xref: /freebsd/contrib/llvm-project/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp (revision 2f513db72b034fd5ef7f080b11be5c711c15186a)
1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the Base ARM implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "ARMBaseInstrInfo.h"
14 #include "ARMBaseRegisterInfo.h"
15 #include "ARMConstantPoolValue.h"
16 #include "ARMFeatures.h"
17 #include "ARMHazardRecognizer.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMSubtarget.h"
20 #include "MCTargetDesc/ARMAddressingModes.h"
21 #include "MCTargetDesc/ARMBaseInfo.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/CodeGen/LiveVariables.h"
28 #include "llvm/CodeGen/MachineBasicBlock.h"
29 #include "llvm/CodeGen/MachineConstantPool.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineMemOperand.h"
35 #include "llvm/CodeGen/MachineOperand.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
38 #include "llvm/CodeGen/SelectionDAGNodes.h"
39 #include "llvm/CodeGen/TargetInstrInfo.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSchedule.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/Constants.h"
44 #include "llvm/IR/DebugLoc.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/MC/MCAsmInfo.h"
48 #include "llvm/MC/MCInstrDesc.h"
49 #include "llvm/MC/MCInstrItineraries.h"
50 #include "llvm/Support/BranchProbability.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Compiler.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/ErrorHandling.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Target/TargetMachine.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <cstdint>
61 #include <iterator>
62 #include <new>
63 #include <utility>
64 #include <vector>
65 
66 using namespace llvm;
67 
68 #define DEBUG_TYPE "arm-instrinfo"
69 
70 #define GET_INSTRINFO_CTOR_DTOR
71 #include "ARMGenInstrInfo.inc"
72 
73 static cl::opt<bool>
74 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
75                cl::desc("Enable ARM 2-addr to 3-addr conv"));
76 
77 /// ARM_MLxEntry - Record information about MLA / MLS instructions.
78 struct ARM_MLxEntry {
79   uint16_t MLxOpc;     // MLA / MLS opcode
80   uint16_t MulOpc;     // Expanded multiplication opcode
81   uint16_t AddSubOpc;  // Expanded add / sub opcode
82   bool NegAcc;         // True if the acc is negated before the add / sub.
83   bool HasLane;        // True if instruction has an extra "lane" operand.
84 };
85 
86 static const ARM_MLxEntry ARM_MLxTable[] = {
87   // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
88   // fp scalar ops
89   { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
90   { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
91   { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
92   { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
93   { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
94   { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
95   { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
96   { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },
97 
98   // fp SIMD ops
99   { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
100   { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
101   { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
102   { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
103   { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
104   { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
105   { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
106   { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
107 };
108 
109 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
110   : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
111     Subtarget(STI) {
112   for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
113     if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
114       llvm_unreachable("Duplicated entries?");
115     MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
116     MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
117   }
118 }
119 
120 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
121 // currently defaults to no prepass hazard recognizer.
122 ScheduleHazardRecognizer *
123 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
124                                                const ScheduleDAG *DAG) const {
125   if (usePreRAHazardRecognizer()) {
126     const InstrItineraryData *II =
127         static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
128     return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
129   }
130   return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
131 }
132 
133 ScheduleHazardRecognizer *ARMBaseInstrInfo::
134 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
135                                    const ScheduleDAG *DAG) const {
136   if (Subtarget.isThumb2() || Subtarget.hasVFP2Base())
137     return (ScheduleHazardRecognizer *)new ARMHazardRecognizer(II, DAG);
138   return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
139 }
140 
141 MachineInstr *ARMBaseInstrInfo::convertToThreeAddress(
142     MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
143   // FIXME: Thumb2 support.
144 
145   if (!EnableARM3Addr)
146     return nullptr;
147 
148   MachineFunction &MF = *MI.getParent()->getParent();
149   uint64_t TSFlags = MI.getDesc().TSFlags;
150   bool isPre = false;
151   switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
152   default: return nullptr;
153   case ARMII::IndexModePre:
154     isPre = true;
155     break;
156   case ARMII::IndexModePost:
157     break;
158   }
159 
160   // Try splitting an indexed load/store to an un-indexed one plus an add/sub
161   // operation.
162   unsigned MemOpc = getUnindexedOpcode(MI.getOpcode());
163   if (MemOpc == 0)
164     return nullptr;
165 
166   MachineInstr *UpdateMI = nullptr;
167   MachineInstr *MemMI = nullptr;
168   unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
169   const MCInstrDesc &MCID = MI.getDesc();
170   unsigned NumOps = MCID.getNumOperands();
171   bool isLoad = !MI.mayStore();
172   const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0);
173   const MachineOperand &Base = MI.getOperand(2);
174   const MachineOperand &Offset = MI.getOperand(NumOps - 3);
175   unsigned WBReg = WB.getReg();
176   unsigned BaseReg = Base.getReg();
177   unsigned OffReg = Offset.getReg();
178   unsigned OffImm = MI.getOperand(NumOps - 2).getImm();
179   ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm();
180   switch (AddrMode) {
181   default: llvm_unreachable("Unknown indexed op!");
182   case ARMII::AddrMode2: {
183     bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
184     unsigned Amt = ARM_AM::getAM2Offset(OffImm);
185     if (OffReg == 0) {
186       if (ARM_AM::getSOImmVal(Amt) == -1)
187         // Can't encode it in a so_imm operand. This transformation will
188         // add more than 1 instruction. Abandon!
189         return nullptr;
190       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
191                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
192                      .addReg(BaseReg)
193                      .addImm(Amt)
194                      .add(predOps(Pred))
195                      .add(condCodeOp());
196     } else if (Amt != 0) {
197       ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
198       unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
199       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
200                          get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
201                      .addReg(BaseReg)
202                      .addReg(OffReg)
203                      .addReg(0)
204                      .addImm(SOOpc)
205                      .add(predOps(Pred))
206                      .add(condCodeOp());
207     } else
208       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
209                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
210                      .addReg(BaseReg)
211                      .addReg(OffReg)
212                      .add(predOps(Pred))
213                      .add(condCodeOp());
214     break;
215   }
216   case ARMII::AddrMode3 : {
217     bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
218     unsigned Amt = ARM_AM::getAM3Offset(OffImm);
219     if (OffReg == 0)
220       // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
221       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
222                          get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
223                      .addReg(BaseReg)
224                      .addImm(Amt)
225                      .add(predOps(Pred))
226                      .add(condCodeOp());
227     else
228       UpdateMI = BuildMI(MF, MI.getDebugLoc(),
229                          get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
230                      .addReg(BaseReg)
231                      .addReg(OffReg)
232                      .add(predOps(Pred))
233                      .add(condCodeOp());
234     break;
235   }
236   }
237 
238   std::vector<MachineInstr*> NewMIs;
239   if (isPre) {
240     if (isLoad)
241       MemMI =
242           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
243               .addReg(WBReg)
244               .addImm(0)
245               .addImm(Pred);
246     else
247       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
248                   .addReg(MI.getOperand(1).getReg())
249                   .addReg(WBReg)
250                   .addReg(0)
251                   .addImm(0)
252                   .addImm(Pred);
253     NewMIs.push_back(MemMI);
254     NewMIs.push_back(UpdateMI);
255   } else {
256     if (isLoad)
257       MemMI =
258           BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
259               .addReg(BaseReg)
260               .addImm(0)
261               .addImm(Pred);
262     else
263       MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
264                   .addReg(MI.getOperand(1).getReg())
265                   .addReg(BaseReg)
266                   .addReg(0)
267                   .addImm(0)
268                   .addImm(Pred);
269     if (WB.isDead())
270       UpdateMI->getOperand(0).setIsDead();
271     NewMIs.push_back(UpdateMI);
272     NewMIs.push_back(MemMI);
273   }
274 
275   // Transfer LiveVariables states, kill / dead info.
276   if (LV) {
277     for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
278       MachineOperand &MO = MI.getOperand(i);
279       if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
280         unsigned Reg = MO.getReg();
281 
282         LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
283         if (MO.isDef()) {
284           MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
285           if (MO.isDead())
286             LV->addVirtualRegisterDead(Reg, *NewMI);
287         }
288         if (MO.isUse() && MO.isKill()) {
289           for (unsigned j = 0; j < 2; ++j) {
290             // Look at the two new MI's in reverse order.
291             MachineInstr *NewMI = NewMIs[j];
292             if (!NewMI->readsRegister(Reg))
293               continue;
294             LV->addVirtualRegisterKilled(Reg, *NewMI);
295             if (VI.removeKill(MI))
296               VI.Kills.push_back(NewMI);
297             break;
298           }
299         }
300       }
301     }
302   }
303 
304   MachineBasicBlock::iterator MBBI = MI.getIterator();
305   MFI->insert(MBBI, NewMIs[1]);
306   MFI->insert(MBBI, NewMIs[0]);
307   return NewMIs[0];
308 }
309 
310 // Branch analysis.
311 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
312                                      MachineBasicBlock *&TBB,
313                                      MachineBasicBlock *&FBB,
314                                      SmallVectorImpl<MachineOperand> &Cond,
315                                      bool AllowModify) const {
316   TBB = nullptr;
317   FBB = nullptr;
318 
319   MachineBasicBlock::iterator I = MBB.end();
320   if (I == MBB.begin())
321     return false; // Empty blocks are easy.
322   --I;
323 
324   // Walk backwards from the end of the basic block until the branch is
325   // analyzed or we give up.
326   while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
327     // Flag to be raised on unanalyzeable instructions. This is useful in cases
328     // where we want to clean up on the end of the basic block before we bail
329     // out.
330     bool CantAnalyze = false;
331 
332     // Skip over DEBUG values and predicated nonterminators.
333     while (I->isDebugInstr() || !I->isTerminator()) {
334       if (I == MBB.begin())
335         return false;
336       --I;
337     }
338 
339     if (isIndirectBranchOpcode(I->getOpcode()) ||
340         isJumpTableBranchOpcode(I->getOpcode())) {
341       // Indirect branches and jump tables can't be analyzed, but we still want
342       // to clean up any instructions at the tail of the basic block.
343       CantAnalyze = true;
344     } else if (isUncondBranchOpcode(I->getOpcode())) {
345       TBB = I->getOperand(0).getMBB();
346     } else if (isCondBranchOpcode(I->getOpcode())) {
347       // Bail out if we encounter multiple conditional branches.
348       if (!Cond.empty())
349         return true;
350 
351       assert(!FBB && "FBB should have been null.");
352       FBB = TBB;
353       TBB = I->getOperand(0).getMBB();
354       Cond.push_back(I->getOperand(1));
355       Cond.push_back(I->getOperand(2));
356     } else if (I->isReturn()) {
357       // Returns can't be analyzed, but we should run cleanup.
358       CantAnalyze = !isPredicated(*I);
359     } else {
360       // We encountered other unrecognized terminator. Bail out immediately.
361       return true;
362     }
363 
364     // Cleanup code - to be run for unpredicated unconditional branches and
365     //                returns.
366     if (!isPredicated(*I) &&
367           (isUncondBranchOpcode(I->getOpcode()) ||
368            isIndirectBranchOpcode(I->getOpcode()) ||
369            isJumpTableBranchOpcode(I->getOpcode()) ||
370            I->isReturn())) {
371       // Forget any previous condition branch information - it no longer applies.
372       Cond.clear();
373       FBB = nullptr;
374 
375       // If we can modify the function, delete everything below this
376       // unconditional branch.
377       if (AllowModify) {
378         MachineBasicBlock::iterator DI = std::next(I);
379         while (DI != MBB.end()) {
380           MachineInstr &InstToDelete = *DI;
381           ++DI;
382           InstToDelete.eraseFromParent();
383         }
384       }
385     }
386 
387     if (CantAnalyze)
388       return true;
389 
390     if (I == MBB.begin())
391       return false;
392 
393     --I;
394   }
395 
396   // We made it past the terminators without bailing out - we must have
397   // analyzed this branch successfully.
398   return false;
399 }
400 
401 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB,
402                                         int *BytesRemoved) const {
403   assert(!BytesRemoved && "code size not handled");
404 
405   MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
406   if (I == MBB.end())
407     return 0;
408 
409   if (!isUncondBranchOpcode(I->getOpcode()) &&
410       !isCondBranchOpcode(I->getOpcode()))
411     return 0;
412 
413   // Remove the branch.
414   I->eraseFromParent();
415 
416   I = MBB.end();
417 
418   if (I == MBB.begin()) return 1;
419   --I;
420   if (!isCondBranchOpcode(I->getOpcode()))
421     return 1;
422 
423   // Remove the branch.
424   I->eraseFromParent();
425   return 2;
426 }
427 
428 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB,
429                                         MachineBasicBlock *TBB,
430                                         MachineBasicBlock *FBB,
431                                         ArrayRef<MachineOperand> Cond,
432                                         const DebugLoc &DL,
433                                         int *BytesAdded) const {
434   assert(!BytesAdded && "code size not handled");
435   ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
436   int BOpc   = !AFI->isThumbFunction()
437     ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
438   int BccOpc = !AFI->isThumbFunction()
439     ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
440   bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
441 
442   // Shouldn't be a fall through.
443   assert(TBB && "insertBranch must not be told to insert a fallthrough");
444   assert((Cond.size() == 2 || Cond.size() == 0) &&
445          "ARM branch conditions have two components!");
446 
447   // For conditional branches, we use addOperand to preserve CPSR flags.
448 
449   if (!FBB) {
450     if (Cond.empty()) { // Unconditional branch?
451       if (isThumb)
452         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL));
453       else
454         BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
455     } else
456       BuildMI(&MBB, DL, get(BccOpc))
457           .addMBB(TBB)
458           .addImm(Cond[0].getImm())
459           .add(Cond[1]);
460     return 1;
461   }
462 
463   // Two-way conditional branch.
464   BuildMI(&MBB, DL, get(BccOpc))
465       .addMBB(TBB)
466       .addImm(Cond[0].getImm())
467       .add(Cond[1]);
468   if (isThumb)
469     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL));
470   else
471     BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
472   return 2;
473 }
474 
475 bool ARMBaseInstrInfo::
476 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
477   ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
478   Cond[0].setImm(ARMCC::getOppositeCondition(CC));
479   return false;
480 }
481 
482 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const {
483   if (MI.isBundle()) {
484     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
485     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
486     while (++I != E && I->isInsideBundle()) {
487       int PIdx = I->findFirstPredOperandIdx();
488       if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
489         return true;
490     }
491     return false;
492   }
493 
494   int PIdx = MI.findFirstPredOperandIdx();
495   return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL;
496 }
497 
498 bool ARMBaseInstrInfo::PredicateInstruction(
499     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
500   unsigned Opc = MI.getOpcode();
501   if (isUncondBranchOpcode(Opc)) {
502     MI.setDesc(get(getMatchingCondBranchOpcode(Opc)));
503     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
504       .addImm(Pred[0].getImm())
505       .addReg(Pred[1].getReg());
506     return true;
507   }
508 
509   int PIdx = MI.findFirstPredOperandIdx();
510   if (PIdx != -1) {
511     MachineOperand &PMO = MI.getOperand(PIdx);
512     PMO.setImm(Pred[0].getImm());
513     MI.getOperand(PIdx+1).setReg(Pred[1].getReg());
514     return true;
515   }
516   return false;
517 }
518 
519 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
520                                          ArrayRef<MachineOperand> Pred2) const {
521   if (Pred1.size() > 2 || Pred2.size() > 2)
522     return false;
523 
524   ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
525   ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
526   if (CC1 == CC2)
527     return true;
528 
529   switch (CC1) {
530   default:
531     return false;
532   case ARMCC::AL:
533     return true;
534   case ARMCC::HS:
535     return CC2 == ARMCC::HI;
536   case ARMCC::LS:
537     return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
538   case ARMCC::GE:
539     return CC2 == ARMCC::GT;
540   case ARMCC::LE:
541     return CC2 == ARMCC::LT;
542   }
543 }
544 
545 bool ARMBaseInstrInfo::DefinesPredicate(
546     MachineInstr &MI, std::vector<MachineOperand> &Pred) const {
547   bool Found = false;
548   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
549     const MachineOperand &MO = MI.getOperand(i);
550     if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
551         (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
552       Pred.push_back(MO);
553       Found = true;
554     }
555   }
556 
557   return Found;
558 }
559 
560 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) {
561   for (const auto &MO : MI.operands())
562     if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead())
563       return true;
564   return false;
565 }
566 
567 bool ARMBaseInstrInfo::isAddrMode3OpImm(const MachineInstr &MI,
568                                         unsigned Op) const {
569   const MachineOperand &Offset = MI.getOperand(Op + 1);
570   return Offset.getReg() != 0;
571 }
572 
573 // Load with negative register offset requires additional 1cyc and +I unit
574 // for Cortex A57
575 bool ARMBaseInstrInfo::isAddrMode3OpMinusReg(const MachineInstr &MI,
576                                              unsigned Op) const {
577   const MachineOperand &Offset = MI.getOperand(Op + 1);
578   const MachineOperand &Opc = MI.getOperand(Op + 2);
579   assert(Opc.isImm());
580   assert(Offset.isReg());
581   int64_t OpcImm = Opc.getImm();
582 
583   bool isSub = ARM_AM::getAM3Op(OpcImm) == ARM_AM::sub;
584   return (isSub && Offset.getReg() != 0);
585 }
586 
587 bool ARMBaseInstrInfo::isLdstScaledReg(const MachineInstr &MI,
588                                        unsigned Op) const {
589   const MachineOperand &Opc = MI.getOperand(Op + 2);
590   unsigned OffImm = Opc.getImm();
591   return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift;
592 }
593 
594 // Load, scaled register offset, not plus LSL2
595 bool ARMBaseInstrInfo::isLdstScaledRegNotPlusLsl2(const MachineInstr &MI,
596                                                   unsigned Op) const {
597   const MachineOperand &Opc = MI.getOperand(Op + 2);
598   unsigned OffImm = Opc.getImm();
599 
600   bool isAdd = ARM_AM::getAM2Op(OffImm) == ARM_AM::add;
601   unsigned Amt = ARM_AM::getAM2Offset(OffImm);
602   ARM_AM::ShiftOpc ShiftOpc = ARM_AM::getAM2ShiftOpc(OffImm);
603   if (ShiftOpc == ARM_AM::no_shift) return false; // not scaled
604   bool SimpleScaled = (isAdd && ShiftOpc == ARM_AM::lsl && Amt == 2);
605   return !SimpleScaled;
606 }
607 
608 // Minus reg for ldstso addr mode
609 bool ARMBaseInstrInfo::isLdstSoMinusReg(const MachineInstr &MI,
610                                         unsigned Op) const {
611   unsigned OffImm = MI.getOperand(Op + 2).getImm();
612   return ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
613 }
614 
615 // Load, scaled register offset
616 bool ARMBaseInstrInfo::isAm2ScaledReg(const MachineInstr &MI,
617                                       unsigned Op) const {
618   unsigned OffImm = MI.getOperand(Op + 2).getImm();
619   return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift;
620 }
621 
622 static bool isEligibleForITBlock(const MachineInstr *MI) {
623   switch (MI->getOpcode()) {
624   default: return true;
625   case ARM::tADC:   // ADC (register) T1
626   case ARM::tADDi3: // ADD (immediate) T1
627   case ARM::tADDi8: // ADD (immediate) T2
628   case ARM::tADDrr: // ADD (register) T1
629   case ARM::tAND:   // AND (register) T1
630   case ARM::tASRri: // ASR (immediate) T1
631   case ARM::tASRrr: // ASR (register) T1
632   case ARM::tBIC:   // BIC (register) T1
633   case ARM::tEOR:   // EOR (register) T1
634   case ARM::tLSLri: // LSL (immediate) T1
635   case ARM::tLSLrr: // LSL (register) T1
636   case ARM::tLSRri: // LSR (immediate) T1
637   case ARM::tLSRrr: // LSR (register) T1
638   case ARM::tMUL:   // MUL T1
639   case ARM::tMVN:   // MVN (register) T1
640   case ARM::tORR:   // ORR (register) T1
641   case ARM::tROR:   // ROR (register) T1
642   case ARM::tRSB:   // RSB (immediate) T1
643   case ARM::tSBC:   // SBC (register) T1
644   case ARM::tSUBi3: // SUB (immediate) T1
645   case ARM::tSUBi8: // SUB (immediate) T2
646   case ARM::tSUBrr: // SUB (register) T1
647     return !ARMBaseInstrInfo::isCPSRDefined(*MI);
648   }
649 }
650 
651 /// isPredicable - Return true if the specified instruction can be predicated.
652 /// By default, this returns true for every instruction with a
653 /// PredicateOperand.
654 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const {
655   if (!MI.isPredicable())
656     return false;
657 
658   if (MI.isBundle())
659     return false;
660 
661   if (!isEligibleForITBlock(&MI))
662     return false;
663 
664   const ARMFunctionInfo *AFI =
665       MI.getParent()->getParent()->getInfo<ARMFunctionInfo>();
666 
667   // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM.
668   // In their ARM encoding, they can't be encoded in a conditional form.
669   if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
670     return false;
671 
672   if (AFI->isThumb2Function()) {
673     if (getSubtarget().restrictIT())
674       return isV8EligibleForIT(&MI);
675   }
676 
677   return true;
678 }
679 
680 namespace llvm {
681 
682 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) {
683   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
684     const MachineOperand &MO = MI->getOperand(i);
685     if (!MO.isReg() || MO.isUndef() || MO.isUse())
686       continue;
687     if (MO.getReg() != ARM::CPSR)
688       continue;
689     if (!MO.isDead())
690       return false;
691   }
692   // all definitions of CPSR are dead
693   return true;
694 }
695 
696 } // end namespace llvm
697 
698 /// GetInstSize - Return the size of the specified MachineInstr.
699 ///
700 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
701   const MachineBasicBlock &MBB = *MI.getParent();
702   const MachineFunction *MF = MBB.getParent();
703   const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
704 
705   const MCInstrDesc &MCID = MI.getDesc();
706   if (MCID.getSize())
707     return MCID.getSize();
708 
709   switch (MI.getOpcode()) {
710   default:
711     // pseudo-instruction sizes are zero.
712     return 0;
713   case TargetOpcode::BUNDLE:
714     return getInstBundleLength(MI);
715   case ARM::MOVi16_ga_pcrel:
716   case ARM::MOVTi16_ga_pcrel:
717   case ARM::t2MOVi16_ga_pcrel:
718   case ARM::t2MOVTi16_ga_pcrel:
719     return 4;
720   case ARM::MOVi32imm:
721   case ARM::t2MOVi32imm:
722     return 8;
723   case ARM::CONSTPOOL_ENTRY:
724   case ARM::JUMPTABLE_INSTS:
725   case ARM::JUMPTABLE_ADDRS:
726   case ARM::JUMPTABLE_TBB:
727   case ARM::JUMPTABLE_TBH:
728     // If this machine instr is a constant pool entry, its size is recorded as
729     // operand #2.
730     return MI.getOperand(2).getImm();
731   case ARM::Int_eh_sjlj_longjmp:
732     return 16;
733   case ARM::tInt_eh_sjlj_longjmp:
734     return 10;
735   case ARM::tInt_WIN_eh_sjlj_longjmp:
736     return 12;
737   case ARM::Int_eh_sjlj_setjmp:
738   case ARM::Int_eh_sjlj_setjmp_nofp:
739     return 20;
740   case ARM::tInt_eh_sjlj_setjmp:
741   case ARM::t2Int_eh_sjlj_setjmp:
742   case ARM::t2Int_eh_sjlj_setjmp_nofp:
743     return 12;
744   case ARM::SPACE:
745     return MI.getOperand(1).getImm();
746   case ARM::INLINEASM:
747   case ARM::INLINEASM_BR: {
748     // If this machine instr is an inline asm, measure it.
749     unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
750     if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction())
751       Size = alignTo(Size, 4);
752     return Size;
753   }
754   }
755 }
756 
757 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
758   unsigned Size = 0;
759   MachineBasicBlock::const_instr_iterator I = MI.getIterator();
760   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
761   while (++I != E && I->isInsideBundle()) {
762     assert(!I->isBundle() && "No nested bundle!");
763     Size += getInstSizeInBytes(*I);
764   }
765   return Size;
766 }
767 
768 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
769                                     MachineBasicBlock::iterator I,
770                                     unsigned DestReg, bool KillSrc,
771                                     const ARMSubtarget &Subtarget) const {
772   unsigned Opc = Subtarget.isThumb()
773                      ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
774                      : ARM::MRS;
775 
776   MachineInstrBuilder MIB =
777       BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
778 
779   // There is only 1 A/R class MRS instruction, and it always refers to
780   // APSR. However, there are lots of other possibilities on M-class cores.
781   if (Subtarget.isMClass())
782     MIB.addImm(0x800);
783 
784   MIB.add(predOps(ARMCC::AL))
785      .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
786 }
787 
788 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
789                                   MachineBasicBlock::iterator I,
790                                   unsigned SrcReg, bool KillSrc,
791                                   const ARMSubtarget &Subtarget) const {
792   unsigned Opc = Subtarget.isThumb()
793                      ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
794                      : ARM::MSR;
795 
796   MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
797 
798   if (Subtarget.isMClass())
799     MIB.addImm(0x800);
800   else
801     MIB.addImm(8);
802 
803   MIB.addReg(SrcReg, getKillRegState(KillSrc))
804      .add(predOps(ARMCC::AL))
805      .addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
806 }
807 
808 void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) {
809   MIB.addImm(ARMVCC::None);
810   MIB.addReg(0);
811 }
812 
813 void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB,
814                                       unsigned DestReg) {
815   addUnpredicatedMveVpredNOp(MIB);
816   MIB.addReg(DestReg, RegState::Undef);
817 }
818 
819 void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) {
820   MIB.addImm(Cond);
821   MIB.addReg(ARM::VPR, RegState::Implicit);
822 }
823 
824 void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB,
825                                     unsigned Cond, unsigned Inactive) {
826   addPredicatedMveVpredNOp(MIB, Cond);
827   MIB.addReg(Inactive);
828 }
829 
830 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
831                                    MachineBasicBlock::iterator I,
832                                    const DebugLoc &DL, unsigned DestReg,
833                                    unsigned SrcReg, bool KillSrc) const {
834   bool GPRDest = ARM::GPRRegClass.contains(DestReg);
835   bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
836 
837   if (GPRDest && GPRSrc) {
838     BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
839         .addReg(SrcReg, getKillRegState(KillSrc))
840         .add(predOps(ARMCC::AL))
841         .add(condCodeOp());
842     return;
843   }
844 
845   bool SPRDest = ARM::SPRRegClass.contains(DestReg);
846   bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
847 
848   unsigned Opc = 0;
849   if (SPRDest && SPRSrc)
850     Opc = ARM::VMOVS;
851   else if (GPRDest && SPRSrc)
852     Opc = ARM::VMOVRS;
853   else if (SPRDest && GPRSrc)
854     Opc = ARM::VMOVSR;
855   else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64())
856     Opc = ARM::VMOVD;
857   else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
858     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
859 
860   if (Opc) {
861     MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
862     MIB.addReg(SrcReg, getKillRegState(KillSrc));
863     if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR)
864       MIB.addReg(SrcReg, getKillRegState(KillSrc));
865     if (Opc == ARM::MVE_VORR)
866       addUnpredicatedMveVpredROp(MIB, DestReg);
867     else
868       MIB.add(predOps(ARMCC::AL));
869     return;
870   }
871 
872   // Handle register classes that require multiple instructions.
873   unsigned BeginIdx = 0;
874   unsigned SubRegs = 0;
875   int Spacing = 1;
876 
877   // Use VORRq when possible.
878   if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
879     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
880     BeginIdx = ARM::qsub_0;
881     SubRegs = 2;
882   } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
883     Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
884     BeginIdx = ARM::qsub_0;
885     SubRegs = 4;
886   // Fall back to VMOVD.
887   } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
888     Opc = ARM::VMOVD;
889     BeginIdx = ARM::dsub_0;
890     SubRegs = 2;
891   } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
892     Opc = ARM::VMOVD;
893     BeginIdx = ARM::dsub_0;
894     SubRegs = 3;
895   } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
896     Opc = ARM::VMOVD;
897     BeginIdx = ARM::dsub_0;
898     SubRegs = 4;
899   } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
900     Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
901     BeginIdx = ARM::gsub_0;
902     SubRegs = 2;
903   } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
904     Opc = ARM::VMOVD;
905     BeginIdx = ARM::dsub_0;
906     SubRegs = 2;
907     Spacing = 2;
908   } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
909     Opc = ARM::VMOVD;
910     BeginIdx = ARM::dsub_0;
911     SubRegs = 3;
912     Spacing = 2;
913   } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
914     Opc = ARM::VMOVD;
915     BeginIdx = ARM::dsub_0;
916     SubRegs = 4;
917     Spacing = 2;
918   } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) &&
919              !Subtarget.hasFP64()) {
920     Opc = ARM::VMOVS;
921     BeginIdx = ARM::ssub_0;
922     SubRegs = 2;
923   } else if (SrcReg == ARM::CPSR) {
924     copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
925     return;
926   } else if (DestReg == ARM::CPSR) {
927     copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
928     return;
929   } else if (DestReg == ARM::VPR) {
930     assert(ARM::GPRRegClass.contains(SrcReg));
931     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg)
932         .addReg(SrcReg, getKillRegState(KillSrc))
933         .add(predOps(ARMCC::AL));
934     return;
935   } else if (SrcReg == ARM::VPR) {
936     assert(ARM::GPRRegClass.contains(DestReg));
937     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg)
938         .addReg(SrcReg, getKillRegState(KillSrc))
939         .add(predOps(ARMCC::AL));
940     return;
941   } else if (DestReg == ARM::FPSCR_NZCV) {
942     assert(ARM::GPRRegClass.contains(SrcReg));
943     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg)
944         .addReg(SrcReg, getKillRegState(KillSrc))
945         .add(predOps(ARMCC::AL));
946     return;
947   } else if (SrcReg == ARM::FPSCR_NZCV) {
948     assert(ARM::GPRRegClass.contains(DestReg));
949     BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg)
950         .addReg(SrcReg, getKillRegState(KillSrc))
951         .add(predOps(ARMCC::AL));
952     return;
953   }
954 
955   assert(Opc && "Impossible reg-to-reg copy");
956 
957   const TargetRegisterInfo *TRI = &getRegisterInfo();
958   MachineInstrBuilder Mov;
959 
960   // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
961   if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
962     BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
963     Spacing = -Spacing;
964   }
965 #ifndef NDEBUG
966   SmallSet<unsigned, 4> DstRegs;
967 #endif
968   for (unsigned i = 0; i != SubRegs; ++i) {
969     unsigned Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
970     unsigned Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
971     assert(Dst && Src && "Bad sub-register");
972 #ifndef NDEBUG
973     assert(!DstRegs.count(Src) && "destructive vector copy");
974     DstRegs.insert(Dst);
975 #endif
976     Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
977     // VORR (NEON or MVE) takes two source operands.
978     if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) {
979       Mov.addReg(Src);
980     }
981     // MVE VORR takes predicate operands in place of an ordinary condition.
982     if (Opc == ARM::MVE_VORR)
983       addUnpredicatedMveVpredROp(Mov, Dst);
984     else
985       Mov = Mov.add(predOps(ARMCC::AL));
986     // MOVr can set CC.
987     if (Opc == ARM::MOVr)
988       Mov = Mov.add(condCodeOp());
989   }
990   // Add implicit super-register defs and kills to the last instruction.
991   Mov->addRegisterDefined(DestReg, TRI);
992   if (KillSrc)
993     Mov->addRegisterKilled(SrcReg, TRI);
994 }
995 
996 bool ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI,
997                                        const MachineOperand *&Src,
998                                        const MachineOperand *&Dest) const {
999   // VMOVRRD is also a copy instruction but it requires
1000   // special way of handling. It is more complex copy version
1001   // and since that we are not considering it. For recognition
1002   // of such instruction isExtractSubregLike MI interface fuction
1003   // could be used.
1004   // VORRq is considered as a move only if two inputs are
1005   // the same register.
1006   if (!MI.isMoveReg() ||
1007       (MI.getOpcode() == ARM::VORRq &&
1008        MI.getOperand(1).getReg() != MI.getOperand(2).getReg()))
1009     return false;
1010   Dest = &MI.getOperand(0);
1011   Src = &MI.getOperand(1);
1012   return true;
1013 }
1014 
1015 const MachineInstrBuilder &
1016 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
1017                           unsigned SubIdx, unsigned State,
1018                           const TargetRegisterInfo *TRI) const {
1019   if (!SubIdx)
1020     return MIB.addReg(Reg, State);
1021 
1022   if (TargetRegisterInfo::isPhysicalRegister(Reg))
1023     return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
1024   return MIB.addReg(Reg, State, SubIdx);
1025 }
1026 
1027 void ARMBaseInstrInfo::
1028 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1029                     unsigned SrcReg, bool isKill, int FI,
1030                     const TargetRegisterClass *RC,
1031                     const TargetRegisterInfo *TRI) const {
1032   MachineFunction &MF = *MBB.getParent();
1033   MachineFrameInfo &MFI = MF.getFrameInfo();
1034   unsigned Align = MFI.getObjectAlignment(FI);
1035 
1036   MachineMemOperand *MMO = MF.getMachineMemOperand(
1037       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
1038       MFI.getObjectSize(FI), Align);
1039 
1040   switch (TRI->getSpillSize(*RC)) {
1041     case 2:
1042       if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1043         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH))
1044             .addReg(SrcReg, getKillRegState(isKill))
1045             .addFrameIndex(FI)
1046             .addImm(0)
1047             .addMemOperand(MMO)
1048             .add(predOps(ARMCC::AL));
1049       } else
1050         llvm_unreachable("Unknown reg class!");
1051       break;
1052     case 4:
1053       if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1054         BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12))
1055             .addReg(SrcReg, getKillRegState(isKill))
1056             .addFrameIndex(FI)
1057             .addImm(0)
1058             .addMemOperand(MMO)
1059             .add(predOps(ARMCC::AL));
1060       } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1061         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS))
1062             .addReg(SrcReg, getKillRegState(isKill))
1063             .addFrameIndex(FI)
1064             .addImm(0)
1065             .addMemOperand(MMO)
1066             .add(predOps(ARMCC::AL));
1067       } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1068         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off))
1069             .addReg(SrcReg, getKillRegState(isKill))
1070             .addFrameIndex(FI)
1071             .addImm(0)
1072             .addMemOperand(MMO)
1073             .add(predOps(ARMCC::AL));
1074       } else
1075         llvm_unreachable("Unknown reg class!");
1076       break;
1077     case 8:
1078       if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1079         BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD))
1080             .addReg(SrcReg, getKillRegState(isKill))
1081             .addFrameIndex(FI)
1082             .addImm(0)
1083             .addMemOperand(MMO)
1084             .add(predOps(ARMCC::AL));
1085       } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1086         if (Subtarget.hasV5TEOps()) {
1087           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD));
1088           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1089           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1090           MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1091              .add(predOps(ARMCC::AL));
1092         } else {
1093           // Fallback to STM instruction, which has existed since the dawn of
1094           // time.
1095           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA))
1096                                         .addFrameIndex(FI)
1097                                         .addMemOperand(MMO)
1098                                         .add(predOps(ARMCC::AL));
1099           AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1100           AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1101         }
1102       } else
1103         llvm_unreachable("Unknown reg class!");
1104       break;
1105     case 16:
1106       if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1107         // Use aligned spills if the stack can be realigned.
1108         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1109           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64))
1110               .addFrameIndex(FI)
1111               .addImm(16)
1112               .addReg(SrcReg, getKillRegState(isKill))
1113               .addMemOperand(MMO)
1114               .add(predOps(ARMCC::AL));
1115         } else {
1116           BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA))
1117               .addReg(SrcReg, getKillRegState(isKill))
1118               .addFrameIndex(FI)
1119               .addMemOperand(MMO)
1120               .add(predOps(ARMCC::AL));
1121         }
1122       } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1123                  Subtarget.hasMVEIntegerOps()) {
1124         auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32));
1125         MIB.addReg(SrcReg, getKillRegState(isKill))
1126           .addFrameIndex(FI)
1127           .addImm(0)
1128           .addMemOperand(MMO);
1129         addUnpredicatedMveVpredNOp(MIB);
1130       } else
1131         llvm_unreachable("Unknown reg class!");
1132       break;
1133     case 24:
1134       if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1135         // Use aligned spills if the stack can be realigned.
1136         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1137           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo))
1138               .addFrameIndex(FI)
1139               .addImm(16)
1140               .addReg(SrcReg, getKillRegState(isKill))
1141               .addMemOperand(MMO)
1142               .add(predOps(ARMCC::AL));
1143         } else {
1144           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1145                                             get(ARM::VSTMDIA))
1146                                         .addFrameIndex(FI)
1147                                         .add(predOps(ARMCC::AL))
1148                                         .addMemOperand(MMO);
1149           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1150           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1151           AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1152         }
1153       } else
1154         llvm_unreachable("Unknown reg class!");
1155       break;
1156     case 32:
1157       if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1158         if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1159           // FIXME: It's possible to only store part of the QQ register if the
1160           // spilled def has a sub-register index.
1161           BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo))
1162               .addFrameIndex(FI)
1163               .addImm(16)
1164               .addReg(SrcReg, getKillRegState(isKill))
1165               .addMemOperand(MMO)
1166               .add(predOps(ARMCC::AL));
1167         } else {
1168           MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1169                                             get(ARM::VSTMDIA))
1170                                         .addFrameIndex(FI)
1171                                         .add(predOps(ARMCC::AL))
1172                                         .addMemOperand(MMO);
1173           MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1174           MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1175           MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1176                 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1177         }
1178       } else
1179         llvm_unreachable("Unknown reg class!");
1180       break;
1181     case 64:
1182       if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1183         MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA))
1184                                       .addFrameIndex(FI)
1185                                       .add(predOps(ARMCC::AL))
1186                                       .addMemOperand(MMO);
1187         MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1188         MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1189         MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1190         MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1191         MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
1192         MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
1193         MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
1194               AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
1195       } else
1196         llvm_unreachable("Unknown reg class!");
1197       break;
1198     default:
1199       llvm_unreachable("Unknown reg class!");
1200   }
1201 }
1202 
1203 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1204                                               int &FrameIndex) const {
1205   switch (MI.getOpcode()) {
1206   default: break;
1207   case ARM::STRrs:
1208   case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
1209     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1210         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1211         MI.getOperand(3).getImm() == 0) {
1212       FrameIndex = MI.getOperand(1).getIndex();
1213       return MI.getOperand(0).getReg();
1214     }
1215     break;
1216   case ARM::STRi12:
1217   case ARM::t2STRi12:
1218   case ARM::tSTRspi:
1219   case ARM::VSTRD:
1220   case ARM::VSTRS:
1221     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1222         MI.getOperand(2).getImm() == 0) {
1223       FrameIndex = MI.getOperand(1).getIndex();
1224       return MI.getOperand(0).getReg();
1225     }
1226     break;
1227   case ARM::VSTR_P0_off:
1228     if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() &&
1229         MI.getOperand(1).getImm() == 0) {
1230       FrameIndex = MI.getOperand(0).getIndex();
1231       return ARM::P0;
1232     }
1233     break;
1234   case ARM::VST1q64:
1235   case ARM::VST1d64TPseudo:
1236   case ARM::VST1d64QPseudo:
1237     if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) {
1238       FrameIndex = MI.getOperand(0).getIndex();
1239       return MI.getOperand(2).getReg();
1240     }
1241     break;
1242   case ARM::VSTMQIA:
1243     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1244       FrameIndex = MI.getOperand(1).getIndex();
1245       return MI.getOperand(0).getReg();
1246     }
1247     break;
1248   }
1249 
1250   return 0;
1251 }
1252 
1253 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
1254                                                     int &FrameIndex) const {
1255   SmallVector<const MachineMemOperand *, 1> Accesses;
1256   if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) &&
1257       Accesses.size() == 1) {
1258     FrameIndex =
1259         cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1260             ->getFrameIndex();
1261     return true;
1262   }
1263   return false;
1264 }
1265 
1266 void ARMBaseInstrInfo::
1267 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
1268                      unsigned DestReg, int FI,
1269                      const TargetRegisterClass *RC,
1270                      const TargetRegisterInfo *TRI) const {
1271   DebugLoc DL;
1272   if (I != MBB.end()) DL = I->getDebugLoc();
1273   MachineFunction &MF = *MBB.getParent();
1274   MachineFrameInfo &MFI = MF.getFrameInfo();
1275   unsigned Align = MFI.getObjectAlignment(FI);
1276   MachineMemOperand *MMO = MF.getMachineMemOperand(
1277       MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
1278       MFI.getObjectSize(FI), Align);
1279 
1280   switch (TRI->getSpillSize(*RC)) {
1281   case 2:
1282     if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1283       BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg)
1284           .addFrameIndex(FI)
1285           .addImm(0)
1286           .addMemOperand(MMO)
1287           .add(predOps(ARMCC::AL));
1288     } else
1289       llvm_unreachable("Unknown reg class!");
1290     break;
1291   case 4:
1292     if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1293       BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
1294           .addFrameIndex(FI)
1295           .addImm(0)
1296           .addMemOperand(MMO)
1297           .add(predOps(ARMCC::AL));
1298     } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1299       BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
1300           .addFrameIndex(FI)
1301           .addImm(0)
1302           .addMemOperand(MMO)
1303           .add(predOps(ARMCC::AL));
1304     } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1305       BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg)
1306           .addFrameIndex(FI)
1307           .addImm(0)
1308           .addMemOperand(MMO)
1309           .add(predOps(ARMCC::AL));
1310     } else
1311       llvm_unreachable("Unknown reg class!");
1312     break;
1313   case 8:
1314     if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1315       BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
1316           .addFrameIndex(FI)
1317           .addImm(0)
1318           .addMemOperand(MMO)
1319           .add(predOps(ARMCC::AL));
1320     } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1321       MachineInstrBuilder MIB;
1322 
1323       if (Subtarget.hasV5TEOps()) {
1324         MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
1325         AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1326         AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1327         MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
1328            .add(predOps(ARMCC::AL));
1329       } else {
1330         // Fallback to LDM instruction, which has existed since the dawn of
1331         // time.
1332         MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA))
1333                   .addFrameIndex(FI)
1334                   .addMemOperand(MMO)
1335                   .add(predOps(ARMCC::AL));
1336         MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1337         MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1338       }
1339 
1340       if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1341         MIB.addReg(DestReg, RegState::ImplicitDefine);
1342     } else
1343       llvm_unreachable("Unknown reg class!");
1344     break;
1345   case 16:
1346     if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1347       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1348         BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
1349             .addFrameIndex(FI)
1350             .addImm(16)
1351             .addMemOperand(MMO)
1352             .add(predOps(ARMCC::AL));
1353       } else {
1354         BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
1355             .addFrameIndex(FI)
1356             .addMemOperand(MMO)
1357             .add(predOps(ARMCC::AL));
1358       }
1359     } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1360                Subtarget.hasMVEIntegerOps()) {
1361       auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg);
1362       MIB.addFrameIndex(FI)
1363         .addImm(0)
1364         .addMemOperand(MMO);
1365       addUnpredicatedMveVpredNOp(MIB);
1366     } else
1367       llvm_unreachable("Unknown reg class!");
1368     break;
1369   case 24:
1370     if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1371       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1372         BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
1373             .addFrameIndex(FI)
1374             .addImm(16)
1375             .addMemOperand(MMO)
1376             .add(predOps(ARMCC::AL));
1377       } else {
1378         MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1379                                       .addFrameIndex(FI)
1380                                       .addMemOperand(MMO)
1381                                       .add(predOps(ARMCC::AL));
1382         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1383         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1384         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1385         if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1386           MIB.addReg(DestReg, RegState::ImplicitDefine);
1387       }
1388     } else
1389       llvm_unreachable("Unknown reg class!");
1390     break;
1391    case 32:
1392     if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
1393       if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
1394         BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1395             .addFrameIndex(FI)
1396             .addImm(16)
1397             .addMemOperand(MMO)
1398             .add(predOps(ARMCC::AL));
1399       } else {
1400         MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1401                                       .addFrameIndex(FI)
1402                                       .add(predOps(ARMCC::AL))
1403                                       .addMemOperand(MMO);
1404         MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1405         MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1406         MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1407         MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1408         if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1409           MIB.addReg(DestReg, RegState::ImplicitDefine);
1410       }
1411     } else
1412       llvm_unreachable("Unknown reg class!");
1413     break;
1414   case 64:
1415     if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1416       MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1417                                     .addFrameIndex(FI)
1418                                     .add(predOps(ARMCC::AL))
1419                                     .addMemOperand(MMO);
1420       MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1421       MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1422       MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1423       MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1424       MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1425       MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1426       MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1427       MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1428       if (TargetRegisterInfo::isPhysicalRegister(DestReg))
1429         MIB.addReg(DestReg, RegState::ImplicitDefine);
1430     } else
1431       llvm_unreachable("Unknown reg class!");
1432     break;
1433   default:
1434     llvm_unreachable("Unknown regclass!");
1435   }
1436 }
1437 
1438 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1439                                                int &FrameIndex) const {
1440   switch (MI.getOpcode()) {
1441   default: break;
1442   case ARM::LDRrs:
1443   case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
1444     if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
1445         MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
1446         MI.getOperand(3).getImm() == 0) {
1447       FrameIndex = MI.getOperand(1).getIndex();
1448       return MI.getOperand(0).getReg();
1449     }
1450     break;
1451   case ARM::LDRi12:
1452   case ARM::t2LDRi12:
1453   case ARM::tLDRspi:
1454   case ARM::VLDRD:
1455   case ARM::VLDRS:
1456     if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
1457         MI.getOperand(2).getImm() == 0) {
1458       FrameIndex = MI.getOperand(1).getIndex();
1459       return MI.getOperand(0).getReg();
1460     }
1461     break;
1462   case ARM::VLDR_P0_off:
1463     if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() &&
1464         MI.getOperand(1).getImm() == 0) {
1465       FrameIndex = MI.getOperand(0).getIndex();
1466       return ARM::P0;
1467     }
1468     break;
1469   case ARM::VLD1q64:
1470   case ARM::VLD1d8TPseudo:
1471   case ARM::VLD1d16TPseudo:
1472   case ARM::VLD1d32TPseudo:
1473   case ARM::VLD1d64TPseudo:
1474   case ARM::VLD1d8QPseudo:
1475   case ARM::VLD1d16QPseudo:
1476   case ARM::VLD1d32QPseudo:
1477   case ARM::VLD1d64QPseudo:
1478     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1479       FrameIndex = MI.getOperand(1).getIndex();
1480       return MI.getOperand(0).getReg();
1481     }
1482     break;
1483   case ARM::VLDMQIA:
1484     if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
1485       FrameIndex = MI.getOperand(1).getIndex();
1486       return MI.getOperand(0).getReg();
1487     }
1488     break;
1489   }
1490 
1491   return 0;
1492 }
1493 
1494 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
1495                                                      int &FrameIndex) const {
1496   SmallVector<const MachineMemOperand *, 1> Accesses;
1497   if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) &&
1498       Accesses.size() == 1) {
1499     FrameIndex =
1500         cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
1501             ->getFrameIndex();
1502     return true;
1503   }
1504   return false;
1505 }
1506 
1507 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
1508 /// depending on whether the result is used.
1509 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const {
1510   bool isThumb1 = Subtarget.isThumb1Only();
1511   bool isThumb2 = Subtarget.isThumb2();
1512   const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo();
1513 
1514   DebugLoc dl = MI->getDebugLoc();
1515   MachineBasicBlock *BB = MI->getParent();
1516 
1517   MachineInstrBuilder LDM, STM;
1518   if (isThumb1 || !MI->getOperand(1).isDead()) {
1519     MachineOperand LDWb(MI->getOperand(1));
1520     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD
1521                                                  : isThumb1 ? ARM::tLDMIA_UPD
1522                                                             : ARM::LDMIA_UPD))
1523               .add(LDWb);
1524   } else {
1525     LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA));
1526   }
1527 
1528   if (isThumb1 || !MI->getOperand(0).isDead()) {
1529     MachineOperand STWb(MI->getOperand(0));
1530     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD
1531                                                  : isThumb1 ? ARM::tSTMIA_UPD
1532                                                             : ARM::STMIA_UPD))
1533               .add(STWb);
1534   } else {
1535     STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA));
1536   }
1537 
1538   MachineOperand LDBase(MI->getOperand(3));
1539   LDM.add(LDBase).add(predOps(ARMCC::AL));
1540 
1541   MachineOperand STBase(MI->getOperand(2));
1542   STM.add(STBase).add(predOps(ARMCC::AL));
1543 
1544   // Sort the scratch registers into ascending order.
1545   const TargetRegisterInfo &TRI = getRegisterInfo();
1546   SmallVector<unsigned, 6> ScratchRegs;
1547   for(unsigned I = 5; I < MI->getNumOperands(); ++I)
1548     ScratchRegs.push_back(MI->getOperand(I).getReg());
1549   llvm::sort(ScratchRegs,
1550              [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool {
1551                return TRI.getEncodingValue(Reg1) <
1552                       TRI.getEncodingValue(Reg2);
1553              });
1554 
1555   for (const auto &Reg : ScratchRegs) {
1556     LDM.addReg(Reg, RegState::Define);
1557     STM.addReg(Reg, RegState::Kill);
1558   }
1559 
1560   BB->erase(MI);
1561 }
1562 
1563 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1564   if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
1565     assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() &&
1566            "LOAD_STACK_GUARD currently supported only for MachO.");
1567     expandLoadStackGuard(MI);
1568     MI.getParent()->erase(MI);
1569     return true;
1570   }
1571 
1572   if (MI.getOpcode() == ARM::MEMCPY) {
1573     expandMEMCPY(MI);
1574     return true;
1575   }
1576 
1577   // This hook gets to expand COPY instructions before they become
1578   // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
1579   // widened to VMOVD.  We prefer the VMOVD when possible because it may be
1580   // changed into a VORR that can go down the NEON pipeline.
1581   if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64())
1582     return false;
1583 
1584   // Look for a copy between even S-registers.  That is where we keep floats
1585   // when using NEON v2f32 instructions for f32 arithmetic.
1586   unsigned DstRegS = MI.getOperand(0).getReg();
1587   unsigned SrcRegS = MI.getOperand(1).getReg();
1588   if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1589     return false;
1590 
1591   const TargetRegisterInfo *TRI = &getRegisterInfo();
1592   unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1593                                               &ARM::DPRRegClass);
1594   unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1595                                               &ARM::DPRRegClass);
1596   if (!DstRegD || !SrcRegD)
1597     return false;
1598 
1599   // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
1600   // legal if the COPY already defines the full DstRegD, and it isn't a
1601   // sub-register insertion.
1602   if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI))
1603     return false;
1604 
1605   // A dead copy shouldn't show up here, but reject it just in case.
1606   if (MI.getOperand(0).isDead())
1607     return false;
1608 
1609   // All clear, widen the COPY.
1610   LLVM_DEBUG(dbgs() << "widening:    " << MI);
1611   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
1612 
1613   // Get rid of the old implicit-def of DstRegD.  Leave it if it defines a Q-reg
1614   // or some other super-register.
1615   int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD);
1616   if (ImpDefIdx != -1)
1617     MI.RemoveOperand(ImpDefIdx);
1618 
1619   // Change the opcode and operands.
1620   MI.setDesc(get(ARM::VMOVD));
1621   MI.getOperand(0).setReg(DstRegD);
1622   MI.getOperand(1).setReg(SrcRegD);
1623   MIB.add(predOps(ARMCC::AL));
1624 
1625   // We are now reading SrcRegD instead of SrcRegS.  This may upset the
1626   // register scavenger and machine verifier, so we need to indicate that we
1627   // are reading an undefined value from SrcRegD, but a proper value from
1628   // SrcRegS.
1629   MI.getOperand(1).setIsUndef();
1630   MIB.addReg(SrcRegS, RegState::Implicit);
1631 
1632   // SrcRegD may actually contain an unrelated value in the ssub_1
1633   // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
1634   if (MI.getOperand(1).isKill()) {
1635     MI.getOperand(1).setIsKill(false);
1636     MI.addRegisterKilled(SrcRegS, TRI, true);
1637   }
1638 
1639   LLVM_DEBUG(dbgs() << "replaced by: " << MI);
1640   return true;
1641 }
1642 
1643 /// Create a copy of a const pool value. Update CPI to the new index and return
1644 /// the label UID.
1645 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1646   MachineConstantPool *MCP = MF.getConstantPool();
1647   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1648 
1649   const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1650   assert(MCPE.isMachineConstantPoolEntry() &&
1651          "Expecting a machine constantpool entry!");
1652   ARMConstantPoolValue *ACPV =
1653     static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1654 
1655   unsigned PCLabelId = AFI->createPICLabelUId();
1656   ARMConstantPoolValue *NewCPV = nullptr;
1657 
1658   // FIXME: The below assumes PIC relocation model and that the function
1659   // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1660   // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1661   // instructions, so that's probably OK, but is PIC always correct when
1662   // we get here?
1663   if (ACPV->isGlobalValue())
1664     NewCPV = ARMConstantPoolConstant::Create(
1665         cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue,
1666         4, ACPV->getModifier(), ACPV->mustAddCurrentAddress());
1667   else if (ACPV->isExtSymbol())
1668     NewCPV = ARMConstantPoolSymbol::
1669       Create(MF.getFunction().getContext(),
1670              cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
1671   else if (ACPV->isBlockAddress())
1672     NewCPV = ARMConstantPoolConstant::
1673       Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
1674              ARMCP::CPBlockAddress, 4);
1675   else if (ACPV->isLSDA())
1676     NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId,
1677                                              ARMCP::CPLSDA, 4);
1678   else if (ACPV->isMachineBasicBlock())
1679     NewCPV = ARMConstantPoolMBB::
1680       Create(MF.getFunction().getContext(),
1681              cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
1682   else
1683     llvm_unreachable("Unexpected ARM constantpool value type!!");
1684   CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
1685   return PCLabelId;
1686 }
1687 
1688 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB,
1689                                      MachineBasicBlock::iterator I,
1690                                      unsigned DestReg, unsigned SubIdx,
1691                                      const MachineInstr &Orig,
1692                                      const TargetRegisterInfo &TRI) const {
1693   unsigned Opcode = Orig.getOpcode();
1694   switch (Opcode) {
1695   default: {
1696     MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
1697     MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
1698     MBB.insert(I, MI);
1699     break;
1700   }
1701   case ARM::tLDRpci_pic:
1702   case ARM::t2LDRpci_pic: {
1703     MachineFunction &MF = *MBB.getParent();
1704     unsigned CPI = Orig.getOperand(1).getIndex();
1705     unsigned PCLabelId = duplicateCPV(MF, CPI);
1706     BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg)
1707         .addConstantPoolIndex(CPI)
1708         .addImm(PCLabelId)
1709         .cloneMemRefs(Orig);
1710     break;
1711   }
1712   }
1713 }
1714 
1715 MachineInstr &
1716 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB,
1717     MachineBasicBlock::iterator InsertBefore,
1718     const MachineInstr &Orig) const {
1719   MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig);
1720   MachineBasicBlock::instr_iterator I = Cloned.getIterator();
1721   for (;;) {
1722     switch (I->getOpcode()) {
1723     case ARM::tLDRpci_pic:
1724     case ARM::t2LDRpci_pic: {
1725       MachineFunction &MF = *MBB.getParent();
1726       unsigned CPI = I->getOperand(1).getIndex();
1727       unsigned PCLabelId = duplicateCPV(MF, CPI);
1728       I->getOperand(1).setIndex(CPI);
1729       I->getOperand(2).setImm(PCLabelId);
1730       break;
1731     }
1732     }
1733     if (!I->isBundledWithSucc())
1734       break;
1735     ++I;
1736   }
1737   return Cloned;
1738 }
1739 
1740 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0,
1741                                         const MachineInstr &MI1,
1742                                         const MachineRegisterInfo *MRI) const {
1743   unsigned Opcode = MI0.getOpcode();
1744   if (Opcode == ARM::t2LDRpci ||
1745       Opcode == ARM::t2LDRpci_pic ||
1746       Opcode == ARM::tLDRpci ||
1747       Opcode == ARM::tLDRpci_pic ||
1748       Opcode == ARM::LDRLIT_ga_pcrel ||
1749       Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1750       Opcode == ARM::tLDRLIT_ga_pcrel ||
1751       Opcode == ARM::MOV_ga_pcrel ||
1752       Opcode == ARM::MOV_ga_pcrel_ldr ||
1753       Opcode == ARM::t2MOV_ga_pcrel) {
1754     if (MI1.getOpcode() != Opcode)
1755       return false;
1756     if (MI0.getNumOperands() != MI1.getNumOperands())
1757       return false;
1758 
1759     const MachineOperand &MO0 = MI0.getOperand(1);
1760     const MachineOperand &MO1 = MI1.getOperand(1);
1761     if (MO0.getOffset() != MO1.getOffset())
1762       return false;
1763 
1764     if (Opcode == ARM::LDRLIT_ga_pcrel ||
1765         Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1766         Opcode == ARM::tLDRLIT_ga_pcrel ||
1767         Opcode == ARM::MOV_ga_pcrel ||
1768         Opcode == ARM::MOV_ga_pcrel_ldr ||
1769         Opcode == ARM::t2MOV_ga_pcrel)
1770       // Ignore the PC labels.
1771       return MO0.getGlobal() == MO1.getGlobal();
1772 
1773     const MachineFunction *MF = MI0.getParent()->getParent();
1774     const MachineConstantPool *MCP = MF->getConstantPool();
1775     int CPI0 = MO0.getIndex();
1776     int CPI1 = MO1.getIndex();
1777     const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1778     const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1779     bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1780     bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1781     if (isARMCP0 && isARMCP1) {
1782       ARMConstantPoolValue *ACPV0 =
1783         static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1784       ARMConstantPoolValue *ACPV1 =
1785         static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1786       return ACPV0->hasSameValue(ACPV1);
1787     } else if (!isARMCP0 && !isARMCP1) {
1788       return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1789     }
1790     return false;
1791   } else if (Opcode == ARM::PICLDR) {
1792     if (MI1.getOpcode() != Opcode)
1793       return false;
1794     if (MI0.getNumOperands() != MI1.getNumOperands())
1795       return false;
1796 
1797     unsigned Addr0 = MI0.getOperand(1).getReg();
1798     unsigned Addr1 = MI1.getOperand(1).getReg();
1799     if (Addr0 != Addr1) {
1800       if (!MRI ||
1801           !TargetRegisterInfo::isVirtualRegister(Addr0) ||
1802           !TargetRegisterInfo::isVirtualRegister(Addr1))
1803         return false;
1804 
1805       // This assumes SSA form.
1806       MachineInstr *Def0 = MRI->getVRegDef(Addr0);
1807       MachineInstr *Def1 = MRI->getVRegDef(Addr1);
1808       // Check if the loaded value, e.g. a constantpool of a global address, are
1809       // the same.
1810       if (!produceSameValue(*Def0, *Def1, MRI))
1811         return false;
1812     }
1813 
1814     for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) {
1815       // %12 = PICLDR %11, 0, 14, %noreg
1816       const MachineOperand &MO0 = MI0.getOperand(i);
1817       const MachineOperand &MO1 = MI1.getOperand(i);
1818       if (!MO0.isIdenticalTo(MO1))
1819         return false;
1820     }
1821     return true;
1822   }
1823 
1824   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1825 }
1826 
1827 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1828 /// determine if two loads are loading from the same base address. It should
1829 /// only return true if the base pointers are the same and the only differences
1830 /// between the two addresses is the offset. It also returns the offsets by
1831 /// reference.
1832 ///
1833 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1834 /// is permanently disabled.
1835 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1836                                                int64_t &Offset1,
1837                                                int64_t &Offset2) const {
1838   // Don't worry about Thumb: just ARM and Thumb2.
1839   if (Subtarget.isThumb1Only()) return false;
1840 
1841   if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1842     return false;
1843 
1844   switch (Load1->getMachineOpcode()) {
1845   default:
1846     return false;
1847   case ARM::LDRi12:
1848   case ARM::LDRBi12:
1849   case ARM::LDRD:
1850   case ARM::LDRH:
1851   case ARM::LDRSB:
1852   case ARM::LDRSH:
1853   case ARM::VLDRD:
1854   case ARM::VLDRS:
1855   case ARM::t2LDRi8:
1856   case ARM::t2LDRBi8:
1857   case ARM::t2LDRDi8:
1858   case ARM::t2LDRSHi8:
1859   case ARM::t2LDRi12:
1860   case ARM::t2LDRBi12:
1861   case ARM::t2LDRSHi12:
1862     break;
1863   }
1864 
1865   switch (Load2->getMachineOpcode()) {
1866   default:
1867     return false;
1868   case ARM::LDRi12:
1869   case ARM::LDRBi12:
1870   case ARM::LDRD:
1871   case ARM::LDRH:
1872   case ARM::LDRSB:
1873   case ARM::LDRSH:
1874   case ARM::VLDRD:
1875   case ARM::VLDRS:
1876   case ARM::t2LDRi8:
1877   case ARM::t2LDRBi8:
1878   case ARM::t2LDRSHi8:
1879   case ARM::t2LDRi12:
1880   case ARM::t2LDRBi12:
1881   case ARM::t2LDRSHi12:
1882     break;
1883   }
1884 
1885   // Check if base addresses and chain operands match.
1886   if (Load1->getOperand(0) != Load2->getOperand(0) ||
1887       Load1->getOperand(4) != Load2->getOperand(4))
1888     return false;
1889 
1890   // Index should be Reg0.
1891   if (Load1->getOperand(3) != Load2->getOperand(3))
1892     return false;
1893 
1894   // Determine the offsets.
1895   if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1896       isa<ConstantSDNode>(Load2->getOperand(1))) {
1897     Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1898     Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1899     return true;
1900   }
1901 
1902   return false;
1903 }
1904 
1905 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1906 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
1907 /// be scheduled togther. On some targets if two loads are loading from
1908 /// addresses in the same cache line, it's better if they are scheduled
1909 /// together. This function takes two integers that represent the load offsets
1910 /// from the common base address. It returns true if it decides it's desirable
1911 /// to schedule the two loads together. "NumLoads" is the number of loads that
1912 /// have already been scheduled after Load1.
1913 ///
1914 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1915 /// is permanently disabled.
1916 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1917                                                int64_t Offset1, int64_t Offset2,
1918                                                unsigned NumLoads) const {
1919   // Don't worry about Thumb: just ARM and Thumb2.
1920   if (Subtarget.isThumb1Only()) return false;
1921 
1922   assert(Offset2 > Offset1);
1923 
1924   if ((Offset2 - Offset1) / 8 > 64)
1925     return false;
1926 
1927   // Check if the machine opcodes are different. If they are different
1928   // then we consider them to not be of the same base address,
1929   // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
1930   // In this case, they are considered to be the same because they are different
1931   // encoding forms of the same basic instruction.
1932   if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
1933       !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
1934          Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
1935         (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
1936          Load2->getMachineOpcode() == ARM::t2LDRBi8)))
1937     return false;  // FIXME: overly conservative?
1938 
1939   // Four loads in a row should be sufficient.
1940   if (NumLoads >= 3)
1941     return false;
1942 
1943   return true;
1944 }
1945 
1946 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
1947                                             const MachineBasicBlock *MBB,
1948                                             const MachineFunction &MF) const {
1949   // Debug info is never a scheduling boundary. It's necessary to be explicit
1950   // due to the special treatment of IT instructions below, otherwise a
1951   // dbg_value followed by an IT will result in the IT instruction being
1952   // considered a scheduling hazard, which is wrong. It should be the actual
1953   // instruction preceding the dbg_value instruction(s), just like it is
1954   // when debug info is not present.
1955   if (MI.isDebugInstr())
1956     return false;
1957 
1958   // Terminators and labels can't be scheduled around.
1959   if (MI.isTerminator() || MI.isPosition())
1960     return true;
1961 
1962   // Treat the start of the IT block as a scheduling boundary, but schedule
1963   // t2IT along with all instructions following it.
1964   // FIXME: This is a big hammer. But the alternative is to add all potential
1965   // true and anti dependencies to IT block instructions as implicit operands
1966   // to the t2IT instruction. The added compile time and complexity does not
1967   // seem worth it.
1968   MachineBasicBlock::const_iterator I = MI;
1969   // Make sure to skip any debug instructions
1970   while (++I != MBB->end() && I->isDebugInstr())
1971     ;
1972   if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
1973     return true;
1974 
1975   // Don't attempt to schedule around any instruction that defines
1976   // a stack-oriented pointer, as it's unlikely to be profitable. This
1977   // saves compile time, because it doesn't require every single
1978   // stack slot reference to depend on the instruction that does the
1979   // modification.
1980   // Calls don't actually change the stack pointer, even if they have imp-defs.
1981   // No ARM calling conventions change the stack pointer. (X86 calling
1982   // conventions sometimes do).
1983   if (!MI.isCall() && MI.definesRegister(ARM::SP))
1984     return true;
1985 
1986   return false;
1987 }
1988 
1989 bool ARMBaseInstrInfo::
1990 isProfitableToIfCvt(MachineBasicBlock &MBB,
1991                     unsigned NumCycles, unsigned ExtraPredCycles,
1992                     BranchProbability Probability) const {
1993   if (!NumCycles)
1994     return false;
1995 
1996   // If we are optimizing for size, see if the branch in the predecessor can be
1997   // lowered to cbn?z by the constant island lowering pass, and return false if
1998   // so. This results in a shorter instruction sequence.
1999   if (MBB.getParent()->getFunction().hasOptSize()) {
2000     MachineBasicBlock *Pred = *MBB.pred_begin();
2001     if (!Pred->empty()) {
2002       MachineInstr *LastMI = &*Pred->rbegin();
2003       if (LastMI->getOpcode() == ARM::t2Bcc) {
2004         const TargetRegisterInfo *TRI = &getRegisterInfo();
2005         MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI);
2006         if (CmpMI)
2007           return false;
2008       }
2009     }
2010   }
2011   return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles,
2012                              MBB, 0, 0, Probability);
2013 }
2014 
2015 bool ARMBaseInstrInfo::
2016 isProfitableToIfCvt(MachineBasicBlock &TBB,
2017                     unsigned TCycles, unsigned TExtra,
2018                     MachineBasicBlock &FBB,
2019                     unsigned FCycles, unsigned FExtra,
2020                     BranchProbability Probability) const {
2021   if (!TCycles)
2022     return false;
2023 
2024   // In thumb code we often end up trading one branch for a IT block, and
2025   // if we are cloning the instruction can increase code size. Prevent
2026   // blocks with multiple predecesors from being ifcvted to prevent this
2027   // cloning.
2028   if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) {
2029     if (TBB.pred_size() != 1 || FBB.pred_size() != 1)
2030       return false;
2031   }
2032 
2033   // Attempt to estimate the relative costs of predication versus branching.
2034   // Here we scale up each component of UnpredCost to avoid precision issue when
2035   // scaling TCycles/FCycles by Probability.
2036   const unsigned ScalingUpFactor = 1024;
2037 
2038   unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor;
2039   unsigned UnpredCost;
2040   if (!Subtarget.hasBranchPredictor()) {
2041     // When we don't have a branch predictor it's always cheaper to not take a
2042     // branch than take it, so we have to take that into account.
2043     unsigned NotTakenBranchCost = 1;
2044     unsigned TakenBranchCost = Subtarget.getMispredictionPenalty();
2045     unsigned TUnpredCycles, FUnpredCycles;
2046     if (!FCycles) {
2047       // Triangle: TBB is the fallthrough
2048       TUnpredCycles = TCycles + NotTakenBranchCost;
2049       FUnpredCycles = TakenBranchCost;
2050     } else {
2051       // Diamond: TBB is the block that is branched to, FBB is the fallthrough
2052       TUnpredCycles = TCycles + TakenBranchCost;
2053       FUnpredCycles = FCycles + NotTakenBranchCost;
2054       // The branch at the end of FBB will disappear when it's predicated, so
2055       // discount it from PredCost.
2056       PredCost -= 1 * ScalingUpFactor;
2057     }
2058     // The total cost is the cost of each path scaled by their probabilites
2059     unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor);
2060     unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor);
2061     UnpredCost = TUnpredCost + FUnpredCost;
2062     // When predicating assume that the first IT can be folded away but later
2063     // ones cost one cycle each
2064     if (Subtarget.isThumb2() && TCycles + FCycles > 4) {
2065       PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor;
2066     }
2067   } else {
2068     unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor);
2069     unsigned FUnpredCost =
2070       Probability.getCompl().scale(FCycles * ScalingUpFactor);
2071     UnpredCost = TUnpredCost + FUnpredCost;
2072     UnpredCost += 1 * ScalingUpFactor; // The branch itself
2073     UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
2074   }
2075 
2076   return PredCost <= UnpredCost;
2077 }
2078 
2079 bool
2080 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
2081                                             MachineBasicBlock &FMBB) const {
2082   // Reduce false anti-dependencies to let the target's out-of-order execution
2083   // engine do its thing.
2084   return Subtarget.isProfitableToUnpredicate();
2085 }
2086 
2087 /// getInstrPredicate - If instruction is predicated, returns its predicate
2088 /// condition, otherwise returns AL. It also returns the condition code
2089 /// register by reference.
2090 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI,
2091                                          unsigned &PredReg) {
2092   int PIdx = MI.findFirstPredOperandIdx();
2093   if (PIdx == -1) {
2094     PredReg = 0;
2095     return ARMCC::AL;
2096   }
2097 
2098   PredReg = MI.getOperand(PIdx+1).getReg();
2099   return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
2100 }
2101 
2102 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
2103   if (Opc == ARM::B)
2104     return ARM::Bcc;
2105   if (Opc == ARM::tB)
2106     return ARM::tBcc;
2107   if (Opc == ARM::t2B)
2108     return ARM::t2Bcc;
2109 
2110   llvm_unreachable("Unknown unconditional branch opcode!");
2111 }
2112 
2113 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI,
2114                                                        bool NewMI,
2115                                                        unsigned OpIdx1,
2116                                                        unsigned OpIdx2) const {
2117   switch (MI.getOpcode()) {
2118   case ARM::MOVCCr:
2119   case ARM::t2MOVCCr: {
2120     // MOVCC can be commuted by inverting the condition.
2121     unsigned PredReg = 0;
2122     ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
2123     // MOVCC AL can't be inverted. Shouldn't happen.
2124     if (CC == ARMCC::AL || PredReg != ARM::CPSR)
2125       return nullptr;
2126     MachineInstr *CommutedMI =
2127         TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2128     if (!CommutedMI)
2129       return nullptr;
2130     // After swapping the MOVCC operands, also invert the condition.
2131     CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx())
2132         .setImm(ARMCC::getOppositeCondition(CC));
2133     return CommutedMI;
2134   }
2135   }
2136   return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2137 }
2138 
2139 /// Identify instructions that can be folded into a MOVCC instruction, and
2140 /// return the defining instruction.
2141 MachineInstr *
2142 ARMBaseInstrInfo::canFoldIntoMOVCC(unsigned Reg, const MachineRegisterInfo &MRI,
2143                                    const TargetInstrInfo *TII) const {
2144   if (!TargetRegisterInfo::isVirtualRegister(Reg))
2145     return nullptr;
2146   if (!MRI.hasOneNonDBGUse(Reg))
2147     return nullptr;
2148   MachineInstr *MI = MRI.getVRegDef(Reg);
2149   if (!MI)
2150     return nullptr;
2151   // Check if MI can be predicated and folded into the MOVCC.
2152   if (!isPredicable(*MI))
2153     return nullptr;
2154   // Check if MI has any non-dead defs or physreg uses. This also detects
2155   // predicated instructions which will be reading CPSR.
2156   for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
2157     const MachineOperand &MO = MI->getOperand(i);
2158     // Reject frame index operands, PEI can't handle the predicated pseudos.
2159     if (MO.isFI() || MO.isCPI() || MO.isJTI())
2160       return nullptr;
2161     if (!MO.isReg())
2162       continue;
2163     // MI can't have any tied operands, that would conflict with predication.
2164     if (MO.isTied())
2165       return nullptr;
2166     if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
2167       return nullptr;
2168     if (MO.isDef() && !MO.isDead())
2169       return nullptr;
2170   }
2171   bool DontMoveAcrossStores = true;
2172   if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores))
2173     return nullptr;
2174   return MI;
2175 }
2176 
2177 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI,
2178                                      SmallVectorImpl<MachineOperand> &Cond,
2179                                      unsigned &TrueOp, unsigned &FalseOp,
2180                                      bool &Optimizable) const {
2181   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2182          "Unknown select instruction");
2183   // MOVCC operands:
2184   // 0: Def.
2185   // 1: True use.
2186   // 2: False use.
2187   // 3: Condition code.
2188   // 4: CPSR use.
2189   TrueOp = 1;
2190   FalseOp = 2;
2191   Cond.push_back(MI.getOperand(3));
2192   Cond.push_back(MI.getOperand(4));
2193   // We can always fold a def.
2194   Optimizable = true;
2195   return false;
2196 }
2197 
2198 MachineInstr *
2199 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI,
2200                                  SmallPtrSetImpl<MachineInstr *> &SeenMIs,
2201                                  bool PreferFalse) const {
2202   assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2203          "Unknown select instruction");
2204   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2205   MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this);
2206   bool Invert = !DefMI;
2207   if (!DefMI)
2208     DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this);
2209   if (!DefMI)
2210     return nullptr;
2211 
2212   // Find new register class to use.
2213   MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1);
2214   unsigned DestReg = MI.getOperand(0).getReg();
2215   const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
2216   if (!MRI.constrainRegClass(DestReg, PreviousClass))
2217     return nullptr;
2218 
2219   // Create a new predicated version of DefMI.
2220   // Rfalse is the first use.
2221   MachineInstrBuilder NewMI =
2222       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg);
2223 
2224   // Copy all the DefMI operands, excluding its (null) predicate.
2225   const MCInstrDesc &DefDesc = DefMI->getDesc();
2226   for (unsigned i = 1, e = DefDesc.getNumOperands();
2227        i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
2228     NewMI.add(DefMI->getOperand(i));
2229 
2230   unsigned CondCode = MI.getOperand(3).getImm();
2231   if (Invert)
2232     NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
2233   else
2234     NewMI.addImm(CondCode);
2235   NewMI.add(MI.getOperand(4));
2236 
2237   // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
2238   if (NewMI->hasOptionalDef())
2239     NewMI.add(condCodeOp());
2240 
2241   // The output register value when the predicate is false is an implicit
2242   // register operand tied to the first def.
2243   // The tie makes the register allocator ensure the FalseReg is allocated the
2244   // same register as operand 0.
2245   FalseReg.setImplicit();
2246   NewMI.add(FalseReg);
2247   NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
2248 
2249   // Update SeenMIs set: register newly created MI and erase removed DefMI.
2250   SeenMIs.insert(NewMI);
2251   SeenMIs.erase(DefMI);
2252 
2253   // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
2254   // DefMI would be invalid when tranferred inside the loop.  Checking for a
2255   // loop is expensive, but at least remove kill flags if they are in different
2256   // BBs.
2257   if (DefMI->getParent() != MI.getParent())
2258     NewMI->clearKillInfo();
2259 
2260   // The caller will erase MI, but not DefMI.
2261   DefMI->eraseFromParent();
2262   return NewMI;
2263 }
2264 
2265 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
2266 /// instruction is encoded with an 'S' bit is determined by the optional CPSR
2267 /// def operand.
2268 ///
2269 /// This will go away once we can teach tblgen how to set the optional CPSR def
2270 /// operand itself.
2271 struct AddSubFlagsOpcodePair {
2272   uint16_t PseudoOpc;
2273   uint16_t MachineOpc;
2274 };
2275 
2276 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
2277   {ARM::ADDSri, ARM::ADDri},
2278   {ARM::ADDSrr, ARM::ADDrr},
2279   {ARM::ADDSrsi, ARM::ADDrsi},
2280   {ARM::ADDSrsr, ARM::ADDrsr},
2281 
2282   {ARM::SUBSri, ARM::SUBri},
2283   {ARM::SUBSrr, ARM::SUBrr},
2284   {ARM::SUBSrsi, ARM::SUBrsi},
2285   {ARM::SUBSrsr, ARM::SUBrsr},
2286 
2287   {ARM::RSBSri, ARM::RSBri},
2288   {ARM::RSBSrsi, ARM::RSBrsi},
2289   {ARM::RSBSrsr, ARM::RSBrsr},
2290 
2291   {ARM::tADDSi3, ARM::tADDi3},
2292   {ARM::tADDSi8, ARM::tADDi8},
2293   {ARM::tADDSrr, ARM::tADDrr},
2294   {ARM::tADCS, ARM::tADC},
2295 
2296   {ARM::tSUBSi3, ARM::tSUBi3},
2297   {ARM::tSUBSi8, ARM::tSUBi8},
2298   {ARM::tSUBSrr, ARM::tSUBrr},
2299   {ARM::tSBCS, ARM::tSBC},
2300   {ARM::tRSBS, ARM::tRSB},
2301 
2302   {ARM::t2ADDSri, ARM::t2ADDri},
2303   {ARM::t2ADDSrr, ARM::t2ADDrr},
2304   {ARM::t2ADDSrs, ARM::t2ADDrs},
2305 
2306   {ARM::t2SUBSri, ARM::t2SUBri},
2307   {ARM::t2SUBSrr, ARM::t2SUBrr},
2308   {ARM::t2SUBSrs, ARM::t2SUBrs},
2309 
2310   {ARM::t2RSBSri, ARM::t2RSBri},
2311   {ARM::t2RSBSrs, ARM::t2RSBrs},
2312 };
2313 
2314 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
2315   for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
2316     if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
2317       return AddSubFlagsOpcodeMap[i].MachineOpc;
2318   return 0;
2319 }
2320 
2321 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
2322                                    MachineBasicBlock::iterator &MBBI,
2323                                    const DebugLoc &dl, unsigned DestReg,
2324                                    unsigned BaseReg, int NumBytes,
2325                                    ARMCC::CondCodes Pred, unsigned PredReg,
2326                                    const ARMBaseInstrInfo &TII,
2327                                    unsigned MIFlags) {
2328   if (NumBytes == 0 && DestReg != BaseReg) {
2329     BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
2330         .addReg(BaseReg, RegState::Kill)
2331         .add(predOps(Pred, PredReg))
2332         .add(condCodeOp())
2333         .setMIFlags(MIFlags);
2334     return;
2335   }
2336 
2337   bool isSub = NumBytes < 0;
2338   if (isSub) NumBytes = -NumBytes;
2339 
2340   while (NumBytes) {
2341     unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
2342     unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
2343     assert(ThisVal && "Didn't extract field correctly");
2344 
2345     // We will handle these bits from offset, clear them.
2346     NumBytes &= ~ThisVal;
2347 
2348     assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
2349 
2350     // Build the new ADD / SUB.
2351     unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
2352     BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
2353         .addReg(BaseReg, RegState::Kill)
2354         .addImm(ThisVal)
2355         .add(predOps(Pred, PredReg))
2356         .add(condCodeOp())
2357         .setMIFlags(MIFlags);
2358     BaseReg = DestReg;
2359   }
2360 }
2361 
2362 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
2363                                       MachineFunction &MF, MachineInstr *MI,
2364                                       unsigned NumBytes) {
2365   // This optimisation potentially adds lots of load and store
2366   // micro-operations, it's only really a great benefit to code-size.
2367   if (!Subtarget.hasMinSize())
2368     return false;
2369 
2370   // If only one register is pushed/popped, LLVM can use an LDR/STR
2371   // instead. We can't modify those so make sure we're dealing with an
2372   // instruction we understand.
2373   bool IsPop = isPopOpcode(MI->getOpcode());
2374   bool IsPush = isPushOpcode(MI->getOpcode());
2375   if (!IsPush && !IsPop)
2376     return false;
2377 
2378   bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
2379                       MI->getOpcode() == ARM::VLDMDIA_UPD;
2380   bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
2381                      MI->getOpcode() == ARM::tPOP ||
2382                      MI->getOpcode() == ARM::tPOP_RET;
2383 
2384   assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
2385                           MI->getOperand(1).getReg() == ARM::SP)) &&
2386          "trying to fold sp update into non-sp-updating push/pop");
2387 
2388   // The VFP push & pop act on D-registers, so we can only fold an adjustment
2389   // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
2390   // if this is violated.
2391   if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
2392     return false;
2393 
2394   // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
2395   // pred) so the list starts at 4. Thumb1 starts after the predicate.
2396   int RegListIdx = IsT1PushPop ? 2 : 4;
2397 
2398   // Calculate the space we'll need in terms of registers.
2399   unsigned RegsNeeded;
2400   const TargetRegisterClass *RegClass;
2401   if (IsVFPPushPop) {
2402     RegsNeeded = NumBytes / 8;
2403     RegClass = &ARM::DPRRegClass;
2404   } else {
2405     RegsNeeded = NumBytes / 4;
2406     RegClass = &ARM::GPRRegClass;
2407   }
2408 
2409   // We're going to have to strip all list operands off before
2410   // re-adding them since the order matters, so save the existing ones
2411   // for later.
2412   SmallVector<MachineOperand, 4> RegList;
2413 
2414   // We're also going to need the first register transferred by this
2415   // instruction, which won't necessarily be the first register in the list.
2416   unsigned FirstRegEnc = -1;
2417 
2418   const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
2419   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) {
2420     MachineOperand &MO = MI->getOperand(i);
2421     RegList.push_back(MO);
2422 
2423     if (MO.isReg() && TRI->getEncodingValue(MO.getReg()) < FirstRegEnc)
2424       FirstRegEnc = TRI->getEncodingValue(MO.getReg());
2425   }
2426 
2427   const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
2428 
2429   // Now try to find enough space in the reglist to allocate NumBytes.
2430   for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded;
2431        --CurRegEnc) {
2432     unsigned CurReg = RegClass->getRegister(CurRegEnc);
2433     if (IsT1PushPop && CurReg > ARM::R7)
2434       continue;
2435     if (!IsPop) {
2436       // Pushing any register is completely harmless, mark the register involved
2437       // as undef since we don't care about its value and must not restore it
2438       // during stack unwinding.
2439       RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
2440                                                   false, false, true));
2441       --RegsNeeded;
2442       continue;
2443     }
2444 
2445     // However, we can only pop an extra register if it's not live. For
2446     // registers live within the function we might clobber a return value
2447     // register; the other way a register can be live here is if it's
2448     // callee-saved.
2449     if (isCalleeSavedRegister(CurReg, CSRegs) ||
2450         MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) !=
2451         MachineBasicBlock::LQR_Dead) {
2452       // VFP pops don't allow holes in the register list, so any skip is fatal
2453       // for our transformation. GPR pops do, so we should just keep looking.
2454       if (IsVFPPushPop)
2455         return false;
2456       else
2457         continue;
2458     }
2459 
2460     // Mark the unimportant registers as <def,dead> in the POP.
2461     RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
2462                                                 true));
2463     --RegsNeeded;
2464   }
2465 
2466   if (RegsNeeded > 0)
2467     return false;
2468 
2469   // Finally we know we can profitably perform the optimisation so go
2470   // ahead: strip all existing registers off and add them back again
2471   // in the right order.
2472   for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
2473     MI->RemoveOperand(i);
2474 
2475   // Add the complete list back in.
2476   MachineInstrBuilder MIB(MF, &*MI);
2477   for (int i = RegList.size() - 1; i >= 0; --i)
2478     MIB.add(RegList[i]);
2479 
2480   return true;
2481 }
2482 
2483 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
2484                                 unsigned FrameReg, int &Offset,
2485                                 const ARMBaseInstrInfo &TII) {
2486   unsigned Opcode = MI.getOpcode();
2487   const MCInstrDesc &Desc = MI.getDesc();
2488   unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
2489   bool isSub = false;
2490 
2491   // Memory operands in inline assembly always use AddrMode2.
2492   if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR)
2493     AddrMode = ARMII::AddrMode2;
2494 
2495   if (Opcode == ARM::ADDri) {
2496     Offset += MI.getOperand(FrameRegIdx+1).getImm();
2497     if (Offset == 0) {
2498       // Turn it into a move.
2499       MI.setDesc(TII.get(ARM::MOVr));
2500       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2501       MI.RemoveOperand(FrameRegIdx+1);
2502       Offset = 0;
2503       return true;
2504     } else if (Offset < 0) {
2505       Offset = -Offset;
2506       isSub = true;
2507       MI.setDesc(TII.get(ARM::SUBri));
2508     }
2509 
2510     // Common case: small offset, fits into instruction.
2511     if (ARM_AM::getSOImmVal(Offset) != -1) {
2512       // Replace the FrameIndex with sp / fp
2513       MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2514       MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
2515       Offset = 0;
2516       return true;
2517     }
2518 
2519     // Otherwise, pull as much of the immedidate into this ADDri/SUBri
2520     // as possible.
2521     unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
2522     unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
2523 
2524     // We will handle these bits from offset, clear them.
2525     Offset &= ~ThisImmVal;
2526 
2527     // Get the properly encoded SOImmVal field.
2528     assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
2529            "Bit extraction didn't work?");
2530     MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
2531  } else {
2532     unsigned ImmIdx = 0;
2533     int InstrOffs = 0;
2534     unsigned NumBits = 0;
2535     unsigned Scale = 1;
2536     switch (AddrMode) {
2537     case ARMII::AddrMode_i12:
2538       ImmIdx = FrameRegIdx + 1;
2539       InstrOffs = MI.getOperand(ImmIdx).getImm();
2540       NumBits = 12;
2541       break;
2542     case ARMII::AddrMode2:
2543       ImmIdx = FrameRegIdx+2;
2544       InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
2545       if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2546         InstrOffs *= -1;
2547       NumBits = 12;
2548       break;
2549     case ARMII::AddrMode3:
2550       ImmIdx = FrameRegIdx+2;
2551       InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
2552       if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2553         InstrOffs *= -1;
2554       NumBits = 8;
2555       break;
2556     case ARMII::AddrMode4:
2557     case ARMII::AddrMode6:
2558       // Can't fold any offset even if it's zero.
2559       return false;
2560     case ARMII::AddrMode5:
2561       ImmIdx = FrameRegIdx+1;
2562       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2563       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2564         InstrOffs *= -1;
2565       NumBits = 8;
2566       Scale = 4;
2567       break;
2568     case ARMII::AddrMode5FP16:
2569       ImmIdx = FrameRegIdx+1;
2570       InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
2571       if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
2572         InstrOffs *= -1;
2573       NumBits = 8;
2574       Scale = 2;
2575       break;
2576     case ARMII::AddrModeT2_i7:
2577     case ARMII::AddrModeT2_i7s2:
2578     case ARMII::AddrModeT2_i7s4:
2579       ImmIdx = FrameRegIdx+1;
2580       InstrOffs = MI.getOperand(ImmIdx).getImm();
2581       NumBits = 7;
2582       Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 :
2583                AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1);
2584       break;
2585     default:
2586       llvm_unreachable("Unsupported addressing mode!");
2587     }
2588 
2589     Offset += InstrOffs * Scale;
2590     assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
2591     if (Offset < 0) {
2592       Offset = -Offset;
2593       isSub = true;
2594     }
2595 
2596     // Attempt to fold address comp. if opcode has offset bits
2597     if (NumBits > 0) {
2598       // Common case: small offset, fits into instruction.
2599       MachineOperand &ImmOp = MI.getOperand(ImmIdx);
2600       int ImmedOffset = Offset / Scale;
2601       unsigned Mask = (1 << NumBits) - 1;
2602       if ((unsigned)Offset <= Mask * Scale) {
2603         // Replace the FrameIndex with sp
2604         MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
2605         // FIXME: When addrmode2 goes away, this will simplify (like the
2606         // T2 version), as the LDR.i12 versions don't need the encoding
2607         // tricks for the offset value.
2608         if (isSub) {
2609           if (AddrMode == ARMII::AddrMode_i12)
2610             ImmedOffset = -ImmedOffset;
2611           else
2612             ImmedOffset |= 1 << NumBits;
2613         }
2614         ImmOp.ChangeToImmediate(ImmedOffset);
2615         Offset = 0;
2616         return true;
2617       }
2618 
2619       // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
2620       ImmedOffset = ImmedOffset & Mask;
2621       if (isSub) {
2622         if (AddrMode == ARMII::AddrMode_i12)
2623           ImmedOffset = -ImmedOffset;
2624         else
2625           ImmedOffset |= 1 << NumBits;
2626       }
2627       ImmOp.ChangeToImmediate(ImmedOffset);
2628       Offset &= ~(Mask*Scale);
2629     }
2630   }
2631 
2632   Offset = (isSub) ? -Offset : Offset;
2633   return Offset == 0;
2634 }
2635 
2636 /// analyzeCompare - For a comparison instruction, return the source registers
2637 /// in SrcReg and SrcReg2 if having two register operands, and the value it
2638 /// compares against in CmpValue. Return true if the comparison instruction
2639 /// can be analyzed.
2640 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
2641                                       unsigned &SrcReg2, int &CmpMask,
2642                                       int &CmpValue) const {
2643   switch (MI.getOpcode()) {
2644   default: break;
2645   case ARM::CMPri:
2646   case ARM::t2CMPri:
2647   case ARM::tCMPi8:
2648     SrcReg = MI.getOperand(0).getReg();
2649     SrcReg2 = 0;
2650     CmpMask = ~0;
2651     CmpValue = MI.getOperand(1).getImm();
2652     return true;
2653   case ARM::CMPrr:
2654   case ARM::t2CMPrr:
2655   case ARM::tCMPr:
2656     SrcReg = MI.getOperand(0).getReg();
2657     SrcReg2 = MI.getOperand(1).getReg();
2658     CmpMask = ~0;
2659     CmpValue = 0;
2660     return true;
2661   case ARM::TSTri:
2662   case ARM::t2TSTri:
2663     SrcReg = MI.getOperand(0).getReg();
2664     SrcReg2 = 0;
2665     CmpMask = MI.getOperand(1).getImm();
2666     CmpValue = 0;
2667     return true;
2668   }
2669 
2670   return false;
2671 }
2672 
2673 /// isSuitableForMask - Identify a suitable 'and' instruction that
2674 /// operates on the given source register and applies the same mask
2675 /// as a 'tst' instruction. Provide a limited look-through for copies.
2676 /// When successful, MI will hold the found instruction.
2677 static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
2678                               int CmpMask, bool CommonUse) {
2679   switch (MI->getOpcode()) {
2680     case ARM::ANDri:
2681     case ARM::t2ANDri:
2682       if (CmpMask != MI->getOperand(2).getImm())
2683         return false;
2684       if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
2685         return true;
2686       break;
2687   }
2688 
2689   return false;
2690 }
2691 
2692 /// getSwappedCondition - assume the flags are set by MI(a,b), return
2693 /// the condition code if we modify the instructions such that flags are
2694 /// set by MI(b,a).
2695 inline static ARMCC::CondCodes getSwappedCondition(ARMCC::CondCodes CC) {
2696   switch (CC) {
2697   default: return ARMCC::AL;
2698   case ARMCC::EQ: return ARMCC::EQ;
2699   case ARMCC::NE: return ARMCC::NE;
2700   case ARMCC::HS: return ARMCC::LS;
2701   case ARMCC::LO: return ARMCC::HI;
2702   case ARMCC::HI: return ARMCC::LO;
2703   case ARMCC::LS: return ARMCC::HS;
2704   case ARMCC::GE: return ARMCC::LE;
2705   case ARMCC::LT: return ARMCC::GT;
2706   case ARMCC::GT: return ARMCC::LT;
2707   case ARMCC::LE: return ARMCC::GE;
2708   }
2709 }
2710 
2711 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return
2712 /// the condition code if we modify the instructions such that flags are
2713 /// set by ADD(a,b,X).
2714 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) {
2715   switch (CC) {
2716   default: return ARMCC::AL;
2717   case ARMCC::HS: return ARMCC::LO;
2718   case ARMCC::LO: return ARMCC::HS;
2719   case ARMCC::VS: return ARMCC::VS;
2720   case ARMCC::VC: return ARMCC::VC;
2721   }
2722 }
2723 
2724 /// isRedundantFlagInstr - check whether the first instruction, whose only
2725 /// purpose is to update flags, can be made redundant.
2726 /// CMPrr can be made redundant by SUBrr if the operands are the same.
2727 /// CMPri can be made redundant by SUBri if the operands are the same.
2728 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X).
2729 /// This function can be extended later on.
2730 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI,
2731                                         unsigned SrcReg, unsigned SrcReg2,
2732                                         int ImmValue, const MachineInstr *OI,
2733                                         bool &IsThumb1) {
2734   if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2735       (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) &&
2736       ((OI->getOperand(1).getReg() == SrcReg &&
2737         OI->getOperand(2).getReg() == SrcReg2) ||
2738        (OI->getOperand(1).getReg() == SrcReg2 &&
2739         OI->getOperand(2).getReg() == SrcReg))) {
2740     IsThumb1 = false;
2741     return true;
2742   }
2743 
2744   if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr &&
2745       ((OI->getOperand(2).getReg() == SrcReg &&
2746         OI->getOperand(3).getReg() == SrcReg2) ||
2747        (OI->getOperand(2).getReg() == SrcReg2 &&
2748         OI->getOperand(3).getReg() == SrcReg))) {
2749     IsThumb1 = true;
2750     return true;
2751   }
2752 
2753   if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) &&
2754       (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) &&
2755       OI->getOperand(1).getReg() == SrcReg &&
2756       OI->getOperand(2).getImm() == ImmValue) {
2757     IsThumb1 = false;
2758     return true;
2759   }
2760 
2761   if (CmpI->getOpcode() == ARM::tCMPi8 &&
2762       (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) &&
2763       OI->getOperand(2).getReg() == SrcReg &&
2764       OI->getOperand(3).getImm() == ImmValue) {
2765     IsThumb1 = true;
2766     return true;
2767   }
2768 
2769   if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2770       (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr ||
2771        OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) &&
2772       OI->getOperand(0).isReg() && OI->getOperand(1).isReg() &&
2773       OI->getOperand(0).getReg() == SrcReg &&
2774       OI->getOperand(1).getReg() == SrcReg2) {
2775     IsThumb1 = false;
2776     return true;
2777   }
2778 
2779   if (CmpI->getOpcode() == ARM::tCMPr &&
2780       (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 ||
2781        OI->getOpcode() == ARM::tADDrr) &&
2782       OI->getOperand(0).getReg() == SrcReg &&
2783       OI->getOperand(2).getReg() == SrcReg2) {
2784     IsThumb1 = true;
2785     return true;
2786   }
2787 
2788   return false;
2789 }
2790 
2791 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) {
2792   switch (MI->getOpcode()) {
2793   default: return false;
2794   case ARM::tLSLri:
2795   case ARM::tLSRri:
2796   case ARM::tLSLrr:
2797   case ARM::tLSRrr:
2798   case ARM::tSUBrr:
2799   case ARM::tADDrr:
2800   case ARM::tADDi3:
2801   case ARM::tADDi8:
2802   case ARM::tSUBi3:
2803   case ARM::tSUBi8:
2804   case ARM::tMUL:
2805   case ARM::tADC:
2806   case ARM::tSBC:
2807   case ARM::tRSB:
2808   case ARM::tAND:
2809   case ARM::tORR:
2810   case ARM::tEOR:
2811   case ARM::tBIC:
2812   case ARM::tMVN:
2813   case ARM::tASRri:
2814   case ARM::tASRrr:
2815   case ARM::tROR:
2816     IsThumb1 = true;
2817     LLVM_FALLTHROUGH;
2818   case ARM::RSBrr:
2819   case ARM::RSBri:
2820   case ARM::RSCrr:
2821   case ARM::RSCri:
2822   case ARM::ADDrr:
2823   case ARM::ADDri:
2824   case ARM::ADCrr:
2825   case ARM::ADCri:
2826   case ARM::SUBrr:
2827   case ARM::SUBri:
2828   case ARM::SBCrr:
2829   case ARM::SBCri:
2830   case ARM::t2RSBri:
2831   case ARM::t2ADDrr:
2832   case ARM::t2ADDri:
2833   case ARM::t2ADCrr:
2834   case ARM::t2ADCri:
2835   case ARM::t2SUBrr:
2836   case ARM::t2SUBri:
2837   case ARM::t2SBCrr:
2838   case ARM::t2SBCri:
2839   case ARM::ANDrr:
2840   case ARM::ANDri:
2841   case ARM::t2ANDrr:
2842   case ARM::t2ANDri:
2843   case ARM::ORRrr:
2844   case ARM::ORRri:
2845   case ARM::t2ORRrr:
2846   case ARM::t2ORRri:
2847   case ARM::EORrr:
2848   case ARM::EORri:
2849   case ARM::t2EORrr:
2850   case ARM::t2EORri:
2851   case ARM::t2LSRri:
2852   case ARM::t2LSRrr:
2853   case ARM::t2LSLri:
2854   case ARM::t2LSLrr:
2855     return true;
2856   }
2857 }
2858 
2859 /// optimizeCompareInstr - Convert the instruction supplying the argument to the
2860 /// comparison into one that sets the zero bit in the flags register;
2861 /// Remove a redundant Compare instruction if an earlier instruction can set the
2862 /// flags in the same way as Compare.
2863 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
2864 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
2865 /// condition code of instructions which use the flags.
2866 bool ARMBaseInstrInfo::optimizeCompareInstr(
2867     MachineInstr &CmpInstr, unsigned SrcReg, unsigned SrcReg2, int CmpMask,
2868     int CmpValue, const MachineRegisterInfo *MRI) const {
2869   // Get the unique definition of SrcReg.
2870   MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
2871   if (!MI) return false;
2872 
2873   // Masked compares sometimes use the same register as the corresponding 'and'.
2874   if (CmpMask != ~0) {
2875     if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) {
2876       MI = nullptr;
2877       for (MachineRegisterInfo::use_instr_iterator
2878            UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
2879            UI != UE; ++UI) {
2880         if (UI->getParent() != CmpInstr.getParent())
2881           continue;
2882         MachineInstr *PotentialAND = &*UI;
2883         if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
2884             isPredicated(*PotentialAND))
2885           continue;
2886         MI = PotentialAND;
2887         break;
2888       }
2889       if (!MI) return false;
2890     }
2891   }
2892 
2893   // Get ready to iterate backward from CmpInstr.
2894   MachineBasicBlock::iterator I = CmpInstr, E = MI,
2895                               B = CmpInstr.getParent()->begin();
2896 
2897   // Early exit if CmpInstr is at the beginning of the BB.
2898   if (I == B) return false;
2899 
2900   // There are two possible candidates which can be changed to set CPSR:
2901   // One is MI, the other is a SUB or ADD instruction.
2902   // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or
2903   // ADDr[ri](r1, r2, X).
2904   // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
2905   MachineInstr *SubAdd = nullptr;
2906   if (SrcReg2 != 0)
2907     // MI is not a candidate for CMPrr.
2908     MI = nullptr;
2909   else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) {
2910     // Conservatively refuse to convert an instruction which isn't in the same
2911     // BB as the comparison.
2912     // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate.
2913     // Thus we cannot return here.
2914     if (CmpInstr.getOpcode() == ARM::CMPri ||
2915         CmpInstr.getOpcode() == ARM::t2CMPri ||
2916         CmpInstr.getOpcode() == ARM::tCMPi8)
2917       MI = nullptr;
2918     else
2919       return false;
2920   }
2921 
2922   bool IsThumb1 = false;
2923   if (MI && !isOptimizeCompareCandidate(MI, IsThumb1))
2924     return false;
2925 
2926   // We also want to do this peephole for cases like this: if (a*b == 0),
2927   // and optimise away the CMP instruction from the generated code sequence:
2928   // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values
2929   // resulting from the select instruction, but these MOVS instructions for
2930   // Thumb1 (V6M) are flag setting and are thus preventing this optimisation.
2931   // However, if we only have MOVS instructions in between the CMP and the
2932   // other instruction (the MULS in this example), then the CPSR is dead so we
2933   // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this
2934   // reordering and then continue the analysis hoping we can eliminate the
2935   // CMP. This peephole works on the vregs, so is still in SSA form. As a
2936   // consequence, the movs won't redefine/kill the MUL operands which would
2937   // make this reordering illegal.
2938   const TargetRegisterInfo *TRI = &getRegisterInfo();
2939   if (MI && IsThumb1) {
2940     --I;
2941     if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) {
2942       bool CanReorder = true;
2943       for (; I != E; --I) {
2944         if (I->getOpcode() != ARM::tMOVi8) {
2945           CanReorder = false;
2946           break;
2947         }
2948       }
2949       if (CanReorder) {
2950         MI = MI->removeFromParent();
2951         E = CmpInstr;
2952         CmpInstr.getParent()->insert(E, MI);
2953       }
2954     }
2955     I = CmpInstr;
2956     E = MI;
2957   }
2958 
2959   // Check that CPSR isn't set between the comparison instruction and the one we
2960   // want to change. At the same time, search for SubAdd.
2961   bool SubAddIsThumb1 = false;
2962   do {
2963     const MachineInstr &Instr = *--I;
2964 
2965     // Check whether CmpInstr can be made redundant by the current instruction.
2966     if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr,
2967                              SubAddIsThumb1)) {
2968       SubAdd = &*I;
2969       break;
2970     }
2971 
2972     // Allow E (which was initially MI) to be SubAdd but do not search before E.
2973     if (I == E)
2974       break;
2975 
2976     if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
2977         Instr.readsRegister(ARM::CPSR, TRI))
2978       // This instruction modifies or uses CPSR after the one we want to
2979       // change. We can't do this transformation.
2980       return false;
2981 
2982     if (I == B) {
2983       // In some cases, we scan the use-list of an instruction for an AND;
2984       // that AND is in the same BB, but may not be scheduled before the
2985       // corresponding TST.  In that case, bail out.
2986       //
2987       // FIXME: We could try to reschedule the AND.
2988       return false;
2989     }
2990   } while (true);
2991 
2992   // Return false if no candidates exist.
2993   if (!MI && !SubAdd)
2994     return false;
2995 
2996   // If we found a SubAdd, use it as it will be closer to the CMP
2997   if (SubAdd) {
2998     MI = SubAdd;
2999     IsThumb1 = SubAddIsThumb1;
3000   }
3001 
3002   // We can't use a predicated instruction - it doesn't always write the flags.
3003   if (isPredicated(*MI))
3004     return false;
3005 
3006   // Scan forward for the use of CPSR
3007   // When checking against MI: if it's a conditional code that requires
3008   // checking of the V bit or C bit, then this is not safe to do.
3009   // It is safe to remove CmpInstr if CPSR is redefined or killed.
3010   // If we are done with the basic block, we need to check whether CPSR is
3011   // live-out.
3012   SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
3013       OperandsToUpdate;
3014   bool isSafe = false;
3015   I = CmpInstr;
3016   E = CmpInstr.getParent()->end();
3017   while (!isSafe && ++I != E) {
3018     const MachineInstr &Instr = *I;
3019     for (unsigned IO = 0, EO = Instr.getNumOperands();
3020          !isSafe && IO != EO; ++IO) {
3021       const MachineOperand &MO = Instr.getOperand(IO);
3022       if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
3023         isSafe = true;
3024         break;
3025       }
3026       if (!MO.isReg() || MO.getReg() != ARM::CPSR)
3027         continue;
3028       if (MO.isDef()) {
3029         isSafe = true;
3030         break;
3031       }
3032       // Condition code is after the operand before CPSR except for VSELs.
3033       ARMCC::CondCodes CC;
3034       bool IsInstrVSel = true;
3035       switch (Instr.getOpcode()) {
3036       default:
3037         IsInstrVSel = false;
3038         CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
3039         break;
3040       case ARM::VSELEQD:
3041       case ARM::VSELEQS:
3042         CC = ARMCC::EQ;
3043         break;
3044       case ARM::VSELGTD:
3045       case ARM::VSELGTS:
3046         CC = ARMCC::GT;
3047         break;
3048       case ARM::VSELGED:
3049       case ARM::VSELGES:
3050         CC = ARMCC::GE;
3051         break;
3052       case ARM::VSELVSS:
3053       case ARM::VSELVSD:
3054         CC = ARMCC::VS;
3055         break;
3056       }
3057 
3058       if (SubAdd) {
3059         // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
3060         // on CMP needs to be updated to be based on SUB.
3061         // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also
3062         // needs to be modified.
3063         // Push the condition code operands to OperandsToUpdate.
3064         // If it is safe to remove CmpInstr, the condition code of these
3065         // operands will be modified.
3066         unsigned Opc = SubAdd->getOpcode();
3067         bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr ||
3068                      Opc == ARM::SUBri || Opc == ARM::t2SUBri ||
3069                      Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 ||
3070                      Opc == ARM::tSUBi8;
3071         unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2;
3072         if (!IsSub ||
3073             (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 &&
3074              SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) {
3075           // VSel doesn't support condition code update.
3076           if (IsInstrVSel)
3077             return false;
3078           // Ensure we can swap the condition.
3079           ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC));
3080           if (NewCC == ARMCC::AL)
3081             return false;
3082           OperandsToUpdate.push_back(
3083               std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
3084         }
3085       } else {
3086         // No SubAdd, so this is x = <op> y, z; cmp x, 0.
3087         switch (CC) {
3088         case ARMCC::EQ: // Z
3089         case ARMCC::NE: // Z
3090         case ARMCC::MI: // N
3091         case ARMCC::PL: // N
3092         case ARMCC::AL: // none
3093           // CPSR can be used multiple times, we should continue.
3094           break;
3095         case ARMCC::HS: // C
3096         case ARMCC::LO: // C
3097         case ARMCC::VS: // V
3098         case ARMCC::VC: // V
3099         case ARMCC::HI: // C Z
3100         case ARMCC::LS: // C Z
3101         case ARMCC::GE: // N V
3102         case ARMCC::LT: // N V
3103         case ARMCC::GT: // Z N V
3104         case ARMCC::LE: // Z N V
3105           // The instruction uses the V bit or C bit which is not safe.
3106           return false;
3107         }
3108       }
3109     }
3110   }
3111 
3112   // If CPSR is not killed nor re-defined, we should check whether it is
3113   // live-out. If it is live-out, do not optimize.
3114   if (!isSafe) {
3115     MachineBasicBlock *MBB = CmpInstr.getParent();
3116     for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
3117              SE = MBB->succ_end(); SI != SE; ++SI)
3118       if ((*SI)->isLiveIn(ARM::CPSR))
3119         return false;
3120   }
3121 
3122   // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always
3123   // set CPSR so this is represented as an explicit output)
3124   if (!IsThumb1) {
3125     MI->getOperand(5).setReg(ARM::CPSR);
3126     MI->getOperand(5).setIsDef(true);
3127   }
3128   assert(!isPredicated(*MI) && "Can't use flags from predicated instruction");
3129   CmpInstr.eraseFromParent();
3130 
3131   // Modify the condition code of operands in OperandsToUpdate.
3132   // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
3133   // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3134   for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
3135     OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
3136 
3137   MI->clearRegisterDeads(ARM::CPSR);
3138 
3139   return true;
3140 }
3141 
3142 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const {
3143   // Do not sink MI if it might be used to optimize a redundant compare.
3144   // We heuristically only look at the instruction immediately following MI to
3145   // avoid potentially searching the entire basic block.
3146   if (isPredicated(MI))
3147     return true;
3148   MachineBasicBlock::const_iterator Next = &MI;
3149   ++Next;
3150   unsigned SrcReg, SrcReg2;
3151   int CmpMask, CmpValue;
3152   bool IsThumb1;
3153   if (Next != MI.getParent()->end() &&
3154       analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) &&
3155       isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1))
3156     return false;
3157   return true;
3158 }
3159 
3160 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
3161                                      unsigned Reg,
3162                                      MachineRegisterInfo *MRI) const {
3163   // Fold large immediates into add, sub, or, xor.
3164   unsigned DefOpc = DefMI.getOpcode();
3165   if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
3166     return false;
3167   if (!DefMI.getOperand(1).isImm())
3168     // Could be t2MOVi32imm @xx
3169     return false;
3170 
3171   if (!MRI->hasOneNonDBGUse(Reg))
3172     return false;
3173 
3174   const MCInstrDesc &DefMCID = DefMI.getDesc();
3175   if (DefMCID.hasOptionalDef()) {
3176     unsigned NumOps = DefMCID.getNumOperands();
3177     const MachineOperand &MO = DefMI.getOperand(NumOps - 1);
3178     if (MO.getReg() == ARM::CPSR && !MO.isDead())
3179       // If DefMI defines CPSR and it is not dead, it's obviously not safe
3180       // to delete DefMI.
3181       return false;
3182   }
3183 
3184   const MCInstrDesc &UseMCID = UseMI.getDesc();
3185   if (UseMCID.hasOptionalDef()) {
3186     unsigned NumOps = UseMCID.getNumOperands();
3187     if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR)
3188       // If the instruction sets the flag, do not attempt this optimization
3189       // since it may change the semantics of the code.
3190       return false;
3191   }
3192 
3193   unsigned UseOpc = UseMI.getOpcode();
3194   unsigned NewUseOpc = 0;
3195   uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm();
3196   uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
3197   bool Commute = false;
3198   switch (UseOpc) {
3199   default: return false;
3200   case ARM::SUBrr:
3201   case ARM::ADDrr:
3202   case ARM::ORRrr:
3203   case ARM::EORrr:
3204   case ARM::t2SUBrr:
3205   case ARM::t2ADDrr:
3206   case ARM::t2ORRrr:
3207   case ARM::t2EORrr: {
3208     Commute = UseMI.getOperand(2).getReg() != Reg;
3209     switch (UseOpc) {
3210     default: break;
3211     case ARM::ADDrr:
3212     case ARM::SUBrr:
3213       if (UseOpc == ARM::SUBrr && Commute)
3214         return false;
3215 
3216       // ADD/SUB are special because they're essentially the same operation, so
3217       // we can handle a larger range of immediates.
3218       if (ARM_AM::isSOImmTwoPartVal(ImmVal))
3219         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri;
3220       else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) {
3221         ImmVal = -ImmVal;
3222         NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri;
3223       } else
3224         return false;
3225       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3226       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3227       break;
3228     case ARM::ORRrr:
3229     case ARM::EORrr:
3230       if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
3231         return false;
3232       SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
3233       SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
3234       switch (UseOpc) {
3235       default: break;
3236       case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
3237       case ARM::EORrr: NewUseOpc = ARM::EORri; break;
3238       }
3239       break;
3240     case ARM::t2ADDrr:
3241     case ARM::t2SUBrr:
3242       if (UseOpc == ARM::t2SUBrr && Commute)
3243         return false;
3244 
3245       // ADD/SUB are special because they're essentially the same operation, so
3246       // we can handle a larger range of immediates.
3247       if (ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3248         NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2ADDri : ARM::t2SUBri;
3249       else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) {
3250         ImmVal = -ImmVal;
3251         NewUseOpc = UseOpc == ARM::t2ADDrr ? ARM::t2SUBri : ARM::t2ADDri;
3252       } else
3253         return false;
3254       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3255       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3256       break;
3257     case ARM::t2ORRrr:
3258     case ARM::t2EORrr:
3259       if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
3260         return false;
3261       SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
3262       SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
3263       switch (UseOpc) {
3264       default: break;
3265       case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
3266       case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
3267       }
3268       break;
3269     }
3270   }
3271   }
3272 
3273   unsigned OpIdx = Commute ? 2 : 1;
3274   unsigned Reg1 = UseMI.getOperand(OpIdx).getReg();
3275   bool isKill = UseMI.getOperand(OpIdx).isKill();
3276   unsigned NewReg = MRI->createVirtualRegister(MRI->getRegClass(Reg));
3277   BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc),
3278           NewReg)
3279       .addReg(Reg1, getKillRegState(isKill))
3280       .addImm(SOImmValV1)
3281       .add(predOps(ARMCC::AL))
3282       .add(condCodeOp());
3283   UseMI.setDesc(get(NewUseOpc));
3284   UseMI.getOperand(1).setReg(NewReg);
3285   UseMI.getOperand(1).setIsKill();
3286   UseMI.getOperand(2).ChangeToImmediate(SOImmValV2);
3287   DefMI.eraseFromParent();
3288   return true;
3289 }
3290 
3291 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
3292                                         const MachineInstr &MI) {
3293   switch (MI.getOpcode()) {
3294   default: {
3295     const MCInstrDesc &Desc = MI.getDesc();
3296     int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
3297     assert(UOps >= 0 && "bad # UOps");
3298     return UOps;
3299   }
3300 
3301   case ARM::LDRrs:
3302   case ARM::LDRBrs:
3303   case ARM::STRrs:
3304   case ARM::STRBrs: {
3305     unsigned ShOpVal = MI.getOperand(3).getImm();
3306     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3307     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3308     if (!isSub &&
3309         (ShImm == 0 ||
3310          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3311           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3312       return 1;
3313     return 2;
3314   }
3315 
3316   case ARM::LDRH:
3317   case ARM::STRH: {
3318     if (!MI.getOperand(2).getReg())
3319       return 1;
3320 
3321     unsigned ShOpVal = MI.getOperand(3).getImm();
3322     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3323     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3324     if (!isSub &&
3325         (ShImm == 0 ||
3326          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3327           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3328       return 1;
3329     return 2;
3330   }
3331 
3332   case ARM::LDRSB:
3333   case ARM::LDRSH:
3334     return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2;
3335 
3336   case ARM::LDRSB_POST:
3337   case ARM::LDRSH_POST: {
3338     unsigned Rt = MI.getOperand(0).getReg();
3339     unsigned Rm = MI.getOperand(3).getReg();
3340     return (Rt == Rm) ? 4 : 3;
3341   }
3342 
3343   case ARM::LDR_PRE_REG:
3344   case ARM::LDRB_PRE_REG: {
3345     unsigned Rt = MI.getOperand(0).getReg();
3346     unsigned Rm = MI.getOperand(3).getReg();
3347     if (Rt == Rm)
3348       return 3;
3349     unsigned ShOpVal = MI.getOperand(4).getImm();
3350     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3351     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3352     if (!isSub &&
3353         (ShImm == 0 ||
3354          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3355           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3356       return 2;
3357     return 3;
3358   }
3359 
3360   case ARM::STR_PRE_REG:
3361   case ARM::STRB_PRE_REG: {
3362     unsigned ShOpVal = MI.getOperand(4).getImm();
3363     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3364     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3365     if (!isSub &&
3366         (ShImm == 0 ||
3367          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3368           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3369       return 2;
3370     return 3;
3371   }
3372 
3373   case ARM::LDRH_PRE:
3374   case ARM::STRH_PRE: {
3375     unsigned Rt = MI.getOperand(0).getReg();
3376     unsigned Rm = MI.getOperand(3).getReg();
3377     if (!Rm)
3378       return 2;
3379     if (Rt == Rm)
3380       return 3;
3381     return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2;
3382   }
3383 
3384   case ARM::LDR_POST_REG:
3385   case ARM::LDRB_POST_REG:
3386   case ARM::LDRH_POST: {
3387     unsigned Rt = MI.getOperand(0).getReg();
3388     unsigned Rm = MI.getOperand(3).getReg();
3389     return (Rt == Rm) ? 3 : 2;
3390   }
3391 
3392   case ARM::LDR_PRE_IMM:
3393   case ARM::LDRB_PRE_IMM:
3394   case ARM::LDR_POST_IMM:
3395   case ARM::LDRB_POST_IMM:
3396   case ARM::STRB_POST_IMM:
3397   case ARM::STRB_POST_REG:
3398   case ARM::STRB_PRE_IMM:
3399   case ARM::STRH_POST:
3400   case ARM::STR_POST_IMM:
3401   case ARM::STR_POST_REG:
3402   case ARM::STR_PRE_IMM:
3403     return 2;
3404 
3405   case ARM::LDRSB_PRE:
3406   case ARM::LDRSH_PRE: {
3407     unsigned Rm = MI.getOperand(3).getReg();
3408     if (Rm == 0)
3409       return 3;
3410     unsigned Rt = MI.getOperand(0).getReg();
3411     if (Rt == Rm)
3412       return 4;
3413     unsigned ShOpVal = MI.getOperand(4).getImm();
3414     bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
3415     unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
3416     if (!isSub &&
3417         (ShImm == 0 ||
3418          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3419           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
3420       return 3;
3421     return 4;
3422   }
3423 
3424   case ARM::LDRD: {
3425     unsigned Rt = MI.getOperand(0).getReg();
3426     unsigned Rn = MI.getOperand(2).getReg();
3427     unsigned Rm = MI.getOperand(3).getReg();
3428     if (Rm)
3429       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3430                                                                           : 3;
3431     return (Rt == Rn) ? 3 : 2;
3432   }
3433 
3434   case ARM::STRD: {
3435     unsigned Rm = MI.getOperand(3).getReg();
3436     if (Rm)
3437       return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
3438                                                                           : 3;
3439     return 2;
3440   }
3441 
3442   case ARM::LDRD_POST:
3443   case ARM::t2LDRD_POST:
3444     return 3;
3445 
3446   case ARM::STRD_POST:
3447   case ARM::t2STRD_POST:
3448     return 4;
3449 
3450   case ARM::LDRD_PRE: {
3451     unsigned Rt = MI.getOperand(0).getReg();
3452     unsigned Rn = MI.getOperand(3).getReg();
3453     unsigned Rm = MI.getOperand(4).getReg();
3454     if (Rm)
3455       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3456                                                                           : 4;
3457     return (Rt == Rn) ? 4 : 3;
3458   }
3459 
3460   case ARM::t2LDRD_PRE: {
3461     unsigned Rt = MI.getOperand(0).getReg();
3462     unsigned Rn = MI.getOperand(3).getReg();
3463     return (Rt == Rn) ? 4 : 3;
3464   }
3465 
3466   case ARM::STRD_PRE: {
3467     unsigned Rm = MI.getOperand(4).getReg();
3468     if (Rm)
3469       return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
3470                                                                           : 4;
3471     return 3;
3472   }
3473 
3474   case ARM::t2STRD_PRE:
3475     return 3;
3476 
3477   case ARM::t2LDR_POST:
3478   case ARM::t2LDRB_POST:
3479   case ARM::t2LDRB_PRE:
3480   case ARM::t2LDRSBi12:
3481   case ARM::t2LDRSBi8:
3482   case ARM::t2LDRSBpci:
3483   case ARM::t2LDRSBs:
3484   case ARM::t2LDRH_POST:
3485   case ARM::t2LDRH_PRE:
3486   case ARM::t2LDRSBT:
3487   case ARM::t2LDRSB_POST:
3488   case ARM::t2LDRSB_PRE:
3489   case ARM::t2LDRSH_POST:
3490   case ARM::t2LDRSH_PRE:
3491   case ARM::t2LDRSHi12:
3492   case ARM::t2LDRSHi8:
3493   case ARM::t2LDRSHpci:
3494   case ARM::t2LDRSHs:
3495     return 2;
3496 
3497   case ARM::t2LDRDi8: {
3498     unsigned Rt = MI.getOperand(0).getReg();
3499     unsigned Rn = MI.getOperand(2).getReg();
3500     return (Rt == Rn) ? 3 : 2;
3501   }
3502 
3503   case ARM::t2STRB_POST:
3504   case ARM::t2STRB_PRE:
3505   case ARM::t2STRBs:
3506   case ARM::t2STRDi8:
3507   case ARM::t2STRH_POST:
3508   case ARM::t2STRH_PRE:
3509   case ARM::t2STRHs:
3510   case ARM::t2STR_POST:
3511   case ARM::t2STR_PRE:
3512   case ARM::t2STRs:
3513     return 2;
3514   }
3515 }
3516 
3517 // Return the number of 32-bit words loaded by LDM or stored by STM. If this
3518 // can't be easily determined return 0 (missing MachineMemOperand).
3519 //
3520 // FIXME: The current MachineInstr design does not support relying on machine
3521 // mem operands to determine the width of a memory access. Instead, we expect
3522 // the target to provide this information based on the instruction opcode and
3523 // operands. However, using MachineMemOperand is the best solution now for
3524 // two reasons:
3525 //
3526 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
3527 // operands. This is much more dangerous than using the MachineMemOperand
3528 // sizes because CodeGen passes can insert/remove optional machine operands. In
3529 // fact, it's totally incorrect for preRA passes and appears to be wrong for
3530 // postRA passes as well.
3531 //
3532 // 2) getNumLDMAddresses is only used by the scheduling machine model and any
3533 // machine model that calls this should handle the unknown (zero size) case.
3534 //
3535 // Long term, we should require a target hook that verifies MachineMemOperand
3536 // sizes during MC lowering. That target hook should be local to MC lowering
3537 // because we can't ensure that it is aware of other MI forms. Doing this will
3538 // ensure that MachineMemOperands are correctly propagated through all passes.
3539 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const {
3540   unsigned Size = 0;
3541   for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
3542                                   E = MI.memoperands_end();
3543        I != E; ++I) {
3544     Size += (*I)->getSize();
3545   }
3546   // FIXME: The scheduler currently can't handle values larger than 16. But
3547   // the values can actually go up to 32 for floating-point load/store
3548   // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory
3549   // operations isn't right; we could end up with "extra" memory operands for
3550   // various reasons, like tail merge merging two memory operations.
3551   return std::min(Size / 4, 16U);
3552 }
3553 
3554 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,
3555                                                     unsigned NumRegs) {
3556   unsigned UOps = 1 + NumRegs; // 1 for address computation.
3557   switch (Opc) {
3558   default:
3559     break;
3560   case ARM::VLDMDIA_UPD:
3561   case ARM::VLDMDDB_UPD:
3562   case ARM::VLDMSIA_UPD:
3563   case ARM::VLDMSDB_UPD:
3564   case ARM::VSTMDIA_UPD:
3565   case ARM::VSTMDDB_UPD:
3566   case ARM::VSTMSIA_UPD:
3567   case ARM::VSTMSDB_UPD:
3568   case ARM::LDMIA_UPD:
3569   case ARM::LDMDA_UPD:
3570   case ARM::LDMDB_UPD:
3571   case ARM::LDMIB_UPD:
3572   case ARM::STMIA_UPD:
3573   case ARM::STMDA_UPD:
3574   case ARM::STMDB_UPD:
3575   case ARM::STMIB_UPD:
3576   case ARM::tLDMIA_UPD:
3577   case ARM::tSTMIA_UPD:
3578   case ARM::t2LDMIA_UPD:
3579   case ARM::t2LDMDB_UPD:
3580   case ARM::t2STMIA_UPD:
3581   case ARM::t2STMDB_UPD:
3582     ++UOps; // One for base register writeback.
3583     break;
3584   case ARM::LDMIA_RET:
3585   case ARM::tPOP_RET:
3586   case ARM::t2LDMIA_RET:
3587     UOps += 2; // One for base reg wb, one for write to pc.
3588     break;
3589   }
3590   return UOps;
3591 }
3592 
3593 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
3594                                           const MachineInstr &MI) const {
3595   if (!ItinData || ItinData->isEmpty())
3596     return 1;
3597 
3598   const MCInstrDesc &Desc = MI.getDesc();
3599   unsigned Class = Desc.getSchedClass();
3600   int ItinUOps = ItinData->getNumMicroOps(Class);
3601   if (ItinUOps >= 0) {
3602     if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
3603       return getNumMicroOpsSwiftLdSt(ItinData, MI);
3604 
3605     return ItinUOps;
3606   }
3607 
3608   unsigned Opc = MI.getOpcode();
3609   switch (Opc) {
3610   default:
3611     llvm_unreachable("Unexpected multi-uops instruction!");
3612   case ARM::VLDMQIA:
3613   case ARM::VSTMQIA:
3614     return 2;
3615 
3616   // The number of uOps for load / store multiple are determined by the number
3617   // registers.
3618   //
3619   // On Cortex-A8, each pair of register loads / stores can be scheduled on the
3620   // same cycle. The scheduling for the first load / store must be done
3621   // separately by assuming the address is not 64-bit aligned.
3622   //
3623   // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
3624   // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
3625   // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
3626   case ARM::VLDMDIA:
3627   case ARM::VLDMDIA_UPD:
3628   case ARM::VLDMDDB_UPD:
3629   case ARM::VLDMSIA:
3630   case ARM::VLDMSIA_UPD:
3631   case ARM::VLDMSDB_UPD:
3632   case ARM::VSTMDIA:
3633   case ARM::VSTMDIA_UPD:
3634   case ARM::VSTMDDB_UPD:
3635   case ARM::VSTMSIA:
3636   case ARM::VSTMSIA_UPD:
3637   case ARM::VSTMSDB_UPD: {
3638     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands();
3639     return (NumRegs / 2) + (NumRegs % 2) + 1;
3640   }
3641 
3642   case ARM::LDMIA_RET:
3643   case ARM::LDMIA:
3644   case ARM::LDMDA:
3645   case ARM::LDMDB:
3646   case ARM::LDMIB:
3647   case ARM::LDMIA_UPD:
3648   case ARM::LDMDA_UPD:
3649   case ARM::LDMDB_UPD:
3650   case ARM::LDMIB_UPD:
3651   case ARM::STMIA:
3652   case ARM::STMDA:
3653   case ARM::STMDB:
3654   case ARM::STMIB:
3655   case ARM::STMIA_UPD:
3656   case ARM::STMDA_UPD:
3657   case ARM::STMDB_UPD:
3658   case ARM::STMIB_UPD:
3659   case ARM::tLDMIA:
3660   case ARM::tLDMIA_UPD:
3661   case ARM::tSTMIA_UPD:
3662   case ARM::tPOP_RET:
3663   case ARM::tPOP:
3664   case ARM::tPUSH:
3665   case ARM::t2LDMIA_RET:
3666   case ARM::t2LDMIA:
3667   case ARM::t2LDMDB:
3668   case ARM::t2LDMIA_UPD:
3669   case ARM::t2LDMDB_UPD:
3670   case ARM::t2STMIA:
3671   case ARM::t2STMDB:
3672   case ARM::t2STMIA_UPD:
3673   case ARM::t2STMDB_UPD: {
3674     unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1;
3675     switch (Subtarget.getLdStMultipleTiming()) {
3676     case ARMSubtarget::SingleIssuePlusExtras:
3677       return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs);
3678     case ARMSubtarget::SingleIssue:
3679       // Assume the worst.
3680       return NumRegs;
3681     case ARMSubtarget::DoubleIssue: {
3682       if (NumRegs < 4)
3683         return 2;
3684       // 4 registers would be issued: 2, 2.
3685       // 5 registers would be issued: 2, 2, 1.
3686       unsigned UOps = (NumRegs / 2);
3687       if (NumRegs % 2)
3688         ++UOps;
3689       return UOps;
3690     }
3691     case ARMSubtarget::DoubleIssueCheckUnalignedAccess: {
3692       unsigned UOps = (NumRegs / 2);
3693       // If there are odd number of registers or if it's not 64-bit aligned,
3694       // then it takes an extra AGU (Address Generation Unit) cycle.
3695       if ((NumRegs % 2) || !MI.hasOneMemOperand() ||
3696           (*MI.memoperands_begin())->getAlignment() < 8)
3697         ++UOps;
3698       return UOps;
3699       }
3700     }
3701   }
3702   }
3703   llvm_unreachable("Didn't find the number of microops");
3704 }
3705 
3706 int
3707 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
3708                                   const MCInstrDesc &DefMCID,
3709                                   unsigned DefClass,
3710                                   unsigned DefIdx, unsigned DefAlign) const {
3711   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3712   if (RegNo <= 0)
3713     // Def is the address writeback.
3714     return ItinData->getOperandCycle(DefClass, DefIdx);
3715 
3716   int DefCycle;
3717   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3718     // (regno / 2) + (regno % 2) + 1
3719     DefCycle = RegNo / 2 + 1;
3720     if (RegNo % 2)
3721       ++DefCycle;
3722   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3723     DefCycle = RegNo;
3724     bool isSLoad = false;
3725 
3726     switch (DefMCID.getOpcode()) {
3727     default: break;
3728     case ARM::VLDMSIA:
3729     case ARM::VLDMSIA_UPD:
3730     case ARM::VLDMSDB_UPD:
3731       isSLoad = true;
3732       break;
3733     }
3734 
3735     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3736     // then it takes an extra cycle.
3737     if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
3738       ++DefCycle;
3739   } else {
3740     // Assume the worst.
3741     DefCycle = RegNo + 2;
3742   }
3743 
3744   return DefCycle;
3745 }
3746 
3747 bool ARMBaseInstrInfo::isLDMBaseRegInList(const MachineInstr &MI) const {
3748   unsigned BaseReg = MI.getOperand(0).getReg();
3749   for (unsigned i = 1, sz = MI.getNumOperands(); i < sz; ++i) {
3750     const auto &Op = MI.getOperand(i);
3751     if (Op.isReg() && Op.getReg() == BaseReg)
3752       return true;
3753   }
3754   return false;
3755 }
3756 unsigned
3757 ARMBaseInstrInfo::getLDMVariableDefsSize(const MachineInstr &MI) const {
3758   // ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops
3759   // (outs GPR:$wb), (ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops)
3760   return MI.getNumOperands() + 1 - MI.getDesc().getNumOperands();
3761 }
3762 
3763 int
3764 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
3765                                  const MCInstrDesc &DefMCID,
3766                                  unsigned DefClass,
3767                                  unsigned DefIdx, unsigned DefAlign) const {
3768   int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3769   if (RegNo <= 0)
3770     // Def is the address writeback.
3771     return ItinData->getOperandCycle(DefClass, DefIdx);
3772 
3773   int DefCycle;
3774   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3775     // 4 registers would be issued: 1, 2, 1.
3776     // 5 registers would be issued: 1, 2, 2.
3777     DefCycle = RegNo / 2;
3778     if (DefCycle < 1)
3779       DefCycle = 1;
3780     // Result latency is issue cycle + 2: E2.
3781     DefCycle += 2;
3782   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3783     DefCycle = (RegNo / 2);
3784     // If there are odd number of registers or if it's not 64-bit aligned,
3785     // then it takes an extra AGU (Address Generation Unit) cycle.
3786     if ((RegNo % 2) || DefAlign < 8)
3787       ++DefCycle;
3788     // Result latency is AGU cycles + 2.
3789     DefCycle += 2;
3790   } else {
3791     // Assume the worst.
3792     DefCycle = RegNo + 2;
3793   }
3794 
3795   return DefCycle;
3796 }
3797 
3798 int
3799 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
3800                                   const MCInstrDesc &UseMCID,
3801                                   unsigned UseClass,
3802                                   unsigned UseIdx, unsigned UseAlign) const {
3803   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3804   if (RegNo <= 0)
3805     return ItinData->getOperandCycle(UseClass, UseIdx);
3806 
3807   int UseCycle;
3808   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3809     // (regno / 2) + (regno % 2) + 1
3810     UseCycle = RegNo / 2 + 1;
3811     if (RegNo % 2)
3812       ++UseCycle;
3813   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3814     UseCycle = RegNo;
3815     bool isSStore = false;
3816 
3817     switch (UseMCID.getOpcode()) {
3818     default: break;
3819     case ARM::VSTMSIA:
3820     case ARM::VSTMSIA_UPD:
3821     case ARM::VSTMSDB_UPD:
3822       isSStore = true;
3823       break;
3824     }
3825 
3826     // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3827     // then it takes an extra cycle.
3828     if ((isSStore && (RegNo % 2)) || UseAlign < 8)
3829       ++UseCycle;
3830   } else {
3831     // Assume the worst.
3832     UseCycle = RegNo + 2;
3833   }
3834 
3835   return UseCycle;
3836 }
3837 
3838 int
3839 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
3840                                  const MCInstrDesc &UseMCID,
3841                                  unsigned UseClass,
3842                                  unsigned UseIdx, unsigned UseAlign) const {
3843   int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3844   if (RegNo <= 0)
3845     return ItinData->getOperandCycle(UseClass, UseIdx);
3846 
3847   int UseCycle;
3848   if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3849     UseCycle = RegNo / 2;
3850     if (UseCycle < 2)
3851       UseCycle = 2;
3852     // Read in E3.
3853     UseCycle += 2;
3854   } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3855     UseCycle = (RegNo / 2);
3856     // If there are odd number of registers or if it's not 64-bit aligned,
3857     // then it takes an extra AGU (Address Generation Unit) cycle.
3858     if ((RegNo % 2) || UseAlign < 8)
3859       ++UseCycle;
3860   } else {
3861     // Assume the worst.
3862     UseCycle = 1;
3863   }
3864   return UseCycle;
3865 }
3866 
3867 int
3868 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
3869                                     const MCInstrDesc &DefMCID,
3870                                     unsigned DefIdx, unsigned DefAlign,
3871                                     const MCInstrDesc &UseMCID,
3872                                     unsigned UseIdx, unsigned UseAlign) const {
3873   unsigned DefClass = DefMCID.getSchedClass();
3874   unsigned UseClass = UseMCID.getSchedClass();
3875 
3876   if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
3877     return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
3878 
3879   // This may be a def / use of a variable_ops instruction, the operand
3880   // latency might be determinable dynamically. Let the target try to
3881   // figure it out.
3882   int DefCycle = -1;
3883   bool LdmBypass = false;
3884   switch (DefMCID.getOpcode()) {
3885   default:
3886     DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
3887     break;
3888 
3889   case ARM::VLDMDIA:
3890   case ARM::VLDMDIA_UPD:
3891   case ARM::VLDMDDB_UPD:
3892   case ARM::VLDMSIA:
3893   case ARM::VLDMSIA_UPD:
3894   case ARM::VLDMSDB_UPD:
3895     DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3896     break;
3897 
3898   case ARM::LDMIA_RET:
3899   case ARM::LDMIA:
3900   case ARM::LDMDA:
3901   case ARM::LDMDB:
3902   case ARM::LDMIB:
3903   case ARM::LDMIA_UPD:
3904   case ARM::LDMDA_UPD:
3905   case ARM::LDMDB_UPD:
3906   case ARM::LDMIB_UPD:
3907   case ARM::tLDMIA:
3908   case ARM::tLDMIA_UPD:
3909   case ARM::tPUSH:
3910   case ARM::t2LDMIA_RET:
3911   case ARM::t2LDMIA:
3912   case ARM::t2LDMDB:
3913   case ARM::t2LDMIA_UPD:
3914   case ARM::t2LDMDB_UPD:
3915     LdmBypass = true;
3916     DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
3917     break;
3918   }
3919 
3920   if (DefCycle == -1)
3921     // We can't seem to determine the result latency of the def, assume it's 2.
3922     DefCycle = 2;
3923 
3924   int UseCycle = -1;
3925   switch (UseMCID.getOpcode()) {
3926   default:
3927     UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
3928     break;
3929 
3930   case ARM::VSTMDIA:
3931   case ARM::VSTMDIA_UPD:
3932   case ARM::VSTMDDB_UPD:
3933   case ARM::VSTMSIA:
3934   case ARM::VSTMSIA_UPD:
3935   case ARM::VSTMSDB_UPD:
3936     UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
3937     break;
3938 
3939   case ARM::STMIA:
3940   case ARM::STMDA:
3941   case ARM::STMDB:
3942   case ARM::STMIB:
3943   case ARM::STMIA_UPD:
3944   case ARM::STMDA_UPD:
3945   case ARM::STMDB_UPD:
3946   case ARM::STMIB_UPD:
3947   case ARM::tSTMIA_UPD:
3948   case ARM::tPOP_RET:
3949   case ARM::tPOP:
3950   case ARM::t2STMIA:
3951   case ARM::t2STMDB:
3952   case ARM::t2STMIA_UPD:
3953   case ARM::t2STMDB_UPD:
3954     UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
3955     break;
3956   }
3957 
3958   if (UseCycle == -1)
3959     // Assume it's read in the first stage.
3960     UseCycle = 1;
3961 
3962   UseCycle = DefCycle - UseCycle + 1;
3963   if (UseCycle > 0) {
3964     if (LdmBypass) {
3965       // It's a variable_ops instruction so we can't use DefIdx here. Just use
3966       // first def operand.
3967       if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
3968                                           UseClass, UseIdx))
3969         --UseCycle;
3970     } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
3971                                                UseClass, UseIdx)) {
3972       --UseCycle;
3973     }
3974   }
3975 
3976   return UseCycle;
3977 }
3978 
3979 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
3980                                            const MachineInstr *MI, unsigned Reg,
3981                                            unsigned &DefIdx, unsigned &Dist) {
3982   Dist = 0;
3983 
3984   MachineBasicBlock::const_iterator I = MI; ++I;
3985   MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
3986   assert(II->isInsideBundle() && "Empty bundle?");
3987 
3988   int Idx = -1;
3989   while (II->isInsideBundle()) {
3990     Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
3991     if (Idx != -1)
3992       break;
3993     --II;
3994     ++Dist;
3995   }
3996 
3997   assert(Idx != -1 && "Cannot find bundled definition!");
3998   DefIdx = Idx;
3999   return &*II;
4000 }
4001 
4002 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
4003                                            const MachineInstr &MI, unsigned Reg,
4004                                            unsigned &UseIdx, unsigned &Dist) {
4005   Dist = 0;
4006 
4007   MachineBasicBlock::const_instr_iterator II = ++MI.getIterator();
4008   assert(II->isInsideBundle() && "Empty bundle?");
4009   MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4010 
4011   // FIXME: This doesn't properly handle multiple uses.
4012   int Idx = -1;
4013   while (II != E && II->isInsideBundle()) {
4014     Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
4015     if (Idx != -1)
4016       break;
4017     if (II->getOpcode() != ARM::t2IT)
4018       ++Dist;
4019     ++II;
4020   }
4021 
4022   if (Idx == -1) {
4023     Dist = 0;
4024     return nullptr;
4025   }
4026 
4027   UseIdx = Idx;
4028   return &*II;
4029 }
4030 
4031 /// Return the number of cycles to add to (or subtract from) the static
4032 /// itinerary based on the def opcode and alignment. The caller will ensure that
4033 /// adjusted latency is at least one cycle.
4034 static int adjustDefLatency(const ARMSubtarget &Subtarget,
4035                             const MachineInstr &DefMI,
4036                             const MCInstrDesc &DefMCID, unsigned DefAlign) {
4037   int Adjust = 0;
4038   if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
4039     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4040     // variants are one cycle cheaper.
4041     switch (DefMCID.getOpcode()) {
4042     default: break;
4043     case ARM::LDRrs:
4044     case ARM::LDRBrs: {
4045       unsigned ShOpVal = DefMI.getOperand(3).getImm();
4046       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4047       if (ShImm == 0 ||
4048           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4049         --Adjust;
4050       break;
4051     }
4052     case ARM::t2LDRs:
4053     case ARM::t2LDRBs:
4054     case ARM::t2LDRHs:
4055     case ARM::t2LDRSHs: {
4056       // Thumb2 mode: lsl only.
4057       unsigned ShAmt = DefMI.getOperand(3).getImm();
4058       if (ShAmt == 0 || ShAmt == 2)
4059         --Adjust;
4060       break;
4061     }
4062     }
4063   } else if (Subtarget.isSwift()) {
4064     // FIXME: Properly handle all of the latency adjustments for address
4065     // writeback.
4066     switch (DefMCID.getOpcode()) {
4067     default: break;
4068     case ARM::LDRrs:
4069     case ARM::LDRBrs: {
4070       unsigned ShOpVal = DefMI.getOperand(3).getImm();
4071       bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
4072       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4073       if (!isSub &&
4074           (ShImm == 0 ||
4075            ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4076             ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
4077         Adjust -= 2;
4078       else if (!isSub &&
4079                ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4080         --Adjust;
4081       break;
4082     }
4083     case ARM::t2LDRs:
4084     case ARM::t2LDRBs:
4085     case ARM::t2LDRHs:
4086     case ARM::t2LDRSHs: {
4087       // Thumb2 mode: lsl only.
4088       unsigned ShAmt = DefMI.getOperand(3).getImm();
4089       if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
4090         Adjust -= 2;
4091       break;
4092     }
4093     }
4094   }
4095 
4096   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) {
4097     switch (DefMCID.getOpcode()) {
4098     default: break;
4099     case ARM::VLD1q8:
4100     case ARM::VLD1q16:
4101     case ARM::VLD1q32:
4102     case ARM::VLD1q64:
4103     case ARM::VLD1q8wb_fixed:
4104     case ARM::VLD1q16wb_fixed:
4105     case ARM::VLD1q32wb_fixed:
4106     case ARM::VLD1q64wb_fixed:
4107     case ARM::VLD1q8wb_register:
4108     case ARM::VLD1q16wb_register:
4109     case ARM::VLD1q32wb_register:
4110     case ARM::VLD1q64wb_register:
4111     case ARM::VLD2d8:
4112     case ARM::VLD2d16:
4113     case ARM::VLD2d32:
4114     case ARM::VLD2q8:
4115     case ARM::VLD2q16:
4116     case ARM::VLD2q32:
4117     case ARM::VLD2d8wb_fixed:
4118     case ARM::VLD2d16wb_fixed:
4119     case ARM::VLD2d32wb_fixed:
4120     case ARM::VLD2q8wb_fixed:
4121     case ARM::VLD2q16wb_fixed:
4122     case ARM::VLD2q32wb_fixed:
4123     case ARM::VLD2d8wb_register:
4124     case ARM::VLD2d16wb_register:
4125     case ARM::VLD2d32wb_register:
4126     case ARM::VLD2q8wb_register:
4127     case ARM::VLD2q16wb_register:
4128     case ARM::VLD2q32wb_register:
4129     case ARM::VLD3d8:
4130     case ARM::VLD3d16:
4131     case ARM::VLD3d32:
4132     case ARM::VLD1d64T:
4133     case ARM::VLD3d8_UPD:
4134     case ARM::VLD3d16_UPD:
4135     case ARM::VLD3d32_UPD:
4136     case ARM::VLD1d64Twb_fixed:
4137     case ARM::VLD1d64Twb_register:
4138     case ARM::VLD3q8_UPD:
4139     case ARM::VLD3q16_UPD:
4140     case ARM::VLD3q32_UPD:
4141     case ARM::VLD4d8:
4142     case ARM::VLD4d16:
4143     case ARM::VLD4d32:
4144     case ARM::VLD1d64Q:
4145     case ARM::VLD4d8_UPD:
4146     case ARM::VLD4d16_UPD:
4147     case ARM::VLD4d32_UPD:
4148     case ARM::VLD1d64Qwb_fixed:
4149     case ARM::VLD1d64Qwb_register:
4150     case ARM::VLD4q8_UPD:
4151     case ARM::VLD4q16_UPD:
4152     case ARM::VLD4q32_UPD:
4153     case ARM::VLD1DUPq8:
4154     case ARM::VLD1DUPq16:
4155     case ARM::VLD1DUPq32:
4156     case ARM::VLD1DUPq8wb_fixed:
4157     case ARM::VLD1DUPq16wb_fixed:
4158     case ARM::VLD1DUPq32wb_fixed:
4159     case ARM::VLD1DUPq8wb_register:
4160     case ARM::VLD1DUPq16wb_register:
4161     case ARM::VLD1DUPq32wb_register:
4162     case ARM::VLD2DUPd8:
4163     case ARM::VLD2DUPd16:
4164     case ARM::VLD2DUPd32:
4165     case ARM::VLD2DUPd8wb_fixed:
4166     case ARM::VLD2DUPd16wb_fixed:
4167     case ARM::VLD2DUPd32wb_fixed:
4168     case ARM::VLD2DUPd8wb_register:
4169     case ARM::VLD2DUPd16wb_register:
4170     case ARM::VLD2DUPd32wb_register:
4171     case ARM::VLD4DUPd8:
4172     case ARM::VLD4DUPd16:
4173     case ARM::VLD4DUPd32:
4174     case ARM::VLD4DUPd8_UPD:
4175     case ARM::VLD4DUPd16_UPD:
4176     case ARM::VLD4DUPd32_UPD:
4177     case ARM::VLD1LNd8:
4178     case ARM::VLD1LNd16:
4179     case ARM::VLD1LNd32:
4180     case ARM::VLD1LNd8_UPD:
4181     case ARM::VLD1LNd16_UPD:
4182     case ARM::VLD1LNd32_UPD:
4183     case ARM::VLD2LNd8:
4184     case ARM::VLD2LNd16:
4185     case ARM::VLD2LNd32:
4186     case ARM::VLD2LNq16:
4187     case ARM::VLD2LNq32:
4188     case ARM::VLD2LNd8_UPD:
4189     case ARM::VLD2LNd16_UPD:
4190     case ARM::VLD2LNd32_UPD:
4191     case ARM::VLD2LNq16_UPD:
4192     case ARM::VLD2LNq32_UPD:
4193     case ARM::VLD4LNd8:
4194     case ARM::VLD4LNd16:
4195     case ARM::VLD4LNd32:
4196     case ARM::VLD4LNq16:
4197     case ARM::VLD4LNq32:
4198     case ARM::VLD4LNd8_UPD:
4199     case ARM::VLD4LNd16_UPD:
4200     case ARM::VLD4LNd32_UPD:
4201     case ARM::VLD4LNq16_UPD:
4202     case ARM::VLD4LNq32_UPD:
4203       // If the address is not 64-bit aligned, the latencies of these
4204       // instructions increases by one.
4205       ++Adjust;
4206       break;
4207     }
4208   }
4209   return Adjust;
4210 }
4211 
4212 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4213                                         const MachineInstr &DefMI,
4214                                         unsigned DefIdx,
4215                                         const MachineInstr &UseMI,
4216                                         unsigned UseIdx) const {
4217   // No operand latency. The caller may fall back to getInstrLatency.
4218   if (!ItinData || ItinData->isEmpty())
4219     return -1;
4220 
4221   const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
4222   unsigned Reg = DefMO.getReg();
4223 
4224   const MachineInstr *ResolvedDefMI = &DefMI;
4225   unsigned DefAdj = 0;
4226   if (DefMI.isBundle())
4227     ResolvedDefMI =
4228         getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj);
4229   if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() ||
4230       ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) {
4231     return 1;
4232   }
4233 
4234   const MachineInstr *ResolvedUseMI = &UseMI;
4235   unsigned UseAdj = 0;
4236   if (UseMI.isBundle()) {
4237     ResolvedUseMI =
4238         getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj);
4239     if (!ResolvedUseMI)
4240       return -1;
4241   }
4242 
4243   return getOperandLatencyImpl(
4244       ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO,
4245       Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj);
4246 }
4247 
4248 int ARMBaseInstrInfo::getOperandLatencyImpl(
4249     const InstrItineraryData *ItinData, const MachineInstr &DefMI,
4250     unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj,
4251     const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI,
4252     unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const {
4253   if (Reg == ARM::CPSR) {
4254     if (DefMI.getOpcode() == ARM::FMSTAT) {
4255       // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
4256       return Subtarget.isLikeA9() ? 1 : 20;
4257     }
4258 
4259     // CPSR set and branch can be paired in the same cycle.
4260     if (UseMI.isBranch())
4261       return 0;
4262 
4263     // Otherwise it takes the instruction latency (generally one).
4264     unsigned Latency = getInstrLatency(ItinData, DefMI);
4265 
4266     // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
4267     // its uses. Instructions which are otherwise scheduled between them may
4268     // incur a code size penalty (not able to use the CPSR setting 16-bit
4269     // instructions).
4270     if (Latency > 0 && Subtarget.isThumb2()) {
4271       const MachineFunction *MF = DefMI.getParent()->getParent();
4272       // FIXME: Use Function::hasOptSize().
4273       if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize))
4274         --Latency;
4275     }
4276     return Latency;
4277   }
4278 
4279   if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit())
4280     return -1;
4281 
4282   unsigned DefAlign = DefMI.hasOneMemOperand()
4283                           ? (*DefMI.memoperands_begin())->getAlignment()
4284                           : 0;
4285   unsigned UseAlign = UseMI.hasOneMemOperand()
4286                           ? (*UseMI.memoperands_begin())->getAlignment()
4287                           : 0;
4288 
4289   // Get the itinerary's latency if possible, and handle variable_ops.
4290   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID,
4291                                   UseIdx, UseAlign);
4292   // Unable to find operand latency. The caller may resort to getInstrLatency.
4293   if (Latency < 0)
4294     return Latency;
4295 
4296   // Adjust for IT block position.
4297   int Adj = DefAdj + UseAdj;
4298 
4299   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4300   Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
4301   if (Adj >= 0 || (int)Latency > -Adj) {
4302     return Latency + Adj;
4303   }
4304   // Return the itinerary latency, which may be zero but not less than zero.
4305   return Latency;
4306 }
4307 
4308 int
4309 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4310                                     SDNode *DefNode, unsigned DefIdx,
4311                                     SDNode *UseNode, unsigned UseIdx) const {
4312   if (!DefNode->isMachineOpcode())
4313     return 1;
4314 
4315   const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
4316 
4317   if (isZeroCost(DefMCID.Opcode))
4318     return 0;
4319 
4320   if (!ItinData || ItinData->isEmpty())
4321     return DefMCID.mayLoad() ? 3 : 1;
4322 
4323   if (!UseNode->isMachineOpcode()) {
4324     int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
4325     int Adj = Subtarget.getPreISelOperandLatencyAdjustment();
4326     int Threshold = 1 + Adj;
4327     return Latency <= Threshold ? 1 : Latency - Adj;
4328   }
4329 
4330   const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
4331   const MachineSDNode *DefMN = dyn_cast<MachineSDNode>(DefNode);
4332   unsigned DefAlign = !DefMN->memoperands_empty()
4333     ? (*DefMN->memoperands_begin())->getAlignment() : 0;
4334   const MachineSDNode *UseMN = dyn_cast<MachineSDNode>(UseNode);
4335   unsigned UseAlign = !UseMN->memoperands_empty()
4336     ? (*UseMN->memoperands_begin())->getAlignment() : 0;
4337   int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
4338                                   UseMCID, UseIdx, UseAlign);
4339 
4340   if (Latency > 1 &&
4341       (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
4342        Subtarget.isCortexA7())) {
4343     // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4344     // variants are one cycle cheaper.
4345     switch (DefMCID.getOpcode()) {
4346     default: break;
4347     case ARM::LDRrs:
4348     case ARM::LDRBrs: {
4349       unsigned ShOpVal =
4350         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4351       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4352       if (ShImm == 0 ||
4353           (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4354         --Latency;
4355       break;
4356     }
4357     case ARM::t2LDRs:
4358     case ARM::t2LDRBs:
4359     case ARM::t2LDRHs:
4360     case ARM::t2LDRSHs: {
4361       // Thumb2 mode: lsl only.
4362       unsigned ShAmt =
4363         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4364       if (ShAmt == 0 || ShAmt == 2)
4365         --Latency;
4366       break;
4367     }
4368     }
4369   } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
4370     // FIXME: Properly handle all of the latency adjustments for address
4371     // writeback.
4372     switch (DefMCID.getOpcode()) {
4373     default: break;
4374     case ARM::LDRrs:
4375     case ARM::LDRBrs: {
4376       unsigned ShOpVal =
4377         cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
4378       unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
4379       if (ShImm == 0 ||
4380           ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4381            ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
4382         Latency -= 2;
4383       else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
4384         --Latency;
4385       break;
4386     }
4387     case ARM::t2LDRs:
4388     case ARM::t2LDRBs:
4389     case ARM::t2LDRHs:
4390     case ARM::t2LDRSHs:
4391       // Thumb2 mode: lsl 0-3 only.
4392       Latency -= 2;
4393       break;
4394     }
4395   }
4396 
4397   if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment())
4398     switch (DefMCID.getOpcode()) {
4399     default: break;
4400     case ARM::VLD1q8:
4401     case ARM::VLD1q16:
4402     case ARM::VLD1q32:
4403     case ARM::VLD1q64:
4404     case ARM::VLD1q8wb_register:
4405     case ARM::VLD1q16wb_register:
4406     case ARM::VLD1q32wb_register:
4407     case ARM::VLD1q64wb_register:
4408     case ARM::VLD1q8wb_fixed:
4409     case ARM::VLD1q16wb_fixed:
4410     case ARM::VLD1q32wb_fixed:
4411     case ARM::VLD1q64wb_fixed:
4412     case ARM::VLD2d8:
4413     case ARM::VLD2d16:
4414     case ARM::VLD2d32:
4415     case ARM::VLD2q8Pseudo:
4416     case ARM::VLD2q16Pseudo:
4417     case ARM::VLD2q32Pseudo:
4418     case ARM::VLD2d8wb_fixed:
4419     case ARM::VLD2d16wb_fixed:
4420     case ARM::VLD2d32wb_fixed:
4421     case ARM::VLD2q8PseudoWB_fixed:
4422     case ARM::VLD2q16PseudoWB_fixed:
4423     case ARM::VLD2q32PseudoWB_fixed:
4424     case ARM::VLD2d8wb_register:
4425     case ARM::VLD2d16wb_register:
4426     case ARM::VLD2d32wb_register:
4427     case ARM::VLD2q8PseudoWB_register:
4428     case ARM::VLD2q16PseudoWB_register:
4429     case ARM::VLD2q32PseudoWB_register:
4430     case ARM::VLD3d8Pseudo:
4431     case ARM::VLD3d16Pseudo:
4432     case ARM::VLD3d32Pseudo:
4433     case ARM::VLD1d8TPseudo:
4434     case ARM::VLD1d16TPseudo:
4435     case ARM::VLD1d32TPseudo:
4436     case ARM::VLD1d64TPseudo:
4437     case ARM::VLD1d64TPseudoWB_fixed:
4438     case ARM::VLD1d64TPseudoWB_register:
4439     case ARM::VLD3d8Pseudo_UPD:
4440     case ARM::VLD3d16Pseudo_UPD:
4441     case ARM::VLD3d32Pseudo_UPD:
4442     case ARM::VLD3q8Pseudo_UPD:
4443     case ARM::VLD3q16Pseudo_UPD:
4444     case ARM::VLD3q32Pseudo_UPD:
4445     case ARM::VLD3q8oddPseudo:
4446     case ARM::VLD3q16oddPseudo:
4447     case ARM::VLD3q32oddPseudo:
4448     case ARM::VLD3q8oddPseudo_UPD:
4449     case ARM::VLD3q16oddPseudo_UPD:
4450     case ARM::VLD3q32oddPseudo_UPD:
4451     case ARM::VLD4d8Pseudo:
4452     case ARM::VLD4d16Pseudo:
4453     case ARM::VLD4d32Pseudo:
4454     case ARM::VLD1d8QPseudo:
4455     case ARM::VLD1d16QPseudo:
4456     case ARM::VLD1d32QPseudo:
4457     case ARM::VLD1d64QPseudo:
4458     case ARM::VLD1d64QPseudoWB_fixed:
4459     case ARM::VLD1d64QPseudoWB_register:
4460     case ARM::VLD1q8HighQPseudo:
4461     case ARM::VLD1q8LowQPseudo_UPD:
4462     case ARM::VLD1q8HighTPseudo:
4463     case ARM::VLD1q8LowTPseudo_UPD:
4464     case ARM::VLD1q16HighQPseudo:
4465     case ARM::VLD1q16LowQPseudo_UPD:
4466     case ARM::VLD1q16HighTPseudo:
4467     case ARM::VLD1q16LowTPseudo_UPD:
4468     case ARM::VLD1q32HighQPseudo:
4469     case ARM::VLD1q32LowQPseudo_UPD:
4470     case ARM::VLD1q32HighTPseudo:
4471     case ARM::VLD1q32LowTPseudo_UPD:
4472     case ARM::VLD1q64HighQPseudo:
4473     case ARM::VLD1q64LowQPseudo_UPD:
4474     case ARM::VLD1q64HighTPseudo:
4475     case ARM::VLD1q64LowTPseudo_UPD:
4476     case ARM::VLD4d8Pseudo_UPD:
4477     case ARM::VLD4d16Pseudo_UPD:
4478     case ARM::VLD4d32Pseudo_UPD:
4479     case ARM::VLD4q8Pseudo_UPD:
4480     case ARM::VLD4q16Pseudo_UPD:
4481     case ARM::VLD4q32Pseudo_UPD:
4482     case ARM::VLD4q8oddPseudo:
4483     case ARM::VLD4q16oddPseudo:
4484     case ARM::VLD4q32oddPseudo:
4485     case ARM::VLD4q8oddPseudo_UPD:
4486     case ARM::VLD4q16oddPseudo_UPD:
4487     case ARM::VLD4q32oddPseudo_UPD:
4488     case ARM::VLD1DUPq8:
4489     case ARM::VLD1DUPq16:
4490     case ARM::VLD1DUPq32:
4491     case ARM::VLD1DUPq8wb_fixed:
4492     case ARM::VLD1DUPq16wb_fixed:
4493     case ARM::VLD1DUPq32wb_fixed:
4494     case ARM::VLD1DUPq8wb_register:
4495     case ARM::VLD1DUPq16wb_register:
4496     case ARM::VLD1DUPq32wb_register:
4497     case ARM::VLD2DUPd8:
4498     case ARM::VLD2DUPd16:
4499     case ARM::VLD2DUPd32:
4500     case ARM::VLD2DUPd8wb_fixed:
4501     case ARM::VLD2DUPd16wb_fixed:
4502     case ARM::VLD2DUPd32wb_fixed:
4503     case ARM::VLD2DUPd8wb_register:
4504     case ARM::VLD2DUPd16wb_register:
4505     case ARM::VLD2DUPd32wb_register:
4506     case ARM::VLD2DUPq8EvenPseudo:
4507     case ARM::VLD2DUPq8OddPseudo:
4508     case ARM::VLD2DUPq16EvenPseudo:
4509     case ARM::VLD2DUPq16OddPseudo:
4510     case ARM::VLD2DUPq32EvenPseudo:
4511     case ARM::VLD2DUPq32OddPseudo:
4512     case ARM::VLD3DUPq8EvenPseudo:
4513     case ARM::VLD3DUPq8OddPseudo:
4514     case ARM::VLD3DUPq16EvenPseudo:
4515     case ARM::VLD3DUPq16OddPseudo:
4516     case ARM::VLD3DUPq32EvenPseudo:
4517     case ARM::VLD3DUPq32OddPseudo:
4518     case ARM::VLD4DUPd8Pseudo:
4519     case ARM::VLD4DUPd16Pseudo:
4520     case ARM::VLD4DUPd32Pseudo:
4521     case ARM::VLD4DUPd8Pseudo_UPD:
4522     case ARM::VLD4DUPd16Pseudo_UPD:
4523     case ARM::VLD4DUPd32Pseudo_UPD:
4524     case ARM::VLD4DUPq8EvenPseudo:
4525     case ARM::VLD4DUPq8OddPseudo:
4526     case ARM::VLD4DUPq16EvenPseudo:
4527     case ARM::VLD4DUPq16OddPseudo:
4528     case ARM::VLD4DUPq32EvenPseudo:
4529     case ARM::VLD4DUPq32OddPseudo:
4530     case ARM::VLD1LNq8Pseudo:
4531     case ARM::VLD1LNq16Pseudo:
4532     case ARM::VLD1LNq32Pseudo:
4533     case ARM::VLD1LNq8Pseudo_UPD:
4534     case ARM::VLD1LNq16Pseudo_UPD:
4535     case ARM::VLD1LNq32Pseudo_UPD:
4536     case ARM::VLD2LNd8Pseudo:
4537     case ARM::VLD2LNd16Pseudo:
4538     case ARM::VLD2LNd32Pseudo:
4539     case ARM::VLD2LNq16Pseudo:
4540     case ARM::VLD2LNq32Pseudo:
4541     case ARM::VLD2LNd8Pseudo_UPD:
4542     case ARM::VLD2LNd16Pseudo_UPD:
4543     case ARM::VLD2LNd32Pseudo_UPD:
4544     case ARM::VLD2LNq16Pseudo_UPD:
4545     case ARM::VLD2LNq32Pseudo_UPD:
4546     case ARM::VLD4LNd8Pseudo:
4547     case ARM::VLD4LNd16Pseudo:
4548     case ARM::VLD4LNd32Pseudo:
4549     case ARM::VLD4LNq16Pseudo:
4550     case ARM::VLD4LNq32Pseudo:
4551     case ARM::VLD4LNd8Pseudo_UPD:
4552     case ARM::VLD4LNd16Pseudo_UPD:
4553     case ARM::VLD4LNd32Pseudo_UPD:
4554     case ARM::VLD4LNq16Pseudo_UPD:
4555     case ARM::VLD4LNq32Pseudo_UPD:
4556       // If the address is not 64-bit aligned, the latencies of these
4557       // instructions increases by one.
4558       ++Latency;
4559       break;
4560     }
4561 
4562   return Latency;
4563 }
4564 
4565 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const {
4566   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4567       MI.isImplicitDef())
4568     return 0;
4569 
4570   if (MI.isBundle())
4571     return 0;
4572 
4573   const MCInstrDesc &MCID = MI.getDesc();
4574 
4575   if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4576                         !Subtarget.cheapPredicableCPSRDef())) {
4577     // When predicated, CPSR is an additional source operand for CPSR updating
4578     // instructions, this apparently increases their latencies.
4579     return 1;
4580   }
4581   return 0;
4582 }
4583 
4584 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4585                                            const MachineInstr &MI,
4586                                            unsigned *PredCost) const {
4587   if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4588       MI.isImplicitDef())
4589     return 1;
4590 
4591   // An instruction scheduler typically runs on unbundled instructions, however
4592   // other passes may query the latency of a bundled instruction.
4593   if (MI.isBundle()) {
4594     unsigned Latency = 0;
4595     MachineBasicBlock::const_instr_iterator I = MI.getIterator();
4596     MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4597     while (++I != E && I->isInsideBundle()) {
4598       if (I->getOpcode() != ARM::t2IT)
4599         Latency += getInstrLatency(ItinData, *I, PredCost);
4600     }
4601     return Latency;
4602   }
4603 
4604   const MCInstrDesc &MCID = MI.getDesc();
4605   if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4606                                      !Subtarget.cheapPredicableCPSRDef()))) {
4607     // When predicated, CPSR is an additional source operand for CPSR updating
4608     // instructions, this apparently increases their latencies.
4609     *PredCost = 1;
4610   }
4611   // Be sure to call getStageLatency for an empty itinerary in case it has a
4612   // valid MinLatency property.
4613   if (!ItinData)
4614     return MI.mayLoad() ? 3 : 1;
4615 
4616   unsigned Class = MCID.getSchedClass();
4617 
4618   // For instructions with variable uops, use uops as latency.
4619   if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
4620     return getNumMicroOps(ItinData, MI);
4621 
4622   // For the common case, fall back on the itinerary's latency.
4623   unsigned Latency = ItinData->getStageLatency(Class);
4624 
4625   // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4626   unsigned DefAlign =
4627       MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlignment() : 0;
4628   int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign);
4629   if (Adj >= 0 || (int)Latency > -Adj) {
4630     return Latency + Adj;
4631   }
4632   return Latency;
4633 }
4634 
4635 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4636                                       SDNode *Node) const {
4637   if (!Node->isMachineOpcode())
4638     return 1;
4639 
4640   if (!ItinData || ItinData->isEmpty())
4641     return 1;
4642 
4643   unsigned Opcode = Node->getMachineOpcode();
4644   switch (Opcode) {
4645   default:
4646     return ItinData->getStageLatency(get(Opcode).getSchedClass());
4647   case ARM::VLDMQIA:
4648   case ARM::VSTMQIA:
4649     return 2;
4650   }
4651 }
4652 
4653 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
4654                                              const MachineRegisterInfo *MRI,
4655                                              const MachineInstr &DefMI,
4656                                              unsigned DefIdx,
4657                                              const MachineInstr &UseMI,
4658                                              unsigned UseIdx) const {
4659   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4660   unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask;
4661   if (Subtarget.nonpipelinedVFP() &&
4662       (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
4663     return true;
4664 
4665   // Hoist VFP / NEON instructions with 4 or higher latency.
4666   unsigned Latency =
4667       SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx);
4668   if (Latency <= 3)
4669     return false;
4670   return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
4671          UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
4672 }
4673 
4674 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
4675                                         const MachineInstr &DefMI,
4676                                         unsigned DefIdx) const {
4677   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
4678   if (!ItinData || ItinData->isEmpty())
4679     return false;
4680 
4681   unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4682   if (DDomain == ARMII::DomainGeneral) {
4683     unsigned DefClass = DefMI.getDesc().getSchedClass();
4684     int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
4685     return (DefCycle != -1 && DefCycle <= 2);
4686   }
4687   return false;
4688 }
4689 
4690 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI,
4691                                          StringRef &ErrInfo) const {
4692   if (convertAddSubFlagsOpcode(MI.getOpcode())) {
4693     ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
4694     return false;
4695   }
4696   if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) {
4697     // Make sure we don't generate a lo-lo mov that isn't supported.
4698     if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) &&
4699         !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) {
4700       ErrInfo = "Non-flag-setting Thumb1 mov is v6-only";
4701       return false;
4702     }
4703   }
4704   if (MI.getOpcode() == ARM::tPUSH ||
4705       MI.getOpcode() == ARM::tPOP ||
4706       MI.getOpcode() == ARM::tPOP_RET) {
4707     for (int i = 2, e = MI.getNumOperands(); i < e; ++i) {
4708       if (MI.getOperand(i).isImplicit() ||
4709           !MI.getOperand(i).isReg())
4710         continue;
4711       unsigned Reg = MI.getOperand(i).getReg();
4712       if (Reg < ARM::R0 || Reg > ARM::R7) {
4713         if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) &&
4714             !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) {
4715           ErrInfo = "Unsupported register in Thumb1 push/pop";
4716           return false;
4717         }
4718       }
4719     }
4720   }
4721   return true;
4722 }
4723 
4724 // LoadStackGuard has so far only been implemented for MachO. Different code
4725 // sequence is needed for other targets.
4726 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
4727                                                 unsigned LoadImmOpc,
4728                                                 unsigned LoadOpc) const {
4729   assert(!Subtarget.isROPI() && !Subtarget.isRWPI() &&
4730          "ROPI/RWPI not currently supported with stack guard");
4731 
4732   MachineBasicBlock &MBB = *MI->getParent();
4733   DebugLoc DL = MI->getDebugLoc();
4734   unsigned Reg = MI->getOperand(0).getReg();
4735   const GlobalValue *GV =
4736       cast<GlobalValue>((*MI->memoperands_begin())->getValue());
4737   MachineInstrBuilder MIB;
4738 
4739   BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4740       .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY);
4741 
4742   if (Subtarget.isGVIndirectSymbol(GV)) {
4743     MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4744     MIB.addReg(Reg, RegState::Kill).addImm(0);
4745     auto Flags = MachineMemOperand::MOLoad |
4746                  MachineMemOperand::MODereferenceable |
4747                  MachineMemOperand::MOInvariant;
4748     MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4749         MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, 4);
4750     MIB.addMemOperand(MMO).add(predOps(ARMCC::AL));
4751   }
4752 
4753   MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4754   MIB.addReg(Reg, RegState::Kill)
4755       .addImm(0)
4756       .cloneMemRefs(*MI)
4757       .add(predOps(ARMCC::AL));
4758 }
4759 
4760 bool
4761 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
4762                                      unsigned &AddSubOpc,
4763                                      bool &NegAcc, bool &HasLane) const {
4764   DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
4765   if (I == MLxEntryMap.end())
4766     return false;
4767 
4768   const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
4769   MulOpc = Entry.MulOpc;
4770   AddSubOpc = Entry.AddSubOpc;
4771   NegAcc = Entry.NegAcc;
4772   HasLane = Entry.HasLane;
4773   return true;
4774 }
4775 
4776 //===----------------------------------------------------------------------===//
4777 // Execution domains.
4778 //===----------------------------------------------------------------------===//
4779 //
4780 // Some instructions go down the NEON pipeline, some go down the VFP pipeline,
4781 // and some can go down both.  The vmov instructions go down the VFP pipeline,
4782 // but they can be changed to vorr equivalents that are executed by the NEON
4783 // pipeline.
4784 //
4785 // We use the following execution domain numbering:
4786 //
4787 enum ARMExeDomain {
4788   ExeGeneric = 0,
4789   ExeVFP = 1,
4790   ExeNEON = 2
4791 };
4792 
4793 //
4794 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
4795 //
4796 std::pair<uint16_t, uint16_t>
4797 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const {
4798   // If we don't have access to NEON instructions then we won't be able
4799   // to swizzle anything to the NEON domain. Check to make sure.
4800   if (Subtarget.hasNEON()) {
4801     // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
4802     // if they are not predicated.
4803     if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI))
4804       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4805 
4806     // CortexA9 is particularly picky about mixing the two and wants these
4807     // converted.
4808     if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) &&
4809         (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR ||
4810          MI.getOpcode() == ARM::VMOVS))
4811       return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
4812   }
4813   // No other instructions can be swizzled, so just determine their domain.
4814   unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask;
4815 
4816   if (Domain & ARMII::DomainNEON)
4817     return std::make_pair(ExeNEON, 0);
4818 
4819   // Certain instructions can go either way on Cortex-A8.
4820   // Treat them as NEON instructions.
4821   if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
4822     return std::make_pair(ExeNEON, 0);
4823 
4824   if (Domain & ARMII::DomainVFP)
4825     return std::make_pair(ExeVFP, 0);
4826 
4827   return std::make_pair(ExeGeneric, 0);
4828 }
4829 
4830 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
4831                                             unsigned SReg, unsigned &Lane) {
4832   unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
4833   Lane = 0;
4834 
4835   if (DReg != ARM::NoRegister)
4836    return DReg;
4837 
4838   Lane = 1;
4839   DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
4840 
4841   assert(DReg && "S-register with no D super-register?");
4842   return DReg;
4843 }
4844 
4845 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
4846 /// set ImplicitSReg to a register number that must be marked as implicit-use or
4847 /// zero if no register needs to be defined as implicit-use.
4848 ///
4849 /// If the function cannot determine if an SPR should be marked implicit use or
4850 /// not, it returns false.
4851 ///
4852 /// This function handles cases where an instruction is being modified from taking
4853 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
4854 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
4855 /// lane of the DPR).
4856 ///
4857 /// If the other SPR is defined, an implicit-use of it should be added. Else,
4858 /// (including the case where the DPR itself is defined), it should not.
4859 ///
4860 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
4861                                        MachineInstr &MI, unsigned DReg,
4862                                        unsigned Lane, unsigned &ImplicitSReg) {
4863   // If the DPR is defined or used already, the other SPR lane will be chained
4864   // correctly, so there is nothing to be done.
4865   if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) {
4866     ImplicitSReg = 0;
4867     return true;
4868   }
4869 
4870   // Otherwise we need to go searching to see if the SPR is set explicitly.
4871   ImplicitSReg = TRI->getSubReg(DReg,
4872                                 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
4873   MachineBasicBlock::LivenessQueryResult LQR =
4874       MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
4875 
4876   if (LQR == MachineBasicBlock::LQR_Live)
4877     return true;
4878   else if (LQR == MachineBasicBlock::LQR_Unknown)
4879     return false;
4880 
4881   // If the register is known not to be live, there is no need to add an
4882   // implicit-use.
4883   ImplicitSReg = 0;
4884   return true;
4885 }
4886 
4887 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI,
4888                                           unsigned Domain) const {
4889   unsigned DstReg, SrcReg, DReg;
4890   unsigned Lane;
4891   MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
4892   const TargetRegisterInfo *TRI = &getRegisterInfo();
4893   switch (MI.getOpcode()) {
4894   default:
4895     llvm_unreachable("cannot handle opcode!");
4896     break;
4897   case ARM::VMOVD:
4898     if (Domain != ExeNEON)
4899       break;
4900 
4901     // Zap the predicate operands.
4902     assert(!isPredicated(MI) && "Cannot predicate a VORRd");
4903 
4904     // Make sure we've got NEON instructions.
4905     assert(Subtarget.hasNEON() && "VORRd requires NEON");
4906 
4907     // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
4908     DstReg = MI.getOperand(0).getReg();
4909     SrcReg = MI.getOperand(1).getReg();
4910 
4911     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4912       MI.RemoveOperand(i - 1);
4913 
4914     // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
4915     MI.setDesc(get(ARM::VORRd));
4916     MIB.addReg(DstReg, RegState::Define)
4917         .addReg(SrcReg)
4918         .addReg(SrcReg)
4919         .add(predOps(ARMCC::AL));
4920     break;
4921   case ARM::VMOVRS:
4922     if (Domain != ExeNEON)
4923       break;
4924     assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
4925 
4926     // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
4927     DstReg = MI.getOperand(0).getReg();
4928     SrcReg = MI.getOperand(1).getReg();
4929 
4930     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4931       MI.RemoveOperand(i - 1);
4932 
4933     DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
4934 
4935     // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
4936     // Note that DSrc has been widened and the other lane may be undef, which
4937     // contaminates the entire register.
4938     MI.setDesc(get(ARM::VGETLNi32));
4939     MIB.addReg(DstReg, RegState::Define)
4940         .addReg(DReg, RegState::Undef)
4941         .addImm(Lane)
4942         .add(predOps(ARMCC::AL));
4943 
4944     // The old source should be an implicit use, otherwise we might think it
4945     // was dead before here.
4946     MIB.addReg(SrcReg, RegState::Implicit);
4947     break;
4948   case ARM::VMOVSR: {
4949     if (Domain != ExeNEON)
4950       break;
4951     assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
4952 
4953     // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
4954     DstReg = MI.getOperand(0).getReg();
4955     SrcReg = MI.getOperand(1).getReg();
4956 
4957     DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
4958 
4959     unsigned ImplicitSReg;
4960     if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
4961       break;
4962 
4963     for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4964       MI.RemoveOperand(i - 1);
4965 
4966     // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
4967     // Again DDst may be undefined at the beginning of this instruction.
4968     MI.setDesc(get(ARM::VSETLNi32));
4969     MIB.addReg(DReg, RegState::Define)
4970         .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI)))
4971         .addReg(SrcReg)
4972         .addImm(Lane)
4973         .add(predOps(ARMCC::AL));
4974 
4975     // The narrower destination must be marked as set to keep previous chains
4976     // in place.
4977     MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
4978     if (ImplicitSReg != 0)
4979       MIB.addReg(ImplicitSReg, RegState::Implicit);
4980     break;
4981     }
4982     case ARM::VMOVS: {
4983       if (Domain != ExeNEON)
4984         break;
4985 
4986       // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
4987       DstReg = MI.getOperand(0).getReg();
4988       SrcReg = MI.getOperand(1).getReg();
4989 
4990       unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
4991       DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
4992       DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
4993 
4994       unsigned ImplicitSReg;
4995       if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
4996         break;
4997 
4998       for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
4999         MI.RemoveOperand(i - 1);
5000 
5001       if (DSrc == DDst) {
5002         // Destination can be:
5003         //     %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
5004         MI.setDesc(get(ARM::VDUPLN32d));
5005         MIB.addReg(DDst, RegState::Define)
5006             .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI)))
5007             .addImm(SrcLane)
5008             .add(predOps(ARMCC::AL));
5009 
5010         // Neither the source or the destination are naturally represented any
5011         // more, so add them in manually.
5012         MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
5013         MIB.addReg(SrcReg, RegState::Implicit);
5014         if (ImplicitSReg != 0)
5015           MIB.addReg(ImplicitSReg, RegState::Implicit);
5016         break;
5017       }
5018 
5019       // In general there's no single instruction that can perform an S <-> S
5020       // move in NEON space, but a pair of VEXT instructions *can* do the
5021       // job. It turns out that the VEXTs needed will only use DSrc once, with
5022       // the position based purely on the combination of lane-0 and lane-1
5023       // involved. For example
5024       //     vmov s0, s2 -> vext.32 d0, d0, d1, #1  vext.32 d0, d0, d0, #1
5025       //     vmov s1, s3 -> vext.32 d0, d1, d0, #1  vext.32 d0, d0, d0, #1
5026       //     vmov s0, s3 -> vext.32 d0, d0, d0, #1  vext.32 d0, d1, d0, #1
5027       //     vmov s1, s2 -> vext.32 d0, d0, d0, #1  vext.32 d0, d0, d1, #1
5028       //
5029       // Pattern of the MachineInstrs is:
5030       //     %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
5031       MachineInstrBuilder NewMIB;
5032       NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32),
5033                        DDst);
5034 
5035       // On the first instruction, both DSrc and DDst may be undef if present.
5036       // Specifically when the original instruction didn't have them as an
5037       // <imp-use>.
5038       unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
5039       bool CurUndef = !MI.readsRegister(CurReg, TRI);
5040       NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
5041 
5042       CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
5043       CurUndef = !MI.readsRegister(CurReg, TRI);
5044       NewMIB.addReg(CurReg, getUndefRegState(CurUndef))
5045             .addImm(1)
5046             .add(predOps(ARMCC::AL));
5047 
5048       if (SrcLane == DstLane)
5049         NewMIB.addReg(SrcReg, RegState::Implicit);
5050 
5051       MI.setDesc(get(ARM::VEXTd32));
5052       MIB.addReg(DDst, RegState::Define);
5053 
5054       // On the second instruction, DDst has definitely been defined above, so
5055       // it is not undef. DSrc, if present, can be undef as above.
5056       CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
5057       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5058       MIB.addReg(CurReg, getUndefRegState(CurUndef));
5059 
5060       CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
5061       CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
5062       MIB.addReg(CurReg, getUndefRegState(CurUndef))
5063          .addImm(1)
5064          .add(predOps(ARMCC::AL));
5065 
5066       if (SrcLane != DstLane)
5067         MIB.addReg(SrcReg, RegState::Implicit);
5068 
5069       // As before, the original destination is no longer represented, add it
5070       // implicitly.
5071       MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
5072       if (ImplicitSReg != 0)
5073         MIB.addReg(ImplicitSReg, RegState::Implicit);
5074       break;
5075     }
5076   }
5077 }
5078 
5079 //===----------------------------------------------------------------------===//
5080 // Partial register updates
5081 //===----------------------------------------------------------------------===//
5082 //
5083 // Swift renames NEON registers with 64-bit granularity.  That means any
5084 // instruction writing an S-reg implicitly reads the containing D-reg.  The
5085 // problem is mostly avoided by translating f32 operations to v2f32 operations
5086 // on D-registers, but f32 loads are still a problem.
5087 //
5088 // These instructions can load an f32 into a NEON register:
5089 //
5090 // VLDRS - Only writes S, partial D update.
5091 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
5092 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
5093 //
5094 // FCONSTD can be used as a dependency-breaking instruction.
5095 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance(
5096     const MachineInstr &MI, unsigned OpNum,
5097     const TargetRegisterInfo *TRI) const {
5098   auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance();
5099   if (!PartialUpdateClearance)
5100     return 0;
5101 
5102   assert(TRI && "Need TRI instance");
5103 
5104   const MachineOperand &MO = MI.getOperand(OpNum);
5105   if (MO.readsReg())
5106     return 0;
5107   unsigned Reg = MO.getReg();
5108   int UseOp = -1;
5109 
5110   switch (MI.getOpcode()) {
5111   // Normal instructions writing only an S-register.
5112   case ARM::VLDRS:
5113   case ARM::FCONSTS:
5114   case ARM::VMOVSR:
5115   case ARM::VMOVv8i8:
5116   case ARM::VMOVv4i16:
5117   case ARM::VMOVv2i32:
5118   case ARM::VMOVv2f32:
5119   case ARM::VMOVv1i64:
5120     UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI);
5121     break;
5122 
5123     // Explicitly reads the dependency.
5124   case ARM::VLD1LNd32:
5125     UseOp = 3;
5126     break;
5127   default:
5128     return 0;
5129   }
5130 
5131   // If this instruction actually reads a value from Reg, there is no unwanted
5132   // dependency.
5133   if (UseOp != -1 && MI.getOperand(UseOp).readsReg())
5134     return 0;
5135 
5136   // We must be able to clobber the whole D-reg.
5137   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
5138     // Virtual register must be a def undef foo:ssub_0 operand.
5139     if (!MO.getSubReg() || MI.readsVirtualRegister(Reg))
5140       return 0;
5141   } else if (ARM::SPRRegClass.contains(Reg)) {
5142     // Physical register: MI must define the full D-reg.
5143     unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
5144                                              &ARM::DPRRegClass);
5145     if (!DReg || !MI.definesRegister(DReg, TRI))
5146       return 0;
5147   }
5148 
5149   // MI has an unwanted D-register dependency.
5150   // Avoid defs in the previous N instructrions.
5151   return PartialUpdateClearance;
5152 }
5153 
5154 // Break a partial register dependency after getPartialRegUpdateClearance
5155 // returned non-zero.
5156 void ARMBaseInstrInfo::breakPartialRegDependency(
5157     MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
5158   assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def");
5159   assert(TRI && "Need TRI instance");
5160 
5161   const MachineOperand &MO = MI.getOperand(OpNum);
5162   unsigned Reg = MO.getReg();
5163   assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
5164          "Can't break virtual register dependencies.");
5165   unsigned DReg = Reg;
5166 
5167   // If MI defines an S-reg, find the corresponding D super-register.
5168   if (ARM::SPRRegClass.contains(Reg)) {
5169     DReg = ARM::D0 + (Reg - ARM::S0) / 2;
5170     assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
5171   }
5172 
5173   assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
5174   assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
5175 
5176   // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
5177   // the full D-register by loading the same value to both lanes.  The
5178   // instruction is micro-coded with 2 uops, so don't do this until we can
5179   // properly schedule micro-coded instructions.  The dispatcher stalls cause
5180   // too big regressions.
5181 
5182   // Insert the dependency-breaking FCONSTD before MI.
5183   // 96 is the encoding of 0.5, but the actual value doesn't matter here.
5184   BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg)
5185       .addImm(96)
5186       .add(predOps(ARMCC::AL));
5187   MI.addRegisterKilled(DReg, TRI, true);
5188 }
5189 
5190 bool ARMBaseInstrInfo::hasNOP() const {
5191   return Subtarget.getFeatureBits()[ARM::HasV6KOps];
5192 }
5193 
5194 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
5195   if (MI->getNumOperands() < 4)
5196     return true;
5197   unsigned ShOpVal = MI->getOperand(3).getImm();
5198   unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
5199   // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
5200   if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
5201       ((ShImm == 1 || ShImm == 2) &&
5202        ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
5203     return true;
5204 
5205   return false;
5206 }
5207 
5208 bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
5209     const MachineInstr &MI, unsigned DefIdx,
5210     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
5211   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5212   assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
5213 
5214   switch (MI.getOpcode()) {
5215   case ARM::VMOVDRR:
5216     // dX = VMOVDRR rY, rZ
5217     // is the same as:
5218     // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
5219     // Populate the InputRegs accordingly.
5220     // rY
5221     const MachineOperand *MOReg = &MI.getOperand(1);
5222     if (!MOReg->isUndef())
5223       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5224                                               MOReg->getSubReg(), ARM::ssub_0));
5225     // rZ
5226     MOReg = &MI.getOperand(2);
5227     if (!MOReg->isUndef())
5228       InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5229                                               MOReg->getSubReg(), ARM::ssub_1));
5230     return true;
5231   }
5232   llvm_unreachable("Target dependent opcode missing");
5233 }
5234 
5235 bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
5236     const MachineInstr &MI, unsigned DefIdx,
5237     RegSubRegPairAndIdx &InputReg) const {
5238   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5239   assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
5240 
5241   switch (MI.getOpcode()) {
5242   case ARM::VMOVRRD:
5243     // rX, rY = VMOVRRD dZ
5244     // is the same as:
5245     // rX = EXTRACT_SUBREG dZ, ssub_0
5246     // rY = EXTRACT_SUBREG dZ, ssub_1
5247     const MachineOperand &MOReg = MI.getOperand(2);
5248     if (MOReg.isUndef())
5249       return false;
5250     InputReg.Reg = MOReg.getReg();
5251     InputReg.SubReg = MOReg.getSubReg();
5252     InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
5253     return true;
5254   }
5255   llvm_unreachable("Target dependent opcode missing");
5256 }
5257 
5258 bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
5259     const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
5260     RegSubRegPairAndIdx &InsertedReg) const {
5261   assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5262   assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
5263 
5264   switch (MI.getOpcode()) {
5265   case ARM::VSETLNi32:
5266     // dX = VSETLNi32 dY, rZ, imm
5267     const MachineOperand &MOBaseReg = MI.getOperand(1);
5268     const MachineOperand &MOInsertedReg = MI.getOperand(2);
5269     if (MOInsertedReg.isUndef())
5270       return false;
5271     const MachineOperand &MOIndex = MI.getOperand(3);
5272     BaseReg.Reg = MOBaseReg.getReg();
5273     BaseReg.SubReg = MOBaseReg.getSubReg();
5274 
5275     InsertedReg.Reg = MOInsertedReg.getReg();
5276     InsertedReg.SubReg = MOInsertedReg.getSubReg();
5277     InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1;
5278     return true;
5279   }
5280   llvm_unreachable("Target dependent opcode missing");
5281 }
5282 
5283 std::pair<unsigned, unsigned>
5284 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
5285   const unsigned Mask = ARMII::MO_OPTION_MASK;
5286   return std::make_pair(TF & Mask, TF & ~Mask);
5287 }
5288 
5289 ArrayRef<std::pair<unsigned, const char *>>
5290 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
5291   using namespace ARMII;
5292 
5293   static const std::pair<unsigned, const char *> TargetFlags[] = {
5294       {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}};
5295   return makeArrayRef(TargetFlags);
5296 }
5297 
5298 ArrayRef<std::pair<unsigned, const char *>>
5299 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
5300   using namespace ARMII;
5301 
5302   static const std::pair<unsigned, const char *> TargetFlags[] = {
5303       {MO_COFFSTUB, "arm-coffstub"},
5304       {MO_GOT, "arm-got"},
5305       {MO_SBREL, "arm-sbrel"},
5306       {MO_DLLIMPORT, "arm-dllimport"},
5307       {MO_SECREL, "arm-secrel"},
5308       {MO_NONLAZY, "arm-nonlazy"}};
5309   return makeArrayRef(TargetFlags);
5310 }
5311 
5312 bool llvm::registerDefinedBetween(unsigned Reg,
5313                                   MachineBasicBlock::iterator From,
5314                                   MachineBasicBlock::iterator To,
5315                                   const TargetRegisterInfo *TRI) {
5316   for (auto I = From; I != To; ++I)
5317     if (I->modifiesRegister(Reg, TRI))
5318       return true;
5319   return false;
5320 }
5321 
5322 MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br,
5323                                          const TargetRegisterInfo *TRI) {
5324   // Search backwards to the instruction that defines CSPR. This may or not
5325   // be a CMP, we check that after this loop. If we find another instruction
5326   // that reads cpsr, we return nullptr.
5327   MachineBasicBlock::iterator CmpMI = Br;
5328   while (CmpMI != Br->getParent()->begin()) {
5329     --CmpMI;
5330     if (CmpMI->modifiesRegister(ARM::CPSR, TRI))
5331       break;
5332     if (CmpMI->readsRegister(ARM::CPSR, TRI))
5333       break;
5334   }
5335 
5336   // Check that this inst is a CMP r[0-7], #0 and that the register
5337   // is not redefined between the cmp and the br.
5338   if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri)
5339     return nullptr;
5340   unsigned Reg = CmpMI->getOperand(0).getReg();
5341   unsigned PredReg = 0;
5342   ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg);
5343   if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0)
5344     return nullptr;
5345   if (!isARMLowRegister(Reg))
5346     return nullptr;
5347   if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI))
5348     return nullptr;
5349 
5350   return &*CmpMI;
5351 }
5352