xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the Base ARM implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ARMBaseInstrInfo.h"
14 #include "ARMBaseRegisterInfo.h"
15 #include "ARMConstantPoolValue.h"
16 #include "ARMFeatures.h"
17 #include "ARMHazardRecognizer.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "MCTargetDesc/ARMBaseInfo.h"
22 #include "MVETailPredUtils.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/CodeGen/DFAPacketizer.h"
28 #include "llvm/CodeGen/LiveVariables.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineConstantPool.h"
31 #include "llvm/CodeGen/MachineFrameInfo.h"
32 #include "llvm/CodeGen/MachineFunction.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineMemOperand.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/MachinePipeliner.h"
39 #include "llvm/CodeGen/MachineRegisterInfo.h"
40 #include "llvm/CodeGen/MachineScheduler.h"
41 #include "llvm/CodeGen/MultiHazardRecognizer.h"
42 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
43 #include "llvm/CodeGen/SelectionDAGNodes.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetRegisterInfo.h"
46 #include "llvm/CodeGen/TargetSchedule.h"
47 #include "llvm/IR/Attributes.h"
48 #include "llvm/IR/Constants.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/GlobalValue.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/MC/MCAsmInfo.h"
54 #include "llvm/MC/MCInstrDesc.h"
55 #include "llvm/MC/MCInstrItineraries.h"
56 #include "llvm/Support/BranchProbability.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Compiler.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Target/TargetMachine.h"
64 #include "llvm/TargetParser/Triple.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstdint>
68 #include <iterator>
69 #include <new>
70 #include <utility>
71 #include <vector>
72 
73 using namespace llvm;
74 
75 #define DEBUG_TYPE "arm-instrinfo"
76 
77 #define GET_INSTRINFO_CTOR_DTOR
78 #include "ARMGenInstrInfo.inc"
79 
80 static cl::opt<bool>
81 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
82                cl::desc("Enable ARM 2-addr to 3-addr conv"));
83 
84 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
85 struct ARM_MLxEntry {
86   uint16_t MLxOpc;     // MLA / MLS opcode
87   uint16_t MulOpc;     // Expanded multiplication opcode
88   uint16_t AddSubOpc;  // Expanded add / sub opcode
89   bool NegAcc;         // True if the acc is negated before the add / sub.
90   bool HasLane;        // True if instruction has an extra "lane" operand.
91 };
92 
93 static const ARM_MLxEntry ARM_MLxTable[] = {
94   // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
95   // fp scalar ops
96   { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
97   { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
98   { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
99   { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
100   { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
101   { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
102   { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
103   { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
104 
105   // fp SIMD ops
106   { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
107   { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
108   { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
109   { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
110   { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
111   { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
112   { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
113   { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
114 };
115 
116 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
117   : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
118     Subtarget(STI) {
119   for (unsigned i = 0, e = std::size(ARM_MLxTable); i != e; ++i) {
120     if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
121       llvm_unreachable("Duplicated entries?");
122     MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
123     MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
124   }
125 }
126 
127 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
128 // currently defaults to no prepass hazard recognizer.
129 ScheduleHazardRecognizer *
130 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
131                                                const ScheduleDAG *DAG) const {
132   if (usePreRAHazardRecognizer()) {
133     const InstrItineraryData *II =
134         static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
135     return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
136   }
137   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
138 }
139 
140 // Called during:
141 // - pre-RA scheduling
142 // - post-RA scheduling when FeatureUseMISched is set
143 ScheduleHazardRecognizer *ARMBaseInstrInfo::CreateTargetMIHazardRecognizer(
144     const InstrItineraryData *II, const ScheduleDAGMI *DAG) const {
145   MultiHazardRecognizer *MHR = new MultiHazardRecognizer();
146 
147   // We would like to restrict this hazard recognizer to only
148   // post-RA scheduling; we can tell that we're post-RA because we don't
149   // track VRegLiveness.
150   // Cortex-M7: TRM indicates that there is a single ITCM bank and two DTCM
151   //            banks banked on bit 2.  Assume that TCMs are in use.
152   if (Subtarget.isCortexM7() && !DAG->hasVRegLiveness())
153     MHR->AddHazardRecognizer(
154         std::make_unique<ARMBankConflictHazardRecognizer>(DAG, 0x4, true));
155 
156   // Not inserting ARMHazardRecognizerFPMLx because that would change
157   // legacy behavior
158 
159   auto BHR = TargetInstrInfo::CreateTargetMIHazardRecognizer(II, DAG);
160   MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR));
161   return MHR;
162 }
163 
164 // Called during post-RA scheduling when FeatureUseMISched is not set
165 ScheduleHazardRecognizer *ARMBaseInstrInfo::
166 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
167                                    const ScheduleDAG *DAG) const {
168   MultiHazardRecognizer *MHR = new MultiHazardRecognizer();
169 
170   if (Subtarget.isThumb2() || Subtarget.hasVFP2Base())
171     MHR->AddHazardRecognizer(std::make_unique<ARMHazardRecognizerFPMLx>());
172 
173   auto BHR = TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
174   if (BHR)
175     MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR));
176   return MHR;
177 }
178 
179 MachineInstr *
180 ARMBaseInstrInfo::convertToThreeAddress(MachineInstr &MI, LiveVariables *LV,
181                                         LiveIntervals *LIS) const {
182   // FIXME: Thumb2 support.
183 
184   if (!EnableARM3Addr)
185     return nullptr;
186 
187   MachineFunction &MF = *MI.getParent()->getParent();
188   uint64_t TSFlags = MI.getDesc().TSFlags;
189   bool isPre = false;
190   switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
191   default: return nullptr;
192   case ARMII::IndexModePre:
193     isPre = true;
194     break;
195   case ARMII::IndexModePost:
196     break;
197   }
198 
199   // Try splitting an indexed load/store to an un-indexed one plus an add/sub
200   // operation.
201   unsigned MemOpc = getUnindexedOpcode(MI.getOpcode());
202   if (MemOpc == 0)
203     return nullptr;
204 
205   MachineInstr *UpdateMI = nullptr;
206   MachineInstr *MemMI = nullptr;
207   unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
208   const MCInstrDesc &MCID = MI.getDesc();
209   unsigned NumOps = MCID.getNumOperands();
210   bool isLoad = !MI.mayStore();
211   const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0);
212   const MachineOperand &Base = MI.getOperand(2);
213   const MachineOperand &Offset = MI.getOperand(NumOps - 3);
214   Register WBReg = WB.getReg();
215   Register BaseReg = Base.getReg();
216   Register OffReg = Offset.getReg();
217   unsigned OffImm = MI.getOperand(NumOps - 2).getImm();
218   ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm();
219   switch (AddrMode) {
220   default: llvm_unreachable("Unknown indexed op!");
221   case ARMII::AddrMode2: {
222     bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
223     unsigned Amt = ARM_AM::getAM2Offset(OffImm);
224     if (OffReg == 0) {
225       if (ARM_AM::getSOImmVal(Amt) == -1)
226         // Can't encode it in a so_imm operand. This transformation will
227         // add more than 1 instruction. Abandon!
228         return nullptr;
229       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
230                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
231                      .addReg(BaseReg)
232                      .addImm(Amt)
233                      .add(predOps(Pred))
234                      .add(condCodeOp());
235     } else if (Amt != 0) {
236       ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
237       unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
238       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
239                          get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
240                      .addReg(BaseReg)
241                      .addReg(OffReg)
242                      .addReg(0)
243                      .addImm(SOOpc)
244                      .add(predOps(Pred))
245                      .add(condCodeOp());
246     } else
247       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
248                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
249                      .addReg(BaseReg)
250                      .addReg(OffReg)
251                      .add(predOps(Pred))
252                      .add(condCodeOp());
253     break;
254   }
255   case ARMII::AddrMode3 : {
256     bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
257     unsigned Amt = ARM_AM::getAM3Offset(OffImm);
258     if (OffReg == 0)
259       // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
260       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
261                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
262                      .addReg(BaseReg)
263                      .addImm(Amt)
264                      .add(predOps(Pred))
265                      .add(condCodeOp());
266     else
267       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
268                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
269                      .addReg(BaseReg)
270                      .addReg(OffReg)
271                      .add(predOps(Pred))
272                      .add(condCodeOp());
273     break;
274   }
275   }
276 
277   std::vector<MachineInstr*> NewMIs;
278   if (isPre) {
279     if (isLoad)
280       MemMI =
281           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
282               .addReg(WBReg)
283               .addImm(0)
284               .addImm(Pred);
285     else
286       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
287                   .addReg(MI.getOperand(1).getReg())
288                   .addReg(WBReg)
289                   .addReg(0)
290                   .addImm(0)
291                   .addImm(Pred);
292     NewMIs.push_back(MemMI);
293     NewMIs.push_back(UpdateMI);
294   } else {
295     if (isLoad)
296       MemMI =
297           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
298               .addReg(BaseReg)
299               .addImm(0)
300               .addImm(Pred);
301     else
302       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
303                   .addReg(MI.getOperand(1).getReg())
304                   .addReg(BaseReg)
305                   .addReg(0)
306                   .addImm(0)
307                   .addImm(Pred);
308     if (WB.isDead())
309       UpdateMI->getOperand(0).setIsDead();
310     NewMIs.push_back(UpdateMI);
311     NewMIs.push_back(MemMI);
312   }
313 
314   // Transfer LiveVariables states, kill / dead info.
315   if (LV) {
316     for (const MachineOperand &MO : MI.operands()) {
317       if (MO.isReg() && MO.getReg().isVirtual()) {
318         Register Reg = MO.getReg();
319 
320         LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
321         if (MO.isDef()) {
322           MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
323           if (MO.isDead())
324             LV->addVirtualRegisterDead(Reg, *NewMI);
325         }
326         if (MO.isUse() && MO.isKill()) {
327           for (unsigned j = 0; j < 2; ++j) {
328             // Look at the two new MI's in reverse order.
329             MachineInstr *NewMI = NewMIs[j];
330             if (!NewMI->readsRegister(Reg, /*TRI=*/nullptr))
331               continue;
332             LV->addVirtualRegisterKilled(Reg, *NewMI);
333             if (VI.removeKill(MI))
334               VI.Kills.push_back(NewMI);
335             break;
336           }
337         }
338       }
339     }
340   }
341 
342   MachineBasicBlock &MBB = *MI.getParent();
343   MBB.insert(MI, NewMIs[1]);
344   MBB.insert(MI, NewMIs[0]);
345   return NewMIs[0];
346 }
347 
348 // Branch analysis.
349 // Cond vector output format:
350 //   0 elements indicates an unconditional branch
351 //   2 elements indicates a conditional branch; the elements are
352 //     the condition to check and the CPSR.
353 //   3 elements indicates a hardware loop end; the elements
354 //     are the opcode, the operand value to test, and a dummy
355 //     operand used to pad out to 3 operands.
356 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
357                                      MachineBasicBlock *&TBB,
358                                      MachineBasicBlock *&FBB,
359                                      SmallVectorImpl<MachineOperand> &Cond,
360                                      bool AllowModify) const {
361   TBB = nullptr;
362   FBB = nullptr;
363 
364   MachineBasicBlock::instr_iterator I = MBB.instr_end();
365   if (I == MBB.instr_begin())
366     return false; // Empty blocks are easy.
367   --I;
368 
369   // Walk backwards from the end of the basic block until the branch is
370   // analyzed or we give up.
371   while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
372     // Flag to be raised on unanalyzeable instructions. This is useful in cases
373     // where we want to clean up on the end of the basic block before we bail
374     // out.
375     bool CantAnalyze = false;
376 
377     // Skip over DEBUG values, predicated nonterminators and speculation
378     // barrier terminators.
379     while (I->isDebugInstr() || !I->isTerminator() ||
380            isSpeculationBarrierEndBBOpcode(I->getOpcode()) ||
381            I->getOpcode() == ARM::t2DoLoopStartTP){
382       if (I == MBB.instr_begin())
383         return false;
384       --I;
385     }
386 
387     if (isIndirectBranchOpcode(I->getOpcode()) ||
388         isJumpTableBranchOpcode(I->getOpcode())) {
389       // Indirect branches and jump tables can't be analyzed, but we still want
390       // to clean up any instructions at the tail of the basic block.
391       CantAnalyze = true;
392     } else if (isUncondBranchOpcode(I->getOpcode())) {
393       TBB = I->getOperand(0).getMBB();
394     } else if (isCondBranchOpcode(I->getOpcode())) {
395       // Bail out if we encounter multiple conditional branches.
396       if (!Cond.empty())
397         return true;
398 
399       assert(!FBB && "FBB should have been null.");
400       FBB = TBB;
401       TBB = I->getOperand(0).getMBB();
402       Cond.push_back(I->getOperand(1));
403       Cond.push_back(I->getOperand(2));
404     } else if (I->isReturn()) {
405       // Returns can't be analyzed, but we should run cleanup.
406       CantAnalyze = true;
407     } else if (I->getOpcode() == ARM::t2LoopEnd &&
408                MBB.getParent()
409                    ->getSubtarget<ARMSubtarget>()
410                    .enableMachinePipeliner()) {
411       if (!Cond.empty())
412         return true;
413       FBB = TBB;
414       TBB = I->getOperand(1).getMBB();
415       Cond.push_back(MachineOperand::CreateImm(I->getOpcode()));
416       Cond.push_back(I->getOperand(0));
417       Cond.push_back(MachineOperand::CreateImm(0));
418     } else {
419       // We encountered other unrecognized terminator. Bail out immediately.
420       return true;
421     }
422 
423     // Cleanup code - to be run for unpredicated unconditional branches and
424     //                returns.
425     if (!isPredicated(*I) &&
426           (isUncondBranchOpcode(I->getOpcode()) ||
427            isIndirectBranchOpcode(I->getOpcode()) ||
428            isJumpTableBranchOpcode(I->getOpcode()) ||
429            I->isReturn())) {
430       // Forget any previous condition branch information - it no longer applies.
431       Cond.clear();
432       FBB = nullptr;
433 
434       // If we can modify the function, delete everything below this
435       // unconditional branch.
436       if (AllowModify) {
437         MachineBasicBlock::iterator DI = std::next(I);
438         while (DI != MBB.instr_end()) {
439           MachineInstr &InstToDelete = *DI;
440           ++DI;
441           // Speculation barriers must not be deleted.
442           if (isSpeculationBarrierEndBBOpcode(InstToDelete.getOpcode()))
443             continue;
444           InstToDelete.eraseFromParent();
445         }
446       }
447     }
448 
449     if (CantAnalyze) {
450       // We may not be able to analyze the block, but we could still have
451       // an unconditional branch as the last instruction in the block, which
452       // just branches to layout successor. If this is the case, then just
453       // remove it if we're allowed to make modifications.
454       if (AllowModify && !isPredicated(MBB.back()) &&
455           isUncondBranchOpcode(MBB.back().getOpcode()) &&
456           TBB && MBB.isLayoutSuccessor(TBB))
457         removeBranch(MBB);
458       return true;
459     }
460 
461     if (I == MBB.instr_begin())
462       return false;
463 
464     --I;
465   }
466 
467   // We made it past the terminators without bailing out - we must have
468   // analyzed this branch successfully.
469   return false;
470 }
471 
472 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB,
473                                         int *BytesRemoved) const {
474   assert(!BytesRemoved && "code size not handled");
475 
476   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
477   if (I == MBB.end())
478     return 0;
479 
480   if (!isUncondBranchOpcode(I->getOpcode()) &&
481       !isCondBranchOpcode(I->getOpcode()) && I->getOpcode() != ARM::t2LoopEnd)
482     return 0;
483 
484   // Remove the branch.
485   I->eraseFromParent();
486 
487   I = MBB.end();
488 
489   if (I == MBB.begin()) return 1;
490   --I;
491   if (!isCondBranchOpcode(I->getOpcode()) && I->getOpcode() != ARM::t2LoopEnd)
492     return 1;
493 
494   // Remove the branch.
495   I->eraseFromParent();
496   return 2;
497 }
498 
499 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB,
500                                         MachineBasicBlock *TBB,
501                                         MachineBasicBlock *FBB,
502                                         ArrayRef<MachineOperand> Cond,
503                                         const DebugLoc &DL,
504                                         int *BytesAdded) const {
505   assert(!BytesAdded && "code size not handled");
506   ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
507   int BOpc   = !AFI->isThumbFunction()
508     ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
509   int BccOpc = !AFI->isThumbFunction()
510     ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
511   bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
512 
513   // Shouldn't be a fall through.
514   assert(TBB && "insertBranch must not be told to insert a fallthrough");
515   assert((Cond.size() == 2 || Cond.size() == 0 || Cond.size() == 3) &&
516          "ARM branch conditions have two or three components!");
517 
518   // For conditional branches, we use addOperand to preserve CPSR flags.
519 
520   if (!FBB) {
521     if (Cond.empty()) { // Unconditional branch?
522       if (isThumb)
523         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL));
524       else
525         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
526     } else if (Cond.size() == 2) {
527       BuildMI(&MBB, DL, get(BccOpc))
528           .addMBB(TBB)
529           .addImm(Cond[0].getImm())
530           .add(Cond[1]);
531     } else
532       BuildMI(&MBB, DL, get(Cond[0].getImm())).add(Cond[1]).addMBB(TBB);
533     return 1;
534   }
535 
536   // Two-way conditional branch.
537   if (Cond.size() == 2)
538     BuildMI(&MBB, DL, get(BccOpc))
539         .addMBB(TBB)
540         .addImm(Cond[0].getImm())
541         .add(Cond[1]);
542   else if (Cond.size() == 3)
543     BuildMI(&MBB, DL, get(Cond[0].getImm())).add(Cond[1]).addMBB(TBB);
544   if (isThumb)
545     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL));
546   else
547     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
548   return 2;
549 }
550 
551 bool ARMBaseInstrInfo::
552 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
553   if (Cond.size() == 2) {
554     ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
555     Cond[0].setImm(ARMCC::getOppositeCondition(CC));
556     return false;
557   }
558   return true;
559 }
560 
561 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const {
562   if (MI.isBundle()) {
563     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
564     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
565     while (++I != E && I->isInsideBundle()) {
566       int PIdx = I->findFirstPredOperandIdx();
567       if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
568         return true;
569     }
570     return false;
571   }
572 
573   int PIdx = MI.findFirstPredOperandIdx();
574   return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL;
575 }
576 
577 std::string ARMBaseInstrInfo::createMIROperandComment(
578     const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
579     const TargetRegisterInfo *TRI) const {
580 
581   // First, let's see if there is a generic comment for this operand
582   std::string GenericComment =
583       TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI);
584   if (!GenericComment.empty())
585     return GenericComment;
586 
587   // If not, check if we have an immediate operand.
588   if (!Op.isImm())
589     return std::string();
590 
591   // And print its corresponding condition code if the immediate is a
592   // predicate.
593   int FirstPredOp = MI.findFirstPredOperandIdx();
594   if (FirstPredOp != (int) OpIdx)
595     return std::string();
596 
597   std::string CC = "CC::";
598   CC += ARMCondCodeToString((ARMCC::CondCodes)Op.getImm());
599   return CC;
600 }
601 
602 bool ARMBaseInstrInfo::PredicateInstruction(
603     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
604   unsigned Opc = MI.getOpcode();
605   if (isUncondBranchOpcode(Opc)) {
606     MI.setDesc(get(getMatchingCondBranchOpcode(Opc)));
607     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
608       .addImm(Pred[0].getImm())
609       .addReg(Pred[1].getReg());
610     return true;
611   }
612 
613   int PIdx = MI.findFirstPredOperandIdx();
614   if (PIdx != -1) {
615     MachineOperand &PMO = MI.getOperand(PIdx);
616     PMO.setImm(Pred[0].getImm());
617     MI.getOperand(PIdx+1).setReg(Pred[1].getReg());
618 
619     // Thumb 1 arithmetic instructions do not set CPSR when executed inside an
620     // IT block. This affects how they are printed.
621     const MCInstrDesc &MCID = MI.getDesc();
622     if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
623       assert(MCID.operands()[1].isOptionalDef() &&
624              "CPSR def isn't expected operand");
625       assert((MI.getOperand(1).isDead() ||
626               MI.getOperand(1).getReg() != ARM::CPSR) &&
627              "if conversion tried to stop defining used CPSR");
628       MI.getOperand(1).setReg(ARM::NoRegister);
629     }
630 
631     return true;
632   }
633   return false;
634 }
635 
636 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
637                                          ArrayRef<MachineOperand> Pred2) const {
638   if (Pred1.size() > 2 || Pred2.size() > 2)
639     return false;
640 
641   ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
642   ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
643   if (CC1 == CC2)
644     return true;
645 
646   switch (CC1) {
647   default:
648     return false;
649   case ARMCC::AL:
650     return true;
651   case ARMCC::HS:
652     return CC2 == ARMCC::HI;
653   case ARMCC::LS:
654     return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
655   case ARMCC::GE:
656     return CC2 == ARMCC::GT;
657   case ARMCC::LE:
658     return CC2 == ARMCC::LT;
659   }
660 }
661 
662 bool ARMBaseInstrInfo::ClobbersPredicate(MachineInstr &MI,
663                                          std::vector<MachineOperand> &Pred,
664                                          bool SkipDead) const {
665   bool Found = false;
666   for (const MachineOperand &MO : MI.operands()) {
667     bool ClobbersCPSR = MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR);
668     bool IsCPSR = MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR;
669     if (ClobbersCPSR || IsCPSR) {
670 
671       // Filter out T1 instructions that have a dead CPSR,
672       // allowing IT blocks to be generated containing T1 instructions
673       const MCInstrDesc &MCID = MI.getDesc();
674       if (MCID.TSFlags & ARMII::ThumbArithFlagSetting && MO.isDead() &&
675           SkipDead)
676         continue;
677 
678       Pred.push_back(MO);
679       Found = true;
680     }
681   }
682 
683   return Found;
684 }
685 
686 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) {
687   for (const auto &MO : MI.operands())
688     if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead())
689       return true;
690   return false;
691 }
692 
693 static bool isEligibleForITBlock(const MachineInstr *MI) {
694   switch (MI->getOpcode()) {
695   default: return true;
696   case ARM::tADC:   // ADC (register) T1
697   case ARM::tADDi3: // ADD (immediate) T1
698   case ARM::tADDi8: // ADD (immediate) T2
699   case ARM::tADDrr: // ADD (register) T1
700   case ARM::tAND:   // AND (register) T1
701   case ARM::tASRri: // ASR (immediate) T1
702   case ARM::tASRrr: // ASR (register) T1
703   case ARM::tBIC:   // BIC (register) T1
704   case ARM::tEOR:   // EOR (register) T1
705   case ARM::tLSLri: // LSL (immediate) T1
706   case ARM::tLSLrr: // LSL (register) T1
707   case ARM::tLSRri: // LSR (immediate) T1
708   case ARM::tLSRrr: // LSR (register) T1
709   case ARM::tMUL:   // MUL T1
710   case ARM::tMVN:   // MVN (register) T1
711   case ARM::tORR:   // ORR (register) T1
712   case ARM::tROR:   // ROR (register) T1
713   case ARM::tRSB:   // RSB (immediate) T1
714   case ARM::tSBC:   // SBC (register) T1
715   case ARM::tSUBi3: // SUB (immediate) T1
716   case ARM::tSUBi8: // SUB (immediate) T2
717   case ARM::tSUBrr: // SUB (register) T1
718     return !ARMBaseInstrInfo::isCPSRDefined(*MI);
719   }
720 }
721 
722 /// isPredicable - Return true if the specified instruction can be predicated.
723 /// By default, this returns true for every instruction with a
724 /// PredicateOperand.
725 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const {
726   if (!MI.isPredicable())
727     return false;
728 
729   if (MI.isBundle())
730     return false;
731 
732   if (!isEligibleForITBlock(&MI))
733     return false;
734 
735   const MachineFunction *MF = MI.getParent()->getParent();
736   const ARMFunctionInfo *AFI =
737       MF->getInfo<ARMFunctionInfo>();
738 
739   // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM.
740   // In their ARM encoding, they can't be encoded in a conditional form.
741   if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
742     return false;
743 
744   // Make indirect control flow changes unpredicable when SLS mitigation is
745   // enabled.
746   const ARMSubtarget &ST = MF->getSubtarget<ARMSubtarget>();
747   if (ST.hardenSlsRetBr() && isIndirectControlFlowNotComingBack(MI))
748     return false;
749   if (ST.hardenSlsBlr() && isIndirectCall(MI))
750     return false;
751 
752   if (AFI->isThumb2Function()) {
753     if (getSubtarget().restrictIT())
754       return isV8EligibleForIT(&MI);
755   }
756 
757   return true;
758 }
759 
760 namespace llvm {
761 
762 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) {
763   for (const MachineOperand &MO : MI->operands()) {
764     if (!MO.isReg() || MO.isUndef() || MO.isUse())
765       continue;
766     if (MO.getReg() != ARM::CPSR)
767       continue;
768     if (!MO.isDead())
769       return false;
770   }
771   // all definitions of CPSR are dead
772   return true;
773 }
774 
775 } // end namespace llvm
776 
777 /// GetInstSize - Return the size of the specified MachineInstr.
778 ///
779 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
780   const MachineBasicBlock &MBB = *MI.getParent();
781   const MachineFunction *MF = MBB.getParent();
782   const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
783 
784   const MCInstrDesc &MCID = MI.getDesc();
785 
786   switch (MI.getOpcode()) {
787   default:
788     // Return the size specified in .td file. If there's none, return 0, as we
789     // can't define a default size (Thumb1 instructions are 2 bytes, Thumb2
790     // instructions are 2-4 bytes, and ARM instructions are 4 bytes), in
791     // contrast to AArch64 instructions which have a default size of 4 bytes for
792     // example.
793     return MCID.getSize();
794   case TargetOpcode::BUNDLE:
795     return getInstBundleLength(MI);
796   case ARM::CONSTPOOL_ENTRY:
797   case ARM::JUMPTABLE_INSTS:
798   case ARM::JUMPTABLE_ADDRS:
799   case ARM::JUMPTABLE_TBB:
800   case ARM::JUMPTABLE_TBH:
801     // If this machine instr is a constant pool entry, its size is recorded as
802     // operand #2.
803     return MI.getOperand(2).getImm();
804   case ARM::SPACE:
805     return MI.getOperand(1).getImm();
806   case ARM::INLINEASM:
807   case ARM::INLINEASM_BR: {
808     // If this machine instr is an inline asm, measure it.
809     unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
810     if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction())
811       Size = alignTo(Size, 4);
812     return Size;
813   }
814   }
815 }
816 
817 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
818   unsigned Size = 0;
819   MachineBasicBlock::const_instr_iterator I = MI.getIterator();
820   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
821   while (++I != E && I->isInsideBundle()) {
822     assert(!I->isBundle() && "No nested bundle!");
823     Size += getInstSizeInBytes(*I);
824   }
825   return Size;
826 }
827 
828 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
829                                     MachineBasicBlock::iterator I,
830                                     unsigned DestReg, bool KillSrc,
831                                     const ARMSubtarget &Subtarget) const {
832   unsigned Opc = Subtarget.isThumb()
833                      ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
834                      : ARM::MRS;
835 
836   MachineInstrBuilder MIB =
837       BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
838 
839   // There is only 1 A/R class MRS instruction, and it always refers to
840   // APSR. However, there are lots of other possibilities on M-class cores.
841   if (Subtarget.isMClass())
842     MIB.addImm(0x800);
843 
844   MIB.add(predOps(ARMCC::AL))
845      .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
846 }
847 
848 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
849                                   MachineBasicBlock::iterator I,
850                                   unsigned SrcReg, bool KillSrc,
851                                   const ARMSubtarget &Subtarget) const {
852   unsigned Opc = Subtarget.isThumb()
853                      ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
854                      : ARM::MSR;
855 
856   MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
857 
858   if (Subtarget.isMClass())
859     MIB.addImm(0x800);
860   else
861     MIB.addImm(8);
862 
863   MIB.addReg(SrcReg, getKillRegState(KillSrc))
864      .add(predOps(ARMCC::AL))
865      .addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
866 }
867 
868 void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) {
869   MIB.addImm(ARMVCC::None);
870   MIB.addReg(0);
871   MIB.addReg(0); // tp_reg
872 }
873 
874 void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB,
875                                       Register DestReg) {
876   addUnpredicatedMveVpredNOp(MIB);
877   MIB.addReg(DestReg, RegState::Undef);
878 }
879 
880 void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) {
881   MIB.addImm(Cond);
882   MIB.addReg(ARM::VPR, RegState::Implicit);
883   MIB.addReg(0); // tp_reg
884 }
885 
886 void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB,
887                                     unsigned Cond, unsigned Inactive) {
888   addPredicatedMveVpredNOp(MIB, Cond);
889   MIB.addReg(Inactive);
890 }
891 
892 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
893                                    MachineBasicBlock::iterator I,
894                                    const DebugLoc &DL, MCRegister DestReg,
895                                    MCRegister SrcReg, bool KillSrc) const {
896   bool GPRDest = ARM::GPRRegClass.contains(DestReg);
897   bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
898 
899   if (GPRDest && GPRSrc) {
900     BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
901         .addReg(SrcReg, getKillRegState(KillSrc))
902         .add(predOps(ARMCC::AL))
903         .add(condCodeOp());
904     return;
905   }
906 
907   bool SPRDest = ARM::SPRRegClass.contains(DestReg);
908   bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
909 
910   unsigned Opc = 0;
911   if (SPRDest && SPRSrc)
912     Opc = ARM::VMOVS;
913   else if (GPRDest && SPRSrc)
914     Opc = ARM::VMOVRS;
915   else if (SPRDest && GPRSrc)
916     Opc = ARM::VMOVSR;
917   else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64())
918     Opc = ARM::VMOVD;
919   else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
920     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MQPRCopy;
921 
922   if (Opc) {
923     MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
924     MIB.addReg(SrcReg, getKillRegState(KillSrc));
925     if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR)
926       MIB.addReg(SrcReg, getKillRegState(KillSrc));
927     if (Opc == ARM::MVE_VORR)
928       addUnpredicatedMveVpredROp(MIB, DestReg);
929     else if (Opc != ARM::MQPRCopy)
930       MIB.add(predOps(ARMCC::AL));
931     return;
932   }
933 
934   // Handle register classes that require multiple instructions.
935   unsigned BeginIdx = 0;
936   unsigned SubRegs = 0;
937   int Spacing = 1;
938 
939   // Use VORRq when possible.
940   if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
941     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
942     BeginIdx = ARM::qsub_0;
943     SubRegs = 2;
944   } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
945     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
946     BeginIdx = ARM::qsub_0;
947     SubRegs = 4;
948   // Fall back to VMOVD.
949   } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
950     Opc = ARM::VMOVD;
951     BeginIdx = ARM::dsub_0;
952     SubRegs = 2;
953   } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
954     Opc = ARM::VMOVD;
955     BeginIdx = ARM::dsub_0;
956     SubRegs = 3;
957   } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
958     Opc = ARM::VMOVD;
959     BeginIdx = ARM::dsub_0;
960     SubRegs = 4;
961   } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
962     Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
963     BeginIdx = ARM::gsub_0;
964     SubRegs = 2;
965   } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
966     Opc = ARM::VMOVD;
967     BeginIdx = ARM::dsub_0;
968     SubRegs = 2;
969     Spacing = 2;
970   } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
971     Opc = ARM::VMOVD;
972     BeginIdx = ARM::dsub_0;
973     SubRegs = 3;
974     Spacing = 2;
975   } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
976     Opc = ARM::VMOVD;
977     BeginIdx = ARM::dsub_0;
978     SubRegs = 4;
979     Spacing = 2;
980   } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) &&
981              !Subtarget.hasFP64()) {
982     Opc = ARM::VMOVS;
983     BeginIdx = ARM::ssub_0;
984     SubRegs = 2;
985   } else if (SrcReg == ARM::CPSR) {
986     copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
987     return;
988   } else if (DestReg == ARM::CPSR) {
989     copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
990     return;
991   } else if (DestReg == ARM::VPR) {
992     assert(ARM::GPRRegClass.contains(SrcReg));
993     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg)
994         .addReg(SrcReg, getKillRegState(KillSrc))
995         .add(predOps(ARMCC::AL));
996     return;
997   } else if (SrcReg == ARM::VPR) {
998     assert(ARM::GPRRegClass.contains(DestReg));
999     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg)
1000         .addReg(SrcReg, getKillRegState(KillSrc))
1001         .add(predOps(ARMCC::AL));
1002     return;
1003   } else if (DestReg == ARM::FPSCR_NZCV) {
1004     assert(ARM::GPRRegClass.contains(SrcReg));
1005     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg)
1006         .addReg(SrcReg, getKillRegState(KillSrc))
1007         .add(predOps(ARMCC::AL));
1008     return;
1009   } else if (SrcReg == ARM::FPSCR_NZCV) {
1010     assert(ARM::GPRRegClass.contains(DestReg));
1011     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg)
1012         .addReg(SrcReg, getKillRegState(KillSrc))
1013         .add(predOps(ARMCC::AL));
1014     return;
1015   }
1016 
1017   assert(Opc && "Impossible reg-to-reg copy");
1018 
1019   const TargetRegisterInfo *TRI = &getRegisterInfo();
1020   MachineInstrBuilder Mov;
1021 
1022   // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
1023   if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
1024     BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
1025     Spacing = -Spacing;
1026   }
1027 #ifndef NDEBUG
1028   SmallSet<unsigned, 4> DstRegs;
1029 #endif
1030   for (unsigned i = 0; i != SubRegs; ++i) {
1031     Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
1032     Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
1033     assert(Dst && Src && "Bad sub-register");
1034 #ifndef NDEBUG
1035     assert(!DstRegs.count(Src) && "destructive vector copy");
1036     DstRegs.insert(Dst);
1037 #endif
1038     Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
1039     // VORR (NEON or MVE) takes two source operands.
1040     if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) {
1041       Mov.addReg(Src);
1042     }
1043     // MVE VORR takes predicate operands in place of an ordinary condition.
1044     if (Opc == ARM::MVE_VORR)
1045       addUnpredicatedMveVpredROp(Mov, Dst);
1046     else
1047       Mov = Mov.add(predOps(ARMCC::AL));
1048     // MOVr can set CC.
1049     if (Opc == ARM::MOVr)
1050       Mov = Mov.add(condCodeOp());
1051   }
1052   // Add implicit super-register defs and kills to the last instruction.
1053   Mov->addRegisterDefined(DestReg, TRI);
1054   if (KillSrc)
1055     Mov->addRegisterKilled(SrcReg, TRI);
1056 }
1057 
1058 std::optional<DestSourcePair>
1059 ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
1060   // VMOVRRD is also a copy instruction but it requires
1061   // special way of handling. It is more complex copy version
1062   // and since that we are not considering it. For recognition
1063   // of such instruction isExtractSubregLike MI interface fuction
1064   // could be used.
1065   // VORRq is considered as a move only if two inputs are
1066   // the same register.
1067   if (!MI.isMoveReg() ||
1068       (MI.getOpcode() == ARM::VORRq &&
1069        MI.getOperand(1).getReg() != MI.getOperand(2).getReg()))
1070     return std::nullopt;
1071   return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1072 }
1073 
1074 std::optional<ParamLoadedValue>
1075 ARMBaseInstrInfo::describeLoadedValue(const MachineInstr &MI,
1076                                       Register Reg) const {
1077   if (auto DstSrcPair = isCopyInstrImpl(MI)) {
1078     Register DstReg = DstSrcPair->Destination->getReg();
1079 
1080     // TODO: We don't handle cases where the forwarding reg is narrower/wider
1081     // than the copy registers. Consider for example:
1082     //
1083     //   s16 = VMOVS s0
1084     //   s17 = VMOVS s1
1085     //   call @callee(d0)
1086     //
1087     // We'd like to describe the call site value of d0 as d8, but this requires
1088     // gathering and merging the descriptions for the two VMOVS instructions.
1089     //
1090     // We also don't handle the reverse situation, where the forwarding reg is
1091     // narrower than the copy destination:
1092     //
1093     //   d8 = VMOVD d0
1094     //   call @callee(s1)
1095     //
1096     // We need to produce a fragment description (the call site value of s1 is
1097     // /not/ just d8).
1098     if (DstReg != Reg)
1099       return std::nullopt;
1100   }
1101   return TargetInstrInfo::describeLoadedValue(MI, Reg);
1102 }
1103 
1104 const MachineInstrBuilder &
1105 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
1106                           unsigned SubIdx, unsigned State,
1107                           const TargetRegisterInfo *TRI) const {
1108   if (!SubIdx)
1109     return MIB.addReg(Reg, State);
1110 
1111   if (Register::isPhysicalRegister(Reg))
1112     return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
1113   return MIB.addReg(Reg, State, SubIdx);
1114 }
1115 
1116 void ARMBaseInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1117                                            MachineBasicBlock::iterator I,
1118                                            Register SrcReg, bool isKill, int FI,
1119                                            const TargetRegisterClass *RC,
1120                                            const TargetRegisterInfo *TRI,
1121                                            Register VReg) const {
1122   MachineFunction &MF = *MBB.getParent();
1123   MachineFrameInfo &MFI = MF.getFrameInfo();
1124   Align Alignment = MFI.getObjectAlign(FI);
1125 
1126   MachineMemOperand *MMO = MF.getMachineMemOperand(
1127       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
1128       MFI.getObjectSize(FI), Alignment);
1129 
1130   switch (TRI->getSpillSize(*RC)) {
1131     case 2:
1132       if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1133         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH))
1134             .addReg(SrcReg, getKillRegState(isKill))
1135             .addFrameIndex(FI)
1136             .addImm(0)
1137             .addMemOperand(MMO)
1138             .add(predOps(ARMCC::AL));
1139       } else
1140         llvm_unreachable("Unknown reg class!");
1141       break;
1142     case 4:
1143       if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1144         BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12))
1145             .addReg(SrcReg, getKillRegState(isKill))
1146             .addFrameIndex(FI)
1147             .addImm(0)
1148             .addMemOperand(MMO)
1149             .add(predOps(ARMCC::AL));
1150       } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1151         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS))
1152             .addReg(SrcReg, getKillRegState(isKill))
1153             .addFrameIndex(FI)
1154             .addImm(0)
1155             .addMemOperand(MMO)
1156             .add(predOps(ARMCC::AL));
1157       } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1158         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off))
1159             .addReg(SrcReg, getKillRegState(isKill))
1160             .addFrameIndex(FI)
1161             .addImm(0)
1162             .addMemOperand(MMO)
1163             .add(predOps(ARMCC::AL));
1164       } else
1165         llvm_unreachable("Unknown reg class!");
1166       break;
1167     case 8:
1168       if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1169         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD))
1170             .addReg(SrcReg, getKillRegState(isKill))
1171             .addFrameIndex(FI)
1172             .addImm(0)
1173             .addMemOperand(MMO)
1174             .add(predOps(ARMCC::AL));
1175       } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1176         if (Subtarget.hasV5TEOps()) {
1177           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD));
1178           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1179           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1180           MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1181              .add(predOps(ARMCC::AL));
1182         } else {
1183           // Fallback to STM instruction, which has existed since the dawn of
1184           // time.
1185           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA))
1186                                         .addFrameIndex(FI)
1187                                         .addMemOperand(MMO)
1188                                         .add(predOps(ARMCC::AL));
1189           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1190           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1191         }
1192       } else
1193         llvm_unreachable("Unknown reg class!");
1194       break;
1195     case 16:
1196       if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1197         // Use aligned spills if the stack can be realigned.
1198         if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
1199           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64))
1200               .addFrameIndex(FI)
1201               .addImm(16)
1202               .addReg(SrcReg, getKillRegState(isKill))
1203               .addMemOperand(MMO)
1204               .add(predOps(ARMCC::AL));
1205         } else {
1206           BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA))
1207               .addReg(SrcReg, getKillRegState(isKill))
1208               .addFrameIndex(FI)
1209               .addMemOperand(MMO)
1210               .add(predOps(ARMCC::AL));
1211         }
1212       } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1213                  Subtarget.hasMVEIntegerOps()) {
1214         auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32));
1215         MIB.addReg(SrcReg, getKillRegState(isKill))
1216           .addFrameIndex(FI)
1217           .addImm(0)
1218           .addMemOperand(MMO);
1219         addUnpredicatedMveVpredNOp(MIB);
1220       } else
1221         llvm_unreachable("Unknown reg class!");
1222       break;
1223     case 24:
1224       if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1225         // Use aligned spills if the stack can be realigned.
1226         if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1227             Subtarget.hasNEON()) {
1228           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo))
1229               .addFrameIndex(FI)
1230               .addImm(16)
1231               .addReg(SrcReg, getKillRegState(isKill))
1232               .addMemOperand(MMO)
1233               .add(predOps(ARMCC::AL));
1234         } else {
1235           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1236                                             get(ARM::VSTMDIA))
1237                                         .addFrameIndex(FI)
1238                                         .add(predOps(ARMCC::AL))
1239                                         .addMemOperand(MMO);
1240           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1241           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1242           AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1243         }
1244       } else
1245         llvm_unreachable("Unknown reg class!");
1246       break;
1247     case 32:
1248       if (ARM::QQPRRegClass.hasSubClassEq(RC) ||
1249           ARM::MQQPRRegClass.hasSubClassEq(RC) ||
1250           ARM::DQuadRegClass.hasSubClassEq(RC)) {
1251         if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1252             Subtarget.hasNEON()) {
1253           // FIXME: It's possible to only store part of the QQ register if the
1254           // spilled def has a sub-register index.
1255           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo))
1256               .addFrameIndex(FI)
1257               .addImm(16)
1258               .addReg(SrcReg, getKillRegState(isKill))
1259               .addMemOperand(MMO)
1260               .add(predOps(ARMCC::AL));
1261         } else if (Subtarget.hasMVEIntegerOps()) {
1262           BuildMI(MBB, I, DebugLoc(), get(ARM::MQQPRStore))
1263               .addReg(SrcReg, getKillRegState(isKill))
1264               .addFrameIndex(FI)
1265               .addMemOperand(MMO);
1266         } else {
1267           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1268                                             get(ARM::VSTMDIA))
1269                                         .addFrameIndex(FI)
1270                                         .add(predOps(ARMCC::AL))
1271                                         .addMemOperand(MMO);
1272           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1273           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1274           MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1275                 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1276         }
1277       } else
1278         llvm_unreachable("Unknown reg class!");
1279       break;
1280     case 64:
1281       if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) &&
1282           Subtarget.hasMVEIntegerOps()) {
1283         BuildMI(MBB, I, DebugLoc(), get(ARM::MQQQQPRStore))
1284             .addReg(SrcReg, getKillRegState(isKill))
1285             .addFrameIndex(FI)
1286             .addMemOperand(MMO);
1287       } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1288         MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA))
1289                                       .addFrameIndex(FI)
1290                                       .add(predOps(ARMCC::AL))
1291                                       .addMemOperand(MMO);
1292         MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1293         MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1294         MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1295         MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1296         MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
1297         MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
1298         MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
1299               AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
1300       } else
1301         llvm_unreachable("Unknown reg class!");
1302       break;
1303     default:
1304       llvm_unreachable("Unknown reg class!");
1305   }
1306 }
1307 
1308 Register ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1309                                               int &FrameIndex) const {
1310   switch (MI.getOpcode()) {
1311   default: break;
1312   case ARM::STRrs:
1313   case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
1314     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1315         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1316         MI.getOperand(3).getImm() == 0) {
1317       FrameIndex = MI.getOperand(1).getIndex();
1318       return MI.getOperand(0).getReg();
1319     }
1320     break;
1321   case ARM::STRi12:
1322   case ARM::t2STRi12:
1323   case ARM::tSTRspi:
1324   case ARM::VSTRD:
1325   case ARM::VSTRS:
1326   case ARM::VSTR_P0_off:
1327   case ARM::MVE_VSTRWU32:
1328     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1329         MI.getOperand(2).getImm() == 0) {
1330       FrameIndex = MI.getOperand(1).getIndex();
1331       return MI.getOperand(0).getReg();
1332     }
1333     break;
1334   case ARM::VST1q64:
1335   case ARM::VST1d64TPseudo:
1336   case ARM::VST1d64QPseudo:
1337     if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) {
1338       FrameIndex = MI.getOperand(0).getIndex();
1339       return MI.getOperand(2).getReg();
1340     }
1341     break;
1342   case ARM::VSTMQIA:
1343     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1344       FrameIndex = MI.getOperand(1).getIndex();
1345       return MI.getOperand(0).getReg();
1346     }
1347     break;
1348   case ARM::MQQPRStore:
1349   case ARM::MQQQQPRStore:
1350     if (MI.getOperand(1).isFI()) {
1351       FrameIndex = MI.getOperand(1).getIndex();
1352       return MI.getOperand(0).getReg();
1353     }
1354     break;
1355   }
1356 
1357   return 0;
1358 }
1359 
1360 Register ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
1361                                                     int &FrameIndex) const {
1362   SmallVector<const MachineMemOperand *, 1> Accesses;
1363   if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) &&
1364       Accesses.size() == 1) {
1365     FrameIndex =
1366         cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1367             ->getFrameIndex();
1368     return true;
1369   }
1370   return false;
1371 }
1372 
1373 void ARMBaseInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1374                                             MachineBasicBlock::iterator I,
1375                                             Register DestReg, int FI,
1376                                             const TargetRegisterClass *RC,
1377                                             const TargetRegisterInfo *TRI,
1378                                             Register VReg) const {
1379   DebugLoc DL;
1380   if (I != MBB.end()) DL = I->getDebugLoc();
1381   MachineFunction &MF = *MBB.getParent();
1382   MachineFrameInfo &MFI = MF.getFrameInfo();
1383   const Align Alignment = MFI.getObjectAlign(FI);
1384   MachineMemOperand *MMO = MF.getMachineMemOperand(
1385       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
1386       MFI.getObjectSize(FI), Alignment);
1387 
1388   switch (TRI->getSpillSize(*RC)) {
1389   case 2:
1390     if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1391       BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg)
1392           .addFrameIndex(FI)
1393           .addImm(0)
1394           .addMemOperand(MMO)
1395           .add(predOps(ARMCC::AL));
1396     } else
1397       llvm_unreachable("Unknown reg class!");
1398     break;
1399   case 4:
1400     if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1401       BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
1402           .addFrameIndex(FI)
1403           .addImm(0)
1404           .addMemOperand(MMO)
1405           .add(predOps(ARMCC::AL));
1406     } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1407       BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
1408           .addFrameIndex(FI)
1409           .addImm(0)
1410           .addMemOperand(MMO)
1411           .add(predOps(ARMCC::AL));
1412     } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1413       BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg)
1414           .addFrameIndex(FI)
1415           .addImm(0)
1416           .addMemOperand(MMO)
1417           .add(predOps(ARMCC::AL));
1418     } else
1419       llvm_unreachable("Unknown reg class!");
1420     break;
1421   case 8:
1422     if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1423       BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
1424           .addFrameIndex(FI)
1425           .addImm(0)
1426           .addMemOperand(MMO)
1427           .add(predOps(ARMCC::AL));
1428     } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1429       MachineInstrBuilder MIB;
1430 
1431       if (Subtarget.hasV5TEOps()) {
1432         MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
1433         AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1434         AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1435         MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1436            .add(predOps(ARMCC::AL));
1437       } else {
1438         // Fallback to LDM instruction, which has existed since the dawn of
1439         // time.
1440         MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA))
1441                   .addFrameIndex(FI)
1442                   .addMemOperand(MMO)
1443                   .add(predOps(ARMCC::AL));
1444         MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1445         MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1446       }
1447 
1448       if (DestReg.isPhysical())
1449         MIB.addReg(DestReg, RegState::ImplicitDefine);
1450     } else
1451       llvm_unreachable("Unknown reg class!");
1452     break;
1453   case 16:
1454     if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1455       if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
1456         BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
1457             .addFrameIndex(FI)
1458             .addImm(16)
1459             .addMemOperand(MMO)
1460             .add(predOps(ARMCC::AL));
1461       } else {
1462         BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
1463             .addFrameIndex(FI)
1464             .addMemOperand(MMO)
1465             .add(predOps(ARMCC::AL));
1466       }
1467     } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1468                Subtarget.hasMVEIntegerOps()) {
1469       auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg);
1470       MIB.addFrameIndex(FI)
1471         .addImm(0)
1472         .addMemOperand(MMO);
1473       addUnpredicatedMveVpredNOp(MIB);
1474     } else
1475       llvm_unreachable("Unknown reg class!");
1476     break;
1477   case 24:
1478     if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1479       if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1480           Subtarget.hasNEON()) {
1481         BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
1482             .addFrameIndex(FI)
1483             .addImm(16)
1484             .addMemOperand(MMO)
1485             .add(predOps(ARMCC::AL));
1486       } else {
1487         MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1488                                       .addFrameIndex(FI)
1489                                       .addMemOperand(MMO)
1490                                       .add(predOps(ARMCC::AL));
1491         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1492         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1493         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1494         if (DestReg.isPhysical())
1495           MIB.addReg(DestReg, RegState::ImplicitDefine);
1496       }
1497     } else
1498       llvm_unreachable("Unknown reg class!");
1499     break;
1500    case 32:
1501      if (ARM::QQPRRegClass.hasSubClassEq(RC) ||
1502          ARM::MQQPRRegClass.hasSubClassEq(RC) ||
1503          ARM::DQuadRegClass.hasSubClassEq(RC)) {
1504        if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1505            Subtarget.hasNEON()) {
1506          BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1507              .addFrameIndex(FI)
1508              .addImm(16)
1509              .addMemOperand(MMO)
1510              .add(predOps(ARMCC::AL));
1511        } else if (Subtarget.hasMVEIntegerOps()) {
1512          BuildMI(MBB, I, DL, get(ARM::MQQPRLoad), DestReg)
1513              .addFrameIndex(FI)
1514              .addMemOperand(MMO);
1515        } else {
1516          MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1517                                        .addFrameIndex(FI)
1518                                        .add(predOps(ARMCC::AL))
1519                                        .addMemOperand(MMO);
1520          MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1521          MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1522          MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1523          MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1524          if (DestReg.isPhysical())
1525            MIB.addReg(DestReg, RegState::ImplicitDefine);
1526        }
1527      } else
1528        llvm_unreachable("Unknown reg class!");
1529      break;
1530   case 64:
1531     if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) &&
1532         Subtarget.hasMVEIntegerOps()) {
1533       BuildMI(MBB, I, DL, get(ARM::MQQQQPRLoad), DestReg)
1534           .addFrameIndex(FI)
1535           .addMemOperand(MMO);
1536     } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1537       MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1538                                     .addFrameIndex(FI)
1539                                     .add(predOps(ARMCC::AL))
1540                                     .addMemOperand(MMO);
1541       MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1542       MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1543       MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1544       MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1545       MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1546       MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1547       MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1548       MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1549       if (DestReg.isPhysical())
1550         MIB.addReg(DestReg, RegState::ImplicitDefine);
1551     } else
1552       llvm_unreachable("Unknown reg class!");
1553     break;
1554   default:
1555     llvm_unreachable("Unknown regclass!");
1556   }
1557 }
1558 
1559 Register ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1560                                                int &FrameIndex) const {
1561   switch (MI.getOpcode()) {
1562   default: break;
1563   case ARM::LDRrs:
1564   case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
1565     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1566         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1567         MI.getOperand(3).getImm() == 0) {
1568       FrameIndex = MI.getOperand(1).getIndex();
1569       return MI.getOperand(0).getReg();
1570     }
1571     break;
1572   case ARM::LDRi12:
1573   case ARM::t2LDRi12:
1574   case ARM::tLDRspi:
1575   case ARM::VLDRD:
1576   case ARM::VLDRS:
1577   case ARM::VLDR_P0_off:
1578   case ARM::MVE_VLDRWU32:
1579     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1580         MI.getOperand(2).getImm() == 0) {
1581       FrameIndex = MI.getOperand(1).getIndex();
1582       return MI.getOperand(0).getReg();
1583     }
1584     break;
1585   case ARM::VLD1q64:
1586   case ARM::VLD1d8TPseudo:
1587   case ARM::VLD1d16TPseudo:
1588   case ARM::VLD1d32TPseudo:
1589   case ARM::VLD1d64TPseudo:
1590   case ARM::VLD1d8QPseudo:
1591   case ARM::VLD1d16QPseudo:
1592   case ARM::VLD1d32QPseudo:
1593   case ARM::VLD1d64QPseudo:
1594     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1595       FrameIndex = MI.getOperand(1).getIndex();
1596       return MI.getOperand(0).getReg();
1597     }
1598     break;
1599   case ARM::VLDMQIA:
1600     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1601       FrameIndex = MI.getOperand(1).getIndex();
1602       return MI.getOperand(0).getReg();
1603     }
1604     break;
1605   case ARM::MQQPRLoad:
1606   case ARM::MQQQQPRLoad:
1607     if (MI.getOperand(1).isFI()) {
1608       FrameIndex = MI.getOperand(1).getIndex();
1609       return MI.getOperand(0).getReg();
1610     }
1611     break;
1612   }
1613 
1614   return 0;
1615 }
1616 
1617 Register ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
1618                                                      int &FrameIndex) const {
1619   SmallVector<const MachineMemOperand *, 1> Accesses;
1620   if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) &&
1621       Accesses.size() == 1) {
1622     FrameIndex =
1623         cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1624             ->getFrameIndex();
1625     return true;
1626   }
1627   return false;
1628 }
1629 
1630 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
1631 /// depending on whether the result is used.
1632 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const {
1633   bool isThumb1 = Subtarget.isThumb1Only();
1634   bool isThumb2 = Subtarget.isThumb2();
1635   const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo();
1636 
1637   DebugLoc dl = MI->getDebugLoc();
1638   MachineBasicBlock *BB = MI->getParent();
1639 
1640   MachineInstrBuilder LDM, STM;
1641   if (isThumb1 || !MI->getOperand(1).isDead()) {
1642     MachineOperand LDWb(MI->getOperand(1));
1643     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD
1644                                                  : isThumb1 ? ARM::tLDMIA_UPD
1645                                                             : ARM::LDMIA_UPD))
1646               .add(LDWb);
1647   } else {
1648     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA));
1649   }
1650 
1651   if (isThumb1 || !MI->getOperand(0).isDead()) {
1652     MachineOperand STWb(MI->getOperand(0));
1653     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD
1654                                                  : isThumb1 ? ARM::tSTMIA_UPD
1655                                                             : ARM::STMIA_UPD))
1656               .add(STWb);
1657   } else {
1658     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA));
1659   }
1660 
1661   MachineOperand LDBase(MI->getOperand(3));
1662   LDM.add(LDBase).add(predOps(ARMCC::AL));
1663 
1664   MachineOperand STBase(MI->getOperand(2));
1665   STM.add(STBase).add(predOps(ARMCC::AL));
1666 
1667   // Sort the scratch registers into ascending order.
1668   const TargetRegisterInfo &TRI = getRegisterInfo();
1669   SmallVector<unsigned, 6> ScratchRegs;
1670   for (MachineOperand &MO : llvm::drop_begin(MI->operands(), 5))
1671     ScratchRegs.push_back(MO.getReg());
1672   llvm::sort(ScratchRegs,
1673              [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool {
1674                return TRI.getEncodingValue(Reg1) <
1675                       TRI.getEncodingValue(Reg2);
1676              });
1677 
1678   for (const auto &Reg : ScratchRegs) {
1679     LDM.addReg(Reg, RegState::Define);
1680     STM.addReg(Reg, RegState::Kill);
1681   }
1682 
1683   BB->erase(MI);
1684 }
1685 
1686 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1687   if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
1688     expandLoadStackGuard(MI);
1689     MI.getParent()->erase(MI);
1690     return true;
1691   }
1692 
1693   if (MI.getOpcode() == ARM::MEMCPY) {
1694     expandMEMCPY(MI);
1695     return true;
1696   }
1697 
1698   // This hook gets to expand COPY instructions before they become
1699   // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
1700   // widened to VMOVD.  We prefer the VMOVD when possible because it may be
1701   // changed into a VORR that can go down the NEON pipeline.
1702   if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64())
1703     return false;
1704 
1705   // Look for a copy between even S-registers.  That is where we keep floats
1706   // when using NEON v2f32 instructions for f32 arithmetic.
1707   Register DstRegS = MI.getOperand(0).getReg();
1708   Register SrcRegS = MI.getOperand(1).getReg();
1709   if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1710     return false;
1711 
1712   const TargetRegisterInfo *TRI = &getRegisterInfo();
1713   unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1714                                               &ARM::DPRRegClass);
1715   unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1716                                               &ARM::DPRRegClass);
1717   if (!DstRegD || !SrcRegD)
1718     return false;
1719 
1720   // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
1721   // legal if the COPY already defines the full DstRegD, and it isn't a
1722   // sub-register insertion.
1723   if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI))
1724     return false;
1725 
1726   // A dead copy shouldn't show up here, but reject it just in case.
1727   if (MI.getOperand(0).isDead())
1728     return false;
1729 
1730   // All clear, widen the COPY.
1731   LLVM_DEBUG(dbgs() << "widening:    " << MI);
1732   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
1733 
1734   // Get rid of the old implicit-def of DstRegD.  Leave it if it defines a Q-reg
1735   // or some other super-register.
1736   int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD, /*TRI=*/nullptr);
1737   if (ImpDefIdx != -1)
1738     MI.removeOperand(ImpDefIdx);
1739 
1740   // Change the opcode and operands.
1741   MI.setDesc(get(ARM::VMOVD));
1742   MI.getOperand(0).setReg(DstRegD);
1743   MI.getOperand(1).setReg(SrcRegD);
1744   MIB.add(predOps(ARMCC::AL));
1745 
1746   // We are now reading SrcRegD instead of SrcRegS.  This may upset the
1747   // register scavenger and machine verifier, so we need to indicate that we
1748   // are reading an undefined value from SrcRegD, but a proper value from
1749   // SrcRegS.
1750   MI.getOperand(1).setIsUndef();
1751   MIB.addReg(SrcRegS, RegState::Implicit);
1752 
1753   // SrcRegD may actually contain an unrelated value in the ssub_1
1754   // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
1755   if (MI.getOperand(1).isKill()) {
1756     MI.getOperand(1).setIsKill(false);
1757     MI.addRegisterKilled(SrcRegS, TRI, true);
1758   }
1759 
1760   LLVM_DEBUG(dbgs() << "replaced by: " << MI);
1761   return true;
1762 }
1763 
1764 /// Create a copy of a const pool value. Update CPI to the new index and return
1765 /// the label UID.
1766 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1767   MachineConstantPool *MCP = MF.getConstantPool();
1768   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1769 
1770   const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1771   assert(MCPE.isMachineConstantPoolEntry() &&
1772          "Expecting a machine constantpool entry!");
1773   ARMConstantPoolValue *ACPV =
1774     static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1775 
1776   unsigned PCLabelId = AFI->createPICLabelUId();
1777   ARMConstantPoolValue *NewCPV = nullptr;
1778 
1779   // FIXME: The below assumes PIC relocation model and that the function
1780   // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1781   // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1782   // instructions, so that's probably OK, but is PIC always correct when
1783   // we get here?
1784   if (ACPV->isGlobalValue())
1785     NewCPV = ARMConstantPoolConstant::Create(
1786         cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue,
1787         4, ACPV->getModifier(), ACPV->mustAddCurrentAddress());
1788   else if (ACPV->isExtSymbol())
1789     NewCPV = ARMConstantPoolSymbol::
1790       Create(MF.getFunction().getContext(),
1791              cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1792   else if (ACPV->isBlockAddress())
1793     NewCPV = ARMConstantPoolConstant::
1794       Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1795              ARMCP::CPBlockAddress, 4);
1796   else if (ACPV->isLSDA())
1797     NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId,
1798                                              ARMCP::CPLSDA, 4);
1799   else if (ACPV->isMachineBasicBlock())
1800     NewCPV = ARMConstantPoolMBB::
1801       Create(MF.getFunction().getContext(),
1802              cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1803   else
1804     llvm_unreachable("Unexpected ARM constantpool value type!!");
1805   CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlign());
1806   return PCLabelId;
1807 }
1808 
1809 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB,
1810                                      MachineBasicBlock::iterator I,
1811                                      Register DestReg, unsigned SubIdx,
1812                                      const MachineInstr &Orig,
1813                                      const TargetRegisterInfo &TRI) const {
1814   unsigned Opcode = Orig.getOpcode();
1815   switch (Opcode) {
1816   default: {
1817     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
1818     MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
1819     MBB.insert(I, MI);
1820     break;
1821   }
1822   case ARM::tLDRpci_pic:
1823   case ARM::t2LDRpci_pic: {
1824     MachineFunction &MF = *MBB.getParent();
1825     unsigned CPI = Orig.getOperand(1).getIndex();
1826     unsigned PCLabelId = duplicateCPV(MF, CPI);
1827     BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg)
1828         .addConstantPoolIndex(CPI)
1829         .addImm(PCLabelId)
1830         .cloneMemRefs(Orig);
1831     break;
1832   }
1833   }
1834 }
1835 
1836 MachineInstr &
1837 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB,
1838     MachineBasicBlock::iterator InsertBefore,
1839     const MachineInstr &Orig) const {
1840   MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig);
1841   MachineBasicBlock::instr_iterator I = Cloned.getIterator();
1842   for (;;) {
1843     switch (I->getOpcode()) {
1844     case ARM::tLDRpci_pic:
1845     case ARM::t2LDRpci_pic: {
1846       MachineFunction &MF = *MBB.getParent();
1847       unsigned CPI = I->getOperand(1).getIndex();
1848       unsigned PCLabelId = duplicateCPV(MF, CPI);
1849       I->getOperand(1).setIndex(CPI);
1850       I->getOperand(2).setImm(PCLabelId);
1851       break;
1852     }
1853     }
1854     if (!I->isBundledWithSucc())
1855       break;
1856     ++I;
1857   }
1858   return Cloned;
1859 }
1860 
1861 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0,
1862                                         const MachineInstr &MI1,
1863                                         const MachineRegisterInfo *MRI) const {
1864   unsigned Opcode = MI0.getOpcode();
1865   if (Opcode == ARM::t2LDRpci || Opcode == ARM::t2LDRpci_pic ||
1866       Opcode == ARM::tLDRpci || Opcode == ARM::tLDRpci_pic ||
1867       Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1868       Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel ||
1869       Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr ||
1870       Opcode == ARM::t2MOV_ga_pcrel) {
1871     if (MI1.getOpcode() != Opcode)
1872       return false;
1873     if (MI0.getNumOperands() != MI1.getNumOperands())
1874       return false;
1875 
1876     const MachineOperand &MO0 = MI0.getOperand(1);
1877     const MachineOperand &MO1 = MI1.getOperand(1);
1878     if (MO0.getOffset() != MO1.getOffset())
1879       return false;
1880 
1881     if (Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1882         Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel ||
1883         Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr ||
1884         Opcode == ARM::t2MOV_ga_pcrel)
1885       // Ignore the PC labels.
1886       return MO0.getGlobal() == MO1.getGlobal();
1887 
1888     const MachineFunction *MF = MI0.getParent()->getParent();
1889     const MachineConstantPool *MCP = MF->getConstantPool();
1890     int CPI0 = MO0.getIndex();
1891     int CPI1 = MO1.getIndex();
1892     const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1893     const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1894     bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1895     bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1896     if (isARMCP0 && isARMCP1) {
1897       ARMConstantPoolValue *ACPV0 =
1898         static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1899       ARMConstantPoolValue *ACPV1 =
1900         static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1901       return ACPV0->hasSameValue(ACPV1);
1902     } else if (!isARMCP0 && !isARMCP1) {
1903       return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1904     }
1905     return false;
1906   } else if (Opcode == ARM::PICLDR) {
1907     if (MI1.getOpcode() != Opcode)
1908       return false;
1909     if (MI0.getNumOperands() != MI1.getNumOperands())
1910       return false;
1911 
1912     Register Addr0 = MI0.getOperand(1).getReg();
1913     Register Addr1 = MI1.getOperand(1).getReg();
1914     if (Addr0 != Addr1) {
1915       if (!MRI || !Addr0.isVirtual() || !Addr1.isVirtual())
1916         return false;
1917 
1918       // This assumes SSA form.
1919       MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1920       MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1921       // Check if the loaded value, e.g. a constantpool of a global address, are
1922       // the same.
1923       if (!produceSameValue(*Def0, *Def1, MRI))
1924         return false;
1925     }
1926 
1927     for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) {
1928       // %12 = PICLDR %11, 0, 14, %noreg
1929       const MachineOperand &MO0 = MI0.getOperand(i);
1930       const MachineOperand &MO1 = MI1.getOperand(i);
1931       if (!MO0.isIdenticalTo(MO1))
1932         return false;
1933     }
1934     return true;
1935   }
1936 
1937   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1938 }
1939 
1940 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1941 /// determine if two loads are loading from the same base address. It should
1942 /// only return true if the base pointers are the same and the only differences
1943 /// between the two addresses is the offset. It also returns the offsets by
1944 /// reference.
1945 ///
1946 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1947 /// is permanently disabled.
1948 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1949                                                int64_t &Offset1,
1950                                                int64_t &Offset2) const {
1951   // Don't worry about Thumb: just ARM and Thumb2.
1952   if (Subtarget.isThumb1Only()) return false;
1953 
1954   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1955     return false;
1956 
1957   auto IsLoadOpcode = [&](unsigned Opcode) {
1958     switch (Opcode) {
1959     default:
1960       return false;
1961     case ARM::LDRi12:
1962     case ARM::LDRBi12:
1963     case ARM::LDRD:
1964     case ARM::LDRH:
1965     case ARM::LDRSB:
1966     case ARM::LDRSH:
1967     case ARM::VLDRD:
1968     case ARM::VLDRS:
1969     case ARM::t2LDRi8:
1970     case ARM::t2LDRBi8:
1971     case ARM::t2LDRDi8:
1972     case ARM::t2LDRSHi8:
1973     case ARM::t2LDRi12:
1974     case ARM::t2LDRBi12:
1975     case ARM::t2LDRSHi12:
1976       return true;
1977     }
1978   };
1979 
1980   if (!IsLoadOpcode(Load1->getMachineOpcode()) ||
1981       !IsLoadOpcode(Load2->getMachineOpcode()))
1982     return false;
1983 
1984   // Check if base addresses and chain operands match.
1985   if (Load1->getOperand(0) != Load2->getOperand(0) ||
1986       Load1->getOperand(4) != Load2->getOperand(4))
1987     return false;
1988 
1989   // Index should be Reg0.
1990   if (Load1->getOperand(3) != Load2->getOperand(3))
1991     return false;
1992 
1993   // Determine the offsets.
1994   if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1995       isa<ConstantSDNode>(Load2->getOperand(1))) {
1996     Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1997     Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1998     return true;
1999   }
2000 
2001   return false;
2002 }
2003 
2004 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
2005 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
2006 /// be scheduled togther. On some targets if two loads are loading from
2007 /// addresses in the same cache line, it's better if they are scheduled
2008 /// together. This function takes two integers that represent the load offsets
2009 /// from the common base address. It returns true if it decides it's desirable
2010 /// to schedule the two loads together. "NumLoads" is the number of loads that
2011 /// have already been scheduled after Load1.
2012 ///
2013 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
2014 /// is permanently disabled.
2015 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
2016                                                int64_t Offset1, int64_t Offset2,
2017                                                unsigned NumLoads) const {
2018   // Don't worry about Thumb: just ARM and Thumb2.
2019   if (Subtarget.isThumb1Only()) return false;
2020 
2021   assert(Offset2 > Offset1);
2022 
2023   if ((Offset2 - Offset1) / 8 > 64)
2024     return false;
2025 
2026   // Check if the machine opcodes are different. If they are different
2027   // then we consider them to not be of the same base address,
2028   // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
2029   // In this case, they are considered to be the same because they are different
2030   // encoding forms of the same basic instruction.
2031   if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
2032       !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
2033          Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
2034         (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
2035          Load2->getMachineOpcode() == ARM::t2LDRBi8)))
2036     return false;  // FIXME: overly conservative?
2037 
2038   // Four loads in a row should be sufficient.
2039   if (NumLoads >= 3)
2040     return false;
2041 
2042   return true;
2043 }
2044 
2045 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
2046                                             const MachineBasicBlock *MBB,
2047                                             const MachineFunction &MF) const {
2048   // Debug info is never a scheduling boundary. It's necessary to be explicit
2049   // due to the special treatment of IT instructions below, otherwise a
2050   // dbg_value followed by an IT will result in the IT instruction being
2051   // considered a scheduling hazard, which is wrong. It should be the actual
2052   // instruction preceding the dbg_value instruction(s), just like it is
2053   // when debug info is not present.
2054   if (MI.isDebugInstr())
2055     return false;
2056 
2057   // Terminators and labels can't be scheduled around.
2058   if (MI.isTerminator() || MI.isPosition())
2059     return true;
2060 
2061   // INLINEASM_BR can jump to another block
2062   if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
2063     return true;
2064 
2065   if (isSEHInstruction(MI))
2066     return true;
2067 
2068   // Treat the start of the IT block as a scheduling boundary, but schedule
2069   // t2IT along with all instructions following it.
2070   // FIXME: This is a big hammer. But the alternative is to add all potential
2071   // true and anti dependencies to IT block instructions as implicit operands
2072   // to the t2IT instruction. The added compile time and complexity does not
2073   // seem worth it.
2074   MachineBasicBlock::const_iterator I = MI;
2075   // Make sure to skip any debug instructions
2076   while (++I != MBB->end() && I->isDebugInstr())
2077     ;
2078   if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
2079     return true;
2080 
2081   // Don't attempt to schedule around any instruction that defines
2082   // a stack-oriented pointer, as it's unlikely to be profitable. This
2083   // saves compile time, because it doesn't require every single
2084   // stack slot reference to depend on the instruction that does the
2085   // modification.
2086   // Calls don't actually change the stack pointer, even if they have imp-defs.
2087   // No ARM calling conventions change the stack pointer. (X86 calling
2088   // conventions sometimes do).
2089   if (!MI.isCall() && MI.definesRegister(ARM::SP, /*TRI=*/nullptr))
2090     return true;
2091 
2092   return false;
2093 }
2094 
2095 bool ARMBaseInstrInfo::
2096 isProfitableToIfCvt(MachineBasicBlock &MBB,
2097                     unsigned NumCycles, unsigned ExtraPredCycles,
2098                     BranchProbability Probability) const {
2099   if (!NumCycles)
2100     return false;
2101 
2102   // If we are optimizing for size, see if the branch in the predecessor can be
2103   // lowered to cbn?z by the constant island lowering pass, and return false if
2104   // so. This results in a shorter instruction sequence.
2105   if (MBB.getParent()->getFunction().hasOptSize()) {
2106     MachineBasicBlock *Pred = *MBB.pred_begin();
2107     if (!Pred->empty()) {
2108       MachineInstr *LastMI = &*Pred->rbegin();
2109       if (LastMI->getOpcode() == ARM::t2Bcc) {
2110         const TargetRegisterInfo *TRI = &getRegisterInfo();
2111         MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI);
2112         if (CmpMI)
2113           return false;
2114       }
2115     }
2116   }
2117   return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles,
2118                              MBB, 0, 0, Probability);
2119 }
2120 
2121 bool ARMBaseInstrInfo::
2122 isProfitableToIfCvt(MachineBasicBlock &TBB,
2123                     unsigned TCycles, unsigned TExtra,
2124                     MachineBasicBlock &FBB,
2125                     unsigned FCycles, unsigned FExtra,
2126                     BranchProbability Probability) const {
2127   if (!TCycles)
2128     return false;
2129 
2130   // In thumb code we often end up trading one branch for a IT block, and
2131   // if we are cloning the instruction can increase code size. Prevent
2132   // blocks with multiple predecesors from being ifcvted to prevent this
2133   // cloning.
2134   if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) {
2135     if (TBB.pred_size() != 1 || FBB.pred_size() != 1)
2136       return false;
2137   }
2138 
2139   // Attempt to estimate the relative costs of predication versus branching.
2140   // Here we scale up each component of UnpredCost to avoid precision issue when
2141   // scaling TCycles/FCycles by Probability.
2142   const unsigned ScalingUpFactor = 1024;
2143 
2144   unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor;
2145   unsigned UnpredCost;
2146   if (!Subtarget.hasBranchPredictor()) {
2147     // When we don't have a branch predictor it's always cheaper to not take a
2148     // branch than take it, so we have to take that into account.
2149     unsigned NotTakenBranchCost = 1;
2150     unsigned TakenBranchCost = Subtarget.getMispredictionPenalty();
2151     unsigned TUnpredCycles, FUnpredCycles;
2152     if (!FCycles) {
2153       // Triangle: TBB is the fallthrough
2154       TUnpredCycles = TCycles + NotTakenBranchCost;
2155       FUnpredCycles = TakenBranchCost;
2156     } else {
2157       // Diamond: TBB is the block that is branched to, FBB is the fallthrough
2158       TUnpredCycles = TCycles + TakenBranchCost;
2159       FUnpredCycles = FCycles + NotTakenBranchCost;
2160       // The branch at the end of FBB will disappear when it's predicated, so
2161       // discount it from PredCost.
2162       PredCost -= 1 * ScalingUpFactor;
2163     }
2164     // The total cost is the cost of each path scaled by their probabilites
2165     unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor);
2166     unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor);
2167     UnpredCost = TUnpredCost + FUnpredCost;
2168     // When predicating assume that the first IT can be folded away but later
2169     // ones cost one cycle each
2170     if (Subtarget.isThumb2() && TCycles + FCycles > 4) {
2171       PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor;
2172     }
2173   } else {
2174     unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor);
2175     unsigned FUnpredCost =
2176       Probability.getCompl().scale(FCycles * ScalingUpFactor);
2177     UnpredCost = TUnpredCost + FUnpredCost;
2178     UnpredCost += 1 * ScalingUpFactor; // The branch itself
2179     UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
2180   }
2181 
2182   return PredCost <= UnpredCost;
2183 }
2184 
2185 unsigned
2186 ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF,
2187                                                    unsigned NumInsts) const {
2188   // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions.
2189   // ARM has a condition code field in every predicable instruction, using it
2190   // doesn't change code size.
2191   if (!Subtarget.isThumb2())
2192     return 0;
2193 
2194   // It's possible that the size of the IT is restricted to a single block.
2195   unsigned MaxInsts = Subtarget.restrictIT() ? 1 : 4;
2196   return divideCeil(NumInsts, MaxInsts) * 2;
2197 }
2198 
2199 unsigned
2200 ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const {
2201   // If this branch is likely to be folded into the comparison to form a
2202   // CB(N)Z, then removing it won't reduce code size at all, because that will
2203   // just replace the CB(N)Z with a CMP.
2204   if (MI.getOpcode() == ARM::t2Bcc &&
2205       findCMPToFoldIntoCBZ(&MI, &getRegisterInfo()))
2206     return 0;
2207 
2208   unsigned Size = getInstSizeInBytes(MI);
2209 
2210   // For Thumb2, all branches are 32-bit instructions during the if conversion
2211   // pass, but may be replaced with 16-bit instructions during size reduction.
2212   // Since the branches considered by if conversion tend to be forward branches
2213   // over small basic blocks, they are very likely to be in range for the
2214   // narrow instructions, so we assume the final code size will be half what it
2215   // currently is.
2216   if (Subtarget.isThumb2())
2217     Size /= 2;
2218 
2219   return Size;
2220 }
2221 
2222 bool
2223 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
2224                                             MachineBasicBlock &FMBB) const {
2225   // Reduce false anti-dependencies to let the target's out-of-order execution
2226   // engine do its thing.
2227   return Subtarget.isProfitableToUnpredicate();
2228 }
2229 
2230 /// getInstrPredicate - If instruction is predicated, returns its predicate
2231 /// condition, otherwise returns AL. It also returns the condition code
2232 /// register by reference.
2233 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI,
2234                                          Register &PredReg) {
2235   int PIdx = MI.findFirstPredOperandIdx();
2236   if (PIdx == -1) {
2237     PredReg = 0;
2238     return ARMCC::AL;
2239   }
2240 
2241   PredReg = MI.getOperand(PIdx+1).getReg();
2242   return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
2243 }
2244 
2245 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
2246   if (Opc == ARM::B)
2247     return ARM::Bcc;
2248   if (Opc == ARM::tB)
2249     return ARM::tBcc;
2250   if (Opc == ARM::t2B)
2251     return ARM::t2Bcc;
2252 
2253   llvm_unreachable("Unknown unconditional branch opcode!");
2254 }
2255 
2256 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI,
2257                                                        bool NewMI,
2258                                                        unsigned OpIdx1,
2259                                                        unsigned OpIdx2) const {
2260   switch (MI.getOpcode()) {
2261   case ARM::MOVCCr:
2262   case ARM::t2MOVCCr: {
2263     // MOVCC can be commuted by inverting the condition.
2264     Register PredReg;
2265     ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
2266     // MOVCC AL can't be inverted. Shouldn't happen.
2267     if (CC == ARMCC::AL || PredReg != ARM::CPSR)
2268       return nullptr;
2269     MachineInstr *CommutedMI =
2270         TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2271     if (!CommutedMI)
2272       return nullptr;
2273     // After swapping the MOVCC operands, also invert the condition.
2274     CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx())
2275         .setImm(ARMCC::getOppositeCondition(CC));
2276     return CommutedMI;
2277   }
2278   }
2279   return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2280 }
2281 
2282 /// Identify instructions that can be folded into a MOVCC instruction, and
2283 /// return the defining instruction.
2284 MachineInstr *
2285 ARMBaseInstrInfo::canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI,
2286                                    const TargetInstrInfo *TII) const {
2287   if (!Reg.isVirtual())
2288     return nullptr;
2289   if (!MRI.hasOneNonDBGUse(Reg))
2290     return nullptr;
2291   MachineInstr *MI = MRI.getVRegDef(Reg);
2292   if (!MI)
2293     return nullptr;
2294   // Check if MI can be predicated and folded into the MOVCC.
2295   if (!isPredicable(*MI))
2296     return nullptr;
2297   // Check if MI has any non-dead defs or physreg uses. This also detects
2298   // predicated instructions which will be reading CPSR.
2299   for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 1)) {
2300     // Reject frame index operands, PEI can't handle the predicated pseudos.
2301     if (MO.isFI() || MO.isCPI() || MO.isJTI())
2302       return nullptr;
2303     if (!MO.isReg())
2304       continue;
2305     // MI can't have any tied operands, that would conflict with predication.
2306     if (MO.isTied())
2307       return nullptr;
2308     if (MO.getReg().isPhysical())
2309       return nullptr;
2310     if (MO.isDef() && !MO.isDead())
2311       return nullptr;
2312   }
2313   bool DontMoveAcrossStores = true;
2314   if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores))
2315     return nullptr;
2316   return MI;
2317 }
2318 
2319 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI,
2320                                      SmallVectorImpl<MachineOperand> &Cond,
2321                                      unsigned &TrueOp, unsigned &FalseOp,
2322                                      bool &Optimizable) const {
2323   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2324          "Unknown select instruction");
2325   // MOVCC operands:
2326   // 0: Def.
2327   // 1: True use.
2328   // 2: False use.
2329   // 3: Condition code.
2330   // 4: CPSR use.
2331   TrueOp = 1;
2332   FalseOp = 2;
2333   Cond.push_back(MI.getOperand(3));
2334   Cond.push_back(MI.getOperand(4));
2335   // We can always fold a def.
2336   Optimizable = true;
2337   return false;
2338 }
2339 
2340 MachineInstr *
2341 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI,
2342                                  SmallPtrSetImpl<MachineInstr *> &SeenMIs,
2343                                  bool PreferFalse) const {
2344   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2345          "Unknown select instruction");
2346   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2347   MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this);
2348   bool Invert = !DefMI;
2349   if (!DefMI)
2350     DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this);
2351   if (!DefMI)
2352     return nullptr;
2353 
2354   // Find new register class to use.
2355   MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1);
2356   MachineOperand TrueReg = MI.getOperand(Invert ? 1 : 2);
2357   Register DestReg = MI.getOperand(0).getReg();
2358   const TargetRegisterClass *FalseClass = MRI.getRegClass(FalseReg.getReg());
2359   const TargetRegisterClass *TrueClass = MRI.getRegClass(TrueReg.getReg());
2360   if (!MRI.constrainRegClass(DestReg, FalseClass))
2361     return nullptr;
2362   if (!MRI.constrainRegClass(DestReg, TrueClass))
2363     return nullptr;
2364 
2365   // Create a new predicated version of DefMI.
2366   // Rfalse is the first use.
2367   MachineInstrBuilder NewMI =
2368       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg);
2369 
2370   // Copy all the DefMI operands, excluding its (null) predicate.
2371   const MCInstrDesc &DefDesc = DefMI->getDesc();
2372   for (unsigned i = 1, e = DefDesc.getNumOperands();
2373        i != e && !DefDesc.operands()[i].isPredicate(); ++i)
2374     NewMI.add(DefMI->getOperand(i));
2375 
2376   unsigned CondCode = MI.getOperand(3).getImm();
2377   if (Invert)
2378     NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
2379   else
2380     NewMI.addImm(CondCode);
2381   NewMI.add(MI.getOperand(4));
2382 
2383   // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
2384   if (NewMI->hasOptionalDef())
2385     NewMI.add(condCodeOp());
2386 
2387   // The output register value when the predicate is false is an implicit
2388   // register operand tied to the first def.
2389   // The tie makes the register allocator ensure the FalseReg is allocated the
2390   // same register as operand 0.
2391   FalseReg.setImplicit();
2392   NewMI.add(FalseReg);
2393   NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
2394 
2395   // Update SeenMIs set: register newly created MI and erase removed DefMI.
2396   SeenMIs.insert(NewMI);
2397   SeenMIs.erase(DefMI);
2398 
2399   // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
2400   // DefMI would be invalid when tranferred inside the loop.  Checking for a
2401   // loop is expensive, but at least remove kill flags if they are in different
2402   // BBs.
2403   if (DefMI->getParent() != MI.getParent())
2404     NewMI->clearKillInfo();
2405 
2406   // The caller will erase MI, but not DefMI.
2407   DefMI->eraseFromParent();
2408   return NewMI;
2409 }
2410 
2411 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
2412 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
2413 /// def operand.
2414 ///
2415 /// This will go away once we can teach tblgen how to set the optional CPSR def
2416 /// operand itself.
2417 struct AddSubFlagsOpcodePair {
2418   uint16_t PseudoOpc;
2419   uint16_t MachineOpc;
2420 };
2421 
2422 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
2423   {ARM::ADDSri, ARM::ADDri},
2424   {ARM::ADDSrr, ARM::ADDrr},
2425   {ARM::ADDSrsi, ARM::ADDrsi},
2426   {ARM::ADDSrsr, ARM::ADDrsr},
2427 
2428   {ARM::SUBSri, ARM::SUBri},
2429   {ARM::SUBSrr, ARM::SUBrr},
2430   {ARM::SUBSrsi, ARM::SUBrsi},
2431   {ARM::SUBSrsr, ARM::SUBrsr},
2432 
2433   {ARM::RSBSri, ARM::RSBri},
2434   {ARM::RSBSrsi, ARM::RSBrsi},
2435   {ARM::RSBSrsr, ARM::RSBrsr},
2436 
2437   {ARM::tADDSi3, ARM::tADDi3},
2438   {ARM::tADDSi8, ARM::tADDi8},
2439   {ARM::tADDSrr, ARM::tADDrr},
2440   {ARM::tADCS, ARM::tADC},
2441 
2442   {ARM::tSUBSi3, ARM::tSUBi3},
2443   {ARM::tSUBSi8, ARM::tSUBi8},
2444   {ARM::tSUBSrr, ARM::tSUBrr},
2445   {ARM::tSBCS, ARM::tSBC},
2446   {ARM::tRSBS, ARM::tRSB},
2447   {ARM::tLSLSri, ARM::tLSLri},
2448 
2449   {ARM::t2ADDSri, ARM::t2ADDri},
2450   {ARM::t2ADDSrr, ARM::t2ADDrr},
2451   {ARM::t2ADDSrs, ARM::t2ADDrs},
2452 
2453   {ARM::t2SUBSri, ARM::t2SUBri},
2454   {ARM::t2SUBSrr, ARM::t2SUBrr},
2455   {ARM::t2SUBSrs, ARM::t2SUBrs},
2456 
2457   {ARM::t2RSBSri, ARM::t2RSBri},
2458   {ARM::t2RSBSrs, ARM::t2RSBrs},
2459 };
2460 
2461 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
2462   for (const auto &Entry : AddSubFlagsOpcodeMap)
2463     if (OldOpc == Entry.PseudoOpc)
2464       return Entry.MachineOpc;
2465   return 0;
2466 }
2467 
2468 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
2469                                    MachineBasicBlock::iterator &MBBI,
2470                                    const DebugLoc &dl, Register DestReg,
2471                                    Register BaseReg, int NumBytes,
2472                                    ARMCC::CondCodes Pred, Register PredReg,
2473                                    const ARMBaseInstrInfo &TII,
2474                                    unsigned MIFlags) {
2475   if (NumBytes == 0 && DestReg != BaseReg) {
2476     BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
2477         .addReg(BaseReg, RegState::Kill)
2478         .add(predOps(Pred, PredReg))
2479         .add(condCodeOp())
2480         .setMIFlags(MIFlags);
2481     return;
2482   }
2483 
2484   bool isSub = NumBytes < 0;
2485   if (isSub) NumBytes = -NumBytes;
2486 
2487   while (NumBytes) {
2488     unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
2489     unsigned ThisVal = NumBytes & llvm::rotr<uint32_t>(0xFF, RotAmt);
2490     assert(ThisVal && "Didn't extract field correctly");
2491 
2492     // We will handle these bits from offset, clear them.
2493     NumBytes &= ~ThisVal;
2494 
2495     assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
2496 
2497     // Build the new ADD / SUB.
2498     unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
2499     BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
2500         .addReg(BaseReg, RegState::Kill)
2501         .addImm(ThisVal)
2502         .add(predOps(Pred, PredReg))
2503         .add(condCodeOp())
2504         .setMIFlags(MIFlags);
2505     BaseReg = DestReg;
2506   }
2507 }
2508 
2509 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
2510                                       MachineFunction &MF, MachineInstr *MI,
2511                                       unsigned NumBytes) {
2512   // This optimisation potentially adds lots of load and store
2513   // micro-operations, it's only really a great benefit to code-size.
2514   if (!Subtarget.hasMinSize())
2515     return false;
2516 
2517   // If only one register is pushed/popped, LLVM can use an LDR/STR
2518   // instead. We can't modify those so make sure we're dealing with an
2519   // instruction we understand.
2520   bool IsPop = isPopOpcode(MI->getOpcode());
2521   bool IsPush = isPushOpcode(MI->getOpcode());
2522   if (!IsPush && !IsPop)
2523     return false;
2524 
2525   bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
2526                       MI->getOpcode() == ARM::VLDMDIA_UPD;
2527   bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
2528                      MI->getOpcode() == ARM::tPOP ||
2529                      MI->getOpcode() == ARM::tPOP_RET;
2530 
2531   assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
2532                           MI->getOperand(1).getReg() == ARM::SP)) &&
2533          "trying to fold sp update into non-sp-updating push/pop");
2534 
2535   // The VFP push & pop act on D-registers, so we can only fold an adjustment
2536   // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
2537   // if this is violated.
2538   if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
2539     return false;
2540 
2541   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
2542   // pred) so the list starts at 4. Thumb1 starts after the predicate.
2543   int RegListIdx = IsT1PushPop ? 2 : 4;
2544 
2545   // Calculate the space we'll need in terms of registers.
2546   unsigned RegsNeeded;
2547   const TargetRegisterClass *RegClass;
2548   if (IsVFPPushPop) {
2549     RegsNeeded = NumBytes / 8;
2550     RegClass = &ARM::DPRRegClass;
2551   } else {
2552     RegsNeeded = NumBytes / 4;
2553     RegClass = &ARM::GPRRegClass;
2554   }
2555 
2556   // We're going to have to strip all list operands off before
2557   // re-adding them since the order matters, so save the existing ones
2558   // for later.
2559   SmallVector<MachineOperand, 4> RegList;
2560 
2561   // We're also going to need the first register transferred by this
2562   // instruction, which won't necessarily be the first register in the list.
2563   unsigned FirstRegEnc = -1;
2564 
2565   const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
2566   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) {
2567     MachineOperand &MO = MI->getOperand(i);
2568     RegList.push_back(MO);
2569 
2570     if (MO.isReg() && !MO.isImplicit() &&
2571         TRI->getEncodingValue(MO.getReg()) < FirstRegEnc)
2572       FirstRegEnc = TRI->getEncodingValue(MO.getReg());
2573   }
2574 
2575   const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
2576 
2577   // Now try to find enough space in the reglist to allocate NumBytes.
2578   for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded;
2579        --CurRegEnc) {
2580     unsigned CurReg = RegClass->getRegister(CurRegEnc);
2581     if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7))
2582       continue;
2583     if (!IsPop) {
2584       // Pushing any register is completely harmless, mark the register involved
2585       // as undef since we don't care about its value and must not restore it
2586       // during stack unwinding.
2587       RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
2588                                                   false, false, true));
2589       --RegsNeeded;
2590       continue;
2591     }
2592 
2593     // However, we can only pop an extra register if it's not live. For
2594     // registers live within the function we might clobber a return value
2595     // register; the other way a register can be live here is if it's
2596     // callee-saved.
2597     if (isCalleeSavedRegister(CurReg, CSRegs) ||
2598         MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) !=
2599         MachineBasicBlock::LQR_Dead) {
2600       // VFP pops don't allow holes in the register list, so any skip is fatal
2601       // for our transformation. GPR pops do, so we should just keep looking.
2602       if (IsVFPPushPop)
2603         return false;
2604       else
2605         continue;
2606     }
2607 
2608     // Mark the unimportant registers as <def,dead> in the POP.
2609     RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
2610                                                 true));
2611     --RegsNeeded;
2612   }
2613 
2614   if (RegsNeeded > 0)
2615     return false;
2616 
2617   // Finally we know we can profitably perform the optimisation so go
2618   // ahead: strip all existing registers off and add them back again
2619   // in the right order.
2620   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
2621     MI->removeOperand(i);
2622 
2623   // Add the complete list back in.
2624   MachineInstrBuilder MIB(MF, &*MI);
2625   for (const MachineOperand &MO : llvm::reverse(RegList))
2626     MIB.add(MO);
2627 
2628   return true;
2629 }
2630 
2631 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
2632                                 Register FrameReg, int &Offset,
2633                                 const ARMBaseInstrInfo &TII) {
2634   unsigned Opcode = MI.getOpcode();
2635   const MCInstrDesc &Desc = MI.getDesc();
2636   unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
2637   bool isSub = false;
2638 
2639   // Memory operands in inline assembly always use AddrMode2.
2640   if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR)
2641     AddrMode = ARMII::AddrMode2;
2642 
2643   if (Opcode == ARM::ADDri) {
2644     Offset += MI.getOperand(FrameRegIdx+1).getImm();
2645     if (Offset == 0) {
2646       // Turn it into a move.
2647       MI.setDesc(TII.get(ARM::MOVr));
2648       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2649       MI.removeOperand(FrameRegIdx+1);
2650       Offset = 0;
2651       return true;
2652     } else if (Offset < 0) {
2653       Offset = -Offset;
2654       isSub = true;
2655       MI.setDesc(TII.get(ARM::SUBri));
2656     }
2657 
2658     // Common case: small offset, fits into instruction.
2659     if (ARM_AM::getSOImmVal(Offset) != -1) {
2660       // Replace the FrameIndex with sp / fp
2661       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2662       MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
2663       Offset = 0;
2664       return true;
2665     }
2666 
2667     // Otherwise, pull as much of the immedidate into this ADDri/SUBri
2668     // as possible.
2669     unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
2670     unsigned ThisImmVal = Offset & llvm::rotr<uint32_t>(0xFF, RotAmt);
2671 
2672     // We will handle these bits from offset, clear them.
2673     Offset &= ~ThisImmVal;
2674 
2675     // Get the properly encoded SOImmVal field.
2676     assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
2677            "Bit extraction didn't work?");
2678     MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
2679  } else {
2680     unsigned ImmIdx = 0;
2681     int InstrOffs = 0;
2682     unsigned NumBits = 0;
2683     unsigned Scale = 1;
2684     switch (AddrMode) {
2685     case ARMII::AddrMode_i12:
2686       ImmIdx = FrameRegIdx + 1;
2687       InstrOffs = MI.getOperand(ImmIdx).getImm();
2688       NumBits = 12;
2689       break;
2690     case ARMII::AddrMode2:
2691       ImmIdx = FrameRegIdx+2;
2692       InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
2693       if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2694         InstrOffs *= -1;
2695       NumBits = 12;
2696       break;
2697     case ARMII::AddrMode3:
2698       ImmIdx = FrameRegIdx+2;
2699       InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
2700       if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2701         InstrOffs *= -1;
2702       NumBits = 8;
2703       break;
2704     case ARMII::AddrMode4:
2705     case ARMII::AddrMode6:
2706       // Can't fold any offset even if it's zero.
2707       return false;
2708     case ARMII::AddrMode5:
2709       ImmIdx = FrameRegIdx+1;
2710       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2711       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2712         InstrOffs *= -1;
2713       NumBits = 8;
2714       Scale = 4;
2715       break;
2716     case ARMII::AddrMode5FP16:
2717       ImmIdx = FrameRegIdx+1;
2718       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2719       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2720         InstrOffs *= -1;
2721       NumBits = 8;
2722       Scale = 2;
2723       break;
2724     case ARMII::AddrModeT2_i7:
2725     case ARMII::AddrModeT2_i7s2:
2726     case ARMII::AddrModeT2_i7s4:
2727       ImmIdx = FrameRegIdx+1;
2728       InstrOffs = MI.getOperand(ImmIdx).getImm();
2729       NumBits = 7;
2730       Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 :
2731                AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1);
2732       break;
2733     default:
2734       llvm_unreachable("Unsupported addressing mode!");
2735     }
2736 
2737     Offset += InstrOffs * Scale;
2738     assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
2739     if (Offset < 0) {
2740       Offset = -Offset;
2741       isSub = true;
2742     }
2743 
2744     // Attempt to fold address comp. if opcode has offset bits
2745     if (NumBits > 0) {
2746       // Common case: small offset, fits into instruction.
2747       MachineOperand &ImmOp = MI.getOperand(ImmIdx);
2748       int ImmedOffset = Offset / Scale;
2749       unsigned Mask = (1 << NumBits) - 1;
2750       if ((unsigned)Offset <= Mask * Scale) {
2751         // Replace the FrameIndex with sp
2752         MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2753         // FIXME: When addrmode2 goes away, this will simplify (like the
2754         // T2 version), as the LDR.i12 versions don't need the encoding
2755         // tricks for the offset value.
2756         if (isSub) {
2757           if (AddrMode == ARMII::AddrMode_i12)
2758             ImmedOffset = -ImmedOffset;
2759           else
2760             ImmedOffset |= 1 << NumBits;
2761         }
2762         ImmOp.ChangeToImmediate(ImmedOffset);
2763         Offset = 0;
2764         return true;
2765       }
2766 
2767       // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
2768       ImmedOffset = ImmedOffset & Mask;
2769       if (isSub) {
2770         if (AddrMode == ARMII::AddrMode_i12)
2771           ImmedOffset = -ImmedOffset;
2772         else
2773           ImmedOffset |= 1 << NumBits;
2774       }
2775       ImmOp.ChangeToImmediate(ImmedOffset);
2776       Offset &= ~(Mask*Scale);
2777     }
2778   }
2779 
2780   Offset = (isSub) ? -Offset : Offset;
2781   return Offset == 0;
2782 }
2783 
2784 /// analyzeCompare - For a comparison instruction, return the source registers
2785 /// in SrcReg and SrcReg2 if having two register operands, and the value it
2786 /// compares against in CmpValue. Return true if the comparison instruction
2787 /// can be analyzed.
2788 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
2789                                       Register &SrcReg2, int64_t &CmpMask,
2790                                       int64_t &CmpValue) const {
2791   switch (MI.getOpcode()) {
2792   default: break;
2793   case ARM::CMPri:
2794   case ARM::t2CMPri:
2795   case ARM::tCMPi8:
2796     SrcReg = MI.getOperand(0).getReg();
2797     SrcReg2 = 0;
2798     CmpMask = ~0;
2799     CmpValue = MI.getOperand(1).getImm();
2800     return true;
2801   case ARM::CMPrr:
2802   case ARM::t2CMPrr:
2803   case ARM::tCMPr:
2804     SrcReg = MI.getOperand(0).getReg();
2805     SrcReg2 = MI.getOperand(1).getReg();
2806     CmpMask = ~0;
2807     CmpValue = 0;
2808     return true;
2809   case ARM::TSTri:
2810   case ARM::t2TSTri:
2811     SrcReg = MI.getOperand(0).getReg();
2812     SrcReg2 = 0;
2813     CmpMask = MI.getOperand(1).getImm();
2814     CmpValue = 0;
2815     return true;
2816   }
2817 
2818   return false;
2819 }
2820 
2821 /// isSuitableForMask - Identify a suitable 'and' instruction that
2822 /// operates on the given source register and applies the same mask
2823 /// as a 'tst' instruction. Provide a limited look-through for copies.
2824 /// When successful, MI will hold the found instruction.
2825 static bool isSuitableForMask(MachineInstr *&MI, Register SrcReg,
2826                               int CmpMask, bool CommonUse) {
2827   switch (MI->getOpcode()) {
2828     case ARM::ANDri:
2829     case ARM::t2ANDri:
2830       if (CmpMask != MI->getOperand(2).getImm())
2831         return false;
2832       if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
2833         return true;
2834       break;
2835   }
2836 
2837   return false;
2838 }
2839 
2840 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return
2841 /// the condition code if we modify the instructions such that flags are
2842 /// set by ADD(a,b,X).
2843 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) {
2844   switch (CC) {
2845   default: return ARMCC::AL;
2846   case ARMCC::HS: return ARMCC::LO;
2847   case ARMCC::LO: return ARMCC::HS;
2848   case ARMCC::VS: return ARMCC::VS;
2849   case ARMCC::VC: return ARMCC::VC;
2850   }
2851 }
2852 
2853 /// isRedundantFlagInstr - check whether the first instruction, whose only
2854 /// purpose is to update flags, can be made redundant.
2855 /// CMPrr can be made redundant by SUBrr if the operands are the same.
2856 /// CMPri can be made redundant by SUBri if the operands are the same.
2857 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X).
2858 /// This function can be extended later on.
2859 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI,
2860                                         Register SrcReg, Register SrcReg2,
2861                                         int64_t ImmValue,
2862                                         const MachineInstr *OI,
2863                                         bool &IsThumb1) {
2864   if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2865       (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) &&
2866       ((OI->getOperand(1).getReg() == SrcReg &&
2867         OI->getOperand(2).getReg() == SrcReg2) ||
2868        (OI->getOperand(1).getReg() == SrcReg2 &&
2869         OI->getOperand(2).getReg() == SrcReg))) {
2870     IsThumb1 = false;
2871     return true;
2872   }
2873 
2874   if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr &&
2875       ((OI->getOperand(2).getReg() == SrcReg &&
2876         OI->getOperand(3).getReg() == SrcReg2) ||
2877        (OI->getOperand(2).getReg() == SrcReg2 &&
2878         OI->getOperand(3).getReg() == SrcReg))) {
2879     IsThumb1 = true;
2880     return true;
2881   }
2882 
2883   if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) &&
2884       (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) &&
2885       OI->getOperand(1).getReg() == SrcReg &&
2886       OI->getOperand(2).getImm() == ImmValue) {
2887     IsThumb1 = false;
2888     return true;
2889   }
2890 
2891   if (CmpI->getOpcode() == ARM::tCMPi8 &&
2892       (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) &&
2893       OI->getOperand(2).getReg() == SrcReg &&
2894       OI->getOperand(3).getImm() == ImmValue) {
2895     IsThumb1 = true;
2896     return true;
2897   }
2898 
2899   if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2900       (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr ||
2901        OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) &&
2902       OI->getOperand(0).isReg() && OI->getOperand(1).isReg() &&
2903       OI->getOperand(0).getReg() == SrcReg &&
2904       OI->getOperand(1).getReg() == SrcReg2) {
2905     IsThumb1 = false;
2906     return true;
2907   }
2908 
2909   if (CmpI->getOpcode() == ARM::tCMPr &&
2910       (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 ||
2911        OI->getOpcode() == ARM::tADDrr) &&
2912       OI->getOperand(0).getReg() == SrcReg &&
2913       OI->getOperand(2).getReg() == SrcReg2) {
2914     IsThumb1 = true;
2915     return true;
2916   }
2917 
2918   return false;
2919 }
2920 
2921 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) {
2922   switch (MI->getOpcode()) {
2923   default: return false;
2924   case ARM::tLSLri:
2925   case ARM::tLSRri:
2926   case ARM::tLSLrr:
2927   case ARM::tLSRrr:
2928   case ARM::tSUBrr:
2929   case ARM::tADDrr:
2930   case ARM::tADDi3:
2931   case ARM::tADDi8:
2932   case ARM::tSUBi3:
2933   case ARM::tSUBi8:
2934   case ARM::tMUL:
2935   case ARM::tADC:
2936   case ARM::tSBC:
2937   case ARM::tRSB:
2938   case ARM::tAND:
2939   case ARM::tORR:
2940   case ARM::tEOR:
2941   case ARM::tBIC:
2942   case ARM::tMVN:
2943   case ARM::tASRri:
2944   case ARM::tASRrr:
2945   case ARM::tROR:
2946     IsThumb1 = true;
2947     [[fallthrough]];
2948   case ARM::RSBrr:
2949   case ARM::RSBri:
2950   case ARM::RSCrr:
2951   case ARM::RSCri:
2952   case ARM::ADDrr:
2953   case ARM::ADDri:
2954   case ARM::ADCrr:
2955   case ARM::ADCri:
2956   case ARM::SUBrr:
2957   case ARM::SUBri:
2958   case ARM::SBCrr:
2959   case ARM::SBCri:
2960   case ARM::t2RSBri:
2961   case ARM::t2ADDrr:
2962   case ARM::t2ADDri:
2963   case ARM::t2ADCrr:
2964   case ARM::t2ADCri:
2965   case ARM::t2SUBrr:
2966   case ARM::t2SUBri:
2967   case ARM::t2SBCrr:
2968   case ARM::t2SBCri:
2969   case ARM::ANDrr:
2970   case ARM::ANDri:
2971   case ARM::ANDrsr:
2972   case ARM::ANDrsi:
2973   case ARM::t2ANDrr:
2974   case ARM::t2ANDri:
2975   case ARM::t2ANDrs:
2976   case ARM::ORRrr:
2977   case ARM::ORRri:
2978   case ARM::ORRrsr:
2979   case ARM::ORRrsi:
2980   case ARM::t2ORRrr:
2981   case ARM::t2ORRri:
2982   case ARM::t2ORRrs:
2983   case ARM::EORrr:
2984   case ARM::EORri:
2985   case ARM::EORrsr:
2986   case ARM::EORrsi:
2987   case ARM::t2EORrr:
2988   case ARM::t2EORri:
2989   case ARM::t2EORrs:
2990   case ARM::BICri:
2991   case ARM::BICrr:
2992   case ARM::BICrsi:
2993   case ARM::BICrsr:
2994   case ARM::t2BICri:
2995   case ARM::t2BICrr:
2996   case ARM::t2BICrs:
2997   case ARM::t2LSRri:
2998   case ARM::t2LSRrr:
2999   case ARM::t2LSLri:
3000   case ARM::t2LSLrr:
3001   case ARM::MOVsr:
3002   case ARM::MOVsi:
3003     return true;
3004   }
3005 }
3006 
3007 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
3008 /// comparison into one that sets the zero bit in the flags register;
3009 /// Remove a redundant Compare instruction if an earlier instruction can set the
3010 /// flags in the same way as Compare.
3011 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
3012 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
3013 /// condition code of instructions which use the flags.
3014 bool ARMBaseInstrInfo::optimizeCompareInstr(
3015     MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t CmpMask,
3016     int64_t CmpValue, const MachineRegisterInfo *MRI) const {
3017   // Get the unique definition of SrcReg.
3018   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
3019   if (!MI) return false;
3020 
3021   // Masked compares sometimes use the same register as the corresponding 'and'.
3022   if (CmpMask != ~0) {
3023     if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) {
3024       MI = nullptr;
3025       for (MachineRegisterInfo::use_instr_iterator
3026            UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
3027            UI != UE; ++UI) {
3028         if (UI->getParent() != CmpInstr.getParent())
3029           continue;
3030         MachineInstr *PotentialAND = &*UI;
3031         if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
3032             isPredicated(*PotentialAND))
3033           continue;
3034         MI = PotentialAND;
3035         break;
3036       }
3037       if (!MI) return false;
3038     }
3039   }
3040 
3041   // Get ready to iterate backward from CmpInstr.
3042   MachineBasicBlock::iterator I = CmpInstr, E = MI,
3043                               B = CmpInstr.getParent()->begin();
3044 
3045   // Early exit if CmpInstr is at the beginning of the BB.
3046   if (I == B) return false;
3047 
3048   // There are two possible candidates which can be changed to set CPSR:
3049   // One is MI, the other is a SUB or ADD instruction.
3050   // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or
3051   // ADDr[ri](r1, r2, X).
3052   // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
3053   MachineInstr *SubAdd = nullptr;
3054   if (SrcReg2 != 0)
3055     // MI is not a candidate for CMPrr.
3056     MI = nullptr;
3057   else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) {
3058     // Conservatively refuse to convert an instruction which isn't in the same
3059     // BB as the comparison.
3060     // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate.
3061     // Thus we cannot return here.
3062     if (CmpInstr.getOpcode() == ARM::CMPri ||
3063         CmpInstr.getOpcode() == ARM::t2CMPri ||
3064         CmpInstr.getOpcode() == ARM::tCMPi8)
3065       MI = nullptr;
3066     else
3067       return false;
3068   }
3069 
3070   bool IsThumb1 = false;
3071   if (MI && !isOptimizeCompareCandidate(MI, IsThumb1))
3072     return false;
3073 
3074   // We also want to do this peephole for cases like this: if (a*b == 0),
3075   // and optimise away the CMP instruction from the generated code sequence:
3076   // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values
3077   // resulting from the select instruction, but these MOVS instructions for
3078   // Thumb1 (V6M) are flag setting and are thus preventing this optimisation.
3079   // However, if we only have MOVS instructions in between the CMP and the
3080   // other instruction (the MULS in this example), then the CPSR is dead so we
3081   // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this
3082   // reordering and then continue the analysis hoping we can eliminate the
3083   // CMP. This peephole works on the vregs, so is still in SSA form. As a
3084   // consequence, the movs won't redefine/kill the MUL operands which would
3085   // make this reordering illegal.
3086   const TargetRegisterInfo *TRI = &getRegisterInfo();
3087   if (MI && IsThumb1) {
3088     --I;
3089     if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) {
3090       bool CanReorder = true;
3091       for (; I != E; --I) {
3092         if (I->getOpcode() != ARM::tMOVi8) {
3093           CanReorder = false;
3094           break;
3095         }
3096       }
3097       if (CanReorder) {
3098         MI = MI->removeFromParent();
3099         E = CmpInstr;
3100         CmpInstr.getParent()->insert(E, MI);
3101       }
3102     }
3103     I = CmpInstr;
3104     E = MI;
3105   }
3106 
3107   // Check that CPSR isn't set between the comparison instruction and the one we
3108   // want to change. At the same time, search for SubAdd.
3109   bool SubAddIsThumb1 = false;
3110   do {
3111     const MachineInstr &Instr = *--I;
3112 
3113     // Check whether CmpInstr can be made redundant by the current instruction.
3114     if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr,
3115                              SubAddIsThumb1)) {
3116       SubAdd = &*I;
3117       break;
3118     }
3119 
3120     // Allow E (which was initially MI) to be SubAdd but do not search before E.
3121     if (I == E)
3122       break;
3123 
3124     if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
3125         Instr.readsRegister(ARM::CPSR, TRI))
3126       // This instruction modifies or uses CPSR after the one we want to
3127       // change. We can't do this transformation.
3128       return false;
3129 
3130     if (I == B) {
3131       // In some cases, we scan the use-list of an instruction for an AND;
3132       // that AND is in the same BB, but may not be scheduled before the
3133       // corresponding TST.  In that case, bail out.
3134       //
3135       // FIXME: We could try to reschedule the AND.
3136       return false;
3137     }
3138   } while (true);
3139 
3140   // Return false if no candidates exist.
3141   if (!MI && !SubAdd)
3142     return false;
3143 
3144   // If we found a SubAdd, use it as it will be closer to the CMP
3145   if (SubAdd) {
3146     MI = SubAdd;
3147     IsThumb1 = SubAddIsThumb1;
3148   }
3149 
3150   // We can't use a predicated instruction - it doesn't always write the flags.
3151   if (isPredicated(*MI))
3152     return false;
3153 
3154   // Scan forward for the use of CPSR
3155   // When checking against MI: if it's a conditional code that requires
3156   // checking of the V bit or C bit, then this is not safe to do.
3157   // It is safe to remove CmpInstr if CPSR is redefined or killed.
3158   // If we are done with the basic block, we need to check whether CPSR is
3159   // live-out.
3160   SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
3161       OperandsToUpdate;
3162   bool isSafe = false;
3163   I = CmpInstr;
3164   E = CmpInstr.getParent()->end();
3165   while (!isSafe && ++I != E) {
3166     const MachineInstr &Instr = *I;
3167     for (unsigned IO = 0, EO = Instr.getNumOperands();
3168          !isSafe && IO != EO; ++IO) {
3169       const MachineOperand &MO = Instr.getOperand(IO);
3170       if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
3171         isSafe = true;
3172         break;
3173       }
3174       if (!MO.isReg() || MO.getReg() != ARM::CPSR)
3175         continue;
3176       if (MO.isDef()) {
3177         isSafe = true;
3178         break;
3179       }
3180       // Condition code is after the operand before CPSR except for VSELs.
3181       ARMCC::CondCodes CC;
3182       bool IsInstrVSel = true;
3183       switch (Instr.getOpcode()) {
3184       default:
3185         IsInstrVSel = false;
3186         CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
3187         break;
3188       case ARM::VSELEQD:
3189       case ARM::VSELEQS:
3190       case ARM::VSELEQH:
3191         CC = ARMCC::EQ;
3192         break;
3193       case ARM::VSELGTD:
3194       case ARM::VSELGTS:
3195       case ARM::VSELGTH:
3196         CC = ARMCC::GT;
3197         break;
3198       case ARM::VSELGED:
3199       case ARM::VSELGES:
3200       case ARM::VSELGEH:
3201         CC = ARMCC::GE;
3202         break;
3203       case ARM::VSELVSD:
3204       case ARM::VSELVSS:
3205       case ARM::VSELVSH:
3206         CC = ARMCC::VS;
3207         break;
3208       }
3209 
3210       if (SubAdd) {
3211         // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
3212         // on CMP needs to be updated to be based on SUB.
3213         // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also
3214         // needs to be modified.
3215         // Push the condition code operands to OperandsToUpdate.
3216         // If it is safe to remove CmpInstr, the condition code of these
3217         // operands will be modified.
3218         unsigned Opc = SubAdd->getOpcode();
3219         bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr ||
3220                      Opc == ARM::SUBri || Opc == ARM::t2SUBri ||
3221                      Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 ||
3222                      Opc == ARM::tSUBi8;
3223         unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2;
3224         if (!IsSub ||
3225             (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 &&
3226              SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) {
3227           // VSel doesn't support condition code update.
3228           if (IsInstrVSel)
3229             return false;
3230           // Ensure we can swap the condition.
3231           ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC));
3232           if (NewCC == ARMCC::AL)
3233             return false;
3234           OperandsToUpdate.push_back(
3235               std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
3236         }
3237       } else {
3238         // No SubAdd, so this is x = <op> y, z; cmp x, 0.
3239         switch (CC) {
3240         case ARMCC::EQ: // Z
3241         case ARMCC::NE: // Z
3242         case ARMCC::MI: // N
3243         case ARMCC::PL: // N
3244         case ARMCC::AL: // none
3245           // CPSR can be used multiple times, we should continue.
3246           break;
3247         case ARMCC::HS: // C
3248         case ARMCC::LO: // C
3249         case ARMCC::VS: // V
3250         case ARMCC::VC: // V
3251         case ARMCC::HI: // C Z
3252         case ARMCC::LS: // C Z
3253         case ARMCC::GE: // N V
3254         case ARMCC::LT: // N V
3255         case ARMCC::GT: // Z N V
3256         case ARMCC::LE: // Z N V
3257           // The instruction uses the V bit or C bit which is not safe.
3258           return false;
3259         }
3260       }
3261     }
3262   }
3263 
3264   // If CPSR is not killed nor re-defined, we should check whether it is
3265   // live-out. If it is live-out, do not optimize.
3266   if (!isSafe) {
3267     MachineBasicBlock *MBB = CmpInstr.getParent();
3268     for (MachineBasicBlock *Succ : MBB->successors())
3269       if (Succ->isLiveIn(ARM::CPSR))
3270         return false;
3271   }
3272 
3273   // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always
3274   // set CPSR so this is represented as an explicit output)
3275   if (!IsThumb1) {
3276     unsigned CPSRRegNum = MI->getNumExplicitOperands() - 1;
3277     MI->getOperand(CPSRRegNum).setReg(ARM::CPSR);
3278     MI->getOperand(CPSRRegNum).setIsDef(true);
3279   }
3280   assert(!isPredicated(*MI) && "Can't use flags from predicated instruction");
3281   CmpInstr.eraseFromParent();
3282 
3283   // Modify the condition code of operands in OperandsToUpdate.
3284   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
3285   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3286   for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
3287     OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
3288 
3289   MI->clearRegisterDeads(ARM::CPSR);
3290 
3291   return true;
3292 }
3293 
3294 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const {
3295   // Do not sink MI if it might be used to optimize a redundant compare.
3296   // We heuristically only look at the instruction immediately following MI to
3297   // avoid potentially searching the entire basic block.
3298   if (isPredicated(MI))
3299     return true;
3300   MachineBasicBlock::const_iterator Next = &MI;
3301   ++Next;
3302   Register SrcReg, SrcReg2;
3303   int64_t CmpMask, CmpValue;
3304   bool IsThumb1;
3305   if (Next != MI.getParent()->end() &&
3306       analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) &&
3307       isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1))
3308     return false;
3309   return true;
3310 }
3311 
3312 bool ARMBaseInstrInfo::foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
3313                                      Register Reg,
3314                                      MachineRegisterInfo *MRI) const {
3315   // Fold large immediates into add, sub, or, xor.
3316   unsigned DefOpc = DefMI.getOpcode();
3317   if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm &&
3318       DefOpc != ARM::tMOVi32imm)
3319     return false;
3320   if (!DefMI.getOperand(1).isImm())
3321     // Could be t2MOVi32imm @xx
3322     return false;
3323 
3324   if (!MRI->hasOneNonDBGUse(Reg))
3325     return false;
3326 
3327   const MCInstrDesc &DefMCID = DefMI.getDesc();
3328   if (DefMCID.hasOptionalDef()) {
3329     unsigned NumOps = DefMCID.getNumOperands();
3330     const MachineOperand &MO = DefMI.getOperand(NumOps - 1);
3331     if (MO.getReg() == ARM::CPSR && !MO.isDead())
3332       // If DefMI defines CPSR and it is not dead, it's obviously not safe
3333       // to delete DefMI.
3334       return false;
3335   }
3336 
3337   const MCInstrDesc &UseMCID = UseMI.getDesc();
3338   if (UseMCID.hasOptionalDef()) {
3339     unsigned NumOps = UseMCID.getNumOperands();
3340     if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR)
3341       // If the instruction sets the flag, do not attempt this optimization
3342       // since it may change the semantics of the code.
3343       return false;
3344   }
3345 
3346   unsigned UseOpc = UseMI.getOpcode();
3347   unsigned NewUseOpc = 0;
3348   uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm();
3349   uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
3350   bool Commute = false;
3351   switch (UseOpc) {
3352   default: return false;
3353   case ARM::SUBrr:
3354   case ARM::ADDrr:
3355   case ARM::ORRrr:
3356   case ARM::EORrr:
3357   case ARM::t2SUBrr:
3358   case ARM::t2ADDrr:
3359   case ARM::t2ORRrr:
3360   case ARM::t2EORrr: {
3361     Commute = UseMI.getOperand(2).getReg() != Reg;
3362     switch (UseOpc) {
3363     default: break;
3364     case ARM::ADDrr:
3365     case ARM::SUBrr:
3366       if (UseOpc == ARM::SUBrr && Commute)
3367         return false;
3368 
3369       // ADD/SUB are special because they're essentially the same operation, so
3370       // we can handle a larger range of immediates.
3371       if (ARM_AM::isSOImmTwoPartVal(ImmVal))
3372         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri;
3373       else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) {
3374         ImmVal = -ImmVal;
3375         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri;
3376       } else
3377         return false;
3378       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3379       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3380       break;
3381     case ARM::ORRrr:
3382     case ARM::EORrr:
3383       if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
3384         return false;
3385       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3386       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3387       switch (UseOpc) {
3388       default: break;
3389       case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
3390       case ARM::EORrr: NewUseOpc = ARM::EORri; break;
3391       }
3392       break;
3393     case ARM::t2ADDrr:
3394     case ARM::t2SUBrr: {
3395       if (UseOpc == ARM::t2SUBrr && Commute)
3396         return false;
3397 
3398       // ADD/SUB are special because they're essentially the same operation, so
3399       // we can handle a larger range of immediates.
3400       const bool ToSP = DefMI.getOperand(0).getReg() == ARM::SP;
3401       const unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri;
3402       const unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri;
3403       if (ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3404         NewUseOpc = UseOpc == ARM::t2ADDrr ? t2ADD : t2SUB;
3405       else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) {
3406         ImmVal = -ImmVal;
3407         NewUseOpc = UseOpc == ARM::t2ADDrr ? t2SUB : t2ADD;
3408       } else
3409         return false;
3410       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3411       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3412       break;
3413     }
3414     case ARM::t2ORRrr:
3415     case ARM::t2EORrr:
3416       if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3417         return false;
3418       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3419       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3420       switch (UseOpc) {
3421       default: break;
3422       case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
3423       case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
3424       }
3425       break;
3426     }
3427   }
3428   }
3429 
3430   unsigned OpIdx = Commute ? 2 : 1;
3431   Register Reg1 = UseMI.getOperand(OpIdx).getReg();
3432   bool isKill = UseMI.getOperand(OpIdx).isKill();
3433   const TargetRegisterClass *TRC = MRI->getRegClass(Reg);
3434   Register NewReg = MRI->createVirtualRegister(TRC);
3435   BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc),
3436           NewReg)
3437       .addReg(Reg1, getKillRegState(isKill))
3438       .addImm(SOImmValV1)
3439       .add(predOps(ARMCC::AL))
3440       .add(condCodeOp());
3441   UseMI.setDesc(get(NewUseOpc));
3442   UseMI.getOperand(1).setReg(NewReg);
3443   UseMI.getOperand(1).setIsKill();
3444   UseMI.getOperand(2).ChangeToImmediate(SOImmValV2);
3445   DefMI.eraseFromParent();
3446   // FIXME: t2ADDrr should be split, as different rulles apply when writing to SP.
3447   // Just as t2ADDri, that was split to [t2ADDri, t2ADDspImm].
3448   // Then the below code will not be needed, as the input/output register
3449   // classes will be rgpr or gprSP.
3450   // For now, we fix the UseMI operand explicitly here:
3451   switch(NewUseOpc){
3452     case ARM::t2ADDspImm:
3453     case ARM::t2SUBspImm:
3454     case ARM::t2ADDri:
3455     case ARM::t2SUBri:
3456       MRI->constrainRegClass(UseMI.getOperand(0).getReg(), TRC);
3457   }
3458   return true;
3459 }
3460 
3461 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
3462                                         const MachineInstr &MI) {
3463   switch (MI.getOpcode()) {
3464   default: {
3465     const MCInstrDesc &Desc = MI.getDesc();
3466     int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
3467     assert(UOps >= 0 && "bad # UOps");
3468     return UOps;
3469   }
3470 
3471   case ARM::LDRrs:
3472   case ARM::LDRBrs:
3473   case ARM::STRrs:
3474   case ARM::STRBrs: {
3475     unsigned ShOpVal = MI.getOperand(3).getImm();
3476     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3477     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3478     if (!isSub &&
3479         (ShImm == 0 ||
3480          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3481           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3482       return 1;
3483     return 2;
3484   }
3485 
3486   case ARM::LDRH:
3487   case ARM::STRH: {
3488     if (!MI.getOperand(2).getReg())
3489       return 1;
3490 
3491     unsigned ShOpVal = MI.getOperand(3).getImm();
3492     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3493     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3494     if (!isSub &&
3495         (ShImm == 0 ||
3496          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3497           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3498       return 1;
3499     return 2;
3500   }
3501 
3502   case ARM::LDRSB:
3503   case ARM::LDRSH:
3504     return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2;
3505 
3506   case ARM::LDRSB_POST:
3507   case ARM::LDRSH_POST: {
3508     Register Rt = MI.getOperand(0).getReg();
3509     Register Rm = MI.getOperand(3).getReg();
3510     return (Rt == Rm) ? 4 : 3;
3511   }
3512 
3513   case ARM::LDR_PRE_REG:
3514   case ARM::LDRB_PRE_REG: {
3515     Register Rt = MI.getOperand(0).getReg();
3516     Register Rm = MI.getOperand(3).getReg();
3517     if (Rt == Rm)
3518       return 3;
3519     unsigned ShOpVal = MI.getOperand(4).getImm();
3520     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3521     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3522     if (!isSub &&
3523         (ShImm == 0 ||
3524          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3525           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3526       return 2;
3527     return 3;
3528   }
3529 
3530   case ARM::STR_PRE_REG:
3531   case ARM::STRB_PRE_REG: {
3532     unsigned ShOpVal = MI.getOperand(4).getImm();
3533     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3534     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3535     if (!isSub &&
3536         (ShImm == 0 ||
3537          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3538           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3539       return 2;
3540     return 3;
3541   }
3542 
3543   case ARM::LDRH_PRE:
3544   case ARM::STRH_PRE: {
3545     Register Rt = MI.getOperand(0).getReg();
3546     Register Rm = MI.getOperand(3).getReg();
3547     if (!Rm)
3548       return 2;
3549     if (Rt == Rm)
3550       return 3;
3551     return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2;
3552   }
3553 
3554   case ARM::LDR_POST_REG:
3555   case ARM::LDRB_POST_REG:
3556   case ARM::LDRH_POST: {
3557     Register Rt = MI.getOperand(0).getReg();
3558     Register Rm = MI.getOperand(3).getReg();
3559     return (Rt == Rm) ? 3 : 2;
3560   }
3561 
3562   case ARM::LDR_PRE_IMM:
3563   case ARM::LDRB_PRE_IMM:
3564   case ARM::LDR_POST_IMM:
3565   case ARM::LDRB_POST_IMM:
3566   case ARM::STRB_POST_IMM:
3567   case ARM::STRB_POST_REG:
3568   case ARM::STRB_PRE_IMM:
3569   case ARM::STRH_POST:
3570   case ARM::STR_POST_IMM:
3571   case ARM::STR_POST_REG:
3572   case ARM::STR_PRE_IMM:
3573     return 2;
3574 
3575   case ARM::LDRSB_PRE:
3576   case ARM::LDRSH_PRE: {
3577     Register Rm = MI.getOperand(3).getReg();
3578     if (Rm == 0)
3579       return 3;
3580     Register Rt = MI.getOperand(0).getReg();
3581     if (Rt == Rm)
3582       return 4;
3583     unsigned ShOpVal = MI.getOperand(4).getImm();
3584     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3585     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3586     if (!isSub &&
3587         (ShImm == 0 ||
3588          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3589           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3590       return 3;
3591     return 4;
3592   }
3593 
3594   case ARM::LDRD: {
3595     Register Rt = MI.getOperand(0).getReg();
3596     Register Rn = MI.getOperand(2).getReg();
3597     Register Rm = MI.getOperand(3).getReg();
3598     if (Rm)
3599       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3600                                                                           : 3;
3601     return (Rt == Rn) ? 3 : 2;
3602   }
3603 
3604   case ARM::STRD: {
3605     Register Rm = MI.getOperand(3).getReg();
3606     if (Rm)
3607       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3608                                                                           : 3;
3609     return 2;
3610   }
3611 
3612   case ARM::LDRD_POST:
3613   case ARM::t2LDRD_POST:
3614     return 3;
3615 
3616   case ARM::STRD_POST:
3617   case ARM::t2STRD_POST:
3618     return 4;
3619 
3620   case ARM::LDRD_PRE: {
3621     Register Rt = MI.getOperand(0).getReg();
3622     Register Rn = MI.getOperand(3).getReg();
3623     Register Rm = MI.getOperand(4).getReg();
3624     if (Rm)
3625       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3626                                                                           : 4;
3627     return (Rt == Rn) ? 4 : 3;
3628   }
3629 
3630   case ARM::t2LDRD_PRE: {
3631     Register Rt = MI.getOperand(0).getReg();
3632     Register Rn = MI.getOperand(3).getReg();
3633     return (Rt == Rn) ? 4 : 3;
3634   }
3635 
3636   case ARM::STRD_PRE: {
3637     Register Rm = MI.getOperand(4).getReg();
3638     if (Rm)
3639       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3640                                                                           : 4;
3641     return 3;
3642   }
3643 
3644   case ARM::t2STRD_PRE:
3645     return 3;
3646 
3647   case ARM::t2LDR_POST:
3648   case ARM::t2LDRB_POST:
3649   case ARM::t2LDRB_PRE:
3650   case ARM::t2LDRSBi12:
3651   case ARM::t2LDRSBi8:
3652   case ARM::t2LDRSBpci:
3653   case ARM::t2LDRSBs:
3654   case ARM::t2LDRH_POST:
3655   case ARM::t2LDRH_PRE:
3656   case ARM::t2LDRSBT:
3657   case ARM::t2LDRSB_POST:
3658   case ARM::t2LDRSB_PRE:
3659   case ARM::t2LDRSH_POST:
3660   case ARM::t2LDRSH_PRE:
3661   case ARM::t2LDRSHi12:
3662   case ARM::t2LDRSHi8:
3663   case ARM::t2LDRSHpci:
3664   case ARM::t2LDRSHs:
3665     return 2;
3666 
3667   case ARM::t2LDRDi8: {
3668     Register Rt = MI.getOperand(0).getReg();
3669     Register Rn = MI.getOperand(2).getReg();
3670     return (Rt == Rn) ? 3 : 2;
3671   }
3672 
3673   case ARM::t2STRB_POST:
3674   case ARM::t2STRB_PRE:
3675   case ARM::t2STRBs:
3676   case ARM::t2STRDi8:
3677   case ARM::t2STRH_POST:
3678   case ARM::t2STRH_PRE:
3679   case ARM::t2STRHs:
3680   case ARM::t2STR_POST:
3681   case ARM::t2STR_PRE:
3682   case ARM::t2STRs:
3683     return 2;
3684   }
3685 }
3686 
3687 // Return the number of 32-bit words loaded by LDM or stored by STM. If this
3688 // can't be easily determined return 0 (missing MachineMemOperand).
3689 //
3690 // FIXME: The current MachineInstr design does not support relying on machine
3691 // mem operands to determine the width of a memory access. Instead, we expect
3692 // the target to provide this information based on the instruction opcode and
3693 // operands. However, using MachineMemOperand is the best solution now for
3694 // two reasons:
3695 //
3696 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
3697 // operands. This is much more dangerous than using the MachineMemOperand
3698 // sizes because CodeGen passes can insert/remove optional machine operands. In
3699 // fact, it's totally incorrect for preRA passes and appears to be wrong for
3700 // postRA passes as well.
3701 //
3702 // 2) getNumLDMAddresses is only used by the scheduling machine model and any
3703 // machine model that calls this should handle the unknown (zero size) case.
3704 //
3705 // Long term, we should require a target hook that verifies MachineMemOperand
3706 // sizes during MC lowering. That target hook should be local to MC lowering
3707 // because we can't ensure that it is aware of other MI forms. Doing this will
3708 // ensure that MachineMemOperands are correctly propagated through all passes.
3709 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const {
3710   unsigned Size = 0;
3711   for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
3712                                   E = MI.memoperands_end();
3713        I != E; ++I) {
3714     Size += (*I)->getSize().getValue();
3715   }
3716   // FIXME: The scheduler currently can't handle values larger than 16. But
3717   // the values can actually go up to 32 for floating-point load/store
3718   // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory
3719   // operations isn't right; we could end up with "extra" memory operands for
3720   // various reasons, like tail merge merging two memory operations.
3721   return std::min(Size / 4, 16U);
3722 }
3723 
3724 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,
3725                                                     unsigned NumRegs) {
3726   unsigned UOps = 1 + NumRegs; // 1 for address computation.
3727   switch (Opc) {
3728   default:
3729     break;
3730   case ARM::VLDMDIA_UPD:
3731   case ARM::VLDMDDB_UPD:
3732   case ARM::VLDMSIA_UPD:
3733   case ARM::VLDMSDB_UPD:
3734   case ARM::VSTMDIA_UPD:
3735   case ARM::VSTMDDB_UPD:
3736   case ARM::VSTMSIA_UPD:
3737   case ARM::VSTMSDB_UPD:
3738   case ARM::LDMIA_UPD:
3739   case ARM::LDMDA_UPD:
3740   case ARM::LDMDB_UPD:
3741   case ARM::LDMIB_UPD:
3742   case ARM::STMIA_UPD:
3743   case ARM::STMDA_UPD:
3744   case ARM::STMDB_UPD:
3745   case ARM::STMIB_UPD:
3746   case ARM::tLDMIA_UPD:
3747   case ARM::tSTMIA_UPD:
3748   case ARM::t2LDMIA_UPD:
3749   case ARM::t2LDMDB_UPD:
3750   case ARM::t2STMIA_UPD:
3751   case ARM::t2STMDB_UPD:
3752     ++UOps; // One for base register writeback.
3753     break;
3754   case ARM::LDMIA_RET:
3755   case ARM::tPOP_RET:
3756   case ARM::t2LDMIA_RET:
3757     UOps += 2; // One for base reg wb, one for write to pc.
3758     break;
3759   }
3760   return UOps;
3761 }
3762 
3763 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
3764                                           const MachineInstr &MI) const {
3765   if (!ItinData || ItinData->isEmpty())
3766     return 1;
3767 
3768   const MCInstrDesc &Desc = MI.getDesc();
3769   unsigned Class = Desc.getSchedClass();
3770   int ItinUOps = ItinData->getNumMicroOps(Class);
3771   if (ItinUOps >= 0) {
3772     if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
3773       return getNumMicroOpsSwiftLdSt(ItinData, MI);
3774 
3775     return ItinUOps;
3776   }
3777 
3778   unsigned Opc = MI.getOpcode();
3779   switch (Opc) {
3780   default:
3781     llvm_unreachable("Unexpected multi-uops instruction!");
3782   case ARM::VLDMQIA:
3783   case ARM::VSTMQIA:
3784     return 2;
3785 
3786   // The number of uOps for load / store multiple are determined by the number
3787   // registers.
3788   //
3789   // On Cortex-A8, each pair of register loads / stores can be scheduled on the
3790   // same cycle. The scheduling for the first load / store must be done
3791   // separately by assuming the address is not 64-bit aligned.
3792   //
3793   // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
3794   // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
3795   // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
3796   case ARM::VLDMDIA:
3797   case ARM::VLDMDIA_UPD:
3798   case ARM::VLDMDDB_UPD:
3799   case ARM::VLDMSIA:
3800   case ARM::VLDMSIA_UPD:
3801   case ARM::VLDMSDB_UPD:
3802   case ARM::VSTMDIA:
3803   case ARM::VSTMDIA_UPD:
3804   case ARM::VSTMDDB_UPD:
3805   case ARM::VSTMSIA:
3806   case ARM::VSTMSIA_UPD:
3807   case ARM::VSTMSDB_UPD: {
3808     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands();
3809     return (NumRegs / 2) + (NumRegs % 2) + 1;
3810   }
3811 
3812   case ARM::LDMIA_RET:
3813   case ARM::LDMIA:
3814   case ARM::LDMDA:
3815   case ARM::LDMDB:
3816   case ARM::LDMIB:
3817   case ARM::LDMIA_UPD:
3818   case ARM::LDMDA_UPD:
3819   case ARM::LDMDB_UPD:
3820   case ARM::LDMIB_UPD:
3821   case ARM::STMIA:
3822   case ARM::STMDA:
3823   case ARM::STMDB:
3824   case ARM::STMIB:
3825   case ARM::STMIA_UPD:
3826   case ARM::STMDA_UPD:
3827   case ARM::STMDB_UPD:
3828   case ARM::STMIB_UPD:
3829   case ARM::tLDMIA:
3830   case ARM::tLDMIA_UPD:
3831   case ARM::tSTMIA_UPD:
3832   case ARM::tPOP_RET:
3833   case ARM::tPOP:
3834   case ARM::tPUSH:
3835   case ARM::t2LDMIA_RET:
3836   case ARM::t2LDMIA:
3837   case ARM::t2LDMDB:
3838   case ARM::t2LDMIA_UPD:
3839   case ARM::t2LDMDB_UPD:
3840   case ARM::t2STMIA:
3841   case ARM::t2STMDB:
3842   case ARM::t2STMIA_UPD:
3843   case ARM::t2STMDB_UPD: {
3844     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1;
3845     switch (Subtarget.getLdStMultipleTiming()) {
3846     case ARMSubtarget::SingleIssuePlusExtras:
3847       return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs);
3848     case ARMSubtarget::SingleIssue:
3849       // Assume the worst.
3850       return NumRegs;
3851     case ARMSubtarget::DoubleIssue: {
3852       if (NumRegs < 4)
3853         return 2;
3854       // 4 registers would be issued: 2, 2.
3855       // 5 registers would be issued: 2, 2, 1.
3856       unsigned UOps = (NumRegs / 2);
3857       if (NumRegs % 2)
3858         ++UOps;
3859       return UOps;
3860     }
3861     case ARMSubtarget::DoubleIssueCheckUnalignedAccess: {
3862       unsigned UOps = (NumRegs / 2);
3863       // If there are odd number of registers or if it's not 64-bit aligned,
3864       // then it takes an extra AGU (Address Generation Unit) cycle.
3865       if ((NumRegs % 2) || !MI.hasOneMemOperand() ||
3866           (*MI.memoperands_begin())->getAlign() < Align(8))
3867         ++UOps;
3868       return UOps;
3869       }
3870     }
3871   }
3872   }
3873   llvm_unreachable("Didn't find the number of microops");
3874 }
3875 
3876 std::optional<unsigned>
3877 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
3878                                   const MCInstrDesc &DefMCID, unsigned DefClass,
3879                                   unsigned DefIdx, unsigned DefAlign) const {
3880   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3881   if (RegNo <= 0)
3882     // Def is the address writeback.
3883     return ItinData->getOperandCycle(DefClass, DefIdx);
3884 
3885   unsigned DefCycle;
3886   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3887     // (regno / 2) + (regno % 2) + 1
3888     DefCycle = RegNo / 2 + 1;
3889     if (RegNo % 2)
3890       ++DefCycle;
3891   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3892     DefCycle = RegNo;
3893     bool isSLoad = false;
3894 
3895     switch (DefMCID.getOpcode()) {
3896     default: break;
3897     case ARM::VLDMSIA:
3898     case ARM::VLDMSIA_UPD:
3899     case ARM::VLDMSDB_UPD:
3900       isSLoad = true;
3901       break;
3902     }
3903 
3904     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3905     // then it takes an extra cycle.
3906     if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
3907       ++DefCycle;
3908   } else {
3909     // Assume the worst.
3910     DefCycle = RegNo + 2;
3911   }
3912 
3913   return DefCycle;
3914 }
3915 
3916 std::optional<unsigned>
3917 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
3918                                  const MCInstrDesc &DefMCID, unsigned DefClass,
3919                                  unsigned DefIdx, unsigned DefAlign) const {
3920   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3921   if (RegNo <= 0)
3922     // Def is the address writeback.
3923     return ItinData->getOperandCycle(DefClass, DefIdx);
3924 
3925   unsigned DefCycle;
3926   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3927     // 4 registers would be issued: 1, 2, 1.
3928     // 5 registers would be issued: 1, 2, 2.
3929     DefCycle = RegNo / 2;
3930     if (DefCycle < 1)
3931       DefCycle = 1;
3932     // Result latency is issue cycle + 2: E2.
3933     DefCycle += 2;
3934   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3935     DefCycle = (RegNo / 2);
3936     // If there are odd number of registers or if it's not 64-bit aligned,
3937     // then it takes an extra AGU (Address Generation Unit) cycle.
3938     if ((RegNo % 2) || DefAlign < 8)
3939       ++DefCycle;
3940     // Result latency is AGU cycles + 2.
3941     DefCycle += 2;
3942   } else {
3943     // Assume the worst.
3944     DefCycle = RegNo + 2;
3945   }
3946 
3947   return DefCycle;
3948 }
3949 
3950 std::optional<unsigned>
3951 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
3952                                   const MCInstrDesc &UseMCID, unsigned UseClass,
3953                                   unsigned UseIdx, unsigned UseAlign) const {
3954   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3955   if (RegNo <= 0)
3956     return ItinData->getOperandCycle(UseClass, UseIdx);
3957 
3958   unsigned UseCycle;
3959   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3960     // (regno / 2) + (regno % 2) + 1
3961     UseCycle = RegNo / 2 + 1;
3962     if (RegNo % 2)
3963       ++UseCycle;
3964   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3965     UseCycle = RegNo;
3966     bool isSStore = false;
3967 
3968     switch (UseMCID.getOpcode()) {
3969     default: break;
3970     case ARM::VSTMSIA:
3971     case ARM::VSTMSIA_UPD:
3972     case ARM::VSTMSDB_UPD:
3973       isSStore = true;
3974       break;
3975     }
3976 
3977     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3978     // then it takes an extra cycle.
3979     if ((isSStore && (RegNo % 2)) || UseAlign < 8)
3980       ++UseCycle;
3981   } else {
3982     // Assume the worst.
3983     UseCycle = RegNo + 2;
3984   }
3985 
3986   return UseCycle;
3987 }
3988 
3989 std::optional<unsigned>
3990 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
3991                                  const MCInstrDesc &UseMCID, unsigned UseClass,
3992                                  unsigned UseIdx, unsigned UseAlign) const {
3993   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3994   if (RegNo <= 0)
3995     return ItinData->getOperandCycle(UseClass, UseIdx);
3996 
3997   unsigned UseCycle;
3998   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3999     UseCycle = RegNo / 2;
4000     if (UseCycle < 2)
4001       UseCycle = 2;
4002     // Read in E3.
4003     UseCycle += 2;
4004   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
4005     UseCycle = (RegNo / 2);
4006     // If there are odd number of registers or if it's not 64-bit aligned,
4007     // then it takes an extra AGU (Address Generation Unit) cycle.
4008     if ((RegNo % 2) || UseAlign < 8)
4009       ++UseCycle;
4010   } else {
4011     // Assume the worst.
4012     UseCycle = 1;
4013   }
4014   return UseCycle;
4015 }
4016 
4017 std::optional<unsigned> ARMBaseInstrInfo::getOperandLatency(
4018     const InstrItineraryData *ItinData, const MCInstrDesc &DefMCID,
4019     unsigned DefIdx, unsigned DefAlign, const MCInstrDesc &UseMCID,
4020     unsigned UseIdx, unsigned UseAlign) const {
4021   unsigned DefClass = DefMCID.getSchedClass();
4022   unsigned UseClass = UseMCID.getSchedClass();
4023 
4024   if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
4025     return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
4026 
4027   // This may be a def / use of a variable_ops instruction, the operand
4028   // latency might be determinable dynamically. Let the target try to
4029   // figure it out.
4030   std::optional<unsigned> DefCycle;
4031   bool LdmBypass = false;
4032   switch (DefMCID.getOpcode()) {
4033   default:
4034     DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4035     break;
4036 
4037   case ARM::VLDMDIA:
4038   case ARM::VLDMDIA_UPD:
4039   case ARM::VLDMDDB_UPD:
4040   case ARM::VLDMSIA:
4041   case ARM::VLDMSIA_UPD:
4042   case ARM::VLDMSDB_UPD:
4043     DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
4044     break;
4045 
4046   case ARM::LDMIA_RET:
4047   case ARM::LDMIA:
4048   case ARM::LDMDA:
4049   case ARM::LDMDB:
4050   case ARM::LDMIB:
4051   case ARM::LDMIA_UPD:
4052   case ARM::LDMDA_UPD:
4053   case ARM::LDMDB_UPD:
4054   case ARM::LDMIB_UPD:
4055   case ARM::tLDMIA:
4056   case ARM::tLDMIA_UPD:
4057   case ARM::tPUSH:
4058   case ARM::t2LDMIA_RET:
4059   case ARM::t2LDMIA:
4060   case ARM::t2LDMDB:
4061   case ARM::t2LDMIA_UPD:
4062   case ARM::t2LDMDB_UPD:
4063     LdmBypass = true;
4064     DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
4065     break;
4066   }
4067 
4068   if (!DefCycle)
4069     // We can't seem to determine the result latency of the def, assume it's 2.
4070     DefCycle = 2;
4071 
4072   std::optional<unsigned> UseCycle;
4073   switch (UseMCID.getOpcode()) {
4074   default:
4075     UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
4076     break;
4077 
4078   case ARM::VSTMDIA:
4079   case ARM::VSTMDIA_UPD:
4080   case ARM::VSTMDDB_UPD:
4081   case ARM::VSTMSIA:
4082   case ARM::VSTMSIA_UPD:
4083   case ARM::VSTMSDB_UPD:
4084     UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
4085     break;
4086 
4087   case ARM::STMIA:
4088   case ARM::STMDA:
4089   case ARM::STMDB:
4090   case ARM::STMIB:
4091   case ARM::STMIA_UPD:
4092   case ARM::STMDA_UPD:
4093   case ARM::STMDB_UPD:
4094   case ARM::STMIB_UPD:
4095   case ARM::tSTMIA_UPD:
4096   case ARM::tPOP_RET:
4097   case ARM::tPOP:
4098   case ARM::t2STMIA:
4099   case ARM::t2STMDB:
4100   case ARM::t2STMIA_UPD:
4101   case ARM::t2STMDB_UPD:
4102     UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
4103     break;
4104   }
4105 
4106   if (!UseCycle)
4107     // Assume it's read in the first stage.
4108     UseCycle = 1;
4109 
4110   if (UseCycle > *DefCycle + 1)
4111     return std::nullopt;
4112 
4113   UseCycle = *DefCycle - *UseCycle + 1;
4114   if (UseCycle > 0u) {
4115     if (LdmBypass) {
4116       // It's a variable_ops instruction so we can't use DefIdx here. Just use
4117       // first def operand.
4118       if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
4119                                           UseClass, UseIdx))
4120         UseCycle = *UseCycle - 1;
4121     } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
4122                                                UseClass, UseIdx)) {
4123       UseCycle = *UseCycle - 1;
4124     }
4125   }
4126 
4127   return UseCycle;
4128 }
4129 
4130 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
4131                                            const MachineInstr *MI, unsigned Reg,
4132                                            unsigned &DefIdx, unsigned &Dist) {
4133   Dist = 0;
4134 
4135   MachineBasicBlock::const_iterator I = MI; ++I;
4136   MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
4137   assert(II->isInsideBundle() && "Empty bundle?");
4138 
4139   int Idx = -1;
4140   while (II->isInsideBundle()) {
4141     Idx = II->findRegisterDefOperandIdx(Reg, TRI, false, true);
4142     if (Idx != -1)
4143       break;
4144     --II;
4145     ++Dist;
4146   }
4147 
4148   assert(Idx != -1 && "Cannot find bundled definition!");
4149   DefIdx = Idx;
4150   return &*II;
4151 }
4152 
4153 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
4154                                            const MachineInstr &MI, unsigned Reg,
4155                                            unsigned &UseIdx, unsigned &Dist) {
4156   Dist = 0;
4157 
4158   MachineBasicBlock::const_instr_iterator II = ++MI.getIterator();
4159   assert(II->isInsideBundle() && "Empty bundle?");
4160   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4161 
4162   // FIXME: This doesn't properly handle multiple uses.
4163   int Idx = -1;
4164   while (II != E && II->isInsideBundle()) {
4165     Idx = II->findRegisterUseOperandIdx(Reg, TRI, false);
4166     if (Idx != -1)
4167       break;
4168     if (II->getOpcode() != ARM::t2IT)
4169       ++Dist;
4170     ++II;
4171   }
4172 
4173   if (Idx == -1) {
4174     Dist = 0;
4175     return nullptr;
4176   }
4177 
4178   UseIdx = Idx;
4179   return &*II;
4180 }
4181 
4182 /// Return the number of cycles to add to (or subtract from) the static
4183 /// itinerary based on the def opcode and alignment. The caller will ensure that
4184 /// adjusted latency is at least one cycle.
4185 static int adjustDefLatency(const ARMSubtarget &Subtarget,
4186                             const MachineInstr &DefMI,
4187                             const MCInstrDesc &DefMCID, unsigned DefAlign) {
4188   int Adjust = 0;
4189   if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
4190     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4191     // variants are one cycle cheaper.
4192     switch (DefMCID.getOpcode()) {
4193     default: break;
4194     case ARM::LDRrs:
4195     case ARM::LDRBrs: {
4196       unsigned ShOpVal = DefMI.getOperand(3).getImm();
4197       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4198       if (ShImm == 0 ||
4199           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4200         --Adjust;
4201       break;
4202     }
4203     case ARM::t2LDRs:
4204     case ARM::t2LDRBs:
4205     case ARM::t2LDRHs:
4206     case ARM::t2LDRSHs: {
4207       // Thumb2 mode: lsl only.
4208       unsigned ShAmt = DefMI.getOperand(3).getImm();
4209       if (ShAmt == 0 || ShAmt == 2)
4210         --Adjust;
4211       break;
4212     }
4213     }
4214   } else if (Subtarget.isSwift()) {
4215     // FIXME: Properly handle all of the latency adjustments for address
4216     // writeback.
4217     switch (DefMCID.getOpcode()) {
4218     default: break;
4219     case ARM::LDRrs:
4220     case ARM::LDRBrs: {
4221       unsigned ShOpVal = DefMI.getOperand(3).getImm();
4222       bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
4223       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4224       if (!isSub &&
4225           (ShImm == 0 ||
4226            ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4227             ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
4228         Adjust -= 2;
4229       else if (!isSub &&
4230                ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4231         --Adjust;
4232       break;
4233     }
4234     case ARM::t2LDRs:
4235     case ARM::t2LDRBs:
4236     case ARM::t2LDRHs:
4237     case ARM::t2LDRSHs: {
4238       // Thumb2 mode: lsl only.
4239       unsigned ShAmt = DefMI.getOperand(3).getImm();
4240       if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
4241         Adjust -= 2;
4242       break;
4243     }
4244     }
4245   }
4246 
4247   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) {
4248     switch (DefMCID.getOpcode()) {
4249     default: break;
4250     case ARM::VLD1q8:
4251     case ARM::VLD1q16:
4252     case ARM::VLD1q32:
4253     case ARM::VLD1q64:
4254     case ARM::VLD1q8wb_fixed:
4255     case ARM::VLD1q16wb_fixed:
4256     case ARM::VLD1q32wb_fixed:
4257     case ARM::VLD1q64wb_fixed:
4258     case ARM::VLD1q8wb_register:
4259     case ARM::VLD1q16wb_register:
4260     case ARM::VLD1q32wb_register:
4261     case ARM::VLD1q64wb_register:
4262     case ARM::VLD2d8:
4263     case ARM::VLD2d16:
4264     case ARM::VLD2d32:
4265     case ARM::VLD2q8:
4266     case ARM::VLD2q16:
4267     case ARM::VLD2q32:
4268     case ARM::VLD2d8wb_fixed:
4269     case ARM::VLD2d16wb_fixed:
4270     case ARM::VLD2d32wb_fixed:
4271     case ARM::VLD2q8wb_fixed:
4272     case ARM::VLD2q16wb_fixed:
4273     case ARM::VLD2q32wb_fixed:
4274     case ARM::VLD2d8wb_register:
4275     case ARM::VLD2d16wb_register:
4276     case ARM::VLD2d32wb_register:
4277     case ARM::VLD2q8wb_register:
4278     case ARM::VLD2q16wb_register:
4279     case ARM::VLD2q32wb_register:
4280     case ARM::VLD3d8:
4281     case ARM::VLD3d16:
4282     case ARM::VLD3d32:
4283     case ARM::VLD1d64T:
4284     case ARM::VLD3d8_UPD:
4285     case ARM::VLD3d16_UPD:
4286     case ARM::VLD3d32_UPD:
4287     case ARM::VLD1d64Twb_fixed:
4288     case ARM::VLD1d64Twb_register:
4289     case ARM::VLD3q8_UPD:
4290     case ARM::VLD3q16_UPD:
4291     case ARM::VLD3q32_UPD:
4292     case ARM::VLD4d8:
4293     case ARM::VLD4d16:
4294     case ARM::VLD4d32:
4295     case ARM::VLD1d64Q:
4296     case ARM::VLD4d8_UPD:
4297     case ARM::VLD4d16_UPD:
4298     case ARM::VLD4d32_UPD:
4299     case ARM::VLD1d64Qwb_fixed:
4300     case ARM::VLD1d64Qwb_register:
4301     case ARM::VLD4q8_UPD:
4302     case ARM::VLD4q16_UPD:
4303     case ARM::VLD4q32_UPD:
4304     case ARM::VLD1DUPq8:
4305     case ARM::VLD1DUPq16:
4306     case ARM::VLD1DUPq32:
4307     case ARM::VLD1DUPq8wb_fixed:
4308     case ARM::VLD1DUPq16wb_fixed:
4309     case ARM::VLD1DUPq32wb_fixed:
4310     case ARM::VLD1DUPq8wb_register:
4311     case ARM::VLD1DUPq16wb_register:
4312     case ARM::VLD1DUPq32wb_register:
4313     case ARM::VLD2DUPd8:
4314     case ARM::VLD2DUPd16:
4315     case ARM::VLD2DUPd32:
4316     case ARM::VLD2DUPd8wb_fixed:
4317     case ARM::VLD2DUPd16wb_fixed:
4318     case ARM::VLD2DUPd32wb_fixed:
4319     case ARM::VLD2DUPd8wb_register:
4320     case ARM::VLD2DUPd16wb_register:
4321     case ARM::VLD2DUPd32wb_register:
4322     case ARM::VLD4DUPd8:
4323     case ARM::VLD4DUPd16:
4324     case ARM::VLD4DUPd32:
4325     case ARM::VLD4DUPd8_UPD:
4326     case ARM::VLD4DUPd16_UPD:
4327     case ARM::VLD4DUPd32_UPD:
4328     case ARM::VLD1LNd8:
4329     case ARM::VLD1LNd16:
4330     case ARM::VLD1LNd32:
4331     case ARM::VLD1LNd8_UPD:
4332     case ARM::VLD1LNd16_UPD:
4333     case ARM::VLD1LNd32_UPD:
4334     case ARM::VLD2LNd8:
4335     case ARM::VLD2LNd16:
4336     case ARM::VLD2LNd32:
4337     case ARM::VLD2LNq16:
4338     case ARM::VLD2LNq32:
4339     case ARM::VLD2LNd8_UPD:
4340     case ARM::VLD2LNd16_UPD:
4341     case ARM::VLD2LNd32_UPD:
4342     case ARM::VLD2LNq16_UPD:
4343     case ARM::VLD2LNq32_UPD:
4344     case ARM::VLD4LNd8:
4345     case ARM::VLD4LNd16:
4346     case ARM::VLD4LNd32:
4347     case ARM::VLD4LNq16:
4348     case ARM::VLD4LNq32:
4349     case ARM::VLD4LNd8_UPD:
4350     case ARM::VLD4LNd16_UPD:
4351     case ARM::VLD4LNd32_UPD:
4352     case ARM::VLD4LNq16_UPD:
4353     case ARM::VLD4LNq32_UPD:
4354       // If the address is not 64-bit aligned, the latencies of these
4355       // instructions increases by one.
4356       ++Adjust;
4357       break;
4358     }
4359   }
4360   return Adjust;
4361 }
4362 
4363 std::optional<unsigned> ARMBaseInstrInfo::getOperandLatency(
4364     const InstrItineraryData *ItinData, const MachineInstr &DefMI,
4365     unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const {
4366   // No operand latency. The caller may fall back to getInstrLatency.
4367   if (!ItinData || ItinData->isEmpty())
4368     return std::nullopt;
4369 
4370   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4371   Register Reg = DefMO.getReg();
4372 
4373   const MachineInstr *ResolvedDefMI = &DefMI;
4374   unsigned DefAdj = 0;
4375   if (DefMI.isBundle())
4376     ResolvedDefMI =
4377         getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj);
4378   if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() ||
4379       ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) {
4380     return 1;
4381   }
4382 
4383   const MachineInstr *ResolvedUseMI = &UseMI;
4384   unsigned UseAdj = 0;
4385   if (UseMI.isBundle()) {
4386     ResolvedUseMI =
4387         getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj);
4388     if (!ResolvedUseMI)
4389       return std::nullopt;
4390   }
4391 
4392   return getOperandLatencyImpl(
4393       ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO,
4394       Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj);
4395 }
4396 
4397 std::optional<unsigned> ARMBaseInstrInfo::getOperandLatencyImpl(
4398     const InstrItineraryData *ItinData, const MachineInstr &DefMI,
4399     unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj,
4400     const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI,
4401     unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const {
4402   if (Reg == ARM::CPSR) {
4403     if (DefMI.getOpcode() == ARM::FMSTAT) {
4404       // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
4405       return Subtarget.isLikeA9() ? 1 : 20;
4406     }
4407 
4408     // CPSR set and branch can be paired in the same cycle.
4409     if (UseMI.isBranch())
4410       return 0;
4411 
4412     // Otherwise it takes the instruction latency (generally one).
4413     unsigned Latency = getInstrLatency(ItinData, DefMI);
4414 
4415     // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
4416     // its uses. Instructions which are otherwise scheduled between them may
4417     // incur a code size penalty (not able to use the CPSR setting 16-bit
4418     // instructions).
4419     if (Latency > 0 && Subtarget.isThumb2()) {
4420       const MachineFunction *MF = DefMI.getParent()->getParent();
4421       // FIXME: Use Function::hasOptSize().
4422       if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize))
4423         --Latency;
4424     }
4425     return Latency;
4426   }
4427 
4428   if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit())
4429     return std::nullopt;
4430 
4431   unsigned DefAlign = DefMI.hasOneMemOperand()
4432                           ? (*DefMI.memoperands_begin())->getAlign().value()
4433                           : 0;
4434   unsigned UseAlign = UseMI.hasOneMemOperand()
4435                           ? (*UseMI.memoperands_begin())->getAlign().value()
4436                           : 0;
4437 
4438   // Get the itinerary's latency if possible, and handle variable_ops.
4439   std::optional<unsigned> Latency = getOperandLatency(
4440       ItinData, DefMCID, DefIdx, DefAlign, UseMCID, UseIdx, UseAlign);
4441   // Unable to find operand latency. The caller may resort to getInstrLatency.
4442   if (!Latency)
4443     return std::nullopt;
4444 
4445   // Adjust for IT block position.
4446   int Adj = DefAdj + UseAdj;
4447 
4448   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4449   Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
4450   if (Adj >= 0 || (int)*Latency > -Adj) {
4451     return *Latency + Adj;
4452   }
4453   // Return the itinerary latency, which may be zero but not less than zero.
4454   return Latency;
4455 }
4456 
4457 std::optional<unsigned>
4458 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4459                                     SDNode *DefNode, unsigned DefIdx,
4460                                     SDNode *UseNode, unsigned UseIdx) const {
4461   if (!DefNode->isMachineOpcode())
4462     return 1;
4463 
4464   const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
4465 
4466   if (isZeroCost(DefMCID.Opcode))
4467     return 0;
4468 
4469   if (!ItinData || ItinData->isEmpty())
4470     return DefMCID.mayLoad() ? 3 : 1;
4471 
4472   if (!UseNode->isMachineOpcode()) {
4473     std::optional<unsigned> Latency =
4474         ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
4475     int Adj = Subtarget.getPreISelOperandLatencyAdjustment();
4476     int Threshold = 1 + Adj;
4477     return !Latency || Latency <= (unsigned)Threshold ? 1 : *Latency - Adj;
4478   }
4479 
4480   const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
4481   auto *DefMN = cast<MachineSDNode>(DefNode);
4482   unsigned DefAlign = !DefMN->memoperands_empty()
4483                           ? (*DefMN->memoperands_begin())->getAlign().value()
4484                           : 0;
4485   auto *UseMN = cast<MachineSDNode>(UseNode);
4486   unsigned UseAlign = !UseMN->memoperands_empty()
4487                           ? (*UseMN->memoperands_begin())->getAlign().value()
4488                           : 0;
4489   std::optional<unsigned> Latency = getOperandLatency(
4490       ItinData, DefMCID, DefIdx, DefAlign, UseMCID, UseIdx, UseAlign);
4491   if (!Latency)
4492     return std::nullopt;
4493 
4494   if (Latency > 1U &&
4495       (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
4496        Subtarget.isCortexA7())) {
4497     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4498     // variants are one cycle cheaper.
4499     switch (DefMCID.getOpcode()) {
4500     default: break;
4501     case ARM::LDRrs:
4502     case ARM::LDRBrs: {
4503       unsigned ShOpVal = DefNode->getConstantOperandVal(2);
4504       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4505       if (ShImm == 0 ||
4506           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4507         Latency = *Latency - 1;
4508       break;
4509     }
4510     case ARM::t2LDRs:
4511     case ARM::t2LDRBs:
4512     case ARM::t2LDRHs:
4513     case ARM::t2LDRSHs: {
4514       // Thumb2 mode: lsl only.
4515       unsigned ShAmt = DefNode->getConstantOperandVal(2);
4516       if (ShAmt == 0 || ShAmt == 2)
4517         Latency = *Latency - 1;
4518       break;
4519     }
4520     }
4521   } else if (DefIdx == 0 && Latency > 2U && Subtarget.isSwift()) {
4522     // FIXME: Properly handle all of the latency adjustments for address
4523     // writeback.
4524     switch (DefMCID.getOpcode()) {
4525     default: break;
4526     case ARM::LDRrs:
4527     case ARM::LDRBrs: {
4528       unsigned ShOpVal = DefNode->getConstantOperandVal(2);
4529       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4530       if (ShImm == 0 ||
4531           ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4532            ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4533         Latency = *Latency - 2;
4534       else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4535         Latency = *Latency - 1;
4536       break;
4537     }
4538     case ARM::t2LDRs:
4539     case ARM::t2LDRBs:
4540     case ARM::t2LDRHs:
4541     case ARM::t2LDRSHs:
4542       // Thumb2 mode: lsl 0-3 only.
4543       Latency = *Latency - 2;
4544       break;
4545     }
4546   }
4547 
4548   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment())
4549     switch (DefMCID.getOpcode()) {
4550     default: break;
4551     case ARM::VLD1q8:
4552     case ARM::VLD1q16:
4553     case ARM::VLD1q32:
4554     case ARM::VLD1q64:
4555     case ARM::VLD1q8wb_register:
4556     case ARM::VLD1q16wb_register:
4557     case ARM::VLD1q32wb_register:
4558     case ARM::VLD1q64wb_register:
4559     case ARM::VLD1q8wb_fixed:
4560     case ARM::VLD1q16wb_fixed:
4561     case ARM::VLD1q32wb_fixed:
4562     case ARM::VLD1q64wb_fixed:
4563     case ARM::VLD2d8:
4564     case ARM::VLD2d16:
4565     case ARM::VLD2d32:
4566     case ARM::VLD2q8Pseudo:
4567     case ARM::VLD2q16Pseudo:
4568     case ARM::VLD2q32Pseudo:
4569     case ARM::VLD2d8wb_fixed:
4570     case ARM::VLD2d16wb_fixed:
4571     case ARM::VLD2d32wb_fixed:
4572     case ARM::VLD2q8PseudoWB_fixed:
4573     case ARM::VLD2q16PseudoWB_fixed:
4574     case ARM::VLD2q32PseudoWB_fixed:
4575     case ARM::VLD2d8wb_register:
4576     case ARM::VLD2d16wb_register:
4577     case ARM::VLD2d32wb_register:
4578     case ARM::VLD2q8PseudoWB_register:
4579     case ARM::VLD2q16PseudoWB_register:
4580     case ARM::VLD2q32PseudoWB_register:
4581     case ARM::VLD3d8Pseudo:
4582     case ARM::VLD3d16Pseudo:
4583     case ARM::VLD3d32Pseudo:
4584     case ARM::VLD1d8TPseudo:
4585     case ARM::VLD1d16TPseudo:
4586     case ARM::VLD1d32TPseudo:
4587     case ARM::VLD1d64TPseudo:
4588     case ARM::VLD1d64TPseudoWB_fixed:
4589     case ARM::VLD1d64TPseudoWB_register:
4590     case ARM::VLD3d8Pseudo_UPD:
4591     case ARM::VLD3d16Pseudo_UPD:
4592     case ARM::VLD3d32Pseudo_UPD:
4593     case ARM::VLD3q8Pseudo_UPD:
4594     case ARM::VLD3q16Pseudo_UPD:
4595     case ARM::VLD3q32Pseudo_UPD:
4596     case ARM::VLD3q8oddPseudo:
4597     case ARM::VLD3q16oddPseudo:
4598     case ARM::VLD3q32oddPseudo:
4599     case ARM::VLD3q8oddPseudo_UPD:
4600     case ARM::VLD3q16oddPseudo_UPD:
4601     case ARM::VLD3q32oddPseudo_UPD:
4602     case ARM::VLD4d8Pseudo:
4603     case ARM::VLD4d16Pseudo:
4604     case ARM::VLD4d32Pseudo:
4605     case ARM::VLD1d8QPseudo:
4606     case ARM::VLD1d16QPseudo:
4607     case ARM::VLD1d32QPseudo:
4608     case ARM::VLD1d64QPseudo:
4609     case ARM::VLD1d64QPseudoWB_fixed:
4610     case ARM::VLD1d64QPseudoWB_register:
4611     case ARM::VLD1q8HighQPseudo:
4612     case ARM::VLD1q8LowQPseudo_UPD:
4613     case ARM::VLD1q8HighTPseudo:
4614     case ARM::VLD1q8LowTPseudo_UPD:
4615     case ARM::VLD1q16HighQPseudo:
4616     case ARM::VLD1q16LowQPseudo_UPD:
4617     case ARM::VLD1q16HighTPseudo:
4618     case ARM::VLD1q16LowTPseudo_UPD:
4619     case ARM::VLD1q32HighQPseudo:
4620     case ARM::VLD1q32LowQPseudo_UPD:
4621     case ARM::VLD1q32HighTPseudo:
4622     case ARM::VLD1q32LowTPseudo_UPD:
4623     case ARM::VLD1q64HighQPseudo:
4624     case ARM::VLD1q64LowQPseudo_UPD:
4625     case ARM::VLD1q64HighTPseudo:
4626     case ARM::VLD1q64LowTPseudo_UPD:
4627     case ARM::VLD4d8Pseudo_UPD:
4628     case ARM::VLD4d16Pseudo_UPD:
4629     case ARM::VLD4d32Pseudo_UPD:
4630     case ARM::VLD4q8Pseudo_UPD:
4631     case ARM::VLD4q16Pseudo_UPD:
4632     case ARM::VLD4q32Pseudo_UPD:
4633     case ARM::VLD4q8oddPseudo:
4634     case ARM::VLD4q16oddPseudo:
4635     case ARM::VLD4q32oddPseudo:
4636     case ARM::VLD4q8oddPseudo_UPD:
4637     case ARM::VLD4q16oddPseudo_UPD:
4638     case ARM::VLD4q32oddPseudo_UPD:
4639     case ARM::VLD1DUPq8:
4640     case ARM::VLD1DUPq16:
4641     case ARM::VLD1DUPq32:
4642     case ARM::VLD1DUPq8wb_fixed:
4643     case ARM::VLD1DUPq16wb_fixed:
4644     case ARM::VLD1DUPq32wb_fixed:
4645     case ARM::VLD1DUPq8wb_register:
4646     case ARM::VLD1DUPq16wb_register:
4647     case ARM::VLD1DUPq32wb_register:
4648     case ARM::VLD2DUPd8:
4649     case ARM::VLD2DUPd16:
4650     case ARM::VLD2DUPd32:
4651     case ARM::VLD2DUPd8wb_fixed:
4652     case ARM::VLD2DUPd16wb_fixed:
4653     case ARM::VLD2DUPd32wb_fixed:
4654     case ARM::VLD2DUPd8wb_register:
4655     case ARM::VLD2DUPd16wb_register:
4656     case ARM::VLD2DUPd32wb_register:
4657     case ARM::VLD2DUPq8EvenPseudo:
4658     case ARM::VLD2DUPq8OddPseudo:
4659     case ARM::VLD2DUPq16EvenPseudo:
4660     case ARM::VLD2DUPq16OddPseudo:
4661     case ARM::VLD2DUPq32EvenPseudo:
4662     case ARM::VLD2DUPq32OddPseudo:
4663     case ARM::VLD3DUPq8EvenPseudo:
4664     case ARM::VLD3DUPq8OddPseudo:
4665     case ARM::VLD3DUPq16EvenPseudo:
4666     case ARM::VLD3DUPq16OddPseudo:
4667     case ARM::VLD3DUPq32EvenPseudo:
4668     case ARM::VLD3DUPq32OddPseudo:
4669     case ARM::VLD4DUPd8Pseudo:
4670     case ARM::VLD4DUPd16Pseudo:
4671     case ARM::VLD4DUPd32Pseudo:
4672     case ARM::VLD4DUPd8Pseudo_UPD:
4673     case ARM::VLD4DUPd16Pseudo_UPD:
4674     case ARM::VLD4DUPd32Pseudo_UPD:
4675     case ARM::VLD4DUPq8EvenPseudo:
4676     case ARM::VLD4DUPq8OddPseudo:
4677     case ARM::VLD4DUPq16EvenPseudo:
4678     case ARM::VLD4DUPq16OddPseudo:
4679     case ARM::VLD4DUPq32EvenPseudo:
4680     case ARM::VLD4DUPq32OddPseudo:
4681     case ARM::VLD1LNq8Pseudo:
4682     case ARM::VLD1LNq16Pseudo:
4683     case ARM::VLD1LNq32Pseudo:
4684     case ARM::VLD1LNq8Pseudo_UPD:
4685     case ARM::VLD1LNq16Pseudo_UPD:
4686     case ARM::VLD1LNq32Pseudo_UPD:
4687     case ARM::VLD2LNd8Pseudo:
4688     case ARM::VLD2LNd16Pseudo:
4689     case ARM::VLD2LNd32Pseudo:
4690     case ARM::VLD2LNq16Pseudo:
4691     case ARM::VLD2LNq32Pseudo:
4692     case ARM::VLD2LNd8Pseudo_UPD:
4693     case ARM::VLD2LNd16Pseudo_UPD:
4694     case ARM::VLD2LNd32Pseudo_UPD:
4695     case ARM::VLD2LNq16Pseudo_UPD:
4696     case ARM::VLD2LNq32Pseudo_UPD:
4697     case ARM::VLD4LNd8Pseudo:
4698     case ARM::VLD4LNd16Pseudo:
4699     case ARM::VLD4LNd32Pseudo:
4700     case ARM::VLD4LNq16Pseudo:
4701     case ARM::VLD4LNq32Pseudo:
4702     case ARM::VLD4LNd8Pseudo_UPD:
4703     case ARM::VLD4LNd16Pseudo_UPD:
4704     case ARM::VLD4LNd32Pseudo_UPD:
4705     case ARM::VLD4LNq16Pseudo_UPD:
4706     case ARM::VLD4LNq32Pseudo_UPD:
4707       // If the address is not 64-bit aligned, the latencies of these
4708       // instructions increases by one.
4709       Latency = *Latency + 1;
4710       break;
4711     }
4712 
4713   return Latency;
4714 }
4715 
4716 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const {
4717   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4718       MI.isImplicitDef())
4719     return 0;
4720 
4721   if (MI.isBundle())
4722     return 0;
4723 
4724   const MCInstrDesc &MCID = MI.getDesc();
4725 
4726   if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4727                         !Subtarget.cheapPredicableCPSRDef())) {
4728     // When predicated, CPSR is an additional source operand for CPSR updating
4729     // instructions, this apparently increases their latencies.
4730     return 1;
4731   }
4732   return 0;
4733 }
4734 
4735 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4736                                            const MachineInstr &MI,
4737                                            unsigned *PredCost) const {
4738   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4739       MI.isImplicitDef())
4740     return 1;
4741 
4742   // An instruction scheduler typically runs on unbundled instructions, however
4743   // other passes may query the latency of a bundled instruction.
4744   if (MI.isBundle()) {
4745     unsigned Latency = 0;
4746     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
4747     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4748     while (++I != E && I->isInsideBundle()) {
4749       if (I->getOpcode() != ARM::t2IT)
4750         Latency += getInstrLatency(ItinData, *I, PredCost);
4751     }
4752     return Latency;
4753   }
4754 
4755   const MCInstrDesc &MCID = MI.getDesc();
4756   if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4757                                      !Subtarget.cheapPredicableCPSRDef()))) {
4758     // When predicated, CPSR is an additional source operand for CPSR updating
4759     // instructions, this apparently increases their latencies.
4760     *PredCost = 1;
4761   }
4762   // Be sure to call getStageLatency for an empty itinerary in case it has a
4763   // valid MinLatency property.
4764   if (!ItinData)
4765     return MI.mayLoad() ? 3 : 1;
4766 
4767   unsigned Class = MCID.getSchedClass();
4768 
4769   // For instructions with variable uops, use uops as latency.
4770   if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
4771     return getNumMicroOps(ItinData, MI);
4772 
4773   // For the common case, fall back on the itinerary's latency.
4774   unsigned Latency = ItinData->getStageLatency(Class);
4775 
4776   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4777   unsigned DefAlign =
4778       MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlign().value() : 0;
4779   int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign);
4780   if (Adj >= 0 || (int)Latency > -Adj) {
4781     return Latency + Adj;
4782   }
4783   return Latency;
4784 }
4785 
4786 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4787                                            SDNode *Node) const {
4788   if (!Node->isMachineOpcode())
4789     return 1;
4790 
4791   if (!ItinData || ItinData->isEmpty())
4792     return 1;
4793 
4794   unsigned Opcode = Node->getMachineOpcode();
4795   switch (Opcode) {
4796   default:
4797     return ItinData->getStageLatency(get(Opcode).getSchedClass());
4798   case ARM::VLDMQIA:
4799   case ARM::VSTMQIA:
4800     return 2;
4801   }
4802 }
4803 
4804 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
4805                                              const MachineRegisterInfo *MRI,
4806                                              const MachineInstr &DefMI,
4807                                              unsigned DefIdx,
4808                                              const MachineInstr &UseMI,
4809                                              unsigned UseIdx) const {
4810   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4811   unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask;
4812   if (Subtarget.nonpipelinedVFP() &&
4813       (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
4814     return true;
4815 
4816   // Hoist VFP / NEON instructions with 4 or higher latency.
4817   unsigned Latency =
4818       SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx);
4819   if (Latency <= 3)
4820     return false;
4821   return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
4822          UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
4823 }
4824 
4825 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
4826                                         const MachineInstr &DefMI,
4827                                         unsigned DefIdx) const {
4828   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
4829   if (!ItinData || ItinData->isEmpty())
4830     return false;
4831 
4832   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4833   if (DDomain == ARMII::DomainGeneral) {
4834     unsigned DefClass = DefMI.getDesc().getSchedClass();
4835     std::optional<unsigned> DefCycle =
4836         ItinData->getOperandCycle(DefClass, DefIdx);
4837     return DefCycle && DefCycle <= 2U;
4838   }
4839   return false;
4840 }
4841 
4842 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI,
4843                                          StringRef &ErrInfo) const {
4844   if (convertAddSubFlagsOpcode(MI.getOpcode())) {
4845     ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
4846     return false;
4847   }
4848   if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) {
4849     // Make sure we don't generate a lo-lo mov that isn't supported.
4850     if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) &&
4851         !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) {
4852       ErrInfo = "Non-flag-setting Thumb1 mov is v6-only";
4853       return false;
4854     }
4855   }
4856   if (MI.getOpcode() == ARM::tPUSH ||
4857       MI.getOpcode() == ARM::tPOP ||
4858       MI.getOpcode() == ARM::tPOP_RET) {
4859     for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), 2)) {
4860       if (MO.isImplicit() || !MO.isReg())
4861         continue;
4862       Register Reg = MO.getReg();
4863       if (Reg < ARM::R0 || Reg > ARM::R7) {
4864         if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) &&
4865             !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) {
4866           ErrInfo = "Unsupported register in Thumb1 push/pop";
4867           return false;
4868         }
4869       }
4870     }
4871   }
4872   if (MI.getOpcode() == ARM::MVE_VMOV_q_rr) {
4873     assert(MI.getOperand(4).isImm() && MI.getOperand(5).isImm());
4874     if ((MI.getOperand(4).getImm() != 2 && MI.getOperand(4).getImm() != 3) ||
4875         MI.getOperand(4).getImm() != MI.getOperand(5).getImm() + 2) {
4876       ErrInfo = "Incorrect array index for MVE_VMOV_q_rr";
4877       return false;
4878     }
4879   }
4880 
4881   // Check the address model by taking the first Imm operand and checking it is
4882   // legal for that addressing mode.
4883   ARMII::AddrMode AddrMode =
4884       (ARMII::AddrMode)(MI.getDesc().TSFlags & ARMII::AddrModeMask);
4885   switch (AddrMode) {
4886   default:
4887     break;
4888   case ARMII::AddrModeT2_i7:
4889   case ARMII::AddrModeT2_i7s2:
4890   case ARMII::AddrModeT2_i7s4:
4891   case ARMII::AddrModeT2_i8:
4892   case ARMII::AddrModeT2_i8pos:
4893   case ARMII::AddrModeT2_i8neg:
4894   case ARMII::AddrModeT2_i8s4:
4895   case ARMII::AddrModeT2_i12: {
4896     uint32_t Imm = 0;
4897     for (auto Op : MI.operands()) {
4898       if (Op.isImm()) {
4899         Imm = Op.getImm();
4900         break;
4901       }
4902     }
4903     if (!isLegalAddressImm(MI.getOpcode(), Imm, this)) {
4904       ErrInfo = "Incorrect AddrMode Imm for instruction";
4905       return false;
4906     }
4907     break;
4908   }
4909   }
4910   return true;
4911 }
4912 
4913 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
4914                                                 unsigned LoadImmOpc,
4915                                                 unsigned LoadOpc) const {
4916   assert(!Subtarget.isROPI() && !Subtarget.isRWPI() &&
4917          "ROPI/RWPI not currently supported with stack guard");
4918 
4919   MachineBasicBlock &MBB = *MI->getParent();
4920   DebugLoc DL = MI->getDebugLoc();
4921   Register Reg = MI->getOperand(0).getReg();
4922   MachineInstrBuilder MIB;
4923   unsigned int Offset = 0;
4924 
4925   if (LoadImmOpc == ARM::MRC || LoadImmOpc == ARM::t2MRC) {
4926     assert(!Subtarget.isReadTPSoft() &&
4927            "TLS stack protector requires hardware TLS register");
4928 
4929     BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4930         .addImm(15)
4931         .addImm(0)
4932         .addImm(13)
4933         .addImm(0)
4934         .addImm(3)
4935         .add(predOps(ARMCC::AL));
4936 
4937     Module &M = *MBB.getParent()->getFunction().getParent();
4938     Offset = M.getStackProtectorGuardOffset();
4939     if (Offset & ~0xfffU) {
4940       // The offset won't fit in the LDR's 12-bit immediate field, so emit an
4941       // extra ADD to cover the delta. This gives us a guaranteed 8 additional
4942       // bits, resulting in a range of 0 to +1 MiB for the guard offset.
4943       unsigned AddOpc = (LoadImmOpc == ARM::MRC) ? ARM::ADDri : ARM::t2ADDri;
4944       BuildMI(MBB, MI, DL, get(AddOpc), Reg)
4945           .addReg(Reg, RegState::Kill)
4946           .addImm(Offset & ~0xfffU)
4947           .add(predOps(ARMCC::AL))
4948           .addReg(0);
4949       Offset &= 0xfffU;
4950     }
4951   } else {
4952     const GlobalValue *GV =
4953         cast<GlobalValue>((*MI->memoperands_begin())->getValue());
4954     bool IsIndirect = Subtarget.isGVIndirectSymbol(GV);
4955 
4956     unsigned TargetFlags = ARMII::MO_NO_FLAG;
4957     if (Subtarget.isTargetMachO()) {
4958       TargetFlags |= ARMII::MO_NONLAZY;
4959     } else if (Subtarget.isTargetCOFF()) {
4960       if (GV->hasDLLImportStorageClass())
4961         TargetFlags |= ARMII::MO_DLLIMPORT;
4962       else if (IsIndirect)
4963         TargetFlags |= ARMII::MO_COFFSTUB;
4964     } else if (IsIndirect) {
4965       TargetFlags |= ARMII::MO_GOT;
4966     }
4967 
4968     if (LoadImmOpc == ARM::tMOVi32imm) { // Thumb-1 execute-only
4969       Register CPSRSaveReg = ARM::R12; // Use R12 as scratch register
4970       auto APSREncoding =
4971           ARMSysReg::lookupMClassSysRegByName("apsr_nzcvq")->Encoding;
4972       BuildMI(MBB, MI, DL, get(ARM::t2MRS_M), CPSRSaveReg)
4973           .addImm(APSREncoding)
4974           .add(predOps(ARMCC::AL));
4975       BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4976           .addGlobalAddress(GV, 0, TargetFlags);
4977       BuildMI(MBB, MI, DL, get(ARM::t2MSR_M))
4978           .addImm(APSREncoding)
4979           .addReg(CPSRSaveReg, RegState::Kill)
4980           .add(predOps(ARMCC::AL));
4981     } else {
4982       BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4983           .addGlobalAddress(GV, 0, TargetFlags);
4984     }
4985 
4986     if (IsIndirect) {
4987       MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4988       MIB.addReg(Reg, RegState::Kill).addImm(0);
4989       auto Flags = MachineMemOperand::MOLoad |
4990                    MachineMemOperand::MODereferenceable |
4991                    MachineMemOperand::MOInvariant;
4992       MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4993           MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, Align(4));
4994       MIB.addMemOperand(MMO).add(predOps(ARMCC::AL));
4995     }
4996   }
4997 
4998   MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4999   MIB.addReg(Reg, RegState::Kill)
5000       .addImm(Offset)
5001       .cloneMemRefs(*MI)
5002       .add(predOps(ARMCC::AL));
5003 }
5004 
5005 bool
5006 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
5007                                      unsigned &AddSubOpc,
5008                                      bool &NegAcc, bool &HasLane) const {
5009   DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
5010   if (I == MLxEntryMap.end())
5011     return false;
5012 
5013   const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
5014   MulOpc = Entry.MulOpc;
5015   AddSubOpc = Entry.AddSubOpc;
5016   NegAcc = Entry.NegAcc;
5017   HasLane = Entry.HasLane;
5018   return true;
5019 }
5020 
5021 //===----------------------------------------------------------------------===//
5022 // Execution domains.
5023 //===----------------------------------------------------------------------===//
5024 //
5025 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
5026 // and some can go down both.  The vmov instructions go down the VFP pipeline,
5027 // but they can be changed to vorr equivalents that are executed by the NEON
5028 // pipeline.
5029 //
5030 // We use the following execution domain numbering:
5031 //
5032 enum ARMExeDomain {
5033   ExeGeneric = 0,
5034   ExeVFP = 1,
5035   ExeNEON = 2
5036 };
5037 
5038 //
5039 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
5040 //
5041 std::pair<uint16_t, uint16_t>
5042 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const {
5043   // If we don't have access to NEON instructions then we won't be able
5044   // to swizzle anything to the NEON domain. Check to make sure.
5045   if (Subtarget.hasNEON()) {
5046     // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
5047     // if they are not predicated.
5048     if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI))
5049       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
5050 
5051     // CortexA9 is particularly picky about mixing the two and wants these
5052     // converted.
5053     if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) &&
5054         (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR ||
5055          MI.getOpcode() == ARM::VMOVS))
5056       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
5057   }
5058   // No other instructions can be swizzled, so just determine their domain.
5059   unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask;
5060 
5061   if (Domain & ARMII::DomainNEON)
5062     return std::make_pair(ExeNEON, 0);
5063 
5064   // Certain instructions can go either way on Cortex-A8.
5065   // Treat them as NEON instructions.
5066   if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
5067     return std::make_pair(ExeNEON, 0);
5068 
5069   if (Domain & ARMII::DomainVFP)
5070     return std::make_pair(ExeVFP, 0);
5071 
5072   return std::make_pair(ExeGeneric, 0);
5073 }
5074 
5075 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
5076                                             unsigned SReg, unsigned &Lane) {
5077   unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
5078   Lane = 0;
5079 
5080   if (DReg != ARM::NoRegister)
5081    return DReg;
5082 
5083   Lane = 1;
5084   DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
5085 
5086   assert(DReg && "S-register with no D super-register?");
5087   return DReg;
5088 }
5089 
5090 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
5091 /// set ImplicitSReg to a register number that must be marked as implicit-use or
5092 /// zero if no register needs to be defined as implicit-use.
5093 ///
5094 /// If the function cannot determine if an SPR should be marked implicit use or
5095 /// not, it returns false.
5096 ///
5097 /// This function handles cases where an instruction is being modified from taking
5098 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
5099 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
5100 /// lane of the DPR).
5101 ///
5102 /// If the other SPR is defined, an implicit-use of it should be added. Else,
5103 /// (including the case where the DPR itself is defined), it should not.
5104 ///
5105 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
5106                                        MachineInstr &MI, unsigned DReg,
5107                                        unsigned Lane, unsigned &ImplicitSReg) {
5108   // If the DPR is defined or used already, the other SPR lane will be chained
5109   // correctly, so there is nothing to be done.
5110   if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) {
5111     ImplicitSReg = 0;
5112     return true;
5113   }
5114 
5115   // Otherwise we need to go searching to see if the SPR is set explicitly.
5116   ImplicitSReg = TRI->getSubReg(DReg,
5117                                 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
5118   MachineBasicBlock::LivenessQueryResult LQR =
5119       MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
5120 
5121   if (LQR == MachineBasicBlock::LQR_Live)
5122     return true;
5123   else if (LQR == MachineBasicBlock::LQR_Unknown)
5124     return false;
5125 
5126   // If the register is known not to be live, there is no need to add an
5127   // implicit-use.
5128   ImplicitSReg = 0;
5129   return true;
5130 }
5131 
5132 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI,
5133                                           unsigned Domain) const {
5134   unsigned DstReg, SrcReg, DReg;
5135   unsigned Lane;
5136   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
5137   const TargetRegisterInfo *TRI = &getRegisterInfo();
5138   switch (MI.getOpcode()) {
5139   default:
5140     llvm_unreachable("cannot handle opcode!");
5141     break;
5142   case ARM::VMOVD:
5143     if (Domain != ExeNEON)
5144       break;
5145 
5146     // Zap the predicate operands.
5147     assert(!isPredicated(MI) && "Cannot predicate a VORRd");
5148 
5149     // Make sure we've got NEON instructions.
5150     assert(Subtarget.hasNEON() && "VORRd requires NEON");
5151 
5152     // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
5153     DstReg = MI.getOperand(0).getReg();
5154     SrcReg = MI.getOperand(1).getReg();
5155 
5156     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5157       MI.removeOperand(i - 1);
5158 
5159     // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
5160     MI.setDesc(get(ARM::VORRd));
5161     MIB.addReg(DstReg, RegState::Define)
5162         .addReg(SrcReg)
5163         .addReg(SrcReg)
5164         .add(predOps(ARMCC::AL));
5165     break;
5166   case ARM::VMOVRS:
5167     if (Domain != ExeNEON)
5168       break;
5169     assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
5170 
5171     // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
5172     DstReg = MI.getOperand(0).getReg();
5173     SrcReg = MI.getOperand(1).getReg();
5174 
5175     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5176       MI.removeOperand(i - 1);
5177 
5178     DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
5179 
5180     // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
5181     // Note that DSrc has been widened and the other lane may be undef, which
5182     // contaminates the entire register.
5183     MI.setDesc(get(ARM::VGETLNi32));
5184     MIB.addReg(DstReg, RegState::Define)
5185         .addReg(DReg, RegState::Undef)
5186         .addImm(Lane)
5187         .add(predOps(ARMCC::AL));
5188 
5189     // The old source should be an implicit use, otherwise we might think it
5190     // was dead before here.
5191     MIB.addReg(SrcReg, RegState::Implicit);
5192     break;
5193   case ARM::VMOVSR: {
5194     if (Domain != ExeNEON)
5195       break;
5196     assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
5197 
5198     // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
5199     DstReg = MI.getOperand(0).getReg();
5200     SrcReg = MI.getOperand(1).getReg();
5201 
5202     DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
5203 
5204     unsigned ImplicitSReg;
5205     if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
5206       break;
5207 
5208     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5209       MI.removeOperand(i - 1);
5210 
5211     // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
5212     // Again DDst may be undefined at the beginning of this instruction.
5213     MI.setDesc(get(ARM::VSETLNi32));
5214     MIB.addReg(DReg, RegState::Define)
5215         .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI)))
5216         .addReg(SrcReg)
5217         .addImm(Lane)
5218         .add(predOps(ARMCC::AL));
5219 
5220     // The narrower destination must be marked as set to keep previous chains
5221     // in place.
5222     MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
5223     if (ImplicitSReg != 0)
5224       MIB.addReg(ImplicitSReg, RegState::Implicit);
5225     break;
5226     }
5227     case ARM::VMOVS: {
5228       if (Domain != ExeNEON)
5229         break;
5230 
5231       // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
5232       DstReg = MI.getOperand(0).getReg();
5233       SrcReg = MI.getOperand(1).getReg();
5234 
5235       unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
5236       DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
5237       DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
5238 
5239       unsigned ImplicitSReg;
5240       if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
5241         break;
5242 
5243       for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5244         MI.removeOperand(i - 1);
5245 
5246       if (DSrc == DDst) {
5247         // Destination can be:
5248         //     %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
5249         MI.setDesc(get(ARM::VDUPLN32d));
5250         MIB.addReg(DDst, RegState::Define)
5251             .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI)))
5252             .addImm(SrcLane)
5253             .add(predOps(ARMCC::AL));
5254 
5255         // Neither the source or the destination are naturally represented any
5256         // more, so add them in manually.
5257         MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
5258         MIB.addReg(SrcReg, RegState::Implicit);
5259         if (ImplicitSReg != 0)
5260           MIB.addReg(ImplicitSReg, RegState::Implicit);
5261         break;
5262       }
5263 
5264       // In general there's no single instruction that can perform an S <-> S
5265       // move in NEON space, but a pair of VEXT instructions *can* do the
5266       // job. It turns out that the VEXTs needed will only use DSrc once, with
5267       // the position based purely on the combination of lane-0 and lane-1
5268       // involved. For example
5269       //     vmov s0, s2 -> vext.32 d0, d0, d1, #1  vext.32 d0, d0, d0, #1
5270       //     vmov s1, s3 -> vext.32 d0, d1, d0, #1  vext.32 d0, d0, d0, #1
5271       //     vmov s0, s3 -> vext.32 d0, d0, d0, #1  vext.32 d0, d1, d0, #1
5272       //     vmov s1, s2 -> vext.32 d0, d0, d0, #1  vext.32 d0, d0, d1, #1
5273       //
5274       // Pattern of the MachineInstrs is:
5275       //     %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
5276       MachineInstrBuilder NewMIB;
5277       NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32),
5278                        DDst);
5279 
5280       // On the first instruction, both DSrc and DDst may be undef if present.
5281       // Specifically when the original instruction didn't have them as an
5282       // <imp-use>.
5283       unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
5284       bool CurUndef = !MI.readsRegister(CurReg, TRI);
5285       NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
5286 
5287       CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
5288       CurUndef = !MI.readsRegister(CurReg, TRI);
5289       NewMIB.addReg(CurReg, getUndefRegState(CurUndef))
5290             .addImm(1)
5291             .add(predOps(ARMCC::AL));
5292 
5293       if (SrcLane == DstLane)
5294         NewMIB.addReg(SrcReg, RegState::Implicit);
5295 
5296       MI.setDesc(get(ARM::VEXTd32));
5297       MIB.addReg(DDst, RegState::Define);
5298 
5299       // On the second instruction, DDst has definitely been defined above, so
5300       // it is not undef. DSrc, if present, can be undef as above.
5301       CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
5302       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5303       MIB.addReg(CurReg, getUndefRegState(CurUndef));
5304 
5305       CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
5306       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5307       MIB.addReg(CurReg, getUndefRegState(CurUndef))
5308          .addImm(1)
5309          .add(predOps(ARMCC::AL));
5310 
5311       if (SrcLane != DstLane)
5312         MIB.addReg(SrcReg, RegState::Implicit);
5313 
5314       // As before, the original destination is no longer represented, add it
5315       // implicitly.
5316       MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
5317       if (ImplicitSReg != 0)
5318         MIB.addReg(ImplicitSReg, RegState::Implicit);
5319       break;
5320     }
5321   }
5322 }
5323 
5324 //===----------------------------------------------------------------------===//
5325 // Partial register updates
5326 //===----------------------------------------------------------------------===//
5327 //
5328 // Swift renames NEON registers with 64-bit granularity.  That means any
5329 // instruction writing an S-reg implicitly reads the containing D-reg.  The
5330 // problem is mostly avoided by translating f32 operations to v2f32 operations
5331 // on D-registers, but f32 loads are still a problem.
5332 //
5333 // These instructions can load an f32 into a NEON register:
5334 //
5335 // VLDRS - Only writes S, partial D update.
5336 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
5337 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
5338 //
5339 // FCONSTD can be used as a dependency-breaking instruction.
5340 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance(
5341     const MachineInstr &MI, unsigned OpNum,
5342     const TargetRegisterInfo *TRI) const {
5343   auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance();
5344   if (!PartialUpdateClearance)
5345     return 0;
5346 
5347   assert(TRI && "Need TRI instance");
5348 
5349   const MachineOperand &MO = MI.getOperand(OpNum);
5350   if (MO.readsReg())
5351     return 0;
5352   Register Reg = MO.getReg();
5353   int UseOp = -1;
5354 
5355   switch (MI.getOpcode()) {
5356   // Normal instructions writing only an S-register.
5357   case ARM::VLDRS:
5358   case ARM::FCONSTS:
5359   case ARM::VMOVSR:
5360   case ARM::VMOVv8i8:
5361   case ARM::VMOVv4i16:
5362   case ARM::VMOVv2i32:
5363   case ARM::VMOVv2f32:
5364   case ARM::VMOVv1i64:
5365     UseOp = MI.findRegisterUseOperandIdx(Reg, TRI, false);
5366     break;
5367 
5368     // Explicitly reads the dependency.
5369   case ARM::VLD1LNd32:
5370     UseOp = 3;
5371     break;
5372   default:
5373     return 0;
5374   }
5375 
5376   // If this instruction actually reads a value from Reg, there is no unwanted
5377   // dependency.
5378   if (UseOp != -1 && MI.getOperand(UseOp).readsReg())
5379     return 0;
5380 
5381   // We must be able to clobber the whole D-reg.
5382   if (Reg.isVirtual()) {
5383     // Virtual register must be a def undef foo:ssub_0 operand.
5384     if (!MO.getSubReg() || MI.readsVirtualRegister(Reg))
5385       return 0;
5386   } else if (ARM::SPRRegClass.contains(Reg)) {
5387     // Physical register: MI must define the full D-reg.
5388     unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
5389                                              &ARM::DPRRegClass);
5390     if (!DReg || !MI.definesRegister(DReg, TRI))
5391       return 0;
5392   }
5393 
5394   // MI has an unwanted D-register dependency.
5395   // Avoid defs in the previous N instructrions.
5396   return PartialUpdateClearance;
5397 }
5398 
5399 // Break a partial register dependency after getPartialRegUpdateClearance
5400 // returned non-zero.
5401 void ARMBaseInstrInfo::breakPartialRegDependency(
5402     MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
5403   assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def");
5404   assert(TRI && "Need TRI instance");
5405 
5406   const MachineOperand &MO = MI.getOperand(OpNum);
5407   Register Reg = MO.getReg();
5408   assert(Reg.isPhysical() && "Can't break virtual register dependencies.");
5409   unsigned DReg = Reg;
5410 
5411   // If MI defines an S-reg, find the corresponding D super-register.
5412   if (ARM::SPRRegClass.contains(Reg)) {
5413     DReg = ARM::D0 + (Reg - ARM::S0) / 2;
5414     assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
5415   }
5416 
5417   assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
5418   assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
5419 
5420   // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
5421   // the full D-register by loading the same value to both lanes.  The
5422   // instruction is micro-coded with 2 uops, so don't do this until we can
5423   // properly schedule micro-coded instructions.  The dispatcher stalls cause
5424   // too big regressions.
5425 
5426   // Insert the dependency-breaking FCONSTD before MI.
5427   // 96 is the encoding of 0.5, but the actual value doesn't matter here.
5428   BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg)
5429       .addImm(96)
5430       .add(predOps(ARMCC::AL));
5431   MI.addRegisterKilled(DReg, TRI, true);
5432 }
5433 
5434 bool ARMBaseInstrInfo::hasNOP() const {
5435   return Subtarget.hasFeature(ARM::HasV6KOps);
5436 }
5437 
5438 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
5439   if (MI->getNumOperands() < 4)
5440     return true;
5441   unsigned ShOpVal = MI->getOperand(3).getImm();
5442   unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
5443   // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
5444   if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
5445       ((ShImm == 1 || ShImm == 2) &&
5446        ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
5447     return true;
5448 
5449   return false;
5450 }
5451 
5452 bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
5453     const MachineInstr &MI, unsigned DefIdx,
5454     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
5455   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5456   assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
5457 
5458   switch (MI.getOpcode()) {
5459   case ARM::VMOVDRR:
5460     // dX = VMOVDRR rY, rZ
5461     // is the same as:
5462     // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
5463     // Populate the InputRegs accordingly.
5464     // rY
5465     const MachineOperand *MOReg = &MI.getOperand(1);
5466     if (!MOReg->isUndef())
5467       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5468                                               MOReg->getSubReg(), ARM::ssub_0));
5469     // rZ
5470     MOReg = &MI.getOperand(2);
5471     if (!MOReg->isUndef())
5472       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5473                                               MOReg->getSubReg(), ARM::ssub_1));
5474     return true;
5475   }
5476   llvm_unreachable("Target dependent opcode missing");
5477 }
5478 
5479 bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
5480     const MachineInstr &MI, unsigned DefIdx,
5481     RegSubRegPairAndIdx &InputReg) const {
5482   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5483   assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
5484 
5485   switch (MI.getOpcode()) {
5486   case ARM::VMOVRRD:
5487     // rX, rY = VMOVRRD dZ
5488     // is the same as:
5489     // rX = EXTRACT_SUBREG dZ, ssub_0
5490     // rY = EXTRACT_SUBREG dZ, ssub_1
5491     const MachineOperand &MOReg = MI.getOperand(2);
5492     if (MOReg.isUndef())
5493       return false;
5494     InputReg.Reg = MOReg.getReg();
5495     InputReg.SubReg = MOReg.getSubReg();
5496     InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
5497     return true;
5498   }
5499   llvm_unreachable("Target dependent opcode missing");
5500 }
5501 
5502 bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
5503     const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
5504     RegSubRegPairAndIdx &InsertedReg) const {
5505   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5506   assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
5507 
5508   switch (MI.getOpcode()) {
5509   case ARM::VSETLNi32:
5510   case ARM::MVE_VMOV_to_lane_32:
5511     // dX = VSETLNi32 dY, rZ, imm
5512     // qX = MVE_VMOV_to_lane_32 qY, rZ, imm
5513     const MachineOperand &MOBaseReg = MI.getOperand(1);
5514     const MachineOperand &MOInsertedReg = MI.getOperand(2);
5515     if (MOInsertedReg.isUndef())
5516       return false;
5517     const MachineOperand &MOIndex = MI.getOperand(3);
5518     BaseReg.Reg = MOBaseReg.getReg();
5519     BaseReg.SubReg = MOBaseReg.getSubReg();
5520 
5521     InsertedReg.Reg = MOInsertedReg.getReg();
5522     InsertedReg.SubReg = MOInsertedReg.getSubReg();
5523     InsertedReg.SubIdx = ARM::ssub_0 + MOIndex.getImm();
5524     return true;
5525   }
5526   llvm_unreachable("Target dependent opcode missing");
5527 }
5528 
5529 std::pair<unsigned, unsigned>
5530 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
5531   const unsigned Mask = ARMII::MO_OPTION_MASK;
5532   return std::make_pair(TF & Mask, TF & ~Mask);
5533 }
5534 
5535 ArrayRef<std::pair<unsigned, const char *>>
5536 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
5537   using namespace ARMII;
5538 
5539   static const std::pair<unsigned, const char *> TargetFlags[] = {
5540       {MO_LO16, "arm-lo16"},       {MO_HI16, "arm-hi16"},
5541       {MO_LO_0_7, "arm-lo-0-7"},   {MO_HI_0_7, "arm-hi-0-7"},
5542       {MO_LO_8_15, "arm-lo-8-15"}, {MO_HI_8_15, "arm-hi-8-15"},
5543   };
5544   return ArrayRef(TargetFlags);
5545 }
5546 
5547 ArrayRef<std::pair<unsigned, const char *>>
5548 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
5549   using namespace ARMII;
5550 
5551   static const std::pair<unsigned, const char *> TargetFlags[] = {
5552       {MO_COFFSTUB, "arm-coffstub"},
5553       {MO_GOT, "arm-got"},
5554       {MO_SBREL, "arm-sbrel"},
5555       {MO_DLLIMPORT, "arm-dllimport"},
5556       {MO_SECREL, "arm-secrel"},
5557       {MO_NONLAZY, "arm-nonlazy"}};
5558   return ArrayRef(TargetFlags);
5559 }
5560 
5561 std::optional<RegImmPair>
5562 ARMBaseInstrInfo::isAddImmediate(const MachineInstr &MI, Register Reg) const {
5563   int Sign = 1;
5564   unsigned Opcode = MI.getOpcode();
5565   int64_t Offset = 0;
5566 
5567   // TODO: Handle cases where Reg is a super- or sub-register of the
5568   // destination register.
5569   const MachineOperand &Op0 = MI.getOperand(0);
5570   if (!Op0.isReg() || Reg != Op0.getReg())
5571     return std::nullopt;
5572 
5573   // We describe SUBri or ADDri instructions.
5574   if (Opcode == ARM::SUBri)
5575     Sign = -1;
5576   else if (Opcode != ARM::ADDri)
5577     return std::nullopt;
5578 
5579   // TODO: Third operand can be global address (usually some string). Since
5580   //       strings can be relocated we cannot calculate their offsets for
5581   //       now.
5582   if (!MI.getOperand(1).isReg() || !MI.getOperand(2).isImm())
5583     return std::nullopt;
5584 
5585   Offset = MI.getOperand(2).getImm() * Sign;
5586   return RegImmPair{MI.getOperand(1).getReg(), Offset};
5587 }
5588 
5589 bool llvm::registerDefinedBetween(unsigned Reg,
5590                                   MachineBasicBlock::iterator From,
5591                                   MachineBasicBlock::iterator To,
5592                                   const TargetRegisterInfo *TRI) {
5593   for (auto I = From; I != To; ++I)
5594     if (I->modifiesRegister(Reg, TRI))
5595       return true;
5596   return false;
5597 }
5598 
5599 MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br,
5600                                          const TargetRegisterInfo *TRI) {
5601   // Search backwards to the instruction that defines CSPR. This may or not
5602   // be a CMP, we check that after this loop. If we find another instruction
5603   // that reads cpsr, we return nullptr.
5604   MachineBasicBlock::iterator CmpMI = Br;
5605   while (CmpMI != Br->getParent()->begin()) {
5606     --CmpMI;
5607     if (CmpMI->modifiesRegister(ARM::CPSR, TRI))
5608       break;
5609     if (CmpMI->readsRegister(ARM::CPSR, TRI))
5610       break;
5611   }
5612 
5613   // Check that this inst is a CMP r[0-7], #0 and that the register
5614   // is not redefined between the cmp and the br.
5615   if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri)
5616     return nullptr;
5617   Register Reg = CmpMI->getOperand(0).getReg();
5618   Register PredReg;
5619   ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg);
5620   if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0)
5621     return nullptr;
5622   if (!isARMLowRegister(Reg))
5623     return nullptr;
5624   if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI))
5625     return nullptr;
5626 
5627   return &*CmpMI;
5628 }
5629 
5630 unsigned llvm::ConstantMaterializationCost(unsigned Val,
5631                                            const ARMSubtarget *Subtarget,
5632                                            bool ForCodesize) {
5633   if (Subtarget->isThumb()) {
5634     if (Val <= 255) // MOV
5635       return ForCodesize ? 2 : 1;
5636     if (Subtarget->hasV6T2Ops() && (Val <= 0xffff ||                    // MOV
5637                                     ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW
5638                                     ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN
5639       return ForCodesize ? 4 : 1;
5640     if (Val <= 510) // MOV + ADDi8
5641       return ForCodesize ? 4 : 2;
5642     if (~Val <= 255) // MOV + MVN
5643       return ForCodesize ? 4 : 2;
5644     if (ARM_AM::isThumbImmShiftedVal(Val)) // MOV + LSL
5645       return ForCodesize ? 4 : 2;
5646   } else {
5647     if (ARM_AM::getSOImmVal(Val) != -1) // MOV
5648       return ForCodesize ? 4 : 1;
5649     if (ARM_AM::getSOImmVal(~Val) != -1) // MVN
5650       return ForCodesize ? 4 : 1;
5651     if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW
5652       return ForCodesize ? 4 : 1;
5653     if (ARM_AM::isSOImmTwoPartVal(Val)) // two instrs
5654       return ForCodesize ? 8 : 2;
5655     if (ARM_AM::isSOImmTwoPartValNeg(Val)) // two instrs
5656       return ForCodesize ? 8 : 2;
5657   }
5658   if (Subtarget->useMovt()) // MOVW + MOVT
5659     return ForCodesize ? 8 : 2;
5660   return ForCodesize ? 8 : 3; // Literal pool load
5661 }
5662 
5663 bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2,
5664                                                const ARMSubtarget *Subtarget,
5665                                                bool ForCodesize) {
5666   // Check with ForCodesize
5667   unsigned Cost1 = ConstantMaterializationCost(Val1, Subtarget, ForCodesize);
5668   unsigned Cost2 = ConstantMaterializationCost(Val2, Subtarget, ForCodesize);
5669   if (Cost1 < Cost2)
5670     return true;
5671   if (Cost1 > Cost2)
5672     return false;
5673 
5674   // If they are equal, try with !ForCodesize
5675   return ConstantMaterializationCost(Val1, Subtarget, !ForCodesize) <
5676          ConstantMaterializationCost(Val2, Subtarget, !ForCodesize);
5677 }
5678 
5679 /// Constants defining how certain sequences should be outlined.
5680 /// This encompasses how an outlined function should be called, and what kind of
5681 /// frame should be emitted for that outlined function.
5682 ///
5683 /// \p MachineOutlinerTailCall implies that the function is being created from
5684 /// a sequence of instructions ending in a return.
5685 ///
5686 /// That is,
5687 ///
5688 /// I1                                OUTLINED_FUNCTION:
5689 /// I2    --> B OUTLINED_FUNCTION     I1
5690 /// BX LR                             I2
5691 ///                                   BX LR
5692 ///
5693 /// +-------------------------+--------+-----+
5694 /// |                         | Thumb2 | ARM |
5695 /// +-------------------------+--------+-----+
5696 /// | Call overhead in Bytes  |      4 |   4 |
5697 /// | Frame overhead in Bytes |      0 |   0 |
5698 /// | Stack fixup required    |     No |  No |
5699 /// +-------------------------+--------+-----+
5700 ///
5701 /// \p MachineOutlinerThunk implies that the function is being created from
5702 /// a sequence of instructions ending in a call. The outlined function is
5703 /// called with a BL instruction, and the outlined function tail-calls the
5704 /// original call destination.
5705 ///
5706 /// That is,
5707 ///
5708 /// I1                                OUTLINED_FUNCTION:
5709 /// I2   --> BL OUTLINED_FUNCTION     I1
5710 /// BL f                              I2
5711 ///                                   B f
5712 ///
5713 /// +-------------------------+--------+-----+
5714 /// |                         | Thumb2 | ARM |
5715 /// +-------------------------+--------+-----+
5716 /// | Call overhead in Bytes  |      4 |   4 |
5717 /// | Frame overhead in Bytes |      0 |   0 |
5718 /// | Stack fixup required    |     No |  No |
5719 /// +-------------------------+--------+-----+
5720 ///
5721 /// \p MachineOutlinerNoLRSave implies that the function should be called using
5722 /// a BL instruction, but doesn't require LR to be saved and restored. This
5723 /// happens when LR is known to be dead.
5724 ///
5725 /// That is,
5726 ///
5727 /// I1                                OUTLINED_FUNCTION:
5728 /// I2 --> BL OUTLINED_FUNCTION       I1
5729 /// I3                                I2
5730 ///                                   I3
5731 ///                                   BX LR
5732 ///
5733 /// +-------------------------+--------+-----+
5734 /// |                         | Thumb2 | ARM |
5735 /// +-------------------------+--------+-----+
5736 /// | Call overhead in Bytes  |      4 |   4 |
5737 /// | Frame overhead in Bytes |      2 |   4 |
5738 /// | Stack fixup required    |     No |  No |
5739 /// +-------------------------+--------+-----+
5740 ///
5741 /// \p MachineOutlinerRegSave implies that the function should be called with a
5742 /// save and restore of LR to an available register. This allows us to avoid
5743 /// stack fixups. Note that this outlining variant is compatible with the
5744 /// NoLRSave case.
5745 ///
5746 /// That is,
5747 ///
5748 /// I1     Save LR                    OUTLINED_FUNCTION:
5749 /// I2 --> BL OUTLINED_FUNCTION       I1
5750 /// I3     Restore LR                 I2
5751 ///                                   I3
5752 ///                                   BX LR
5753 ///
5754 /// +-------------------------+--------+-----+
5755 /// |                         | Thumb2 | ARM |
5756 /// +-------------------------+--------+-----+
5757 /// | Call overhead in Bytes  |      8 |  12 |
5758 /// | Frame overhead in Bytes |      2 |   4 |
5759 /// | Stack fixup required    |     No |  No |
5760 /// +-------------------------+--------+-----+
5761 ///
5762 /// \p MachineOutlinerDefault implies that the function should be called with
5763 /// a save and restore of LR to the stack.
5764 ///
5765 /// That is,
5766 ///
5767 /// I1     Save LR                    OUTLINED_FUNCTION:
5768 /// I2 --> BL OUTLINED_FUNCTION       I1
5769 /// I3     Restore LR                 I2
5770 ///                                   I3
5771 ///                                   BX LR
5772 ///
5773 /// +-------------------------+--------+-----+
5774 /// |                         | Thumb2 | ARM |
5775 /// +-------------------------+--------+-----+
5776 /// | Call overhead in Bytes  |      8 |  12 |
5777 /// | Frame overhead in Bytes |      2 |   4 |
5778 /// | Stack fixup required    |    Yes | Yes |
5779 /// +-------------------------+--------+-----+
5780 
5781 enum MachineOutlinerClass {
5782   MachineOutlinerTailCall,
5783   MachineOutlinerThunk,
5784   MachineOutlinerNoLRSave,
5785   MachineOutlinerRegSave,
5786   MachineOutlinerDefault
5787 };
5788 
5789 enum MachineOutlinerMBBFlags {
5790   LRUnavailableSomewhere = 0x2,
5791   HasCalls = 0x4,
5792   UnsafeRegsDead = 0x8
5793 };
5794 
5795 struct OutlinerCosts {
5796   int CallTailCall;
5797   int FrameTailCall;
5798   int CallThunk;
5799   int FrameThunk;
5800   int CallNoLRSave;
5801   int FrameNoLRSave;
5802   int CallRegSave;
5803   int FrameRegSave;
5804   int CallDefault;
5805   int FrameDefault;
5806   int SaveRestoreLROnStack;
5807 
5808   OutlinerCosts(const ARMSubtarget &target)
5809       : CallTailCall(target.isThumb() ? 4 : 4),
5810         FrameTailCall(target.isThumb() ? 0 : 0),
5811         CallThunk(target.isThumb() ? 4 : 4),
5812         FrameThunk(target.isThumb() ? 0 : 0),
5813         CallNoLRSave(target.isThumb() ? 4 : 4),
5814         FrameNoLRSave(target.isThumb() ? 2 : 4),
5815         CallRegSave(target.isThumb() ? 8 : 12),
5816         FrameRegSave(target.isThumb() ? 2 : 4),
5817         CallDefault(target.isThumb() ? 8 : 12),
5818         FrameDefault(target.isThumb() ? 2 : 4),
5819         SaveRestoreLROnStack(target.isThumb() ? 8 : 8) {}
5820 };
5821 
5822 Register
5823 ARMBaseInstrInfo::findRegisterToSaveLRTo(outliner::Candidate &C) const {
5824   MachineFunction *MF = C.getMF();
5825   const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
5826   const ARMBaseRegisterInfo *ARI =
5827       static_cast<const ARMBaseRegisterInfo *>(&TRI);
5828 
5829   BitVector regsReserved = ARI->getReservedRegs(*MF);
5830   // Check if there is an available register across the sequence that we can
5831   // use.
5832   for (Register Reg : ARM::rGPRRegClass) {
5833     if (!(Reg < regsReserved.size() && regsReserved.test(Reg)) &&
5834         Reg != ARM::LR &&  // LR is not reserved, but don't use it.
5835         Reg != ARM::R12 && // R12 is not guaranteed to be preserved.
5836         C.isAvailableAcrossAndOutOfSeq(Reg, TRI) &&
5837         C.isAvailableInsideSeq(Reg, TRI))
5838       return Reg;
5839   }
5840   return Register();
5841 }
5842 
5843 // Compute liveness of LR at the point after the interval [I, E), which
5844 // denotes a *backward* iteration through instructions. Used only for return
5845 // basic blocks, which do not end with a tail call.
5846 static bool isLRAvailable(const TargetRegisterInfo &TRI,
5847                           MachineBasicBlock::reverse_iterator I,
5848                           MachineBasicBlock::reverse_iterator E) {
5849   // At the end of the function LR dead.
5850   bool Live = false;
5851   for (; I != E; ++I) {
5852     const MachineInstr &MI = *I;
5853 
5854     // Check defs of LR.
5855     if (MI.modifiesRegister(ARM::LR, &TRI))
5856       Live = false;
5857 
5858     // Check uses of LR.
5859     unsigned Opcode = MI.getOpcode();
5860     if (Opcode == ARM::BX_RET || Opcode == ARM::MOVPCLR ||
5861         Opcode == ARM::SUBS_PC_LR || Opcode == ARM::tBX_RET ||
5862         Opcode == ARM::tBXNS_RET) {
5863       // These instructions use LR, but it's not an (explicit or implicit)
5864       // operand.
5865       Live = true;
5866       continue;
5867     }
5868     if (MI.readsRegister(ARM::LR, &TRI))
5869       Live = true;
5870   }
5871   return !Live;
5872 }
5873 
5874 std::optional<outliner::OutlinedFunction>
5875 ARMBaseInstrInfo::getOutliningCandidateInfo(
5876     std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
5877   unsigned SequenceSize = 0;
5878   for (auto &MI : RepeatedSequenceLocs[0])
5879     SequenceSize += getInstSizeInBytes(MI);
5880 
5881   // Properties about candidate MBBs that hold for all of them.
5882   unsigned FlagsSetInAll = 0xF;
5883 
5884   // Compute liveness information for each candidate, and set FlagsSetInAll.
5885   const TargetRegisterInfo &TRI = getRegisterInfo();
5886   for (outliner::Candidate &C : RepeatedSequenceLocs)
5887     FlagsSetInAll &= C.Flags;
5888 
5889   // According to the ARM Procedure Call Standard, the following are
5890   // undefined on entry/exit from a function call:
5891   //
5892   // * Register R12(IP),
5893   // * Condition codes (and thus the CPSR register)
5894   //
5895   // Since we control the instructions which are part of the outlined regions
5896   // we don't need to be fully compliant with the AAPCS, but we have to
5897   // guarantee that if a veneer is inserted at link time the code is still
5898   // correct.  Because of this, we can't outline any sequence of instructions
5899   // where one of these registers is live into/across it. Thus, we need to
5900   // delete those candidates.
5901   auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) {
5902     // If the unsafe registers in this block are all dead, then we don't need
5903     // to compute liveness here.
5904     if (C.Flags & UnsafeRegsDead)
5905       return false;
5906     return C.isAnyUnavailableAcrossOrOutOfSeq({ARM::R12, ARM::CPSR}, TRI);
5907   };
5908 
5909   // Are there any candidates where those registers are live?
5910   if (!(FlagsSetInAll & UnsafeRegsDead)) {
5911     // Erase every candidate that violates the restrictions above. (It could be
5912     // true that we have viable candidates, so it's not worth bailing out in
5913     // the case that, say, 1 out of 20 candidates violate the restructions.)
5914     llvm::erase_if(RepeatedSequenceLocs, CantGuaranteeValueAcrossCall);
5915 
5916     // If the sequence doesn't have enough candidates left, then we're done.
5917     if (RepeatedSequenceLocs.size() < 2)
5918       return std::nullopt;
5919   }
5920 
5921   // We expect the majority of the outlining candidates to be in consensus with
5922   // regard to return address sign and authentication, and branch target
5923   // enforcement, in other words, partitioning according to all the four
5924   // possible combinations of PAC-RET and BTI is going to yield one big subset
5925   // and three small (likely empty) subsets. That allows us to cull incompatible
5926   // candidates separately for PAC-RET and BTI.
5927 
5928   // Partition the candidates in two sets: one with BTI enabled and one with BTI
5929   // disabled. Remove the candidates from the smaller set. If they are the same
5930   // number prefer the non-BTI ones for outlining, since they have less
5931   // overhead.
5932   auto NoBTI =
5933       llvm::partition(RepeatedSequenceLocs, [](const outliner::Candidate &C) {
5934         const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>();
5935         return AFI.branchTargetEnforcement();
5936       });
5937   if (std::distance(RepeatedSequenceLocs.begin(), NoBTI) >
5938       std::distance(NoBTI, RepeatedSequenceLocs.end()))
5939     RepeatedSequenceLocs.erase(NoBTI, RepeatedSequenceLocs.end());
5940   else
5941     RepeatedSequenceLocs.erase(RepeatedSequenceLocs.begin(), NoBTI);
5942 
5943   if (RepeatedSequenceLocs.size() < 2)
5944     return std::nullopt;
5945 
5946   // Likewise, partition the candidates according to PAC-RET enablement.
5947   auto NoPAC =
5948       llvm::partition(RepeatedSequenceLocs, [](const outliner::Candidate &C) {
5949         const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>();
5950         // If the function happens to not spill the LR, do not disqualify it
5951         // from the outlining.
5952         return AFI.shouldSignReturnAddress(true);
5953       });
5954   if (std::distance(RepeatedSequenceLocs.begin(), NoPAC) >
5955       std::distance(NoPAC, RepeatedSequenceLocs.end()))
5956     RepeatedSequenceLocs.erase(NoPAC, RepeatedSequenceLocs.end());
5957   else
5958     RepeatedSequenceLocs.erase(RepeatedSequenceLocs.begin(), NoPAC);
5959 
5960   if (RepeatedSequenceLocs.size() < 2)
5961     return std::nullopt;
5962 
5963   // At this point, we have only "safe" candidates to outline. Figure out
5964   // frame + call instruction information.
5965 
5966   unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back().getOpcode();
5967 
5968   // Helper lambda which sets call information for every candidate.
5969   auto SetCandidateCallInfo =
5970       [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) {
5971         for (outliner::Candidate &C : RepeatedSequenceLocs)
5972           C.setCallInfo(CallID, NumBytesForCall);
5973       };
5974 
5975   OutlinerCosts Costs(Subtarget);
5976 
5977   const auto &SomeMFI =
5978       *RepeatedSequenceLocs.front().getMF()->getInfo<ARMFunctionInfo>();
5979   // Adjust costs to account for the BTI instructions.
5980   if (SomeMFI.branchTargetEnforcement()) {
5981     Costs.FrameDefault += 4;
5982     Costs.FrameNoLRSave += 4;
5983     Costs.FrameRegSave += 4;
5984     Costs.FrameTailCall += 4;
5985     Costs.FrameThunk += 4;
5986   }
5987 
5988   // Adjust costs to account for sign and authentication instructions.
5989   if (SomeMFI.shouldSignReturnAddress(true)) {
5990     Costs.CallDefault += 8;          // +PAC instr, +AUT instr
5991     Costs.SaveRestoreLROnStack += 8; // +PAC instr, +AUT instr
5992   }
5993 
5994   unsigned FrameID = MachineOutlinerDefault;
5995   unsigned NumBytesToCreateFrame = Costs.FrameDefault;
5996 
5997   // If the last instruction in any candidate is a terminator, then we should
5998   // tail call all of the candidates.
5999   if (RepeatedSequenceLocs[0].back().isTerminator()) {
6000     FrameID = MachineOutlinerTailCall;
6001     NumBytesToCreateFrame = Costs.FrameTailCall;
6002     SetCandidateCallInfo(MachineOutlinerTailCall, Costs.CallTailCall);
6003   } else if (LastInstrOpcode == ARM::BL || LastInstrOpcode == ARM::BLX ||
6004              LastInstrOpcode == ARM::BLX_noip || LastInstrOpcode == ARM::tBL ||
6005              LastInstrOpcode == ARM::tBLXr ||
6006              LastInstrOpcode == ARM::tBLXr_noip ||
6007              LastInstrOpcode == ARM::tBLXi) {
6008     FrameID = MachineOutlinerThunk;
6009     NumBytesToCreateFrame = Costs.FrameThunk;
6010     SetCandidateCallInfo(MachineOutlinerThunk, Costs.CallThunk);
6011   } else {
6012     // We need to decide how to emit calls + frames. We can always emit the same
6013     // frame if we don't need to save to the stack. If we have to save to the
6014     // stack, then we need a different frame.
6015     unsigned NumBytesNoStackCalls = 0;
6016     std::vector<outliner::Candidate> CandidatesWithoutStackFixups;
6017 
6018     for (outliner::Candidate &C : RepeatedSequenceLocs) {
6019       // LR liveness is overestimated in return blocks, unless they end with a
6020       // tail call.
6021       const auto Last = C.getMBB()->rbegin();
6022       const bool LRIsAvailable =
6023           C.getMBB()->isReturnBlock() && !Last->isCall()
6024               ? isLRAvailable(TRI, Last,
6025                               (MachineBasicBlock::reverse_iterator)C.begin())
6026               : C.isAvailableAcrossAndOutOfSeq(ARM::LR, TRI);
6027       if (LRIsAvailable) {
6028         FrameID = MachineOutlinerNoLRSave;
6029         NumBytesNoStackCalls += Costs.CallNoLRSave;
6030         C.setCallInfo(MachineOutlinerNoLRSave, Costs.CallNoLRSave);
6031         CandidatesWithoutStackFixups.push_back(C);
6032       }
6033 
6034       // Is an unused register available? If so, we won't modify the stack, so
6035       // we can outline with the same frame type as those that don't save LR.
6036       else if (findRegisterToSaveLRTo(C)) {
6037         FrameID = MachineOutlinerRegSave;
6038         NumBytesNoStackCalls += Costs.CallRegSave;
6039         C.setCallInfo(MachineOutlinerRegSave, Costs.CallRegSave);
6040         CandidatesWithoutStackFixups.push_back(C);
6041       }
6042 
6043       // Is SP used in the sequence at all? If not, we don't have to modify
6044       // the stack, so we are guaranteed to get the same frame.
6045       else if (C.isAvailableInsideSeq(ARM::SP, TRI)) {
6046         NumBytesNoStackCalls += Costs.CallDefault;
6047         C.setCallInfo(MachineOutlinerDefault, Costs.CallDefault);
6048         CandidatesWithoutStackFixups.push_back(C);
6049       }
6050 
6051       // If we outline this, we need to modify the stack. Pretend we don't
6052       // outline this by saving all of its bytes.
6053       else
6054         NumBytesNoStackCalls += SequenceSize;
6055     }
6056 
6057     // If there are no places where we have to save LR, then note that we don't
6058     // have to update the stack. Otherwise, give every candidate the default
6059     // call type
6060     if (NumBytesNoStackCalls <=
6061         RepeatedSequenceLocs.size() * Costs.CallDefault) {
6062       RepeatedSequenceLocs = CandidatesWithoutStackFixups;
6063       FrameID = MachineOutlinerNoLRSave;
6064       if (RepeatedSequenceLocs.size() < 2)
6065         return std::nullopt;
6066     } else
6067       SetCandidateCallInfo(MachineOutlinerDefault, Costs.CallDefault);
6068   }
6069 
6070   // Does every candidate's MBB contain a call?  If so, then we might have a
6071   // call in the range.
6072   if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) {
6073     // check if the range contains a call.  These require a save + restore of
6074     // the link register.
6075     outliner::Candidate &FirstCand = RepeatedSequenceLocs[0];
6076     if (std::any_of(FirstCand.begin(), std::prev(FirstCand.end()),
6077                     [](const MachineInstr &MI) { return MI.isCall(); }))
6078       NumBytesToCreateFrame += Costs.SaveRestoreLROnStack;
6079 
6080     // Handle the last instruction separately.  If it is tail call, then the
6081     // last instruction is a call, we don't want to save + restore in this
6082     // case.  However, it could be possible that the last instruction is a
6083     // call without it being valid to tail call this sequence.  We should
6084     // consider this as well.
6085     else if (FrameID != MachineOutlinerThunk &&
6086              FrameID != MachineOutlinerTailCall && FirstCand.back().isCall())
6087       NumBytesToCreateFrame += Costs.SaveRestoreLROnStack;
6088   }
6089 
6090   return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
6091                                     NumBytesToCreateFrame, FrameID);
6092 }
6093 
6094 bool ARMBaseInstrInfo::checkAndUpdateStackOffset(MachineInstr *MI,
6095                                                  int64_t Fixup,
6096                                                  bool Updt) const {
6097   int SPIdx = MI->findRegisterUseOperandIdx(ARM::SP, /*TRI=*/nullptr);
6098   unsigned AddrMode = (MI->getDesc().TSFlags & ARMII::AddrModeMask);
6099   if (SPIdx < 0)
6100     // No SP operand
6101     return true;
6102   else if (SPIdx != 1 && (AddrMode != ARMII::AddrModeT2_i8s4 || SPIdx != 2))
6103     // If SP is not the base register we can't do much
6104     return false;
6105 
6106   // Stack might be involved but addressing mode doesn't handle any offset.
6107   // Rq: AddrModeT1_[1|2|4] don't operate on SP
6108   if (AddrMode == ARMII::AddrMode1 ||       // Arithmetic instructions
6109       AddrMode == ARMII::AddrMode4 ||       // Load/Store Multiple
6110       AddrMode == ARMII::AddrMode6 ||       // Neon Load/Store Multiple
6111       AddrMode == ARMII::AddrModeT2_so ||   // SP can't be used as based register
6112       AddrMode == ARMII::AddrModeT2_pc ||   // PCrel access
6113       AddrMode == ARMII::AddrMode2 ||       // Used by PRE and POST indexed LD/ST
6114       AddrMode == ARMII::AddrModeT2_i7 ||   // v8.1-M MVE
6115       AddrMode == ARMII::AddrModeT2_i7s2 || // v8.1-M MVE
6116       AddrMode == ARMII::AddrModeT2_i7s4 || // v8.1-M sys regs VLDR/VSTR
6117       AddrMode == ARMII::AddrModeNone ||
6118       AddrMode == ARMII::AddrModeT2_i8 ||   // Pre/Post inc instructions
6119       AddrMode == ARMII::AddrModeT2_i8neg)  // Always negative imm
6120     return false;
6121 
6122   unsigned NumOps = MI->getDesc().getNumOperands();
6123   unsigned ImmIdx = NumOps - 3;
6124 
6125   const MachineOperand &Offset = MI->getOperand(ImmIdx);
6126   assert(Offset.isImm() && "Is not an immediate");
6127   int64_t OffVal = Offset.getImm();
6128 
6129   if (OffVal < 0)
6130     // Don't override data if the are below SP.
6131     return false;
6132 
6133   unsigned NumBits = 0;
6134   unsigned Scale = 1;
6135 
6136   switch (AddrMode) {
6137   case ARMII::AddrMode3:
6138     if (ARM_AM::getAM3Op(OffVal) == ARM_AM::sub)
6139       return false;
6140     OffVal = ARM_AM::getAM3Offset(OffVal);
6141     NumBits = 8;
6142     break;
6143   case ARMII::AddrMode5:
6144     if (ARM_AM::getAM5Op(OffVal) == ARM_AM::sub)
6145       return false;
6146     OffVal = ARM_AM::getAM5Offset(OffVal);
6147     NumBits = 8;
6148     Scale = 4;
6149     break;
6150   case ARMII::AddrMode5FP16:
6151     if (ARM_AM::getAM5FP16Op(OffVal) == ARM_AM::sub)
6152       return false;
6153     OffVal = ARM_AM::getAM5FP16Offset(OffVal);
6154     NumBits = 8;
6155     Scale = 2;
6156     break;
6157   case ARMII::AddrModeT2_i8pos:
6158     NumBits = 8;
6159     break;
6160   case ARMII::AddrModeT2_i8s4:
6161     // FIXME: Values are already scaled in this addressing mode.
6162     assert((Fixup & 3) == 0 && "Can't encode this offset!");
6163     NumBits = 10;
6164     break;
6165   case ARMII::AddrModeT2_ldrex:
6166     NumBits = 8;
6167     Scale = 4;
6168     break;
6169   case ARMII::AddrModeT2_i12:
6170   case ARMII::AddrMode_i12:
6171     NumBits = 12;
6172     break;
6173   case ARMII::AddrModeT1_s: // SP-relative LD/ST
6174     NumBits = 8;
6175     Scale = 4;
6176     break;
6177   default:
6178     llvm_unreachable("Unsupported addressing mode!");
6179   }
6180   // Make sure the offset is encodable for instructions that scale the
6181   // immediate.
6182   assert(((OffVal * Scale + Fixup) & (Scale - 1)) == 0 &&
6183          "Can't encode this offset!");
6184   OffVal += Fixup / Scale;
6185 
6186   unsigned Mask = (1 << NumBits) - 1;
6187 
6188   if (OffVal <= Mask) {
6189     if (Updt)
6190       MI->getOperand(ImmIdx).setImm(OffVal);
6191     return true;
6192   }
6193 
6194   return false;
6195 }
6196 
6197 void ARMBaseInstrInfo::mergeOutliningCandidateAttributes(
6198     Function &F, std::vector<outliner::Candidate> &Candidates) const {
6199   outliner::Candidate &C = Candidates.front();
6200   // branch-target-enforcement is guaranteed to be consistent between all
6201   // candidates, so we only need to look at one.
6202   const Function &CFn = C.getMF()->getFunction();
6203   if (CFn.hasFnAttribute("branch-target-enforcement"))
6204     F.addFnAttr(CFn.getFnAttribute("branch-target-enforcement"));
6205 
6206   ARMGenInstrInfo::mergeOutliningCandidateAttributes(F, Candidates);
6207 }
6208 
6209 bool ARMBaseInstrInfo::isFunctionSafeToOutlineFrom(
6210     MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
6211   const Function &F = MF.getFunction();
6212 
6213   // Can F be deduplicated by the linker? If it can, don't outline from it.
6214   if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
6215     return false;
6216 
6217   // Don't outline from functions with section markings; the program could
6218   // expect that all the code is in the named section.
6219   // FIXME: Allow outlining from multiple functions with the same section
6220   // marking.
6221   if (F.hasSection())
6222     return false;
6223 
6224   // FIXME: Thumb1 outlining is not handled
6225   if (MF.getInfo<ARMFunctionInfo>()->isThumb1OnlyFunction())
6226     return false;
6227 
6228   // It's safe to outline from MF.
6229   return true;
6230 }
6231 
6232 bool ARMBaseInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
6233                                               unsigned &Flags) const {
6234   // Check if LR is available through all of the MBB. If it's not, then set
6235   // a flag.
6236   assert(MBB.getParent()->getRegInfo().tracksLiveness() &&
6237          "Suitable Machine Function for outlining must track liveness");
6238 
6239   LiveRegUnits LRU(getRegisterInfo());
6240 
6241   for (MachineInstr &MI : llvm::reverse(MBB))
6242     LRU.accumulate(MI);
6243 
6244   // Check if each of the unsafe registers are available...
6245   bool R12AvailableInBlock = LRU.available(ARM::R12);
6246   bool CPSRAvailableInBlock = LRU.available(ARM::CPSR);
6247 
6248   // If all of these are dead (and not live out), we know we don't have to check
6249   // them later.
6250   if (R12AvailableInBlock && CPSRAvailableInBlock)
6251     Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead;
6252 
6253   // Now, add the live outs to the set.
6254   LRU.addLiveOuts(MBB);
6255 
6256   // If any of these registers is available in the MBB, but also a live out of
6257   // the block, then we know outlining is unsafe.
6258   if (R12AvailableInBlock && !LRU.available(ARM::R12))
6259     return false;
6260   if (CPSRAvailableInBlock && !LRU.available(ARM::CPSR))
6261     return false;
6262 
6263   // Check if there's a call inside this MachineBasicBlock.  If there is, then
6264   // set a flag.
6265   if (any_of(MBB, [](MachineInstr &MI) { return MI.isCall(); }))
6266     Flags |= MachineOutlinerMBBFlags::HasCalls;
6267 
6268   // LR liveness is overestimated in return blocks.
6269 
6270   bool LRIsAvailable =
6271       MBB.isReturnBlock() && !MBB.back().isCall()
6272           ? isLRAvailable(getRegisterInfo(), MBB.rbegin(), MBB.rend())
6273           : LRU.available(ARM::LR);
6274   if (!LRIsAvailable)
6275     Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere;
6276 
6277   return true;
6278 }
6279 
6280 outliner::InstrType
6281 ARMBaseInstrInfo::getOutliningTypeImpl(MachineBasicBlock::iterator &MIT,
6282                                    unsigned Flags) const {
6283   MachineInstr &MI = *MIT;
6284   const TargetRegisterInfo *TRI = &getRegisterInfo();
6285 
6286   // PIC instructions contain labels, outlining them would break offset
6287   // computing.  unsigned Opc = MI.getOpcode();
6288   unsigned Opc = MI.getOpcode();
6289   if (Opc == ARM::tPICADD || Opc == ARM::PICADD || Opc == ARM::PICSTR ||
6290       Opc == ARM::PICSTRB || Opc == ARM::PICSTRH || Opc == ARM::PICLDR ||
6291       Opc == ARM::PICLDRB || Opc == ARM::PICLDRH || Opc == ARM::PICLDRSB ||
6292       Opc == ARM::PICLDRSH || Opc == ARM::t2LDRpci_pic ||
6293       Opc == ARM::t2MOVi16_ga_pcrel || Opc == ARM::t2MOVTi16_ga_pcrel ||
6294       Opc == ARM::t2MOV_ga_pcrel)
6295     return outliner::InstrType::Illegal;
6296 
6297   // Be conservative with ARMv8.1 MVE instructions.
6298   if (Opc == ARM::t2BF_LabelPseudo || Opc == ARM::t2DoLoopStart ||
6299       Opc == ARM::t2DoLoopStartTP || Opc == ARM::t2WhileLoopStart ||
6300       Opc == ARM::t2WhileLoopStartLR || Opc == ARM::t2WhileLoopStartTP ||
6301       Opc == ARM::t2LoopDec || Opc == ARM::t2LoopEnd ||
6302       Opc == ARM::t2LoopEndDec)
6303     return outliner::InstrType::Illegal;
6304 
6305   const MCInstrDesc &MCID = MI.getDesc();
6306   uint64_t MIFlags = MCID.TSFlags;
6307   if ((MIFlags & ARMII::DomainMask) == ARMII::DomainMVE)
6308     return outliner::InstrType::Illegal;
6309 
6310   // Is this a terminator for a basic block?
6311   if (MI.isTerminator())
6312     // TargetInstrInfo::getOutliningType has already filtered out anything
6313     // that would break this, so we can allow it here.
6314     return outliner::InstrType::Legal;
6315 
6316   // Don't outline if link register or program counter value are used.
6317   if (MI.readsRegister(ARM::LR, TRI) || MI.readsRegister(ARM::PC, TRI))
6318     return outliner::InstrType::Illegal;
6319 
6320   if (MI.isCall()) {
6321     // Get the function associated with the call.  Look at each operand and find
6322     // the one that represents the calle and get its name.
6323     const Function *Callee = nullptr;
6324     for (const MachineOperand &MOP : MI.operands()) {
6325       if (MOP.isGlobal()) {
6326         Callee = dyn_cast<Function>(MOP.getGlobal());
6327         break;
6328       }
6329     }
6330 
6331     // Dont't outline calls to "mcount" like functions, in particular Linux
6332     // kernel function tracing relies on it.
6333     if (Callee &&
6334         (Callee->getName() == "\01__gnu_mcount_nc" ||
6335          Callee->getName() == "\01mcount" || Callee->getName() == "__mcount"))
6336       return outliner::InstrType::Illegal;
6337 
6338     // If we don't know anything about the callee, assume it depends on the
6339     // stack layout of the caller. In that case, it's only legal to outline
6340     // as a tail-call. Explicitly list the call instructions we know about so
6341     // we don't get unexpected results with call pseudo-instructions.
6342     auto UnknownCallOutlineType = outliner::InstrType::Illegal;
6343     if (Opc == ARM::BL || Opc == ARM::tBL || Opc == ARM::BLX ||
6344         Opc == ARM::BLX_noip || Opc == ARM::tBLXr || Opc == ARM::tBLXr_noip ||
6345         Opc == ARM::tBLXi)
6346       UnknownCallOutlineType = outliner::InstrType::LegalTerminator;
6347 
6348     if (!Callee)
6349       return UnknownCallOutlineType;
6350 
6351     // We have a function we have information about.  Check if it's something we
6352     // can safely outline.
6353     MachineFunction *MF = MI.getParent()->getParent();
6354     MachineFunction *CalleeMF = MF->getMMI().getMachineFunction(*Callee);
6355 
6356     // We don't know what's going on with the callee at all.  Don't touch it.
6357     if (!CalleeMF)
6358       return UnknownCallOutlineType;
6359 
6360     // Check if we know anything about the callee saves on the function. If we
6361     // don't, then don't touch it, since that implies that we haven't computed
6362     // anything about its stack frame yet.
6363     MachineFrameInfo &MFI = CalleeMF->getFrameInfo();
6364     if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 ||
6365         MFI.getNumObjects() > 0)
6366       return UnknownCallOutlineType;
6367 
6368     // At this point, we can say that CalleeMF ought to not pass anything on the
6369     // stack. Therefore, we can outline it.
6370     return outliner::InstrType::Legal;
6371   }
6372 
6373   // Since calls are handled, don't touch LR or PC
6374   if (MI.modifiesRegister(ARM::LR, TRI) || MI.modifiesRegister(ARM::PC, TRI))
6375     return outliner::InstrType::Illegal;
6376 
6377   // Does this use the stack?
6378   if (MI.modifiesRegister(ARM::SP, TRI) || MI.readsRegister(ARM::SP, TRI)) {
6379     // True if there is no chance that any outlined candidate from this range
6380     // could require stack fixups. That is, both
6381     // * LR is available in the range (No save/restore around call)
6382     // * The range doesn't include calls (No save/restore in outlined frame)
6383     // are true.
6384     // These conditions also ensure correctness of the return address
6385     // authentication - we insert sign and authentication instructions only if
6386     // we save/restore LR on stack, but then this condition ensures that the
6387     // outlined range does not modify the SP, therefore the SP value used for
6388     // signing is the same as the one used for authentication.
6389     // FIXME: This is very restrictive; the flags check the whole block,
6390     // not just the bit we will try to outline.
6391     bool MightNeedStackFixUp =
6392         (Flags & (MachineOutlinerMBBFlags::LRUnavailableSomewhere |
6393                   MachineOutlinerMBBFlags::HasCalls));
6394 
6395     if (!MightNeedStackFixUp)
6396       return outliner::InstrType::Legal;
6397 
6398     // Any modification of SP will break our code to save/restore LR.
6399     // FIXME: We could handle some instructions which add a constant offset to
6400     // SP, with a bit more work.
6401     if (MI.modifiesRegister(ARM::SP, TRI))
6402       return outliner::InstrType::Illegal;
6403 
6404     // At this point, we have a stack instruction that we might need to fix up.
6405     // up. We'll handle it if it's a load or store.
6406     if (checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(),
6407                                   false))
6408       return outliner::InstrType::Legal;
6409 
6410     // We can't fix it up, so don't outline it.
6411     return outliner::InstrType::Illegal;
6412   }
6413 
6414   // Be conservative with IT blocks.
6415   if (MI.readsRegister(ARM::ITSTATE, TRI) ||
6416       MI.modifiesRegister(ARM::ITSTATE, TRI))
6417     return outliner::InstrType::Illegal;
6418 
6419   // Don't outline CFI instructions.
6420   if (MI.isCFIInstruction())
6421     return outliner::InstrType::Illegal;
6422 
6423   return outliner::InstrType::Legal;
6424 }
6425 
6426 void ARMBaseInstrInfo::fixupPostOutline(MachineBasicBlock &MBB) const {
6427   for (MachineInstr &MI : MBB) {
6428     checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(), true);
6429   }
6430 }
6431 
6432 void ARMBaseInstrInfo::saveLROnStack(MachineBasicBlock &MBB,
6433                                      MachineBasicBlock::iterator It, bool CFI,
6434                                      bool Auth) const {
6435   int Align = std::max(Subtarget.getStackAlignment().value(), uint64_t(8));
6436   unsigned MIFlags = CFI ? MachineInstr::FrameSetup : 0;
6437   assert(Align >= 8 && Align <= 256);
6438   if (Auth) {
6439     assert(Subtarget.isThumb2());
6440     // Compute PAC in R12. Outlining ensures R12 is dead across the outlined
6441     // sequence.
6442     BuildMI(MBB, It, DebugLoc(), get(ARM::t2PAC)).setMIFlags(MIFlags);
6443     BuildMI(MBB, It, DebugLoc(), get(ARM::t2STRD_PRE), ARM::SP)
6444         .addReg(ARM::R12, RegState::Kill)
6445         .addReg(ARM::LR, RegState::Kill)
6446         .addReg(ARM::SP)
6447         .addImm(-Align)
6448         .add(predOps(ARMCC::AL))
6449         .setMIFlags(MIFlags);
6450   } else {
6451     unsigned Opc = Subtarget.isThumb() ? ARM::t2STR_PRE : ARM::STR_PRE_IMM;
6452     BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::SP)
6453         .addReg(ARM::LR, RegState::Kill)
6454         .addReg(ARM::SP)
6455         .addImm(-Align)
6456         .add(predOps(ARMCC::AL))
6457         .setMIFlags(MIFlags);
6458   }
6459 
6460   if (!CFI)
6461     return;
6462 
6463   MachineFunction &MF = *MBB.getParent();
6464 
6465   // Add a CFI, saying CFA is offset by Align bytes from SP.
6466   int64_t StackPosEntry =
6467       MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Align));
6468   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6469       .addCFIIndex(StackPosEntry)
6470       .setMIFlags(MachineInstr::FrameSetup);
6471 
6472   // Add a CFI saying that the LR that we want to find is now higher than
6473   // before.
6474   int LROffset = Auth ? Align - 4 : Align;
6475   const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6476   unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6477   int64_t LRPosEntry = MF.addFrameInst(
6478       MCCFIInstruction::createOffset(nullptr, DwarfLR, -LROffset));
6479   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6480       .addCFIIndex(LRPosEntry)
6481       .setMIFlags(MachineInstr::FrameSetup);
6482   if (Auth) {
6483     // Add a CFI for the location of the return adddress PAC.
6484     unsigned DwarfRAC = MRI->getDwarfRegNum(ARM::RA_AUTH_CODE, true);
6485     int64_t RACPosEntry = MF.addFrameInst(
6486         MCCFIInstruction::createOffset(nullptr, DwarfRAC, -Align));
6487     BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6488         .addCFIIndex(RACPosEntry)
6489         .setMIFlags(MachineInstr::FrameSetup);
6490   }
6491 }
6492 
6493 void ARMBaseInstrInfo::emitCFIForLRSaveToReg(MachineBasicBlock &MBB,
6494                                              MachineBasicBlock::iterator It,
6495                                              Register Reg) const {
6496   MachineFunction &MF = *MBB.getParent();
6497   const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6498   unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6499   unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
6500 
6501   int64_t LRPosEntry = MF.addFrameInst(
6502       MCCFIInstruction::createRegister(nullptr, DwarfLR, DwarfReg));
6503   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6504       .addCFIIndex(LRPosEntry)
6505       .setMIFlags(MachineInstr::FrameSetup);
6506 }
6507 
6508 void ARMBaseInstrInfo::restoreLRFromStack(MachineBasicBlock &MBB,
6509                                           MachineBasicBlock::iterator It,
6510                                           bool CFI, bool Auth) const {
6511   int Align = Subtarget.getStackAlignment().value();
6512   unsigned MIFlags = CFI ? MachineInstr::FrameDestroy : 0;
6513   if (Auth) {
6514     assert(Subtarget.isThumb2());
6515     // Restore return address PAC and LR.
6516     BuildMI(MBB, It, DebugLoc(), get(ARM::t2LDRD_POST))
6517         .addReg(ARM::R12, RegState::Define)
6518         .addReg(ARM::LR, RegState::Define)
6519         .addReg(ARM::SP, RegState::Define)
6520         .addReg(ARM::SP)
6521         .addImm(Align)
6522         .add(predOps(ARMCC::AL))
6523         .setMIFlags(MIFlags);
6524     // LR authentication is after the CFI instructions, below.
6525   } else {
6526     unsigned Opc = Subtarget.isThumb() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
6527     MachineInstrBuilder MIB = BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::LR)
6528                                   .addReg(ARM::SP, RegState::Define)
6529                                   .addReg(ARM::SP);
6530     if (!Subtarget.isThumb())
6531       MIB.addReg(0);
6532     MIB.addImm(Subtarget.getStackAlignment().value())
6533         .add(predOps(ARMCC::AL))
6534         .setMIFlags(MIFlags);
6535   }
6536 
6537   if (CFI) {
6538     // Now stack has moved back up...
6539     MachineFunction &MF = *MBB.getParent();
6540     const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6541     unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6542     int64_t StackPosEntry =
6543         MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
6544     BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6545         .addCFIIndex(StackPosEntry)
6546         .setMIFlags(MachineInstr::FrameDestroy);
6547 
6548     // ... and we have restored LR.
6549     int64_t LRPosEntry =
6550         MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR));
6551     BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6552         .addCFIIndex(LRPosEntry)
6553         .setMIFlags(MachineInstr::FrameDestroy);
6554 
6555     if (Auth) {
6556       unsigned DwarfRAC = MRI->getDwarfRegNum(ARM::RA_AUTH_CODE, true);
6557       int64_t Entry =
6558           MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, DwarfRAC));
6559       BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6560           .addCFIIndex(Entry)
6561           .setMIFlags(MachineInstr::FrameDestroy);
6562     }
6563   }
6564 
6565   if (Auth)
6566     BuildMI(MBB, It, DebugLoc(), get(ARM::t2AUT));
6567 }
6568 
6569 void ARMBaseInstrInfo::emitCFIForLRRestoreFromReg(
6570     MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {
6571   MachineFunction &MF = *MBB.getParent();
6572   const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6573   unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6574 
6575   int64_t LRPosEntry =
6576       MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR));
6577   BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6578       .addCFIIndex(LRPosEntry)
6579       .setMIFlags(MachineInstr::FrameDestroy);
6580 }
6581 
6582 void ARMBaseInstrInfo::buildOutlinedFrame(
6583     MachineBasicBlock &MBB, MachineFunction &MF,
6584     const outliner::OutlinedFunction &OF) const {
6585   // For thunk outlining, rewrite the last instruction from a call to a
6586   // tail-call.
6587   if (OF.FrameConstructionID == MachineOutlinerThunk) {
6588     MachineInstr *Call = &*--MBB.instr_end();
6589     bool isThumb = Subtarget.isThumb();
6590     unsigned FuncOp = isThumb ? 2 : 0;
6591     unsigned Opc = Call->getOperand(FuncOp).isReg()
6592                        ? isThumb ? ARM::tTAILJMPr : ARM::TAILJMPr
6593                        : isThumb ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd
6594                                                              : ARM::tTAILJMPdND
6595                                  : ARM::TAILJMPd;
6596     MachineInstrBuilder MIB = BuildMI(MBB, MBB.end(), DebugLoc(), get(Opc))
6597                                   .add(Call->getOperand(FuncOp));
6598     if (isThumb && !Call->getOperand(FuncOp).isReg())
6599       MIB.add(predOps(ARMCC::AL));
6600     Call->eraseFromParent();
6601   }
6602 
6603   // Is there a call in the outlined range?
6604   auto IsNonTailCall = [](MachineInstr &MI) {
6605     return MI.isCall() && !MI.isReturn();
6606   };
6607   if (llvm::any_of(MBB.instrs(), IsNonTailCall)) {
6608     MachineBasicBlock::iterator It = MBB.begin();
6609     MachineBasicBlock::iterator Et = MBB.end();
6610 
6611     if (OF.FrameConstructionID == MachineOutlinerTailCall ||
6612         OF.FrameConstructionID == MachineOutlinerThunk)
6613       Et = std::prev(MBB.end());
6614 
6615     // We have to save and restore LR, we need to add it to the liveins if it
6616     // is not already part of the set.  This is suffient since outlined
6617     // functions only have one block.
6618     if (!MBB.isLiveIn(ARM::LR))
6619       MBB.addLiveIn(ARM::LR);
6620 
6621     // Insert a save before the outlined region
6622     bool Auth = OF.Candidates.front()
6623                     .getMF()
6624                     ->getInfo<ARMFunctionInfo>()
6625                     ->shouldSignReturnAddress(true);
6626     saveLROnStack(MBB, It, true, Auth);
6627 
6628     // Fix up the instructions in the range, since we're going to modify the
6629     // stack.
6630     assert(OF.FrameConstructionID != MachineOutlinerDefault &&
6631            "Can only fix up stack references once");
6632     fixupPostOutline(MBB);
6633 
6634     // Insert a restore before the terminator for the function.  Restore LR.
6635     restoreLRFromStack(MBB, Et, true, Auth);
6636   }
6637 
6638   // If this is a tail call outlined function, then there's already a return.
6639   if (OF.FrameConstructionID == MachineOutlinerTailCall ||
6640       OF.FrameConstructionID == MachineOutlinerThunk)
6641     return;
6642 
6643   // Here we have to insert the return ourselves.  Get the correct opcode from
6644   // current feature set.
6645   BuildMI(MBB, MBB.end(), DebugLoc(), get(Subtarget.getReturnOpcode()))
6646       .add(predOps(ARMCC::AL));
6647 
6648   // Did we have to modify the stack by saving the link register?
6649   if (OF.FrameConstructionID != MachineOutlinerDefault &&
6650       OF.Candidates[0].CallConstructionID != MachineOutlinerDefault)
6651     return;
6652 
6653   // We modified the stack.
6654   // Walk over the basic block and fix up all the stack accesses.
6655   fixupPostOutline(MBB);
6656 }
6657 
6658 MachineBasicBlock::iterator ARMBaseInstrInfo::insertOutlinedCall(
6659     Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It,
6660     MachineFunction &MF, outliner::Candidate &C) const {
6661   MachineInstrBuilder MIB;
6662   MachineBasicBlock::iterator CallPt;
6663   unsigned Opc;
6664   bool isThumb = Subtarget.isThumb();
6665 
6666   // Are we tail calling?
6667   if (C.CallConstructionID == MachineOutlinerTailCall) {
6668     // If yes, then we can just branch to the label.
6669     Opc = isThumb
6670               ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd : ARM::tTAILJMPdND
6671               : ARM::TAILJMPd;
6672     MIB = BuildMI(MF, DebugLoc(), get(Opc))
6673               .addGlobalAddress(M.getNamedValue(MF.getName()));
6674     if (isThumb)
6675       MIB.add(predOps(ARMCC::AL));
6676     It = MBB.insert(It, MIB);
6677     return It;
6678   }
6679 
6680   // Create the call instruction.
6681   Opc = isThumb ? ARM::tBL : ARM::BL;
6682   MachineInstrBuilder CallMIB = BuildMI(MF, DebugLoc(), get(Opc));
6683   if (isThumb)
6684     CallMIB.add(predOps(ARMCC::AL));
6685   CallMIB.addGlobalAddress(M.getNamedValue(MF.getName()));
6686 
6687   if (C.CallConstructionID == MachineOutlinerNoLRSave ||
6688       C.CallConstructionID == MachineOutlinerThunk) {
6689     // No, so just insert the call.
6690     It = MBB.insert(It, CallMIB);
6691     return It;
6692   }
6693 
6694   const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>();
6695   // Can we save to a register?
6696   if (C.CallConstructionID == MachineOutlinerRegSave) {
6697     Register Reg = findRegisterToSaveLRTo(C);
6698     assert(Reg != 0 && "No callee-saved register available?");
6699 
6700     // Save and restore LR from that register.
6701     copyPhysReg(MBB, It, DebugLoc(), Reg, ARM::LR, true);
6702     if (!AFI.isLRSpilled())
6703       emitCFIForLRSaveToReg(MBB, It, Reg);
6704     CallPt = MBB.insert(It, CallMIB);
6705     copyPhysReg(MBB, It, DebugLoc(), ARM::LR, Reg, true);
6706     if (!AFI.isLRSpilled())
6707       emitCFIForLRRestoreFromReg(MBB, It);
6708     It--;
6709     return CallPt;
6710   }
6711   // We have the default case. Save and restore from SP.
6712   if (!MBB.isLiveIn(ARM::LR))
6713     MBB.addLiveIn(ARM::LR);
6714   bool Auth = !AFI.isLRSpilled() && AFI.shouldSignReturnAddress(true);
6715   saveLROnStack(MBB, It, !AFI.isLRSpilled(), Auth);
6716   CallPt = MBB.insert(It, CallMIB);
6717   restoreLRFromStack(MBB, It, !AFI.isLRSpilled(), Auth);
6718   It--;
6719   return CallPt;
6720 }
6721 
6722 bool ARMBaseInstrInfo::shouldOutlineFromFunctionByDefault(
6723     MachineFunction &MF) const {
6724   return Subtarget.isMClass() && MF.getFunction().hasMinSize();
6725 }
6726 
6727 bool ARMBaseInstrInfo::isReallyTriviallyReMaterializable(
6728     const MachineInstr &MI) const {
6729   // Try hard to rematerialize any VCTPs because if we spill P0, it will block
6730   // the tail predication conversion. This means that the element count
6731   // register has to be live for longer, but that has to be better than
6732   // spill/restore and VPT predication.
6733   return (isVCTP(&MI) && !isPredicated(MI)) ||
6734          TargetInstrInfo::isReallyTriviallyReMaterializable(MI);
6735 }
6736 
6737 unsigned llvm::getBLXOpcode(const MachineFunction &MF) {
6738   return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_noip
6739                                                           : ARM::BLX;
6740 }
6741 
6742 unsigned llvm::gettBLXrOpcode(const MachineFunction &MF) {
6743   return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::tBLXr_noip
6744                                                           : ARM::tBLXr;
6745 }
6746 
6747 unsigned llvm::getBLXpredOpcode(const MachineFunction &MF) {
6748   return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_pred_noip
6749                                                           : ARM::BLX_pred;
6750 }
6751 
6752 namespace {
6753 class ARMPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
6754   MachineInstr *EndLoop, *LoopCount;
6755   MachineFunction *MF;
6756   const TargetInstrInfo *TII;
6757 
6758   // Bitset[0 .. MAX_STAGES-1] ... iterations needed
6759   //       [LAST_IS_USE] : last reference to register in schedule is a use
6760   //       [SEEN_AS_LIVE] : Normal pressure algorithm believes register is live
6761   static int constexpr MAX_STAGES = 30;
6762   static int constexpr LAST_IS_USE = MAX_STAGES;
6763   static int constexpr SEEN_AS_LIVE = MAX_STAGES + 1;
6764   typedef std::bitset<MAX_STAGES + 2> IterNeed;
6765   typedef std::map<unsigned, IterNeed> IterNeeds;
6766 
6767   void bumpCrossIterationPressure(RegPressureTracker &RPT,
6768                                   const IterNeeds &CIN);
6769   bool tooMuchRegisterPressure(SwingSchedulerDAG &SSD, SMSchedule &SMS);
6770 
6771   // Meanings of the various stuff with loop types:
6772   // t2Bcc:
6773   //   EndLoop = branch at end of original BB that will become a kernel
6774   //   LoopCount = CC setter live into branch
6775   // t2LoopEnd:
6776   //   EndLoop = branch at end of original BB
6777   //   LoopCount = t2LoopDec
6778 public:
6779   ARMPipelinerLoopInfo(MachineInstr *EndLoop, MachineInstr *LoopCount)
6780       : EndLoop(EndLoop), LoopCount(LoopCount),
6781         MF(EndLoop->getParent()->getParent()),
6782         TII(MF->getSubtarget().getInstrInfo()) {}
6783 
6784   bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
6785     // Only ignore the terminator.
6786     return MI == EndLoop || MI == LoopCount;
6787   }
6788 
6789   bool shouldUseSchedule(SwingSchedulerDAG &SSD, SMSchedule &SMS) override {
6790     if (tooMuchRegisterPressure(SSD, SMS))
6791       return false;
6792 
6793     return true;
6794   }
6795 
6796   std::optional<bool> createTripCountGreaterCondition(
6797       int TC, MachineBasicBlock &MBB,
6798       SmallVectorImpl<MachineOperand> &Cond) override {
6799 
6800     if (isCondBranchOpcode(EndLoop->getOpcode())) {
6801       Cond.push_back(EndLoop->getOperand(1));
6802       Cond.push_back(EndLoop->getOperand(2));
6803       if (EndLoop->getOperand(0).getMBB() == EndLoop->getParent()) {
6804         TII->reverseBranchCondition(Cond);
6805       }
6806       return {};
6807     } else if (EndLoop->getOpcode() == ARM::t2LoopEnd) {
6808       // General case just lets the unrolled t2LoopDec do the subtraction and
6809       // therefore just needs to check if zero has been reached.
6810       MachineInstr *LoopDec = nullptr;
6811       for (auto &I : MBB.instrs())
6812         if (I.getOpcode() == ARM::t2LoopDec)
6813           LoopDec = &I;
6814       assert(LoopDec && "Unable to find copied LoopDec");
6815       // Check if we're done with the loop.
6816       BuildMI(&MBB, LoopDec->getDebugLoc(), TII->get(ARM::t2CMPri))
6817           .addReg(LoopDec->getOperand(0).getReg())
6818           .addImm(0)
6819           .addImm(ARMCC::AL)
6820           .addReg(ARM::NoRegister);
6821       Cond.push_back(MachineOperand::CreateImm(ARMCC::EQ));
6822       Cond.push_back(MachineOperand::CreateReg(ARM::CPSR, false));
6823       return {};
6824     } else
6825       llvm_unreachable("Unknown EndLoop");
6826   }
6827 
6828   void setPreheader(MachineBasicBlock *NewPreheader) override {}
6829 
6830   void adjustTripCount(int TripCountAdjust) override {}
6831 
6832   void disposed() override {}
6833 };
6834 
6835 void ARMPipelinerLoopInfo::bumpCrossIterationPressure(RegPressureTracker &RPT,
6836                                                       const IterNeeds &CIN) {
6837   // Increase pressure by the amounts in CrossIterationNeeds
6838   for (const auto &N : CIN) {
6839     int Cnt = N.second.count() - N.second[SEEN_AS_LIVE] * 2;
6840     for (int I = 0; I < Cnt; ++I)
6841       RPT.increaseRegPressure(Register(N.first), LaneBitmask::getNone(),
6842                               LaneBitmask::getAll());
6843   }
6844   // Decrease pressure by the amounts in CrossIterationNeeds
6845   for (const auto &N : CIN) {
6846     int Cnt = N.second.count() - N.second[SEEN_AS_LIVE] * 2;
6847     for (int I = 0; I < Cnt; ++I)
6848       RPT.decreaseRegPressure(Register(N.first), LaneBitmask::getAll(),
6849                               LaneBitmask::getNone());
6850   }
6851 }
6852 
6853 bool ARMPipelinerLoopInfo::tooMuchRegisterPressure(SwingSchedulerDAG &SSD,
6854                                                    SMSchedule &SMS) {
6855   IterNeeds CrossIterationNeeds;
6856 
6857   // Determine which values will be loop-carried after the schedule is
6858   // applied
6859 
6860   for (auto &SU : SSD.SUnits) {
6861     const MachineInstr *MI = SU.getInstr();
6862     int Stg = SMS.stageScheduled(const_cast<SUnit *>(&SU));
6863     for (auto &S : SU.Succs)
6864       if (MI->isPHI() && S.getKind() == SDep::Anti) {
6865         Register Reg = S.getReg();
6866         if (Reg.isVirtual())
6867           CrossIterationNeeds.insert(std::make_pair(Reg.id(), IterNeed()))
6868               .first->second.set(0);
6869       } else if (S.isAssignedRegDep()) {
6870         int OStg = SMS.stageScheduled(S.getSUnit());
6871         if (OStg >= 0 && OStg != Stg) {
6872           Register Reg = S.getReg();
6873           if (Reg.isVirtual())
6874             CrossIterationNeeds.insert(std::make_pair(Reg.id(), IterNeed()))
6875                 .first->second |= ((1 << (OStg - Stg)) - 1);
6876         }
6877       }
6878   }
6879 
6880   // Determine more-or-less what the proposed schedule (reversed) is going to
6881   // be; it might not be quite the same because the within-cycle ordering
6882   // created by SMSchedule depends upon changes to help with address offsets and
6883   // the like.
6884   std::vector<SUnit *> ProposedSchedule;
6885   for (int Cycle = SMS.getFinalCycle(); Cycle >= SMS.getFirstCycle(); --Cycle)
6886     for (int Stage = 0, StageEnd = SMS.getMaxStageCount(); Stage <= StageEnd;
6887          ++Stage) {
6888       std::deque<SUnit *> Instrs =
6889           SMS.getInstructions(Cycle + Stage * SMS.getInitiationInterval());
6890       std::sort(Instrs.begin(), Instrs.end(),
6891                 [](SUnit *A, SUnit *B) { return A->NodeNum > B->NodeNum; });
6892       for (SUnit *SU : Instrs)
6893         ProposedSchedule.push_back(SU);
6894     }
6895 
6896   // Learn whether the last use/def of each cross-iteration register is a use or
6897   // def. If it is a def, RegisterPressure will implicitly increase max pressure
6898   // and we do not have to add the pressure.
6899   for (auto *SU : ProposedSchedule)
6900     for (ConstMIBundleOperands OperI(*SU->getInstr()); OperI.isValid();
6901          ++OperI) {
6902       auto MO = *OperI;
6903       if (!MO.isReg() || !MO.getReg())
6904         continue;
6905       Register Reg = MO.getReg();
6906       auto CIter = CrossIterationNeeds.find(Reg.id());
6907       if (CIter == CrossIterationNeeds.end() || CIter->second[LAST_IS_USE] ||
6908           CIter->second[SEEN_AS_LIVE])
6909         continue;
6910       if (MO.isDef() && !MO.isDead())
6911         CIter->second.set(SEEN_AS_LIVE);
6912       else if (MO.isUse())
6913         CIter->second.set(LAST_IS_USE);
6914     }
6915   for (auto &CI : CrossIterationNeeds)
6916     CI.second.reset(LAST_IS_USE);
6917 
6918   RegionPressure RecRegPressure;
6919   RegPressureTracker RPTracker(RecRegPressure);
6920   RegisterClassInfo RegClassInfo;
6921   RegClassInfo.runOnMachineFunction(*MF);
6922   RPTracker.init(MF, &RegClassInfo, nullptr, EndLoop->getParent(),
6923                  EndLoop->getParent()->end(), false, false);
6924   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
6925 
6926   bumpCrossIterationPressure(RPTracker, CrossIterationNeeds);
6927 
6928   for (auto *SU : ProposedSchedule) {
6929     MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
6930     RPTracker.setPos(std::next(CurInstI));
6931     RPTracker.recede();
6932 
6933     // Track what cross-iteration registers would be seen as live
6934     for (ConstMIBundleOperands OperI(*CurInstI); OperI.isValid(); ++OperI) {
6935       auto MO = *OperI;
6936       if (!MO.isReg() || !MO.getReg())
6937         continue;
6938       Register Reg = MO.getReg();
6939       if (MO.isDef() && !MO.isDead()) {
6940         auto CIter = CrossIterationNeeds.find(Reg.id());
6941         if (CIter != CrossIterationNeeds.end()) {
6942           CIter->second.reset(0);
6943           CIter->second.reset(SEEN_AS_LIVE);
6944         }
6945       }
6946     }
6947     for (auto &S : SU->Preds) {
6948       auto Stg = SMS.stageScheduled(SU);
6949       if (S.isAssignedRegDep()) {
6950         Register Reg = S.getReg();
6951         auto CIter = CrossIterationNeeds.find(Reg.id());
6952         if (CIter != CrossIterationNeeds.end()) {
6953           auto Stg2 = SMS.stageScheduled(const_cast<SUnit *>(S.getSUnit()));
6954           assert(Stg2 <= Stg && "Data dependence upon earlier stage");
6955           if (Stg - Stg2 < MAX_STAGES)
6956             CIter->second.set(Stg - Stg2);
6957           CIter->second.set(SEEN_AS_LIVE);
6958         }
6959       }
6960     }
6961 
6962     bumpCrossIterationPressure(RPTracker, CrossIterationNeeds);
6963   }
6964 
6965   auto &P = RPTracker.getPressure().MaxSetPressure;
6966   for (unsigned I = 0, E = P.size(); I < E; ++I)
6967     if (P[I] > TRI->getRegPressureSetLimit(*MF, I)) {
6968       return true;
6969     }
6970   return false;
6971 }
6972 
6973 } // namespace
6974 
6975 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
6976 ARMBaseInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
6977   MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
6978   MachineBasicBlock *Preheader = *LoopBB->pred_begin();
6979   if (Preheader == LoopBB)
6980     Preheader = *std::next(LoopBB->pred_begin());
6981 
6982   if (I != LoopBB->end() && I->getOpcode() == ARM::t2Bcc) {
6983     // If the branch is a Bcc, then the CPSR should be set somewhere within the
6984     // block.  We need to determine the reaching definition of CPSR so that
6985     // it can be marked as non-pipelineable, allowing the pipeliner to force
6986     // it into stage 0 or give up if it cannot or will not do so.
6987     MachineInstr *CCSetter = nullptr;
6988     for (auto &L : LoopBB->instrs()) {
6989       if (L.isCall())
6990         return nullptr;
6991       if (isCPSRDefined(L))
6992         CCSetter = &L;
6993     }
6994     if (CCSetter)
6995       return std::make_unique<ARMPipelinerLoopInfo>(&*I, CCSetter);
6996     else
6997       return nullptr; // Unable to find the CC setter, so unable to guarantee
6998                       // that pipeline will work
6999   }
7000 
7001   // Recognize:
7002   //   preheader:
7003   //     %1 = t2DoopLoopStart %0
7004   //   loop:
7005   //     %2 = phi %1, <not loop>, %..., %loop
7006   //     %3 = t2LoopDec %2, <imm>
7007   //     t2LoopEnd %3, %loop
7008 
7009   if (I != LoopBB->end() && I->getOpcode() == ARM::t2LoopEnd) {
7010     for (auto &L : LoopBB->instrs())
7011       if (L.isCall())
7012         return nullptr;
7013       else if (isVCTP(&L))
7014         return nullptr;
7015     Register LoopDecResult = I->getOperand(0).getReg();
7016     MachineRegisterInfo &MRI = LoopBB->getParent()->getRegInfo();
7017     MachineInstr *LoopDec = MRI.getUniqueVRegDef(LoopDecResult);
7018     if (!LoopDec || LoopDec->getOpcode() != ARM::t2LoopDec)
7019       return nullptr;
7020     MachineInstr *LoopStart = nullptr;
7021     for (auto &J : Preheader->instrs())
7022       if (J.getOpcode() == ARM::t2DoLoopStart)
7023         LoopStart = &J;
7024     if (!LoopStart)
7025       return nullptr;
7026     return std::make_unique<ARMPipelinerLoopInfo>(&*I, LoopDec);
7027   }
7028   return nullptr;
7029 }
7030