return true; 2711 } 2712 2713 // Otherwise, it didn't fit. Pull in what we can to simplify the immed. 2714 ImmedOffset = ImmedOffset & Mask; 2715 if (isSub) { 2716 if (AddrMode == ARMII::AddrMode_i12) 2717 ImmedOffset = -ImmedOffset; 2718 else 2719 ImmedOffset |= 1 << NumBits; 2720 } 2721 ImmOp.ChangeToImmediate(ImmedOffset); 2722 Offset &= ~(Mask*Scale); 2723 } 2724 } 2725 2726 Offset = (isSub) ? -Offset : Offset; 2727 return Offset == 0; 2728 } 2729 2730 /// analyzeCompare - For a comparison instruction, return the source registers 2731 /// in SrcReg and SrcReg2 if having two register operands, and the value it 2732 /// compares against in CmpValue. Return true if the comparison instruction 2733 /// can be analyzed. 2734 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 2735 Register &SrcReg2, int &CmpMask, 2736 int &CmpValue) const { 2737 switch (MI.getOpcode()) { 2738 default: break; 2739 case ARM::CMPri: 2740 case ARM::t2CMPri: 2741 case ARM::tCMPi8: 2742 SrcReg = MI.getOperand(0).getReg(); 2743 SrcReg2 = 0; 2744 CmpMask = ~0; 2745 CmpValue = MI.getOperand(1).getImm(); 2746 return true; 2747 case ARM::CMPrr: 2748 case ARM::t2CMPrr: 2749 case ARM::tCMPr: 2750 SrcReg = MI.getOperand(0).getReg(); 2751 SrcReg2 = MI.getOperand(1).getReg(); 2752 CmpMask = ~0; 2753 CmpValue = 0; 2754 return true; 2755 case ARM::TSTri: 2756 case ARM::t2TSTri: 2757 SrcReg = MI.getOperand(0).getReg(); 2758 SrcReg2 = 0; 2759 CmpMask = MI.getOperand(1).getImm(); 2760 CmpValue = 0; 2761 return true; 2762 } 2763 2764 return false; 2765 } 2766 2767 /// isSuitableForMask - Identify a suitable 'and' instruction that 2768 /// operates on the given source register and applies the same mask 2769 /// as a 'tst' instruction. Provide a limited look-through for copies. 2770 /// When successful, MI will hold the found instruction. 2771 static bool isSuitableForMask(MachineInstr *&MI, Register SrcReg, 2772 int CmpMask, bool CommonUse) { 2773 switch (MI->getOpcode()) { 2774 case ARM::ANDri: 2775 case ARM::t2ANDri: 2776 if (CmpMask != MI->getOperand(2).getImm()) 2777 return false; 2778 if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg()) 2779 return true; 2780 break; 2781 } 2782 2783 return false; 2784 } 2785 2786 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return 2787 /// the condition code if we modify the instructions such that flags are 2788 /// set by ADD(a,b,X). 2789 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) { 2790 switch (CC) { 2791 default: return ARMCC::AL; 2792 case ARMCC::HS: return ARMCC::LO; 2793 case ARMCC::LO: return ARMCC::HS; 2794 case ARMCC::VS: return ARMCC::VS; 2795 case ARMCC::VC: return ARMCC::VC; 2796 } 2797 } 2798 2799 /// isRedundantFlagInstr - check whether the first instruction, whose only 2800 /// purpose is to update flags, can be made redundant. 2801 /// CMPrr can be made redundant by SUBrr if the operands are the same. 2802 /// CMPri can be made redundant by SUBri if the operands are the same. 2803 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X). 2804 /// This function can be extended later on. 2805 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI, 2806 Register SrcReg, Register SrcReg2, 2807 int ImmValue, const MachineInstr *OI, 2808 bool &IsThumb1) { 2809 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && 2810 (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) && 2811 ((OI->getOperand(1).getReg() == SrcReg && 2812 OI->getOperand(2).getReg() == SrcReg2) || 2813 (OI->getOperand(1).getReg() == SrcReg2 && 2814 OI->getOperand(2).getReg() == SrcReg))) { 2815 IsThumb1 = false; 2816 return true; 2817 } 2818 2819 if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr && 2820 ((OI->getOperand(2).getReg() == SrcReg && 2821 OI->getOperand(3).getReg() == SrcReg2) || 2822 (OI->getOperand(2).getReg() == SrcReg2 && 2823 OI->getOperand(3).getReg() == SrcReg))) { 2824 IsThumb1 = true; 2825 return true; 2826 } 2827 2828 if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) && 2829 (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) && 2830 OI->getOperand(1).getReg() == SrcReg && 2831 OI->getOperand(2).getImm() == ImmValue) { 2832 IsThumb1 = false; 2833 return true; 2834 } 2835 2836 if (CmpI->getOpcode() == ARM::tCMPi8 && 2837 (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) && 2838 OI->getOperand(2).getReg() == SrcReg && 2839 OI->getOperand(3).getImm() == ImmValue) { 2840 IsThumb1 = true; 2841 return true; 2842 } 2843 2844 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && 2845 (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr || 2846 OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) && 2847 OI->getOperand(0).isReg() && OI->getOperand(1).isReg() && 2848 OI->getOperand(0).getReg() == SrcReg && 2849 OI->getOperand(1).getReg() == SrcReg2) { 2850 IsThumb1 = false; 2851 return true; 2852 } 2853 2854 if (CmpI->getOpcode() == ARM::tCMPr && 2855 (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 || 2856 OI->getOpcode() == ARM::tADDrr) && 2857 OI->getOperand(0).getReg() == SrcReg && 2858 OI->getOperand(2).getReg() == SrcReg2) { 2859 IsThumb1 = true; 2860 return true; 2861 } 2862 2863 return false; 2864 } 2865 2866 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) { 2867 switch (MI->getOpcode()) { 2868 default: return false; 2869 case ARM::tLSLri: 2870 case ARM::tLSRri: 2871 case ARM::tLSLrr: 2872 case ARM::tLSRrr: 2873 case ARM::tSUBrr: 2874 case ARM::tADDrr: 2875 case ARM::tADDi3: 2876 case ARM::tADDi8: 2877 case ARM::tSUBi3: 2878 case ARM::tSUBi8: 2879 case ARM::tMUL: 2880 case ARM::tADC: 2881 case ARM::tSBC: 2882 case ARM::tRSB: 2883 case ARM::tAND: 2884 case ARM::tORR: 2885 case ARM::tEOR: 2886 case ARM::tBIC: 2887 case ARM::tMVN: 2888 case ARM::tASRri: 2889 case ARM::tASRrr: 2890 case ARM::tROR: 2891 IsThumb1 = true; 2892 LLVM_FALLTHROUGH; 2893 case ARM::RSBrr: 2894 case ARM::RSBri: 2895 case ARM::RSCrr: 2896 case ARM::RSCri: 2897 case ARM::ADDrr: 2898 case ARM::ADDri: 2899 case ARM::ADCrr: 2900 case ARM::ADCri: 2901 case ARM::SUBrr: 2902 case ARM::SUBri: 2903 case ARM::SBCrr: 2904 case ARM::SBCri: 2905 case ARM::t2RSBri: 2906 case ARM::t2ADDrr: 2907 case ARM::t2ADDri: 2908 case ARM::t2ADCrr: 2909 case ARM::t2ADCri: 2910 case ARM::t2SUBrr: 2911 case ARM::t2SUBri: 2912 case ARM::t2SBCrr: 2913 case ARM::t2SBCri: 2914 case ARM::ANDrr: 2915 case ARM::ANDri: 2916 case ARM::t2ANDrr: 2917 case ARM::t2ANDri: 2918 case ARM::ORRrr: 2919 case ARM::ORRri: 2920 case ARM::t2ORRrr: 2921 case ARM::t2ORRri: 2922 case ARM::EORrr: 2923 case ARM::EORri: 2924 case ARM::t2EORrr: 2925 case ARM::t2EORri: 2926 case ARM::t2LSRri: 2927 case ARM::t2LSRrr: 2928 case ARM::t2LSLri: 2929 case ARM::t2LSLrr: 2930 return true; 2931 } 2932 } 2933 2934 /// optimizeCompareInstr - Convert the instruction supplying the argument to the 2935 /// comparison into one that sets the zero bit in the flags register; 2936 /// Remove a redundant Compare instruction if an earlier instruction can set the 2937 /// flags in the same way as Compare. 2938 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two 2939 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the 2940 /// condition code of instructions which use the flags. 2941 bool ARMBaseInstrInfo::optimizeCompareInstr( 2942 MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int CmpMask, 2943 int CmpValue, const MachineRegisterInfo *MRI) const { 2944 // Get the unique definition of SrcReg. 2945 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 2946 if (!MI) return false; 2947 2948 // Masked compares sometimes use the same register as the corresponding 'and'. 2949 if (CmpMask != ~0) { 2950 if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) { 2951 MI = nullptr; 2952 for (MachineRegisterInfo::use_instr_iterator 2953 UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end(); 2954 UI != UE; ++UI) { 2955 if (UI->getParent() != CmpInstr.getParent()) 2956 continue; 2957 MachineInstr *PotentialAND = &*UI; 2958 if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) || 2959 isPredicated(*PotentialAND)) 2960 continue; 2961 MI = PotentialAND; 2962 break; 2963 } 2964 if (!MI) return false; 2965 } 2966 } 2967 2968 // Get ready to iterate backward from CmpInstr. 2969 MachineBasicBlock::iterator I = CmpInstr, E = MI, 2970 B = CmpInstr.getParent()->begin(); 2971 2972 // Early exit if CmpInstr is at the beginning of the BB. 2973 if (I == B) return false; 2974 2975 // There are two possible candidates which can be changed to set CPSR: 2976 // One is MI, the other is a SUB or ADD instruction. 2977 // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or 2978 // ADDr[ri](r1, r2, X). 2979 // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue). 2980 MachineInstr *SubAdd = nullptr; 2981 if (SrcReg2 != 0) 2982 // MI is not a candidate for CMPrr. 2983 MI = nullptr; 2984 else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) { 2985 // Conservatively refuse to convert an instruction which isn't in the same 2986 // BB as the comparison. 2987 // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate. 2988 // Thus we cannot return here. 2989 if (CmpInstr.getOpcode() == ARM::CMPri || 2990 CmpInstr.getOpcode() == ARM::t2CMPri || 2991 CmpInstr.getOpcode() == ARM::tCMPi8) 2992 MI = nullptr; 2993 else 2994 return false; 2995 } 2996 2997 bool IsThumb1 = false; 2998 if (MI && !isOptimizeCompareCandidate(MI, IsThumb1)) 2999 return false; 3000 3001 // We also want to do this peephole for cases like this: if (a*b == 0), 3002 // and optimise away the CMP instruction from the generated code sequence: 3003 // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values 3004 // resulting from the select instruction, but these MOVS instructions for 3005 // Thumb1 (V6M) are flag setting and are thus preventing this optimisation. 3006 // However, if we only have MOVS instructions in between the CMP and the 3007 // other instruction (the MULS in this example), then the CPSR is dead so we 3008 // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this 3009 // reordering and then continue the analysis hoping we can eliminate the 3010 // CMP. This peephole works on the vregs, so is still in SSA form. As a 3011 // consequence, the movs won't redefine/kill the MUL operands which would 3012 // make this reordering illegal. 3013 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3014 if (MI && IsThumb1) { 3015 --I; 3016 if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) { 3017 bool CanReorder = true; 3018 for (; I != E; --I) { 3019 if (I->getOpcode() != ARM::tMOVi8) { 3020 CanReorder = false; 3021 break; 3022 } 3023 } 3024 if (CanReorder) { 3025 MI = MI->removeFromParent(); 3026 E = CmpInstr; 3027 CmpInstr.getParent()->insert(E, MI); 3028 } 3029 } 3030 I = CmpInstr; 3031 E = MI; 3032 } 3033 3034 // Check that CPSR isn't set between the comparison instruction and the one we 3035 // want to change. At the same time, search for SubAdd. 3036 bool SubAddIsThumb1 = false; 3037 do { 3038 const MachineInstr &Instr = *--I; 3039 3040 // Check whether CmpInstr can be made redundant by the current instruction. 3041 if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr, 3042 SubAddIsThumb1)) { 3043 SubAdd = &*I; 3044 break; 3045 } 3046 3047 // Allow E (which was initially MI) to be SubAdd but do not search before E. 3048 if (I == E) 3049 break; 3050 3051 if (Instr.modifiesRegister(ARM::CPSR, TRI) || 3052 Instr.readsRegister(ARM::CPSR, TRI)) 3053 // This instruction modifies or uses CPSR after the one we want to 3054 // change. We can't do this transformation. 3055 return false; 3056 3057 if (I == B) { 3058 // In some cases, we scan the use-list of an instruction for an AND; 3059 // that AND is in the same BB, but may not be scheduled before the 3060 // corresponding TST. In that case, bail out. 3061 // 3062 // FIXME: We could try to reschedule the AND. 3063 return false; 3064 } 3065 } while (true); 3066 3067 // Return false if no candidates exist. 3068 if (!MI && !SubAdd) 3069 return false; 3070 3071 // If we found a SubAdd, use it as it will be closer to the CMP 3072 if (SubAdd) { 3073 MI = SubAdd; 3074 IsThumb1 = SubAddIsThumb1; 3075 } 3076 3077 // We can't use a predicated instruction - it doesn't always write the flags. 3078 if (isPredicated(*MI)) 3079 return false; 3080 3081 // Scan forward for the use of CPSR 3082 // When checking against MI: if it's a conditional code that requires 3083 // checking of the V bit or C bit, then this is not safe to do. 3084 // It is safe to remove CmpInstr if CPSR is redefined or killed. 3085 // If we are done with the basic block, we need to check whether CPSR is 3086 // live-out. 3087 SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4> 3088 OperandsToUpdate; 3089 bool isSafe = false; 3090 I = CmpInstr; 3091 E = CmpInstr.getParent()->end(); 3092 while (!isSafe && ++I != E) { 3093 const MachineInstr &Instr = *I; 3094 for (unsigned IO = 0, EO = Instr.getNumOperands(); 3095 !isSafe && IO != EO; ++IO) { 3096 const MachineOperand &MO = Instr.getOperand(IO); 3097 if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) { 3098 isSafe = true; 3099 break; 3100 } 3101 if (!MO.isReg() || MO.getReg() != ARM::CPSR) 3102 continue; 3103 if (MO.isDef()) { 3104 isSafe = true; 3105 break; 3106 } 3107 // Condition code is after the operand before CPSR except for VSELs. 3108 ARMCC::CondCodes CC; 3109 bool IsInstrVSel = true; 3110 switch (Instr.getOpcode()) { 3111 default: 3112 IsInstrVSel = false; 3113 CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm(); 3114 break; 3115 case ARM::VSELEQD: 3116 case ARM::VSELEQS: 3117 case ARM::VSELEQH: 3118 CC = ARMCC::EQ; 3119 break; 3120 case ARM::VSELGTD: 3121 case ARM::VSELGTS: 3122 case ARM::VSELGTH: 3123 CC = ARMCC::GT; 3124 break; 3125 case ARM::VSELGED: 3126 case ARM::VSELGES: 3127 case ARM::VSELGEH: 3128 CC = ARMCC::GE; 3129 break; 3130 case ARM::VSELVSD: 3131 case ARM::VSELVSS: 3132 case ARM::VSELVSH: 3133 CC = ARMCC::VS; 3134 break; 3135 } 3136 3137 if (SubAdd) { 3138 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based 3139 // on CMP needs to be updated to be based on SUB. 3140 // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also 3141 // needs to be modified. 3142 // Push the condition code operands to OperandsToUpdate. 3143 // If it is safe to remove CmpInstr, the condition code of these 3144 // operands will be modified. 3145 unsigned Opc = SubAdd->getOpcode(); 3146 bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr || 3147 Opc == ARM::SUBri || Opc == ARM::t2SUBri || 3148 Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 || 3149 Opc == ARM::tSUBi8; 3150 unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2; 3151 if (!IsSub || 3152 (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 && 3153 SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) { 3154 // VSel doesn't support condition code update. 3155 if (IsInstrVSel) 3156 return false; 3157 // Ensure we can swap the condition. 3158 ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC)); 3159 if (NewCC == ARMCC::AL) 3160 return false; 3161 OperandsToUpdate.push_back( 3162 std::make_pair(&((*I).getOperand(IO - 1)), NewCC)); 3163 } 3164 } else { 3165 // No SubAdd, so this is x = <op> y, z; cmp x, 0. 3166 switch (CC) { 3167 case ARMCC::EQ: // Z 3168 case ARMCC::NE: // Z 3169 case ARMCC::MI: // N 3170 case ARMCC::PL: // N 3171 case ARMCC::AL: // none 3172 // CPSR can be used multiple times, we should continue. 3173 break; 3174 case ARMCC::HS: // C 3175 case ARMCC::LO: // C 3176 case ARMCC::VS: // V 3177 case ARMCC::VC: // V 3178 case ARMCC::HI: // C Z 3179 case ARMCC::LS: // C Z 3180 case ARMCC::GE: // N V 3181 case ARMCC::LT: // N V 3182 case ARMCC::GT: // Z N V 3183 case ARMCC::LE: // Z N V 3184 // The instruction uses the V bit or C bit which is not safe. 3185 return false; 3186 } 3187 } 3188 } 3189 } 3190 3191 // If CPSR is not killed nor re-defined, we should check whether it is 3192 // live-out. If it is live-out, do not optimize. 3193 if (!isSafe) { 3194 MachineBasicBlock *MBB = CmpInstr.getParent(); 3195 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), 3196 SE = MBB->succ_end(); SI != SE; ++SI) 3197 if ((*SI)->isLiveIn(ARM::CPSR)) 3198 return false; 3199 } 3200 3201 // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always 3202 // set CPSR so this is represented as an explicit output) 3203 if (!IsThumb1) { 3204 MI->getOperand(5).setReg(ARM::CPSR); 3205 MI->getOperand(5).setIsDef(true); 3206 } 3207 assert(!isPredicated(*MI) && "Can't use flags from predicated instruction"); 3208 CmpInstr.eraseFromParent(); 3209 3210 // Modify the condition code of operands in OperandsToUpdate. 3211 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 3212 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 3213 for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++) 3214 OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second); 3215 3216 MI->clearRegisterDeads(ARM::CPSR); 3217 3218 return true; 3219 } 3220 3221 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const { 3222 // Do not sink MI if it might be used to optimize a redundant compare. 3223 // We heuristically only look at the instruction immediately following MI to 3224 // avoid potentially searching the entire basic block. 3225 if (isPredicated(MI)) 3226 return true; 3227 MachineBasicBlock::const_iterator Next = &MI; 3228 ++Next; 3229 Register SrcReg, SrcReg2; 3230 int CmpMask, CmpValue; 3231 bool IsThumb1; 3232 if (Next != MI.getParent()->end() && 3233 analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) && 3234 isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1)) 3235 return false; 3236 return true; 3237 } 3238 3239 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 3240 Register Reg, 3241 MachineRegisterInfo *MRI) const { 3242 // Fold large immediates into add, sub, or, xor. 3243 unsigned DefOpc = DefMI.getOpcode(); 3244 if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm) 3245 return false; 3246 if (!DefMI.getOperand(1).isImm()) 3247 // Could be t2MOVi32imm @xx 3248 return false; 3249 3250 if (!MRI->hasOneNonDBGUse(Reg)) 3251 return false; 3252 3253 const MCInstrDesc &DefMCID = DefMI.getDesc(); 3254 if (DefMCID.hasOptionalDef()) { 3255 unsigned NumOps = DefMCID.getNumOperands(); 3256 const MachineOperand &MO = DefMI.getOperand(NumOps - 1); 3257 if (MO.getReg() == ARM::CPSR && !MO.isDead()) 3258 // If DefMI defines CPSR and it is not dead, it's obviously not safe 3259 // to delete DefMI. 3260 return false; 3261 } 3262 3263 const MCInstrDesc &UseMCID = UseMI.getDesc(); 3264 if (UseMCID.hasOptionalDef()) { 3265 unsigned NumOps = UseMCID.getNumOperands(); 3266 if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR) 3267 // If the instruction sets the flag, do not attempt this optimization 3268 // since it may change the semantics of the code. 3269 return false; 3270 } 3271 3272 unsigned UseOpc = UseMI.getOpcode(); 3273 unsigned NewUseOpc = 0; 3274 uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm(); 3275 uint32_t SOImmValV1 = 0, SOImmValV2 = 0; 3276 bool Commute = false; 3277 switch (UseOpc) { 3278 default: return false; 3279 case ARM::SUBrr: 3280 case ARM::ADDrr: 3281 case ARM::ORRrr: 3282 case ARM::EORrr: 3283 case ARM::t2SUBrr: 3284 case ARM::t2ADDrr: 3285 case ARM::t2ORRrr: 3286 case ARM::t2EORrr: { 3287 Commute = UseMI.getOperand(2).getReg() != Reg; 3288 switch (UseOpc) { 3289 default: break; 3290 case ARM::ADDrr: 3291 case ARM::SUBrr: 3292 if (UseOpc == ARM::SUBrr && Commute) 3293 return false; 3294 3295 // ADD/SUB are special because they're essentially the same operation, so 3296 // we can handle a larger range of immediates. 3297 if (ARM_AM::isSOImmTwoPartVal(ImmVal)) 3298 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri; 3299 else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) { 3300 ImmVal = -ImmVal; 3301 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri; 3302 } else 3303 return false; 3304 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 3305 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 3306 break; 3307 case ARM::ORRrr: 3308 case ARM::EORrr: 3309 if (!ARM_AM::isSOImmTwoPartVal(ImmVal)) 3310 return false; 3311 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 3312 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 3313 switch (UseOpc) { 3314 default: break; 3315 case ARM::ORRrr: NewUseOpc = ARM::ORRri; break; 3316 case ARM::EORrr: NewUseOpc = ARM::EORri; break; 3317 } 3318 break; 3319 case ARM::t2ADDrr: 3320 case ARM::t2SUBrr: { 3321 if (UseOpc == ARM::t2SUBrr && Commute) 3322 return false; 3323 3324 // ADD/SUB are special because they're essentially the same operation, so 3325 // we can handle a larger range of immediates. 3326 const bool ToSP = DefMI.getOperand(0).getReg() == ARM::SP; 3327 const unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri; 3328 const unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri; 3329 if (ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 3330 NewUseOpc = UseOpc == ARM::t2ADDrr ? t2ADD : t2SUB; 3331 else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) { 3332 ImmVal = -ImmVal; 3333 NewUseOpc = UseOpc == ARM::t2ADDrr ? t2SUB : t2ADD; 3334 } else 3335 return false; 3336 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 3337 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 3338 break; 3339 } 3340 case ARM::t2ORRrr: 3341 case ARM::t2EORrr: 3342 if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 3343 return false; 3344 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 3345 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 3346 switch (UseOpc) { 3347 default: break; 3348 case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break; 3349 case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break; 3350 } 3351 break; 3352 } 3353 } 3354 } 3355 3356 unsigned OpIdx = Commute ? 2 : 1; 3357 Register Reg1 = UseMI.getOperand(OpIdx).getReg(); 3358 bool isKill = UseMI.getOperand(OpIdx).isKill(); 3359 const TargetRegisterClass *TRC = MRI->getRegClass(Reg); 3360 Register NewReg = MRI->createVirtualRegister(TRC); 3361 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc), 3362 NewReg) 3363 .addReg(Reg1, getKillRegState(isKill)) 3364 .addImm(SOImmValV1) 3365 .add(predOps(ARMCC::AL)) 3366 .add(condCodeOp()); 3367 UseMI.setDesc(get(NewUseOpc)); 3368 UseMI.getOperand(1).setReg(NewReg); 3369 UseMI.getOperand(1).setIsKill(); 3370 UseMI.getOperand(2).ChangeToImmediate(SOImmValV2); 3371 DefMI.eraseFromParent(); 3372 // FIXME: t2ADDrr should be split, as different rulles apply when writing to SP. 3373 // Just as t2ADDri, that was split to [t2ADDri, t2ADDspImm]. 3374 // Then the below code will not be needed, as the input/output register 3375 // classes will be rgpr or gprSP. 3376 // For now, we fix the UseMI operand explicitly here: 3377 switch(NewUseOpc){ 3378 case ARM::t2ADDspImm: 3379 case ARM::t2SUBspImm: 3380 case ARM::t2ADDri: 3381 case ARM::t2SUBri: 3382 MRI->setRegClass(UseMI.getOperand(0).getReg(), TRC); 3383 } 3384 return true; 3385 } 3386 3387 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData, 3388 const MachineInstr &MI) { 3389 switch (MI.getOpcode()) { 3390 default: { 3391 const MCInstrDesc &Desc = MI.getDesc(); 3392 int UOps = ItinData->getNumMicroOps(Desc.getSchedClass()); 3393 assert(UOps >= 0 && "bad # UOps"); 3394 return UOps; 3395 } 3396 3397 case ARM::LDRrs: 3398 case ARM::LDRBrs: 3399 case ARM::STRrs: 3400 case ARM::STRBrs: { 3401 unsigned ShOpVal = MI.getOperand(3).getImm(); 3402 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3403 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3404 if (!isSub && 3405 (ShImm == 0 || 3406 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3407 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3408 return 1; 3409 return 2; 3410 } 3411 3412 case ARM::LDRH: 3413 case ARM::STRH: { 3414 if (!MI.getOperand(2).getReg()) 3415 return 1; 3416 3417 unsigned ShOpVal = MI.getOperand(3).getImm(); 3418 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3419 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3420 if (!isSub && 3421 (ShImm == 0 || 3422 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3423 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3424 return 1; 3425 return 2; 3426 } 3427 3428 case ARM::LDRSB: 3429 case ARM::LDRSH: 3430 return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2; 3431 3432 case ARM::LDRSB_POST: 3433 case ARM::LDRSH_POST: { 3434 Register Rt = MI.getOperand(0).getReg(); 3435 Register Rm = MI.getOperand(3).getReg(); 3436 return (Rt == Rm) ? 4 : 3; 3437 } 3438 3439 case ARM::LDR_PRE_REG: 3440 case ARM::LDRB_PRE_REG: { 3441 Register Rt = MI.getOperand(0).getReg(); 3442 Register Rm = MI.getOperand(3).getReg(); 3443 if (Rt == Rm) 3444 return 3; 3445 unsigned ShOpVal = MI.getOperand(4).getImm(); 3446 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3447 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3448 if (!isSub && 3449 (ShImm == 0 || 3450 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3451 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3452 return 2; 3453 return 3; 3454 } 3455 3456 case ARM::STR_PRE_REG: 3457 case ARM::STRB_PRE_REG: { 3458 unsigned ShOpVal = MI.getOperand(4).getImm(); 3459 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3460 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3461 if (!isSub && 3462 (ShImm == 0 || 3463 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3464 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3465 return 2; 3466 return 3; 3467 } 3468 3469 case ARM::LDRH_PRE: 3470 case ARM::STRH_PRE: { 3471 Register Rt = MI.getOperand(0).getReg(); 3472 Register Rm = MI.getOperand(3).getReg(); 3473 if (!Rm) 3474 return 2; 3475 if (Rt == Rm) 3476 return 3; 3477 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2; 3478 } 3479 3480 case ARM::LDR_POST_REG: 3481 case ARM::LDRB_POST_REG: 3482 case ARM::LDRH_POST: { 3483 Register Rt = MI.getOperand(0).getReg(); 3484 Register Rm = MI.getOperand(3).getReg(); 3485 return (Rt == Rm) ? 3 : 2; 3486 } 3487 3488 case ARM::LDR_PRE_IMM: 3489 case ARM::LDRB_PRE_IMM: 3490 case ARM::LDR_POST_IMM: 3491 case ARM::LDRB_POST_IMM: 3492 case ARM::STRB_POST_IMM: 3493 case ARM::STRB_POST_REG: 3494 case ARM::STRB_PRE_IMM: 3495 case ARM::STRH_POST: 3496 case ARM::STR_POST_IMM: 3497 case ARM::STR_POST_REG: 3498 case ARM::STR_PRE_IMM: 3499 return 2; 3500 3501 case ARM::LDRSB_PRE: 3502 case ARM::LDRSH_PRE: { 3503 Register Rm = MI.getOperand(3).getReg(); 3504 if (Rm == 0) 3505 return 3; 3506 Register Rt = MI.getOperand(0).getReg(); 3507 if (Rt == Rm) 3508 return 4; 3509 unsigned ShOpVal = MI.getOperand(4).getImm(); 3510 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3511 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3512 if (!isSub && 3513 (ShImm == 0 || 3514 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3515 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3516 return 3; 3517 return 4; 3518 } 3519 3520 case ARM::LDRD: { 3521 Register Rt = MI.getOperand(0).getReg(); 3522 Register Rn = MI.getOperand(2).getReg(); 3523 Register Rm = MI.getOperand(3).getReg(); 3524 if (Rm) 3525 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 3526 : 3; 3527 return (Rt == Rn) ? 3 : 2; 3528 } 3529 3530 case ARM::STRD: { 3531 Register Rm = MI.getOperand(3).getReg(); 3532 if (Rm) 3533 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 3534 : 3; 3535 return 2; 3536 } 3537 3538 case ARM::LDRD_POST: 3539 case ARM::t2LDRD_POST: 3540 return 3; 3541 3542 case ARM::STRD_POST: 3543 case ARM::t2STRD_POST: 3544 return 4; 3545 3546 case ARM::LDRD_PRE: { 3547 Register Rt = MI.getOperand(0).getReg(); 3548 Register Rn = MI.getOperand(3).getReg(); 3549 Register Rm = MI.getOperand(4).getReg(); 3550 if (Rm) 3551 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 3552 : 4; 3553 return (Rt == Rn) ? 4 : 3; 3554 } 3555 3556 case ARM::t2LDRD_PRE: { 3557 Register Rt = MI.getOperand(0).getReg(); 3558 Register Rn = MI.getOperand(3).getReg(); 3559 return (Rt == Rn) ? 4 : 3; 3560 } 3561 3562 case ARM::STRD_PRE: { 3563 Register Rm = MI.getOperand(4).getReg(); 3564 if (Rm) 3565 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 3566 : 4; 3567 return 3; 3568 } 3569 3570 case ARM::t2STRD_PRE: 3571 return 3; 3572 3573 case ARM::t2LDR_POST: 3574 case ARM::t2LDRB_POST: 3575 case ARM::t2LDRB_PRE: 3576 case ARM::t2LDRSBi12: 3577 case ARM::t2LDRSBi8: 3578 case ARM::t2LDRSBpci: 3579 case ARM::t2LDRSBs: 3580 case ARM::t2LDRH_POST: 3581 case ARM::t2LDRH_PRE: 3582 case ARM::t2LDRSBT: 3583 case ARM::t2LDRSB_POST: 3584 case ARM::t2LDRSB_PRE: 3585 case ARM::t2LDRSH_POST: 3586 case ARM::t2LDRSH_PRE: 3587 case ARM::t2LDRSHi12: 3588 case ARM::t2LDRSHi8: 3589 case ARM::t2LDRSHpci: 3590 case ARM::t2LDRSHs: 3591 return 2; 3592 3593 case ARM::t2LDRDi8: { 3594 Register Rt = MI.getOperand(0).getReg(); 3595 Register Rn = MI.getOperand(2).getReg(); 3596 return (Rt == Rn) ? 3 : 2; 3597 } 3598 3599 case ARM::t2STRB_POST: 3600 case ARM::t2STRB_PRE: 3601 case ARM::t2STRBs: 3602 case ARM::t2STRDi8: 3603 case ARM::t2STRH_POST: 3604 case ARM::t2STRH_PRE: 3605 case ARM::t2STRHs: 3606 case ARM::t2STR_POST: 3607 case ARM::t2STR_PRE: 3608 case ARM::t2STRs: 3609 return 2; 3610 } 3611 } 3612 3613 // Return the number of 32-bit words loaded by LDM or stored by STM. If this 3614 // can't be easily determined return 0 (missing MachineMemOperand). 3615 // 3616 // FIXME: The current MachineInstr design does not support relying on machine 3617 // mem operands to determine the width of a memory access. Instead, we expect 3618 // the target to provide this information based on the instruction opcode and 3619 // operands. However, using MachineMemOperand is the best solution now for 3620 // two reasons: 3621 // 3622 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI 3623 // operands. This is much more dangerous than using the MachineMemOperand 3624 // sizes because CodeGen passes can insert/remove optional machine operands. In 3625 // fact, it's totally incorrect for preRA passes and appears to be wrong for 3626 // postRA passes as well. 3627 // 3628 // 2) getNumLDMAddresses is only used by the scheduling machine model and any 3629 // machine model that calls this should handle the unknown (zero size) case. 3630 // 3631 // Long term, we should require a target hook that verifies MachineMemOperand 3632 // sizes during MC lowering. That target hook should be local to MC lowering 3633 // because we can't ensure that it is aware of other MI forms. Doing this will 3634 // ensure that MachineMemOperands are correctly propagated through all passes. 3635 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const { 3636 unsigned Size = 0; 3637 for (MachineInstr::mmo_iterator I = MI.memoperands_begin(), 3638 E = MI.memoperands_end(); 3639 I != E; ++I) { 3640 Size += (*I)->getSize(); 3641 } 3642 // FIXME: The scheduler currently can't handle values larger than 16. But 3643 // the values can actually go up to 32 for floating-point load/store 3644 // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory 3645 // operations isn't right; we could end up with "extra" memory operands for 3646 // various reasons, like tail merge merging two memory operations. 3647 return std::min(Size / 4, 16U); 3648 } 3649 3650 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc, 3651 unsigned NumRegs) { 3652 unsigned UOps = 1 + NumRegs; // 1 for address computation. 3653 switch (Opc) { 3654 default: 3655 break; 3656 case ARM::VLDMDIA_UPD: 3657 case ARM::VLDMDDB_UPD: 3658 case ARM::VLDMSIA_UPD: 3659 case ARM::VLDMSDB_UPD: 3660 case ARM::VSTMDIA_UPD: 3661 case ARM::VSTMDDB_UPD: 3662 case ARM::VSTMSIA_UPD: 3663 case ARM::VSTMSDB_UPD: 3664 case ARM::LDMIA_UPD: 3665 case ARM::LDMDA_UPD: 3666 case ARM::LDMDB_UPD: 3667 case ARM::LDMIB_UPD: 3668 case ARM::STMIA_UPD: 3669 case ARM::STMDA_UPD: 3670 case ARM::STMDB_UPD: 3671 case ARM::STMIB_UPD: 3672 case ARM::tLDMIA_UPD: 3673 case ARM::tSTMIA_UPD: 3674 case ARM::t2LDMIA_UPD: 3675 case ARM::t2LDMDB_UPD: 3676 case ARM::t2STMIA_UPD: 3677 case ARM::t2STMDB_UPD: 3678 ++UOps; // One for base register writeback. 3679 break; 3680 case ARM::LDMIA_RET: 3681 case ARM::tPOP_RET: 3682 case ARM::t2LDMIA_RET: 3683 UOps += 2; // One for base reg wb, one for write to pc. 3684 break; 3685 } 3686 return UOps; 3687 } 3688 3689 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 3690 const MachineInstr &MI) const { 3691 if (!ItinData || ItinData->isEmpty()) 3692 return 1; 3693 3694 const MCInstrDesc &Desc = MI.getDesc(); 3695 unsigned Class = Desc.getSchedClass(); 3696 int ItinUOps = ItinData->getNumMicroOps(Class); 3697 if (ItinUOps >= 0) { 3698 if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore())) 3699 return getNumMicroOpsSwiftLdSt(ItinData, MI); 3700 3701 return ItinUOps; 3702 } 3703 3704 unsigned Opc = MI.getOpcode(); 3705 switch (Opc) { 3706 default: 3707 llvm_unreachable("Unexpected multi-uops instruction!"); 3708 case ARM::VLDMQIA: 3709 case ARM::VSTMQIA: 3710 return 2; 3711 3712 // The number of uOps for load / store multiple are determined by the number 3713 // registers. 3714 // 3715 // On Cortex-A8, each pair of register loads / stores can be scheduled on the 3716 // same cycle. The scheduling for the first load / store must be done 3717 // separately by assuming the address is not 64-bit aligned. 3718 // 3719 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address 3720 // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON 3721 // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1. 3722 case ARM::VLDMDIA: 3723 case ARM::VLDMDIA_UPD: 3724 case ARM::VLDMDDB_UPD: 3725 case ARM::VLDMSIA: 3726 case ARM::VLDMSIA_UPD: 3727 case ARM::VLDMSDB_UPD: 3728 case ARM::VSTMDIA: 3729 case ARM::VSTMDIA_UPD: 3730 case ARM::VSTMDDB_UPD: 3731 case ARM::VSTMSIA: 3732 case ARM::VSTMSIA_UPD: 3733 case ARM::VSTMSDB_UPD: { 3734 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands(); 3735 return (NumRegs / 2) + (NumRegs % 2) + 1; 3736 } 3737 3738 case ARM::LDMIA_RET: 3739 case ARM::LDMIA: 3740 case ARM::LDMDA: 3741 case ARM::LDMDB: 3742 case ARM::LDMIB: 3743 case ARM::LDMIA_UPD: 3744 case ARM::LDMDA_UPD: 3745 case ARM::LDMDB_UPD: 3746 case ARM::LDMIB_UPD: 3747 case ARM::STMIA: 3748 case ARM::STMDA: 3749 case ARM::STMDB: 3750 case ARM::STMIB: 3751 case ARM::STMIA_UPD: 3752 case ARM::STMDA_UPD: 3753 case ARM::STMDB_UPD: 3754 case ARM::STMIB_UPD: 3755 case ARM::tLDMIA: 3756 case ARM::tLDMIA_UPD: 3757 case ARM::tSTMIA_UPD: 3758 case ARM::tPOP_RET: 3759 case ARM::tPOP: 3760 case ARM::tPUSH: 3761 case ARM::t2LDMIA_RET: 3762 case ARM::t2LDMIA: 3763 case ARM::t2LDMDB: 3764 case ARM::t2LDMIA_UPD: 3765 case ARM::t2LDMDB_UPD: 3766 case ARM::t2STMIA: 3767 case ARM::t2STMDB: 3768 case ARM::t2STMIA_UPD: 3769 case ARM::t2STMDB_UPD: { 3770 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1; 3771 switch (Subtarget.getLdStMultipleTiming()) { 3772 case ARMSubtarget::SingleIssuePlusExtras: 3773 return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs); 3774 case ARMSubtarget::SingleIssue: 3775 // Assume the worst. 3776 return NumRegs; 3777 case ARMSubtarget::DoubleIssue: { 3778 if (NumRegs < 4) 3779 return 2; 3780 // 4 registers would be issued: 2, 2. 3781 // 5 registers would be issued: 2, 2, 1. 3782 unsigned UOps = (NumRegs / 2); 3783 if (NumRegs % 2) 3784 ++UOps; 3785 return UOps; 3786 } 3787 case ARMSubtarget::DoubleIssueCheckUnalignedAccess: { 3788 unsigned UOps = (NumRegs / 2); 3789 // If there are odd number of registers or if it's not 64-bit aligned, 3790 // then it takes an extra AGU (Address Generation Unit) cycle. 3791 if ((NumRegs % 2) || !MI.hasOneMemOperand() || 3792 (*MI.memoperands_begin())->getAlign() < Align(8)) 3793 ++UOps; 3794 return UOps; 3795 } 3796 } 3797 } 3798 } 3799 llvm_unreachable("Didn't find the number of microops"); 3800 } 3801 3802 int 3803 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData, 3804 const MCInstrDesc &DefMCID, 3805 unsigned DefClass, 3806 unsigned DefIdx, unsigned DefAlign) const { 3807 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3808 if (RegNo <= 0) 3809 // Def is the address writeback. 3810 return ItinData->getOperandCycle(DefClass, DefIdx); 3811 3812 int DefCycle; 3813 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3814 // (regno / 2) + (regno % 2) + 1 3815 DefCycle = RegNo / 2 + 1; 3816 if (RegNo % 2) 3817 ++DefCycle; 3818 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3819 DefCycle = RegNo; 3820 bool isSLoad = false; 3821 3822 switch (DefMCID.getOpcode()) { 3823 default: break; 3824 case ARM::VLDMSIA: 3825 case ARM::VLDMSIA_UPD: 3826 case ARM::VLDMSDB_UPD: 3827 isSLoad = true; 3828 break; 3829 } 3830 3831 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3832 // then it takes an extra cycle. 3833 if ((isSLoad && (RegNo % 2)) || DefAlign < 8) 3834 ++DefCycle; 3835 } else { 3836 // Assume the worst. 3837 DefCycle = RegNo + 2; 3838 } 3839 3840 return DefCycle; 3841 } 3842 3843 bool ARMBaseInstrInfo::isLDMBaseRegInList(const MachineInstr &MI) const { 3844 Register BaseReg = MI.getOperand(0).getReg(); 3845 for (unsigned i = 1, sz = MI.getNumOperands(); i < sz; ++i) { 3846 const auto &Op = MI.getOperand(i); 3847 if (Op.isReg() && Op.getReg() == BaseReg) 3848 return true; 3849 } 3850 return false; 3851 } 3852 unsigned 3853 ARMBaseInstrInfo::getLDMVariableDefsSize(const MachineInstr &MI) const { 3854 // ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops 3855 // (outs GPR:$wb), (ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops) 3856 return MI.getNumOperands() + 1 - MI.getDesc().getNumOperands(); 3857 } 3858 3859 int 3860 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData, 3861 const MCInstrDesc &DefMCID, 3862 unsigned DefClass, 3863 unsigned DefIdx, unsigned DefAlign) const { 3864 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3865 if (RegNo <= 0) 3866 // Def is the address writeback. 3867 return ItinData->getOperandCycle(DefClass, DefIdx); 3868 3869 int DefCycle; 3870 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3871 // 4 registers would be issued: 1, 2, 1. 3872 // 5 registers would be issued: 1, 2, 2. 3873 DefCycle = RegNo / 2; 3874 if (DefCycle < 1) 3875 DefCycle = 1; 3876 // Result latency is issue cycle + 2: E2. 3877 DefCycle += 2; 3878 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3879 DefCycle = (RegNo / 2); 3880 // If there are odd number of registers or if it's not 64-bit aligned, 3881 // then it takes an extra AGU (Address Generation Unit) cycle. 3882 if ((RegNo % 2) || DefAlign < 8) 3883 ++DefCycle; 3884 // Result latency is AGU cycles + 2. 3885 DefCycle += 2; 3886 } else { 3887 // Assume the worst. 3888 DefCycle = RegNo + 2; 3889 } 3890 3891 return DefCycle; 3892 } 3893 3894 int 3895 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData, 3896 const MCInstrDesc &UseMCID, 3897 unsigned UseClass, 3898 unsigned UseIdx, unsigned UseAlign) const { 3899 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3900 if (RegNo <= 0) 3901 return ItinData->getOperandCycle(UseClass, UseIdx); 3902 3903 int UseCycle; 3904 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3905 // (regno / 2) + (regno % 2) + 1 3906 UseCycle = RegNo / 2 + 1; 3907 if (RegNo % 2) 3908 ++UseCycle; 3909 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3910 UseCycle = RegNo; 3911 bool isSStore = false; 3912 3913 switch (UseMCID.getOpcode()) { 3914 default: break; 3915 case ARM::VSTMSIA: 3916 case ARM::VSTMSIA_UPD: 3917 case ARM::VSTMSDB_UPD: 3918 isSStore = true; 3919 break; 3920 } 3921 3922 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3923 // then it takes an extra cycle. 3924 if ((isSStore && (RegNo % 2)) || UseAlign < 8) 3925 ++UseCycle; 3926 } else { 3927 // Assume the worst. 3928 UseCycle = RegNo + 2; 3929 } 3930 3931 return UseCycle; 3932 } 3933 3934 int 3935 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData, 3936 const MCInstrDesc &UseMCID, 3937 unsigned UseClass, 3938 unsigned UseIdx, unsigned UseAlign) const { 3939 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3940 if (RegNo <= 0) 3941 return ItinData->getOperandCycle(UseClass, UseIdx); 3942 3943 int UseCycle; 3944 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3945 UseCycle = RegNo / 2; 3946 if (UseCycle < 2) 3947 UseCycle = 2; 3948 // Read in E3. 3949 UseCycle += 2; 3950 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3951 UseCycle = (RegNo / 2); 3952 // If there are odd number of registers or if it's not 64-bit aligned, 3953 // then it takes an extra AGU (Address Generation Unit) cycle. 3954 if ((RegNo % 2) || UseAlign < 8) 3955 ++UseCycle; 3956 } else { 3957 // Assume the worst. 3958 UseCycle = 1; 3959 } 3960 return UseCycle; 3961 } 3962 3963 int 3964 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 3965 const MCInstrDesc &DefMCID, 3966 unsigned DefIdx, unsigned DefAlign, 3967 const MCInstrDesc &UseMCID, 3968 unsigned UseIdx, unsigned UseAlign) const { 3969 unsigned DefClass = DefMCID.getSchedClass(); 3970 unsigned UseClass = UseMCID.getSchedClass(); 3971 3972 if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands()) 3973 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 3974 3975 // This may be a def / use of a variable_ops instruction, the operand 3976 // latency might be determinable dynamically. Let the target try to 3977 // figure it out. 3978 int DefCycle = -1; 3979 bool LdmBypass = false; 3980 switch (DefMCID.getOpcode()) { 3981 default: 3982 DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 3983 break; 3984 3985 case ARM::VLDMDIA: 3986 case ARM::VLDMDIA_UPD: 3987 case ARM::VLDMDDB_UPD: 3988 case ARM::VLDMSIA: 3989 case ARM::VLDMSIA_UPD: 3990 case ARM::VLDMSDB_UPD: 3991 DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 3992 break; 3993 3994 case ARM::LDMIA_RET: 3995 case ARM::LDMIA: 3996 case ARM::LDMDA: 3997 case ARM::LDMDB: 3998 case ARM::LDMIB: 3999 case ARM::LDMIA_UPD: 4000 case ARM::LDMDA_UPD: 4001 case ARM::LDMDB_UPD: 4002 case ARM::LDMIB_UPD: 4003 case ARM::tLDMIA: 4004 case ARM::tLDMIA_UPD: 4005 case ARM::tPUSH: 4006 case ARM::t2LDMIA_RET: 4007 case ARM::t2LDMIA: 4008 case ARM::t2LDMDB: 4009 case ARM::t2LDMIA_UPD: 4010 case ARM::t2LDMDB_UPD: 4011 LdmBypass = true; 4012 DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 4013 break; 4014 } 4015 4016 if (DefCycle == -1) 4017 // We can't seem to determine the result latency of the def, assume it's 2. 4018 DefCycle = 2; 4019 4020 int UseCycle = -1; 4021 switch (UseMCID.getOpcode()) { 4022 default: 4023 UseCycle = ItinData->getOperandCycle(UseClass, UseIdx); 4024 break; 4025 4026 case ARM::VSTMDIA: 4027 case ARM::VSTMDIA_UPD: 4028 case ARM::VSTMDDB_UPD: 4029 case ARM::VSTMSIA: 4030 case ARM::VSTMSIA_UPD: 4031 case ARM::VSTMSDB_UPD: 4032 UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 4033 break; 4034 4035 case ARM::STMIA: 4036 case ARM::STMDA: 4037 case ARM::STMDB: 4038 case ARM::STMIB: 4039 case ARM::STMIA_UPD: 4040 case ARM::STMDA_UPD: 4041 case ARM::STMDB_UPD: 4042 case ARM::STMIB_UPD: 4043 case ARM::tSTMIA_UPD: 4044 case ARM::tPOP_RET: 4045 case ARM::tPOP: 4046 case ARM::t2STMIA: 4047 case ARM::t2STMDB: 4048 case ARM::t2STMIA_UPD: 4049 case ARM::t2STMDB_UPD: 4050 UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 4051 break; 4052 } 4053 4054 if (UseCycle == -1) 4055 // Assume it's read in the first stage. 4056 UseCycle = 1; 4057 4058 UseCycle = DefCycle - UseCycle + 1; 4059 if (UseCycle > 0) { 4060 if (LdmBypass) { 4061 // It's a variable_ops instruction so we can't use DefIdx here. Just use 4062 // first def operand. 4063 if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1, 4064 UseClass, UseIdx)) 4065 --UseCycle; 4066 } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx, 4067 UseClass, UseIdx)) { 4068 --UseCycle; 4069 } 4070 } 4071 4072 return UseCycle; 4073 } 4074 4075 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI, 4076 const MachineInstr *MI, unsigned Reg, 4077 unsigned &DefIdx, unsigned &Dist) { 4078 Dist = 0; 4079 4080 MachineBasicBlock::const_iterator I = MI; ++I; 4081 MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator()); 4082 assert(II->isInsideBundle() && "Empty bundle?"); 4083 4084 int Idx = -1; 4085 while (II->isInsideBundle()) { 4086 Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI); 4087 if (Idx != -1) 4088 break; 4089 --II; 4090 ++Dist; 4091 } 4092 4093 assert(Idx != -1 && "Cannot find bundled definition!"); 4094 DefIdx = Idx; 4095 return &*II; 4096 } 4097 4098 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI, 4099 const MachineInstr &MI, unsigned Reg, 4100 unsigned &UseIdx, unsigned &Dist) { 4101 Dist = 0; 4102 4103 MachineBasicBlock::const_instr_iterator II = ++MI.getIterator(); 4104 assert(II->isInsideBundle() && "Empty bundle?"); 4105 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 4106 4107 // FIXME: This doesn't properly handle multiple uses. 4108 int Idx = -1; 4109 while (II != E && II->isInsideBundle()) { 4110 Idx = II->findRegisterUseOperandIdx(Reg, false, TRI); 4111 if (Idx != -1) 4112 break; 4113 if (II->getOpcode() != ARM::t2IT) 4114 ++Dist; 4115 ++II; 4116 } 4117 4118 if (Idx == -1) { 4119 Dist = 0; 4120 return nullptr; 4121 } 4122 4123 UseIdx = Idx; 4124 return &*II; 4125 } 4126 4127 /// Return the number of cycles to add to (or subtract from) the static 4128 /// itinerary based on the def opcode and alignment. The caller will ensure that 4129 /// adjusted latency is at least one cycle. 4130 static int adjustDefLatency(const ARMSubtarget &Subtarget, 4131 const MachineInstr &DefMI, 4132 const MCInstrDesc &DefMCID, unsigned DefAlign) { 4133 int Adjust = 0; 4134 if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) { 4135 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 4136 // variants are one cycle cheaper. 4137 switch (DefMCID.getOpcode()) { 4138 default: break; 4139 case ARM::LDRrs: 4140 case ARM::LDRBrs: { 4141 unsigned ShOpVal = DefMI.getOperand(3).getImm(); 4142 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4143 if (ShImm == 0 || 4144 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4145 --Adjust; 4146 break; 4147 } 4148 case ARM::t2LDRs: 4149 case ARM::t2LDRBs: 4150 case ARM::t2LDRHs: 4151 case ARM::t2LDRSHs: { 4152 // Thumb2 mode: lsl only. 4153 unsigned ShAmt = DefMI.getOperand(3).getImm(); 4154 if (ShAmt == 0 || ShAmt == 2) 4155 --Adjust; 4156 break; 4157 } 4158 } 4159 } else if (Subtarget.isSwift()) { 4160 // FIXME: Properly handle all of the latency adjustments for address 4161 // writeback. 4162 switch (DefMCID.getOpcode()) { 4163 default: break; 4164 case ARM::LDRrs: 4165 case ARM::LDRBrs: { 4166 unsigned ShOpVal = DefMI.getOperand(3).getImm(); 4167 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 4168 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4169 if (!isSub && 4170 (ShImm == 0 || 4171 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 4172 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 4173 Adjust -= 2; 4174 else if (!isSub && 4175 ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 4176 --Adjust; 4177 break; 4178 } 4179 case ARM::t2LDRs: 4180 case ARM::t2LDRBs: 4181 case ARM::t2LDRHs: 4182 case ARM::t2LDRSHs: { 4183 // Thumb2 mode: lsl only. 4184 unsigned ShAmt = DefMI.getOperand(3).getImm(); 4185 if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3) 4186 Adjust -= 2; 4187 break; 4188 } 4189 } 4190 } 4191 4192 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) { 4193 switch (DefMCID.getOpcode()) { 4194 default: break; 4195 case ARM::VLD1q8: 4196 case ARM::VLD1q16: 4197 case ARM::VLD1q32: 4198 case ARM::VLD1q64: 4199 case ARM::VLD1q8wb_fixed: 4200 case ARM::VLD1q16wb_fixed: 4201 case ARM::VLD1q32wb_fixed: 4202 case ARM::VLD1q64wb_fixed: 4203 case ARM::VLD1q8wb_register: 4204 case ARM::VLD1q16wb_register: 4205 case ARM::VLD1q32wb_register: 4206 case ARM::VLD1q64wb_register: 4207 case ARM::VLD2d8: 4208 case ARM::VLD2d16: 4209 case ARM::VLD2d32: 4210 case ARM::VLD2q8: 4211 case ARM::VLD2q16: 4212 case ARM::VLD2q32: 4213 case ARM::VLD2d8wb_fixed: 4214 case ARM::VLD2d16wb_fixed: 4215 case ARM::VLD2d32wb_fixed: 4216 case ARM::VLD2q8wb_fixed: 4217 case ARM::VLD2q16wb_fixed: 4218 case ARM::VLD2q32wb_fixed: 4219 case ARM::VLD2d8wb_register: 4220 case ARM::VLD2d16wb_register: 4221 case ARM::VLD2d32wb_register: 4222 case ARM::VLD2q8wb_register: 4223 case ARM::VLD2q16wb_register: 4224 case ARM::VLD2q32wb_register: 4225 case ARM::VLD3d8: 4226 case ARM::VLD3d16: 4227 case ARM::VLD3d32: 4228 case ARM::VLD1d64T: 4229 case ARM::VLD3d8_UPD: 4230 case ARM::VLD3d16_UPD: 4231 case ARM::VLD3d32_UPD: 4232 case ARM::VLD1d64Twb_fixed: 4233 case ARM::VLD1d64Twb_register: 4234 case ARM::VLD3q8_UPD: 4235 case ARM::VLD3q16_UPD: 4236 case ARM::VLD3q32_UPD: 4237 case ARM::VLD4d8: 4238 case ARM::VLD4d16: 4239 case ARM::VLD4d32: 4240 case ARM::VLD1d64Q: 4241 case ARM::VLD4d8_UPD: 4242 case ARM::VLD4d16_UPD: 4243 case ARM::VLD4d32_UPD: 4244 case ARM::VLD1d64Qwb_fixed: 4245 case ARM::VLD1d64Qwb_register: 4246 case ARM::VLD4q8_UPD: 4247 case ARM::VLD4q16_UPD: 4248 case ARM::VLD4q32_UPD: 4249 case ARM::VLD1DUPq8: 4250 case ARM::VLD1DUPq16: 4251 case ARM::VLD1DUPq32: 4252 case ARM::VLD1DUPq8wb_fixed: 4253 case ARM::VLD1DUPq16wb_fixed: 4254 case ARM::VLD1DUPq32wb_fixed: 4255 case ARM::VLD1DUPq8wb_register: 4256 case ARM::VLD1DUPq16wb_register: 4257 case ARM::VLD1DUPq32wb_register: 4258 case ARM::VLD2DUPd8: 4259 case ARM::VLD2DUPd16: 4260 case ARM::VLD2DUPd32: 4261 case ARM::VLD2DUPd8wb_fixed: 4262 case ARM::VLD2DUPd16wb_fixed: 4263 case ARM::VLD2DUPd32wb_fixed: 4264 case ARM::VLD2DUPd8wb_register: 4265 case ARM::VLD2DUPd16wb_register: 4266 case ARM::VLD2DUPd32wb_register: 4267 case ARM::VLD4DUPd8: 4268 case ARM::VLD4DUPd16: 4269 case ARM::VLD4DUPd32: 4270 case ARM::VLD4DUPd8_UPD: 4271 case ARM::VLD4DUPd16_UPD: 4272 case ARM::VLD4DUPd32_UPD: 4273 case ARM::VLD1LNd8: 4274 case ARM::VLD1LNd16: 4275 case ARM::VLD1LNd32: 4276 case ARM::VLD1LNd8_UPD: 4277 case ARM::VLD1LNd16_UPD: 4278 case ARM::VLD1LNd32_UPD: 4279 case ARM::VLD2LNd8: 4280 case ARM::VLD2LNd16: 4281 case ARM::VLD2LNd32: 4282 case ARM::VLD2LNq16: 4283 case ARM::VLD2LNq32: 4284 case ARM::VLD2LNd8_UPD: 4285 case ARM::VLD2LNd16_UPD: 4286 case ARM::VLD2LNd32_UPD: 4287 case ARM::VLD2LNq16_UPD: 4288 case ARM::VLD2LNq32_UPD: 4289 case ARM::VLD4LNd8: 4290 case ARM::VLD4LNd16: 4291 case ARM::VLD4LNd32: 4292 case ARM::VLD4LNq16: 4293 case ARM::VLD4LNq32: 4294 case ARM::VLD4LNd8_UPD: 4295 case ARM::VLD4LNd16_UPD: 4296 case ARM::VLD4LNd32_UPD: 4297 case ARM::VLD4LNq16_UPD: 4298 case ARM::VLD4LNq32_UPD: 4299 // If the address is not 64-bit aligned, the latencies of these 4300 // instructions increases by one. 4301 ++Adjust; 4302 break; 4303 } 4304 } 4305 return Adjust; 4306 } 4307 4308 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4309 const MachineInstr &DefMI, 4310 unsigned DefIdx, 4311 const MachineInstr &UseMI, 4312 unsigned UseIdx) const { 4313 // No operand latency. The caller may fall back to getInstrLatency. 4314 if (!ItinData || ItinData->isEmpty()) 4315 return -1; 4316 4317 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 4318 Register Reg = DefMO.getReg(); 4319 4320 const MachineInstr *ResolvedDefMI = &DefMI; 4321 unsigned DefAdj = 0; 4322 if (DefMI.isBundle()) 4323 ResolvedDefMI = 4324 getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj); 4325 if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() || 4326 ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) { 4327 return 1; 4328 } 4329 4330 const MachineInstr *ResolvedUseMI = &UseMI; 4331 unsigned UseAdj = 0; 4332 if (UseMI.isBundle()) { 4333 ResolvedUseMI = 4334 getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj); 4335 if (!ResolvedUseMI) 4336 return -1; 4337 } 4338 4339 return getOperandLatencyImpl( 4340 ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO, 4341 Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj); 4342 } 4343 4344 int ARMBaseInstrInfo::getOperandLatencyImpl( 4345 const InstrItineraryData *ItinData, const MachineInstr &DefMI, 4346 unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj, 4347 const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI, 4348 unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const { 4349 if (Reg == ARM::CPSR) { 4350 if (DefMI.getOpcode() == ARM::FMSTAT) { 4351 // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?) 4352 return Subtarget.isLikeA9() ? 1 : 20; 4353 } 4354 4355 // CPSR set and branch can be paired in the same cycle. 4356 if (UseMI.isBranch()) 4357 return 0; 4358 4359 // Otherwise it takes the instruction latency (generally one). 4360 unsigned Latency = getInstrLatency(ItinData, DefMI); 4361 4362 // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to 4363 // its uses. Instructions which are otherwise scheduled between them may 4364 // incur a code size penalty (not able to use the CPSR setting 16-bit 4365 // instructions). 4366 if (Latency > 0 && Subtarget.isThumb2()) { 4367 const MachineFunction *MF = DefMI.getParent()->getParent(); 4368 // FIXME: Use Function::hasOptSize(). 4369 if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize)) 4370 --Latency; 4371 } 4372 return Latency; 4373 } 4374 4375 if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit()) 4376 return -1; 4377 4378 unsigned DefAlign = DefMI.hasOneMemOperand() 4379 ? (*DefMI.memoperands_begin())->getAlign().value() 4380 : 0; 4381 unsigned UseAlign = UseMI.hasOneMemOperand() 4382 ? (*UseMI.memoperands_begin())->getAlign().value() 4383 : 0; 4384 4385 // Get the itinerary's latency if possible, and handle variable_ops. 4386 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID, 4387 UseIdx, UseAlign); 4388 // Unable to find operand latency. The caller may resort to getInstrLatency. 4389 if (Latency < 0) 4390 return Latency; 4391 4392 // Adjust for IT block position. 4393 int Adj = DefAdj + UseAdj; 4394 4395 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4396 Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign); 4397 if (Adj >= 0 || (int)Latency > -Adj) { 4398 return Latency + Adj; 4399 } 4400 // Return the itinerary latency, which may be zero but not less than zero. 4401 return Latency; 4402 } 4403 4404 int 4405 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4406 SDNode *DefNode, unsigned DefIdx, 4407 SDNode *UseNode, unsigned UseIdx) const { 4408 if (!DefNode->isMachineOpcode()) 4409 return 1; 4410 4411 const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode()); 4412 4413 if (isZeroCost(DefMCID.Opcode)) 4414 return 0; 4415 4416 if (!ItinData || ItinData->isEmpty()) 4417 return DefMCID.mayLoad() ? 3 : 1; 4418 4419 if (!UseNode->isMachineOpcode()) { 4420 int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx); 4421 int Adj = Subtarget.getPreISelOperandLatencyAdjustment(); 4422 int Threshold = 1 + Adj; 4423 return Latency <= Threshold ? 1 : Latency - Adj; 4424 } 4425 4426 const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode()); 4427 auto *DefMN = cast<MachineSDNode>(DefNode); 4428 unsigned DefAlign = !DefMN->memoperands_empty() 4429 ? (*DefMN->memoperands_begin())->getAlign().value() 4430 : 0; 4431 auto *UseMN = cast<MachineSDNode>(UseNode); 4432 unsigned UseAlign = !UseMN->memoperands_empty() 4433 ? (*UseMN->memoperands_begin())->getAlign().value() 4434 : 0; 4435 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, 4436 UseMCID, UseIdx, UseAlign); 4437 4438 if (Latency > 1 && 4439 (Subtarget.isCortexA8() || Subtarget.isLikeA9() || 4440 Subtarget.isCortexA7())) { 4441 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 4442 // variants are one cycle cheaper. 4443 switch (DefMCID.getOpcode()) { 4444 default: break; 4445 case ARM::LDRrs: 4446 case ARM::LDRBrs: { 4447 unsigned ShOpVal = 4448 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4449 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4450 if (ShImm == 0 || 4451 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4452 --Latency; 4453 break; 4454 } 4455 case ARM::t2LDRs: 4456 case ARM::t2LDRBs: 4457 case ARM::t2LDRHs: 4458 case ARM::t2LDRSHs: { 4459 // Thumb2 mode: lsl only. 4460 unsigned ShAmt = 4461 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4462 if (ShAmt == 0 || ShAmt == 2) 4463 --Latency; 4464 break; 4465 } 4466 } 4467 } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) { 4468 // FIXME: Properly handle all of the latency adjustments for address 4469 // writeback. 4470 switch (DefMCID.getOpcode()) { 4471 default: break; 4472 case ARM::LDRrs: 4473 case ARM::LDRBrs: { 4474 unsigned ShOpVal = 4475 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4476 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4477 if (ShImm == 0 || 4478 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 4479 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4480 Latency -= 2; 4481 else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 4482 --Latency; 4483 break; 4484 } 4485 case ARM::t2LDRs: 4486 case ARM::t2LDRBs: 4487 case ARM::t2LDRHs: 4488 case ARM::t2LDRSHs: 4489 // Thumb2 mode: lsl 0-3 only. 4490 Latency -= 2; 4491 break; 4492 } 4493 } 4494 4495 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) 4496 switch (DefMCID.getOpcode()) { 4497 default: break; 4498 case ARM::VLD1q8: 4499 case ARM::VLD1q16: 4500 case ARM::VLD1q32: 4501 case ARM::VLD1q64: 4502 case ARM::VLD1q8wb_register: 4503 case ARM::VLD1q16wb_register: 4504 case ARM::VLD1q32wb_register: 4505 case ARM::VLD1q64wb_register: 4506 case ARM::VLD1q8wb_fixed: 4507 case ARM::VLD1q16wb_fixed: 4508 case ARM::VLD1q32wb_fixed: 4509 case ARM::VLD1q64wb_fixed: 4510 case ARM::VLD2d8: 4511 case ARM::VLD2d16: 4512 case ARM::VLD2d32: 4513 case ARM::VLD2q8Pseudo: 4514 case ARM::VLD2q16Pseudo: 4515 case ARM::VLD2q32Pseudo: 4516 case ARM::VLD2d8wb_fixed: 4517 case ARM::VLD2d16wb_fixed: 4518 case ARM::VLD2d32wb_fixed: 4519 case ARM::VLD2q8PseudoWB_fixed: 4520 case ARM::VLD2q16PseudoWB_fixed: 4521 case ARM::VLD2q32PseudoWB_fixed: 4522 case ARM::VLD2d8wb_register: 4523 case ARM::VLD2d16wb_register: 4524 case ARM::VLD2d32wb_register: 4525 case ARM::VLD2q8PseudoWB_register: 4526 case ARM::VLD2q16PseudoWB_register: 4527 case ARM::VLD2q32PseudoWB_register: 4528 case ARM::VLD3d8Pseudo: 4529 case ARM::VLD3d16Pseudo: 4530 case ARM::VLD3d32Pseudo: 4531 case ARM::VLD1d8TPseudo: 4532 case ARM::VLD1d16TPseudo: 4533 case ARM::VLD1d32TPseudo: 4534 case ARM::VLD1d64TPseudo: 4535 case ARM::VLD1d64TPseudoWB_fixed: 4536 case ARM::VLD1d64TPseudoWB_register: 4537 case ARM::VLD3d8Pseudo_UPD: 4538 case ARM::VLD3d16Pseudo_UPD: 4539 case ARM::VLD3d32Pseudo_UPD: 4540 case ARM::VLD3q8Pseudo_UPD: 4541 case ARM::VLD3q16Pseudo_UPD: 4542 case ARM::VLD3q32Pseudo_UPD: 4543 case ARM::VLD3q8oddPseudo: 4544 case ARM::VLD3q16oddPseudo: 4545 case ARM::VLD3q32oddPseudo: 4546 case ARM::VLD3q8oddPseudo_UPD: 4547 case ARM::VLD3q16oddPseudo_UPD: 4548 case ARM::VLD3q32oddPseudo_UPD: 4549 case ARM::VLD4d8Pseudo: 4550 case ARM::VLD4d16Pseudo: 4551 case ARM::VLD4d32Pseudo: 4552 case ARM::VLD1d8QPseudo: 4553 case ARM::VLD1d16QPseudo: 4554 case ARM::VLD1d32QPseudo: 4555 case ARM::VLD1d64QPseudo: 4556 case ARM::VLD1d64QPseudoWB_fixed: 4557 case ARM::VLD1d64QPseudoWB_register: 4558 case ARM::VLD1q8HighQPseudo: 4559 case ARM::VLD1q8LowQPseudo_UPD: 4560 case ARM::VLD1q8HighTPseudo: 4561 case ARM::VLD1q8LowTPseudo_UPD: 4562 case ARM::VLD1q16HighQPseudo: 4563 case ARM::VLD1q16LowQPseudo_UPD: 4564 case ARM::VLD1q16HighTPseudo: 4565 case ARM::VLD1q16LowTPseudo_UPD: 4566 case ARM::VLD1q32HighQPseudo: 4567 case ARM::VLD1q32LowQPseudo_UPD: 4568 case ARM::VLD1q32HighTPseudo: 4569 case ARM::VLD1q32LowTPseudo_UPD: 4570 case ARM::VLD1q64HighQPseudo: 4571 case ARM::VLD1q64LowQPseudo_UPD: 4572 case ARM::VLD1q64HighTPseudo: 4573 case ARM::VLD1q64LowTPseudo_UPD: 4574 case ARM::VLD4d8Pseudo_UPD: 4575 case ARM::VLD4d16Pseudo_UPD: 4576 case ARM::VLD4d32Pseudo_UPD: 4577 case ARM::VLD4q8Pseudo_UPD: 4578 case ARM::VLD4q16Pseudo_UPD: 4579 case ARM::VLD4q32Pseudo_UPD: 4580 case ARM::VLD4q8oddPseudo: 4581 case ARM::VLD4q16oddPseudo: 4582 case ARM::VLD4q32oddPseudo: 4583 case ARM::VLD4q8oddPseudo_UPD: 4584 case ARM::VLD4q16oddPseudo_UPD: 4585 case ARM::VLD4q32oddPseudo_UPD: 4586 case ARM::VLD1DUPq8: 4587 case ARM::VLD1DUPq16: 4588 case ARM::VLD1DUPq32: 4589 case ARM::VLD1DUPq8wb_fixed: 4590 case ARM::VLD1DUPq16wb_fixed: 4591 case ARM::VLD1DUPq32wb_fixed: 4592 case ARM::VLD1DUPq8wb_register: 4593 case ARM::VLD1DUPq16wb_register: 4594 case ARM::VLD1DUPq32wb_register: 4595 case ARM::VLD2DUPd8: 4596 case ARM::VLD2DUPd16: 4597 case ARM::VLD2DUPd32: 4598 case ARM::VLD2DUPd8wb_fixed: 4599 case ARM::VLD2DUPd16wb_fixed: 4600 case ARM::VLD2DUPd32wb_fixed: 4601 case ARM::VLD2DUPd8wb_register: 4602 case ARM::VLD2DUPd16wb_register: 4603 case ARM::VLD2DUPd32wb_register: 4604 case ARM::VLD2DUPq8EvenPseudo: 4605 case ARM::VLD2DUPq8OddPseudo: 4606 case ARM::VLD2DUPq16EvenPseudo: 4607 case ARM::VLD2DUPq16OddPseudo: 4608 case ARM::VLD2DUPq32EvenPseudo: 4609 case ARM::VLD2DUPq32OddPseudo: 4610 case ARM::VLD3DUPq8EvenPseudo: 4611 case ARM::VLD3DUPq8OddPseudo: 4612 case ARM::VLD3DUPq16EvenPseudo: 4613 case ARM::VLD3DUPq16OddPseudo: 4614 case ARM::VLD3DUPq32EvenPseudo: 4615 case ARM::VLD3DUPq32OddPseudo: 4616 case ARM::VLD4DUPd8Pseudo: 4617 case ARM::VLD4DUPd16Pseudo: 4618 case ARM::VLD4DUPd32Pseudo: 4619 case ARM::VLD4DUPd8Pseudo_UPD: 4620 case ARM::VLD4DUPd16Pseudo_UPD: 4621 case ARM::VLD4DUPd32Pseudo_UPD: 4622 case ARM::VLD4DUPq8EvenPseudo: 4623 case ARM::VLD4DUPq8OddPseudo: 4624 case ARM::VLD4DUPq16EvenPseudo: 4625 case ARM::VLD4DUPq16OddPseudo: 4626 case ARM::VLD4DUPq32EvenPseudo: 4627 case ARM::VLD4DUPq32OddPseudo: 4628 case ARM::VLD1LNq8Pseudo: 4629 case ARM::VLD1LNq16Pseudo: 4630 case ARM::VLD1LNq32Pseudo: 4631 case ARM::VLD1LNq8Pseudo_UPD: 4632 case ARM::VLD1LNq16Pseudo_UPD: 4633 case ARM::VLD1LNq32Pseudo_UPD: 4634 case ARM::VLD2LNd8Pseudo: 4635 case ARM::VLD2LNd16Pseudo: 4636 case ARM::VLD2LNd32Pseudo: 4637 case ARM::VLD2LNq16Pseudo: 4638 case ARM::VLD2LNq32Pseudo: 4639 case ARM::VLD2LNd8Pseudo_UPD: 4640 case ARM::VLD2LNd16Pseudo_UPD: 4641 case ARM::VLD2LNd32Pseudo_UPD: 4642 case ARM::VLD2LNq16Pseudo_UPD: 4643 case ARM::VLD2LNq32Pseudo_UPD: 4644 case ARM::VLD4LNd8Pseudo: 4645 case ARM::VLD4LNd16Pseudo: 4646 case ARM::VLD4LNd32Pseudo: 4647 case ARM::VLD4LNq16Pseudo: 4648 case ARM::VLD4LNq32Pseudo: 4649 case ARM::VLD4LNd8Pseudo_UPD: 4650 case ARM::VLD4LNd16Pseudo_UPD: 4651 case ARM::VLD4LNd32Pseudo_UPD: 4652 case ARM::VLD4LNq16Pseudo_UPD: 4653 case ARM::VLD4LNq32Pseudo_UPD: 4654 // If the address is not 64-bit aligned, the latencies of these 4655 // instructions increases by one. 4656 ++Latency; 4657 break; 4658 } 4659 4660 return Latency; 4661 } 4662 4663 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const { 4664 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || 4665 MI.isImplicitDef()) 4666 return 0; 4667 4668 if (MI.isBundle()) 4669 return 0; 4670 4671 const MCInstrDesc &MCID = MI.getDesc(); 4672 4673 if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && 4674 !Subtarget.cheapPredicableCPSRDef())) { 4675 // When predicated, CPSR is an additional source operand for CPSR updating 4676 // instructions, this apparently increases their latencies. 4677 return 1; 4678 } 4679 return 0; 4680 } 4681 4682 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4683 const MachineInstr &MI, 4684 unsigned *PredCost) const { 4685 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || 4686 MI.isImplicitDef()) 4687 return 1; 4688 4689 // An instruction scheduler typically runs on unbundled instructions, however 4690 // other passes may query the latency of a bundled instruction. 4691 if (MI.isBundle()) { 4692 unsigned Latency = 0; 4693 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 4694 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 4695 while (++I != E && I->isInsideBundle()) { 4696 if (I->getOpcode() != ARM::t2IT) 4697 Latency += getInstrLatency(ItinData, *I, PredCost); 4698 } 4699 return Latency; 4700 } 4701 4702 const MCInstrDesc &MCID = MI.getDesc(); 4703 if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && 4704 !Subtarget.cheapPredicableCPSRDef()))) { 4705 // When predicated, CPSR is an additional source operand for CPSR updating 4706 // instructions, this apparently increases their latencies. 4707 *PredCost = 1; 4708 } 4709 // Be sure to call getStageLatency for an empty itinerary in case it has a 4710 // valid MinLatency property. 4711 if (!ItinData) 4712 return MI.mayLoad() ? 3 : 1; 4713 4714 unsigned Class = MCID.getSchedClass(); 4715 4716 // For instructions with variable uops, use uops as latency. 4717 if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0) 4718 return getNumMicroOps(ItinData, MI); 4719 4720 // For the common case, fall back on the itinerary's latency. 4721 unsigned Latency = ItinData->getStageLatency(Class); 4722 4723 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4724 unsigned DefAlign = 4725 MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlign().value() : 0; 4726 int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign); 4727 if (Adj >= 0 || (int)Latency > -Adj) { 4728 return Latency + Adj; 4729 } 4730 return Latency; 4731 } 4732 4733 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4734 SDNode *Node) const { 4735 if (!Node->isMachineOpcode()) 4736 return 1; 4737 4738 if (!ItinData || ItinData->isEmpty()) 4739 return 1; 4740 4741 unsigned Opcode = Node->getMachineOpcode(); 4742 switch (Opcode) { 4743 default: 4744 return ItinData->getStageLatency(get(Opcode).getSchedClass()); 4745 case ARM::VLDMQIA: 4746 case ARM::VSTMQIA: 4747 return 2; 4748 } 4749 } 4750 4751 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, 4752 const MachineRegisterInfo *MRI, 4753 const MachineInstr &DefMI, 4754 unsigned DefIdx, 4755 const MachineInstr &UseMI, 4756 unsigned UseIdx) const { 4757 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; 4758 unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask; 4759 if (Subtarget.nonpipelinedVFP() && 4760 (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP)) 4761 return true; 4762 4763 // Hoist VFP / NEON instructions with 4 or higher latency. 4764 unsigned Latency = 4765 SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx); 4766 if (Latency <= 3) 4767 return false; 4768 return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON || 4769 UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON; 4770 } 4771 4772 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, 4773 const MachineInstr &DefMI, 4774 unsigned DefIdx) const { 4775 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); 4776 if (!ItinData || ItinData->isEmpty()) 4777 return false; 4778 4779 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; 4780 if (DDomain == ARMII::DomainGeneral) { 4781 unsigned DefClass = DefMI.getDesc().getSchedClass(); 4782 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 4783 return (DefCycle != -1 && DefCycle <= 2); 4784 } 4785 return false; 4786 } 4787 4788 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI, 4789 StringRef &ErrInfo) const { 4790 if (convertAddSubFlagsOpcode(MI.getOpcode())) { 4791 ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG"; 4792 return false; 4793 } 4794 if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) { 4795 // Make sure we don't generate a lo-lo mov that isn't supported. 4796 if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) && 4797 !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) { 4798 ErrInfo = "Non-flag-setting Thumb1 mov is v6-only"; 4799 return false; 4800 } 4801 } 4802 if (MI.getOpcode() == ARM::tPUSH || 4803 MI.getOpcode() == ARM::tPOP || 4804 MI.getOpcode() == ARM::tPOP_RET) { 4805 for (int i = 2, e = MI.getNumOperands(); i < e; ++i) { 4806 if (MI.getOperand(i).isImplicit() || 4807 !MI.getOperand(i).isReg()) 4808 continue; 4809 Register Reg = MI.getOperand(i).getReg(); 4810 if (Reg < ARM::R0 || Reg > ARM::R7) { 4811 if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) && 4812 !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) { 4813 ErrInfo = "Unsupported register in Thumb1 push/pop"; 4814 return false; 4815 } 4816 } 4817 } 4818 } 4819 return true; 4820 } 4821 4822 // LoadStackGuard has so far only been implemented for MachO. Different code 4823 // sequence is needed for other targets. 4824 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI, 4825 unsigned LoadImmOpc, 4826 unsigned LoadOpc) const { 4827 assert(!Subtarget.isROPI() && !Subtarget.isRWPI() && 4828 "ROPI/RWPI not currently supported with stack guard"); 4829 4830 MachineBasicBlock &MBB = *MI->getParent(); 4831 DebugLoc DL = MI->getDebugLoc(); 4832 Register Reg = MI->getOperand(0).getReg(); 4833 const GlobalValue *GV = 4834 cast<GlobalValue>((*MI->memoperands_begin())->getValue()); 4835 MachineInstrBuilder MIB; 4836 4837 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) 4838 .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY); 4839 4840 if (Subtarget.isGVIndirectSymbol(GV)) { 4841 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4842 MIB.addReg(Reg, RegState::Kill).addImm(0); 4843 auto Flags = MachineMemOperand::MOLoad | 4844 MachineMemOperand::MODereferenceable | 4845 MachineMemOperand::MOInvariant; 4846 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( 4847 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, Align(4)); 4848 MIB.addMemOperand(MMO).add(predOps(ARMCC::AL)); 4849 } 4850 4851 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4852 MIB.addReg(Reg, RegState::Kill) 4853 .addImm(0) 4854 .cloneMemRefs(*MI) 4855 .add(predOps(ARMCC::AL)); 4856 } 4857 4858 bool 4859 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc, 4860 unsigned &AddSubOpc, 4861 bool &NegAcc, bool &HasLane) const { 4862 DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode); 4863 if (I == MLxEntryMap.end()) 4864 return false; 4865 4866 const ARM_MLxEntry &Entry = ARM_MLxTable[I->second]; 4867 MulOpc = Entry.MulOpc; 4868 AddSubOpc = Entry.AddSubOpc; 4869 NegAcc = Entry.NegAcc; 4870 HasLane = Entry.HasLane; 4871 return true; 4872 } 4873 4874 //===----------------------------------------------------------------------===// 4875 // Execution domains. 4876 //===----------------------------------------------------------------------===// 4877 // 4878 // Some instructions go down the NEON pipeline, some go down the VFP pipeline, 4879 // and some can go down both. The vmov instructions go down the VFP pipeline, 4880 // but they can be changed to vorr equivalents that are executed by the NEON 4881 // pipeline. 4882 // 4883 // We use the following execution domain numbering: 4884 // 4885 enum ARMExeDomain { 4886 ExeGeneric = 0, 4887 ExeVFP = 1, 4888 ExeNEON = 2 4889 }; 4890 4891 // 4892 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h 4893 // 4894 std::pair<uint16_t, uint16_t> 4895 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const { 4896 // If we don't have access to NEON instructions then we won't be able 4897 // to swizzle anything to the NEON domain. Check to make sure. 4898 if (Subtarget.hasNEON()) { 4899 // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON 4900 // if they are not predicated. 4901 if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI)) 4902 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 4903 4904 // CortexA9 is particularly picky about mixing the two and wants these 4905 // converted. 4906 if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) && 4907 (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR || 4908 MI.getOpcode() == ARM::VMOVS)) 4909 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 4910 } 4911 // No other instructions can be swizzled, so just determine their domain. 4912 unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask; 4913 4914 if (Domain & ARMII::DomainNEON) 4915 return std::make_pair(ExeNEON, 0); 4916 4917 // Certain instructions can go either way on Cortex-A8. 4918 // Treat them as NEON instructions. 4919 if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8()) 4920 return std::make_pair(ExeNEON, 0); 4921 4922 if (Domain & ARMII::DomainVFP) 4923 return std::make_pair(ExeVFP, 0); 4924 4925 return std::make_pair(ExeGeneric, 0); 4926 } 4927 4928 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI, 4929 unsigned SReg, unsigned &Lane) { 4930 unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass); 4931 Lane = 0; 4932 4933 if (DReg != ARM::NoRegister) 4934 return DReg; 4935 4936 Lane = 1; 4937 DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass); 4938 4939 assert(DReg && "S-register with no D super-register?"); 4940 return DReg; 4941 } 4942 4943 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane, 4944 /// set ImplicitSReg to a register number that must be marked as implicit-use or 4945 /// zero if no register needs to be defined as implicit-use. 4946 /// 4947 /// If the function cannot determine if an SPR should be marked implicit use or 4948 /// not, it returns false. 4949 /// 4950 /// This function handles cases where an instruction is being modified from taking 4951 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict 4952 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other 4953 /// lane of the DPR). 4954 /// 4955 /// If the other SPR is defined, an implicit-use of it should be added. Else, 4956 /// (including the case where the DPR itself is defined), it should not. 4957 /// 4958 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI, 4959 MachineInstr &MI, unsigned DReg, 4960 unsigned Lane, unsigned &ImplicitSReg) { 4961 // If the DPR is defined or used already, the other SPR lane will be chained 4962 // correctly, so there is nothing to be done. 4963 if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) { 4964 ImplicitSReg = 0; 4965 return true; 4966 } 4967 4968 // Otherwise we need to go searching to see if the SPR is set explicitly. 4969 ImplicitSReg = TRI->getSubReg(DReg, 4970 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1); 4971 MachineBasicBlock::LivenessQueryResult LQR = 4972 MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI); 4973 4974 if (LQR == MachineBasicBlock::LQR_Live) 4975 return true; 4976 else if (LQR == MachineBasicBlock::LQR_Unknown) 4977 return false; 4978 4979 // If the register is known not to be live, there is no need to add an 4980 // implicit-use. 4981 ImplicitSReg = 0; 4982 return true; 4983 } 4984 4985 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI, 4986 unsigned Domain) const { 4987 unsigned DstReg, SrcReg, DReg; 4988 unsigned Lane; 4989 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 4990 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4991 switch (MI.getOpcode()) { 4992 default: 4993 llvm_unreachable("cannot handle opcode!"); 4994 break; 4995 case ARM::VMOVD: 4996 if (Domain != ExeNEON) 4997 break; 4998 4999 // Zap the predicate operands. 5000 assert(!isPredicated(MI) && "Cannot predicate a VORRd"); 5001 5002 // Make sure we've got NEON instructions. 5003 assert(Subtarget.hasNEON() && "VORRd requires NEON"); 5004 5005 // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits) 5006 DstReg = MI.getOperand(0).getReg(); 5007 SrcReg = MI.getOperand(1).getReg(); 5008 5009 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5010 MI.RemoveOperand(i - 1); 5011 5012 // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits) 5013 MI.setDesc(get(ARM::VORRd)); 5014 MIB.addReg(DstReg, RegState::Define) 5015 .addReg(SrcReg) 5016 .addReg(SrcReg) 5017 .add(predOps(ARMCC::AL)); 5018 break; 5019 case ARM::VMOVRS: 5020 if (Domain != ExeNEON) 5021 break; 5022 assert(!isPredicated(MI) && "Cannot predicate a VGETLN"); 5023 5024 // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits) 5025 DstReg = MI.getOperand(0).getReg(); 5026 SrcReg = MI.getOperand(1).getReg(); 5027 5028 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5029 MI.RemoveOperand(i - 1); 5030 5031 DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane); 5032 5033 // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps) 5034 // Note that DSrc has been widened and the other lane may be undef, which 5035 // contaminates the entire register. 5036 MI.setDesc(get(ARM::VGETLNi32)); 5037 MIB.addReg(DstReg, RegState::Define) 5038 .addReg(DReg, RegState::Undef) 5039 .addImm(Lane) 5040 .add(predOps(ARMCC::AL)); 5041 5042 // The old source should be an implicit use, otherwise we might think it 5043 // was dead before here. 5044 MIB.addReg(SrcReg, RegState::Implicit); 5045 break; 5046 case ARM::VMOVSR: { 5047 if (Domain != ExeNEON) 5048 break; 5049 assert(!isPredicated(MI) && "Cannot predicate a VSETLN"); 5050 5051 // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits) 5052 DstReg = MI.getOperand(0).getReg(); 5053 SrcReg = MI.getOperand(1).getReg(); 5054 5055 DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane); 5056 5057 unsigned ImplicitSReg; 5058 if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg)) 5059 break; 5060 5061 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5062 MI.RemoveOperand(i - 1); 5063 5064 // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps) 5065 // Again DDst may be undefined at the beginning of this instruction. 5066 MI.setDesc(get(ARM::VSETLNi32)); 5067 MIB.addReg(DReg, RegState::Define) 5068 .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI))) 5069 .addReg(SrcReg) 5070 .addImm(Lane) 5071 .add(predOps(ARMCC::AL)); 5072 5073 // The narrower destination must be marked as set to keep previous chains 5074 // in place. 5075 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 5076 if (ImplicitSReg != 0) 5077 MIB.addReg(ImplicitSReg, RegState::Implicit); 5078 break; 5079 } 5080 case ARM::VMOVS: { 5081 if (Domain != ExeNEON) 5082 break; 5083 5084 // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits) 5085 DstReg = MI.getOperand(0).getReg(); 5086 SrcReg = MI.getOperand(1).getReg(); 5087 5088 unsigned DstLane = 0, SrcLane = 0, DDst, DSrc; 5089 DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane); 5090 DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane); 5091 5092 unsigned ImplicitSReg; 5093 if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg)) 5094 break; 5095 5096 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5097 MI.RemoveOperand(i - 1); 5098 5099 if (DSrc == DDst) { 5100 // Destination can be: 5101 // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits) 5102 MI.setDesc(get(ARM::VDUPLN32d)); 5103 MIB.addReg(DDst, RegState::Define) 5104 .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI))) 5105 .addImm(SrcLane) 5106 .add(predOps(ARMCC::AL)); 5107 5108 // Neither the source or the destination are naturally represented any 5109 // more, so add them in manually. 5110 MIB.addReg(DstReg, RegState::Implicit | RegState::Define); 5111 MIB.addReg(SrcReg, RegState::Implicit); 5112 if (ImplicitSReg != 0) 5113 MIB.addReg(ImplicitSReg, RegState::Implicit); 5114 break; 5115 } 5116 5117 // In general there's no single instruction that can perform an S <-> S 5118 // move in NEON space, but a pair of VEXT instructions *can* do the 5119 // job. It turns out that the VEXTs needed will only use DSrc once, with 5120 // the position based purely on the combination of lane-0 and lane-1 5121 // involved. For example 5122 // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1 5123 // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1 5124 // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1 5125 // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1 5126 // 5127 // Pattern of the MachineInstrs is: 5128 // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits) 5129 MachineInstrBuilder NewMIB; 5130 NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32), 5131 DDst); 5132 5133 // On the first instruction, both DSrc and DDst may be undef if present. 5134 // Specifically when the original instruction didn't have them as an 5135 // <imp-use>. 5136 unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst; 5137 bool CurUndef = !MI.readsRegister(CurReg, TRI); 5138 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)); 5139 5140 CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst; 5141 CurUndef = !MI.readsRegister(CurReg, TRI); 5142 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)) 5143 .addImm(1) 5144 .add(predOps(ARMCC::AL)); 5145 5146 if (SrcLane == DstLane) 5147 NewMIB.addReg(SrcReg, RegState::Implicit); 5148 5149 MI.setDesc(get(ARM::VEXTd32)); 5150 MIB.addReg(DDst, RegState::Define); 5151 5152 // On the second instruction, DDst has definitely been defined above, so 5153 // it is not undef. DSrc, if present, can be undef as above. 5154 CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst; 5155 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); 5156 MIB.addReg(CurReg, getUndefRegState(CurUndef)); 5157 5158 CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst; 5159 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); 5160 MIB.addReg(CurReg, getUndefRegState(CurUndef)) 5161 .addImm(1) 5162 .add(predOps(ARMCC::AL)); 5163 5164 if (SrcLane != DstLane) 5165 MIB.addReg(SrcReg, RegState::Implicit); 5166 5167 // As before, the original destination is no longer represented, add it 5168 // implicitly. 5169 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 5170 if (ImplicitSReg != 0) 5171 MIB.addReg(ImplicitSReg, RegState::Implicit); 5172 break; 5173 } 5174 } 5175 } 5176 5177 //===----------------------------------------------------------------------===// 5178 // Partial register updates 5179 //===----------------------------------------------------------------------===// 5180 // 5181 // Swift renames NEON registers with 64-bit granularity. That means any 5182 // instruction writing an S-reg implicitly reads the containing D-reg. The 5183 // problem is mostly avoided by translating f32 operations to v2f32 operations 5184 // on D-registers, but f32 loads are still a problem. 5185 // 5186 // These instructions can load an f32 into a NEON register: 5187 // 5188 // VLDRS - Only writes S, partial D update. 5189 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops. 5190 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops. 5191 // 5192 // FCONSTD can be used as a dependency-breaking instruction. 5193 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance( 5194 const MachineInstr &MI, unsigned OpNum, 5195 const TargetRegisterInfo *TRI) const { 5196 auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance(); 5197 if (!PartialUpdateClearance) 5198 return 0; 5199 5200 assert(TRI && "Need TRI instance"); 5201 5202 const MachineOperand &MO = MI.getOperand(OpNum); 5203 if (MO.readsReg()) 5204 return 0; 5205 Register Reg = MO.getReg(); 5206 int UseOp = -1; 5207 5208 switch (MI.getOpcode()) { 5209 // Normal instructions writing only an S-register. 5210 case ARM::VLDRS: 5211 case ARM::FCONSTS: 5212 case ARM::VMOVSR: 5213 case ARM::VMOVv8i8: 5214 case ARM::VMOVv4i16: 5215 case ARM::VMOVv2i32: 5216 case ARM::VMOVv2f32: 5217 case ARM::VMOVv1i64: 5218 UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI); 5219 break; 5220 5221 // Explicitly reads the dependency. 5222 case ARM::VLD1LNd32: 5223 UseOp = 3; 5224 break; 5225 default: 5226 return 0; 5227 } 5228 5229 // If this instruction actually reads a value from Reg, there is no unwanted 5230 // dependency. 5231 if (UseOp != -1 && MI.getOperand(UseOp).readsReg()) 5232 return 0; 5233 5234 // We must be able to clobber the whole D-reg. 5235 if (Register::isVirtualRegister(Reg)) { 5236 // Virtual register must be a def undef foo:ssub_0 operand. 5237 if (!MO.getSubReg() || MI.readsVirtualRegister(Reg)) 5238 return 0; 5239 } else if (ARM::SPRRegClass.contains(Reg)) { 5240 // Physical register: MI must define the full D-reg. 5241 unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0, 5242 &ARM::DPRRegClass); 5243 if (!DReg || !MI.definesRegister(DReg, TRI)) 5244 return 0; 5245 } 5246 5247 // MI has an unwanted D-register dependency. 5248 // Avoid defs in the previous N instructrions. 5249 return PartialUpdateClearance; 5250 } 5251 5252 // Break a partial register dependency after getPartialRegUpdateClearance 5253 // returned non-zero. 5254 void ARMBaseInstrInfo::breakPartialRegDependency( 5255 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { 5256 assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def"); 5257 assert(TRI && "Need TRI instance"); 5258 5259 const MachineOperand &MO = MI.getOperand(OpNum); 5260 Register Reg = MO.getReg(); 5261 assert(Register::isPhysicalRegister(Reg) && 5262 "Can't break virtual register dependencies."); 5263 unsigned DReg = Reg; 5264 5265 // If MI defines an S-reg, find the corresponding D super-register. 5266 if (ARM::SPRRegClass.contains(Reg)) { 5267 DReg = ARM::D0 + (Reg - ARM::S0) / 2; 5268 assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken"); 5269 } 5270 5271 assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps"); 5272 assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg"); 5273 5274 // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines 5275 // the full D-register by loading the same value to both lanes. The 5276 // instruction is micro-coded with 2 uops, so don't do this until we can 5277 // properly schedule micro-coded instructions. The dispatcher stalls cause 5278 // too big regressions. 5279 5280 // Insert the dependency-breaking FCONSTD before MI. 5281 // 96 is the encoding of 0.5, but the actual value doesn't matter here. 5282 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg) 5283 .addImm(96) 5284 .add(predOps(ARMCC::AL)); 5285 MI.addRegisterKilled(DReg, TRI, true); 5286 } 5287 5288 bool ARMBaseInstrInfo::hasNOP() const { 5289 return Subtarget.getFeatureBits()[ARM::HasV6KOps]; 5290 } 5291 5292 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const { 5293 if (MI->getNumOperands() < 4) 5294 return true; 5295 unsigned ShOpVal = MI->getOperand(3).getImm(); 5296 unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal); 5297 // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1. 5298 if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) || 5299 ((ShImm == 1 || ShImm == 2) && 5300 ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl)) 5301 return true; 5302 5303 return false; 5304 } 5305 5306 bool ARMBaseInstrInfo::getRegSequenceLikeInputs( 5307 const MachineInstr &MI, unsigned DefIdx, 5308 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 5309 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5310 assert(MI.isRegSequenceLike() && "Invalid kind of instruction"); 5311 5312 switch (MI.getOpcode()) { 5313 case ARM::VMOVDRR: 5314 // dX = VMOVDRR rY, rZ 5315 // is the same as: 5316 // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1 5317 // Populate the InputRegs accordingly. 5318 // rY 5319 const MachineOperand *MOReg = &MI.getOperand(1); 5320 if (!MOReg->isUndef()) 5321 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), 5322 MOReg->getSubReg(), ARM::ssub_0)); 5323 // rZ 5324 MOReg = &MI.getOperand(2); 5325 if (!MOReg->isUndef()) 5326 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), 5327 MOReg->getSubReg(), ARM::ssub_1)); 5328 return true; 5329 } 5330 llvm_unreachable("Target dependent opcode missing"); 5331 } 5332 5333 bool ARMBaseInstrInfo::getExtractSubregLikeInputs( 5334 const MachineInstr &MI, unsigned DefIdx, 5335 RegSubRegPairAndIdx &InputReg) const { 5336 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5337 assert(MI.isExtractSubregLike() && "Invalid kind of instruction"); 5338 5339 switch (MI.getOpcode()) { 5340 case ARM::VMOVRRD: 5341 // rX, rY = VMOVRRD dZ 5342 // is the same as: 5343 // rX = EXTRACT_SUBREG dZ, ssub_0 5344 // rY = EXTRACT_SUBREG dZ, ssub_1 5345 const MachineOperand &MOReg = MI.getOperand(2); 5346 if (MOReg.isUndef()) 5347 return false; 5348 InputReg.Reg = MOReg.getReg(); 5349 InputReg.SubReg = MOReg.getSubReg(); 5350 InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1; 5351 return true; 5352 } 5353 llvm_unreachable("Target dependent opcode missing"); 5354 } 5355 5356 bool ARMBaseInstrInfo::getInsertSubregLikeInputs( 5357 const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, 5358 RegSubRegPairAndIdx &InsertedReg) const { 5359 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5360 assert(MI.isInsertSubregLike() && "Invalid kind of instruction"); 5361 5362 switch (MI.getOpcode()) { 5363 case ARM::VSETLNi32: 5364 // dX = VSETLNi32 dY, rZ, imm 5365 const MachineOperand &MOBaseReg = MI.getOperand(1); 5366 const MachineOperand &MOInsertedReg = MI.getOperand(2); 5367 if (MOInsertedReg.isUndef()) 5368 return false; 5369 const MachineOperand &MOIndex = MI.getOperand(3); 5370 BaseReg.Reg = MOBaseReg.getReg(); 5371 BaseReg.SubReg = MOBaseReg.getSubReg(); 5372 5373 InsertedReg.Reg = MOInsertedReg.getReg(); 5374 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 5375 InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1; 5376 return true; 5377 } 5378 llvm_unreachable("Target dependent opcode missing"); 5379 } 5380 5381 std::pair<unsigned, unsigned> 5382 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 5383 const unsigned Mask = ARMII::MO_OPTION_MASK; 5384 return std::make_pair(TF & Mask, TF & ~Mask); 5385 } 5386 5387 ArrayRef<std::pair<unsigned, const char *>> 5388 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 5389 using namespace ARMII; 5390 5391 static const std::pair<unsigned, const char *> TargetFlags[] = { 5392 {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}}; 5393 return makeArrayRef(TargetFlags); 5394 } 5395 5396 ArrayRef<std::pair<unsigned, const char *>> 5397 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 5398 using namespace ARMII; 5399 5400 static const std::pair<unsigned, const char *> TargetFlags[] = { 5401 {MO_COFFSTUB, "arm-coffstub"}, 5402 {MO_GOT, "arm-got"}, 5403 {MO_SBREL, "arm-sbrel"}, 5404 {MO_DLLIMPORT, "arm-dllimport"}, 5405 {MO_SECREL, "arm-secrel"}, 5406 {MO_NONLAZY, "arm-nonlazy"}}; 5407 return makeArrayRef(TargetFlags); 5408 } 5409 5410 Optional<RegImmPair> ARMBaseInstrInfo::isAddImmediate(const MachineInstr &MI, 5411 Register Reg) const { 5412 int Sign = 1; 5413 unsigned Opcode = MI.getOpcode(); 5414 int64_t Offset = 0; 5415 5416 // TODO: Handle cases where Reg is a super- or sub-register of the 5417 // destination register. 5418 const MachineOperand &Op0 = MI.getOperand(0); 5419 if (!Op0.isReg() || Reg != Op0.getReg()) 5420 return None; 5421 5422 // We describe SUBri or ADDri instructions. 5423 if (Opcode == ARM::SUBri) 5424 Sign = -1; 5425 else if (Opcode != ARM::ADDri) 5426 return None; 5427 5428 // TODO: Third operand can be global address (usually some string). Since 5429 // strings can be relocated we cannot calculate their offsets for 5430 // now. 5431 if (!MI.getOperand(1).isReg() || !MI.getOperand(2).isImm()) 5432 return None; 5433 5434 Offset = MI.getOperand(2).getImm() * Sign; 5435 return RegImmPair{MI.getOperand(1).getReg(), Offset}; 5436 } 5437 5438 bool llvm::registerDefinedBetween(unsigned Reg, 5439 MachineBasicBlock::iterator From, 5440 MachineBasicBlock::iterator To, 5441 const TargetRegisterInfo *TRI) { 5442 for (auto I = From; I != To; ++I) 5443 if (I->modifiesRegister(Reg, TRI)) 5444 return true; 5445 return false; 5446 } 5447 5448 MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br, 5449 const TargetRegisterInfo *TRI) { 5450 // Search backwards to the instruction that defines CSPR. This may or not 5451 // be a CMP, we check that after this loop. If we find another instruction 5452 // that reads cpsr, we return nullptr. 5453 MachineBasicBlock::iterator CmpMI = Br; 5454 while (CmpMI != Br->getParent()->begin()) { 5455 --CmpMI; 5456 if (CmpMI->modifiesRegister(ARM::CPSR, TRI)) 5457 break; 5458 if (CmpMI->readsRegister(ARM::CPSR, TRI)) 5459 break; 5460 } 5461 5462 // Check that this inst is a CMP r[0-7], #0 and that the register 5463 // is not redefined between the cmp and the br. 5464 if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri) 5465 return nullptr; 5466 Register Reg = CmpMI->getOperand(0).getReg(); 5467 Register PredReg; 5468 ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg); 5469 if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0) 5470 return nullptr; 5471 if (!isARMLowRegister(Reg)) 5472 return nullptr; 5473 if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI)) 5474 return nullptr; 5475 5476 return &*CmpMI; 5477 } 5478 5479 unsigned llvm::ConstantMaterializationCost(unsigned Val, 5480 const ARMSubtarget *Subtarget, 5481 bool ForCodesize) { 5482 if (Subtarget->isThumb()) { 5483 if (Val <= 255) // MOV 5484 return ForCodesize ? 2 : 1; 5485 if (Subtarget->hasV6T2Ops() && (Val <= 0xffff || // MOV 5486 ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW 5487 ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN 5488 return ForCodesize ? 4 : 1; 5489 if (Val <= 510) // MOV + ADDi8 5490 return ForCodesize ? 4 : 2; 5491 if (~Val <= 255) // MOV + MVN 5492 return ForCodesize ? 4 : 2; 5493 if (ARM_AM::isThumbImmShiftedVal(Val)) // MOV + LSL 5494 return ForCodesize ? 4 : 2; 5495 } else { 5496 if (ARM_AM::getSOImmVal(Val) != -1) // MOV 5497 return ForCodesize ? 4 : 1; 5498 if (ARM_AM::getSOImmVal(~Val) != -1) // MVN 5499 return ForCodesize ? 4 : 1; 5500 if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW 5501 return ForCodesize ? 4 : 1; 5502 if (ARM_AM::isSOImmTwoPartVal(Val)) // two instrs 5503 return ForCodesize ? 8 : 2; 5504 } 5505 if (Subtarget->useMovt()) // MOVW + MOVT 5506 return ForCodesize ? 8 : 2; 5507 return ForCodesize ? 8 : 3; // Literal pool load 5508 } 5509 5510 bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2, 5511 const ARMSubtarget *Subtarget, 5512 bool ForCodesize) { 5513 // Check with ForCodesize 5514 unsigned Cost1 = ConstantMaterializationCost(Val1, Subtarget, ForCodesize); 5515 unsigned Cost2 = ConstantMaterializationCost(Val2, Subtarget, ForCodesize); 5516 if (Cost1 < Cost2) 5517 return true; 5518 if (Cost1 > Cost2) 5519 return false; 5520 5521 // If they are equal, try with !ForCodesize 5522 return ConstantMaterializationCost(Val1, Subtarget, !ForCodesize) < 5523 ConstantMaterializationCost(Val2, Subtarget, !ForCodesize); 5524 } 5525 5526 /// Constants defining how certain sequences should be outlined. 5527 /// This encompasses how an outlined function should be called, and what kind of 5528 /// frame should be emitted for that outlined function. 5529 /// 5530 /// \p MachineOutlinerTailCall implies that the function is being created from 5531 /// a sequence of instructions ending in a return. 5532 /// 5533 /// That is, 5534 /// 5535 /// I1 OUTLINED_FUNCTION: 5536 /// I2 --> B OUTLINED_FUNCTION I1 5537 /// BX LR I2 5538 /// BX LR 5539 /// 5540 /// +-------------------------+--------+-----+ 5541 /// | | Thumb2 | ARM | 5542 /// +-------------------------+--------+-----+ 5543 /// | Call overhead in Bytes | 4 | 4 | 5544 /// | Frame overhead in Bytes | 0 | 0 | 5545 /// | Stack fixup required | No | No | 5546 /// +-------------------------+--------+-----+ 5547 /// 5548 /// \p MachineOutlinerThunk implies that the function is being created from 5549 /// a sequence of instructions ending in a call. The outlined function is 5550 /// called with a BL instruction, and the outlined function tail-calls the 5551 /// original call destination. 5552 /// 5553 /// That is, 5554 /// 5555 /// I1 OUTLINED_FUNCTION: 5556 /// I2 --> BL OUTLINED_FUNCTION I1 5557 /// BL f I2 5558 /// B f 5559 /// 5560 /// +-------------------------+--------+-----+ 5561 /// | | Thumb2 | ARM | 5562 /// +-------------------------+--------+-----+ 5563 /// | Call overhead in Bytes | 4 | 4 | 5564 /// | Frame overhead in Bytes | 0 | 0 | 5565 /// | Stack fixup required | No | No | 5566 /// +-------------------------+--------+-----+ 5567 /// 5568 /// \p MachineOutlinerNoLRSave implies that the function should be called using 5569 /// a BL instruction, but doesn't require LR to be saved and restored. This 5570 /// happens when LR is known to be dead. 5571 /// 5572 /// That is, 5573 /// 5574 /// I1 OUTLINED_FUNCTION: 5575 /// I2 --> BL OUTLINED_FUNCTION I1 5576 /// I3 I2 5577 /// I3 5578 /// BX LR 5579 /// 5580 /// +-------------------------+--------+-----+ 5581 /// | | Thumb2 | ARM | 5582 /// +-------------------------+--------+-----+ 5583 /// | Call overhead in Bytes | 4 | 4 | 5584 /// | Frame overhead in Bytes | 4 | 4 | 5585 /// | Stack fixup required | No | No | 5586 /// +-------------------------+--------+-----+ 5587 /// 5588 /// \p MachineOutlinerRegSave implies that the function should be called with a 5589 /// save and restore of LR to an available register. This allows us to avoid 5590 /// stack fixups. Note that this outlining variant is compatible with the 5591 /// NoLRSave case. 5592 /// 5593 /// That is, 5594 /// 5595 /// I1 Save LR OUTLINED_FUNCTION: 5596 /// I2 --> BL OUTLINED_FUNCTION I1 5597 /// I3 Restore LR I2 5598 /// I3 5599 /// BX LR 5600 /// 5601 /// +-------------------------+--------+-----+ 5602 /// | | Thumb2 | ARM | 5603 /// +-------------------------+--------+-----+ 5604 /// | Call overhead in Bytes | 8 | 12 | 5605 /// | Frame overhead in Bytes | 2 | 4 | 5606 /// | Stack fixup required | No | No | 5607 /// +-------------------------+--------+-----+ 5608 5609 enum MachineOutlinerClass { 5610 MachineOutlinerTailCall, 5611 MachineOutlinerThunk, 5612 MachineOutlinerNoLRSave, 5613 MachineOutlinerRegSave 5614 }; 5615 5616 enum MachineOutlinerMBBFlags { 5617 LRUnavailableSomewhere = 0x2, 5618 HasCalls = 0x4, 5619 UnsafeRegsDead = 0x8 5620 }; 5621 5622 struct OutlinerCosts { 5623 const int CallTailCall; 5624 const int FrameTailCall; 5625 const int CallThunk; 5626 const int FrameThunk; 5627 const int CallNoLRSave; 5628 const int FrameNoLRSave; 5629 const int CallRegSave; 5630 const int FrameRegSave; 5631 5632 OutlinerCosts(const ARMSubtarget &target) 5633 : CallTailCall(target.isThumb() ? 4 : 4), 5634 FrameTailCall(target.isThumb() ? 0 : 0), 5635 CallThunk(target.isThumb() ? 4 : 4), 5636 FrameThunk(target.isThumb() ? 0 : 0), 5637 CallNoLRSave(target.isThumb() ? 4 : 4), 5638 FrameNoLRSave(target.isThumb() ? 4 : 4), 5639 CallRegSave(target.isThumb() ? 8 : 12), 5640 FrameRegSave(target.isThumb() ? 2 : 4) {} 5641 }; 5642 5643 unsigned 5644 ARMBaseInstrInfo::findRegisterToSaveLRTo(const outliner::Candidate &C) const { 5645 assert(C.LRUWasSet && "LRU wasn't set?"); 5646 MachineFunction *MF = C.getMF(); 5647 const ARMBaseRegisterInfo *ARI = static_cast<const ARMBaseRegisterInfo *>( 5648 MF->getSubtarget().getRegisterInfo()); 5649 5650 BitVector regsReserved = ARI->getReservedRegs(*MF); 5651 // Check if there is an available register across the sequence that we can 5652 // use. 5653 for (unsigned Reg : ARM::rGPRRegClass) { 5654 if (!(Reg < regsReserved.size() && regsReserved.test(Reg)) && 5655 Reg != ARM::LR && // LR is not reserved, but don't use it. 5656 Reg != ARM::R12 && // R12 is not guaranteed to be preserved. 5657 C.LRU.available(Reg) && C.UsedInSequence.available(Reg)) 5658 return Reg; 5659 } 5660 5661 // No suitable register. Return 0. 5662 return 0u; 5663 } 5664 5665 outliner::OutlinedFunction ARMBaseInstrInfo::getOutliningCandidateInfo( 5666 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const { 5667 outliner::Candidate &FirstCand = RepeatedSequenceLocs[0]; 5668 unsigned SequenceSize = 5669 std::accumulate(FirstCand.front(), std::next(FirstCand.back()), 0, 5670 [this](unsigned Sum, const MachineInstr &MI) { 5671 return Sum + getInstSizeInBytes(MI); 5672 }); 5673 5674 // Properties about candidate MBBs that hold for all of them. 5675 unsigned FlagsSetInAll = 0xF; 5676 5677 // Compute liveness information for each candidate, and set FlagsSetInAll. 5678 const TargetRegisterInfo &TRI = getRegisterInfo(); 5679 std::for_each( 5680 RepeatedSequenceLocs.begin(), RepeatedSequenceLocs.end(), 5681 [&FlagsSetInAll](outliner::Candidate &C) { FlagsSetInAll &= C.Flags; }); 5682 5683 // According to the ARM Procedure Call Standard, the following are 5684 // undefined on entry/exit from a function call: 5685 // 5686 // * Register R12(IP), 5687 // * Condition codes (and thus the CPSR register) 5688 // 5689 // Since we control the instructions which are part of the outlined regions 5690 // we don't need to be fully compliant with the AAPCS, but we have to 5691 // guarantee that if a veneer is inserted at link time the code is still 5692 // correct. Because of this, we can't outline any sequence of instructions 5693 // where one of these registers is live into/across it. Thus, we need to 5694 // delete those candidates. 5695 auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) { 5696 // If the unsafe registers in this block are all dead, then we don't need 5697 // to compute liveness here. 5698 if (C.Flags & UnsafeRegsDead) 5699 return false; 5700 C.initLRU(TRI); 5701 LiveRegUnits LRU = C.LRU; 5702 return (!LRU.available(ARM::R12) || !LRU.available(ARM::CPSR)); 5703 }; 5704 5705 // Are there any candidates where those registers are live? 5706 if (!(FlagsSetInAll & UnsafeRegsDead)) { 5707 // Erase every candidate that violates the restrictions above. (It could be 5708 // true that we have viable candidates, so it's not worth bailing out in 5709 // the case that, say, 1 out of 20 candidates violate the restructions.) 5710 RepeatedSequenceLocs.erase(std::remove_if(RepeatedSequenceLocs.begin(), 5711 RepeatedSequenceLocs.end(), 5712 CantGuaranteeValueAcrossCall), 5713 RepeatedSequenceLocs.end()); 5714 5715 // If the sequence doesn't have enough candidates left, then we're done. 5716 if (RepeatedSequenceLocs.size() < 2) 5717 return outliner::OutlinedFunction(); 5718 } 5719 5720 // At this point, we have only "safe" candidates to outline. Figure out 5721 // frame + call instruction information. 5722 5723 unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back()->getOpcode(); 5724 5725 // Helper lambda which sets call information for every candidate. 5726 auto SetCandidateCallInfo = 5727 [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) { 5728 for (outliner::Candidate &C : RepeatedSequenceLocs) 5729 C.setCallInfo(CallID, NumBytesForCall); 5730 }; 5731 5732 OutlinerCosts Costs(Subtarget); 5733 unsigned FrameID = 0; 5734 unsigned NumBytesToCreateFrame = 0; 5735 5736 // If the last instruction in any candidate is a terminator, then we should 5737 // tail call all of the candidates. 5738 if (RepeatedSequenceLocs[0].back()->isTerminator()) { 5739 FrameID = MachineOutlinerTailCall; 5740 NumBytesToCreateFrame = Costs.FrameTailCall; 5741 SetCandidateCallInfo(MachineOutlinerTailCall, Costs.CallTailCall); 5742 } else if (LastInstrOpcode == ARM::BL || LastInstrOpcode == ARM::BLX || 5743 LastInstrOpcode == ARM::tBL || LastInstrOpcode == ARM::tBLXr || 5744 LastInstrOpcode == ARM::tBLXi) { 5745 FrameID = MachineOutlinerThunk; 5746 NumBytesToCreateFrame = Costs.FrameThunk; 5747 SetCandidateCallInfo(MachineOutlinerThunk, Costs.CallThunk); 5748 } else { 5749 // We need to decide how to emit calls + frames. We can always emit the same 5750 // frame if we don't need to save to the stack. 5751 unsigned NumBytesNoStackCalls = 0; 5752 std::vector<outliner::Candidate> CandidatesWithoutStackFixups; 5753 5754 for (outliner::Candidate &C : RepeatedSequenceLocs) { 5755 C.initLRU(TRI); 5756 5757 // Is LR available? If so, we don't need a save. 5758 if (C.LRU.available(ARM::LR)) { 5759 FrameID = MachineOutlinerNoLRSave; 5760 NumBytesNoStackCalls += Costs.CallNoLRSave; 5761 C.setCallInfo(MachineOutlinerNoLRSave, Costs.CallNoLRSave); 5762 CandidatesWithoutStackFixups.push_back(C); 5763 } 5764 5765 // Is an unused register available? If so, we won't modify the stack, so 5766 // we can outline with the same frame type as those that don't save LR. 5767 else if (findRegisterToSaveLRTo(C)) { 5768 FrameID = MachineOutlinerRegSave; 5769 NumBytesNoStackCalls += Costs.CallRegSave; 5770 C.setCallInfo(MachineOutlinerRegSave, Costs.CallRegSave); 5771 CandidatesWithoutStackFixups.push_back(C); 5772 } 5773 } 5774 5775 if (!CandidatesWithoutStackFixups.empty()) { 5776 RepeatedSequenceLocs = CandidatesWithoutStackFixups; 5777 } else 5778 return outliner::OutlinedFunction(); 5779 } 5780 5781 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 5782 NumBytesToCreateFrame, FrameID); 5783 } 5784 5785 bool ARMBaseInstrInfo::isFunctionSafeToOutlineFrom( 5786 MachineFunction &MF, bool OutlineFromLinkOnceODRs) const { 5787 const Function &F = MF.getFunction(); 5788 5789 // Can F be deduplicated by the linker? If it can, don't outline from it. 5790 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage()) 5791 return false; 5792 5793 // Don't outline from functions with section markings; the program could 5794 // expect that all the code is in the named section. 5795 // FIXME: Allow outlining from multiple functions with the same section 5796 // marking. 5797 if (F.hasSection()) 5798 return false; 5799 5800 // FIXME: Thumb1 outlining is not handled 5801 if (MF.getInfo<ARMFunctionInfo>()->isThumb1OnlyFunction()) 5802 return false; 5803 5804 // It's safe to outline from MF. 5805 return true; 5806 } 5807 5808 bool ARMBaseInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, 5809 unsigned &Flags) const { 5810 // Check if LR is available through all of the MBB. If it's not, then set 5811 // a flag. 5812 assert(MBB.getParent()->getRegInfo().tracksLiveness() && 5813 "Suitable Machine Function for outlining must track liveness"); 5814 5815 LiveRegUnits LRU(getRegisterInfo()); 5816 5817 std::for_each(MBB.rbegin(), MBB.rend(), 5818 [&LRU](MachineInstr &MI) { LRU.accumulate(MI); }); 5819 5820 // Check if each of the unsafe registers are available... 5821 bool R12AvailableInBlock = LRU.available(ARM::R12); 5822 bool CPSRAvailableInBlock = LRU.available(ARM::CPSR); 5823 5824 // If all of these are dead (and not live out), we know we don't have to check 5825 // them later. 5826 if (R12AvailableInBlock && CPSRAvailableInBlock) 5827 Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead; 5828 5829 // Now, add the live outs to the set. 5830 LRU.addLiveOuts(MBB); 5831 5832 // If any of these registers is available in the MBB, but also a live out of 5833 // the block, then we know outlining is unsafe. 5834 if (R12AvailableInBlock && !LRU.available(ARM::R12)) 5835 return false; 5836 if (CPSRAvailableInBlock && !LRU.available(ARM::CPSR)) 5837 return false; 5838 5839 // Check if there's a call inside this MachineBasicBlock. If there is, then 5840 // set a flag. 5841 if (any_of(MBB, [](MachineInstr &MI) { return MI.isCall(); })) 5842 Flags |= MachineOutlinerMBBFlags::HasCalls; 5843 5844 if (!LRU.available(ARM::LR)) 5845 Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere; 5846 5847 return true; 5848 } 5849 5850 outliner::InstrType 5851 ARMBaseInstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT, 5852 unsigned Flags) const { 5853 MachineInstr &MI = *MIT; 5854 const TargetRegisterInfo *TRI = &getRegisterInfo(); 5855 5856 // Be conservative with inline ASM 5857 if (MI.isInlineAsm()) 5858 return outliner::InstrType::Illegal; 5859 5860 // Don't allow debug values to impact outlining type. 5861 if (MI.isDebugInstr() || MI.isIndirectDebugValue()) 5862 return outliner::InstrType::Invisible; 5863 5864 // At this point, KILL or IMPLICIT_DEF instructions don't really tell us much 5865 // so we can go ahead and skip over them. 5866 if (MI.isKill() || MI.isImplicitDef()) 5867 return outliner::InstrType::Invisible; 5868 5869 // PIC instructions contain labels, outlining them would break offset 5870 // computing. unsigned Opc = MI.getOpcode(); 5871 unsigned Opc = MI.getOpcode(); 5872 if (Opc == ARM::tPICADD || Opc == ARM::PICADD || Opc == ARM::PICSTR || 5873 Opc == ARM::PICSTRB || Opc == ARM::PICSTRH || Opc == ARM::PICLDR || 5874 Opc == ARM::PICLDRB || Opc == ARM::PICLDRH || Opc == ARM::PICLDRSB || 5875 Opc == ARM::PICLDRSH || Opc == ARM::t2LDRpci_pic || 5876 Opc == ARM::t2MOVi16_ga_pcrel || Opc == ARM::t2MOVTi16_ga_pcrel || 5877 Opc == ARM::t2MOV_ga_pcrel) 5878 return outliner::InstrType::Illegal; 5879 5880 // Be conservative with ARMv8.1 MVE instructions. 5881 if (Opc == ARM::t2BF_LabelPseudo || Opc == ARM::t2DoLoopStart || 5882 Opc == ARM::t2WhileLoopStart || Opc == ARM::t2LoopDec || 5883 Opc == ARM::t2LoopEnd) 5884 return outliner::InstrType::Illegal; 5885 5886 const MCInstrDesc &MCID = MI.getDesc(); 5887 uint64_t MIFlags = MCID.TSFlags; 5888 if ((MIFlags & ARMII::DomainMask) == ARMII::DomainMVE) 5889 return outliner::InstrType::Illegal; 5890 5891 // Is this a terminator for a basic block? 5892 if (MI.isTerminator()) { 5893 // Don't outline if the branch is not unconditional. 5894 if (isPredicated(MI)) 5895 return outliner::InstrType::Illegal; 5896 5897 // Is this the end of a function? 5898 if (MI.getParent()->succ_empty()) 5899 return outliner::InstrType::Legal; 5900 5901 // It's not, so don't outline it. 5902 return outliner::InstrType::Illegal; 5903 } 5904 5905 // Make sure none of the operands are un-outlinable. 5906 for (const MachineOperand &MOP : MI.operands()) { 5907 if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() || 5908 MOP.isTargetIndex()) 5909 return outliner::InstrType::Illegal; 5910 } 5911 5912 // Don't outline if link register or program counter value are used. 5913 if (MI.readsRegister(ARM::LR, TRI) || MI.readsRegister(ARM::PC, TRI)) 5914 return outliner::InstrType::Illegal; 5915 5916 if (MI.isCall()) { 5917 // If we don't know anything about the callee, assume it depends on the 5918 // stack layout of the caller. In that case, it's only legal to outline 5919 // as a tail-call. Explicitly list the call instructions we know about so 5920 // we don't get unexpected results with call pseudo-instructions. 5921 auto UnknownCallOutlineType = outliner::InstrType::Illegal; 5922 if (Opc == ARM::BL || Opc == ARM::tBL || Opc == ARM::BLX || 5923 Opc == ARM::tBLXr || Opc == ARM::tBLXi) 5924 UnknownCallOutlineType = outliner::InstrType::LegalTerminator; 5925 5926 return UnknownCallOutlineType; 5927 } 5928 5929 // Since calls are handled, don't touch LR or PC 5930 if (MI.modifiesRegister(ARM::LR, TRI) || MI.modifiesRegister(ARM::PC, TRI)) 5931 return outliner::InstrType::Illegal; 5932 5933 // Does this use the stack? 5934 if (MI.modifiesRegister(ARM::SP, TRI) || MI.readsRegister(ARM::SP, TRI)) { 5935 // True if there is no chance that any outlined candidate from this range 5936 // could require stack fixups. That is, both 5937 // * LR is available in the range (No save/restore around call) 5938 // * The range doesn't include calls (No save/restore in outlined frame) 5939 // are true. 5940 // FIXME: This is very restrictive; the flags check the whole block, 5941 // not just the bit we will try to outline. 5942 bool MightNeedStackFixUp = 5943 (Flags & (MachineOutlinerMBBFlags::LRUnavailableSomewhere | 5944 MachineOutlinerMBBFlags::HasCalls)); 5945 5946 if (!MightNeedStackFixUp) 5947 return outliner::InstrType::Legal; 5948 5949 return outliner::InstrType::Illegal; 5950 } 5951 5952 // Be conservative with IT blocks. 5953 if (MI.readsRegister(ARM::ITSTATE, TRI) || 5954 MI.modifiesRegister(ARM::ITSTATE, TRI)) 5955 return outliner::InstrType::Illegal; 5956 5957 // Don't outline positions. 5958 if (MI.isPosition()) 5959 return outliner::InstrType::Illegal; 5960 5961 return outliner::InstrType::Legal; 5962 } 5963 5964 void ARMBaseInstrInfo::buildOutlinedFrame( 5965 MachineBasicBlock &MBB, MachineFunction &MF, 5966 const outliner::OutlinedFunction &OF) const { 5967 // Nothing is needed for tail-calls. 5968 if (OF.FrameConstructionID == MachineOutlinerTailCall) 5969 return; 5970 5971 // For thunk outlining, rewrite the last instruction from a call to a 5972 // tail-call. 5973 if (OF.FrameConstructionID == MachineOutlinerThunk) { 5974 MachineInstr *Call = &*--MBB.instr_end(); 5975 bool isThumb = Subtarget.isThumb(); 5976 unsigned FuncOp = isThumb ? 2 : 0; 5977 unsigned Opc = Call->getOperand(FuncOp).isReg() 5978 ? isThumb ? ARM::tTAILJMPr : ARM::TAILJMPr 5979 : isThumb ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd 5980 : ARM::tTAILJMPdND 5981 : ARM::TAILJMPd; 5982 MachineInstrBuilder MIB = BuildMI(MBB, MBB.end(), DebugLoc(), get(Opc)) 5983 .add(Call->getOperand(FuncOp)); 5984 if (isThumb && !Call->getOperand(FuncOp).isReg()) 5985 MIB.add(predOps(ARMCC::AL)); 5986 Call->eraseFromParent(); 5987 return; 5988 } 5989 5990 // Here we have to insert the return ourselves. Get the correct opcode from 5991 // current feature set. 5992 BuildMI(MBB, MBB.end(), DebugLoc(), get(Subtarget.getReturnOpcode())) 5993 .add(predOps(ARMCC::AL)); 5994 } 5995 5996 MachineBasicBlock::iterator ARMBaseInstrInfo::insertOutlinedCall( 5997 Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, 5998 MachineFunction &MF, const outliner::Candidate &C) const { 5999 MachineInstrBuilder MIB; 6000 MachineBasicBlock::iterator CallPt; 6001 unsigned Opc; 6002 bool isThumb = Subtarget.isThumb(); 6003 6004 // Are we tail calling? 6005 if (C.CallConstructionID == MachineOutlinerTailCall) { 6006 // If yes, then we can just branch to the label. 6007 Opc = isThumb 6008 ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd : ARM::tTAILJMPdND 6009 : ARM::TAILJMPd; 6010 MIB = BuildMI(MF, DebugLoc(), get(Opc)) 6011 .addGlobalAddress(M.getNamedValue(MF.getName())); 6012 if (isThumb) 6013 MIB.add(predOps(ARMCC::AL)); 6014 It = MBB.insert(It, MIB); 6015 return It; 6016 } 6017 6018 // Create the call instruction. 6019 Opc = isThumb ? ARM::tBL : ARM::BL; 6020 MachineInstrBuilder CallMIB = BuildMI(MF, DebugLoc(), get(Opc)); 6021 if (isThumb) 6022 CallMIB.add(predOps(ARMCC::AL)); 6023 CallMIB.addGlobalAddress(M.getNamedValue(MF.getName())); 6024 6025 // Can we save to a register? 6026 if (C.CallConstructionID == MachineOutlinerRegSave) { 6027 unsigned Reg = findRegisterToSaveLRTo(C); 6028 assert(Reg != 0 && "No callee-saved register available?"); 6029 6030 // Save and restore LR from that register. 6031 if (!MBB.isLiveIn(ARM::LR)) 6032 MBB.addLiveIn(ARM::LR); 6033 copyPhysReg(MBB, It, DebugLoc(), Reg, ARM::LR, true); 6034 CallPt = MBB.insert(It, CallMIB); 6035 copyPhysReg(MBB, It, DebugLoc(), ARM::LR, Reg, true); 6036 It--; 6037 return CallPt; 6038 } 6039 // Insert the call. 6040 It = MBB.insert(It, CallMIB); 6041 return It; 6042 } 6043