1 //===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the Base ARM implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "ARMBaseInstrInfo.h" 14 #include "ARMBaseRegisterInfo.h" 15 #include "ARMConstantPoolValue.h" 16 #include "ARMFeatures.h" 17 #include "ARMHazardRecognizer.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMSubtarget.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMBaseInfo.h" 22 #include "MVETailPredUtils.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/CodeGen/LiveVariables.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineConstantPool.h" 31 #include "llvm/CodeGen/MachineFrameInfo.h" 32 #include "llvm/CodeGen/MachineFunction.h" 33 #include "llvm/CodeGen/MachineInstr.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineMemOperand.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineOperand.h" 38 #include "llvm/CodeGen/MachineRegisterInfo.h" 39 #include "llvm/CodeGen/MachineScheduler.h" 40 #include "llvm/CodeGen/MultiHazardRecognizer.h" 41 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h" 42 #include "llvm/CodeGen/SelectionDAGNodes.h" 43 #include "llvm/CodeGen/TargetInstrInfo.h" 44 #include "llvm/CodeGen/TargetRegisterInfo.h" 45 #include "llvm/CodeGen/TargetSchedule.h" 46 #include "llvm/IR/Attributes.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DebugLoc.h" 49 #include "llvm/IR/Function.h" 50 #include "llvm/IR/GlobalValue.h" 51 #include "llvm/MC/MCAsmInfo.h" 52 #include "llvm/MC/MCInstrDesc.h" 53 #include "llvm/MC/MCInstrItineraries.h" 54 #include "llvm/Support/BranchProbability.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Compiler.h" 58 #include "llvm/Support/Debug.h" 59 #include "llvm/Support/ErrorHandling.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Target/TargetMachine.h" 62 #include <algorithm> 63 #include <cassert> 64 #include <cstdint> 65 #include <iterator> 66 #include <new> 67 #include <utility> 68 #include <vector> 69 70 using namespace llvm; 71 72 #define DEBUG_TYPE "arm-instrinfo" 73 74 #define GET_INSTRINFO_CTOR_DTOR 75 #include "ARMGenInstrInfo.inc" 76 77 static cl::opt<bool> 78 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden, 79 cl::desc("Enable ARM 2-addr to 3-addr conv")); 80 81 /// ARM_MLxEntry - Record information about MLA / MLS instructions. 82 struct ARM_MLxEntry { 83 uint16_t MLxOpc; // MLA / MLS opcode 84 uint16_t MulOpc; // Expanded multiplication opcode 85 uint16_t AddSubOpc; // Expanded add / sub opcode 86 bool NegAcc; // True if the acc is negated before the add / sub. 87 bool HasLane; // True if instruction has an extra "lane" operand. 88 }; 89 90 static const ARM_MLxEntry ARM_MLxTable[] = { 91 // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane 92 // fp scalar ops 93 { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false }, 94 { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false }, 95 { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false }, 96 { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false }, 97 { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false }, 98 { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false }, 99 { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false }, 100 { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false }, 101 102 // fp SIMD ops 103 { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false }, 104 { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false }, 105 { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false }, 106 { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false }, 107 { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true }, 108 { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true }, 109 { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true }, 110 { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true }, 111 }; 112 113 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI) 114 : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP), 115 Subtarget(STI) { 116 for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) { 117 if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second) 118 llvm_unreachable("Duplicated entries?"); 119 MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc); 120 MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc); 121 } 122 } 123 124 // Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl 125 // currently defaults to no prepass hazard recognizer. 126 ScheduleHazardRecognizer * 127 ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, 128 const ScheduleDAG *DAG) const { 129 if (usePreRAHazardRecognizer()) { 130 const InstrItineraryData *II = 131 static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData(); 132 return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched"); 133 } 134 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); 135 } 136 137 // Called during: 138 // - pre-RA scheduling 139 // - post-RA scheduling when FeatureUseMISched is set 140 ScheduleHazardRecognizer *ARMBaseInstrInfo::CreateTargetMIHazardRecognizer( 141 const InstrItineraryData *II, const ScheduleDAGMI *DAG) const { 142 MultiHazardRecognizer *MHR = new MultiHazardRecognizer(); 143 144 // We would like to restrict this hazard recognizer to only 145 // post-RA scheduling; we can tell that we're post-RA because we don't 146 // track VRegLiveness. 147 // Cortex-M7: TRM indicates that there is a single ITCM bank and two DTCM 148 // banks banked on bit 2. Assume that TCMs are in use. 149 if (Subtarget.isCortexM7() && !DAG->hasVRegLiveness()) 150 MHR->AddHazardRecognizer( 151 std::make_unique<ARMBankConflictHazardRecognizer>(DAG, 0x4, true)); 152 153 // Not inserting ARMHazardRecognizerFPMLx because that would change 154 // legacy behavior 155 156 auto BHR = TargetInstrInfo::CreateTargetMIHazardRecognizer(II, DAG); 157 MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR)); 158 return MHR; 159 } 160 161 // Called during post-RA scheduling when FeatureUseMISched is not set 162 ScheduleHazardRecognizer *ARMBaseInstrInfo:: 163 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, 164 const ScheduleDAG *DAG) const { 165 MultiHazardRecognizer *MHR = new MultiHazardRecognizer(); 166 167 if (Subtarget.isThumb2() || Subtarget.hasVFP2Base()) 168 MHR->AddHazardRecognizer(std::make_unique<ARMHazardRecognizerFPMLx>()); 169 170 auto BHR = TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG); 171 if (BHR) 172 MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR)); 173 return MHR; 174 } 175 176 MachineInstr *ARMBaseInstrInfo::convertToThreeAddress( 177 MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const { 178 // FIXME: Thumb2 support. 179 180 if (!EnableARM3Addr) 181 return nullptr; 182 183 MachineFunction &MF = *MI.getParent()->getParent(); 184 uint64_t TSFlags = MI.getDesc().TSFlags; 185 bool isPre = false; 186 switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) { 187 default: return nullptr; 188 case ARMII::IndexModePre: 189 isPre = true; 190 break; 191 case ARMII::IndexModePost: 192 break; 193 } 194 195 // Try splitting an indexed load/store to an un-indexed one plus an add/sub 196 // operation. 197 unsigned MemOpc = getUnindexedOpcode(MI.getOpcode()); 198 if (MemOpc == 0) 199 return nullptr; 200 201 MachineInstr *UpdateMI = nullptr; 202 MachineInstr *MemMI = nullptr; 203 unsigned AddrMode = (TSFlags & ARMII::AddrModeMask); 204 const MCInstrDesc &MCID = MI.getDesc(); 205 unsigned NumOps = MCID.getNumOperands(); 206 bool isLoad = !MI.mayStore(); 207 const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0); 208 const MachineOperand &Base = MI.getOperand(2); 209 const MachineOperand &Offset = MI.getOperand(NumOps - 3); 210 Register WBReg = WB.getReg(); 211 Register BaseReg = Base.getReg(); 212 Register OffReg = Offset.getReg(); 213 unsigned OffImm = MI.getOperand(NumOps - 2).getImm(); 214 ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm(); 215 switch (AddrMode) { 216 default: llvm_unreachable("Unknown indexed op!"); 217 case ARMII::AddrMode2: { 218 bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; 219 unsigned Amt = ARM_AM::getAM2Offset(OffImm); 220 if (OffReg == 0) { 221 if (ARM_AM::getSOImmVal(Amt) == -1) 222 // Can't encode it in a so_imm operand. This transformation will 223 // add more than 1 instruction. Abandon! 224 return nullptr; 225 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 226 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 227 .addReg(BaseReg) 228 .addImm(Amt) 229 .add(predOps(Pred)) 230 .add(condCodeOp()); 231 } else if (Amt != 0) { 232 ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm); 233 unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt); 234 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 235 get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg) 236 .addReg(BaseReg) 237 .addReg(OffReg) 238 .addReg(0) 239 .addImm(SOOpc) 240 .add(predOps(Pred)) 241 .add(condCodeOp()); 242 } else 243 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 244 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 245 .addReg(BaseReg) 246 .addReg(OffReg) 247 .add(predOps(Pred)) 248 .add(condCodeOp()); 249 break; 250 } 251 case ARMII::AddrMode3 : { 252 bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub; 253 unsigned Amt = ARM_AM::getAM3Offset(OffImm); 254 if (OffReg == 0) 255 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand. 256 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 257 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) 258 .addReg(BaseReg) 259 .addImm(Amt) 260 .add(predOps(Pred)) 261 .add(condCodeOp()); 262 else 263 UpdateMI = BuildMI(MF, MI.getDebugLoc(), 264 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) 265 .addReg(BaseReg) 266 .addReg(OffReg) 267 .add(predOps(Pred)) 268 .add(condCodeOp()); 269 break; 270 } 271 } 272 273 std::vector<MachineInstr*> NewMIs; 274 if (isPre) { 275 if (isLoad) 276 MemMI = 277 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) 278 .addReg(WBReg) 279 .addImm(0) 280 .addImm(Pred); 281 else 282 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) 283 .addReg(MI.getOperand(1).getReg()) 284 .addReg(WBReg) 285 .addReg(0) 286 .addImm(0) 287 .addImm(Pred); 288 NewMIs.push_back(MemMI); 289 NewMIs.push_back(UpdateMI); 290 } else { 291 if (isLoad) 292 MemMI = 293 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) 294 .addReg(BaseReg) 295 .addImm(0) 296 .addImm(Pred); 297 else 298 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) 299 .addReg(MI.getOperand(1).getReg()) 300 .addReg(BaseReg) 301 .addReg(0) 302 .addImm(0) 303 .addImm(Pred); 304 if (WB.isDead()) 305 UpdateMI->getOperand(0).setIsDead(); 306 NewMIs.push_back(UpdateMI); 307 NewMIs.push_back(MemMI); 308 } 309 310 // Transfer LiveVariables states, kill / dead info. 311 if (LV) { 312 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 313 MachineOperand &MO = MI.getOperand(i); 314 if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) { 315 Register Reg = MO.getReg(); 316 317 LiveVariables::VarInfo &VI = LV->getVarInfo(Reg); 318 if (MO.isDef()) { 319 MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI; 320 if (MO.isDead()) 321 LV->addVirtualRegisterDead(Reg, *NewMI); 322 } 323 if (MO.isUse() && MO.isKill()) { 324 for (unsigned j = 0; j < 2; ++j) { 325 // Look at the two new MI's in reverse order. 326 MachineInstr *NewMI = NewMIs[j]; 327 if (!NewMI->readsRegister(Reg)) 328 continue; 329 LV->addVirtualRegisterKilled(Reg, *NewMI); 330 if (VI.removeKill(MI)) 331 VI.Kills.push_back(NewMI); 332 break; 333 } 334 } 335 } 336 } 337 } 338 339 MachineBasicBlock::iterator MBBI = MI.getIterator(); 340 MFI->insert(MBBI, NewMIs[1]); 341 MFI->insert(MBBI, NewMIs[0]); 342 return NewMIs[0]; 343 } 344 345 // Branch analysis. 346 bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 347 MachineBasicBlock *&TBB, 348 MachineBasicBlock *&FBB, 349 SmallVectorImpl<MachineOperand> &Cond, 350 bool AllowModify) const { 351 TBB = nullptr; 352 FBB = nullptr; 353 354 MachineBasicBlock::instr_iterator I = MBB.instr_end(); 355 if (I == MBB.instr_begin()) 356 return false; // Empty blocks are easy. 357 --I; 358 359 // Walk backwards from the end of the basic block until the branch is 360 // analyzed or we give up. 361 while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) { 362 // Flag to be raised on unanalyzeable instructions. This is useful in cases 363 // where we want to clean up on the end of the basic block before we bail 364 // out. 365 bool CantAnalyze = false; 366 367 // Skip over DEBUG values, predicated nonterminators and speculation 368 // barrier terminators. 369 while (I->isDebugInstr() || !I->isTerminator() || 370 isSpeculationBarrierEndBBOpcode(I->getOpcode()) || 371 I->getOpcode() == ARM::t2DoLoopStartTP){ 372 if (I == MBB.instr_begin()) 373 return false; 374 --I; 375 } 376 377 if (isIndirectBranchOpcode(I->getOpcode()) || 378 isJumpTableBranchOpcode(I->getOpcode())) { 379 // Indirect branches and jump tables can't be analyzed, but we still want 380 // to clean up any instructions at the tail of the basic block. 381 CantAnalyze = true; 382 } else if (isUncondBranchOpcode(I->getOpcode())) { 383 TBB = I->getOperand(0).getMBB(); 384 } else if (isCondBranchOpcode(I->getOpcode())) { 385 // Bail out if we encounter multiple conditional branches. 386 if (!Cond.empty()) 387 return true; 388 389 assert(!FBB && "FBB should have been null."); 390 FBB = TBB; 391 TBB = I->getOperand(0).getMBB(); 392 Cond.push_back(I->getOperand(1)); 393 Cond.push_back(I->getOperand(2)); 394 } else if (I->isReturn()) { 395 // Returns can't be analyzed, but we should run cleanup. 396 CantAnalyze = true; 397 } else { 398 // We encountered other unrecognized terminator. Bail out immediately. 399 return true; 400 } 401 402 // Cleanup code - to be run for unpredicated unconditional branches and 403 // returns. 404 if (!isPredicated(*I) && 405 (isUncondBranchOpcode(I->getOpcode()) || 406 isIndirectBranchOpcode(I->getOpcode()) || 407 isJumpTableBranchOpcode(I->getOpcode()) || 408 I->isReturn())) { 409 // Forget any previous condition branch information - it no longer applies. 410 Cond.clear(); 411 FBB = nullptr; 412 413 // If we can modify the function, delete everything below this 414 // unconditional branch. 415 if (AllowModify) { 416 MachineBasicBlock::iterator DI = std::next(I); 417 while (DI != MBB.instr_end()) { 418 MachineInstr &InstToDelete = *DI; 419 ++DI; 420 // Speculation barriers must not be deleted. 421 if (isSpeculationBarrierEndBBOpcode(InstToDelete.getOpcode())) 422 continue; 423 InstToDelete.eraseFromParent(); 424 } 425 } 426 } 427 428 if (CantAnalyze) { 429 // We may not be able to analyze the block, but we could still have 430 // an unconditional branch as the last instruction in the block, which 431 // just branches to layout successor. If this is the case, then just 432 // remove it if we're allowed to make modifications. 433 if (AllowModify && !isPredicated(MBB.back()) && 434 isUncondBranchOpcode(MBB.back().getOpcode()) && 435 TBB && MBB.isLayoutSuccessor(TBB)) 436 removeBranch(MBB); 437 return true; 438 } 439 440 if (I == MBB.instr_begin()) 441 return false; 442 443 --I; 444 } 445 446 // We made it past the terminators without bailing out - we must have 447 // analyzed this branch successfully. 448 return false; 449 } 450 451 unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB, 452 int *BytesRemoved) const { 453 assert(!BytesRemoved && "code size not handled"); 454 455 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); 456 if (I == MBB.end()) 457 return 0; 458 459 if (!isUncondBranchOpcode(I->getOpcode()) && 460 !isCondBranchOpcode(I->getOpcode())) 461 return 0; 462 463 // Remove the branch. 464 I->eraseFromParent(); 465 466 I = MBB.end(); 467 468 if (I == MBB.begin()) return 1; 469 --I; 470 if (!isCondBranchOpcode(I->getOpcode())) 471 return 1; 472 473 // Remove the branch. 474 I->eraseFromParent(); 475 return 2; 476 } 477 478 unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB, 479 MachineBasicBlock *TBB, 480 MachineBasicBlock *FBB, 481 ArrayRef<MachineOperand> Cond, 482 const DebugLoc &DL, 483 int *BytesAdded) const { 484 assert(!BytesAdded && "code size not handled"); 485 ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>(); 486 int BOpc = !AFI->isThumbFunction() 487 ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB); 488 int BccOpc = !AFI->isThumbFunction() 489 ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc); 490 bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function(); 491 492 // Shouldn't be a fall through. 493 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 494 assert((Cond.size() == 2 || Cond.size() == 0) && 495 "ARM branch conditions have two components!"); 496 497 // For conditional branches, we use addOperand to preserve CPSR flags. 498 499 if (!FBB) { 500 if (Cond.empty()) { // Unconditional branch? 501 if (isThumb) 502 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL)); 503 else 504 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); 505 } else 506 BuildMI(&MBB, DL, get(BccOpc)) 507 .addMBB(TBB) 508 .addImm(Cond[0].getImm()) 509 .add(Cond[1]); 510 return 1; 511 } 512 513 // Two-way conditional branch. 514 BuildMI(&MBB, DL, get(BccOpc)) 515 .addMBB(TBB) 516 .addImm(Cond[0].getImm()) 517 .add(Cond[1]); 518 if (isThumb) 519 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL)); 520 else 521 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); 522 return 2; 523 } 524 525 bool ARMBaseInstrInfo:: 526 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 527 ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm(); 528 Cond[0].setImm(ARMCC::getOppositeCondition(CC)); 529 return false; 530 } 531 532 bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const { 533 if (MI.isBundle()) { 534 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 535 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 536 while (++I != E && I->isInsideBundle()) { 537 int PIdx = I->findFirstPredOperandIdx(); 538 if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL) 539 return true; 540 } 541 return false; 542 } 543 544 int PIdx = MI.findFirstPredOperandIdx(); 545 return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL; 546 } 547 548 std::string ARMBaseInstrInfo::createMIROperandComment( 549 const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx, 550 const TargetRegisterInfo *TRI) const { 551 552 // First, let's see if there is a generic comment for this operand 553 std::string GenericComment = 554 TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI); 555 if (!GenericComment.empty()) 556 return GenericComment; 557 558 // If not, check if we have an immediate operand. 559 if (Op.getType() != MachineOperand::MO_Immediate) 560 return std::string(); 561 562 // And print its corresponding condition code if the immediate is a 563 // predicate. 564 int FirstPredOp = MI.findFirstPredOperandIdx(); 565 if (FirstPredOp != (int) OpIdx) 566 return std::string(); 567 568 std::string CC = "CC::"; 569 CC += ARMCondCodeToString((ARMCC::CondCodes)Op.getImm()); 570 return CC; 571 } 572 573 bool ARMBaseInstrInfo::PredicateInstruction( 574 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 575 unsigned Opc = MI.getOpcode(); 576 if (isUncondBranchOpcode(Opc)) { 577 MI.setDesc(get(getMatchingCondBranchOpcode(Opc))); 578 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 579 .addImm(Pred[0].getImm()) 580 .addReg(Pred[1].getReg()); 581 return true; 582 } 583 584 int PIdx = MI.findFirstPredOperandIdx(); 585 if (PIdx != -1) { 586 MachineOperand &PMO = MI.getOperand(PIdx); 587 PMO.setImm(Pred[0].getImm()); 588 MI.getOperand(PIdx+1).setReg(Pred[1].getReg()); 589 590 // Thumb 1 arithmetic instructions do not set CPSR when executed inside an 591 // IT block. This affects how they are printed. 592 const MCInstrDesc &MCID = MI.getDesc(); 593 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { 594 assert(MCID.OpInfo[1].isOptionalDef() && "CPSR def isn't expected operand"); 595 assert((MI.getOperand(1).isDead() || 596 MI.getOperand(1).getReg() != ARM::CPSR) && 597 "if conversion tried to stop defining used CPSR"); 598 MI.getOperand(1).setReg(ARM::NoRegister); 599 } 600 601 return true; 602 } 603 return false; 604 } 605 606 bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, 607 ArrayRef<MachineOperand> Pred2) const { 608 if (Pred1.size() > 2 || Pred2.size() > 2) 609 return false; 610 611 ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm(); 612 ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm(); 613 if (CC1 == CC2) 614 return true; 615 616 switch (CC1) { 617 default: 618 return false; 619 case ARMCC::AL: 620 return true; 621 case ARMCC::HS: 622 return CC2 == ARMCC::HI; 623 case ARMCC::LS: 624 return CC2 == ARMCC::LO || CC2 == ARMCC::EQ; 625 case ARMCC::GE: 626 return CC2 == ARMCC::GT; 627 case ARMCC::LE: 628 return CC2 == ARMCC::LT; 629 } 630 } 631 632 bool ARMBaseInstrInfo::ClobbersPredicate(MachineInstr &MI, 633 std::vector<MachineOperand> &Pred, 634 bool SkipDead) const { 635 bool Found = false; 636 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 637 const MachineOperand &MO = MI.getOperand(i); 638 bool ClobbersCPSR = MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR); 639 bool IsCPSR = MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR; 640 if (ClobbersCPSR || IsCPSR) { 641 642 // Filter out T1 instructions that have a dead CPSR, 643 // allowing IT blocks to be generated containing T1 instructions 644 const MCInstrDesc &MCID = MI.getDesc(); 645 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting && MO.isDead() && 646 SkipDead) 647 continue; 648 649 Pred.push_back(MO); 650 Found = true; 651 } 652 } 653 654 return Found; 655 } 656 657 bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) { 658 for (const auto &MO : MI.operands()) 659 if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead()) 660 return true; 661 return false; 662 } 663 664 static bool isEligibleForITBlock(const MachineInstr *MI) { 665 switch (MI->getOpcode()) { 666 default: return true; 667 case ARM::tADC: // ADC (register) T1 668 case ARM::tADDi3: // ADD (immediate) T1 669 case ARM::tADDi8: // ADD (immediate) T2 670 case ARM::tADDrr: // ADD (register) T1 671 case ARM::tAND: // AND (register) T1 672 case ARM::tASRri: // ASR (immediate) T1 673 case ARM::tASRrr: // ASR (register) T1 674 case ARM::tBIC: // BIC (register) T1 675 case ARM::tEOR: // EOR (register) T1 676 case ARM::tLSLri: // LSL (immediate) T1 677 case ARM::tLSLrr: // LSL (register) T1 678 case ARM::tLSRri: // LSR (immediate) T1 679 case ARM::tLSRrr: // LSR (register) T1 680 case ARM::tMUL: // MUL T1 681 case ARM::tMVN: // MVN (register) T1 682 case ARM::tORR: // ORR (register) T1 683 case ARM::tROR: // ROR (register) T1 684 case ARM::tRSB: // RSB (immediate) T1 685 case ARM::tSBC: // SBC (register) T1 686 case ARM::tSUBi3: // SUB (immediate) T1 687 case ARM::tSUBi8: // SUB (immediate) T2 688 case ARM::tSUBrr: // SUB (register) T1 689 return !ARMBaseInstrInfo::isCPSRDefined(*MI); 690 } 691 } 692 693 /// isPredicable - Return true if the specified instruction can be predicated. 694 /// By default, this returns true for every instruction with a 695 /// PredicateOperand. 696 bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const { 697 if (!MI.isPredicable()) 698 return false; 699 700 if (MI.isBundle()) 701 return false; 702 703 if (!isEligibleForITBlock(&MI)) 704 return false; 705 706 const MachineFunction *MF = MI.getParent()->getParent(); 707 const ARMFunctionInfo *AFI = 708 MF->getInfo<ARMFunctionInfo>(); 709 710 // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM. 711 // In their ARM encoding, they can't be encoded in a conditional form. 712 if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) 713 return false; 714 715 // Make indirect control flow changes unpredicable when SLS mitigation is 716 // enabled. 717 const ARMSubtarget &ST = MF->getSubtarget<ARMSubtarget>(); 718 if (ST.hardenSlsRetBr() && isIndirectControlFlowNotComingBack(MI)) 719 return false; 720 if (ST.hardenSlsBlr() && isIndirectCall(MI)) 721 return false; 722 723 if (AFI->isThumb2Function()) { 724 if (getSubtarget().restrictIT()) 725 return isV8EligibleForIT(&MI); 726 } 727 728 return true; 729 } 730 731 namespace llvm { 732 733 template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) { 734 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 735 const MachineOperand &MO = MI->getOperand(i); 736 if (!MO.isReg() || MO.isUndef() || MO.isUse()) 737 continue; 738 if (MO.getReg() != ARM::CPSR) 739 continue; 740 if (!MO.isDead()) 741 return false; 742 } 743 // all definitions of CPSR are dead 744 return true; 745 } 746 747 } // end namespace llvm 748 749 /// GetInstSize - Return the size of the specified MachineInstr. 750 /// 751 unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 752 const MachineBasicBlock &MBB = *MI.getParent(); 753 const MachineFunction *MF = MBB.getParent(); 754 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); 755 756 const MCInstrDesc &MCID = MI.getDesc(); 757 if (MCID.getSize()) 758 return MCID.getSize(); 759 760 switch (MI.getOpcode()) { 761 default: 762 // pseudo-instruction sizes are zero. 763 return 0; 764 case TargetOpcode::BUNDLE: 765 return getInstBundleLength(MI); 766 case ARM::MOVi16_ga_pcrel: 767 case ARM::MOVTi16_ga_pcrel: 768 case ARM::t2MOVi16_ga_pcrel: 769 case ARM::t2MOVTi16_ga_pcrel: 770 return 4; 771 case ARM::MOVi32imm: 772 case ARM::t2MOVi32imm: 773 return 8; 774 case ARM::CONSTPOOL_ENTRY: 775 case ARM::JUMPTABLE_INSTS: 776 case ARM::JUMPTABLE_ADDRS: 777 case ARM::JUMPTABLE_TBB: 778 case ARM::JUMPTABLE_TBH: 779 // If this machine instr is a constant pool entry, its size is recorded as 780 // operand #2. 781 return MI.getOperand(2).getImm(); 782 case ARM::Int_eh_sjlj_longjmp: 783 return 16; 784 case ARM::tInt_eh_sjlj_longjmp: 785 return 10; 786 case ARM::tInt_WIN_eh_sjlj_longjmp: 787 return 12; 788 case ARM::Int_eh_sjlj_setjmp: 789 case ARM::Int_eh_sjlj_setjmp_nofp: 790 return 20; 791 case ARM::tInt_eh_sjlj_setjmp: 792 case ARM::t2Int_eh_sjlj_setjmp: 793 case ARM::t2Int_eh_sjlj_setjmp_nofp: 794 return 12; 795 case ARM::SPACE: 796 return MI.getOperand(1).getImm(); 797 case ARM::INLINEASM: 798 case ARM::INLINEASM_BR: { 799 // If this machine instr is an inline asm, measure it. 800 unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI); 801 if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction()) 802 Size = alignTo(Size, 4); 803 return Size; 804 } 805 case ARM::SpeculationBarrierISBDSBEndBB: 806 case ARM::t2SpeculationBarrierISBDSBEndBB: 807 // This gets lowered to 2 4-byte instructions. 808 return 8; 809 case ARM::SpeculationBarrierSBEndBB: 810 case ARM::t2SpeculationBarrierSBEndBB: 811 // This gets lowered to 1 4-byte instructions. 812 return 4; 813 } 814 } 815 816 unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const { 817 unsigned Size = 0; 818 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 819 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 820 while (++I != E && I->isInsideBundle()) { 821 assert(!I->isBundle() && "No nested bundle!"); 822 Size += getInstSizeInBytes(*I); 823 } 824 return Size; 825 } 826 827 void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB, 828 MachineBasicBlock::iterator I, 829 unsigned DestReg, bool KillSrc, 830 const ARMSubtarget &Subtarget) const { 831 unsigned Opc = Subtarget.isThumb() 832 ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR) 833 : ARM::MRS; 834 835 MachineInstrBuilder MIB = 836 BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg); 837 838 // There is only 1 A/R class MRS instruction, and it always refers to 839 // APSR. However, there are lots of other possibilities on M-class cores. 840 if (Subtarget.isMClass()) 841 MIB.addImm(0x800); 842 843 MIB.add(predOps(ARMCC::AL)) 844 .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc)); 845 } 846 847 void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB, 848 MachineBasicBlock::iterator I, 849 unsigned SrcReg, bool KillSrc, 850 const ARMSubtarget &Subtarget) const { 851 unsigned Opc = Subtarget.isThumb() 852 ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR) 853 : ARM::MSR; 854 855 MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc)); 856 857 if (Subtarget.isMClass()) 858 MIB.addImm(0x800); 859 else 860 MIB.addImm(8); 861 862 MIB.addReg(SrcReg, getKillRegState(KillSrc)) 863 .add(predOps(ARMCC::AL)) 864 .addReg(ARM::CPSR, RegState::Implicit | RegState::Define); 865 } 866 867 void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) { 868 MIB.addImm(ARMVCC::None); 869 MIB.addReg(0); 870 } 871 872 void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB, 873 Register DestReg) { 874 addUnpredicatedMveVpredNOp(MIB); 875 MIB.addReg(DestReg, RegState::Undef); 876 } 877 878 void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) { 879 MIB.addImm(Cond); 880 MIB.addReg(ARM::VPR, RegState::Implicit); 881 } 882 883 void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB, 884 unsigned Cond, unsigned Inactive) { 885 addPredicatedMveVpredNOp(MIB, Cond); 886 MIB.addReg(Inactive); 887 } 888 889 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 890 MachineBasicBlock::iterator I, 891 const DebugLoc &DL, MCRegister DestReg, 892 MCRegister SrcReg, bool KillSrc) const { 893 bool GPRDest = ARM::GPRRegClass.contains(DestReg); 894 bool GPRSrc = ARM::GPRRegClass.contains(SrcReg); 895 896 if (GPRDest && GPRSrc) { 897 BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg) 898 .addReg(SrcReg, getKillRegState(KillSrc)) 899 .add(predOps(ARMCC::AL)) 900 .add(condCodeOp()); 901 return; 902 } 903 904 bool SPRDest = ARM::SPRRegClass.contains(DestReg); 905 bool SPRSrc = ARM::SPRRegClass.contains(SrcReg); 906 907 unsigned Opc = 0; 908 if (SPRDest && SPRSrc) 909 Opc = ARM::VMOVS; 910 else if (GPRDest && SPRSrc) 911 Opc = ARM::VMOVRS; 912 else if (SPRDest && GPRSrc) 913 Opc = ARM::VMOVSR; 914 else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64()) 915 Opc = ARM::VMOVD; 916 else if (ARM::QPRRegClass.contains(DestReg, SrcReg)) 917 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; 918 919 if (Opc) { 920 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg); 921 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 922 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) 923 MIB.addReg(SrcReg, getKillRegState(KillSrc)); 924 if (Opc == ARM::MVE_VORR) 925 addUnpredicatedMveVpredROp(MIB, DestReg); 926 else 927 MIB.add(predOps(ARMCC::AL)); 928 return; 929 } 930 931 // Handle register classes that require multiple instructions. 932 unsigned BeginIdx = 0; 933 unsigned SubRegs = 0; 934 int Spacing = 1; 935 936 // Use VORRq when possible. 937 if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) { 938 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; 939 BeginIdx = ARM::qsub_0; 940 SubRegs = 2; 941 } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) { 942 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; 943 BeginIdx = ARM::qsub_0; 944 SubRegs = 4; 945 // Fall back to VMOVD. 946 } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) { 947 Opc = ARM::VMOVD; 948 BeginIdx = ARM::dsub_0; 949 SubRegs = 2; 950 } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) { 951 Opc = ARM::VMOVD; 952 BeginIdx = ARM::dsub_0; 953 SubRegs = 3; 954 } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) { 955 Opc = ARM::VMOVD; 956 BeginIdx = ARM::dsub_0; 957 SubRegs = 4; 958 } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) { 959 Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr; 960 BeginIdx = ARM::gsub_0; 961 SubRegs = 2; 962 } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) { 963 Opc = ARM::VMOVD; 964 BeginIdx = ARM::dsub_0; 965 SubRegs = 2; 966 Spacing = 2; 967 } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) { 968 Opc = ARM::VMOVD; 969 BeginIdx = ARM::dsub_0; 970 SubRegs = 3; 971 Spacing = 2; 972 } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) { 973 Opc = ARM::VMOVD; 974 BeginIdx = ARM::dsub_0; 975 SubRegs = 4; 976 Spacing = 2; 977 } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && 978 !Subtarget.hasFP64()) { 979 Opc = ARM::VMOVS; 980 BeginIdx = ARM::ssub_0; 981 SubRegs = 2; 982 } else if (SrcReg == ARM::CPSR) { 983 copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget); 984 return; 985 } else if (DestReg == ARM::CPSR) { 986 copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget); 987 return; 988 } else if (DestReg == ARM::VPR) { 989 assert(ARM::GPRRegClass.contains(SrcReg)); 990 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg) 991 .addReg(SrcReg, getKillRegState(KillSrc)) 992 .add(predOps(ARMCC::AL)); 993 return; 994 } else if (SrcReg == ARM::VPR) { 995 assert(ARM::GPRRegClass.contains(DestReg)); 996 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg) 997 .addReg(SrcReg, getKillRegState(KillSrc)) 998 .add(predOps(ARMCC::AL)); 999 return; 1000 } else if (DestReg == ARM::FPSCR_NZCV) { 1001 assert(ARM::GPRRegClass.contains(SrcReg)); 1002 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg) 1003 .addReg(SrcReg, getKillRegState(KillSrc)) 1004 .add(predOps(ARMCC::AL)); 1005 return; 1006 } else if (SrcReg == ARM::FPSCR_NZCV) { 1007 assert(ARM::GPRRegClass.contains(DestReg)); 1008 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg) 1009 .addReg(SrcReg, getKillRegState(KillSrc)) 1010 .add(predOps(ARMCC::AL)); 1011 return; 1012 } 1013 1014 assert(Opc && "Impossible reg-to-reg copy"); 1015 1016 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1017 MachineInstrBuilder Mov; 1018 1019 // Copy register tuples backward when the first Dest reg overlaps with SrcReg. 1020 if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) { 1021 BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing); 1022 Spacing = -Spacing; 1023 } 1024 #ifndef NDEBUG 1025 SmallSet<unsigned, 4> DstRegs; 1026 #endif 1027 for (unsigned i = 0; i != SubRegs; ++i) { 1028 Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing); 1029 Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing); 1030 assert(Dst && Src && "Bad sub-register"); 1031 #ifndef NDEBUG 1032 assert(!DstRegs.count(Src) && "destructive vector copy"); 1033 DstRegs.insert(Dst); 1034 #endif 1035 Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src); 1036 // VORR (NEON or MVE) takes two source operands. 1037 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) { 1038 Mov.addReg(Src); 1039 } 1040 // MVE VORR takes predicate operands in place of an ordinary condition. 1041 if (Opc == ARM::MVE_VORR) 1042 addUnpredicatedMveVpredROp(Mov, Dst); 1043 else 1044 Mov = Mov.add(predOps(ARMCC::AL)); 1045 // MOVr can set CC. 1046 if (Opc == ARM::MOVr) 1047 Mov = Mov.add(condCodeOp()); 1048 } 1049 // Add implicit super-register defs and kills to the last instruction. 1050 Mov->addRegisterDefined(DestReg, TRI); 1051 if (KillSrc) 1052 Mov->addRegisterKilled(SrcReg, TRI); 1053 } 1054 1055 Optional<DestSourcePair> 1056 ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const { 1057 // VMOVRRD is also a copy instruction but it requires 1058 // special way of handling. It is more complex copy version 1059 // and since that we are not considering it. For recognition 1060 // of such instruction isExtractSubregLike MI interface fuction 1061 // could be used. 1062 // VORRq is considered as a move only if two inputs are 1063 // the same register. 1064 if (!MI.isMoveReg() || 1065 (MI.getOpcode() == ARM::VORRq && 1066 MI.getOperand(1).getReg() != MI.getOperand(2).getReg())) 1067 return None; 1068 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)}; 1069 } 1070 1071 Optional<ParamLoadedValue> 1072 ARMBaseInstrInfo::describeLoadedValue(const MachineInstr &MI, 1073 Register Reg) const { 1074 if (auto DstSrcPair = isCopyInstrImpl(MI)) { 1075 Register DstReg = DstSrcPair->Destination->getReg(); 1076 1077 // TODO: We don't handle cases where the forwarding reg is narrower/wider 1078 // than the copy registers. Consider for example: 1079 // 1080 // s16 = VMOVS s0 1081 // s17 = VMOVS s1 1082 // call @callee(d0) 1083 // 1084 // We'd like to describe the call site value of d0 as d8, but this requires 1085 // gathering and merging the descriptions for the two VMOVS instructions. 1086 // 1087 // We also don't handle the reverse situation, where the forwarding reg is 1088 // narrower than the copy destination: 1089 // 1090 // d8 = VMOVD d0 1091 // call @callee(s1) 1092 // 1093 // We need to produce a fragment description (the call site value of s1 is 1094 // /not/ just d8). 1095 if (DstReg != Reg) 1096 return None; 1097 } 1098 return TargetInstrInfo::describeLoadedValue(MI, Reg); 1099 } 1100 1101 const MachineInstrBuilder & 1102 ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg, 1103 unsigned SubIdx, unsigned State, 1104 const TargetRegisterInfo *TRI) const { 1105 if (!SubIdx) 1106 return MIB.addReg(Reg, State); 1107 1108 if (Register::isPhysicalRegister(Reg)) 1109 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State); 1110 return MIB.addReg(Reg, State, SubIdx); 1111 } 1112 1113 void ARMBaseInstrInfo:: 1114 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 1115 Register SrcReg, bool isKill, int FI, 1116 const TargetRegisterClass *RC, 1117 const TargetRegisterInfo *TRI) const { 1118 MachineFunction &MF = *MBB.getParent(); 1119 MachineFrameInfo &MFI = MF.getFrameInfo(); 1120 Align Alignment = MFI.getObjectAlign(FI); 1121 1122 MachineMemOperand *MMO = MF.getMachineMemOperand( 1123 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, 1124 MFI.getObjectSize(FI), Alignment); 1125 1126 switch (TRI->getSpillSize(*RC)) { 1127 case 2: 1128 if (ARM::HPRRegClass.hasSubClassEq(RC)) { 1129 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH)) 1130 .addReg(SrcReg, getKillRegState(isKill)) 1131 .addFrameIndex(FI) 1132 .addImm(0) 1133 .addMemOperand(MMO) 1134 .add(predOps(ARMCC::AL)); 1135 } else 1136 llvm_unreachable("Unknown reg class!"); 1137 break; 1138 case 4: 1139 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 1140 BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12)) 1141 .addReg(SrcReg, getKillRegState(isKill)) 1142 .addFrameIndex(FI) 1143 .addImm(0) 1144 .addMemOperand(MMO) 1145 .add(predOps(ARMCC::AL)); 1146 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1147 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS)) 1148 .addReg(SrcReg, getKillRegState(isKill)) 1149 .addFrameIndex(FI) 1150 .addImm(0) 1151 .addMemOperand(MMO) 1152 .add(predOps(ARMCC::AL)); 1153 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) { 1154 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off)) 1155 .addReg(SrcReg, getKillRegState(isKill)) 1156 .addFrameIndex(FI) 1157 .addImm(0) 1158 .addMemOperand(MMO) 1159 .add(predOps(ARMCC::AL)); 1160 } else 1161 llvm_unreachable("Unknown reg class!"); 1162 break; 1163 case 8: 1164 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1165 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD)) 1166 .addReg(SrcReg, getKillRegState(isKill)) 1167 .addFrameIndex(FI) 1168 .addImm(0) 1169 .addMemOperand(MMO) 1170 .add(predOps(ARMCC::AL)); 1171 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1172 if (Subtarget.hasV5TEOps()) { 1173 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD)); 1174 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 1175 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 1176 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) 1177 .add(predOps(ARMCC::AL)); 1178 } else { 1179 // Fallback to STM instruction, which has existed since the dawn of 1180 // time. 1181 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA)) 1182 .addFrameIndex(FI) 1183 .addMemOperand(MMO) 1184 .add(predOps(ARMCC::AL)); 1185 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); 1186 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); 1187 } 1188 } else 1189 llvm_unreachable("Unknown reg class!"); 1190 break; 1191 case 16: 1192 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) { 1193 // Use aligned spills if the stack can be realigned. 1194 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) { 1195 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64)) 1196 .addFrameIndex(FI) 1197 .addImm(16) 1198 .addReg(SrcReg, getKillRegState(isKill)) 1199 .addMemOperand(MMO) 1200 .add(predOps(ARMCC::AL)); 1201 } else { 1202 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA)) 1203 .addReg(SrcReg, getKillRegState(isKill)) 1204 .addFrameIndex(FI) 1205 .addMemOperand(MMO) 1206 .add(predOps(ARMCC::AL)); 1207 } 1208 } else if (ARM::QPRRegClass.hasSubClassEq(RC) && 1209 Subtarget.hasMVEIntegerOps()) { 1210 auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32)); 1211 MIB.addReg(SrcReg, getKillRegState(isKill)) 1212 .addFrameIndex(FI) 1213 .addImm(0) 1214 .addMemOperand(MMO); 1215 addUnpredicatedMveVpredNOp(MIB); 1216 } else 1217 llvm_unreachable("Unknown reg class!"); 1218 break; 1219 case 24: 1220 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1221 // Use aligned spills if the stack can be realigned. 1222 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1223 Subtarget.hasNEON()) { 1224 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo)) 1225 .addFrameIndex(FI) 1226 .addImm(16) 1227 .addReg(SrcReg, getKillRegState(isKill)) 1228 .addMemOperand(MMO) 1229 .add(predOps(ARMCC::AL)); 1230 } else { 1231 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), 1232 get(ARM::VSTMDIA)) 1233 .addFrameIndex(FI) 1234 .add(predOps(ARMCC::AL)) 1235 .addMemOperand(MMO); 1236 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1237 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1238 AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1239 } 1240 } else 1241 llvm_unreachable("Unknown reg class!"); 1242 break; 1243 case 32: 1244 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) { 1245 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1246 Subtarget.hasNEON()) { 1247 // FIXME: It's possible to only store part of the QQ register if the 1248 // spilled def has a sub-register index. 1249 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo)) 1250 .addFrameIndex(FI) 1251 .addImm(16) 1252 .addReg(SrcReg, getKillRegState(isKill)) 1253 .addMemOperand(MMO) 1254 .add(predOps(ARMCC::AL)); 1255 } else { 1256 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), 1257 get(ARM::VSTMDIA)) 1258 .addFrameIndex(FI) 1259 .add(predOps(ARMCC::AL)) 1260 .addMemOperand(MMO); 1261 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1262 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1263 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1264 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 1265 } 1266 } else 1267 llvm_unreachable("Unknown reg class!"); 1268 break; 1269 case 64: 1270 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1271 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA)) 1272 .addFrameIndex(FI) 1273 .add(predOps(ARMCC::AL)) 1274 .addMemOperand(MMO); 1275 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); 1276 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); 1277 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); 1278 MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); 1279 MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI); 1280 MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI); 1281 MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI); 1282 AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI); 1283 } else 1284 llvm_unreachable("Unknown reg class!"); 1285 break; 1286 default: 1287 llvm_unreachable("Unknown reg class!"); 1288 } 1289 } 1290 1291 unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 1292 int &FrameIndex) const { 1293 switch (MI.getOpcode()) { 1294 default: break; 1295 case ARM::STRrs: 1296 case ARM::t2STRs: // FIXME: don't use t2STRs to access frame. 1297 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && 1298 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && 1299 MI.getOperand(3).getImm() == 0) { 1300 FrameIndex = MI.getOperand(1).getIndex(); 1301 return MI.getOperand(0).getReg(); 1302 } 1303 break; 1304 case ARM::STRi12: 1305 case ARM::t2STRi12: 1306 case ARM::tSTRspi: 1307 case ARM::VSTRD: 1308 case ARM::VSTRS: 1309 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && 1310 MI.getOperand(2).getImm() == 0) { 1311 FrameIndex = MI.getOperand(1).getIndex(); 1312 return MI.getOperand(0).getReg(); 1313 } 1314 break; 1315 case ARM::VSTR_P0_off: 1316 if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() && 1317 MI.getOperand(1).getImm() == 0) { 1318 FrameIndex = MI.getOperand(0).getIndex(); 1319 return ARM::P0; 1320 } 1321 break; 1322 case ARM::VST1q64: 1323 case ARM::VST1d64TPseudo: 1324 case ARM::VST1d64QPseudo: 1325 if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) { 1326 FrameIndex = MI.getOperand(0).getIndex(); 1327 return MI.getOperand(2).getReg(); 1328 } 1329 break; 1330 case ARM::VSTMQIA: 1331 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1332 FrameIndex = MI.getOperand(1).getIndex(); 1333 return MI.getOperand(0).getReg(); 1334 } 1335 break; 1336 } 1337 1338 return 0; 1339 } 1340 1341 unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, 1342 int &FrameIndex) const { 1343 SmallVector<const MachineMemOperand *, 1> Accesses; 1344 if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) && 1345 Accesses.size() == 1) { 1346 FrameIndex = 1347 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 1348 ->getFrameIndex(); 1349 return true; 1350 } 1351 return false; 1352 } 1353 1354 void ARMBaseInstrInfo:: 1355 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, 1356 Register DestReg, int FI, 1357 const TargetRegisterClass *RC, 1358 const TargetRegisterInfo *TRI) const { 1359 DebugLoc DL; 1360 if (I != MBB.end()) DL = I->getDebugLoc(); 1361 MachineFunction &MF = *MBB.getParent(); 1362 MachineFrameInfo &MFI = MF.getFrameInfo(); 1363 const Align Alignment = MFI.getObjectAlign(FI); 1364 MachineMemOperand *MMO = MF.getMachineMemOperand( 1365 MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, 1366 MFI.getObjectSize(FI), Alignment); 1367 1368 switch (TRI->getSpillSize(*RC)) { 1369 case 2: 1370 if (ARM::HPRRegClass.hasSubClassEq(RC)) { 1371 BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg) 1372 .addFrameIndex(FI) 1373 .addImm(0) 1374 .addMemOperand(MMO) 1375 .add(predOps(ARMCC::AL)); 1376 } else 1377 llvm_unreachable("Unknown reg class!"); 1378 break; 1379 case 4: 1380 if (ARM::GPRRegClass.hasSubClassEq(RC)) { 1381 BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg) 1382 .addFrameIndex(FI) 1383 .addImm(0) 1384 .addMemOperand(MMO) 1385 .add(predOps(ARMCC::AL)); 1386 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { 1387 BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg) 1388 .addFrameIndex(FI) 1389 .addImm(0) 1390 .addMemOperand(MMO) 1391 .add(predOps(ARMCC::AL)); 1392 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) { 1393 BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg) 1394 .addFrameIndex(FI) 1395 .addImm(0) 1396 .addMemOperand(MMO) 1397 .add(predOps(ARMCC::AL)); 1398 } else 1399 llvm_unreachable("Unknown reg class!"); 1400 break; 1401 case 8: 1402 if (ARM::DPRRegClass.hasSubClassEq(RC)) { 1403 BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg) 1404 .addFrameIndex(FI) 1405 .addImm(0) 1406 .addMemOperand(MMO) 1407 .add(predOps(ARMCC::AL)); 1408 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { 1409 MachineInstrBuilder MIB; 1410 1411 if (Subtarget.hasV5TEOps()) { 1412 MIB = BuildMI(MBB, I, DL, get(ARM::LDRD)); 1413 AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1414 AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1415 MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) 1416 .add(predOps(ARMCC::AL)); 1417 } else { 1418 // Fallback to LDM instruction, which has existed since the dawn of 1419 // time. 1420 MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA)) 1421 .addFrameIndex(FI) 1422 .addMemOperand(MMO) 1423 .add(predOps(ARMCC::AL)); 1424 MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); 1425 MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); 1426 } 1427 1428 if (Register::isPhysicalRegister(DestReg)) 1429 MIB.addReg(DestReg, RegState::ImplicitDefine); 1430 } else 1431 llvm_unreachable("Unknown reg class!"); 1432 break; 1433 case 16: 1434 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) { 1435 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) { 1436 BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg) 1437 .addFrameIndex(FI) 1438 .addImm(16) 1439 .addMemOperand(MMO) 1440 .add(predOps(ARMCC::AL)); 1441 } else { 1442 BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg) 1443 .addFrameIndex(FI) 1444 .addMemOperand(MMO) 1445 .add(predOps(ARMCC::AL)); 1446 } 1447 } else if (ARM::QPRRegClass.hasSubClassEq(RC) && 1448 Subtarget.hasMVEIntegerOps()) { 1449 auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg); 1450 MIB.addFrameIndex(FI) 1451 .addImm(0) 1452 .addMemOperand(MMO); 1453 addUnpredicatedMveVpredNOp(MIB); 1454 } else 1455 llvm_unreachable("Unknown reg class!"); 1456 break; 1457 case 24: 1458 if (ARM::DTripleRegClass.hasSubClassEq(RC)) { 1459 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1460 Subtarget.hasNEON()) { 1461 BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg) 1462 .addFrameIndex(FI) 1463 .addImm(16) 1464 .addMemOperand(MMO) 1465 .add(predOps(ARMCC::AL)); 1466 } else { 1467 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1468 .addFrameIndex(FI) 1469 .addMemOperand(MMO) 1470 .add(predOps(ARMCC::AL)); 1471 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1472 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1473 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1474 if (Register::isPhysicalRegister(DestReg)) 1475 MIB.addReg(DestReg, RegState::ImplicitDefine); 1476 } 1477 } else 1478 llvm_unreachable("Unknown reg class!"); 1479 break; 1480 case 32: 1481 if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) { 1482 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && 1483 Subtarget.hasNEON()) { 1484 BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg) 1485 .addFrameIndex(FI) 1486 .addImm(16) 1487 .addMemOperand(MMO) 1488 .add(predOps(ARMCC::AL)); 1489 } else { 1490 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1491 .addFrameIndex(FI) 1492 .add(predOps(ARMCC::AL)) 1493 .addMemOperand(MMO); 1494 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1495 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1496 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1497 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1498 if (Register::isPhysicalRegister(DestReg)) 1499 MIB.addReg(DestReg, RegState::ImplicitDefine); 1500 } 1501 } else 1502 llvm_unreachable("Unknown reg class!"); 1503 break; 1504 case 64: 1505 if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { 1506 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) 1507 .addFrameIndex(FI) 1508 .add(predOps(ARMCC::AL)) 1509 .addMemOperand(MMO); 1510 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); 1511 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); 1512 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); 1513 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); 1514 MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI); 1515 MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI); 1516 MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI); 1517 MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI); 1518 if (Register::isPhysicalRegister(DestReg)) 1519 MIB.addReg(DestReg, RegState::ImplicitDefine); 1520 } else 1521 llvm_unreachable("Unknown reg class!"); 1522 break; 1523 default: 1524 llvm_unreachable("Unknown regclass!"); 1525 } 1526 } 1527 1528 unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 1529 int &FrameIndex) const { 1530 switch (MI.getOpcode()) { 1531 default: break; 1532 case ARM::LDRrs: 1533 case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame. 1534 if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && 1535 MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && 1536 MI.getOperand(3).getImm() == 0) { 1537 FrameIndex = MI.getOperand(1).getIndex(); 1538 return MI.getOperand(0).getReg(); 1539 } 1540 break; 1541 case ARM::LDRi12: 1542 case ARM::t2LDRi12: 1543 case ARM::tLDRspi: 1544 case ARM::VLDRD: 1545 case ARM::VLDRS: 1546 if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && 1547 MI.getOperand(2).getImm() == 0) { 1548 FrameIndex = MI.getOperand(1).getIndex(); 1549 return MI.getOperand(0).getReg(); 1550 } 1551 break; 1552 case ARM::VLDR_P0_off: 1553 if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() && 1554 MI.getOperand(1).getImm() == 0) { 1555 FrameIndex = MI.getOperand(0).getIndex(); 1556 return ARM::P0; 1557 } 1558 break; 1559 case ARM::VLD1q64: 1560 case ARM::VLD1d8TPseudo: 1561 case ARM::VLD1d16TPseudo: 1562 case ARM::VLD1d32TPseudo: 1563 case ARM::VLD1d64TPseudo: 1564 case ARM::VLD1d8QPseudo: 1565 case ARM::VLD1d16QPseudo: 1566 case ARM::VLD1d32QPseudo: 1567 case ARM::VLD1d64QPseudo: 1568 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1569 FrameIndex = MI.getOperand(1).getIndex(); 1570 return MI.getOperand(0).getReg(); 1571 } 1572 break; 1573 case ARM::VLDMQIA: 1574 if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { 1575 FrameIndex = MI.getOperand(1).getIndex(); 1576 return MI.getOperand(0).getReg(); 1577 } 1578 break; 1579 } 1580 1581 return 0; 1582 } 1583 1584 unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, 1585 int &FrameIndex) const { 1586 SmallVector<const MachineMemOperand *, 1> Accesses; 1587 if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) && 1588 Accesses.size() == 1) { 1589 FrameIndex = 1590 cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) 1591 ->getFrameIndex(); 1592 return true; 1593 } 1594 return false; 1595 } 1596 1597 /// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD 1598 /// depending on whether the result is used. 1599 void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const { 1600 bool isThumb1 = Subtarget.isThumb1Only(); 1601 bool isThumb2 = Subtarget.isThumb2(); 1602 const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo(); 1603 1604 DebugLoc dl = MI->getDebugLoc(); 1605 MachineBasicBlock *BB = MI->getParent(); 1606 1607 MachineInstrBuilder LDM, STM; 1608 if (isThumb1 || !MI->getOperand(1).isDead()) { 1609 MachineOperand LDWb(MI->getOperand(1)); 1610 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD 1611 : isThumb1 ? ARM::tLDMIA_UPD 1612 : ARM::LDMIA_UPD)) 1613 .add(LDWb); 1614 } else { 1615 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA)); 1616 } 1617 1618 if (isThumb1 || !MI->getOperand(0).isDead()) { 1619 MachineOperand STWb(MI->getOperand(0)); 1620 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD 1621 : isThumb1 ? ARM::tSTMIA_UPD 1622 : ARM::STMIA_UPD)) 1623 .add(STWb); 1624 } else { 1625 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA)); 1626 } 1627 1628 MachineOperand LDBase(MI->getOperand(3)); 1629 LDM.add(LDBase).add(predOps(ARMCC::AL)); 1630 1631 MachineOperand STBase(MI->getOperand(2)); 1632 STM.add(STBase).add(predOps(ARMCC::AL)); 1633 1634 // Sort the scratch registers into ascending order. 1635 const TargetRegisterInfo &TRI = getRegisterInfo(); 1636 SmallVector<unsigned, 6> ScratchRegs; 1637 for(unsigned I = 5; I < MI->getNumOperands(); ++I) 1638 ScratchRegs.push_back(MI->getOperand(I).getReg()); 1639 llvm::sort(ScratchRegs, 1640 [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool { 1641 return TRI.getEncodingValue(Reg1) < 1642 TRI.getEncodingValue(Reg2); 1643 }); 1644 1645 for (const auto &Reg : ScratchRegs) { 1646 LDM.addReg(Reg, RegState::Define); 1647 STM.addReg(Reg, RegState::Kill); 1648 } 1649 1650 BB->erase(MI); 1651 } 1652 1653 bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1654 if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) { 1655 assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() && 1656 "LOAD_STACK_GUARD currently supported only for MachO."); 1657 expandLoadStackGuard(MI); 1658 MI.getParent()->erase(MI); 1659 return true; 1660 } 1661 1662 if (MI.getOpcode() == ARM::MEMCPY) { 1663 expandMEMCPY(MI); 1664 return true; 1665 } 1666 1667 // This hook gets to expand COPY instructions before they become 1668 // copyPhysReg() calls. Look for VMOVS instructions that can legally be 1669 // widened to VMOVD. We prefer the VMOVD when possible because it may be 1670 // changed into a VORR that can go down the NEON pipeline. 1671 if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64()) 1672 return false; 1673 1674 // Look for a copy between even S-registers. That is where we keep floats 1675 // when using NEON v2f32 instructions for f32 arithmetic. 1676 Register DstRegS = MI.getOperand(0).getReg(); 1677 Register SrcRegS = MI.getOperand(1).getReg(); 1678 if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS)) 1679 return false; 1680 1681 const TargetRegisterInfo *TRI = &getRegisterInfo(); 1682 unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0, 1683 &ARM::DPRRegClass); 1684 unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0, 1685 &ARM::DPRRegClass); 1686 if (!DstRegD || !SrcRegD) 1687 return false; 1688 1689 // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only 1690 // legal if the COPY already defines the full DstRegD, and it isn't a 1691 // sub-register insertion. 1692 if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI)) 1693 return false; 1694 1695 // A dead copy shouldn't show up here, but reject it just in case. 1696 if (MI.getOperand(0).isDead()) 1697 return false; 1698 1699 // All clear, widen the COPY. 1700 LLVM_DEBUG(dbgs() << "widening: " << MI); 1701 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 1702 1703 // Get rid of the old implicit-def of DstRegD. Leave it if it defines a Q-reg 1704 // or some other super-register. 1705 int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD); 1706 if (ImpDefIdx != -1) 1707 MI.RemoveOperand(ImpDefIdx); 1708 1709 // Change the opcode and operands. 1710 MI.setDesc(get(ARM::VMOVD)); 1711 MI.getOperand(0).setReg(DstRegD); 1712 MI.getOperand(1).setReg(SrcRegD); 1713 MIB.add(predOps(ARMCC::AL)); 1714 1715 // We are now reading SrcRegD instead of SrcRegS. This may upset the 1716 // register scavenger and machine verifier, so we need to indicate that we 1717 // are reading an undefined value from SrcRegD, but a proper value from 1718 // SrcRegS. 1719 MI.getOperand(1).setIsUndef(); 1720 MIB.addReg(SrcRegS, RegState::Implicit); 1721 1722 // SrcRegD may actually contain an unrelated value in the ssub_1 1723 // sub-register. Don't kill it. Only kill the ssub_0 sub-register. 1724 if (MI.getOperand(1).isKill()) { 1725 MI.getOperand(1).setIsKill(false); 1726 MI.addRegisterKilled(SrcRegS, TRI, true); 1727 } 1728 1729 LLVM_DEBUG(dbgs() << "replaced by: " << MI); 1730 return true; 1731 } 1732 1733 /// Create a copy of a const pool value. Update CPI to the new index and return 1734 /// the label UID. 1735 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) { 1736 MachineConstantPool *MCP = MF.getConstantPool(); 1737 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1738 1739 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI]; 1740 assert(MCPE.isMachineConstantPoolEntry() && 1741 "Expecting a machine constantpool entry!"); 1742 ARMConstantPoolValue *ACPV = 1743 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal); 1744 1745 unsigned PCLabelId = AFI->createPICLabelUId(); 1746 ARMConstantPoolValue *NewCPV = nullptr; 1747 1748 // FIXME: The below assumes PIC relocation model and that the function 1749 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and 1750 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR 1751 // instructions, so that's probably OK, but is PIC always correct when 1752 // we get here? 1753 if (ACPV->isGlobalValue()) 1754 NewCPV = ARMConstantPoolConstant::Create( 1755 cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue, 1756 4, ACPV->getModifier(), ACPV->mustAddCurrentAddress()); 1757 else if (ACPV->isExtSymbol()) 1758 NewCPV = ARMConstantPoolSymbol:: 1759 Create(MF.getFunction().getContext(), 1760 cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4); 1761 else if (ACPV->isBlockAddress()) 1762 NewCPV = ARMConstantPoolConstant:: 1763 Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId, 1764 ARMCP::CPBlockAddress, 4); 1765 else if (ACPV->isLSDA()) 1766 NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId, 1767 ARMCP::CPLSDA, 4); 1768 else if (ACPV->isMachineBasicBlock()) 1769 NewCPV = ARMConstantPoolMBB:: 1770 Create(MF.getFunction().getContext(), 1771 cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4); 1772 else 1773 llvm_unreachable("Unexpected ARM constantpool value type!!"); 1774 CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlign()); 1775 return PCLabelId; 1776 } 1777 1778 void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB, 1779 MachineBasicBlock::iterator I, 1780 Register DestReg, unsigned SubIdx, 1781 const MachineInstr &Orig, 1782 const TargetRegisterInfo &TRI) const { 1783 unsigned Opcode = Orig.getOpcode(); 1784 switch (Opcode) { 1785 default: { 1786 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); 1787 MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); 1788 MBB.insert(I, MI); 1789 break; 1790 } 1791 case ARM::tLDRpci_pic: 1792 case ARM::t2LDRpci_pic: { 1793 MachineFunction &MF = *MBB.getParent(); 1794 unsigned CPI = Orig.getOperand(1).getIndex(); 1795 unsigned PCLabelId = duplicateCPV(MF, CPI); 1796 BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg) 1797 .addConstantPoolIndex(CPI) 1798 .addImm(PCLabelId) 1799 .cloneMemRefs(Orig); 1800 break; 1801 } 1802 } 1803 } 1804 1805 MachineInstr & 1806 ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB, 1807 MachineBasicBlock::iterator InsertBefore, 1808 const MachineInstr &Orig) const { 1809 MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig); 1810 MachineBasicBlock::instr_iterator I = Cloned.getIterator(); 1811 for (;;) { 1812 switch (I->getOpcode()) { 1813 case ARM::tLDRpci_pic: 1814 case ARM::t2LDRpci_pic: { 1815 MachineFunction &MF = *MBB.getParent(); 1816 unsigned CPI = I->getOperand(1).getIndex(); 1817 unsigned PCLabelId = duplicateCPV(MF, CPI); 1818 I->getOperand(1).setIndex(CPI); 1819 I->getOperand(2).setImm(PCLabelId); 1820 break; 1821 } 1822 } 1823 if (!I->isBundledWithSucc()) 1824 break; 1825 ++I; 1826 } 1827 return Cloned; 1828 } 1829 1830 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0, 1831 const MachineInstr &MI1, 1832 const MachineRegisterInfo *MRI) const { 1833 unsigned Opcode = MI0.getOpcode(); 1834 if (Opcode == ARM::t2LDRpci || 1835 Opcode == ARM::t2LDRpci_pic || 1836 Opcode == ARM::tLDRpci || 1837 Opcode == ARM::tLDRpci_pic || 1838 Opcode == ARM::LDRLIT_ga_pcrel || 1839 Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1840 Opcode == ARM::tLDRLIT_ga_pcrel || 1841 Opcode == ARM::MOV_ga_pcrel || 1842 Opcode == ARM::MOV_ga_pcrel_ldr || 1843 Opcode == ARM::t2MOV_ga_pcrel) { 1844 if (MI1.getOpcode() != Opcode) 1845 return false; 1846 if (MI0.getNumOperands() != MI1.getNumOperands()) 1847 return false; 1848 1849 const MachineOperand &MO0 = MI0.getOperand(1); 1850 const MachineOperand &MO1 = MI1.getOperand(1); 1851 if (MO0.getOffset() != MO1.getOffset()) 1852 return false; 1853 1854 if (Opcode == ARM::LDRLIT_ga_pcrel || 1855 Opcode == ARM::LDRLIT_ga_pcrel_ldr || 1856 Opcode == ARM::tLDRLIT_ga_pcrel || 1857 Opcode == ARM::MOV_ga_pcrel || 1858 Opcode == ARM::MOV_ga_pcrel_ldr || 1859 Opcode == ARM::t2MOV_ga_pcrel) 1860 // Ignore the PC labels. 1861 return MO0.getGlobal() == MO1.getGlobal(); 1862 1863 const MachineFunction *MF = MI0.getParent()->getParent(); 1864 const MachineConstantPool *MCP = MF->getConstantPool(); 1865 int CPI0 = MO0.getIndex(); 1866 int CPI1 = MO1.getIndex(); 1867 const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0]; 1868 const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1]; 1869 bool isARMCP0 = MCPE0.isMachineConstantPoolEntry(); 1870 bool isARMCP1 = MCPE1.isMachineConstantPoolEntry(); 1871 if (isARMCP0 && isARMCP1) { 1872 ARMConstantPoolValue *ACPV0 = 1873 static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal); 1874 ARMConstantPoolValue *ACPV1 = 1875 static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal); 1876 return ACPV0->hasSameValue(ACPV1); 1877 } else if (!isARMCP0 && !isARMCP1) { 1878 return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal; 1879 } 1880 return false; 1881 } else if (Opcode == ARM::PICLDR) { 1882 if (MI1.getOpcode() != Opcode) 1883 return false; 1884 if (MI0.getNumOperands() != MI1.getNumOperands()) 1885 return false; 1886 1887 Register Addr0 = MI0.getOperand(1).getReg(); 1888 Register Addr1 = MI1.getOperand(1).getReg(); 1889 if (Addr0 != Addr1) { 1890 if (!MRI || !Register::isVirtualRegister(Addr0) || 1891 !Register::isVirtualRegister(Addr1)) 1892 return false; 1893 1894 // This assumes SSA form. 1895 MachineInstr *Def0 = MRI->getVRegDef(Addr0); 1896 MachineInstr *Def1 = MRI->getVRegDef(Addr1); 1897 // Check if the loaded value, e.g. a constantpool of a global address, are 1898 // the same. 1899 if (!produceSameValue(*Def0, *Def1, MRI)) 1900 return false; 1901 } 1902 1903 for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) { 1904 // %12 = PICLDR %11, 0, 14, %noreg 1905 const MachineOperand &MO0 = MI0.getOperand(i); 1906 const MachineOperand &MO1 = MI1.getOperand(i); 1907 if (!MO0.isIdenticalTo(MO1)) 1908 return false; 1909 } 1910 return true; 1911 } 1912 1913 return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); 1914 } 1915 1916 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to 1917 /// determine if two loads are loading from the same base address. It should 1918 /// only return true if the base pointers are the same and the only differences 1919 /// between the two addresses is the offset. It also returns the offsets by 1920 /// reference. 1921 /// 1922 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 1923 /// is permanently disabled. 1924 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, 1925 int64_t &Offset1, 1926 int64_t &Offset2) const { 1927 // Don't worry about Thumb: just ARM and Thumb2. 1928 if (Subtarget.isThumb1Only()) return false; 1929 1930 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) 1931 return false; 1932 1933 switch (Load1->getMachineOpcode()) { 1934 default: 1935 return false; 1936 case ARM::LDRi12: 1937 case ARM::LDRBi12: 1938 case ARM::LDRD: 1939 case ARM::LDRH: 1940 case ARM::LDRSB: 1941 case ARM::LDRSH: 1942 case ARM::VLDRD: 1943 case ARM::VLDRS: 1944 case ARM::t2LDRi8: 1945 case ARM::t2LDRBi8: 1946 case ARM::t2LDRDi8: 1947 case ARM::t2LDRSHi8: 1948 case ARM::t2LDRi12: 1949 case ARM::t2LDRBi12: 1950 case ARM::t2LDRSHi12: 1951 break; 1952 } 1953 1954 switch (Load2->getMachineOpcode()) { 1955 default: 1956 return false; 1957 case ARM::LDRi12: 1958 case ARM::LDRBi12: 1959 case ARM::LDRD: 1960 case ARM::LDRH: 1961 case ARM::LDRSB: 1962 case ARM::LDRSH: 1963 case ARM::VLDRD: 1964 case ARM::VLDRS: 1965 case ARM::t2LDRi8: 1966 case ARM::t2LDRBi8: 1967 case ARM::t2LDRSHi8: 1968 case ARM::t2LDRi12: 1969 case ARM::t2LDRBi12: 1970 case ARM::t2LDRSHi12: 1971 break; 1972 } 1973 1974 // Check if base addresses and chain operands match. 1975 if (Load1->getOperand(0) != Load2->getOperand(0) || 1976 Load1->getOperand(4) != Load2->getOperand(4)) 1977 return false; 1978 1979 // Index should be Reg0. 1980 if (Load1->getOperand(3) != Load2->getOperand(3)) 1981 return false; 1982 1983 // Determine the offsets. 1984 if (isa<ConstantSDNode>(Load1->getOperand(1)) && 1985 isa<ConstantSDNode>(Load2->getOperand(1))) { 1986 Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue(); 1987 Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue(); 1988 return true; 1989 } 1990 1991 return false; 1992 } 1993 1994 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to 1995 /// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should 1996 /// be scheduled togther. On some targets if two loads are loading from 1997 /// addresses in the same cache line, it's better if they are scheduled 1998 /// together. This function takes two integers that represent the load offsets 1999 /// from the common base address. It returns true if it decides it's desirable 2000 /// to schedule the two loads together. "NumLoads" is the number of loads that 2001 /// have already been scheduled after Load1. 2002 /// 2003 /// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched 2004 /// is permanently disabled. 2005 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, 2006 int64_t Offset1, int64_t Offset2, 2007 unsigned NumLoads) const { 2008 // Don't worry about Thumb: just ARM and Thumb2. 2009 if (Subtarget.isThumb1Only()) return false; 2010 2011 assert(Offset2 > Offset1); 2012 2013 if ((Offset2 - Offset1) / 8 > 64) 2014 return false; 2015 2016 // Check if the machine opcodes are different. If they are different 2017 // then we consider them to not be of the same base address, 2018 // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12. 2019 // In this case, they are considered to be the same because they are different 2020 // encoding forms of the same basic instruction. 2021 if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) && 2022 !((Load1->getMachineOpcode() == ARM::t2LDRBi8 && 2023 Load2->getMachineOpcode() == ARM::t2LDRBi12) || 2024 (Load1->getMachineOpcode() == ARM::t2LDRBi12 && 2025 Load2->getMachineOpcode() == ARM::t2LDRBi8))) 2026 return false; // FIXME: overly conservative? 2027 2028 // Four loads in a row should be sufficient. 2029 if (NumLoads >= 3) 2030 return false; 2031 2032 return true; 2033 } 2034 2035 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI, 2036 const MachineBasicBlock *MBB, 2037 const MachineFunction &MF) const { 2038 // Debug info is never a scheduling boundary. It's necessary to be explicit 2039 // due to the special treatment of IT instructions below, otherwise a 2040 // dbg_value followed by an IT will result in the IT instruction being 2041 // considered a scheduling hazard, which is wrong. It should be the actual 2042 // instruction preceding the dbg_value instruction(s), just like it is 2043 // when debug info is not present. 2044 if (MI.isDebugInstr()) 2045 return false; 2046 2047 // Terminators and labels can't be scheduled around. 2048 if (MI.isTerminator() || MI.isPosition()) 2049 return true; 2050 2051 // INLINEASM_BR can jump to another block 2052 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) 2053 return true; 2054 2055 // Treat the start of the IT block as a scheduling boundary, but schedule 2056 // t2IT along with all instructions following it. 2057 // FIXME: This is a big hammer. But the alternative is to add all potential 2058 // true and anti dependencies to IT block instructions as implicit operands 2059 // to the t2IT instruction. The added compile time and complexity does not 2060 // seem worth it. 2061 MachineBasicBlock::const_iterator I = MI; 2062 // Make sure to skip any debug instructions 2063 while (++I != MBB->end() && I->isDebugInstr()) 2064 ; 2065 if (I != MBB->end() && I->getOpcode() == ARM::t2IT) 2066 return true; 2067 2068 // Don't attempt to schedule around any instruction that defines 2069 // a stack-oriented pointer, as it's unlikely to be profitable. This 2070 // saves compile time, because it doesn't require every single 2071 // stack slot reference to depend on the instruction that does the 2072 // modification. 2073 // Calls don't actually change the stack pointer, even if they have imp-defs. 2074 // No ARM calling conventions change the stack pointer. (X86 calling 2075 // conventions sometimes do). 2076 if (!MI.isCall() && MI.definesRegister(ARM::SP)) 2077 return true; 2078 2079 return false; 2080 } 2081 2082 bool ARMBaseInstrInfo:: 2083 isProfitableToIfCvt(MachineBasicBlock &MBB, 2084 unsigned NumCycles, unsigned ExtraPredCycles, 2085 BranchProbability Probability) const { 2086 if (!NumCycles) 2087 return false; 2088 2089 // If we are optimizing for size, see if the branch in the predecessor can be 2090 // lowered to cbn?z by the constant island lowering pass, and return false if 2091 // so. This results in a shorter instruction sequence. 2092 if (MBB.getParent()->getFunction().hasOptSize()) { 2093 MachineBasicBlock *Pred = *MBB.pred_begin(); 2094 if (!Pred->empty()) { 2095 MachineInstr *LastMI = &*Pred->rbegin(); 2096 if (LastMI->getOpcode() == ARM::t2Bcc) { 2097 const TargetRegisterInfo *TRI = &getRegisterInfo(); 2098 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI); 2099 if (CmpMI) 2100 return false; 2101 } 2102 } 2103 } 2104 return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles, 2105 MBB, 0, 0, Probability); 2106 } 2107 2108 bool ARMBaseInstrInfo:: 2109 isProfitableToIfCvt(MachineBasicBlock &TBB, 2110 unsigned TCycles, unsigned TExtra, 2111 MachineBasicBlock &FBB, 2112 unsigned FCycles, unsigned FExtra, 2113 BranchProbability Probability) const { 2114 if (!TCycles) 2115 return false; 2116 2117 // In thumb code we often end up trading one branch for a IT block, and 2118 // if we are cloning the instruction can increase code size. Prevent 2119 // blocks with multiple predecesors from being ifcvted to prevent this 2120 // cloning. 2121 if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) { 2122 if (TBB.pred_size() != 1 || FBB.pred_size() != 1) 2123 return false; 2124 } 2125 2126 // Attempt to estimate the relative costs of predication versus branching. 2127 // Here we scale up each component of UnpredCost to avoid precision issue when 2128 // scaling TCycles/FCycles by Probability. 2129 const unsigned ScalingUpFactor = 1024; 2130 2131 unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor; 2132 unsigned UnpredCost; 2133 if (!Subtarget.hasBranchPredictor()) { 2134 // When we don't have a branch predictor it's always cheaper to not take a 2135 // branch than take it, so we have to take that into account. 2136 unsigned NotTakenBranchCost = 1; 2137 unsigned TakenBranchCost = Subtarget.getMispredictionPenalty(); 2138 unsigned TUnpredCycles, FUnpredCycles; 2139 if (!FCycles) { 2140 // Triangle: TBB is the fallthrough 2141 TUnpredCycles = TCycles + NotTakenBranchCost; 2142 FUnpredCycles = TakenBranchCost; 2143 } else { 2144 // Diamond: TBB is the block that is branched to, FBB is the fallthrough 2145 TUnpredCycles = TCycles + TakenBranchCost; 2146 FUnpredCycles = FCycles + NotTakenBranchCost; 2147 // The branch at the end of FBB will disappear when it's predicated, so 2148 // discount it from PredCost. 2149 PredCost -= 1 * ScalingUpFactor; 2150 } 2151 // The total cost is the cost of each path scaled by their probabilites 2152 unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor); 2153 unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor); 2154 UnpredCost = TUnpredCost + FUnpredCost; 2155 // When predicating assume that the first IT can be folded away but later 2156 // ones cost one cycle each 2157 if (Subtarget.isThumb2() && TCycles + FCycles > 4) { 2158 PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor; 2159 } 2160 } else { 2161 unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor); 2162 unsigned FUnpredCost = 2163 Probability.getCompl().scale(FCycles * ScalingUpFactor); 2164 UnpredCost = TUnpredCost + FUnpredCost; 2165 UnpredCost += 1 * ScalingUpFactor; // The branch itself 2166 UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10; 2167 } 2168 2169 return PredCost <= UnpredCost; 2170 } 2171 2172 unsigned 2173 ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF, 2174 unsigned NumInsts) const { 2175 // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions. 2176 // ARM has a condition code field in every predicable instruction, using it 2177 // doesn't change code size. 2178 if (!Subtarget.isThumb2()) 2179 return 0; 2180 2181 // It's possible that the size of the IT is restricted to a single block. 2182 unsigned MaxInsts = Subtarget.restrictIT() ? 1 : 4; 2183 return divideCeil(NumInsts, MaxInsts) * 2; 2184 } 2185 2186 unsigned 2187 ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const { 2188 // If this branch is likely to be folded into the comparison to form a 2189 // CB(N)Z, then removing it won't reduce code size at all, because that will 2190 // just replace the CB(N)Z with a CMP. 2191 if (MI.getOpcode() == ARM::t2Bcc && 2192 findCMPToFoldIntoCBZ(&MI, &getRegisterInfo())) 2193 return 0; 2194 2195 unsigned Size = getInstSizeInBytes(MI); 2196 2197 // For Thumb2, all branches are 32-bit instructions during the if conversion 2198 // pass, but may be replaced with 16-bit instructions during size reduction. 2199 // Since the branches considered by if conversion tend to be forward branches 2200 // over small basic blocks, they are very likely to be in range for the 2201 // narrow instructions, so we assume the final code size will be half what it 2202 // currently is. 2203 if (Subtarget.isThumb2()) 2204 Size /= 2; 2205 2206 return Size; 2207 } 2208 2209 bool 2210 ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB, 2211 MachineBasicBlock &FMBB) const { 2212 // Reduce false anti-dependencies to let the target's out-of-order execution 2213 // engine do its thing. 2214 return Subtarget.isProfitableToUnpredicate(); 2215 } 2216 2217 /// getInstrPredicate - If instruction is predicated, returns its predicate 2218 /// condition, otherwise returns AL. It also returns the condition code 2219 /// register by reference. 2220 ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI, 2221 Register &PredReg) { 2222 int PIdx = MI.findFirstPredOperandIdx(); 2223 if (PIdx == -1) { 2224 PredReg = 0; 2225 return ARMCC::AL; 2226 } 2227 2228 PredReg = MI.getOperand(PIdx+1).getReg(); 2229 return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm(); 2230 } 2231 2232 unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) { 2233 if (Opc == ARM::B) 2234 return ARM::Bcc; 2235 if (Opc == ARM::tB) 2236 return ARM::tBcc; 2237 if (Opc == ARM::t2B) 2238 return ARM::t2Bcc; 2239 2240 llvm_unreachable("Unknown unconditional branch opcode!"); 2241 } 2242 2243 MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI, 2244 bool NewMI, 2245 unsigned OpIdx1, 2246 unsigned OpIdx2) const { 2247 switch (MI.getOpcode()) { 2248 case ARM::MOVCCr: 2249 case ARM::t2MOVCCr: { 2250 // MOVCC can be commuted by inverting the condition. 2251 Register PredReg; 2252 ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg); 2253 // MOVCC AL can't be inverted. Shouldn't happen. 2254 if (CC == ARMCC::AL || PredReg != ARM::CPSR) 2255 return nullptr; 2256 MachineInstr *CommutedMI = 2257 TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2258 if (!CommutedMI) 2259 return nullptr; 2260 // After swapping the MOVCC operands, also invert the condition. 2261 CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx()) 2262 .setImm(ARMCC::getOppositeCondition(CC)); 2263 return CommutedMI; 2264 } 2265 } 2266 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 2267 } 2268 2269 /// Identify instructions that can be folded into a MOVCC instruction, and 2270 /// return the defining instruction. 2271 MachineInstr * 2272 ARMBaseInstrInfo::canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI, 2273 const TargetInstrInfo *TII) const { 2274 if (!Reg.isVirtual()) 2275 return nullptr; 2276 if (!MRI.hasOneNonDBGUse(Reg)) 2277 return nullptr; 2278 MachineInstr *MI = MRI.getVRegDef(Reg); 2279 if (!MI) 2280 return nullptr; 2281 // Check if MI can be predicated and folded into the MOVCC. 2282 if (!isPredicable(*MI)) 2283 return nullptr; 2284 // Check if MI has any non-dead defs or physreg uses. This also detects 2285 // predicated instructions which will be reading CPSR. 2286 for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) { 2287 const MachineOperand &MO = MI->getOperand(i); 2288 // Reject frame index operands, PEI can't handle the predicated pseudos. 2289 if (MO.isFI() || MO.isCPI() || MO.isJTI()) 2290 return nullptr; 2291 if (!MO.isReg()) 2292 continue; 2293 // MI can't have any tied operands, that would conflict with predication. 2294 if (MO.isTied()) 2295 return nullptr; 2296 if (Register::isPhysicalRegister(MO.getReg())) 2297 return nullptr; 2298 if (MO.isDef() && !MO.isDead()) 2299 return nullptr; 2300 } 2301 bool DontMoveAcrossStores = true; 2302 if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores)) 2303 return nullptr; 2304 return MI; 2305 } 2306 2307 bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI, 2308 SmallVectorImpl<MachineOperand> &Cond, 2309 unsigned &TrueOp, unsigned &FalseOp, 2310 bool &Optimizable) const { 2311 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && 2312 "Unknown select instruction"); 2313 // MOVCC operands: 2314 // 0: Def. 2315 // 1: True use. 2316 // 2: False use. 2317 // 3: Condition code. 2318 // 4: CPSR use. 2319 TrueOp = 1; 2320 FalseOp = 2; 2321 Cond.push_back(MI.getOperand(3)); 2322 Cond.push_back(MI.getOperand(4)); 2323 // We can always fold a def. 2324 Optimizable = true; 2325 return false; 2326 } 2327 2328 MachineInstr * 2329 ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI, 2330 SmallPtrSetImpl<MachineInstr *> &SeenMIs, 2331 bool PreferFalse) const { 2332 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && 2333 "Unknown select instruction"); 2334 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); 2335 MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this); 2336 bool Invert = !DefMI; 2337 if (!DefMI) 2338 DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this); 2339 if (!DefMI) 2340 return nullptr; 2341 2342 // Find new register class to use. 2343 MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1); 2344 Register DestReg = MI.getOperand(0).getReg(); 2345 const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg()); 2346 if (!MRI.constrainRegClass(DestReg, PreviousClass)) 2347 return nullptr; 2348 2349 // Create a new predicated version of DefMI. 2350 // Rfalse is the first use. 2351 MachineInstrBuilder NewMI = 2352 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg); 2353 2354 // Copy all the DefMI operands, excluding its (null) predicate. 2355 const MCInstrDesc &DefDesc = DefMI->getDesc(); 2356 for (unsigned i = 1, e = DefDesc.getNumOperands(); 2357 i != e && !DefDesc.OpInfo[i].isPredicate(); ++i) 2358 NewMI.add(DefMI->getOperand(i)); 2359 2360 unsigned CondCode = MI.getOperand(3).getImm(); 2361 if (Invert) 2362 NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode))); 2363 else 2364 NewMI.addImm(CondCode); 2365 NewMI.add(MI.getOperand(4)); 2366 2367 // DefMI is not the -S version that sets CPSR, so add an optional %noreg. 2368 if (NewMI->hasOptionalDef()) 2369 NewMI.add(condCodeOp()); 2370 2371 // The output register value when the predicate is false is an implicit 2372 // register operand tied to the first def. 2373 // The tie makes the register allocator ensure the FalseReg is allocated the 2374 // same register as operand 0. 2375 FalseReg.setImplicit(); 2376 NewMI.add(FalseReg); 2377 NewMI->tieOperands(0, NewMI->getNumOperands() - 1); 2378 2379 // Update SeenMIs set: register newly created MI and erase removed DefMI. 2380 SeenMIs.insert(NewMI); 2381 SeenMIs.erase(DefMI); 2382 2383 // If MI is inside a loop, and DefMI is outside the loop, then kill flags on 2384 // DefMI would be invalid when tranferred inside the loop. Checking for a 2385 // loop is expensive, but at least remove kill flags if they are in different 2386 // BBs. 2387 if (DefMI->getParent() != MI.getParent()) 2388 NewMI->clearKillInfo(); 2389 2390 // The caller will erase MI, but not DefMI. 2391 DefMI->eraseFromParent(); 2392 return NewMI; 2393 } 2394 2395 /// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the 2396 /// instruction is encoded with an 'S' bit is determined by the optional CPSR 2397 /// def operand. 2398 /// 2399 /// This will go away once we can teach tblgen how to set the optional CPSR def 2400 /// operand itself. 2401 struct AddSubFlagsOpcodePair { 2402 uint16_t PseudoOpc; 2403 uint16_t MachineOpc; 2404 }; 2405 2406 static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = { 2407 {ARM::ADDSri, ARM::ADDri}, 2408 {ARM::ADDSrr, ARM::ADDrr}, 2409 {ARM::ADDSrsi, ARM::ADDrsi}, 2410 {ARM::ADDSrsr, ARM::ADDrsr}, 2411 2412 {ARM::SUBSri, ARM::SUBri}, 2413 {ARM::SUBSrr, ARM::SUBrr}, 2414 {ARM::SUBSrsi, ARM::SUBrsi}, 2415 {ARM::SUBSrsr, ARM::SUBrsr}, 2416 2417 {ARM::RSBSri, ARM::RSBri}, 2418 {ARM::RSBSrsi, ARM::RSBrsi}, 2419 {ARM::RSBSrsr, ARM::RSBrsr}, 2420 2421 {ARM::tADDSi3, ARM::tADDi3}, 2422 {ARM::tADDSi8, ARM::tADDi8}, 2423 {ARM::tADDSrr, ARM::tADDrr}, 2424 {ARM::tADCS, ARM::tADC}, 2425 2426 {ARM::tSUBSi3, ARM::tSUBi3}, 2427 {ARM::tSUBSi8, ARM::tSUBi8}, 2428 {ARM::tSUBSrr, ARM::tSUBrr}, 2429 {ARM::tSBCS, ARM::tSBC}, 2430 {ARM::tRSBS, ARM::tRSB}, 2431 {ARM::tLSLSri, ARM::tLSLri}, 2432 2433 {ARM::t2ADDSri, ARM::t2ADDri}, 2434 {ARM::t2ADDSrr, ARM::t2ADDrr}, 2435 {ARM::t2ADDSrs, ARM::t2ADDrs}, 2436 2437 {ARM::t2SUBSri, ARM::t2SUBri}, 2438 {ARM::t2SUBSrr, ARM::t2SUBrr}, 2439 {ARM::t2SUBSrs, ARM::t2SUBrs}, 2440 2441 {ARM::t2RSBSri, ARM::t2RSBri}, 2442 {ARM::t2RSBSrs, ARM::t2RSBrs}, 2443 }; 2444 2445 unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) { 2446 for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i) 2447 if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc) 2448 return AddSubFlagsOpcodeMap[i].MachineOpc; 2449 return 0; 2450 } 2451 2452 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB, 2453 MachineBasicBlock::iterator &MBBI, 2454 const DebugLoc &dl, Register DestReg, 2455 Register BaseReg, int NumBytes, 2456 ARMCC::CondCodes Pred, Register PredReg, 2457 const ARMBaseInstrInfo &TII, 2458 unsigned MIFlags) { 2459 if (NumBytes == 0 && DestReg != BaseReg) { 2460 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg) 2461 .addReg(BaseReg, RegState::Kill) 2462 .add(predOps(Pred, PredReg)) 2463 .add(condCodeOp()) 2464 .setMIFlags(MIFlags); 2465 return; 2466 } 2467 2468 bool isSub = NumBytes < 0; 2469 if (isSub) NumBytes = -NumBytes; 2470 2471 while (NumBytes) { 2472 unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes); 2473 unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt); 2474 assert(ThisVal && "Didn't extract field correctly"); 2475 2476 // We will handle these bits from offset, clear them. 2477 NumBytes &= ~ThisVal; 2478 2479 assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?"); 2480 2481 // Build the new ADD / SUB. 2482 unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri; 2483 BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) 2484 .addReg(BaseReg, RegState::Kill) 2485 .addImm(ThisVal) 2486 .add(predOps(Pred, PredReg)) 2487 .add(condCodeOp()) 2488 .setMIFlags(MIFlags); 2489 BaseReg = DestReg; 2490 } 2491 } 2492 2493 bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget, 2494 MachineFunction &MF, MachineInstr *MI, 2495 unsigned NumBytes) { 2496 // This optimisation potentially adds lots of load and store 2497 // micro-operations, it's only really a great benefit to code-size. 2498 if (!Subtarget.hasMinSize()) 2499 return false; 2500 2501 // If only one register is pushed/popped, LLVM can use an LDR/STR 2502 // instead. We can't modify those so make sure we're dealing with an 2503 // instruction we understand. 2504 bool IsPop = isPopOpcode(MI->getOpcode()); 2505 bool IsPush = isPushOpcode(MI->getOpcode()); 2506 if (!IsPush && !IsPop) 2507 return false; 2508 2509 bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD || 2510 MI->getOpcode() == ARM::VLDMDIA_UPD; 2511 bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH || 2512 MI->getOpcode() == ARM::tPOP || 2513 MI->getOpcode() == ARM::tPOP_RET; 2514 2515 assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP && 2516 MI->getOperand(1).getReg() == ARM::SP)) && 2517 "trying to fold sp update into non-sp-updating push/pop"); 2518 2519 // The VFP push & pop act on D-registers, so we can only fold an adjustment 2520 // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try 2521 // if this is violated. 2522 if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0) 2523 return false; 2524 2525 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ 2526 // pred) so the list starts at 4. Thumb1 starts after the predicate. 2527 int RegListIdx = IsT1PushPop ? 2 : 4; 2528 2529 // Calculate the space we'll need in terms of registers. 2530 unsigned RegsNeeded; 2531 const TargetRegisterClass *RegClass; 2532 if (IsVFPPushPop) { 2533 RegsNeeded = NumBytes / 8; 2534 RegClass = &ARM::DPRRegClass; 2535 } else { 2536 RegsNeeded = NumBytes / 4; 2537 RegClass = &ARM::GPRRegClass; 2538 } 2539 2540 // We're going to have to strip all list operands off before 2541 // re-adding them since the order matters, so save the existing ones 2542 // for later. 2543 SmallVector<MachineOperand, 4> RegList; 2544 2545 // We're also going to need the first register transferred by this 2546 // instruction, which won't necessarily be the first register in the list. 2547 unsigned FirstRegEnc = -1; 2548 2549 const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo(); 2550 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) { 2551 MachineOperand &MO = MI->getOperand(i); 2552 RegList.push_back(MO); 2553 2554 if (MO.isReg() && !MO.isImplicit() && 2555 TRI->getEncodingValue(MO.getReg()) < FirstRegEnc) 2556 FirstRegEnc = TRI->getEncodingValue(MO.getReg()); 2557 } 2558 2559 const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF); 2560 2561 // Now try to find enough space in the reglist to allocate NumBytes. 2562 for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded; 2563 --CurRegEnc) { 2564 unsigned CurReg = RegClass->getRegister(CurRegEnc); 2565 if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7)) 2566 continue; 2567 if (!IsPop) { 2568 // Pushing any register is completely harmless, mark the register involved 2569 // as undef since we don't care about its value and must not restore it 2570 // during stack unwinding. 2571 RegList.push_back(MachineOperand::CreateReg(CurReg, false, false, 2572 false, false, true)); 2573 --RegsNeeded; 2574 continue; 2575 } 2576 2577 // However, we can only pop an extra register if it's not live. For 2578 // registers live within the function we might clobber a return value 2579 // register; the other way a register can be live here is if it's 2580 // callee-saved. 2581 if (isCalleeSavedRegister(CurReg, CSRegs) || 2582 MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) != 2583 MachineBasicBlock::LQR_Dead) { 2584 // VFP pops don't allow holes in the register list, so any skip is fatal 2585 // for our transformation. GPR pops do, so we should just keep looking. 2586 if (IsVFPPushPop) 2587 return false; 2588 else 2589 continue; 2590 } 2591 2592 // Mark the unimportant registers as <def,dead> in the POP. 2593 RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false, 2594 true)); 2595 --RegsNeeded; 2596 } 2597 2598 if (RegsNeeded > 0) 2599 return false; 2600 2601 // Finally we know we can profitably perform the optimisation so go 2602 // ahead: strip all existing registers off and add them back again 2603 // in the right order. 2604 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) 2605 MI->RemoveOperand(i); 2606 2607 // Add the complete list back in. 2608 MachineInstrBuilder MIB(MF, &*MI); 2609 for (int i = RegList.size() - 1; i >= 0; --i) 2610 MIB.add(RegList[i]); 2611 2612 return true; 2613 } 2614 2615 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx, 2616 Register FrameReg, int &Offset, 2617 const ARMBaseInstrInfo &TII) { 2618 unsigned Opcode = MI.getOpcode(); 2619 const MCInstrDesc &Desc = MI.getDesc(); 2620 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); 2621 bool isSub = false; 2622 2623 // Memory operands in inline assembly always use AddrMode2. 2624 if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR) 2625 AddrMode = ARMII::AddrMode2; 2626 2627 if (Opcode == ARM::ADDri) { 2628 Offset += MI.getOperand(FrameRegIdx+1).getImm(); 2629 if (Offset == 0) { 2630 // Turn it into a move. 2631 MI.setDesc(TII.get(ARM::MOVr)); 2632 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2633 MI.RemoveOperand(FrameRegIdx+1); 2634 Offset = 0; 2635 return true; 2636 } else if (Offset < 0) { 2637 Offset = -Offset; 2638 isSub = true; 2639 MI.setDesc(TII.get(ARM::SUBri)); 2640 } 2641 2642 // Common case: small offset, fits into instruction. 2643 if (ARM_AM::getSOImmVal(Offset) != -1) { 2644 // Replace the FrameIndex with sp / fp 2645 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2646 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); 2647 Offset = 0; 2648 return true; 2649 } 2650 2651 // Otherwise, pull as much of the immedidate into this ADDri/SUBri 2652 // as possible. 2653 unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset); 2654 unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt); 2655 2656 // We will handle these bits from offset, clear them. 2657 Offset &= ~ThisImmVal; 2658 2659 // Get the properly encoded SOImmVal field. 2660 assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 && 2661 "Bit extraction didn't work?"); 2662 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal); 2663 } else { 2664 unsigned ImmIdx = 0; 2665 int InstrOffs = 0; 2666 unsigned NumBits = 0; 2667 unsigned Scale = 1; 2668 switch (AddrMode) { 2669 case ARMII::AddrMode_i12: 2670 ImmIdx = FrameRegIdx + 1; 2671 InstrOffs = MI.getOperand(ImmIdx).getImm(); 2672 NumBits = 12; 2673 break; 2674 case ARMII::AddrMode2: 2675 ImmIdx = FrameRegIdx+2; 2676 InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm()); 2677 if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2678 InstrOffs *= -1; 2679 NumBits = 12; 2680 break; 2681 case ARMII::AddrMode3: 2682 ImmIdx = FrameRegIdx+2; 2683 InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm()); 2684 if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2685 InstrOffs *= -1; 2686 NumBits = 8; 2687 break; 2688 case ARMII::AddrMode4: 2689 case ARMII::AddrMode6: 2690 // Can't fold any offset even if it's zero. 2691 return false; 2692 case ARMII::AddrMode5: 2693 ImmIdx = FrameRegIdx+1; 2694 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2695 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2696 InstrOffs *= -1; 2697 NumBits = 8; 2698 Scale = 4; 2699 break; 2700 case ARMII::AddrMode5FP16: 2701 ImmIdx = FrameRegIdx+1; 2702 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); 2703 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) 2704 InstrOffs *= -1; 2705 NumBits = 8; 2706 Scale = 2; 2707 break; 2708 case ARMII::AddrModeT2_i7: 2709 case ARMII::AddrModeT2_i7s2: 2710 case ARMII::AddrModeT2_i7s4: 2711 ImmIdx = FrameRegIdx+1; 2712 InstrOffs = MI.getOperand(ImmIdx).getImm(); 2713 NumBits = 7; 2714 Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 : 2715 AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1); 2716 break; 2717 default: 2718 llvm_unreachable("Unsupported addressing mode!"); 2719 } 2720 2721 Offset += InstrOffs * Scale; 2722 assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!"); 2723 if (Offset < 0) { 2724 Offset = -Offset; 2725 isSub = true; 2726 } 2727 2728 // Attempt to fold address comp. if opcode has offset bits 2729 if (NumBits > 0) { 2730 // Common case: small offset, fits into instruction. 2731 MachineOperand &ImmOp = MI.getOperand(ImmIdx); 2732 int ImmedOffset = Offset / Scale; 2733 unsigned Mask = (1 << NumBits) - 1; 2734 if ((unsigned)Offset <= Mask * Scale) { 2735 // Replace the FrameIndex with sp 2736 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); 2737 // FIXME: When addrmode2 goes away, this will simplify (like the 2738 // T2 version), as the LDR.i12 versions don't need the encoding 2739 // tricks for the offset value. 2740 if (isSub) { 2741 if (AddrMode == ARMII::AddrMode_i12) 2742 ImmedOffset = -ImmedOffset; 2743 else 2744 ImmedOffset |= 1 << NumBits; 2745 } 2746 ImmOp.ChangeToImmediate(ImmedOffset); 2747 Offset = 0; 2748 return true; 2749 } 2750 2751 // Otherwise, it didn't fit. Pull in what we can to simplify the immed. 2752 ImmedOffset = ImmedOffset & Mask; 2753 if (isSub) { 2754 if (AddrMode == ARMII::AddrMode_i12) 2755 ImmedOffset = -ImmedOffset; 2756 else 2757 ImmedOffset |= 1 << NumBits; 2758 } 2759 ImmOp.ChangeToImmediate(ImmedOffset); 2760 Offset &= ~(Mask*Scale); 2761 } 2762 } 2763 2764 Offset = (isSub) ? -Offset : Offset; 2765 return Offset == 0; 2766 } 2767 2768 /// analyzeCompare - For a comparison instruction, return the source registers 2769 /// in SrcReg and SrcReg2 if having two register operands, and the value it 2770 /// compares against in CmpValue. Return true if the comparison instruction 2771 /// can be analyzed. 2772 bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 2773 Register &SrcReg2, int &CmpMask, 2774 int &CmpValue) const { 2775 switch (MI.getOpcode()) { 2776 default: break; 2777 case ARM::CMPri: 2778 case ARM::t2CMPri: 2779 case ARM::tCMPi8: 2780 SrcReg = MI.getOperand(0).getReg(); 2781 SrcReg2 = 0; 2782 CmpMask = ~0; 2783 CmpValue = MI.getOperand(1).getImm(); 2784 return true; 2785 case ARM::CMPrr: 2786 case ARM::t2CMPrr: 2787 case ARM::tCMPr: 2788 SrcReg = MI.getOperand(0).getReg(); 2789 SrcReg2 = MI.getOperand(1).getReg(); 2790 CmpMask = ~0; 2791 CmpValue = 0; 2792 return true; 2793 case ARM::TSTri: 2794 case ARM::t2TSTri: 2795 SrcReg = MI.getOperand(0).getReg(); 2796 SrcReg2 = 0; 2797 CmpMask = MI.getOperand(1).getImm(); 2798 CmpValue = 0; 2799 return true; 2800 } 2801 2802 return false; 2803 } 2804 2805 /// isSuitableForMask - Identify a suitable 'and' instruction that 2806 /// operates on the given source register and applies the same mask 2807 /// as a 'tst' instruction. Provide a limited look-through for copies. 2808 /// When successful, MI will hold the found instruction. 2809 static bool isSuitableForMask(MachineInstr *&MI, Register SrcReg, 2810 int CmpMask, bool CommonUse) { 2811 switch (MI->getOpcode()) { 2812 case ARM::ANDri: 2813 case ARM::t2ANDri: 2814 if (CmpMask != MI->getOperand(2).getImm()) 2815 return false; 2816 if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg()) 2817 return true; 2818 break; 2819 } 2820 2821 return false; 2822 } 2823 2824 /// getCmpToAddCondition - assume the flags are set by CMP(a,b), return 2825 /// the condition code if we modify the instructions such that flags are 2826 /// set by ADD(a,b,X). 2827 inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) { 2828 switch (CC) { 2829 default: return ARMCC::AL; 2830 case ARMCC::HS: return ARMCC::LO; 2831 case ARMCC::LO: return ARMCC::HS; 2832 case ARMCC::VS: return ARMCC::VS; 2833 case ARMCC::VC: return ARMCC::VC; 2834 } 2835 } 2836 2837 /// isRedundantFlagInstr - check whether the first instruction, whose only 2838 /// purpose is to update flags, can be made redundant. 2839 /// CMPrr can be made redundant by SUBrr if the operands are the same. 2840 /// CMPri can be made redundant by SUBri if the operands are the same. 2841 /// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X). 2842 /// This function can be extended later on. 2843 inline static bool isRedundantFlagInstr(const MachineInstr *CmpI, 2844 Register SrcReg, Register SrcReg2, 2845 int ImmValue, const MachineInstr *OI, 2846 bool &IsThumb1) { 2847 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && 2848 (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) && 2849 ((OI->getOperand(1).getReg() == SrcReg && 2850 OI->getOperand(2).getReg() == SrcReg2) || 2851 (OI->getOperand(1).getReg() == SrcReg2 && 2852 OI->getOperand(2).getReg() == SrcReg))) { 2853 IsThumb1 = false; 2854 return true; 2855 } 2856 2857 if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr && 2858 ((OI->getOperand(2).getReg() == SrcReg && 2859 OI->getOperand(3).getReg() == SrcReg2) || 2860 (OI->getOperand(2).getReg() == SrcReg2 && 2861 OI->getOperand(3).getReg() == SrcReg))) { 2862 IsThumb1 = true; 2863 return true; 2864 } 2865 2866 if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) && 2867 (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) && 2868 OI->getOperand(1).getReg() == SrcReg && 2869 OI->getOperand(2).getImm() == ImmValue) { 2870 IsThumb1 = false; 2871 return true; 2872 } 2873 2874 if (CmpI->getOpcode() == ARM::tCMPi8 && 2875 (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) && 2876 OI->getOperand(2).getReg() == SrcReg && 2877 OI->getOperand(3).getImm() == ImmValue) { 2878 IsThumb1 = true; 2879 return true; 2880 } 2881 2882 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && 2883 (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr || 2884 OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) && 2885 OI->getOperand(0).isReg() && OI->getOperand(1).isReg() && 2886 OI->getOperand(0).getReg() == SrcReg && 2887 OI->getOperand(1).getReg() == SrcReg2) { 2888 IsThumb1 = false; 2889 return true; 2890 } 2891 2892 if (CmpI->getOpcode() == ARM::tCMPr && 2893 (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 || 2894 OI->getOpcode() == ARM::tADDrr) && 2895 OI->getOperand(0).getReg() == SrcReg && 2896 OI->getOperand(2).getReg() == SrcReg2) { 2897 IsThumb1 = true; 2898 return true; 2899 } 2900 2901 return false; 2902 } 2903 2904 static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) { 2905 switch (MI->getOpcode()) { 2906 default: return false; 2907 case ARM::tLSLri: 2908 case ARM::tLSRri: 2909 case ARM::tLSLrr: 2910 case ARM::tLSRrr: 2911 case ARM::tSUBrr: 2912 case ARM::tADDrr: 2913 case ARM::tADDi3: 2914 case ARM::tADDi8: 2915 case ARM::tSUBi3: 2916 case ARM::tSUBi8: 2917 case ARM::tMUL: 2918 case ARM::tADC: 2919 case ARM::tSBC: 2920 case ARM::tRSB: 2921 case ARM::tAND: 2922 case ARM::tORR: 2923 case ARM::tEOR: 2924 case ARM::tBIC: 2925 case ARM::tMVN: 2926 case ARM::tASRri: 2927 case ARM::tASRrr: 2928 case ARM::tROR: 2929 IsThumb1 = true; 2930 LLVM_FALLTHROUGH; 2931 case ARM::RSBrr: 2932 case ARM::RSBri: 2933 case ARM::RSCrr: 2934 case ARM::RSCri: 2935 case ARM::ADDrr: 2936 case ARM::ADDri: 2937 case ARM::ADCrr: 2938 case ARM::ADCri: 2939 case ARM::SUBrr: 2940 case ARM::SUBri: 2941 case ARM::SBCrr: 2942 case ARM::SBCri: 2943 case ARM::t2RSBri: 2944 case ARM::t2ADDrr: 2945 case ARM::t2ADDri: 2946 case ARM::t2ADCrr: 2947 case ARM::t2ADCri: 2948 case ARM::t2SUBrr: 2949 case ARM::t2SUBri: 2950 case ARM::t2SBCrr: 2951 case ARM::t2SBCri: 2952 case ARM::ANDrr: 2953 case ARM::ANDri: 2954 case ARM::t2ANDrr: 2955 case ARM::t2ANDri: 2956 case ARM::ORRrr: 2957 case ARM::ORRri: 2958 case ARM::t2ORRrr: 2959 case ARM::t2ORRri: 2960 case ARM::EORrr: 2961 case ARM::EORri: 2962 case ARM::t2EORrr: 2963 case ARM::t2EORri: 2964 case ARM::t2LSRri: 2965 case ARM::t2LSRrr: 2966 case ARM::t2LSLri: 2967 case ARM::t2LSLrr: 2968 return true; 2969 } 2970 } 2971 2972 /// optimizeCompareInstr - Convert the instruction supplying the argument to the 2973 /// comparison into one that sets the zero bit in the flags register; 2974 /// Remove a redundant Compare instruction if an earlier instruction can set the 2975 /// flags in the same way as Compare. 2976 /// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two 2977 /// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the 2978 /// condition code of instructions which use the flags. 2979 bool ARMBaseInstrInfo::optimizeCompareInstr( 2980 MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int CmpMask, 2981 int CmpValue, const MachineRegisterInfo *MRI) const { 2982 // Get the unique definition of SrcReg. 2983 MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); 2984 if (!MI) return false; 2985 2986 // Masked compares sometimes use the same register as the corresponding 'and'. 2987 if (CmpMask != ~0) { 2988 if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) { 2989 MI = nullptr; 2990 for (MachineRegisterInfo::use_instr_iterator 2991 UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end(); 2992 UI != UE; ++UI) { 2993 if (UI->getParent() != CmpInstr.getParent()) 2994 continue; 2995 MachineInstr *PotentialAND = &*UI; 2996 if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) || 2997 isPredicated(*PotentialAND)) 2998 continue; 2999 MI = PotentialAND; 3000 break; 3001 } 3002 if (!MI) return false; 3003 } 3004 } 3005 3006 // Get ready to iterate backward from CmpInstr. 3007 MachineBasicBlock::iterator I = CmpInstr, E = MI, 3008 B = CmpInstr.getParent()->begin(); 3009 3010 // Early exit if CmpInstr is at the beginning of the BB. 3011 if (I == B) return false; 3012 3013 // There are two possible candidates which can be changed to set CPSR: 3014 // One is MI, the other is a SUB or ADD instruction. 3015 // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or 3016 // ADDr[ri](r1, r2, X). 3017 // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue). 3018 MachineInstr *SubAdd = nullptr; 3019 if (SrcReg2 != 0) 3020 // MI is not a candidate for CMPrr. 3021 MI = nullptr; 3022 else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) { 3023 // Conservatively refuse to convert an instruction which isn't in the same 3024 // BB as the comparison. 3025 // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate. 3026 // Thus we cannot return here. 3027 if (CmpInstr.getOpcode() == ARM::CMPri || 3028 CmpInstr.getOpcode() == ARM::t2CMPri || 3029 CmpInstr.getOpcode() == ARM::tCMPi8) 3030 MI = nullptr; 3031 else 3032 return false; 3033 } 3034 3035 bool IsThumb1 = false; 3036 if (MI && !isOptimizeCompareCandidate(MI, IsThumb1)) 3037 return false; 3038 3039 // We also want to do this peephole for cases like this: if (a*b == 0), 3040 // and optimise away the CMP instruction from the generated code sequence: 3041 // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values 3042 // resulting from the select instruction, but these MOVS instructions for 3043 // Thumb1 (V6M) are flag setting and are thus preventing this optimisation. 3044 // However, if we only have MOVS instructions in between the CMP and the 3045 // other instruction (the MULS in this example), then the CPSR is dead so we 3046 // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this 3047 // reordering and then continue the analysis hoping we can eliminate the 3048 // CMP. This peephole works on the vregs, so is still in SSA form. As a 3049 // consequence, the movs won't redefine/kill the MUL operands which would 3050 // make this reordering illegal. 3051 const TargetRegisterInfo *TRI = &getRegisterInfo(); 3052 if (MI && IsThumb1) { 3053 --I; 3054 if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) { 3055 bool CanReorder = true; 3056 for (; I != E; --I) { 3057 if (I->getOpcode() != ARM::tMOVi8) { 3058 CanReorder = false; 3059 break; 3060 } 3061 } 3062 if (CanReorder) { 3063 MI = MI->removeFromParent(); 3064 E = CmpInstr; 3065 CmpInstr.getParent()->insert(E, MI); 3066 } 3067 } 3068 I = CmpInstr; 3069 E = MI; 3070 } 3071 3072 // Check that CPSR isn't set between the comparison instruction and the one we 3073 // want to change. At the same time, search for SubAdd. 3074 bool SubAddIsThumb1 = false; 3075 do { 3076 const MachineInstr &Instr = *--I; 3077 3078 // Check whether CmpInstr can be made redundant by the current instruction. 3079 if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr, 3080 SubAddIsThumb1)) { 3081 SubAdd = &*I; 3082 break; 3083 } 3084 3085 // Allow E (which was initially MI) to be SubAdd but do not search before E. 3086 if (I == E) 3087 break; 3088 3089 if (Instr.modifiesRegister(ARM::CPSR, TRI) || 3090 Instr.readsRegister(ARM::CPSR, TRI)) 3091 // This instruction modifies or uses CPSR after the one we want to 3092 // change. We can't do this transformation. 3093 return false; 3094 3095 if (I == B) { 3096 // In some cases, we scan the use-list of an instruction for an AND; 3097 // that AND is in the same BB, but may not be scheduled before the 3098 // corresponding TST. In that case, bail out. 3099 // 3100 // FIXME: We could try to reschedule the AND. 3101 return false; 3102 } 3103 } while (true); 3104 3105 // Return false if no candidates exist. 3106 if (!MI && !SubAdd) 3107 return false; 3108 3109 // If we found a SubAdd, use it as it will be closer to the CMP 3110 if (SubAdd) { 3111 MI = SubAdd; 3112 IsThumb1 = SubAddIsThumb1; 3113 } 3114 3115 // We can't use a predicated instruction - it doesn't always write the flags. 3116 if (isPredicated(*MI)) 3117 return false; 3118 3119 // Scan forward for the use of CPSR 3120 // When checking against MI: if it's a conditional code that requires 3121 // checking of the V bit or C bit, then this is not safe to do. 3122 // It is safe to remove CmpInstr if CPSR is redefined or killed. 3123 // If we are done with the basic block, we need to check whether CPSR is 3124 // live-out. 3125 SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4> 3126 OperandsToUpdate; 3127 bool isSafe = false; 3128 I = CmpInstr; 3129 E = CmpInstr.getParent()->end(); 3130 while (!isSafe && ++I != E) { 3131 const MachineInstr &Instr = *I; 3132 for (unsigned IO = 0, EO = Instr.getNumOperands(); 3133 !isSafe && IO != EO; ++IO) { 3134 const MachineOperand &MO = Instr.getOperand(IO); 3135 if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) { 3136 isSafe = true; 3137 break; 3138 } 3139 if (!MO.isReg() || MO.getReg() != ARM::CPSR) 3140 continue; 3141 if (MO.isDef()) { 3142 isSafe = true; 3143 break; 3144 } 3145 // Condition code is after the operand before CPSR except for VSELs. 3146 ARMCC::CondCodes CC; 3147 bool IsInstrVSel = true; 3148 switch (Instr.getOpcode()) { 3149 default: 3150 IsInstrVSel = false; 3151 CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm(); 3152 break; 3153 case ARM::VSELEQD: 3154 case ARM::VSELEQS: 3155 case ARM::VSELEQH: 3156 CC = ARMCC::EQ; 3157 break; 3158 case ARM::VSELGTD: 3159 case ARM::VSELGTS: 3160 case ARM::VSELGTH: 3161 CC = ARMCC::GT; 3162 break; 3163 case ARM::VSELGED: 3164 case ARM::VSELGES: 3165 case ARM::VSELGEH: 3166 CC = ARMCC::GE; 3167 break; 3168 case ARM::VSELVSD: 3169 case ARM::VSELVSS: 3170 case ARM::VSELVSH: 3171 CC = ARMCC::VS; 3172 break; 3173 } 3174 3175 if (SubAdd) { 3176 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based 3177 // on CMP needs to be updated to be based on SUB. 3178 // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also 3179 // needs to be modified. 3180 // Push the condition code operands to OperandsToUpdate. 3181 // If it is safe to remove CmpInstr, the condition code of these 3182 // operands will be modified. 3183 unsigned Opc = SubAdd->getOpcode(); 3184 bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr || 3185 Opc == ARM::SUBri || Opc == ARM::t2SUBri || 3186 Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 || 3187 Opc == ARM::tSUBi8; 3188 unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2; 3189 if (!IsSub || 3190 (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 && 3191 SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) { 3192 // VSel doesn't support condition code update. 3193 if (IsInstrVSel) 3194 return false; 3195 // Ensure we can swap the condition. 3196 ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC)); 3197 if (NewCC == ARMCC::AL) 3198 return false; 3199 OperandsToUpdate.push_back( 3200 std::make_pair(&((*I).getOperand(IO - 1)), NewCC)); 3201 } 3202 } else { 3203 // No SubAdd, so this is x = <op> y, z; cmp x, 0. 3204 switch (CC) { 3205 case ARMCC::EQ: // Z 3206 case ARMCC::NE: // Z 3207 case ARMCC::MI: // N 3208 case ARMCC::PL: // N 3209 case ARMCC::AL: // none 3210 // CPSR can be used multiple times, we should continue. 3211 break; 3212 case ARMCC::HS: // C 3213 case ARMCC::LO: // C 3214 case ARMCC::VS: // V 3215 case ARMCC::VC: // V 3216 case ARMCC::HI: // C Z 3217 case ARMCC::LS: // C Z 3218 case ARMCC::GE: // N V 3219 case ARMCC::LT: // N V 3220 case ARMCC::GT: // Z N V 3221 case ARMCC::LE: // Z N V 3222 // The instruction uses the V bit or C bit which is not safe. 3223 return false; 3224 } 3225 } 3226 } 3227 } 3228 3229 // If CPSR is not killed nor re-defined, we should check whether it is 3230 // live-out. If it is live-out, do not optimize. 3231 if (!isSafe) { 3232 MachineBasicBlock *MBB = CmpInstr.getParent(); 3233 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(), 3234 SE = MBB->succ_end(); SI != SE; ++SI) 3235 if ((*SI)->isLiveIn(ARM::CPSR)) 3236 return false; 3237 } 3238 3239 // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always 3240 // set CPSR so this is represented as an explicit output) 3241 if (!IsThumb1) { 3242 MI->getOperand(5).setReg(ARM::CPSR); 3243 MI->getOperand(5).setIsDef(true); 3244 } 3245 assert(!isPredicated(*MI) && "Can't use flags from predicated instruction"); 3246 CmpInstr.eraseFromParent(); 3247 3248 // Modify the condition code of operands in OperandsToUpdate. 3249 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to 3250 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. 3251 for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++) 3252 OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second); 3253 3254 MI->clearRegisterDeads(ARM::CPSR); 3255 3256 return true; 3257 } 3258 3259 bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const { 3260 // Do not sink MI if it might be used to optimize a redundant compare. 3261 // We heuristically only look at the instruction immediately following MI to 3262 // avoid potentially searching the entire basic block. 3263 if (isPredicated(MI)) 3264 return true; 3265 MachineBasicBlock::const_iterator Next = &MI; 3266 ++Next; 3267 Register SrcReg, SrcReg2; 3268 int CmpMask, CmpValue; 3269 bool IsThumb1; 3270 if (Next != MI.getParent()->end() && 3271 analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) && 3272 isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1)) 3273 return false; 3274 return true; 3275 } 3276 3277 bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 3278 Register Reg, 3279 MachineRegisterInfo *MRI) const { 3280 // Fold large immediates into add, sub, or, xor. 3281 unsigned DefOpc = DefMI.getOpcode(); 3282 if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm) 3283 return false; 3284 if (!DefMI.getOperand(1).isImm()) 3285 // Could be t2MOVi32imm @xx 3286 return false; 3287 3288 if (!MRI->hasOneNonDBGUse(Reg)) 3289 return false; 3290 3291 const MCInstrDesc &DefMCID = DefMI.getDesc(); 3292 if (DefMCID.hasOptionalDef()) { 3293 unsigned NumOps = DefMCID.getNumOperands(); 3294 const MachineOperand &MO = DefMI.getOperand(NumOps - 1); 3295 if (MO.getReg() == ARM::CPSR && !MO.isDead()) 3296 // If DefMI defines CPSR and it is not dead, it's obviously not safe 3297 // to delete DefMI. 3298 return false; 3299 } 3300 3301 const MCInstrDesc &UseMCID = UseMI.getDesc(); 3302 if (UseMCID.hasOptionalDef()) { 3303 unsigned NumOps = UseMCID.getNumOperands(); 3304 if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR) 3305 // If the instruction sets the flag, do not attempt this optimization 3306 // since it may change the semantics of the code. 3307 return false; 3308 } 3309 3310 unsigned UseOpc = UseMI.getOpcode(); 3311 unsigned NewUseOpc = 0; 3312 uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm(); 3313 uint32_t SOImmValV1 = 0, SOImmValV2 = 0; 3314 bool Commute = false; 3315 switch (UseOpc) { 3316 default: return false; 3317 case ARM::SUBrr: 3318 case ARM::ADDrr: 3319 case ARM::ORRrr: 3320 case ARM::EORrr: 3321 case ARM::t2SUBrr: 3322 case ARM::t2ADDrr: 3323 case ARM::t2ORRrr: 3324 case ARM::t2EORrr: { 3325 Commute = UseMI.getOperand(2).getReg() != Reg; 3326 switch (UseOpc) { 3327 default: break; 3328 case ARM::ADDrr: 3329 case ARM::SUBrr: 3330 if (UseOpc == ARM::SUBrr && Commute) 3331 return false; 3332 3333 // ADD/SUB are special because they're essentially the same operation, so 3334 // we can handle a larger range of immediates. 3335 if (ARM_AM::isSOImmTwoPartVal(ImmVal)) 3336 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri; 3337 else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) { 3338 ImmVal = -ImmVal; 3339 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri; 3340 } else 3341 return false; 3342 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 3343 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 3344 break; 3345 case ARM::ORRrr: 3346 case ARM::EORrr: 3347 if (!ARM_AM::isSOImmTwoPartVal(ImmVal)) 3348 return false; 3349 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); 3350 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); 3351 switch (UseOpc) { 3352 default: break; 3353 case ARM::ORRrr: NewUseOpc = ARM::ORRri; break; 3354 case ARM::EORrr: NewUseOpc = ARM::EORri; break; 3355 } 3356 break; 3357 case ARM::t2ADDrr: 3358 case ARM::t2SUBrr: { 3359 if (UseOpc == ARM::t2SUBrr && Commute) 3360 return false; 3361 3362 // ADD/SUB are special because they're essentially the same operation, so 3363 // we can handle a larger range of immediates. 3364 const bool ToSP = DefMI.getOperand(0).getReg() == ARM::SP; 3365 const unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri; 3366 const unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri; 3367 if (ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 3368 NewUseOpc = UseOpc == ARM::t2ADDrr ? t2ADD : t2SUB; 3369 else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) { 3370 ImmVal = -ImmVal; 3371 NewUseOpc = UseOpc == ARM::t2ADDrr ? t2SUB : t2ADD; 3372 } else 3373 return false; 3374 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 3375 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 3376 break; 3377 } 3378 case ARM::t2ORRrr: 3379 case ARM::t2EORrr: 3380 if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal)) 3381 return false; 3382 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); 3383 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); 3384 switch (UseOpc) { 3385 default: break; 3386 case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break; 3387 case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break; 3388 } 3389 break; 3390 } 3391 } 3392 } 3393 3394 unsigned OpIdx = Commute ? 2 : 1; 3395 Register Reg1 = UseMI.getOperand(OpIdx).getReg(); 3396 bool isKill = UseMI.getOperand(OpIdx).isKill(); 3397 const TargetRegisterClass *TRC = MRI->getRegClass(Reg); 3398 Register NewReg = MRI->createVirtualRegister(TRC); 3399 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc), 3400 NewReg) 3401 .addReg(Reg1, getKillRegState(isKill)) 3402 .addImm(SOImmValV1) 3403 .add(predOps(ARMCC::AL)) 3404 .add(condCodeOp()); 3405 UseMI.setDesc(get(NewUseOpc)); 3406 UseMI.getOperand(1).setReg(NewReg); 3407 UseMI.getOperand(1).setIsKill(); 3408 UseMI.getOperand(2).ChangeToImmediate(SOImmValV2); 3409 DefMI.eraseFromParent(); 3410 // FIXME: t2ADDrr should be split, as different rulles apply when writing to SP. 3411 // Just as t2ADDri, that was split to [t2ADDri, t2ADDspImm]. 3412 // Then the below code will not be needed, as the input/output register 3413 // classes will be rgpr or gprSP. 3414 // For now, we fix the UseMI operand explicitly here: 3415 switch(NewUseOpc){ 3416 case ARM::t2ADDspImm: 3417 case ARM::t2SUBspImm: 3418 case ARM::t2ADDri: 3419 case ARM::t2SUBri: 3420 MRI->constrainRegClass(UseMI.getOperand(0).getReg(), TRC); 3421 } 3422 return true; 3423 } 3424 3425 static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData, 3426 const MachineInstr &MI) { 3427 switch (MI.getOpcode()) { 3428 default: { 3429 const MCInstrDesc &Desc = MI.getDesc(); 3430 int UOps = ItinData->getNumMicroOps(Desc.getSchedClass()); 3431 assert(UOps >= 0 && "bad # UOps"); 3432 return UOps; 3433 } 3434 3435 case ARM::LDRrs: 3436 case ARM::LDRBrs: 3437 case ARM::STRrs: 3438 case ARM::STRBrs: { 3439 unsigned ShOpVal = MI.getOperand(3).getImm(); 3440 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3441 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3442 if (!isSub && 3443 (ShImm == 0 || 3444 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3445 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3446 return 1; 3447 return 2; 3448 } 3449 3450 case ARM::LDRH: 3451 case ARM::STRH: { 3452 if (!MI.getOperand(2).getReg()) 3453 return 1; 3454 3455 unsigned ShOpVal = MI.getOperand(3).getImm(); 3456 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3457 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3458 if (!isSub && 3459 (ShImm == 0 || 3460 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3461 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3462 return 1; 3463 return 2; 3464 } 3465 3466 case ARM::LDRSB: 3467 case ARM::LDRSH: 3468 return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2; 3469 3470 case ARM::LDRSB_POST: 3471 case ARM::LDRSH_POST: { 3472 Register Rt = MI.getOperand(0).getReg(); 3473 Register Rm = MI.getOperand(3).getReg(); 3474 return (Rt == Rm) ? 4 : 3; 3475 } 3476 3477 case ARM::LDR_PRE_REG: 3478 case ARM::LDRB_PRE_REG: { 3479 Register Rt = MI.getOperand(0).getReg(); 3480 Register Rm = MI.getOperand(3).getReg(); 3481 if (Rt == Rm) 3482 return 3; 3483 unsigned ShOpVal = MI.getOperand(4).getImm(); 3484 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3485 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3486 if (!isSub && 3487 (ShImm == 0 || 3488 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3489 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3490 return 2; 3491 return 3; 3492 } 3493 3494 case ARM::STR_PRE_REG: 3495 case ARM::STRB_PRE_REG: { 3496 unsigned ShOpVal = MI.getOperand(4).getImm(); 3497 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3498 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3499 if (!isSub && 3500 (ShImm == 0 || 3501 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3502 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3503 return 2; 3504 return 3; 3505 } 3506 3507 case ARM::LDRH_PRE: 3508 case ARM::STRH_PRE: { 3509 Register Rt = MI.getOperand(0).getReg(); 3510 Register Rm = MI.getOperand(3).getReg(); 3511 if (!Rm) 3512 return 2; 3513 if (Rt == Rm) 3514 return 3; 3515 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2; 3516 } 3517 3518 case ARM::LDR_POST_REG: 3519 case ARM::LDRB_POST_REG: 3520 case ARM::LDRH_POST: { 3521 Register Rt = MI.getOperand(0).getReg(); 3522 Register Rm = MI.getOperand(3).getReg(); 3523 return (Rt == Rm) ? 3 : 2; 3524 } 3525 3526 case ARM::LDR_PRE_IMM: 3527 case ARM::LDRB_PRE_IMM: 3528 case ARM::LDR_POST_IMM: 3529 case ARM::LDRB_POST_IMM: 3530 case ARM::STRB_POST_IMM: 3531 case ARM::STRB_POST_REG: 3532 case ARM::STRB_PRE_IMM: 3533 case ARM::STRH_POST: 3534 case ARM::STR_POST_IMM: 3535 case ARM::STR_POST_REG: 3536 case ARM::STR_PRE_IMM: 3537 return 2; 3538 3539 case ARM::LDRSB_PRE: 3540 case ARM::LDRSH_PRE: { 3541 Register Rm = MI.getOperand(3).getReg(); 3542 if (Rm == 0) 3543 return 3; 3544 Register Rt = MI.getOperand(0).getReg(); 3545 if (Rt == Rm) 3546 return 4; 3547 unsigned ShOpVal = MI.getOperand(4).getImm(); 3548 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 3549 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 3550 if (!isSub && 3551 (ShImm == 0 || 3552 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 3553 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 3554 return 3; 3555 return 4; 3556 } 3557 3558 case ARM::LDRD: { 3559 Register Rt = MI.getOperand(0).getReg(); 3560 Register Rn = MI.getOperand(2).getReg(); 3561 Register Rm = MI.getOperand(3).getReg(); 3562 if (Rm) 3563 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 3564 : 3; 3565 return (Rt == Rn) ? 3 : 2; 3566 } 3567 3568 case ARM::STRD: { 3569 Register Rm = MI.getOperand(3).getReg(); 3570 if (Rm) 3571 return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 3572 : 3; 3573 return 2; 3574 } 3575 3576 case ARM::LDRD_POST: 3577 case ARM::t2LDRD_POST: 3578 return 3; 3579 3580 case ARM::STRD_POST: 3581 case ARM::t2STRD_POST: 3582 return 4; 3583 3584 case ARM::LDRD_PRE: { 3585 Register Rt = MI.getOperand(0).getReg(); 3586 Register Rn = MI.getOperand(3).getReg(); 3587 Register Rm = MI.getOperand(4).getReg(); 3588 if (Rm) 3589 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 3590 : 4; 3591 return (Rt == Rn) ? 4 : 3; 3592 } 3593 3594 case ARM::t2LDRD_PRE: { 3595 Register Rt = MI.getOperand(0).getReg(); 3596 Register Rn = MI.getOperand(3).getReg(); 3597 return (Rt == Rn) ? 4 : 3; 3598 } 3599 3600 case ARM::STRD_PRE: { 3601 Register Rm = MI.getOperand(4).getReg(); 3602 if (Rm) 3603 return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 3604 : 4; 3605 return 3; 3606 } 3607 3608 case ARM::t2STRD_PRE: 3609 return 3; 3610 3611 case ARM::t2LDR_POST: 3612 case ARM::t2LDRB_POST: 3613 case ARM::t2LDRB_PRE: 3614 case ARM::t2LDRSBi12: 3615 case ARM::t2LDRSBi8: 3616 case ARM::t2LDRSBpci: 3617 case ARM::t2LDRSBs: 3618 case ARM::t2LDRH_POST: 3619 case ARM::t2LDRH_PRE: 3620 case ARM::t2LDRSBT: 3621 case ARM::t2LDRSB_POST: 3622 case ARM::t2LDRSB_PRE: 3623 case ARM::t2LDRSH_POST: 3624 case ARM::t2LDRSH_PRE: 3625 case ARM::t2LDRSHi12: 3626 case ARM::t2LDRSHi8: 3627 case ARM::t2LDRSHpci: 3628 case ARM::t2LDRSHs: 3629 return 2; 3630 3631 case ARM::t2LDRDi8: { 3632 Register Rt = MI.getOperand(0).getReg(); 3633 Register Rn = MI.getOperand(2).getReg(); 3634 return (Rt == Rn) ? 3 : 2; 3635 } 3636 3637 case ARM::t2STRB_POST: 3638 case ARM::t2STRB_PRE: 3639 case ARM::t2STRBs: 3640 case ARM::t2STRDi8: 3641 case ARM::t2STRH_POST: 3642 case ARM::t2STRH_PRE: 3643 case ARM::t2STRHs: 3644 case ARM::t2STR_POST: 3645 case ARM::t2STR_PRE: 3646 case ARM::t2STRs: 3647 return 2; 3648 } 3649 } 3650 3651 // Return the number of 32-bit words loaded by LDM or stored by STM. If this 3652 // can't be easily determined return 0 (missing MachineMemOperand). 3653 // 3654 // FIXME: The current MachineInstr design does not support relying on machine 3655 // mem operands to determine the width of a memory access. Instead, we expect 3656 // the target to provide this information based on the instruction opcode and 3657 // operands. However, using MachineMemOperand is the best solution now for 3658 // two reasons: 3659 // 3660 // 1) getNumMicroOps tries to infer LDM memory width from the total number of MI 3661 // operands. This is much more dangerous than using the MachineMemOperand 3662 // sizes because CodeGen passes can insert/remove optional machine operands. In 3663 // fact, it's totally incorrect for preRA passes and appears to be wrong for 3664 // postRA passes as well. 3665 // 3666 // 2) getNumLDMAddresses is only used by the scheduling machine model and any 3667 // machine model that calls this should handle the unknown (zero size) case. 3668 // 3669 // Long term, we should require a target hook that verifies MachineMemOperand 3670 // sizes during MC lowering. That target hook should be local to MC lowering 3671 // because we can't ensure that it is aware of other MI forms. Doing this will 3672 // ensure that MachineMemOperands are correctly propagated through all passes. 3673 unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const { 3674 unsigned Size = 0; 3675 for (MachineInstr::mmo_iterator I = MI.memoperands_begin(), 3676 E = MI.memoperands_end(); 3677 I != E; ++I) { 3678 Size += (*I)->getSize(); 3679 } 3680 // FIXME: The scheduler currently can't handle values larger than 16. But 3681 // the values can actually go up to 32 for floating-point load/store 3682 // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory 3683 // operations isn't right; we could end up with "extra" memory operands for 3684 // various reasons, like tail merge merging two memory operations. 3685 return std::min(Size / 4, 16U); 3686 } 3687 3688 static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc, 3689 unsigned NumRegs) { 3690 unsigned UOps = 1 + NumRegs; // 1 for address computation. 3691 switch (Opc) { 3692 default: 3693 break; 3694 case ARM::VLDMDIA_UPD: 3695 case ARM::VLDMDDB_UPD: 3696 case ARM::VLDMSIA_UPD: 3697 case ARM::VLDMSDB_UPD: 3698 case ARM::VSTMDIA_UPD: 3699 case ARM::VSTMDDB_UPD: 3700 case ARM::VSTMSIA_UPD: 3701 case ARM::VSTMSDB_UPD: 3702 case ARM::LDMIA_UPD: 3703 case ARM::LDMDA_UPD: 3704 case ARM::LDMDB_UPD: 3705 case ARM::LDMIB_UPD: 3706 case ARM::STMIA_UPD: 3707 case ARM::STMDA_UPD: 3708 case ARM::STMDB_UPD: 3709 case ARM::STMIB_UPD: 3710 case ARM::tLDMIA_UPD: 3711 case ARM::tSTMIA_UPD: 3712 case ARM::t2LDMIA_UPD: 3713 case ARM::t2LDMDB_UPD: 3714 case ARM::t2STMIA_UPD: 3715 case ARM::t2STMDB_UPD: 3716 ++UOps; // One for base register writeback. 3717 break; 3718 case ARM::LDMIA_RET: 3719 case ARM::tPOP_RET: 3720 case ARM::t2LDMIA_RET: 3721 UOps += 2; // One for base reg wb, one for write to pc. 3722 break; 3723 } 3724 return UOps; 3725 } 3726 3727 unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, 3728 const MachineInstr &MI) const { 3729 if (!ItinData || ItinData->isEmpty()) 3730 return 1; 3731 3732 const MCInstrDesc &Desc = MI.getDesc(); 3733 unsigned Class = Desc.getSchedClass(); 3734 int ItinUOps = ItinData->getNumMicroOps(Class); 3735 if (ItinUOps >= 0) { 3736 if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore())) 3737 return getNumMicroOpsSwiftLdSt(ItinData, MI); 3738 3739 return ItinUOps; 3740 } 3741 3742 unsigned Opc = MI.getOpcode(); 3743 switch (Opc) { 3744 default: 3745 llvm_unreachable("Unexpected multi-uops instruction!"); 3746 case ARM::VLDMQIA: 3747 case ARM::VSTMQIA: 3748 return 2; 3749 3750 // The number of uOps for load / store multiple are determined by the number 3751 // registers. 3752 // 3753 // On Cortex-A8, each pair of register loads / stores can be scheduled on the 3754 // same cycle. The scheduling for the first load / store must be done 3755 // separately by assuming the address is not 64-bit aligned. 3756 // 3757 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address 3758 // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON 3759 // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1. 3760 case ARM::VLDMDIA: 3761 case ARM::VLDMDIA_UPD: 3762 case ARM::VLDMDDB_UPD: 3763 case ARM::VLDMSIA: 3764 case ARM::VLDMSIA_UPD: 3765 case ARM::VLDMSDB_UPD: 3766 case ARM::VSTMDIA: 3767 case ARM::VSTMDIA_UPD: 3768 case ARM::VSTMDDB_UPD: 3769 case ARM::VSTMSIA: 3770 case ARM::VSTMSIA_UPD: 3771 case ARM::VSTMSDB_UPD: { 3772 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands(); 3773 return (NumRegs / 2) + (NumRegs % 2) + 1; 3774 } 3775 3776 case ARM::LDMIA_RET: 3777 case ARM::LDMIA: 3778 case ARM::LDMDA: 3779 case ARM::LDMDB: 3780 case ARM::LDMIB: 3781 case ARM::LDMIA_UPD: 3782 case ARM::LDMDA_UPD: 3783 case ARM::LDMDB_UPD: 3784 case ARM::LDMIB_UPD: 3785 case ARM::STMIA: 3786 case ARM::STMDA: 3787 case ARM::STMDB: 3788 case ARM::STMIB: 3789 case ARM::STMIA_UPD: 3790 case ARM::STMDA_UPD: 3791 case ARM::STMDB_UPD: 3792 case ARM::STMIB_UPD: 3793 case ARM::tLDMIA: 3794 case ARM::tLDMIA_UPD: 3795 case ARM::tSTMIA_UPD: 3796 case ARM::tPOP_RET: 3797 case ARM::tPOP: 3798 case ARM::tPUSH: 3799 case ARM::t2LDMIA_RET: 3800 case ARM::t2LDMIA: 3801 case ARM::t2LDMDB: 3802 case ARM::t2LDMIA_UPD: 3803 case ARM::t2LDMDB_UPD: 3804 case ARM::t2STMIA: 3805 case ARM::t2STMDB: 3806 case ARM::t2STMIA_UPD: 3807 case ARM::t2STMDB_UPD: { 3808 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1; 3809 switch (Subtarget.getLdStMultipleTiming()) { 3810 case ARMSubtarget::SingleIssuePlusExtras: 3811 return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs); 3812 case ARMSubtarget::SingleIssue: 3813 // Assume the worst. 3814 return NumRegs; 3815 case ARMSubtarget::DoubleIssue: { 3816 if (NumRegs < 4) 3817 return 2; 3818 // 4 registers would be issued: 2, 2. 3819 // 5 registers would be issued: 2, 2, 1. 3820 unsigned UOps = (NumRegs / 2); 3821 if (NumRegs % 2) 3822 ++UOps; 3823 return UOps; 3824 } 3825 case ARMSubtarget::DoubleIssueCheckUnalignedAccess: { 3826 unsigned UOps = (NumRegs / 2); 3827 // If there are odd number of registers or if it's not 64-bit aligned, 3828 // then it takes an extra AGU (Address Generation Unit) cycle. 3829 if ((NumRegs % 2) || !MI.hasOneMemOperand() || 3830 (*MI.memoperands_begin())->getAlign() < Align(8)) 3831 ++UOps; 3832 return UOps; 3833 } 3834 } 3835 } 3836 } 3837 llvm_unreachable("Didn't find the number of microops"); 3838 } 3839 3840 int 3841 ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData, 3842 const MCInstrDesc &DefMCID, 3843 unsigned DefClass, 3844 unsigned DefIdx, unsigned DefAlign) const { 3845 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3846 if (RegNo <= 0) 3847 // Def is the address writeback. 3848 return ItinData->getOperandCycle(DefClass, DefIdx); 3849 3850 int DefCycle; 3851 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3852 // (regno / 2) + (regno % 2) + 1 3853 DefCycle = RegNo / 2 + 1; 3854 if (RegNo % 2) 3855 ++DefCycle; 3856 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3857 DefCycle = RegNo; 3858 bool isSLoad = false; 3859 3860 switch (DefMCID.getOpcode()) { 3861 default: break; 3862 case ARM::VLDMSIA: 3863 case ARM::VLDMSIA_UPD: 3864 case ARM::VLDMSDB_UPD: 3865 isSLoad = true; 3866 break; 3867 } 3868 3869 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3870 // then it takes an extra cycle. 3871 if ((isSLoad && (RegNo % 2)) || DefAlign < 8) 3872 ++DefCycle; 3873 } else { 3874 // Assume the worst. 3875 DefCycle = RegNo + 2; 3876 } 3877 3878 return DefCycle; 3879 } 3880 3881 int 3882 ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData, 3883 const MCInstrDesc &DefMCID, 3884 unsigned DefClass, 3885 unsigned DefIdx, unsigned DefAlign) const { 3886 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; 3887 if (RegNo <= 0) 3888 // Def is the address writeback. 3889 return ItinData->getOperandCycle(DefClass, DefIdx); 3890 3891 int DefCycle; 3892 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3893 // 4 registers would be issued: 1, 2, 1. 3894 // 5 registers would be issued: 1, 2, 2. 3895 DefCycle = RegNo / 2; 3896 if (DefCycle < 1) 3897 DefCycle = 1; 3898 // Result latency is issue cycle + 2: E2. 3899 DefCycle += 2; 3900 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3901 DefCycle = (RegNo / 2); 3902 // If there are odd number of registers or if it's not 64-bit aligned, 3903 // then it takes an extra AGU (Address Generation Unit) cycle. 3904 if ((RegNo % 2) || DefAlign < 8) 3905 ++DefCycle; 3906 // Result latency is AGU cycles + 2. 3907 DefCycle += 2; 3908 } else { 3909 // Assume the worst. 3910 DefCycle = RegNo + 2; 3911 } 3912 3913 return DefCycle; 3914 } 3915 3916 int 3917 ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData, 3918 const MCInstrDesc &UseMCID, 3919 unsigned UseClass, 3920 unsigned UseIdx, unsigned UseAlign) const { 3921 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3922 if (RegNo <= 0) 3923 return ItinData->getOperandCycle(UseClass, UseIdx); 3924 3925 int UseCycle; 3926 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3927 // (regno / 2) + (regno % 2) + 1 3928 UseCycle = RegNo / 2 + 1; 3929 if (RegNo % 2) 3930 ++UseCycle; 3931 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3932 UseCycle = RegNo; 3933 bool isSStore = false; 3934 3935 switch (UseMCID.getOpcode()) { 3936 default: break; 3937 case ARM::VSTMSIA: 3938 case ARM::VSTMSIA_UPD: 3939 case ARM::VSTMSDB_UPD: 3940 isSStore = true; 3941 break; 3942 } 3943 3944 // If there are odd number of 'S' registers or if it's not 64-bit aligned, 3945 // then it takes an extra cycle. 3946 if ((isSStore && (RegNo % 2)) || UseAlign < 8) 3947 ++UseCycle; 3948 } else { 3949 // Assume the worst. 3950 UseCycle = RegNo + 2; 3951 } 3952 3953 return UseCycle; 3954 } 3955 3956 int 3957 ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData, 3958 const MCInstrDesc &UseMCID, 3959 unsigned UseClass, 3960 unsigned UseIdx, unsigned UseAlign) const { 3961 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; 3962 if (RegNo <= 0) 3963 return ItinData->getOperandCycle(UseClass, UseIdx); 3964 3965 int UseCycle; 3966 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { 3967 UseCycle = RegNo / 2; 3968 if (UseCycle < 2) 3969 UseCycle = 2; 3970 // Read in E3. 3971 UseCycle += 2; 3972 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { 3973 UseCycle = (RegNo / 2); 3974 // If there are odd number of registers or if it's not 64-bit aligned, 3975 // then it takes an extra AGU (Address Generation Unit) cycle. 3976 if ((RegNo % 2) || UseAlign < 8) 3977 ++UseCycle; 3978 } else { 3979 // Assume the worst. 3980 UseCycle = 1; 3981 } 3982 return UseCycle; 3983 } 3984 3985 int 3986 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 3987 const MCInstrDesc &DefMCID, 3988 unsigned DefIdx, unsigned DefAlign, 3989 const MCInstrDesc &UseMCID, 3990 unsigned UseIdx, unsigned UseAlign) const { 3991 unsigned DefClass = DefMCID.getSchedClass(); 3992 unsigned UseClass = UseMCID.getSchedClass(); 3993 3994 if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands()) 3995 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); 3996 3997 // This may be a def / use of a variable_ops instruction, the operand 3998 // latency might be determinable dynamically. Let the target try to 3999 // figure it out. 4000 int DefCycle = -1; 4001 bool LdmBypass = false; 4002 switch (DefMCID.getOpcode()) { 4003 default: 4004 DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 4005 break; 4006 4007 case ARM::VLDMDIA: 4008 case ARM::VLDMDIA_UPD: 4009 case ARM::VLDMDDB_UPD: 4010 case ARM::VLDMSIA: 4011 case ARM::VLDMSIA_UPD: 4012 case ARM::VLDMSDB_UPD: 4013 DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 4014 break; 4015 4016 case ARM::LDMIA_RET: 4017 case ARM::LDMIA: 4018 case ARM::LDMDA: 4019 case ARM::LDMDB: 4020 case ARM::LDMIB: 4021 case ARM::LDMIA_UPD: 4022 case ARM::LDMDA_UPD: 4023 case ARM::LDMDB_UPD: 4024 case ARM::LDMIB_UPD: 4025 case ARM::tLDMIA: 4026 case ARM::tLDMIA_UPD: 4027 case ARM::tPUSH: 4028 case ARM::t2LDMIA_RET: 4029 case ARM::t2LDMIA: 4030 case ARM::t2LDMDB: 4031 case ARM::t2LDMIA_UPD: 4032 case ARM::t2LDMDB_UPD: 4033 LdmBypass = true; 4034 DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); 4035 break; 4036 } 4037 4038 if (DefCycle == -1) 4039 // We can't seem to determine the result latency of the def, assume it's 2. 4040 DefCycle = 2; 4041 4042 int UseCycle = -1; 4043 switch (UseMCID.getOpcode()) { 4044 default: 4045 UseCycle = ItinData->getOperandCycle(UseClass, UseIdx); 4046 break; 4047 4048 case ARM::VSTMDIA: 4049 case ARM::VSTMDIA_UPD: 4050 case ARM::VSTMDDB_UPD: 4051 case ARM::VSTMSIA: 4052 case ARM::VSTMSIA_UPD: 4053 case ARM::VSTMSDB_UPD: 4054 UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 4055 break; 4056 4057 case ARM::STMIA: 4058 case ARM::STMDA: 4059 case ARM::STMDB: 4060 case ARM::STMIB: 4061 case ARM::STMIA_UPD: 4062 case ARM::STMDA_UPD: 4063 case ARM::STMDB_UPD: 4064 case ARM::STMIB_UPD: 4065 case ARM::tSTMIA_UPD: 4066 case ARM::tPOP_RET: 4067 case ARM::tPOP: 4068 case ARM::t2STMIA: 4069 case ARM::t2STMDB: 4070 case ARM::t2STMIA_UPD: 4071 case ARM::t2STMDB_UPD: 4072 UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); 4073 break; 4074 } 4075 4076 if (UseCycle == -1) 4077 // Assume it's read in the first stage. 4078 UseCycle = 1; 4079 4080 UseCycle = DefCycle - UseCycle + 1; 4081 if (UseCycle > 0) { 4082 if (LdmBypass) { 4083 // It's a variable_ops instruction so we can't use DefIdx here. Just use 4084 // first def operand. 4085 if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1, 4086 UseClass, UseIdx)) 4087 --UseCycle; 4088 } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx, 4089 UseClass, UseIdx)) { 4090 --UseCycle; 4091 } 4092 } 4093 4094 return UseCycle; 4095 } 4096 4097 static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI, 4098 const MachineInstr *MI, unsigned Reg, 4099 unsigned &DefIdx, unsigned &Dist) { 4100 Dist = 0; 4101 4102 MachineBasicBlock::const_iterator I = MI; ++I; 4103 MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator()); 4104 assert(II->isInsideBundle() && "Empty bundle?"); 4105 4106 int Idx = -1; 4107 while (II->isInsideBundle()) { 4108 Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI); 4109 if (Idx != -1) 4110 break; 4111 --II; 4112 ++Dist; 4113 } 4114 4115 assert(Idx != -1 && "Cannot find bundled definition!"); 4116 DefIdx = Idx; 4117 return &*II; 4118 } 4119 4120 static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI, 4121 const MachineInstr &MI, unsigned Reg, 4122 unsigned &UseIdx, unsigned &Dist) { 4123 Dist = 0; 4124 4125 MachineBasicBlock::const_instr_iterator II = ++MI.getIterator(); 4126 assert(II->isInsideBundle() && "Empty bundle?"); 4127 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 4128 4129 // FIXME: This doesn't properly handle multiple uses. 4130 int Idx = -1; 4131 while (II != E && II->isInsideBundle()) { 4132 Idx = II->findRegisterUseOperandIdx(Reg, false, TRI); 4133 if (Idx != -1) 4134 break; 4135 if (II->getOpcode() != ARM::t2IT) 4136 ++Dist; 4137 ++II; 4138 } 4139 4140 if (Idx == -1) { 4141 Dist = 0; 4142 return nullptr; 4143 } 4144 4145 UseIdx = Idx; 4146 return &*II; 4147 } 4148 4149 /// Return the number of cycles to add to (or subtract from) the static 4150 /// itinerary based on the def opcode and alignment. The caller will ensure that 4151 /// adjusted latency is at least one cycle. 4152 static int adjustDefLatency(const ARMSubtarget &Subtarget, 4153 const MachineInstr &DefMI, 4154 const MCInstrDesc &DefMCID, unsigned DefAlign) { 4155 int Adjust = 0; 4156 if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) { 4157 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 4158 // variants are one cycle cheaper. 4159 switch (DefMCID.getOpcode()) { 4160 default: break; 4161 case ARM::LDRrs: 4162 case ARM::LDRBrs: { 4163 unsigned ShOpVal = DefMI.getOperand(3).getImm(); 4164 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4165 if (ShImm == 0 || 4166 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4167 --Adjust; 4168 break; 4169 } 4170 case ARM::t2LDRs: 4171 case ARM::t2LDRBs: 4172 case ARM::t2LDRHs: 4173 case ARM::t2LDRSHs: { 4174 // Thumb2 mode: lsl only. 4175 unsigned ShAmt = DefMI.getOperand(3).getImm(); 4176 if (ShAmt == 0 || ShAmt == 2) 4177 --Adjust; 4178 break; 4179 } 4180 } 4181 } else if (Subtarget.isSwift()) { 4182 // FIXME: Properly handle all of the latency adjustments for address 4183 // writeback. 4184 switch (DefMCID.getOpcode()) { 4185 default: break; 4186 case ARM::LDRrs: 4187 case ARM::LDRBrs: { 4188 unsigned ShOpVal = DefMI.getOperand(3).getImm(); 4189 bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; 4190 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4191 if (!isSub && 4192 (ShImm == 0 || 4193 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 4194 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) 4195 Adjust -= 2; 4196 else if (!isSub && 4197 ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 4198 --Adjust; 4199 break; 4200 } 4201 case ARM::t2LDRs: 4202 case ARM::t2LDRBs: 4203 case ARM::t2LDRHs: 4204 case ARM::t2LDRSHs: { 4205 // Thumb2 mode: lsl only. 4206 unsigned ShAmt = DefMI.getOperand(3).getImm(); 4207 if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3) 4208 Adjust -= 2; 4209 break; 4210 } 4211 } 4212 } 4213 4214 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) { 4215 switch (DefMCID.getOpcode()) { 4216 default: break; 4217 case ARM::VLD1q8: 4218 case ARM::VLD1q16: 4219 case ARM::VLD1q32: 4220 case ARM::VLD1q64: 4221 case ARM::VLD1q8wb_fixed: 4222 case ARM::VLD1q16wb_fixed: 4223 case ARM::VLD1q32wb_fixed: 4224 case ARM::VLD1q64wb_fixed: 4225 case ARM::VLD1q8wb_register: 4226 case ARM::VLD1q16wb_register: 4227 case ARM::VLD1q32wb_register: 4228 case ARM::VLD1q64wb_register: 4229 case ARM::VLD2d8: 4230 case ARM::VLD2d16: 4231 case ARM::VLD2d32: 4232 case ARM::VLD2q8: 4233 case ARM::VLD2q16: 4234 case ARM::VLD2q32: 4235 case ARM::VLD2d8wb_fixed: 4236 case ARM::VLD2d16wb_fixed: 4237 case ARM::VLD2d32wb_fixed: 4238 case ARM::VLD2q8wb_fixed: 4239 case ARM::VLD2q16wb_fixed: 4240 case ARM::VLD2q32wb_fixed: 4241 case ARM::VLD2d8wb_register: 4242 case ARM::VLD2d16wb_register: 4243 case ARM::VLD2d32wb_register: 4244 case ARM::VLD2q8wb_register: 4245 case ARM::VLD2q16wb_register: 4246 case ARM::VLD2q32wb_register: 4247 case ARM::VLD3d8: 4248 case ARM::VLD3d16: 4249 case ARM::VLD3d32: 4250 case ARM::VLD1d64T: 4251 case ARM::VLD3d8_UPD: 4252 case ARM::VLD3d16_UPD: 4253 case ARM::VLD3d32_UPD: 4254 case ARM::VLD1d64Twb_fixed: 4255 case ARM::VLD1d64Twb_register: 4256 case ARM::VLD3q8_UPD: 4257 case ARM::VLD3q16_UPD: 4258 case ARM::VLD3q32_UPD: 4259 case ARM::VLD4d8: 4260 case ARM::VLD4d16: 4261 case ARM::VLD4d32: 4262 case ARM::VLD1d64Q: 4263 case ARM::VLD4d8_UPD: 4264 case ARM::VLD4d16_UPD: 4265 case ARM::VLD4d32_UPD: 4266 case ARM::VLD1d64Qwb_fixed: 4267 case ARM::VLD1d64Qwb_register: 4268 case ARM::VLD4q8_UPD: 4269 case ARM::VLD4q16_UPD: 4270 case ARM::VLD4q32_UPD: 4271 case ARM::VLD1DUPq8: 4272 case ARM::VLD1DUPq16: 4273 case ARM::VLD1DUPq32: 4274 case ARM::VLD1DUPq8wb_fixed: 4275 case ARM::VLD1DUPq16wb_fixed: 4276 case ARM::VLD1DUPq32wb_fixed: 4277 case ARM::VLD1DUPq8wb_register: 4278 case ARM::VLD1DUPq16wb_register: 4279 case ARM::VLD1DUPq32wb_register: 4280 case ARM::VLD2DUPd8: 4281 case ARM::VLD2DUPd16: 4282 case ARM::VLD2DUPd32: 4283 case ARM::VLD2DUPd8wb_fixed: 4284 case ARM::VLD2DUPd16wb_fixed: 4285 case ARM::VLD2DUPd32wb_fixed: 4286 case ARM::VLD2DUPd8wb_register: 4287 case ARM::VLD2DUPd16wb_register: 4288 case ARM::VLD2DUPd32wb_register: 4289 case ARM::VLD4DUPd8: 4290 case ARM::VLD4DUPd16: 4291 case ARM::VLD4DUPd32: 4292 case ARM::VLD4DUPd8_UPD: 4293 case ARM::VLD4DUPd16_UPD: 4294 case ARM::VLD4DUPd32_UPD: 4295 case ARM::VLD1LNd8: 4296 case ARM::VLD1LNd16: 4297 case ARM::VLD1LNd32: 4298 case ARM::VLD1LNd8_UPD: 4299 case ARM::VLD1LNd16_UPD: 4300 case ARM::VLD1LNd32_UPD: 4301 case ARM::VLD2LNd8: 4302 case ARM::VLD2LNd16: 4303 case ARM::VLD2LNd32: 4304 case ARM::VLD2LNq16: 4305 case ARM::VLD2LNq32: 4306 case ARM::VLD2LNd8_UPD: 4307 case ARM::VLD2LNd16_UPD: 4308 case ARM::VLD2LNd32_UPD: 4309 case ARM::VLD2LNq16_UPD: 4310 case ARM::VLD2LNq32_UPD: 4311 case ARM::VLD4LNd8: 4312 case ARM::VLD4LNd16: 4313 case ARM::VLD4LNd32: 4314 case ARM::VLD4LNq16: 4315 case ARM::VLD4LNq32: 4316 case ARM::VLD4LNd8_UPD: 4317 case ARM::VLD4LNd16_UPD: 4318 case ARM::VLD4LNd32_UPD: 4319 case ARM::VLD4LNq16_UPD: 4320 case ARM::VLD4LNq32_UPD: 4321 // If the address is not 64-bit aligned, the latencies of these 4322 // instructions increases by one. 4323 ++Adjust; 4324 break; 4325 } 4326 } 4327 return Adjust; 4328 } 4329 4330 int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4331 const MachineInstr &DefMI, 4332 unsigned DefIdx, 4333 const MachineInstr &UseMI, 4334 unsigned UseIdx) const { 4335 // No operand latency. The caller may fall back to getInstrLatency. 4336 if (!ItinData || ItinData->isEmpty()) 4337 return -1; 4338 4339 const MachineOperand &DefMO = DefMI.getOperand(DefIdx); 4340 Register Reg = DefMO.getReg(); 4341 4342 const MachineInstr *ResolvedDefMI = &DefMI; 4343 unsigned DefAdj = 0; 4344 if (DefMI.isBundle()) 4345 ResolvedDefMI = 4346 getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj); 4347 if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() || 4348 ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) { 4349 return 1; 4350 } 4351 4352 const MachineInstr *ResolvedUseMI = &UseMI; 4353 unsigned UseAdj = 0; 4354 if (UseMI.isBundle()) { 4355 ResolvedUseMI = 4356 getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj); 4357 if (!ResolvedUseMI) 4358 return -1; 4359 } 4360 4361 return getOperandLatencyImpl( 4362 ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO, 4363 Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj); 4364 } 4365 4366 int ARMBaseInstrInfo::getOperandLatencyImpl( 4367 const InstrItineraryData *ItinData, const MachineInstr &DefMI, 4368 unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj, 4369 const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI, 4370 unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const { 4371 if (Reg == ARM::CPSR) { 4372 if (DefMI.getOpcode() == ARM::FMSTAT) { 4373 // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?) 4374 return Subtarget.isLikeA9() ? 1 : 20; 4375 } 4376 4377 // CPSR set and branch can be paired in the same cycle. 4378 if (UseMI.isBranch()) 4379 return 0; 4380 4381 // Otherwise it takes the instruction latency (generally one). 4382 unsigned Latency = getInstrLatency(ItinData, DefMI); 4383 4384 // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to 4385 // its uses. Instructions which are otherwise scheduled between them may 4386 // incur a code size penalty (not able to use the CPSR setting 16-bit 4387 // instructions). 4388 if (Latency > 0 && Subtarget.isThumb2()) { 4389 const MachineFunction *MF = DefMI.getParent()->getParent(); 4390 // FIXME: Use Function::hasOptSize(). 4391 if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize)) 4392 --Latency; 4393 } 4394 return Latency; 4395 } 4396 4397 if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit()) 4398 return -1; 4399 4400 unsigned DefAlign = DefMI.hasOneMemOperand() 4401 ? (*DefMI.memoperands_begin())->getAlign().value() 4402 : 0; 4403 unsigned UseAlign = UseMI.hasOneMemOperand() 4404 ? (*UseMI.memoperands_begin())->getAlign().value() 4405 : 0; 4406 4407 // Get the itinerary's latency if possible, and handle variable_ops. 4408 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID, 4409 UseIdx, UseAlign); 4410 // Unable to find operand latency. The caller may resort to getInstrLatency. 4411 if (Latency < 0) 4412 return Latency; 4413 4414 // Adjust for IT block position. 4415 int Adj = DefAdj + UseAdj; 4416 4417 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4418 Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign); 4419 if (Adj >= 0 || (int)Latency > -Adj) { 4420 return Latency + Adj; 4421 } 4422 // Return the itinerary latency, which may be zero but not less than zero. 4423 return Latency; 4424 } 4425 4426 int 4427 ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, 4428 SDNode *DefNode, unsigned DefIdx, 4429 SDNode *UseNode, unsigned UseIdx) const { 4430 if (!DefNode->isMachineOpcode()) 4431 return 1; 4432 4433 const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode()); 4434 4435 if (isZeroCost(DefMCID.Opcode)) 4436 return 0; 4437 4438 if (!ItinData || ItinData->isEmpty()) 4439 return DefMCID.mayLoad() ? 3 : 1; 4440 4441 if (!UseNode->isMachineOpcode()) { 4442 int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx); 4443 int Adj = Subtarget.getPreISelOperandLatencyAdjustment(); 4444 int Threshold = 1 + Adj; 4445 return Latency <= Threshold ? 1 : Latency - Adj; 4446 } 4447 4448 const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode()); 4449 auto *DefMN = cast<MachineSDNode>(DefNode); 4450 unsigned DefAlign = !DefMN->memoperands_empty() 4451 ? (*DefMN->memoperands_begin())->getAlign().value() 4452 : 0; 4453 auto *UseMN = cast<MachineSDNode>(UseNode); 4454 unsigned UseAlign = !UseMN->memoperands_empty() 4455 ? (*UseMN->memoperands_begin())->getAlign().value() 4456 : 0; 4457 int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, 4458 UseMCID, UseIdx, UseAlign); 4459 4460 if (Latency > 1 && 4461 (Subtarget.isCortexA8() || Subtarget.isLikeA9() || 4462 Subtarget.isCortexA7())) { 4463 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] 4464 // variants are one cycle cheaper. 4465 switch (DefMCID.getOpcode()) { 4466 default: break; 4467 case ARM::LDRrs: 4468 case ARM::LDRBrs: { 4469 unsigned ShOpVal = 4470 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4471 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4472 if (ShImm == 0 || 4473 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4474 --Latency; 4475 break; 4476 } 4477 case ARM::t2LDRs: 4478 case ARM::t2LDRBs: 4479 case ARM::t2LDRHs: 4480 case ARM::t2LDRSHs: { 4481 // Thumb2 mode: lsl only. 4482 unsigned ShAmt = 4483 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4484 if (ShAmt == 0 || ShAmt == 2) 4485 --Latency; 4486 break; 4487 } 4488 } 4489 } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) { 4490 // FIXME: Properly handle all of the latency adjustments for address 4491 // writeback. 4492 switch (DefMCID.getOpcode()) { 4493 default: break; 4494 case ARM::LDRrs: 4495 case ARM::LDRBrs: { 4496 unsigned ShOpVal = 4497 cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue(); 4498 unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); 4499 if (ShImm == 0 || 4500 ((ShImm == 1 || ShImm == 2 || ShImm == 3) && 4501 ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) 4502 Latency -= 2; 4503 else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) 4504 --Latency; 4505 break; 4506 } 4507 case ARM::t2LDRs: 4508 case ARM::t2LDRBs: 4509 case ARM::t2LDRHs: 4510 case ARM::t2LDRSHs: 4511 // Thumb2 mode: lsl 0-3 only. 4512 Latency -= 2; 4513 break; 4514 } 4515 } 4516 4517 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) 4518 switch (DefMCID.getOpcode()) { 4519 default: break; 4520 case ARM::VLD1q8: 4521 case ARM::VLD1q16: 4522 case ARM::VLD1q32: 4523 case ARM::VLD1q64: 4524 case ARM::VLD1q8wb_register: 4525 case ARM::VLD1q16wb_register: 4526 case ARM::VLD1q32wb_register: 4527 case ARM::VLD1q64wb_register: 4528 case ARM::VLD1q8wb_fixed: 4529 case ARM::VLD1q16wb_fixed: 4530 case ARM::VLD1q32wb_fixed: 4531 case ARM::VLD1q64wb_fixed: 4532 case ARM::VLD2d8: 4533 case ARM::VLD2d16: 4534 case ARM::VLD2d32: 4535 case ARM::VLD2q8Pseudo: 4536 case ARM::VLD2q16Pseudo: 4537 case ARM::VLD2q32Pseudo: 4538 case ARM::VLD2d8wb_fixed: 4539 case ARM::VLD2d16wb_fixed: 4540 case ARM::VLD2d32wb_fixed: 4541 case ARM::VLD2q8PseudoWB_fixed: 4542 case ARM::VLD2q16PseudoWB_fixed: 4543 case ARM::VLD2q32PseudoWB_fixed: 4544 case ARM::VLD2d8wb_register: 4545 case ARM::VLD2d16wb_register: 4546 case ARM::VLD2d32wb_register: 4547 case ARM::VLD2q8PseudoWB_register: 4548 case ARM::VLD2q16PseudoWB_register: 4549 case ARM::VLD2q32PseudoWB_register: 4550 case ARM::VLD3d8Pseudo: 4551 case ARM::VLD3d16Pseudo: 4552 case ARM::VLD3d32Pseudo: 4553 case ARM::VLD1d8TPseudo: 4554 case ARM::VLD1d16TPseudo: 4555 case ARM::VLD1d32TPseudo: 4556 case ARM::VLD1d64TPseudo: 4557 case ARM::VLD1d64TPseudoWB_fixed: 4558 case ARM::VLD1d64TPseudoWB_register: 4559 case ARM::VLD3d8Pseudo_UPD: 4560 case ARM::VLD3d16Pseudo_UPD: 4561 case ARM::VLD3d32Pseudo_UPD: 4562 case ARM::VLD3q8Pseudo_UPD: 4563 case ARM::VLD3q16Pseudo_UPD: 4564 case ARM::VLD3q32Pseudo_UPD: 4565 case ARM::VLD3q8oddPseudo: 4566 case ARM::VLD3q16oddPseudo: 4567 case ARM::VLD3q32oddPseudo: 4568 case ARM::VLD3q8oddPseudo_UPD: 4569 case ARM::VLD3q16oddPseudo_UPD: 4570 case ARM::VLD3q32oddPseudo_UPD: 4571 case ARM::VLD4d8Pseudo: 4572 case ARM::VLD4d16Pseudo: 4573 case ARM::VLD4d32Pseudo: 4574 case ARM::VLD1d8QPseudo: 4575 case ARM::VLD1d16QPseudo: 4576 case ARM::VLD1d32QPseudo: 4577 case ARM::VLD1d64QPseudo: 4578 case ARM::VLD1d64QPseudoWB_fixed: 4579 case ARM::VLD1d64QPseudoWB_register: 4580 case ARM::VLD1q8HighQPseudo: 4581 case ARM::VLD1q8LowQPseudo_UPD: 4582 case ARM::VLD1q8HighTPseudo: 4583 case ARM::VLD1q8LowTPseudo_UPD: 4584 case ARM::VLD1q16HighQPseudo: 4585 case ARM::VLD1q16LowQPseudo_UPD: 4586 case ARM::VLD1q16HighTPseudo: 4587 case ARM::VLD1q16LowTPseudo_UPD: 4588 case ARM::VLD1q32HighQPseudo: 4589 case ARM::VLD1q32LowQPseudo_UPD: 4590 case ARM::VLD1q32HighTPseudo: 4591 case ARM::VLD1q32LowTPseudo_UPD: 4592 case ARM::VLD1q64HighQPseudo: 4593 case ARM::VLD1q64LowQPseudo_UPD: 4594 case ARM::VLD1q64HighTPseudo: 4595 case ARM::VLD1q64LowTPseudo_UPD: 4596 case ARM::VLD4d8Pseudo_UPD: 4597 case ARM::VLD4d16Pseudo_UPD: 4598 case ARM::VLD4d32Pseudo_UPD: 4599 case ARM::VLD4q8Pseudo_UPD: 4600 case ARM::VLD4q16Pseudo_UPD: 4601 case ARM::VLD4q32Pseudo_UPD: 4602 case ARM::VLD4q8oddPseudo: 4603 case ARM::VLD4q16oddPseudo: 4604 case ARM::VLD4q32oddPseudo: 4605 case ARM::VLD4q8oddPseudo_UPD: 4606 case ARM::VLD4q16oddPseudo_UPD: 4607 case ARM::VLD4q32oddPseudo_UPD: 4608 case ARM::VLD1DUPq8: 4609 case ARM::VLD1DUPq16: 4610 case ARM::VLD1DUPq32: 4611 case ARM::VLD1DUPq8wb_fixed: 4612 case ARM::VLD1DUPq16wb_fixed: 4613 case ARM::VLD1DUPq32wb_fixed: 4614 case ARM::VLD1DUPq8wb_register: 4615 case ARM::VLD1DUPq16wb_register: 4616 case ARM::VLD1DUPq32wb_register: 4617 case ARM::VLD2DUPd8: 4618 case ARM::VLD2DUPd16: 4619 case ARM::VLD2DUPd32: 4620 case ARM::VLD2DUPd8wb_fixed: 4621 case ARM::VLD2DUPd16wb_fixed: 4622 case ARM::VLD2DUPd32wb_fixed: 4623 case ARM::VLD2DUPd8wb_register: 4624 case ARM::VLD2DUPd16wb_register: 4625 case ARM::VLD2DUPd32wb_register: 4626 case ARM::VLD2DUPq8EvenPseudo: 4627 case ARM::VLD2DUPq8OddPseudo: 4628 case ARM::VLD2DUPq16EvenPseudo: 4629 case ARM::VLD2DUPq16OddPseudo: 4630 case ARM::VLD2DUPq32EvenPseudo: 4631 case ARM::VLD2DUPq32OddPseudo: 4632 case ARM::VLD3DUPq8EvenPseudo: 4633 case ARM::VLD3DUPq8OddPseudo: 4634 case ARM::VLD3DUPq16EvenPseudo: 4635 case ARM::VLD3DUPq16OddPseudo: 4636 case ARM::VLD3DUPq32EvenPseudo: 4637 case ARM::VLD3DUPq32OddPseudo: 4638 case ARM::VLD4DUPd8Pseudo: 4639 case ARM::VLD4DUPd16Pseudo: 4640 case ARM::VLD4DUPd32Pseudo: 4641 case ARM::VLD4DUPd8Pseudo_UPD: 4642 case ARM::VLD4DUPd16Pseudo_UPD: 4643 case ARM::VLD4DUPd32Pseudo_UPD: 4644 case ARM::VLD4DUPq8EvenPseudo: 4645 case ARM::VLD4DUPq8OddPseudo: 4646 case ARM::VLD4DUPq16EvenPseudo: 4647 case ARM::VLD4DUPq16OddPseudo: 4648 case ARM::VLD4DUPq32EvenPseudo: 4649 case ARM::VLD4DUPq32OddPseudo: 4650 case ARM::VLD1LNq8Pseudo: 4651 case ARM::VLD1LNq16Pseudo: 4652 case ARM::VLD1LNq32Pseudo: 4653 case ARM::VLD1LNq8Pseudo_UPD: 4654 case ARM::VLD1LNq16Pseudo_UPD: 4655 case ARM::VLD1LNq32Pseudo_UPD: 4656 case ARM::VLD2LNd8Pseudo: 4657 case ARM::VLD2LNd16Pseudo: 4658 case ARM::VLD2LNd32Pseudo: 4659 case ARM::VLD2LNq16Pseudo: 4660 case ARM::VLD2LNq32Pseudo: 4661 case ARM::VLD2LNd8Pseudo_UPD: 4662 case ARM::VLD2LNd16Pseudo_UPD: 4663 case ARM::VLD2LNd32Pseudo_UPD: 4664 case ARM::VLD2LNq16Pseudo_UPD: 4665 case ARM::VLD2LNq32Pseudo_UPD: 4666 case ARM::VLD4LNd8Pseudo: 4667 case ARM::VLD4LNd16Pseudo: 4668 case ARM::VLD4LNd32Pseudo: 4669 case ARM::VLD4LNq16Pseudo: 4670 case ARM::VLD4LNq32Pseudo: 4671 case ARM::VLD4LNd8Pseudo_UPD: 4672 case ARM::VLD4LNd16Pseudo_UPD: 4673 case ARM::VLD4LNd32Pseudo_UPD: 4674 case ARM::VLD4LNq16Pseudo_UPD: 4675 case ARM::VLD4LNq32Pseudo_UPD: 4676 // If the address is not 64-bit aligned, the latencies of these 4677 // instructions increases by one. 4678 ++Latency; 4679 break; 4680 } 4681 4682 return Latency; 4683 } 4684 4685 unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const { 4686 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || 4687 MI.isImplicitDef()) 4688 return 0; 4689 4690 if (MI.isBundle()) 4691 return 0; 4692 4693 const MCInstrDesc &MCID = MI.getDesc(); 4694 4695 if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && 4696 !Subtarget.cheapPredicableCPSRDef())) { 4697 // When predicated, CPSR is an additional source operand for CPSR updating 4698 // instructions, this apparently increases their latencies. 4699 return 1; 4700 } 4701 return 0; 4702 } 4703 4704 unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4705 const MachineInstr &MI, 4706 unsigned *PredCost) const { 4707 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || 4708 MI.isImplicitDef()) 4709 return 1; 4710 4711 // An instruction scheduler typically runs on unbundled instructions, however 4712 // other passes may query the latency of a bundled instruction. 4713 if (MI.isBundle()) { 4714 unsigned Latency = 0; 4715 MachineBasicBlock::const_instr_iterator I = MI.getIterator(); 4716 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); 4717 while (++I != E && I->isInsideBundle()) { 4718 if (I->getOpcode() != ARM::t2IT) 4719 Latency += getInstrLatency(ItinData, *I, PredCost); 4720 } 4721 return Latency; 4722 } 4723 4724 const MCInstrDesc &MCID = MI.getDesc(); 4725 if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && 4726 !Subtarget.cheapPredicableCPSRDef()))) { 4727 // When predicated, CPSR is an additional source operand for CPSR updating 4728 // instructions, this apparently increases their latencies. 4729 *PredCost = 1; 4730 } 4731 // Be sure to call getStageLatency for an empty itinerary in case it has a 4732 // valid MinLatency property. 4733 if (!ItinData) 4734 return MI.mayLoad() ? 3 : 1; 4735 4736 unsigned Class = MCID.getSchedClass(); 4737 4738 // For instructions with variable uops, use uops as latency. 4739 if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0) 4740 return getNumMicroOps(ItinData, MI); 4741 4742 // For the common case, fall back on the itinerary's latency. 4743 unsigned Latency = ItinData->getStageLatency(Class); 4744 4745 // Adjust for dynamic def-side opcode variants not captured by the itinerary. 4746 unsigned DefAlign = 4747 MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlign().value() : 0; 4748 int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign); 4749 if (Adj >= 0 || (int)Latency > -Adj) { 4750 return Latency + Adj; 4751 } 4752 return Latency; 4753 } 4754 4755 int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, 4756 SDNode *Node) const { 4757 if (!Node->isMachineOpcode()) 4758 return 1; 4759 4760 if (!ItinData || ItinData->isEmpty()) 4761 return 1; 4762 4763 unsigned Opcode = Node->getMachineOpcode(); 4764 switch (Opcode) { 4765 default: 4766 return ItinData->getStageLatency(get(Opcode).getSchedClass()); 4767 case ARM::VLDMQIA: 4768 case ARM::VSTMQIA: 4769 return 2; 4770 } 4771 } 4772 4773 bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, 4774 const MachineRegisterInfo *MRI, 4775 const MachineInstr &DefMI, 4776 unsigned DefIdx, 4777 const MachineInstr &UseMI, 4778 unsigned UseIdx) const { 4779 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; 4780 unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask; 4781 if (Subtarget.nonpipelinedVFP() && 4782 (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP)) 4783 return true; 4784 4785 // Hoist VFP / NEON instructions with 4 or higher latency. 4786 unsigned Latency = 4787 SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx); 4788 if (Latency <= 3) 4789 return false; 4790 return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON || 4791 UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON; 4792 } 4793 4794 bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, 4795 const MachineInstr &DefMI, 4796 unsigned DefIdx) const { 4797 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); 4798 if (!ItinData || ItinData->isEmpty()) 4799 return false; 4800 4801 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; 4802 if (DDomain == ARMII::DomainGeneral) { 4803 unsigned DefClass = DefMI.getDesc().getSchedClass(); 4804 int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); 4805 return (DefCycle != -1 && DefCycle <= 2); 4806 } 4807 return false; 4808 } 4809 4810 bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI, 4811 StringRef &ErrInfo) const { 4812 if (convertAddSubFlagsOpcode(MI.getOpcode())) { 4813 ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG"; 4814 return false; 4815 } 4816 if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) { 4817 // Make sure we don't generate a lo-lo mov that isn't supported. 4818 if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) && 4819 !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) { 4820 ErrInfo = "Non-flag-setting Thumb1 mov is v6-only"; 4821 return false; 4822 } 4823 } 4824 if (MI.getOpcode() == ARM::tPUSH || 4825 MI.getOpcode() == ARM::tPOP || 4826 MI.getOpcode() == ARM::tPOP_RET) { 4827 for (int i = 2, e = MI.getNumOperands(); i < e; ++i) { 4828 if (MI.getOperand(i).isImplicit() || 4829 !MI.getOperand(i).isReg()) 4830 continue; 4831 Register Reg = MI.getOperand(i).getReg(); 4832 if (Reg < ARM::R0 || Reg > ARM::R7) { 4833 if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) && 4834 !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) { 4835 ErrInfo = "Unsupported register in Thumb1 push/pop"; 4836 return false; 4837 } 4838 } 4839 } 4840 } 4841 if (MI.getOpcode() == ARM::MVE_VMOV_q_rr) { 4842 assert(MI.getOperand(4).isImm() && MI.getOperand(5).isImm()); 4843 if ((MI.getOperand(4).getImm() != 2 && MI.getOperand(4).getImm() != 3) || 4844 MI.getOperand(4).getImm() != MI.getOperand(5).getImm() + 2) { 4845 ErrInfo = "Incorrect array index for MVE_VMOV_q_rr"; 4846 return false; 4847 } 4848 } 4849 return true; 4850 } 4851 4852 // LoadStackGuard has so far only been implemented for MachO. Different code 4853 // sequence is needed for other targets. 4854 void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI, 4855 unsigned LoadImmOpc, 4856 unsigned LoadOpc) const { 4857 assert(!Subtarget.isROPI() && !Subtarget.isRWPI() && 4858 "ROPI/RWPI not currently supported with stack guard"); 4859 4860 MachineBasicBlock &MBB = *MI->getParent(); 4861 DebugLoc DL = MI->getDebugLoc(); 4862 Register Reg = MI->getOperand(0).getReg(); 4863 const GlobalValue *GV = 4864 cast<GlobalValue>((*MI->memoperands_begin())->getValue()); 4865 MachineInstrBuilder MIB; 4866 4867 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) 4868 .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY); 4869 4870 if (Subtarget.isGVIndirectSymbol(GV)) { 4871 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4872 MIB.addReg(Reg, RegState::Kill).addImm(0); 4873 auto Flags = MachineMemOperand::MOLoad | 4874 MachineMemOperand::MODereferenceable | 4875 MachineMemOperand::MOInvariant; 4876 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( 4877 MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, Align(4)); 4878 MIB.addMemOperand(MMO).add(predOps(ARMCC::AL)); 4879 } 4880 4881 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); 4882 MIB.addReg(Reg, RegState::Kill) 4883 .addImm(0) 4884 .cloneMemRefs(*MI) 4885 .add(predOps(ARMCC::AL)); 4886 } 4887 4888 bool 4889 ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc, 4890 unsigned &AddSubOpc, 4891 bool &NegAcc, bool &HasLane) const { 4892 DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode); 4893 if (I == MLxEntryMap.end()) 4894 return false; 4895 4896 const ARM_MLxEntry &Entry = ARM_MLxTable[I->second]; 4897 MulOpc = Entry.MulOpc; 4898 AddSubOpc = Entry.AddSubOpc; 4899 NegAcc = Entry.NegAcc; 4900 HasLane = Entry.HasLane; 4901 return true; 4902 } 4903 4904 //===----------------------------------------------------------------------===// 4905 // Execution domains. 4906 //===----------------------------------------------------------------------===// 4907 // 4908 // Some instructions go down the NEON pipeline, some go down the VFP pipeline, 4909 // and some can go down both. The vmov instructions go down the VFP pipeline, 4910 // but they can be changed to vorr equivalents that are executed by the NEON 4911 // pipeline. 4912 // 4913 // We use the following execution domain numbering: 4914 // 4915 enum ARMExeDomain { 4916 ExeGeneric = 0, 4917 ExeVFP = 1, 4918 ExeNEON = 2 4919 }; 4920 4921 // 4922 // Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h 4923 // 4924 std::pair<uint16_t, uint16_t> 4925 ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const { 4926 // If we don't have access to NEON instructions then we won't be able 4927 // to swizzle anything to the NEON domain. Check to make sure. 4928 if (Subtarget.hasNEON()) { 4929 // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON 4930 // if they are not predicated. 4931 if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI)) 4932 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 4933 4934 // CortexA9 is particularly picky about mixing the two and wants these 4935 // converted. 4936 if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) && 4937 (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR || 4938 MI.getOpcode() == ARM::VMOVS)) 4939 return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); 4940 } 4941 // No other instructions can be swizzled, so just determine their domain. 4942 unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask; 4943 4944 if (Domain & ARMII::DomainNEON) 4945 return std::make_pair(ExeNEON, 0); 4946 4947 // Certain instructions can go either way on Cortex-A8. 4948 // Treat them as NEON instructions. 4949 if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8()) 4950 return std::make_pair(ExeNEON, 0); 4951 4952 if (Domain & ARMII::DomainVFP) 4953 return std::make_pair(ExeVFP, 0); 4954 4955 return std::make_pair(ExeGeneric, 0); 4956 } 4957 4958 static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI, 4959 unsigned SReg, unsigned &Lane) { 4960 unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass); 4961 Lane = 0; 4962 4963 if (DReg != ARM::NoRegister) 4964 return DReg; 4965 4966 Lane = 1; 4967 DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass); 4968 4969 assert(DReg && "S-register with no D super-register?"); 4970 return DReg; 4971 } 4972 4973 /// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane, 4974 /// set ImplicitSReg to a register number that must be marked as implicit-use or 4975 /// zero if no register needs to be defined as implicit-use. 4976 /// 4977 /// If the function cannot determine if an SPR should be marked implicit use or 4978 /// not, it returns false. 4979 /// 4980 /// This function handles cases where an instruction is being modified from taking 4981 /// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict 4982 /// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other 4983 /// lane of the DPR). 4984 /// 4985 /// If the other SPR is defined, an implicit-use of it should be added. Else, 4986 /// (including the case where the DPR itself is defined), it should not. 4987 /// 4988 static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI, 4989 MachineInstr &MI, unsigned DReg, 4990 unsigned Lane, unsigned &ImplicitSReg) { 4991 // If the DPR is defined or used already, the other SPR lane will be chained 4992 // correctly, so there is nothing to be done. 4993 if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) { 4994 ImplicitSReg = 0; 4995 return true; 4996 } 4997 4998 // Otherwise we need to go searching to see if the SPR is set explicitly. 4999 ImplicitSReg = TRI->getSubReg(DReg, 5000 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1); 5001 MachineBasicBlock::LivenessQueryResult LQR = 5002 MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI); 5003 5004 if (LQR == MachineBasicBlock::LQR_Live) 5005 return true; 5006 else if (LQR == MachineBasicBlock::LQR_Unknown) 5007 return false; 5008 5009 // If the register is known not to be live, there is no need to add an 5010 // implicit-use. 5011 ImplicitSReg = 0; 5012 return true; 5013 } 5014 5015 void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI, 5016 unsigned Domain) const { 5017 unsigned DstReg, SrcReg, DReg; 5018 unsigned Lane; 5019 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); 5020 const TargetRegisterInfo *TRI = &getRegisterInfo(); 5021 switch (MI.getOpcode()) { 5022 default: 5023 llvm_unreachable("cannot handle opcode!"); 5024 break; 5025 case ARM::VMOVD: 5026 if (Domain != ExeNEON) 5027 break; 5028 5029 // Zap the predicate operands. 5030 assert(!isPredicated(MI) && "Cannot predicate a VORRd"); 5031 5032 // Make sure we've got NEON instructions. 5033 assert(Subtarget.hasNEON() && "VORRd requires NEON"); 5034 5035 // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits) 5036 DstReg = MI.getOperand(0).getReg(); 5037 SrcReg = MI.getOperand(1).getReg(); 5038 5039 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5040 MI.RemoveOperand(i - 1); 5041 5042 // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits) 5043 MI.setDesc(get(ARM::VORRd)); 5044 MIB.addReg(DstReg, RegState::Define) 5045 .addReg(SrcReg) 5046 .addReg(SrcReg) 5047 .add(predOps(ARMCC::AL)); 5048 break; 5049 case ARM::VMOVRS: 5050 if (Domain != ExeNEON) 5051 break; 5052 assert(!isPredicated(MI) && "Cannot predicate a VGETLN"); 5053 5054 // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits) 5055 DstReg = MI.getOperand(0).getReg(); 5056 SrcReg = MI.getOperand(1).getReg(); 5057 5058 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5059 MI.RemoveOperand(i - 1); 5060 5061 DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane); 5062 5063 // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps) 5064 // Note that DSrc has been widened and the other lane may be undef, which 5065 // contaminates the entire register. 5066 MI.setDesc(get(ARM::VGETLNi32)); 5067 MIB.addReg(DstReg, RegState::Define) 5068 .addReg(DReg, RegState::Undef) 5069 .addImm(Lane) 5070 .add(predOps(ARMCC::AL)); 5071 5072 // The old source should be an implicit use, otherwise we might think it 5073 // was dead before here. 5074 MIB.addReg(SrcReg, RegState::Implicit); 5075 break; 5076 case ARM::VMOVSR: { 5077 if (Domain != ExeNEON) 5078 break; 5079 assert(!isPredicated(MI) && "Cannot predicate a VSETLN"); 5080 5081 // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits) 5082 DstReg = MI.getOperand(0).getReg(); 5083 SrcReg = MI.getOperand(1).getReg(); 5084 5085 DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane); 5086 5087 unsigned ImplicitSReg; 5088 if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg)) 5089 break; 5090 5091 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5092 MI.RemoveOperand(i - 1); 5093 5094 // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps) 5095 // Again DDst may be undefined at the beginning of this instruction. 5096 MI.setDesc(get(ARM::VSETLNi32)); 5097 MIB.addReg(DReg, RegState::Define) 5098 .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI))) 5099 .addReg(SrcReg) 5100 .addImm(Lane) 5101 .add(predOps(ARMCC::AL)); 5102 5103 // The narrower destination must be marked as set to keep previous chains 5104 // in place. 5105 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 5106 if (ImplicitSReg != 0) 5107 MIB.addReg(ImplicitSReg, RegState::Implicit); 5108 break; 5109 } 5110 case ARM::VMOVS: { 5111 if (Domain != ExeNEON) 5112 break; 5113 5114 // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits) 5115 DstReg = MI.getOperand(0).getReg(); 5116 SrcReg = MI.getOperand(1).getReg(); 5117 5118 unsigned DstLane = 0, SrcLane = 0, DDst, DSrc; 5119 DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane); 5120 DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane); 5121 5122 unsigned ImplicitSReg; 5123 if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg)) 5124 break; 5125 5126 for (unsigned i = MI.getDesc().getNumOperands(); i; --i) 5127 MI.RemoveOperand(i - 1); 5128 5129 if (DSrc == DDst) { 5130 // Destination can be: 5131 // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits) 5132 MI.setDesc(get(ARM::VDUPLN32d)); 5133 MIB.addReg(DDst, RegState::Define) 5134 .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI))) 5135 .addImm(SrcLane) 5136 .add(predOps(ARMCC::AL)); 5137 5138 // Neither the source or the destination are naturally represented any 5139 // more, so add them in manually. 5140 MIB.addReg(DstReg, RegState::Implicit | RegState::Define); 5141 MIB.addReg(SrcReg, RegState::Implicit); 5142 if (ImplicitSReg != 0) 5143 MIB.addReg(ImplicitSReg, RegState::Implicit); 5144 break; 5145 } 5146 5147 // In general there's no single instruction that can perform an S <-> S 5148 // move in NEON space, but a pair of VEXT instructions *can* do the 5149 // job. It turns out that the VEXTs needed will only use DSrc once, with 5150 // the position based purely on the combination of lane-0 and lane-1 5151 // involved. For example 5152 // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1 5153 // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1 5154 // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1 5155 // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1 5156 // 5157 // Pattern of the MachineInstrs is: 5158 // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits) 5159 MachineInstrBuilder NewMIB; 5160 NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32), 5161 DDst); 5162 5163 // On the first instruction, both DSrc and DDst may be undef if present. 5164 // Specifically when the original instruction didn't have them as an 5165 // <imp-use>. 5166 unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst; 5167 bool CurUndef = !MI.readsRegister(CurReg, TRI); 5168 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)); 5169 5170 CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst; 5171 CurUndef = !MI.readsRegister(CurReg, TRI); 5172 NewMIB.addReg(CurReg, getUndefRegState(CurUndef)) 5173 .addImm(1) 5174 .add(predOps(ARMCC::AL)); 5175 5176 if (SrcLane == DstLane) 5177 NewMIB.addReg(SrcReg, RegState::Implicit); 5178 5179 MI.setDesc(get(ARM::VEXTd32)); 5180 MIB.addReg(DDst, RegState::Define); 5181 5182 // On the second instruction, DDst has definitely been defined above, so 5183 // it is not undef. DSrc, if present, can be undef as above. 5184 CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst; 5185 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); 5186 MIB.addReg(CurReg, getUndefRegState(CurUndef)); 5187 5188 CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst; 5189 CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); 5190 MIB.addReg(CurReg, getUndefRegState(CurUndef)) 5191 .addImm(1) 5192 .add(predOps(ARMCC::AL)); 5193 5194 if (SrcLane != DstLane) 5195 MIB.addReg(SrcReg, RegState::Implicit); 5196 5197 // As before, the original destination is no longer represented, add it 5198 // implicitly. 5199 MIB.addReg(DstReg, RegState::Define | RegState::Implicit); 5200 if (ImplicitSReg != 0) 5201 MIB.addReg(ImplicitSReg, RegState::Implicit); 5202 break; 5203 } 5204 } 5205 } 5206 5207 //===----------------------------------------------------------------------===// 5208 // Partial register updates 5209 //===----------------------------------------------------------------------===// 5210 // 5211 // Swift renames NEON registers with 64-bit granularity. That means any 5212 // instruction writing an S-reg implicitly reads the containing D-reg. The 5213 // problem is mostly avoided by translating f32 operations to v2f32 operations 5214 // on D-registers, but f32 loads are still a problem. 5215 // 5216 // These instructions can load an f32 into a NEON register: 5217 // 5218 // VLDRS - Only writes S, partial D update. 5219 // VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops. 5220 // VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops. 5221 // 5222 // FCONSTD can be used as a dependency-breaking instruction. 5223 unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance( 5224 const MachineInstr &MI, unsigned OpNum, 5225 const TargetRegisterInfo *TRI) const { 5226 auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance(); 5227 if (!PartialUpdateClearance) 5228 return 0; 5229 5230 assert(TRI && "Need TRI instance"); 5231 5232 const MachineOperand &MO = MI.getOperand(OpNum); 5233 if (MO.readsReg()) 5234 return 0; 5235 Register Reg = MO.getReg(); 5236 int UseOp = -1; 5237 5238 switch (MI.getOpcode()) { 5239 // Normal instructions writing only an S-register. 5240 case ARM::VLDRS: 5241 case ARM::FCONSTS: 5242 case ARM::VMOVSR: 5243 case ARM::VMOVv8i8: 5244 case ARM::VMOVv4i16: 5245 case ARM::VMOVv2i32: 5246 case ARM::VMOVv2f32: 5247 case ARM::VMOVv1i64: 5248 UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI); 5249 break; 5250 5251 // Explicitly reads the dependency. 5252 case ARM::VLD1LNd32: 5253 UseOp = 3; 5254 break; 5255 default: 5256 return 0; 5257 } 5258 5259 // If this instruction actually reads a value from Reg, there is no unwanted 5260 // dependency. 5261 if (UseOp != -1 && MI.getOperand(UseOp).readsReg()) 5262 return 0; 5263 5264 // We must be able to clobber the whole D-reg. 5265 if (Register::isVirtualRegister(Reg)) { 5266 // Virtual register must be a def undef foo:ssub_0 operand. 5267 if (!MO.getSubReg() || MI.readsVirtualRegister(Reg)) 5268 return 0; 5269 } else if (ARM::SPRRegClass.contains(Reg)) { 5270 // Physical register: MI must define the full D-reg. 5271 unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0, 5272 &ARM::DPRRegClass); 5273 if (!DReg || !MI.definesRegister(DReg, TRI)) 5274 return 0; 5275 } 5276 5277 // MI has an unwanted D-register dependency. 5278 // Avoid defs in the previous N instructrions. 5279 return PartialUpdateClearance; 5280 } 5281 5282 // Break a partial register dependency after getPartialRegUpdateClearance 5283 // returned non-zero. 5284 void ARMBaseInstrInfo::breakPartialRegDependency( 5285 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { 5286 assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def"); 5287 assert(TRI && "Need TRI instance"); 5288 5289 const MachineOperand &MO = MI.getOperand(OpNum); 5290 Register Reg = MO.getReg(); 5291 assert(Register::isPhysicalRegister(Reg) && 5292 "Can't break virtual register dependencies."); 5293 unsigned DReg = Reg; 5294 5295 // If MI defines an S-reg, find the corresponding D super-register. 5296 if (ARM::SPRRegClass.contains(Reg)) { 5297 DReg = ARM::D0 + (Reg - ARM::S0) / 2; 5298 assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken"); 5299 } 5300 5301 assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps"); 5302 assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg"); 5303 5304 // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines 5305 // the full D-register by loading the same value to both lanes. The 5306 // instruction is micro-coded with 2 uops, so don't do this until we can 5307 // properly schedule micro-coded instructions. The dispatcher stalls cause 5308 // too big regressions. 5309 5310 // Insert the dependency-breaking FCONSTD before MI. 5311 // 96 is the encoding of 0.5, but the actual value doesn't matter here. 5312 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg) 5313 .addImm(96) 5314 .add(predOps(ARMCC::AL)); 5315 MI.addRegisterKilled(DReg, TRI, true); 5316 } 5317 5318 bool ARMBaseInstrInfo::hasNOP() const { 5319 return Subtarget.getFeatureBits()[ARM::HasV6KOps]; 5320 } 5321 5322 bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const { 5323 if (MI->getNumOperands() < 4) 5324 return true; 5325 unsigned ShOpVal = MI->getOperand(3).getImm(); 5326 unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal); 5327 // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1. 5328 if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) || 5329 ((ShImm == 1 || ShImm == 2) && 5330 ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl)) 5331 return true; 5332 5333 return false; 5334 } 5335 5336 bool ARMBaseInstrInfo::getRegSequenceLikeInputs( 5337 const MachineInstr &MI, unsigned DefIdx, 5338 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { 5339 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5340 assert(MI.isRegSequenceLike() && "Invalid kind of instruction"); 5341 5342 switch (MI.getOpcode()) { 5343 case ARM::VMOVDRR: 5344 // dX = VMOVDRR rY, rZ 5345 // is the same as: 5346 // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1 5347 // Populate the InputRegs accordingly. 5348 // rY 5349 const MachineOperand *MOReg = &MI.getOperand(1); 5350 if (!MOReg->isUndef()) 5351 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), 5352 MOReg->getSubReg(), ARM::ssub_0)); 5353 // rZ 5354 MOReg = &MI.getOperand(2); 5355 if (!MOReg->isUndef()) 5356 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), 5357 MOReg->getSubReg(), ARM::ssub_1)); 5358 return true; 5359 } 5360 llvm_unreachable("Target dependent opcode missing"); 5361 } 5362 5363 bool ARMBaseInstrInfo::getExtractSubregLikeInputs( 5364 const MachineInstr &MI, unsigned DefIdx, 5365 RegSubRegPairAndIdx &InputReg) const { 5366 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5367 assert(MI.isExtractSubregLike() && "Invalid kind of instruction"); 5368 5369 switch (MI.getOpcode()) { 5370 case ARM::VMOVRRD: 5371 // rX, rY = VMOVRRD dZ 5372 // is the same as: 5373 // rX = EXTRACT_SUBREG dZ, ssub_0 5374 // rY = EXTRACT_SUBREG dZ, ssub_1 5375 const MachineOperand &MOReg = MI.getOperand(2); 5376 if (MOReg.isUndef()) 5377 return false; 5378 InputReg.Reg = MOReg.getReg(); 5379 InputReg.SubReg = MOReg.getSubReg(); 5380 InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1; 5381 return true; 5382 } 5383 llvm_unreachable("Target dependent opcode missing"); 5384 } 5385 5386 bool ARMBaseInstrInfo::getInsertSubregLikeInputs( 5387 const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, 5388 RegSubRegPairAndIdx &InsertedReg) const { 5389 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); 5390 assert(MI.isInsertSubregLike() && "Invalid kind of instruction"); 5391 5392 switch (MI.getOpcode()) { 5393 case ARM::VSETLNi32: 5394 // dX = VSETLNi32 dY, rZ, imm 5395 const MachineOperand &MOBaseReg = MI.getOperand(1); 5396 const MachineOperand &MOInsertedReg = MI.getOperand(2); 5397 if (MOInsertedReg.isUndef()) 5398 return false; 5399 const MachineOperand &MOIndex = MI.getOperand(3); 5400 BaseReg.Reg = MOBaseReg.getReg(); 5401 BaseReg.SubReg = MOBaseReg.getSubReg(); 5402 5403 InsertedReg.Reg = MOInsertedReg.getReg(); 5404 InsertedReg.SubReg = MOInsertedReg.getSubReg(); 5405 InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1; 5406 return true; 5407 } 5408 llvm_unreachable("Target dependent opcode missing"); 5409 } 5410 5411 std::pair<unsigned, unsigned> 5412 ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { 5413 const unsigned Mask = ARMII::MO_OPTION_MASK; 5414 return std::make_pair(TF & Mask, TF & ~Mask); 5415 } 5416 5417 ArrayRef<std::pair<unsigned, const char *>> 5418 ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { 5419 using namespace ARMII; 5420 5421 static const std::pair<unsigned, const char *> TargetFlags[] = { 5422 {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}}; 5423 return makeArrayRef(TargetFlags); 5424 } 5425 5426 ArrayRef<std::pair<unsigned, const char *>> 5427 ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { 5428 using namespace ARMII; 5429 5430 static const std::pair<unsigned, const char *> TargetFlags[] = { 5431 {MO_COFFSTUB, "arm-coffstub"}, 5432 {MO_GOT, "arm-got"}, 5433 {MO_SBREL, "arm-sbrel"}, 5434 {MO_DLLIMPORT, "arm-dllimport"}, 5435 {MO_SECREL, "arm-secrel"}, 5436 {MO_NONLAZY, "arm-nonlazy"}}; 5437 return makeArrayRef(TargetFlags); 5438 } 5439 5440 Optional<RegImmPair> ARMBaseInstrInfo::isAddImmediate(const MachineInstr &MI, 5441 Register Reg) const { 5442 int Sign = 1; 5443 unsigned Opcode = MI.getOpcode(); 5444 int64_t Offset = 0; 5445 5446 // TODO: Handle cases where Reg is a super- or sub-register of the 5447 // destination register. 5448 const MachineOperand &Op0 = MI.getOperand(0); 5449 if (!Op0.isReg() || Reg != Op0.getReg()) 5450 return None; 5451 5452 // We describe SUBri or ADDri instructions. 5453 if (Opcode == ARM::SUBri) 5454 Sign = -1; 5455 else if (Opcode != ARM::ADDri) 5456 return None; 5457 5458 // TODO: Third operand can be global address (usually some string). Since 5459 // strings can be relocated we cannot calculate their offsets for 5460 // now. 5461 if (!MI.getOperand(1).isReg() || !MI.getOperand(2).isImm()) 5462 return None; 5463 5464 Offset = MI.getOperand(2).getImm() * Sign; 5465 return RegImmPair{MI.getOperand(1).getReg(), Offset}; 5466 } 5467 5468 bool llvm::registerDefinedBetween(unsigned Reg, 5469 MachineBasicBlock::iterator From, 5470 MachineBasicBlock::iterator To, 5471 const TargetRegisterInfo *TRI) { 5472 for (auto I = From; I != To; ++I) 5473 if (I->modifiesRegister(Reg, TRI)) 5474 return true; 5475 return false; 5476 } 5477 5478 MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br, 5479 const TargetRegisterInfo *TRI) { 5480 // Search backwards to the instruction that defines CSPR. This may or not 5481 // be a CMP, we check that after this loop. If we find another instruction 5482 // that reads cpsr, we return nullptr. 5483 MachineBasicBlock::iterator CmpMI = Br; 5484 while (CmpMI != Br->getParent()->begin()) { 5485 --CmpMI; 5486 if (CmpMI->modifiesRegister(ARM::CPSR, TRI)) 5487 break; 5488 if (CmpMI->readsRegister(ARM::CPSR, TRI)) 5489 break; 5490 } 5491 5492 // Check that this inst is a CMP r[0-7], #0 and that the register 5493 // is not redefined between the cmp and the br. 5494 if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri) 5495 return nullptr; 5496 Register Reg = CmpMI->getOperand(0).getReg(); 5497 Register PredReg; 5498 ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg); 5499 if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0) 5500 return nullptr; 5501 if (!isARMLowRegister(Reg)) 5502 return nullptr; 5503 if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI)) 5504 return nullptr; 5505 5506 return &*CmpMI; 5507 } 5508 5509 unsigned llvm::ConstantMaterializationCost(unsigned Val, 5510 const ARMSubtarget *Subtarget, 5511 bool ForCodesize) { 5512 if (Subtarget->isThumb()) { 5513 if (Val <= 255) // MOV 5514 return ForCodesize ? 2 : 1; 5515 if (Subtarget->hasV6T2Ops() && (Val <= 0xffff || // MOV 5516 ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW 5517 ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN 5518 return ForCodesize ? 4 : 1; 5519 if (Val <= 510) // MOV + ADDi8 5520 return ForCodesize ? 4 : 2; 5521 if (~Val <= 255) // MOV + MVN 5522 return ForCodesize ? 4 : 2; 5523 if (ARM_AM::isThumbImmShiftedVal(Val)) // MOV + LSL 5524 return ForCodesize ? 4 : 2; 5525 } else { 5526 if (ARM_AM::getSOImmVal(Val) != -1) // MOV 5527 return ForCodesize ? 4 : 1; 5528 if (ARM_AM::getSOImmVal(~Val) != -1) // MVN 5529 return ForCodesize ? 4 : 1; 5530 if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW 5531 return ForCodesize ? 4 : 1; 5532 if (ARM_AM::isSOImmTwoPartVal(Val)) // two instrs 5533 return ForCodesize ? 8 : 2; 5534 if (ARM_AM::isSOImmTwoPartValNeg(Val)) // two instrs 5535 return ForCodesize ? 8 : 2; 5536 } 5537 if (Subtarget->useMovt()) // MOVW + MOVT 5538 return ForCodesize ? 8 : 2; 5539 return ForCodesize ? 8 : 3; // Literal pool load 5540 } 5541 5542 bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2, 5543 const ARMSubtarget *Subtarget, 5544 bool ForCodesize) { 5545 // Check with ForCodesize 5546 unsigned Cost1 = ConstantMaterializationCost(Val1, Subtarget, ForCodesize); 5547 unsigned Cost2 = ConstantMaterializationCost(Val2, Subtarget, ForCodesize); 5548 if (Cost1 < Cost2) 5549 return true; 5550 if (Cost1 > Cost2) 5551 return false; 5552 5553 // If they are equal, try with !ForCodesize 5554 return ConstantMaterializationCost(Val1, Subtarget, !ForCodesize) < 5555 ConstantMaterializationCost(Val2, Subtarget, !ForCodesize); 5556 } 5557 5558 /// Constants defining how certain sequences should be outlined. 5559 /// This encompasses how an outlined function should be called, and what kind of 5560 /// frame should be emitted for that outlined function. 5561 /// 5562 /// \p MachineOutlinerTailCall implies that the function is being created from 5563 /// a sequence of instructions ending in a return. 5564 /// 5565 /// That is, 5566 /// 5567 /// I1 OUTLINED_FUNCTION: 5568 /// I2 --> B OUTLINED_FUNCTION I1 5569 /// BX LR I2 5570 /// BX LR 5571 /// 5572 /// +-------------------------+--------+-----+ 5573 /// | | Thumb2 | ARM | 5574 /// +-------------------------+--------+-----+ 5575 /// | Call overhead in Bytes | 4 | 4 | 5576 /// | Frame overhead in Bytes | 0 | 0 | 5577 /// | Stack fixup required | No | No | 5578 /// +-------------------------+--------+-----+ 5579 /// 5580 /// \p MachineOutlinerThunk implies that the function is being created from 5581 /// a sequence of instructions ending in a call. The outlined function is 5582 /// called with a BL instruction, and the outlined function tail-calls the 5583 /// original call destination. 5584 /// 5585 /// That is, 5586 /// 5587 /// I1 OUTLINED_FUNCTION: 5588 /// I2 --> BL OUTLINED_FUNCTION I1 5589 /// BL f I2 5590 /// B f 5591 /// 5592 /// +-------------------------+--------+-----+ 5593 /// | | Thumb2 | ARM | 5594 /// +-------------------------+--------+-----+ 5595 /// | Call overhead in Bytes | 4 | 4 | 5596 /// | Frame overhead in Bytes | 0 | 0 | 5597 /// | Stack fixup required | No | No | 5598 /// +-------------------------+--------+-----+ 5599 /// 5600 /// \p MachineOutlinerNoLRSave implies that the function should be called using 5601 /// a BL instruction, but doesn't require LR to be saved and restored. This 5602 /// happens when LR is known to be dead. 5603 /// 5604 /// That is, 5605 /// 5606 /// I1 OUTLINED_FUNCTION: 5607 /// I2 --> BL OUTLINED_FUNCTION I1 5608 /// I3 I2 5609 /// I3 5610 /// BX LR 5611 /// 5612 /// +-------------------------+--------+-----+ 5613 /// | | Thumb2 | ARM | 5614 /// +-------------------------+--------+-----+ 5615 /// | Call overhead in Bytes | 4 | 4 | 5616 /// | Frame overhead in Bytes | 4 | 4 | 5617 /// | Stack fixup required | No | No | 5618 /// +-------------------------+--------+-----+ 5619 /// 5620 /// \p MachineOutlinerRegSave implies that the function should be called with a 5621 /// save and restore of LR to an available register. This allows us to avoid 5622 /// stack fixups. Note that this outlining variant is compatible with the 5623 /// NoLRSave case. 5624 /// 5625 /// That is, 5626 /// 5627 /// I1 Save LR OUTLINED_FUNCTION: 5628 /// I2 --> BL OUTLINED_FUNCTION I1 5629 /// I3 Restore LR I2 5630 /// I3 5631 /// BX LR 5632 /// 5633 /// +-------------------------+--------+-----+ 5634 /// | | Thumb2 | ARM | 5635 /// +-------------------------+--------+-----+ 5636 /// | Call overhead in Bytes | 8 | 12 | 5637 /// | Frame overhead in Bytes | 2 | 4 | 5638 /// | Stack fixup required | No | No | 5639 /// +-------------------------+--------+-----+ 5640 /// 5641 /// \p MachineOutlinerDefault implies that the function should be called with 5642 /// a save and restore of LR to the stack. 5643 /// 5644 /// That is, 5645 /// 5646 /// I1 Save LR OUTLINED_FUNCTION: 5647 /// I2 --> BL OUTLINED_FUNCTION I1 5648 /// I3 Restore LR I2 5649 /// I3 5650 /// BX LR 5651 /// 5652 /// +-------------------------+--------+-----+ 5653 /// | | Thumb2 | ARM | 5654 /// +-------------------------+--------+-----+ 5655 /// | Call overhead in Bytes | 8 | 12 | 5656 /// | Frame overhead in Bytes | 2 | 4 | 5657 /// | Stack fixup required | Yes | Yes | 5658 /// +-------------------------+--------+-----+ 5659 5660 enum MachineOutlinerClass { 5661 MachineOutlinerTailCall, 5662 MachineOutlinerThunk, 5663 MachineOutlinerNoLRSave, 5664 MachineOutlinerRegSave, 5665 MachineOutlinerDefault 5666 }; 5667 5668 enum MachineOutlinerMBBFlags { 5669 LRUnavailableSomewhere = 0x2, 5670 HasCalls = 0x4, 5671 UnsafeRegsDead = 0x8 5672 }; 5673 5674 struct OutlinerCosts { 5675 const int CallTailCall; 5676 const int FrameTailCall; 5677 const int CallThunk; 5678 const int FrameThunk; 5679 const int CallNoLRSave; 5680 const int FrameNoLRSave; 5681 const int CallRegSave; 5682 const int FrameRegSave; 5683 const int CallDefault; 5684 const int FrameDefault; 5685 const int SaveRestoreLROnStack; 5686 5687 OutlinerCosts(const ARMSubtarget &target) 5688 : CallTailCall(target.isThumb() ? 4 : 4), 5689 FrameTailCall(target.isThumb() ? 0 : 0), 5690 CallThunk(target.isThumb() ? 4 : 4), 5691 FrameThunk(target.isThumb() ? 0 : 0), 5692 CallNoLRSave(target.isThumb() ? 4 : 4), 5693 FrameNoLRSave(target.isThumb() ? 4 : 4), 5694 CallRegSave(target.isThumb() ? 8 : 12), 5695 FrameRegSave(target.isThumb() ? 2 : 4), 5696 CallDefault(target.isThumb() ? 8 : 12), 5697 FrameDefault(target.isThumb() ? 2 : 4), 5698 SaveRestoreLROnStack(target.isThumb() ? 8 : 8) {} 5699 }; 5700 5701 unsigned 5702 ARMBaseInstrInfo::findRegisterToSaveLRTo(const outliner::Candidate &C) const { 5703 assert(C.LRUWasSet && "LRU wasn't set?"); 5704 MachineFunction *MF = C.getMF(); 5705 const ARMBaseRegisterInfo *ARI = static_cast<const ARMBaseRegisterInfo *>( 5706 MF->getSubtarget().getRegisterInfo()); 5707 5708 BitVector regsReserved = ARI->getReservedRegs(*MF); 5709 // Check if there is an available register across the sequence that we can 5710 // use. 5711 for (unsigned Reg : ARM::rGPRRegClass) { 5712 if (!(Reg < regsReserved.size() && regsReserved.test(Reg)) && 5713 Reg != ARM::LR && // LR is not reserved, but don't use it. 5714 Reg != ARM::R12 && // R12 is not guaranteed to be preserved. 5715 C.LRU.available(Reg) && C.UsedInSequence.available(Reg)) 5716 return Reg; 5717 } 5718 5719 // No suitable register. Return 0. 5720 return 0u; 5721 } 5722 5723 // Compute liveness of LR at the point after the interval [I, E), which 5724 // denotes a *backward* iteration through instructions. Used only for return 5725 // basic blocks, which do not end with a tail call. 5726 static bool isLRAvailable(const TargetRegisterInfo &TRI, 5727 MachineBasicBlock::reverse_iterator I, 5728 MachineBasicBlock::reverse_iterator E) { 5729 // At the end of the function LR dead. 5730 bool Live = false; 5731 for (; I != E; ++I) { 5732 const MachineInstr &MI = *I; 5733 5734 // Check defs of LR. 5735 if (MI.modifiesRegister(ARM::LR, &TRI)) 5736 Live = false; 5737 5738 // Check uses of LR. 5739 unsigned Opcode = MI.getOpcode(); 5740 if (Opcode == ARM::BX_RET || Opcode == ARM::MOVPCLR || 5741 Opcode == ARM::SUBS_PC_LR || Opcode == ARM::tBX_RET || 5742 Opcode == ARM::tBXNS_RET) { 5743 // These instructions use LR, but it's not an (explicit or implicit) 5744 // operand. 5745 Live = true; 5746 continue; 5747 } 5748 if (MI.readsRegister(ARM::LR, &TRI)) 5749 Live = true; 5750 } 5751 return !Live; 5752 } 5753 5754 outliner::OutlinedFunction ARMBaseInstrInfo::getOutliningCandidateInfo( 5755 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const { 5756 outliner::Candidate &FirstCand = RepeatedSequenceLocs[0]; 5757 unsigned SequenceSize = 5758 std::accumulate(FirstCand.front(), std::next(FirstCand.back()), 0, 5759 [this](unsigned Sum, const MachineInstr &MI) { 5760 return Sum + getInstSizeInBytes(MI); 5761 }); 5762 5763 // Properties about candidate MBBs that hold for all of them. 5764 unsigned FlagsSetInAll = 0xF; 5765 5766 // Compute liveness information for each candidate, and set FlagsSetInAll. 5767 const TargetRegisterInfo &TRI = getRegisterInfo(); 5768 std::for_each( 5769 RepeatedSequenceLocs.begin(), RepeatedSequenceLocs.end(), 5770 [&FlagsSetInAll](outliner::Candidate &C) { FlagsSetInAll &= C.Flags; }); 5771 5772 // According to the ARM Procedure Call Standard, the following are 5773 // undefined on entry/exit from a function call: 5774 // 5775 // * Register R12(IP), 5776 // * Condition codes (and thus the CPSR register) 5777 // 5778 // Since we control the instructions which are part of the outlined regions 5779 // we don't need to be fully compliant with the AAPCS, but we have to 5780 // guarantee that if a veneer is inserted at link time the code is still 5781 // correct. Because of this, we can't outline any sequence of instructions 5782 // where one of these registers is live into/across it. Thus, we need to 5783 // delete those candidates. 5784 auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) { 5785 // If the unsafe registers in this block are all dead, then we don't need 5786 // to compute liveness here. 5787 if (C.Flags & UnsafeRegsDead) 5788 return false; 5789 C.initLRU(TRI); 5790 LiveRegUnits LRU = C.LRU; 5791 return (!LRU.available(ARM::R12) || !LRU.available(ARM::CPSR)); 5792 }; 5793 5794 // Are there any candidates where those registers are live? 5795 if (!(FlagsSetInAll & UnsafeRegsDead)) { 5796 // Erase every candidate that violates the restrictions above. (It could be 5797 // true that we have viable candidates, so it's not worth bailing out in 5798 // the case that, say, 1 out of 20 candidates violate the restructions.) 5799 llvm::erase_if(RepeatedSequenceLocs, CantGuaranteeValueAcrossCall); 5800 5801 // If the sequence doesn't have enough candidates left, then we're done. 5802 if (RepeatedSequenceLocs.size() < 2) 5803 return outliner::OutlinedFunction(); 5804 } 5805 5806 // At this point, we have only "safe" candidates to outline. Figure out 5807 // frame + call instruction information. 5808 5809 unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back()->getOpcode(); 5810 5811 // Helper lambda which sets call information for every candidate. 5812 auto SetCandidateCallInfo = 5813 [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) { 5814 for (outliner::Candidate &C : RepeatedSequenceLocs) 5815 C.setCallInfo(CallID, NumBytesForCall); 5816 }; 5817 5818 OutlinerCosts Costs(Subtarget); 5819 unsigned FrameID = MachineOutlinerDefault; 5820 unsigned NumBytesToCreateFrame = Costs.FrameDefault; 5821 5822 // If the last instruction in any candidate is a terminator, then we should 5823 // tail call all of the candidates. 5824 if (RepeatedSequenceLocs[0].back()->isTerminator()) { 5825 FrameID = MachineOutlinerTailCall; 5826 NumBytesToCreateFrame = Costs.FrameTailCall; 5827 SetCandidateCallInfo(MachineOutlinerTailCall, Costs.CallTailCall); 5828 } else if (LastInstrOpcode == ARM::BL || LastInstrOpcode == ARM::BLX || 5829 LastInstrOpcode == ARM::BLX_noip || LastInstrOpcode == ARM::tBL || 5830 LastInstrOpcode == ARM::tBLXr || 5831 LastInstrOpcode == ARM::tBLXr_noip || 5832 LastInstrOpcode == ARM::tBLXi) { 5833 FrameID = MachineOutlinerThunk; 5834 NumBytesToCreateFrame = Costs.FrameThunk; 5835 SetCandidateCallInfo(MachineOutlinerThunk, Costs.CallThunk); 5836 } else { 5837 // We need to decide how to emit calls + frames. We can always emit the same 5838 // frame if we don't need to save to the stack. If we have to save to the 5839 // stack, then we need a different frame. 5840 unsigned NumBytesNoStackCalls = 0; 5841 std::vector<outliner::Candidate> CandidatesWithoutStackFixups; 5842 5843 for (outliner::Candidate &C : RepeatedSequenceLocs) { 5844 C.initLRU(TRI); 5845 // LR liveness is overestimated in return blocks, unless they end with a 5846 // tail call. 5847 const auto Last = C.getMBB()->rbegin(); 5848 const bool LRIsAvailable = 5849 C.getMBB()->isReturnBlock() && !Last->isCall() 5850 ? isLRAvailable(TRI, Last, 5851 (MachineBasicBlock::reverse_iterator)C.front()) 5852 : C.LRU.available(ARM::LR); 5853 if (LRIsAvailable) { 5854 FrameID = MachineOutlinerNoLRSave; 5855 NumBytesNoStackCalls += Costs.CallNoLRSave; 5856 C.setCallInfo(MachineOutlinerNoLRSave, Costs.CallNoLRSave); 5857 CandidatesWithoutStackFixups.push_back(C); 5858 } 5859 5860 // Is an unused register available? If so, we won't modify the stack, so 5861 // we can outline with the same frame type as those that don't save LR. 5862 else if (findRegisterToSaveLRTo(C)) { 5863 FrameID = MachineOutlinerRegSave; 5864 NumBytesNoStackCalls += Costs.CallRegSave; 5865 C.setCallInfo(MachineOutlinerRegSave, Costs.CallRegSave); 5866 CandidatesWithoutStackFixups.push_back(C); 5867 } 5868 5869 // Is SP used in the sequence at all? If not, we don't have to modify 5870 // the stack, so we are guaranteed to get the same frame. 5871 else if (C.UsedInSequence.available(ARM::SP)) { 5872 NumBytesNoStackCalls += Costs.CallDefault; 5873 C.setCallInfo(MachineOutlinerDefault, Costs.CallDefault); 5874 CandidatesWithoutStackFixups.push_back(C); 5875 } 5876 5877 // If we outline this, we need to modify the stack. Pretend we don't 5878 // outline this by saving all of its bytes. 5879 else 5880 NumBytesNoStackCalls += SequenceSize; 5881 } 5882 5883 // If there are no places where we have to save LR, then note that we don't 5884 // have to update the stack. Otherwise, give every candidate the default 5885 // call type 5886 if (NumBytesNoStackCalls <= 5887 RepeatedSequenceLocs.size() * Costs.CallDefault) { 5888 RepeatedSequenceLocs = CandidatesWithoutStackFixups; 5889 FrameID = MachineOutlinerNoLRSave; 5890 } else 5891 SetCandidateCallInfo(MachineOutlinerDefault, Costs.CallDefault); 5892 } 5893 5894 // Does every candidate's MBB contain a call? If so, then we might have a 5895 // call in the range. 5896 if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) { 5897 // check if the range contains a call. These require a save + restore of 5898 // the link register. 5899 if (std::any_of(FirstCand.front(), FirstCand.back(), 5900 [](const MachineInstr &MI) { return MI.isCall(); })) 5901 NumBytesToCreateFrame += Costs.SaveRestoreLROnStack; 5902 5903 // Handle the last instruction separately. If it is tail call, then the 5904 // last instruction is a call, we don't want to save + restore in this 5905 // case. However, it could be possible that the last instruction is a 5906 // call without it being valid to tail call this sequence. We should 5907 // consider this as well. 5908 else if (FrameID != MachineOutlinerThunk && 5909 FrameID != MachineOutlinerTailCall && FirstCand.back()->isCall()) 5910 NumBytesToCreateFrame += Costs.SaveRestoreLROnStack; 5911 } 5912 5913 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 5914 NumBytesToCreateFrame, FrameID); 5915 } 5916 5917 bool ARMBaseInstrInfo::checkAndUpdateStackOffset(MachineInstr *MI, 5918 int64_t Fixup, 5919 bool Updt) const { 5920 int SPIdx = MI->findRegisterUseOperandIdx(ARM::SP); 5921 unsigned AddrMode = (MI->getDesc().TSFlags & ARMII::AddrModeMask); 5922 if (SPIdx < 0) 5923 // No SP operand 5924 return true; 5925 else if (SPIdx != 1 && (AddrMode != ARMII::AddrModeT2_i8s4 || SPIdx != 2)) 5926 // If SP is not the base register we can't do much 5927 return false; 5928 5929 // Stack might be involved but addressing mode doesn't handle any offset. 5930 // Rq: AddrModeT1_[1|2|4] don't operate on SP 5931 if (AddrMode == ARMII::AddrMode1 // Arithmetic instructions 5932 || AddrMode == ARMII::AddrMode4 // Load/Store Multiple 5933 || AddrMode == ARMII::AddrMode6 // Neon Load/Store Multiple 5934 || AddrMode == ARMII::AddrModeT2_so // SP can't be used as based register 5935 || AddrMode == ARMII::AddrModeT2_pc // PCrel access 5936 || AddrMode == ARMII::AddrMode2 // Used by PRE and POST indexed LD/ST 5937 || AddrMode == ARMII::AddrModeT2_i7 // v8.1-M MVE 5938 || AddrMode == ARMII::AddrModeT2_i7s2 // v8.1-M MVE 5939 || AddrMode == ARMII::AddrModeT2_i7s4 // v8.1-M sys regs VLDR/VSTR 5940 || AddrMode == ARMII::AddrModeNone) 5941 return false; 5942 5943 unsigned NumOps = MI->getDesc().getNumOperands(); 5944 unsigned ImmIdx = NumOps - 3; 5945 5946 const MachineOperand &Offset = MI->getOperand(ImmIdx); 5947 assert(Offset.isImm() && "Is not an immediate"); 5948 int64_t OffVal = Offset.getImm(); 5949 5950 if (OffVal < 0) 5951 // Don't override data if the are below SP. 5952 return false; 5953 5954 unsigned NumBits = 0; 5955 unsigned Scale = 1; 5956 5957 switch (AddrMode) { 5958 case ARMII::AddrMode3: 5959 if (ARM_AM::getAM3Op(OffVal) == ARM_AM::sub) 5960 return false; 5961 OffVal = ARM_AM::getAM3Offset(OffVal); 5962 NumBits = 8; 5963 break; 5964 case ARMII::AddrMode5: 5965 if (ARM_AM::getAM5Op(OffVal) == ARM_AM::sub) 5966 return false; 5967 OffVal = ARM_AM::getAM5Offset(OffVal); 5968 NumBits = 8; 5969 Scale = 4; 5970 break; 5971 case ARMII::AddrMode5FP16: 5972 if (ARM_AM::getAM5FP16Op(OffVal) == ARM_AM::sub) 5973 return false; 5974 OffVal = ARM_AM::getAM5FP16Offset(OffVal); 5975 NumBits = 8; 5976 Scale = 2; 5977 break; 5978 case ARMII::AddrModeT2_i8: 5979 NumBits = 8; 5980 break; 5981 case ARMII::AddrModeT2_i8s4: 5982 // FIXME: Values are already scaled in this addressing mode. 5983 assert((Fixup & 3) == 0 && "Can't encode this offset!"); 5984 NumBits = 10; 5985 break; 5986 case ARMII::AddrModeT2_ldrex: 5987 NumBits = 8; 5988 Scale = 4; 5989 break; 5990 case ARMII::AddrModeT2_i12: 5991 case ARMII::AddrMode_i12: 5992 NumBits = 12; 5993 break; 5994 case ARMII::AddrModeT1_s: // SP-relative LD/ST 5995 NumBits = 8; 5996 Scale = 4; 5997 break; 5998 default: 5999 llvm_unreachable("Unsupported addressing mode!"); 6000 } 6001 // Make sure the offset is encodable for instructions that scale the 6002 // immediate. 6003 assert(((OffVal * Scale + Fixup) & (Scale - 1)) == 0 && 6004 "Can't encode this offset!"); 6005 OffVal += Fixup / Scale; 6006 6007 unsigned Mask = (1 << NumBits) - 1; 6008 6009 if (OffVal <= Mask) { 6010 if (Updt) 6011 MI->getOperand(ImmIdx).setImm(OffVal); 6012 return true; 6013 } 6014 6015 return false; 6016 6017 } 6018 6019 bool ARMBaseInstrInfo::isFunctionSafeToOutlineFrom( 6020 MachineFunction &MF, bool OutlineFromLinkOnceODRs) const { 6021 const Function &F = MF.getFunction(); 6022 6023 // Can F be deduplicated by the linker? If it can, don't outline from it. 6024 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage()) 6025 return false; 6026 6027 // Don't outline from functions with section markings; the program could 6028 // expect that all the code is in the named section. 6029 // FIXME: Allow outlining from multiple functions with the same section 6030 // marking. 6031 if (F.hasSection()) 6032 return false; 6033 6034 // FIXME: Thumb1 outlining is not handled 6035 if (MF.getInfo<ARMFunctionInfo>()->isThumb1OnlyFunction()) 6036 return false; 6037 6038 // It's safe to outline from MF. 6039 return true; 6040 } 6041 6042 bool ARMBaseInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, 6043 unsigned &Flags) const { 6044 // Check if LR is available through all of the MBB. If it's not, then set 6045 // a flag. 6046 assert(MBB.getParent()->getRegInfo().tracksLiveness() && 6047 "Suitable Machine Function for outlining must track liveness"); 6048 6049 LiveRegUnits LRU(getRegisterInfo()); 6050 6051 std::for_each(MBB.rbegin(), MBB.rend(), 6052 [&LRU](MachineInstr &MI) { LRU.accumulate(MI); }); 6053 6054 // Check if each of the unsafe registers are available... 6055 bool R12AvailableInBlock = LRU.available(ARM::R12); 6056 bool CPSRAvailableInBlock = LRU.available(ARM::CPSR); 6057 6058 // If all of these are dead (and not live out), we know we don't have to check 6059 // them later. 6060 if (R12AvailableInBlock && CPSRAvailableInBlock) 6061 Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead; 6062 6063 // Now, add the live outs to the set. 6064 LRU.addLiveOuts(MBB); 6065 6066 // If any of these registers is available in the MBB, but also a live out of 6067 // the block, then we know outlining is unsafe. 6068 if (R12AvailableInBlock && !LRU.available(ARM::R12)) 6069 return false; 6070 if (CPSRAvailableInBlock && !LRU.available(ARM::CPSR)) 6071 return false; 6072 6073 // Check if there's a call inside this MachineBasicBlock. If there is, then 6074 // set a flag. 6075 if (any_of(MBB, [](MachineInstr &MI) { return MI.isCall(); })) 6076 Flags |= MachineOutlinerMBBFlags::HasCalls; 6077 6078 // LR liveness is overestimated in return blocks. 6079 6080 bool LRIsAvailable = 6081 MBB.isReturnBlock() && !MBB.back().isCall() 6082 ? isLRAvailable(getRegisterInfo(), MBB.rbegin(), MBB.rend()) 6083 : LRU.available(ARM::LR); 6084 if (!LRIsAvailable) 6085 Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere; 6086 6087 return true; 6088 } 6089 6090 outliner::InstrType 6091 ARMBaseInstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT, 6092 unsigned Flags) const { 6093 MachineInstr &MI = *MIT; 6094 const TargetRegisterInfo *TRI = &getRegisterInfo(); 6095 6096 // Be conservative with inline ASM 6097 if (MI.isInlineAsm()) 6098 return outliner::InstrType::Illegal; 6099 6100 // Don't allow debug values to impact outlining type. 6101 if (MI.isDebugInstr() || MI.isIndirectDebugValue()) 6102 return outliner::InstrType::Invisible; 6103 6104 // At this point, KILL or IMPLICIT_DEF instructions don't really tell us much 6105 // so we can go ahead and skip over them. 6106 if (MI.isKill() || MI.isImplicitDef()) 6107 return outliner::InstrType::Invisible; 6108 6109 // PIC instructions contain labels, outlining them would break offset 6110 // computing. unsigned Opc = MI.getOpcode(); 6111 unsigned Opc = MI.getOpcode(); 6112 if (Opc == ARM::tPICADD || Opc == ARM::PICADD || Opc == ARM::PICSTR || 6113 Opc == ARM::PICSTRB || Opc == ARM::PICSTRH || Opc == ARM::PICLDR || 6114 Opc == ARM::PICLDRB || Opc == ARM::PICLDRH || Opc == ARM::PICLDRSB || 6115 Opc == ARM::PICLDRSH || Opc == ARM::t2LDRpci_pic || 6116 Opc == ARM::t2MOVi16_ga_pcrel || Opc == ARM::t2MOVTi16_ga_pcrel || 6117 Opc == ARM::t2MOV_ga_pcrel) 6118 return outliner::InstrType::Illegal; 6119 6120 // Be conservative with ARMv8.1 MVE instructions. 6121 if (Opc == ARM::t2BF_LabelPseudo || Opc == ARM::t2DoLoopStart || 6122 Opc == ARM::t2DoLoopStartTP || Opc == ARM::t2WhileLoopStart || 6123 Opc == ARM::t2LoopDec || Opc == ARM::t2LoopEnd || 6124 Opc == ARM::t2LoopEndDec) 6125 return outliner::InstrType::Illegal; 6126 6127 const MCInstrDesc &MCID = MI.getDesc(); 6128 uint64_t MIFlags = MCID.TSFlags; 6129 if ((MIFlags & ARMII::DomainMask) == ARMII::DomainMVE) 6130 return outliner::InstrType::Illegal; 6131 6132 // Is this a terminator for a basic block? 6133 if (MI.isTerminator()) { 6134 // Don't outline if the branch is not unconditional. 6135 if (isPredicated(MI)) 6136 return outliner::InstrType::Illegal; 6137 6138 // Is this the end of a function? 6139 if (MI.getParent()->succ_empty()) 6140 return outliner::InstrType::Legal; 6141 6142 // It's not, so don't outline it. 6143 return outliner::InstrType::Illegal; 6144 } 6145 6146 // Make sure none of the operands are un-outlinable. 6147 for (const MachineOperand &MOP : MI.operands()) { 6148 if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() || 6149 MOP.isTargetIndex()) 6150 return outliner::InstrType::Illegal; 6151 } 6152 6153 // Don't outline if link register or program counter value are used. 6154 if (MI.readsRegister(ARM::LR, TRI) || MI.readsRegister(ARM::PC, TRI)) 6155 return outliner::InstrType::Illegal; 6156 6157 if (MI.isCall()) { 6158 // Get the function associated with the call. Look at each operand and find 6159 // the one that represents the calle and get its name. 6160 const Function *Callee = nullptr; 6161 for (const MachineOperand &MOP : MI.operands()) { 6162 if (MOP.isGlobal()) { 6163 Callee = dyn_cast<Function>(MOP.getGlobal()); 6164 break; 6165 } 6166 } 6167 6168 // Dont't outline calls to "mcount" like functions, in particular Linux 6169 // kernel function tracing relies on it. 6170 if (Callee && 6171 (Callee->getName() == "\01__gnu_mcount_nc" || 6172 Callee->getName() == "\01mcount" || Callee->getName() == "__mcount")) 6173 return outliner::InstrType::Illegal; 6174 6175 // If we don't know anything about the callee, assume it depends on the 6176 // stack layout of the caller. In that case, it's only legal to outline 6177 // as a tail-call. Explicitly list the call instructions we know about so 6178 // we don't get unexpected results with call pseudo-instructions. 6179 auto UnknownCallOutlineType = outliner::InstrType::Illegal; 6180 if (Opc == ARM::BL || Opc == ARM::tBL || Opc == ARM::BLX || 6181 Opc == ARM::BLX_noip || Opc == ARM::tBLXr || Opc == ARM::tBLXr_noip || 6182 Opc == ARM::tBLXi) 6183 UnknownCallOutlineType = outliner::InstrType::LegalTerminator; 6184 6185 if (!Callee) 6186 return UnknownCallOutlineType; 6187 6188 // We have a function we have information about. Check if it's something we 6189 // can safely outline. 6190 MachineFunction *MF = MI.getParent()->getParent(); 6191 MachineFunction *CalleeMF = MF->getMMI().getMachineFunction(*Callee); 6192 6193 // We don't know what's going on with the callee at all. Don't touch it. 6194 if (!CalleeMF) 6195 return UnknownCallOutlineType; 6196 6197 // Check if we know anything about the callee saves on the function. If we 6198 // don't, then don't touch it, since that implies that we haven't computed 6199 // anything about its stack frame yet. 6200 MachineFrameInfo &MFI = CalleeMF->getFrameInfo(); 6201 if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 || 6202 MFI.getNumObjects() > 0) 6203 return UnknownCallOutlineType; 6204 6205 // At this point, we can say that CalleeMF ought to not pass anything on the 6206 // stack. Therefore, we can outline it. 6207 return outliner::InstrType::Legal; 6208 } 6209 6210 // Since calls are handled, don't touch LR or PC 6211 if (MI.modifiesRegister(ARM::LR, TRI) || MI.modifiesRegister(ARM::PC, TRI)) 6212 return outliner::InstrType::Illegal; 6213 6214 // Does this use the stack? 6215 if (MI.modifiesRegister(ARM::SP, TRI) || MI.readsRegister(ARM::SP, TRI)) { 6216 // True if there is no chance that any outlined candidate from this range 6217 // could require stack fixups. That is, both 6218 // * LR is available in the range (No save/restore around call) 6219 // * The range doesn't include calls (No save/restore in outlined frame) 6220 // are true. 6221 // FIXME: This is very restrictive; the flags check the whole block, 6222 // not just the bit we will try to outline. 6223 bool MightNeedStackFixUp = 6224 (Flags & (MachineOutlinerMBBFlags::LRUnavailableSomewhere | 6225 MachineOutlinerMBBFlags::HasCalls)); 6226 6227 if (!MightNeedStackFixUp) 6228 return outliner::InstrType::Legal; 6229 6230 // Any modification of SP will break our code to save/restore LR. 6231 // FIXME: We could handle some instructions which add a constant offset to 6232 // SP, with a bit more work. 6233 if (MI.modifiesRegister(ARM::SP, TRI)) 6234 return outliner::InstrType::Illegal; 6235 6236 // At this point, we have a stack instruction that we might need to fix up. 6237 // up. We'll handle it if it's a load or store. 6238 if (checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(), 6239 false)) 6240 return outliner::InstrType::Legal; 6241 6242 // We can't fix it up, so don't outline it. 6243 return outliner::InstrType::Illegal; 6244 } 6245 6246 // Be conservative with IT blocks. 6247 if (MI.readsRegister(ARM::ITSTATE, TRI) || 6248 MI.modifiesRegister(ARM::ITSTATE, TRI)) 6249 return outliner::InstrType::Illegal; 6250 6251 // Don't outline positions. 6252 if (MI.isPosition()) 6253 return outliner::InstrType::Illegal; 6254 6255 return outliner::InstrType::Legal; 6256 } 6257 6258 void ARMBaseInstrInfo::fixupPostOutline(MachineBasicBlock &MBB) const { 6259 for (MachineInstr &MI : MBB) { 6260 checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(), true); 6261 } 6262 } 6263 6264 void ARMBaseInstrInfo::saveLROnStack(MachineBasicBlock &MBB, 6265 MachineBasicBlock::iterator It) const { 6266 unsigned Opc = Subtarget.isThumb() ? ARM::t2STR_PRE : ARM::STR_PRE_IMM; 6267 int Align = -Subtarget.getStackAlignment().value(); 6268 BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::SP) 6269 .addReg(ARM::LR, RegState::Kill) 6270 .addReg(ARM::SP) 6271 .addImm(Align) 6272 .add(predOps(ARMCC::AL)); 6273 } 6274 6275 void ARMBaseInstrInfo::emitCFIForLRSaveOnStack( 6276 MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const { 6277 MachineFunction &MF = *MBB.getParent(); 6278 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6279 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6280 int Align = Subtarget.getStackAlignment().value(); 6281 // Add a CFI saying the stack was moved down. 6282 int64_t StackPosEntry = 6283 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Align)); 6284 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6285 .addCFIIndex(StackPosEntry) 6286 .setMIFlags(MachineInstr::FrameSetup); 6287 6288 // Add a CFI saying that the LR that we want to find is now higher than 6289 // before. 6290 int64_t LRPosEntry = 6291 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, DwarfLR, -Align)); 6292 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6293 .addCFIIndex(LRPosEntry) 6294 .setMIFlags(MachineInstr::FrameSetup); 6295 } 6296 6297 void ARMBaseInstrInfo::emitCFIForLRSaveToReg(MachineBasicBlock &MBB, 6298 MachineBasicBlock::iterator It, 6299 Register Reg) const { 6300 MachineFunction &MF = *MBB.getParent(); 6301 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6302 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6303 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); 6304 6305 int64_t LRPosEntry = MF.addFrameInst( 6306 MCCFIInstruction::createRegister(nullptr, DwarfLR, DwarfReg)); 6307 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6308 .addCFIIndex(LRPosEntry) 6309 .setMIFlags(MachineInstr::FrameSetup); 6310 } 6311 6312 void ARMBaseInstrInfo::restoreLRFromStack( 6313 MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const { 6314 unsigned Opc = Subtarget.isThumb() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM; 6315 MachineInstrBuilder MIB = BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::LR) 6316 .addReg(ARM::SP, RegState::Define) 6317 .addReg(ARM::SP); 6318 if (!Subtarget.isThumb()) 6319 MIB.addReg(0); 6320 MIB.addImm(Subtarget.getStackAlignment().value()).add(predOps(ARMCC::AL)); 6321 } 6322 6323 void ARMBaseInstrInfo::emitCFIForLRRestoreFromStack( 6324 MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const { 6325 // Now stack has moved back up... 6326 MachineFunction &MF = *MBB.getParent(); 6327 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6328 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6329 int64_t StackPosEntry = 6330 MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); 6331 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6332 .addCFIIndex(StackPosEntry) 6333 .setMIFlags(MachineInstr::FrameDestroy); 6334 6335 // ... and we have restored LR. 6336 int64_t LRPosEntry = 6337 MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR)); 6338 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6339 .addCFIIndex(LRPosEntry) 6340 .setMIFlags(MachineInstr::FrameDestroy); 6341 } 6342 6343 void ARMBaseInstrInfo::emitCFIForLRRestoreFromReg( 6344 MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const { 6345 MachineFunction &MF = *MBB.getParent(); 6346 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); 6347 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); 6348 6349 int64_t LRPosEntry = 6350 MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR)); 6351 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) 6352 .addCFIIndex(LRPosEntry) 6353 .setMIFlags(MachineInstr::FrameDestroy); 6354 } 6355 6356 void ARMBaseInstrInfo::buildOutlinedFrame( 6357 MachineBasicBlock &MBB, MachineFunction &MF, 6358 const outliner::OutlinedFunction &OF) const { 6359 // For thunk outlining, rewrite the last instruction from a call to a 6360 // tail-call. 6361 if (OF.FrameConstructionID == MachineOutlinerThunk) { 6362 MachineInstr *Call = &*--MBB.instr_end(); 6363 bool isThumb = Subtarget.isThumb(); 6364 unsigned FuncOp = isThumb ? 2 : 0; 6365 unsigned Opc = Call->getOperand(FuncOp).isReg() 6366 ? isThumb ? ARM::tTAILJMPr : ARM::TAILJMPr 6367 : isThumb ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd 6368 : ARM::tTAILJMPdND 6369 : ARM::TAILJMPd; 6370 MachineInstrBuilder MIB = BuildMI(MBB, MBB.end(), DebugLoc(), get(Opc)) 6371 .add(Call->getOperand(FuncOp)); 6372 if (isThumb && !Call->getOperand(FuncOp).isReg()) 6373 MIB.add(predOps(ARMCC::AL)); 6374 Call->eraseFromParent(); 6375 } 6376 6377 // Is there a call in the outlined range? 6378 auto IsNonTailCall = [](MachineInstr &MI) { 6379 return MI.isCall() && !MI.isReturn(); 6380 }; 6381 if (llvm::any_of(MBB.instrs(), IsNonTailCall)) { 6382 MachineBasicBlock::iterator It = MBB.begin(); 6383 MachineBasicBlock::iterator Et = MBB.end(); 6384 6385 if (OF.FrameConstructionID == MachineOutlinerTailCall || 6386 OF.FrameConstructionID == MachineOutlinerThunk) 6387 Et = std::prev(MBB.end()); 6388 6389 // We have to save and restore LR, we need to add it to the liveins if it 6390 // is not already part of the set. This is suffient since outlined 6391 // functions only have one block. 6392 if (!MBB.isLiveIn(ARM::LR)) 6393 MBB.addLiveIn(ARM::LR); 6394 6395 // Insert a save before the outlined region 6396 saveLROnStack(MBB, It); 6397 emitCFIForLRSaveOnStack(MBB, It); 6398 6399 // Fix up the instructions in the range, since we're going to modify the 6400 // stack. 6401 assert(OF.FrameConstructionID != MachineOutlinerDefault && 6402 "Can only fix up stack references once"); 6403 fixupPostOutline(MBB); 6404 6405 // Insert a restore before the terminator for the function. Restore LR. 6406 restoreLRFromStack(MBB, Et); 6407 emitCFIForLRRestoreFromStack(MBB, Et); 6408 } 6409 6410 // If this is a tail call outlined function, then there's already a return. 6411 if (OF.FrameConstructionID == MachineOutlinerTailCall || 6412 OF.FrameConstructionID == MachineOutlinerThunk) 6413 return; 6414 6415 // Here we have to insert the return ourselves. Get the correct opcode from 6416 // current feature set. 6417 BuildMI(MBB, MBB.end(), DebugLoc(), get(Subtarget.getReturnOpcode())) 6418 .add(predOps(ARMCC::AL)); 6419 6420 // Did we have to modify the stack by saving the link register? 6421 if (OF.FrameConstructionID != MachineOutlinerDefault && 6422 OF.Candidates[0].CallConstructionID != MachineOutlinerDefault) 6423 return; 6424 6425 // We modified the stack. 6426 // Walk over the basic block and fix up all the stack accesses. 6427 fixupPostOutline(MBB); 6428 } 6429 6430 MachineBasicBlock::iterator ARMBaseInstrInfo::insertOutlinedCall( 6431 Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, 6432 MachineFunction &MF, const outliner::Candidate &C) const { 6433 MachineInstrBuilder MIB; 6434 MachineBasicBlock::iterator CallPt; 6435 unsigned Opc; 6436 bool isThumb = Subtarget.isThumb(); 6437 6438 // Are we tail calling? 6439 if (C.CallConstructionID == MachineOutlinerTailCall) { 6440 // If yes, then we can just branch to the label. 6441 Opc = isThumb 6442 ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd : ARM::tTAILJMPdND 6443 : ARM::TAILJMPd; 6444 MIB = BuildMI(MF, DebugLoc(), get(Opc)) 6445 .addGlobalAddress(M.getNamedValue(MF.getName())); 6446 if (isThumb) 6447 MIB.add(predOps(ARMCC::AL)); 6448 It = MBB.insert(It, MIB); 6449 return It; 6450 } 6451 6452 // Create the call instruction. 6453 Opc = isThumb ? ARM::tBL : ARM::BL; 6454 MachineInstrBuilder CallMIB = BuildMI(MF, DebugLoc(), get(Opc)); 6455 if (isThumb) 6456 CallMIB.add(predOps(ARMCC::AL)); 6457 CallMIB.addGlobalAddress(M.getNamedValue(MF.getName())); 6458 6459 if (C.CallConstructionID == MachineOutlinerNoLRSave || 6460 C.CallConstructionID == MachineOutlinerThunk) { 6461 // No, so just insert the call. 6462 It = MBB.insert(It, CallMIB); 6463 return It; 6464 } 6465 6466 const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>(); 6467 // Can we save to a register? 6468 if (C.CallConstructionID == MachineOutlinerRegSave) { 6469 unsigned Reg = findRegisterToSaveLRTo(C); 6470 assert(Reg != 0 && "No callee-saved register available?"); 6471 6472 // Save and restore LR from that register. 6473 copyPhysReg(MBB, It, DebugLoc(), Reg, ARM::LR, true); 6474 if (!AFI.isLRSpilled()) 6475 emitCFIForLRSaveToReg(MBB, It, Reg); 6476 CallPt = MBB.insert(It, CallMIB); 6477 copyPhysReg(MBB, It, DebugLoc(), ARM::LR, Reg, true); 6478 if (!AFI.isLRSpilled()) 6479 emitCFIForLRRestoreFromReg(MBB, It); 6480 It--; 6481 return CallPt; 6482 } 6483 // We have the default case. Save and restore from SP. 6484 if (!MBB.isLiveIn(ARM::LR)) 6485 MBB.addLiveIn(ARM::LR); 6486 saveLROnStack(MBB, It); 6487 if (!AFI.isLRSpilled()) 6488 emitCFIForLRSaveOnStack(MBB, It); 6489 CallPt = MBB.insert(It, CallMIB); 6490 restoreLRFromStack(MBB, It); 6491 if (!AFI.isLRSpilled()) 6492 emitCFIForLRRestoreFromStack(MBB, It); 6493 It--; 6494 return CallPt; 6495 } 6496 6497 bool ARMBaseInstrInfo::shouldOutlineFromFunctionByDefault( 6498 MachineFunction &MF) const { 6499 return Subtarget.isMClass() && MF.getFunction().hasMinSize(); 6500 } 6501 6502 bool ARMBaseInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI, 6503 AAResults *AA) const { 6504 // Try hard to rematerialize any VCTPs because if we spill P0, it will block 6505 // the tail predication conversion. This means that the element count 6506 // register has to be live for longer, but that has to be better than 6507 // spill/restore and VPT predication. 6508 return isVCTP(&MI) && !isPredicated(MI); 6509 } 6510 6511 unsigned llvm::getBLXOpcode(const MachineFunction &MF) { 6512 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_noip 6513 : ARM::BLX; 6514 } 6515 6516 unsigned llvm::gettBLXrOpcode(const MachineFunction &MF) { 6517 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::tBLXr_noip 6518 : ARM::tBLXr; 6519 } 6520 6521 unsigned llvm::getBLXpredOpcode(const MachineFunction &MF) { 6522 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_pred_noip 6523 : ARM::BLX_pred; 6524 } 6525 6526