xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the Base ARM implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ARMBaseInstrInfo.h"
14 #include "ARMBaseRegisterInfo.h"
15 #include "ARMConstantPoolValue.h"
16 #include "ARMFeatures.h"
17 #include "ARMHazardRecognizer.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "MCTargetDesc/ARMBaseInfo.h"
22 #include "MVETailPredUtils.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/CodeGen/LiveVariables.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/CodeGen/MachineScheduler.h"
40 #include "llvm/CodeGen/MultiHazardRecognizer.h"
41 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
42 #include "llvm/CodeGen/SelectionDAGNodes.h"
43 #include "llvm/CodeGen/TargetInstrInfo.h"
44 #include "llvm/CodeGen/TargetRegisterInfo.h"
45 #include "llvm/CodeGen/TargetSchedule.h"
46 #include "llvm/IR/Attributes.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DebugLoc.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/MC/MCAsmInfo.h"
52 #include "llvm/MC/MCInstrDesc.h"
53 #include "llvm/MC/MCInstrItineraries.h"
54 #include "llvm/Support/BranchProbability.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Compiler.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/ErrorHandling.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Target/TargetMachine.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstdint>
65 #include <iterator>
66 #include <new>
67 #include <utility>
68 #include <vector>
69 
70 using namespace llvm;
71 
72 #define DEBUG_TYPE "arm-instrinfo"
73 
74 #define GET_INSTRINFO_CTOR_DTOR
75 #include "ARMGenInstrInfo.inc"
76 
77 static cl::opt<bool>
78 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
79                cl::desc("Enable ARM 2-addr to 3-addr conv"));
80 
81 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
82 struct ARM_MLxEntry {
83   uint16_t MLxOpc;     // MLA / MLS opcode
84   uint16_t MulOpc;     // Expanded multiplication opcode
85   uint16_t AddSubOpc;  // Expanded add / sub opcode
86   bool NegAcc;         // True if the acc is negated before the add / sub.
87   bool HasLane;        // True if instruction has an extra "lane" operand.
88 };
89 
90 static const ARM_MLxEntry ARM_MLxTable[] = {
91   // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
92   // fp scalar ops
93   { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
94   { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
95   { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
96   { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
97   { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
98   { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
99   { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
100   { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
101 
102   // fp SIMD ops
103   { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
104   { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
105   { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
106   { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
107   { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
108   { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
109   { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
110   { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
111 };
112 
113 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
114   : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
115     Subtarget(STI) {
116   for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
117     if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
118       llvm_unreachable("Duplicated entries?");
119     MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
120     MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
121   }
122 }
123 
124 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
125 // currently defaults to no prepass hazard recognizer.
126 ScheduleHazardRecognizer *
127 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
128                                                const ScheduleDAG *DAG) const {
129   if (usePreRAHazardRecognizer()) {
130     const InstrItineraryData *II =
131         static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
132     return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
133   }
134   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
135 }
136 
137 // Called during:
138 // - pre-RA scheduling
139 // - post-RA scheduling when FeatureUseMISched is set
140 ScheduleHazardRecognizer *ARMBaseInstrInfo::CreateTargetMIHazardRecognizer(
141     const InstrItineraryData *II, const ScheduleDAGMI *DAG) const {
142   MultiHazardRecognizer *MHR = new MultiHazardRecognizer();
143 
144   // We would like to restrict this hazard recognizer to only
145   // post-RA scheduling; we can tell that we're post-RA because we don't
146   // track VRegLiveness.
147   // Cortex-M7: TRM indicates that there is a single ITCM bank and two DTCM
148   //            banks banked on bit 2.  Assume that TCMs are in use.
149   if (Subtarget.isCortexM7() && !DAG->hasVRegLiveness())
150     MHR->AddHazardRecognizer(
151         std::make_unique<ARMBankConflictHazardRecognizer>(DAG, 0x4, true));
152 
153   // Not inserting ARMHazardRecognizerFPMLx because that would change
154   // legacy behavior
155 
156   auto BHR = TargetInstrInfo::CreateTargetMIHazardRecognizer(II, DAG);
157   MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR));
158   return MHR;
159 }
160 
161 // Called during post-RA scheduling when FeatureUseMISched is not set
162 ScheduleHazardRecognizer *ARMBaseInstrInfo::
163 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
164                                    const ScheduleDAG *DAG) const {
165   MultiHazardRecognizer *MHR = new MultiHazardRecognizer();
166 
167   if (Subtarget.isThumb2() || Subtarget.hasVFP2Base())
168     MHR->AddHazardRecognizer(std::make_unique<ARMHazardRecognizerFPMLx>());
169 
170   auto BHR = TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
171   if (BHR)
172     MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR));
173   return MHR;
174 }
175 
176 MachineInstr *
177 ARMBaseInstrInfo::convertToThreeAddress(MachineInstr &MI, LiveVariables *LV,
178                                         LiveIntervals *LIS) const {
179   // FIXME: Thumb2 support.
180 
181   if (!EnableARM3Addr)
182     return nullptr;
183 
184   MachineFunction &MF = *MI.getParent()->getParent();
185   uint64_t TSFlags = MI.getDesc().TSFlags;
186   bool isPre = false;
187   switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
188   default: return nullptr;
189   case ARMII::IndexModePre:
190     isPre = true;
191     break;
192   case ARMII::IndexModePost:
193     break;
194   }
195 
196   // Try splitting an indexed load/store to an un-indexed one plus an add/sub
197   // operation.
198   unsigned MemOpc = getUnindexedOpcode(MI.getOpcode());
199   if (MemOpc == 0)
200     return nullptr;
201 
202   MachineInstr *UpdateMI = nullptr;
203   MachineInstr *MemMI = nullptr;
204   unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
205   const MCInstrDesc &MCID = MI.getDesc();
206   unsigned NumOps = MCID.getNumOperands();
207   bool isLoad = !MI.mayStore();
208   const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0);
209   const MachineOperand &Base = MI.getOperand(2);
210   const MachineOperand &Offset = MI.getOperand(NumOps - 3);
211   Register WBReg = WB.getReg();
212   Register BaseReg = Base.getReg();
213   Register OffReg = Offset.getReg();
214   unsigned OffImm = MI.getOperand(NumOps - 2).getImm();
215   ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm();
216   switch (AddrMode) {
217   default: llvm_unreachable("Unknown indexed op!");
218   case ARMII::AddrMode2: {
219     bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
220     unsigned Amt = ARM_AM::getAM2Offset(OffImm);
221     if (OffReg == 0) {
222       if (ARM_AM::getSOImmVal(Amt) == -1)
223         // Can't encode it in a so_imm operand. This transformation will
224         // add more than 1 instruction. Abandon!
225         return nullptr;
226       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
227                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
228                      .addReg(BaseReg)
229                      .addImm(Amt)
230                      .add(predOps(Pred))
231                      .add(condCodeOp());
232     } else if (Amt != 0) {
233       ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
234       unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
235       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
236                          get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
237                      .addReg(BaseReg)
238                      .addReg(OffReg)
239                      .addReg(0)
240                      .addImm(SOOpc)
241                      .add(predOps(Pred))
242                      .add(condCodeOp());
243     } else
244       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
245                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
246                      .addReg(BaseReg)
247                      .addReg(OffReg)
248                      .add(predOps(Pred))
249                      .add(condCodeOp());
250     break;
251   }
252   case ARMII::AddrMode3 : {
253     bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
254     unsigned Amt = ARM_AM::getAM3Offset(OffImm);
255     if (OffReg == 0)
256       // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
257       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
258                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
259                      .addReg(BaseReg)
260                      .addImm(Amt)
261                      .add(predOps(Pred))
262                      .add(condCodeOp());
263     else
264       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
265                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
266                      .addReg(BaseReg)
267                      .addReg(OffReg)
268                      .add(predOps(Pred))
269                      .add(condCodeOp());
270     break;
271   }
272   }
273 
274   std::vector<MachineInstr*> NewMIs;
275   if (isPre) {
276     if (isLoad)
277       MemMI =
278           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
279               .addReg(WBReg)
280               .addImm(0)
281               .addImm(Pred);
282     else
283       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
284                   .addReg(MI.getOperand(1).getReg())
285                   .addReg(WBReg)
286                   .addReg(0)
287                   .addImm(0)
288                   .addImm(Pred);
289     NewMIs.push_back(MemMI);
290     NewMIs.push_back(UpdateMI);
291   } else {
292     if (isLoad)
293       MemMI =
294           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
295               .addReg(BaseReg)
296               .addImm(0)
297               .addImm(Pred);
298     else
299       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
300                   .addReg(MI.getOperand(1).getReg())
301                   .addReg(BaseReg)
302                   .addReg(0)
303                   .addImm(0)
304                   .addImm(Pred);
305     if (WB.isDead())
306       UpdateMI->getOperand(0).setIsDead();
307     NewMIs.push_back(UpdateMI);
308     NewMIs.push_back(MemMI);
309   }
310 
311   // Transfer LiveVariables states, kill / dead info.
312   if (LV) {
313     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
314       MachineOperand &MO = MI.getOperand(i);
315       if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) {
316         Register Reg = MO.getReg();
317 
318         LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
319         if (MO.isDef()) {
320           MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
321           if (MO.isDead())
322             LV->addVirtualRegisterDead(Reg, *NewMI);
323         }
324         if (MO.isUse() && MO.isKill()) {
325           for (unsigned j = 0; j < 2; ++j) {
326             // Look at the two new MI's in reverse order.
327             MachineInstr *NewMI = NewMIs[j];
328             if (!NewMI->readsRegister(Reg))
329               continue;
330             LV->addVirtualRegisterKilled(Reg, *NewMI);
331             if (VI.removeKill(MI))
332               VI.Kills.push_back(NewMI);
333             break;
334           }
335         }
336       }
337     }
338   }
339 
340   MachineBasicBlock &MBB = *MI.getParent();
341   MBB.insert(MI, NewMIs[1]);
342   MBB.insert(MI, NewMIs[0]);
343   return NewMIs[0];
344 }
345 
346 // Branch analysis.
347 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
348                                      MachineBasicBlock *&TBB,
349                                      MachineBasicBlock *&FBB,
350                                      SmallVectorImpl<MachineOperand> &Cond,
351                                      bool AllowModify) const {
352   TBB = nullptr;
353   FBB = nullptr;
354 
355   MachineBasicBlock::instr_iterator I = MBB.instr_end();
356   if (I == MBB.instr_begin())
357     return false; // Empty blocks are easy.
358   --I;
359 
360   // Walk backwards from the end of the basic block until the branch is
361   // analyzed or we give up.
362   while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
363     // Flag to be raised on unanalyzeable instructions. This is useful in cases
364     // where we want to clean up on the end of the basic block before we bail
365     // out.
366     bool CantAnalyze = false;
367 
368     // Skip over DEBUG values, predicated nonterminators and speculation
369     // barrier terminators.
370     while (I->isDebugInstr() || !I->isTerminator() ||
371            isSpeculationBarrierEndBBOpcode(I->getOpcode()) ||
372            I->getOpcode() == ARM::t2DoLoopStartTP){
373       if (I == MBB.instr_begin())
374         return false;
375       --I;
376     }
377 
378     if (isIndirectBranchOpcode(I->getOpcode()) ||
379         isJumpTableBranchOpcode(I->getOpcode())) {
380       // Indirect branches and jump tables can't be analyzed, but we still want
381       // to clean up any instructions at the tail of the basic block.
382       CantAnalyze = true;
383     } else if (isUncondBranchOpcode(I->getOpcode())) {
384       TBB = I->getOperand(0).getMBB();
385     } else if (isCondBranchOpcode(I->getOpcode())) {
386       // Bail out if we encounter multiple conditional branches.
387       if (!Cond.empty())
388         return true;
389 
390       assert(!FBB && "FBB should have been null.");
391       FBB = TBB;
392       TBB = I->getOperand(0).getMBB();
393       Cond.push_back(I->getOperand(1));
394       Cond.push_back(I->getOperand(2));
395     } else if (I->isReturn()) {
396       // Returns can't be analyzed, but we should run cleanup.
397       CantAnalyze = true;
398     } else {
399       // We encountered other unrecognized terminator. Bail out immediately.
400       return true;
401     }
402 
403     // Cleanup code - to be run for unpredicated unconditional branches and
404     //                returns.
405     if (!isPredicated(*I) &&
406           (isUncondBranchOpcode(I->getOpcode()) ||
407            isIndirectBranchOpcode(I->getOpcode()) ||
408            isJumpTableBranchOpcode(I->getOpcode()) ||
409            I->isReturn())) {
410       // Forget any previous condition branch information - it no longer applies.
411       Cond.clear();
412       FBB = nullptr;
413 
414       // If we can modify the function, delete everything below this
415       // unconditional branch.
416       if (AllowModify) {
417         MachineBasicBlock::iterator DI = std::next(I);
418         while (DI != MBB.instr_end()) {
419           MachineInstr &InstToDelete = *DI;
420           ++DI;
421           // Speculation barriers must not be deleted.
422           if (isSpeculationBarrierEndBBOpcode(InstToDelete.getOpcode()))
423             continue;
424           InstToDelete.eraseFromParent();
425         }
426       }
427     }
428 
429     if (CantAnalyze) {
430       // We may not be able to analyze the block, but we could still have
431       // an unconditional branch as the last instruction in the block, which
432       // just branches to layout successor. If this is the case, then just
433       // remove it if we're allowed to make modifications.
434       if (AllowModify && !isPredicated(MBB.back()) &&
435           isUncondBranchOpcode(MBB.back().getOpcode()) &&
436           TBB && MBB.isLayoutSuccessor(TBB))
437         removeBranch(MBB);
438       return true;
439     }
440 
441     if (I == MBB.instr_begin())
442       return false;
443 
444     --I;
445   }
446 
447   // We made it past the terminators without bailing out - we must have
448   // analyzed this branch successfully.
449   return false;
450 }
451 
452 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB,
453                                         int *BytesRemoved) const {
454   assert(!BytesRemoved && "code size not handled");
455 
456   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
457   if (I == MBB.end())
458     return 0;
459 
460   if (!isUncondBranchOpcode(I->getOpcode()) &&
461       !isCondBranchOpcode(I->getOpcode()))
462     return 0;
463 
464   // Remove the branch.
465   I->eraseFromParent();
466 
467   I = MBB.end();
468 
469   if (I == MBB.begin()) return 1;
470   --I;
471   if (!isCondBranchOpcode(I->getOpcode()))
472     return 1;
473 
474   // Remove the branch.
475   I->eraseFromParent();
476   return 2;
477 }
478 
479 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB,
480                                         MachineBasicBlock *TBB,
481                                         MachineBasicBlock *FBB,
482                                         ArrayRef<MachineOperand> Cond,
483                                         const DebugLoc &DL,
484                                         int *BytesAdded) const {
485   assert(!BytesAdded && "code size not handled");
486   ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
487   int BOpc   = !AFI->isThumbFunction()
488     ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
489   int BccOpc = !AFI->isThumbFunction()
490     ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
491   bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
492 
493   // Shouldn't be a fall through.
494   assert(TBB && "insertBranch must not be told to insert a fallthrough");
495   assert((Cond.size() == 2 || Cond.size() == 0) &&
496          "ARM branch conditions have two components!");
497 
498   // For conditional branches, we use addOperand to preserve CPSR flags.
499 
500   if (!FBB) {
501     if (Cond.empty()) { // Unconditional branch?
502       if (isThumb)
503         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL));
504       else
505         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
506     } else
507       BuildMI(&MBB, DL, get(BccOpc))
508           .addMBB(TBB)
509           .addImm(Cond[0].getImm())
510           .add(Cond[1]);
511     return 1;
512   }
513 
514   // Two-way conditional branch.
515   BuildMI(&MBB, DL, get(BccOpc))
516       .addMBB(TBB)
517       .addImm(Cond[0].getImm())
518       .add(Cond[1]);
519   if (isThumb)
520     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL));
521   else
522     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
523   return 2;
524 }
525 
526 bool ARMBaseInstrInfo::
527 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
528   ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
529   Cond[0].setImm(ARMCC::getOppositeCondition(CC));
530   return false;
531 }
532 
533 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const {
534   if (MI.isBundle()) {
535     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
536     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
537     while (++I != E && I->isInsideBundle()) {
538       int PIdx = I->findFirstPredOperandIdx();
539       if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
540         return true;
541     }
542     return false;
543   }
544 
545   int PIdx = MI.findFirstPredOperandIdx();
546   return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL;
547 }
548 
549 std::string ARMBaseInstrInfo::createMIROperandComment(
550     const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
551     const TargetRegisterInfo *TRI) const {
552 
553   // First, let's see if there is a generic comment for this operand
554   std::string GenericComment =
555       TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI);
556   if (!GenericComment.empty())
557     return GenericComment;
558 
559   // If not, check if we have an immediate operand.
560   if (Op.getType() != MachineOperand::MO_Immediate)
561     return std::string();
562 
563   // And print its corresponding condition code if the immediate is a
564   // predicate.
565   int FirstPredOp = MI.findFirstPredOperandIdx();
566   if (FirstPredOp != (int) OpIdx)
567     return std::string();
568 
569   std::string CC = "CC::";
570   CC += ARMCondCodeToString((ARMCC::CondCodes)Op.getImm());
571   return CC;
572 }
573 
574 bool ARMBaseInstrInfo::PredicateInstruction(
575     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
576   unsigned Opc = MI.getOpcode();
577   if (isUncondBranchOpcode(Opc)) {
578     MI.setDesc(get(getMatchingCondBranchOpcode(Opc)));
579     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
580       .addImm(Pred[0].getImm())
581       .addReg(Pred[1].getReg());
582     return true;
583   }
584 
585   int PIdx = MI.findFirstPredOperandIdx();
586   if (PIdx != -1) {
587     MachineOperand &PMO = MI.getOperand(PIdx);
588     PMO.setImm(Pred[0].getImm());
589     MI.getOperand(PIdx+1).setReg(Pred[1].getReg());
590 
591     // Thumb 1 arithmetic instructions do not set CPSR when executed inside an
592     // IT block. This affects how they are printed.
593     const MCInstrDesc &MCID = MI.getDesc();
594     if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
595       assert(MCID.OpInfo[1].isOptionalDef() && "CPSR def isn't expected operand");
596       assert((MI.getOperand(1).isDead() ||
597               MI.getOperand(1).getReg() != ARM::CPSR) &&
598              "if conversion tried to stop defining used CPSR");
599       MI.getOperand(1).setReg(ARM::NoRegister);
600     }
601 
602     return true;
603   }
604   return false;
605 }
606 
607 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
608                                          ArrayRef<MachineOperand> Pred2) const {
609   if (Pred1.size() > 2 || Pred2.size() > 2)
610     return false;
611 
612   ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
613   ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
614   if (CC1 == CC2)
615     return true;
616 
617   switch (CC1) {
618   default:
619     return false;
620   case ARMCC::AL:
621     return true;
622   case ARMCC::HS:
623     return CC2 == ARMCC::HI;
624   case ARMCC::LS:
625     return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
626   case ARMCC::GE:
627     return CC2 == ARMCC::GT;
628   case ARMCC::LE:
629     return CC2 == ARMCC::LT;
630   }
631 }
632 
633 bool ARMBaseInstrInfo::ClobbersPredicate(MachineInstr &MI,
634                                          std::vector<MachineOperand> &Pred,
635                                          bool SkipDead) const {
636   bool Found = false;
637   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
638     const MachineOperand &MO = MI.getOperand(i);
639     bool ClobbersCPSR = MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR);
640     bool IsCPSR = MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR;
641     if (ClobbersCPSR || IsCPSR) {
642 
643       // Filter out T1 instructions that have a dead CPSR,
644       // allowing IT blocks to be generated containing T1 instructions
645       const MCInstrDesc &MCID = MI.getDesc();
646       if (MCID.TSFlags & ARMII::ThumbArithFlagSetting && MO.isDead() &&
647           SkipDead)
648         continue;
649 
650       Pred.push_back(MO);
651       Found = true;
652     }
653   }
654 
655   return Found;
656 }
657 
658 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) {
659   for (const auto &MO : MI.operands())
660     if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead())
661       return true;
662   return false;
663 }
664 
665 static bool isEligibleForITBlock(const MachineInstr *MI) {
666   switch (MI->getOpcode()) {
667   default: return true;
668   case ARM::tADC:   // ADC (register) T1
669   case ARM::tADDi3: // ADD (immediate) T1
670   case ARM::tADDi8: // ADD (immediate) T2
671   case ARM::tADDrr: // ADD (register) T1
672   case ARM::tAND:   // AND (register) T1
673   case ARM::tASRri: // ASR (immediate) T1
674   case ARM::tASRrr: // ASR (register) T1
675   case ARM::tBIC:   // BIC (register) T1
676   case ARM::tEOR:   // EOR (register) T1
677   case ARM::tLSLri: // LSL (immediate) T1
678   case ARM::tLSLrr: // LSL (register) T1
679   case ARM::tLSRri: // LSR (immediate) T1
680   case ARM::tLSRrr: // LSR (register) T1
681   case ARM::tMUL:   // MUL T1
682   case ARM::tMVN:   // MVN (register) T1
683   case ARM::tORR:   // ORR (register) T1
684   case ARM::tROR:   // ROR (register) T1
685   case ARM::tRSB:   // RSB (immediate) T1
686   case ARM::tSBC:   // SBC (register) T1
687   case ARM::tSUBi3: // SUB (immediate) T1
688   case ARM::tSUBi8: // SUB (immediate) T2
689   case ARM::tSUBrr: // SUB (register) T1
690     return !ARMBaseInstrInfo::isCPSRDefined(*MI);
691   }
692 }
693 
694 /// isPredicable - Return true if the specified instruction can be predicated.
695 /// By default, this returns true for every instruction with a
696 /// PredicateOperand.
697 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const {
698   if (!MI.isPredicable())
699     return false;
700 
701   if (MI.isBundle())
702     return false;
703 
704   if (!isEligibleForITBlock(&MI))
705     return false;
706 
707   const MachineFunction *MF = MI.getParent()->getParent();
708   const ARMFunctionInfo *AFI =
709       MF->getInfo<ARMFunctionInfo>();
710 
711   // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM.
712   // In their ARM encoding, they can't be encoded in a conditional form.
713   if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
714     return false;
715 
716   // Make indirect control flow changes unpredicable when SLS mitigation is
717   // enabled.
718   const ARMSubtarget &ST = MF->getSubtarget<ARMSubtarget>();
719   if (ST.hardenSlsRetBr() && isIndirectControlFlowNotComingBack(MI))
720     return false;
721   if (ST.hardenSlsBlr() && isIndirectCall(MI))
722     return false;
723 
724   if (AFI->isThumb2Function()) {
725     if (getSubtarget().restrictIT())
726       return isV8EligibleForIT(&MI);
727   }
728 
729   return true;
730 }
731 
732 namespace llvm {
733 
734 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) {
735   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
736     const MachineOperand &MO = MI->getOperand(i);
737     if (!MO.isReg() || MO.isUndef() || MO.isUse())
738       continue;
739     if (MO.getReg() != ARM::CPSR)
740       continue;
741     if (!MO.isDead())
742       return false;
743   }
744   // all definitions of CPSR are dead
745   return true;
746 }
747 
748 } // end namespace llvm
749 
750 /// GetInstSize - Return the size of the specified MachineInstr.
751 ///
752 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
753   const MachineBasicBlock &MBB = *MI.getParent();
754   const MachineFunction *MF = MBB.getParent();
755   const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
756 
757   const MCInstrDesc &MCID = MI.getDesc();
758   if (MCID.getSize())
759     return MCID.getSize();
760 
761   switch (MI.getOpcode()) {
762   default:
763     // pseudo-instruction sizes are zero.
764     return 0;
765   case TargetOpcode::BUNDLE:
766     return getInstBundleLength(MI);
767   case ARM::MOVi16_ga_pcrel:
768   case ARM::MOVTi16_ga_pcrel:
769   case ARM::t2MOVi16_ga_pcrel:
770   case ARM::t2MOVTi16_ga_pcrel:
771     return 4;
772   case ARM::MOVi32imm:
773   case ARM::t2MOVi32imm:
774     return 8;
775   case ARM::CONSTPOOL_ENTRY:
776   case ARM::JUMPTABLE_INSTS:
777   case ARM::JUMPTABLE_ADDRS:
778   case ARM::JUMPTABLE_TBB:
779   case ARM::JUMPTABLE_TBH:
780     // If this machine instr is a constant pool entry, its size is recorded as
781     // operand #2.
782     return MI.getOperand(2).getImm();
783   case ARM::Int_eh_sjlj_longjmp:
784     return 16;
785   case ARM::tInt_eh_sjlj_longjmp:
786     return 10;
787   case ARM::tInt_WIN_eh_sjlj_longjmp:
788     return 12;
789   case ARM::Int_eh_sjlj_setjmp:
790   case ARM::Int_eh_sjlj_setjmp_nofp:
791     return 20;
792   case ARM::tInt_eh_sjlj_setjmp:
793   case ARM::t2Int_eh_sjlj_setjmp:
794   case ARM::t2Int_eh_sjlj_setjmp_nofp:
795     return 12;
796   case ARM::SPACE:
797     return MI.getOperand(1).getImm();
798   case ARM::INLINEASM:
799   case ARM::INLINEASM_BR: {
800     // If this machine instr is an inline asm, measure it.
801     unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
802     if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction())
803       Size = alignTo(Size, 4);
804     return Size;
805   }
806   case ARM::SpeculationBarrierISBDSBEndBB:
807   case ARM::t2SpeculationBarrierISBDSBEndBB:
808     // This gets lowered to 2 4-byte instructions.
809     return 8;
810   case ARM::SpeculationBarrierSBEndBB:
811   case ARM::t2SpeculationBarrierSBEndBB:
812     // This gets lowered to 1 4-byte instructions.
813     return 4;
814   }
815 }
816 
817 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
818   unsigned Size = 0;
819   MachineBasicBlock::const_instr_iterator I = MI.getIterator();
820   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
821   while (++I != E && I->isInsideBundle()) {
822     assert(!I->isBundle() && "No nested bundle!");
823     Size += getInstSizeInBytes(*I);
824   }
825   return Size;
826 }
827 
828 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
829                                     MachineBasicBlock::iterator I,
830                                     unsigned DestReg, bool KillSrc,
831                                     const ARMSubtarget &Subtarget) const {
832   unsigned Opc = Subtarget.isThumb()
833                      ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
834                      : ARM::MRS;
835 
836   MachineInstrBuilder MIB =
837       BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
838 
839   // There is only 1 A/R class MRS instruction, and it always refers to
840   // APSR. However, there are lots of other possibilities on M-class cores.
841   if (Subtarget.isMClass())
842     MIB.addImm(0x800);
843 
844   MIB.add(predOps(ARMCC::AL))
845      .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
846 }
847 
848 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
849                                   MachineBasicBlock::iterator I,
850                                   unsigned SrcReg, bool KillSrc,
851                                   const ARMSubtarget &Subtarget) const {
852   unsigned Opc = Subtarget.isThumb()
853                      ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
854                      : ARM::MSR;
855 
856   MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
857 
858   if (Subtarget.isMClass())
859     MIB.addImm(0x800);
860   else
861     MIB.addImm(8);
862 
863   MIB.addReg(SrcReg, getKillRegState(KillSrc))
864      .add(predOps(ARMCC::AL))
865      .addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
866 }
867 
868 void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) {
869   MIB.addImm(ARMVCC::None);
870   MIB.addReg(0);
871   MIB.addReg(0); // tp_reg
872 }
873 
874 void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB,
875                                       Register DestReg) {
876   addUnpredicatedMveVpredNOp(MIB);
877   MIB.addReg(DestReg, RegState::Undef);
878 }
879 
880 void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) {
881   MIB.addImm(Cond);
882   MIB.addReg(ARM::VPR, RegState::Implicit);
883   MIB.addReg(0); // tp_reg
884 }
885 
886 void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB,
887                                     unsigned Cond, unsigned Inactive) {
888   addPredicatedMveVpredNOp(MIB, Cond);
889   MIB.addReg(Inactive);
890 }
891 
892 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
893                                    MachineBasicBlock::iterator I,
894                                    const DebugLoc &DL, MCRegister DestReg,
895                                    MCRegister SrcReg, bool KillSrc) const {
896   bool GPRDest = ARM::GPRRegClass.contains(DestReg);
897   bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
898 
899   if (GPRDest && GPRSrc) {
900     BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
901         .addReg(SrcReg, getKillRegState(KillSrc))
902         .add(predOps(ARMCC::AL))
903         .add(condCodeOp());
904     return;
905   }
906 
907   bool SPRDest = ARM::SPRRegClass.contains(DestReg);
908   bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
909 
910   unsigned Opc = 0;
911   if (SPRDest && SPRSrc)
912     Opc = ARM::VMOVS;
913   else if (GPRDest && SPRSrc)
914     Opc = ARM::VMOVRS;
915   else if (SPRDest && GPRSrc)
916     Opc = ARM::VMOVSR;
917   else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64())
918     Opc = ARM::VMOVD;
919   else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
920     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MQPRCopy;
921 
922   if (Opc) {
923     MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
924     MIB.addReg(SrcReg, getKillRegState(KillSrc));
925     if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR)
926       MIB.addReg(SrcReg, getKillRegState(KillSrc));
927     if (Opc == ARM::MVE_VORR)
928       addUnpredicatedMveVpredROp(MIB, DestReg);
929     else if (Opc != ARM::MQPRCopy)
930       MIB.add(predOps(ARMCC::AL));
931     return;
932   }
933 
934   // Handle register classes that require multiple instructions.
935   unsigned BeginIdx = 0;
936   unsigned SubRegs = 0;
937   int Spacing = 1;
938 
939   // Use VORRq when possible.
940   if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
941     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
942     BeginIdx = ARM::qsub_0;
943     SubRegs = 2;
944   } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
945     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
946     BeginIdx = ARM::qsub_0;
947     SubRegs = 4;
948   // Fall back to VMOVD.
949   } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
950     Opc = ARM::VMOVD;
951     BeginIdx = ARM::dsub_0;
952     SubRegs = 2;
953   } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
954     Opc = ARM::VMOVD;
955     BeginIdx = ARM::dsub_0;
956     SubRegs = 3;
957   } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
958     Opc = ARM::VMOVD;
959     BeginIdx = ARM::dsub_0;
960     SubRegs = 4;
961   } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
962     Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
963     BeginIdx = ARM::gsub_0;
964     SubRegs = 2;
965   } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
966     Opc = ARM::VMOVD;
967     BeginIdx = ARM::dsub_0;
968     SubRegs = 2;
969     Spacing = 2;
970   } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
971     Opc = ARM::VMOVD;
972     BeginIdx = ARM::dsub_0;
973     SubRegs = 3;
974     Spacing = 2;
975   } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
976     Opc = ARM::VMOVD;
977     BeginIdx = ARM::dsub_0;
978     SubRegs = 4;
979     Spacing = 2;
980   } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) &&
981              !Subtarget.hasFP64()) {
982     Opc = ARM::VMOVS;
983     BeginIdx = ARM::ssub_0;
984     SubRegs = 2;
985   } else if (SrcReg == ARM::CPSR) {
986     copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
987     return;
988   } else if (DestReg == ARM::CPSR) {
989     copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
990     return;
991   } else if (DestReg == ARM::VPR) {
992     assert(ARM::GPRRegClass.contains(SrcReg));
993     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg)
994         .addReg(SrcReg, getKillRegState(KillSrc))
995         .add(predOps(ARMCC::AL));
996     return;
997   } else if (SrcReg == ARM::VPR) {
998     assert(ARM::GPRRegClass.contains(DestReg));
999     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg)
1000         .addReg(SrcReg, getKillRegState(KillSrc))
1001         .add(predOps(ARMCC::AL));
1002     return;
1003   } else if (DestReg == ARM::FPSCR_NZCV) {
1004     assert(ARM::GPRRegClass.contains(SrcReg));
1005     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg)
1006         .addReg(SrcReg, getKillRegState(KillSrc))
1007         .add(predOps(ARMCC::AL));
1008     return;
1009   } else if (SrcReg == ARM::FPSCR_NZCV) {
1010     assert(ARM::GPRRegClass.contains(DestReg));
1011     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg)
1012         .addReg(SrcReg, getKillRegState(KillSrc))
1013         .add(predOps(ARMCC::AL));
1014     return;
1015   }
1016 
1017   assert(Opc && "Impossible reg-to-reg copy");
1018 
1019   const TargetRegisterInfo *TRI = &getRegisterInfo();
1020   MachineInstrBuilder Mov;
1021 
1022   // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
1023   if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
1024     BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
1025     Spacing = -Spacing;
1026   }
1027 #ifndef NDEBUG
1028   SmallSet<unsigned, 4> DstRegs;
1029 #endif
1030   for (unsigned i = 0; i != SubRegs; ++i) {
1031     Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
1032     Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
1033     assert(Dst && Src && "Bad sub-register");
1034 #ifndef NDEBUG
1035     assert(!DstRegs.count(Src) && "destructive vector copy");
1036     DstRegs.insert(Dst);
1037 #endif
1038     Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
1039     // VORR (NEON or MVE) takes two source operands.
1040     if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) {
1041       Mov.addReg(Src);
1042     }
1043     // MVE VORR takes predicate operands in place of an ordinary condition.
1044     if (Opc == ARM::MVE_VORR)
1045       addUnpredicatedMveVpredROp(Mov, Dst);
1046     else
1047       Mov = Mov.add(predOps(ARMCC::AL));
1048     // MOVr can set CC.
1049     if (Opc == ARM::MOVr)
1050       Mov = Mov.add(condCodeOp());
1051   }
1052   // Add implicit super-register defs and kills to the last instruction.
1053   Mov->addRegisterDefined(DestReg, TRI);
1054   if (KillSrc)
1055     Mov->addRegisterKilled(SrcReg, TRI);
1056 }
1057 
1058 Optional<DestSourcePair>
1059 ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
1060   // VMOVRRD is also a copy instruction but it requires
1061   // special way of handling. It is more complex copy version
1062   // and since that we are not considering it. For recognition
1063   // of such instruction isExtractSubregLike MI interface fuction
1064   // could be used.
1065   // VORRq is considered as a move only if two inputs are
1066   // the same register.
1067   if (!MI.isMoveReg() ||
1068       (MI.getOpcode() == ARM::VORRq &&
1069        MI.getOperand(1).getReg() != MI.getOperand(2).getReg()))
1070     return None;
1071   return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1072 }
1073 
1074 Optional<ParamLoadedValue>
1075 ARMBaseInstrInfo::describeLoadedValue(const MachineInstr &MI,
1076                                       Register Reg) const {
1077   if (auto DstSrcPair = isCopyInstrImpl(MI)) {
1078     Register DstReg = DstSrcPair->Destination->getReg();
1079 
1080     // TODO: We don't handle cases where the forwarding reg is narrower/wider
1081     // than the copy registers. Consider for example:
1082     //
1083     //   s16 = VMOVS s0
1084     //   s17 = VMOVS s1
1085     //   call @callee(d0)
1086     //
1087     // We'd like to describe the call site value of d0 as d8, but this requires
1088     // gathering and merging the descriptions for the two VMOVS instructions.
1089     //
1090     // We also don't handle the reverse situation, where the forwarding reg is
1091     // narrower than the copy destination:
1092     //
1093     //   d8 = VMOVD d0
1094     //   call @callee(s1)
1095     //
1096     // We need to produce a fragment description (the call site value of s1 is
1097     // /not/ just d8).
1098     if (DstReg != Reg)
1099       return None;
1100   }
1101   return TargetInstrInfo::describeLoadedValue(MI, Reg);
1102 }
1103 
1104 const MachineInstrBuilder &
1105 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
1106                           unsigned SubIdx, unsigned State,
1107                           const TargetRegisterInfo *TRI) const {
1108   if (!SubIdx)
1109     return MIB.addReg(Reg, State);
1110 
1111   if (Register::isPhysicalRegister(Reg))
1112     return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
1113   return MIB.addReg(Reg, State, SubIdx);
1114 }
1115 
1116 void ARMBaseInstrInfo::
1117 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1118                     Register SrcReg, bool isKill, int FI,
1119                     const TargetRegisterClass *RC,
1120                     const TargetRegisterInfo *TRI) const {
1121   MachineFunction &MF = *MBB.getParent();
1122   MachineFrameInfo &MFI = MF.getFrameInfo();
1123   Align Alignment = MFI.getObjectAlign(FI);
1124 
1125   MachineMemOperand *MMO = MF.getMachineMemOperand(
1126       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
1127       MFI.getObjectSize(FI), Alignment);
1128 
1129   switch (TRI->getSpillSize(*RC)) {
1130     case 2:
1131       if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1132         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH))
1133             .addReg(SrcReg, getKillRegState(isKill))
1134             .addFrameIndex(FI)
1135             .addImm(0)
1136             .addMemOperand(MMO)
1137             .add(predOps(ARMCC::AL));
1138       } else
1139         llvm_unreachable("Unknown reg class!");
1140       break;
1141     case 4:
1142       if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1143         BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12))
1144             .addReg(SrcReg, getKillRegState(isKill))
1145             .addFrameIndex(FI)
1146             .addImm(0)
1147             .addMemOperand(MMO)
1148             .add(predOps(ARMCC::AL));
1149       } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1150         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS))
1151             .addReg(SrcReg, getKillRegState(isKill))
1152             .addFrameIndex(FI)
1153             .addImm(0)
1154             .addMemOperand(MMO)
1155             .add(predOps(ARMCC::AL));
1156       } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1157         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off))
1158             .addReg(SrcReg, getKillRegState(isKill))
1159             .addFrameIndex(FI)
1160             .addImm(0)
1161             .addMemOperand(MMO)
1162             .add(predOps(ARMCC::AL));
1163       } else
1164         llvm_unreachable("Unknown reg class!");
1165       break;
1166     case 8:
1167       if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1168         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD))
1169             .addReg(SrcReg, getKillRegState(isKill))
1170             .addFrameIndex(FI)
1171             .addImm(0)
1172             .addMemOperand(MMO)
1173             .add(predOps(ARMCC::AL));
1174       } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1175         if (Subtarget.hasV5TEOps()) {
1176           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD));
1177           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1178           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1179           MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1180              .add(predOps(ARMCC::AL));
1181         } else {
1182           // Fallback to STM instruction, which has existed since the dawn of
1183           // time.
1184           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA))
1185                                         .addFrameIndex(FI)
1186                                         .addMemOperand(MMO)
1187                                         .add(predOps(ARMCC::AL));
1188           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1189           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1190         }
1191       } else
1192         llvm_unreachable("Unknown reg class!");
1193       break;
1194     case 16:
1195       if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1196         // Use aligned spills if the stack can be realigned.
1197         if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
1198           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64))
1199               .addFrameIndex(FI)
1200               .addImm(16)
1201               .addReg(SrcReg, getKillRegState(isKill))
1202               .addMemOperand(MMO)
1203               .add(predOps(ARMCC::AL));
1204         } else {
1205           BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA))
1206               .addReg(SrcReg, getKillRegState(isKill))
1207               .addFrameIndex(FI)
1208               .addMemOperand(MMO)
1209               .add(predOps(ARMCC::AL));
1210         }
1211       } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1212                  Subtarget.hasMVEIntegerOps()) {
1213         auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32));
1214         MIB.addReg(SrcReg, getKillRegState(isKill))
1215           .addFrameIndex(FI)
1216           .addImm(0)
1217           .addMemOperand(MMO);
1218         addUnpredicatedMveVpredNOp(MIB);
1219       } else
1220         llvm_unreachable("Unknown reg class!");
1221       break;
1222     case 24:
1223       if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1224         // Use aligned spills if the stack can be realigned.
1225         if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1226             Subtarget.hasNEON()) {
1227           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo))
1228               .addFrameIndex(FI)
1229               .addImm(16)
1230               .addReg(SrcReg, getKillRegState(isKill))
1231               .addMemOperand(MMO)
1232               .add(predOps(ARMCC::AL));
1233         } else {
1234           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1235                                             get(ARM::VSTMDIA))
1236                                         .addFrameIndex(FI)
1237                                         .add(predOps(ARMCC::AL))
1238                                         .addMemOperand(MMO);
1239           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1240           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1241           AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1242         }
1243       } else
1244         llvm_unreachable("Unknown reg class!");
1245       break;
1246     case 32:
1247       if (ARM::QQPRRegClass.hasSubClassEq(RC) ||
1248           ARM::MQQPRRegClass.hasSubClassEq(RC) ||
1249           ARM::DQuadRegClass.hasSubClassEq(RC)) {
1250         if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1251             Subtarget.hasNEON()) {
1252           // FIXME: It's possible to only store part of the QQ register if the
1253           // spilled def has a sub-register index.
1254           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo))
1255               .addFrameIndex(FI)
1256               .addImm(16)
1257               .addReg(SrcReg, getKillRegState(isKill))
1258               .addMemOperand(MMO)
1259               .add(predOps(ARMCC::AL));
1260         } else if (Subtarget.hasMVEIntegerOps()) {
1261           BuildMI(MBB, I, DebugLoc(), get(ARM::MQQPRStore))
1262               .addReg(SrcReg, getKillRegState(isKill))
1263               .addFrameIndex(FI)
1264               .addMemOperand(MMO);
1265         } else {
1266           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1267                                             get(ARM::VSTMDIA))
1268                                         .addFrameIndex(FI)
1269                                         .add(predOps(ARMCC::AL))
1270                                         .addMemOperand(MMO);
1271           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1272           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1273           MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1274                 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1275         }
1276       } else
1277         llvm_unreachable("Unknown reg class!");
1278       break;
1279     case 64:
1280       if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) &&
1281           Subtarget.hasMVEIntegerOps()) {
1282         BuildMI(MBB, I, DebugLoc(), get(ARM::MQQQQPRStore))
1283             .addReg(SrcReg, getKillRegState(isKill))
1284             .addFrameIndex(FI)
1285             .addMemOperand(MMO);
1286       } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1287         MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA))
1288                                       .addFrameIndex(FI)
1289                                       .add(predOps(ARMCC::AL))
1290                                       .addMemOperand(MMO);
1291         MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1292         MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1293         MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1294         MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1295         MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
1296         MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
1297         MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
1298               AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
1299       } else
1300         llvm_unreachable("Unknown reg class!");
1301       break;
1302     default:
1303       llvm_unreachable("Unknown reg class!");
1304   }
1305 }
1306 
1307 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1308                                               int &FrameIndex) const {
1309   switch (MI.getOpcode()) {
1310   default: break;
1311   case ARM::STRrs:
1312   case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
1313     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1314         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1315         MI.getOperand(3).getImm() == 0) {
1316       FrameIndex = MI.getOperand(1).getIndex();
1317       return MI.getOperand(0).getReg();
1318     }
1319     break;
1320   case ARM::STRi12:
1321   case ARM::t2STRi12:
1322   case ARM::tSTRspi:
1323   case ARM::VSTRD:
1324   case ARM::VSTRS:
1325   case ARM::VSTR_P0_off:
1326   case ARM::MVE_VSTRWU32:
1327     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1328         MI.getOperand(2).getImm() == 0) {
1329       FrameIndex = MI.getOperand(1).getIndex();
1330       return MI.getOperand(0).getReg();
1331     }
1332     break;
1333   case ARM::VST1q64:
1334   case ARM::VST1d64TPseudo:
1335   case ARM::VST1d64QPseudo:
1336     if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) {
1337       FrameIndex = MI.getOperand(0).getIndex();
1338       return MI.getOperand(2).getReg();
1339     }
1340     break;
1341   case ARM::VSTMQIA:
1342     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1343       FrameIndex = MI.getOperand(1).getIndex();
1344       return MI.getOperand(0).getReg();
1345     }
1346     break;
1347   case ARM::MQQPRStore:
1348   case ARM::MQQQQPRStore:
1349     if (MI.getOperand(1).isFI()) {
1350       FrameIndex = MI.getOperand(1).getIndex();
1351       return MI.getOperand(0).getReg();
1352     }
1353     break;
1354   }
1355 
1356   return 0;
1357 }
1358 
1359 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
1360                                                     int &FrameIndex) const {
1361   SmallVector<const MachineMemOperand *, 1> Accesses;
1362   if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) &&
1363       Accesses.size() == 1) {
1364     FrameIndex =
1365         cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1366             ->getFrameIndex();
1367     return true;
1368   }
1369   return false;
1370 }
1371 
1372 void ARMBaseInstrInfo::
1373 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1374                      Register DestReg, int FI,
1375                      const TargetRegisterClass *RC,
1376                      const TargetRegisterInfo *TRI) const {
1377   DebugLoc DL;
1378   if (I != MBB.end()) DL = I->getDebugLoc();
1379   MachineFunction &MF = *MBB.getParent();
1380   MachineFrameInfo &MFI = MF.getFrameInfo();
1381   const Align Alignment = MFI.getObjectAlign(FI);
1382   MachineMemOperand *MMO = MF.getMachineMemOperand(
1383       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
1384       MFI.getObjectSize(FI), Alignment);
1385 
1386   switch (TRI->getSpillSize(*RC)) {
1387   case 2:
1388     if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1389       BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg)
1390           .addFrameIndex(FI)
1391           .addImm(0)
1392           .addMemOperand(MMO)
1393           .add(predOps(ARMCC::AL));
1394     } else
1395       llvm_unreachable("Unknown reg class!");
1396     break;
1397   case 4:
1398     if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1399       BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
1400           .addFrameIndex(FI)
1401           .addImm(0)
1402           .addMemOperand(MMO)
1403           .add(predOps(ARMCC::AL));
1404     } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1405       BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
1406           .addFrameIndex(FI)
1407           .addImm(0)
1408           .addMemOperand(MMO)
1409           .add(predOps(ARMCC::AL));
1410     } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1411       BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg)
1412           .addFrameIndex(FI)
1413           .addImm(0)
1414           .addMemOperand(MMO)
1415           .add(predOps(ARMCC::AL));
1416     } else
1417       llvm_unreachable("Unknown reg class!");
1418     break;
1419   case 8:
1420     if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1421       BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
1422           .addFrameIndex(FI)
1423           .addImm(0)
1424           .addMemOperand(MMO)
1425           .add(predOps(ARMCC::AL));
1426     } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1427       MachineInstrBuilder MIB;
1428 
1429       if (Subtarget.hasV5TEOps()) {
1430         MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
1431         AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1432         AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1433         MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1434            .add(predOps(ARMCC::AL));
1435       } else {
1436         // Fallback to LDM instruction, which has existed since the dawn of
1437         // time.
1438         MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA))
1439                   .addFrameIndex(FI)
1440                   .addMemOperand(MMO)
1441                   .add(predOps(ARMCC::AL));
1442         MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1443         MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1444       }
1445 
1446       if (Register::isPhysicalRegister(DestReg))
1447         MIB.addReg(DestReg, RegState::ImplicitDefine);
1448     } else
1449       llvm_unreachable("Unknown reg class!");
1450     break;
1451   case 16:
1452     if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1453       if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
1454         BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
1455             .addFrameIndex(FI)
1456             .addImm(16)
1457             .addMemOperand(MMO)
1458             .add(predOps(ARMCC::AL));
1459       } else {
1460         BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
1461             .addFrameIndex(FI)
1462             .addMemOperand(MMO)
1463             .add(predOps(ARMCC::AL));
1464       }
1465     } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1466                Subtarget.hasMVEIntegerOps()) {
1467       auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg);
1468       MIB.addFrameIndex(FI)
1469         .addImm(0)
1470         .addMemOperand(MMO);
1471       addUnpredicatedMveVpredNOp(MIB);
1472     } else
1473       llvm_unreachable("Unknown reg class!");
1474     break;
1475   case 24:
1476     if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1477       if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1478           Subtarget.hasNEON()) {
1479         BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
1480             .addFrameIndex(FI)
1481             .addImm(16)
1482             .addMemOperand(MMO)
1483             .add(predOps(ARMCC::AL));
1484       } else {
1485         MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1486                                       .addFrameIndex(FI)
1487                                       .addMemOperand(MMO)
1488                                       .add(predOps(ARMCC::AL));
1489         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1490         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1491         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1492         if (Register::isPhysicalRegister(DestReg))
1493           MIB.addReg(DestReg, RegState::ImplicitDefine);
1494       }
1495     } else
1496       llvm_unreachable("Unknown reg class!");
1497     break;
1498    case 32:
1499      if (ARM::QQPRRegClass.hasSubClassEq(RC) ||
1500          ARM::MQQPRRegClass.hasSubClassEq(RC) ||
1501          ARM::DQuadRegClass.hasSubClassEq(RC)) {
1502        if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1503            Subtarget.hasNEON()) {
1504          BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1505              .addFrameIndex(FI)
1506              .addImm(16)
1507              .addMemOperand(MMO)
1508              .add(predOps(ARMCC::AL));
1509        } else if (Subtarget.hasMVEIntegerOps()) {
1510          BuildMI(MBB, I, DL, get(ARM::MQQPRLoad), DestReg)
1511              .addFrameIndex(FI)
1512              .addMemOperand(MMO);
1513        } else {
1514          MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1515                                        .addFrameIndex(FI)
1516                                        .add(predOps(ARMCC::AL))
1517                                        .addMemOperand(MMO);
1518          MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1519          MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1520          MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1521          MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1522          if (Register::isPhysicalRegister(DestReg))
1523            MIB.addReg(DestReg, RegState::ImplicitDefine);
1524        }
1525      } else
1526        llvm_unreachable("Unknown reg class!");
1527      break;
1528   case 64:
1529     if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) &&
1530         Subtarget.hasMVEIntegerOps()) {
1531       BuildMI(MBB, I, DL, get(ARM::MQQQQPRLoad), DestReg)
1532           .addFrameIndex(FI)
1533           .addMemOperand(MMO);
1534     } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1535       MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1536                                     .addFrameIndex(FI)
1537                                     .add(predOps(ARMCC::AL))
1538                                     .addMemOperand(MMO);
1539       MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1540       MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1541       MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1542       MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1543       MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1544       MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1545       MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1546       MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1547       if (Register::isPhysicalRegister(DestReg))
1548         MIB.addReg(DestReg, RegState::ImplicitDefine);
1549     } else
1550       llvm_unreachable("Unknown reg class!");
1551     break;
1552   default:
1553     llvm_unreachable("Unknown regclass!");
1554   }
1555 }
1556 
1557 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1558                                                int &FrameIndex) const {
1559   switch (MI.getOpcode()) {
1560   default: break;
1561   case ARM::LDRrs:
1562   case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
1563     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1564         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1565         MI.getOperand(3).getImm() == 0) {
1566       FrameIndex = MI.getOperand(1).getIndex();
1567       return MI.getOperand(0).getReg();
1568     }
1569     break;
1570   case ARM::LDRi12:
1571   case ARM::t2LDRi12:
1572   case ARM::tLDRspi:
1573   case ARM::VLDRD:
1574   case ARM::VLDRS:
1575   case ARM::VLDR_P0_off:
1576   case ARM::MVE_VLDRWU32:
1577     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1578         MI.getOperand(2).getImm() == 0) {
1579       FrameIndex = MI.getOperand(1).getIndex();
1580       return MI.getOperand(0).getReg();
1581     }
1582     break;
1583   case ARM::VLD1q64:
1584   case ARM::VLD1d8TPseudo:
1585   case ARM::VLD1d16TPseudo:
1586   case ARM::VLD1d32TPseudo:
1587   case ARM::VLD1d64TPseudo:
1588   case ARM::VLD1d8QPseudo:
1589   case ARM::VLD1d16QPseudo:
1590   case ARM::VLD1d32QPseudo:
1591   case ARM::VLD1d64QPseudo:
1592     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1593       FrameIndex = MI.getOperand(1).getIndex();
1594       return MI.getOperand(0).getReg();
1595     }
1596     break;
1597   case ARM::VLDMQIA:
1598     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1599       FrameIndex = MI.getOperand(1).getIndex();
1600       return MI.getOperand(0).getReg();
1601     }
1602     break;
1603   case ARM::MQQPRLoad:
1604   case ARM::MQQQQPRLoad:
1605     if (MI.getOperand(1).isFI()) {
1606       FrameIndex = MI.getOperand(1).getIndex();
1607       return MI.getOperand(0).getReg();
1608     }
1609     break;
1610   }
1611 
1612   return 0;
1613 }
1614 
1615 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
1616                                                      int &FrameIndex) const {
1617   SmallVector<const MachineMemOperand *, 1> Accesses;
1618   if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) &&
1619       Accesses.size() == 1) {
1620     FrameIndex =
1621         cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1622             ->getFrameIndex();
1623     return true;
1624   }
1625   return false;
1626 }
1627 
1628 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
1629 /// depending on whether the result is used.
1630 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const {
1631   bool isThumb1 = Subtarget.isThumb1Only();
1632   bool isThumb2 = Subtarget.isThumb2();
1633   const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo();
1634 
1635   DebugLoc dl = MI->getDebugLoc();
1636   MachineBasicBlock *BB = MI->getParent();
1637 
1638   MachineInstrBuilder LDM, STM;
1639   if (isThumb1 || !MI->getOperand(1).isDead()) {
1640     MachineOperand LDWb(MI->getOperand(1));
1641     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD
1642                                                  : isThumb1 ? ARM::tLDMIA_UPD
1643                                                             : ARM::LDMIA_UPD))
1644               .add(LDWb);
1645   } else {
1646     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA));
1647   }
1648 
1649   if (isThumb1 || !MI->getOperand(0).isDead()) {
1650     MachineOperand STWb(MI->getOperand(0));
1651     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD
1652                                                  : isThumb1 ? ARM::tSTMIA_UPD
1653                                                             : ARM::STMIA_UPD))
1654               .add(STWb);
1655   } else {
1656     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA));
1657   }
1658 
1659   MachineOperand LDBase(MI->getOperand(3));
1660   LDM.add(LDBase).add(predOps(ARMCC::AL));
1661 
1662   MachineOperand STBase(MI->getOperand(2));
1663   STM.add(STBase).add(predOps(ARMCC::AL));
1664 
1665   // Sort the scratch registers into ascending order.
1666   const TargetRegisterInfo &TRI = getRegisterInfo();
1667   SmallVector<unsigned, 6> ScratchRegs;
1668   for(unsigned I = 5; I < MI->getNumOperands(); ++I)
1669     ScratchRegs.push_back(MI->getOperand(I).getReg());
1670   llvm::sort(ScratchRegs,
1671              [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool {
1672                return TRI.getEncodingValue(Reg1) <
1673                       TRI.getEncodingValue(Reg2);
1674              });
1675 
1676   for (const auto &Reg : ScratchRegs) {
1677     LDM.addReg(Reg, RegState::Define);
1678     STM.addReg(Reg, RegState::Kill);
1679   }
1680 
1681   BB->erase(MI);
1682 }
1683 
1684 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1685   if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
1686     expandLoadStackGuard(MI);
1687     MI.getParent()->erase(MI);
1688     return true;
1689   }
1690 
1691   if (MI.getOpcode() == ARM::MEMCPY) {
1692     expandMEMCPY(MI);
1693     return true;
1694   }
1695 
1696   // This hook gets to expand COPY instructions before they become
1697   // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
1698   // widened to VMOVD.  We prefer the VMOVD when possible because it may be
1699   // changed into a VORR that can go down the NEON pipeline.
1700   if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64())
1701     return false;
1702 
1703   // Look for a copy between even S-registers.  That is where we keep floats
1704   // when using NEON v2f32 instructions for f32 arithmetic.
1705   Register DstRegS = MI.getOperand(0).getReg();
1706   Register SrcRegS = MI.getOperand(1).getReg();
1707   if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1708     return false;
1709 
1710   const TargetRegisterInfo *TRI = &getRegisterInfo();
1711   unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1712                                               &ARM::DPRRegClass);
1713   unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1714                                               &ARM::DPRRegClass);
1715   if (!DstRegD || !SrcRegD)
1716     return false;
1717 
1718   // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
1719   // legal if the COPY already defines the full DstRegD, and it isn't a
1720   // sub-register insertion.
1721   if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI))
1722     return false;
1723 
1724   // A dead copy shouldn't show up here, but reject it just in case.
1725   if (MI.getOperand(0).isDead())
1726     return false;
1727 
1728   // All clear, widen the COPY.
1729   LLVM_DEBUG(dbgs() << "widening:    " << MI);
1730   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
1731 
1732   // Get rid of the old implicit-def of DstRegD.  Leave it if it defines a Q-reg
1733   // or some other super-register.
1734   int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD);
1735   if (ImpDefIdx != -1)
1736     MI.RemoveOperand(ImpDefIdx);
1737 
1738   // Change the opcode and operands.
1739   MI.setDesc(get(ARM::VMOVD));
1740   MI.getOperand(0).setReg(DstRegD);
1741   MI.getOperand(1).setReg(SrcRegD);
1742   MIB.add(predOps(ARMCC::AL));
1743 
1744   // We are now reading SrcRegD instead of SrcRegS.  This may upset the
1745   // register scavenger and machine verifier, so we need to indicate that we
1746   // are reading an undefined value from SrcRegD, but a proper value from
1747   // SrcRegS.
1748   MI.getOperand(1).setIsUndef();
1749   MIB.addReg(SrcRegS, RegState::Implicit);
1750 
1751   // SrcRegD may actually contain an unrelated value in the ssub_1
1752   // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
1753   if (MI.getOperand(1).isKill()) {
1754     MI.getOperand(1).setIsKill(false);
1755     MI.addRegisterKilled(SrcRegS, TRI, true);
1756   }
1757 
1758   LLVM_DEBUG(dbgs() << "replaced by: " << MI);
1759   return true;
1760 }
1761 
1762 /// Create a copy of a const pool value. Update CPI to the new index and return
1763 /// the label UID.
1764 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1765   MachineConstantPool *MCP = MF.getConstantPool();
1766   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1767 
1768   const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1769   assert(MCPE.isMachineConstantPoolEntry() &&
1770          "Expecting a machine constantpool entry!");
1771   ARMConstantPoolValue *ACPV =
1772     static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1773 
1774   unsigned PCLabelId = AFI->createPICLabelUId();
1775   ARMConstantPoolValue *NewCPV = nullptr;
1776 
1777   // FIXME: The below assumes PIC relocation model and that the function
1778   // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1779   // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1780   // instructions, so that's probably OK, but is PIC always correct when
1781   // we get here?
1782   if (ACPV->isGlobalValue())
1783     NewCPV = ARMConstantPoolConstant::Create(
1784         cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue,
1785         4, ACPV->getModifier(), ACPV->mustAddCurrentAddress());
1786   else if (ACPV->isExtSymbol())
1787     NewCPV = ARMConstantPoolSymbol::
1788       Create(MF.getFunction().getContext(),
1789              cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1790   else if (ACPV->isBlockAddress())
1791     NewCPV = ARMConstantPoolConstant::
1792       Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1793              ARMCP::CPBlockAddress, 4);
1794   else if (ACPV->isLSDA())
1795     NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId,
1796                                              ARMCP::CPLSDA, 4);
1797   else if (ACPV->isMachineBasicBlock())
1798     NewCPV = ARMConstantPoolMBB::
1799       Create(MF.getFunction().getContext(),
1800              cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1801   else
1802     llvm_unreachable("Unexpected ARM constantpool value type!!");
1803   CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlign());
1804   return PCLabelId;
1805 }
1806 
1807 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB,
1808                                      MachineBasicBlock::iterator I,
1809                                      Register DestReg, unsigned SubIdx,
1810                                      const MachineInstr &Orig,
1811                                      const TargetRegisterInfo &TRI) const {
1812   unsigned Opcode = Orig.getOpcode();
1813   switch (Opcode) {
1814   default: {
1815     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
1816     MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
1817     MBB.insert(I, MI);
1818     break;
1819   }
1820   case ARM::tLDRpci_pic:
1821   case ARM::t2LDRpci_pic: {
1822     MachineFunction &MF = *MBB.getParent();
1823     unsigned CPI = Orig.getOperand(1).getIndex();
1824     unsigned PCLabelId = duplicateCPV(MF, CPI);
1825     BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg)
1826         .addConstantPoolIndex(CPI)
1827         .addImm(PCLabelId)
1828         .cloneMemRefs(Orig);
1829     break;
1830   }
1831   }
1832 }
1833 
1834 MachineInstr &
1835 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB,
1836     MachineBasicBlock::iterator InsertBefore,
1837     const MachineInstr &Orig) const {
1838   MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig);
1839   MachineBasicBlock::instr_iterator I = Cloned.getIterator();
1840   for (;;) {
1841     switch (I->getOpcode()) {
1842     case ARM::tLDRpci_pic:
1843     case ARM::t2LDRpci_pic: {
1844       MachineFunction &MF = *MBB.getParent();
1845       unsigned CPI = I->getOperand(1).getIndex();
1846       unsigned PCLabelId = duplicateCPV(MF, CPI);
1847       I->getOperand(1).setIndex(CPI);
1848       I->getOperand(2).setImm(PCLabelId);
1849       break;
1850     }
1851     }
1852     if (!I->isBundledWithSucc())
1853       break;
1854     ++I;
1855   }
1856   return Cloned;
1857 }
1858 
1859 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0,
1860                                         const MachineInstr &MI1,
1861                                         const MachineRegisterInfo *MRI) const {
1862   unsigned Opcode = MI0.getOpcode();
1863   if (Opcode == ARM::t2LDRpci ||
1864       Opcode == ARM::t2LDRpci_pic ||
1865       Opcode == ARM::tLDRpci ||
1866       Opcode == ARM::tLDRpci_pic ||
1867       Opcode == ARM::LDRLIT_ga_pcrel ||
1868       Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1869       Opcode == ARM::tLDRLIT_ga_pcrel ||
1870       Opcode == ARM::MOV_ga_pcrel ||
1871       Opcode == ARM::MOV_ga_pcrel_ldr ||
1872       Opcode == ARM::t2MOV_ga_pcrel) {
1873     if (MI1.getOpcode() != Opcode)
1874       return false;
1875     if (MI0.getNumOperands() != MI1.getNumOperands())
1876       return false;
1877 
1878     const MachineOperand &MO0 = MI0.getOperand(1);
1879     const MachineOperand &MO1 = MI1.getOperand(1);
1880     if (MO0.getOffset() != MO1.getOffset())
1881       return false;
1882 
1883     if (Opcode == ARM::LDRLIT_ga_pcrel ||
1884         Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1885         Opcode == ARM::tLDRLIT_ga_pcrel ||
1886         Opcode == ARM::MOV_ga_pcrel ||
1887         Opcode == ARM::MOV_ga_pcrel_ldr ||
1888         Opcode == ARM::t2MOV_ga_pcrel)
1889       // Ignore the PC labels.
1890       return MO0.getGlobal() == MO1.getGlobal();
1891 
1892     const MachineFunction *MF = MI0.getParent()->getParent();
1893     const MachineConstantPool *MCP = MF->getConstantPool();
1894     int CPI0 = MO0.getIndex();
1895     int CPI1 = MO1.getIndex();
1896     const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1897     const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1898     bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1899     bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1900     if (isARMCP0 && isARMCP1) {
1901       ARMConstantPoolValue *ACPV0 =
1902         static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1903       ARMConstantPoolValue *ACPV1 =
1904         static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1905       return ACPV0->hasSameValue(ACPV1);
1906     } else if (!isARMCP0 && !isARMCP1) {
1907       return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1908     }
1909     return false;
1910   } else if (Opcode == ARM::PICLDR) {
1911     if (MI1.getOpcode() != Opcode)
1912       return false;
1913     if (MI0.getNumOperands() != MI1.getNumOperands())
1914       return false;
1915 
1916     Register Addr0 = MI0.getOperand(1).getReg();
1917     Register Addr1 = MI1.getOperand(1).getReg();
1918     if (Addr0 != Addr1) {
1919       if (!MRI || !Register::isVirtualRegister(Addr0) ||
1920           !Register::isVirtualRegister(Addr1))
1921         return false;
1922 
1923       // This assumes SSA form.
1924       MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1925       MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1926       // Check if the loaded value, e.g. a constantpool of a global address, are
1927       // the same.
1928       if (!produceSameValue(*Def0, *Def1, MRI))
1929         return false;
1930     }
1931 
1932     for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) {
1933       // %12 = PICLDR %11, 0, 14, %noreg
1934       const MachineOperand &MO0 = MI0.getOperand(i);
1935       const MachineOperand &MO1 = MI1.getOperand(i);
1936       if (!MO0.isIdenticalTo(MO1))
1937         return false;
1938     }
1939     return true;
1940   }
1941 
1942   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1943 }
1944 
1945 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1946 /// determine if two loads are loading from the same base address. It should
1947 /// only return true if the base pointers are the same and the only differences
1948 /// between the two addresses is the offset. It also returns the offsets by
1949 /// reference.
1950 ///
1951 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1952 /// is permanently disabled.
1953 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1954                                                int64_t &Offset1,
1955                                                int64_t &Offset2) const {
1956   // Don't worry about Thumb: just ARM and Thumb2.
1957   if (Subtarget.isThumb1Only()) return false;
1958 
1959   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1960     return false;
1961 
1962   switch (Load1->getMachineOpcode()) {
1963   default:
1964     return false;
1965   case ARM::LDRi12:
1966   case ARM::LDRBi12:
1967   case ARM::LDRD:
1968   case ARM::LDRH:
1969   case ARM::LDRSB:
1970   case ARM::LDRSH:
1971   case ARM::VLDRD:
1972   case ARM::VLDRS:
1973   case ARM::t2LDRi8:
1974   case ARM::t2LDRBi8:
1975   case ARM::t2LDRDi8:
1976   case ARM::t2LDRSHi8:
1977   case ARM::t2LDRi12:
1978   case ARM::t2LDRBi12:
1979   case ARM::t2LDRSHi12:
1980     break;
1981   }
1982 
1983   switch (Load2->getMachineOpcode()) {
1984   default:
1985     return false;
1986   case ARM::LDRi12:
1987   case ARM::LDRBi12:
1988   case ARM::LDRD:
1989   case ARM::LDRH:
1990   case ARM::LDRSB:
1991   case ARM::LDRSH:
1992   case ARM::VLDRD:
1993   case ARM::VLDRS:
1994   case ARM::t2LDRi8:
1995   case ARM::t2LDRBi8:
1996   case ARM::t2LDRSHi8:
1997   case ARM::t2LDRi12:
1998   case ARM::t2LDRBi12:
1999   case ARM::t2LDRSHi12:
2000     break;
2001   }
2002 
2003   // Check if base addresses and chain operands match.
2004   if (Load1->getOperand(0) != Load2->getOperand(0) ||
2005       Load1->getOperand(4) != Load2->getOperand(4))
2006     return false;
2007 
2008   // Index should be Reg0.
2009   if (Load1->getOperand(3) != Load2->getOperand(3))
2010     return false;
2011 
2012   // Determine the offsets.
2013   if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
2014       isa<ConstantSDNode>(Load2->getOperand(1))) {
2015     Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
2016     Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
2017     return true;
2018   }
2019 
2020   return false;
2021 }
2022 
2023 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
2024 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
2025 /// be scheduled togther. On some targets if two loads are loading from
2026 /// addresses in the same cache line, it's better if they are scheduled
2027 /// together. This function takes two integers that represent the load offsets
2028 /// from the common base address. It returns true if it decides it's desirable
2029 /// to schedule the two loads together. "NumLoads" is the number of loads that
2030 /// have already been scheduled after Load1.
2031 ///
2032 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
2033 /// is permanently disabled.
2034 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
2035                                                int64_t Offset1, int64_t Offset2,
2036                                                unsigned NumLoads) const {
2037   // Don't worry about Thumb: just ARM and Thumb2.
2038   if (Subtarget.isThumb1Only()) return false;
2039 
2040   assert(Offset2 > Offset1);
2041 
2042   if ((Offset2 - Offset1) / 8 > 64)
2043     return false;
2044 
2045   // Check if the machine opcodes are different. If they are different
2046   // then we consider them to not be of the same base address,
2047   // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
2048   // In this case, they are considered to be the same because they are different
2049   // encoding forms of the same basic instruction.
2050   if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
2051       !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
2052          Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
2053         (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
2054          Load2->getMachineOpcode() == ARM::t2LDRBi8)))
2055     return false;  // FIXME: overly conservative?
2056 
2057   // Four loads in a row should be sufficient.
2058   if (NumLoads >= 3)
2059     return false;
2060 
2061   return true;
2062 }
2063 
2064 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
2065                                             const MachineBasicBlock *MBB,
2066                                             const MachineFunction &MF) const {
2067   // Debug info is never a scheduling boundary. It's necessary to be explicit
2068   // due to the special treatment of IT instructions below, otherwise a
2069   // dbg_value followed by an IT will result in the IT instruction being
2070   // considered a scheduling hazard, which is wrong. It should be the actual
2071   // instruction preceding the dbg_value instruction(s), just like it is
2072   // when debug info is not present.
2073   if (MI.isDebugInstr())
2074     return false;
2075 
2076   // Terminators and labels can't be scheduled around.
2077   if (MI.isTerminator() || MI.isPosition())
2078     return true;
2079 
2080   // INLINEASM_BR can jump to another block
2081   if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
2082     return true;
2083 
2084   // Treat the start of the IT block as a scheduling boundary, but schedule
2085   // t2IT along with all instructions following it.
2086   // FIXME: This is a big hammer. But the alternative is to add all potential
2087   // true and anti dependencies to IT block instructions as implicit operands
2088   // to the t2IT instruction. The added compile time and complexity does not
2089   // seem worth it.
2090   MachineBasicBlock::const_iterator I = MI;
2091   // Make sure to skip any debug instructions
2092   while (++I != MBB->end() && I->isDebugInstr())
2093     ;
2094   if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
2095     return true;
2096 
2097   // Don't attempt to schedule around any instruction that defines
2098   // a stack-oriented pointer, as it's unlikely to be profitable. This
2099   // saves compile time, because it doesn't require every single
2100   // stack slot reference to depend on the instruction that does the
2101   // modification.
2102   // Calls don't actually change the stack pointer, even if they have imp-defs.
2103   // No ARM calling conventions change the stack pointer. (X86 calling
2104   // conventions sometimes do).
2105   if (!MI.isCall() && MI.definesRegister(ARM::SP))
2106     return true;
2107 
2108   return false;
2109 }
2110 
2111 bool ARMBaseInstrInfo::
2112 isProfitableToIfCvt(MachineBasicBlock &MBB,
2113                     unsigned NumCycles, unsigned ExtraPredCycles,
2114                     BranchProbability Probability) const {
2115   if (!NumCycles)
2116     return false;
2117 
2118   // If we are optimizing for size, see if the branch in the predecessor can be
2119   // lowered to cbn?z by the constant island lowering pass, and return false if
2120   // so. This results in a shorter instruction sequence.
2121   if (MBB.getParent()->getFunction().hasOptSize()) {
2122     MachineBasicBlock *Pred = *MBB.pred_begin();
2123     if (!Pred->empty()) {
2124       MachineInstr *LastMI = &*Pred->rbegin();
2125       if (LastMI->getOpcode() == ARM::t2Bcc) {
2126         const TargetRegisterInfo *TRI = &getRegisterInfo();
2127         MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI);
2128         if (CmpMI)
2129           return false;
2130       }
2131     }
2132   }
2133   return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles,
2134                              MBB, 0, 0, Probability);
2135 }
2136 
2137 bool ARMBaseInstrInfo::
2138 isProfitableToIfCvt(MachineBasicBlock &TBB,
2139                     unsigned TCycles, unsigned TExtra,
2140                     MachineBasicBlock &FBB,
2141                     unsigned FCycles, unsigned FExtra,
2142                     BranchProbability Probability) const {
2143   if (!TCycles)
2144     return false;
2145 
2146   // In thumb code we often end up trading one branch for a IT block, and
2147   // if we are cloning the instruction can increase code size. Prevent
2148   // blocks with multiple predecesors from being ifcvted to prevent this
2149   // cloning.
2150   if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) {
2151     if (TBB.pred_size() != 1 || FBB.pred_size() != 1)
2152       return false;
2153   }
2154 
2155   // Attempt to estimate the relative costs of predication versus branching.
2156   // Here we scale up each component of UnpredCost to avoid precision issue when
2157   // scaling TCycles/FCycles by Probability.
2158   const unsigned ScalingUpFactor = 1024;
2159 
2160   unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor;
2161   unsigned UnpredCost;
2162   if (!Subtarget.hasBranchPredictor()) {
2163     // When we don't have a branch predictor it's always cheaper to not take a
2164     // branch than take it, so we have to take that into account.
2165     unsigned NotTakenBranchCost = 1;
2166     unsigned TakenBranchCost = Subtarget.getMispredictionPenalty();
2167     unsigned TUnpredCycles, FUnpredCycles;
2168     if (!FCycles) {
2169       // Triangle: TBB is the fallthrough
2170       TUnpredCycles = TCycles + NotTakenBranchCost;
2171       FUnpredCycles = TakenBranchCost;
2172     } else {
2173       // Diamond: TBB is the block that is branched to, FBB is the fallthrough
2174       TUnpredCycles = TCycles + TakenBranchCost;
2175       FUnpredCycles = FCycles + NotTakenBranchCost;
2176       // The branch at the end of FBB will disappear when it's predicated, so
2177       // discount it from PredCost.
2178       PredCost -= 1 * ScalingUpFactor;
2179     }
2180     // The total cost is the cost of each path scaled by their probabilites
2181     unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor);
2182     unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor);
2183     UnpredCost = TUnpredCost + FUnpredCost;
2184     // When predicating assume that the first IT can be folded away but later
2185     // ones cost one cycle each
2186     if (Subtarget.isThumb2() && TCycles + FCycles > 4) {
2187       PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor;
2188     }
2189   } else {
2190     unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor);
2191     unsigned FUnpredCost =
2192       Probability.getCompl().scale(FCycles * ScalingUpFactor);
2193     UnpredCost = TUnpredCost + FUnpredCost;
2194     UnpredCost += 1 * ScalingUpFactor; // The branch itself
2195     UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
2196   }
2197 
2198   return PredCost <= UnpredCost;
2199 }
2200 
2201 unsigned
2202 ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF,
2203                                                    unsigned NumInsts) const {
2204   // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions.
2205   // ARM has a condition code field in every predicable instruction, using it
2206   // doesn't change code size.
2207   if (!Subtarget.isThumb2())
2208     return 0;
2209 
2210   // It's possible that the size of the IT is restricted to a single block.
2211   unsigned MaxInsts = Subtarget.restrictIT() ? 1 : 4;
2212   return divideCeil(NumInsts, MaxInsts) * 2;
2213 }
2214 
2215 unsigned
2216 ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const {
2217   // If this branch is likely to be folded into the comparison to form a
2218   // CB(N)Z, then removing it won't reduce code size at all, because that will
2219   // just replace the CB(N)Z with a CMP.
2220   if (MI.getOpcode() == ARM::t2Bcc &&
2221       findCMPToFoldIntoCBZ(&MI, &getRegisterInfo()))
2222     return 0;
2223 
2224   unsigned Size = getInstSizeInBytes(MI);
2225 
2226   // For Thumb2, all branches are 32-bit instructions during the if conversion
2227   // pass, but may be replaced with 16-bit instructions during size reduction.
2228   // Since the branches considered by if conversion tend to be forward branches
2229   // over small basic blocks, they are very likely to be in range for the
2230   // narrow instructions, so we assume the final code size will be half what it
2231   // currently is.
2232   if (Subtarget.isThumb2())
2233     Size /= 2;
2234 
2235   return Size;
2236 }
2237 
2238 bool
2239 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
2240                                             MachineBasicBlock &FMBB) const {
2241   // Reduce false anti-dependencies to let the target's out-of-order execution
2242   // engine do its thing.
2243   return Subtarget.isProfitableToUnpredicate();
2244 }
2245 
2246 /// getInstrPredicate - If instruction is predicated, returns its predicate
2247 /// condition, otherwise returns AL. It also returns the condition code
2248 /// register by reference.
2249 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI,
2250                                          Register &PredReg) {
2251   int PIdx = MI.findFirstPredOperandIdx();
2252   if (PIdx == -1) {
2253     PredReg = 0;
2254     return ARMCC::AL;
2255   }
2256 
2257   PredReg = MI.getOperand(PIdx+1).getReg();
2258   return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
2259 }
2260 
2261 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
2262   if (Opc == ARM::B)
2263     return ARM::Bcc;
2264   if (Opc == ARM::tB)
2265     return ARM::tBcc;
2266   if (Opc == ARM::t2B)
2267     return ARM::t2Bcc;
2268 
2269   llvm_unreachable("Unknown unconditional branch opcode!");
2270 }
2271 
2272 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI,
2273                                                        bool NewMI,
2274                                                        unsigned OpIdx1,
2275                                                        unsigned OpIdx2) const {
2276   switch (MI.getOpcode()) {
2277   case ARM::MOVCCr:
2278   case ARM::t2MOVCCr: {
2279     // MOVCC can be commuted by inverting the condition.
2280     Register PredReg;
2281     ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
2282     // MOVCC AL can't be inverted. Shouldn't happen.
2283     if (CC == ARMCC::AL || PredReg != ARM::CPSR)
2284       return nullptr;
2285     MachineInstr *CommutedMI =
2286         TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2287     if (!CommutedMI)
2288       return nullptr;
2289     // After swapping the MOVCC operands, also invert the condition.
2290     CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx())
2291         .setImm(ARMCC::getOppositeCondition(CC));
2292     return CommutedMI;
2293   }
2294   }
2295   return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2296 }
2297 
2298 /// Identify instructions that can be folded into a MOVCC instruction, and
2299 /// return the defining instruction.
2300 MachineInstr *
2301 ARMBaseInstrInfo::canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI,
2302                                    const TargetInstrInfo *TII) const {
2303   if (!Reg.isVirtual())
2304     return nullptr;
2305   if (!MRI.hasOneNonDBGUse(Reg))
2306     return nullptr;
2307   MachineInstr *MI = MRI.getVRegDef(Reg);
2308   if (!MI)
2309     return nullptr;
2310   // Check if MI can be predicated and folded into the MOVCC.
2311   if (!isPredicable(*MI))
2312     return nullptr;
2313   // Check if MI has any non-dead defs or physreg uses. This also detects
2314   // predicated instructions which will be reading CPSR.
2315   for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
2316     const MachineOperand &MO = MI->getOperand(i);
2317     // Reject frame index operands, PEI can't handle the predicated pseudos.
2318     if (MO.isFI() || MO.isCPI() || MO.isJTI())
2319       return nullptr;
2320     if (!MO.isReg())
2321       continue;
2322     // MI can't have any tied operands, that would conflict with predication.
2323     if (MO.isTied())
2324       return nullptr;
2325     if (Register::isPhysicalRegister(MO.getReg()))
2326       return nullptr;
2327     if (MO.isDef() && !MO.isDead())
2328       return nullptr;
2329   }
2330   bool DontMoveAcrossStores = true;
2331   if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores))
2332     return nullptr;
2333   return MI;
2334 }
2335 
2336 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI,
2337                                      SmallVectorImpl<MachineOperand> &Cond,
2338                                      unsigned &TrueOp, unsigned &FalseOp,
2339                                      bool &Optimizable) const {
2340   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2341          "Unknown select instruction");
2342   // MOVCC operands:
2343   // 0: Def.
2344   // 1: True use.
2345   // 2: False use.
2346   // 3: Condition code.
2347   // 4: CPSR use.
2348   TrueOp = 1;
2349   FalseOp = 2;
2350   Cond.push_back(MI.getOperand(3));
2351   Cond.push_back(MI.getOperand(4));
2352   // We can always fold a def.
2353   Optimizable = true;
2354   return false;
2355 }
2356 
2357 MachineInstr *
2358 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI,
2359                                  SmallPtrSetImpl<MachineInstr *> &SeenMIs,
2360                                  bool PreferFalse) const {
2361   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2362          "Unknown select instruction");
2363   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2364   MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this);
2365   bool Invert = !DefMI;
2366   if (!DefMI)
2367     DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this);
2368   if (!DefMI)
2369     return nullptr;
2370 
2371   // Find new register class to use.
2372   MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1);
2373   MachineOperand TrueReg = MI.getOperand(Invert ? 1 : 2);
2374   Register DestReg = MI.getOperand(0).getReg();
2375   const TargetRegisterClass *FalseClass = MRI.getRegClass(FalseReg.getReg());
2376   const TargetRegisterClass *TrueClass = MRI.getRegClass(TrueReg.getReg());
2377   if (!MRI.constrainRegClass(DestReg, FalseClass))
2378     return nullptr;
2379   if (!MRI.constrainRegClass(DestReg, TrueClass))
2380     return nullptr;
2381 
2382   // Create a new predicated version of DefMI.
2383   // Rfalse is the first use.
2384   MachineInstrBuilder NewMI =
2385       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg);
2386 
2387   // Copy all the DefMI operands, excluding its (null) predicate.
2388   const MCInstrDesc &DefDesc = DefMI->getDesc();
2389   for (unsigned i = 1, e = DefDesc.getNumOperands();
2390        i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
2391     NewMI.add(DefMI->getOperand(i));
2392 
2393   unsigned CondCode = MI.getOperand(3).getImm();
2394   if (Invert)
2395     NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
2396   else
2397     NewMI.addImm(CondCode);
2398   NewMI.add(MI.getOperand(4));
2399 
2400   // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
2401   if (NewMI->hasOptionalDef())
2402     NewMI.add(condCodeOp());
2403 
2404   // The output register value when the predicate is false is an implicit
2405   // register operand tied to the first def.
2406   // The tie makes the register allocator ensure the FalseReg is allocated the
2407   // same register as operand 0.
2408   FalseReg.setImplicit();
2409   NewMI.add(FalseReg);
2410   NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
2411 
2412   // Update SeenMIs set: register newly created MI and erase removed DefMI.
2413   SeenMIs.insert(NewMI);
2414   SeenMIs.erase(DefMI);
2415 
2416   // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
2417   // DefMI would be invalid when tranferred inside the loop.  Checking for a
2418   // loop is expensive, but at least remove kill flags if they are in different
2419   // BBs.
2420   if (DefMI->getParent() != MI.getParent())
2421     NewMI->clearKillInfo();
2422 
2423   // The caller will erase MI, but not DefMI.
2424   DefMI->eraseFromParent();
2425   return NewMI;
2426 }
2427 
2428 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
2429 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
2430 /// def operand.
2431 ///
2432 /// This will go away once we can teach tblgen how to set the optional CPSR def
2433 /// operand itself.
2434 struct AddSubFlagsOpcodePair {
2435   uint16_t PseudoOpc;
2436   uint16_t MachineOpc;
2437 };
2438 
2439 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
2440   {ARM::ADDSri, ARM::ADDri},
2441   {ARM::ADDSrr, ARM::ADDrr},
2442   {ARM::ADDSrsi, ARM::ADDrsi},
2443   {ARM::ADDSrsr, ARM::ADDrsr},
2444 
2445   {ARM::SUBSri, ARM::SUBri},
2446   {ARM::SUBSrr, ARM::SUBrr},
2447   {ARM::SUBSrsi, ARM::SUBrsi},
2448   {ARM::SUBSrsr, ARM::SUBrsr},
2449 
2450   {ARM::RSBSri, ARM::RSBri},
2451   {ARM::RSBSrsi, ARM::RSBrsi},
2452   {ARM::RSBSrsr, ARM::RSBrsr},
2453 
2454   {ARM::tADDSi3, ARM::tADDi3},
2455   {ARM::tADDSi8, ARM::tADDi8},
2456   {ARM::tADDSrr, ARM::tADDrr},
2457   {ARM::tADCS, ARM::tADC},
2458 
2459   {ARM::tSUBSi3, ARM::tSUBi3},
2460   {ARM::tSUBSi8, ARM::tSUBi8},
2461   {ARM::tSUBSrr, ARM::tSUBrr},
2462   {ARM::tSBCS, ARM::tSBC},
2463   {ARM::tRSBS, ARM::tRSB},
2464   {ARM::tLSLSri, ARM::tLSLri},
2465 
2466   {ARM::t2ADDSri, ARM::t2ADDri},
2467   {ARM::t2ADDSrr, ARM::t2ADDrr},
2468   {ARM::t2ADDSrs, ARM::t2ADDrs},
2469 
2470   {ARM::t2SUBSri, ARM::t2SUBri},
2471   {ARM::t2SUBSrr, ARM::t2SUBrr},
2472   {ARM::t2SUBSrs, ARM::t2SUBrs},
2473 
2474   {ARM::t2RSBSri, ARM::t2RSBri},
2475   {ARM::t2RSBSrs, ARM::t2RSBrs},
2476 };
2477 
2478 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
2479   for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
2480     if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
2481       return AddSubFlagsOpcodeMap[i].MachineOpc;
2482   return 0;
2483 }
2484 
2485 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
2486                                    MachineBasicBlock::iterator &MBBI,
2487                                    const DebugLoc &dl, Register DestReg,
2488                                    Register BaseReg, int NumBytes,
2489                                    ARMCC::CondCodes Pred, Register PredReg,
2490                                    const ARMBaseInstrInfo &TII,
2491                                    unsigned MIFlags) {
2492   if (NumBytes == 0 && DestReg != BaseReg) {
2493     BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
2494         .addReg(BaseReg, RegState::Kill)
2495         .add(predOps(Pred, PredReg))
2496         .add(condCodeOp())
2497         .setMIFlags(MIFlags);
2498     return;
2499   }
2500 
2501   bool isSub = NumBytes < 0;
2502   if (isSub) NumBytes = -NumBytes;
2503 
2504   while (NumBytes) {
2505     unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
2506     unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
2507     assert(ThisVal && "Didn't extract field correctly");
2508 
2509     // We will handle these bits from offset, clear them.
2510     NumBytes &= ~ThisVal;
2511 
2512     assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
2513 
2514     // Build the new ADD / SUB.
2515     unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
2516     BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
2517         .addReg(BaseReg, RegState::Kill)
2518         .addImm(ThisVal)
2519         .add(predOps(Pred, PredReg))
2520         .add(condCodeOp())
2521         .setMIFlags(MIFlags);
2522     BaseReg = DestReg;
2523   }
2524 }
2525 
2526 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
2527                                       MachineFunction &MF, MachineInstr *MI,
2528                                       unsigned NumBytes) {
2529   // This optimisation potentially adds lots of load and store
2530   // micro-operations, it's only really a great benefit to code-size.
2531   if (!Subtarget.hasMinSize())
2532     return false;
2533 
2534   // If only one register is pushed/popped, LLVM can use an LDR/STR
2535   // instead. We can't modify those so make sure we're dealing with an
2536   // instruction we understand.
2537   bool IsPop = isPopOpcode(MI->getOpcode());
2538   bool IsPush = isPushOpcode(MI->getOpcode());
2539   if (!IsPush && !IsPop)
2540     return false;
2541 
2542   bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
2543                       MI->getOpcode() == ARM::VLDMDIA_UPD;
2544   bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
2545                      MI->getOpcode() == ARM::tPOP ||
2546                      MI->getOpcode() == ARM::tPOP_RET;
2547 
2548   assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
2549                           MI->getOperand(1).getReg() == ARM::SP)) &&
2550          "trying to fold sp update into non-sp-updating push/pop");
2551 
2552   // The VFP push & pop act on D-registers, so we can only fold an adjustment
2553   // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
2554   // if this is violated.
2555   if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
2556     return false;
2557 
2558   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
2559   // pred) so the list starts at 4. Thumb1 starts after the predicate.
2560   int RegListIdx = IsT1PushPop ? 2 : 4;
2561 
2562   // Calculate the space we'll need in terms of registers.
2563   unsigned RegsNeeded;
2564   const TargetRegisterClass *RegClass;
2565   if (IsVFPPushPop) {
2566     RegsNeeded = NumBytes / 8;
2567     RegClass = &ARM::DPRRegClass;
2568   } else {
2569     RegsNeeded = NumBytes / 4;
2570     RegClass = &ARM::GPRRegClass;
2571   }
2572 
2573   // We're going to have to strip all list operands off before
2574   // re-adding them since the order matters, so save the existing ones
2575   // for later.
2576   SmallVector<MachineOperand, 4> RegList;
2577 
2578   // We're also going to need the first register transferred by this
2579   // instruction, which won't necessarily be the first register in the list.
2580   unsigned FirstRegEnc = -1;
2581 
2582   const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
2583   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) {
2584     MachineOperand &MO = MI->getOperand(i);
2585     RegList.push_back(MO);
2586 
2587     if (MO.isReg() && !MO.isImplicit() &&
2588         TRI->getEncodingValue(MO.getReg()) < FirstRegEnc)
2589       FirstRegEnc = TRI->getEncodingValue(MO.getReg());
2590   }
2591 
2592   const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
2593 
2594   // Now try to find enough space in the reglist to allocate NumBytes.
2595   for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded;
2596        --CurRegEnc) {
2597     unsigned CurReg = RegClass->getRegister(CurRegEnc);
2598     if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7))
2599       continue;
2600     if (!IsPop) {
2601       // Pushing any register is completely harmless, mark the register involved
2602       // as undef since we don't care about its value and must not restore it
2603       // during stack unwinding.
2604       RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
2605                                                   false, false, true));
2606       --RegsNeeded;
2607       continue;
2608     }
2609 
2610     // However, we can only pop an extra register if it's not live. For
2611     // registers live within the function we might clobber a return value
2612     // register; the other way a register can be live here is if it's
2613     // callee-saved.
2614     if (isCalleeSavedRegister(CurReg, CSRegs) ||
2615         MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) !=
2616         MachineBasicBlock::LQR_Dead) {
2617       // VFP pops don't allow holes in the register list, so any skip is fatal
2618       // for our transformation. GPR pops do, so we should just keep looking.
2619       if (IsVFPPushPop)
2620         return false;
2621       else
2622         continue;
2623     }
2624 
2625     // Mark the unimportant registers as <def,dead> in the POP.
2626     RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
2627                                                 true));
2628     --RegsNeeded;
2629   }
2630 
2631   if (RegsNeeded > 0)
2632     return false;
2633 
2634   // Finally we know we can profitably perform the optimisation so go
2635   // ahead: strip all existing registers off and add them back again
2636   // in the right order.
2637   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
2638     MI->RemoveOperand(i);
2639 
2640   // Add the complete list back in.
2641   MachineInstrBuilder MIB(MF, &*MI);
2642   for (int i = RegList.size() - 1; i >= 0; --i)
2643     MIB.add(RegList[i]);
2644 
2645   return true;
2646 }
2647 
2648 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
2649                                 Register FrameReg, int &Offset,
2650                                 const ARMBaseInstrInfo &TII) {
2651   unsigned Opcode = MI.getOpcode();
2652   const MCInstrDesc &Desc = MI.getDesc();
2653   unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
2654   bool isSub = false;
2655 
2656   // Memory operands in inline assembly always use AddrMode2.
2657   if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR)
2658     AddrMode = ARMII::AddrMode2;
2659 
2660   if (Opcode == ARM::ADDri) {
2661     Offset += MI.getOperand(FrameRegIdx+1).getImm();
2662     if (Offset == 0) {
2663       // Turn it into a move.
2664       MI.setDesc(TII.get(ARM::MOVr));
2665       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2666       MI.RemoveOperand(FrameRegIdx+1);
2667       Offset = 0;
2668       return true;
2669     } else if (Offset < 0) {
2670       Offset = -Offset;
2671       isSub = true;
2672       MI.setDesc(TII.get(ARM::SUBri));
2673     }
2674 
2675     // Common case: small offset, fits into instruction.
2676     if (ARM_AM::getSOImmVal(Offset) != -1) {
2677       // Replace the FrameIndex with sp / fp
2678       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2679       MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
2680       Offset = 0;
2681       return true;
2682     }
2683 
2684     // Otherwise, pull as much of the immedidate into this ADDri/SUBri
2685     // as possible.
2686     unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
2687     unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
2688 
2689     // We will handle these bits from offset, clear them.
2690     Offset &= ~ThisImmVal;
2691 
2692     // Get the properly encoded SOImmVal field.
2693     assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
2694            "Bit extraction didn't work?");
2695     MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
2696  } else {
2697     unsigned ImmIdx = 0;
2698     int InstrOffs = 0;
2699     unsigned NumBits = 0;
2700     unsigned Scale = 1;
2701     switch (AddrMode) {
2702     case ARMII::AddrMode_i12:
2703       ImmIdx = FrameRegIdx + 1;
2704       InstrOffs = MI.getOperand(ImmIdx).getImm();
2705       NumBits = 12;
2706       break;
2707     case ARMII::AddrMode2:
2708       ImmIdx = FrameRegIdx+2;
2709       InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
2710       if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2711         InstrOffs *= -1;
2712       NumBits = 12;
2713       break;
2714     case ARMII::AddrMode3:
2715       ImmIdx = FrameRegIdx+2;
2716       InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
2717       if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2718         InstrOffs *= -1;
2719       NumBits = 8;
2720       break;
2721     case ARMII::AddrMode4:
2722     case ARMII::AddrMode6:
2723       // Can't fold any offset even if it's zero.
2724       return false;
2725     case ARMII::AddrMode5:
2726       ImmIdx = FrameRegIdx+1;
2727       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2728       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2729         InstrOffs *= -1;
2730       NumBits = 8;
2731       Scale = 4;
2732       break;
2733     case ARMII::AddrMode5FP16:
2734       ImmIdx = FrameRegIdx+1;
2735       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2736       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2737         InstrOffs *= -1;
2738       NumBits = 8;
2739       Scale = 2;
2740       break;
2741     case ARMII::AddrModeT2_i7:
2742     case ARMII::AddrModeT2_i7s2:
2743     case ARMII::AddrModeT2_i7s4:
2744       ImmIdx = FrameRegIdx+1;
2745       InstrOffs = MI.getOperand(ImmIdx).getImm();
2746       NumBits = 7;
2747       Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 :
2748                AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1);
2749       break;
2750     default:
2751       llvm_unreachable("Unsupported addressing mode!");
2752     }
2753 
2754     Offset += InstrOffs * Scale;
2755     assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
2756     if (Offset < 0) {
2757       Offset = -Offset;
2758       isSub = true;
2759     }
2760 
2761     // Attempt to fold address comp. if opcode has offset bits
2762     if (NumBits > 0) {
2763       // Common case: small offset, fits into instruction.
2764       MachineOperand &ImmOp = MI.getOperand(ImmIdx);
2765       int ImmedOffset = Offset / Scale;
2766       unsigned Mask = (1 << NumBits) - 1;
2767       if ((unsigned)Offset <= Mask * Scale) {
2768         // Replace the FrameIndex with sp
2769         MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2770         // FIXME: When addrmode2 goes away, this will simplify (like the
2771         // T2 version), as the LDR.i12 versions don't need the encoding
2772         // tricks for the offset value.
2773         if (isSub) {
2774           if (AddrMode == ARMII::AddrMode_i12)
2775             ImmedOffset = -ImmedOffset;
2776           else
2777             ImmedOffset |= 1 << NumBits;
2778         }
2779         ImmOp.ChangeToImmediate(ImmedOffset);
2780         Offset = 0;
2781         return true;
2782       }
2783 
2784       // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
2785       ImmedOffset = ImmedOffset & Mask;
2786       if (isSub) {
2787         if (AddrMode == ARMII::AddrMode_i12)
2788           ImmedOffset = -ImmedOffset;
2789         else
2790           ImmedOffset |= 1 << NumBits;
2791       }
2792       ImmOp.ChangeToImmediate(ImmedOffset);
2793       Offset &= ~(Mask*Scale);
2794     }
2795   }
2796 
2797   Offset = (isSub) ? -Offset : Offset;
2798   return Offset == 0;
2799 }
2800 
2801 /// analyzeCompare - For a comparison instruction, return the source registers
2802 /// in SrcReg and SrcReg2 if having two register operands, and the value it
2803 /// compares against in CmpValue. Return true if the comparison instruction
2804 /// can be analyzed.
2805 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
2806                                       Register &SrcReg2, int64_t &CmpMask,
2807                                       int64_t &CmpValue) const {
2808   switch (MI.getOpcode()) {
2809   default: break;
2810   case ARM::CMPri:
2811   case ARM::t2CMPri:
2812   case ARM::tCMPi8:
2813     SrcReg = MI.getOperand(0).getReg();
2814     SrcReg2 = 0;
2815     CmpMask = ~0;
2816     CmpValue = MI.getOperand(1).getImm();
2817     return true;
2818   case ARM::CMPrr:
2819   case ARM::t2CMPrr:
2820   case ARM::tCMPr:
2821     SrcReg = MI.getOperand(0).getReg();
2822     SrcReg2 = MI.getOperand(1).getReg();
2823     CmpMask = ~0;
2824     CmpValue = 0;
2825     return true;
2826   case ARM::TSTri:
2827   case ARM::t2TSTri:
2828     SrcReg = MI.getOperand(0).getReg();
2829     SrcReg2 = 0;
2830     CmpMask = MI.getOperand(1).getImm();
2831     CmpValue = 0;
2832     return true;
2833   }
2834 
2835   return false;
2836 }
2837 
2838 /// isSuitableForMask - Identify a suitable 'and' instruction that
2839 /// operates on the given source register and applies the same mask
2840 /// as a 'tst' instruction. Provide a limited look-through for copies.
2841 /// When successful, MI will hold the found instruction.
2842 static bool isSuitableForMask(MachineInstr *&MI, Register SrcReg,
2843                               int CmpMask, bool CommonUse) {
2844   switch (MI->getOpcode()) {
2845     case ARM::ANDri:
2846     case ARM::t2ANDri:
2847       if (CmpMask != MI->getOperand(2).getImm())
2848         return false;
2849       if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
2850         return true;
2851       break;
2852   }
2853 
2854   return false;
2855 }
2856 
2857 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return
2858 /// the condition code if we modify the instructions such that flags are
2859 /// set by ADD(a,b,X).
2860 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) {
2861   switch (CC) {
2862   default: return ARMCC::AL;
2863   case ARMCC::HS: return ARMCC::LO;
2864   case ARMCC::LO: return ARMCC::HS;
2865   case ARMCC::VS: return ARMCC::VS;
2866   case ARMCC::VC: return ARMCC::VC;
2867   }
2868 }
2869 
2870 /// isRedundantFlagInstr - check whether the first instruction, whose only
2871 /// purpose is to update flags, can be made redundant.
2872 /// CMPrr can be made redundant by SUBrr if the operands are the same.
2873 /// CMPri can be made redundant by SUBri if the operands are the same.
2874 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X).
2875 /// This function can be extended later on.
2876 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI,
2877                                         Register SrcReg, Register SrcReg2,
2878                                         int64_t ImmValue,
2879                                         const MachineInstr *OI,
2880                                         bool &IsThumb1) {
2881   if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2882       (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) &&
2883       ((OI->getOperand(1).getReg() == SrcReg &&
2884         OI->getOperand(2).getReg() == SrcReg2) ||
2885        (OI->getOperand(1).getReg() == SrcReg2 &&
2886         OI->getOperand(2).getReg() == SrcReg))) {
2887     IsThumb1 = false;
2888     return true;
2889   }
2890 
2891   if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr &&
2892       ((OI->getOperand(2).getReg() == SrcReg &&
2893         OI->getOperand(3).getReg() == SrcReg2) ||
2894        (OI->getOperand(2).getReg() == SrcReg2 &&
2895         OI->getOperand(3).getReg() == SrcReg))) {
2896     IsThumb1 = true;
2897     return true;
2898   }
2899 
2900   if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) &&
2901       (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) &&
2902       OI->getOperand(1).getReg() == SrcReg &&
2903       OI->getOperand(2).getImm() == ImmValue) {
2904     IsThumb1 = false;
2905     return true;
2906   }
2907 
2908   if (CmpI->getOpcode() == ARM::tCMPi8 &&
2909       (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) &&
2910       OI->getOperand(2).getReg() == SrcReg &&
2911       OI->getOperand(3).getImm() == ImmValue) {
2912     IsThumb1 = true;
2913     return true;
2914   }
2915 
2916   if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2917       (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr ||
2918        OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) &&
2919       OI->getOperand(0).isReg() && OI->getOperand(1).isReg() &&
2920       OI->getOperand(0).getReg() == SrcReg &&
2921       OI->getOperand(1).getReg() == SrcReg2) {
2922     IsThumb1 = false;
2923     return true;
2924   }
2925 
2926   if (CmpI->getOpcode() == ARM::tCMPr &&
2927       (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 ||
2928        OI->getOpcode() == ARM::tADDrr) &&
2929       OI->getOperand(0).getReg() == SrcReg &&
2930       OI->getOperand(2).getReg() == SrcReg2) {
2931     IsThumb1 = true;
2932     return true;
2933   }
2934 
2935   return false;
2936 }
2937 
2938 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) {
2939   switch (MI->getOpcode()) {
2940   default: return false;
2941   case ARM::tLSLri:
2942   case ARM::tLSRri:
2943   case ARM::tLSLrr:
2944   case ARM::tLSRrr:
2945   case ARM::tSUBrr:
2946   case ARM::tADDrr:
2947   case ARM::tADDi3:
2948   case ARM::tADDi8:
2949   case ARM::tSUBi3:
2950   case ARM::tSUBi8:
2951   case ARM::tMUL:
2952   case ARM::tADC:
2953   case ARM::tSBC:
2954   case ARM::tRSB:
2955   case ARM::tAND:
2956   case ARM::tORR:
2957   case ARM::tEOR:
2958   case ARM::tBIC:
2959   case ARM::tMVN:
2960   case ARM::tASRri:
2961   case ARM::tASRrr:
2962   case ARM::tROR:
2963     IsThumb1 = true;
2964     LLVM_FALLTHROUGH;
2965   case ARM::RSBrr:
2966   case ARM::RSBri:
2967   case ARM::RSCrr:
2968   case ARM::RSCri:
2969   case ARM::ADDrr:
2970   case ARM::ADDri:
2971   case ARM::ADCrr:
2972   case ARM::ADCri:
2973   case ARM::SUBrr:
2974   case ARM::SUBri:
2975   case ARM::SBCrr:
2976   case ARM::SBCri:
2977   case ARM::t2RSBri:
2978   case ARM::t2ADDrr:
2979   case ARM::t2ADDri:
2980   case ARM::t2ADCrr:
2981   case ARM::t2ADCri:
2982   case ARM::t2SUBrr:
2983   case ARM::t2SUBri:
2984   case ARM::t2SBCrr:
2985   case ARM::t2SBCri:
2986   case ARM::ANDrr:
2987   case ARM::ANDri:
2988   case ARM::t2ANDrr:
2989   case ARM::t2ANDri:
2990   case ARM::ORRrr:
2991   case ARM::ORRri:
2992   case ARM::t2ORRrr:
2993   case ARM::t2ORRri:
2994   case ARM::EORrr:
2995   case ARM::EORri:
2996   case ARM::t2EORrr:
2997   case ARM::t2EORri:
2998   case ARM::t2LSRri:
2999   case ARM::t2LSRrr:
3000   case ARM::t2LSLri:
3001   case ARM::t2LSLrr:
3002     return true;
3003   }
3004 }
3005 
3006 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
3007 /// comparison into one that sets the zero bit in the flags register;
3008 /// Remove a redundant Compare instruction if an earlier instruction can set the
3009 /// flags in the same way as Compare.
3010 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
3011 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
3012 /// condition code of instructions which use the flags.
3013 bool ARMBaseInstrInfo::optimizeCompareInstr(
3014     MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t CmpMask,
3015     int64_t CmpValue, const MachineRegisterInfo *MRI) const {
3016   // Get the unique definition of SrcReg.
3017   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
3018   if (!MI) return false;
3019 
3020   // Masked compares sometimes use the same register as the corresponding 'and'.
3021   if (CmpMask != ~0) {
3022     if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) {
3023       MI = nullptr;
3024       for (MachineRegisterInfo::use_instr_iterator
3025            UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
3026            UI != UE; ++UI) {
3027         if (UI->getParent() != CmpInstr.getParent())
3028           continue;
3029         MachineInstr *PotentialAND = &*UI;
3030         if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
3031             isPredicated(*PotentialAND))
3032           continue;
3033         MI = PotentialAND;
3034         break;
3035       }
3036       if (!MI) return false;
3037     }
3038   }
3039 
3040   // Get ready to iterate backward from CmpInstr.
3041   MachineBasicBlock::iterator I = CmpInstr, E = MI,
3042                               B = CmpInstr.getParent()->begin();
3043 
3044   // Early exit if CmpInstr is at the beginning of the BB.
3045   if (I == B) return false;
3046 
3047   // There are two possible candidates which can be changed to set CPSR:
3048   // One is MI, the other is a SUB or ADD instruction.
3049   // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or
3050   // ADDr[ri](r1, r2, X).
3051   // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
3052   MachineInstr *SubAdd = nullptr;
3053   if (SrcReg2 != 0)
3054     // MI is not a candidate for CMPrr.
3055     MI = nullptr;
3056   else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) {
3057     // Conservatively refuse to convert an instruction which isn't in the same
3058     // BB as the comparison.
3059     // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate.
3060     // Thus we cannot return here.
3061     if (CmpInstr.getOpcode() == ARM::CMPri ||
3062         CmpInstr.getOpcode() == ARM::t2CMPri ||
3063         CmpInstr.getOpcode() == ARM::tCMPi8)
3064       MI = nullptr;
3065     else
3066       return false;
3067   }
3068 
3069   bool IsThumb1 = false;
3070   if (MI && !isOptimizeCompareCandidate(MI, IsThumb1))
3071     return false;
3072 
3073   // We also want to do this peephole for cases like this: if (a*b == 0),
3074   // and optimise away the CMP instruction from the generated code sequence:
3075   // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values
3076   // resulting from the select instruction, but these MOVS instructions for
3077   // Thumb1 (V6M) are flag setting and are thus preventing this optimisation.
3078   // However, if we only have MOVS instructions in between the CMP and the
3079   // other instruction (the MULS in this example), then the CPSR is dead so we
3080   // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this
3081   // reordering and then continue the analysis hoping we can eliminate the
3082   // CMP. This peephole works on the vregs, so is still in SSA form. As a
3083   // consequence, the movs won't redefine/kill the MUL operands which would
3084   // make this reordering illegal.
3085   const TargetRegisterInfo *TRI = &getRegisterInfo();
3086   if (MI && IsThumb1) {
3087     --I;
3088     if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) {
3089       bool CanReorder = true;
3090       for (; I != E; --I) {
3091         if (I->getOpcode() != ARM::tMOVi8) {
3092           CanReorder = false;
3093           break;
3094         }
3095       }
3096       if (CanReorder) {
3097         MI = MI->removeFromParent();
3098         E = CmpInstr;
3099         CmpInstr.getParent()->insert(E, MI);
3100       }
3101     }
3102     I = CmpInstr;
3103     E = MI;
3104   }
3105 
3106   // Check that CPSR isn't set between the comparison instruction and the one we
3107   // want to change. At the same time, search for SubAdd.
3108   bool SubAddIsThumb1 = false;
3109   do {
3110     const MachineInstr &Instr = *--I;
3111 
3112     // Check whether CmpInstr can be made redundant by the current instruction.
3113     if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr,
3114                              SubAddIsThumb1)) {
3115       SubAdd = &*I;
3116       break;
3117     }
3118 
3119     // Allow E (which was initially MI) to be SubAdd but do not search before E.
3120     if (I == E)
3121       break;
3122 
3123     if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
3124         Instr.readsRegister(ARM::CPSR, TRI))
3125       // This instruction modifies or uses CPSR after the one we want to
3126       // change. We can't do this transformation.
3127       return false;
3128 
3129     if (I == B) {
3130       // In some cases, we scan the use-list of an instruction for an AND;
3131       // that AND is in the same BB, but may not be scheduled before the
3132       // corresponding TST.  In that case, bail out.
3133       //
3134       // FIXME: We could try to reschedule the AND.
3135       return false;
3136     }
3137   } while (true);
3138 
3139   // Return false if no candidates exist.
3140   if (!MI && !SubAdd)
3141     return false;
3142 
3143   // If we found a SubAdd, use it as it will be closer to the CMP
3144   if (SubAdd) {
3145     MI = SubAdd;
3146     IsThumb1 = SubAddIsThumb1;
3147   }
3148 
3149   // We can't use a predicated instruction - it doesn't always write the flags.
3150   if (isPredicated(*MI))
3151     return false;
3152 
3153   // Scan forward for the use of CPSR
3154   // When checking against MI: if it's a conditional code that requires
3155   // checking of the V bit or C bit, then this is not safe to do.
3156   // It is safe to remove CmpInstr if CPSR is redefined or killed.
3157   // If we are done with the basic block, we need to check whether CPSR is
3158   // live-out.
3159   SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
3160       OperandsToUpdate;
3161   bool isSafe = false;
3162   I = CmpInstr;
3163   E = CmpInstr.getParent()->end();
3164   while (!isSafe && ++I != E) {
3165     const MachineInstr &Instr = *I;
3166     for (unsigned IO = 0, EO = Instr.getNumOperands();
3167          !isSafe && IO != EO; ++IO) {
3168       const MachineOperand &MO = Instr.getOperand(IO);
3169       if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
3170         isSafe = true;
3171         break;
3172       }
3173       if (!MO.isReg() || MO.getReg() != ARM::CPSR)
3174         continue;
3175       if (MO.isDef()) {
3176         isSafe = true;
3177         break;
3178       }
3179       // Condition code is after the operand before CPSR except for VSELs.
3180       ARMCC::CondCodes CC;
3181       bool IsInstrVSel = true;
3182       switch (Instr.getOpcode()) {
3183       default:
3184         IsInstrVSel = false;
3185         CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
3186         break;
3187       case ARM::VSELEQD:
3188       case ARM::VSELEQS:
3189       case ARM::VSELEQH:
3190         CC = ARMCC::EQ;
3191         break;
3192       case ARM::VSELGTD:
3193       case ARM::VSELGTS:
3194       case ARM::VSELGTH:
3195         CC = ARMCC::GT;
3196         break;
3197       case ARM::VSELGED:
3198       case ARM::VSELGES:
3199       case ARM::VSELGEH:
3200         CC = ARMCC::GE;
3201         break;
3202       case ARM::VSELVSD:
3203       case ARM::VSELVSS:
3204       case ARM::VSELVSH:
3205         CC = ARMCC::VS;
3206         break;
3207       }
3208 
3209       if (SubAdd) {
3210         // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
3211         // on CMP needs to be updated to be based on SUB.
3212         // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also
3213         // needs to be modified.
3214         // Push the condition code operands to OperandsToUpdate.
3215         // If it is safe to remove CmpInstr, the condition code of these
3216         // operands will be modified.
3217         unsigned Opc = SubAdd->getOpcode();
3218         bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr ||
3219                      Opc == ARM::SUBri || Opc == ARM::t2SUBri ||
3220                      Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 ||
3221                      Opc == ARM::tSUBi8;
3222         unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2;
3223         if (!IsSub ||
3224             (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 &&
3225              SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) {
3226           // VSel doesn't support condition code update.
3227           if (IsInstrVSel)
3228             return false;
3229           // Ensure we can swap the condition.
3230           ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC));
3231           if (NewCC == ARMCC::AL)
3232             return false;
3233           OperandsToUpdate.push_back(
3234               std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
3235         }
3236       } else {
3237         // No SubAdd, so this is x = <op> y, z; cmp x, 0.
3238         switch (CC) {
3239         case ARMCC::EQ: // Z
3240         case ARMCC::NE: // Z
3241         case ARMCC::MI: // N
3242         case ARMCC::PL: // N
3243         case ARMCC::AL: // none
3244           // CPSR can be used multiple times, we should continue.
3245           break;
3246         case ARMCC::HS: // C
3247         case ARMCC::LO: // C
3248         case ARMCC::VS: // V
3249         case ARMCC::VC: // V
3250         case ARMCC::HI: // C Z
3251         case ARMCC::LS: // C Z
3252         case ARMCC::GE: // N V
3253         case ARMCC::LT: // N V
3254         case ARMCC::GT: // Z N V
3255         case ARMCC::LE: // Z N V
3256           // The instruction uses the V bit or C bit which is not safe.
3257           return false;
3258         }
3259       }
3260     }
3261   }
3262 
3263   // If CPSR is not killed nor re-defined, we should check whether it is
3264   // live-out. If it is live-out, do not optimize.
3265   if (!isSafe) {
3266     MachineBasicBlock *MBB = CmpInstr.getParent();
3267     for (MachineBasicBlock *Succ : MBB->successors())
3268       if (Succ->isLiveIn(ARM::CPSR))
3269         return false;
3270   }
3271 
3272   // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always
3273   // set CPSR so this is represented as an explicit output)
3274   if (!IsThumb1) {
3275     MI->getOperand(5).setReg(ARM::CPSR);
3276     MI->getOperand(5).setIsDef(true);
3277   }
3278   assert(!isPredicated(*MI) && "Can't use flags from predicated instruction");
3279   CmpInstr.eraseFromParent();
3280 
3281   // Modify the condition code of operands in OperandsToUpdate.
3282   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
3283   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3284   for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
3285     OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
3286 
3287   MI->clearRegisterDeads(ARM::CPSR);
3288 
3289   return true;
3290 }
3291 
3292 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const {
3293   // Do not sink MI if it might be used to optimize a redundant compare.
3294   // We heuristically only look at the instruction immediately following MI to
3295   // avoid potentially searching the entire basic block.
3296   if (isPredicated(MI))
3297     return true;
3298   MachineBasicBlock::const_iterator Next = &MI;
3299   ++Next;
3300   Register SrcReg, SrcReg2;
3301   int64_t CmpMask, CmpValue;
3302   bool IsThumb1;
3303   if (Next != MI.getParent()->end() &&
3304       analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) &&
3305       isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1))
3306     return false;
3307   return true;
3308 }
3309 
3310 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
3311                                      Register Reg,
3312                                      MachineRegisterInfo *MRI) const {
3313   // Fold large immediates into add, sub, or, xor.
3314   unsigned DefOpc = DefMI.getOpcode();
3315   if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
3316     return false;
3317   if (!DefMI.getOperand(1).isImm())
3318     // Could be t2MOVi32imm @xx
3319     return false;
3320 
3321   if (!MRI->hasOneNonDBGUse(Reg))
3322     return false;
3323 
3324   const MCInstrDesc &DefMCID = DefMI.getDesc();
3325   if (DefMCID.hasOptionalDef()) {
3326     unsigned NumOps = DefMCID.getNumOperands();
3327     const MachineOperand &MO = DefMI.getOperand(NumOps - 1);
3328     if (MO.getReg() == ARM::CPSR && !MO.isDead())
3329       // If DefMI defines CPSR and it is not dead, it's obviously not safe
3330       // to delete DefMI.
3331       return false;
3332   }
3333 
3334   const MCInstrDesc &UseMCID = UseMI.getDesc();
3335   if (UseMCID.hasOptionalDef()) {
3336     unsigned NumOps = UseMCID.getNumOperands();
3337     if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR)
3338       // If the instruction sets the flag, do not attempt this optimization
3339       // since it may change the semantics of the code.
3340       return false;
3341   }
3342 
3343   unsigned UseOpc = UseMI.getOpcode();
3344   unsigned NewUseOpc = 0;
3345   uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm();
3346   uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
3347   bool Commute = false;
3348   switch (UseOpc) {
3349   default: return false;
3350   case ARM::SUBrr:
3351   case ARM::ADDrr:
3352   case ARM::ORRrr:
3353   case ARM::EORrr:
3354   case ARM::t2SUBrr:
3355   case ARM::t2ADDrr:
3356   case ARM::t2ORRrr:
3357   case ARM::t2EORrr: {
3358     Commute = UseMI.getOperand(2).getReg() != Reg;
3359     switch (UseOpc) {
3360     default: break;
3361     case ARM::ADDrr:
3362     case ARM::SUBrr:
3363       if (UseOpc == ARM::SUBrr && Commute)
3364         return false;
3365 
3366       // ADD/SUB are special because they're essentially the same operation, so
3367       // we can handle a larger range of immediates.
3368       if (ARM_AM::isSOImmTwoPartVal(ImmVal))
3369         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri;
3370       else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) {
3371         ImmVal = -ImmVal;
3372         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri;
3373       } else
3374         return false;
3375       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3376       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3377       break;
3378     case ARM::ORRrr:
3379     case ARM::EORrr:
3380       if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
3381         return false;
3382       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3383       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3384       switch (UseOpc) {
3385       default: break;
3386       case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
3387       case ARM::EORrr: NewUseOpc = ARM::EORri; break;
3388       }
3389       break;
3390     case ARM::t2ADDrr:
3391     case ARM::t2SUBrr: {
3392       if (UseOpc == ARM::t2SUBrr && Commute)
3393         return false;
3394 
3395       // ADD/SUB are special because they're essentially the same operation, so
3396       // we can handle a larger range of immediates.
3397       const bool ToSP = DefMI.getOperand(0).getReg() == ARM::SP;
3398       const unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri;
3399       const unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri;
3400       if (ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3401         NewUseOpc = UseOpc == ARM::t2ADDrr ? t2ADD : t2SUB;
3402       else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) {
3403         ImmVal = -ImmVal;
3404         NewUseOpc = UseOpc == ARM::t2ADDrr ? t2SUB : t2ADD;
3405       } else
3406         return false;
3407       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3408       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3409       break;
3410     }
3411     case ARM::t2ORRrr:
3412     case ARM::t2EORrr:
3413       if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3414         return false;
3415       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3416       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3417       switch (UseOpc) {
3418       default: break;
3419       case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
3420       case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
3421       }
3422       break;
3423     }
3424   }
3425   }
3426 
3427   unsigned OpIdx = Commute ? 2 : 1;
3428   Register Reg1 = UseMI.getOperand(OpIdx).getReg();
3429   bool isKill = UseMI.getOperand(OpIdx).isKill();
3430   const TargetRegisterClass *TRC = MRI->getRegClass(Reg);
3431   Register NewReg = MRI->createVirtualRegister(TRC);
3432   BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc),
3433           NewReg)
3434       .addReg(Reg1, getKillRegState(isKill))
3435       .addImm(SOImmValV1)
3436       .add(predOps(ARMCC::AL))
3437       .add(condCodeOp());
3438   UseMI.setDesc(get(NewUseOpc));
3439   UseMI.getOperand(1).setReg(NewReg);
3440   UseMI.getOperand(1).setIsKill();
3441   UseMI.getOperand(2).ChangeToImmediate(SOImmValV2);
3442   DefMI.eraseFromParent();
3443   // FIXME: t2ADDrr should be split, as different rulles apply when writing to SP.
3444   // Just as t2ADDri, that was split to [t2ADDri, t2ADDspImm].
3445   // Then the below code will not be needed, as the input/output register
3446   // classes will be rgpr or gprSP.
3447   // For now, we fix the UseMI operand explicitly here:
3448   switch(NewUseOpc){
3449     case ARM::t2ADDspImm:
3450     case ARM::t2SUBspImm:
3451     case ARM::t2ADDri:
3452     case ARM::t2SUBri:
3453       MRI->constrainRegClass(UseMI.getOperand(0).getReg(), TRC);
3454   }
3455   return true;
3456 }
3457 
3458 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
3459                                         const MachineInstr &MI) {
3460   switch (MI.getOpcode()) {
3461   default: {
3462     const MCInstrDesc &Desc = MI.getDesc();
3463     int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
3464     assert(UOps >= 0 && "bad # UOps");
3465     return UOps;
3466   }
3467 
3468   case ARM::LDRrs:
3469   case ARM::LDRBrs:
3470   case ARM::STRrs:
3471   case ARM::STRBrs: {
3472     unsigned ShOpVal = MI.getOperand(3).getImm();
3473     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3474     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3475     if (!isSub &&
3476         (ShImm == 0 ||
3477          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3478           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3479       return 1;
3480     return 2;
3481   }
3482 
3483   case ARM::LDRH:
3484   case ARM::STRH: {
3485     if (!MI.getOperand(2).getReg())
3486       return 1;
3487 
3488     unsigned ShOpVal = MI.getOperand(3).getImm();
3489     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3490     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3491     if (!isSub &&
3492         (ShImm == 0 ||
3493          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3494           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3495       return 1;
3496     return 2;
3497   }
3498 
3499   case ARM::LDRSB:
3500   case ARM::LDRSH:
3501     return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2;
3502 
3503   case ARM::LDRSB_POST:
3504   case ARM::LDRSH_POST: {
3505     Register Rt = MI.getOperand(0).getReg();
3506     Register Rm = MI.getOperand(3).getReg();
3507     return (Rt == Rm) ? 4 : 3;
3508   }
3509 
3510   case ARM::LDR_PRE_REG:
3511   case ARM::LDRB_PRE_REG: {
3512     Register Rt = MI.getOperand(0).getReg();
3513     Register Rm = MI.getOperand(3).getReg();
3514     if (Rt == Rm)
3515       return 3;
3516     unsigned ShOpVal = MI.getOperand(4).getImm();
3517     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3518     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3519     if (!isSub &&
3520         (ShImm == 0 ||
3521          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3522           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3523       return 2;
3524     return 3;
3525   }
3526 
3527   case ARM::STR_PRE_REG:
3528   case ARM::STRB_PRE_REG: {
3529     unsigned ShOpVal = MI.getOperand(4).getImm();
3530     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3531     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3532     if (!isSub &&
3533         (ShImm == 0 ||
3534          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3535           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3536       return 2;
3537     return 3;
3538   }
3539 
3540   case ARM::LDRH_PRE:
3541   case ARM::STRH_PRE: {
3542     Register Rt = MI.getOperand(0).getReg();
3543     Register Rm = MI.getOperand(3).getReg();
3544     if (!Rm)
3545       return 2;
3546     if (Rt == Rm)
3547       return 3;
3548     return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2;
3549   }
3550 
3551   case ARM::LDR_POST_REG:
3552   case ARM::LDRB_POST_REG:
3553   case ARM::LDRH_POST: {
3554     Register Rt = MI.getOperand(0).getReg();
3555     Register Rm = MI.getOperand(3).getReg();
3556     return (Rt == Rm) ? 3 : 2;
3557   }
3558 
3559   case ARM::LDR_PRE_IMM:
3560   case ARM::LDRB_PRE_IMM:
3561   case ARM::LDR_POST_IMM:
3562   case ARM::LDRB_POST_IMM:
3563   case ARM::STRB_POST_IMM:
3564   case ARM::STRB_POST_REG:
3565   case ARM::STRB_PRE_IMM:
3566   case ARM::STRH_POST:
3567   case ARM::STR_POST_IMM:
3568   case ARM::STR_POST_REG:
3569   case ARM::STR_PRE_IMM:
3570     return 2;
3571 
3572   case ARM::LDRSB_PRE:
3573   case ARM::LDRSH_PRE: {
3574     Register Rm = MI.getOperand(3).getReg();
3575     if (Rm == 0)
3576       return 3;
3577     Register Rt = MI.getOperand(0).getReg();
3578     if (Rt == Rm)
3579       return 4;
3580     unsigned ShOpVal = MI.getOperand(4).getImm();
3581     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3582     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3583     if (!isSub &&
3584         (ShImm == 0 ||
3585          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3586           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3587       return 3;
3588     return 4;
3589   }
3590 
3591   case ARM::LDRD: {
3592     Register Rt = MI.getOperand(0).getReg();
3593     Register Rn = MI.getOperand(2).getReg();
3594     Register Rm = MI.getOperand(3).getReg();
3595     if (Rm)
3596       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3597                                                                           : 3;
3598     return (Rt == Rn) ? 3 : 2;
3599   }
3600 
3601   case ARM::STRD: {
3602     Register Rm = MI.getOperand(3).getReg();
3603     if (Rm)
3604       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3605                                                                           : 3;
3606     return 2;
3607   }
3608 
3609   case ARM::LDRD_POST:
3610   case ARM::t2LDRD_POST:
3611     return 3;
3612 
3613   case ARM::STRD_POST:
3614   case ARM::t2STRD_POST:
3615     return 4;
3616 
3617   case ARM::LDRD_PRE: {
3618     Register Rt = MI.getOperand(0).getReg();
3619     Register Rn = MI.getOperand(3).getReg();
3620     Register Rm = MI.getOperand(4).getReg();
3621     if (Rm)
3622       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3623                                                                           : 4;
3624     return (Rt == Rn) ? 4 : 3;
3625   }
3626 
3627   case ARM::t2LDRD_PRE: {
3628     Register Rt = MI.getOperand(0).getReg();
3629     Register Rn = MI.getOperand(3).getReg();
3630     return (Rt == Rn) ? 4 : 3;
3631   }
3632 
3633   case ARM::STRD_PRE: {
3634     Register Rm = MI.getOperand(4).getReg();
3635     if (Rm)
3636       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3637                                                                           : 4;
3638     return 3;
3639   }
3640 
3641   case ARM::t2STRD_PRE:
3642     return 3;
3643 
3644   case ARM::t2LDR_POST:
3645   case ARM::t2LDRB_POST:
3646   case ARM::t2LDRB_PRE:
3647   case ARM::t2LDRSBi12:
3648   case ARM::t2LDRSBi8:
3649   case ARM::t2LDRSBpci:
3650   case ARM::t2LDRSBs:
3651   case ARM::t2LDRH_POST:
3652   case ARM::t2LDRH_PRE:
3653   case ARM::t2LDRSBT:
3654   case ARM::t2LDRSB_POST:
3655   case ARM::t2LDRSB_PRE:
3656   case ARM::t2LDRSH_POST:
3657   case ARM::t2LDRSH_PRE:
3658   case ARM::t2LDRSHi12:
3659   case ARM::t2LDRSHi8:
3660   case ARM::t2LDRSHpci:
3661   case ARM::t2LDRSHs:
3662     return 2;
3663 
3664   case ARM::t2LDRDi8: {
3665     Register Rt = MI.getOperand(0).getReg();
3666     Register Rn = MI.getOperand(2).getReg();
3667     return (Rt == Rn) ? 3 : 2;
3668   }
3669 
3670   case ARM::t2STRB_POST:
3671   case ARM::t2STRB_PRE:
3672   case ARM::t2STRBs:
3673   case ARM::t2STRDi8:
3674   case ARM::t2STRH_POST:
3675   case ARM::t2STRH_PRE:
3676   case ARM::t2STRHs:
3677   case ARM::t2STR_POST:
3678   case ARM::t2STR_PRE:
3679   case ARM::t2STRs:
3680     return 2;
3681   }
3682 }
3683 
3684 // Return the number of 32-bit words loaded by LDM or stored by STM. If this
3685 // can't be easily determined return 0 (missing MachineMemOperand).
3686 //
3687 // FIXME: The current MachineInstr design does not support relying on machine
3688 // mem operands to determine the width of a memory access. Instead, we expect
3689 // the target to provide this information based on the instruction opcode and
3690 // operands. However, using MachineMemOperand is the best solution now for
3691 // two reasons:
3692 //
3693 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
3694 // operands. This is much more dangerous than using the MachineMemOperand
3695 // sizes because CodeGen passes can insert/remove optional machine operands. In
3696 // fact, it's totally incorrect for preRA passes and appears to be wrong for
3697 // postRA passes as well.
3698 //
3699 // 2) getNumLDMAddresses is only used by the scheduling machine model and any
3700 // machine model that calls this should handle the unknown (zero size) case.
3701 //
3702 // Long term, we should require a target hook that verifies MachineMemOperand
3703 // sizes during MC lowering. That target hook should be local to MC lowering
3704 // because we can't ensure that it is aware of other MI forms. Doing this will
3705 // ensure that MachineMemOperands are correctly propagated through all passes.
3706 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const {
3707   unsigned Size = 0;
3708   for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
3709                                   E = MI.memoperands_end();
3710        I != E; ++I) {
3711     Size += (*I)->getSize();
3712   }
3713   // FIXME: The scheduler currently can't handle values larger than 16. But
3714   // the values can actually go up to 32 for floating-point load/store
3715   // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory
3716   // operations isn't right; we could end up with "extra" memory operands for
3717   // various reasons, like tail merge merging two memory operations.
3718   return std::min(Size / 4, 16U);
3719 }
3720 
3721 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,
3722                                                     unsigned NumRegs) {
3723   unsigned UOps = 1 + NumRegs; // 1 for address computation.
3724   switch (Opc) {
3725   default:
3726     break;
3727   case ARM::VLDMDIA_UPD:
3728   case ARM::VLDMDDB_UPD:
3729   case ARM::VLDMSIA_UPD:
3730   case ARM::VLDMSDB_UPD:
3731   case ARM::VSTMDIA_UPD:
3732   case ARM::VSTMDDB_UPD:
3733   case ARM::VSTMSIA_UPD:
3734   case ARM::VSTMSDB_UPD:
3735   case ARM::LDMIA_UPD:
3736   case ARM::LDMDA_UPD:
3737   case ARM::LDMDB_UPD:
3738   case ARM::LDMIB_UPD:
3739   case ARM::STMIA_UPD:
3740   case ARM::STMDA_UPD:
3741   case ARM::STMDB_UPD:
3742   case ARM::STMIB_UPD:
3743   case ARM::tLDMIA_UPD:
3744   case ARM::tSTMIA_UPD:
3745   case ARM::t2LDMIA_UPD:
3746   case ARM::t2LDMDB_UPD:
3747   case ARM::t2STMIA_UPD:
3748   case ARM::t2STMDB_UPD:
3749     ++UOps; // One for base register writeback.
3750     break;
3751   case ARM::LDMIA_RET:
3752   case ARM::tPOP_RET:
3753   case ARM::t2LDMIA_RET:
3754     UOps += 2; // One for base reg wb, one for write to pc.
3755     break;
3756   }
3757   return UOps;
3758 }
3759 
3760 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
3761                                           const MachineInstr &MI) const {
3762   if (!ItinData || ItinData->isEmpty())
3763     return 1;
3764 
3765   const MCInstrDesc &Desc = MI.getDesc();
3766   unsigned Class = Desc.getSchedClass();
3767   int ItinUOps = ItinData->getNumMicroOps(Class);
3768   if (ItinUOps >= 0) {
3769     if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
3770       return getNumMicroOpsSwiftLdSt(ItinData, MI);
3771 
3772     return ItinUOps;
3773   }
3774 
3775   unsigned Opc = MI.getOpcode();
3776   switch (Opc) {
3777   default:
3778     llvm_unreachable("Unexpected multi-uops instruction!");
3779   case ARM::VLDMQIA:
3780   case ARM::VSTMQIA:
3781     return 2;
3782 
3783   // The number of uOps for load / store multiple are determined by the number
3784   // registers.
3785   //
3786   // On Cortex-A8, each pair of register loads / stores can be scheduled on the
3787   // same cycle. The scheduling for the first load / store must be done
3788   // separately by assuming the address is not 64-bit aligned.
3789   //
3790   // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
3791   // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
3792   // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
3793   case ARM::VLDMDIA:
3794   case ARM::VLDMDIA_UPD:
3795   case ARM::VLDMDDB_UPD:
3796   case ARM::VLDMSIA:
3797   case ARM::VLDMSIA_UPD:
3798   case ARM::VLDMSDB_UPD:
3799   case ARM::VSTMDIA:
3800   case ARM::VSTMDIA_UPD:
3801   case ARM::VSTMDDB_UPD:
3802   case ARM::VSTMSIA:
3803   case ARM::VSTMSIA_UPD:
3804   case ARM::VSTMSDB_UPD: {
3805     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands();
3806     return (NumRegs / 2) + (NumRegs % 2) + 1;
3807   }
3808 
3809   case ARM::LDMIA_RET:
3810   case ARM::LDMIA:
3811   case ARM::LDMDA:
3812   case ARM::LDMDB:
3813   case ARM::LDMIB:
3814   case ARM::LDMIA_UPD:
3815   case ARM::LDMDA_UPD:
3816   case ARM::LDMDB_UPD:
3817   case ARM::LDMIB_UPD:
3818   case ARM::STMIA:
3819   case ARM::STMDA:
3820   case ARM::STMDB:
3821   case ARM::STMIB:
3822   case ARM::STMIA_UPD:
3823   case ARM::STMDA_UPD:
3824   case ARM::STMDB_UPD:
3825   case ARM::STMIB_UPD:
3826   case ARM::tLDMIA:
3827   case ARM::tLDMIA_UPD:
3828   case ARM::tSTMIA_UPD:
3829   case ARM::tPOP_RET:
3830   case ARM::tPOP:
3831   case ARM::tPUSH:
3832   case ARM::t2LDMIA_RET:
3833   case ARM::t2LDMIA:
3834   case ARM::t2LDMDB:
3835   case ARM::t2LDMIA_UPD:
3836   case ARM::t2LDMDB_UPD:
3837   case ARM::t2STMIA:
3838   case ARM::t2STMDB:
3839   case ARM::t2STMIA_UPD:
3840   case ARM::t2STMDB_UPD: {
3841     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1;
3842     switch (Subtarget.getLdStMultipleTiming()) {
3843     case ARMSubtarget::SingleIssuePlusExtras:
3844       return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs);
3845     case ARMSubtarget::SingleIssue:
3846       // Assume the worst.
3847       return NumRegs;
3848     case ARMSubtarget::DoubleIssue: {
3849       if (NumRegs < 4)
3850         return 2;
3851       // 4 registers would be issued: 2, 2.
3852       // 5 registers would be issued: 2, 2, 1.
3853       unsigned UOps = (NumRegs / 2);
3854       if (NumRegs % 2)
3855         ++UOps;
3856       return UOps;
3857     }
3858     case ARMSubtarget::DoubleIssueCheckUnalignedAccess: {
3859       unsigned UOps = (NumRegs / 2);
3860       // If there are odd number of registers or if it's not 64-bit aligned,
3861       // then it takes an extra AGU (Address Generation Unit) cycle.
3862       if ((NumRegs % 2) || !MI.hasOneMemOperand() ||
3863           (*MI.memoperands_begin())->getAlign() < Align(8))
3864         ++UOps;
3865       return UOps;
3866       }
3867     }
3868   }
3869   }
3870   llvm_unreachable("Didn't find the number of microops");
3871 }
3872 
3873 int
3874 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
3875                                   const MCInstrDesc &DefMCID,
3876                                   unsigned DefClass,
3877                                   unsigned DefIdx, unsigned DefAlign) const {
3878   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3879   if (RegNo <= 0)
3880     // Def is the address writeback.
3881     return ItinData->getOperandCycle(DefClass, DefIdx);
3882 
3883   int DefCycle;
3884   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3885     // (regno / 2) + (regno % 2) + 1
3886     DefCycle = RegNo / 2 + 1;
3887     if (RegNo % 2)
3888       ++DefCycle;
3889   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3890     DefCycle = RegNo;
3891     bool isSLoad = false;
3892 
3893     switch (DefMCID.getOpcode()) {
3894     default: break;
3895     case ARM::VLDMSIA:
3896     case ARM::VLDMSIA_UPD:
3897     case ARM::VLDMSDB_UPD:
3898       isSLoad = true;
3899       break;
3900     }
3901 
3902     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3903     // then it takes an extra cycle.
3904     if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
3905       ++DefCycle;
3906   } else {
3907     // Assume the worst.
3908     DefCycle = RegNo + 2;
3909   }
3910 
3911   return DefCycle;
3912 }
3913 
3914 int
3915 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
3916                                  const MCInstrDesc &DefMCID,
3917                                  unsigned DefClass,
3918                                  unsigned DefIdx, unsigned DefAlign) const {
3919   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3920   if (RegNo <= 0)
3921     // Def is the address writeback.
3922     return ItinData->getOperandCycle(DefClass, DefIdx);
3923 
3924   int DefCycle;
3925   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3926     // 4 registers would be issued: 1, 2, 1.
3927     // 5 registers would be issued: 1, 2, 2.
3928     DefCycle = RegNo / 2;
3929     if (DefCycle < 1)
3930       DefCycle = 1;
3931     // Result latency is issue cycle + 2: E2.
3932     DefCycle += 2;
3933   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3934     DefCycle = (RegNo / 2);
3935     // If there are odd number of registers or if it's not 64-bit aligned,
3936     // then it takes an extra AGU (Address Generation Unit) cycle.
3937     if ((RegNo % 2) || DefAlign < 8)
3938       ++DefCycle;
3939     // Result latency is AGU cycles + 2.
3940     DefCycle += 2;
3941   } else {
3942     // Assume the worst.
3943     DefCycle = RegNo + 2;
3944   }
3945 
3946   return DefCycle;
3947 }
3948 
3949 int
3950 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
3951                                   const MCInstrDesc &UseMCID,
3952                                   unsigned UseClass,
3953                                   unsigned UseIdx, unsigned UseAlign) const {
3954   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3955   if (RegNo <= 0)
3956     return ItinData->getOperandCycle(UseClass, UseIdx);
3957 
3958   int UseCycle;
3959   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3960     // (regno / 2) + (regno % 2) + 1
3961     UseCycle = RegNo / 2 + 1;
3962     if (RegNo % 2)
3963       ++UseCycle;
3964   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3965     UseCycle = RegNo;
3966     bool isSStore = false;
3967 
3968     switch (UseMCID.getOpcode()) {
3969     default: break;
3970     case ARM::VSTMSIA:
3971     case ARM::VSTMSIA_UPD:
3972     case ARM::VSTMSDB_UPD:
3973       isSStore = true;
3974       break;
3975     }
3976 
3977     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3978     // then it takes an extra cycle.
3979     if ((isSStore && (RegNo % 2)) || UseAlign < 8)
3980       ++UseCycle;
3981   } else {
3982     // Assume the worst.
3983     UseCycle = RegNo + 2;
3984   }
3985 
3986   return UseCycle;
3987 }
3988 
3989 int
3990 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
3991                                  const MCInstrDesc &UseMCID,
3992                                  unsigned UseClass,
3993                                  unsigned UseIdx, unsigned UseAlign) const {
3994   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3995   if (RegNo <= 0)
3996     return ItinData->getOperandCycle(UseClass, UseIdx);
3997 
3998   int UseCycle;
3999   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
4000     UseCycle = RegNo / 2;
4001     if (UseCycle < 2)
4002       UseCycle = 2;
4003     // Read in E3.
4004     UseCycle += 2;
4005   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
4006     UseCycle = (RegNo / 2);
4007     // If there are odd number of registers or if it's not 64-bit aligned,
4008     // then it takes an extra AGU (Address Generation Unit) cycle.
4009     if ((RegNo % 2) || UseAlign < 8)
4010       ++UseCycle;
4011   } else {
4012     // Assume the worst.
4013     UseCycle = 1;
4014   }
4015   return UseCycle;
4016 }
4017 
4018 int
4019 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4020                                     const MCInstrDesc &DefMCID,
4021                                     unsigned DefIdx, unsigned DefAlign,
4022                                     const MCInstrDesc &UseMCID,
4023                                     unsigned UseIdx, unsigned UseAlign) const {
4024   unsigned DefClass = DefMCID.getSchedClass();
4025   unsigned UseClass = UseMCID.getSchedClass();
4026 
4027   if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
4028     return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
4029 
4030   // This may be a def / use of a variable_ops instruction, the operand
4031   // latency might be determinable dynamically. Let the target try to
4032   // figure it out.
4033   int DefCycle = -1;
4034   bool LdmBypass = false;
4035   switch (DefMCID.getOpcode()) {
4036   default:
4037     DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4038     break;
4039 
4040   case ARM::VLDMDIA:
4041   case ARM::VLDMDIA_UPD:
4042   case ARM::VLDMDDB_UPD:
4043   case ARM::VLDMSIA:
4044   case ARM::VLDMSIA_UPD:
4045   case ARM::VLDMSDB_UPD:
4046     DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
4047     break;
4048 
4049   case ARM::LDMIA_RET:
4050   case ARM::LDMIA:
4051   case ARM::LDMDA:
4052   case ARM::LDMDB:
4053   case ARM::LDMIB:
4054   case ARM::LDMIA_UPD:
4055   case ARM::LDMDA_UPD:
4056   case ARM::LDMDB_UPD:
4057   case ARM::LDMIB_UPD:
4058   case ARM::tLDMIA:
4059   case ARM::tLDMIA_UPD:
4060   case ARM::tPUSH:
4061   case ARM::t2LDMIA_RET:
4062   case ARM::t2LDMIA:
4063   case ARM::t2LDMDB:
4064   case ARM::t2LDMIA_UPD:
4065   case ARM::t2LDMDB_UPD:
4066     LdmBypass = true;
4067     DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
4068     break;
4069   }
4070 
4071   if (DefCycle == -1)
4072     // We can't seem to determine the result latency of the def, assume it's 2.
4073     DefCycle = 2;
4074 
4075   int UseCycle = -1;
4076   switch (UseMCID.getOpcode()) {
4077   default:
4078     UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
4079     break;
4080 
4081   case ARM::VSTMDIA:
4082   case ARM::VSTMDIA_UPD:
4083   case ARM::VSTMDDB_UPD:
4084   case ARM::VSTMSIA:
4085   case ARM::VSTMSIA_UPD:
4086   case ARM::VSTMSDB_UPD:
4087     UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
4088     break;
4089 
4090   case ARM::STMIA:
4091   case ARM::STMDA:
4092   case ARM::STMDB:
4093   case ARM::STMIB:
4094   case ARM::STMIA_UPD:
4095   case ARM::STMDA_UPD:
4096   case ARM::STMDB_UPD:
4097   case ARM::STMIB_UPD:
4098   case ARM::tSTMIA_UPD:
4099   case ARM::tPOP_RET:
4100   case ARM::tPOP:
4101   case ARM::t2STMIA:
4102   case ARM::t2STMDB:
4103   case ARM::t2STMIA_UPD:
4104   case ARM::t2STMDB_UPD:
4105     UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
4106     break;
4107   }
4108 
4109   if (UseCycle == -1)
4110     // Assume it's read in the first stage.
4111     UseCycle = 1;
4112 
4113   UseCycle = DefCycle - UseCycle + 1;
4114   if (UseCycle > 0) {
4115     if (LdmBypass) {
4116       // It's a variable_ops instruction so we can't use DefIdx here. Just use
4117       // first def operand.
4118       if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
4119                                           UseClass, UseIdx))
4120         --UseCycle;
4121     } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
4122                                                UseClass, UseIdx)) {
4123       --UseCycle;
4124     }
4125   }
4126 
4127   return UseCycle;
4128 }
4129 
4130 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
4131                                            const MachineInstr *MI, unsigned Reg,
4132                                            unsigned &DefIdx, unsigned &Dist) {
4133   Dist = 0;
4134 
4135   MachineBasicBlock::const_iterator I = MI; ++I;
4136   MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
4137   assert(II->isInsideBundle() && "Empty bundle?");
4138 
4139   int Idx = -1;
4140   while (II->isInsideBundle()) {
4141     Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
4142     if (Idx != -1)
4143       break;
4144     --II;
4145     ++Dist;
4146   }
4147 
4148   assert(Idx != -1 && "Cannot find bundled definition!");
4149   DefIdx = Idx;
4150   return &*II;
4151 }
4152 
4153 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
4154                                            const MachineInstr &MI, unsigned Reg,
4155                                            unsigned &UseIdx, unsigned &Dist) {
4156   Dist = 0;
4157 
4158   MachineBasicBlock::const_instr_iterator II = ++MI.getIterator();
4159   assert(II->isInsideBundle() && "Empty bundle?");
4160   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4161 
4162   // FIXME: This doesn't properly handle multiple uses.
4163   int Idx = -1;
4164   while (II != E && II->isInsideBundle()) {
4165     Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
4166     if (Idx != -1)
4167       break;
4168     if (II->getOpcode() != ARM::t2IT)
4169       ++Dist;
4170     ++II;
4171   }
4172 
4173   if (Idx == -1) {
4174     Dist = 0;
4175     return nullptr;
4176   }
4177 
4178   UseIdx = Idx;
4179   return &*II;
4180 }
4181 
4182 /// Return the number of cycles to add to (or subtract from) the static
4183 /// itinerary based on the def opcode and alignment. The caller will ensure that
4184 /// adjusted latency is at least one cycle.
4185 static int adjustDefLatency(const ARMSubtarget &Subtarget,
4186                             const MachineInstr &DefMI,
4187                             const MCInstrDesc &DefMCID, unsigned DefAlign) {
4188   int Adjust = 0;
4189   if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
4190     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4191     // variants are one cycle cheaper.
4192     switch (DefMCID.getOpcode()) {
4193     default: break;
4194     case ARM::LDRrs:
4195     case ARM::LDRBrs: {
4196       unsigned ShOpVal = DefMI.getOperand(3).getImm();
4197       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4198       if (ShImm == 0 ||
4199           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4200         --Adjust;
4201       break;
4202     }
4203     case ARM::t2LDRs:
4204     case ARM::t2LDRBs:
4205     case ARM::t2LDRHs:
4206     case ARM::t2LDRSHs: {
4207       // Thumb2 mode: lsl only.
4208       unsigned ShAmt = DefMI.getOperand(3).getImm();
4209       if (ShAmt == 0 || ShAmt == 2)
4210         --Adjust;
4211       break;
4212     }
4213     }
4214   } else if (Subtarget.isSwift()) {
4215     // FIXME: Properly handle all of the latency adjustments for address
4216     // writeback.
4217     switch (DefMCID.getOpcode()) {
4218     default: break;
4219     case ARM::LDRrs:
4220     case ARM::LDRBrs: {
4221       unsigned ShOpVal = DefMI.getOperand(3).getImm();
4222       bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
4223       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4224       if (!isSub &&
4225           (ShImm == 0 ||
4226            ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4227             ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
4228         Adjust -= 2;
4229       else if (!isSub &&
4230                ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4231         --Adjust;
4232       break;
4233     }
4234     case ARM::t2LDRs:
4235     case ARM::t2LDRBs:
4236     case ARM::t2LDRHs:
4237     case ARM::t2LDRSHs: {
4238       // Thumb2 mode: lsl only.
4239       unsigned ShAmt = DefMI.getOperand(3).getImm();
4240       if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
4241         Adjust -= 2;
4242       break;
4243     }
4244     }
4245   }
4246 
4247   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) {
4248     switch (DefMCID.getOpcode()) {
4249     default: break;
4250     case ARM::VLD1q8:
4251     case ARM::VLD1q16:
4252     case ARM::VLD1q32:
4253     case ARM::VLD1q64:
4254     case ARM::VLD1q8wb_fixed:
4255     case ARM::VLD1q16wb_fixed:
4256     case ARM::VLD1q32wb_fixed:
4257     case ARM::VLD1q64wb_fixed:
4258     case ARM::VLD1q8wb_register:
4259     case ARM::VLD1q16wb_register:
4260     case ARM::VLD1q32wb_register:
4261     case ARM::VLD1q64wb_register:
4262     case ARM::VLD2d8:
4263     case ARM::VLD2d16:
4264     case ARM::VLD2d32:
4265     case ARM::VLD2q8:
4266     case ARM::VLD2q16:
4267     case ARM::VLD2q32:
4268     case ARM::VLD2d8wb_fixed:
4269     case ARM::VLD2d16wb_fixed:
4270     case ARM::VLD2d32wb_fixed:
4271     case ARM::VLD2q8wb_fixed:
4272     case ARM::VLD2q16wb_fixed:
4273     case ARM::VLD2q32wb_fixed:
4274     case ARM::VLD2d8wb_register:
4275     case ARM::VLD2d16wb_register:
4276     case ARM::VLD2d32wb_register:
4277     case ARM::VLD2q8wb_register:
4278     case ARM::VLD2q16wb_register:
4279     case ARM::VLD2q32wb_register:
4280     case ARM::VLD3d8:
4281     case ARM::VLD3d16:
4282     case ARM::VLD3d32:
4283     case ARM::VLD1d64T:
4284     case ARM::VLD3d8_UPD:
4285     case ARM::VLD3d16_UPD:
4286     case ARM::VLD3d32_UPD:
4287     case ARM::VLD1d64Twb_fixed:
4288     case ARM::VLD1d64Twb_register:
4289     case ARM::VLD3q8_UPD:
4290     case ARM::VLD3q16_UPD:
4291     case ARM::VLD3q32_UPD:
4292     case ARM::VLD4d8:
4293     case ARM::VLD4d16:
4294     case ARM::VLD4d32:
4295     case ARM::VLD1d64Q:
4296     case ARM::VLD4d8_UPD:
4297     case ARM::VLD4d16_UPD:
4298     case ARM::VLD4d32_UPD:
4299     case ARM::VLD1d64Qwb_fixed:
4300     case ARM::VLD1d64Qwb_register:
4301     case ARM::VLD4q8_UPD:
4302     case ARM::VLD4q16_UPD:
4303     case ARM::VLD4q32_UPD:
4304     case ARM::VLD1DUPq8:
4305     case ARM::VLD1DUPq16:
4306     case ARM::VLD1DUPq32:
4307     case ARM::VLD1DUPq8wb_fixed:
4308     case ARM::VLD1DUPq16wb_fixed:
4309     case ARM::VLD1DUPq32wb_fixed:
4310     case ARM::VLD1DUPq8wb_register:
4311     case ARM::VLD1DUPq16wb_register:
4312     case ARM::VLD1DUPq32wb_register:
4313     case ARM::VLD2DUPd8:
4314     case ARM::VLD2DUPd16:
4315     case ARM::VLD2DUPd32:
4316     case ARM::VLD2DUPd8wb_fixed:
4317     case ARM::VLD2DUPd16wb_fixed:
4318     case ARM::VLD2DUPd32wb_fixed:
4319     case ARM::VLD2DUPd8wb_register:
4320     case ARM::VLD2DUPd16wb_register:
4321     case ARM::VLD2DUPd32wb_register:
4322     case ARM::VLD4DUPd8:
4323     case ARM::VLD4DUPd16:
4324     case ARM::VLD4DUPd32:
4325     case ARM::VLD4DUPd8_UPD:
4326     case ARM::VLD4DUPd16_UPD:
4327     case ARM::VLD4DUPd32_UPD:
4328     case ARM::VLD1LNd8:
4329     case ARM::VLD1LNd16:
4330     case ARM::VLD1LNd32:
4331     case ARM::VLD1LNd8_UPD:
4332     case ARM::VLD1LNd16_UPD:
4333     case ARM::VLD1LNd32_UPD:
4334     case ARM::VLD2LNd8:
4335     case ARM::VLD2LNd16:
4336     case ARM::VLD2LNd32:
4337     case ARM::VLD2LNq16:
4338     case ARM::VLD2LNq32:
4339     case ARM::VLD2LNd8_UPD:
4340     case ARM::VLD2LNd16_UPD:
4341     case ARM::VLD2LNd32_UPD:
4342     case ARM::VLD2LNq16_UPD:
4343     case ARM::VLD2LNq32_UPD:
4344     case ARM::VLD4LNd8:
4345     case ARM::VLD4LNd16:
4346     case ARM::VLD4LNd32:
4347     case ARM::VLD4LNq16:
4348     case ARM::VLD4LNq32:
4349     case ARM::VLD4LNd8_UPD:
4350     case ARM::VLD4LNd16_UPD:
4351     case ARM::VLD4LNd32_UPD:
4352     case ARM::VLD4LNq16_UPD:
4353     case ARM::VLD4LNq32_UPD:
4354       // If the address is not 64-bit aligned, the latencies of these
4355       // instructions increases by one.
4356       ++Adjust;
4357       break;
4358     }
4359   }
4360   return Adjust;
4361 }
4362 
4363 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4364                                         const MachineInstr &DefMI,
4365                                         unsigned DefIdx,
4366                                         const MachineInstr &UseMI,
4367                                         unsigned UseIdx) const {
4368   // No operand latency. The caller may fall back to getInstrLatency.
4369   if (!ItinData || ItinData->isEmpty())
4370     return -1;
4371 
4372   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4373   Register Reg = DefMO.getReg();
4374 
4375   const MachineInstr *ResolvedDefMI = &DefMI;
4376   unsigned DefAdj = 0;
4377   if (DefMI.isBundle())
4378     ResolvedDefMI =
4379         getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj);
4380   if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() ||
4381       ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) {
4382     return 1;
4383   }
4384 
4385   const MachineInstr *ResolvedUseMI = &UseMI;
4386   unsigned UseAdj = 0;
4387   if (UseMI.isBundle()) {
4388     ResolvedUseMI =
4389         getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj);
4390     if (!ResolvedUseMI)
4391       return -1;
4392   }
4393 
4394   return getOperandLatencyImpl(
4395       ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO,
4396       Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj);
4397 }
4398 
4399 int ARMBaseInstrInfo::getOperandLatencyImpl(
4400     const InstrItineraryData *ItinData, const MachineInstr &DefMI,
4401     unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj,
4402     const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI,
4403     unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const {
4404   if (Reg == ARM::CPSR) {
4405     if (DefMI.getOpcode() == ARM::FMSTAT) {
4406       // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
4407       return Subtarget.isLikeA9() ? 1 : 20;
4408     }
4409 
4410     // CPSR set and branch can be paired in the same cycle.
4411     if (UseMI.isBranch())
4412       return 0;
4413 
4414     // Otherwise it takes the instruction latency (generally one).
4415     unsigned Latency = getInstrLatency(ItinData, DefMI);
4416 
4417     // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
4418     // its uses. Instructions which are otherwise scheduled between them may
4419     // incur a code size penalty (not able to use the CPSR setting 16-bit
4420     // instructions).
4421     if (Latency > 0 && Subtarget.isThumb2()) {
4422       const MachineFunction *MF = DefMI.getParent()->getParent();
4423       // FIXME: Use Function::hasOptSize().
4424       if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize))
4425         --Latency;
4426     }
4427     return Latency;
4428   }
4429 
4430   if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit())
4431     return -1;
4432 
4433   unsigned DefAlign = DefMI.hasOneMemOperand()
4434                           ? (*DefMI.memoperands_begin())->getAlign().value()
4435                           : 0;
4436   unsigned UseAlign = UseMI.hasOneMemOperand()
4437                           ? (*UseMI.memoperands_begin())->getAlign().value()
4438                           : 0;
4439 
4440   // Get the itinerary's latency if possible, and handle variable_ops.
4441   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID,
4442                                   UseIdx, UseAlign);
4443   // Unable to find operand latency. The caller may resort to getInstrLatency.
4444   if (Latency < 0)
4445     return Latency;
4446 
4447   // Adjust for IT block position.
4448   int Adj = DefAdj + UseAdj;
4449 
4450   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4451   Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
4452   if (Adj >= 0 || (int)Latency > -Adj) {
4453     return Latency + Adj;
4454   }
4455   // Return the itinerary latency, which may be zero but not less than zero.
4456   return Latency;
4457 }
4458 
4459 int
4460 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4461                                     SDNode *DefNode, unsigned DefIdx,
4462                                     SDNode *UseNode, unsigned UseIdx) const {
4463   if (!DefNode->isMachineOpcode())
4464     return 1;
4465 
4466   const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
4467 
4468   if (isZeroCost(DefMCID.Opcode))
4469     return 0;
4470 
4471   if (!ItinData || ItinData->isEmpty())
4472     return DefMCID.mayLoad() ? 3 : 1;
4473 
4474   if (!UseNode->isMachineOpcode()) {
4475     int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
4476     int Adj = Subtarget.getPreISelOperandLatencyAdjustment();
4477     int Threshold = 1 + Adj;
4478     return Latency <= Threshold ? 1 : Latency - Adj;
4479   }
4480 
4481   const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
4482   auto *DefMN = cast<MachineSDNode>(DefNode);
4483   unsigned DefAlign = !DefMN->memoperands_empty()
4484                           ? (*DefMN->memoperands_begin())->getAlign().value()
4485                           : 0;
4486   auto *UseMN = cast<MachineSDNode>(UseNode);
4487   unsigned UseAlign = !UseMN->memoperands_empty()
4488                           ? (*UseMN->memoperands_begin())->getAlign().value()
4489                           : 0;
4490   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
4491                                   UseMCID, UseIdx, UseAlign);
4492 
4493   if (Latency > 1 &&
4494       (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
4495        Subtarget.isCortexA7())) {
4496     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4497     // variants are one cycle cheaper.
4498     switch (DefMCID.getOpcode()) {
4499     default: break;
4500     case ARM::LDRrs:
4501     case ARM::LDRBrs: {
4502       unsigned ShOpVal =
4503         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4504       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4505       if (ShImm == 0 ||
4506           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4507         --Latency;
4508       break;
4509     }
4510     case ARM::t2LDRs:
4511     case ARM::t2LDRBs:
4512     case ARM::t2LDRHs:
4513     case ARM::t2LDRSHs: {
4514       // Thumb2 mode: lsl only.
4515       unsigned ShAmt =
4516         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4517       if (ShAmt == 0 || ShAmt == 2)
4518         --Latency;
4519       break;
4520     }
4521     }
4522   } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
4523     // FIXME: Properly handle all of the latency adjustments for address
4524     // writeback.
4525     switch (DefMCID.getOpcode()) {
4526     default: break;
4527     case ARM::LDRrs:
4528     case ARM::LDRBrs: {
4529       unsigned ShOpVal =
4530         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4531       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4532       if (ShImm == 0 ||
4533           ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4534            ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4535         Latency -= 2;
4536       else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4537         --Latency;
4538       break;
4539     }
4540     case ARM::t2LDRs:
4541     case ARM::t2LDRBs:
4542     case ARM::t2LDRHs:
4543     case ARM::t2LDRSHs:
4544       // Thumb2 mode: lsl 0-3 only.
4545       Latency -= 2;
4546       break;
4547     }
4548   }
4549 
4550   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment())
4551     switch (DefMCID.getOpcode()) {
4552     default: break;
4553     case ARM::VLD1q8:
4554     case ARM::VLD1q16:
4555     case ARM::VLD1q32:
4556     case ARM::VLD1q64:
4557     case ARM::VLD1q8wb_register:
4558     case ARM::VLD1q16wb_register:
4559     case ARM::VLD1q32wb_register:
4560     case ARM::VLD1q64wb_register:
4561     case ARM::VLD1q8wb_fixed:
4562     case ARM::VLD1q16wb_fixed:
4563     case ARM::VLD1q32wb_fixed:
4564     case ARM::VLD1q64wb_fixed:
4565     case ARM::VLD2d8:
4566     case ARM::VLD2d16:
4567     case ARM::VLD2d32:
4568     case ARM::VLD2q8Pseudo:
4569     case ARM::VLD2q16Pseudo:
4570     case ARM::VLD2q32Pseudo:
4571     case ARM::VLD2d8wb_fixed:
4572     case ARM::VLD2d16wb_fixed:
4573     case ARM::VLD2d32wb_fixed:
4574     case ARM::VLD2q8PseudoWB_fixed:
4575     case ARM::VLD2q16PseudoWB_fixed:
4576     case ARM::VLD2q32PseudoWB_fixed:
4577     case ARM::VLD2d8wb_register:
4578     case ARM::VLD2d16wb_register:
4579     case ARM::VLD2d32wb_register:
4580     case ARM::VLD2q8PseudoWB_register:
4581     case ARM::VLD2q16PseudoWB_register:
4582     case ARM::VLD2q32PseudoWB_register:
4583     case ARM::VLD3d8Pseudo:
4584     case ARM::VLD3d16Pseudo:
4585     case ARM::VLD3d32Pseudo:
4586     case ARM::VLD1d8TPseudo:
4587     case ARM::VLD1d16TPseudo:
4588     case ARM::VLD1d32TPseudo:
4589     case ARM::VLD1d64TPseudo:
4590     case ARM::VLD1d64TPseudoWB_fixed:
4591     case ARM::VLD1d64TPseudoWB_register:
4592     case ARM::VLD3d8Pseudo_UPD:
4593     case ARM::VLD3d16Pseudo_UPD:
4594     case ARM::VLD3d32Pseudo_UPD:
4595     case ARM::VLD3q8Pseudo_UPD:
4596     case ARM::VLD3q16Pseudo_UPD:
4597     case ARM::VLD3q32Pseudo_UPD:
4598     case ARM::VLD3q8oddPseudo:
4599     case ARM::VLD3q16oddPseudo:
4600     case ARM::VLD3q32oddPseudo:
4601     case ARM::VLD3q8oddPseudo_UPD:
4602     case ARM::VLD3q16oddPseudo_UPD:
4603     case ARM::VLD3q32oddPseudo_UPD:
4604     case ARM::VLD4d8Pseudo:
4605     case ARM::VLD4d16Pseudo:
4606     case ARM::VLD4d32Pseudo:
4607     case ARM::VLD1d8QPseudo:
4608     case ARM::VLD1d16QPseudo:
4609     case ARM::VLD1d32QPseudo:
4610     case ARM::VLD1d64QPseudo:
4611     case ARM::VLD1d64QPseudoWB_fixed:
4612     case ARM::VLD1d64QPseudoWB_register:
4613     case ARM::VLD1q8HighQPseudo:
4614     case ARM::VLD1q8LowQPseudo_UPD:
4615     case ARM::VLD1q8HighTPseudo:
4616     case ARM::VLD1q8LowTPseudo_UPD:
4617     case ARM::VLD1q16HighQPseudo:
4618     case ARM::VLD1q16LowQPseudo_UPD:
4619     case ARM::VLD1q16HighTPseudo:
4620     case ARM::VLD1q16LowTPseudo_UPD:
4621     case ARM::VLD1q32HighQPseudo:
4622     case ARM::VLD1q32LowQPseudo_UPD:
4623     case ARM::VLD1q32HighTPseudo:
4624     case ARM::VLD1q32LowTPseudo_UPD:
4625     case ARM::VLD1q64HighQPseudo:
4626     case ARM::VLD1q64LowQPseudo_UPD:
4627     case ARM::VLD1q64HighTPseudo:
4628     case ARM::VLD1q64LowTPseudo_UPD:
4629     case ARM::VLD4d8Pseudo_UPD:
4630     case ARM::VLD4d16Pseudo_UPD:
4631     case ARM::VLD4d32Pseudo_UPD:
4632     case ARM::VLD4q8Pseudo_UPD:
4633     case ARM::VLD4q16Pseudo_UPD:
4634     case ARM::VLD4q32Pseudo_UPD:
4635     case ARM::VLD4q8oddPseudo:
4636     case ARM::VLD4q16oddPseudo:
4637     case ARM::VLD4q32oddPseudo:
4638     case ARM::VLD4q8oddPseudo_UPD:
4639     case ARM::VLD4q16oddPseudo_UPD:
4640     case ARM::VLD4q32oddPseudo_UPD:
4641     case ARM::VLD1DUPq8:
4642     case ARM::VLD1DUPq16:
4643     case ARM::VLD1DUPq32:
4644     case ARM::VLD1DUPq8wb_fixed:
4645     case ARM::VLD1DUPq16wb_fixed:
4646     case ARM::VLD1DUPq32wb_fixed:
4647     case ARM::VLD1DUPq8wb_register:
4648     case ARM::VLD1DUPq16wb_register:
4649     case ARM::VLD1DUPq32wb_register:
4650     case ARM::VLD2DUPd8:
4651     case ARM::VLD2DUPd16:
4652     case ARM::VLD2DUPd32:
4653     case ARM::VLD2DUPd8wb_fixed:
4654     case ARM::VLD2DUPd16wb_fixed:
4655     case ARM::VLD2DUPd32wb_fixed:
4656     case ARM::VLD2DUPd8wb_register:
4657     case ARM::VLD2DUPd16wb_register:
4658     case ARM::VLD2DUPd32wb_register:
4659     case ARM::VLD2DUPq8EvenPseudo:
4660     case ARM::VLD2DUPq8OddPseudo:
4661     case ARM::VLD2DUPq16EvenPseudo:
4662     case ARM::VLD2DUPq16OddPseudo:
4663     case ARM::VLD2DUPq32EvenPseudo:
4664     case ARM::VLD2DUPq32OddPseudo:
4665     case ARM::VLD3DUPq8EvenPseudo:
4666     case ARM::VLD3DUPq8OddPseudo:
4667     case ARM::VLD3DUPq16EvenPseudo:
4668     case ARM::VLD3DUPq16OddPseudo:
4669     case ARM::VLD3DUPq32EvenPseudo:
4670     case ARM::VLD3DUPq32OddPseudo:
4671     case ARM::VLD4DUPd8Pseudo:
4672     case ARM::VLD4DUPd16Pseudo:
4673     case ARM::VLD4DUPd32Pseudo:
4674     case ARM::VLD4DUPd8Pseudo_UPD:
4675     case ARM::VLD4DUPd16Pseudo_UPD:
4676     case ARM::VLD4DUPd32Pseudo_UPD:
4677     case ARM::VLD4DUPq8EvenPseudo:
4678     case ARM::VLD4DUPq8OddPseudo:
4679     case ARM::VLD4DUPq16EvenPseudo:
4680     case ARM::VLD4DUPq16OddPseudo:
4681     case ARM::VLD4DUPq32EvenPseudo:
4682     case ARM::VLD4DUPq32OddPseudo:
4683     case ARM::VLD1LNq8Pseudo:
4684     case ARM::VLD1LNq16Pseudo:
4685     case ARM::VLD1LNq32Pseudo:
4686     case ARM::VLD1LNq8Pseudo_UPD:
4687     case ARM::VLD1LNq16Pseudo_UPD:
4688     case ARM::VLD1LNq32Pseudo_UPD:
4689     case ARM::VLD2LNd8Pseudo:
4690     case ARM::VLD2LNd16Pseudo:
4691     case ARM::VLD2LNd32Pseudo:
4692     case ARM::VLD2LNq16Pseudo:
4693     case ARM::VLD2LNq32Pseudo:
4694     case ARM::VLD2LNd8Pseudo_UPD:
4695     case ARM::VLD2LNd16Pseudo_UPD:
4696     case ARM::VLD2LNd32Pseudo_UPD:
4697     case ARM::VLD2LNq16Pseudo_UPD:
4698     case ARM::VLD2LNq32Pseudo_UPD:
4699     case ARM::VLD4LNd8Pseudo:
4700     case ARM::VLD4LNd16Pseudo:
4701     case ARM::VLD4LNd32Pseudo:
4702     case ARM::VLD4LNq16Pseudo:
4703     case ARM::VLD4LNq32Pseudo:
4704     case ARM::VLD4LNd8Pseudo_UPD:
4705     case ARM::VLD4LNd16Pseudo_UPD:
4706     case ARM::VLD4LNd32Pseudo_UPD:
4707     case ARM::VLD4LNq16Pseudo_UPD:
4708     case ARM::VLD4LNq32Pseudo_UPD:
4709       // If the address is not 64-bit aligned, the latencies of these
4710       // instructions increases by one.
4711       ++Latency;
4712       break;
4713     }
4714 
4715   return Latency;
4716 }
4717 
4718 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const {
4719   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4720       MI.isImplicitDef())
4721     return 0;
4722 
4723   if (MI.isBundle())
4724     return 0;
4725 
4726   const MCInstrDesc &MCID = MI.getDesc();
4727 
4728   if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4729                         !Subtarget.cheapPredicableCPSRDef())) {
4730     // When predicated, CPSR is an additional source operand for CPSR updating
4731     // instructions, this apparently increases their latencies.
4732     return 1;
4733   }
4734   return 0;
4735 }
4736 
4737 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4738                                            const MachineInstr &MI,
4739                                            unsigned *PredCost) const {
4740   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4741       MI.isImplicitDef())
4742     return 1;
4743 
4744   // An instruction scheduler typically runs on unbundled instructions, however
4745   // other passes may query the latency of a bundled instruction.
4746   if (MI.isBundle()) {
4747     unsigned Latency = 0;
4748     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
4749     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4750     while (++I != E && I->isInsideBundle()) {
4751       if (I->getOpcode() != ARM::t2IT)
4752         Latency += getInstrLatency(ItinData, *I, PredCost);
4753     }
4754     return Latency;
4755   }
4756 
4757   const MCInstrDesc &MCID = MI.getDesc();
4758   if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4759                                      !Subtarget.cheapPredicableCPSRDef()))) {
4760     // When predicated, CPSR is an additional source operand for CPSR updating
4761     // instructions, this apparently increases their latencies.
4762     *PredCost = 1;
4763   }
4764   // Be sure to call getStageLatency for an empty itinerary in case it has a
4765   // valid MinLatency property.
4766   if (!ItinData)
4767     return MI.mayLoad() ? 3 : 1;
4768 
4769   unsigned Class = MCID.getSchedClass();
4770 
4771   // For instructions with variable uops, use uops as latency.
4772   if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
4773     return getNumMicroOps(ItinData, MI);
4774 
4775   // For the common case, fall back on the itinerary's latency.
4776   unsigned Latency = ItinData->getStageLatency(Class);
4777 
4778   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4779   unsigned DefAlign =
4780       MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlign().value() : 0;
4781   int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign);
4782   if (Adj >= 0 || (int)Latency > -Adj) {
4783     return Latency + Adj;
4784   }
4785   return Latency;
4786 }
4787 
4788 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4789                                       SDNode *Node) const {
4790   if (!Node->isMachineOpcode())
4791     return 1;
4792 
4793   if (!ItinData || ItinData->isEmpty())
4794     return 1;
4795 
4796   unsigned Opcode = Node->getMachineOpcode();
4797   switch (Opcode) {
4798   default:
4799     return ItinData->getStageLatency(get(Opcode).getSchedClass());
4800   case ARM::VLDMQIA:
4801   case ARM::VSTMQIA:
4802     return 2;
4803   }
4804 }
4805 
4806 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
4807                                              const MachineRegisterInfo *MRI,
4808                                              const MachineInstr &DefMI,
4809                                              unsigned DefIdx,
4810                                              const MachineInstr &UseMI,
4811                                              unsigned UseIdx) const {
4812   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4813   unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask;
4814   if (Subtarget.nonpipelinedVFP() &&
4815       (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
4816     return true;
4817 
4818   // Hoist VFP / NEON instructions with 4 or higher latency.
4819   unsigned Latency =
4820       SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx);
4821   if (Latency <= 3)
4822     return false;
4823   return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
4824          UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
4825 }
4826 
4827 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
4828                                         const MachineInstr &DefMI,
4829                                         unsigned DefIdx) const {
4830   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
4831   if (!ItinData || ItinData->isEmpty())
4832     return false;
4833 
4834   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4835   if (DDomain == ARMII::DomainGeneral) {
4836     unsigned DefClass = DefMI.getDesc().getSchedClass();
4837     int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4838     return (DefCycle != -1 && DefCycle <= 2);
4839   }
4840   return false;
4841 }
4842 
4843 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI,
4844                                          StringRef &ErrInfo) const {
4845   if (convertAddSubFlagsOpcode(MI.getOpcode())) {
4846     ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
4847     return false;
4848   }
4849   if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) {
4850     // Make sure we don't generate a lo-lo mov that isn't supported.
4851     if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) &&
4852         !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) {
4853       ErrInfo = "Non-flag-setting Thumb1 mov is v6-only";
4854       return false;
4855     }
4856   }
4857   if (MI.getOpcode() == ARM::tPUSH ||
4858       MI.getOpcode() == ARM::tPOP ||
4859       MI.getOpcode() == ARM::tPOP_RET) {
4860     for (int i = 2, e = MI.getNumOperands(); i < e; ++i) {
4861       if (MI.getOperand(i).isImplicit() ||
4862           !MI.getOperand(i).isReg())
4863         continue;
4864       Register Reg = MI.getOperand(i).getReg();
4865       if (Reg < ARM::R0 || Reg > ARM::R7) {
4866         if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) &&
4867             !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) {
4868           ErrInfo = "Unsupported register in Thumb1 push/pop";
4869           return false;
4870         }
4871       }
4872     }
4873   }
4874   if (MI.getOpcode() == ARM::MVE_VMOV_q_rr) {
4875     assert(MI.getOperand(4).isImm() && MI.getOperand(5).isImm());
4876     if ((MI.getOperand(4).getImm() != 2 && MI.getOperand(4).getImm() != 3) ||
4877         MI.getOperand(4).getImm() != MI.getOperand(5).getImm() + 2) {
4878       ErrInfo = "Incorrect array index for MVE_VMOV_q_rr";
4879       return false;
4880     }
4881   }
4882   return true;
4883 }
4884 
4885 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
4886                                                 unsigned LoadImmOpc,
4887                                                 unsigned LoadOpc) const {
4888   assert(!Subtarget.isROPI() && !Subtarget.isRWPI() &&
4889          "ROPI/RWPI not currently supported with stack guard");
4890 
4891   MachineBasicBlock &MBB = *MI->getParent();
4892   DebugLoc DL = MI->getDebugLoc();
4893   Register Reg = MI->getOperand(0).getReg();
4894   MachineInstrBuilder MIB;
4895   unsigned int Offset = 0;
4896 
4897   if (LoadImmOpc == ARM::MRC || LoadImmOpc == ARM::t2MRC) {
4898     assert(Subtarget.isReadTPHard() &&
4899            "TLS stack protector requires hardware TLS register");
4900 
4901     BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4902         .addImm(15)
4903         .addImm(0)
4904         .addImm(13)
4905         .addImm(0)
4906         .addImm(3)
4907         .add(predOps(ARMCC::AL));
4908 
4909     Module &M = *MBB.getParent()->getFunction().getParent();
4910     Offset = M.getStackProtectorGuardOffset();
4911     if (Offset & ~0xfffU) {
4912       // The offset won't fit in the LDR's 12-bit immediate field, so emit an
4913       // extra ADD to cover the delta. This gives us a guaranteed 8 additional
4914       // bits, resulting in a range of 0 to +1 MiB for the guard offset.
4915       unsigned AddOpc = (LoadImmOpc == ARM::MRC) ? ARM::ADDri : ARM::t2ADDri;
4916       BuildMI(MBB, MI, DL, get(AddOpc), Reg)
4917           .addReg(Reg, RegState::Kill)
4918           .addImm(Offset & ~0xfffU)
4919           .add(predOps(ARMCC::AL))
4920           .addReg(0);
4921       Offset &= 0xfffU;
4922     }
4923   } else {
4924     const GlobalValue *GV =
4925         cast<GlobalValue>((*MI->memoperands_begin())->getValue());
4926     bool IsIndirect = Subtarget.isGVIndirectSymbol(GV);
4927 
4928     unsigned TargetFlags = ARMII::MO_NO_FLAG;
4929     if (Subtarget.isTargetMachO()) {
4930       TargetFlags |= ARMII::MO_NONLAZY;
4931     } else if (Subtarget.isTargetCOFF()) {
4932       if (GV->hasDLLImportStorageClass())
4933         TargetFlags |= ARMII::MO_DLLIMPORT;
4934       else if (IsIndirect)
4935         TargetFlags |= ARMII::MO_COFFSTUB;
4936     } else if (Subtarget.isGVInGOT(GV)) {
4937       TargetFlags |= ARMII::MO_GOT;
4938     }
4939 
4940     BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4941         .addGlobalAddress(GV, 0, TargetFlags);
4942 
4943     if (IsIndirect) {
4944       MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4945       MIB.addReg(Reg, RegState::Kill).addImm(0);
4946       auto Flags = MachineMemOperand::MOLoad |
4947                    MachineMemOperand::MODereferenceable |
4948                    MachineMemOperand::MOInvariant;
4949       MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4950           MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, Align(4));
4951       MIB.addMemOperand(MMO).add(predOps(ARMCC::AL));
4952     }
4953   }
4954 
4955   MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4956   MIB.addReg(Reg, RegState::Kill)
4957       .addImm(Offset)
4958       .cloneMemRefs(*MI)
4959       .add(predOps(ARMCC::AL));
4960 }
4961 
4962 bool
4963 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
4964                                      unsigned &AddSubOpc,
4965                                      bool &NegAcc, bool &HasLane) const {
4966   DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
4967   if (I == MLxEntryMap.end())
4968     return false;
4969 
4970   const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
4971   MulOpc = Entry.MulOpc;
4972   AddSubOpc = Entry.AddSubOpc;
4973   NegAcc = Entry.NegAcc;
4974   HasLane = Entry.HasLane;
4975   return true;
4976 }
4977 
4978 //===----------------------------------------------------------------------===//
4979 // Execution domains.
4980 //===----------------------------------------------------------------------===//
4981 //
4982 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
4983 // and some can go down both.  The vmov instructions go down the VFP pipeline,
4984 // but they can be changed to vorr equivalents that are executed by the NEON
4985 // pipeline.
4986 //
4987 // We use the following execution domain numbering:
4988 //
4989 enum ARMExeDomain {
4990   ExeGeneric = 0,
4991   ExeVFP = 1,
4992   ExeNEON = 2
4993 };
4994 
4995 //
4996 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
4997 //
4998 std::pair<uint16_t, uint16_t>
4999 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const {
5000   // If we don't have access to NEON instructions then we won't be able
5001   // to swizzle anything to the NEON domain. Check to make sure.
5002   if (Subtarget.hasNEON()) {
5003     // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
5004     // if they are not predicated.
5005     if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI))
5006       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
5007 
5008     // CortexA9 is particularly picky about mixing the two and wants these
5009     // converted.
5010     if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) &&
5011         (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR ||
5012          MI.getOpcode() == ARM::VMOVS))
5013       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
5014   }
5015   // No other instructions can be swizzled, so just determine their domain.
5016   unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask;
5017 
5018   if (Domain & ARMII::DomainNEON)
5019     return std::make_pair(ExeNEON, 0);
5020 
5021   // Certain instructions can go either way on Cortex-A8.
5022   // Treat them as NEON instructions.
5023   if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
5024     return std::make_pair(ExeNEON, 0);
5025 
5026   if (Domain & ARMII::DomainVFP)
5027     return std::make_pair(ExeVFP, 0);
5028 
5029   return std::make_pair(ExeGeneric, 0);
5030 }
5031 
5032 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
5033                                             unsigned SReg, unsigned &Lane) {
5034   unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
5035   Lane = 0;
5036 
5037   if (DReg != ARM::NoRegister)
5038    return DReg;
5039 
5040   Lane = 1;
5041   DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
5042 
5043   assert(DReg && "S-register with no D super-register?");
5044   return DReg;
5045 }
5046 
5047 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
5048 /// set ImplicitSReg to a register number that must be marked as implicit-use or
5049 /// zero if no register needs to be defined as implicit-use.
5050 ///
5051 /// If the function cannot determine if an SPR should be marked implicit use or
5052 /// not, it returns false.
5053 ///
5054 /// This function handles cases where an instruction is being modified from taking
5055 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
5056 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
5057 /// lane of the DPR).
5058 ///
5059 /// If the other SPR is defined, an implicit-use of it should be added. Else,
5060 /// (including the case where the DPR itself is defined), it should not.
5061 ///
5062 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
5063                                        MachineInstr &MI, unsigned DReg,
5064                                        unsigned Lane, unsigned &ImplicitSReg) {
5065   // If the DPR is defined or used already, the other SPR lane will be chained
5066   // correctly, so there is nothing to be done.
5067   if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) {
5068     ImplicitSReg = 0;
5069     return true;
5070   }
5071 
5072   // Otherwise we need to go searching to see if the SPR is set explicitly.
5073   ImplicitSReg = TRI->getSubReg(DReg,
5074                                 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
5075   MachineBasicBlock::LivenessQueryResult LQR =
5076       MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
5077 
5078   if (LQR == MachineBasicBlock::LQR_Live)
5079     return true;
5080   else if (LQR == MachineBasicBlock::LQR_Unknown)
5081     return false;
5082 
5083   // If the register is known not to be live, there is no need to add an
5084   // implicit-use.
5085   ImplicitSReg = 0;
5086   return true;
5087 }
5088 
5089 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI,
5090                                           unsigned Domain) const {
5091   unsigned DstReg, SrcReg, DReg;
5092   unsigned Lane;
5093   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
5094   const TargetRegisterInfo *TRI = &getRegisterInfo();
5095   switch (MI.getOpcode()) {
5096   default:
5097     llvm_unreachable("cannot handle opcode!");
5098     break;
5099   case ARM::VMOVD:
5100     if (Domain != ExeNEON)
5101       break;
5102 
5103     // Zap the predicate operands.
5104     assert(!isPredicated(MI) && "Cannot predicate a VORRd");
5105 
5106     // Make sure we've got NEON instructions.
5107     assert(Subtarget.hasNEON() && "VORRd requires NEON");
5108 
5109     // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
5110     DstReg = MI.getOperand(0).getReg();
5111     SrcReg = MI.getOperand(1).getReg();
5112 
5113     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5114       MI.RemoveOperand(i - 1);
5115 
5116     // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
5117     MI.setDesc(get(ARM::VORRd));
5118     MIB.addReg(DstReg, RegState::Define)
5119         .addReg(SrcReg)
5120         .addReg(SrcReg)
5121         .add(predOps(ARMCC::AL));
5122     break;
5123   case ARM::VMOVRS:
5124     if (Domain != ExeNEON)
5125       break;
5126     assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
5127 
5128     // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
5129     DstReg = MI.getOperand(0).getReg();
5130     SrcReg = MI.getOperand(1).getReg();
5131 
5132     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5133       MI.RemoveOperand(i - 1);
5134 
5135     DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
5136 
5137     // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
5138     // Note that DSrc has been widened and the other lane may be undef, which
5139     // contaminates the entire register.
5140     MI.setDesc(get(ARM::VGETLNi32));
5141     MIB.addReg(DstReg, RegState::Define)
5142         .addReg(DReg, RegState::Undef)
5143         .addImm(Lane)
5144         .add(predOps(ARMCC::AL));
5145 
5146     // The old source should be an implicit use, otherwise we might think it
5147     // was dead before here.
5148     MIB.addReg(SrcReg, RegState::Implicit);
5149     break;
5150   case ARM::VMOVSR: {
5151     if (Domain != ExeNEON)
5152       break;
5153     assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
5154 
5155     // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
5156     DstReg = MI.getOperand(0).getReg();
5157     SrcReg = MI.getOperand(1).getReg();
5158 
5159     DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
5160 
5161     unsigned ImplicitSReg;
5162     if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
5163       break;
5164 
5165     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5166       MI.RemoveOperand(i - 1);
5167 
5168     // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
5169     // Again DDst may be undefined at the beginning of this instruction.
5170     MI.setDesc(get(ARM::VSETLNi32));
5171     MIB.addReg(DReg, RegState::Define)
5172         .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI)))
5173         .addReg(SrcReg)
5174         .addImm(Lane)
5175         .add(predOps(ARMCC::AL));
5176 
5177     // The narrower destination must be marked as set to keep previous chains
5178     // in place.
5179     MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
5180     if (ImplicitSReg != 0)
5181       MIB.addReg(ImplicitSReg, RegState::Implicit);
5182     break;
5183     }
5184     case ARM::VMOVS: {
5185       if (Domain != ExeNEON)
5186         break;
5187 
5188       // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
5189       DstReg = MI.getOperand(0).getReg();
5190       SrcReg = MI.getOperand(1).getReg();
5191 
5192       unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
5193       DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
5194       DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
5195 
5196       unsigned ImplicitSReg;
5197       if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
5198         break;
5199 
5200       for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5201         MI.RemoveOperand(i - 1);
5202 
5203       if (DSrc == DDst) {
5204         // Destination can be:
5205         //     %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
5206         MI.setDesc(get(ARM::VDUPLN32d));
5207         MIB.addReg(DDst, RegState::Define)
5208             .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI)))
5209             .addImm(SrcLane)
5210             .add(predOps(ARMCC::AL));
5211 
5212         // Neither the source or the destination are naturally represented any
5213         // more, so add them in manually.
5214         MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
5215         MIB.addReg(SrcReg, RegState::Implicit);
5216         if (ImplicitSReg != 0)
5217           MIB.addReg(ImplicitSReg, RegState::Implicit);
5218         break;
5219       }
5220 
5221       // In general there's no single instruction that can perform an S <-> S
5222       // move in NEON space, but a pair of VEXT instructions *can* do the
5223       // job. It turns out that the VEXTs needed will only use DSrc once, with
5224       // the position based purely on the combination of lane-0 and lane-1
5225       // involved. For example
5226       //     vmov s0, s2 -> vext.32 d0, d0, d1, #1  vext.32 d0, d0, d0, #1
5227       //     vmov s1, s3 -> vext.32 d0, d1, d0, #1  vext.32 d0, d0, d0, #1
5228       //     vmov s0, s3 -> vext.32 d0, d0, d0, #1  vext.32 d0, d1, d0, #1
5229       //     vmov s1, s2 -> vext.32 d0, d0, d0, #1  vext.32 d0, d0, d1, #1
5230       //
5231       // Pattern of the MachineInstrs is:
5232       //     %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
5233       MachineInstrBuilder NewMIB;
5234       NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32),
5235                        DDst);
5236 
5237       // On the first instruction, both DSrc and DDst may be undef if present.
5238       // Specifically when the original instruction didn't have them as an
5239       // <imp-use>.
5240       unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
5241       bool CurUndef = !MI.readsRegister(CurReg, TRI);
5242       NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
5243 
5244       CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
5245       CurUndef = !MI.readsRegister(CurReg, TRI);
5246       NewMIB.addReg(CurReg, getUndefRegState(CurUndef))
5247             .addImm(1)
5248             .add(predOps(ARMCC::AL));
5249 
5250       if (SrcLane == DstLane)
5251         NewMIB.addReg(SrcReg, RegState::Implicit);
5252 
5253       MI.setDesc(get(ARM::VEXTd32));
5254       MIB.addReg(DDst, RegState::Define);
5255 
5256       // On the second instruction, DDst has definitely been defined above, so
5257       // it is not undef. DSrc, if present, can be undef as above.
5258       CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
5259       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5260       MIB.addReg(CurReg, getUndefRegState(CurUndef));
5261 
5262       CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
5263       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5264       MIB.addReg(CurReg, getUndefRegState(CurUndef))
5265          .addImm(1)
5266          .add(predOps(ARMCC::AL));
5267 
5268       if (SrcLane != DstLane)
5269         MIB.addReg(SrcReg, RegState::Implicit);
5270 
5271       // As before, the original destination is no longer represented, add it
5272       // implicitly.
5273       MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
5274       if (ImplicitSReg != 0)
5275         MIB.addReg(ImplicitSReg, RegState::Implicit);
5276       break;
5277     }
5278   }
5279 }
5280 
5281 //===----------------------------------------------------------------------===//
5282 // Partial register updates
5283 //===----------------------------------------------------------------------===//
5284 //
5285 // Swift renames NEON registers with 64-bit granularity.  That means any
5286 // instruction writing an S-reg implicitly reads the containing D-reg.  The
5287 // problem is mostly avoided by translating f32 operations to v2f32 operations
5288 // on D-registers, but f32 loads are still a problem.
5289 //
5290 // These instructions can load an f32 into a NEON register:
5291 //
5292 // VLDRS - Only writes S, partial D update.
5293 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
5294 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
5295 //
5296 // FCONSTD can be used as a dependency-breaking instruction.
5297 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance(
5298     const MachineInstr &MI, unsigned OpNum,
5299     const TargetRegisterInfo *TRI) const {
5300   auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance();
5301   if (!PartialUpdateClearance)
5302     return 0;
5303 
5304   assert(TRI && "Need TRI instance");
5305 
5306   const MachineOperand &MO = MI.getOperand(OpNum);
5307   if (MO.readsReg())
5308     return 0;
5309   Register Reg = MO.getReg();
5310   int UseOp = -1;
5311 
5312   switch (MI.getOpcode()) {
5313   // Normal instructions writing only an S-register.
5314   case ARM::VLDRS:
5315   case ARM::FCONSTS:
5316   case ARM::VMOVSR:
5317   case ARM::VMOVv8i8:
5318   case ARM::VMOVv4i16:
5319   case ARM::VMOVv2i32:
5320   case ARM::VMOVv2f32:
5321   case ARM::VMOVv1i64:
5322     UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI);
5323     break;
5324 
5325     // Explicitly reads the dependency.
5326   case ARM::VLD1LNd32:
5327     UseOp = 3;
5328     break;
5329   default:
5330     return 0;
5331   }
5332 
5333   // If this instruction actually reads a value from Reg, there is no unwanted
5334   // dependency.
5335   if (UseOp != -1 && MI.getOperand(UseOp).readsReg())
5336     return 0;
5337 
5338   // We must be able to clobber the whole D-reg.
5339   if (Register::isVirtualRegister(Reg)) {
5340     // Virtual register must be a def undef foo:ssub_0 operand.
5341     if (!MO.getSubReg() || MI.readsVirtualRegister(Reg))
5342       return 0;
5343   } else if (ARM::SPRRegClass.contains(Reg)) {
5344     // Physical register: MI must define the full D-reg.
5345     unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
5346                                              &ARM::DPRRegClass);
5347     if (!DReg || !MI.definesRegister(DReg, TRI))
5348       return 0;
5349   }
5350 
5351   // MI has an unwanted D-register dependency.
5352   // Avoid defs in the previous N instructrions.
5353   return PartialUpdateClearance;
5354 }
5355 
5356 // Break a partial register dependency after getPartialRegUpdateClearance
5357 // returned non-zero.
5358 void ARMBaseInstrInfo::breakPartialRegDependency(
5359     MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
5360   assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def");
5361   assert(TRI && "Need TRI instance");
5362 
5363   const MachineOperand &MO = MI.getOperand(OpNum);
5364   Register Reg = MO.getReg();
5365   assert(Register::isPhysicalRegister(Reg) &&
5366          "Can't break virtual register dependencies.");
5367   unsigned DReg = Reg;
5368 
5369   // If MI defines an S-reg, find the corresponding D super-register.
5370   if (ARM::SPRRegClass.contains(Reg)) {
5371     DReg = ARM::D0 + (Reg - ARM::S0) / 2;
5372     assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
5373   }
5374 
5375   assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
5376   assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
5377 
5378   // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
5379   // the full D-register by loading the same value to both lanes.  The
5380   // instruction is micro-coded with 2 uops, so don't do this until we can
5381   // properly schedule micro-coded instructions.  The dispatcher stalls cause
5382   // too big regressions.
5383 
5384   // Insert the dependency-breaking FCONSTD before MI.
5385   // 96 is the encoding of 0.5, but the actual value doesn't matter here.
5386   BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg)
5387       .addImm(96)
5388       .add(predOps(ARMCC::AL));
5389   MI.addRegisterKilled(DReg, TRI, true);
5390 }
5391 
5392 bool ARMBaseInstrInfo::hasNOP() const {
5393   return Subtarget.getFeatureBits()[ARM::HasV6KOps];
5394 }
5395 
5396 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
5397   if (MI->getNumOperands() < 4)
5398     return true;
5399   unsigned ShOpVal = MI->getOperand(3).getImm();
5400   unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
5401   // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
5402   if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
5403       ((ShImm == 1 || ShImm == 2) &&
5404        ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
5405     return true;
5406 
5407   return false;
5408 }
5409 
5410 bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
5411     const MachineInstr &MI, unsigned DefIdx,
5412     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
5413   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5414   assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
5415 
5416   switch (MI.getOpcode()) {
5417   case ARM::VMOVDRR:
5418     // dX = VMOVDRR rY, rZ
5419     // is the same as:
5420     // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
5421     // Populate the InputRegs accordingly.
5422     // rY
5423     const MachineOperand *MOReg = &MI.getOperand(1);
5424     if (!MOReg->isUndef())
5425       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5426                                               MOReg->getSubReg(), ARM::ssub_0));
5427     // rZ
5428     MOReg = &MI.getOperand(2);
5429     if (!MOReg->isUndef())
5430       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5431                                               MOReg->getSubReg(), ARM::ssub_1));
5432     return true;
5433   }
5434   llvm_unreachable("Target dependent opcode missing");
5435 }
5436 
5437 bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
5438     const MachineInstr &MI, unsigned DefIdx,
5439     RegSubRegPairAndIdx &InputReg) const {
5440   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5441   assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
5442 
5443   switch (MI.getOpcode()) {
5444   case ARM::VMOVRRD:
5445     // rX, rY = VMOVRRD dZ
5446     // is the same as:
5447     // rX = EXTRACT_SUBREG dZ, ssub_0
5448     // rY = EXTRACT_SUBREG dZ, ssub_1
5449     const MachineOperand &MOReg = MI.getOperand(2);
5450     if (MOReg.isUndef())
5451       return false;
5452     InputReg.Reg = MOReg.getReg();
5453     InputReg.SubReg = MOReg.getSubReg();
5454     InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
5455     return true;
5456   }
5457   llvm_unreachable("Target dependent opcode missing");
5458 }
5459 
5460 bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
5461     const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
5462     RegSubRegPairAndIdx &InsertedReg) const {
5463   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5464   assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
5465 
5466   switch (MI.getOpcode()) {
5467   case ARM::VSETLNi32:
5468   case ARM::MVE_VMOV_to_lane_32:
5469     // dX = VSETLNi32 dY, rZ, imm
5470     // qX = MVE_VMOV_to_lane_32 qY, rZ, imm
5471     const MachineOperand &MOBaseReg = MI.getOperand(1);
5472     const MachineOperand &MOInsertedReg = MI.getOperand(2);
5473     if (MOInsertedReg.isUndef())
5474       return false;
5475     const MachineOperand &MOIndex = MI.getOperand(3);
5476     BaseReg.Reg = MOBaseReg.getReg();
5477     BaseReg.SubReg = MOBaseReg.getSubReg();
5478 
5479     InsertedReg.Reg = MOInsertedReg.getReg();
5480     InsertedReg.SubReg = MOInsertedReg.getSubReg();
5481     InsertedReg.SubIdx = ARM::ssub_0 + MOIndex.getImm();
5482     return true;
5483   }
5484   llvm_unreachable("Target dependent opcode missing");
5485 }
5486 
5487 std::pair<unsigned, unsigned>
5488 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
5489   const unsigned Mask = ARMII::MO_OPTION_MASK;
5490   return std::make_pair(TF & Mask, TF & ~Mask);
5491 }
5492 
5493 ArrayRef<std::pair<unsigned, const char *>>
5494 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
5495   using namespace ARMII;
5496 
5497   static const std::pair<unsigned, const char *> TargetFlags[] = {
5498       {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}};
5499   return makeArrayRef(TargetFlags);
5500 }
5501 
5502 ArrayRef<std::pair<unsigned, const char *>>
5503 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
5504   using namespace ARMII;
5505 
5506   static const std::pair<unsigned, const char *> TargetFlags[] = {
5507       {MO_COFFSTUB, "arm-coffstub"},
5508       {MO_GOT, "arm-got"},
5509       {MO_SBREL, "arm-sbrel"},
5510       {MO_DLLIMPORT, "arm-dllimport"},
5511       {MO_SECREL, "arm-secrel"},
5512       {MO_NONLAZY, "arm-nonlazy"}};
5513   return makeArrayRef(TargetFlags);
5514 }
5515 
5516 Optional<RegImmPair> ARMBaseInstrInfo::isAddImmediate(const MachineInstr &MI,
5517                                                       Register Reg) const {
5518   int Sign = 1;
5519   unsigned Opcode = MI.getOpcode();
5520   int64_t Offset = 0;
5521 
5522   // TODO: Handle cases where Reg is a super- or sub-register of the
5523   // destination register.
5524   const MachineOperand &Op0 = MI.getOperand(0);
5525   if (!Op0.isReg() || Reg != Op0.getReg())
5526     return None;
5527 
5528   // We describe SUBri or ADDri instructions.
5529   if (Opcode == ARM::SUBri)
5530     Sign = -1;
5531   else if (Opcode != ARM::ADDri)
5532     return None;
5533 
5534   // TODO: Third operand can be global address (usually some string). Since
5535   //       strings can be relocated we cannot calculate their offsets for
5536   //       now.
5537   if (!MI.getOperand(1).isReg() || !MI.getOperand(2).isImm())
5538     return None;
5539 
5540   Offset = MI.getOperand(2).getImm() * Sign;
5541   return RegImmPair{MI.getOperand(1).getReg(), Offset};
5542 }
5543 
5544 bool llvm::registerDefinedBetween(unsigned Reg,
5545                                   MachineBasicBlock::iterator From,
5546                                   MachineBasicBlock::iterator To,
5547                                   const TargetRegisterInfo *TRI) {
5548   for (auto I = From; I != To; ++I)
5549     if (I->modifiesRegister(Reg, TRI))
5550       return true;
5551   return false;
5552 }
5553 
5554 MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br,
5555                                          const TargetRegisterInfo *TRI) {
5556   // Search backwards to the instruction that defines CSPR. This may or not
5557   // be a CMP, we check that after this loop. If we find another instruction
5558   // that reads cpsr, we return nullptr.
5559   MachineBasicBlock::iterator CmpMI = Br;
5560   while (CmpMI != Br->getParent()->begin()) {
5561     --CmpMI;
5562     if (CmpMI->modifiesRegister(ARM::CPSR, TRI))
5563       break;
5564     if (CmpMI->readsRegister(ARM::CPSR, TRI))
5565       break;
5566   }
5567 
5568   // Check that this inst is a CMP r[0-7], #0 and that the register
5569   // is not redefined between the cmp and the br.
5570   if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri)
5571     return nullptr;
5572   Register Reg = CmpMI->getOperand(0).getReg();
5573   Register PredReg;
5574   ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg);
5575   if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0)
5576     return nullptr;
5577   if (!isARMLowRegister(Reg))
5578     return nullptr;
5579   if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI))
5580     return nullptr;
5581 
5582   return &*CmpMI;
5583 }
5584 
5585 unsigned llvm::ConstantMaterializationCost(unsigned Val,
5586                                            const ARMSubtarget *Subtarget,
5587                                            bool ForCodesize) {
5588   if (Subtarget->isThumb()) {
5589     if (Val <= 255) // MOV
5590       return ForCodesize ? 2 : 1;
5591     if (Subtarget->hasV6T2Ops() && (Val <= 0xffff ||                    // MOV
5592                                     ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW
5593                                     ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN
5594       return ForCodesize ? 4 : 1;
5595     if (Val <= 510) // MOV + ADDi8
5596       return ForCodesize ? 4 : 2;
5597     if (~Val <= 255) // MOV + MVN
5598       return ForCodesize ? 4 : 2;
5599     if (ARM_AM::isThumbImmShiftedVal(Val)) // MOV + LSL
5600       return ForCodesize ? 4 : 2;
5601   } else {
5602     if (ARM_AM::getSOImmVal(Val) != -1) // MOV
5603       return ForCodesize ? 4 : 1;
5604     if (ARM_AM::getSOImmVal(~Val) != -1) // MVN
5605       return ForCodesize ? 4 : 1;
5606     if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW
5607       return ForCodesize ? 4 : 1;
5608     if (ARM_AM::isSOImmTwoPartVal(Val)) // two instrs
5609       return ForCodesize ? 8 : 2;
5610     if (ARM_AM::isSOImmTwoPartValNeg(Val)) // two instrs
5611       return ForCodesize ? 8 : 2;
5612   }
5613   if (Subtarget->useMovt()) // MOVW + MOVT
5614     return ForCodesize ? 8 : 2;
5615   return ForCodesize ? 8 : 3; // Literal pool load
5616 }
5617 
5618 bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2,
5619                                                const ARMSubtarget *Subtarget,
5620                                                bool ForCodesize) {
5621   // Check with ForCodesize
5622   unsigned Cost1 = ConstantMaterializationCost(Val1, Subtarget, ForCodesize);
5623   unsigned Cost2 = ConstantMaterializationCost(Val2, Subtarget, ForCodesize);
5624   if (Cost1 < Cost2)
5625     return true;
5626   if (Cost1 > Cost2)
5627     return false;
5628 
5629   // If they are equal, try with !ForCodesize
5630   return ConstantMaterializationCost(Val1, Subtarget, !ForCodesize) <
5631          ConstantMaterializationCost(Val2, Subtarget, !ForCodesize);
5632 }
5633 
5634 /// Constants defining how certain sequences should be outlined.
5635 /// This encompasses how an outlined function should be called, and what kind of
5636 /// frame should be emitted for that outlined function.
5637 ///
5638 /// \p MachineOutlinerTailCall implies that the function is being created from
5639 /// a sequence of instructions ending in a return.
5640 ///
5641 /// That is,
5642 ///
5643 /// I1                                OUTLINED_FUNCTION:
5644 /// I2    --> B OUTLINED_FUNCTION     I1
5645 /// BX LR                             I2
5646 ///                                   BX LR
5647 ///
5648 /// +-------------------------+--------+-----+
5649 /// |                         | Thumb2 | ARM |
5650 /// +-------------------------+--------+-----+
5651 /// | Call overhead in Bytes  |      4 |   4 |
5652 /// | Frame overhead in Bytes |      0 |   0 |
5653 /// | Stack fixup required    |     No |  No |
5654 /// +-------------------------+--------+-----+
5655 ///
5656 /// \p MachineOutlinerThunk implies that the function is being created from
5657 /// a sequence of instructions ending in a call. The outlined function is
5658 /// called with a BL instruction, and the outlined function tail-calls the
5659 /// original call destination.
5660 ///
5661 /// That is,
5662 ///
5663 /// I1                                OUTLINED_FUNCTION:
5664 /// I2   --> BL OUTLINED_FUNCTION     I1
5665 /// BL f                              I2
5666 ///                                   B f
5667 ///
5668 /// +-------------------------+--------+-----+
5669 /// |                         | Thumb2 | ARM |
5670 /// +-------------------------+--------+-----+
5671 /// | Call overhead in Bytes  |      4 |   4 |
5672 /// | Frame overhead in Bytes |      0 |   0 |
5673 /// | Stack fixup required    |     No |  No |
5674 /// +-------------------------+--------+-----+
5675 ///
5676 /// \p MachineOutlinerNoLRSave implies that the function should be called using
5677 /// a BL instruction, but doesn't require LR to be saved and restored. This
5678 /// happens when LR is known to be dead.
5679 ///
5680 /// That is,
5681 ///
5682 /// I1                                OUTLINED_FUNCTION:
5683 /// I2 --> BL OUTLINED_FUNCTION       I1
5684 /// I3                                I2
5685 ///                                   I3
5686 ///                                   BX LR
5687 ///
5688 /// +-------------------------+--------+-----+
5689 /// |                         | Thumb2 | ARM |
5690 /// +-------------------------+--------+-----+
5691 /// | Call overhead in Bytes  |      4 |   4 |
5692 /// | Frame overhead in Bytes |      4 |   4 |
5693 /// | Stack fixup required    |     No |  No |
5694 /// +-------------------------+--------+-----+
5695 ///
5696 /// \p MachineOutlinerRegSave implies that the function should be called with a
5697 /// save and restore of LR to an available register. This allows us to avoid
5698 /// stack fixups. Note that this outlining variant is compatible with the
5699 /// NoLRSave case.
5700 ///
5701 /// That is,
5702 ///
5703 /// I1     Save LR                    OUTLINED_FUNCTION:
5704 /// I2 --> BL OUTLINED_FUNCTION       I1
5705 /// I3     Restore LR                 I2
5706 ///                                   I3
5707 ///                                   BX LR
5708 ///
5709 /// +-------------------------+--------+-----+
5710 /// |                         | Thumb2 | ARM |
5711 /// +-------------------------+--------+-----+
5712 /// | Call overhead in Bytes  |      8 |  12 |
5713 /// | Frame overhead in Bytes |      2 |   4 |
5714 /// | Stack fixup required    |     No |  No |
5715 /// +-------------------------+--------+-----+
5716 ///
5717 /// \p MachineOutlinerDefault implies that the function should be called with
5718 /// a save and restore of LR to the stack.
5719 ///
5720 /// That is,
5721 ///
5722 /// I1     Save LR                    OUTLINED_FUNCTION:
5723 /// I2 --> BL OUTLINED_FUNCTION       I1
5724 /// I3     Restore LR                 I2
5725 ///                                   I3
5726 ///                                   BX LR
5727 ///
5728 /// +-------------------------+--------+-----+
5729 /// |                         | Thumb2 | ARM |
5730 /// +-------------------------+--------+-----+
5731 /// | Call overhead in Bytes  |      8 |  12 |
5732 /// | Frame overhead in Bytes |      2 |   4 |
5733 /// | Stack fixup required    |    Yes | Yes |
5734 /// +-------------------------+--------+-----+
5735 
5736 enum MachineOutlinerClass {
5737   MachineOutlinerTailCall,
5738   MachineOutlinerThunk,
5739   MachineOutlinerNoLRSave,
5740   MachineOutlinerRegSave,
5741   MachineOutlinerDefault
5742 };
5743 
5744 enum MachineOutlinerMBBFlags {
5745   LRUnavailableSomewhere = 0x2,
5746   HasCalls = 0x4,
5747   UnsafeRegsDead = 0x8
5748 };
5749 
5750 struct OutlinerCosts {
5751   const int CallTailCall;
5752   const int FrameTailCall;
5753   const int CallThunk;
5754   const int FrameThunk;
5755   const int CallNoLRSave;
5756   const int FrameNoLRSave;
5757   const int CallRegSave;
5758   const int FrameRegSave;
5759   const int CallDefault;
5760   const int FrameDefault;
5761   const int SaveRestoreLROnStack;
5762 
5763   OutlinerCosts(const ARMSubtarget &target)
5764       : CallTailCall(target.isThumb() ? 4 : 4),
5765         FrameTailCall(target.isThumb() ? 0 : 0),
5766         CallThunk(target.isThumb() ? 4 : 4),
5767         FrameThunk(target.isThumb() ? 0 : 0),
5768         CallNoLRSave(target.isThumb() ? 4 : 4),
5769         FrameNoLRSave(target.isThumb() ? 4 : 4),
5770         CallRegSave(target.isThumb() ? 8 : 12),
5771         FrameRegSave(target.isThumb() ? 2 : 4),
5772         CallDefault(target.isThumb() ? 8 : 12),
5773         FrameDefault(target.isThumb() ? 2 : 4),
5774         SaveRestoreLROnStack(target.isThumb() ? 8 : 8) {}
5775 };
5776 
5777 unsigned
5778 ARMBaseInstrInfo::findRegisterToSaveLRTo(const outliner::Candidate &C) const {
5779   assert(C.LRUWasSet && "LRU wasn't set?");
5780   MachineFunction *MF = C.getMF();
5781   const ARMBaseRegisterInfo *ARI = static_cast<const ARMBaseRegisterInfo *>(
5782       MF->getSubtarget().getRegisterInfo());
5783 
5784   BitVector regsReserved = ARI->getReservedRegs(*MF);
5785   // Check if there is an available register across the sequence that we can
5786   // use.
5787   for (unsigned Reg : ARM::rGPRRegClass) {
5788     if (!(Reg < regsReserved.size() && regsReserved.test(Reg)) &&
5789         Reg != ARM::LR &&  // LR is not reserved, but don't use it.
5790         Reg != ARM::R12 && // R12 is not guaranteed to be preserved.
5791         C.LRU.available(Reg) && C.UsedInSequence.available(Reg))
5792       return Reg;
5793   }
5794 
5795   // No suitable register. Return 0.
5796   return 0u;
5797 }
5798 
5799 // Compute liveness of LR at the point after the interval [I, E), which
5800 // denotes a *backward* iteration through instructions. Used only for return
5801 // basic blocks, which do not end with a tail call.
5802 static bool isLRAvailable(const TargetRegisterInfo &TRI,
5803                           MachineBasicBlock::reverse_iterator I,
5804                           MachineBasicBlock::reverse_iterator E) {
5805   // At the end of the function LR dead.
5806   bool Live = false;
5807   for (; I != E; ++I) {
5808     const MachineInstr &MI = *I;
5809 
5810     // Check defs of LR.
5811     if (MI.modifiesRegister(ARM::LR, &TRI))
5812       Live = false;
5813 
5814     // Check uses of LR.
5815     unsigned Opcode = MI.getOpcode();
5816     if (Opcode == ARM::BX_RET || Opcode == ARM::MOVPCLR ||
5817         Opcode == ARM::SUBS_PC_LR || Opcode == ARM::tBX_RET ||
5818         Opcode == ARM::tBXNS_RET) {
5819       // These instructions use LR, but it's not an (explicit or implicit)
5820       // operand.
5821       Live = true;
5822       continue;
5823     }
5824     if (MI.readsRegister(ARM::LR, &TRI))
5825       Live = true;
5826   }
5827   return !Live;
5828 }
5829 
5830 outliner::OutlinedFunction ARMBaseInstrInfo::getOutliningCandidateInfo(
5831     std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
5832   outliner::Candidate &FirstCand = RepeatedSequenceLocs[0];
5833   unsigned SequenceSize =
5834       std::accumulate(FirstCand.front(), std::next(FirstCand.back()), 0,
5835                       [this](unsigned Sum, const MachineInstr &MI) {
5836                         return Sum + getInstSizeInBytes(MI);
5837                       });
5838 
5839   // Properties about candidate MBBs that hold for all of them.
5840   unsigned FlagsSetInAll = 0xF;
5841 
5842   // Compute liveness information for each candidate, and set FlagsSetInAll.
5843   const TargetRegisterInfo &TRI = getRegisterInfo();
5844   std::for_each(
5845       RepeatedSequenceLocs.begin(), RepeatedSequenceLocs.end(),
5846       [&FlagsSetInAll](outliner::Candidate &C) { FlagsSetInAll &= C.Flags; });
5847 
5848   // According to the ARM Procedure Call Standard, the following are
5849   // undefined on entry/exit from a function call:
5850   //
5851   // * Register R12(IP),
5852   // * Condition codes (and thus the CPSR register)
5853   //
5854   // Since we control the instructions which are part of the outlined regions
5855   // we don't need to be fully compliant with the AAPCS, but we have to
5856   // guarantee that if a veneer is inserted at link time the code is still
5857   // correct.  Because of this, we can't outline any sequence of instructions
5858   // where one of these registers is live into/across it. Thus, we need to
5859   // delete those candidates.
5860   auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) {
5861     // If the unsafe registers in this block are all dead, then we don't need
5862     // to compute liveness here.
5863     if (C.Flags & UnsafeRegsDead)
5864       return false;
5865     C.initLRU(TRI);
5866     LiveRegUnits LRU = C.LRU;
5867     return (!LRU.available(ARM::R12) || !LRU.available(ARM::CPSR));
5868   };
5869 
5870   // Are there any candidates where those registers are live?
5871   if (!(FlagsSetInAll & UnsafeRegsDead)) {
5872     // Erase every candidate that violates the restrictions above. (It could be
5873     // true that we have viable candidates, so it's not worth bailing out in
5874     // the case that, say, 1 out of 20 candidates violate the restructions.)
5875     llvm::erase_if(RepeatedSequenceLocs, CantGuaranteeValueAcrossCall);
5876 
5877     // If the sequence doesn't have enough candidates left, then we're done.
5878     if (RepeatedSequenceLocs.size() < 2)
5879       return outliner::OutlinedFunction();
5880   }
5881 
5882   // At this point, we have only "safe" candidates to outline. Figure out
5883   // frame + call instruction information.
5884 
5885   unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back()->getOpcode();
5886 
5887   // Helper lambda which sets call information for every candidate.
5888   auto SetCandidateCallInfo =
5889       [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) {
5890         for (outliner::Candidate &C : RepeatedSequenceLocs)
5891           C.setCallInfo(CallID, NumBytesForCall);
5892       };
5893 
5894   OutlinerCosts Costs(Subtarget);
5895   unsigned FrameID = MachineOutlinerDefault;
5896   unsigned NumBytesToCreateFrame = Costs.FrameDefault;
5897 
5898   // If the last instruction in any candidate is a terminator, then we should
5899   // tail call all of the candidates.
5900   if (RepeatedSequenceLocs[0].back()->isTerminator()) {
5901     FrameID = MachineOutlinerTailCall;
5902     NumBytesToCreateFrame = Costs.FrameTailCall;
5903     SetCandidateCallInfo(MachineOutlinerTailCall, Costs.CallTailCall);
5904   } else if (LastInstrOpcode == ARM::BL || LastInstrOpcode == ARM::BLX ||
5905              LastInstrOpcode == ARM::BLX_noip || LastInstrOpcode == ARM::tBL ||
5906              LastInstrOpcode == ARM::tBLXr ||
5907              LastInstrOpcode == ARM::tBLXr_noip ||
5908              LastInstrOpcode == ARM::tBLXi) {
5909     FrameID = MachineOutlinerThunk;
5910     NumBytesToCreateFrame = Costs.FrameThunk;
5911     SetCandidateCallInfo(MachineOutlinerThunk, Costs.CallThunk);
5912   } else {
5913     // We need to decide how to emit calls + frames. We can always emit the same
5914     // frame if we don't need to save to the stack. If we have to save to the
5915     // stack, then we need a different frame.
5916     unsigned NumBytesNoStackCalls = 0;
5917     std::vector<outliner::Candidate> CandidatesWithoutStackFixups;
5918 
5919     for (outliner::Candidate &C : RepeatedSequenceLocs) {
5920       C.initLRU(TRI);
5921       // LR liveness is overestimated in return blocks, unless they end with a
5922       // tail call.
5923       const auto Last = C.getMBB()->rbegin();
5924       const bool LRIsAvailable =
5925           C.getMBB()->isReturnBlock() && !Last->isCall()
5926               ? isLRAvailable(TRI, Last,
5927                               (MachineBasicBlock::reverse_iterator)C.front())
5928               : C.LRU.available(ARM::LR);
5929       if (LRIsAvailable) {
5930         FrameID = MachineOutlinerNoLRSave;
5931         NumBytesNoStackCalls += Costs.CallNoLRSave;
5932         C.setCallInfo(MachineOutlinerNoLRSave, Costs.CallNoLRSave);
5933         CandidatesWithoutStackFixups.push_back(C);
5934       }
5935 
5936       // Is an unused register available? If so, we won't modify the stack, so
5937       // we can outline with the same frame type as those that don't save LR.
5938       else if (findRegisterToSaveLRTo(C)) {
5939         FrameID = MachineOutlinerRegSave;
5940         NumBytesNoStackCalls += Costs.CallRegSave;
5941         C.setCallInfo(MachineOutlinerRegSave, Costs.CallRegSave);
5942         CandidatesWithoutStackFixups.push_back(C);
5943       }
5944 
5945       // Is SP used in the sequence at all? If not, we don't have to modify
5946       // the stack, so we are guaranteed to get the same frame.
5947       else if (C.UsedInSequence.available(ARM::SP)) {
5948         NumBytesNoStackCalls += Costs.CallDefault;
5949         C.setCallInfo(MachineOutlinerDefault, Costs.CallDefault);
5950         CandidatesWithoutStackFixups.push_back(C);
5951       }
5952 
5953       // If we outline this, we need to modify the stack. Pretend we don't
5954       // outline this by saving all of its bytes.
5955       else
5956         NumBytesNoStackCalls += SequenceSize;
5957     }
5958 
5959     // If there are no places where we have to save LR, then note that we don't
5960     // have to update the stack. Otherwise, give every candidate the default
5961     // call type
5962     if (NumBytesNoStackCalls <=
5963         RepeatedSequenceLocs.size() * Costs.CallDefault) {
5964       RepeatedSequenceLocs = CandidatesWithoutStackFixups;
5965       FrameID = MachineOutlinerNoLRSave;
5966     } else
5967       SetCandidateCallInfo(MachineOutlinerDefault, Costs.CallDefault);
5968   }
5969 
5970   // Does every candidate's MBB contain a call?  If so, then we might have a
5971   // call in the range.
5972   if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) {
5973     // check if the range contains a call.  These require a save + restore of
5974     // the link register.
5975     if (std::any_of(FirstCand.front(), FirstCand.back(),
5976                     [](const MachineInstr &MI) { return MI.isCall(); }))
5977       NumBytesToCreateFrame += Costs.SaveRestoreLROnStack;
5978 
5979     // Handle the last instruction separately.  If it is tail call, then the
5980     // last instruction is a call, we don't want to save + restore in this
5981     // case.  However, it could be possible that the last instruction is a
5982     // call without it being valid to tail call this sequence.  We should
5983     // consider this as well.
5984     else if (FrameID != MachineOutlinerThunk &&
5985              FrameID != MachineOutlinerTailCall && FirstCand.back()->isCall())
5986       NumBytesToCreateFrame += Costs.SaveRestoreLROnStack;
5987   }
5988 
5989   return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
5990                                     NumBytesToCreateFrame, FrameID);
5991 }
5992 
5993 bool ARMBaseInstrInfo::checkAndUpdateStackOffset(MachineInstr *MI,
5994                                                  int64_t Fixup,
5995                                                  bool Updt) const {
5996   int SPIdx = MI->findRegisterUseOperandIdx(ARM::SP);
5997   unsigned AddrMode = (MI->getDesc().TSFlags & ARMII::AddrModeMask);
5998   if (SPIdx < 0)
5999     // No SP operand
6000     return true;
6001   else if (SPIdx != 1 && (AddrMode != ARMII::AddrModeT2_i8s4 || SPIdx != 2))
6002     // If SP is not the base register we can't do much
6003     return false;
6004 
6005   // Stack might be involved but addressing mode doesn't handle any offset.
6006   // Rq: AddrModeT1_[1|2|4] don't operate on SP
6007   if (AddrMode == ARMII::AddrMode1        // Arithmetic instructions
6008       || AddrMode == ARMII::AddrMode4     // Load/Store Multiple
6009       || AddrMode == ARMII::AddrMode6     // Neon Load/Store Multiple
6010       || AddrMode == ARMII::AddrModeT2_so // SP can't be used as based register
6011       || AddrMode == ARMII::AddrModeT2_pc // PCrel access
6012       || AddrMode == ARMII::AddrMode2     // Used by PRE and POST indexed LD/ST
6013       || AddrMode == ARMII::AddrModeT2_i7 // v8.1-M MVE
6014       || AddrMode == ARMII::AddrModeT2_i7s2 // v8.1-M MVE
6015       || AddrMode == ARMII::AddrModeT2_i7s4 // v8.1-M sys regs VLDR/VSTR
6016       || AddrMode == ARMII::AddrModeNone)
6017     return false;
6018 
6019   unsigned NumOps = MI->getDesc().getNumOperands();
6020   unsigned ImmIdx = NumOps - 3;
6021 
6022   const MachineOperand &Offset = MI->getOperand(ImmIdx);
6023   assert(Offset.isImm() && "Is not an immediate");
6024   int64_t OffVal = Offset.getImm();
6025 
6026   if (OffVal < 0)
6027     // Don't override data if the are below SP.
6028     return false;
6029 
6030   unsigned NumBits = 0;
6031   unsigned Scale = 1;
6032 
6033   switch (AddrMode) {
6034   case ARMII::AddrMode3:
6035     if (ARM_AM::getAM3Op(OffVal) == ARM_AM::sub)
6036       return false;
6037     OffVal = ARM_AM::getAM3Offset(OffVal);
6038     NumBits = 8;
6039     break;
6040   case ARMII::AddrMode5:
6041     if (ARM_AM::getAM5Op(OffVal) == ARM_AM::sub)
6042       return false;
6043     OffVal = ARM_AM::getAM5Offset(OffVal);
6044     NumBits = 8;
6045     Scale = 4;
6046     break;
6047   case ARMII::AddrMode5FP16:
6048     if (ARM_AM::getAM5FP16Op(OffVal) == ARM_AM::sub)
6049       return false;
6050     OffVal = ARM_AM::getAM5FP16Offset(OffVal);
6051     NumBits = 8;
6052     Scale = 2;
6053     break;
6054   case ARMII::AddrModeT2_i8:
6055     NumBits = 8;
6056     break;
6057   case ARMII::AddrModeT2_i8s4:
6058     // FIXME: Values are already scaled in this addressing mode.
6059     assert((Fixup & 3) == 0 && "Can't encode this offset!");
6060     NumBits = 10;
6061     break;
6062   case ARMII::AddrModeT2_ldrex:
6063     NumBits = 8;
6064     Scale = 4;
6065     break;
6066   case ARMII::AddrModeT2_i12:
6067   case ARMII::AddrMode_i12:
6068     NumBits = 12;
6069     break;
6070   case ARMII::AddrModeT1_s: // SP-relative LD/ST
6071     NumBits = 8;
6072     Scale = 4;
6073     break;
6074   default:
6075     llvm_unreachable("Unsupported addressing mode!");
6076   }
6077   // Make sure the offset is encodable for instructions that scale the
6078   // immediate.
6079   assert(((OffVal * Scale + Fixup) & (Scale - 1)) == 0 &&
6080          "Can't encode this offset!");
6081   OffVal += Fixup / Scale;
6082 
6083   unsigned Mask = (1 << NumBits) - 1;
6084 
6085   if (OffVal <= Mask) {
6086     if (Updt)
6087       MI->getOperand(ImmIdx).setImm(OffVal);
6088     return true;
6089   }
6090 
6091   return false;
6092 
6093 }
6094 
6095 bool ARMBaseInstrInfo::isFunctionSafeToOutlineFrom(
6096     MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
6097   const Function &F = MF.getFunction();
6098 
6099   // Can F be deduplicated by the linker? If it can, don't outline from it.
6100   if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
6101     return false;
6102 
6103   // Don't outline from functions with section markings; the program could
6104   // expect that all the code is in the named section.
6105   // FIXME: Allow outlining from multiple functions with the same section
6106   // marking.
6107   if (F.hasSection())
6108     return false;
6109 
6110   // FIXME: Thumb1 outlining is not handled
6111   if (MF.getInfo<ARMFunctionInfo>()->isThumb1OnlyFunction())
6112     return false;
6113 
6114   // It's safe to outline from MF.
6115   return true;
6116 }
6117 
6118 bool ARMBaseInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
6119                                               unsigned &Flags) const {
6120   // Check if LR is available through all of the MBB. If it's not, then set
6121   // a flag.
6122   assert(MBB.getParent()->getRegInfo().tracksLiveness() &&
6123          "Suitable Machine Function for outlining must track liveness");
6124 
6125   LiveRegUnits LRU(getRegisterInfo());
6126 
6127   std::for_each(MBB.rbegin(), MBB.rend(),
6128                 [&LRU](MachineInstr &MI) { LRU.accumulate(MI); });
6129 
6130   // Check if each of the unsafe registers are available...
6131   bool R12AvailableInBlock = LRU.available(ARM::R12);
6132   bool CPSRAvailableInBlock = LRU.available(ARM::CPSR);
6133 
6134   // If all of these are dead (and not live out), we know we don't have to check
6135   // them later.
6136   if (R12AvailableInBlock && CPSRAvailableInBlock)
6137     Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead;
6138 
6139   // Now, add the live outs to the set.
6140   LRU.addLiveOuts(MBB);
6141 
6142   // If any of these registers is available in the MBB, but also a live out of
6143   // the block, then we know outlining is unsafe.
6144   if (R12AvailableInBlock && !LRU.available(ARM::R12))
6145     return false;
6146   if (CPSRAvailableInBlock && !LRU.available(ARM::CPSR))
6147     return false;
6148 
6149   // Check if there's a call inside this MachineBasicBlock.  If there is, then
6150   // set a flag.
6151   if (any_of(MBB, [](MachineInstr &MI) { return MI.isCall(); }))
6152     Flags |= MachineOutlinerMBBFlags::HasCalls;
6153 
6154   // LR liveness is overestimated in return blocks.
6155 
6156   bool LRIsAvailable =
6157       MBB.isReturnBlock() && !MBB.back().isCall()
6158           ? isLRAvailable(getRegisterInfo(), MBB.rbegin(), MBB.rend())
6159           : LRU.available(ARM::LR);
6160   if (!LRIsAvailable)
6161     Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere;
6162 
6163   return true;
6164 }
6165 
6166 outliner::InstrType
6167 ARMBaseInstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT,
6168                                    unsigned Flags) const {
6169   MachineInstr &MI = *MIT;
6170   const TargetRegisterInfo *TRI = &getRegisterInfo();
6171 
6172   // Be conservative with inline ASM
6173   if (MI.isInlineAsm())
6174     return outliner::InstrType::Illegal;
6175 
6176   // Don't allow debug values to impact outlining type.
6177   if (MI.isDebugInstr() || MI.isIndirectDebugValue())
6178     return outliner::InstrType::Invisible;
6179 
6180   // At this point, KILL or IMPLICIT_DEF instructions don't really tell us much
6181   // so we can go ahead and skip over them.
6182   if (MI.isKill() || MI.isImplicitDef())
6183     return outliner::InstrType::Invisible;
6184 
6185   // PIC instructions contain labels, outlining them would break offset
6186   // computing.  unsigned Opc = MI.getOpcode();
6187   unsigned Opc = MI.getOpcode();
6188   if (Opc == ARM::tPICADD || Opc == ARM::PICADD || Opc == ARM::PICSTR ||
6189       Opc == ARM::PICSTRB || Opc == ARM::PICSTRH || Opc == ARM::PICLDR ||
6190       Opc == ARM::PICLDRB || Opc == ARM::PICLDRH || Opc == ARM::PICLDRSB ||
6191       Opc == ARM::PICLDRSH || Opc == ARM::t2LDRpci_pic ||
6192       Opc == ARM::t2MOVi16_ga_pcrel || Opc == ARM::t2MOVTi16_ga_pcrel ||
6193       Opc == ARM::t2MOV_ga_pcrel)
6194     return outliner::InstrType::Illegal;
6195 
6196   // Be conservative with ARMv8.1 MVE instructions.
6197   if (Opc == ARM::t2BF_LabelPseudo || Opc == ARM::t2DoLoopStart ||
6198       Opc == ARM::t2DoLoopStartTP || Opc == ARM::t2WhileLoopStart ||
6199       Opc == ARM::t2WhileLoopStartLR || Opc == ARM::t2WhileLoopStartTP ||
6200       Opc == ARM::t2LoopDec || Opc == ARM::t2LoopEnd ||
6201       Opc == ARM::t2LoopEndDec)
6202     return outliner::InstrType::Illegal;
6203 
6204   const MCInstrDesc &MCID = MI.getDesc();
6205   uint64_t MIFlags = MCID.TSFlags;
6206   if ((MIFlags & ARMII::DomainMask) == ARMII::DomainMVE)
6207     return outliner::InstrType::Illegal;
6208 
6209   // Is this a terminator for a basic block?
6210   if (MI.isTerminator()) {
6211     // Don't outline if the branch is not unconditional.
6212     if (isPredicated(MI))
6213       return outliner::InstrType::Illegal;
6214 
6215     // Is this the end of a function?
6216     if (MI.getParent()->succ_empty())
6217       return outliner::InstrType::Legal;
6218 
6219     // It's not, so don't outline it.
6220     return outliner::InstrType::Illegal;
6221   }
6222 
6223   // Make sure none of the operands are un-outlinable.
6224   for (const MachineOperand &MOP : MI.operands()) {
6225     if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
6226         MOP.isTargetIndex())
6227       return outliner::InstrType::Illegal;
6228   }
6229 
6230   // Don't outline if link register or program counter value are used.
6231   if (MI.readsRegister(ARM::LR, TRI) || MI.readsRegister(ARM::PC, TRI))
6232     return outliner::InstrType::Illegal;
6233 
6234   if (MI.isCall()) {
6235     // Get the function associated with the call.  Look at each operand and find
6236     // the one that represents the calle and get its name.
6237     const Function *Callee = nullptr;
6238     for (const MachineOperand &MOP : MI.operands()) {
6239       if (MOP.isGlobal()) {
6240         Callee = dyn_cast<Function>(MOP.getGlobal());
6241         break;
6242       }
6243     }
6244 
6245     // Dont't outline calls to "mcount" like functions, in particular Linux
6246     // kernel function tracing relies on it.
6247     if (Callee &&
6248         (Callee->getName() == "\01__gnu_mcount_nc" ||
6249          Callee->getName() == "\01mcount" || Callee->getName() == "__mcount"))
6250       return outliner::InstrType::Illegal;
6251 
6252     // If we don't know anything about the callee, assume it depends on the
6253     // stack layout of the caller. In that case, it's only legal to outline
6254     // as a tail-call. Explicitly list the call instructions we know about so
6255     // we don't get unexpected results with call pseudo-instructions.
6256     auto UnknownCallOutlineType = outliner::InstrType::Illegal;
6257     if (Opc == ARM::BL || Opc == ARM::tBL || Opc == ARM::BLX ||
6258         Opc == ARM::BLX_noip || Opc == ARM::tBLXr || Opc == ARM::tBLXr_noip ||
6259         Opc == ARM::tBLXi)
6260       UnknownCallOutlineType = outliner::InstrType::LegalTerminator;
6261 
6262     if (!Callee)
6263       return UnknownCallOutlineType;
6264 
6265     // We have a function we have information about.  Check if it's something we
6266     // can safely outline.
6267     MachineFunction *MF = MI.getParent()->getParent();
6268     MachineFunction *CalleeMF = MF->getMMI().getMachineFunction(*Callee);
6269 
6270     // We don't know what's going on with the callee at all.  Don't touch it.
6271     if (!CalleeMF)
6272       return UnknownCallOutlineType;
6273 
6274     // Check if we know anything about the callee saves on the function. If we
6275     // don't, then don't touch it, since that implies that we haven't computed
6276     // anything about its stack frame yet.
6277     MachineFrameInfo &MFI = CalleeMF->getFrameInfo();
6278     if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 ||
6279         MFI.getNumObjects() > 0)
6280       return UnknownCallOutlineType;
6281 
6282     // At this point, we can say that CalleeMF ought to not pass anything on the
6283     // stack. Therefore, we can outline it.
6284     return outliner::InstrType::Legal;
6285   }
6286 
6287   // Since calls are handled, don't touch LR or PC
6288   if (MI.modifiesRegister(ARM::LR, TRI) || MI.modifiesRegister(ARM::PC, TRI))
6289     return outliner::InstrType::Illegal;
6290 
6291   // Does this use the stack?
6292   if (MI.modifiesRegister(ARM::SP, TRI) || MI.readsRegister(ARM::SP, TRI)) {
6293     // True if there is no chance that any outlined candidate from this range
6294     // could require stack fixups. That is, both
6295     // * LR is available in the range (No save/restore around call)
6296     // * The range doesn't include calls (No save/restore in outlined frame)
6297     // are true.
6298     // FIXME: This is very restrictive; the flags check the whole block,
6299     // not just the bit we will try to outline.
6300     bool MightNeedStackFixUp =
6301         (Flags & (MachineOutlinerMBBFlags::LRUnavailableSomewhere |
6302                   MachineOutlinerMBBFlags::HasCalls));
6303 
6304     if (!MightNeedStackFixUp)
6305       return outliner::InstrType::Legal;
6306 
6307     // Any modification of SP will break our code to save/restore LR.
6308     // FIXME: We could handle some instructions which add a constant offset to
6309     // SP, with a bit more work.
6310     if (MI.modifiesRegister(ARM::SP, TRI))
6311       return outliner::InstrType::Illegal;
6312 
6313     // At this point, we have a stack instruction that we might need to fix up.
6314     // up. We'll handle it if it's a load or store.
6315     if (checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(),
6316                                   false))
6317       return outliner::InstrType::Legal;
6318 
6319     // We can't fix it up, so don't outline it.
6320     return outliner::InstrType::Illegal;
6321   }
6322 
6323   // Be conservative with IT blocks.
6324   if (MI.readsRegister(ARM::ITSTATE, TRI) ||
6325       MI.modifiesRegister(ARM::ITSTATE, TRI))
6326     return outliner::InstrType::Illegal;
6327 
6328   // Don't outline positions.
6329   if (MI.isPosition())
6330     return outliner::InstrType::Illegal;
6331 
6332   return outliner::InstrType::Legal;
6333 }
6334 
6335 void ARMBaseInstrInfo::fixupPostOutline(MachineBasicBlock &MBB) const {
6336   for (MachineInstr &MI : MBB) {
6337     checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(), true);
6338   }
6339 }
6340 
6341 void ARMBaseInstrInfo::saveLROnStack(MachineBasicBlock &MBB,
6342                                      MachineBasicBlock::iterator It) const {
6343   unsigned Opc = Subtarget.isThumb() ? ARM::t2STR_PRE : ARM::STR_PRE_IMM;
6344   int Align = -Subtarget.getStackAlignment().value();
6345   BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::SP)
6346     .addReg(ARM::LR, RegState::Kill)
6347     .addReg(ARM::SP)
6348     .addImm(Align)
6349     .add(predOps(ARMCC::AL));
6350 }
6351 
6352 void ARMBaseInstrInfo::emitCFIForLRSaveOnStack(
6353     MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {
6354   MachineFunction &MF = *MBB.getParent();
6355   const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6356   unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6357   int Align = Subtarget.getStackAlignment().value();
6358   // Add a CFI saying the stack was moved down.
6359   int64_t StackPosEntry =
6360       MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Align));
6361   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6362       .addCFIIndex(StackPosEntry)
6363       .setMIFlags(MachineInstr::FrameSetup);
6364 
6365   // Add a CFI saying that the LR that we want to find is now higher than
6366   // before.
6367   int64_t LRPosEntry =
6368       MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, DwarfLR, -Align));
6369   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6370       .addCFIIndex(LRPosEntry)
6371       .setMIFlags(MachineInstr::FrameSetup);
6372 }
6373 
6374 void ARMBaseInstrInfo::emitCFIForLRSaveToReg(MachineBasicBlock &MBB,
6375                                              MachineBasicBlock::iterator It,
6376                                              Register Reg) const {
6377   MachineFunction &MF = *MBB.getParent();
6378   const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6379   unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6380   unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
6381 
6382   int64_t LRPosEntry = MF.addFrameInst(
6383       MCCFIInstruction::createRegister(nullptr, DwarfLR, DwarfReg));
6384   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6385       .addCFIIndex(LRPosEntry)
6386       .setMIFlags(MachineInstr::FrameSetup);
6387 }
6388 
6389 void ARMBaseInstrInfo::restoreLRFromStack(
6390     MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {
6391   unsigned Opc = Subtarget.isThumb() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
6392   MachineInstrBuilder MIB = BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::LR)
6393     .addReg(ARM::SP, RegState::Define)
6394     .addReg(ARM::SP);
6395   if (!Subtarget.isThumb())
6396     MIB.addReg(0);
6397   MIB.addImm(Subtarget.getStackAlignment().value()).add(predOps(ARMCC::AL));
6398 }
6399 
6400 void ARMBaseInstrInfo::emitCFIForLRRestoreFromStack(
6401     MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {
6402   // Now stack has moved back up...
6403   MachineFunction &MF = *MBB.getParent();
6404   const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6405   unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6406   int64_t StackPosEntry =
6407       MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
6408   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6409       .addCFIIndex(StackPosEntry)
6410       .setMIFlags(MachineInstr::FrameDestroy);
6411 
6412   // ... and we have restored LR.
6413   int64_t LRPosEntry =
6414       MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR));
6415   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6416       .addCFIIndex(LRPosEntry)
6417       .setMIFlags(MachineInstr::FrameDestroy);
6418 }
6419 
6420 void ARMBaseInstrInfo::emitCFIForLRRestoreFromReg(
6421     MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {
6422   MachineFunction &MF = *MBB.getParent();
6423   const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6424   unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6425 
6426   int64_t LRPosEntry =
6427       MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR));
6428   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6429       .addCFIIndex(LRPosEntry)
6430       .setMIFlags(MachineInstr::FrameDestroy);
6431 }
6432 
6433 void ARMBaseInstrInfo::buildOutlinedFrame(
6434     MachineBasicBlock &MBB, MachineFunction &MF,
6435     const outliner::OutlinedFunction &OF) const {
6436   // For thunk outlining, rewrite the last instruction from a call to a
6437   // tail-call.
6438   if (OF.FrameConstructionID == MachineOutlinerThunk) {
6439     MachineInstr *Call = &*--MBB.instr_end();
6440     bool isThumb = Subtarget.isThumb();
6441     unsigned FuncOp = isThumb ? 2 : 0;
6442     unsigned Opc = Call->getOperand(FuncOp).isReg()
6443                        ? isThumb ? ARM::tTAILJMPr : ARM::TAILJMPr
6444                        : isThumb ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd
6445                                                              : ARM::tTAILJMPdND
6446                                  : ARM::TAILJMPd;
6447     MachineInstrBuilder MIB = BuildMI(MBB, MBB.end(), DebugLoc(), get(Opc))
6448                                   .add(Call->getOperand(FuncOp));
6449     if (isThumb && !Call->getOperand(FuncOp).isReg())
6450       MIB.add(predOps(ARMCC::AL));
6451     Call->eraseFromParent();
6452   }
6453 
6454   // Is there a call in the outlined range?
6455   auto IsNonTailCall = [](MachineInstr &MI) {
6456     return MI.isCall() && !MI.isReturn();
6457   };
6458   if (llvm::any_of(MBB.instrs(), IsNonTailCall)) {
6459     MachineBasicBlock::iterator It = MBB.begin();
6460     MachineBasicBlock::iterator Et = MBB.end();
6461 
6462     if (OF.FrameConstructionID == MachineOutlinerTailCall ||
6463         OF.FrameConstructionID == MachineOutlinerThunk)
6464       Et = std::prev(MBB.end());
6465 
6466     // We have to save and restore LR, we need to add it to the liveins if it
6467     // is not already part of the set.  This is suffient since outlined
6468     // functions only have one block.
6469     if (!MBB.isLiveIn(ARM::LR))
6470       MBB.addLiveIn(ARM::LR);
6471 
6472     // Insert a save before the outlined region
6473     saveLROnStack(MBB, It);
6474     emitCFIForLRSaveOnStack(MBB, It);
6475 
6476     // Fix up the instructions in the range, since we're going to modify the
6477     // stack.
6478     assert(OF.FrameConstructionID != MachineOutlinerDefault &&
6479            "Can only fix up stack references once");
6480     fixupPostOutline(MBB);
6481 
6482     // Insert a restore before the terminator for the function.  Restore LR.
6483     restoreLRFromStack(MBB, Et);
6484     emitCFIForLRRestoreFromStack(MBB, Et);
6485   }
6486 
6487   // If this is a tail call outlined function, then there's already a return.
6488   if (OF.FrameConstructionID == MachineOutlinerTailCall ||
6489       OF.FrameConstructionID == MachineOutlinerThunk)
6490     return;
6491 
6492   // Here we have to insert the return ourselves.  Get the correct opcode from
6493   // current feature set.
6494   BuildMI(MBB, MBB.end(), DebugLoc(), get(Subtarget.getReturnOpcode()))
6495       .add(predOps(ARMCC::AL));
6496 
6497   // Did we have to modify the stack by saving the link register?
6498   if (OF.FrameConstructionID != MachineOutlinerDefault &&
6499       OF.Candidates[0].CallConstructionID != MachineOutlinerDefault)
6500     return;
6501 
6502   // We modified the stack.
6503   // Walk over the basic block and fix up all the stack accesses.
6504   fixupPostOutline(MBB);
6505 }
6506 
6507 MachineBasicBlock::iterator ARMBaseInstrInfo::insertOutlinedCall(
6508     Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It,
6509     MachineFunction &MF, const outliner::Candidate &C) const {
6510   MachineInstrBuilder MIB;
6511   MachineBasicBlock::iterator CallPt;
6512   unsigned Opc;
6513   bool isThumb = Subtarget.isThumb();
6514 
6515   // Are we tail calling?
6516   if (C.CallConstructionID == MachineOutlinerTailCall) {
6517     // If yes, then we can just branch to the label.
6518     Opc = isThumb
6519               ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd : ARM::tTAILJMPdND
6520               : ARM::TAILJMPd;
6521     MIB = BuildMI(MF, DebugLoc(), get(Opc))
6522               .addGlobalAddress(M.getNamedValue(MF.getName()));
6523     if (isThumb)
6524       MIB.add(predOps(ARMCC::AL));
6525     It = MBB.insert(It, MIB);
6526     return It;
6527   }
6528 
6529   // Create the call instruction.
6530   Opc = isThumb ? ARM::tBL : ARM::BL;
6531   MachineInstrBuilder CallMIB = BuildMI(MF, DebugLoc(), get(Opc));
6532   if (isThumb)
6533     CallMIB.add(predOps(ARMCC::AL));
6534   CallMIB.addGlobalAddress(M.getNamedValue(MF.getName()));
6535 
6536   if (C.CallConstructionID == MachineOutlinerNoLRSave ||
6537       C.CallConstructionID == MachineOutlinerThunk) {
6538     // No, so just insert the call.
6539     It = MBB.insert(It, CallMIB);
6540     return It;
6541   }
6542 
6543   const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>();
6544   // Can we save to a register?
6545   if (C.CallConstructionID == MachineOutlinerRegSave) {
6546     unsigned Reg = findRegisterToSaveLRTo(C);
6547     assert(Reg != 0 && "No callee-saved register available?");
6548 
6549     // Save and restore LR from that register.
6550     copyPhysReg(MBB, It, DebugLoc(), Reg, ARM::LR, true);
6551     if (!AFI.isLRSpilled())
6552       emitCFIForLRSaveToReg(MBB, It, Reg);
6553     CallPt = MBB.insert(It, CallMIB);
6554     copyPhysReg(MBB, It, DebugLoc(), ARM::LR, Reg, true);
6555     if (!AFI.isLRSpilled())
6556       emitCFIForLRRestoreFromReg(MBB, It);
6557     It--;
6558     return CallPt;
6559   }
6560   // We have the default case. Save and restore from SP.
6561   if (!MBB.isLiveIn(ARM::LR))
6562     MBB.addLiveIn(ARM::LR);
6563   saveLROnStack(MBB, It);
6564   if (!AFI.isLRSpilled())
6565     emitCFIForLRSaveOnStack(MBB, It);
6566   CallPt = MBB.insert(It, CallMIB);
6567   restoreLRFromStack(MBB, It);
6568   if (!AFI.isLRSpilled())
6569     emitCFIForLRRestoreFromStack(MBB, It);
6570   It--;
6571   return CallPt;
6572 }
6573 
6574 bool ARMBaseInstrInfo::shouldOutlineFromFunctionByDefault(
6575     MachineFunction &MF) const {
6576   return Subtarget.isMClass() && MF.getFunction().hasMinSize();
6577 }
6578 
6579 bool ARMBaseInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
6580                                                          AAResults *AA) const {
6581   // Try hard to rematerialize any VCTPs because if we spill P0, it will block
6582   // the tail predication conversion. This means that the element count
6583   // register has to be live for longer, but that has to be better than
6584   // spill/restore and VPT predication.
6585   return isVCTP(&MI) && !isPredicated(MI);
6586 }
6587 
6588 unsigned llvm::getBLXOpcode(const MachineFunction &MF) {
6589   return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_noip
6590                                                           : ARM::BLX;
6591 }
6592 
6593 unsigned llvm::gettBLXrOpcode(const MachineFunction &MF) {
6594   return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::tBLXr_noip
6595                                                           : ARM::tBLXr;
6596 }
6597 
6598 unsigned llvm::getBLXpredOpcode(const MachineFunction &MF) {
6599   return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_pred_noip
6600                                                           : ARM::BLX_pred;
6601 }
6602 
6603