1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the Base ARM implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ARMBaseInstrInfo.h" 14 #include "ARMBaseRegisterInfo.h" 15 #include "ARMConstantPoolValue.h" 16 #include "ARMFeatures.h" 17 #include "ARMHazardRecognizer.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMBaseInfo.h" 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/CodeGen/LiveVariables.h" 28 #include "llvm/CodeGen/MachineBasicBlock.h" 29 #include "llvm/CodeGen/MachineConstantPool.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstr.h" 33 #include "llvm/CodeGen/MachineInstrBuilder.h" 34 #include "llvm/CodeGen/MachineMemOperand.h" 35 #include "llvm/CodeGen/MachineOperand.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" 38 #include "llvm/CodeGen/SelectionDAGNodes.h" 39 #include "llvm/CodeGen/TargetInstrInfo.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSchedule.h" 42 #include "llvm/IR/Attributes.h" 43 #include "llvm/IR/Constants.h" 44 #include "llvm/IR/DebugLoc.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/MC/MCAsmInfo.h" 48 #include "llvm/MC/MCInstrDesc.h" 49 #include "llvm/MC/MCInstrItineraries.h" 50 #include "llvm/Support/BranchProbability.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/CommandLine.h" 53 #include "llvm/Support/Compiler.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include "llvm/Target/TargetMachine.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <cstdint> 61 #include <iterator> 62 #include <new> 63 #include <utility> 64 #include <vector> 65 66 using namespace llvm; 67 68 #define DEBUG_TYPE "arm-instrinfo" 69 70 #define GET_INSTRINFO_CTOR_DTOR 71 #include "ARMGenInstrInfo.inc" 72 73 static cl::opt<bool> 74 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden, 75 cl::desc("Enable ARM 2-addr to 3-addr conv")); 76 77 /// ARM_MLxEntry - Record information about MLA / MLS instructions. 78 struct ARM_MLxEntry { 79 uint16_t MLxOpc; // MLA / MLS opcode 80 uint16_t MulOpc; // Expanded multiplication opcode 81 uint16_t AddSubOpc; // Expanded add / sub opcode 82 bool NegAcc; // True if the acc is negated before the add / sub. 83 bool HasLane; // True if instruction has an extra "lane" operand. 84 }; 85 86 static const ARM_MLxEntry ARM_MLxTable[] = { 87 // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane 88 // fp scalar ops 89 { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false }, 90 { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false }, 91 { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false }, 92 { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false }, 93 { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false }, 94 { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false }, 95 { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false }, 96 { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false }, 97 98 // fp SIMD ops 99 { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false }, 100 { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false }, 101 { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false }, 102 { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false }, 103 { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true }, 104 { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true }, 105 { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true }, 106 { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true }, 107 }; 108 109 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI) 110 : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP), 111 Subtarget(STI) { 112 for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) { 113 if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second) 114 llvm_unreachable("Duplicated entries?"); 115 MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc); 116 MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc); 117 } 118 } 119 120 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl 121 // currently defaults to no prepass hazard recognizer. 122 ScheduleHazardRecognizer * 123 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 124 const ScheduleDAG *DAG) const { 125 if (usePreRAHazardRecognizer()) { 126 const InstrItineraryData *II = 127 static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData(); 128 return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched"); 129 } 130 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 131 } 132 133 ScheduleHazardRecognizer *ARMBaseInstrInfo:: 134 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 135 const ScheduleDAG *DAG) const { 136 if (Subtarget.isThumb2() || Subtarget.hasVFP2Base()) 137 return (ScheduleHazardRecognizer *)new ARMHazardRecognizer(II, DAG); 138 return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG); 139 } 140 141 MachineInstr *ARMBaseInstrInfo::convertToThreeAddress( 142 MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const { 143 // FIXME: Thumb2 support. 144 145 if (!EnableARM3Addr) 146 return nullptr; 147 148 MachineFunction &MF = *MI.getParent()->getParent(); 149 uint64_t TSFlags = MI.getDesc().TSFlags; 150 bool isPre = false; 151 switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) { 152 default: return nullptr; 153 case ARMII::IndexModePre: 154 isPre = true; 155 break; 156 case ARMII::IndexModePost: 157 break; 158 } 159 160 // Try splitting an indexed load/store to an un-indexed one plus an add/sub 161 // operation. 162 unsigned MemOpc = getUnindexedOpcode(MI.getOpcode()); 163 if (MemOpc == 0) 164 return nullptr; 165 166 MachineInstr *UpdateMI = nullptr; 167 MachineInstr *MemMI = nullptr; 168 unsigned AddrMode = (TSFlags & ARMII::AddrModeMask); 169 const MCInstrDesc &MCID = MI.getDesc(); 170 unsigned NumOps = MCID.getNumOperands(); 171 bool isLoad = !MI.mayStore(); 172 const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0); 173 const MachineOperand &Base = MI.getOperand(2); 174 const MachineOperand &Offset = MI.getOperand(NumOps - 3); 175 unsigned WBReg = WB.getReg(); 176 unsigned BaseReg = Base.getReg(); 177 unsigned OffReg = Offset.getReg(); 178 unsigned OffImm = MI.getOperand(NumOps - 2).getImm(); 179 ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm(); 180 switch (AddrMode) { 181 default: llvm_unreachable("Unknown indexed op!"); 182 case ARMII::AddrMode2: { 183 bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; 184 unsigned Amt = ARM_AM::getAM2Offset(OffImm); 185 if (OffReg == 0) { 186 if (ARM_AM::getSOImmVal(Amt) == -1) 187 // Can't encode it in a so_imm operand. This transformation will 188 // add more than 1 instruction. Abandon! 189 return nullptr; 190 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 191 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 192 .addReg(BaseReg) 193 .addImm(Amt) 194 .add(predOps(Pred)) 195 .add(condCodeOp()); 196 } else if (Amt != 0) { 197 ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm); 198 unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt); 199 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 200 get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg) 201 .addReg(BaseReg) 202 .addReg(OffReg) 203 .addReg(0) 204 .addImm(SOOpc) 205 .add(predOps(Pred)) 206 .add(condCodeOp()); 207 } else 208 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 209 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 210 .addReg(BaseReg) 211 .addReg(OffReg) 212 .add(predOps(Pred)) 213 .add(condCodeOp()); 214 break; 215 } 216 case ARMII::AddrMode3 : { 217 bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub; 218 unsigned Amt = ARM_AM::getAM3Offset(OffImm); 219 if (OffReg == 0) 220 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand. 221 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 222 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 223 .addReg(BaseReg) 224 .addImm(Amt) 225 .add(predOps(Pred)) 226 .add(condCodeOp()); 227 else 228 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 229 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 230 .addReg(BaseReg) 231 .addReg(OffReg) 232 .add(predOps(Pred)) 233 .add(condCodeOp()); 234 break; 235 } 236 } 237 238 std::vector<MachineInstr*> NewMIs; 239 if (isPre) { 240 if (isLoad) 241 MemMI = 242 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) 243 .addReg(WBReg) 244 .addImm(0) 245 .addImm(Pred); 246 else 247 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) 248 .addReg(MI.getOperand(1).getReg()) 249 .addReg(WBReg) 250 .addReg(0) 251 .addImm(0) 252 .addImm(Pred); 253 NewMIs.push_back(MemMI); 254 NewMIs.push_back(UpdateMI); 255 } else { 256 if (isLoad) 257 MemMI = 258 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) 259 .addReg(BaseReg) 260 .addImm(0) 261 .addImm(Pred); 262 else 263 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) 264 .addReg(MI.getOperand(1).getReg()) 265 .addReg(BaseReg) 266 .addReg(0) 267 .addImm(0) 268 .addImm(Pred); 269 if (WB.isDead()) 270 UpdateMI->getOperand(0).setIsDead(); 271 NewMIs.push_back(UpdateMI); 272 NewMIs.push_back(MemMI); 273 } 274 275 // Transfer LiveVariables states, kill / dead info. 276 if (LV) { 277 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 278 MachineOperand &MO = MI.getOperand(i); 279 if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) { 280 unsigned Reg = MO.getReg(); 281 282 LiveVariables::VarInfo &VI = LV->getVarInfo(Reg); 283 if (MO.isDef()) { 284 MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI; 285 if (MO.isDead()) 286 LV->addVirtualRegisterDead(Reg, *NewMI); 287 } 288 if (MO.isUse() && MO.isKill()) { 289 for (unsigned j = 0; j < 2; ++j) { 290 // Look at the two new MI's in reverse order. 291 MachineInstr *NewMI = NewMIs[j]; 292 if (!NewMI->readsRegister(Reg)) 293 continue; 294 LV->addVirtualRegisterKilled(Reg, *NewMI); 295 if (VI.removeKill(MI)) 296 VI.Kills.push_back(NewMI); 297 break; 298 } 299 } 300 } 301 } 302 } 303 304 MachineBasicBlock::iterator MBBI = MI.getIterator(); 305 MFI->insert(MBBI, NewMIs[1]); 306 MFI->insert(MBBI, NewMIs[0]); 307 return NewMIs[0]; 308 } 309 310 // Branch analysis. 311 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 312 MachineBasicBlock *&TBB, 313 MachineBasicBlock *&FBB, 314 SmallVectorImpl<MachineOperand> &Cond, 315 bool AllowModify) const { 316 TBB = nullptr; 317 FBB = nullptr; 318 319 MachineBasicBlock::iterator I = MBB.end(); 320 if (I == MBB.begin()) 321 return false; // Empty blocks are easy. 322 --I; 323 324 // Walk backwards from the end of the basic block until the branch is 325 // analyzed or we give up. 326 while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) { 327 // Flag to be raised on unanalyzeable instructions. This is useful in cases 328 // where we want to clean up on the end of the basic block before we bail 329 // out. 330 bool CantAnalyze = false; 331 332 // Skip over DEBUG values and predicated nonterminators. 333 while (I->isDebugInstr() || !I->isTerminator()) { 334 if (I == MBB.begin()) 335 return false; 336 --I; 337 } 338 339 if (isIndirectBranchOpcode(I->getOpcode()) || 340 isJumpTableBranchOpcode(I->getOpcode())) { 341 // Indirect branches and jump tables can't be analyzed, but we still want 342 // to clean up any instructions at the tail of the basic block. 343 CantAnalyze = true; 344 } else if (isUncondBranchOpcode(I->getOpcode())) { 345 TBB = I->getOperand(0).getMBB(); 346 } else if (isCondBranchOpcode(I->getOpcode())) { 347 // Bail out if we encounter multiple conditional branches. 348 if (!Cond.empty()) 349 return true; 350 351 assert(!FBB && "FBB should have been null."); 352 FBB = TBB; 353 TBB = I->getOperand(0).getMBB(); 354 Cond.push_back(I->getOperand(1)); 355 Cond.push_back(I->getOperand(2)); 356 } else if (I->isReturn()) { 357 // Returns can't be analyzed, but we should run cleanup. 358 CantAnalyze = !isPredicated(*I); 359 } else { 360 // We encountered other unrecognized terminator. Bail out immediately. 361 return true; 362 } 363 364 // Cleanup code - to be run for unpredicated unconditional branches and 365 // returns. 366 if (!isPredicated(*I) && 367 (isUncondBranchOpcode(I->getOpcode()) || 368 isIndirectBranchOpcode(I->getOpcode()) || 369 isJumpTableBranchOpcode(I->getOpcode()) || 370 I->isReturn())) { 371 // Forget any previous condition branch information - it no longer applies. 372 Cond.clear(); 373 FBB = nullptr; 374 375 // If we can modify the function, delete everything below this 376 // unconditional branch. 377 if (AllowModify) { 378 MachineBasicBlock::iterator DI = std::next(I); 379 while (DI != MBB.end()) { 380 MachineInstr &InstToDelete = *DI; 381 ++DI; 382 InstToDelete.eraseFromParent(); 383 } 384 } 385 } 386 387 if (CantAnalyze) 388 return true; 389 390 if (I == MBB.begin()) 391 return false; 392 393 --I; 394 } 395 396 // We made it past the terminators without bailing out - we must have 397 // analyzed this branch successfully. 398 return false; 399 } 400 401 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB, 402 int *BytesRemoved) const { 403 assert(!BytesRemoved && "code size not handled"); 404 405 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 406 if (I == MBB.end()) 407 return 0; 408 409 if (!isUncondBranchOpcode(I->getOpcode()) && 410 !isCondBranchOpcode(I->getOpcode())) 411 return 0; 412 413 // Remove the branch. 414 I->eraseFromParent(); 415 416 I = MBB.end(); 417 418 if (I == MBB.begin()) return 1; 419 --I; 420 if (!isCondBranchOpcode(I->getOpcode())) 421 return 1; 422 423 // Remove the branch. 424 I->eraseFromParent(); 425 return 2; 426 } 427 428 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB, 429 MachineBasicBlock *TBB, 430 MachineBasicBlock *FBB, 431 ArrayRef<MachineOperand> Cond, 432 const DebugLoc &DL, 433 int *BytesAdded) const { 434 assert(!BytesAdded && "code size not handled"); 435 ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>(); 436 int BOpc = !AFI->isThumbFunction() 437 ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB); 438 int BccOpc = !AFI->isThumbFunction() 439 ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc); 440 bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function(); 441 442 // Shouldn't be a fall through. 443 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 444 assert((Cond.size() == 2 || Cond.size() == 0) && 445 "ARM branch conditions have two components!"); 446 447 // For conditional branches, we use addOperand to preserve CPSR flags. 448 449 if (!FBB) { 450 if (Cond.empty()) { // Unconditional branch? 451 if (isThumb) 452 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL)); 453 else 454 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); 455 } else 456 BuildMI(&MBB, DL, get(BccOpc)) 457 .addMBB(TBB) 458 .addImm(Cond[0].getImm()) 459 .add(Cond[1]); 460 return 1; 461 } 462 463 // Two-way conditional branch. 464 BuildMI(&MBB, DL, get(BccOpc)) 465 .addMBB(TBB) 466 .addImm(Cond[0].getImm()) 467 .add(Cond[1]); 468 if (isThumb) 469 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL)); 470 else 471 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); 472 return 2; 473 } 474 475 bool ARMBaseInstrInfo:: 476 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 477 ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm(); 478 Cond[0].setImm(ARMCC::getOppositeCondition(CC)); 479 return false; 480 } 481 482 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const { 483 if (MI.isBundle()) { 484 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 485 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 486 while (++I != E && I->isInsideBundle()) { 487 int PIdx = I->findFirstPredOperandIdx(); 488 if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL) 489 return true; 490 } 491 return false; 492 } 493 494 int PIdx = MI.findFirstPredOperandIdx(); 495 return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL; 496 } 497 498 bool ARMBaseInstrInfo::PredicateInstruction( 499 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 500 unsigned Opc = MI.getOpcode(); 501 if (isUncondBranchOpcode(Opc)) { 502 MI.setDesc(get(getMatchingCondBranchOpcode(Opc))); 503 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 504 .addImm(Pred[0].getImm()) 505 .addReg(Pred[1].getReg()); 506 return true; 507 } 508 509 int PIdx = MI.findFirstPredOperandIdx(); 510 if (PIdx != -1) { 511 MachineOperand &PMO = MI.getOperand(PIdx); 512 PMO.setImm(Pred[0].getImm()); 513 MI.getOperand(PIdx+1).setReg(Pred[1].getReg()); 514 return true; 515 } 516 return false; 517 } 518 519 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 520 ArrayRef<MachineOperand> Pred2) const { 521 if (Pred1.size() > 2 || Pred2.size() > 2) 522 return false; 523 524 ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm(); 525 ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm(); 526 if (CC1 == CC2) 527 return true; 528 529 switch (CC1) { 530 default: 531 return false; 532 case ARMCC::AL: 533 return true; 534 case ARMCC::HS: 535 return CC2 == ARMCC::HI; 536 case ARMCC::LS: 537 return CC2 == ARMCC::LO || CC2 == ARMCC::EQ; 538 case ARMCC::GE: 539 return CC2 == ARMCC::GT; 540 case ARMCC::LE: 541 return CC2 == ARMCC::LT; 542 } 543 } 544 545 bool ARMBaseInstrInfo::DefinesPredicate( 546 MachineInstr &MI, std::vector<MachineOperand> &Pred) const { 547 bool Found = false; 548 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 549 const MachineOperand &MO = MI.getOperand(i); 550 if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) || 551 (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) { 552 Pred.push_back(MO); 553 Found = true; 554 } 555 } 556 557 return Found; 558 } 559 560 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) { 561 for (const auto &MO : MI.operands()) 562 if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead()) 563 return true; 564 return false; 565 } 566 567 bool ARMBaseInstrInfo::isAddrMode3OpImm(const MachineInstr &MI, 568 unsigned Op) const { 569 const MachineOperand &Offset = MI.getOperand(Op + 1); 570 return Offset.getReg() != 0; 571 } 572 573 // Load with negative register offset requires additional 1cyc and +I unit 574 // for Cortex A57 575 bool ARMBaseInstrInfo::isAddrMode3OpMinusReg(const MachineInstr &MI, 576 unsigned Op) const { 577 const MachineOperand &Offset = MI.getOperand(Op + 1); 578 const MachineOperand &Opc = MI.getOperand(Op + 2); 579 assert(Opc.isImm()); 580 assert(Offset.isReg()); 581 int64_t OpcImm = Opc.getImm(); 582 583 bool isSub = ARM_AM::getAM3Op(OpcImm) == ARM_AM::sub; 584 return (isSub && Offset.getReg() != 0); 585 } 586 587 bool ARMBaseInstrInfo::isLdstScaledReg(const MachineInstr &MI, 588 unsigned Op) const { 589 const MachineOperand &Opc = MI.getOperand(Op + 2); 590 unsigned OffImm = Opc.getImm(); 591 return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift; 592 } 593 594 // Load, scaled register offset, not plus LSL2 595 bool ARMBaseInstrInfo::isLdstScaledRegNotPlusLsl2(const MachineInstr &MI, 596 unsigned Op) const { 597 const MachineOperand &Opc = MI.getOperand(Op + 2); 598 unsigned OffImm = Opc.getImm(); 599 600 bool isAdd = ARM_AM::getAM2Op(OffImm) == ARM_AM::add; 601 unsigned Amt = ARM_AM::getAM2Offset(OffImm); 602 ARM_AM::ShiftOpc ShiftOpc = ARM_AM::getAM2ShiftOpc(OffImm); 603 if (ShiftOpc == ARM_AM::no_shift) return false; // not scaled 604 bool SimpleScaled = (isAdd && ShiftOpc == ARM_AM::lsl && Amt == 2); 605 return !SimpleScaled; 606 } 607 608 // Minus reg for ldstso addr mode 609 bool ARMBaseInstrInfo::isLdstSoMinusReg(const MachineInstr &MI, 610 unsigned Op) const { 611 unsigned OffImm = MI.getOperand(Op + 2).getImm(); 612 return ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; 613 } 614 615 // Load, scaled register offset 616 bool ARMBaseInstrInfo::isAm2ScaledReg(const MachineInstr &MI, 617 unsigned Op) const { 618 unsigned OffImm = MI.getOperand(Op + 2).getImm(); 619 return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift; 620 } 621 622 static bool isEligibleForITBlock(const MachineInstr *MI) { 623 switch (MI->getOpcode()) { 624 default: return true; 625 case ARM::tADC: // ADC (register) T1 626 case ARM::tADDi3: // ADD (immediate) T1 627 case ARM::tADDi8: // ADD (immediate) T2 628 case ARM::tADDrr: // ADD (register) T1 629 case ARM::tAND: // AND (register) T1 630 case ARM::tASRri: // ASR (immediate) T1 631 case ARM::tASRrr: // ASR (register) T1 632 case ARM::tBIC: // BIC (register) T1 633 case ARM::tEOR: // EOR (register) T1 634 case ARM::tLSLri: // LSL (immediate) T1 635 case ARM::tLSLrr: // LSL (register) T1 636 case ARM::tLSRri: // LSR (immediate) T1 637 case ARM::tLSRrr: // LSR (register) T1 638 case ARM::tMUL: // MUL T1 639 case ARM::tMVN: // MVN (register) T1 640 case ARM::tORR: // ORR (register) T1 641 case ARM::tROR: // ROR (register) T1 642 case ARM::tRSB: // RSB (immediate) T1 643 case ARM::tSBC: // SBC (register) T1 644 case ARM::tSUBi3: // SUB (immediate) T1 645 case ARM::tSUBi8: // SUB (immediate) T2 646 case ARM::tSUBrr: // SUB (register) T1 647 return !ARMBaseInstrInfo::isCPSRDefined(*MI); 648 } 649 } 650 651 /// isPredicable - Return true if the specified instruction can be predicated. 652 /// By default, this returns true for every instruction with a 653 /// PredicateOperand. 654 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const { 655 if (!MI.isPredicable()) 656 return false; 657 658 if (MI.isBundle()) 659 return false; 660 661 if (!isEligibleForITBlock(&MI)) 662 return false; 663 664 const ARMFunctionInfo *AFI = 665 MI.getParent()->getParent()->getInfo<ARMFunctionInfo>(); 666 667 // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM. 668 // In their ARM encoding, they can't be encoded in a conditional form. 669 if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) 670 return false; 671 672 if (AFI->isThumb2Function()) { 673 if (getSubtarget().restrictIT()) 674 return isV8EligibleForIT(&MI); 675 } 676 677 return true; 678 } 679 680 namespace llvm { 681 682 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) { 683 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 684 const MachineOperand &MO = MI->getOperand(i); 685 if (!MO.isReg() || MO.isUndef() || MO.isUse()) 686 continue; 687 if (MO.getReg() != ARM::CPSR) 688 continue; 689 if (!MO.isDead()) 690 return false; 691 } 692 // all definitions of CPSR are dead 693 return true; 694 } 695 696 } // end namespace llvm 697 698 /// GetInstSize - Return the size of the specified MachineInstr. 699 /// 700 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 701 const MachineBasicBlock &MBB = *MI.getParent(); 702 const MachineFunction *MF = MBB.getParent(); 703 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); 704 705 const MCInstrDesc &MCID = MI.getDesc(); 706 if (MCID.getSize()) 707 return MCID.getSize(); 708 709 switch (MI.getOpcode()) { 710 default: 711 // pseudo-instruction sizes are zero. 712 return 0; 713 case TargetOpcode::BUNDLE: 714 return getInstBundleLength(MI); 715 case ARM::MOVi16_ga_pcrel: 716 case ARM::MOVTi16_ga_pcrel: 717 case ARM::t2MOVi16_ga_pcrel: 718 case ARM::t2MOVTi16_ga_pcrel: 719 return 4; 720 case ARM::MOVi32imm: 721 case ARM::t2MOVi32imm: 722 return 8; 723 case ARM::CONSTPOOL_ENTRY: 724 case ARM::JUMPTABLE_INSTS: 725 case ARM::JUMPTABLE_ADDRS: 726 case ARM::JUMPTABLE_TBB: 727 case ARM::JUMPTABLE_TBH: 728 // If this machine instr is a constant pool entry, its size is recorded as 729 // operand #2. 730 return MI.getOperand(2).getImm(); 731 case ARM::Int_eh_sjlj_longjmp: 732 return 16; 733 case ARM::tInt_eh_sjlj_longjmp: 734 return 10; 735 case ARM::tInt_WIN_eh_sjlj_longjmp: 736 return 12; 737 case ARM::Int_eh_sjlj_setjmp: 738 case ARM::Int_eh_sjlj_setjmp_nofp: 739 return 20; 740 case ARM::tInt_eh_sjlj_setjmp: 741 case ARM::t2Int_eh_sjlj_setjmp: 742 case ARM::t2Int_eh_sjlj_setjmp_nofp: 743 return 12; 744 case ARM::SPACE: 745 return MI.getOperand(1).getImm(); 746 case ARM::INLINEASM: 747 case ARM::INLINEASM_BR: { 748 // If this machine instr is an inline asm, measure it. 749 unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI); 750 if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction()) 751 Size = alignTo(Size, 4); 752 return Size; 753 } 754 } 755 } 756 757 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const { 758 unsigned Size = 0; 759 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 760 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 761 while (++I != E && I->isInsideBundle()) { 762 assert(!I->isBundle() && "No nested bundle!"); 763 Size += getInstSizeInBytes(*I); 764 } 765 return Size; 766 } 767 768 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB, 769 MachineBasicBlock::iterator I, 770 unsigned DestReg, bool KillSrc, 771 const ARMSubtarget &Subtarget) const { 772 unsigned Opc = Subtarget.isThumb() 773 ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR) 774 : ARM::MRS; 775 776 MachineInstrBuilder MIB = 777 BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg); 778 779 // There is only 1 A/R class MRS instruction, and it always refers to 780 // APSR. However, there are lots of other possibilities on M-class cores. 781 if (Subtarget.isMClass()) 782 MIB.addImm(0x800); 783 784 MIB.add(predOps(ARMCC::AL)) 785 .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc)); 786 } 787 788 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB, 789 MachineBasicBlock::iterator I, 790 unsigned SrcReg, bool KillSrc, 791 const ARMSubtarget &Subtarget) const { 792 unsigned Opc = Subtarget.isThumb() 793 ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR) 794 : ARM::MSR; 795 796 MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc)); 797 798 if (Subtarget.isMClass()) 799 MIB.addImm(0x800); 800 else 801 MIB.addImm(8); 802 803 MIB.addReg(SrcReg, getKillRegState(KillSrc)) 804 .add(predOps(ARMCC::AL)) 805 .addReg(ARM::CPSR, RegState::Implicit | RegState::Define); 806 } 807 808 void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) { 809 MIB.addImm(ARMVCC::None); 810 MIB.addReg(0); 811 } 812 813 void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB, 814 unsigned DestReg) { 815 addUnpredicatedMveVpredNOp(MIB); 816 MIB.addReg(DestReg, RegState::Undef); 817 } 818 819 void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) { 820 MIB.addImm(Cond); 821 MIB.addReg(ARM::VPR, RegState::Implicit); 822 } 823 824 void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB, 825 unsigned Cond, unsigned Inactive) { 826 addPredicatedMveVpredNOp(MIB, Cond); 827 MIB.addReg(Inactive); 828 } 829 830 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 831 MachineBasicBlock::iterator I, 832 const DebugLoc &DL, unsigned DestReg, 833 unsigned SrcReg, bool KillSrc) const { 834 bool GPRDest = ARM::GPRRegClass.contains(DestReg); 835 bool GPRSrc = ARM::GPRRegClass.contains(SrcReg); 836 837 if (GPRDest && GPRSrc) { 838 BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg) 839 .addReg(SrcReg, getKillRegState(KillSrc)) 840 .add(predOps(ARMCC::AL)) 841 .add(condCodeOp()); 842 return; 843 } 844 845 bool SPRDest = ARM::SPRRegClass.contains(DestReg); 846 bool SPRSrc = ARM::SPRRegClass.contains(SrcReg); 847 848 unsigned Opc = 0; 849 if (SPRDest && SPRSrc) 850 Opc = ARM::VMOVS; 851 else if (GPRDest && SPRSrc) 852 Opc = ARM::VMOVRS; 853 else if (SPRDest && GPRSrc) 854 Opc = ARM::VMOVSR; 855 else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64()) 856 Opc = ARM::VMOVD; 857 else if (ARM::QPRRegClass.contains(DestReg, SrcReg)) 858 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; 859 860 if (Opc) { 861 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg); 862 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 863 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) 864 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 865 if (Opc == ARM::MVE_VORR) 866 addUnpredicatedMveVpredROp(MIB, DestReg); 867 else 868 MIB.add(predOps(ARMCC::AL)); 869 return; 870 } 871 872 // Handle register classes that require multiple instructions. 873 unsigned BeginIdx = 0; 874 unsigned SubRegs = 0; 875 int Spacing = 1; 876 877 // Use VORRq when possible. 878 if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) { 879 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; 880 BeginIdx = ARM::qsub_0; 881 SubRegs = 2; 882 } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) { 883 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; 884 BeginIdx = ARM::qsub_0; 885 SubRegs = 4; 886 // Fall back to VMOVD. 887 } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) { 888 Opc = ARM::VMOVD; 889 BeginIdx = ARM::dsub_0; 890 SubRegs = 2; 891 } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) { 892 Opc = ARM::VMOVD; 893 BeginIdx = ARM::dsub_0; 894 SubRegs = 3; 895 } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) { 896 Opc = ARM::VMOVD; 897 BeginIdx = ARM::dsub_0; 898 SubRegs = 4; 899 } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) { 900 Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr; 901 BeginIdx = ARM::gsub_0; 902 SubRegs = 2; 903 } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) { 904 Opc = ARM::VMOVD; 905 BeginIdx = ARM::dsub_0; 906 SubRegs = 2; 907 Spacing = 2; 908 } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) { 909 Opc = ARM::VMOVD; 910 BeginIdx = ARM::dsub_0; 911 SubRegs = 3; 912 Spacing = 2; 913 } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) { 914 Opc = ARM::VMOVD; 915 BeginIdx = ARM::dsub_0; 916 SubRegs = 4; 917 Spacing = 2; 918 } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && 919 !Subtarget.hasFP64()) { 920 Opc = ARM::VMOVS; 921 BeginIdx = ARM::ssub_0; 922 SubRegs = 2; 923 } else if (SrcReg == ARM::CPSR) { 924 copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget); 925 return; 926 } else if (DestReg == ARM::CPSR) { 927 copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget); 928 return; 929 } else if (DestReg == ARM::VPR) { 930 assert(ARM::GPRRegClass.contains(SrcReg)); 931 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg) 932 .addReg(SrcReg, getKillRegState(KillSrc)) 933 .add(predOps(ARMCC::AL)); 934 return; 935 } else if (SrcReg == ARM::VPR) { 936 assert(ARM::GPRRegClass.contains(DestReg)); 937 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg) 938 .addReg(SrcReg, getKillRegState(KillSrc)) 939 .add(predOps(ARMCC::AL)); 940 return; 941 } else if (DestReg == ARM::FPSCR_NZCV) { 942 assert(ARM::GPRRegClass.contains(SrcReg)); 943 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg) 944 .addReg(SrcReg, getKillRegState(KillSrc)) 945 .add(predOps(ARMCC::AL)); 946 return; 947 } else if (SrcReg == ARM::FPSCR_NZCV) { 948 assert(ARM::GPRRegClass.contains(DestReg)); 949 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg) 950 .addReg(SrcReg, getKillRegState(KillSrc)) 951 .add(predOps(ARMCC::AL)); 952 return; 953 } 954 955 assert(Opc && "Impossible reg-to-reg copy"); 956 957 const TargetRegisterInfo *TRI = &getRegisterInfo(); 958 MachineInstrBuilder Mov; 959 960 // Copy register tuples backward when the first Dest reg overlaps with SrcReg. 961 if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) { 962 BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing); 963 Spacing = -Spacing; 964 } 965 #ifndef NDEBUG 966 SmallSet<unsigned, 4> DstRegs; 967 #endif 968 for (unsigned i = 0; i != SubRegs; ++i) { 969 unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing); 970 unsigned Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing); 971 assert(Dst && Src && "Bad sub-register"); 972 #ifndef NDEBUG 973 assert(!DstRegs.count(Src) && "destructive vector copy"); 974 DstRegs.insert(Dst); 975 #endif 976 Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src); 977 // VORR (NEON or MVE) takes two source operands. 978 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) { 979 Mov.addReg(Src); 980 } 981 // MVE VORR takes predicate operands in place of an ordinary condition. 982 if (Opc == ARM::MVE_VORR) 983 addUnpredicatedMveVpredROp(Mov, Dst); 984 else 985 Mov = Mov.add(predOps(ARMCC::AL)); 986 // MOVr can set CC. 987 if (Opc == ARM::MOVr) 988 Mov = Mov.add(condCodeOp()); 989 } 990 // Add implicit super-register defs and kills to the last instruction. 991 Mov->addRegisterDefined(DestReg, TRI); 992 if (KillSrc) 993 Mov->addRegisterKilled(SrcReg, TRI); 994 } 995 996 bool ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI, 997 const MachineOperand *&Src, 998 const MachineOperand *&Dest) const { 999 // VMOVRRD is also a copy instruction but it requires 1000 // special way of handling. It is more complex copy version 1001 // and since that we are not considering it. For recognition 1002 // of such instruction isExtractSubregLike MI interface fuction 1003 // could be used. 1004 // VORRq is considered as a move only if two inputs are 1005 // the same register. 1006 if (!MI.isMoveReg() || 1007 (MI.getOpcode() == ARM::VORRq && 1008 MI.getOperand(1).getReg() != MI.getOperand(2).getReg())) 1009 return false; 1010 Dest = &MI.getOperand(0); 1011 Src = &MI.getOperand(1); 1012 return true; 1013 } 1014 1015 const MachineInstrBuilder & 1016 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg, 1017 unsigned SubIdx, unsigned State, 1018 const TargetRegisterInfo *TRI) const { 1019 if (!SubIdx) 1020 return MIB.addReg(Reg, State); 1021 1022 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 1023 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State); 1024 return MIB.addReg(Reg, State, SubIdx); 1025 } 1026 1027 void ARMBaseInstrInfo:: 1028 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 1029 unsigned SrcReg, bool isKill, int FI, 1030 const TargetRegisterClass *RC, 1031 const TargetRegisterInfo *TRI) const { 1032 MachineFunction &MF = *MBB.getParent(); 1033 MachineFrameInfo &MFI = MF.getFrameInfo(); 1034 unsigned Align = MFI.getObjectAlignment(FI); 1035 1036 MachineMemOperand *MMO = MF.getMachineMemOperand( 1037 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, 1038 MFI.getObjectSize(FI), Align); 1039 1040 switch (TRI->getSpillSize(*RC)) { 1041 case 2: 1042 if (ARM::HPRRegClass.hasSubClassEq(RC)) { 1043 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH)) 1044 .addReg(SrcReg, getKillRegState(isKill)) 1045 .addFrameIndex(FI) 1046 .addImm(0) 1047 .addMemOperand(MMO) 1048 .add(predOps(ARMCC::AL)); 1049 } else 1050 llvm_unreachable("Unknown reg class!"); 1051 break; 1052 case 4: 1053 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 1054 BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12)) 1055 .addReg(SrcReg, getKillRegState(isKill)) 1056 .addFrameIndex(FI) 1057 .addImm(0) 1058 .addMemOperand(MMO) 1059 .add(predOps(ARMCC::AL)); 1060 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1061 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS)) 1062 .addReg(SrcReg, getKillRegState(isKill)) 1063 .addFrameIndex(FI) 1064 .addImm(0) 1065 .addMemOperand(MMO) 1066 .add(predOps(ARMCC::AL)); 1067 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) { 1068 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off)) 1069 .addReg(SrcReg, getKillRegState(isKill)) 1070 .addFrameIndex(FI) 1071 .addImm(0) 1072 .addMemOperand(MMO) 1073 .add(predOps(ARMCC::AL)); 1074 } else 1075 llvm_unreachable("Unknown reg class!"); 1076 break; 1077 case 8: 1078 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1079 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD)) 1080 .addReg(SrcReg, getKillRegState(isKill)) 1081 .addFrameIndex(FI) 1082 .addImm(0) 1083 .addMemOperand(MMO) 1084 .add(predOps(ARMCC::AL)); 1085 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1086 if (Subtarget.hasV5TEOps()) { 1087 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD)); 1088 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 1089 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 1090 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) 1091 .add(predOps(ARMCC::AL)); 1092 } else { 1093 // Fallback to STM instruction, which has existed since the dawn of 1094 // time. 1095 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA)) 1096 .addFrameIndex(FI) 1097 .addMemOperand(MMO) 1098 .add(predOps(ARMCC::AL)); 1099 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 1100 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 1101 } 1102 } else 1103 llvm_unreachable("Unknown reg class!"); 1104 break; 1105 case 16: 1106 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) { 1107 // Use aligned spills if the stack can be realigned. 1108 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1109 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64)) 1110 .addFrameIndex(FI) 1111 .addImm(16) 1112 .addReg(SrcReg, getKillRegState(isKill)) 1113 .addMemOperand(MMO) 1114 .add(predOps(ARMCC::AL)); 1115 } else { 1116 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA)) 1117 .addReg(SrcReg, getKillRegState(isKill)) 1118 .addFrameIndex(FI) 1119 .addMemOperand(MMO) 1120 .add(predOps(ARMCC::AL)); 1121 } 1122 } else if (ARM::QPRRegClass.hasSubClassEq(RC) && 1123 Subtarget.hasMVEIntegerOps()) { 1124 auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32)); 1125 MIB.addReg(SrcReg, getKillRegState(isKill)) 1126 .addFrameIndex(FI) 1127 .addImm(0) 1128 .addMemOperand(MMO); 1129 addUnpredicatedMveVpredNOp(MIB); 1130 } else 1131 llvm_unreachable("Unknown reg class!"); 1132 break; 1133 case 24: 1134 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1135 // Use aligned spills if the stack can be realigned. 1136 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1137 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo)) 1138 .addFrameIndex(FI) 1139 .addImm(16) 1140 .addReg(SrcReg, getKillRegState(isKill)) 1141 .addMemOperand(MMO) 1142 .add(predOps(ARMCC::AL)); 1143 } else { 1144 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), 1145 get(ARM::VSTMDIA)) 1146 .addFrameIndex(FI) 1147 .add(predOps(ARMCC::AL)) 1148 .addMemOperand(MMO); 1149 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1150 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1151 AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1152 } 1153 } else 1154 llvm_unreachable("Unknown reg class!"); 1155 break; 1156 case 32: 1157 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) { 1158 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1159 // FIXME: It's possible to only store part of the QQ register if the 1160 // spilled def has a sub-register index. 1161 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo)) 1162 .addFrameIndex(FI) 1163 .addImm(16) 1164 .addReg(SrcReg, getKillRegState(isKill)) 1165 .addMemOperand(MMO) 1166 .add(predOps(ARMCC::AL)); 1167 } else { 1168 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), 1169 get(ARM::VSTMDIA)) 1170 .addFrameIndex(FI) 1171 .add(predOps(ARMCC::AL)) 1172 .addMemOperand(MMO); 1173 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1174 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1175 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1176 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 1177 } 1178 } else 1179 llvm_unreachable("Unknown reg class!"); 1180 break; 1181 case 64: 1182 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1183 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA)) 1184 .addFrameIndex(FI) 1185 .add(predOps(ARMCC::AL)) 1186 .addMemOperand(MMO); 1187 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1188 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1189 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1190 MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 1191 MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI); 1192 MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI); 1193 MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI); 1194 AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI); 1195 } else 1196 llvm_unreachable("Unknown reg class!"); 1197 break; 1198 default: 1199 llvm_unreachable("Unknown reg class!"); 1200 } 1201 } 1202 1203 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 1204 int &FrameIndex) const { 1205 switch (MI.getOpcode()) { 1206 default: break; 1207 case ARM::STRrs: 1208 case ARM::t2STRs: // FIXME: don't use t2STRs to access frame. 1209 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && 1210 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && 1211 MI.getOperand(3).getImm() == 0) { 1212 FrameIndex = MI.getOperand(1).getIndex(); 1213 return MI.getOperand(0).getReg(); 1214 } 1215 break; 1216 case ARM::STRi12: 1217 case ARM::t2STRi12: 1218 case ARM::tSTRspi: 1219 case ARM::VSTRD: 1220 case ARM::VSTRS: 1221 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && 1222 MI.getOperand(2).getImm() == 0) { 1223 FrameIndex = MI.getOperand(1).getIndex(); 1224 return MI.getOperand(0).getReg(); 1225 } 1226 break; 1227 case ARM::VSTR_P0_off: 1228 if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() && 1229 MI.getOperand(1).getImm() == 0) { 1230 FrameIndex = MI.getOperand(0).getIndex(); 1231 return ARM::P0; 1232 } 1233 break; 1234 case ARM::VST1q64: 1235 case ARM::VST1d64TPseudo: 1236 case ARM::VST1d64QPseudo: 1237 if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) { 1238 FrameIndex = MI.getOperand(0).getIndex(); 1239 return MI.getOperand(2).getReg(); 1240 } 1241 break; 1242 case ARM::VSTMQIA: 1243 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1244 FrameIndex = MI.getOperand(1).getIndex(); 1245 return MI.getOperand(0).getReg(); 1246 } 1247 break; 1248 } 1249 1250 return 0; 1251 } 1252 1253 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, 1254 int &FrameIndex) const { 1255 SmallVector<const MachineMemOperand *, 1> Accesses; 1256 if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) && 1257 Accesses.size() == 1) { 1258 FrameIndex = 1259 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 1260 ->getFrameIndex(); 1261 return true; 1262 } 1263 return false; 1264 } 1265 1266 void ARMBaseInstrInfo:: 1267 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 1268 unsigned DestReg, int FI, 1269 const TargetRegisterClass *RC, 1270 const TargetRegisterInfo *TRI) const { 1271 DebugLoc DL; 1272 if (I != MBB.end()) DL = I->getDebugLoc(); 1273 MachineFunction &MF = *MBB.getParent(); 1274 MachineFrameInfo &MFI = MF.getFrameInfo(); 1275 unsigned Align = MFI.getObjectAlignment(FI); 1276 MachineMemOperand *MMO = MF.getMachineMemOperand( 1277 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, 1278 MFI.getObjectSize(FI), Align); 1279 1280 switch (TRI->getSpillSize(*RC)) { 1281 case 2: 1282 if (ARM::HPRRegClass.hasSubClassEq(RC)) { 1283 BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg) 1284 .addFrameIndex(FI) 1285 .addImm(0) 1286 .addMemOperand(MMO) 1287 .add(predOps(ARMCC::AL)); 1288 } else 1289 llvm_unreachable("Unknown reg class!"); 1290 break; 1291 case 4: 1292 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 1293 BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg) 1294 .addFrameIndex(FI) 1295 .addImm(0) 1296 .addMemOperand(MMO) 1297 .add(predOps(ARMCC::AL)); 1298 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1299 BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg) 1300 .addFrameIndex(FI) 1301 .addImm(0) 1302 .addMemOperand(MMO) 1303 .add(predOps(ARMCC::AL)); 1304 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) { 1305 BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg) 1306 .addFrameIndex(FI) 1307 .addImm(0) 1308 .addMemOperand(MMO) 1309 .add(predOps(ARMCC::AL)); 1310 } else 1311 llvm_unreachable("Unknown reg class!"); 1312 break; 1313 case 8: 1314 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1315 BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg) 1316 .addFrameIndex(FI) 1317 .addImm(0) 1318 .addMemOperand(MMO) 1319 .add(predOps(ARMCC::AL)); 1320 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1321 MachineInstrBuilder MIB; 1322 1323 if (Subtarget.hasV5TEOps()) { 1324 MIB = BuildMI(MBB, I, DL, get(ARM::LDRD)); 1325 AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1326 AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1327 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) 1328 .add(predOps(ARMCC::AL)); 1329 } else { 1330 // Fallback to LDM instruction, which has existed since the dawn of 1331 // time. 1332 MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA)) 1333 .addFrameIndex(FI) 1334 .addMemOperand(MMO) 1335 .add(predOps(ARMCC::AL)); 1336 MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1337 MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1338 } 1339 1340 if (TargetRegisterInfo::isPhysicalRegister(DestReg)) 1341 MIB.addReg(DestReg, RegState::ImplicitDefine); 1342 } else 1343 llvm_unreachable("Unknown reg class!"); 1344 break; 1345 case 16: 1346 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) { 1347 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1348 BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg) 1349 .addFrameIndex(FI) 1350 .addImm(16) 1351 .addMemOperand(MMO) 1352 .add(predOps(ARMCC::AL)); 1353 } else { 1354 BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg) 1355 .addFrameIndex(FI) 1356 .addMemOperand(MMO) 1357 .add(predOps(ARMCC::AL)); 1358 } 1359 } else if (ARM::QPRRegClass.hasSubClassEq(RC) && 1360 Subtarget.hasMVEIntegerOps()) { 1361 auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg); 1362 MIB.addFrameIndex(FI) 1363 .addImm(0) 1364 .addMemOperand(MMO); 1365 addUnpredicatedMveVpredNOp(MIB); 1366 } else 1367 llvm_unreachable("Unknown reg class!"); 1368 break; 1369 case 24: 1370 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1371 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1372 BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg) 1373 .addFrameIndex(FI) 1374 .addImm(16) 1375 .addMemOperand(MMO) 1376 .add(predOps(ARMCC::AL)); 1377 } else { 1378 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1379 .addFrameIndex(FI) 1380 .addMemOperand(MMO) 1381 .add(predOps(ARMCC::AL)); 1382 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1383 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1384 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1385 if (TargetRegisterInfo::isPhysicalRegister(DestReg)) 1386 MIB.addReg(DestReg, RegState::ImplicitDefine); 1387 } 1388 } else 1389 llvm_unreachable("Unknown reg class!"); 1390 break; 1391 case 32: 1392 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) { 1393 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) { 1394 BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg) 1395 .addFrameIndex(FI) 1396 .addImm(16) 1397 .addMemOperand(MMO) 1398 .add(predOps(ARMCC::AL)); 1399 } else { 1400 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1401 .addFrameIndex(FI) 1402 .add(predOps(ARMCC::AL)) 1403 .addMemOperand(MMO); 1404 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1405 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1406 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1407 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1408 if (TargetRegisterInfo::isPhysicalRegister(DestReg)) 1409 MIB.addReg(DestReg, RegState::ImplicitDefine); 1410 } 1411 } else 1412 llvm_unreachable("Unknown reg class!"); 1413 break; 1414 case 64: 1415 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1416 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1417 .addFrameIndex(FI) 1418 .add(predOps(ARMCC::AL)) 1419 .addMemOperand(MMO); 1420 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1421 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1422 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1423 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1424 MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI); 1425 MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI); 1426 MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI); 1427 MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI); 1428 if (TargetRegisterInfo::isPhysicalRegister(DestReg)) 1429 MIB.addReg(DestReg, RegState::ImplicitDefine); 1430 } else 1431 llvm_unreachable("Unknown reg class!"); 1432 break; 1433 default: 1434 llvm_unreachable("Unknown regclass!"); 1435 } 1436 } 1437 1438 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 1439 int &FrameIndex) const { 1440 switch (MI.getOpcode()) { 1441 default: break; 1442 case ARM::LDRrs: 1443 case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame. 1444 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && 1445 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && 1446 MI.getOperand(3).getImm() == 0) { 1447 FrameIndex = MI.getOperand(1).getIndex(); 1448 return MI.getOperand(0).getReg(); 1449 } 1450 break; 1451 case ARM::LDRi12: 1452 case ARM::t2LDRi12: 1453 case ARM::tLDRspi: 1454 case ARM::VLDRD: 1455 case ARM::VLDRS: 1456 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && 1457 MI.getOperand(2).getImm() == 0) { 1458 FrameIndex = MI.getOperand(1).getIndex(); 1459 return MI.getOperand(0).getReg(); 1460 } 1461 break; 1462 case ARM::VLDR_P0_off: 1463 if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() && 1464 MI.getOperand(1).getImm() == 0) { 1465 FrameIndex = MI.getOperand(0).getIndex(); 1466 return ARM::P0; 1467 } 1468 break; 1469 case ARM::VLD1q64: 1470 case ARM::VLD1d8TPseudo: 1471 case ARM::VLD1d16TPseudo: 1472 case ARM::VLD1d32TPseudo: 1473 case ARM::VLD1d64TPseudo: 1474 case ARM::VLD1d8QPseudo: 1475 case ARM::VLD1d16QPseudo: 1476 case ARM::VLD1d32QPseudo: 1477 case ARM::VLD1d64QPseudo: 1478 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1479 FrameIndex = MI.getOperand(1).getIndex(); 1480 return MI.getOperand(0).getReg(); 1481 } 1482 break; 1483 case ARM::VLDMQIA: 1484 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1485 FrameIndex = MI.getOperand(1).getIndex(); 1486 return MI.getOperand(0).getReg(); 1487 } 1488 break; 1489 } 1490 1491 return 0; 1492 } 1493 1494 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, 1495 int &FrameIndex) const { 1496 SmallVector<const MachineMemOperand *, 1> Accesses; 1497 if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) && 1498 Accesses.size() == 1) { 1499 FrameIndex = 1500 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 1501 ->getFrameIndex(); 1502 return true; 1503 } 1504 return false; 1505 } 1506 1507 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD 1508 /// depending on whether the result is used. 1509 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const { 1510 bool isThumb1 = Subtarget.isThumb1Only(); 1511 bool isThumb2 = Subtarget.isThumb2(); 1512 const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo(); 1513 1514 DebugLoc dl = MI->getDebugLoc(); 1515 MachineBasicBlock *BB = MI->getParent(); 1516 1517 MachineInstrBuilder LDM, STM; 1518 if (isThumb1 || !MI->getOperand(1).isDead()) { 1519 MachineOperand LDWb(MI->getOperand(1)); 1520 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD 1521 : isThumb1 ? ARM::tLDMIA_UPD 1522 : ARM::LDMIA_UPD)) 1523 .add(LDWb); 1524 } else { 1525 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA)); 1526 } 1527 1528 if (isThumb1 || !MI->getOperand(0).isDead()) { 1529 MachineOperand STWb(MI->getOperand(0)); 1530 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD 1531 : isThumb1 ? ARM::tSTMIA_UPD 1532 : ARM::STMIA_UPD)) 1533 .add(STWb); 1534 } else { 1535 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA)); 1536 } 1537 1538 MachineOperand LDBase(MI->getOperand(3)); 1539 LDM.add(LDBase).add(predOps(ARMCC::AL)); 1540 1541 MachineOperand STBase(MI->getOperand(2)); 1542 STM.add(STBase).add(predOps(ARMCC::AL)); 1543 1544 // Sort the scratch registers into ascending order. 1545 const TargetRegisterInfo &TRI = getRegisterInfo(); 1546 SmallVector<unsigned, 6> ScratchRegs; 1547 for(unsigned I = 5; I < MI->getNumOperands(); ++I) 1548 ScratchRegs.push_back(MI->getOperand(I).getReg()); 1549 llvm::sort(ScratchRegs, 1550 [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool { 1551 return TRI.getEncodingValue(Reg1) < 1552 TRI.getEncodingValue(Reg2); 1553 }); 1554 1555 for (const auto &Reg : ScratchRegs) { 1556 LDM.addReg(Reg, RegState::Define); 1557 STM.addReg(Reg, RegState::Kill); 1558 } 1559 1560 BB->erase(MI); 1561 } 1562 1563 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1564 if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) { 1565 assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() && 1566 "LOAD_STACK_GUARD currently supported only for MachO."); 1567 expandLoadStackGuard(MI); 1568 MI.getParent()->erase(MI); 1569 return true; 1570 } 1571 1572 if (MI.getOpcode() == ARM::MEMCPY) { 1573 expandMEMCPY(MI); 1574 return true; 1575 } 1576 1577 // This hook gets to expand COPY instructions before they become 1578 // copyPhysReg() calls. Look for VMOVS instructions that can legally be 1579 // widened to VMOVD. We prefer the VMOVD when possible because it may be 1580 // changed into a VORR that can go down the NEON pipeline. 1581 if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64()) 1582 return false; 1583 1584 // Look for a copy between even S-registers. That is where we keep floats 1585 // when using NEON v2f32 instructions for f32 arithmetic. 1586 unsigned DstRegS = MI.getOperand(0).getReg(); 1587 unsigned SrcRegS = MI.getOperand(1).getReg(); 1588 if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS)) 1589 return false; 1590 1591 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1592 unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0, 1593 &ARM::DPRRegClass); 1594 unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0, 1595 &ARM::DPRRegClass); 1596 if (!DstRegD || !SrcRegD) 1597 return false; 1598 1599 // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only 1600 // legal if the COPY already defines the full DstRegD, and it isn't a 1601 // sub-register insertion. 1602 if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI)) 1603 return false; 1604 1605 // A dead copy shouldn't show up here, but reject it just in case. 1606 if (MI.getOperand(0).isDead()) 1607 return false; 1608 1609 // All clear, widen the COPY. 1610 LLVM_DEBUG(dbgs() << "widening: " << MI); 1611 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 1612 1613 // Get rid of the old implicit-def of DstRegD. Leave it if it defines a Q-reg 1614 // or some other super-register. 1615 int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD); 1616 if (ImpDefIdx != -1) 1617 MI.RemoveOperand(ImpDefIdx); 1618 1619 // Change the opcode and operands. 1620 MI.setDesc(get(ARM::VMOVD)); 1621 MI.getOperand(0).setReg(DstRegD); 1622 MI.getOperand(1).setReg(SrcRegD); 1623 MIB.add(predOps(ARMCC::AL)); 1624 1625 // We are now reading SrcRegD instead of SrcRegS. This may upset the 1626 // register scavenger and machine verifier, so we need to indicate that we 1627 // are reading an undefined value from SrcRegD, but a proper value from 1628 // SrcRegS. 1629 MI.getOperand(1).setIsUndef(); 1630 MIB.addReg(SrcRegS, RegState::Implicit); 1631 1632 // SrcRegD may actually contain an unrelated value in the ssub_1 1633 // sub-register. Don't kill it. Only kill the ssub_0 sub-register. 1634 if (MI.getOperand(1).isKill()) { 1635 MI.getOperand(1).setIsKill(false); 1636 MI.addRegisterKilled(SrcRegS, TRI, true); 1637 } 1638 1639 LLVM_DEBUG(dbgs() << "replaced by: " << MI); 1640 return true; 1641 } 1642 1643 /// Create a copy of a const pool value. Update CPI to the new index and return 1644 /// the label UID. 1645 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) { 1646 MachineConstantPool *MCP = MF.getConstantPool(); 1647 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1648 1649 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI]; 1650 assert(MCPE.isMachineConstantPoolEntry() && 1651 "Expecting a machine constantpool entry!"); 1652 ARMConstantPoolValue *ACPV = 1653 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal); 1654 1655 unsigned PCLabelId = AFI->createPICLabelUId(); 1656 ARMConstantPoolValue *NewCPV = nullptr; 1657 1658 // FIXME: The below assumes PIC relocation model and that the function 1659 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and 1660 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR 1661 // instructions, so that's probably OK, but is PIC always correct when 1662 // we get here? 1663 if (ACPV->isGlobalValue()) 1664 NewCPV = ARMConstantPoolConstant::Create( 1665 cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue, 1666 4, ACPV->getModifier(), ACPV->mustAddCurrentAddress()); 1667 else if (ACPV->isExtSymbol()) 1668 NewCPV = ARMConstantPoolSymbol:: 1669 Create(MF.getFunction().getContext(), 1670 cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4); 1671 else if (ACPV->isBlockAddress()) 1672 NewCPV = ARMConstantPoolConstant:: 1673 Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId, 1674 ARMCP::CPBlockAddress, 4); 1675 else if (ACPV->isLSDA()) 1676 NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId, 1677 ARMCP::CPLSDA, 4); 1678 else if (ACPV->isMachineBasicBlock()) 1679 NewCPV = ARMConstantPoolMBB:: 1680 Create(MF.getFunction().getContext(), 1681 cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4); 1682 else 1683 llvm_unreachable("Unexpected ARM constantpool value type!!"); 1684 CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment()); 1685 return PCLabelId; 1686 } 1687 1688 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB, 1689 MachineBasicBlock::iterator I, 1690 unsigned DestReg, unsigned SubIdx, 1691 const MachineInstr &Orig, 1692 const TargetRegisterInfo &TRI) const { 1693 unsigned Opcode = Orig.getOpcode(); 1694 switch (Opcode) { 1695 default: { 1696 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); 1697 MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); 1698 MBB.insert(I, MI); 1699 break; 1700 } 1701 case ARM::tLDRpci_pic: 1702 case ARM::t2LDRpci_pic: { 1703 MachineFunction &MF = *MBB.getParent(); 1704 unsigned CPI = Orig.getOperand(1).getIndex(); 1705 unsigned PCLabelId = duplicateCPV(MF, CPI); 1706 BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg) 1707 .addConstantPoolIndex(CPI) 1708 .addImm(PCLabelId) 1709 .cloneMemRefs(Orig); 1710 break; 1711 } 1712 } 1713 } 1714 1715 MachineInstr & 1716 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB, 1717 MachineBasicBlock::iterator InsertBefore, 1718 const MachineInstr &Orig) const { 1719 MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig); 1720 MachineBasicBlock::instr_iterator I = Cloned.getIterator(); 1721 for (;;) { 1722 switch (I->getOpcode()) { 1723 case ARM::tLDRpci_pic: 1724 case ARM::t2LDRpci_pic: { 1725 MachineFunction &MF = *MBB.getParent(); 1726 unsigned CPI = I->getOperand(1).getIndex(); 1727 unsigned PCLabelId = duplicateCPV(MF, CPI); 1728 I->getOperand(1).setIndex(CPI); 1729 I->getOperand(2).setImm(PCLabelId); 1730 break; 1731 } 1732 } 1733 if (!I->isBundledWithSucc()) 1734 break; 1735 ++I; 1736 } 1737 return Cloned; 1738 } 1739 1740 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0, 1741 const MachineInstr &MI1, 1742 const MachineRegisterInfo *MRI) const { 1743 unsigned Opcode = MI0.getOpcode(); 1744 if (Opcode == ARM::t2LDRpci || 1745 Opcode == ARM::t2LDRpci_pic || 1746 Opcode == ARM::tLDRpci || 1747 Opcode == ARM::tLDRpci_pic || 1748 Opcode == ARM::LDRLIT_ga_pcrel || 1749 Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1750 Opcode == ARM::tLDRLIT_ga_pcrel || 1751 Opcode == ARM::MOV_ga_pcrel || 1752 Opcode == ARM::MOV_ga_pcrel_ldr || 1753 Opcode == ARM::t2MOV_ga_pcrel) { 1754 if (MI1.getOpcode() != Opcode) 1755 return false; 1756 if (MI0.getNumOperands() != MI1.getNumOperands()) 1757 return false; 1758 1759 const MachineOperand &MO0 = MI0.getOperand(1); 1760 const MachineOperand &MO1 = MI1.getOperand(1); 1761 if (MO0.getOffset() != MO1.getOffset()) 1762 return false; 1763 1764 if (Opcode == ARM::LDRLIT_ga_pcrel || 1765 Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1766 Opcode == ARM::tLDRLIT_ga_pcrel || 1767 Opcode == ARM::MOV_ga_pcrel || 1768 Opcode == ARM::MOV_ga_pcrel_ldr || 1769 Opcode == ARM::t2MOV_ga_pcrel) 1770 // Ignore the PC labels. 1771 return MO0.getGlobal() == MO1.getGlobal(); 1772 1773 const MachineFunction *MF = MI0.getParent()->getParent(); 1774 const MachineConstantPool *MCP = MF->getConstantPool(); 1775 int CPI0 = MO0.getIndex(); 1776 int CPI1 = MO1.getIndex(); 1777 const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0]; 1778 const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1]; 1779 bool isARMCP0 = MCPE0.isMachineConstantPoolEntry(); 1780 bool isARMCP1 = MCPE1.isMachineConstantPoolEntry(); 1781 if (isARMCP0 && isARMCP1) { 1782 ARMConstantPoolValue *ACPV0 = 1783 static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal); 1784 ARMConstantPoolValue *ACPV1 = 1785 static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal); 1786 return ACPV0->hasSameValue(ACPV1); 1787 } else if (!isARMCP0 && !isARMCP1) { 1788 return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal; 1789 } 1790 return false; 1791 } else if (Opcode == ARM::PICLDR) { 1792 if (MI1.getOpcode() != Opcode) 1793 return false; 1794 if (MI0.getNumOperands() != MI1.getNumOperands()) 1795 return false; 1796 1797 unsigned Addr0 = MI0.getOperand(1).getReg(); 1798 unsigned Addr1 = MI1.getOperand(1).getReg(); 1799 if (Addr0 != Addr1) { 1800 if (!MRI || 1801 !TargetRegisterInfo::isVirtualRegister(Addr0) || 1802 !TargetRegisterInfo::isVirtualRegister(Addr1)) 1803 return false; 1804 1805 // This assumes SSA form. 1806 MachineInstr *Def0 = MRI->getVRegDef(Addr0); 1807 MachineInstr *Def1 = MRI->getVRegDef(Addr1); 1808 // Check if the loaded value, e.g. a constantpool of a global address, are 1809 // the same. 1810 if (!produceSameValue(*Def0, *Def1, MRI)) 1811 return false; 1812 } 1813 1814 for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) { 1815 // %12 = PICLDR %11, 0, 14, %noreg 1816 const MachineOperand &MO0 = MI0.getOperand(i); 1817 const MachineOperand &MO1 = MI1.getOperand(i); 1818 if (!MO0.isIdenticalTo(MO1)) 1819 return false; 1820 } 1821 return true; 1822 } 1823 1824 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 1825 } 1826 1827 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to 1828 /// determine if two loads are loading from the same base address. It should 1829 /// only return true if the base pointers are the same and the only differences 1830 /// between the two addresses is the offset. It also returns the offsets by 1831 /// reference. 1832 /// 1833 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 1834 /// is permanently disabled. 1835 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 1836 int64_t &Offset1, 1837 int64_t &Offset2) const { 1838 // Don't worry about Thumb: just ARM and Thumb2. 1839 if (Subtarget.isThumb1Only()) return false; 1840 1841 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) 1842 return false; 1843 1844 switch (Load1->getMachineOpcode()) { 1845 default: 1846 return false; 1847 case ARM::LDRi12: 1848 case ARM::LDRBi12: 1849 case ARM::LDRD: 1850 case ARM::LDRH: 1851 case ARM::LDRSB: 1852 case ARM::LDRSH: 1853 case ARM::VLDRD: 1854 case ARM::VLDRS: 1855 case ARM::t2LDRi8: 1856 case ARM::t2LDRBi8: 1857 case ARM::t2LDRDi8: 1858 case ARM::t2LDRSHi8: 1859 case ARM::t2LDRi12: 1860 case ARM::t2LDRBi12: 1861 case ARM::t2LDRSHi12: 1862 break; 1863 } 1864 1865 switch (Load2->getMachineOpcode()) { 1866 default: 1867 return false; 1868 case ARM::LDRi12: 1869 case ARM::LDRBi12: 1870 case ARM::LDRD: 1871 case ARM::LDRH: 1872 case ARM::LDRSB: 1873 case ARM::LDRSH: 1874 case ARM::VLDRD: 1875 case ARM::VLDRS: 1876 case ARM::t2LDRi8: 1877 case ARM::t2LDRBi8: 1878 case ARM::t2LDRSHi8: 1879 case ARM::t2LDRi12: 1880 case ARM::t2LDRBi12: 1881 case ARM::t2LDRSHi12: 1882 break; 1883 } 1884 1885 // Check if base addresses and chain operands match. 1886 if (Load1->getOperand(0) != Load2->getOperand(0) || 1887 Load1->getOperand(4) != Load2->getOperand(4)) 1888 return false; 1889 1890 // Index should be Reg0. 1891 if (Load1->getOperand(3) != Load2->getOperand(3)) 1892 return false; 1893 1894 // Determine the offsets. 1895 if (isa<ConstantSDNode>(Load1->getOperand(1)) && 1896 isa<ConstantSDNode>(Load2->getOperand(1))) { 1897 Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue(); 1898 Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue(); 1899 return true; 1900 } 1901 1902 return false; 1903 } 1904 1905 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to 1906 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should 1907 /// be scheduled togther. On some targets if two loads are loading from 1908 /// addresses in the same cache line, it's better if they are scheduled 1909 /// together. This function takes two integers that represent the load offsets 1910 /// from the common base address. It returns true if it decides it's desirable 1911 /// to schedule the two loads together. "NumLoads" is the number of loads that 1912 /// have already been scheduled after Load1. 1913 /// 1914 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 1915 /// is permanently disabled. 1916 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 1917 int64_t Offset1, int64_t Offset2, 1918 unsigned NumLoads) const { 1919 // Don't worry about Thumb: just ARM and Thumb2. 1920 if (Subtarget.isThumb1Only()) return false; 1921 1922 assert(Offset2 > Offset1); 1923 1924 if ((Offset2 - Offset1) / 8 > 64) 1925 return false; 1926 1927 // Check if the machine opcodes are different. If they are different 1928 // then we consider them to not be of the same base address, 1929 // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12. 1930 // In this case, they are considered to be the same because they are different 1931 // encoding forms of the same basic instruction. 1932 if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) && 1933 !((Load1->getMachineOpcode() == ARM::t2LDRBi8 && 1934 Load2->getMachineOpcode() == ARM::t2LDRBi12) || 1935 (Load1->getMachineOpcode() == ARM::t2LDRBi12 && 1936 Load2->getMachineOpcode() == ARM::t2LDRBi8))) 1937 return false; // FIXME: overly conservative? 1938 1939 // Four loads in a row should be sufficient. 1940 if (NumLoads >= 3) 1941 return false; 1942 1943 return true; 1944 } 1945 1946 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 1947 const MachineBasicBlock *MBB, 1948 const MachineFunction &MF) const { 1949 // Debug info is never a scheduling boundary. It's necessary to be explicit 1950 // due to the special treatment of IT instructions below, otherwise a 1951 // dbg_value followed by an IT will result in the IT instruction being 1952 // considered a scheduling hazard, which is wrong. It should be the actual 1953 // instruction preceding the dbg_value instruction(s), just like it is 1954 // when debug info is not present. 1955 if (MI.isDebugInstr()) 1956 return false; 1957 1958 // Terminators and labels can't be scheduled around. 1959 if (MI.isTerminator() || MI.isPosition()) 1960 return true; 1961 1962 // Treat the start of the IT block as a scheduling boundary, but schedule 1963 // t2IT along with all instructions following it. 1964 // FIXME: This is a big hammer. But the alternative is to add all potential 1965 // true and anti dependencies to IT block instructions as implicit operands 1966 // to the t2IT instruction. The added compile time and complexity does not 1967 // seem worth it. 1968 MachineBasicBlock::const_iterator I = MI; 1969 // Make sure to skip any debug instructions 1970 while (++I != MBB->end() && I->isDebugInstr()) 1971 ; 1972 if (I != MBB->end() && I->getOpcode() == ARM::t2IT) 1973 return true; 1974 1975 // Don't attempt to schedule around any instruction that defines 1976 // a stack-oriented pointer, as it's unlikely to be profitable. This 1977 // saves compile time, because it doesn't require every single 1978 // stack slot reference to depend on the instruction that does the 1979 // modification. 1980 // Calls don't actually change the stack pointer, even if they have imp-defs. 1981 // No ARM calling conventions change the stack pointer. (X86 calling 1982 // conventions sometimes do). 1983 if (!MI.isCall() && MI.definesRegister(ARM::SP)) 1984 return true; 1985 1986 return false; 1987 } 1988 1989 bool ARMBaseInstrInfo:: 1990 isProfitableToIfCvt(MachineBasicBlock &MBB, 1991 unsigned NumCycles, unsigned ExtraPredCycles, 1992 BranchProbability Probability) const { 1993 if (!NumCycles) 1994 return false; 1995 1996 // If we are optimizing for size, see if the branch in the predecessor can be 1997 // lowered to cbn?z by the constant island lowering pass, and return false if 1998 // so. This results in a shorter instruction sequence. 1999 if (MBB.getParent()->getFunction().hasOptSize()) { 2000 MachineBasicBlock *Pred = *MBB.pred_begin(); 2001 if (!Pred->empty()) { 2002 MachineInstr *LastMI = &*Pred->rbegin(); 2003 if (LastMI->getOpcode() == ARM::t2Bcc) { 2004 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2005 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI); 2006 if (CmpMI) 2007 return false; 2008 } 2009 } 2010 } 2011 return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles, 2012 MBB, 0, 0, Probability); 2013 } 2014 2015 bool ARMBaseInstrInfo:: 2016 isProfitableToIfCvt(MachineBasicBlock &TBB, 2017 unsigned TCycles, unsigned TExtra, 2018 MachineBasicBlock &FBB, 2019 unsigned FCycles, unsigned FExtra, 2020 BranchProbability Probability) const { 2021 if (!TCycles) 2022 return false; 2023 2024 // In thumb code we often end up trading one branch for a IT block, and 2025 // if we are cloning the instruction can increase code size. Prevent 2026 // blocks with multiple predecesors from being ifcvted to prevent this 2027 // cloning. 2028 if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) { 2029 if (TBB.pred_size() != 1 || FBB.pred_size() != 1) 2030 return false; 2031 } 2032 2033 // Attempt to estimate the relative costs of predication versus branching. 2034 // Here we scale up each component of UnpredCost to avoid precision issue when 2035 // scaling TCycles/FCycles by Probability. 2036 const unsigned ScalingUpFactor = 1024; 2037 2038 unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor; 2039 unsigned UnpredCost; 2040 if (!Subtarget.hasBranchPredictor()) { 2041 // When we don't have a branch predictor it's always cheaper to not take a 2042 // branch than take it, so we have to take that into account. 2043 unsigned NotTakenBranchCost = 1; 2044 unsigned TakenBranchCost = Subtarget.getMispredictionPenalty(); 2045 unsigned TUnpredCycles, FUnpredCycles; 2046 if (!FCycles) { 2047 // Triangle: TBB is the fallthrough 2048 TUnpredCycles = TCycles + NotTakenBranchCost; 2049 FUnpredCycles = TakenBranchCost; 2050 } else { 2051 // Diamond: TBB is the block that is branched to, FBB is the fallthrough 2052 TUnpredCycles = TCycles + TakenBranchCost; 2053 FUnpredCycles = FCycles + NotTakenBranchCost; 2054 // The branch at the end of FBB will disappear when it's predicated, so 2055 // discount it from PredCost. 2056 PredCost -= 1 * ScalingUpFactor; 2057 } 2058 // The total cost is the cost of each path scaled by their probabilites 2059 unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor); 2060 unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor); 2061 UnpredCost = TUnpredCost + FUnpredCost; 2062 // When predicating assume that the first IT can be folded away but later 2063 // ones cost one cycle each 2064 if (Subtarget.isThumb2() && TCycles + FCycles > 4) { 2065 PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor; 2066 } 2067 } else { 2068 unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor); 2069 unsigned FUnpredCost = 2070 Probability.getCompl().scale(FCycles * ScalingUpFactor); 2071 UnpredCost = TUnpredCost + FUnpredCost; 2072 UnpredCost += 1 * ScalingUpFactor; // The branch itself 2073 UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10; 2074 } 2075 2076 return PredCost <= UnpredCost; 2077 } 2078 2079 bool 2080 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB, 2081 MachineBasicBlock &FMBB) const { 2082 // Reduce false anti-dependencies to let the target's out-of-order execution 2083 // engine do its thing. 2084 return Subtarget.isProfitableToUnpredicate(); 2085 } 2086 2087 /// getInstrPredicate - If instruction is predicated, returns its predicate 2088 /// condition, otherwise returns AL. It also returns the condition code 2089 /// register by reference. 2090 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI, 2091 unsigned &PredReg) { 2092 int PIdx = MI.findFirstPredOperandIdx(); 2093 if (PIdx == -1) { 2094 PredReg = 0; 2095 return ARMCC::AL; 2096 } 2097 2098 PredReg = MI.getOperand(PIdx+1).getReg(); 2099 return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm(); 2100 } 2101 2102 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) { 2103 if (Opc == ARM::B) 2104 return ARM::Bcc; 2105 if (Opc == ARM::tB) 2106 return ARM::tBcc; 2107 if (Opc == ARM::t2B) 2108 return ARM::t2Bcc; 2109 2110 llvm_unreachable("Unknown unconditional branch opcode!"); 2111 } 2112 2113 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI, 2114 bool NewMI, 2115 unsigned OpIdx1, 2116 unsigned OpIdx2) const { 2117 switch (MI.getOpcode()) { 2118 case ARM::MOVCCr: 2119 case ARM::t2MOVCCr: { 2120 // MOVCC can be commuted by inverting the condition. 2121 unsigned PredReg = 0; 2122 ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg); 2123 // MOVCC AL can't be inverted. Shouldn't happen. 2124 if (CC == ARMCC::AL || PredReg != ARM::CPSR) 2125 return nullptr; 2126 MachineInstr *CommutedMI = 2127 TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2128 if (!CommutedMI) 2129 return nullptr; 2130 // After swapping the MOVCC operands, also invert the condition. 2131 CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx()) 2132 .setImm(ARMCC::getOppositeCondition(CC)); 2133 return CommutedMI; 2134 } 2135 } 2136 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2137 } 2138 2139 /// Identify instructions that can be folded into a MOVCC instruction, and 2140 /// return the defining instruction. 2141 MachineInstr * 2142 ARMBaseInstrInfo::canFoldIntoMOVCC(unsigned Reg, const MachineRegisterInfo &MRI, 2143 const TargetInstrInfo *TII) const { 2144 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 2145 return nullptr; 2146 if (!MRI.hasOneNonDBGUse(Reg)) 2147 return nullptr; 2148 MachineInstr *MI = MRI.getVRegDef(Reg); 2149 if (!MI) 2150 return nullptr; 2151 // Check if MI can be predicated and folded into the MOVCC. 2152 if (!isPredicable(*MI)) 2153 return nullptr; 2154 // Check if MI has any non-dead defs or physreg uses. This also detects 2155 // predicated instructions which will be reading CPSR. 2156 for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) { 2157 const MachineOperand &MO = MI->getOperand(i); 2158 // Reject frame index operands, PEI can't handle the predicated pseudos. 2159 if (MO.isFI() || MO.isCPI() || MO.isJTI()) 2160 return nullptr; 2161 if (!MO.isReg()) 2162 continue; 2163 // MI can't have any tied operands, that would conflict with predication. 2164 if (MO.isTied()) 2165 return nullptr; 2166 if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) 2167 return nullptr; 2168 if (MO.isDef() && !MO.isDead()) 2169 return nullptr; 2170 } 2171 bool DontMoveAcrossStores = true; 2172 if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores)) 2173 return nullptr; 2174 return MI; 2175 } 2176 2177 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI, 2178 SmallVectorImpl<MachineOperand> &Cond, 2179 unsigned &TrueOp, unsigned &FalseOp, 2180 bool &Optimizable) const { 2181 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && 2182 "Unknown select instruction"); 2183 // MOVCC operands: 2184 // 0: Def. 2185 // 1: True use. 2186 // 2: False use. 2187 // 3: Condition code. 2188 // 4: CPSR use. 2189 TrueOp = 1; 2190 FalseOp = 2; 2191 Cond.push_back(MI.getOperand(3)); 2192 Cond.push_back(MI.getOperand(4)); 2193 // We can always fold a def. 2194 Optimizable = true; 2195 return false; 2196 } 2197 2198 MachineInstr * 2199 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI, 2200 SmallPtrSetImpl<MachineInstr *> &SeenMIs, 2201 bool PreferFalse) const { 2202 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && 2203 "Unknown select instruction"); 2204 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 2205 MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this); 2206 bool Invert = !DefMI; 2207 if (!DefMI) 2208 DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this); 2209 if (!DefMI) 2210 return nullptr; 2211 2212 // Find new register class to use. 2213 MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1); 2214 unsigned DestReg = MI.getOperand(0).getReg(); 2215 const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg()); 2216 if (!MRI.constrainRegClass(DestReg, PreviousClass)) 2217 return nullptr; 2218 2219 // Create a new predicated version of DefMI. 2220 // Rfalse is the first use. 2221 MachineInstrBuilder NewMI = 2222 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg); 2223 2224 // Copy all the DefMI operands, excluding its (null) predicate. 2225 const MCInstrDesc &DefDesc = DefMI->getDesc(); 2226 for (unsigned i = 1, e = DefDesc.getNumOperands(); 2227 i != e && !DefDesc.OpInfo[i].isPredicate(); ++i) 2228 NewMI.add(DefMI->getOperand(i)); 2229 2230 unsigned CondCode = MI.getOperand(3).getImm(); 2231 if (Invert) 2232 NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode))); 2233 else 2234 NewMI.addImm(CondCode); 2235 NewMI.add(MI.getOperand(4)); 2236 2237 // DefMI is not the -S version that sets CPSR, so add an optional %noreg. 2238 if (NewMI->hasOptionalDef()) 2239 NewMI.add(condCodeOp()); 2240 2241 // The output register value when the predicate is false is an implicit 2242 // register operand tied to the first def. 2243 // The tie makes the register allocator ensure the FalseReg is allocated the 2244 // same register as operand 0. 2245 FalseReg.setImplicit(); 2246 NewMI.add(FalseReg); 2247 NewMI->tieOperands(0, NewMI->getNumOperands() - 1); 2248 2249 // Update SeenMIs set: register newly created MI and erase removed DefMI. 2250 SeenMIs.insert(NewMI); 2251 SeenMIs.erase(DefMI); 2252 2253 // If MI is inside a loop, and DefMI is outside the loop, then kill flags on 2254 // DefMI would be invalid when tranferred inside the loop. Checking for a 2255 // loop is expensive, but at least remove kill flags if they are in different 2256 // BBs. 2257 if (DefMI->getParent() != MI.getParent()) 2258 NewMI->clearKillInfo(); 2259 2260 // The caller will erase MI, but not DefMI. 2261 DefMI->eraseFromParent(); 2262 return NewMI; 2263 } 2264 2265 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the 2266 /// instruction is encoded with an 'S' bit is determined by the optional CPSR 2267 /// def operand. 2268 /// 2269 /// This will go away once we can teach tblgen how to set the optional CPSR def 2270 /// operand itself. 2271 struct AddSubFlagsOpcodePair { 2272 uint16_t PseudoOpc; 2273 uint16_t MachineOpc; 2274 }; 2275 2276 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = { 2277 {ARM::ADDSri, ARM::ADDri}, 2278 {ARM::ADDSrr, ARM::ADDrr}, 2279 {ARM::ADDSrsi, ARM::ADDrsi}, 2280 {ARM::ADDSrsr, ARM::ADDrsr}, 2281 2282 {ARM::SUBSri, ARM::SUBri}, 2283 {ARM::SUBSrr, ARM::SUBrr}, 2284 {ARM::SUBSrsi, ARM::SUBrsi}, 2285 {ARM::SUBSrsr, ARM::SUBrsr}, 2286 2287 {ARM::RSBSri, ARM::RSBri}, 2288 {ARM::RSBSrsi, ARM::RSBrsi}, 2289 {ARM::RSBSrsr, ARM::RSBrsr}, 2290 2291 {ARM::tADDSi3, ARM::tADDi3}, 2292 {ARM::tADDSi8, ARM::tADDi8}, 2293 {ARM::tADDSrr, ARM::tADDrr}, 2294 {ARM::tADCS, ARM::tADC}, 2295 2296 {ARM::tSUBSi3, ARM::tSUBi3}, 2297 {ARM::tSUBSi8, ARM::tSUBi8}, 2298 {ARM::tSUBSrr, ARM::tSUBrr}, 2299 {ARM::tSBCS, ARM::tSBC}, 2300 {ARM::tRSBS, ARM::tRSB}, 2301 2302 {ARM::t2ADDSri, ARM::t2ADDri}, 2303 {ARM::t2ADDSrr, ARM::t2ADDrr}, 2304 {ARM::t2ADDSrs, ARM::t2ADDrs}, 2305 2306 {ARM::t2SUBSri, ARM::t2SUBri}, 2307 {ARM::t2SUBSrr, ARM::t2SUBrr}, 2308 {ARM::t2SUBSrs, ARM::t2SUBrs}, 2309 2310 {ARM::t2RSBSri, ARM::t2RSBri}, 2311 {ARM::t2RSBSrs, ARM::t2RSBrs}, 2312 }; 2313 2314 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) { 2315 for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i) 2316 if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc) 2317 return AddSubFlagsOpcodeMap[i].MachineOpc; 2318 return 0; 2319 } 2320 2321 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB, 2322 MachineBasicBlock::iterator &MBBI, 2323 const DebugLoc &dl, unsigned DestReg, 2324 unsigned BaseReg, int NumBytes, 2325 ARMCC::CondCodes Pred, unsigned PredReg, 2326 const ARMBaseInstrInfo &TII, 2327 unsigned MIFlags) { 2328 if (NumBytes == 0 && DestReg != BaseReg) { 2329 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg) 2330 .addReg(BaseReg, RegState::Kill) 2331 .add(predOps(Pred, PredReg)) 2332 .add(condCodeOp()) 2333 .setMIFlags(MIFlags); 2334 return; 2335 } 2336 2337 bool isSub = NumBytes < 0; 2338 if (isSub) NumBytes = -NumBytes; 2339 2340 while (NumBytes) { 2341 unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes); 2342 unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt); 2343 assert(ThisVal && "Didn't extract field correctly"); 2344 2345 // We will handle these bits from offset, clear them. 2346 NumBytes &= ~ThisVal; 2347 2348 assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?"); 2349 2350 // Build the new ADD / SUB. 2351 unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri; 2352 BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) 2353 .addReg(BaseReg, RegState::Kill) 2354 .addImm(ThisVal) 2355 .add(predOps(Pred, PredReg)) 2356 .add(condCodeOp()) 2357 .setMIFlags(MIFlags); 2358 BaseReg = DestReg; 2359 } 2360 } 2361 2362 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget, 2363 MachineFunction &MF, MachineInstr *MI, 2364 unsigned NumBytes) { 2365 // This optimisation potentially adds lots of load and store 2366 // micro-operations, it's only really a great benefit to code-size. 2367 if (!Subtarget.hasMinSize()) 2368 return false; 2369 2370 // If only one register is pushed/popped, LLVM can use an LDR/STR 2371 // instead. We can't modify those so make sure we're dealing with an 2372 // instruction we understand. 2373 bool IsPop = isPopOpcode(MI->getOpcode()); 2374 bool IsPush = isPushOpcode(MI->getOpcode()); 2375 if (!IsPush && !IsPop) 2376 return false; 2377 2378 bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD || 2379 MI->getOpcode() == ARM::VLDMDIA_UPD; 2380 bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH || 2381 MI->getOpcode() == ARM::tPOP || 2382 MI->getOpcode() == ARM::tPOP_RET; 2383 2384 assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP && 2385 MI->getOperand(1).getReg() == ARM::SP)) && 2386 "trying to fold sp update into non-sp-updating push/pop"); 2387 2388 // The VFP push & pop act on D-registers, so we can only fold an adjustment 2389 // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try 2390 // if this is violated. 2391 if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0) 2392 return false; 2393 2394 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 2395 // pred) so the list starts at 4. Thumb1 starts after the predicate. 2396 int RegListIdx = IsT1PushPop ? 2 : 4; 2397 2398 // Calculate the space we'll need in terms of registers. 2399 unsigned RegsNeeded; 2400 const TargetRegisterClass *RegClass; 2401 if (IsVFPPushPop) { 2402 RegsNeeded = NumBytes / 8; 2403 RegClass = &ARM::DPRRegClass; 2404 } else { 2405 RegsNeeded = NumBytes / 4; 2406 RegClass = &ARM::GPRRegClass; 2407 } 2408 2409 // We're going to have to strip all list operands off before 2410 // re-adding them since the order matters, so save the existing ones 2411 // for later. 2412 SmallVector<MachineOperand, 4> RegList; 2413 2414 // We're also going to need the first register transferred by this 2415 // instruction, which won't necessarily be the first register in the list. 2416 unsigned FirstRegEnc = -1; 2417 2418 const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo(); 2419 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) { 2420 MachineOperand &MO = MI->getOperand(i); 2421 RegList.push_back(MO); 2422 2423 if (MO.isReg() && TRI->getEncodingValue(MO.getReg()) < FirstRegEnc) 2424 FirstRegEnc = TRI->getEncodingValue(MO.getReg()); 2425 } 2426 2427 const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF); 2428 2429 // Now try to find enough space in the reglist to allocate NumBytes. 2430 for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded; 2431 --CurRegEnc) { 2432 unsigned CurReg = RegClass->getRegister(CurRegEnc); 2433 if (IsT1PushPop && CurReg > ARM::R7) 2434 continue; 2435 if (!IsPop) { 2436 // Pushing any register is completely harmless, mark the register involved 2437 // as undef since we don't care about its value and must not restore it 2438 // during stack unwinding. 2439 RegList.push_back(MachineOperand::CreateReg(CurReg, false, false, 2440 false, false, true)); 2441 --RegsNeeded; 2442 continue; 2443 } 2444 2445 // However, we can only pop an extra register if it's not live. For 2446 // registers live within the function we might clobber a return value 2447 // register; the other way a register can be live here is if it's 2448 // callee-saved. 2449 if (isCalleeSavedRegister(CurReg, CSRegs) || 2450 MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) != 2451 MachineBasicBlock::LQR_Dead) { 2452 // VFP pops don't allow holes in the register list, so any skip is fatal 2453 // for our transformation. GPR pops do, so we should just keep looking. 2454 if (IsVFPPushPop) 2455 return false; 2456 else 2457 continue; 2458 } 2459 2460 // Mark the unimportant registers as <def,dead> in the POP. 2461 RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false, 2462 true)); 2463 --RegsNeeded; 2464 } 2465 2466 if (RegsNeeded > 0) 2467 return false; 2468 2469 // Finally we know we can profitably perform the optimisation so go 2470 // ahead: strip all existing registers off and add them back again 2471 // in the right order. 2472 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) 2473 MI->RemoveOperand(i); 2474 2475 // Add the complete list back in. 2476 MachineInstrBuilder MIB(MF, &*MI); 2477 for (int i = RegList.size() - 1; i >= 0; --i) 2478 MIB.add(RegList[i]); 2479 2480 return true; 2481 } 2482 2483 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx, 2484 unsigned FrameReg, int &Offset, 2485 const ARMBaseInstrInfo &TII) { 2486 unsigned Opcode = MI.getOpcode(); 2487 const MCInstrDesc &Desc = MI.getDesc(); 2488 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); 2489 bool isSub = false; 2490 2491 // Memory operands in inline assembly always use AddrMode2. 2492 if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR) 2493 AddrMode = ARMII::AddrMode2; 2494 2495 if (Opcode == ARM::ADDri) { 2496 Offset += MI.getOperand(FrameRegIdx+1).getImm(); 2497 if (Offset == 0) { 2498 // Turn it into a move. 2499 MI.setDesc(TII.get(ARM::MOVr)); 2500 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2501 MI.RemoveOperand(FrameRegIdx+1); 2502 Offset = 0; 2503 return true; 2504 } else if (Offset < 0) { 2505 Offset = -Offset; 2506 isSub = true; 2507 MI.setDesc(TII.get(ARM::SUBri)); 2508 } 2509 2510 // Common case: small offset, fits into instruction. 2511 if (ARM_AM::getSOImmVal(Offset) != -1) { 2512 // Replace the FrameIndex with sp / fp 2513 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2514 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); 2515 Offset = 0; 2516 return true; 2517 } 2518 2519 // Otherwise, pull as much of the immedidate into this ADDri/SUBri 2520 // as possible. 2521 unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset); 2522 unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt); 2523 2524 // We will handle these bits from offset, clear them. 2525 Offset &= ~ThisImmVal; 2526 2527 // Get the properly encoded SOImmVal field. 2528 assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 && 2529 "Bit extraction didn't work?"); 2530 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal); 2531 } else { 2532 unsigned ImmIdx = 0; 2533 int InstrOffs = 0; 2534 unsigned NumBits = 0; 2535 unsigned Scale = 1; 2536 switch (AddrMode) { 2537 case ARMII::AddrMode_i12: 2538 ImmIdx = FrameRegIdx + 1; 2539 InstrOffs = MI.getOperand(ImmIdx).getImm(); 2540 NumBits = 12; 2541 break; 2542 case ARMII::AddrMode2: 2543 ImmIdx = FrameRegIdx+2; 2544 InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm()); 2545 if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2546 InstrOffs *= -1; 2547 NumBits = 12; 2548 break; 2549 case ARMII::AddrMode3: 2550 ImmIdx = FrameRegIdx+2; 2551 InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm()); 2552 if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2553 InstrOffs *= -1; 2554 NumBits = 8; 2555 break; 2556 case ARMII::AddrMode4: 2557 case ARMII::AddrMode6: 2558 // Can't fold any offset even if it's zero. 2559 return false; 2560 case ARMII::AddrMode5: 2561 ImmIdx = FrameRegIdx+1; 2562 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2563 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2564 InstrOffs *= -1; 2565 NumBits = 8; 2566 Scale = 4; 2567 break; 2568 case ARMII::AddrMode5FP16: 2569 ImmIdx = FrameRegIdx+1; 2570 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2571 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2572 InstrOffs *= -1; 2573 NumBits = 8; 2574 Scale = 2; 2575 break; 2576 case ARMII::AddrModeT2_i7: 2577 case ARMII::AddrModeT2_i7s2: 2578 case ARMII::AddrModeT2_i7s4: 2579 ImmIdx = FrameRegIdx+1; 2580 InstrOffs = MI.getOperand(ImmIdx).getImm(); 2581 NumBits = 7; 2582 Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 : 2583 AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1); 2584 break; 2585 default: 2586 llvm_unreachable("Unsupported addressing mode!"); 2587 } 2588 2589 Offset += InstrOffs * Scale; 2590 assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!"); 2591 if (Offset < 0) { 2592 Offset = -Offset; 2593 isSub = true; 2594 } 2595 2596 // Attempt to fold address comp. if opcode has offset bits 2597 if (NumBits > 0) { 2598 // Common case: small offset, fits into instruction. 2599 MachineOperand &ImmOp = MI.getOperand(ImmIdx); 2600 int ImmedOffset = Offset / Scale; 2601 unsigned Mask = (1 << NumBits) - 1; 2602 if ((unsigned)Offset <= Mask * Scale) { 2603 // Replace the FrameIndex with sp 2604 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2605 // FIXME: When addrmode2 goes away, this will simplify (like the 2606 // T2 version), as the LDR.i12 versions don't need the encoding 2607 // tricks for the offset value. 2608 if (isSub) { 2609 if (AddrMode == ARMII::AddrMode_i12) 2610 ImmedOffset = -ImmedOffset; 2611 else 2612 ImmedOffset |= 1 << NumBits; 2613 } 2614 ImmOp.ChangeToImmediate(ImmedOffset); 2615 Offset = 0; 2616 return true; 2617 } 2618 2619 // Otherwise, it didn't fit. Pull in what we can to simplify the immed. 2620 ImmedOffset = ImmedOffset & Mask; 2621 if (isSub) { 2622 if (AddrMode == ARMII::AddrMode_i12) 2623 ImmedOffset = -ImmedOffset; 2624 else 2625 ImmedOffset |= 1 << NumBits; 2626 } 2627 ImmOp.ChangeToImmediate(ImmedOffset); 2628 Offset &= ~(Mask*Scale); 2629 } 2630 } 2631 2632 Offset = (isSub) ? -Offset : Offset; 2633 return Offset == 0; 2634 } 2635 2636 /// analyzeCompare - For a comparison instruction, return the source registers 2637 /// in SrcReg and SrcReg2 if having two register operands, and the value it 2638 /// compares against in CmpValue. Return true if the comparison instruction 2639 /// can be analyzed. 2640 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 2641 unsigned &SrcReg2, int &CmpMask, 2642 int &CmpValue) const { 2643 switch (MI.getOpcode()) { 2644 default: break; 2645 case ARM::CMPri: 2646 case ARM::t2CMPri: 2647 case ARM::tCMPi8: 2648 SrcReg = MI.getOperand(0).getReg(); 2649 SrcReg2 = 0; 2650 CmpMask = ~0; 2651 CmpValue = MI.getOperand(1).getImm(); 2652 return true; 2653 case ARM::CMPrr: 2654 case ARM::t2CMPrr: 2655 case ARM::tCMPr: 2656 SrcReg = MI.getOperand(0).getReg(); 2657 SrcReg2 = MI.getOperand(1).getReg(); 2658 CmpMask = ~0; 2659 CmpValue = 0; 2660 return true; 2661 case ARM::TSTri: 2662 case ARM::t2TSTri: 2663 SrcReg = MI.getOperand(0).getReg(); 2664 SrcReg2 = 0; 2665 CmpMask = MI.getOperand(1).getImm(); 2666 CmpValue = 0; 2667 return true; 2668 } 2669 2670 return false; 2671 } 2672 2673 /// isSuitableForMask - Identify a suitable 'and' instruction that 2674 /// operates on the given source register and applies the same mask 2675 /// as a 'tst' instruction. Provide a limited look-through for copies. 2676 /// When successful, MI will hold the found instruction. 2677 static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg, 2678 int CmpMask, bool CommonUse) { 2679 switch (MI->getOpcode()) { 2680 case ARM::ANDri: 2681 case ARM::t2ANDri: 2682 if (CmpMask != MI->getOperand(2).getImm()) 2683 return false; 2684 if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg()) 2685 return true; 2686 break; 2687 } 2688 2689 return false; 2690 } 2691 2692 /// getSwappedCondition - assume the flags are set by MI(a,b), return 2693 /// the condition code if we modify the instructions such that flags are 2694 /// set by MI(b,a). 2695 inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) { 2696 switch (CC) { 2697 default: return ARMCC::AL; 2698 case ARMCC::EQ: return ARMCC::EQ; 2699 case ARMCC::NE: return ARMCC::NE; 2700 case ARMCC::HS: return ARMCC::LS; 2701 case ARMCC::LO: return ARMCC::HI; 2702 case ARMCC::HI: return ARMCC::LO; 2703 case ARMCC::LS: return ARMCC::HS; 2704 case ARMCC::GE: return ARMCC::LE; 2705 case ARMCC::LT: return ARMCC::GT; 2706 case ARMCC::GT: return ARMCC::LT; 2707 case ARMCC::LE: return ARMCC::GE; 2708 } 2709 } 2710 2711 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return 2712 /// the condition code if we modify the instructions such that flags are 2713 /// set by ADD(a,b,X). 2714 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) { 2715 switch (CC) { 2716 default: return ARMCC::AL; 2717 case ARMCC::HS: return ARMCC::LO; 2718 case ARMCC::LO: return ARMCC::HS; 2719 case ARMCC::VS: return ARMCC::VS; 2720 case ARMCC::VC: return ARMCC::VC; 2721 } 2722 } 2723 2724 /// isRedundantFlagInstr - check whether the first instruction, whose only 2725 /// purpose is to update flags, can be made redundant. 2726 /// CMPrr can be made redundant by SUBrr if the operands are the same. 2727 /// CMPri can be made redundant by SUBri if the operands are the same. 2728 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X). 2729 /// This function can be extended later on. 2730 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI, 2731 unsigned SrcReg, unsigned SrcReg2, 2732 int ImmValue, const MachineInstr *OI, 2733 bool &IsThumb1) { 2734 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && 2735 (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) && 2736 ((OI->getOperand(1).getReg() == SrcReg && 2737 OI->getOperand(2).getReg() == SrcReg2) || 2738 (OI->getOperand(1).getReg() == SrcReg2 && 2739 OI->getOperand(2).getReg() == SrcReg))) { 2740 IsThumb1 = false; 2741 return true; 2742 } 2743 2744 if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr && 2745 ((OI->getOperand(2).getReg() == SrcReg && 2746 OI->getOperand(3).getReg() == SrcReg2) || 2747 (OI->getOperand(2).getReg() == SrcReg2 && 2748 OI->getOperand(3).getReg() == SrcReg))) { 2749 IsThumb1 = true; 2750 return true; 2751 } 2752 2753 if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) && 2754 (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) && 2755 OI->getOperand(1).getReg() == SrcReg && 2756 OI->getOperand(2).getImm() == ImmValue) { 2757 IsThumb1 = false; 2758 return true; 2759 } 2760 2761 if (CmpI->getOpcode() == ARM::tCMPi8 && 2762 (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) && 2763 OI->getOperand(2).getReg() == SrcReg && 2764 OI->getOperand(3).getImm() == ImmValue) { 2765 IsThumb1 = true; 2766 return true; 2767 } 2768 2769 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && 2770 (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr || 2771 OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) && 2772 OI->getOperand(0).isReg() && OI->getOperand(1).isReg() && 2773 OI->getOperand(0).getReg() == SrcReg && 2774 OI->getOperand(1).getReg() == SrcReg2) { 2775 IsThumb1 = false; 2776 return true; 2777 } 2778 2779 if (CmpI->getOpcode() == ARM::tCMPr && 2780 (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 || 2781 OI->getOpcode() == ARM::tADDrr) && 2782 OI->getOperand(0).getReg() == SrcReg && 2783 OI->getOperand(2).getReg() == SrcReg2) { 2784 IsThumb1 = true; 2785 return true; 2786 } 2787 2788 return false; 2789 } 2790 2791 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) { 2792 switch (MI->getOpcode()) { 2793 default: return false; 2794 case ARM::tLSLri: 2795 case ARM::tLSRri: 2796 case ARM::tLSLrr: 2797 case ARM::tLSRrr: 2798 case ARM::tSUBrr: 2799 case ARM::tADDrr: 2800 case ARM::tADDi3: 2801 case ARM::tADDi8: 2802 case ARM::tSUBi3: 2803 case ARM::tSUBi8: 2804 case ARM::tMUL: 2805 case ARM::tADC: 2806 case ARM::tSBC: 2807 case ARM::tRSB: 2808 case ARM::tAND: 2809 case ARM::tORR: 2810 case ARM::tEOR: 2811 case ARM::tBIC: 2812 case ARM::tMVN: 2813 case ARM::tASRri: 2814 case ARM::tASRrr: 2815 case ARM::tROR: 2816 IsThumb1 = true; 2817 LLVM_FALLTHROUGH; 2818 case ARM::RSBrr: 2819 case ARM::RSBri: 2820 case ARM::RSCrr: 2821 case ARM::RSCri: 2822 case ARM::ADDrr: 2823 case ARM::ADDri: 2824 case ARM::ADCrr: 2825 case ARM::ADCri: 2826 case ARM::SUBrr: 2827 case ARM::SUBri: 2828 case ARM::SBCrr: 2829 case ARM::SBCri: 2830 case ARM::t2RSBri: 2831 case ARM::t2ADDrr: 2832 case ARM::t2ADDri: 2833 case ARM::t2ADCrr: 2834 case ARM::t2ADCri: 2835 case ARM::t2SUBrr: 2836 case ARM::t2SUBri: 2837 case ARM::t2SBCrr: 2838 case ARM::t2SBCri: 2839 case ARM::ANDrr: 2840 case ARM::ANDri: 2841 case ARM::t2ANDrr: 2842 case ARM::t2ANDri: 2843 case ARM::ORRrr: 2844 case ARM::ORRri: 2845 case ARM::t2ORRrr: 2846 case ARM::t2ORRri: 2847 case ARM::EORrr: 2848 case ARM::EORri: 2849 case ARM::t2EORrr: 2850 case ARM::t2EORri: 2851 case ARM::t2LSRri: 2852 case ARM::t2LSRrr: 2853 case ARM::t2LSLri: 2854 case ARM::t2LSLrr: 2855 return true; 2856 } 2857 } 2858 2859 /// optimizeCompareInstr - Convert the instruction supplying the argument to the 2860 /// comparison into one that sets the zero bit in the flags register; 2861 /// Remove a redundant Compare instruction if an earlier instruction can set the 2862 /// flags in the same way as Compare. 2863 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two 2864 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the 2865 /// condition code of instructions which use the flags. 2866 bool ARMBaseInstrInfo::optimizeCompareInstr( 2867 MachineInstr &CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask, 2868 int CmpValue, const MachineRegisterInfo *MRI) const { 2869 // Get the unique definition of SrcReg. 2870 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 2871 if (!MI) return false; 2872 2873 // Masked compares sometimes use the same register as the corresponding 'and'. 2874 if (CmpMask != ~0) { 2875 if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) { 2876 MI = nullptr; 2877 for (MachineRegisterInfo::use_instr_iterator 2878 UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end(); 2879 UI != UE; ++UI) { 2880 if (UI->getParent() != CmpInstr.getParent()) 2881 continue; 2882 MachineInstr *PotentialAND = &*UI; 2883 if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) || 2884 isPredicated(*PotentialAND)) 2885 continue; 2886 MI = PotentialAND; 2887 break; 2888 } 2889 if (!MI) return false; 2890 } 2891 } 2892 2893 // Get ready to iterate backward from CmpInstr. 2894 MachineBasicBlock::iterator I = CmpInstr, E = MI, 2895 B = CmpInstr.getParent()->begin(); 2896 2897 // Early exit if CmpInstr is at the beginning of the BB. 2898 if (I == B) return false; 2899 2900 // There are two possible candidates which can be changed to set CPSR: 2901 // One is MI, the other is a SUB or ADD instruction. 2902 // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or 2903 // ADDr[ri](r1, r2, X). 2904 // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue). 2905 MachineInstr *SubAdd = nullptr; 2906 if (SrcReg2 != 0) 2907 // MI is not a candidate for CMPrr. 2908 MI = nullptr; 2909 else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) { 2910 // Conservatively refuse to convert an instruction which isn't in the same 2911 // BB as the comparison. 2912 // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate. 2913 // Thus we cannot return here. 2914 if (CmpInstr.getOpcode() == ARM::CMPri || 2915 CmpInstr.getOpcode() == ARM::t2CMPri || 2916 CmpInstr.getOpcode() == ARM::tCMPi8) 2917 MI = nullptr; 2918 else 2919 return false; 2920 } 2921 2922 bool IsThumb1 = false; 2923 if (MI && !isOptimizeCompareCandidate(MI, IsThumb1)) 2924 return false; 2925 2926 // We also want to do this peephole for cases like this: if (a*b == 0), 2927 // and optimise away the CMP instruction from the generated code sequence: 2928 // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values 2929 // resulting from the select instruction, but these MOVS instructions for 2930 // Thumb1 (V6M) are flag setting and are thus preventing this optimisation. 2931 // However, if we only have MOVS instructions in between the CMP and the 2932 // other instruction (the MULS in this example), then the CPSR is dead so we 2933 // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this 2934 // reordering and then continue the analysis hoping we can eliminate the 2935 // CMP. This peephole works on the vregs, so is still in SSA form. As a 2936 // consequence, the movs won't redefine/kill the MUL operands which would 2937 // make this reordering illegal. 2938 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2939 if (MI && IsThumb1) { 2940 --I; 2941 if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) { 2942 bool CanReorder = true; 2943 for (; I != E; --I) { 2944 if (I->getOpcode() != ARM::tMOVi8) { 2945 CanReorder = false; 2946 break; 2947 } 2948 } 2949 if (CanReorder) { 2950 MI = MI->removeFromParent(); 2951 E = CmpInstr; 2952 CmpInstr.getParent()->insert(E, MI); 2953 } 2954 } 2955 I = CmpInstr; 2956 E = MI; 2957 } 2958 2959 // Check that CPSR isn't set between the comparison instruction and the one we 2960 // want to change. At the same time, search for SubAdd. 2961 bool SubAddIsThumb1 = false; 2962 do { 2963 const MachineInstr &Instr = *--I; 2964 2965 // Check whether CmpInstr can be made redundant by the current instruction. 2966 if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr, 2967 SubAddIsThumb1)) { 2968 SubAdd = &*I; 2969 break; 2970 } 2971 2972 // Allow E (which was initially MI) to be SubAdd but do not search before E. 2973 if (I == E) 2974 break; 2975 2976 if (Instr.modifiesRegister(ARM::CPSR, TRI) || 2977 Instr.readsRegister(ARM::CPSR, TRI)) 2978 // This instruction modifies or uses CPSR after the one we want to 2979 // change. We can't do this transformation. 2980 return false; 2981 2982 if (I == B) { 2983 // In some cases, we scan the use-list of an instruction for an AND; 2984 // that AND is in the same BB, but may not be scheduled before the 2985 // corresponding TST. In that case, bail out. 2986 // 2987 // FIXME: We could try to reschedule the AND. 2988 return false; 2989 } 2990 } while (true); 2991 2992 // Return false if no candidates exist. 2993 if (!MI && !SubAdd) 2994 return false; 2995 2996 // If we found a SubAdd, use it as it will be closer to the CMP 2997 if (SubAdd) { 2998 MI = SubAdd; 2999 IsThumb1 = SubAddIsThumb1; 3000 } 3001 3002 // We can't use a predicated instruction - it doesn't always write the flags. 3003 if (isPredicated(*MI)) 3004 return false; 3005 3006 // Scan forward for the use of CPSR 3007 // When checking against MI: if it's a conditional code that requires 3008 // checking of the V bit or C bit, then this is not safe to do. 3009 // It is safe to remove CmpInstr if CPSR is redefined or killed. 3010 // If we are done with the basic block, we need to check whether CPSR is 3011 // live-out. 3012 SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4> 3013 OperandsToUpdate; 3014 bool isSafe = false; 3015 I = CmpInstr; 3016 E = CmpInstr.getParent()->end(); 3017 while (!isSafe && ++I != E) { 3018 const MachineInstr &Instr = *I; 3019 for (unsigned IO = 0, EO = Instr.getNumOperands(); 3020 !isSafe && IO != EO; ++IO) { 3021 const MachineOperand &MO = Instr.getOperand(IO); 3022 if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) { 3023 isSafe = true; 3024 break; 3025 } 3026 if (!MO.isReg() || MO.getReg() != ARM::CPSR) 3027 continue; 3028 if (MO.isDef()) { 3029 isSafe = true; 3030 break; 3031 } 3032 // Condition code is after the operand before CPSR except for VSELs. 3033 ARMCC::CondCodes CC; 3034 bool IsInstrVSel = true; 3035 switch (Instr.getOpcode()) { 3036 default: 3037 IsInstrVSel = false; 3038 CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm(); 3039 break; 3040 case ARM::VSELEQD: 3041 case ARM::VSELEQS: 3042 CC = ARMCC::EQ; 3043 break; 3044 case ARM::VSELGTD: 3045 case ARM::VSELGTS: 3046 CC = ARMCC::GT; 3047 break; 3048 case ARM::VSELGED: 3049 case ARM::VSELGES: 3050 CC = ARMCC::GE; 3051 break; 3052 case ARM::VSELVSS: 3053 case ARM::VSELVSD: 3054 CC = ARMCC::VS; 3055 break; 3056 } 3057 3058 if (SubAdd) { 3059 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based 3060 // on CMP needs to be updated to be based on SUB. 3061 // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also 3062 // needs to be modified. 3063 // Push the condition code operands to OperandsToUpdate. 3064 // If it is safe to remove CmpInstr, the condition code of these 3065 // operands will be modified. 3066 unsigned Opc = SubAdd->getOpcode(); 3067 bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr || 3068 Opc == ARM::SUBri || Opc == ARM::t2SUBri || 3069 Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 || 3070 Opc == ARM::tSUBi8; 3071 unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2; 3072 if (!IsSub || 3073 (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 && 3074 SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) { 3075 // VSel doesn't support condition code update. 3076 if (IsInstrVSel) 3077 return false; 3078 // Ensure we can swap the condition. 3079 ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC)); 3080 if (NewCC == ARMCC::AL) 3081 return false; 3082 OperandsToUpdate.push_back( 3083 std::make_pair(&((*I).getOperand(IO - 1)), NewCC)); 3084 } 3085 } else { 3086 // No SubAdd, so this is x = <op> y, z; cmp x, 0. 3087 switch (CC) { 3088 case ARMCC::EQ: // Z 3089 case ARMCC::NE: // Z 3090 case ARMCC::MI: // N 3091 case ARMCC::PL: // N 3092 case ARMCC::AL: // none 3093 // CPSR can be used multiple times, we should continue. 3094 break; 3095 case ARMCC::HS: // C 3096 case ARMCC::LO: // C 3097 case ARMCC::VS: // V 3098 case ARMCC::VC: // V 3099 case ARMCC::HI: // C Z 3100 case ARMCC::LS: // C Z 3101 case ARMCC::GE: // N V 3102 case ARMCC::LT: // N V 3103 case ARMCC::GT: // Z N V 3104 case ARMCC::LE: // Z N V 3105 // The instruction uses the V bit or C bit which is not safe. 3106 return false; 3107 } 3108 } 3109 } 3110 } 3111 3112 // If CPSR is not killed nor re-defined, we should check whether it is 3113 // live-out. If it is live-out, do not optimize. 3114 if (!isSafe) { 3115 MachineBasicBlock *MBB = CmpInstr.getParent(); 3116 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), 3117 SE = MBB->succ_end(); SI != SE; ++SI) 3118 if ((*SI)->isLiveIn(ARM::CPSR)) 3119 return false; 3120 } 3121 3122 // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always 3123 // set CPSR so this is represented as an explicit output) 3124 if (!IsThumb1) { 3125 MI->getOperand(5).setReg(ARM::CPSR); 3126 MI->getOperand(5).setIsDef(true); 3127 } 3128 assert(!isPredicated(*MI) && "Can't use flags from predicated instruction"); 3129 CmpInstr.eraseFromParent(); 3130 3131 // Modify the condition code of operands in OperandsToUpdate. 3132 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 3133 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 3134 for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++) 3135 OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second); 3136 3137 MI->clearRegisterDeads(ARM::CPSR); 3138 3139 return true; 3140 } 3141 3142 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const { 3143 // Do not sink MI if it might be used to optimize a redundant compare. 3144 // We heuristically only look at the instruction immediately following MI to 3145 // avoid potentially searching the entire basic block. 3146 if (isPredicated(MI)) 3147 return true; 3148 MachineBasicBlock::const_iterator Next = &MI; 3149 ++Next; 3150 unsigned SrcReg, SrcReg2; 3151 int CmpMask, CmpValue; 3152 bool IsThumb1; 3153 if (Next != MI.getParent()->end() && 3154 analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) && 3155 isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1)) 3156 return false; 3157 return true; 3158 } 3159 3160 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 3161 unsigned Reg, 3162 MachineRegisterInfo *MRI) const { 3163 // Fold large immediates into add, sub, or, xor. 3164 unsigned DefOpc = DefMI.getOpcode(); 3165 if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm) 3166 return false; 3167 if (!DefMI.getOperand(1).isImm()) 3168 // Could be t2MOVi32imm @xx 3169 return false; 3170 3171 if (!MRI->hasOneNonDBGUse(Reg)) 3172 return false; 3173 3174 const MCInstrDesc &DefMCID = DefMI.getDesc(); 3175 if (DefMCID.hasOptionalDef()) { 3176 unsigned NumOps = DefMCID.getNumOperands(); 3177 const MachineOperand &MO = DefMI.getOperand(NumOps - 1); 3178 if (MO.getReg() == ARM::CPSR && !MO.isDead()) 3179 // If DefMI defines CPSR and it is not dead, it's obviously not safe 3180 // to delete DefMI. 3181 return false; 3182 } 3183 3184 const MCInstrDesc &UseMCID = UseMI.getDesc(); 3185 if (UseMCID.hasOptionalDef()) { 3186 unsigned NumOps = UseMCID.getNumOperands(); 3187 if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR) 3188 // If the instruction sets the flag, do not attempt this optimization 3189 // since it may change the semantics of the code. 3190 return false; 3191 } 3192 3193 unsigned UseOpc = UseMI.getOpcode(); 3194 unsigned NewUseOpc = 0; 3195 uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm(); 3196 uint32_t SOImmValV1 = 0, SOImmValV2 = 0; 3197 bool Commute = false; 3198 switch (UseOpc) { 3199 default: return false; 3200 case ARM::SUBrr: 3201 case ARM::ADDrr: 3202 case ARM::ORRrr: 3203 case ARM::EORrr: 3204 case ARM::t2SUBrr: 3205 case ARM::t2ADDrr: 3206 case ARM::t2ORRrr: 3207 case ARM::t2EORrr: { 3208 Commute = UseMI.getOperand(2).getReg() != Reg; 3209 switch (UseOpc) { 3210 default: break; 3211 case ARM::ADDrr: 3212 case ARM::SUBrr: 3213 if (UseOpc == ARM::SUBrr && Commute) 3214 return false; 3215 3216 // ADD/SUB are special because they're essentially the same operation, so 3217 // we can handle a larger range of immediates. 3218 if (ARM_AM::isSOImmTwoPartVal(ImmVal)) 3219 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri; 3220 else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) { 3221 ImmVal = -ImmVal; 3222 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri; 3223 } else 3224 return false; 3225 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 3226 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 3227 break; 3228 case ARM::ORRrr: 3229 case ARM::EORrr: 3230 if (!ARM_AM::isSOImmTwoPartVal(ImmVal)) 3231 return false; 3232 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 3233 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 3234 switch (UseOpc) { 3235 default: break; 3236 case ARM::ORRrr: NewUseOpc = ARM::ORRri; break; 3237 case ARM::EORrr: NewUseOpc = ARM::EORri; break; 3238 } 3239 break; 3240 case ARM::t2ADDrr: 3241 case ARM::t2SUBrr: 3242 if (UseOpc == ARM::t2SUBrr && Commute) 3243 return false; 3244 3245 // ADD/SUB are special because they're essentially the same operation, so 3246 // we can handle a larger range of immediates. 3247 if (ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 3248 NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2ADDri : ARM::t2SUBri; 3249 else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) { 3250 ImmVal = -ImmVal; 3251 NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2SUBri : ARM::t2ADDri; 3252 } else 3253 return false; 3254 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 3255 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 3256 break; 3257 case ARM::t2ORRrr: 3258 case ARM::t2EORrr: 3259 if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 3260 return false; 3261 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 3262 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 3263 switch (UseOpc) { 3264 default: break; 3265 case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break; 3266 case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break; 3267 } 3268 break; 3269 } 3270 } 3271 } 3272 3273 unsigned OpIdx = Commute ? 2 : 1; 3274 unsigned Reg1 = UseMI.getOperand(OpIdx).getReg(); 3275 bool isKill = UseMI.getOperand(OpIdx).isKill(); 3276 unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg)); 3277 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc), 3278 NewReg) 3279 .addReg(Reg1, getKillRegState(isKill)) 3280 .addImm(SOImmValV1) 3281 .add(predOps(ARMCC::AL)) 3282 .add(condCodeOp()); 3283 UseMI.setDesc(get(NewUseOpc)); 3284 UseMI.getOperand(1).setReg(NewReg); 3285 UseMI.getOperand(1).setIsKill(); 3286 UseMI.getOperand(2).ChangeToImmediate(SOImmValV2); 3287 DefMI.eraseFromParent(); 3288 return true; 3289 } 3290 3291 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData, 3292 const MachineInstr &MI) { 3293 switch (MI.getOpcode()) { 3294 default: { 3295 const MCInstrDesc &Desc = MI.getDesc(); 3296 int UOps = ItinData->getNumMicroOps(Desc.getSchedClass()); 3297 assert(UOps >= 0 && "bad # UOps"); 3298 return UOps; 3299 } 3300 3301 case ARM::LDRrs: 3302 case ARM::LDRBrs: 3303 case ARM::STRrs: 3304 case ARM::STRBrs: { 3305 unsigned ShOpVal = MI.getOperand(3).getImm(); 3306 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3307 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3308 if (!isSub && 3309 (ShImm == 0 || 3310 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3311 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3312 return 1; 3313 return 2; 3314 } 3315 3316 case ARM::LDRH: 3317 case ARM::STRH: { 3318 if (!MI.getOperand(2).getReg()) 3319 return 1; 3320 3321 unsigned ShOpVal = MI.getOperand(3).getImm(); 3322 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3323 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3324 if (!isSub && 3325 (ShImm == 0 || 3326 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3327 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3328 return 1; 3329 return 2; 3330 } 3331 3332 case ARM::LDRSB: 3333 case ARM::LDRSH: 3334 return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2; 3335 3336 case ARM::LDRSB_POST: 3337 case ARM::LDRSH_POST: { 3338 unsigned Rt = MI.getOperand(0).getReg(); 3339 unsigned Rm = MI.getOperand(3).getReg(); 3340 return (Rt == Rm) ? 4 : 3; 3341 } 3342 3343 case ARM::LDR_PRE_REG: 3344 case ARM::LDRB_PRE_REG: { 3345 unsigned Rt = MI.getOperand(0).getReg(); 3346 unsigned Rm = MI.getOperand(3).getReg(); 3347 if (Rt == Rm) 3348 return 3; 3349 unsigned ShOpVal = MI.getOperand(4).getImm(); 3350 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3351 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3352 if (!isSub && 3353 (ShImm == 0 || 3354 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3355 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3356 return 2; 3357 return 3; 3358 } 3359 3360 case ARM::STR_PRE_REG: 3361 case ARM::STRB_PRE_REG: { 3362 unsigned ShOpVal = MI.getOperand(4).getImm(); 3363 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3364 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3365 if (!isSub && 3366 (ShImm == 0 || 3367 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3368 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3369 return 2; 3370 return 3; 3371 } 3372 3373 case ARM::LDRH_PRE: 3374 case ARM::STRH_PRE: { 3375 unsigned Rt = MI.getOperand(0).getReg(); 3376 unsigned Rm = MI.getOperand(3).getReg(); 3377 if (!Rm) 3378 return 2; 3379 if (Rt == Rm) 3380 return 3; 3381 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2; 3382 } 3383 3384 case ARM::LDR_POST_REG: 3385 case ARM::LDRB_POST_REG: 3386 case ARM::LDRH_POST: { 3387 unsigned Rt = MI.getOperand(0).getReg(); 3388 unsigned Rm = MI.getOperand(3).getReg(); 3389 return (Rt == Rm) ? 3 : 2; 3390 } 3391 3392 case ARM::LDR_PRE_IMM: 3393 case ARM::LDRB_PRE_IMM: 3394 case ARM::LDR_POST_IMM: 3395 case ARM::LDRB_POST_IMM: 3396 case ARM::STRB_POST_IMM: 3397 case ARM::STRB_POST_REG: 3398 case ARM::STRB_PRE_IMM: 3399 case ARM::STRH_POST: 3400 case ARM::STR_POST_IMM: 3401 case ARM::STR_POST_REG: 3402 case ARM::STR_PRE_IMM: 3403 return 2; 3404 3405 case ARM::LDRSB_PRE: 3406 case ARM::LDRSH_PRE: { 3407 unsigned Rm = MI.getOperand(3).getReg(); 3408 if (Rm == 0) 3409 return 3; 3410 unsigned Rt = MI.getOperand(0).getReg(); 3411 if (Rt == Rm) 3412 return 4; 3413 unsigned ShOpVal = MI.getOperand(4).getImm(); 3414 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3415 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3416 if (!isSub && 3417 (ShImm == 0 || 3418 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3419 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3420 return 3; 3421 return 4; 3422 } 3423 3424 case ARM::LDRD: { 3425 unsigned Rt = MI.getOperand(0).getReg(); 3426 unsigned Rn = MI.getOperand(2).getReg(); 3427 unsigned Rm = MI.getOperand(3).getReg(); 3428 if (Rm) 3429 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 3430 : 3; 3431 return (Rt == Rn) ? 3 : 2; 3432 } 3433 3434 case ARM::STRD: { 3435 unsigned Rm = MI.getOperand(3).getReg(); 3436 if (Rm) 3437 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 3438 : 3; 3439 return 2; 3440 } 3441 3442 case ARM::LDRD_POST: 3443 case ARM::t2LDRD_POST: 3444 return 3; 3445 3446 case ARM::STRD_POST: 3447 case ARM::t2STRD_POST: 3448 return 4; 3449 3450 case ARM::LDRD_PRE: { 3451 unsigned Rt = MI.getOperand(0).getReg(); 3452 unsigned Rn = MI.getOperand(3).getReg(); 3453 unsigned Rm = MI.getOperand(4).getReg(); 3454 if (Rm) 3455 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 3456 : 4; 3457 return (Rt == Rn) ? 4 : 3; 3458 } 3459 3460 case ARM::t2LDRD_PRE: { 3461 unsigned Rt = MI.getOperand(0).getReg(); 3462 unsigned Rn = MI.getOperand(3).getReg(); 3463 return (Rt == Rn) ? 4 : 3; 3464 } 3465 3466 case ARM::STRD_PRE: { 3467 unsigned Rm = MI.getOperand(4).getReg(); 3468 if (Rm) 3469 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 3470 : 4; 3471 return 3; 3472 } 3473 3474 case ARM::t2STRD_PRE: 3475 return 3; 3476 3477 case ARM::t2LDR_POST: 3478 case ARM::t2LDRB_POST: 3479 case ARM::t2LDRB_PRE: 3480 case ARM::t2LDRSBi12: 3481 case ARM::t2LDRSBi8: 3482 case ARM::t2LDRSBpci: 3483 case ARM::t2LDRSBs: 3484 case ARM::t2LDRH_POST: 3485 case ARM::t2LDRH_PRE: 3486 case ARM::t2LDRSBT: 3487 case ARM::t2LDRSB_POST: 3488 case ARM::t2LDRSB_PRE: 3489 case ARM::t2LDRSH_POST: 3490 case ARM::t2LDRSH_PRE: 3491 case ARM::t2LDRSHi12: 3492 case ARM::t2LDRSHi8: 3493 case ARM::t2LDRSHpci: 3494 case ARM::t2LDRSHs: 3495 return 2; 3496 3497 case ARM::t2LDRDi8: { 3498 unsigned Rt = MI.getOperand(0).getReg(); 3499 unsigned Rn = MI.getOperand(2).getReg(); 3500 return (Rt == Rn) ? 3 : 2; 3501 } 3502 3503 case ARM::t2STRB_POST: 3504 case ARM::t2STRB_PRE: 3505 case ARM::t2STRBs: 3506 case ARM::t2STRDi8: 3507 case ARM::t2STRH_POST: 3508 case ARM::t2STRH_PRE: 3509 case ARM::t2STRHs: 3510 case ARM::t2STR_POST: 3511 case ARM::t2STR_PRE: 3512 case ARM::t2STRs: 3513 return 2; 3514 } 3515 } 3516 3517 // Return the number of 32-bit words loaded by LDM or stored by STM. If this 3518 // can't be easily determined return 0 (missing MachineMemOperand). 3519 // 3520 // FIXME: The current MachineInstr design does not support relying on machine 3521 // mem operands to determine the width of a memory access. Instead, we expect 3522 // the target to provide this information based on the instruction opcode and 3523 // operands. However, using MachineMemOperand is the best solution now for 3524 // two reasons: 3525 // 3526 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI 3527 // operands. This is much more dangerous than using the MachineMemOperand 3528 // sizes because CodeGen passes can insert/remove optional machine operands. In 3529 // fact, it's totally incorrect for preRA passes and appears to be wrong for 3530 // postRA passes as well. 3531 // 3532 // 2) getNumLDMAddresses is only used by the scheduling machine model and any 3533 // machine model that calls this should handle the unknown (zero size) case. 3534 // 3535 // Long term, we should require a target hook that verifies MachineMemOperand 3536 // sizes during MC lowering. That target hook should be local to MC lowering 3537 // because we can't ensure that it is aware of other MI forms. Doing this will 3538 // ensure that MachineMemOperands are correctly propagated through all passes. 3539 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const { 3540 unsigned Size = 0; 3541 for (MachineInstr::mmo_iterator I = MI.memoperands_begin(), 3542 E = MI.memoperands_end(); 3543 I != E; ++I) { 3544 Size += (*I)->getSize(); 3545 } 3546 // FIXME: The scheduler currently can't handle values larger than 16. But 3547 // the values can actually go up to 32 for floating-point load/store 3548 // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory 3549 // operations isn't right; we could end up with "extra" memory operands for 3550 // various reasons, like tail merge merging two memory operations. 3551 return std::min(Size / 4, 16U); 3552 } 3553 3554 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc, 3555 unsigned NumRegs) { 3556 unsigned UOps = 1 + NumRegs; // 1 for address computation. 3557 switch (Opc) { 3558 default: 3559 break; 3560 case ARM::VLDMDIA_UPD: 3561 case ARM::VLDMDDB_UPD: 3562 case ARM::VLDMSIA_UPD: 3563 case ARM::VLDMSDB_UPD: 3564 case ARM::VSTMDIA_UPD: 3565 case ARM::VSTMDDB_UPD: 3566 case ARM::VSTMSIA_UPD: 3567 case ARM::VSTMSDB_UPD: 3568 case ARM::LDMIA_UPD: 3569 case ARM::LDMDA_UPD: 3570 case ARM::LDMDB_UPD: 3571 case ARM::LDMIB_UPD: 3572 case ARM::STMIA_UPD: 3573 case ARM::STMDA_UPD: 3574 case ARM::STMDB_UPD: 3575 case ARM::STMIB_UPD: 3576 case ARM::tLDMIA_UPD: 3577 case ARM::tSTMIA_UPD: 3578 case ARM::t2LDMIA_UPD: 3579 case ARM::t2LDMDB_UPD: 3580 case ARM::t2STMIA_UPD: 3581 case ARM::t2STMDB_UPD: 3582 ++UOps; // One for base register writeback. 3583 break; 3584 case ARM::LDMIA_RET: 3585 case ARM::tPOP_RET: 3586 case ARM::t2LDMIA_RET: 3587 UOps += 2; // One for base reg wb, one for write to pc. 3588 break; 3589 } 3590 return UOps; 3591 } 3592 3593 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 3594 const MachineInstr &MI) const { 3595 if (!ItinData || ItinData->isEmpty()) 3596 return 1; 3597 3598 const MCInstrDesc &Desc = MI.getDesc(); 3599 unsigned Class = Desc.getSchedClass(); 3600 int ItinUOps = ItinData->getNumMicroOps(Class); 3601 if (ItinUOps >= 0) { 3602 if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore())) 3603 return getNumMicroOpsSwiftLdSt(ItinData, MI); 3604 3605 return ItinUOps; 3606 } 3607 3608 unsigned Opc = MI.getOpcode(); 3609 switch (Opc) { 3610 default: 3611 llvm_unreachable("Unexpected multi-uops instruction!"); 3612 case ARM::VLDMQIA: 3613 case ARM::VSTMQIA: 3614 return 2; 3615 3616 // The number of uOps for load / store multiple are determined by the number 3617 // registers. 3618 // 3619 // On Cortex-A8, each pair of register loads / stores can be scheduled on the 3620 // same cycle. The scheduling for the first load / store must be done 3621 // separately by assuming the address is not 64-bit aligned. 3622 // 3623 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address 3624 // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON 3625 // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1. 3626 case ARM::VLDMDIA: 3627 case ARM::VLDMDIA_UPD: 3628 case ARM::VLDMDDB_UPD: 3629 case ARM::VLDMSIA: 3630 case ARM::VLDMSIA_UPD: 3631 case ARM::VLDMSDB_UPD: 3632 case ARM::VSTMDIA: 3633 case ARM::VSTMDIA_UPD: 3634 case ARM::VSTMDDB_UPD: 3635 case ARM::VSTMSIA: 3636 case ARM::VSTMSIA_UPD: 3637 case ARM::VSTMSDB_UPD: { 3638 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands(); 3639 return (NumRegs / 2) + (NumRegs % 2) + 1; 3640 } 3641 3642 case ARM::LDMIA_RET: 3643 case ARM::LDMIA: 3644 case ARM::LDMDA: 3645 case ARM::LDMDB: 3646 case ARM::LDMIB: 3647 case ARM::LDMIA_UPD: 3648 case ARM::LDMDA_UPD: 3649 case ARM::LDMDB_UPD: 3650 case ARM::LDMIB_UPD: 3651 case ARM::STMIA: 3652 case ARM::STMDA: 3653 case ARM::STMDB: 3654 case ARM::STMIB: 3655 case ARM::STMIA_UPD: 3656 case ARM::STMDA_UPD: 3657 case ARM::STMDB_UPD: 3658 case ARM::STMIB_UPD: 3659 case ARM::tLDMIA: 3660 case ARM::tLDMIA_UPD: 3661 case ARM::tSTMIA_UPD: 3662 case ARM::tPOP_RET: 3663 case ARM::tPOP: 3664 case ARM::tPUSH: 3665 case ARM::t2LDMIA_RET: 3666 case ARM::t2LDMIA: 3667 case ARM::t2LDMDB: 3668 case ARM::t2LDMIA_UPD: 3669 case ARM::t2LDMDB_UPD: 3670 case ARM::t2STMIA: 3671 case ARM::t2STMDB: 3672 case ARM::t2STMIA_UPD: 3673 case ARM::t2STMDB_UPD: { 3674 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1; 3675 switch (Subtarget.getLdStMultipleTiming()) { 3676 case ARMSubtarget::SingleIssuePlusExtras: 3677 return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs); 3678 case ARMSubtarget::SingleIssue: 3679 // Assume the worst. 3680 return NumRegs; 3681 case ARMSubtarget::DoubleIssue: { 3682 if (NumRegs < 4) 3683 return 2; 3684 // 4 registers would be issued: 2, 2. 3685 // 5 registers would be issued: 2, 2, 1. 3686 unsigned UOps = (NumRegs / 2); 3687 if (NumRegs % 2) 3688 ++UOps; 3689 return UOps; 3690 } 3691 case ARMSubtarget::DoubleIssueCheckUnalignedAccess: { 3692 unsigned UOps = (NumRegs / 2); 3693 // If there are odd number of registers or if it's not 64-bit aligned, 3694 // then it takes an extra AGU (Address Generation Unit) cycle. 3695 if ((NumRegs % 2) || !MI.hasOneMemOperand() || 3696 (*MI.memoperands_begin())->getAlignment() < 8) 3697 ++UOps; 3698 return UOps; 3699 } 3700 } 3701 } 3702 } 3703 llvm_unreachable("Didn't find the number of microops"); 3704 } 3705 3706 int 3707 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData, 3708 const MCInstrDesc &DefMCID, 3709 unsigned DefClass, 3710 unsigned DefIdx, unsigned DefAlign) const { 3711 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3712 if (RegNo <= 0) 3713 // Def is the address writeback. 3714 return ItinData->getOperandCycle(DefClass, DefIdx); 3715 3716 int DefCycle; 3717 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3718 // (regno / 2) + (regno % 2) + 1 3719 DefCycle = RegNo / 2 + 1; 3720 if (RegNo % 2) 3721 ++DefCycle; 3722 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3723 DefCycle = RegNo; 3724 bool isSLoad = false; 3725 3726 switch (DefMCID.getOpcode()) { 3727 default: break; 3728 case ARM::VLDMSIA: 3729 case ARM::VLDMSIA_UPD: 3730 case ARM::VLDMSDB_UPD: 3731 isSLoad = true; 3732 break; 3733 } 3734 3735 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3736 // then it takes an extra cycle. 3737 if ((isSLoad && (RegNo % 2)) || DefAlign < 8) 3738 ++DefCycle; 3739 } else { 3740 // Assume the worst. 3741 DefCycle = RegNo + 2; 3742 } 3743 3744 return DefCycle; 3745 } 3746 3747 bool ARMBaseInstrInfo::isLDMBaseRegInList(const MachineInstr &MI) const { 3748 unsigned BaseReg = MI.getOperand(0).getReg(); 3749 for (unsigned i = 1, sz = MI.getNumOperands(); i < sz; ++i) { 3750 const auto &Op = MI.getOperand(i); 3751 if (Op.isReg() && Op.getReg() == BaseReg) 3752 return true; 3753 } 3754 return false; 3755 } 3756 unsigned 3757 ARMBaseInstrInfo::getLDMVariableDefsSize(const MachineInstr &MI) const { 3758 // ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops 3759 // (outs GPR:$wb), (ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops) 3760 return MI.getNumOperands() + 1 - MI.getDesc().getNumOperands(); 3761 } 3762 3763 int 3764 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData, 3765 const MCInstrDesc &DefMCID, 3766 unsigned DefClass, 3767 unsigned DefIdx, unsigned DefAlign) const { 3768 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3769 if (RegNo <= 0) 3770 // Def is the address writeback. 3771 return ItinData->getOperandCycle(DefClass, DefIdx); 3772 3773 int DefCycle; 3774 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3775 // 4 registers would be issued: 1, 2, 1. 3776 // 5 registers would be issued: 1, 2, 2. 3777 DefCycle = RegNo / 2; 3778 if (DefCycle < 1) 3779 DefCycle = 1; 3780 // Result latency is issue cycle + 2: E2. 3781 DefCycle += 2; 3782 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3783 DefCycle = (RegNo / 2); 3784 // If there are odd number of registers or if it's not 64-bit aligned, 3785 // then it takes an extra AGU (Address Generation Unit) cycle. 3786 if ((RegNo % 2) || DefAlign < 8) 3787 ++DefCycle; 3788 // Result latency is AGU cycles + 2. 3789 DefCycle += 2; 3790 } else { 3791 // Assume the worst. 3792 DefCycle = RegNo + 2; 3793 } 3794 3795 return DefCycle; 3796 } 3797 3798 int 3799 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData, 3800 const MCInstrDesc &UseMCID, 3801 unsigned UseClass, 3802 unsigned UseIdx, unsigned UseAlign) const { 3803 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3804 if (RegNo <= 0) 3805 return ItinData->getOperandCycle(UseClass, UseIdx); 3806 3807 int UseCycle; 3808 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3809 // (regno / 2) + (regno % 2) + 1 3810 UseCycle = RegNo / 2 + 1; 3811 if (RegNo % 2) 3812 ++UseCycle; 3813 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3814 UseCycle = RegNo; 3815 bool isSStore = false; 3816 3817 switch (UseMCID.getOpcode()) { 3818 default: break; 3819 case ARM::VSTMSIA: 3820 case ARM::VSTMSIA_UPD: 3821 case ARM::VSTMSDB_UPD: 3822 isSStore = true; 3823 break; 3824 } 3825 3826 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3827 // then it takes an extra cycle. 3828 if ((isSStore && (RegNo % 2)) || UseAlign < 8) 3829 ++UseCycle; 3830 } else { 3831 // Assume the worst. 3832 UseCycle = RegNo + 2; 3833 } 3834 3835 return UseCycle; 3836 } 3837 3838 int 3839 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData, 3840 const MCInstrDesc &UseMCID, 3841 unsigned UseClass, 3842 unsigned UseIdx, unsigned UseAlign) const { 3843 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3844 if (RegNo <= 0) 3845 return ItinData->getOperandCycle(UseClass, UseIdx); 3846 3847 int UseCycle; 3848 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3849 UseCycle = RegNo / 2; 3850 if (UseCycle < 2) 3851 UseCycle = 2; 3852 // Read in E3. 3853 UseCycle += 2; 3854 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3855 UseCycle = (RegNo / 2); 3856 // If there are odd number of registers or if it's not 64-bit aligned, 3857 // then it takes an extra AGU (Address Generation Unit) cycle. 3858 if ((RegNo % 2) || UseAlign < 8) 3859 ++UseCycle; 3860 } else { 3861 // Assume the worst. 3862 UseCycle = 1; 3863 } 3864 return UseCycle; 3865 } 3866 3867 int 3868 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 3869 const MCInstrDesc &DefMCID, 3870 unsigned DefIdx, unsigned DefAlign, 3871 const MCInstrDesc &UseMCID, 3872 unsigned UseIdx, unsigned UseAlign) const { 3873 unsigned DefClass = DefMCID.getSchedClass(); 3874 unsigned UseClass = UseMCID.getSchedClass(); 3875 3876 if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands()) 3877 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 3878 3879 // This may be a def / use of a variable_ops instruction, the operand 3880 // latency might be determinable dynamically. Let the target try to 3881 // figure it out. 3882 int DefCycle = -1; 3883 bool LdmBypass = false; 3884 switch (DefMCID.getOpcode()) { 3885 default: 3886 DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 3887 break; 3888 3889 case ARM::VLDMDIA: 3890 case ARM::VLDMDIA_UPD: 3891 case ARM::VLDMDDB_UPD: 3892 case ARM::VLDMSIA: 3893 case ARM::VLDMSIA_UPD: 3894 case ARM::VLDMSDB_UPD: 3895 DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 3896 break; 3897 3898 case ARM::LDMIA_RET: 3899 case ARM::LDMIA: 3900 case ARM::LDMDA: 3901 case ARM::LDMDB: 3902 case ARM::LDMIB: 3903 case ARM::LDMIA_UPD: 3904 case ARM::LDMDA_UPD: 3905 case ARM::LDMDB_UPD: 3906 case ARM::LDMIB_UPD: 3907 case ARM::tLDMIA: 3908 case ARM::tLDMIA_UPD: 3909 case ARM::tPUSH: 3910 case ARM::t2LDMIA_RET: 3911 case ARM::t2LDMIA: 3912 case ARM::t2LDMDB: 3913 case ARM::t2LDMIA_UPD: 3914 case ARM::t2LDMDB_UPD: 3915 LdmBypass = true; 3916 DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 3917 break; 3918 } 3919 3920 if (DefCycle == -1) 3921 // We can't seem to determine the result latency of the def, assume it's 2. 3922 DefCycle = 2; 3923 3924 int UseCycle = -1; 3925 switch (UseMCID.getOpcode()) { 3926 default: 3927 UseCycle = ItinData->getOperandCycle(UseClass, UseIdx); 3928 break; 3929 3930 case ARM::VSTMDIA: 3931 case ARM::VSTMDIA_UPD: 3932 case ARM::VSTMDDB_UPD: 3933 case ARM::VSTMSIA: 3934 case ARM::VSTMSIA_UPD: 3935 case ARM::VSTMSDB_UPD: 3936 UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 3937 break; 3938 3939 case ARM::STMIA: 3940 case ARM::STMDA: 3941 case ARM::STMDB: 3942 case ARM::STMIB: 3943 case ARM::STMIA_UPD: 3944 case ARM::STMDA_UPD: 3945 case ARM::STMDB_UPD: 3946 case ARM::STMIB_UPD: 3947 case ARM::tSTMIA_UPD: 3948 case ARM::tPOP_RET: 3949 case ARM::tPOP: 3950 case ARM::t2STMIA: 3951 case ARM::t2STMDB: 3952 case ARM::t2STMIA_UPD: 3953 case ARM::t2STMDB_UPD: 3954 UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 3955 break; 3956 } 3957 3958 if (UseCycle == -1) 3959 // Assume it's read in the first stage. 3960 UseCycle = 1; 3961 3962 UseCycle = DefCycle - UseCycle + 1; 3963 if (UseCycle > 0) { 3964 if (LdmBypass) { 3965 // It's a variable_ops instruction so we can't use DefIdx here. Just use 3966 // first def operand. 3967 if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1, 3968 UseClass, UseIdx)) 3969 --UseCycle; 3970 } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx, 3971 UseClass, UseIdx)) { 3972 --UseCycle; 3973 } 3974 } 3975 3976 return UseCycle; 3977 } 3978 3979 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI, 3980 const MachineInstr *MI, unsigned Reg, 3981 unsigned &DefIdx, unsigned &Dist) { 3982 Dist = 0; 3983 3984 MachineBasicBlock::const_iterator I = MI; ++I; 3985 MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator()); 3986 assert(II->isInsideBundle() && "Empty bundle?"); 3987 3988 int Idx = -1; 3989 while (II->isInsideBundle()) { 3990 Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI); 3991 if (Idx != -1) 3992 break; 3993 --II; 3994 ++Dist; 3995 } 3996 3997 assert(Idx != -1 && "Cannot find bundled definition!"); 3998 DefIdx = Idx; 3999 return &*II; 4000 } 4001 4002 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI, 4003 const MachineInstr &MI, unsigned Reg, 4004 unsigned &UseIdx, unsigned &Dist) { 4005 Dist = 0; 4006 4007 MachineBasicBlock::const_instr_iterator II = ++MI.getIterator(); 4008 assert(II->isInsideBundle() && "Empty bundle?"); 4009 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 4010 4011 // FIXME: This doesn't properly handle multiple uses. 4012 int Idx = -1; 4013 while (II != E && II->isInsideBundle()) { 4014 Idx = II->findRegisterUseOperandIdx(Reg, false, TRI); 4015 if (Idx != -1) 4016 break; 4017 if (II->getOpcode() != ARM::t2IT) 4018 ++Dist; 4019 ++II; 4020 } 4021 4022 if (Idx == -1) { 4023 Dist = 0; 4024 return nullptr; 4025 } 4026 4027 UseIdx = Idx; 4028 return &*II; 4029 } 4030 4031 /// Return the number of cycles to add to (or subtract from) the static 4032 /// itinerary based on the def opcode and alignment. The caller will ensure that 4033 /// adjusted latency is at least one cycle. 4034 static int adjustDefLatency(const ARMSubtarget &Subtarget, 4035 const MachineInstr &DefMI, 4036 const MCInstrDesc &DefMCID, unsigned DefAlign) { 4037 int Adjust = 0; 4038 if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) { 4039 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 4040 // variants are one cycle cheaper. 4041 switch (DefMCID.getOpcode()) { 4042 default: break; 4043 case ARM::LDRrs: 4044 case ARM::LDRBrs: { 4045 unsigned ShOpVal = DefMI.getOperand(3).getImm(); 4046 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4047 if (ShImm == 0 || 4048 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4049 --Adjust; 4050 break; 4051 } 4052 case ARM::t2LDRs: 4053 case ARM::t2LDRBs: 4054 case ARM::t2LDRHs: 4055 case ARM::t2LDRSHs: { 4056 // Thumb2 mode: lsl only. 4057 unsigned ShAmt = DefMI.getOperand(3).getImm(); 4058 if (ShAmt == 0 || ShAmt == 2) 4059 --Adjust; 4060 break; 4061 } 4062 } 4063 } else if (Subtarget.isSwift()) { 4064 // FIXME: Properly handle all of the latency adjustments for address 4065 // writeback. 4066 switch (DefMCID.getOpcode()) { 4067 default: break; 4068 case ARM::LDRrs: 4069 case ARM::LDRBrs: { 4070 unsigned ShOpVal = DefMI.getOperand(3).getImm(); 4071 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 4072 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4073 if (!isSub && 4074 (ShImm == 0 || 4075 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 4076 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 4077 Adjust -= 2; 4078 else if (!isSub && 4079 ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 4080 --Adjust; 4081 break; 4082 } 4083 case ARM::t2LDRs: 4084 case ARM::t2LDRBs: 4085 case ARM::t2LDRHs: 4086 case ARM::t2LDRSHs: { 4087 // Thumb2 mode: lsl only. 4088 unsigned ShAmt = DefMI.getOperand(3).getImm(); 4089 if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3) 4090 Adjust -= 2; 4091 break; 4092 } 4093 } 4094 } 4095 4096 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) { 4097 switch (DefMCID.getOpcode()) { 4098 default: break; 4099 case ARM::VLD1q8: 4100 case ARM::VLD1q16: 4101 case ARM::VLD1q32: 4102 case ARM::VLD1q64: 4103 case ARM::VLD1q8wb_fixed: 4104 case ARM::VLD1q16wb_fixed: 4105 case ARM::VLD1q32wb_fixed: 4106 case ARM::VLD1q64wb_fixed: 4107 case ARM::VLD1q8wb_register: 4108 case ARM::VLD1q16wb_register: 4109 case ARM::VLD1q32wb_register: 4110 case ARM::VLD1q64wb_register: 4111 case ARM::VLD2d8: 4112 case ARM::VLD2d16: 4113 case ARM::VLD2d32: 4114 case ARM::VLD2q8: 4115 case ARM::VLD2q16: 4116 case ARM::VLD2q32: 4117 case ARM::VLD2d8wb_fixed: 4118 case ARM::VLD2d16wb_fixed: 4119 case ARM::VLD2d32wb_fixed: 4120 case ARM::VLD2q8wb_fixed: 4121 case ARM::VLD2q16wb_fixed: 4122 case ARM::VLD2q32wb_fixed: 4123 case ARM::VLD2d8wb_register: 4124 case ARM::VLD2d16wb_register: 4125 case ARM::VLD2d32wb_register: 4126 case ARM::VLD2q8wb_register: 4127 case ARM::VLD2q16wb_register: 4128 case ARM::VLD2q32wb_register: 4129 case ARM::VLD3d8: 4130 case ARM::VLD3d16: 4131 case ARM::VLD3d32: 4132 case ARM::VLD1d64T: 4133 case ARM::VLD3d8_UPD: 4134 case ARM::VLD3d16_UPD: 4135 case ARM::VLD3d32_UPD: 4136 case ARM::VLD1d64Twb_fixed: 4137 case ARM::VLD1d64Twb_register: 4138 case ARM::VLD3q8_UPD: 4139 case ARM::VLD3q16_UPD: 4140 case ARM::VLD3q32_UPD: 4141 case ARM::VLD4d8: 4142 case ARM::VLD4d16: 4143 case ARM::VLD4d32: 4144 case ARM::VLD1d64Q: 4145 case ARM::VLD4d8_UPD: 4146 case ARM::VLD4d16_UPD: 4147 case ARM::VLD4d32_UPD: 4148 case ARM::VLD1d64Qwb_fixed: 4149 case ARM::VLD1d64Qwb_register: 4150 case ARM::VLD4q8_UPD: 4151 case ARM::VLD4q16_UPD: 4152 case ARM::VLD4q32_UPD: 4153 case ARM::VLD1DUPq8: 4154 case ARM::VLD1DUPq16: 4155 case ARM::VLD1DUPq32: 4156 case ARM::VLD1DUPq8wb_fixed: 4157 case ARM::VLD1DUPq16wb_fixed: 4158 case ARM::VLD1DUPq32wb_fixed: 4159 case ARM::VLD1DUPq8wb_register: 4160 case ARM::VLD1DUPq16wb_register: 4161 case ARM::VLD1DUPq32wb_register: 4162 case ARM::VLD2DUPd8: 4163 case ARM::VLD2DUPd16: 4164 case ARM::VLD2DUPd32: 4165 case ARM::VLD2DUPd8wb_fixed: 4166 case ARM::VLD2DUPd16wb_fixed: 4167 case ARM::VLD2DUPd32wb_fixed: 4168 case ARM::VLD2DUPd8wb_register: 4169 case ARM::VLD2DUPd16wb_register: 4170 case ARM::VLD2DUPd32wb_register: 4171 case ARM::VLD4DUPd8: 4172 case ARM::VLD4DUPd16: 4173 case ARM::VLD4DUPd32: 4174 case ARM::VLD4DUPd8_UPD: 4175 case ARM::VLD4DUPd16_UPD: 4176 case ARM::VLD4DUPd32_UPD: 4177 case ARM::VLD1LNd8: 4178 case ARM::VLD1LNd16: 4179 case ARM::VLD1LNd32: 4180 case ARM::VLD1LNd8_UPD: 4181 case ARM::VLD1LNd16_UPD: 4182 case ARM::VLD1LNd32_UPD: 4183 case ARM::VLD2LNd8: 4184 case ARM::VLD2LNd16: 4185 case ARM::VLD2LNd32: 4186 case ARM::VLD2LNq16: 4187 case ARM::VLD2LNq32: 4188 case ARM::VLD2LNd8_UPD: 4189 case ARM::VLD2LNd16_UPD: 4190 case ARM::VLD2LNd32_UPD: 4191 case ARM::VLD2LNq16_UPD: 4192 case ARM::VLD2LNq32_UPD: 4193 case ARM::VLD4LNd8: 4194 case ARM::VLD4LNd16: 4195 case ARM::VLD4LNd32: 4196 case ARM::VLD4LNq16: 4197 case ARM::VLD4LNq32: 4198 case ARM::VLD4LNd8_UPD: 4199 case ARM::VLD4LNd16_UPD: 4200 case ARM::VLD4LNd32_UPD: 4201 case ARM::VLD4LNq16_UPD: 4202 case ARM::VLD4LNq32_UPD: 4203 // If the address is not 64-bit aligned, the latencies of these 4204 // instructions increases by one. 4205 ++Adjust; 4206 break; 4207 } 4208 } 4209 return Adjust; 4210 } 4211 4212 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4213 const MachineInstr &DefMI, 4214 unsigned DefIdx, 4215 const MachineInstr &UseMI, 4216 unsigned UseIdx) const { 4217 // No operand latency. The caller may fall back to getInstrLatency. 4218 if (!ItinData || ItinData->isEmpty()) 4219 return -1; 4220 4221 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 4222 unsigned Reg = DefMO.getReg(); 4223 4224 const MachineInstr *ResolvedDefMI = &DefMI; 4225 unsigned DefAdj = 0; 4226 if (DefMI.isBundle()) 4227 ResolvedDefMI = 4228 getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj); 4229 if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() || 4230 ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) { 4231 return 1; 4232 } 4233 4234 const MachineInstr *ResolvedUseMI = &UseMI; 4235 unsigned UseAdj = 0; 4236 if (UseMI.isBundle()) { 4237 ResolvedUseMI = 4238 getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj); 4239 if (!ResolvedUseMI) 4240 return -1; 4241 } 4242 4243 return getOperandLatencyImpl( 4244 ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO, 4245 Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj); 4246 } 4247 4248 int ARMBaseInstrInfo::getOperandLatencyImpl( 4249 const InstrItineraryData *ItinData, const MachineInstr &DefMI, 4250 unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj, 4251 const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI, 4252 unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const { 4253 if (Reg == ARM::CPSR) { 4254 if (DefMI.getOpcode() == ARM::FMSTAT) { 4255 // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?) 4256 return Subtarget.isLikeA9() ? 1 : 20; 4257 } 4258 4259 // CPSR set and branch can be paired in the same cycle. 4260 if (UseMI.isBranch()) 4261 return 0; 4262 4263 // Otherwise it takes the instruction latency (generally one). 4264 unsigned Latency = getInstrLatency(ItinData, DefMI); 4265 4266 // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to 4267 // its uses. Instructions which are otherwise scheduled between them may 4268 // incur a code size penalty (not able to use the CPSR setting 16-bit 4269 // instructions). 4270 if (Latency > 0 && Subtarget.isThumb2()) { 4271 const MachineFunction *MF = DefMI.getParent()->getParent(); 4272 // FIXME: Use Function::hasOptSize(). 4273 if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize)) 4274 --Latency; 4275 } 4276 return Latency; 4277 } 4278 4279 if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit()) 4280 return -1; 4281 4282 unsigned DefAlign = DefMI.hasOneMemOperand() 4283 ? (*DefMI.memoperands_begin())->getAlignment() 4284 : 0; 4285 unsigned UseAlign = UseMI.hasOneMemOperand() 4286 ? (*UseMI.memoperands_begin())->getAlignment() 4287 : 0; 4288 4289 // Get the itinerary's latency if possible, and handle variable_ops. 4290 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID, 4291 UseIdx, UseAlign); 4292 // Unable to find operand latency. The caller may resort to getInstrLatency. 4293 if (Latency < 0) 4294 return Latency; 4295 4296 // Adjust for IT block position. 4297 int Adj = DefAdj + UseAdj; 4298 4299 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4300 Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign); 4301 if (Adj >= 0 || (int)Latency > -Adj) { 4302 return Latency + Adj; 4303 } 4304 // Return the itinerary latency, which may be zero but not less than zero. 4305 return Latency; 4306 } 4307 4308 int 4309 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4310 SDNode *DefNode, unsigned DefIdx, 4311 SDNode *UseNode, unsigned UseIdx) const { 4312 if (!DefNode->isMachineOpcode()) 4313 return 1; 4314 4315 const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode()); 4316 4317 if (isZeroCost(DefMCID.Opcode)) 4318 return 0; 4319 4320 if (!ItinData || ItinData->isEmpty()) 4321 return DefMCID.mayLoad() ? 3 : 1; 4322 4323 if (!UseNode->isMachineOpcode()) { 4324 int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx); 4325 int Adj = Subtarget.getPreISelOperandLatencyAdjustment(); 4326 int Threshold = 1 + Adj; 4327 return Latency <= Threshold ? 1 : Latency - Adj; 4328 } 4329 4330 const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode()); 4331 const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode); 4332 unsigned DefAlign = !DefMN->memoperands_empty() 4333 ? (*DefMN->memoperands_begin())->getAlignment() : 0; 4334 const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode); 4335 unsigned UseAlign = !UseMN->memoperands_empty() 4336 ? (*UseMN->memoperands_begin())->getAlignment() : 0; 4337 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, 4338 UseMCID, UseIdx, UseAlign); 4339 4340 if (Latency > 1 && 4341 (Subtarget.isCortexA8() || Subtarget.isLikeA9() || 4342 Subtarget.isCortexA7())) { 4343 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 4344 // variants are one cycle cheaper. 4345 switch (DefMCID.getOpcode()) { 4346 default: break; 4347 case ARM::LDRrs: 4348 case ARM::LDRBrs: { 4349 unsigned ShOpVal = 4350 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4351 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4352 if (ShImm == 0 || 4353 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4354 --Latency; 4355 break; 4356 } 4357 case ARM::t2LDRs: 4358 case ARM::t2LDRBs: 4359 case ARM::t2LDRHs: 4360 case ARM::t2LDRSHs: { 4361 // Thumb2 mode: lsl only. 4362 unsigned ShAmt = 4363 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4364 if (ShAmt == 0 || ShAmt == 2) 4365 --Latency; 4366 break; 4367 } 4368 } 4369 } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) { 4370 // FIXME: Properly handle all of the latency adjustments for address 4371 // writeback. 4372 switch (DefMCID.getOpcode()) { 4373 default: break; 4374 case ARM::LDRrs: 4375 case ARM::LDRBrs: { 4376 unsigned ShOpVal = 4377 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4378 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4379 if (ShImm == 0 || 4380 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 4381 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4382 Latency -= 2; 4383 else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 4384 --Latency; 4385 break; 4386 } 4387 case ARM::t2LDRs: 4388 case ARM::t2LDRBs: 4389 case ARM::t2LDRHs: 4390 case ARM::t2LDRSHs: 4391 // Thumb2 mode: lsl 0-3 only. 4392 Latency -= 2; 4393 break; 4394 } 4395 } 4396 4397 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) 4398 switch (DefMCID.getOpcode()) { 4399 default: break; 4400 case ARM::VLD1q8: 4401 case ARM::VLD1q16: 4402 case ARM::VLD1q32: 4403 case ARM::VLD1q64: 4404 case ARM::VLD1q8wb_register: 4405 case ARM::VLD1q16wb_register: 4406 case ARM::VLD1q32wb_register: 4407 case ARM::VLD1q64wb_register: 4408 case ARM::VLD1q8wb_fixed: 4409 case ARM::VLD1q16wb_fixed: 4410 case ARM::VLD1q32wb_fixed: 4411 case ARM::VLD1q64wb_fixed: 4412 case ARM::VLD2d8: 4413 case ARM::VLD2d16: 4414 case ARM::VLD2d32: 4415 case ARM::VLD2q8Pseudo: 4416 case ARM::VLD2q16Pseudo: 4417 case ARM::VLD2q32Pseudo: 4418 case ARM::VLD2d8wb_fixed: 4419 case ARM::VLD2d16wb_fixed: 4420 case ARM::VLD2d32wb_fixed: 4421 case ARM::VLD2q8PseudoWB_fixed: 4422 case ARM::VLD2q16PseudoWB_fixed: 4423 case ARM::VLD2q32PseudoWB_fixed: 4424 case ARM::VLD2d8wb_register: 4425 case ARM::VLD2d16wb_register: 4426 case ARM::VLD2d32wb_register: 4427 case ARM::VLD2q8PseudoWB_register: 4428 case ARM::VLD2q16PseudoWB_register: 4429 case ARM::VLD2q32PseudoWB_register: 4430 case ARM::VLD3d8Pseudo: 4431 case ARM::VLD3d16Pseudo: 4432 case ARM::VLD3d32Pseudo: 4433 case ARM::VLD1d8TPseudo: 4434 case ARM::VLD1d16TPseudo: 4435 case ARM::VLD1d32TPseudo: 4436 case ARM::VLD1d64TPseudo: 4437 case ARM::VLD1d64TPseudoWB_fixed: 4438 case ARM::VLD1d64TPseudoWB_register: 4439 case ARM::VLD3d8Pseudo_UPD: 4440 case ARM::VLD3d16Pseudo_UPD: 4441 case ARM::VLD3d32Pseudo_UPD: 4442 case ARM::VLD3q8Pseudo_UPD: 4443 case ARM::VLD3q16Pseudo_UPD: 4444 case ARM::VLD3q32Pseudo_UPD: 4445 case ARM::VLD3q8oddPseudo: 4446 case ARM::VLD3q16oddPseudo: 4447 case ARM::VLD3q32oddPseudo: 4448 case ARM::VLD3q8oddPseudo_UPD: 4449 case ARM::VLD3q16oddPseudo_UPD: 4450 case ARM::VLD3q32oddPseudo_UPD: 4451 case ARM::VLD4d8Pseudo: 4452 case ARM::VLD4d16Pseudo: 4453 case ARM::VLD4d32Pseudo: 4454 case ARM::VLD1d8QPseudo: 4455 case ARM::VLD1d16QPseudo: 4456 case ARM::VLD1d32QPseudo: 4457 case ARM::VLD1d64QPseudo: 4458 case ARM::VLD1d64QPseudoWB_fixed: 4459 case ARM::VLD1d64QPseudoWB_register: 4460 case ARM::VLD1q8HighQPseudo: 4461 case ARM::VLD1q8LowQPseudo_UPD: 4462 case ARM::VLD1q8HighTPseudo: 4463 case ARM::VLD1q8LowTPseudo_UPD: 4464 case ARM::VLD1q16HighQPseudo: 4465 case ARM::VLD1q16LowQPseudo_UPD: 4466 case ARM::VLD1q16HighTPseudo: 4467 case ARM::VLD1q16LowTPseudo_UPD: 4468 case ARM::VLD1q32HighQPseudo: 4469 case ARM::VLD1q32LowQPseudo_UPD: 4470 case ARM::VLD1q32HighTPseudo: 4471 case ARM::VLD1q32LowTPseudo_UPD: 4472 case ARM::VLD1q64HighQPseudo: 4473 case ARM::VLD1q64LowQPseudo_UPD: 4474 case ARM::VLD1q64HighTPseudo: 4475 case ARM::VLD1q64LowTPseudo_UPD: 4476 case ARM::VLD4d8Pseudo_UPD: 4477 case ARM::VLD4d16Pseudo_UPD: 4478 case ARM::VLD4d32Pseudo_UPD: 4479 case ARM::VLD4q8Pseudo_UPD: 4480 case ARM::VLD4q16Pseudo_UPD: 4481 case ARM::VLD4q32Pseudo_UPD: 4482 case ARM::VLD4q8oddPseudo: 4483 case ARM::VLD4q16oddPseudo: 4484 case ARM::VLD4q32oddPseudo: 4485 case ARM::VLD4q8oddPseudo_UPD: 4486 case ARM::VLD4q16oddPseudo_UPD: 4487 case ARM::VLD4q32oddPseudo_UPD: 4488 case ARM::VLD1DUPq8: 4489 case ARM::VLD1DUPq16: 4490 case ARM::VLD1DUPq32: 4491 case ARM::VLD1DUPq8wb_fixed: 4492 case ARM::VLD1DUPq16wb_fixed: 4493 case ARM::VLD1DUPq32wb_fixed: 4494 case ARM::VLD1DUPq8wb_register: 4495 case ARM::VLD1DUPq16wb_register: 4496 case ARM::VLD1DUPq32wb_register: 4497 case ARM::VLD2DUPd8: 4498 case ARM::VLD2DUPd16: 4499 case ARM::VLD2DUPd32: 4500 case ARM::VLD2DUPd8wb_fixed: 4501 case ARM::VLD2DUPd16wb_fixed: 4502 case ARM::VLD2DUPd32wb_fixed: 4503 case ARM::VLD2DUPd8wb_register: 4504 case ARM::VLD2DUPd16wb_register: 4505 case ARM::VLD2DUPd32wb_register: 4506 case ARM::VLD2DUPq8EvenPseudo: 4507 case ARM::VLD2DUPq8OddPseudo: 4508 case ARM::VLD2DUPq16EvenPseudo: 4509 case ARM::VLD2DUPq16OddPseudo: 4510 case ARM::VLD2DUPq32EvenPseudo: 4511 case ARM::VLD2DUPq32OddPseudo: 4512 case ARM::VLD3DUPq8EvenPseudo: 4513 case ARM::VLD3DUPq8OddPseudo: 4514 case ARM::VLD3DUPq16EvenPseudo: 4515 case ARM::VLD3DUPq16OddPseudo: 4516 case ARM::VLD3DUPq32EvenPseudo: 4517 case ARM::VLD3DUPq32OddPseudo: 4518 case ARM::VLD4DUPd8Pseudo: 4519 case ARM::VLD4DUPd16Pseudo: 4520 case ARM::VLD4DUPd32Pseudo: 4521 case ARM::VLD4DUPd8Pseudo_UPD: 4522 case ARM::VLD4DUPd16Pseudo_UPD: 4523 case ARM::VLD4DUPd32Pseudo_UPD: 4524 case ARM::VLD4DUPq8EvenPseudo: 4525 case ARM::VLD4DUPq8OddPseudo: 4526 case ARM::VLD4DUPq16EvenPseudo: 4527 case ARM::VLD4DUPq16OddPseudo: 4528 case ARM::VLD4DUPq32EvenPseudo: 4529 case ARM::VLD4DUPq32OddPseudo: 4530 case ARM::VLD1LNq8Pseudo: 4531 case ARM::VLD1LNq16Pseudo: 4532 case ARM::VLD1LNq32Pseudo: 4533 case ARM::VLD1LNq8Pseudo_UPD: 4534 case ARM::VLD1LNq16Pseudo_UPD: 4535 case ARM::VLD1LNq32Pseudo_UPD: 4536 case ARM::VLD2LNd8Pseudo: 4537 case ARM::VLD2LNd16Pseudo: 4538 case ARM::VLD2LNd32Pseudo: 4539 case ARM::VLD2LNq16Pseudo: 4540 case ARM::VLD2LNq32Pseudo: 4541 case ARM::VLD2LNd8Pseudo_UPD: 4542 case ARM::VLD2LNd16Pseudo_UPD: 4543 case ARM::VLD2LNd32Pseudo_UPD: 4544 case ARM::VLD2LNq16Pseudo_UPD: 4545 case ARM::VLD2LNq32Pseudo_UPD: 4546 case ARM::VLD4LNd8Pseudo: 4547 case ARM::VLD4LNd16Pseudo: 4548 case ARM::VLD4LNd32Pseudo: 4549 case ARM::VLD4LNq16Pseudo: 4550 case ARM::VLD4LNq32Pseudo: 4551 case ARM::VLD4LNd8Pseudo_UPD: 4552 case ARM::VLD4LNd16Pseudo_UPD: 4553 case ARM::VLD4LNd32Pseudo_UPD: 4554 case ARM::VLD4LNq16Pseudo_UPD: 4555 case ARM::VLD4LNq32Pseudo_UPD: 4556 // If the address is not 64-bit aligned, the latencies of these 4557 // instructions increases by one. 4558 ++Latency; 4559 break; 4560 } 4561 4562 return Latency; 4563 } 4564 4565 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const { 4566 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || 4567 MI.isImplicitDef()) 4568 return 0; 4569 4570 if (MI.isBundle()) 4571 return 0; 4572 4573 const MCInstrDesc &MCID = MI.getDesc(); 4574 4575 if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && 4576 !Subtarget.cheapPredicableCPSRDef())) { 4577 // When predicated, CPSR is an additional source operand for CPSR updating 4578 // instructions, this apparently increases their latencies. 4579 return 1; 4580 } 4581 return 0; 4582 } 4583 4584 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4585 const MachineInstr &MI, 4586 unsigned *PredCost) const { 4587 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || 4588 MI.isImplicitDef()) 4589 return 1; 4590 4591 // An instruction scheduler typically runs on unbundled instructions, however 4592 // other passes may query the latency of a bundled instruction. 4593 if (MI.isBundle()) { 4594 unsigned Latency = 0; 4595 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 4596 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 4597 while (++I != E && I->isInsideBundle()) { 4598 if (I->getOpcode() != ARM::t2IT) 4599 Latency += getInstrLatency(ItinData, *I, PredCost); 4600 } 4601 return Latency; 4602 } 4603 4604 const MCInstrDesc &MCID = MI.getDesc(); 4605 if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && 4606 !Subtarget.cheapPredicableCPSRDef()))) { 4607 // When predicated, CPSR is an additional source operand for CPSR updating 4608 // instructions, this apparently increases their latencies. 4609 *PredCost = 1; 4610 } 4611 // Be sure to call getStageLatency for an empty itinerary in case it has a 4612 // valid MinLatency property. 4613 if (!ItinData) 4614 return MI.mayLoad() ? 3 : 1; 4615 4616 unsigned Class = MCID.getSchedClass(); 4617 4618 // For instructions with variable uops, use uops as latency. 4619 if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0) 4620 return getNumMicroOps(ItinData, MI); 4621 4622 // For the common case, fall back on the itinerary's latency. 4623 unsigned Latency = ItinData->getStageLatency(Class); 4624 4625 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4626 unsigned DefAlign = 4627 MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlignment() : 0; 4628 int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign); 4629 if (Adj >= 0 || (int)Latency > -Adj) { 4630 return Latency + Adj; 4631 } 4632 return Latency; 4633 } 4634 4635 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4636 SDNode *Node) const { 4637 if (!Node->isMachineOpcode()) 4638 return 1; 4639 4640 if (!ItinData || ItinData->isEmpty()) 4641 return 1; 4642 4643 unsigned Opcode = Node->getMachineOpcode(); 4644 switch (Opcode) { 4645 default: 4646 return ItinData->getStageLatency(get(Opcode).getSchedClass()); 4647 case ARM::VLDMQIA: 4648 case ARM::VSTMQIA: 4649 return 2; 4650 } 4651 } 4652 4653 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, 4654 const MachineRegisterInfo *MRI, 4655 const MachineInstr &DefMI, 4656 unsigned DefIdx, 4657 const MachineInstr &UseMI, 4658 unsigned UseIdx) const { 4659 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; 4660 unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask; 4661 if (Subtarget.nonpipelinedVFP() && 4662 (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP)) 4663 return true; 4664 4665 // Hoist VFP / NEON instructions with 4 or higher latency. 4666 unsigned Latency = 4667 SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx); 4668 if (Latency <= 3) 4669 return false; 4670 return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON || 4671 UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON; 4672 } 4673 4674 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, 4675 const MachineInstr &DefMI, 4676 unsigned DefIdx) const { 4677 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); 4678 if (!ItinData || ItinData->isEmpty()) 4679 return false; 4680 4681 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; 4682 if (DDomain == ARMII::DomainGeneral) { 4683 unsigned DefClass = DefMI.getDesc().getSchedClass(); 4684 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 4685 return (DefCycle != -1 && DefCycle <= 2); 4686 } 4687 return false; 4688 } 4689 4690 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI, 4691 StringRef &ErrInfo) const { 4692 if (convertAddSubFlagsOpcode(MI.getOpcode())) { 4693 ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG"; 4694 return false; 4695 } 4696 if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) { 4697 // Make sure we don't generate a lo-lo mov that isn't supported. 4698 if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) && 4699 !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) { 4700 ErrInfo = "Non-flag-setting Thumb1 mov is v6-only"; 4701 return false; 4702 } 4703 } 4704 if (MI.getOpcode() == ARM::tPUSH || 4705 MI.getOpcode() == ARM::tPOP || 4706 MI.getOpcode() == ARM::tPOP_RET) { 4707 for (int i = 2, e = MI.getNumOperands(); i < e; ++i) { 4708 if (MI.getOperand(i).isImplicit() || 4709 !MI.getOperand(i).isReg()) 4710 continue; 4711 unsigned Reg = MI.getOperand(i).getReg(); 4712 if (Reg < ARM::R0 || Reg > ARM::R7) { 4713 if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) && 4714 !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) { 4715 ErrInfo = "Unsupported register in Thumb1 push/pop"; 4716 return false; 4717 } 4718 } 4719 } 4720 } 4721 return true; 4722 } 4723 4724 // LoadStackGuard has so far only been implemented for MachO. Different code 4725 // sequence is needed for other targets. 4726 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI, 4727 unsigned LoadImmOpc, 4728 unsigned LoadOpc) const { 4729 assert(!Subtarget.isROPI() && !Subtarget.isRWPI() && 4730 "ROPI/RWPI not currently supported with stack guard"); 4731 4732 MachineBasicBlock &MBB = *MI->getParent(); 4733 DebugLoc DL = MI->getDebugLoc(); 4734 unsigned Reg = MI->getOperand(0).getReg(); 4735 const GlobalValue *GV = 4736 cast<GlobalValue>((*MI->memoperands_begin())->getValue()); 4737 MachineInstrBuilder MIB; 4738 4739 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) 4740 .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY); 4741 4742 if (Subtarget.isGVIndirectSymbol(GV)) { 4743 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4744 MIB.addReg(Reg, RegState::Kill).addImm(0); 4745 auto Flags = MachineMemOperand::MOLoad | 4746 MachineMemOperand::MODereferenceable | 4747 MachineMemOperand::MOInvariant; 4748 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( 4749 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, 4); 4750 MIB.addMemOperand(MMO).add(predOps(ARMCC::AL)); 4751 } 4752 4753 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4754 MIB.addReg(Reg, RegState::Kill) 4755 .addImm(0) 4756 .cloneMemRefs(*MI) 4757 .add(predOps(ARMCC::AL)); 4758 } 4759 4760 bool 4761 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc, 4762 unsigned &AddSubOpc, 4763 bool &NegAcc, bool &HasLane) const { 4764 DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode); 4765 if (I == MLxEntryMap.end()) 4766 return false; 4767 4768 const ARM_MLxEntry &Entry = ARM_MLxTable[I->second]; 4769 MulOpc = Entry.MulOpc; 4770 AddSubOpc = Entry.AddSubOpc; 4771 NegAcc = Entry.NegAcc; 4772 HasLane = Entry.HasLane; 4773 return true; 4774 } 4775 4776 //===----------------------------------------------------------------------===// 4777 // Execution domains. 4778 //===----------------------------------------------------------------------===// 4779 // 4780 // Some instructions go down the NEON pipeline, some go down the VFP pipeline, 4781 // and some can go down both. The vmov instructions go down the VFP pipeline, 4782 // but they can be changed to vorr equivalents that are executed by the NEON 4783 // pipeline. 4784 // 4785 // We use the following execution domain numbering: 4786 // 4787 enum ARMExeDomain { 4788 ExeGeneric = 0, 4789 ExeVFP = 1, 4790 ExeNEON = 2 4791 }; 4792 4793 // 4794 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h 4795 // 4796 std::pair<uint16_t, uint16_t> 4797 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const { 4798 // If we don't have access to NEON instructions then we won't be able 4799 // to swizzle anything to the NEON domain. Check to make sure. 4800 if (Subtarget.hasNEON()) { 4801 // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON 4802 // if they are not predicated. 4803 if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI)) 4804 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 4805 4806 // CortexA9 is particularly picky about mixing the two and wants these 4807 // converted. 4808 if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) && 4809 (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR || 4810 MI.getOpcode() == ARM::VMOVS)) 4811 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 4812 } 4813 // No other instructions can be swizzled, so just determine their domain. 4814 unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask; 4815 4816 if (Domain & ARMII::DomainNEON) 4817 return std::make_pair(ExeNEON, 0); 4818 4819 // Certain instructions can go either way on Cortex-A8. 4820 // Treat them as NEON instructions. 4821 if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8()) 4822 return std::make_pair(ExeNEON, 0); 4823 4824 if (Domain & ARMII::DomainVFP) 4825 return std::make_pair(ExeVFP, 0); 4826 4827 return std::make_pair(ExeGeneric, 0); 4828 } 4829 4830 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI, 4831 unsigned SReg, unsigned &Lane) { 4832 unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass); 4833 Lane = 0; 4834 4835 if (DReg != ARM::NoRegister) 4836 return DReg; 4837 4838 Lane = 1; 4839 DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass); 4840 4841 assert(DReg && "S-register with no D super-register?"); 4842 return DReg; 4843 } 4844 4845 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane, 4846 /// set ImplicitSReg to a register number that must be marked as implicit-use or 4847 /// zero if no register needs to be defined as implicit-use. 4848 /// 4849 /// If the function cannot determine if an SPR should be marked implicit use or 4850 /// not, it returns false. 4851 /// 4852 /// This function handles cases where an instruction is being modified from taking 4853 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict 4854 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other 4855 /// lane of the DPR). 4856 /// 4857 /// If the other SPR is defined, an implicit-use of it should be added. Else, 4858 /// (including the case where the DPR itself is defined), it should not. 4859 /// 4860 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI, 4861 MachineInstr &MI, unsigned DReg, 4862 unsigned Lane, unsigned &ImplicitSReg) { 4863 // If the DPR is defined or used already, the other SPR lane will be chained 4864 // correctly, so there is nothing to be done. 4865 if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) { 4866 ImplicitSReg = 0; 4867 return true; 4868 } 4869 4870 // Otherwise we need to go searching to see if the SPR is set explicitly. 4871 ImplicitSReg = TRI->getSubReg(DReg, 4872 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1); 4873 MachineBasicBlock::LivenessQueryResult LQR = 4874 MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI); 4875 4876 if (LQR == MachineBasicBlock::LQR_Live) 4877 return true; 4878 else if (LQR == MachineBasicBlock::LQR_Unknown) 4879 return false; 4880 4881 // If the register is known not to be live, there is no need to add an 4882 // implicit-use. 4883 ImplicitSReg = 0; 4884 return true; 4885 } 4886 4887 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI, 4888 unsigned Domain) const { 4889 unsigned DstReg, SrcReg, DReg; 4890 unsigned Lane; 4891 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 4892 const TargetRegisterInfo *TRI = &getRegisterInfo(); 4893 switch (MI.getOpcode()) { 4894 default: 4895 llvm_unreachable("cannot handle opcode!"); 4896 break; 4897 case ARM::VMOVD: 4898 if (Domain != ExeNEON) 4899 break; 4900 4901 // Zap the predicate operands. 4902 assert(!isPredicated(MI) && "Cannot predicate a VORRd"); 4903 4904 // Make sure we've got NEON instructions. 4905 assert(Subtarget.hasNEON() && "VORRd requires NEON"); 4906 4907 // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits) 4908 DstReg = MI.getOperand(0).getReg(); 4909 SrcReg = MI.getOperand(1).getReg(); 4910 4911 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 4912 MI.RemoveOperand(i - 1); 4913 4914 // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits) 4915 MI.setDesc(get(ARM::VORRd)); 4916 MIB.addReg(DstReg, RegState::Define) 4917 .addReg(SrcReg) 4918 .addReg(SrcReg) 4919 .add(predOps(ARMCC::AL)); 4920 break; 4921 case ARM::VMOVRS: 4922 if (Domain != ExeNEON) 4923 break; 4924 assert(!isPredicated(MI) && "Cannot predicate a VGETLN"); 4925 4926 // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits) 4927 DstReg = MI.getOperand(0).getReg(); 4928 SrcReg = MI.getOperand(1).getReg(); 4929 4930 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 4931 MI.RemoveOperand(i - 1); 4932 4933 DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane); 4934 4935 // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps) 4936 // Note that DSrc has been widened and the other lane may be undef, which 4937 // contaminates the entire register. 4938 MI.setDesc(get(ARM::VGETLNi32)); 4939 MIB.addReg(DstReg, RegState::Define) 4940 .addReg(DReg, RegState::Undef) 4941 .addImm(Lane) 4942 .add(predOps(ARMCC::AL)); 4943 4944 // The old source should be an implicit use, otherwise we might think it 4945 // was dead before here. 4946 MIB.addReg(SrcReg, RegState::Implicit); 4947 break; 4948 case ARM::VMOVSR: { 4949 if (Domain != ExeNEON) 4950 break; 4951 assert(!isPredicated(MI) && "Cannot predicate a VSETLN"); 4952 4953 // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits) 4954 DstReg = MI.getOperand(0).getReg(); 4955 SrcReg = MI.getOperand(1).getReg(); 4956 4957 DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane); 4958 4959 unsigned ImplicitSReg; 4960 if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg)) 4961 break; 4962 4963 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 4964 MI.RemoveOperand(i - 1); 4965 4966 // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps) 4967 // Again DDst may be undefined at the beginning of this instruction. 4968 MI.setDesc(get(ARM::VSETLNi32)); 4969 MIB.addReg(DReg, RegState::Define) 4970 .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI))) 4971 .addReg(SrcReg) 4972 .addImm(Lane) 4973 .add(predOps(ARMCC::AL)); 4974 4975 // The narrower destination must be marked as set to keep previous chains 4976 // in place. 4977 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 4978 if (ImplicitSReg != 0) 4979 MIB.addReg(ImplicitSReg, RegState::Implicit); 4980 break; 4981 } 4982 case ARM::VMOVS: { 4983 if (Domain != ExeNEON) 4984 break; 4985 4986 // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits) 4987 DstReg = MI.getOperand(0).getReg(); 4988 SrcReg = MI.getOperand(1).getReg(); 4989 4990 unsigned DstLane = 0, SrcLane = 0, DDst, DSrc; 4991 DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane); 4992 DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane); 4993 4994 unsigned ImplicitSReg; 4995 if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg)) 4996 break; 4997 4998 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 4999 MI.RemoveOperand(i - 1); 5000 5001 if (DSrc == DDst) { 5002 // Destination can be: 5003 // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits) 5004 MI.setDesc(get(ARM::VDUPLN32d)); 5005 MIB.addReg(DDst, RegState::Define) 5006 .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI))) 5007 .addImm(SrcLane) 5008 .add(predOps(ARMCC::AL)); 5009 5010 // Neither the source or the destination are naturally represented any 5011 // more, so add them in manually. 5012 MIB.addReg(DstReg, RegState::Implicit | RegState::Define); 5013 MIB.addReg(SrcReg, RegState::Implicit); 5014 if (ImplicitSReg != 0) 5015 MIB.addReg(ImplicitSReg, RegState::Implicit); 5016 break; 5017 } 5018 5019 // In general there's no single instruction that can perform an S <-> S 5020 // move in NEON space, but a pair of VEXT instructions *can* do the 5021 // job. It turns out that the VEXTs needed will only use DSrc once, with 5022 // the position based purely on the combination of lane-0 and lane-1 5023 // involved. For example 5024 // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1 5025 // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1 5026 // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1 5027 // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1 5028 // 5029 // Pattern of the MachineInstrs is: 5030 // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits) 5031 MachineInstrBuilder NewMIB; 5032 NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32), 5033 DDst); 5034 5035 // On the first instruction, both DSrc and DDst may be undef if present. 5036 // Specifically when the original instruction didn't have them as an 5037 // <imp-use>. 5038 unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst; 5039 bool CurUndef = !MI.readsRegister(CurReg, TRI); 5040 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)); 5041 5042 CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst; 5043 CurUndef = !MI.readsRegister(CurReg, TRI); 5044 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)) 5045 .addImm(1) 5046 .add(predOps(ARMCC::AL)); 5047 5048 if (SrcLane == DstLane) 5049 NewMIB.addReg(SrcReg, RegState::Implicit); 5050 5051 MI.setDesc(get(ARM::VEXTd32)); 5052 MIB.addReg(DDst, RegState::Define); 5053 5054 // On the second instruction, DDst has definitely been defined above, so 5055 // it is not undef. DSrc, if present, can be undef as above. 5056 CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst; 5057 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); 5058 MIB.addReg(CurReg, getUndefRegState(CurUndef)); 5059 5060 CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst; 5061 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); 5062 MIB.addReg(CurReg, getUndefRegState(CurUndef)) 5063 .addImm(1) 5064 .add(predOps(ARMCC::AL)); 5065 5066 if (SrcLane != DstLane) 5067 MIB.addReg(SrcReg, RegState::Implicit); 5068 5069 // As before, the original destination is no longer represented, add it 5070 // implicitly. 5071 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 5072 if (ImplicitSReg != 0) 5073 MIB.addReg(ImplicitSReg, RegState::Implicit); 5074 break; 5075 } 5076 } 5077 } 5078 5079 //===----------------------------------------------------------------------===// 5080 // Partial register updates 5081 //===----------------------------------------------------------------------===// 5082 // 5083 // Swift renames NEON registers with 64-bit granularity. That means any 5084 // instruction writing an S-reg implicitly reads the containing D-reg. The 5085 // problem is mostly avoided by translating f32 operations to v2f32 operations 5086 // on D-registers, but f32 loads are still a problem. 5087 // 5088 // These instructions can load an f32 into a NEON register: 5089 // 5090 // VLDRS - Only writes S, partial D update. 5091 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops. 5092 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops. 5093 // 5094 // FCONSTD can be used as a dependency-breaking instruction. 5095 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance( 5096 const MachineInstr &MI, unsigned OpNum, 5097 const TargetRegisterInfo *TRI) const { 5098 auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance(); 5099 if (!PartialUpdateClearance) 5100 return 0; 5101 5102 assert(TRI && "Need TRI instance"); 5103 5104 const MachineOperand &MO = MI.getOperand(OpNum); 5105 if (MO.readsReg()) 5106 return 0; 5107 unsigned Reg = MO.getReg(); 5108 int UseOp = -1; 5109 5110 switch (MI.getOpcode()) { 5111 // Normal instructions writing only an S-register. 5112 case ARM::VLDRS: 5113 case ARM::FCONSTS: 5114 case ARM::VMOVSR: 5115 case ARM::VMOVv8i8: 5116 case ARM::VMOVv4i16: 5117 case ARM::VMOVv2i32: 5118 case ARM::VMOVv2f32: 5119 case ARM::VMOVv1i64: 5120 UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI); 5121 break; 5122 5123 // Explicitly reads the dependency. 5124 case ARM::VLD1LNd32: 5125 UseOp = 3; 5126 break; 5127 default: 5128 return 0; 5129 } 5130 5131 // If this instruction actually reads a value from Reg, there is no unwanted 5132 // dependency. 5133 if (UseOp != -1 && MI.getOperand(UseOp).readsReg()) 5134 return 0; 5135 5136 // We must be able to clobber the whole D-reg. 5137 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 5138 // Virtual register must be a def undef foo:ssub_0 operand. 5139 if (!MO.getSubReg() || MI.readsVirtualRegister(Reg)) 5140 return 0; 5141 } else if (ARM::SPRRegClass.contains(Reg)) { 5142 // Physical register: MI must define the full D-reg. 5143 unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0, 5144 &ARM::DPRRegClass); 5145 if (!DReg || !MI.definesRegister(DReg, TRI)) 5146 return 0; 5147 } 5148 5149 // MI has an unwanted D-register dependency. 5150 // Avoid defs in the previous N instructrions. 5151 return PartialUpdateClearance; 5152 } 5153 5154 // Break a partial register dependency after getPartialRegUpdateClearance 5155 // returned non-zero. 5156 void ARMBaseInstrInfo::breakPartialRegDependency( 5157 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { 5158 assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def"); 5159 assert(TRI && "Need TRI instance"); 5160 5161 const MachineOperand &MO = MI.getOperand(OpNum); 5162 unsigned Reg = MO.getReg(); 5163 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && 5164 "Can't break virtual register dependencies."); 5165 unsigned DReg = Reg; 5166 5167 // If MI defines an S-reg, find the corresponding D super-register. 5168 if (ARM::SPRRegClass.contains(Reg)) { 5169 DReg = ARM::D0 + (Reg - ARM::S0) / 2; 5170 assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken"); 5171 } 5172 5173 assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps"); 5174 assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg"); 5175 5176 // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines 5177 // the full D-register by loading the same value to both lanes. The 5178 // instruction is micro-coded with 2 uops, so don't do this until we can 5179 // properly schedule micro-coded instructions. The dispatcher stalls cause 5180 // too big regressions. 5181 5182 // Insert the dependency-breaking FCONSTD before MI. 5183 // 96 is the encoding of 0.5, but the actual value doesn't matter here. 5184 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg) 5185 .addImm(96) 5186 .add(predOps(ARMCC::AL)); 5187 MI.addRegisterKilled(DReg, TRI, true); 5188 } 5189 5190 bool ARMBaseInstrInfo::hasNOP() const { 5191 return Subtarget.getFeatureBits()[ARM::HasV6KOps]; 5192 } 5193 5194 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const { 5195 if (MI->getNumOperands() < 4) 5196 return true; 5197 unsigned ShOpVal = MI->getOperand(3).getImm(); 5198 unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal); 5199 // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1. 5200 if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) || 5201 ((ShImm == 1 || ShImm == 2) && 5202 ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl)) 5203 return true; 5204 5205 return false; 5206 } 5207 5208 bool ARMBaseInstrInfo::getRegSequenceLikeInputs( 5209 const MachineInstr &MI, unsigned DefIdx, 5210 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 5211 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5212 assert(MI.isRegSequenceLike() && "Invalid kind of instruction"); 5213 5214 switch (MI.getOpcode()) { 5215 case ARM::VMOVDRR: 5216 // dX = VMOVDRR rY, rZ 5217 // is the same as: 5218 // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1 5219 // Populate the InputRegs accordingly. 5220 // rY 5221 const MachineOperand *MOReg = &MI.getOperand(1); 5222 if (!MOReg->isUndef()) 5223 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), 5224 MOReg->getSubReg(), ARM::ssub_0)); 5225 // rZ 5226 MOReg = &MI.getOperand(2); 5227 if (!MOReg->isUndef()) 5228 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), 5229 MOReg->getSubReg(), ARM::ssub_1)); 5230 return true; 5231 } 5232 llvm_unreachable("Target dependent opcode missing"); 5233 } 5234 5235 bool ARMBaseInstrInfo::getExtractSubregLikeInputs( 5236 const MachineInstr &MI, unsigned DefIdx, 5237 RegSubRegPairAndIdx &InputReg) const { 5238 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5239 assert(MI.isExtractSubregLike() && "Invalid kind of instruction"); 5240 5241 switch (MI.getOpcode()) { 5242 case ARM::VMOVRRD: 5243 // rX, rY = VMOVRRD dZ 5244 // is the same as: 5245 // rX = EXTRACT_SUBREG dZ, ssub_0 5246 // rY = EXTRACT_SUBREG dZ, ssub_1 5247 const MachineOperand &MOReg = MI.getOperand(2); 5248 if (MOReg.isUndef()) 5249 return false; 5250 InputReg.Reg = MOReg.getReg(); 5251 InputReg.SubReg = MOReg.getSubReg(); 5252 InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1; 5253 return true; 5254 } 5255 llvm_unreachable("Target dependent opcode missing"); 5256 } 5257 5258 bool ARMBaseInstrInfo::getInsertSubregLikeInputs( 5259 const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, 5260 RegSubRegPairAndIdx &InsertedReg) const { 5261 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5262 assert(MI.isInsertSubregLike() && "Invalid kind of instruction"); 5263 5264 switch (MI.getOpcode()) { 5265 case ARM::VSETLNi32: 5266 // dX = VSETLNi32 dY, rZ, imm 5267 const MachineOperand &MOBaseReg = MI.getOperand(1); 5268 const MachineOperand &MOInsertedReg = MI.getOperand(2); 5269 if (MOInsertedReg.isUndef()) 5270 return false; 5271 const MachineOperand &MOIndex = MI.getOperand(3); 5272 BaseReg.Reg = MOBaseReg.getReg(); 5273 BaseReg.SubReg = MOBaseReg.getSubReg(); 5274 5275 InsertedReg.Reg = MOInsertedReg.getReg(); 5276 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 5277 InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1; 5278 return true; 5279 } 5280 llvm_unreachable("Target dependent opcode missing"); 5281 } 5282 5283 std::pair<unsigned, unsigned> 5284 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 5285 const unsigned Mask = ARMII::MO_OPTION_MASK; 5286 return std::make_pair(TF & Mask, TF & ~Mask); 5287 } 5288 5289 ArrayRef<std::pair<unsigned, const char *>> 5290 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 5291 using namespace ARMII; 5292 5293 static const std::pair<unsigned, const char *> TargetFlags[] = { 5294 {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}}; 5295 return makeArrayRef(TargetFlags); 5296 } 5297 5298 ArrayRef<std::pair<unsigned, const char *>> 5299 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 5300 using namespace ARMII; 5301 5302 static const std::pair<unsigned, const char *> TargetFlags[] = { 5303 {MO_COFFSTUB, "arm-coffstub"}, 5304 {MO_GOT, "arm-got"}, 5305 {MO_SBREL, "arm-sbrel"}, 5306 {MO_DLLIMPORT, "arm-dllimport"}, 5307 {MO_SECREL, "arm-secrel"}, 5308 {MO_NONLAZY, "arm-nonlazy"}}; 5309 return makeArrayRef(TargetFlags); 5310 } 5311 5312 bool llvm::registerDefinedBetween(unsigned Reg, 5313 MachineBasicBlock::iterator From, 5314 MachineBasicBlock::iterator To, 5315 const TargetRegisterInfo *TRI) { 5316 for (auto I = From; I != To; ++I) 5317 if (I->modifiesRegister(Reg, TRI)) 5318 return true; 5319 return false; 5320 } 5321 5322 MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br, 5323 const TargetRegisterInfo *TRI) { 5324 // Search backwards to the instruction that defines CSPR. This may or not 5325 // be a CMP, we check that after this loop. If we find another instruction 5326 // that reads cpsr, we return nullptr. 5327 MachineBasicBlock::iterator CmpMI = Br; 5328 while (CmpMI != Br->getParent()->begin()) { 5329 --CmpMI; 5330 if (CmpMI->modifiesRegister(ARM::CPSR, TRI)) 5331 break; 5332 if (CmpMI->readsRegister(ARM::CPSR, TRI)) 5333 break; 5334 } 5335 5336 // Check that this inst is a CMP r[0-7], #0 and that the register 5337 // is not redefined between the cmp and the br. 5338 if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri) 5339 return nullptr; 5340 unsigned Reg = CmpMI->getOperand(0).getReg(); 5341 unsigned PredReg = 0; 5342 ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg); 5343 if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0) 5344 return nullptr; 5345 if (!isARMLowRegister(Reg)) 5346 return nullptr; 5347 if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI)) 5348 return nullptr; 5349 5350 return &*CmpMI; 5351 } 5352