1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the Base ARM implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ARMBaseInstrInfo.h" 14 #include "ARMBaseRegisterInfo.h" 15 #include "ARMConstantPoolValue.h" 16 #include "ARMFeatures.h" 17 #include "ARMHazardRecognizer.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMBaseInfo.h" 22 #include "MVETailPredUtils.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/CodeGen/DFAPacketizer.h" 28 #include "llvm/CodeGen/LiveVariables.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineConstantPool.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineMemOperand.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachinePipeliner.h" 39 #include "llvm/CodeGen/MachineRegisterInfo.h" 40 #include "llvm/CodeGen/MachineScheduler.h" 41 #include "llvm/CodeGen/MultiHazardRecognizer.h" 42 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" 43 #include "llvm/CodeGen/SelectionDAGNodes.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSchedule.h" 47 #include "llvm/IR/Attributes.h" 48 #include "llvm/IR/Constants.h" 49 #include "llvm/IR/DebugLoc.h" 50 #include "llvm/IR/Function.h" 51 #include "llvm/IR/GlobalValue.h" 52 #include "llvm/MC/MCAsmInfo.h" 53 #include "llvm/MC/MCInstrDesc.h" 54 #include "llvm/MC/MCInstrItineraries.h" 55 #include "llvm/Support/BranchProbability.h" 56 #include "llvm/Support/Casting.h" 57 #include "llvm/Support/CommandLine.h" 58 #include "llvm/Support/Compiler.h" 59 #include "llvm/Support/Debug.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include "llvm/Support/raw_ostream.h" 62 #include "llvm/Target/TargetMachine.h" 63 #include "llvm/TargetParser/Triple.h" 64 #include <algorithm> 65 #include <cassert> 66 #include <cstdint> 67 #include <iterator> 68 #include <new> 69 #include <utility> 70 #include <vector> 71 72 using namespace llvm; 73 74 #define DEBUG_TYPE "arm-instrinfo" 75 76 #define GET_INSTRINFO_CTOR_DTOR 77 #include "ARMGenInstrInfo.inc" 78 79 static cl::opt<bool> 80 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden, 81 cl::desc("Enable ARM 2-addr to 3-addr conv")); 82 83 /// ARM_MLxEntry - Record information about MLA / MLS instructions. 84 struct ARM_MLxEntry { 85 uint16_t MLxOpc; // MLA / MLS opcode 86 uint16_t MulOpc; // Expanded multiplication opcode 87 uint16_t AddSubOpc; // Expanded add / sub opcode 88 bool NegAcc; // True if the acc is negated before the add / sub. 89 bool HasLane; // True if instruction has an extra "lane" operand. 90 }; 91 92 static const ARM_MLxEntry ARM_MLxTable[] = { 93 // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane 94 // fp scalar ops 95 { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false }, 96 { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false }, 97 { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false }, 98 { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false }, 99 { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false }, 100 { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false }, 101 { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false }, 102 { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false }, 103 104 // fp SIMD ops 105 { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false }, 106 { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false }, 107 { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false }, 108 { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false }, 109 { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true }, 110 { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true }, 111 { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true }, 112 { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true }, 113 }; 114 115 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI) 116 : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP), 117 Subtarget(STI) { 118 for (unsigned i = 0, e = std::size(ARM_MLxTable); i != e; ++i) { 119 if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second) 120 llvm_unreachable("Duplicated entries?"); 121 MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc); 122 MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc); 123 } 124 } 125 126 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl 127 // currently defaults to no prepass hazard recognizer. 128 ScheduleHazardRecognizer * 129 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 130 const ScheduleDAG *DAG) const { 131 if (usePreRAHazardRecognizer()) { 132 const InstrItineraryData *II = 133 static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData(); 134 return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched"); 135 } 136 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 137 } 138 139 // Called during: 140 // - pre-RA scheduling 141 // - post-RA scheduling when FeatureUseMISched is set 142 ScheduleHazardRecognizer *ARMBaseInstrInfo::CreateTargetMIHazardRecognizer( 143 const InstrItineraryData *II, const ScheduleDAGMI *DAG) const { 144 MultiHazardRecognizer *MHR = new MultiHazardRecognizer(); 145 146 // We would like to restrict this hazard recognizer to only 147 // post-RA scheduling; we can tell that we're post-RA because we don't 148 // track VRegLiveness. 149 // Cortex-M7: TRM indicates that there is a single ITCM bank and two DTCM 150 // banks banked on bit 2. Assume that TCMs are in use. 151 if (Subtarget.isCortexM7() && !DAG->hasVRegLiveness()) 152 MHR->AddHazardRecognizer( 153 std::make_unique<ARMBankConflictHazardRecognizer>(DAG, 0x4, true)); 154 155 // Not inserting ARMHazardRecognizerFPMLx because that would change 156 // legacy behavior 157 158 auto BHR = TargetInstrInfo::CreateTargetMIHazardRecognizer(II, DAG); 159 MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR)); 160 return MHR; 161 } 162 163 // Called during post-RA scheduling when FeatureUseMISched is not set 164 ScheduleHazardRecognizer *ARMBaseInstrInfo:: 165 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 166 const ScheduleDAG *DAG) const { 167 MultiHazardRecognizer *MHR = new MultiHazardRecognizer(); 168 169 if (Subtarget.isThumb2() || Subtarget.hasVFP2Base()) 170 MHR->AddHazardRecognizer(std::make_unique<ARMHazardRecognizerFPMLx>()); 171 172 auto BHR = TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG); 173 if (BHR) 174 MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR)); 175 return MHR; 176 } 177 178 MachineInstr * 179 ARMBaseInstrInfo::convertToThreeAddress(MachineInstr &MI, LiveVariables *LV, 180 LiveIntervals *LIS) const { 181 // FIXME: Thumb2 support. 182 183 if (!EnableARM3Addr) 184 return nullptr; 185 186 MachineFunction &MF = *MI.getParent()->getParent(); 187 uint64_t TSFlags = MI.getDesc().TSFlags; 188 bool isPre = false; 189 switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) { 190 default: return nullptr; 191 case ARMII::IndexModePre: 192 isPre = true; 193 break; 194 case ARMII::IndexModePost: 195 break; 196 } 197 198 // Try splitting an indexed load/store to an un-indexed one plus an add/sub 199 // operation. 200 unsigned MemOpc = getUnindexedOpcode(MI.getOpcode()); 201 if (MemOpc == 0) 202 return nullptr; 203 204 MachineInstr *UpdateMI = nullptr; 205 MachineInstr *MemMI = nullptr; 206 unsigned AddrMode = (TSFlags & ARMII::AddrModeMask); 207 const MCInstrDesc &MCID = MI.getDesc(); 208 unsigned NumOps = MCID.getNumOperands(); 209 bool isLoad = !MI.mayStore(); 210 const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0); 211 const MachineOperand &Base = MI.getOperand(2); 212 const MachineOperand &Offset = MI.getOperand(NumOps - 3); 213 Register WBReg = WB.getReg(); 214 Register BaseReg = Base.getReg(); 215 Register OffReg = Offset.getReg(); 216 unsigned OffImm = MI.getOperand(NumOps - 2).getImm(); 217 ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm(); 218 switch (AddrMode) { 219 default: llvm_unreachable("Unknown indexed op!"); 220 case ARMII::AddrMode2: { 221 bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; 222 unsigned Amt = ARM_AM::getAM2Offset(OffImm); 223 if (OffReg == 0) { 224 if (ARM_AM::getSOImmVal(Amt) == -1) 225 // Can't encode it in a so_imm operand. This transformation will 226 // add more than 1 instruction. Abandon! 227 return nullptr; 228 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 229 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 230 .addReg(BaseReg) 231 .addImm(Amt) 232 .add(predOps(Pred)) 233 .add(condCodeOp()); 234 } else if (Amt != 0) { 235 ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm); 236 unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt); 237 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 238 get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg) 239 .addReg(BaseReg) 240 .addReg(OffReg) 241 .addReg(0) 242 .addImm(SOOpc) 243 .add(predOps(Pred)) 244 .add(condCodeOp()); 245 } else 246 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 247 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 248 .addReg(BaseReg) 249 .addReg(OffReg) 250 .add(predOps(Pred)) 251 .add(condCodeOp()); 252 break; 253 } 254 case ARMII::AddrMode3 : { 255 bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub; 256 unsigned Amt = ARM_AM::getAM3Offset(OffImm); 257 if (OffReg == 0) 258 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand. 259 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 260 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 261 .addReg(BaseReg) 262 .addImm(Amt) 263 .add(predOps(Pred)) 264 .add(condCodeOp()); 265 else 266 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 267 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 268 .addReg(BaseReg) 269 .addReg(OffReg) 270 .add(predOps(Pred)) 271 .add(condCodeOp()); 272 break; 273 } 274 } 275 276 std::vector<MachineInstr*> NewMIs; 277 if (isPre) { 278 if (isLoad) 279 MemMI = 280 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) 281 .addReg(WBReg) 282 .addImm(0) 283 .addImm(Pred); 284 else 285 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) 286 .addReg(MI.getOperand(1).getReg()) 287 .addReg(WBReg) 288 .addReg(0) 289 .addImm(0) 290 .addImm(Pred); 291 NewMIs.push_back(MemMI); 292 NewMIs.push_back(UpdateMI); 293 } else { 294 if (isLoad) 295 MemMI = 296 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) 297 .addReg(BaseReg) 298 .addImm(0) 299 .addImm(Pred); 300 else 301 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) 302 .addReg(MI.getOperand(1).getReg()) 303 .addReg(BaseReg) 304 .addReg(0) 305 .addImm(0) 306 .addImm(Pred); 307 if (WB.isDead()) 308 UpdateMI->getOperand(0).setIsDead(); 309 NewMIs.push_back(UpdateMI); 310 NewMIs.push_back(MemMI); 311 } 312 313 // Transfer LiveVariables states, kill / dead info. 314 if (LV) { 315 for (const MachineOperand &MO : MI.operands()) { 316 if (MO.isReg() && MO.getReg().isVirtual()) { 317 Register Reg = MO.getReg(); 318 319 LiveVariables::VarInfo &VI = LV->getVarInfo(Reg); 320 if (MO.isDef()) { 321 MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI; 322 if (MO.isDead()) 323 LV->addVirtualRegisterDead(Reg, *NewMI); 324 } 325 if (MO.isUse() && MO.isKill()) { 326 for (unsigned j = 0; j < 2; ++j) { 327 // Look at the two new MI's in reverse order. 328 MachineInstr *NewMI = NewMIs[j]; 329 if (!NewMI->readsRegister(Reg)) 330 continue; 331 LV->addVirtualRegisterKilled(Reg, *NewMI); 332 if (VI.removeKill(MI)) 333 VI.Kills.push_back(NewMI); 334 break; 335 } 336 } 337 } 338 } 339 } 340 341 MachineBasicBlock &MBB = *MI.getParent(); 342 MBB.insert(MI, NewMIs[1]); 343 MBB.insert(MI, NewMIs[0]); 344 return NewMIs[0]; 345 } 346 347 // Branch analysis. 348 // Cond vector output format: 349 // 0 elements indicates an unconditional branch 350 // 2 elements indicates a conditional branch; the elements are 351 // the condition to check and the CPSR. 352 // 3 elements indicates a hardware loop end; the elements 353 // are the opcode, the operand value to test, and a dummy 354 // operand used to pad out to 3 operands. 355 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 356 MachineBasicBlock *&TBB, 357 MachineBasicBlock *&FBB, 358 SmallVectorImpl<MachineOperand> &Cond, 359 bool AllowModify) const { 360 TBB = nullptr; 361 FBB = nullptr; 362 363 MachineBasicBlock::instr_iterator I = MBB.instr_end(); 364 if (I == MBB.instr_begin()) 365 return false; // Empty blocks are easy. 366 --I; 367 368 // Walk backwards from the end of the basic block until the branch is 369 // analyzed or we give up. 370 while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) { 371 // Flag to be raised on unanalyzeable instructions. This is useful in cases 372 // where we want to clean up on the end of the basic block before we bail 373 // out. 374 bool CantAnalyze = false; 375 376 // Skip over DEBUG values, predicated nonterminators and speculation 377 // barrier terminators. 378 while (I->isDebugInstr() || !I->isTerminator() || 379 isSpeculationBarrierEndBBOpcode(I->getOpcode()) || 380 I->getOpcode() == ARM::t2DoLoopStartTP){ 381 if (I == MBB.instr_begin()) 382 return false; 383 --I; 384 } 385 386 if (isIndirectBranchOpcode(I->getOpcode()) || 387 isJumpTableBranchOpcode(I->getOpcode())) { 388 // Indirect branches and jump tables can't be analyzed, but we still want 389 // to clean up any instructions at the tail of the basic block. 390 CantAnalyze = true; 391 } else if (isUncondBranchOpcode(I->getOpcode())) { 392 TBB = I->getOperand(0).getMBB(); 393 } else if (isCondBranchOpcode(I->getOpcode())) { 394 // Bail out if we encounter multiple conditional branches. 395 if (!Cond.empty()) 396 return true; 397 398 assert(!FBB && "FBB should have been null."); 399 FBB = TBB; 400 TBB = I->getOperand(0).getMBB(); 401 Cond.push_back(I->getOperand(1)); 402 Cond.push_back(I->getOperand(2)); 403 } else if (I->isReturn()) { 404 // Returns can't be analyzed, but we should run cleanup. 405 CantAnalyze = true; 406 } else if (I->getOpcode() == ARM::t2LoopEnd && 407 MBB.getParent() 408 ->getSubtarget<ARMSubtarget>() 409 .enableMachinePipeliner()) { 410 if (!Cond.empty()) 411 return true; 412 FBB = TBB; 413 TBB = I->getOperand(1).getMBB(); 414 Cond.push_back(MachineOperand::CreateImm(I->getOpcode())); 415 Cond.push_back(I->getOperand(0)); 416 Cond.push_back(MachineOperand::CreateImm(0)); 417 } else { 418 // We encountered other unrecognized terminator. Bail out immediately. 419 return true; 420 } 421 422 // Cleanup code - to be run for unpredicated unconditional branches and 423 // returns. 424 if (!isPredicated(*I) && 425 (isUncondBranchOpcode(I->getOpcode()) || 426 isIndirectBranchOpcode(I->getOpcode()) || 427 isJumpTableBranchOpcode(I->getOpcode()) || 428 I->isReturn())) { 429 // Forget any previous condition branch information - it no longer applies. 430 Cond.clear(); 431 FBB = nullptr; 432 433 // If we can modify the function, delete everything below this 434 // unconditional branch. 435 if (AllowModify) { 436 MachineBasicBlock::iterator DI = std::next(I); 437 while (DI != MBB.instr_end()) { 438 MachineInstr &InstToDelete = *DI; 439 ++DI; 440 // Speculation barriers must not be deleted. 441 if (isSpeculationBarrierEndBBOpcode(InstToDelete.getOpcode())) 442 continue; 443 InstToDelete.eraseFromParent(); 444 } 445 } 446 } 447 448 if (CantAnalyze) { 449 // We may not be able to analyze the block, but we could still have 450 // an unconditional branch as the last instruction in the block, which 451 // just branches to layout successor. If this is the case, then just 452 // remove it if we're allowed to make modifications. 453 if (AllowModify && !isPredicated(MBB.back()) && 454 isUncondBranchOpcode(MBB.back().getOpcode()) && 455 TBB && MBB.isLayoutSuccessor(TBB)) 456 removeBranch(MBB); 457 return true; 458 } 459 460 if (I == MBB.instr_begin()) 461 return false; 462 463 --I; 464 } 465 466 // We made it past the terminators without bailing out - we must have 467 // analyzed this branch successfully. 468 return false; 469 } 470 471 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB, 472 int *BytesRemoved) const { 473 assert(!BytesRemoved && "code size not handled"); 474 475 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 476 if (I == MBB.end()) 477 return 0; 478 479 if (!isUncondBranchOpcode(I->getOpcode()) && 480 !isCondBranchOpcode(I->getOpcode()) && I->getOpcode() != ARM::t2LoopEnd) 481 return 0; 482 483 // Remove the branch. 484 I->eraseFromParent(); 485 486 I = MBB.end(); 487 488 if (I == MBB.begin()) return 1; 489 --I; 490 if (!isCondBranchOpcode(I->getOpcode()) && I->getOpcode() != ARM::t2LoopEnd) 491 return 1; 492 493 // Remove the branch. 494 I->eraseFromParent(); 495 return 2; 496 } 497 498 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB, 499 MachineBasicBlock *TBB, 500 MachineBasicBlock *FBB, 501 ArrayRef<MachineOperand> Cond, 502 const DebugLoc &DL, 503 int *BytesAdded) const { 504 assert(!BytesAdded && "code size not handled"); 505 ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>(); 506 int BOpc = !AFI->isThumbFunction() 507 ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB); 508 int BccOpc = !AFI->isThumbFunction() 509 ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc); 510 bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function(); 511 512 // Shouldn't be a fall through. 513 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 514 assert((Cond.size() == 2 || Cond.size() == 0 || Cond.size() == 3) && 515 "ARM branch conditions have two or three components!"); 516 517 // For conditional branches, we use addOperand to preserve CPSR flags. 518 519 if (!FBB) { 520 if (Cond.empty()) { // Unconditional branch? 521 if (isThumb) 522 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL)); 523 else 524 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); 525 } else if (Cond.size() == 2) { 526 BuildMI(&MBB, DL, get(BccOpc)) 527 .addMBB(TBB) 528 .addImm(Cond[0].getImm()) 529 .add(Cond[1]); 530 } else 531 BuildMI(&MBB, DL, get(Cond[0].getImm())).add(Cond[1]).addMBB(TBB); 532 return 1; 533 } 534 535 // Two-way conditional branch. 536 if (Cond.size() == 2) 537 BuildMI(&MBB, DL, get(BccOpc)) 538 .addMBB(TBB) 539 .addImm(Cond[0].getImm()) 540 .add(Cond[1]); 541 else if (Cond.size() == 3) 542 BuildMI(&MBB, DL, get(Cond[0].getImm())).add(Cond[1]).addMBB(TBB); 543 if (isThumb) 544 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL)); 545 else 546 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); 547 return 2; 548 } 549 550 bool ARMBaseInstrInfo:: 551 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 552 if (Cond.size() == 2) { 553 ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm(); 554 Cond[0].setImm(ARMCC::getOppositeCondition(CC)); 555 return false; 556 } 557 return true; 558 } 559 560 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const { 561 if (MI.isBundle()) { 562 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 563 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 564 while (++I != E && I->isInsideBundle()) { 565 int PIdx = I->findFirstPredOperandIdx(); 566 if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL) 567 return true; 568 } 569 return false; 570 } 571 572 int PIdx = MI.findFirstPredOperandIdx(); 573 return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL; 574 } 575 576 std::string ARMBaseInstrInfo::createMIROperandComment( 577 const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx, 578 const TargetRegisterInfo *TRI) const { 579 580 // First, let's see if there is a generic comment for this operand 581 std::string GenericComment = 582 TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI); 583 if (!GenericComment.empty()) 584 return GenericComment; 585 586 // If not, check if we have an immediate operand. 587 if (!Op.isImm()) 588 return std::string(); 589 590 // And print its corresponding condition code if the immediate is a 591 // predicate. 592 int FirstPredOp = MI.findFirstPredOperandIdx(); 593 if (FirstPredOp != (int) OpIdx) 594 return std::string(); 595 596 std::string CC = "CC::"; 597 CC += ARMCondCodeToString((ARMCC::CondCodes)Op.getImm()); 598 return CC; 599 } 600 601 bool ARMBaseInstrInfo::PredicateInstruction( 602 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 603 unsigned Opc = MI.getOpcode(); 604 if (isUncondBranchOpcode(Opc)) { 605 MI.setDesc(get(getMatchingCondBranchOpcode(Opc))); 606 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 607 .addImm(Pred[0].getImm()) 608 .addReg(Pred[1].getReg()); 609 return true; 610 } 611 612 int PIdx = MI.findFirstPredOperandIdx(); 613 if (PIdx != -1) { 614 MachineOperand &PMO = MI.getOperand(PIdx); 615 PMO.setImm(Pred[0].getImm()); 616 MI.getOperand(PIdx+1).setReg(Pred[1].getReg()); 617 618 // Thumb 1 arithmetic instructions do not set CPSR when executed inside an 619 // IT block. This affects how they are printed. 620 const MCInstrDesc &MCID = MI.getDesc(); 621 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 622 assert(MCID.operands()[1].isOptionalDef() && 623 "CPSR def isn't expected operand"); 624 assert((MI.getOperand(1).isDead() || 625 MI.getOperand(1).getReg() != ARM::CPSR) && 626 "if conversion tried to stop defining used CPSR"); 627 MI.getOperand(1).setReg(ARM::NoRegister); 628 } 629 630 return true; 631 } 632 return false; 633 } 634 635 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 636 ArrayRef<MachineOperand> Pred2) const { 637 if (Pred1.size() > 2 || Pred2.size() > 2) 638 return false; 639 640 ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm(); 641 ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm(); 642 if (CC1 == CC2) 643 return true; 644 645 switch (CC1) { 646 default: 647 return false; 648 case ARMCC::AL: 649 return true; 650 case ARMCC::HS: 651 return CC2 == ARMCC::HI; 652 case ARMCC::LS: 653 return CC2 == ARMCC::LO || CC2 == ARMCC::EQ; 654 case ARMCC::GE: 655 return CC2 == ARMCC::GT; 656 case ARMCC::LE: 657 return CC2 == ARMCC::LT; 658 } 659 } 660 661 bool ARMBaseInstrInfo::ClobbersPredicate(MachineInstr &MI, 662 std::vector<MachineOperand> &Pred, 663 bool SkipDead) const { 664 bool Found = false; 665 for (const MachineOperand &MO : MI.operands()) { 666 bool ClobbersCPSR = MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR); 667 bool IsCPSR = MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR; 668 if (ClobbersCPSR || IsCPSR) { 669 670 // Filter out T1 instructions that have a dead CPSR, 671 // allowing IT blocks to be generated containing T1 instructions 672 const MCInstrDesc &MCID = MI.getDesc(); 673 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting && MO.isDead() && 674 SkipDead) 675 continue; 676 677 Pred.push_back(MO); 678 Found = true; 679 } 680 } 681 682 return Found; 683 } 684 685 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) { 686 for (const auto &MO : MI.operands()) 687 if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead()) 688 return true; 689 return false; 690 } 691 692 static bool isEligibleForITBlock(const MachineInstr *MI) { 693 switch (MI->getOpcode()) { 694 default: return true; 695 case ARM::tADC: // ADC (register) T1 696 case ARM::tADDi3: // ADD (immediate) T1 697 case ARM::tADDi8: // ADD (immediate) T2 698 case ARM::tADDrr: // ADD (register) T1 699 case ARM::tAND: // AND (register) T1 700 case ARM::tASRri: // ASR (immediate) T1 701 case ARM::tASRrr: // ASR (register) T1 702 case ARM::tBIC: // BIC (register) T1 703 case ARM::tEOR: // EOR (register) T1 704 case ARM::tLSLri: // LSL (immediate) T1 705 case ARM::tLSLrr: // LSL (register) T1 706 case ARM::tLSRri: // LSR (immediate) T1 707 case ARM::tLSRrr: // LSR (register) T1 708 case ARM::tMUL: // MUL T1 709 case ARM::tMVN: // MVN (register) T1 710 case ARM::tORR: // ORR (register) T1 711 case ARM::tROR: // ROR (register) T1 712 case ARM::tRSB: // RSB (immediate) T1 713 case ARM::tSBC: // SBC (register) T1 714 case ARM::tSUBi3: // SUB (immediate) T1 715 case ARM::tSUBi8: // SUB (immediate) T2 716 case ARM::tSUBrr: // SUB (register) T1 717 return !ARMBaseInstrInfo::isCPSRDefined(*MI); 718 } 719 } 720 721 /// isPredicable - Return true if the specified instruction can be predicated. 722 /// By default, this returns true for every instruction with a 723 /// PredicateOperand. 724 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const { 725 if (!MI.isPredicable()) 726 return false; 727 728 if (MI.isBundle()) 729 return false; 730 731 if (!isEligibleForITBlock(&MI)) 732 return false; 733 734 const MachineFunction *MF = MI.getParent()->getParent(); 735 const ARMFunctionInfo *AFI = 736 MF->getInfo<ARMFunctionInfo>(); 737 738 // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM. 739 // In their ARM encoding, they can't be encoded in a conditional form. 740 if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) 741 return false; 742 743 // Make indirect control flow changes unpredicable when SLS mitigation is 744 // enabled. 745 const ARMSubtarget &ST = MF->getSubtarget<ARMSubtarget>(); 746 if (ST.hardenSlsRetBr() && isIndirectControlFlowNotComingBack(MI)) 747 return false; 748 if (ST.hardenSlsBlr() && isIndirectCall(MI)) 749 return false; 750 751 if (AFI->isThumb2Function()) { 752 if (getSubtarget().restrictIT()) 753 return isV8EligibleForIT(&MI); 754 } 755 756 return true; 757 } 758 759 namespace llvm { 760 761 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) { 762 for (const MachineOperand &MO : MI->operands()) { 763 if (!MO.isReg() || MO.isUndef() || MO.isUse()) 764 continue; 765 if (MO.getReg() != ARM::CPSR) 766 continue; 767 if (!MO.isDead()) 768 return false; 769 } 770 // all definitions of CPSR are dead 771 return true; 772 } 773 774 } // end namespace llvm 775 776 /// GetInstSize - Return the size of the specified MachineInstr. 777 /// 778 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 779 const MachineBasicBlock &MBB = *MI.getParent(); 780 const MachineFunction *MF = MBB.getParent(); 781 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); 782 783 const MCInstrDesc &MCID = MI.getDesc(); 784 785 switch (MI.getOpcode()) { 786 default: 787 // Return the size specified in .td file. If there's none, return 0, as we 788 // can't define a default size (Thumb1 instructions are 2 bytes, Thumb2 789 // instructions are 2-4 bytes, and ARM instructions are 4 bytes), in 790 // contrast to AArch64 instructions which have a default size of 4 bytes for 791 // example. 792 return MCID.getSize(); 793 case TargetOpcode::BUNDLE: 794 return getInstBundleLength(MI); 795 case ARM::CONSTPOOL_ENTRY: 796 case ARM::JUMPTABLE_INSTS: 797 case ARM::JUMPTABLE_ADDRS: 798 case ARM::JUMPTABLE_TBB: 799 case ARM::JUMPTABLE_TBH: 800 // If this machine instr is a constant pool entry, its size is recorded as 801 // operand #2. 802 return MI.getOperand(2).getImm(); 803 case ARM::SPACE: 804 return MI.getOperand(1).getImm(); 805 case ARM::INLINEASM: 806 case ARM::INLINEASM_BR: { 807 // If this machine instr is an inline asm, measure it. 808 unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI); 809 if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction()) 810 Size = alignTo(Size, 4); 811 return Size; 812 } 813 } 814 } 815 816 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const { 817 unsigned Size = 0; 818 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 819 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 820 while (++I != E && I->isInsideBundle()) { 821 assert(!I->isBundle() && "No nested bundle!"); 822 Size += getInstSizeInBytes(*I); 823 } 824 return Size; 825 } 826 827 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB, 828 MachineBasicBlock::iterator I, 829 unsigned DestReg, bool KillSrc, 830 const ARMSubtarget &Subtarget) const { 831 unsigned Opc = Subtarget.isThumb() 832 ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR) 833 : ARM::MRS; 834 835 MachineInstrBuilder MIB = 836 BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg); 837 838 // There is only 1 A/R class MRS instruction, and it always refers to 839 // APSR. However, there are lots of other possibilities on M-class cores. 840 if (Subtarget.isMClass()) 841 MIB.addImm(0x800); 842 843 MIB.add(predOps(ARMCC::AL)) 844 .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc)); 845 } 846 847 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB, 848 MachineBasicBlock::iterator I, 849 unsigned SrcReg, bool KillSrc, 850 const ARMSubtarget &Subtarget) const { 851 unsigned Opc = Subtarget.isThumb() 852 ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR) 853 : ARM::MSR; 854 855 MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc)); 856 857 if (Subtarget.isMClass()) 858 MIB.addImm(0x800); 859 else 860 MIB.addImm(8); 861 862 MIB.addReg(SrcReg, getKillRegState(KillSrc)) 863 .add(predOps(ARMCC::AL)) 864 .addReg(ARM::CPSR, RegState::Implicit | RegState::Define); 865 } 866 867 void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) { 868 MIB.addImm(ARMVCC::None); 869 MIB.addReg(0); 870 MIB.addReg(0); // tp_reg 871 } 872 873 void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB, 874 Register DestReg) { 875 addUnpredicatedMveVpredNOp(MIB); 876 MIB.addReg(DestReg, RegState::Undef); 877 } 878 879 void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) { 880 MIB.addImm(Cond); 881 MIB.addReg(ARM::VPR, RegState::Implicit); 882 MIB.addReg(0); // tp_reg 883 } 884 885 void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB, 886 unsigned Cond, unsigned Inactive) { 887 addPredicatedMveVpredNOp(MIB, Cond); 888 MIB.addReg(Inactive); 889 } 890 891 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 892 MachineBasicBlock::iterator I, 893 const DebugLoc &DL, MCRegister DestReg, 894 MCRegister SrcReg, bool KillSrc) const { 895 bool GPRDest = ARM::GPRRegClass.contains(DestReg); 896 bool GPRSrc = ARM::GPRRegClass.contains(SrcReg); 897 898 if (GPRDest && GPRSrc) { 899 BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg) 900 .addReg(SrcReg, getKillRegState(KillSrc)) 901 .add(predOps(ARMCC::AL)) 902 .add(condCodeOp()); 903 return; 904 } 905 906 bool SPRDest = ARM::SPRRegClass.contains(DestReg); 907 bool SPRSrc = ARM::SPRRegClass.contains(SrcReg); 908 909 unsigned Opc = 0; 910 if (SPRDest && SPRSrc) 911 Opc = ARM::VMOVS; 912 else if (GPRDest && SPRSrc) 913 Opc = ARM::VMOVRS; 914 else if (SPRDest && GPRSrc) 915 Opc = ARM::VMOVSR; 916 else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64()) 917 Opc = ARM::VMOVD; 918 else if (ARM::QPRRegClass.contains(DestReg, SrcReg)) 919 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MQPRCopy; 920 921 if (Opc) { 922 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg); 923 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 924 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) 925 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 926 if (Opc == ARM::MVE_VORR) 927 addUnpredicatedMveVpredROp(MIB, DestReg); 928 else if (Opc != ARM::MQPRCopy) 929 MIB.add(predOps(ARMCC::AL)); 930 return; 931 } 932 933 // Handle register classes that require multiple instructions. 934 unsigned BeginIdx = 0; 935 unsigned SubRegs = 0; 936 int Spacing = 1; 937 938 // Use VORRq when possible. 939 if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) { 940 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; 941 BeginIdx = ARM::qsub_0; 942 SubRegs = 2; 943 } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) { 944 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; 945 BeginIdx = ARM::qsub_0; 946 SubRegs = 4; 947 // Fall back to VMOVD. 948 } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) { 949 Opc = ARM::VMOVD; 950 BeginIdx = ARM::dsub_0; 951 SubRegs = 2; 952 } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) { 953 Opc = ARM::VMOVD; 954 BeginIdx = ARM::dsub_0; 955 SubRegs = 3; 956 } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) { 957 Opc = ARM::VMOVD; 958 BeginIdx = ARM::dsub_0; 959 SubRegs = 4; 960 } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) { 961 Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr; 962 BeginIdx = ARM::gsub_0; 963 SubRegs = 2; 964 } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) { 965 Opc = ARM::VMOVD; 966 BeginIdx = ARM::dsub_0; 967 SubRegs = 2; 968 Spacing = 2; 969 } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) { 970 Opc = ARM::VMOVD; 971 BeginIdx = ARM::dsub_0; 972 SubRegs = 3; 973 Spacing = 2; 974 } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) { 975 Opc = ARM::VMOVD; 976 BeginIdx = ARM::dsub_0; 977 SubRegs = 4; 978 Spacing = 2; 979 } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && 980 !Subtarget.hasFP64()) { 981 Opc = ARM::VMOVS; 982 BeginIdx = ARM::ssub_0; 983 SubRegs = 2; 984 } else if (SrcReg == ARM::CPSR) { 985 copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget); 986 return; 987 } else if (DestReg == ARM::CPSR) { 988 copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget); 989 return; 990 } else if (DestReg == ARM::VPR) { 991 assert(ARM::GPRRegClass.contains(SrcReg)); 992 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg) 993 .addReg(SrcReg, getKillRegState(KillSrc)) 994 .add(predOps(ARMCC::AL)); 995 return; 996 } else if (SrcReg == ARM::VPR) { 997 assert(ARM::GPRRegClass.contains(DestReg)); 998 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg) 999 .addReg(SrcReg, getKillRegState(KillSrc)) 1000 .add(predOps(ARMCC::AL)); 1001 return; 1002 } else if (DestReg == ARM::FPSCR_NZCV) { 1003 assert(ARM::GPRRegClass.contains(SrcReg)); 1004 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg) 1005 .addReg(SrcReg, getKillRegState(KillSrc)) 1006 .add(predOps(ARMCC::AL)); 1007 return; 1008 } else if (SrcReg == ARM::FPSCR_NZCV) { 1009 assert(ARM::GPRRegClass.contains(DestReg)); 1010 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg) 1011 .addReg(SrcReg, getKillRegState(KillSrc)) 1012 .add(predOps(ARMCC::AL)); 1013 return; 1014 } 1015 1016 assert(Opc && "Impossible reg-to-reg copy"); 1017 1018 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1019 MachineInstrBuilder Mov; 1020 1021 // Copy register tuples backward when the first Dest reg overlaps with SrcReg. 1022 if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) { 1023 BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing); 1024 Spacing = -Spacing; 1025 } 1026 #ifndef NDEBUG 1027 SmallSet<unsigned, 4> DstRegs; 1028 #endif 1029 for (unsigned i = 0; i != SubRegs; ++i) { 1030 Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing); 1031 Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing); 1032 assert(Dst && Src && "Bad sub-register"); 1033 #ifndef NDEBUG 1034 assert(!DstRegs.count(Src) && "destructive vector copy"); 1035 DstRegs.insert(Dst); 1036 #endif 1037 Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src); 1038 // VORR (NEON or MVE) takes two source operands. 1039 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) { 1040 Mov.addReg(Src); 1041 } 1042 // MVE VORR takes predicate operands in place of an ordinary condition. 1043 if (Opc == ARM::MVE_VORR) 1044 addUnpredicatedMveVpredROp(Mov, Dst); 1045 else 1046 Mov = Mov.add(predOps(ARMCC::AL)); 1047 // MOVr can set CC. 1048 if (Opc == ARM::MOVr) 1049 Mov = Mov.add(condCodeOp()); 1050 } 1051 // Add implicit super-register defs and kills to the last instruction. 1052 Mov->addRegisterDefined(DestReg, TRI); 1053 if (KillSrc) 1054 Mov->addRegisterKilled(SrcReg, TRI); 1055 } 1056 1057 std::optional<DestSourcePair> 1058 ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const { 1059 // VMOVRRD is also a copy instruction but it requires 1060 // special way of handling. It is more complex copy version 1061 // and since that we are not considering it. For recognition 1062 // of such instruction isExtractSubregLike MI interface fuction 1063 // could be used. 1064 // VORRq is considered as a move only if two inputs are 1065 // the same register. 1066 if (!MI.isMoveReg() || 1067 (MI.getOpcode() == ARM::VORRq && 1068 MI.getOperand(1).getReg() != MI.getOperand(2).getReg())) 1069 return std::nullopt; 1070 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)}; 1071 } 1072 1073 std::optional<ParamLoadedValue> 1074 ARMBaseInstrInfo::describeLoadedValue(const MachineInstr &MI, 1075 Register Reg) const { 1076 if (auto DstSrcPair = isCopyInstrImpl(MI)) { 1077 Register DstReg = DstSrcPair->Destination->getReg(); 1078 1079 // TODO: We don't handle cases where the forwarding reg is narrower/wider 1080 // than the copy registers. Consider for example: 1081 // 1082 // s16 = VMOVS s0 1083 // s17 = VMOVS s1 1084 // call @callee(d0) 1085 // 1086 // We'd like to describe the call site value of d0 as d8, but this requires 1087 // gathering and merging the descriptions for the two VMOVS instructions. 1088 // 1089 // We also don't handle the reverse situation, where the forwarding reg is 1090 // narrower than the copy destination: 1091 // 1092 // d8 = VMOVD d0 1093 // call @callee(s1) 1094 // 1095 // We need to produce a fragment description (the call site value of s1 is 1096 // /not/ just d8). 1097 if (DstReg != Reg) 1098 return std::nullopt; 1099 } 1100 return TargetInstrInfo::describeLoadedValue(MI, Reg); 1101 } 1102 1103 const MachineInstrBuilder & 1104 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg, 1105 unsigned SubIdx, unsigned State, 1106 const TargetRegisterInfo *TRI) const { 1107 if (!SubIdx) 1108 return MIB.addReg(Reg, State); 1109 1110 if (Register::isPhysicalRegister(Reg)) 1111 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State); 1112 return MIB.addReg(Reg, State, SubIdx); 1113 } 1114 1115 void ARMBaseInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 1116 MachineBasicBlock::iterator I, 1117 Register SrcReg, bool isKill, int FI, 1118 const TargetRegisterClass *RC, 1119 const TargetRegisterInfo *TRI, 1120 Register VReg) const { 1121 MachineFunction &MF = *MBB.getParent(); 1122 MachineFrameInfo &MFI = MF.getFrameInfo(); 1123 Align Alignment = MFI.getObjectAlign(FI); 1124 1125 MachineMemOperand *MMO = MF.getMachineMemOperand( 1126 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, 1127 MFI.getObjectSize(FI), Alignment); 1128 1129 switch (TRI->getSpillSize(*RC)) { 1130 case 2: 1131 if (ARM::HPRRegClass.hasSubClassEq(RC)) { 1132 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH)) 1133 .addReg(SrcReg, getKillRegState(isKill)) 1134 .addFrameIndex(FI) 1135 .addImm(0) 1136 .addMemOperand(MMO) 1137 .add(predOps(ARMCC::AL)); 1138 } else 1139 llvm_unreachable("Unknown reg class!"); 1140 break; 1141 case 4: 1142 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 1143 BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12)) 1144 .addReg(SrcReg, getKillRegState(isKill)) 1145 .addFrameIndex(FI) 1146 .addImm(0) 1147 .addMemOperand(MMO) 1148 .add(predOps(ARMCC::AL)); 1149 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1150 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS)) 1151 .addReg(SrcReg, getKillRegState(isKill)) 1152 .addFrameIndex(FI) 1153 .addImm(0) 1154 .addMemOperand(MMO) 1155 .add(predOps(ARMCC::AL)); 1156 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) { 1157 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off)) 1158 .addReg(SrcReg, getKillRegState(isKill)) 1159 .addFrameIndex(FI) 1160 .addImm(0) 1161 .addMemOperand(MMO) 1162 .add(predOps(ARMCC::AL)); 1163 } else 1164 llvm_unreachable("Unknown reg class!"); 1165 break; 1166 case 8: 1167 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1168 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD)) 1169 .addReg(SrcReg, getKillRegState(isKill)) 1170 .addFrameIndex(FI) 1171 .addImm(0) 1172 .addMemOperand(MMO) 1173 .add(predOps(ARMCC::AL)); 1174 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1175 if (Subtarget.hasV5TEOps()) { 1176 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD)); 1177 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 1178 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 1179 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) 1180 .add(predOps(ARMCC::AL)); 1181 } else { 1182 // Fallback to STM instruction, which has existed since the dawn of 1183 // time. 1184 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA)) 1185 .addFrameIndex(FI) 1186 .addMemOperand(MMO) 1187 .add(predOps(ARMCC::AL)); 1188 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 1189 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 1190 } 1191 } else 1192 llvm_unreachable("Unknown reg class!"); 1193 break; 1194 case 16: 1195 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) { 1196 // Use aligned spills if the stack can be realigned. 1197 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) { 1198 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64)) 1199 .addFrameIndex(FI) 1200 .addImm(16) 1201 .addReg(SrcReg, getKillRegState(isKill)) 1202 .addMemOperand(MMO) 1203 .add(predOps(ARMCC::AL)); 1204 } else { 1205 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA)) 1206 .addReg(SrcReg, getKillRegState(isKill)) 1207 .addFrameIndex(FI) 1208 .addMemOperand(MMO) 1209 .add(predOps(ARMCC::AL)); 1210 } 1211 } else if (ARM::QPRRegClass.hasSubClassEq(RC) && 1212 Subtarget.hasMVEIntegerOps()) { 1213 auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32)); 1214 MIB.addReg(SrcReg, getKillRegState(isKill)) 1215 .addFrameIndex(FI) 1216 .addImm(0) 1217 .addMemOperand(MMO); 1218 addUnpredicatedMveVpredNOp(MIB); 1219 } else 1220 llvm_unreachable("Unknown reg class!"); 1221 break; 1222 case 24: 1223 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1224 // Use aligned spills if the stack can be realigned. 1225 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1226 Subtarget.hasNEON()) { 1227 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo)) 1228 .addFrameIndex(FI) 1229 .addImm(16) 1230 .addReg(SrcReg, getKillRegState(isKill)) 1231 .addMemOperand(MMO) 1232 .add(predOps(ARMCC::AL)); 1233 } else { 1234 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), 1235 get(ARM::VSTMDIA)) 1236 .addFrameIndex(FI) 1237 .add(predOps(ARMCC::AL)) 1238 .addMemOperand(MMO); 1239 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1240 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1241 AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1242 } 1243 } else 1244 llvm_unreachable("Unknown reg class!"); 1245 break; 1246 case 32: 1247 if (ARM::QQPRRegClass.hasSubClassEq(RC) || 1248 ARM::MQQPRRegClass.hasSubClassEq(RC) || 1249 ARM::DQuadRegClass.hasSubClassEq(RC)) { 1250 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1251 Subtarget.hasNEON()) { 1252 // FIXME: It's possible to only store part of the QQ register if the 1253 // spilled def has a sub-register index. 1254 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo)) 1255 .addFrameIndex(FI) 1256 .addImm(16) 1257 .addReg(SrcReg, getKillRegState(isKill)) 1258 .addMemOperand(MMO) 1259 .add(predOps(ARMCC::AL)); 1260 } else if (Subtarget.hasMVEIntegerOps()) { 1261 BuildMI(MBB, I, DebugLoc(), get(ARM::MQQPRStore)) 1262 .addReg(SrcReg, getKillRegState(isKill)) 1263 .addFrameIndex(FI) 1264 .addMemOperand(MMO); 1265 } else { 1266 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), 1267 get(ARM::VSTMDIA)) 1268 .addFrameIndex(FI) 1269 .add(predOps(ARMCC::AL)) 1270 .addMemOperand(MMO); 1271 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1272 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1273 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1274 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 1275 } 1276 } else 1277 llvm_unreachable("Unknown reg class!"); 1278 break; 1279 case 64: 1280 if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) && 1281 Subtarget.hasMVEIntegerOps()) { 1282 BuildMI(MBB, I, DebugLoc(), get(ARM::MQQQQPRStore)) 1283 .addReg(SrcReg, getKillRegState(isKill)) 1284 .addFrameIndex(FI) 1285 .addMemOperand(MMO); 1286 } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1287 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA)) 1288 .addFrameIndex(FI) 1289 .add(predOps(ARMCC::AL)) 1290 .addMemOperand(MMO); 1291 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1292 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1293 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1294 MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 1295 MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI); 1296 MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI); 1297 MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI); 1298 AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI); 1299 } else 1300 llvm_unreachable("Unknown reg class!"); 1301 break; 1302 default: 1303 llvm_unreachable("Unknown reg class!"); 1304 } 1305 } 1306 1307 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 1308 int &FrameIndex) const { 1309 switch (MI.getOpcode()) { 1310 default: break; 1311 case ARM::STRrs: 1312 case ARM::t2STRs: // FIXME: don't use t2STRs to access frame. 1313 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && 1314 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && 1315 MI.getOperand(3).getImm() == 0) { 1316 FrameIndex = MI.getOperand(1).getIndex(); 1317 return MI.getOperand(0).getReg(); 1318 } 1319 break; 1320 case ARM::STRi12: 1321 case ARM::t2STRi12: 1322 case ARM::tSTRspi: 1323 case ARM::VSTRD: 1324 case ARM::VSTRS: 1325 case ARM::VSTR_P0_off: 1326 case ARM::MVE_VSTRWU32: 1327 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && 1328 MI.getOperand(2).getImm() == 0) { 1329 FrameIndex = MI.getOperand(1).getIndex(); 1330 return MI.getOperand(0).getReg(); 1331 } 1332 break; 1333 case ARM::VST1q64: 1334 case ARM::VST1d64TPseudo: 1335 case ARM::VST1d64QPseudo: 1336 if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) { 1337 FrameIndex = MI.getOperand(0).getIndex(); 1338 return MI.getOperand(2).getReg(); 1339 } 1340 break; 1341 case ARM::VSTMQIA: 1342 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1343 FrameIndex = MI.getOperand(1).getIndex(); 1344 return MI.getOperand(0).getReg(); 1345 } 1346 break; 1347 case ARM::MQQPRStore: 1348 case ARM::MQQQQPRStore: 1349 if (MI.getOperand(1).isFI()) { 1350 FrameIndex = MI.getOperand(1).getIndex(); 1351 return MI.getOperand(0).getReg(); 1352 } 1353 break; 1354 } 1355 1356 return 0; 1357 } 1358 1359 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, 1360 int &FrameIndex) const { 1361 SmallVector<const MachineMemOperand *, 1> Accesses; 1362 if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) && 1363 Accesses.size() == 1) { 1364 FrameIndex = 1365 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 1366 ->getFrameIndex(); 1367 return true; 1368 } 1369 return false; 1370 } 1371 1372 void ARMBaseInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 1373 MachineBasicBlock::iterator I, 1374 Register DestReg, int FI, 1375 const TargetRegisterClass *RC, 1376 const TargetRegisterInfo *TRI, 1377 Register VReg) const { 1378 DebugLoc DL; 1379 if (I != MBB.end()) DL = I->getDebugLoc(); 1380 MachineFunction &MF = *MBB.getParent(); 1381 MachineFrameInfo &MFI = MF.getFrameInfo(); 1382 const Align Alignment = MFI.getObjectAlign(FI); 1383 MachineMemOperand *MMO = MF.getMachineMemOperand( 1384 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, 1385 MFI.getObjectSize(FI), Alignment); 1386 1387 switch (TRI->getSpillSize(*RC)) { 1388 case 2: 1389 if (ARM::HPRRegClass.hasSubClassEq(RC)) { 1390 BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg) 1391 .addFrameIndex(FI) 1392 .addImm(0) 1393 .addMemOperand(MMO) 1394 .add(predOps(ARMCC::AL)); 1395 } else 1396 llvm_unreachable("Unknown reg class!"); 1397 break; 1398 case 4: 1399 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 1400 BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg) 1401 .addFrameIndex(FI) 1402 .addImm(0) 1403 .addMemOperand(MMO) 1404 .add(predOps(ARMCC::AL)); 1405 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1406 BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg) 1407 .addFrameIndex(FI) 1408 .addImm(0) 1409 .addMemOperand(MMO) 1410 .add(predOps(ARMCC::AL)); 1411 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) { 1412 BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg) 1413 .addFrameIndex(FI) 1414 .addImm(0) 1415 .addMemOperand(MMO) 1416 .add(predOps(ARMCC::AL)); 1417 } else 1418 llvm_unreachable("Unknown reg class!"); 1419 break; 1420 case 8: 1421 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1422 BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg) 1423 .addFrameIndex(FI) 1424 .addImm(0) 1425 .addMemOperand(MMO) 1426 .add(predOps(ARMCC::AL)); 1427 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1428 MachineInstrBuilder MIB; 1429 1430 if (Subtarget.hasV5TEOps()) { 1431 MIB = BuildMI(MBB, I, DL, get(ARM::LDRD)); 1432 AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1433 AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1434 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) 1435 .add(predOps(ARMCC::AL)); 1436 } else { 1437 // Fallback to LDM instruction, which has existed since the dawn of 1438 // time. 1439 MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA)) 1440 .addFrameIndex(FI) 1441 .addMemOperand(MMO) 1442 .add(predOps(ARMCC::AL)); 1443 MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1444 MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1445 } 1446 1447 if (DestReg.isPhysical()) 1448 MIB.addReg(DestReg, RegState::ImplicitDefine); 1449 } else 1450 llvm_unreachable("Unknown reg class!"); 1451 break; 1452 case 16: 1453 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) { 1454 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) { 1455 BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg) 1456 .addFrameIndex(FI) 1457 .addImm(16) 1458 .addMemOperand(MMO) 1459 .add(predOps(ARMCC::AL)); 1460 } else { 1461 BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg) 1462 .addFrameIndex(FI) 1463 .addMemOperand(MMO) 1464 .add(predOps(ARMCC::AL)); 1465 } 1466 } else if (ARM::QPRRegClass.hasSubClassEq(RC) && 1467 Subtarget.hasMVEIntegerOps()) { 1468 auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg); 1469 MIB.addFrameIndex(FI) 1470 .addImm(0) 1471 .addMemOperand(MMO); 1472 addUnpredicatedMveVpredNOp(MIB); 1473 } else 1474 llvm_unreachable("Unknown reg class!"); 1475 break; 1476 case 24: 1477 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1478 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1479 Subtarget.hasNEON()) { 1480 BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg) 1481 .addFrameIndex(FI) 1482 .addImm(16) 1483 .addMemOperand(MMO) 1484 .add(predOps(ARMCC::AL)); 1485 } else { 1486 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1487 .addFrameIndex(FI) 1488 .addMemOperand(MMO) 1489 .add(predOps(ARMCC::AL)); 1490 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1491 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1492 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1493 if (DestReg.isPhysical()) 1494 MIB.addReg(DestReg, RegState::ImplicitDefine); 1495 } 1496 } else 1497 llvm_unreachable("Unknown reg class!"); 1498 break; 1499 case 32: 1500 if (ARM::QQPRRegClass.hasSubClassEq(RC) || 1501 ARM::MQQPRRegClass.hasSubClassEq(RC) || 1502 ARM::DQuadRegClass.hasSubClassEq(RC)) { 1503 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1504 Subtarget.hasNEON()) { 1505 BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg) 1506 .addFrameIndex(FI) 1507 .addImm(16) 1508 .addMemOperand(MMO) 1509 .add(predOps(ARMCC::AL)); 1510 } else if (Subtarget.hasMVEIntegerOps()) { 1511 BuildMI(MBB, I, DL, get(ARM::MQQPRLoad), DestReg) 1512 .addFrameIndex(FI) 1513 .addMemOperand(MMO); 1514 } else { 1515 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1516 .addFrameIndex(FI) 1517 .add(predOps(ARMCC::AL)) 1518 .addMemOperand(MMO); 1519 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1520 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1521 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1522 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1523 if (DestReg.isPhysical()) 1524 MIB.addReg(DestReg, RegState::ImplicitDefine); 1525 } 1526 } else 1527 llvm_unreachable("Unknown reg class!"); 1528 break; 1529 case 64: 1530 if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) && 1531 Subtarget.hasMVEIntegerOps()) { 1532 BuildMI(MBB, I, DL, get(ARM::MQQQQPRLoad), DestReg) 1533 .addFrameIndex(FI) 1534 .addMemOperand(MMO); 1535 } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1536 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1537 .addFrameIndex(FI) 1538 .add(predOps(ARMCC::AL)) 1539 .addMemOperand(MMO); 1540 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1541 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1542 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1543 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1544 MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI); 1545 MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI); 1546 MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI); 1547 MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI); 1548 if (DestReg.isPhysical()) 1549 MIB.addReg(DestReg, RegState::ImplicitDefine); 1550 } else 1551 llvm_unreachable("Unknown reg class!"); 1552 break; 1553 default: 1554 llvm_unreachable("Unknown regclass!"); 1555 } 1556 } 1557 1558 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 1559 int &FrameIndex) const { 1560 switch (MI.getOpcode()) { 1561 default: break; 1562 case ARM::LDRrs: 1563 case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame. 1564 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && 1565 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && 1566 MI.getOperand(3).getImm() == 0) { 1567 FrameIndex = MI.getOperand(1).getIndex(); 1568 return MI.getOperand(0).getReg(); 1569 } 1570 break; 1571 case ARM::LDRi12: 1572 case ARM::t2LDRi12: 1573 case ARM::tLDRspi: 1574 case ARM::VLDRD: 1575 case ARM::VLDRS: 1576 case ARM::VLDR_P0_off: 1577 case ARM::MVE_VLDRWU32: 1578 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && 1579 MI.getOperand(2).getImm() == 0) { 1580 FrameIndex = MI.getOperand(1).getIndex(); 1581 return MI.getOperand(0).getReg(); 1582 } 1583 break; 1584 case ARM::VLD1q64: 1585 case ARM::VLD1d8TPseudo: 1586 case ARM::VLD1d16TPseudo: 1587 case ARM::VLD1d32TPseudo: 1588 case ARM::VLD1d64TPseudo: 1589 case ARM::VLD1d8QPseudo: 1590 case ARM::VLD1d16QPseudo: 1591 case ARM::VLD1d32QPseudo: 1592 case ARM::VLD1d64QPseudo: 1593 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1594 FrameIndex = MI.getOperand(1).getIndex(); 1595 return MI.getOperand(0).getReg(); 1596 } 1597 break; 1598 case ARM::VLDMQIA: 1599 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1600 FrameIndex = MI.getOperand(1).getIndex(); 1601 return MI.getOperand(0).getReg(); 1602 } 1603 break; 1604 case ARM::MQQPRLoad: 1605 case ARM::MQQQQPRLoad: 1606 if (MI.getOperand(1).isFI()) { 1607 FrameIndex = MI.getOperand(1).getIndex(); 1608 return MI.getOperand(0).getReg(); 1609 } 1610 break; 1611 } 1612 1613 return 0; 1614 } 1615 1616 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, 1617 int &FrameIndex) const { 1618 SmallVector<const MachineMemOperand *, 1> Accesses; 1619 if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) && 1620 Accesses.size() == 1) { 1621 FrameIndex = 1622 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 1623 ->getFrameIndex(); 1624 return true; 1625 } 1626 return false; 1627 } 1628 1629 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD 1630 /// depending on whether the result is used. 1631 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const { 1632 bool isThumb1 = Subtarget.isThumb1Only(); 1633 bool isThumb2 = Subtarget.isThumb2(); 1634 const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo(); 1635 1636 DebugLoc dl = MI->getDebugLoc(); 1637 MachineBasicBlock *BB = MI->getParent(); 1638 1639 MachineInstrBuilder LDM, STM; 1640 if (isThumb1 || !MI->getOperand(1).isDead()) { 1641 MachineOperand LDWb(MI->getOperand(1)); 1642 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD 1643 : isThumb1 ? ARM::tLDMIA_UPD 1644 : ARM::LDMIA_UPD)) 1645 .add(LDWb); 1646 } else { 1647 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA)); 1648 } 1649 1650 if (isThumb1 || !MI->getOperand(0).isDead()) { 1651 MachineOperand STWb(MI->getOperand(0)); 1652 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD 1653 : isThumb1 ? ARM::tSTMIA_UPD 1654 : ARM::STMIA_UPD)) 1655 .add(STWb); 1656 } else { 1657 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA)); 1658 } 1659 1660 MachineOperand LDBase(MI->getOperand(3)); 1661 LDM.add(LDBase).add(predOps(ARMCC::AL)); 1662 1663 MachineOperand STBase(MI->getOperand(2)); 1664 STM.add(STBase).add(predOps(ARMCC::AL)); 1665 1666 // Sort the scratch registers into ascending order. 1667 const TargetRegisterInfo &TRI = getRegisterInfo(); 1668 SmallVector<unsigned, 6> ScratchRegs; 1669 for (MachineOperand &MO : llvm::drop_begin(MI->operands(), 5)) 1670 ScratchRegs.push_back(MO.getReg()); 1671 llvm::sort(ScratchRegs, 1672 [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool { 1673 return TRI.getEncodingValue(Reg1) < 1674 TRI.getEncodingValue(Reg2); 1675 }); 1676 1677 for (const auto &Reg : ScratchRegs) { 1678 LDM.addReg(Reg, RegState::Define); 1679 STM.addReg(Reg, RegState::Kill); 1680 } 1681 1682 BB->erase(MI); 1683 } 1684 1685 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1686 if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) { 1687 expandLoadStackGuard(MI); 1688 MI.getParent()->erase(MI); 1689 return true; 1690 } 1691 1692 if (MI.getOpcode() == ARM::MEMCPY) { 1693 expandMEMCPY(MI); 1694 return true; 1695 } 1696 1697 // This hook gets to expand COPY instructions before they become 1698 // copyPhysReg() calls. Look for VMOVS instructions that can legally be 1699 // widened to VMOVD. We prefer the VMOVD when possible because it may be 1700 // changed into a VORR that can go down the NEON pipeline. 1701 if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64()) 1702 return false; 1703 1704 // Look for a copy between even S-registers. That is where we keep floats 1705 // when using NEON v2f32 instructions for f32 arithmetic. 1706 Register DstRegS = MI.getOperand(0).getReg(); 1707 Register SrcRegS = MI.getOperand(1).getReg(); 1708 if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS)) 1709 return false; 1710 1711 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1712 unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0, 1713 &ARM::DPRRegClass); 1714 unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0, 1715 &ARM::DPRRegClass); 1716 if (!DstRegD || !SrcRegD) 1717 return false; 1718 1719 // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only 1720 // legal if the COPY already defines the full DstRegD, and it isn't a 1721 // sub-register insertion. 1722 if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI)) 1723 return false; 1724 1725 // A dead copy shouldn't show up here, but reject it just in case. 1726 if (MI.getOperand(0).isDead()) 1727 return false; 1728 1729 // All clear, widen the COPY. 1730 LLVM_DEBUG(dbgs() << "widening: " << MI); 1731 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 1732 1733 // Get rid of the old implicit-def of DstRegD. Leave it if it defines a Q-reg 1734 // or some other super-register. 1735 int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD); 1736 if (ImpDefIdx != -1) 1737 MI.removeOperand(ImpDefIdx); 1738 1739 // Change the opcode and operands. 1740 MI.setDesc(get(ARM::VMOVD)); 1741 MI.getOperand(0).setReg(DstRegD); 1742 MI.getOperand(1).setReg(SrcRegD); 1743 MIB.add(predOps(ARMCC::AL)); 1744 1745 // We are now reading SrcRegD instead of SrcRegS. This may upset the 1746 // register scavenger and machine verifier, so we need to indicate that we 1747 // are reading an undefined value from SrcRegD, but a proper value from 1748 // SrcRegS. 1749 MI.getOperand(1).setIsUndef(); 1750 MIB.addReg(SrcRegS, RegState::Implicit); 1751 1752 // SrcRegD may actually contain an unrelated value in the ssub_1 1753 // sub-register. Don't kill it. Only kill the ssub_0 sub-register. 1754 if (MI.getOperand(1).isKill()) { 1755 MI.getOperand(1).setIsKill(false); 1756 MI.addRegisterKilled(SrcRegS, TRI, true); 1757 } 1758 1759 LLVM_DEBUG(dbgs() << "replaced by: " << MI); 1760 return true; 1761 } 1762 1763 /// Create a copy of a const pool value. Update CPI to the new index and return 1764 /// the label UID. 1765 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) { 1766 MachineConstantPool *MCP = MF.getConstantPool(); 1767 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1768 1769 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI]; 1770 assert(MCPE.isMachineConstantPoolEntry() && 1771 "Expecting a machine constantpool entry!"); 1772 ARMConstantPoolValue *ACPV = 1773 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal); 1774 1775 unsigned PCLabelId = AFI->createPICLabelUId(); 1776 ARMConstantPoolValue *NewCPV = nullptr; 1777 1778 // FIXME: The below assumes PIC relocation model and that the function 1779 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and 1780 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR 1781 // instructions, so that's probably OK, but is PIC always correct when 1782 // we get here? 1783 if (ACPV->isGlobalValue()) 1784 NewCPV = ARMConstantPoolConstant::Create( 1785 cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue, 1786 4, ACPV->getModifier(), ACPV->mustAddCurrentAddress()); 1787 else if (ACPV->isExtSymbol()) 1788 NewCPV = ARMConstantPoolSymbol:: 1789 Create(MF.getFunction().getContext(), 1790 cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4); 1791 else if (ACPV->isBlockAddress()) 1792 NewCPV = ARMConstantPoolConstant:: 1793 Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId, 1794 ARMCP::CPBlockAddress, 4); 1795 else if (ACPV->isLSDA()) 1796 NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId, 1797 ARMCP::CPLSDA, 4); 1798 else if (ACPV->isMachineBasicBlock()) 1799 NewCPV = ARMConstantPoolMBB:: 1800 Create(MF.getFunction().getContext(), 1801 cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4); 1802 else 1803 llvm_unreachable("Unexpected ARM constantpool value type!!"); 1804 CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlign()); 1805 return PCLabelId; 1806 } 1807 1808 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB, 1809 MachineBasicBlock::iterator I, 1810 Register DestReg, unsigned SubIdx, 1811 const MachineInstr &Orig, 1812 const TargetRegisterInfo &TRI) const { 1813 unsigned Opcode = Orig.getOpcode(); 1814 switch (Opcode) { 1815 default: { 1816 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); 1817 MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); 1818 MBB.insert(I, MI); 1819 break; 1820 } 1821 case ARM::tLDRpci_pic: 1822 case ARM::t2LDRpci_pic: { 1823 MachineFunction &MF = *MBB.getParent(); 1824 unsigned CPI = Orig.getOperand(1).getIndex(); 1825 unsigned PCLabelId = duplicateCPV(MF, CPI); 1826 BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg) 1827 .addConstantPoolIndex(CPI) 1828 .addImm(PCLabelId) 1829 .cloneMemRefs(Orig); 1830 break; 1831 } 1832 } 1833 } 1834 1835 MachineInstr & 1836 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB, 1837 MachineBasicBlock::iterator InsertBefore, 1838 const MachineInstr &Orig) const { 1839 MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig); 1840 MachineBasicBlock::instr_iterator I = Cloned.getIterator(); 1841 for (;;) { 1842 switch (I->getOpcode()) { 1843 case ARM::tLDRpci_pic: 1844 case ARM::t2LDRpci_pic: { 1845 MachineFunction &MF = *MBB.getParent(); 1846 unsigned CPI = I->getOperand(1).getIndex(); 1847 unsigned PCLabelId = duplicateCPV(MF, CPI); 1848 I->getOperand(1).setIndex(CPI); 1849 I->getOperand(2).setImm(PCLabelId); 1850 break; 1851 } 1852 } 1853 if (!I->isBundledWithSucc()) 1854 break; 1855 ++I; 1856 } 1857 return Cloned; 1858 } 1859 1860 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0, 1861 const MachineInstr &MI1, 1862 const MachineRegisterInfo *MRI) const { 1863 unsigned Opcode = MI0.getOpcode(); 1864 if (Opcode == ARM::t2LDRpci || Opcode == ARM::t2LDRpci_pic || 1865 Opcode == ARM::tLDRpci || Opcode == ARM::tLDRpci_pic || 1866 Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1867 Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel || 1868 Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr || 1869 Opcode == ARM::t2MOV_ga_pcrel) { 1870 if (MI1.getOpcode() != Opcode) 1871 return false; 1872 if (MI0.getNumOperands() != MI1.getNumOperands()) 1873 return false; 1874 1875 const MachineOperand &MO0 = MI0.getOperand(1); 1876 const MachineOperand &MO1 = MI1.getOperand(1); 1877 if (MO0.getOffset() != MO1.getOffset()) 1878 return false; 1879 1880 if (Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1881 Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel || 1882 Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr || 1883 Opcode == ARM::t2MOV_ga_pcrel) 1884 // Ignore the PC labels. 1885 return MO0.getGlobal() == MO1.getGlobal(); 1886 1887 const MachineFunction *MF = MI0.getParent()->getParent(); 1888 const MachineConstantPool *MCP = MF->getConstantPool(); 1889 int CPI0 = MO0.getIndex(); 1890 int CPI1 = MO1.getIndex(); 1891 const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0]; 1892 const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1]; 1893 bool isARMCP0 = MCPE0.isMachineConstantPoolEntry(); 1894 bool isARMCP1 = MCPE1.isMachineConstantPoolEntry(); 1895 if (isARMCP0 && isARMCP1) { 1896 ARMConstantPoolValue *ACPV0 = 1897 static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal); 1898 ARMConstantPoolValue *ACPV1 = 1899 static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal); 1900 return ACPV0->hasSameValue(ACPV1); 1901 } else if (!isARMCP0 && !isARMCP1) { 1902 return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal; 1903 } 1904 return false; 1905 } else if (Opcode == ARM::PICLDR) { 1906 if (MI1.getOpcode() != Opcode) 1907 return false; 1908 if (MI0.getNumOperands() != MI1.getNumOperands()) 1909 return false; 1910 1911 Register Addr0 = MI0.getOperand(1).getReg(); 1912 Register Addr1 = MI1.getOperand(1).getReg(); 1913 if (Addr0 != Addr1) { 1914 if (!MRI || !Addr0.isVirtual() || !Addr1.isVirtual()) 1915 return false; 1916 1917 // This assumes SSA form. 1918 MachineInstr *Def0 = MRI->getVRegDef(Addr0); 1919 MachineInstr *Def1 = MRI->getVRegDef(Addr1); 1920 // Check if the loaded value, e.g. a constantpool of a global address, are 1921 // the same. 1922 if (!produceSameValue(*Def0, *Def1, MRI)) 1923 return false; 1924 } 1925 1926 for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) { 1927 // %12 = PICLDR %11, 0, 14, %noreg 1928 const MachineOperand &MO0 = MI0.getOperand(i); 1929 const MachineOperand &MO1 = MI1.getOperand(i); 1930 if (!MO0.isIdenticalTo(MO1)) 1931 return false; 1932 } 1933 return true; 1934 } 1935 1936 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 1937 } 1938 1939 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to 1940 /// determine if two loads are loading from the same base address. It should 1941 /// only return true if the base pointers are the same and the only differences 1942 /// between the two addresses is the offset. It also returns the offsets by 1943 /// reference. 1944 /// 1945 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 1946 /// is permanently disabled. 1947 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 1948 int64_t &Offset1, 1949 int64_t &Offset2) const { 1950 // Don't worry about Thumb: just ARM and Thumb2. 1951 if (Subtarget.isThumb1Only()) return false; 1952 1953 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) 1954 return false; 1955 1956 auto IsLoadOpcode = [&](unsigned Opcode) { 1957 switch (Opcode) { 1958 default: 1959 return false; 1960 case ARM::LDRi12: 1961 case ARM::LDRBi12: 1962 case ARM::LDRD: 1963 case ARM::LDRH: 1964 case ARM::LDRSB: 1965 case ARM::LDRSH: 1966 case ARM::VLDRD: 1967 case ARM::VLDRS: 1968 case ARM::t2LDRi8: 1969 case ARM::t2LDRBi8: 1970 case ARM::t2LDRDi8: 1971 case ARM::t2LDRSHi8: 1972 case ARM::t2LDRi12: 1973 case ARM::t2LDRBi12: 1974 case ARM::t2LDRSHi12: 1975 return true; 1976 } 1977 }; 1978 1979 if (!IsLoadOpcode(Load1->getMachineOpcode()) || 1980 !IsLoadOpcode(Load2->getMachineOpcode())) 1981 return false; 1982 1983 // Check if base addresses and chain operands match. 1984 if (Load1->getOperand(0) != Load2->getOperand(0) || 1985 Load1->getOperand(4) != Load2->getOperand(4)) 1986 return false; 1987 1988 // Index should be Reg0. 1989 if (Load1->getOperand(3) != Load2->getOperand(3)) 1990 return false; 1991 1992 // Determine the offsets. 1993 if (isa<ConstantSDNode>(Load1->getOperand(1)) && 1994 isa<ConstantSDNode>(Load2->getOperand(1))) { 1995 Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue(); 1996 Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue(); 1997 return true; 1998 } 1999 2000 return false; 2001 } 2002 2003 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to 2004 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should 2005 /// be scheduled togther. On some targets if two loads are loading from 2006 /// addresses in the same cache line, it's better if they are scheduled 2007 /// together. This function takes two integers that represent the load offsets 2008 /// from the common base address. It returns true if it decides it's desirable 2009 /// to schedule the two loads together. "NumLoads" is the number of loads that 2010 /// have already been scheduled after Load1. 2011 /// 2012 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 2013 /// is permanently disabled. 2014 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 2015 int64_t Offset1, int64_t Offset2, 2016 unsigned NumLoads) const { 2017 // Don't worry about Thumb: just ARM and Thumb2. 2018 if (Subtarget.isThumb1Only()) return false; 2019 2020 assert(Offset2 > Offset1); 2021 2022 if ((Offset2 - Offset1) / 8 > 64) 2023 return false; 2024 2025 // Check if the machine opcodes are different. If they are different 2026 // then we consider them to not be of the same base address, 2027 // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12. 2028 // In this case, they are considered to be the same because they are different 2029 // encoding forms of the same basic instruction. 2030 if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) && 2031 !((Load1->getMachineOpcode() == ARM::t2LDRBi8 && 2032 Load2->getMachineOpcode() == ARM::t2LDRBi12) || 2033 (Load1->getMachineOpcode() == ARM::t2LDRBi12 && 2034 Load2->getMachineOpcode() == ARM::t2LDRBi8))) 2035 return false; // FIXME: overly conservative? 2036 2037 // Four loads in a row should be sufficient. 2038 if (NumLoads >= 3) 2039 return false; 2040 2041 return true; 2042 } 2043 2044 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 2045 const MachineBasicBlock *MBB, 2046 const MachineFunction &MF) const { 2047 // Debug info is never a scheduling boundary. It's necessary to be explicit 2048 // due to the special treatment of IT instructions below, otherwise a 2049 // dbg_value followed by an IT will result in the IT instruction being 2050 // considered a scheduling hazard, which is wrong. It should be the actual 2051 // instruction preceding the dbg_value instruction(s), just like it is 2052 // when debug info is not present. 2053 if (MI.isDebugInstr()) 2054 return false; 2055 2056 // Terminators and labels can't be scheduled around. 2057 if (MI.isTerminator() || MI.isPosition()) 2058 return true; 2059 2060 // INLINEASM_BR can jump to another block 2061 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) 2062 return true; 2063 2064 if (isSEHInstruction(MI)) 2065 return true; 2066 2067 // Treat the start of the IT block as a scheduling boundary, but schedule 2068 // t2IT along with all instructions following it. 2069 // FIXME: This is a big hammer. But the alternative is to add all potential 2070 // true and anti dependencies to IT block instructions as implicit operands 2071 // to the t2IT instruction. The added compile time and complexity does not 2072 // seem worth it. 2073 MachineBasicBlock::const_iterator I = MI; 2074 // Make sure to skip any debug instructions 2075 while (++I != MBB->end() && I->isDebugInstr()) 2076 ; 2077 if (I != MBB->end() && I->getOpcode() == ARM::t2IT) 2078 return true; 2079 2080 // Don't attempt to schedule around any instruction that defines 2081 // a stack-oriented pointer, as it's unlikely to be profitable. This 2082 // saves compile time, because it doesn't require every single 2083 // stack slot reference to depend on the instruction that does the 2084 // modification. 2085 // Calls don't actually change the stack pointer, even if they have imp-defs. 2086 // No ARM calling conventions change the stack pointer. (X86 calling 2087 // conventions sometimes do). 2088 if (!MI.isCall() && MI.definesRegister(ARM::SP)) 2089 return true; 2090 2091 return false; 2092 } 2093 2094 bool ARMBaseInstrInfo:: 2095 isProfitableToIfCvt(MachineBasicBlock &MBB, 2096 unsigned NumCycles, unsigned ExtraPredCycles, 2097 BranchProbability Probability) const { 2098 if (!NumCycles) 2099 return false; 2100 2101 // If we are optimizing for size, see if the branch in the predecessor can be 2102 // lowered to cbn?z by the constant island lowering pass, and return false if 2103 // so. This results in a shorter instruction sequence. 2104 if (MBB.getParent()->getFunction().hasOptSize()) { 2105 MachineBasicBlock *Pred = *MBB.pred_begin(); 2106 if (!Pred->empty()) { 2107 MachineInstr *LastMI = &*Pred->rbegin(); 2108 if (LastMI->getOpcode() == ARM::t2Bcc) { 2109 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2110 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI); 2111 if (CmpMI) 2112 return false; 2113 } 2114 } 2115 } 2116 return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles, 2117 MBB, 0, 0, Probability); 2118 } 2119 2120 bool ARMBaseInstrInfo:: 2121 isProfitableToIfCvt(MachineBasicBlock &TBB, 2122 unsigned TCycles, unsigned TExtra, 2123 MachineBasicBlock &FBB, 2124 unsigned FCycles, unsigned FExtra, 2125 BranchProbability Probability) const { 2126 if (!TCycles) 2127 return false; 2128 2129 // In thumb code we often end up trading one branch for a IT block, and 2130 // if we are cloning the instruction can increase code size. Prevent 2131 // blocks with multiple predecesors from being ifcvted to prevent this 2132 // cloning. 2133 if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) { 2134 if (TBB.pred_size() != 1 || FBB.pred_size() != 1) 2135 return false; 2136 } 2137 2138 // Attempt to estimate the relative costs of predication versus branching. 2139 // Here we scale up each component of UnpredCost to avoid precision issue when 2140 // scaling TCycles/FCycles by Probability. 2141 const unsigned ScalingUpFactor = 1024; 2142 2143 unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor; 2144 unsigned UnpredCost; 2145 if (!Subtarget.hasBranchPredictor()) { 2146 // When we don't have a branch predictor it's always cheaper to not take a 2147 // branch than take it, so we have to take that into account. 2148 unsigned NotTakenBranchCost = 1; 2149 unsigned TakenBranchCost = Subtarget.getMispredictionPenalty(); 2150 unsigned TUnpredCycles, FUnpredCycles; 2151 if (!FCycles) { 2152 // Triangle: TBB is the fallthrough 2153 TUnpredCycles = TCycles + NotTakenBranchCost; 2154 FUnpredCycles = TakenBranchCost; 2155 } else { 2156 // Diamond: TBB is the block that is branched to, FBB is the fallthrough 2157 TUnpredCycles = TCycles + TakenBranchCost; 2158 FUnpredCycles = FCycles + NotTakenBranchCost; 2159 // The branch at the end of FBB will disappear when it's predicated, so 2160 // discount it from PredCost. 2161 PredCost -= 1 * ScalingUpFactor; 2162 } 2163 // The total cost is the cost of each path scaled by their probabilites 2164 unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor); 2165 unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor); 2166 UnpredCost = TUnpredCost + FUnpredCost; 2167 // When predicating assume that the first IT can be folded away but later 2168 // ones cost one cycle each 2169 if (Subtarget.isThumb2() && TCycles + FCycles > 4) { 2170 PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor; 2171 } 2172 } else { 2173 unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor); 2174 unsigned FUnpredCost = 2175 Probability.getCompl().scale(FCycles * ScalingUpFactor); 2176 UnpredCost = TUnpredCost + FUnpredCost; 2177 UnpredCost += 1 * ScalingUpFactor; // The branch itself 2178 UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10; 2179 } 2180 2181 return PredCost <= UnpredCost; 2182 } 2183 2184 unsigned 2185 ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF, 2186 unsigned NumInsts) const { 2187 // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions. 2188 // ARM has a condition code field in every predicable instruction, using it 2189 // doesn't change code size. 2190 if (!Subtarget.isThumb2()) 2191 return 0; 2192 2193 // It's possible that the size of the IT is restricted to a single block. 2194 unsigned MaxInsts = Subtarget.restrictIT() ? 1 : 4; 2195 return divideCeil(NumInsts, MaxInsts) * 2; 2196 } 2197 2198 unsigned 2199 ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const { 2200 // If this branch is likely to be folded into the comparison to form a 2201 // CB(N)Z, then removing it won't reduce code size at all, because that will 2202 // just replace the CB(N)Z with a CMP. 2203 if (MI.getOpcode() == ARM::t2Bcc && 2204 findCMPToFoldIntoCBZ(&MI, &getRegisterInfo())) 2205 return 0; 2206 2207 unsigned Size = getInstSizeInBytes(MI); 2208 2209 // For Thumb2, all branches are 32-bit instructions during the if conversion 2210 // pass, but may be replaced with 16-bit instructions during size reduction. 2211 // Since the branches considered by if conversion tend to be forward branches 2212 // over small basic blocks, they are very likely to be in range for the 2213 // narrow instructions, so we assume the final code size will be half what it 2214 // currently is. 2215 if (Subtarget.isThumb2()) 2216 Size /= 2; 2217 2218 return Size; 2219 } 2220 2221 bool 2222 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB, 2223 MachineBasicBlock &FMBB) const { 2224 // Reduce false anti-dependencies to let the target's out-of-order execution 2225 // engine do its thing. 2226 return Subtarget.isProfitableToUnpredicate(); 2227 } 2228 2229 /// getInstrPredicate - If instruction is predicated, returns its predicate 2230 /// condition, otherwise returns AL. It also returns the condition code 2231 /// register by reference. 2232 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI, 2233 Register &PredReg) { 2234 int PIdx = MI.findFirstPredOperandIdx(); 2235 if (PIdx == -1) { 2236 PredReg = 0; 2237 return ARMCC::AL; 2238 } 2239 2240 PredReg = MI.getOperand(PIdx+1).getReg(); 2241 return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm(); 2242 } 2243 2244 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) { 2245 if (Opc == ARM::B) 2246 return ARM::Bcc; 2247 if (Opc == ARM::tB) 2248 return ARM::tBcc; 2249 if (Opc == ARM::t2B) 2250 return ARM::t2Bcc; 2251 2252 llvm_unreachable("Unknown unconditional branch opcode!"); 2253 } 2254 2255 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI, 2256 bool NewMI, 2257 unsigned OpIdx1, 2258 unsigned OpIdx2) const { 2259 switch (MI.getOpcode()) { 2260 case ARM::MOVCCr: 2261 case ARM::t2MOVCCr: { 2262 // MOVCC can be commuted by inverting the condition. 2263 Register PredReg; 2264 ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg); 2265 // MOVCC AL can't be inverted. Shouldn't happen. 2266 if (CC == ARMCC::AL || PredReg != ARM::CPSR) 2267 return nullptr; 2268 MachineInstr *CommutedMI = 2269 TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2270 if (!CommutedMI) 2271 return nullptr; 2272 // After swapping the MOVCC operands, also invert the condition. 2273 CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx()) 2274 .setImm(ARMCC::getOppositeCondition(CC)); 2275 return CommutedMI; 2276 } 2277 } 2278 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2279 } 2280 2281 /// Identify instructions that can be folded into a MOVCC instruction, and 2282 /// return the defining instruction. 2283 MachineInstr * 2284 ARMBaseInstrInfo::canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI, 2285 const TargetInstrInfo *TII) const { 2286 if (!Reg.isVirtual()) 2287 return nullptr; 2288 if (!MRI.hasOneNonDBGUse(Reg)) 2289 return nullptr; 2290 MachineInstr *MI = MRI.getVRegDef(Reg); 2291 if (!MI) 2292 return nullptr; 2293 // Check if MI can be predicated and folded into the MOVCC. 2294 if (!isPredicable(*MI)) 2295 return nullptr; 2296 // Check if MI has any non-dead defs or physreg uses. This also detects 2297 // predicated instructions which will be reading CPSR. 2298 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 1)) { 2299 // Reject frame index operands, PEI can't handle the predicated pseudos. 2300 if (MO.isFI() || MO.isCPI() || MO.isJTI()) 2301 return nullptr; 2302 if (!MO.isReg()) 2303 continue; 2304 // MI can't have any tied operands, that would conflict with predication. 2305 if (MO.isTied()) 2306 return nullptr; 2307 if (MO.getReg().isPhysical()) 2308 return nullptr; 2309 if (MO.isDef() && !MO.isDead()) 2310 return nullptr; 2311 } 2312 bool DontMoveAcrossStores = true; 2313 if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores)) 2314 return nullptr; 2315 return MI; 2316 } 2317 2318 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI, 2319 SmallVectorImpl<MachineOperand> &Cond, 2320 unsigned &TrueOp, unsigned &FalseOp, 2321 bool &Optimizable) const { 2322 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && 2323 "Unknown select instruction"); 2324 // MOVCC operands: 2325 // 0: Def. 2326 // 1: True use. 2327 // 2: False use. 2328 // 3: Condition code. 2329 // 4: CPSR use. 2330 TrueOp = 1; 2331 FalseOp = 2; 2332 Cond.push_back(MI.getOperand(3)); 2333 Cond.push_back(MI.getOperand(4)); 2334 // We can always fold a def. 2335 Optimizable = true; 2336 return false; 2337 } 2338 2339 MachineInstr * 2340 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI, 2341 SmallPtrSetImpl<MachineInstr *> &SeenMIs, 2342 bool PreferFalse) const { 2343 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && 2344 "Unknown select instruction"); 2345 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 2346 MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this); 2347 bool Invert = !DefMI; 2348 if (!DefMI) 2349 DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this); 2350 if (!DefMI) 2351 return nullptr; 2352 2353 // Find new register class to use. 2354 MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1); 2355 MachineOperand TrueReg = MI.getOperand(Invert ? 1 : 2); 2356 Register DestReg = MI.getOperand(0).getReg(); 2357 const TargetRegisterClass *FalseClass = MRI.getRegClass(FalseReg.getReg()); 2358 const TargetRegisterClass *TrueClass = MRI.getRegClass(TrueReg.getReg()); 2359 if (!MRI.constrainRegClass(DestReg, FalseClass)) 2360 return nullptr; 2361 if (!MRI.constrainRegClass(DestReg, TrueClass)) 2362 return nullptr; 2363 2364 // Create a new predicated version of DefMI. 2365 // Rfalse is the first use. 2366 MachineInstrBuilder NewMI = 2367 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg); 2368 2369 // Copy all the DefMI operands, excluding its (null) predicate. 2370 const MCInstrDesc &DefDesc = DefMI->getDesc(); 2371 for (unsigned i = 1, e = DefDesc.getNumOperands(); 2372 i != e && !DefDesc.operands()[i].isPredicate(); ++i) 2373 NewMI.add(DefMI->getOperand(i)); 2374 2375 unsigned CondCode = MI.getOperand(3).getImm(); 2376 if (Invert) 2377 NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode))); 2378 else 2379 NewMI.addImm(CondCode); 2380 NewMI.add(MI.getOperand(4)); 2381 2382 // DefMI is not the -S version that sets CPSR, so add an optional %noreg. 2383 if (NewMI->hasOptionalDef()) 2384 NewMI.add(condCodeOp()); 2385 2386 // The output register value when the predicate is false is an implicit 2387 // register operand tied to the first def. 2388 // The tie makes the register allocator ensure the FalseReg is allocated the 2389 // same register as operand 0. 2390 FalseReg.setImplicit(); 2391 NewMI.add(FalseReg); 2392 NewMI->tieOperands(0, NewMI->getNumOperands() - 1); 2393 2394 // Update SeenMIs set: register newly created MI and erase removed DefMI. 2395 SeenMIs.insert(NewMI); 2396 SeenMIs.erase(DefMI); 2397 2398 // If MI is inside a loop, and DefMI is outside the loop, then kill flags on 2399 // DefMI would be invalid when tranferred inside the loop. Checking for a 2400 // loop is expensive, but at least remove kill flags if they are in different 2401 // BBs. 2402 if (DefMI->getParent() != MI.getParent()) 2403 NewMI->clearKillInfo(); 2404 2405 // The caller will erase MI, but not DefMI. 2406 DefMI->eraseFromParent(); 2407 return NewMI; 2408 } 2409 2410 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the 2411 /// instruction is encoded with an 'S' bit is determined by the optional CPSR 2412 /// def operand. 2413 /// 2414 /// This will go away once we can teach tblgen how to set the optional CPSR def 2415 /// operand itself. 2416 struct AddSubFlagsOpcodePair { 2417 uint16_t PseudoOpc; 2418 uint16_t MachineOpc; 2419 }; 2420 2421 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = { 2422 {ARM::ADDSri, ARM::ADDri}, 2423 {ARM::ADDSrr, ARM::ADDrr}, 2424 {ARM::ADDSrsi, ARM::ADDrsi}, 2425 {ARM::ADDSrsr, ARM::ADDrsr}, 2426 2427 {ARM::SUBSri, ARM::SUBri}, 2428 {ARM::SUBSrr, ARM::SUBrr}, 2429 {ARM::SUBSrsi, ARM::SUBrsi}, 2430 {ARM::SUBSrsr, ARM::SUBrsr}, 2431 2432 {ARM::RSBSri, ARM::RSBri}, 2433 {ARM::RSBSrsi, ARM::RSBrsi}, 2434 {ARM::RSBSrsr, ARM::RSBrsr}, 2435 2436 {ARM::tADDSi3, ARM::tADDi3}, 2437 {ARM::tADDSi8, ARM::tADDi8}, 2438 {ARM::tADDSrr, ARM::tADDrr}, 2439 {ARM::tADCS, ARM::tADC}, 2440 2441 {ARM::tSUBSi3, ARM::tSUBi3}, 2442 {ARM::tSUBSi8, ARM::tSUBi8}, 2443 {ARM::tSUBSrr, ARM::tSUBrr}, 2444 {ARM::tSBCS, ARM::tSBC}, 2445 {ARM::tRSBS, ARM::tRSB}, 2446 {ARM::tLSLSri, ARM::tLSLri}, 2447 2448 {ARM::t2ADDSri, ARM::t2ADDri}, 2449 {ARM::t2ADDSrr, ARM::t2ADDrr}, 2450 {ARM::t2ADDSrs, ARM::t2ADDrs}, 2451 2452 {ARM::t2SUBSri, ARM::t2SUBri}, 2453 {ARM::t2SUBSrr, ARM::t2SUBrr}, 2454 {ARM::t2SUBSrs, ARM::t2SUBrs}, 2455 2456 {ARM::t2RSBSri, ARM::t2RSBri}, 2457 {ARM::t2RSBSrs, ARM::t2RSBrs}, 2458 }; 2459 2460 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) { 2461 for (const auto &Entry : AddSubFlagsOpcodeMap) 2462 if (OldOpc == Entry.PseudoOpc) 2463 return Entry.MachineOpc; 2464 return 0; 2465 } 2466 2467 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB, 2468 MachineBasicBlock::iterator &MBBI, 2469 const DebugLoc &dl, Register DestReg, 2470 Register BaseReg, int NumBytes, 2471 ARMCC::CondCodes Pred, Register PredReg, 2472 const ARMBaseInstrInfo &TII, 2473 unsigned MIFlags) { 2474 if (NumBytes == 0 && DestReg != BaseReg) { 2475 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg) 2476 .addReg(BaseReg, RegState::Kill) 2477 .add(predOps(Pred, PredReg)) 2478 .add(condCodeOp()) 2479 .setMIFlags(MIFlags); 2480 return; 2481 } 2482 2483 bool isSub = NumBytes < 0; 2484 if (isSub) NumBytes = -NumBytes; 2485 2486 while (NumBytes) { 2487 unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes); 2488 unsigned ThisVal = NumBytes & llvm::rotr<uint32_t>(0xFF, RotAmt); 2489 assert(ThisVal && "Didn't extract field correctly"); 2490 2491 // We will handle these bits from offset, clear them. 2492 NumBytes &= ~ThisVal; 2493 2494 assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?"); 2495 2496 // Build the new ADD / SUB. 2497 unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri; 2498 BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) 2499 .addReg(BaseReg, RegState::Kill) 2500 .addImm(ThisVal) 2501 .add(predOps(Pred, PredReg)) 2502 .add(condCodeOp()) 2503 .setMIFlags(MIFlags); 2504 BaseReg = DestReg; 2505 } 2506 } 2507 2508 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget, 2509 MachineFunction &MF, MachineInstr *MI, 2510 unsigned NumBytes) { 2511 // This optimisation potentially adds lots of load and store 2512 // micro-operations, it's only really a great benefit to code-size. 2513 if (!Subtarget.hasMinSize()) 2514 return false; 2515 2516 // If only one register is pushed/popped, LLVM can use an LDR/STR 2517 // instead. We can't modify those so make sure we're dealing with an 2518 // instruction we understand. 2519 bool IsPop = isPopOpcode(MI->getOpcode()); 2520 bool IsPush = isPushOpcode(MI->getOpcode()); 2521 if (!IsPush && !IsPop) 2522 return false; 2523 2524 bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD || 2525 MI->getOpcode() == ARM::VLDMDIA_UPD; 2526 bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH || 2527 MI->getOpcode() == ARM::tPOP || 2528 MI->getOpcode() == ARM::tPOP_RET; 2529 2530 assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP && 2531 MI->getOperand(1).getReg() == ARM::SP)) && 2532 "trying to fold sp update into non-sp-updating push/pop"); 2533 2534 // The VFP push & pop act on D-registers, so we can only fold an adjustment 2535 // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try 2536 // if this is violated. 2537 if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0) 2538 return false; 2539 2540 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 2541 // pred) so the list starts at 4. Thumb1 starts after the predicate. 2542 int RegListIdx = IsT1PushPop ? 2 : 4; 2543 2544 // Calculate the space we'll need in terms of registers. 2545 unsigned RegsNeeded; 2546 const TargetRegisterClass *RegClass; 2547 if (IsVFPPushPop) { 2548 RegsNeeded = NumBytes / 8; 2549 RegClass = &ARM::DPRRegClass; 2550 } else { 2551 RegsNeeded = NumBytes / 4; 2552 RegClass = &ARM::GPRRegClass; 2553 } 2554 2555 // We're going to have to strip all list operands off before 2556 // re-adding them since the order matters, so save the existing ones 2557 // for later. 2558 SmallVector<MachineOperand, 4> RegList; 2559 2560 // We're also going to need the first register transferred by this 2561 // instruction, which won't necessarily be the first register in the list. 2562 unsigned FirstRegEnc = -1; 2563 2564 const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo(); 2565 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) { 2566 MachineOperand &MO = MI->getOperand(i); 2567 RegList.push_back(MO); 2568 2569 if (MO.isReg() && !MO.isImplicit() && 2570 TRI->getEncodingValue(MO.getReg()) < FirstRegEnc) 2571 FirstRegEnc = TRI->getEncodingValue(MO.getReg()); 2572 } 2573 2574 const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF); 2575 2576 // Now try to find enough space in the reglist to allocate NumBytes. 2577 for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded; 2578 --CurRegEnc) { 2579 unsigned CurReg = RegClass->getRegister(CurRegEnc); 2580 if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7)) 2581 continue; 2582 if (!IsPop) { 2583 // Pushing any register is completely harmless, mark the register involved 2584 // as undef since we don't care about its value and must not restore it 2585 // during stack unwinding. 2586 RegList.push_back(MachineOperand::CreateReg(CurReg, false, false, 2587 false, false, true)); 2588 --RegsNeeded; 2589 continue; 2590 } 2591 2592 // However, we can only pop an extra register if it's not live. For 2593 // registers live within the function we might clobber a return value 2594 // register; the other way a register can be live here is if it's 2595 // callee-saved. 2596 if (isCalleeSavedRegister(CurReg, CSRegs) || 2597 MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) != 2598 MachineBasicBlock::LQR_Dead) { 2599 // VFP pops don't allow holes in the register list, so any skip is fatal 2600 // for our transformation. GPR pops do, so we should just keep looking. 2601 if (IsVFPPushPop) 2602 return false; 2603 else 2604 continue; 2605 } 2606 2607 // Mark the unimportant registers as <def,dead> in the POP. 2608 RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false, 2609 true)); 2610 --RegsNeeded; 2611 } 2612 2613 if (RegsNeeded > 0) 2614 return false; 2615 2616 // Finally we know we can profitably perform the optimisation so go 2617 // ahead: strip all existing registers off and add them back again 2618 // in the right order. 2619 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) 2620 MI->removeOperand(i); 2621 2622 // Add the complete list back in. 2623 MachineInstrBuilder MIB(MF, &*MI); 2624 for (const MachineOperand &MO : llvm::reverse(RegList)) 2625 MIB.add(MO); 2626 2627 return true; 2628 } 2629 2630 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx, 2631 Register FrameReg, int &Offset, 2632 const ARMBaseInstrInfo &TII) { 2633 unsigned Opcode = MI.getOpcode(); 2634 const MCInstrDesc &Desc = MI.getDesc(); 2635 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); 2636 bool isSub = false; 2637 2638 // Memory operands in inline assembly always use AddrMode2. 2639 if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR) 2640 AddrMode = ARMII::AddrMode2; 2641 2642 if (Opcode == ARM::ADDri) { 2643 Offset += MI.getOperand(FrameRegIdx+1).getImm(); 2644 if (Offset == 0) { 2645 // Turn it into a move. 2646 MI.setDesc(TII.get(ARM::MOVr)); 2647 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2648 MI.removeOperand(FrameRegIdx+1); 2649 Offset = 0; 2650 return true; 2651 } else if (Offset < 0) { 2652 Offset = -Offset; 2653 isSub = true; 2654 MI.setDesc(TII.get(ARM::SUBri)); 2655 } 2656 2657 // Common case: small offset, fits into instruction. 2658 if (ARM_AM::getSOImmVal(Offset) != -1) { 2659 // Replace the FrameIndex with sp / fp 2660 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2661 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); 2662 Offset = 0; 2663 return true; 2664 } 2665 2666 // Otherwise, pull as much of the immedidate into this ADDri/SUBri 2667 // as possible. 2668 unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset); 2669 unsigned ThisImmVal = Offset & llvm::rotr<uint32_t>(0xFF, RotAmt); 2670 2671 // We will handle these bits from offset, clear them. 2672 Offset &= ~ThisImmVal; 2673 2674 // Get the properly encoded SOImmVal field. 2675 assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 && 2676 "Bit extraction didn't work?"); 2677 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal); 2678 } else { 2679 unsigned ImmIdx = 0; 2680 int InstrOffs = 0; 2681 unsigned NumBits = 0; 2682 unsigned Scale = 1; 2683 switch (AddrMode) { 2684 case ARMII::AddrMode_i12: 2685 ImmIdx = FrameRegIdx + 1; 2686 InstrOffs = MI.getOperand(ImmIdx).getImm(); 2687 NumBits = 12; 2688 break; 2689 case ARMII::AddrMode2: 2690 ImmIdx = FrameRegIdx+2; 2691 InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm()); 2692 if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2693 InstrOffs *= -1; 2694 NumBits = 12; 2695 break; 2696 case ARMII::AddrMode3: 2697 ImmIdx = FrameRegIdx+2; 2698 InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm()); 2699 if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2700 InstrOffs *= -1; 2701 NumBits = 8; 2702 break; 2703 case ARMII::AddrMode4: 2704 case ARMII::AddrMode6: 2705 // Can't fold any offset even if it's zero. 2706 return false; 2707 case ARMII::AddrMode5: 2708 ImmIdx = FrameRegIdx+1; 2709 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2710 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2711 InstrOffs *= -1; 2712 NumBits = 8; 2713 Scale = 4; 2714 break; 2715 case ARMII::AddrMode5FP16: 2716 ImmIdx = FrameRegIdx+1; 2717 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2718 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2719 InstrOffs *= -1; 2720 NumBits = 8; 2721 Scale = 2; 2722 break; 2723 case ARMII::AddrModeT2_i7: 2724 case ARMII::AddrModeT2_i7s2: 2725 case ARMII::AddrModeT2_i7s4: 2726 ImmIdx = FrameRegIdx+1; 2727 InstrOffs = MI.getOperand(ImmIdx).getImm(); 2728 NumBits = 7; 2729 Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 : 2730 AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1); 2731 break; 2732 default: 2733 llvm_unreachable("Unsupported addressing mode!"); 2734 } 2735 2736 Offset += InstrOffs * Scale; 2737 assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!"); 2738 if (Offset < 0) { 2739 Offset = -Offset; 2740 isSub = true; 2741 } 2742 2743 // Attempt to fold address comp. if opcode has offset bits 2744 if (NumBits > 0) { 2745 // Common case: small offset, fits into instruction. 2746 MachineOperand &ImmOp = MI.getOperand(ImmIdx); 2747 int ImmedOffset = Offset / Scale; 2748 unsigned Mask = (1 << NumBits) - 1; 2749 if ((unsigned)Offset <= Mask * Scale) { 2750 // Replace the FrameIndex with sp 2751 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2752 // FIXME: When addrmode2 goes away, this will simplify (like the 2753 // T2 version), as the LDR.i12 versions don't need the encoding 2754 // tricks for the offset value. 2755 if (isSub) { 2756 if (AddrMode == ARMII::AddrMode_i12) 2757 ImmedOffset = -ImmedOffset; 2758 else 2759 ImmedOffset |= 1 << NumBits; 2760 } 2761 ImmOp.ChangeToImmediate(ImmedOffset); 2762 Offset = 0; 2763 return true; 2764 } 2765 2766 // Otherwise, it didn't fit. Pull in what we can to simplify the immed. 2767 ImmedOffset = ImmedOffset & Mask; 2768 if (isSub) { 2769 if (AddrMode == ARMII::AddrMode_i12) 2770 ImmedOffset = -ImmedOffset; 2771 else 2772 ImmedOffset |= 1 << NumBits; 2773 } 2774 ImmOp.ChangeToImmediate(ImmedOffset); 2775 Offset &= ~(Mask*Scale); 2776 } 2777 } 2778 2779 Offset = (isSub) ? -Offset : Offset; 2780 return Offset == 0; 2781 } 2782 2783 /// analyzeCompare - For a comparison instruction, return the source registers 2784 /// in SrcReg and SrcReg2 if having two register operands, and the value it 2785 /// compares against in CmpValue. Return true if the comparison instruction 2786 /// can be analyzed. 2787 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 2788 Register &SrcReg2, int64_t &CmpMask, 2789 int64_t &CmpValue) const { 2790 switch (MI.getOpcode()) { 2791 default: break; 2792 case ARM::CMPri: 2793 case ARM::t2CMPri: 2794 case ARM::tCMPi8: 2795 SrcReg = MI.getOperand(0).getReg(); 2796 SrcReg2 = 0; 2797 CmpMask = ~0; 2798 CmpValue = MI.getOperand(1).getImm(); 2799 return true; 2800 case ARM::CMPrr: 2801 case ARM::t2CMPrr: 2802 case ARM::tCMPr: 2803 SrcReg = MI.getOperand(0).getReg(); 2804 SrcReg2 = MI.getOperand(1).getReg(); 2805 CmpMask = ~0; 2806 CmpValue = 0; 2807 return true; 2808 case ARM::TSTri: 2809 case ARM::t2TSTri: 2810 SrcReg = MI.getOperand(0).getReg(); 2811 SrcReg2 = 0; 2812 CmpMask = MI.getOperand(1).getImm(); 2813 CmpValue = 0; 2814 return true; 2815 } 2816 2817 return false; 2818 } 2819 2820 /// isSuitableForMask - Identify a suitable 'and' instruction that 2821 /// operates on the given source register and applies the same mask 2822 /// as a 'tst' instruction. Provide a limited look-through for copies. 2823 /// When successful, MI will hold the found instruction. 2824 static bool isSuitableForMask(MachineInstr *&MI, Register SrcReg, 2825 int CmpMask, bool CommonUse) { 2826 switch (MI->getOpcode()) { 2827 case ARM::ANDri: 2828 case ARM::t2ANDri: 2829 if (CmpMask != MI->getOperand(2).getImm()) 2830 return false; 2831 if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg()) 2832 return true; 2833 break; 2834 } 2835 2836 return false; 2837 } 2838 2839 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return 2840 /// the condition code if we modify the instructions such that flags are 2841 /// set by ADD(a,b,X). 2842 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) { 2843 switch (CC) { 2844 default: return ARMCC::AL; 2845 case ARMCC::HS: return ARMCC::LO; 2846 case ARMCC::LO: return ARMCC::HS; 2847 case ARMCC::VS: return ARMCC::VS; 2848 case ARMCC::VC: return ARMCC::VC; 2849 } 2850 } 2851 2852 /// isRedundantFlagInstr - check whether the first instruction, whose only 2853 /// purpose is to update flags, can be made redundant. 2854 /// CMPrr can be made redundant by SUBrr if the operands are the same. 2855 /// CMPri can be made redundant by SUBri if the operands are the same. 2856 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X). 2857 /// This function can be extended later on. 2858 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI, 2859 Register SrcReg, Register SrcReg2, 2860 int64_t ImmValue, 2861 const MachineInstr *OI, 2862 bool &IsThumb1) { 2863 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && 2864 (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) && 2865 ((OI->getOperand(1).getReg() == SrcReg && 2866 OI->getOperand(2).getReg() == SrcReg2) || 2867 (OI->getOperand(1).getReg() == SrcReg2 && 2868 OI->getOperand(2).getReg() == SrcReg))) { 2869 IsThumb1 = false; 2870 return true; 2871 } 2872 2873 if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr && 2874 ((OI->getOperand(2).getReg() == SrcReg && 2875 OI->getOperand(3).getReg() == SrcReg2) || 2876 (OI->getOperand(2).getReg() == SrcReg2 && 2877 OI->getOperand(3).getReg() == SrcReg))) { 2878 IsThumb1 = true; 2879 return true; 2880 } 2881 2882 if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) && 2883 (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) && 2884 OI->getOperand(1).getReg() == SrcReg && 2885 OI->getOperand(2).getImm() == ImmValue) { 2886 IsThumb1 = false; 2887 return true; 2888 } 2889 2890 if (CmpI->getOpcode() == ARM::tCMPi8 && 2891 (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) && 2892 OI->getOperand(2).getReg() == SrcReg && 2893 OI->getOperand(3).getImm() == ImmValue) { 2894 IsThumb1 = true; 2895 return true; 2896 } 2897 2898 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && 2899 (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr || 2900 OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) && 2901 OI->getOperand(0).isReg() && OI->getOperand(1).isReg() && 2902 OI->getOperand(0).getReg() == SrcReg && 2903 OI->getOperand(1).getReg() == SrcReg2) { 2904 IsThumb1 = false; 2905 return true; 2906 } 2907 2908 if (CmpI->getOpcode() == ARM::tCMPr && 2909 (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 || 2910 OI->getOpcode() == ARM::tADDrr) && 2911 OI->getOperand(0).getReg() == SrcReg && 2912 OI->getOperand(2).getReg() == SrcReg2) { 2913 IsThumb1 = true; 2914 return true; 2915 } 2916 2917 return false; 2918 } 2919 2920 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) { 2921 switch (MI->getOpcode()) { 2922 default: return false; 2923 case ARM::tLSLri: 2924 case ARM::tLSRri: 2925 case ARM::tLSLrr: 2926 case ARM::tLSRrr: 2927 case ARM::tSUBrr: 2928 case ARM::tADDrr: 2929 case ARM::tADDi3: 2930 case ARM::tADDi8: 2931 case ARM::tSUBi3: 2932 case ARM::tSUBi8: 2933 case ARM::tMUL: 2934 case ARM::tADC: 2935 case ARM::tSBC: 2936 case ARM::tRSB: 2937 case ARM::tAND: 2938 case ARM::tORR: 2939 case ARM::tEOR: 2940 case ARM::tBIC: 2941 case ARM::tMVN: 2942 case ARM::tASRri: 2943 case ARM::tASRrr: 2944 case ARM::tROR: 2945 IsThumb1 = true; 2946 [[fallthrough]]; 2947 case ARM::RSBrr: 2948 case ARM::RSBri: 2949 case ARM::RSCrr: 2950 case ARM::RSCri: 2951 case ARM::ADDrr: 2952 case ARM::ADDri: 2953 case ARM::ADCrr: 2954 case ARM::ADCri: 2955 case ARM::SUBrr: 2956 case ARM::SUBri: 2957 case ARM::SBCrr: 2958 case ARM::SBCri: 2959 case ARM::t2RSBri: 2960 case ARM::t2ADDrr: 2961 case ARM::t2ADDri: 2962 case ARM::t2ADCrr: 2963 case ARM::t2ADCri: 2964 case ARM::t2SUBrr: 2965 case ARM::t2SUBri: 2966 case ARM::t2SBCrr: 2967 case ARM::t2SBCri: 2968 case ARM::ANDrr: 2969 case ARM::ANDri: 2970 case ARM::ANDrsr: 2971 case ARM::ANDrsi: 2972 case ARM::t2ANDrr: 2973 case ARM::t2ANDri: 2974 case ARM::t2ANDrs: 2975 case ARM::ORRrr: 2976 case ARM::ORRri: 2977 case ARM::ORRrsr: 2978 case ARM::ORRrsi: 2979 case ARM::t2ORRrr: 2980 case ARM::t2ORRri: 2981 case ARM::t2ORRrs: 2982 case ARM::EORrr: 2983 case ARM::EORri: 2984 case ARM::EORrsr: 2985 case ARM::EORrsi: 2986 case ARM::t2EORrr: 2987 case ARM::t2EORri: 2988 case ARM::t2EORrs: 2989 case ARM::BICri: 2990 case ARM::BICrr: 2991 case ARM::BICrsi: 2992 case ARM::BICrsr: 2993 case ARM::t2BICri: 2994 case ARM::t2BICrr: 2995 case ARM::t2BICrs: 2996 case ARM::t2LSRri: 2997 case ARM::t2LSRrr: 2998 case ARM::t2LSLri: 2999 case ARM::t2LSLrr: 3000 case ARM::MOVsr: 3001 case ARM::MOVsi: 3002 return true; 3003 } 3004 } 3005 3006 /// optimizeCompareInstr - Convert the instruction supplying the argument to the 3007 /// comparison into one that sets the zero bit in the flags register; 3008 /// Remove a redundant Compare instruction if an earlier instruction can set the 3009 /// flags in the same way as Compare. 3010 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two 3011 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the 3012 /// condition code of instructions which use the flags. 3013 bool ARMBaseInstrInfo::optimizeCompareInstr( 3014 MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t CmpMask, 3015 int64_t CmpValue, const MachineRegisterInfo *MRI) const { 3016 // Get the unique definition of SrcReg. 3017 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 3018 if (!MI) return false; 3019 3020 // Masked compares sometimes use the same register as the corresponding 'and'. 3021 if (CmpMask != ~0) { 3022 if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) { 3023 MI = nullptr; 3024 for (MachineRegisterInfo::use_instr_iterator 3025 UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end(); 3026 UI != UE; ++UI) { 3027 if (UI->getParent() != CmpInstr.getParent()) 3028 continue; 3029 MachineInstr *PotentialAND = &*UI; 3030 if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) || 3031 isPredicated(*PotentialAND)) 3032 continue; 3033 MI = PotentialAND; 3034 break; 3035 } 3036 if (!MI) return false; 3037 } 3038 } 3039 3040 // Get ready to iterate backward from CmpInstr. 3041 MachineBasicBlock::iterator I = CmpInstr, E = MI, 3042 B = CmpInstr.getParent()->begin(); 3043 3044 // Early exit if CmpInstr is at the beginning of the BB. 3045 if (I == B) return false; 3046 3047 // There are two possible candidates which can be changed to set CPSR: 3048 // One is MI, the other is a SUB or ADD instruction. 3049 // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or 3050 // ADDr[ri](r1, r2, X). 3051 // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue). 3052 MachineInstr *SubAdd = nullptr; 3053 if (SrcReg2 != 0) 3054 // MI is not a candidate for CMPrr. 3055 MI = nullptr; 3056 else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) { 3057 // Conservatively refuse to convert an instruction which isn't in the same 3058 // BB as the comparison. 3059 // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate. 3060 // Thus we cannot return here. 3061 if (CmpInstr.getOpcode() == ARM::CMPri || 3062 CmpInstr.getOpcode() == ARM::t2CMPri || 3063 CmpInstr.getOpcode() == ARM::tCMPi8) 3064 MI = nullptr; 3065 else 3066 return false; 3067 } 3068 3069 bool IsThumb1 = false; 3070 if (MI && !isOptimizeCompareCandidate(MI, IsThumb1)) 3071 return false; 3072 3073 // We also want to do this peephole for cases like this: if (a*b == 0), 3074 // and optimise away the CMP instruction from the generated code sequence: 3075 // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values 3076 // resulting from the select instruction, but these MOVS instructions for 3077 // Thumb1 (V6M) are flag setting and are thus preventing this optimisation. 3078 // However, if we only have MOVS instructions in between the CMP and the 3079 // other instruction (the MULS in this example), then the CPSR is dead so we 3080 // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this 3081 // reordering and then continue the analysis hoping we can eliminate the 3082 // CMP. This peephole works on the vregs, so is still in SSA form. As a 3083 // consequence, the movs won't redefine/kill the MUL operands which would 3084 // make this reordering illegal. 3085 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3086 if (MI && IsThumb1) { 3087 --I; 3088 if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) { 3089 bool CanReorder = true; 3090 for (; I != E; --I) { 3091 if (I->getOpcode() != ARM::tMOVi8) { 3092 CanReorder = false; 3093 break; 3094 } 3095 } 3096 if (CanReorder) { 3097 MI = MI->removeFromParent(); 3098 E = CmpInstr; 3099 CmpInstr.getParent()->insert(E, MI); 3100 } 3101 } 3102 I = CmpInstr; 3103 E = MI; 3104 } 3105 3106 // Check that CPSR isn't set between the comparison instruction and the one we 3107 // want to change. At the same time, search for SubAdd. 3108 bool SubAddIsThumb1 = false; 3109 do { 3110 const MachineInstr &Instr = *--I; 3111 3112 // Check whether CmpInstr can be made redundant by the current instruction. 3113 if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr, 3114 SubAddIsThumb1)) { 3115 SubAdd = &*I; 3116 break; 3117 } 3118 3119 // Allow E (which was initially MI) to be SubAdd but do not search before E. 3120 if (I == E) 3121 break; 3122 3123 if (Instr.modifiesRegister(ARM::CPSR, TRI) || 3124 Instr.readsRegister(ARM::CPSR, TRI)) 3125 // This instruction modifies or uses CPSR after the one we want to 3126 // change. We can't do this transformation. 3127 return false; 3128 3129 if (I == B) { 3130 // In some cases, we scan the use-list of an instruction for an AND; 3131 // that AND is in the same BB, but may not be scheduled before the 3132 // corresponding TST. In that case, bail out. 3133 // 3134 // FIXME: We could try to reschedule the AND. 3135 return false; 3136 } 3137 } while (true); 3138 3139 // Return false if no candidates exist. 3140 if (!MI && !SubAdd) 3141 return false; 3142 3143 // If we found a SubAdd, use it as it will be closer to the CMP 3144 if (SubAdd) { 3145 MI = SubAdd; 3146 IsThumb1 = SubAddIsThumb1; 3147 } 3148 3149 // We can't use a predicated instruction - it doesn't always write the flags. 3150 if (isPredicated(*MI)) 3151 return false; 3152 3153 // Scan forward for the use of CPSR 3154 // When checking against MI: if it's a conditional code that requires 3155 // checking of the V bit or C bit, then this is not safe to do. 3156 // It is safe to remove CmpInstr if CPSR is redefined or killed. 3157 // If we are done with the basic block, we need to check whether CPSR is 3158 // live-out. 3159 SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4> 3160 OperandsToUpdate; 3161 bool isSafe = false; 3162 I = CmpInstr; 3163 E = CmpInstr.getParent()->end(); 3164 while (!isSafe && ++I != E) { 3165 const MachineInstr &Instr = *I; 3166 for (unsigned IO = 0, EO = Instr.getNumOperands(); 3167 !isSafe && IO != EO; ++IO) { 3168 const MachineOperand &MO = Instr.getOperand(IO); 3169 if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) { 3170 isSafe = true; 3171 break; 3172 } 3173 if (!MO.isReg() || MO.getReg() != ARM::CPSR) 3174 continue; 3175 if (MO.isDef()) { 3176 isSafe = true; 3177 break; 3178 } 3179 // Condition code is after the operand before CPSR except for VSELs. 3180 ARMCC::CondCodes CC; 3181 bool IsInstrVSel = true; 3182 switch (Instr.getOpcode()) { 3183 default: 3184 IsInstrVSel = false; 3185 CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm(); 3186 break; 3187 case ARM::VSELEQD: 3188 case ARM::VSELEQS: 3189 case ARM::VSELEQH: 3190 CC = ARMCC::EQ; 3191 break; 3192 case ARM::VSELGTD: 3193 case ARM::VSELGTS: 3194 case ARM::VSELGTH: 3195 CC = ARMCC::GT; 3196 break; 3197 case ARM::VSELGED: 3198 case ARM::VSELGES: 3199 case ARM::VSELGEH: 3200 CC = ARMCC::GE; 3201 break; 3202 case ARM::VSELVSD: 3203 case ARM::VSELVSS: 3204 case ARM::VSELVSH: 3205 CC = ARMCC::VS; 3206 break; 3207 } 3208 3209 if (SubAdd) { 3210 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based 3211 // on CMP needs to be updated to be based on SUB. 3212 // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also 3213 // needs to be modified. 3214 // Push the condition code operands to OperandsToUpdate. 3215 // If it is safe to remove CmpInstr, the condition code of these 3216 // operands will be modified. 3217 unsigned Opc = SubAdd->getOpcode(); 3218 bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr || 3219 Opc == ARM::SUBri || Opc == ARM::t2SUBri || 3220 Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 || 3221 Opc == ARM::tSUBi8; 3222 unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2; 3223 if (!IsSub || 3224 (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 && 3225 SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) { 3226 // VSel doesn't support condition code update. 3227 if (IsInstrVSel) 3228 return false; 3229 // Ensure we can swap the condition. 3230 ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC)); 3231 if (NewCC == ARMCC::AL) 3232 return false; 3233 OperandsToUpdate.push_back( 3234 std::make_pair(&((*I).getOperand(IO - 1)), NewCC)); 3235 } 3236 } else { 3237 // No SubAdd, so this is x = <op> y, z; cmp x, 0. 3238 switch (CC) { 3239 case ARMCC::EQ: // Z 3240 case ARMCC::NE: // Z 3241 case ARMCC::MI: // N 3242 case ARMCC::PL: // N 3243 case ARMCC::AL: // none 3244 // CPSR can be used multiple times, we should continue. 3245 break; 3246 case ARMCC::HS: // C 3247 case ARMCC::LO: // C 3248 case ARMCC::VS: // V 3249 case ARMCC::VC: // V 3250 case ARMCC::HI: // C Z 3251 case ARMCC::LS: // C Z 3252 case ARMCC::GE: // N V 3253 case ARMCC::LT: // N V 3254 case ARMCC::GT: // Z N V 3255 case ARMCC::LE: // Z N V 3256 // The instruction uses the V bit or C bit which is not safe. 3257 return false; 3258 } 3259 } 3260 } 3261 } 3262 3263 // If CPSR is not killed nor re-defined, we should check whether it is 3264 // live-out. If it is live-out, do not optimize. 3265 if (!isSafe) { 3266 MachineBasicBlock *MBB = CmpInstr.getParent(); 3267 for (MachineBasicBlock *Succ : MBB->successors()) 3268 if (Succ->isLiveIn(ARM::CPSR)) 3269 return false; 3270 } 3271 3272 // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always 3273 // set CPSR so this is represented as an explicit output) 3274 if (!IsThumb1) { 3275 unsigned CPSRRegNum = MI->getNumExplicitOperands() - 1; 3276 MI->getOperand(CPSRRegNum).setReg(ARM::CPSR); 3277 MI->getOperand(CPSRRegNum).setIsDef(true); 3278 } 3279 assert(!isPredicated(*MI) && "Can't use flags from predicated instruction"); 3280 CmpInstr.eraseFromParent(); 3281 3282 // Modify the condition code of operands in OperandsToUpdate. 3283 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 3284 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 3285 for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++) 3286 OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second); 3287 3288 MI->clearRegisterDeads(ARM::CPSR); 3289 3290 return true; 3291 } 3292 3293 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const { 3294 // Do not sink MI if it might be used to optimize a redundant compare. 3295 // We heuristically only look at the instruction immediately following MI to 3296 // avoid potentially searching the entire basic block. 3297 if (isPredicated(MI)) 3298 return true; 3299 MachineBasicBlock::const_iterator Next = &MI; 3300 ++Next; 3301 Register SrcReg, SrcReg2; 3302 int64_t CmpMask, CmpValue; 3303 bool IsThumb1; 3304 if (Next != MI.getParent()->end() && 3305 analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) && 3306 isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1)) 3307 return false; 3308 return true; 3309 } 3310 3311 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 3312 Register Reg, 3313 MachineRegisterInfo *MRI) const { 3314 // Fold large immediates into add, sub, or, xor. 3315 unsigned DefOpc = DefMI.getOpcode(); 3316 if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm && 3317 DefOpc != ARM::tMOVi32imm) 3318 return false; 3319 if (!DefMI.getOperand(1).isImm()) 3320 // Could be t2MOVi32imm @xx 3321 return false; 3322 3323 if (!MRI->hasOneNonDBGUse(Reg)) 3324 return false; 3325 3326 const MCInstrDesc &DefMCID = DefMI.getDesc(); 3327 if (DefMCID.hasOptionalDef()) { 3328 unsigned NumOps = DefMCID.getNumOperands(); 3329 const MachineOperand &MO = DefMI.getOperand(NumOps - 1); 3330 if (MO.getReg() == ARM::CPSR && !MO.isDead()) 3331 // If DefMI defines CPSR and it is not dead, it's obviously not safe 3332 // to delete DefMI. 3333 return false; 3334 } 3335 3336 const MCInstrDesc &UseMCID = UseMI.getDesc(); 3337 if (UseMCID.hasOptionalDef()) { 3338 unsigned NumOps = UseMCID.getNumOperands(); 3339 if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR) 3340 // If the instruction sets the flag, do not attempt this optimization 3341 // since it may change the semantics of the code. 3342 return false; 3343 } 3344 3345 unsigned UseOpc = UseMI.getOpcode(); 3346 unsigned NewUseOpc = 0; 3347 uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm(); 3348 uint32_t SOImmValV1 = 0, SOImmValV2 = 0; 3349 bool Commute = false; 3350 switch (UseOpc) { 3351 default: return false; 3352 case ARM::SUBrr: 3353 case ARM::ADDrr: 3354 case ARM::ORRrr: 3355 case ARM::EORrr: 3356 case ARM::t2SUBrr: 3357 case ARM::t2ADDrr: 3358 case ARM::t2ORRrr: 3359 case ARM::t2EORrr: { 3360 Commute = UseMI.getOperand(2).getReg() != Reg; 3361 switch (UseOpc) { 3362 default: break; 3363 case ARM::ADDrr: 3364 case ARM::SUBrr: 3365 if (UseOpc == ARM::SUBrr && Commute) 3366 return false; 3367 3368 // ADD/SUB are special because they're essentially the same operation, so 3369 // we can handle a larger range of immediates. 3370 if (ARM_AM::isSOImmTwoPartVal(ImmVal)) 3371 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri; 3372 else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) { 3373 ImmVal = -ImmVal; 3374 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri; 3375 } else 3376 return false; 3377 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 3378 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 3379 break; 3380 case ARM::ORRrr: 3381 case ARM::EORrr: 3382 if (!ARM_AM::isSOImmTwoPartVal(ImmVal)) 3383 return false; 3384 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 3385 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 3386 switch (UseOpc) { 3387 default: break; 3388 case ARM::ORRrr: NewUseOpc = ARM::ORRri; break; 3389 case ARM::EORrr: NewUseOpc = ARM::EORri; break; 3390 } 3391 break; 3392 case ARM::t2ADDrr: 3393 case ARM::t2SUBrr: { 3394 if (UseOpc == ARM::t2SUBrr && Commute) 3395 return false; 3396 3397 // ADD/SUB are special because they're essentially the same operation, so 3398 // we can handle a larger range of immediates. 3399 const bool ToSP = DefMI.getOperand(0).getReg() == ARM::SP; 3400 const unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri; 3401 const unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri; 3402 if (ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 3403 NewUseOpc = UseOpc == ARM::t2ADDrr ? t2ADD : t2SUB; 3404 else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) { 3405 ImmVal = -ImmVal; 3406 NewUseOpc = UseOpc == ARM::t2ADDrr ? t2SUB : t2ADD; 3407 } else 3408 return false; 3409 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 3410 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 3411 break; 3412 } 3413 case ARM::t2ORRrr: 3414 case ARM::t2EORrr: 3415 if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 3416 return false; 3417 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 3418 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 3419 switch (UseOpc) { 3420 default: break; 3421 case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break; 3422 case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break; 3423 } 3424 break; 3425 } 3426 } 3427 } 3428 3429 unsigned OpIdx = Commute ? 2 : 1; 3430 Register Reg1 = UseMI.getOperand(OpIdx).getReg(); 3431 bool isKill = UseMI.getOperand(OpIdx).isKill(); 3432 const TargetRegisterClass *TRC = MRI->getRegClass(Reg); 3433 Register NewReg = MRI->createVirtualRegister(TRC); 3434 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc), 3435 NewReg) 3436 .addReg(Reg1, getKillRegState(isKill)) 3437 .addImm(SOImmValV1) 3438 .add(predOps(ARMCC::AL)) 3439 .add(condCodeOp()); 3440 UseMI.setDesc(get(NewUseOpc)); 3441 UseMI.getOperand(1).setReg(NewReg); 3442 UseMI.getOperand(1).setIsKill(); 3443 UseMI.getOperand(2).ChangeToImmediate(SOImmValV2); 3444 DefMI.eraseFromParent(); 3445 // FIXME: t2ADDrr should be split, as different rulles apply when writing to SP. 3446 // Just as t2ADDri, that was split to [t2ADDri, t2ADDspImm]. 3447 // Then the below code will not be needed, as the input/output register 3448 // classes will be rgpr or gprSP. 3449 // For now, we fix the UseMI operand explicitly here: 3450 switch(NewUseOpc){ 3451 case ARM::t2ADDspImm: 3452 case ARM::t2SUBspImm: 3453 case ARM::t2ADDri: 3454 case ARM::t2SUBri: 3455 MRI->constrainRegClass(UseMI.getOperand(0).getReg(), TRC); 3456 } 3457 return true; 3458 } 3459 3460 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData, 3461 const MachineInstr &MI) { 3462 switch (MI.getOpcode()) { 3463 default: { 3464 const MCInstrDesc &Desc = MI.getDesc(); 3465 int UOps = ItinData->getNumMicroOps(Desc.getSchedClass()); 3466 assert(UOps >= 0 && "bad # UOps"); 3467 return UOps; 3468 } 3469 3470 case ARM::LDRrs: 3471 case ARM::LDRBrs: 3472 case ARM::STRrs: 3473 case ARM::STRBrs: { 3474 unsigned ShOpVal = MI.getOperand(3).getImm(); 3475 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3476 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3477 if (!isSub && 3478 (ShImm == 0 || 3479 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3480 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3481 return 1; 3482 return 2; 3483 } 3484 3485 case ARM::LDRH: 3486 case ARM::STRH: { 3487 if (!MI.getOperand(2).getReg()) 3488 return 1; 3489 3490 unsigned ShOpVal = MI.getOperand(3).getImm(); 3491 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3492 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3493 if (!isSub && 3494 (ShImm == 0 || 3495 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3496 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3497 return 1; 3498 return 2; 3499 } 3500 3501 case ARM::LDRSB: 3502 case ARM::LDRSH: 3503 return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2; 3504 3505 case ARM::LDRSB_POST: 3506 case ARM::LDRSH_POST: { 3507 Register Rt = MI.getOperand(0).getReg(); 3508 Register Rm = MI.getOperand(3).getReg(); 3509 return (Rt == Rm) ? 4 : 3; 3510 } 3511 3512 case ARM::LDR_PRE_REG: 3513 case ARM::LDRB_PRE_REG: { 3514 Register Rt = MI.getOperand(0).getReg(); 3515 Register Rm = MI.getOperand(3).getReg(); 3516 if (Rt == Rm) 3517 return 3; 3518 unsigned ShOpVal = MI.getOperand(4).getImm(); 3519 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3520 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3521 if (!isSub && 3522 (ShImm == 0 || 3523 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3524 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3525 return 2; 3526 return 3; 3527 } 3528 3529 case ARM::STR_PRE_REG: 3530 case ARM::STRB_PRE_REG: { 3531 unsigned ShOpVal = MI.getOperand(4).getImm(); 3532 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3533 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3534 if (!isSub && 3535 (ShImm == 0 || 3536 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3537 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3538 return 2; 3539 return 3; 3540 } 3541 3542 case ARM::LDRH_PRE: 3543 case ARM::STRH_PRE: { 3544 Register Rt = MI.getOperand(0).getReg(); 3545 Register Rm = MI.getOperand(3).getReg(); 3546 if (!Rm) 3547 return 2; 3548 if (Rt == Rm) 3549 return 3; 3550 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2; 3551 } 3552 3553 case ARM::LDR_POST_REG: 3554 case ARM::LDRB_POST_REG: 3555 case ARM::LDRH_POST: { 3556 Register Rt = MI.getOperand(0).getReg(); 3557 Register Rm = MI.getOperand(3).getReg(); 3558 return (Rt == Rm) ? 3 : 2; 3559 } 3560 3561 case ARM::LDR_PRE_IMM: 3562 case ARM::LDRB_PRE_IMM: 3563 case ARM::LDR_POST_IMM: 3564 case ARM::LDRB_POST_IMM: 3565 case ARM::STRB_POST_IMM: 3566 case ARM::STRB_POST_REG: 3567 case ARM::STRB_PRE_IMM: 3568 case ARM::STRH_POST: 3569 case ARM::STR_POST_IMM: 3570 case ARM::STR_POST_REG: 3571 case ARM::STR_PRE_IMM: 3572 return 2; 3573 3574 case ARM::LDRSB_PRE: 3575 case ARM::LDRSH_PRE: { 3576 Register Rm = MI.getOperand(3).getReg(); 3577 if (Rm == 0) 3578 return 3; 3579 Register Rt = MI.getOperand(0).getReg(); 3580 if (Rt == Rm) 3581 return 4; 3582 unsigned ShOpVal = MI.getOperand(4).getImm(); 3583 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3584 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3585 if (!isSub && 3586 (ShImm == 0 || 3587 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3588 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3589 return 3; 3590 return 4; 3591 } 3592 3593 case ARM::LDRD: { 3594 Register Rt = MI.getOperand(0).getReg(); 3595 Register Rn = MI.getOperand(2).getReg(); 3596 Register Rm = MI.getOperand(3).getReg(); 3597 if (Rm) 3598 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 3599 : 3; 3600 return (Rt == Rn) ? 3 : 2; 3601 } 3602 3603 case ARM::STRD: { 3604 Register Rm = MI.getOperand(3).getReg(); 3605 if (Rm) 3606 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 3607 : 3; 3608 return 2; 3609 } 3610 3611 case ARM::LDRD_POST: 3612 case ARM::t2LDRD_POST: 3613 return 3; 3614 3615 case ARM::STRD_POST: 3616 case ARM::t2STRD_POST: 3617 return 4; 3618 3619 case ARM::LDRD_PRE: { 3620 Register Rt = MI.getOperand(0).getReg(); 3621 Register Rn = MI.getOperand(3).getReg(); 3622 Register Rm = MI.getOperand(4).getReg(); 3623 if (Rm) 3624 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 3625 : 4; 3626 return (Rt == Rn) ? 4 : 3; 3627 } 3628 3629 case ARM::t2LDRD_PRE: { 3630 Register Rt = MI.getOperand(0).getReg(); 3631 Register Rn = MI.getOperand(3).getReg(); 3632 return (Rt == Rn) ? 4 : 3; 3633 } 3634 3635 case ARM::STRD_PRE: { 3636 Register Rm = MI.getOperand(4).getReg(); 3637 if (Rm) 3638 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 3639 : 4; 3640 return 3; 3641 } 3642 3643 case ARM::t2STRD_PRE: 3644 return 3; 3645 3646 case ARM::t2LDR_POST: 3647 case ARM::t2LDRB_POST: 3648 case ARM::t2LDRB_PRE: 3649 case ARM::t2LDRSBi12: 3650 case ARM::t2LDRSBi8: 3651 case ARM::t2LDRSBpci: 3652 case ARM::t2LDRSBs: 3653 case ARM::t2LDRH_POST: 3654 case ARM::t2LDRH_PRE: 3655 case ARM::t2LDRSBT: 3656 case ARM::t2LDRSB_POST: 3657 case ARM::t2LDRSB_PRE: 3658 case ARM::t2LDRSH_POST: 3659 case ARM::t2LDRSH_PRE: 3660 case ARM::t2LDRSHi12: 3661 case ARM::t2LDRSHi8: 3662 case ARM::t2LDRSHpci: 3663 case ARM::t2LDRSHs: 3664 return 2; 3665 3666 case ARM::t2LDRDi8: { 3667 Register Rt = MI.getOperand(0).getReg(); 3668 Register Rn = MI.getOperand(2).getReg(); 3669 return (Rt == Rn) ? 3 : 2; 3670 } 3671 3672 case ARM::t2STRB_POST: 3673 case ARM::t2STRB_PRE: 3674 case ARM::t2STRBs: 3675 case ARM::t2STRDi8: 3676 case ARM::t2STRH_POST: 3677 case ARM::t2STRH_PRE: 3678 case ARM::t2STRHs: 3679 case ARM::t2STR_POST: 3680 case ARM::t2STR_PRE: 3681 case ARM::t2STRs: 3682 return 2; 3683 } 3684 } 3685 3686 // Return the number of 32-bit words loaded by LDM or stored by STM. If this 3687 // can't be easily determined return 0 (missing MachineMemOperand). 3688 // 3689 // FIXME: The current MachineInstr design does not support relying on machine 3690 // mem operands to determine the width of a memory access. Instead, we expect 3691 // the target to provide this information based on the instruction opcode and 3692 // operands. However, using MachineMemOperand is the best solution now for 3693 // two reasons: 3694 // 3695 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI 3696 // operands. This is much more dangerous than using the MachineMemOperand 3697 // sizes because CodeGen passes can insert/remove optional machine operands. In 3698 // fact, it's totally incorrect for preRA passes and appears to be wrong for 3699 // postRA passes as well. 3700 // 3701 // 2) getNumLDMAddresses is only used by the scheduling machine model and any 3702 // machine model that calls this should handle the unknown (zero size) case. 3703 // 3704 // Long term, we should require a target hook that verifies MachineMemOperand 3705 // sizes during MC lowering. That target hook should be local to MC lowering 3706 // because we can't ensure that it is aware of other MI forms. Doing this will 3707 // ensure that MachineMemOperands are correctly propagated through all passes. 3708 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const { 3709 unsigned Size = 0; 3710 for (MachineInstr::mmo_iterator I = MI.memoperands_begin(), 3711 E = MI.memoperands_end(); 3712 I != E; ++I) { 3713 Size += (*I)->getSize(); 3714 } 3715 // FIXME: The scheduler currently can't handle values larger than 16. But 3716 // the values can actually go up to 32 for floating-point load/store 3717 // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory 3718 // operations isn't right; we could end up with "extra" memory operands for 3719 // various reasons, like tail merge merging two memory operations. 3720 return std::min(Size / 4, 16U); 3721 } 3722 3723 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc, 3724 unsigned NumRegs) { 3725 unsigned UOps = 1 + NumRegs; // 1 for address computation. 3726 switch (Opc) { 3727 default: 3728 break; 3729 case ARM::VLDMDIA_UPD: 3730 case ARM::VLDMDDB_UPD: 3731 case ARM::VLDMSIA_UPD: 3732 case ARM::VLDMSDB_UPD: 3733 case ARM::VSTMDIA_UPD: 3734 case ARM::VSTMDDB_UPD: 3735 case ARM::VSTMSIA_UPD: 3736 case ARM::VSTMSDB_UPD: 3737 case ARM::LDMIA_UPD: 3738 case ARM::LDMDA_UPD: 3739 case ARM::LDMDB_UPD: 3740 case ARM::LDMIB_UPD: 3741 case ARM::STMIA_UPD: 3742 case ARM::STMDA_UPD: 3743 case ARM::STMDB_UPD: 3744 case ARM::STMIB_UPD: 3745 case ARM::tLDMIA_UPD: 3746 case ARM::tSTMIA_UPD: 3747 case ARM::t2LDMIA_UPD: 3748 case ARM::t2LDMDB_UPD: 3749 case ARM::t2STMIA_UPD: 3750 case ARM::t2STMDB_UPD: 3751 ++UOps; // One for base register writeback. 3752 break; 3753 case ARM::LDMIA_RET: 3754 case ARM::tPOP_RET: 3755 case ARM::t2LDMIA_RET: 3756 UOps += 2; // One for base reg wb, one for write to pc. 3757 break; 3758 } 3759 return UOps; 3760 } 3761 3762 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 3763 const MachineInstr &MI) const { 3764 if (!ItinData || ItinData->isEmpty()) 3765 return 1; 3766 3767 const MCInstrDesc &Desc = MI.getDesc(); 3768 unsigned Class = Desc.getSchedClass(); 3769 int ItinUOps = ItinData->getNumMicroOps(Class); 3770 if (ItinUOps >= 0) { 3771 if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore())) 3772 return getNumMicroOpsSwiftLdSt(ItinData, MI); 3773 3774 return ItinUOps; 3775 } 3776 3777 unsigned Opc = MI.getOpcode(); 3778 switch (Opc) { 3779 default: 3780 llvm_unreachable("Unexpected multi-uops instruction!"); 3781 case ARM::VLDMQIA: 3782 case ARM::VSTMQIA: 3783 return 2; 3784 3785 // The number of uOps for load / store multiple are determined by the number 3786 // registers. 3787 // 3788 // On Cortex-A8, each pair of register loads / stores can be scheduled on the 3789 // same cycle. The scheduling for the first load / store must be done 3790 // separately by assuming the address is not 64-bit aligned. 3791 // 3792 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address 3793 // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON 3794 // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1. 3795 case ARM::VLDMDIA: 3796 case ARM::VLDMDIA_UPD: 3797 case ARM::VLDMDDB_UPD: 3798 case ARM::VLDMSIA: 3799 case ARM::VLDMSIA_UPD: 3800 case ARM::VLDMSDB_UPD: 3801 case ARM::VSTMDIA: 3802 case ARM::VSTMDIA_UPD: 3803 case ARM::VSTMDDB_UPD: 3804 case ARM::VSTMSIA: 3805 case ARM::VSTMSIA_UPD: 3806 case ARM::VSTMSDB_UPD: { 3807 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands(); 3808 return (NumRegs / 2) + (NumRegs % 2) + 1; 3809 } 3810 3811 case ARM::LDMIA_RET: 3812 case ARM::LDMIA: 3813 case ARM::LDMDA: 3814 case ARM::LDMDB: 3815 case ARM::LDMIB: 3816 case ARM::LDMIA_UPD: 3817 case ARM::LDMDA_UPD: 3818 case ARM::LDMDB_UPD: 3819 case ARM::LDMIB_UPD: 3820 case ARM::STMIA: 3821 case ARM::STMDA: 3822 case ARM::STMDB: 3823 case ARM::STMIB: 3824 case ARM::STMIA_UPD: 3825 case ARM::STMDA_UPD: 3826 case ARM::STMDB_UPD: 3827 case ARM::STMIB_UPD: 3828 case ARM::tLDMIA: 3829 case ARM::tLDMIA_UPD: 3830 case ARM::tSTMIA_UPD: 3831 case ARM::tPOP_RET: 3832 case ARM::tPOP: 3833 case ARM::tPUSH: 3834 case ARM::t2LDMIA_RET: 3835 case ARM::t2LDMIA: 3836 case ARM::t2LDMDB: 3837 case ARM::t2LDMIA_UPD: 3838 case ARM::t2LDMDB_UPD: 3839 case ARM::t2STMIA: 3840 case ARM::t2STMDB: 3841 case ARM::t2STMIA_UPD: 3842 case ARM::t2STMDB_UPD: { 3843 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1; 3844 switch (Subtarget.getLdStMultipleTiming()) { 3845 case ARMSubtarget::SingleIssuePlusExtras: 3846 return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs); 3847 case ARMSubtarget::SingleIssue: 3848 // Assume the worst. 3849 return NumRegs; 3850 case ARMSubtarget::DoubleIssue: { 3851 if (NumRegs < 4) 3852 return 2; 3853 // 4 registers would be issued: 2, 2. 3854 // 5 registers would be issued: 2, 2, 1. 3855 unsigned UOps = (NumRegs / 2); 3856 if (NumRegs % 2) 3857 ++UOps; 3858 return UOps; 3859 } 3860 case ARMSubtarget::DoubleIssueCheckUnalignedAccess: { 3861 unsigned UOps = (NumRegs / 2); 3862 // If there are odd number of registers or if it's not 64-bit aligned, 3863 // then it takes an extra AGU (Address Generation Unit) cycle. 3864 if ((NumRegs % 2) || !MI.hasOneMemOperand() || 3865 (*MI.memoperands_begin())->getAlign() < Align(8)) 3866 ++UOps; 3867 return UOps; 3868 } 3869 } 3870 } 3871 } 3872 llvm_unreachable("Didn't find the number of microops"); 3873 } 3874 3875 std::optional<unsigned> 3876 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData, 3877 const MCInstrDesc &DefMCID, unsigned DefClass, 3878 unsigned DefIdx, unsigned DefAlign) const { 3879 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3880 if (RegNo <= 0) 3881 // Def is the address writeback. 3882 return ItinData->getOperandCycle(DefClass, DefIdx); 3883 3884 unsigned DefCycle; 3885 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3886 // (regno / 2) + (regno % 2) + 1 3887 DefCycle = RegNo / 2 + 1; 3888 if (RegNo % 2) 3889 ++DefCycle; 3890 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3891 DefCycle = RegNo; 3892 bool isSLoad = false; 3893 3894 switch (DefMCID.getOpcode()) { 3895 default: break; 3896 case ARM::VLDMSIA: 3897 case ARM::VLDMSIA_UPD: 3898 case ARM::VLDMSDB_UPD: 3899 isSLoad = true; 3900 break; 3901 } 3902 3903 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3904 // then it takes an extra cycle. 3905 if ((isSLoad && (RegNo % 2)) || DefAlign < 8) 3906 ++DefCycle; 3907 } else { 3908 // Assume the worst. 3909 DefCycle = RegNo + 2; 3910 } 3911 3912 return DefCycle; 3913 } 3914 3915 std::optional<unsigned> 3916 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData, 3917 const MCInstrDesc &DefMCID, unsigned DefClass, 3918 unsigned DefIdx, unsigned DefAlign) const { 3919 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3920 if (RegNo <= 0) 3921 // Def is the address writeback. 3922 return ItinData->getOperandCycle(DefClass, DefIdx); 3923 3924 unsigned DefCycle; 3925 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3926 // 4 registers would be issued: 1, 2, 1. 3927 // 5 registers would be issued: 1, 2, 2. 3928 DefCycle = RegNo / 2; 3929 if (DefCycle < 1) 3930 DefCycle = 1; 3931 // Result latency is issue cycle + 2: E2. 3932 DefCycle += 2; 3933 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3934 DefCycle = (RegNo / 2); 3935 // If there are odd number of registers or if it's not 64-bit aligned, 3936 // then it takes an extra AGU (Address Generation Unit) cycle. 3937 if ((RegNo % 2) || DefAlign < 8) 3938 ++DefCycle; 3939 // Result latency is AGU cycles + 2. 3940 DefCycle += 2; 3941 } else { 3942 // Assume the worst. 3943 DefCycle = RegNo + 2; 3944 } 3945 3946 return DefCycle; 3947 } 3948 3949 std::optional<unsigned> 3950 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData, 3951 const MCInstrDesc &UseMCID, unsigned UseClass, 3952 unsigned UseIdx, unsigned UseAlign) const { 3953 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3954 if (RegNo <= 0) 3955 return ItinData->getOperandCycle(UseClass, UseIdx); 3956 3957 unsigned UseCycle; 3958 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3959 // (regno / 2) + (regno % 2) + 1 3960 UseCycle = RegNo / 2 + 1; 3961 if (RegNo % 2) 3962 ++UseCycle; 3963 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3964 UseCycle = RegNo; 3965 bool isSStore = false; 3966 3967 switch (UseMCID.getOpcode()) { 3968 default: break; 3969 case ARM::VSTMSIA: 3970 case ARM::VSTMSIA_UPD: 3971 case ARM::VSTMSDB_UPD: 3972 isSStore = true; 3973 break; 3974 } 3975 3976 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3977 // then it takes an extra cycle. 3978 if ((isSStore && (RegNo % 2)) || UseAlign < 8) 3979 ++UseCycle; 3980 } else { 3981 // Assume the worst. 3982 UseCycle = RegNo + 2; 3983 } 3984 3985 return UseCycle; 3986 } 3987 3988 std::optional<unsigned> 3989 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData, 3990 const MCInstrDesc &UseMCID, unsigned UseClass, 3991 unsigned UseIdx, unsigned UseAlign) const { 3992 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3993 if (RegNo <= 0) 3994 return ItinData->getOperandCycle(UseClass, UseIdx); 3995 3996 unsigned UseCycle; 3997 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3998 UseCycle = RegNo / 2; 3999 if (UseCycle < 2) 4000 UseCycle = 2; 4001 // Read in E3. 4002 UseCycle += 2; 4003 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 4004 UseCycle = (RegNo / 2); 4005 // If there are odd number of registers or if it's not 64-bit aligned, 4006 // then it takes an extra AGU (Address Generation Unit) cycle. 4007 if ((RegNo % 2) || UseAlign < 8) 4008 ++UseCycle; 4009 } else { 4010 // Assume the worst. 4011 UseCycle = 1; 4012 } 4013 return UseCycle; 4014 } 4015 4016 std::optional<unsigned> ARMBaseInstrInfo::getOperandLatency( 4017 const InstrItineraryData *ItinData, const MCInstrDesc &DefMCID, 4018 unsigned DefIdx, unsigned DefAlign, const MCInstrDesc &UseMCID, 4019 unsigned UseIdx, unsigned UseAlign) const { 4020 unsigned DefClass = DefMCID.getSchedClass(); 4021 unsigned UseClass = UseMCID.getSchedClass(); 4022 4023 if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands()) 4024 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 4025 4026 // This may be a def / use of a variable_ops instruction, the operand 4027 // latency might be determinable dynamically. Let the target try to 4028 // figure it out. 4029 std::optional<unsigned> DefCycle; 4030 bool LdmBypass = false; 4031 switch (DefMCID.getOpcode()) { 4032 default: 4033 DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 4034 break; 4035 4036 case ARM::VLDMDIA: 4037 case ARM::VLDMDIA_UPD: 4038 case ARM::VLDMDDB_UPD: 4039 case ARM::VLDMSIA: 4040 case ARM::VLDMSIA_UPD: 4041 case ARM::VLDMSDB_UPD: 4042 DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 4043 break; 4044 4045 case ARM::LDMIA_RET: 4046 case ARM::LDMIA: 4047 case ARM::LDMDA: 4048 case ARM::LDMDB: 4049 case ARM::LDMIB: 4050 case ARM::LDMIA_UPD: 4051 case ARM::LDMDA_UPD: 4052 case ARM::LDMDB_UPD: 4053 case ARM::LDMIB_UPD: 4054 case ARM::tLDMIA: 4055 case ARM::tLDMIA_UPD: 4056 case ARM::tPUSH: 4057 case ARM::t2LDMIA_RET: 4058 case ARM::t2LDMIA: 4059 case ARM::t2LDMDB: 4060 case ARM::t2LDMIA_UPD: 4061 case ARM::t2LDMDB_UPD: 4062 LdmBypass = true; 4063 DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 4064 break; 4065 } 4066 4067 if (!DefCycle) 4068 // We can't seem to determine the result latency of the def, assume it's 2. 4069 DefCycle = 2; 4070 4071 std::optional<unsigned> UseCycle; 4072 switch (UseMCID.getOpcode()) { 4073 default: 4074 UseCycle = ItinData->getOperandCycle(UseClass, UseIdx); 4075 break; 4076 4077 case ARM::VSTMDIA: 4078 case ARM::VSTMDIA_UPD: 4079 case ARM::VSTMDDB_UPD: 4080 case ARM::VSTMSIA: 4081 case ARM::VSTMSIA_UPD: 4082 case ARM::VSTMSDB_UPD: 4083 UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 4084 break; 4085 4086 case ARM::STMIA: 4087 case ARM::STMDA: 4088 case ARM::STMDB: 4089 case ARM::STMIB: 4090 case ARM::STMIA_UPD: 4091 case ARM::STMDA_UPD: 4092 case ARM::STMDB_UPD: 4093 case ARM::STMIB_UPD: 4094 case ARM::tSTMIA_UPD: 4095 case ARM::tPOP_RET: 4096 case ARM::tPOP: 4097 case ARM::t2STMIA: 4098 case ARM::t2STMDB: 4099 case ARM::t2STMIA_UPD: 4100 case ARM::t2STMDB_UPD: 4101 UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 4102 break; 4103 } 4104 4105 if (!UseCycle) 4106 // Assume it's read in the first stage. 4107 UseCycle = 1; 4108 4109 if (UseCycle > *DefCycle + 1) 4110 return std::nullopt; 4111 4112 UseCycle = *DefCycle - *UseCycle + 1; 4113 if (UseCycle > 0u) { 4114 if (LdmBypass) { 4115 // It's a variable_ops instruction so we can't use DefIdx here. Just use 4116 // first def operand. 4117 if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1, 4118 UseClass, UseIdx)) 4119 UseCycle = *UseCycle - 1; 4120 } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx, 4121 UseClass, UseIdx)) { 4122 UseCycle = *UseCycle - 1; 4123 } 4124 } 4125 4126 return UseCycle; 4127 } 4128 4129 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI, 4130 const MachineInstr *MI, unsigned Reg, 4131 unsigned &DefIdx, unsigned &Dist) { 4132 Dist = 0; 4133 4134 MachineBasicBlock::const_iterator I = MI; ++I; 4135 MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator()); 4136 assert(II->isInsideBundle() && "Empty bundle?"); 4137 4138 int Idx = -1; 4139 while (II->isInsideBundle()) { 4140 Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI); 4141 if (Idx != -1) 4142 break; 4143 --II; 4144 ++Dist; 4145 } 4146 4147 assert(Idx != -1 && "Cannot find bundled definition!"); 4148 DefIdx = Idx; 4149 return &*II; 4150 } 4151 4152 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI, 4153 const MachineInstr &MI, unsigned Reg, 4154 unsigned &UseIdx, unsigned &Dist) { 4155 Dist = 0; 4156 4157 MachineBasicBlock::const_instr_iterator II = ++MI.getIterator(); 4158 assert(II->isInsideBundle() && "Empty bundle?"); 4159 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 4160 4161 // FIXME: This doesn't properly handle multiple uses. 4162 int Idx = -1; 4163 while (II != E && II->isInsideBundle()) { 4164 Idx = II->findRegisterUseOperandIdx(Reg, false, TRI); 4165 if (Idx != -1) 4166 break; 4167 if (II->getOpcode() != ARM::t2IT) 4168 ++Dist; 4169 ++II; 4170 } 4171 4172 if (Idx == -1) { 4173 Dist = 0; 4174 return nullptr; 4175 } 4176 4177 UseIdx = Idx; 4178 return &*II; 4179 } 4180 4181 /// Return the number of cycles to add to (or subtract from) the static 4182 /// itinerary based on the def opcode and alignment. The caller will ensure that 4183 /// adjusted latency is at least one cycle. 4184 static int adjustDefLatency(const ARMSubtarget &Subtarget, 4185 const MachineInstr &DefMI, 4186 const MCInstrDesc &DefMCID, unsigned DefAlign) { 4187 int Adjust = 0; 4188 if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) { 4189 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 4190 // variants are one cycle cheaper. 4191 switch (DefMCID.getOpcode()) { 4192 default: break; 4193 case ARM::LDRrs: 4194 case ARM::LDRBrs: { 4195 unsigned ShOpVal = DefMI.getOperand(3).getImm(); 4196 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4197 if (ShImm == 0 || 4198 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4199 --Adjust; 4200 break; 4201 } 4202 case ARM::t2LDRs: 4203 case ARM::t2LDRBs: 4204 case ARM::t2LDRHs: 4205 case ARM::t2LDRSHs: { 4206 // Thumb2 mode: lsl only. 4207 unsigned ShAmt = DefMI.getOperand(3).getImm(); 4208 if (ShAmt == 0 || ShAmt == 2) 4209 --Adjust; 4210 break; 4211 } 4212 } 4213 } else if (Subtarget.isSwift()) { 4214 // FIXME: Properly handle all of the latency adjustments for address 4215 // writeback. 4216 switch (DefMCID.getOpcode()) { 4217 default: break; 4218 case ARM::LDRrs: 4219 case ARM::LDRBrs: { 4220 unsigned ShOpVal = DefMI.getOperand(3).getImm(); 4221 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 4222 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4223 if (!isSub && 4224 (ShImm == 0 || 4225 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 4226 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 4227 Adjust -= 2; 4228 else if (!isSub && 4229 ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 4230 --Adjust; 4231 break; 4232 } 4233 case ARM::t2LDRs: 4234 case ARM::t2LDRBs: 4235 case ARM::t2LDRHs: 4236 case ARM::t2LDRSHs: { 4237 // Thumb2 mode: lsl only. 4238 unsigned ShAmt = DefMI.getOperand(3).getImm(); 4239 if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3) 4240 Adjust -= 2; 4241 break; 4242 } 4243 } 4244 } 4245 4246 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) { 4247 switch (DefMCID.getOpcode()) { 4248 default: break; 4249 case ARM::VLD1q8: 4250 case ARM::VLD1q16: 4251 case ARM::VLD1q32: 4252 case ARM::VLD1q64: 4253 case ARM::VLD1q8wb_fixed: 4254 case ARM::VLD1q16wb_fixed: 4255 case ARM::VLD1q32wb_fixed: 4256 case ARM::VLD1q64wb_fixed: 4257 case ARM::VLD1q8wb_register: 4258 case ARM::VLD1q16wb_register: 4259 case ARM::VLD1q32wb_register: 4260 case ARM::VLD1q64wb_register: 4261 case ARM::VLD2d8: 4262 case ARM::VLD2d16: 4263 case ARM::VLD2d32: 4264 case ARM::VLD2q8: 4265 case ARM::VLD2q16: 4266 case ARM::VLD2q32: 4267 case ARM::VLD2d8wb_fixed: 4268 case ARM::VLD2d16wb_fixed: 4269 case ARM::VLD2d32wb_fixed: 4270 case ARM::VLD2q8wb_fixed: 4271 case ARM::VLD2q16wb_fixed: 4272 case ARM::VLD2q32wb_fixed: 4273 case ARM::VLD2d8wb_register: 4274 case ARM::VLD2d16wb_register: 4275 case ARM::VLD2d32wb_register: 4276 case ARM::VLD2q8wb_register: 4277 case ARM::VLD2q16wb_register: 4278 case ARM::VLD2q32wb_register: 4279 case ARM::VLD3d8: 4280 case ARM::VLD3d16: 4281 case ARM::VLD3d32: 4282 case ARM::VLD1d64T: 4283 case ARM::VLD3d8_UPD: 4284 case ARM::VLD3d16_UPD: 4285 case ARM::VLD3d32_UPD: 4286 case ARM::VLD1d64Twb_fixed: 4287 case ARM::VLD1d64Twb_register: 4288 case ARM::VLD3q8_UPD: 4289 case ARM::VLD3q16_UPD: 4290 case ARM::VLD3q32_UPD: 4291 case ARM::VLD4d8: 4292 case ARM::VLD4d16: 4293 case ARM::VLD4d32: 4294 case ARM::VLD1d64Q: 4295 case ARM::VLD4d8_UPD: 4296 case ARM::VLD4d16_UPD: 4297 case ARM::VLD4d32_UPD: 4298 case ARM::VLD1d64Qwb_fixed: 4299 case ARM::VLD1d64Qwb_register: 4300 case ARM::VLD4q8_UPD: 4301 case ARM::VLD4q16_UPD: 4302 case ARM::VLD4q32_UPD: 4303 case ARM::VLD1DUPq8: 4304 case ARM::VLD1DUPq16: 4305 case ARM::VLD1DUPq32: 4306 case ARM::VLD1DUPq8wb_fixed: 4307 case ARM::VLD1DUPq16wb_fixed: 4308 case ARM::VLD1DUPq32wb_fixed: 4309 case ARM::VLD1DUPq8wb_register: 4310 case ARM::VLD1DUPq16wb_register: 4311 case ARM::VLD1DUPq32wb_register: 4312 case ARM::VLD2DUPd8: 4313 case ARM::VLD2DUPd16: 4314 case ARM::VLD2DUPd32: 4315 case ARM::VLD2DUPd8wb_fixed: 4316 case ARM::VLD2DUPd16wb_fixed: 4317 case ARM::VLD2DUPd32wb_fixed: 4318 case ARM::VLD2DUPd8wb_register: 4319 case ARM::VLD2DUPd16wb_register: 4320 case ARM::VLD2DUPd32wb_register: 4321 case ARM::VLD4DUPd8: 4322 case ARM::VLD4DUPd16: 4323 case ARM::VLD4DUPd32: 4324 case ARM::VLD4DUPd8_UPD: 4325 case ARM::VLD4DUPd16_UPD: 4326 case ARM::VLD4DUPd32_UPD: 4327 case ARM::VLD1LNd8: 4328 case ARM::VLD1LNd16: 4329 case ARM::VLD1LNd32: 4330 case ARM::VLD1LNd8_UPD: 4331 case ARM::VLD1LNd16_UPD: 4332 case ARM::VLD1LNd32_UPD: 4333 case ARM::VLD2LNd8: 4334 case ARM::VLD2LNd16: 4335 case ARM::VLD2LNd32: 4336 case ARM::VLD2LNq16: 4337 case ARM::VLD2LNq32: 4338 case ARM::VLD2LNd8_UPD: 4339 case ARM::VLD2LNd16_UPD: 4340 case ARM::VLD2LNd32_UPD: 4341 case ARM::VLD2LNq16_UPD: 4342 case ARM::VLD2LNq32_UPD: 4343 case ARM::VLD4LNd8: 4344 case ARM::VLD4LNd16: 4345 case ARM::VLD4LNd32: 4346 case ARM::VLD4LNq16: 4347 case ARM::VLD4LNq32: 4348 case ARM::VLD4LNd8_UPD: 4349 case ARM::VLD4LNd16_UPD: 4350 case ARM::VLD4LNd32_UPD: 4351 case ARM::VLD4LNq16_UPD: 4352 case ARM::VLD4LNq32_UPD: 4353 // If the address is not 64-bit aligned, the latencies of these 4354 // instructions increases by one. 4355 ++Adjust; 4356 break; 4357 } 4358 } 4359 return Adjust; 4360 } 4361 4362 std::optional<unsigned> ARMBaseInstrInfo::getOperandLatency( 4363 const InstrItineraryData *ItinData, const MachineInstr &DefMI, 4364 unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const { 4365 // No operand latency. The caller may fall back to getInstrLatency. 4366 if (!ItinData || ItinData->isEmpty()) 4367 return std::nullopt; 4368 4369 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 4370 Register Reg = DefMO.getReg(); 4371 4372 const MachineInstr *ResolvedDefMI = &DefMI; 4373 unsigned DefAdj = 0; 4374 if (DefMI.isBundle()) 4375 ResolvedDefMI = 4376 getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj); 4377 if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() || 4378 ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) { 4379 return 1; 4380 } 4381 4382 const MachineInstr *ResolvedUseMI = &UseMI; 4383 unsigned UseAdj = 0; 4384 if (UseMI.isBundle()) { 4385 ResolvedUseMI = 4386 getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj); 4387 if (!ResolvedUseMI) 4388 return std::nullopt; 4389 } 4390 4391 return getOperandLatencyImpl( 4392 ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO, 4393 Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj); 4394 } 4395 4396 std::optional<unsigned> ARMBaseInstrInfo::getOperandLatencyImpl( 4397 const InstrItineraryData *ItinData, const MachineInstr &DefMI, 4398 unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj, 4399 const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI, 4400 unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const { 4401 if (Reg == ARM::CPSR) { 4402 if (DefMI.getOpcode() == ARM::FMSTAT) { 4403 // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?) 4404 return Subtarget.isLikeA9() ? 1 : 20; 4405 } 4406 4407 // CPSR set and branch can be paired in the same cycle. 4408 if (UseMI.isBranch()) 4409 return 0; 4410 4411 // Otherwise it takes the instruction latency (generally one). 4412 unsigned Latency = getInstrLatency(ItinData, DefMI); 4413 4414 // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to 4415 // its uses. Instructions which are otherwise scheduled between them may 4416 // incur a code size penalty (not able to use the CPSR setting 16-bit 4417 // instructions). 4418 if (Latency > 0 && Subtarget.isThumb2()) { 4419 const MachineFunction *MF = DefMI.getParent()->getParent(); 4420 // FIXME: Use Function::hasOptSize(). 4421 if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize)) 4422 --Latency; 4423 } 4424 return Latency; 4425 } 4426 4427 if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit()) 4428 return std::nullopt; 4429 4430 unsigned DefAlign = DefMI.hasOneMemOperand() 4431 ? (*DefMI.memoperands_begin())->getAlign().value() 4432 : 0; 4433 unsigned UseAlign = UseMI.hasOneMemOperand() 4434 ? (*UseMI.memoperands_begin())->getAlign().value() 4435 : 0; 4436 4437 // Get the itinerary's latency if possible, and handle variable_ops. 4438 std::optional<unsigned> Latency = getOperandLatency( 4439 ItinData, DefMCID, DefIdx, DefAlign, UseMCID, UseIdx, UseAlign); 4440 // Unable to find operand latency. The caller may resort to getInstrLatency. 4441 if (!Latency) 4442 return std::nullopt; 4443 4444 // Adjust for IT block position. 4445 int Adj = DefAdj + UseAdj; 4446 4447 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4448 Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign); 4449 if (Adj >= 0 || (int)*Latency > -Adj) { 4450 return *Latency + Adj; 4451 } 4452 // Return the itinerary latency, which may be zero but not less than zero. 4453 return Latency; 4454 } 4455 4456 std::optional<unsigned> 4457 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4458 SDNode *DefNode, unsigned DefIdx, 4459 SDNode *UseNode, unsigned UseIdx) const { 4460 if (!DefNode->isMachineOpcode()) 4461 return 1; 4462 4463 const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode()); 4464 4465 if (isZeroCost(DefMCID.Opcode)) 4466 return 0; 4467 4468 if (!ItinData || ItinData->isEmpty()) 4469 return DefMCID.mayLoad() ? 3 : 1; 4470 4471 if (!UseNode->isMachineOpcode()) { 4472 std::optional<unsigned> Latency = 4473 ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx); 4474 int Adj = Subtarget.getPreISelOperandLatencyAdjustment(); 4475 int Threshold = 1 + Adj; 4476 return !Latency || Latency <= (unsigned)Threshold ? 1 : *Latency - Adj; 4477 } 4478 4479 const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode()); 4480 auto *DefMN = cast<MachineSDNode>(DefNode); 4481 unsigned DefAlign = !DefMN->memoperands_empty() 4482 ? (*DefMN->memoperands_begin())->getAlign().value() 4483 : 0; 4484 auto *UseMN = cast<MachineSDNode>(UseNode); 4485 unsigned UseAlign = !UseMN->memoperands_empty() 4486 ? (*UseMN->memoperands_begin())->getAlign().value() 4487 : 0; 4488 std::optional<unsigned> Latency = getOperandLatency( 4489 ItinData, DefMCID, DefIdx, DefAlign, UseMCID, UseIdx, UseAlign); 4490 if (!Latency) 4491 return std::nullopt; 4492 4493 if (Latency > 1U && 4494 (Subtarget.isCortexA8() || Subtarget.isLikeA9() || 4495 Subtarget.isCortexA7())) { 4496 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 4497 // variants are one cycle cheaper. 4498 switch (DefMCID.getOpcode()) { 4499 default: break; 4500 case ARM::LDRrs: 4501 case ARM::LDRBrs: { 4502 unsigned ShOpVal = DefNode->getConstantOperandVal(2); 4503 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4504 if (ShImm == 0 || 4505 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4506 Latency = *Latency - 1; 4507 break; 4508 } 4509 case ARM::t2LDRs: 4510 case ARM::t2LDRBs: 4511 case ARM::t2LDRHs: 4512 case ARM::t2LDRSHs: { 4513 // Thumb2 mode: lsl only. 4514 unsigned ShAmt = DefNode->getConstantOperandVal(2); 4515 if (ShAmt == 0 || ShAmt == 2) 4516 Latency = *Latency - 1; 4517 break; 4518 } 4519 } 4520 } else if (DefIdx == 0 && Latency > 2U && Subtarget.isSwift()) { 4521 // FIXME: Properly handle all of the latency adjustments for address 4522 // writeback. 4523 switch (DefMCID.getOpcode()) { 4524 default: break; 4525 case ARM::LDRrs: 4526 case ARM::LDRBrs: { 4527 unsigned ShOpVal = DefNode->getConstantOperandVal(2); 4528 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4529 if (ShImm == 0 || 4530 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 4531 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4532 Latency = *Latency - 2; 4533 else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 4534 Latency = *Latency - 1; 4535 break; 4536 } 4537 case ARM::t2LDRs: 4538 case ARM::t2LDRBs: 4539 case ARM::t2LDRHs: 4540 case ARM::t2LDRSHs: 4541 // Thumb2 mode: lsl 0-3 only. 4542 Latency = *Latency - 2; 4543 break; 4544 } 4545 } 4546 4547 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) 4548 switch (DefMCID.getOpcode()) { 4549 default: break; 4550 case ARM::VLD1q8: 4551 case ARM::VLD1q16: 4552 case ARM::VLD1q32: 4553 case ARM::VLD1q64: 4554 case ARM::VLD1q8wb_register: 4555 case ARM::VLD1q16wb_register: 4556 case ARM::VLD1q32wb_register: 4557 case ARM::VLD1q64wb_register: 4558 case ARM::VLD1q8wb_fixed: 4559 case ARM::VLD1q16wb_fixed: 4560 case ARM::VLD1q32wb_fixed: 4561 case ARM::VLD1q64wb_fixed: 4562 case ARM::VLD2d8: 4563 case ARM::VLD2d16: 4564 case ARM::VLD2d32: 4565 case ARM::VLD2q8Pseudo: 4566 case ARM::VLD2q16Pseudo: 4567 case ARM::VLD2q32Pseudo: 4568 case ARM::VLD2d8wb_fixed: 4569 case ARM::VLD2d16wb_fixed: 4570 case ARM::VLD2d32wb_fixed: 4571 case ARM::VLD2q8PseudoWB_fixed: 4572 case ARM::VLD2q16PseudoWB_fixed: 4573 case ARM::VLD2q32PseudoWB_fixed: 4574 case ARM::VLD2d8wb_register: 4575 case ARM::VLD2d16wb_register: 4576 case ARM::VLD2d32wb_register: 4577 case ARM::VLD2q8PseudoWB_register: 4578 case ARM::VLD2q16PseudoWB_register: 4579 case ARM::VLD2q32PseudoWB_register: 4580 case ARM::VLD3d8Pseudo: 4581 case ARM::VLD3d16Pseudo: 4582 case ARM::VLD3d32Pseudo: 4583 case ARM::VLD1d8TPseudo: 4584 case ARM::VLD1d16TPseudo: 4585 case ARM::VLD1d32TPseudo: 4586 case ARM::VLD1d64TPseudo: 4587 case ARM::VLD1d64TPseudoWB_fixed: 4588 case ARM::VLD1d64TPseudoWB_register: 4589 case ARM::VLD3d8Pseudo_UPD: 4590 case ARM::VLD3d16Pseudo_UPD: 4591 case ARM::VLD3d32Pseudo_UPD: 4592 case ARM::VLD3q8Pseudo_UPD: 4593 case ARM::VLD3q16Pseudo_UPD: 4594 case ARM::VLD3q32Pseudo_UPD: 4595 case ARM::VLD3q8oddPseudo: 4596 case ARM::VLD3q16oddPseudo: 4597 case ARM::VLD3q32oddPseudo: 4598 case ARM::VLD3q8oddPseudo_UPD: 4599 case ARM::VLD3q16oddPseudo_UPD: 4600 case ARM::VLD3q32oddPseudo_UPD: 4601 case ARM::VLD4d8Pseudo: 4602 case ARM::VLD4d16Pseudo: 4603 case ARM::VLD4d32Pseudo: 4604 case ARM::VLD1d8QPseudo: 4605 case ARM::VLD1d16QPseudo: 4606 case ARM::VLD1d32QPseudo: 4607 case ARM::VLD1d64QPseudo: 4608 case ARM::VLD1d64QPseudoWB_fixed: 4609 case ARM::VLD1d64QPseudoWB_register: 4610 case ARM::VLD1q8HighQPseudo: 4611 case ARM::VLD1q8LowQPseudo_UPD: 4612 case ARM::VLD1q8HighTPseudo: 4613 case ARM::VLD1q8LowTPseudo_UPD: 4614 case ARM::VLD1q16HighQPseudo: 4615 case ARM::VLD1q16LowQPseudo_UPD: 4616 case ARM::VLD1q16HighTPseudo: 4617 case ARM::VLD1q16LowTPseudo_UPD: 4618 case ARM::VLD1q32HighQPseudo: 4619 case ARM::VLD1q32LowQPseudo_UPD: 4620 case ARM::VLD1q32HighTPseudo: 4621 case ARM::VLD1q32LowTPseudo_UPD: 4622 case ARM::VLD1q64HighQPseudo: 4623 case ARM::VLD1q64LowQPseudo_UPD: 4624 case ARM::VLD1q64HighTPseudo: 4625 case ARM::VLD1q64LowTPseudo_UPD: 4626 case ARM::VLD4d8Pseudo_UPD: 4627 case ARM::VLD4d16Pseudo_UPD: 4628 case ARM::VLD4d32Pseudo_UPD: 4629 case ARM::VLD4q8Pseudo_UPD: 4630 case ARM::VLD4q16Pseudo_UPD: 4631 case ARM::VLD4q32Pseudo_UPD: 4632 case ARM::VLD4q8oddPseudo: 4633 case ARM::VLD4q16oddPseudo: 4634 case ARM::VLD4q32oddPseudo: 4635 case ARM::VLD4q8oddPseudo_UPD: 4636 case ARM::VLD4q16oddPseudo_UPD: 4637 case ARM::VLD4q32oddPseudo_UPD: 4638 case ARM::VLD1DUPq8: 4639 case ARM::VLD1DUPq16: 4640 case ARM::VLD1DUPq32: 4641 case ARM::VLD1DUPq8wb_fixed: 4642 case ARM::VLD1DUPq16wb_fixed: 4643 case ARM::VLD1DUPq32wb_fixed: 4644 case ARM::VLD1DUPq8wb_register: 4645 case ARM::VLD1DUPq16wb_register: 4646 case ARM::VLD1DUPq32wb_register: 4647 case ARM::VLD2DUPd8: 4648 case ARM::VLD2DUPd16: 4649 case ARM::VLD2DUPd32: 4650 case ARM::VLD2DUPd8wb_fixed: 4651 case ARM::VLD2DUPd16wb_fixed: 4652 case ARM::VLD2DUPd32wb_fixed: 4653 case ARM::VLD2DUPd8wb_register: 4654 case ARM::VLD2DUPd16wb_register: 4655 case ARM::VLD2DUPd32wb_register: 4656 case ARM::VLD2DUPq8EvenPseudo: 4657 case ARM::VLD2DUPq8OddPseudo: 4658 case ARM::VLD2DUPq16EvenPseudo: 4659 case ARM::VLD2DUPq16OddPseudo: 4660 case ARM::VLD2DUPq32EvenPseudo: 4661 case ARM::VLD2DUPq32OddPseudo: 4662 case ARM::VLD3DUPq8EvenPseudo: 4663 case ARM::VLD3DUPq8OddPseudo: 4664 case ARM::VLD3DUPq16EvenPseudo: 4665 case ARM::VLD3DUPq16OddPseudo: 4666 case ARM::VLD3DUPq32EvenPseudo: 4667 case ARM::VLD3DUPq32OddPseudo: 4668 case ARM::VLD4DUPd8Pseudo: 4669 case ARM::VLD4DUPd16Pseudo: 4670 case ARM::VLD4DUPd32Pseudo: 4671 case ARM::VLD4DUPd8Pseudo_UPD: 4672 case ARM::VLD4DUPd16Pseudo_UPD: 4673 case ARM::VLD4DUPd32Pseudo_UPD: 4674 case ARM::VLD4DUPq8EvenPseudo: 4675 case ARM::VLD4DUPq8OddPseudo: 4676 case ARM::VLD4DUPq16EvenPseudo: 4677 case ARM::VLD4DUPq16OddPseudo: 4678 case ARM::VLD4DUPq32EvenPseudo: 4679 case ARM::VLD4DUPq32OddPseudo: 4680 case ARM::VLD1LNq8Pseudo: 4681 case ARM::VLD1LNq16Pseudo: 4682 case ARM::VLD1LNq32Pseudo: 4683 case ARM::VLD1LNq8Pseudo_UPD: 4684 case ARM::VLD1LNq16Pseudo_UPD: 4685 case ARM::VLD1LNq32Pseudo_UPD: 4686 case ARM::VLD2LNd8Pseudo: 4687 case ARM::VLD2LNd16Pseudo: 4688 case ARM::VLD2LNd32Pseudo: 4689 case ARM::VLD2LNq16Pseudo: 4690 case ARM::VLD2LNq32Pseudo: 4691 case ARM::VLD2LNd8Pseudo_UPD: 4692 case ARM::VLD2LNd16Pseudo_UPD: 4693 case ARM::VLD2LNd32Pseudo_UPD: 4694 case ARM::VLD2LNq16Pseudo_UPD: 4695 case ARM::VLD2LNq32Pseudo_UPD: 4696 case ARM::VLD4LNd8Pseudo: 4697 case ARM::VLD4LNd16Pseudo: 4698 case ARM::VLD4LNd32Pseudo: 4699 case ARM::VLD4LNq16Pseudo: 4700 case ARM::VLD4LNq32Pseudo: 4701 case ARM::VLD4LNd8Pseudo_UPD: 4702 case ARM::VLD4LNd16Pseudo_UPD: 4703 case ARM::VLD4LNd32Pseudo_UPD: 4704 case ARM::VLD4LNq16Pseudo_UPD: 4705 case ARM::VLD4LNq32Pseudo_UPD: 4706 // If the address is not 64-bit aligned, the latencies of these 4707 // instructions increases by one. 4708 Latency = *Latency + 1; 4709 break; 4710 } 4711 4712 return Latency; 4713 } 4714 4715 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const { 4716 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || 4717 MI.isImplicitDef()) 4718 return 0; 4719 4720 if (MI.isBundle()) 4721 return 0; 4722 4723 const MCInstrDesc &MCID = MI.getDesc(); 4724 4725 if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && 4726 !Subtarget.cheapPredicableCPSRDef())) { 4727 // When predicated, CPSR is an additional source operand for CPSR updating 4728 // instructions, this apparently increases their latencies. 4729 return 1; 4730 } 4731 return 0; 4732 } 4733 4734 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4735 const MachineInstr &MI, 4736 unsigned *PredCost) const { 4737 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || 4738 MI.isImplicitDef()) 4739 return 1; 4740 4741 // An instruction scheduler typically runs on unbundled instructions, however 4742 // other passes may query the latency of a bundled instruction. 4743 if (MI.isBundle()) { 4744 unsigned Latency = 0; 4745 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 4746 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 4747 while (++I != E && I->isInsideBundle()) { 4748 if (I->getOpcode() != ARM::t2IT) 4749 Latency += getInstrLatency(ItinData, *I, PredCost); 4750 } 4751 return Latency; 4752 } 4753 4754 const MCInstrDesc &MCID = MI.getDesc(); 4755 if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && 4756 !Subtarget.cheapPredicableCPSRDef()))) { 4757 // When predicated, CPSR is an additional source operand for CPSR updating 4758 // instructions, this apparently increases their latencies. 4759 *PredCost = 1; 4760 } 4761 // Be sure to call getStageLatency for an empty itinerary in case it has a 4762 // valid MinLatency property. 4763 if (!ItinData) 4764 return MI.mayLoad() ? 3 : 1; 4765 4766 unsigned Class = MCID.getSchedClass(); 4767 4768 // For instructions with variable uops, use uops as latency. 4769 if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0) 4770 return getNumMicroOps(ItinData, MI); 4771 4772 // For the common case, fall back on the itinerary's latency. 4773 unsigned Latency = ItinData->getStageLatency(Class); 4774 4775 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4776 unsigned DefAlign = 4777 MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlign().value() : 0; 4778 int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign); 4779 if (Adj >= 0 || (int)Latency > -Adj) { 4780 return Latency + Adj; 4781 } 4782 return Latency; 4783 } 4784 4785 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4786 SDNode *Node) const { 4787 if (!Node->isMachineOpcode()) 4788 return 1; 4789 4790 if (!ItinData || ItinData->isEmpty()) 4791 return 1; 4792 4793 unsigned Opcode = Node->getMachineOpcode(); 4794 switch (Opcode) { 4795 default: 4796 return ItinData->getStageLatency(get(Opcode).getSchedClass()); 4797 case ARM::VLDMQIA: 4798 case ARM::VSTMQIA: 4799 return 2; 4800 } 4801 } 4802 4803 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, 4804 const MachineRegisterInfo *MRI, 4805 const MachineInstr &DefMI, 4806 unsigned DefIdx, 4807 const MachineInstr &UseMI, 4808 unsigned UseIdx) const { 4809 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; 4810 unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask; 4811 if (Subtarget.nonpipelinedVFP() && 4812 (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP)) 4813 return true; 4814 4815 // Hoist VFP / NEON instructions with 4 or higher latency. 4816 unsigned Latency = 4817 SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx); 4818 if (Latency <= 3) 4819 return false; 4820 return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON || 4821 UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON; 4822 } 4823 4824 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, 4825 const MachineInstr &DefMI, 4826 unsigned DefIdx) const { 4827 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); 4828 if (!ItinData || ItinData->isEmpty()) 4829 return false; 4830 4831 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; 4832 if (DDomain == ARMII::DomainGeneral) { 4833 unsigned DefClass = DefMI.getDesc().getSchedClass(); 4834 std::optional<unsigned> DefCycle = 4835 ItinData->getOperandCycle(DefClass, DefIdx); 4836 return DefCycle && DefCycle <= 2U; 4837 } 4838 return false; 4839 } 4840 4841 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI, 4842 StringRef &ErrInfo) const { 4843 if (convertAddSubFlagsOpcode(MI.getOpcode())) { 4844 ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG"; 4845 return false; 4846 } 4847 if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) { 4848 // Make sure we don't generate a lo-lo mov that isn't supported. 4849 if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) && 4850 !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) { 4851 ErrInfo = "Non-flag-setting Thumb1 mov is v6-only"; 4852 return false; 4853 } 4854 } 4855 if (MI.getOpcode() == ARM::tPUSH || 4856 MI.getOpcode() == ARM::tPOP || 4857 MI.getOpcode() == ARM::tPOP_RET) { 4858 for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), 2)) { 4859 if (MO.isImplicit() || !MO.isReg()) 4860 continue; 4861 Register Reg = MO.getReg(); 4862 if (Reg < ARM::R0 || Reg > ARM::R7) { 4863 if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) && 4864 !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) { 4865 ErrInfo = "Unsupported register in Thumb1 push/pop"; 4866 return false; 4867 } 4868 } 4869 } 4870 } 4871 if (MI.getOpcode() == ARM::MVE_VMOV_q_rr) { 4872 assert(MI.getOperand(4).isImm() && MI.getOperand(5).isImm()); 4873 if ((MI.getOperand(4).getImm() != 2 && MI.getOperand(4).getImm() != 3) || 4874 MI.getOperand(4).getImm() != MI.getOperand(5).getImm() + 2) { 4875 ErrInfo = "Incorrect array index for MVE_VMOV_q_rr"; 4876 return false; 4877 } 4878 } 4879 4880 // Check the address model by taking the first Imm operand and checking it is 4881 // legal for that addressing mode. 4882 ARMII::AddrMode AddrMode = 4883 (ARMII::AddrMode)(MI.getDesc().TSFlags & ARMII::AddrModeMask); 4884 switch (AddrMode) { 4885 default: 4886 break; 4887 case ARMII::AddrModeT2_i7: 4888 case ARMII::AddrModeT2_i7s2: 4889 case ARMII::AddrModeT2_i7s4: 4890 case ARMII::AddrModeT2_i8: 4891 case ARMII::AddrModeT2_i8pos: 4892 case ARMII::AddrModeT2_i8neg: 4893 case ARMII::AddrModeT2_i8s4: 4894 case ARMII::AddrModeT2_i12: { 4895 uint32_t Imm = 0; 4896 for (auto Op : MI.operands()) { 4897 if (Op.isImm()) { 4898 Imm = Op.getImm(); 4899 break; 4900 } 4901 } 4902 if (!isLegalAddressImm(MI.getOpcode(), Imm, this)) { 4903 ErrInfo = "Incorrect AddrMode Imm for instruction"; 4904 return false; 4905 } 4906 break; 4907 } 4908 } 4909 return true; 4910 } 4911 4912 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI, 4913 unsigned LoadImmOpc, 4914 unsigned LoadOpc) const { 4915 assert(!Subtarget.isROPI() && !Subtarget.isRWPI() && 4916 "ROPI/RWPI not currently supported with stack guard"); 4917 4918 MachineBasicBlock &MBB = *MI->getParent(); 4919 DebugLoc DL = MI->getDebugLoc(); 4920 Register Reg = MI->getOperand(0).getReg(); 4921 MachineInstrBuilder MIB; 4922 unsigned int Offset = 0; 4923 4924 if (LoadImmOpc == ARM::MRC || LoadImmOpc == ARM::t2MRC) { 4925 assert(!Subtarget.isReadTPSoft() && 4926 "TLS stack protector requires hardware TLS register"); 4927 4928 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) 4929 .addImm(15) 4930 .addImm(0) 4931 .addImm(13) 4932 .addImm(0) 4933 .addImm(3) 4934 .add(predOps(ARMCC::AL)); 4935 4936 Module &M = *MBB.getParent()->getFunction().getParent(); 4937 Offset = M.getStackProtectorGuardOffset(); 4938 if (Offset & ~0xfffU) { 4939 // The offset won't fit in the LDR's 12-bit immediate field, so emit an 4940 // extra ADD to cover the delta. This gives us a guaranteed 8 additional 4941 // bits, resulting in a range of 0 to +1 MiB for the guard offset. 4942 unsigned AddOpc = (LoadImmOpc == ARM::MRC) ? ARM::ADDri : ARM::t2ADDri; 4943 BuildMI(MBB, MI, DL, get(AddOpc), Reg) 4944 .addReg(Reg, RegState::Kill) 4945 .addImm(Offset & ~0xfffU) 4946 .add(predOps(ARMCC::AL)) 4947 .addReg(0); 4948 Offset &= 0xfffU; 4949 } 4950 } else { 4951 const GlobalValue *GV = 4952 cast<GlobalValue>((*MI->memoperands_begin())->getValue()); 4953 bool IsIndirect = Subtarget.isGVIndirectSymbol(GV); 4954 4955 unsigned TargetFlags = ARMII::MO_NO_FLAG; 4956 if (Subtarget.isTargetMachO()) { 4957 TargetFlags |= ARMII::MO_NONLAZY; 4958 } else if (Subtarget.isTargetCOFF()) { 4959 if (GV->hasDLLImportStorageClass()) 4960 TargetFlags |= ARMII::MO_DLLIMPORT; 4961 else if (IsIndirect) 4962 TargetFlags |= ARMII::MO_COFFSTUB; 4963 } else if (IsIndirect) { 4964 TargetFlags |= ARMII::MO_GOT; 4965 } 4966 4967 if (LoadImmOpc == ARM::tMOVi32imm) { // Thumb-1 execute-only 4968 Register CPSRSaveReg = ARM::R12; // Use R12 as scratch register 4969 auto APSREncoding = 4970 ARMSysReg::lookupMClassSysRegByName("apsr_nzcvq")->Encoding; 4971 BuildMI(MBB, MI, DL, get(ARM::t2MRS_M), CPSRSaveReg) 4972 .addImm(APSREncoding) 4973 .add(predOps(ARMCC::AL)); 4974 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) 4975 .addGlobalAddress(GV, 0, TargetFlags); 4976 BuildMI(MBB, MI, DL, get(ARM::t2MSR_M)) 4977 .addImm(APSREncoding) 4978 .addReg(CPSRSaveReg, RegState::Kill) 4979 .add(predOps(ARMCC::AL)); 4980 } else { 4981 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) 4982 .addGlobalAddress(GV, 0, TargetFlags); 4983 } 4984 4985 if (IsIndirect) { 4986 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4987 MIB.addReg(Reg, RegState::Kill).addImm(0); 4988 auto Flags = MachineMemOperand::MOLoad | 4989 MachineMemOperand::MODereferenceable | 4990 MachineMemOperand::MOInvariant; 4991 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( 4992 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, Align(4)); 4993 MIB.addMemOperand(MMO).add(predOps(ARMCC::AL)); 4994 } 4995 } 4996 4997 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4998 MIB.addReg(Reg, RegState::Kill) 4999 .addImm(Offset) 5000 .cloneMemRefs(*MI) 5001 .add(predOps(ARMCC::AL)); 5002 } 5003 5004 bool 5005 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc, 5006 unsigned &AddSubOpc, 5007 bool &NegAcc, bool &HasLane) const { 5008 DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode); 5009 if (I == MLxEntryMap.end()) 5010 return false; 5011 5012 const ARM_MLxEntry &Entry = ARM_MLxTable[I->second]; 5013 MulOpc = Entry.MulOpc; 5014 AddSubOpc = Entry.AddSubOpc; 5015 NegAcc = Entry.NegAcc; 5016 HasLane = Entry.HasLane; 5017 return true; 5018 } 5019 5020 //===----------------------------------------------------------------------===// 5021 // Execution domains. 5022 //===----------------------------------------------------------------------===// 5023 // 5024 // Some instructions go down the NEON pipeline, some go down the VFP pipeline, 5025 // and some can go down both. The vmov instructions go down the VFP pipeline, 5026 // but they can be changed to vorr equivalents that are executed by the NEON 5027 // pipeline. 5028 // 5029 // We use the following execution domain numbering: 5030 // 5031 enum ARMExeDomain { 5032 ExeGeneric = 0, 5033 ExeVFP = 1, 5034 ExeNEON = 2 5035 }; 5036 5037 // 5038 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h 5039 // 5040 std::pair<uint16_t, uint16_t> 5041 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const { 5042 // If we don't have access to NEON instructions then we won't be able 5043 // to swizzle anything to the NEON domain. Check to make sure. 5044 if (Subtarget.hasNEON()) { 5045 // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON 5046 // if they are not predicated. 5047 if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI)) 5048 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 5049 5050 // CortexA9 is particularly picky about mixing the two and wants these 5051 // converted. 5052 if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) && 5053 (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR || 5054 MI.getOpcode() == ARM::VMOVS)) 5055 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 5056 } 5057 // No other instructions can be swizzled, so just determine their domain. 5058 unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask; 5059 5060 if (Domain & ARMII::DomainNEON) 5061 return std::make_pair(ExeNEON, 0); 5062 5063 // Certain instructions can go either way on Cortex-A8. 5064 // Treat them as NEON instructions. 5065 if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8()) 5066 return std::make_pair(ExeNEON, 0); 5067 5068 if (Domain & ARMII::DomainVFP) 5069 return std::make_pair(ExeVFP, 0); 5070 5071 return std::make_pair(ExeGeneric, 0); 5072 } 5073 5074 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI, 5075 unsigned SReg, unsigned &Lane) { 5076 unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass); 5077 Lane = 0; 5078 5079 if (DReg != ARM::NoRegister) 5080 return DReg; 5081 5082 Lane = 1; 5083 DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass); 5084 5085 assert(DReg && "S-register with no D super-register?"); 5086 return DReg; 5087 } 5088 5089 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane, 5090 /// set ImplicitSReg to a register number that must be marked as implicit-use or 5091 /// zero if no register needs to be defined as implicit-use. 5092 /// 5093 /// If the function cannot determine if an SPR should be marked implicit use or 5094 /// not, it returns false. 5095 /// 5096 /// This function handles cases where an instruction is being modified from taking 5097 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict 5098 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other 5099 /// lane of the DPR). 5100 /// 5101 /// If the other SPR is defined, an implicit-use of it should be added. Else, 5102 /// (including the case where the DPR itself is defined), it should not. 5103 /// 5104 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI, 5105 MachineInstr &MI, unsigned DReg, 5106 unsigned Lane, unsigned &ImplicitSReg) { 5107 // If the DPR is defined or used already, the other SPR lane will be chained 5108 // correctly, so there is nothing to be done. 5109 if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) { 5110 ImplicitSReg = 0; 5111 return true; 5112 } 5113 5114 // Otherwise we need to go searching to see if the SPR is set explicitly. 5115 ImplicitSReg = TRI->getSubReg(DReg, 5116 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1); 5117 MachineBasicBlock::LivenessQueryResult LQR = 5118 MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI); 5119 5120 if (LQR == MachineBasicBlock::LQR_Live) 5121 return true; 5122 else if (LQR == MachineBasicBlock::LQR_Unknown) 5123 return false; 5124 5125 // If the register is known not to be live, there is no need to add an 5126 // implicit-use. 5127 ImplicitSReg = 0; 5128 return true; 5129 } 5130 5131 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI, 5132 unsigned Domain) const { 5133 unsigned DstReg, SrcReg, DReg; 5134 unsigned Lane; 5135 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 5136 const TargetRegisterInfo *TRI = &getRegisterInfo(); 5137 switch (MI.getOpcode()) { 5138 default: 5139 llvm_unreachable("cannot handle opcode!"); 5140 break; 5141 case ARM::VMOVD: 5142 if (Domain != ExeNEON) 5143 break; 5144 5145 // Zap the predicate operands. 5146 assert(!isPredicated(MI) && "Cannot predicate a VORRd"); 5147 5148 // Make sure we've got NEON instructions. 5149 assert(Subtarget.hasNEON() && "VORRd requires NEON"); 5150 5151 // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits) 5152 DstReg = MI.getOperand(0).getReg(); 5153 SrcReg = MI.getOperand(1).getReg(); 5154 5155 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5156 MI.removeOperand(i - 1); 5157 5158 // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits) 5159 MI.setDesc(get(ARM::VORRd)); 5160 MIB.addReg(DstReg, RegState::Define) 5161 .addReg(SrcReg) 5162 .addReg(SrcReg) 5163 .add(predOps(ARMCC::AL)); 5164 break; 5165 case ARM::VMOVRS: 5166 if (Domain != ExeNEON) 5167 break; 5168 assert(!isPredicated(MI) && "Cannot predicate a VGETLN"); 5169 5170 // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits) 5171 DstReg = MI.getOperand(0).getReg(); 5172 SrcReg = MI.getOperand(1).getReg(); 5173 5174 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5175 MI.removeOperand(i - 1); 5176 5177 DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane); 5178 5179 // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps) 5180 // Note that DSrc has been widened and the other lane may be undef, which 5181 // contaminates the entire register. 5182 MI.setDesc(get(ARM::VGETLNi32)); 5183 MIB.addReg(DstReg, RegState::Define) 5184 .addReg(DReg, RegState::Undef) 5185 .addImm(Lane) 5186 .add(predOps(ARMCC::AL)); 5187 5188 // The old source should be an implicit use, otherwise we might think it 5189 // was dead before here. 5190 MIB.addReg(SrcReg, RegState::Implicit); 5191 break; 5192 case ARM::VMOVSR: { 5193 if (Domain != ExeNEON) 5194 break; 5195 assert(!isPredicated(MI) && "Cannot predicate a VSETLN"); 5196 5197 // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits) 5198 DstReg = MI.getOperand(0).getReg(); 5199 SrcReg = MI.getOperand(1).getReg(); 5200 5201 DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane); 5202 5203 unsigned ImplicitSReg; 5204 if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg)) 5205 break; 5206 5207 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5208 MI.removeOperand(i - 1); 5209 5210 // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps) 5211 // Again DDst may be undefined at the beginning of this instruction. 5212 MI.setDesc(get(ARM::VSETLNi32)); 5213 MIB.addReg(DReg, RegState::Define) 5214 .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI))) 5215 .addReg(SrcReg) 5216 .addImm(Lane) 5217 .add(predOps(ARMCC::AL)); 5218 5219 // The narrower destination must be marked as set to keep previous chains 5220 // in place. 5221 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 5222 if (ImplicitSReg != 0) 5223 MIB.addReg(ImplicitSReg, RegState::Implicit); 5224 break; 5225 } 5226 case ARM::VMOVS: { 5227 if (Domain != ExeNEON) 5228 break; 5229 5230 // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits) 5231 DstReg = MI.getOperand(0).getReg(); 5232 SrcReg = MI.getOperand(1).getReg(); 5233 5234 unsigned DstLane = 0, SrcLane = 0, DDst, DSrc; 5235 DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane); 5236 DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane); 5237 5238 unsigned ImplicitSReg; 5239 if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg)) 5240 break; 5241 5242 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5243 MI.removeOperand(i - 1); 5244 5245 if (DSrc == DDst) { 5246 // Destination can be: 5247 // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits) 5248 MI.setDesc(get(ARM::VDUPLN32d)); 5249 MIB.addReg(DDst, RegState::Define) 5250 .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI))) 5251 .addImm(SrcLane) 5252 .add(predOps(ARMCC::AL)); 5253 5254 // Neither the source or the destination are naturally represented any 5255 // more, so add them in manually. 5256 MIB.addReg(DstReg, RegState::Implicit | RegState::Define); 5257 MIB.addReg(SrcReg, RegState::Implicit); 5258 if (ImplicitSReg != 0) 5259 MIB.addReg(ImplicitSReg, RegState::Implicit); 5260 break; 5261 } 5262 5263 // In general there's no single instruction that can perform an S <-> S 5264 // move in NEON space, but a pair of VEXT instructions *can* do the 5265 // job. It turns out that the VEXTs needed will only use DSrc once, with 5266 // the position based purely on the combination of lane-0 and lane-1 5267 // involved. For example 5268 // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1 5269 // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1 5270 // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1 5271 // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1 5272 // 5273 // Pattern of the MachineInstrs is: 5274 // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits) 5275 MachineInstrBuilder NewMIB; 5276 NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32), 5277 DDst); 5278 5279 // On the first instruction, both DSrc and DDst may be undef if present. 5280 // Specifically when the original instruction didn't have them as an 5281 // <imp-use>. 5282 unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst; 5283 bool CurUndef = !MI.readsRegister(CurReg, TRI); 5284 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)); 5285 5286 CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst; 5287 CurUndef = !MI.readsRegister(CurReg, TRI); 5288 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)) 5289 .addImm(1) 5290 .add(predOps(ARMCC::AL)); 5291 5292 if (SrcLane == DstLane) 5293 NewMIB.addReg(SrcReg, RegState::Implicit); 5294 5295 MI.setDesc(get(ARM::VEXTd32)); 5296 MIB.addReg(DDst, RegState::Define); 5297 5298 // On the second instruction, DDst has definitely been defined above, so 5299 // it is not undef. DSrc, if present, can be undef as above. 5300 CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst; 5301 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); 5302 MIB.addReg(CurReg, getUndefRegState(CurUndef)); 5303 5304 CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst; 5305 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); 5306 MIB.addReg(CurReg, getUndefRegState(CurUndef)) 5307 .addImm(1) 5308 .add(predOps(ARMCC::AL)); 5309 5310 if (SrcLane != DstLane) 5311 MIB.addReg(SrcReg, RegState::Implicit); 5312 5313 // As before, the original destination is no longer represented, add it 5314 // implicitly. 5315 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 5316 if (ImplicitSReg != 0) 5317 MIB.addReg(ImplicitSReg, RegState::Implicit); 5318 break; 5319 } 5320 } 5321 } 5322 5323 //===----------------------------------------------------------------------===// 5324 // Partial register updates 5325 //===----------------------------------------------------------------------===// 5326 // 5327 // Swift renames NEON registers with 64-bit granularity. That means any 5328 // instruction writing an S-reg implicitly reads the containing D-reg. The 5329 // problem is mostly avoided by translating f32 operations to v2f32 operations 5330 // on D-registers, but f32 loads are still a problem. 5331 // 5332 // These instructions can load an f32 into a NEON register: 5333 // 5334 // VLDRS - Only writes S, partial D update. 5335 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops. 5336 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops. 5337 // 5338 // FCONSTD can be used as a dependency-breaking instruction. 5339 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance( 5340 const MachineInstr &MI, unsigned OpNum, 5341 const TargetRegisterInfo *TRI) const { 5342 auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance(); 5343 if (!PartialUpdateClearance) 5344 return 0; 5345 5346 assert(TRI && "Need TRI instance"); 5347 5348 const MachineOperand &MO = MI.getOperand(OpNum); 5349 if (MO.readsReg()) 5350 return 0; 5351 Register Reg = MO.getReg(); 5352 int UseOp = -1; 5353 5354 switch (MI.getOpcode()) { 5355 // Normal instructions writing only an S-register. 5356 case ARM::VLDRS: 5357 case ARM::FCONSTS: 5358 case ARM::VMOVSR: 5359 case ARM::VMOVv8i8: 5360 case ARM::VMOVv4i16: 5361 case ARM::VMOVv2i32: 5362 case ARM::VMOVv2f32: 5363 case ARM::VMOVv1i64: 5364 UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI); 5365 break; 5366 5367 // Explicitly reads the dependency. 5368 case ARM::VLD1LNd32: 5369 UseOp = 3; 5370 break; 5371 default: 5372 return 0; 5373 } 5374 5375 // If this instruction actually reads a value from Reg, there is no unwanted 5376 // dependency. 5377 if (UseOp != -1 && MI.getOperand(UseOp).readsReg()) 5378 return 0; 5379 5380 // We must be able to clobber the whole D-reg. 5381 if (Reg.isVirtual()) { 5382 // Virtual register must be a def undef foo:ssub_0 operand. 5383 if (!MO.getSubReg() || MI.readsVirtualRegister(Reg)) 5384 return 0; 5385 } else if (ARM::SPRRegClass.contains(Reg)) { 5386 // Physical register: MI must define the full D-reg. 5387 unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0, 5388 &ARM::DPRRegClass); 5389 if (!DReg || !MI.definesRegister(DReg, TRI)) 5390 return 0; 5391 } 5392 5393 // MI has an unwanted D-register dependency. 5394 // Avoid defs in the previous N instructrions. 5395 return PartialUpdateClearance; 5396 } 5397 5398 // Break a partial register dependency after getPartialRegUpdateClearance 5399 // returned non-zero. 5400 void ARMBaseInstrInfo::breakPartialRegDependency( 5401 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { 5402 assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def"); 5403 assert(TRI && "Need TRI instance"); 5404 5405 const MachineOperand &MO = MI.getOperand(OpNum); 5406 Register Reg = MO.getReg(); 5407 assert(Reg.isPhysical() && "Can't break virtual register dependencies."); 5408 unsigned DReg = Reg; 5409 5410 // If MI defines an S-reg, find the corresponding D super-register. 5411 if (ARM::SPRRegClass.contains(Reg)) { 5412 DReg = ARM::D0 + (Reg - ARM::S0) / 2; 5413 assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken"); 5414 } 5415 5416 assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps"); 5417 assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg"); 5418 5419 // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines 5420 // the full D-register by loading the same value to both lanes. The 5421 // instruction is micro-coded with 2 uops, so don't do this until we can 5422 // properly schedule micro-coded instructions. The dispatcher stalls cause 5423 // too big regressions. 5424 5425 // Insert the dependency-breaking FCONSTD before MI. 5426 // 96 is the encoding of 0.5, but the actual value doesn't matter here. 5427 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg) 5428 .addImm(96) 5429 .add(predOps(ARMCC::AL)); 5430 MI.addRegisterKilled(DReg, TRI, true); 5431 } 5432 5433 bool ARMBaseInstrInfo::hasNOP() const { 5434 return Subtarget.hasFeature(ARM::HasV6KOps); 5435 } 5436 5437 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const { 5438 if (MI->getNumOperands() < 4) 5439 return true; 5440 unsigned ShOpVal = MI->getOperand(3).getImm(); 5441 unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal); 5442 // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1. 5443 if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) || 5444 ((ShImm == 1 || ShImm == 2) && 5445 ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl)) 5446 return true; 5447 5448 return false; 5449 } 5450 5451 bool ARMBaseInstrInfo::getRegSequenceLikeInputs( 5452 const MachineInstr &MI, unsigned DefIdx, 5453 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 5454 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5455 assert(MI.isRegSequenceLike() && "Invalid kind of instruction"); 5456 5457 switch (MI.getOpcode()) { 5458 case ARM::VMOVDRR: 5459 // dX = VMOVDRR rY, rZ 5460 // is the same as: 5461 // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1 5462 // Populate the InputRegs accordingly. 5463 // rY 5464 const MachineOperand *MOReg = &MI.getOperand(1); 5465 if (!MOReg->isUndef()) 5466 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), 5467 MOReg->getSubReg(), ARM::ssub_0)); 5468 // rZ 5469 MOReg = &MI.getOperand(2); 5470 if (!MOReg->isUndef()) 5471 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), 5472 MOReg->getSubReg(), ARM::ssub_1)); 5473 return true; 5474 } 5475 llvm_unreachable("Target dependent opcode missing"); 5476 } 5477 5478 bool ARMBaseInstrInfo::getExtractSubregLikeInputs( 5479 const MachineInstr &MI, unsigned DefIdx, 5480 RegSubRegPairAndIdx &InputReg) const { 5481 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5482 assert(MI.isExtractSubregLike() && "Invalid kind of instruction"); 5483 5484 switch (MI.getOpcode()) { 5485 case ARM::VMOVRRD: 5486 // rX, rY = VMOVRRD dZ 5487 // is the same as: 5488 // rX = EXTRACT_SUBREG dZ, ssub_0 5489 // rY = EXTRACT_SUBREG dZ, ssub_1 5490 const MachineOperand &MOReg = MI.getOperand(2); 5491 if (MOReg.isUndef()) 5492 return false; 5493 InputReg.Reg = MOReg.getReg(); 5494 InputReg.SubReg = MOReg.getSubReg(); 5495 InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1; 5496 return true; 5497 } 5498 llvm_unreachable("Target dependent opcode missing"); 5499 } 5500 5501 bool ARMBaseInstrInfo::getInsertSubregLikeInputs( 5502 const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, 5503 RegSubRegPairAndIdx &InsertedReg) const { 5504 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5505 assert(MI.isInsertSubregLike() && "Invalid kind of instruction"); 5506 5507 switch (MI.getOpcode()) { 5508 case ARM::VSETLNi32: 5509 case ARM::MVE_VMOV_to_lane_32: 5510 // dX = VSETLNi32 dY, rZ, imm 5511 // qX = MVE_VMOV_to_lane_32 qY, rZ, imm 5512 const MachineOperand &MOBaseReg = MI.getOperand(1); 5513 const MachineOperand &MOInsertedReg = MI.getOperand(2); 5514 if (MOInsertedReg.isUndef()) 5515 return false; 5516 const MachineOperand &MOIndex = MI.getOperand(3); 5517 BaseReg.Reg = MOBaseReg.getReg(); 5518 BaseReg.SubReg = MOBaseReg.getSubReg(); 5519 5520 InsertedReg.Reg = MOInsertedReg.getReg(); 5521 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 5522 InsertedReg.SubIdx = ARM::ssub_0 + MOIndex.getImm(); 5523 return true; 5524 } 5525 llvm_unreachable("Target dependent opcode missing"); 5526 } 5527 5528 std::pair<unsigned, unsigned> 5529 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 5530 const unsigned Mask = ARMII::MO_OPTION_MASK; 5531 return std::make_pair(TF & Mask, TF & ~Mask); 5532 } 5533 5534 ArrayRef<std::pair<unsigned, const char *>> 5535 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 5536 using namespace ARMII; 5537 5538 static const std::pair<unsigned, const char *> TargetFlags[] = { 5539 {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}, 5540 {MO_LO_0_7, "arm-lo-0-7"}, {MO_HI_0_7, "arm-hi-0-7"}, 5541 {MO_LO_8_15, "arm-lo-8-15"}, {MO_HI_8_15, "arm-hi-8-15"}, 5542 }; 5543 return ArrayRef(TargetFlags); 5544 } 5545 5546 ArrayRef<std::pair<unsigned, const char *>> 5547 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 5548 using namespace ARMII; 5549 5550 static const std::pair<unsigned, const char *> TargetFlags[] = { 5551 {MO_COFFSTUB, "arm-coffstub"}, 5552 {MO_GOT, "arm-got"}, 5553 {MO_SBREL, "arm-sbrel"}, 5554 {MO_DLLIMPORT, "arm-dllimport"}, 5555 {MO_SECREL, "arm-secrel"}, 5556 {MO_NONLAZY, "arm-nonlazy"}}; 5557 return ArrayRef(TargetFlags); 5558 } 5559 5560 std::optional<RegImmPair> 5561 ARMBaseInstrInfo::isAddImmediate(const MachineInstr &MI, Register Reg) const { 5562 int Sign = 1; 5563 unsigned Opcode = MI.getOpcode(); 5564 int64_t Offset = 0; 5565 5566 // TODO: Handle cases where Reg is a super- or sub-register of the 5567 // destination register. 5568 const MachineOperand &Op0 = MI.getOperand(0); 5569 if (!Op0.isReg() || Reg != Op0.getReg()) 5570 return std::nullopt; 5571 5572 // We describe SUBri or ADDri instructions. 5573 if (Opcode == ARM::SUBri) 5574 Sign = -1; 5575 else if (Opcode != ARM::ADDri) 5576 return std::nullopt; 5577 5578 // TODO: Third operand can be global address (usually some string). Since 5579 // strings can be relocated we cannot calculate their offsets for 5580 // now. 5581 if (!MI.getOperand(1).isReg() || !MI.getOperand(2).isImm()) 5582 return std::nullopt; 5583 5584 Offset = MI.getOperand(2).getImm() * Sign; 5585 return RegImmPair{MI.getOperand(1).getReg(), Offset}; 5586 } 5587 5588 bool llvm::registerDefinedBetween(unsigned Reg, 5589 MachineBasicBlock::iterator From, 5590 MachineBasicBlock::iterator To, 5591 const TargetRegisterInfo *TRI) { 5592 for (auto I = From; I != To; ++I) 5593 if (I->modifiesRegister(Reg, TRI)) 5594 return true; 5595 return false; 5596 } 5597 5598 MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br, 5599 const TargetRegisterInfo *TRI) { 5600 // Search backwards to the instruction that defines CSPR. This may or not 5601 // be a CMP, we check that after this loop. If we find another instruction 5602 // that reads cpsr, we return nullptr. 5603 MachineBasicBlock::iterator CmpMI = Br; 5604 while (CmpMI != Br->getParent()->begin()) { 5605 --CmpMI; 5606 if (CmpMI->modifiesRegister(ARM::CPSR, TRI)) 5607 break; 5608 if (CmpMI->readsRegister(ARM::CPSR, TRI)) 5609 break; 5610 } 5611 5612 // Check that this inst is a CMP r[0-7], #0 and that the register 5613 // is not redefined between the cmp and the br. 5614 if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri) 5615 return nullptr; 5616 Register Reg = CmpMI->getOperand(0).getReg(); 5617 Register PredReg; 5618 ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg); 5619 if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0) 5620 return nullptr; 5621 if (!isARMLowRegister(Reg)) 5622 return nullptr; 5623 if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI)) 5624 return nullptr; 5625 5626 return &*CmpMI; 5627 } 5628 5629 unsigned llvm::ConstantMaterializationCost(unsigned Val, 5630 const ARMSubtarget *Subtarget, 5631 bool ForCodesize) { 5632 if (Subtarget->isThumb()) { 5633 if (Val <= 255) // MOV 5634 return ForCodesize ? 2 : 1; 5635 if (Subtarget->hasV6T2Ops() && (Val <= 0xffff || // MOV 5636 ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW 5637 ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN 5638 return ForCodesize ? 4 : 1; 5639 if (Val <= 510) // MOV + ADDi8 5640 return ForCodesize ? 4 : 2; 5641 if (~Val <= 255) // MOV + MVN 5642 return ForCodesize ? 4 : 2; 5643 if (ARM_AM::isThumbImmShiftedVal(Val)) // MOV + LSL 5644 return ForCodesize ? 4 : 2; 5645 } else { 5646 if (ARM_AM::getSOImmVal(Val) != -1) // MOV 5647 return ForCodesize ? 4 : 1; 5648 if (ARM_AM::getSOImmVal(~Val) != -1) // MVN 5649 return ForCodesize ? 4 : 1; 5650 if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW 5651 return ForCodesize ? 4 : 1; 5652 if (ARM_AM::isSOImmTwoPartVal(Val)) // two instrs 5653 return ForCodesize ? 8 : 2; 5654 if (ARM_AM::isSOImmTwoPartValNeg(Val)) // two instrs 5655 return ForCodesize ? 8 : 2; 5656 } 5657 if (Subtarget->useMovt()) // MOVW + MOVT 5658 return ForCodesize ? 8 : 2; 5659 return ForCodesize ? 8 : 3; // Literal pool load 5660 } 5661 5662 bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2, 5663 const ARMSubtarget *Subtarget, 5664 bool ForCodesize) { 5665 // Check with ForCodesize 5666 unsigned Cost1 = ConstantMaterializationCost(Val1, Subtarget, ForCodesize); 5667 unsigned Cost2 = ConstantMaterializationCost(Val2, Subtarget, ForCodesize); 5668 if (Cost1 < Cost2) 5669 return true; 5670 if (Cost1 > Cost2) 5671 return false; 5672 5673 // If they are equal, try with !ForCodesize 5674 return ConstantMaterializationCost(Val1, Subtarget, !ForCodesize) < 5675 ConstantMaterializationCost(Val2, Subtarget, !ForCodesize); 5676 } 5677 5678 /// Constants defining how certain sequences should be outlined. 5679 /// This encompasses how an outlined function should be called, and what kind of 5680 /// frame should be emitted for that outlined function. 5681 /// 5682 /// \p MachineOutlinerTailCall implies that the function is being created from 5683 /// a sequence of instructions ending in a return. 5684 /// 5685 /// That is, 5686 /// 5687 /// I1 OUTLINED_FUNCTION: 5688 /// I2 --> B OUTLINED_FUNCTION I1 5689 /// BX LR I2 5690 /// BX LR 5691 /// 5692 /// +-------------------------+--------+-----+ 5693 /// | | Thumb2 | ARM | 5694 /// +-------------------------+--------+-----+ 5695 /// | Call overhead in Bytes | 4 | 4 | 5696 /// | Frame overhead in Bytes | 0 | 0 | 5697 /// | Stack fixup required | No | No | 5698 /// +-------------------------+--------+-----+ 5699 /// 5700 /// \p MachineOutlinerThunk implies that the function is being created from 5701 /// a sequence of instructions ending in a call. The outlined function is 5702 /// called with a BL instruction, and the outlined function tail-calls the 5703 /// original call destination. 5704 /// 5705 /// That is, 5706 /// 5707 /// I1 OUTLINED_FUNCTION: 5708 /// I2 --> BL OUTLINED_FUNCTION I1 5709 /// BL f I2 5710 /// B f 5711 /// 5712 /// +-------------------------+--------+-----+ 5713 /// | | Thumb2 | ARM | 5714 /// +-------------------------+--------+-----+ 5715 /// | Call overhead in Bytes | 4 | 4 | 5716 /// | Frame overhead in Bytes | 0 | 0 | 5717 /// | Stack fixup required | No | No | 5718 /// +-------------------------+--------+-----+ 5719 /// 5720 /// \p MachineOutlinerNoLRSave implies that the function should be called using 5721 /// a BL instruction, but doesn't require LR to be saved and restored. This 5722 /// happens when LR is known to be dead. 5723 /// 5724 /// That is, 5725 /// 5726 /// I1 OUTLINED_FUNCTION: 5727 /// I2 --> BL OUTLINED_FUNCTION I1 5728 /// I3 I2 5729 /// I3 5730 /// BX LR 5731 /// 5732 /// +-------------------------+--------+-----+ 5733 /// | | Thumb2 | ARM | 5734 /// +-------------------------+--------+-----+ 5735 /// | Call overhead in Bytes | 4 | 4 | 5736 /// | Frame overhead in Bytes | 2 | 4 | 5737 /// | Stack fixup required | No | No | 5738 /// +-------------------------+--------+-----+ 5739 /// 5740 /// \p MachineOutlinerRegSave implies that the function should be called with a 5741 /// save and restore of LR to an available register. This allows us to avoid 5742 /// stack fixups. Note that this outlining variant is compatible with the 5743 /// NoLRSave case. 5744 /// 5745 /// That is, 5746 /// 5747 /// I1 Save LR OUTLINED_FUNCTION: 5748 /// I2 --> BL OUTLINED_FUNCTION I1 5749 /// I3 Restore LR I2 5750 /// I3 5751 /// BX LR 5752 /// 5753 /// +-------------------------+--------+-----+ 5754 /// | | Thumb2 | ARM | 5755 /// +-------------------------+--------+-----+ 5756 /// | Call overhead in Bytes | 8 | 12 | 5757 /// | Frame overhead in Bytes | 2 | 4 | 5758 /// | Stack fixup required | No | No | 5759 /// +-------------------------+--------+-----+ 5760 /// 5761 /// \p MachineOutlinerDefault implies that the function should be called with 5762 /// a save and restore of LR to the stack. 5763 /// 5764 /// That is, 5765 /// 5766 /// I1 Save LR OUTLINED_FUNCTION: 5767 /// I2 --> BL OUTLINED_FUNCTION I1 5768 /// I3 Restore LR I2 5769 /// I3 5770 /// BX LR 5771 /// 5772 /// +-------------------------+--------+-----+ 5773 /// | | Thumb2 | ARM | 5774 /// +-------------------------+--------+-----+ 5775 /// | Call overhead in Bytes | 8 | 12 | 5776 /// | Frame overhead in Bytes | 2 | 4 | 5777 /// | Stack fixup required | Yes | Yes | 5778 /// +-------------------------+--------+-----+ 5779 5780 enum MachineOutlinerClass { 5781 MachineOutlinerTailCall, 5782 MachineOutlinerThunk, 5783 MachineOutlinerNoLRSave, 5784 MachineOutlinerRegSave, 5785 MachineOutlinerDefault 5786 }; 5787 5788 enum MachineOutlinerMBBFlags { 5789 LRUnavailableSomewhere = 0x2, 5790 HasCalls = 0x4, 5791 UnsafeRegsDead = 0x8 5792 }; 5793 5794 struct OutlinerCosts { 5795 int CallTailCall; 5796 int FrameTailCall; 5797 int CallThunk; 5798 int FrameThunk; 5799 int CallNoLRSave; 5800 int FrameNoLRSave; 5801 int CallRegSave; 5802 int FrameRegSave; 5803 int CallDefault; 5804 int FrameDefault; 5805 int SaveRestoreLROnStack; 5806 5807 OutlinerCosts(const ARMSubtarget &target) 5808 : CallTailCall(target.isThumb() ? 4 : 4), 5809 FrameTailCall(target.isThumb() ? 0 : 0), 5810 CallThunk(target.isThumb() ? 4 : 4), 5811 FrameThunk(target.isThumb() ? 0 : 0), 5812 CallNoLRSave(target.isThumb() ? 4 : 4), 5813 FrameNoLRSave(target.isThumb() ? 2 : 4), 5814 CallRegSave(target.isThumb() ? 8 : 12), 5815 FrameRegSave(target.isThumb() ? 2 : 4), 5816 CallDefault(target.isThumb() ? 8 : 12), 5817 FrameDefault(target.isThumb() ? 2 : 4), 5818 SaveRestoreLROnStack(target.isThumb() ? 8 : 8) {} 5819 }; 5820 5821 Register 5822 ARMBaseInstrInfo::findRegisterToSaveLRTo(outliner::Candidate &C) const { 5823 MachineFunction *MF = C.getMF(); 5824 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); 5825 const ARMBaseRegisterInfo *ARI = 5826 static_cast<const ARMBaseRegisterInfo *>(&TRI); 5827 5828 BitVector regsReserved = ARI->getReservedRegs(*MF); 5829 // Check if there is an available register across the sequence that we can 5830 // use. 5831 for (Register Reg : ARM::rGPRRegClass) { 5832 if (!(Reg < regsReserved.size() && regsReserved.test(Reg)) && 5833 Reg != ARM::LR && // LR is not reserved, but don't use it. 5834 Reg != ARM::R12 && // R12 is not guaranteed to be preserved. 5835 C.isAvailableAcrossAndOutOfSeq(Reg, TRI) && 5836 C.isAvailableInsideSeq(Reg, TRI)) 5837 return Reg; 5838 } 5839 return Register(); 5840 } 5841 5842 // Compute liveness of LR at the point after the interval [I, E), which 5843 // denotes a *backward* iteration through instructions. Used only for return 5844 // basic blocks, which do not end with a tail call. 5845 static bool isLRAvailable(const TargetRegisterInfo &TRI, 5846 MachineBasicBlock::reverse_iterator I, 5847 MachineBasicBlock::reverse_iterator E) { 5848 // At the end of the function LR dead. 5849 bool Live = false; 5850 for (; I != E; ++I) { 5851 const MachineInstr &MI = *I; 5852 5853 // Check defs of LR. 5854 if (MI.modifiesRegister(ARM::LR, &TRI)) 5855 Live = false; 5856 5857 // Check uses of LR. 5858 unsigned Opcode = MI.getOpcode(); 5859 if (Opcode == ARM::BX_RET || Opcode == ARM::MOVPCLR || 5860 Opcode == ARM::SUBS_PC_LR || Opcode == ARM::tBX_RET || 5861 Opcode == ARM::tBXNS_RET) { 5862 // These instructions use LR, but it's not an (explicit or implicit) 5863 // operand. 5864 Live = true; 5865 continue; 5866 } 5867 if (MI.readsRegister(ARM::LR, &TRI)) 5868 Live = true; 5869 } 5870 return !Live; 5871 } 5872 5873 std::optional<outliner::OutlinedFunction> 5874 ARMBaseInstrInfo::getOutliningCandidateInfo( 5875 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const { 5876 outliner::Candidate &FirstCand = RepeatedSequenceLocs[0]; 5877 unsigned SequenceSize = 5878 std::accumulate(FirstCand.front(), std::next(FirstCand.back()), 0, 5879 [this](unsigned Sum, const MachineInstr &MI) { 5880 return Sum + getInstSizeInBytes(MI); 5881 }); 5882 5883 // Properties about candidate MBBs that hold for all of them. 5884 unsigned FlagsSetInAll = 0xF; 5885 5886 // Compute liveness information for each candidate, and set FlagsSetInAll. 5887 const TargetRegisterInfo &TRI = getRegisterInfo(); 5888 for (outliner::Candidate &C : RepeatedSequenceLocs) 5889 FlagsSetInAll &= C.Flags; 5890 5891 // According to the ARM Procedure Call Standard, the following are 5892 // undefined on entry/exit from a function call: 5893 // 5894 // * Register R12(IP), 5895 // * Condition codes (and thus the CPSR register) 5896 // 5897 // Since we control the instructions which are part of the outlined regions 5898 // we don't need to be fully compliant with the AAPCS, but we have to 5899 // guarantee that if a veneer is inserted at link time the code is still 5900 // correct. Because of this, we can't outline any sequence of instructions 5901 // where one of these registers is live into/across it. Thus, we need to 5902 // delete those candidates. 5903 auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) { 5904 // If the unsafe registers in this block are all dead, then we don't need 5905 // to compute liveness here. 5906 if (C.Flags & UnsafeRegsDead) 5907 return false; 5908 return C.isAnyUnavailableAcrossOrOutOfSeq({ARM::R12, ARM::CPSR}, TRI); 5909 }; 5910 5911 // Are there any candidates where those registers are live? 5912 if (!(FlagsSetInAll & UnsafeRegsDead)) { 5913 // Erase every candidate that violates the restrictions above. (It could be 5914 // true that we have viable candidates, so it's not worth bailing out in 5915 // the case that, say, 1 out of 20 candidates violate the restructions.) 5916 llvm::erase_if(RepeatedSequenceLocs, CantGuaranteeValueAcrossCall); 5917 5918 // If the sequence doesn't have enough candidates left, then we're done. 5919 if (RepeatedSequenceLocs.size() < 2) 5920 return std::nullopt; 5921 } 5922 5923 // We expect the majority of the outlining candidates to be in consensus with 5924 // regard to return address sign and authentication, and branch target 5925 // enforcement, in other words, partitioning according to all the four 5926 // possible combinations of PAC-RET and BTI is going to yield one big subset 5927 // and three small (likely empty) subsets. That allows us to cull incompatible 5928 // candidates separately for PAC-RET and BTI. 5929 5930 // Partition the candidates in two sets: one with BTI enabled and one with BTI 5931 // disabled. Remove the candidates from the smaller set. If they are the same 5932 // number prefer the non-BTI ones for outlining, since they have less 5933 // overhead. 5934 auto NoBTI = 5935 llvm::partition(RepeatedSequenceLocs, [](const outliner::Candidate &C) { 5936 const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>(); 5937 return AFI.branchTargetEnforcement(); 5938 }); 5939 if (std::distance(RepeatedSequenceLocs.begin(), NoBTI) > 5940 std::distance(NoBTI, RepeatedSequenceLocs.end())) 5941 RepeatedSequenceLocs.erase(NoBTI, RepeatedSequenceLocs.end()); 5942 else 5943 RepeatedSequenceLocs.erase(RepeatedSequenceLocs.begin(), NoBTI); 5944 5945 if (RepeatedSequenceLocs.size() < 2) 5946 return std::nullopt; 5947 5948 // Likewise, partition the candidates according to PAC-RET enablement. 5949 auto NoPAC = 5950 llvm::partition(RepeatedSequenceLocs, [](const outliner::Candidate &C) { 5951 const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>(); 5952 // If the function happens to not spill the LR, do not disqualify it 5953 // from the outlining. 5954 return AFI.shouldSignReturnAddress(true); 5955 }); 5956 if (std::distance(RepeatedSequenceLocs.begin(), NoPAC) > 5957 std::distance(NoPAC, RepeatedSequenceLocs.end())) 5958 RepeatedSequenceLocs.erase(NoPAC, RepeatedSequenceLocs.end()); 5959 else 5960 RepeatedSequenceLocs.erase(RepeatedSequenceLocs.begin(), NoPAC); 5961 5962 if (RepeatedSequenceLocs.size() < 2) 5963 return std::nullopt; 5964 5965 // At this point, we have only "safe" candidates to outline. Figure out 5966 // frame + call instruction information. 5967 5968 unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back()->getOpcode(); 5969 5970 // Helper lambda which sets call information for every candidate. 5971 auto SetCandidateCallInfo = 5972 [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) { 5973 for (outliner::Candidate &C : RepeatedSequenceLocs) 5974 C.setCallInfo(CallID, NumBytesForCall); 5975 }; 5976 5977 OutlinerCosts Costs(Subtarget); 5978 5979 const auto &SomeMFI = 5980 *RepeatedSequenceLocs.front().getMF()->getInfo<ARMFunctionInfo>(); 5981 // Adjust costs to account for the BTI instructions. 5982 if (SomeMFI.branchTargetEnforcement()) { 5983 Costs.FrameDefault += 4; 5984 Costs.FrameNoLRSave += 4; 5985 Costs.FrameRegSave += 4; 5986 Costs.FrameTailCall += 4; 5987 Costs.FrameThunk += 4; 5988 } 5989 5990 // Adjust costs to account for sign and authentication instructions. 5991 if (SomeMFI.shouldSignReturnAddress(true)) { 5992 Costs.CallDefault += 8; // +PAC instr, +AUT instr 5993 Costs.SaveRestoreLROnStack += 8; // +PAC instr, +AUT instr 5994 } 5995 5996 unsigned FrameID = MachineOutlinerDefault; 5997 unsigned NumBytesToCreateFrame = Costs.FrameDefault; 5998 5999 // If the last instruction in any candidate is a terminator, then we should 6000 // tail call all of the candidates. 6001 if (RepeatedSequenceLocs[0].back()->isTerminator()) { 6002 FrameID = MachineOutlinerTailCall; 6003 NumBytesToCreateFrame = Costs.FrameTailCall; 6004 SetCandidateCallInfo(MachineOutlinerTailCall, Costs.CallTailCall); 6005 } else if (LastInstrOpcode == ARM::BL || LastInstrOpcode == ARM::BLX || 6006 LastInstrOpcode == ARM::BLX_noip || LastInstrOpcode == ARM::tBL || 6007 LastInstrOpcode == ARM::tBLXr || 6008 LastInstrOpcode == ARM::tBLXr_noip || 6009 LastInstrOpcode == ARM::tBLXi) { 6010 FrameID = MachineOutlinerThunk; 6011 NumBytesToCreateFrame = Costs.FrameThunk; 6012 SetCandidateCallInfo(MachineOutlinerThunk, Costs.CallThunk); 6013 } else { 6014 // We need to decide how to emit calls + frames. We can always emit the same 6015 // frame if we don't need to save to the stack. If we have to save to the 6016 // stack, then we need a different frame. 6017 unsigned NumBytesNoStackCalls = 0; 6018 std::vector<outliner::Candidate> CandidatesWithoutStackFixups; 6019 6020 for (outliner::Candidate &C : RepeatedSequenceLocs) { 6021 // LR liveness is overestimated in return blocks, unless they end with a 6022 // tail call. 6023 const auto Last = C.getMBB()->rbegin(); 6024 const bool LRIsAvailable = 6025 C.getMBB()->isReturnBlock() && !Last->isCall() 6026 ? isLRAvailable(TRI, Last, 6027 (MachineBasicBlock::reverse_iterator)C.front()) 6028 : C.isAvailableAcrossAndOutOfSeq(ARM::LR, TRI); 6029 if (LRIsAvailable) { 6030 FrameID = MachineOutlinerNoLRSave; 6031 NumBytesNoStackCalls += Costs.CallNoLRSave; 6032 C.setCallInfo(MachineOutlinerNoLRSave, Costs.CallNoLRSave); 6033 CandidatesWithoutStackFixups.push_back(C); 6034 } 6035 6036 // Is an unused register available? If so, we won't modify the stack, so 6037 // we can outline with the same frame type as those that don't save LR. 6038 else if (findRegisterToSaveLRTo(C)) { 6039 FrameID = MachineOutlinerRegSave; 6040 NumBytesNoStackCalls += Costs.CallRegSave; 6041 C.setCallInfo(MachineOutlinerRegSave, Costs.CallRegSave); 6042 CandidatesWithoutStackFixups.push_back(C); 6043 } 6044 6045 // Is SP used in the sequence at all? If not, we don't have to modify 6046 // the stack, so we are guaranteed to get the same frame. 6047 else if (C.isAvailableInsideSeq(ARM::SP, TRI)) { 6048 NumBytesNoStackCalls += Costs.CallDefault; 6049 C.setCallInfo(MachineOutlinerDefault, Costs.CallDefault); 6050 CandidatesWithoutStackFixups.push_back(C); 6051 } 6052 6053 // If we outline this, we need to modify the stack. Pretend we don't 6054 // outline this by saving all of its bytes. 6055 else 6056 NumBytesNoStackCalls += SequenceSize; 6057 } 6058 6059 // If there are no places where we have to save LR, then note that we don't 6060 // have to update the stack. Otherwise, give every candidate the default 6061 // call type 6062 if (NumBytesNoStackCalls <= 6063 RepeatedSequenceLocs.size() * Costs.CallDefault) { 6064 RepeatedSequenceLocs = CandidatesWithoutStackFixups; 6065 FrameID = MachineOutlinerNoLRSave; 6066 } else 6067 SetCandidateCallInfo(MachineOutlinerDefault, Costs.CallDefault); 6068 } 6069 6070 // Does every candidate's MBB contain a call? If so, then we might have a 6071 // call in the range. 6072 if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) { 6073 // check if the range contains a call. These require a save + restore of 6074 // the link register. 6075 if (std::any_of(FirstCand.front(), FirstCand.back(), 6076 [](const MachineInstr &MI) { return MI.isCall(); })) 6077 NumBytesToCreateFrame += Costs.SaveRestoreLROnStack; 6078 6079 // Handle the last instruction separately. If it is tail call, then the 6080 // last instruction is a call, we don't want to save + restore in this 6081 // case. However, it could be possible that the last instruction is a 6082 // call without it being valid to tail call this sequence. We should 6083 // consider this as well. 6084 else if (FrameID != MachineOutlinerThunk && 6085 FrameID != MachineOutlinerTailCall && FirstCand.back()->isCall()) 6086 NumBytesToCreateFrame += Costs.SaveRestoreLROnStack; 6087 } 6088 6089 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 6090 NumBytesToCreateFrame, FrameID); 6091 } 6092 6093 bool ARMBaseInstrInfo::checkAndUpdateStackOffset(MachineInstr *MI, 6094 int64_t Fixup, 6095 bool Updt) const { 6096 int SPIdx = MI->findRegisterUseOperandIdx(ARM::SP); 6097 unsigned AddrMode = (MI->getDesc().TSFlags & ARMII::AddrModeMask); 6098 if (SPIdx < 0) 6099 // No SP operand 6100 return true; 6101 else if (SPIdx != 1 && (AddrMode != ARMII::AddrModeT2_i8s4 || SPIdx != 2)) 6102 // If SP is not the base register we can't do much 6103 return false; 6104 6105 // Stack might be involved but addressing mode doesn't handle any offset. 6106 // Rq: AddrModeT1_[1|2|4] don't operate on SP 6107 if (AddrMode == ARMII::AddrMode1 || // Arithmetic instructions 6108 AddrMode == ARMII::AddrMode4 || // Load/Store Multiple 6109 AddrMode == ARMII::AddrMode6 || // Neon Load/Store Multiple 6110 AddrMode == ARMII::AddrModeT2_so || // SP can't be used as based register 6111 AddrMode == ARMII::AddrModeT2_pc || // PCrel access 6112 AddrMode == ARMII::AddrMode2 || // Used by PRE and POST indexed LD/ST 6113 AddrMode == ARMII::AddrModeT2_i7 || // v8.1-M MVE 6114 AddrMode == ARMII::AddrModeT2_i7s2 || // v8.1-M MVE 6115 AddrMode == ARMII::AddrModeT2_i7s4 || // v8.1-M sys regs VLDR/VSTR 6116 AddrMode == ARMII::AddrModeNone || 6117 AddrMode == ARMII::AddrModeT2_i8 || // Pre/Post inc instructions 6118 AddrMode == ARMII::AddrModeT2_i8neg) // Always negative imm 6119 return false; 6120 6121 unsigned NumOps = MI->getDesc().getNumOperands(); 6122 unsigned ImmIdx = NumOps - 3; 6123 6124 const MachineOperand &Offset = MI->getOperand(ImmIdx); 6125 assert(Offset.isImm() && "Is not an immediate"); 6126 int64_t OffVal = Offset.getImm(); 6127 6128 if (OffVal < 0) 6129 // Don't override data if the are below SP. 6130 return false; 6131 6132 unsigned NumBits = 0; 6133 unsigned Scale = 1; 6134 6135 switch (AddrMode) { 6136 case ARMII::AddrMode3: 6137 if (ARM_AM::getAM3Op(OffVal) == ARM_AM::sub) 6138 return false; 6139 OffVal = ARM_AM::getAM3Offset(OffVal); 6140 NumBits = 8; 6141 break; 6142 case ARMII::AddrMode5: 6143 if (ARM_AM::getAM5Op(OffVal) == ARM_AM::sub) 6144 return false; 6145 OffVal = ARM_AM::getAM5Offset(OffVal); 6146 NumBits = 8; 6147 Scale = 4; 6148 break; 6149 case ARMII::AddrMode5FP16: 6150 if (ARM_AM::getAM5FP16Op(OffVal) == ARM_AM::sub) 6151 return false; 6152 OffVal = ARM_AM::getAM5FP16Offset(OffVal); 6153 NumBits = 8; 6154 Scale = 2; 6155 break; 6156 case ARMII::AddrModeT2_i8pos: 6157 NumBits = 8; 6158 break; 6159 case ARMII::AddrModeT2_i8s4: 6160 // FIXME: Values are already scaled in this addressing mode. 6161 assert((Fixup & 3) == 0 && "Can't encode this offset!"); 6162 NumBits = 10; 6163 break; 6164 case ARMII::AddrModeT2_ldrex: 6165 NumBits = 8; 6166 Scale = 4; 6167 break; 6168 case ARMII::AddrModeT2_i12: 6169 case ARMII::AddrMode_i12: 6170 NumBits = 12; 6171 break; 6172 case ARMII::AddrModeT1_s: // SP-relative LD/ST 6173 NumBits = 8; 6174 Scale = 4; 6175 break; 6176 default: 6177 llvm_unreachable("Unsupported addressing mode!"); 6178 } 6179 // Make sure the offset is encodable for instructions that scale the 6180 // immediate. 6181 assert(((OffVal * Scale + Fixup) & (Scale - 1)) == 0 && 6182 "Can't encode this offset!"); 6183 OffVal += Fixup / Scale; 6184 6185 unsigned Mask = (1 << NumBits) - 1; 6186 6187 if (OffVal <= Mask) { 6188 if (Updt) 6189 MI->getOperand(ImmIdx).setImm(OffVal); 6190 return true; 6191 } 6192 6193 return false; 6194 } 6195 6196 void ARMBaseInstrInfo::mergeOutliningCandidateAttributes( 6197 Function &F, std::vector<outliner::Candidate> &Candidates) const { 6198 outliner::Candidate &C = Candidates.front(); 6199 // branch-target-enforcement is guaranteed to be consistent between all 6200 // candidates, so we only need to look at one. 6201 const Function &CFn = C.getMF()->getFunction(); 6202 if (CFn.hasFnAttribute("branch-target-enforcement")) 6203 F.addFnAttr(CFn.getFnAttribute("branch-target-enforcement")); 6204 6205 ARMGenInstrInfo::mergeOutliningCandidateAttributes(F, Candidates); 6206 } 6207 6208 bool ARMBaseInstrInfo::isFunctionSafeToOutlineFrom( 6209 MachineFunction &MF, bool OutlineFromLinkOnceODRs) const { 6210 const Function &F = MF.getFunction(); 6211 6212 // Can F be deduplicated by the linker? If it can, don't outline from it. 6213 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage()) 6214 return false; 6215 6216 // Don't outline from functions with section markings; the program could 6217 // expect that all the code is in the named section. 6218 // FIXME: Allow outlining from multiple functions with the same section 6219 // marking. 6220 if (F.hasSection()) 6221 return false; 6222 6223 // FIXME: Thumb1 outlining is not handled 6224 if (MF.getInfo<ARMFunctionInfo>()->isThumb1OnlyFunction()) 6225 return false; 6226 6227 // It's safe to outline from MF. 6228 return true; 6229 } 6230 6231 bool ARMBaseInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, 6232 unsigned &Flags) const { 6233 // Check if LR is available through all of the MBB. If it's not, then set 6234 // a flag. 6235 assert(MBB.getParent()->getRegInfo().tracksLiveness() && 6236 "Suitable Machine Function for outlining must track liveness"); 6237 6238 LiveRegUnits LRU(getRegisterInfo()); 6239 6240 for (MachineInstr &MI : llvm::reverse(MBB)) 6241 LRU.accumulate(MI); 6242 6243 // Check if each of the unsafe registers are available... 6244 bool R12AvailableInBlock = LRU.available(ARM::R12); 6245 bool CPSRAvailableInBlock = LRU.available(ARM::CPSR); 6246 6247 // If all of these are dead (and not live out), we know we don't have to check 6248 // them later. 6249 if (R12AvailableInBlock && CPSRAvailableInBlock) 6250 Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead; 6251 6252 // Now, add the live outs to the set. 6253 LRU.addLiveOuts(MBB); 6254 6255 // If any of these registers is available in the MBB, but also a live out of 6256 // the block, then we know outlining is unsafe. 6257 if (R12AvailableInBlock && !LRU.available(ARM::R12)) 6258 return false; 6259 if (CPSRAvailableInBlock && !LRU.available(ARM::CPSR)) 6260 return false; 6261 6262 // Check if there's a call inside this MachineBasicBlock. If there is, then 6263 // set a flag. 6264 if (any_of(MBB, [](MachineInstr &MI) { return MI.isCall(); })) 6265 Flags |= MachineOutlinerMBBFlags::HasCalls; 6266 6267 // LR liveness is overestimated in return blocks. 6268 6269 bool LRIsAvailable = 6270 MBB.isReturnBlock() && !MBB.back().isCall() 6271 ? isLRAvailable(getRegisterInfo(), MBB.rbegin(), MBB.rend()) 6272 : LRU.available(ARM::LR); 6273 if (!LRIsAvailable) 6274 Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere; 6275 6276 return true; 6277 } 6278 6279 outliner::InstrType 6280 ARMBaseInstrInfo::getOutliningTypeImpl(MachineBasicBlock::iterator &MIT, 6281 unsigned Flags) const { 6282 MachineInstr &MI = *MIT; 6283 const TargetRegisterInfo *TRI = &getRegisterInfo(); 6284 6285 // PIC instructions contain labels, outlining them would break offset 6286 // computing. unsigned Opc = MI.getOpcode(); 6287 unsigned Opc = MI.getOpcode(); 6288 if (Opc == ARM::tPICADD || Opc == ARM::PICADD || Opc == ARM::PICSTR || 6289 Opc == ARM::PICSTRB || Opc == ARM::PICSTRH || Opc == ARM::PICLDR || 6290 Opc == ARM::PICLDRB || Opc == ARM::PICLDRH || Opc == ARM::PICLDRSB || 6291 Opc == ARM::PICLDRSH || Opc == ARM::t2LDRpci_pic || 6292 Opc == ARM::t2MOVi16_ga_pcrel || Opc == ARM::t2MOVTi16_ga_pcrel || 6293 Opc == ARM::t2MOV_ga_pcrel) 6294 return outliner::InstrType::Illegal; 6295 6296 // Be conservative with ARMv8.1 MVE instructions. 6297 if (Opc == ARM::t2BF_LabelPseudo || Opc == ARM::t2DoLoopStart || 6298 Opc == ARM::t2DoLoopStartTP || Opc == ARM::t2WhileLoopStart || 6299 Opc == ARM::t2WhileLoopStartLR || Opc == ARM::t2WhileLoopStartTP || 6300 Opc == ARM::t2LoopDec || Opc == ARM::t2LoopEnd || 6301 Opc == ARM::t2LoopEndDec) 6302 return outliner::InstrType::Illegal; 6303 6304 const MCInstrDesc &MCID = MI.getDesc(); 6305 uint64_t MIFlags = MCID.TSFlags; 6306 if ((MIFlags & ARMII::DomainMask) == ARMII::DomainMVE) 6307 return outliner::InstrType::Illegal; 6308 6309 // Is this a terminator for a basic block? 6310 if (MI.isTerminator()) 6311 // TargetInstrInfo::getOutliningType has already filtered out anything 6312 // that would break this, so we can allow it here. 6313 return outliner::InstrType::Legal; 6314 6315 // Don't outline if link register or program counter value are used. 6316 if (MI.readsRegister(ARM::LR, TRI) || MI.readsRegister(ARM::PC, TRI)) 6317 return outliner::InstrType::Illegal; 6318 6319 if (MI.isCall()) { 6320 // Get the function associated with the call. Look at each operand and find 6321 // the one that represents the calle and get its name. 6322 const Function *Callee = nullptr; 6323 for (const MachineOperand &MOP : MI.operands()) { 6324 if (MOP.isGlobal()) { 6325 Callee = dyn_cast<Function>(MOP.getGlobal()); 6326 break; 6327 } 6328 } 6329 6330 // Dont't outline calls to "mcount" like functions, in particular Linux 6331 // kernel function tracing relies on it. 6332 if (Callee && 6333 (Callee->getName() == "\01__gnu_mcount_nc" || 6334 Callee->getName() == "\01mcount" || Callee->getName() == "__mcount")) 6335 return outliner::InstrType::Illegal; 6336 6337 // If we don't know anything about the callee, assume it depends on the 6338 // stack layout of the caller. In that case, it's only legal to outline 6339 // as a tail-call. Explicitly list the call instructions we know about so 6340 // we don't get unexpected results with call pseudo-instructions. 6341 auto UnknownCallOutlineType = outliner::InstrType::Illegal; 6342 if (Opc == ARM::BL || Opc == ARM::tBL || Opc == ARM::BLX || 6343 Opc == ARM::BLX_noip || Opc == ARM::tBLXr || Opc == ARM::tBLXr_noip || 6344 Opc == ARM::tBLXi) 6345 UnknownCallOutlineType = outliner::InstrType::LegalTerminator; 6346 6347 if (!Callee) 6348 return UnknownCallOutlineType; 6349 6350 // We have a function we have information about. Check if it's something we 6351 // can safely outline. 6352 MachineFunction *MF = MI.getParent()->getParent(); 6353 MachineFunction *CalleeMF = MF->getMMI().getMachineFunction(*Callee); 6354 6355 // We don't know what's going on with the callee at all. Don't touch it. 6356 if (!CalleeMF) 6357 return UnknownCallOutlineType; 6358 6359 // Check if we know anything about the callee saves on the function. If we 6360 // don't, then don't touch it, since that implies that we haven't computed 6361 // anything about its stack frame yet. 6362 MachineFrameInfo &MFI = CalleeMF->getFrameInfo(); 6363 if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 || 6364 MFI.getNumObjects() > 0) 6365 return UnknownCallOutlineType; 6366 6367 // At this point, we can say that CalleeMF ought to not pass anything on the 6368 // stack. Therefore, we can outline it. 6369 return outliner::InstrType::Legal; 6370 } 6371 6372 // Since calls are handled, don't touch LR or PC 6373 if (MI.modifiesRegister(ARM::LR, TRI) || MI.modifiesRegister(ARM::PC, TRI)) 6374 return outliner::InstrType::Illegal; 6375 6376 // Does this use the stack? 6377 if (MI.modifiesRegister(ARM::SP, TRI) || MI.readsRegister(ARM::SP, TRI)) { 6378 // True if there is no chance that any outlined candidate from this range 6379 // could require stack fixups. That is, both 6380 // * LR is available in the range (No save/restore around call) 6381 // * The range doesn't include calls (No save/restore in outlined frame) 6382 // are true. 6383 // These conditions also ensure correctness of the return address 6384 // authentication - we insert sign and authentication instructions only if 6385 // we save/restore LR on stack, but then this condition ensures that the 6386 // outlined range does not modify the SP, therefore the SP value used for 6387 // signing is the same as the one used for authentication. 6388 // FIXME: This is very restrictive; the flags check the whole block, 6389 // not just the bit we will try to outline. 6390 bool MightNeedStackFixUp = 6391 (Flags & (MachineOutlinerMBBFlags::LRUnavailableSomewhere | 6392 MachineOutlinerMBBFlags::HasCalls)); 6393 6394 if (!MightNeedStackFixUp) 6395 return outliner::InstrType::Legal; 6396 6397 // Any modification of SP will break our code to save/restore LR. 6398 // FIXME: We could handle some instructions which add a constant offset to 6399 // SP, with a bit more work. 6400 if (MI.modifiesRegister(ARM::SP, TRI)) 6401 return outliner::InstrType::Illegal; 6402 6403 // At this point, we have a stack instruction that we might need to fix up. 6404 // up. We'll handle it if it's a load or store. 6405 if (checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(), 6406 false)) 6407 return outliner::InstrType::Legal; 6408 6409 // We can't fix it up, so don't outline it. 6410 return outliner::InstrType::Illegal; 6411 } 6412 6413 // Be conservative with IT blocks. 6414 if (MI.readsRegister(ARM::ITSTATE, TRI) || 6415 MI.modifiesRegister(ARM::ITSTATE, TRI)) 6416 return outliner::InstrType::Illegal; 6417 6418 // Don't outline CFI instructions. 6419 if (MI.isCFIInstruction()) 6420 return outliner::InstrType::Illegal; 6421 6422 return outliner::InstrType::Legal; 6423 } 6424 6425 void ARMBaseInstrInfo::fixupPostOutline(MachineBasicBlock &MBB) const { 6426 for (MachineInstr &MI : MBB) { 6427 checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(), true); 6428 } 6429 } 6430 6431 void ARMBaseInstrInfo::saveLROnStack(MachineBasicBlock &MBB, 6432 MachineBasicBlock::iterator It, bool CFI, 6433 bool Auth) const { 6434 int Align = std::max(Subtarget.getStackAlignment().value(), uint64_t(8)); 6435 unsigned MIFlags = CFI ? MachineInstr::FrameSetup : 0; 6436 assert(Align >= 8 && Align <= 256); 6437 if (Auth) { 6438 assert(Subtarget.isThumb2()); 6439 // Compute PAC in R12. Outlining ensures R12 is dead across the outlined 6440 // sequence. 6441 BuildMI(MBB, It, DebugLoc(), get(ARM::t2PAC)).setMIFlags(MIFlags); 6442 BuildMI(MBB, It, DebugLoc(), get(ARM::t2STRD_PRE), ARM::SP) 6443 .addReg(ARM::R12, RegState::Kill) 6444 .addReg(ARM::LR, RegState::Kill) 6445 .addReg(ARM::SP) 6446 .addImm(-Align) 6447 .add(predOps(ARMCC::AL)) 6448 .setMIFlags(MIFlags); 6449 } else { 6450 unsigned Opc = Subtarget.isThumb() ? ARM::t2STR_PRE : ARM::STR_PRE_IMM; 6451 BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::SP) 6452 .addReg(ARM::LR, RegState::Kill) 6453 .addReg(ARM::SP) 6454 .addImm(-Align) 6455 .add(predOps(ARMCC::AL)) 6456 .setMIFlags(MIFlags); 6457 } 6458 6459 if (!CFI) 6460 return; 6461 6462 MachineFunction &MF = *MBB.getParent(); 6463 6464 // Add a CFI, saying CFA is offset by Align bytes from SP. 6465 int64_t StackPosEntry = 6466 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Align)); 6467 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6468 .addCFIIndex(StackPosEntry) 6469 .setMIFlags(MachineInstr::FrameSetup); 6470 6471 // Add a CFI saying that the LR that we want to find is now higher than 6472 // before. 6473 int LROffset = Auth ? Align - 4 : Align; 6474 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6475 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6476 int64_t LRPosEntry = MF.addFrameInst( 6477 MCCFIInstruction::createOffset(nullptr, DwarfLR, -LROffset)); 6478 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6479 .addCFIIndex(LRPosEntry) 6480 .setMIFlags(MachineInstr::FrameSetup); 6481 if (Auth) { 6482 // Add a CFI for the location of the return adddress PAC. 6483 unsigned DwarfRAC = MRI->getDwarfRegNum(ARM::RA_AUTH_CODE, true); 6484 int64_t RACPosEntry = MF.addFrameInst( 6485 MCCFIInstruction::createOffset(nullptr, DwarfRAC, -Align)); 6486 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6487 .addCFIIndex(RACPosEntry) 6488 .setMIFlags(MachineInstr::FrameSetup); 6489 } 6490 } 6491 6492 void ARMBaseInstrInfo::emitCFIForLRSaveToReg(MachineBasicBlock &MBB, 6493 MachineBasicBlock::iterator It, 6494 Register Reg) const { 6495 MachineFunction &MF = *MBB.getParent(); 6496 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6497 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6498 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 6499 6500 int64_t LRPosEntry = MF.addFrameInst( 6501 MCCFIInstruction::createRegister(nullptr, DwarfLR, DwarfReg)); 6502 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6503 .addCFIIndex(LRPosEntry) 6504 .setMIFlags(MachineInstr::FrameSetup); 6505 } 6506 6507 void ARMBaseInstrInfo::restoreLRFromStack(MachineBasicBlock &MBB, 6508 MachineBasicBlock::iterator It, 6509 bool CFI, bool Auth) const { 6510 int Align = Subtarget.getStackAlignment().value(); 6511 unsigned MIFlags = CFI ? MachineInstr::FrameDestroy : 0; 6512 if (Auth) { 6513 assert(Subtarget.isThumb2()); 6514 // Restore return address PAC and LR. 6515 BuildMI(MBB, It, DebugLoc(), get(ARM::t2LDRD_POST)) 6516 .addReg(ARM::R12, RegState::Define) 6517 .addReg(ARM::LR, RegState::Define) 6518 .addReg(ARM::SP, RegState::Define) 6519 .addReg(ARM::SP) 6520 .addImm(Align) 6521 .add(predOps(ARMCC::AL)) 6522 .setMIFlags(MIFlags); 6523 // LR authentication is after the CFI instructions, below. 6524 } else { 6525 unsigned Opc = Subtarget.isThumb() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM; 6526 MachineInstrBuilder MIB = BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::LR) 6527 .addReg(ARM::SP, RegState::Define) 6528 .addReg(ARM::SP); 6529 if (!Subtarget.isThumb()) 6530 MIB.addReg(0); 6531 MIB.addImm(Subtarget.getStackAlignment().value()) 6532 .add(predOps(ARMCC::AL)) 6533 .setMIFlags(MIFlags); 6534 } 6535 6536 if (CFI) { 6537 // Now stack has moved back up... 6538 MachineFunction &MF = *MBB.getParent(); 6539 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6540 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6541 int64_t StackPosEntry = 6542 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 6543 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6544 .addCFIIndex(StackPosEntry) 6545 .setMIFlags(MachineInstr::FrameDestroy); 6546 6547 // ... and we have restored LR. 6548 int64_t LRPosEntry = 6549 MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR)); 6550 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6551 .addCFIIndex(LRPosEntry) 6552 .setMIFlags(MachineInstr::FrameDestroy); 6553 6554 if (Auth) { 6555 unsigned DwarfRAC = MRI->getDwarfRegNum(ARM::RA_AUTH_CODE, true); 6556 int64_t Entry = 6557 MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, DwarfRAC)); 6558 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6559 .addCFIIndex(Entry) 6560 .setMIFlags(MachineInstr::FrameDestroy); 6561 } 6562 } 6563 6564 if (Auth) 6565 BuildMI(MBB, It, DebugLoc(), get(ARM::t2AUT)); 6566 } 6567 6568 void ARMBaseInstrInfo::emitCFIForLRRestoreFromReg( 6569 MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const { 6570 MachineFunction &MF = *MBB.getParent(); 6571 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6572 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6573 6574 int64_t LRPosEntry = 6575 MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR)); 6576 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6577 .addCFIIndex(LRPosEntry) 6578 .setMIFlags(MachineInstr::FrameDestroy); 6579 } 6580 6581 void ARMBaseInstrInfo::buildOutlinedFrame( 6582 MachineBasicBlock &MBB, MachineFunction &MF, 6583 const outliner::OutlinedFunction &OF) const { 6584 // For thunk outlining, rewrite the last instruction from a call to a 6585 // tail-call. 6586 if (OF.FrameConstructionID == MachineOutlinerThunk) { 6587 MachineInstr *Call = &*--MBB.instr_end(); 6588 bool isThumb = Subtarget.isThumb(); 6589 unsigned FuncOp = isThumb ? 2 : 0; 6590 unsigned Opc = Call->getOperand(FuncOp).isReg() 6591 ? isThumb ? ARM::tTAILJMPr : ARM::TAILJMPr 6592 : isThumb ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd 6593 : ARM::tTAILJMPdND 6594 : ARM::TAILJMPd; 6595 MachineInstrBuilder MIB = BuildMI(MBB, MBB.end(), DebugLoc(), get(Opc)) 6596 .add(Call->getOperand(FuncOp)); 6597 if (isThumb && !Call->getOperand(FuncOp).isReg()) 6598 MIB.add(predOps(ARMCC::AL)); 6599 Call->eraseFromParent(); 6600 } 6601 6602 // Is there a call in the outlined range? 6603 auto IsNonTailCall = [](MachineInstr &MI) { 6604 return MI.isCall() && !MI.isReturn(); 6605 }; 6606 if (llvm::any_of(MBB.instrs(), IsNonTailCall)) { 6607 MachineBasicBlock::iterator It = MBB.begin(); 6608 MachineBasicBlock::iterator Et = MBB.end(); 6609 6610 if (OF.FrameConstructionID == MachineOutlinerTailCall || 6611 OF.FrameConstructionID == MachineOutlinerThunk) 6612 Et = std::prev(MBB.end()); 6613 6614 // We have to save and restore LR, we need to add it to the liveins if it 6615 // is not already part of the set. This is suffient since outlined 6616 // functions only have one block. 6617 if (!MBB.isLiveIn(ARM::LR)) 6618 MBB.addLiveIn(ARM::LR); 6619 6620 // Insert a save before the outlined region 6621 bool Auth = OF.Candidates.front() 6622 .getMF() 6623 ->getInfo<ARMFunctionInfo>() 6624 ->shouldSignReturnAddress(true); 6625 saveLROnStack(MBB, It, true, Auth); 6626 6627 // Fix up the instructions in the range, since we're going to modify the 6628 // stack. 6629 assert(OF.FrameConstructionID != MachineOutlinerDefault && 6630 "Can only fix up stack references once"); 6631 fixupPostOutline(MBB); 6632 6633 // Insert a restore before the terminator for the function. Restore LR. 6634 restoreLRFromStack(MBB, Et, true, Auth); 6635 } 6636 6637 // If this is a tail call outlined function, then there's already a return. 6638 if (OF.FrameConstructionID == MachineOutlinerTailCall || 6639 OF.FrameConstructionID == MachineOutlinerThunk) 6640 return; 6641 6642 // Here we have to insert the return ourselves. Get the correct opcode from 6643 // current feature set. 6644 BuildMI(MBB, MBB.end(), DebugLoc(), get(Subtarget.getReturnOpcode())) 6645 .add(predOps(ARMCC::AL)); 6646 6647 // Did we have to modify the stack by saving the link register? 6648 if (OF.FrameConstructionID != MachineOutlinerDefault && 6649 OF.Candidates[0].CallConstructionID != MachineOutlinerDefault) 6650 return; 6651 6652 // We modified the stack. 6653 // Walk over the basic block and fix up all the stack accesses. 6654 fixupPostOutline(MBB); 6655 } 6656 6657 MachineBasicBlock::iterator ARMBaseInstrInfo::insertOutlinedCall( 6658 Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, 6659 MachineFunction &MF, outliner::Candidate &C) const { 6660 MachineInstrBuilder MIB; 6661 MachineBasicBlock::iterator CallPt; 6662 unsigned Opc; 6663 bool isThumb = Subtarget.isThumb(); 6664 6665 // Are we tail calling? 6666 if (C.CallConstructionID == MachineOutlinerTailCall) { 6667 // If yes, then we can just branch to the label. 6668 Opc = isThumb 6669 ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd : ARM::tTAILJMPdND 6670 : ARM::TAILJMPd; 6671 MIB = BuildMI(MF, DebugLoc(), get(Opc)) 6672 .addGlobalAddress(M.getNamedValue(MF.getName())); 6673 if (isThumb) 6674 MIB.add(predOps(ARMCC::AL)); 6675 It = MBB.insert(It, MIB); 6676 return It; 6677 } 6678 6679 // Create the call instruction. 6680 Opc = isThumb ? ARM::tBL : ARM::BL; 6681 MachineInstrBuilder CallMIB = BuildMI(MF, DebugLoc(), get(Opc)); 6682 if (isThumb) 6683 CallMIB.add(predOps(ARMCC::AL)); 6684 CallMIB.addGlobalAddress(M.getNamedValue(MF.getName())); 6685 6686 if (C.CallConstructionID == MachineOutlinerNoLRSave || 6687 C.CallConstructionID == MachineOutlinerThunk) { 6688 // No, so just insert the call. 6689 It = MBB.insert(It, CallMIB); 6690 return It; 6691 } 6692 6693 const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>(); 6694 // Can we save to a register? 6695 if (C.CallConstructionID == MachineOutlinerRegSave) { 6696 Register Reg = findRegisterToSaveLRTo(C); 6697 assert(Reg != 0 && "No callee-saved register available?"); 6698 6699 // Save and restore LR from that register. 6700 copyPhysReg(MBB, It, DebugLoc(), Reg, ARM::LR, true); 6701 if (!AFI.isLRSpilled()) 6702 emitCFIForLRSaveToReg(MBB, It, Reg); 6703 CallPt = MBB.insert(It, CallMIB); 6704 copyPhysReg(MBB, It, DebugLoc(), ARM::LR, Reg, true); 6705 if (!AFI.isLRSpilled()) 6706 emitCFIForLRRestoreFromReg(MBB, It); 6707 It--; 6708 return CallPt; 6709 } 6710 // We have the default case. Save and restore from SP. 6711 if (!MBB.isLiveIn(ARM::LR)) 6712 MBB.addLiveIn(ARM::LR); 6713 bool Auth = !AFI.isLRSpilled() && AFI.shouldSignReturnAddress(true); 6714 saveLROnStack(MBB, It, !AFI.isLRSpilled(), Auth); 6715 CallPt = MBB.insert(It, CallMIB); 6716 restoreLRFromStack(MBB, It, !AFI.isLRSpilled(), Auth); 6717 It--; 6718 return CallPt; 6719 } 6720 6721 bool ARMBaseInstrInfo::shouldOutlineFromFunctionByDefault( 6722 MachineFunction &MF) const { 6723 return Subtarget.isMClass() && MF.getFunction().hasMinSize(); 6724 } 6725 6726 bool ARMBaseInstrInfo::isReallyTriviallyReMaterializable( 6727 const MachineInstr &MI) const { 6728 // Try hard to rematerialize any VCTPs because if we spill P0, it will block 6729 // the tail predication conversion. This means that the element count 6730 // register has to be live for longer, but that has to be better than 6731 // spill/restore and VPT predication. 6732 return (isVCTP(&MI) && !isPredicated(MI)) || 6733 TargetInstrInfo::isReallyTriviallyReMaterializable(MI); 6734 } 6735 6736 unsigned llvm::getBLXOpcode(const MachineFunction &MF) { 6737 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_noip 6738 : ARM::BLX; 6739 } 6740 6741 unsigned llvm::gettBLXrOpcode(const MachineFunction &MF) { 6742 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::tBLXr_noip 6743 : ARM::tBLXr; 6744 } 6745 6746 unsigned llvm::getBLXpredOpcode(const MachineFunction &MF) { 6747 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_pred_noip 6748 : ARM::BLX_pred; 6749 } 6750 6751 namespace { 6752 class ARMPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { 6753 MachineInstr *EndLoop, *LoopCount; 6754 MachineFunction *MF; 6755 const TargetInstrInfo *TII; 6756 6757 // Bitset[0 .. MAX_STAGES-1] ... iterations needed 6758 // [LAST_IS_USE] : last reference to register in schedule is a use 6759 // [SEEN_AS_LIVE] : Normal pressure algorithm believes register is live 6760 static int constexpr MAX_STAGES = 30; 6761 static int constexpr LAST_IS_USE = MAX_STAGES; 6762 static int constexpr SEEN_AS_LIVE = MAX_STAGES + 1; 6763 typedef std::bitset<MAX_STAGES + 2> IterNeed; 6764 typedef std::map<unsigned, IterNeed> IterNeeds; 6765 6766 void bumpCrossIterationPressure(RegPressureTracker &RPT, 6767 const IterNeeds &CIN); 6768 bool tooMuchRegisterPressure(SwingSchedulerDAG &SSD, SMSchedule &SMS); 6769 6770 // Meanings of the various stuff with loop types: 6771 // t2Bcc: 6772 // EndLoop = branch at end of original BB that will become a kernel 6773 // LoopCount = CC setter live into branch 6774 // t2LoopEnd: 6775 // EndLoop = branch at end of original BB 6776 // LoopCount = t2LoopDec 6777 public: 6778 ARMPipelinerLoopInfo(MachineInstr *EndLoop, MachineInstr *LoopCount) 6779 : EndLoop(EndLoop), LoopCount(LoopCount), 6780 MF(EndLoop->getParent()->getParent()), 6781 TII(MF->getSubtarget().getInstrInfo()) {} 6782 6783 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { 6784 // Only ignore the terminator. 6785 return MI == EndLoop || MI == LoopCount; 6786 } 6787 6788 bool shouldUseSchedule(SwingSchedulerDAG &SSD, SMSchedule &SMS) override { 6789 if (tooMuchRegisterPressure(SSD, SMS)) 6790 return false; 6791 6792 return true; 6793 } 6794 6795 std::optional<bool> createTripCountGreaterCondition( 6796 int TC, MachineBasicBlock &MBB, 6797 SmallVectorImpl<MachineOperand> &Cond) override { 6798 6799 if (isCondBranchOpcode(EndLoop->getOpcode())) { 6800 Cond.push_back(EndLoop->getOperand(1)); 6801 Cond.push_back(EndLoop->getOperand(2)); 6802 if (EndLoop->getOperand(0).getMBB() == EndLoop->getParent()) { 6803 TII->reverseBranchCondition(Cond); 6804 } 6805 return {}; 6806 } else if (EndLoop->getOpcode() == ARM::t2LoopEnd) { 6807 // General case just lets the unrolled t2LoopDec do the subtraction and 6808 // therefore just needs to check if zero has been reached. 6809 MachineInstr *LoopDec = nullptr; 6810 for (auto &I : MBB.instrs()) 6811 if (I.getOpcode() == ARM::t2LoopDec) 6812 LoopDec = &I; 6813 assert(LoopDec && "Unable to find copied LoopDec"); 6814 // Check if we're done with the loop. 6815 BuildMI(&MBB, LoopDec->getDebugLoc(), TII->get(ARM::t2CMPri)) 6816 .addReg(LoopDec->getOperand(0).getReg()) 6817 .addImm(0) 6818 .addImm(ARMCC::AL) 6819 .addReg(ARM::NoRegister); 6820 Cond.push_back(MachineOperand::CreateImm(ARMCC::EQ)); 6821 Cond.push_back(MachineOperand::CreateReg(ARM::CPSR, false)); 6822 return {}; 6823 } else 6824 llvm_unreachable("Unknown EndLoop"); 6825 } 6826 6827 void setPreheader(MachineBasicBlock *NewPreheader) override {} 6828 6829 void adjustTripCount(int TripCountAdjust) override {} 6830 6831 void disposed() override {} 6832 }; 6833 6834 void ARMPipelinerLoopInfo::bumpCrossIterationPressure(RegPressureTracker &RPT, 6835 const IterNeeds &CIN) { 6836 // Increase pressure by the amounts in CrossIterationNeeds 6837 for (const auto &N : CIN) { 6838 int Cnt = N.second.count() - N.second[SEEN_AS_LIVE] * 2; 6839 for (int I = 0; I < Cnt; ++I) 6840 RPT.increaseRegPressure(Register(N.first), LaneBitmask::getNone(), 6841 LaneBitmask::getAll()); 6842 } 6843 // Decrease pressure by the amounts in CrossIterationNeeds 6844 for (const auto &N : CIN) { 6845 int Cnt = N.second.count() - N.second[SEEN_AS_LIVE] * 2; 6846 for (int I = 0; I < Cnt; ++I) 6847 RPT.decreaseRegPressure(Register(N.first), LaneBitmask::getAll(), 6848 LaneBitmask::getNone()); 6849 } 6850 } 6851 6852 bool ARMPipelinerLoopInfo::tooMuchRegisterPressure(SwingSchedulerDAG &SSD, 6853 SMSchedule &SMS) { 6854 IterNeeds CrossIterationNeeds; 6855 6856 // Determine which values will be loop-carried after the schedule is 6857 // applied 6858 6859 for (auto &SU : SSD.SUnits) { 6860 const MachineInstr *MI = SU.getInstr(); 6861 int Stg = SMS.stageScheduled(const_cast<SUnit *>(&SU)); 6862 for (auto &S : SU.Succs) 6863 if (MI->isPHI() && S.getKind() == SDep::Anti) { 6864 Register Reg = S.getReg(); 6865 if (Reg.isVirtual()) 6866 CrossIterationNeeds.insert(std::make_pair(Reg.id(), IterNeed())) 6867 .first->second.set(0); 6868 } else if (S.isAssignedRegDep()) { 6869 int OStg = SMS.stageScheduled(S.getSUnit()); 6870 if (OStg >= 0 && OStg != Stg) { 6871 Register Reg = S.getReg(); 6872 if (Reg.isVirtual()) 6873 CrossIterationNeeds.insert(std::make_pair(Reg.id(), IterNeed())) 6874 .first->second |= ((1 << (OStg - Stg)) - 1); 6875 } 6876 } 6877 } 6878 6879 // Determine more-or-less what the proposed schedule (reversed) is going to 6880 // be; it might not be quite the same because the within-cycle ordering 6881 // created by SMSchedule depends upon changes to help with address offsets and 6882 // the like. 6883 std::vector<SUnit *> ProposedSchedule; 6884 for (int Cycle = SMS.getFinalCycle(); Cycle >= SMS.getFirstCycle(); --Cycle) 6885 for (int Stage = 0, StageEnd = SMS.getMaxStageCount(); Stage <= StageEnd; 6886 ++Stage) { 6887 std::deque<SUnit *> Instrs = 6888 SMS.getInstructions(Cycle + Stage * SMS.getInitiationInterval()); 6889 std::sort(Instrs.begin(), Instrs.end(), 6890 [](SUnit *A, SUnit *B) { return A->NodeNum > B->NodeNum; }); 6891 for (SUnit *SU : Instrs) 6892 ProposedSchedule.push_back(SU); 6893 } 6894 6895 // Learn whether the last use/def of each cross-iteration register is a use or 6896 // def. If it is a def, RegisterPressure will implicitly increase max pressure 6897 // and we do not have to add the pressure. 6898 for (auto *SU : ProposedSchedule) 6899 for (ConstMIBundleOperands OperI(*SU->getInstr()); OperI.isValid(); 6900 ++OperI) { 6901 auto MO = *OperI; 6902 if (!MO.isReg() || !MO.getReg()) 6903 continue; 6904 Register Reg = MO.getReg(); 6905 auto CIter = CrossIterationNeeds.find(Reg.id()); 6906 if (CIter == CrossIterationNeeds.end() || CIter->second[LAST_IS_USE] || 6907 CIter->second[SEEN_AS_LIVE]) 6908 continue; 6909 if (MO.isDef() && !MO.isDead()) 6910 CIter->second.set(SEEN_AS_LIVE); 6911 else if (MO.isUse()) 6912 CIter->second.set(LAST_IS_USE); 6913 } 6914 for (auto &CI : CrossIterationNeeds) 6915 CI.second.reset(LAST_IS_USE); 6916 6917 RegionPressure RecRegPressure; 6918 RegPressureTracker RPTracker(RecRegPressure); 6919 RegisterClassInfo RegClassInfo; 6920 RegClassInfo.runOnMachineFunction(*MF); 6921 RPTracker.init(MF, &RegClassInfo, nullptr, EndLoop->getParent(), 6922 EndLoop->getParent()->end(), false, false); 6923 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 6924 6925 bumpCrossIterationPressure(RPTracker, CrossIterationNeeds); 6926 6927 for (auto *SU : ProposedSchedule) { 6928 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 6929 RPTracker.setPos(std::next(CurInstI)); 6930 RPTracker.recede(); 6931 6932 // Track what cross-iteration registers would be seen as live 6933 for (ConstMIBundleOperands OperI(*CurInstI); OperI.isValid(); ++OperI) { 6934 auto MO = *OperI; 6935 if (!MO.isReg() || !MO.getReg()) 6936 continue; 6937 Register Reg = MO.getReg(); 6938 if (MO.isDef() && !MO.isDead()) { 6939 auto CIter = CrossIterationNeeds.find(Reg.id()); 6940 if (CIter != CrossIterationNeeds.end()) { 6941 CIter->second.reset(0); 6942 CIter->second.reset(SEEN_AS_LIVE); 6943 } 6944 } 6945 } 6946 for (auto &S : SU->Preds) { 6947 auto Stg = SMS.stageScheduled(SU); 6948 if (S.isAssignedRegDep()) { 6949 Register Reg = S.getReg(); 6950 auto CIter = CrossIterationNeeds.find(Reg.id()); 6951 if (CIter != CrossIterationNeeds.end()) { 6952 auto Stg2 = SMS.stageScheduled(const_cast<SUnit *>(S.getSUnit())); 6953 assert(Stg2 <= Stg && "Data dependence upon earlier stage"); 6954 if (Stg - Stg2 < MAX_STAGES) 6955 CIter->second.set(Stg - Stg2); 6956 CIter->second.set(SEEN_AS_LIVE); 6957 } 6958 } 6959 } 6960 6961 bumpCrossIterationPressure(RPTracker, CrossIterationNeeds); 6962 } 6963 6964 auto &P = RPTracker.getPressure().MaxSetPressure; 6965 for (unsigned I = 0, E = P.size(); I < E; ++I) 6966 if (P[I] > TRI->getRegPressureSetLimit(*MF, I)) { 6967 return true; 6968 } 6969 return false; 6970 } 6971 6972 } // namespace 6973 6974 std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> 6975 ARMBaseInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { 6976 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); 6977 MachineBasicBlock *Preheader = *LoopBB->pred_begin(); 6978 if (Preheader == LoopBB) 6979 Preheader = *std::next(LoopBB->pred_begin()); 6980 6981 if (I != LoopBB->end() && I->getOpcode() == ARM::t2Bcc) { 6982 // If the branch is a Bcc, then the CPSR should be set somewhere within the 6983 // block. We need to determine the reaching definition of CPSR so that 6984 // it can be marked as non-pipelineable, allowing the pipeliner to force 6985 // it into stage 0 or give up if it cannot or will not do so. 6986 MachineInstr *CCSetter = nullptr; 6987 for (auto &L : LoopBB->instrs()) { 6988 if (L.isCall()) 6989 return nullptr; 6990 if (isCPSRDefined(L)) 6991 CCSetter = &L; 6992 } 6993 if (CCSetter) 6994 return std::make_unique<ARMPipelinerLoopInfo>(&*I, CCSetter); 6995 else 6996 return nullptr; // Unable to find the CC setter, so unable to guarantee 6997 // that pipeline will work 6998 } 6999 7000 // Recognize: 7001 // preheader: 7002 // %1 = t2DoopLoopStart %0 7003 // loop: 7004 // %2 = phi %1, <not loop>, %..., %loop 7005 // %3 = t2LoopDec %2, <imm> 7006 // t2LoopEnd %3, %loop 7007 7008 if (I != LoopBB->end() && I->getOpcode() == ARM::t2LoopEnd) { 7009 for (auto &L : LoopBB->instrs()) 7010 if (L.isCall()) 7011 return nullptr; 7012 else if (isVCTP(&L)) 7013 return nullptr; 7014 Register LoopDecResult = I->getOperand(0).getReg(); 7015 MachineRegisterInfo &MRI = LoopBB->getParent()->getRegInfo(); 7016 MachineInstr *LoopDec = MRI.getUniqueVRegDef(LoopDecResult); 7017 if (!LoopDec || LoopDec->getOpcode() != ARM::t2LoopDec) 7018 return nullptr; 7019 MachineInstr *LoopStart = nullptr; 7020 for (auto &J : Preheader->instrs()) 7021 if (J.getOpcode() == ARM::t2DoLoopStart) 7022 LoopStart = &J; 7023 if (!LoopStart) 7024 return nullptr; 7025 return std::make_unique<ARMPipelinerLoopInfo>(&*I, LoopDec); 7026 } 7027 return nullptr; 7028 } 7029