1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains a printer that converts from our internal representation 10 // of machine-dependent LLVM code to GAS-format ARM assembly language. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "ARMAsmPrinter.h" 15 #include "ARM.h" 16 #include "ARMConstantPoolValue.h" 17 #include "ARMMachineFunctionInfo.h" 18 #include "ARMTargetMachine.h" 19 #include "ARMTargetObjectFile.h" 20 #include "MCTargetDesc/ARMAddressingModes.h" 21 #include "MCTargetDesc/ARMInstPrinter.h" 22 #include "MCTargetDesc/ARMMCExpr.h" 23 #include "TargetInfo/ARMTargetInfo.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/BinaryFormat/COFF.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineJumpTableInfo.h" 29 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Mangler.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCAssembler.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/MC/MCELFStreamer.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/MCInstBuilder.h" 41 #include "llvm/MC/MCObjectStreamer.h" 42 #include "llvm/MC/MCStreamer.h" 43 #include "llvm/MC/MCSymbol.h" 44 #include "llvm/Support/ARMBuildAttributes.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/TargetParser.h" 48 #include "llvm/Support/TargetRegistry.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include "llvm/Target/TargetMachine.h" 51 using namespace llvm; 52 53 #define DEBUG_TYPE "asm-printer" 54 55 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM, 56 std::unique_ptr<MCStreamer> Streamer) 57 : AsmPrinter(TM, std::move(Streamer)), Subtarget(nullptr), AFI(nullptr), 58 MCP(nullptr), InConstantPool(false), OptimizationGoals(-1) {} 59 60 void ARMAsmPrinter::emitFunctionBodyEnd() { 61 // Make sure to terminate any constant pools that were at the end 62 // of the function. 63 if (!InConstantPool) 64 return; 65 InConstantPool = false; 66 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 67 } 68 69 void ARMAsmPrinter::emitFunctionEntryLabel() { 70 if (AFI->isThumbFunction()) { 71 OutStreamer->emitAssemblerFlag(MCAF_Code16); 72 OutStreamer->emitThumbFunc(CurrentFnSym); 73 } else { 74 OutStreamer->emitAssemblerFlag(MCAF_Code32); 75 } 76 77 // Emit symbol for CMSE non-secure entry point 78 if (AFI->isCmseNSEntryFunction()) { 79 MCSymbol *S = 80 OutContext.getOrCreateSymbol("__acle_se_" + CurrentFnSym->getName()); 81 emitLinkage(&MF->getFunction(), S); 82 OutStreamer->emitSymbolAttribute(S, MCSA_ELF_TypeFunction); 83 OutStreamer->emitLabel(S); 84 } 85 86 OutStreamer->emitLabel(CurrentFnSym); 87 } 88 89 void ARMAsmPrinter::emitXXStructor(const DataLayout &DL, const Constant *CV) { 90 uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType()); 91 assert(Size && "C++ constructor pointer had zero size!"); 92 93 const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts()); 94 assert(GV && "C++ constructor pointer was not a GlobalValue!"); 95 96 const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV, 97 ARMII::MO_NO_FLAG), 98 (Subtarget->isTargetELF() 99 ? MCSymbolRefExpr::VK_ARM_TARGET1 100 : MCSymbolRefExpr::VK_None), 101 OutContext); 102 103 OutStreamer->emitValue(E, Size); 104 } 105 106 void ARMAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { 107 if (PromotedGlobals.count(GV)) 108 // The global was promoted into a constant pool. It should not be emitted. 109 return; 110 AsmPrinter::emitGlobalVariable(GV); 111 } 112 113 /// runOnMachineFunction - This uses the emitInstruction() 114 /// method to print assembly for each instruction. 115 /// 116 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 117 AFI = MF.getInfo<ARMFunctionInfo>(); 118 MCP = MF.getConstantPool(); 119 Subtarget = &MF.getSubtarget<ARMSubtarget>(); 120 121 SetupMachineFunction(MF); 122 const Function &F = MF.getFunction(); 123 const TargetMachine& TM = MF.getTarget(); 124 125 // Collect all globals that had their storage promoted to a constant pool. 126 // Functions are emitted before variables, so this accumulates promoted 127 // globals from all functions in PromotedGlobals. 128 for (auto *GV : AFI->getGlobalsPromotedToConstantPool()) 129 PromotedGlobals.insert(GV); 130 131 // Calculate this function's optimization goal. 132 unsigned OptimizationGoal; 133 if (F.hasOptNone()) 134 // For best debugging illusion, speed and small size sacrificed 135 OptimizationGoal = 6; 136 else if (F.hasMinSize()) 137 // Aggressively for small size, speed and debug illusion sacrificed 138 OptimizationGoal = 4; 139 else if (F.hasOptSize()) 140 // For small size, but speed and debugging illusion preserved 141 OptimizationGoal = 3; 142 else if (TM.getOptLevel() == CodeGenOpt::Aggressive) 143 // Aggressively for speed, small size and debug illusion sacrificed 144 OptimizationGoal = 2; 145 else if (TM.getOptLevel() > CodeGenOpt::None) 146 // For speed, but small size and good debug illusion preserved 147 OptimizationGoal = 1; 148 else // TM.getOptLevel() == CodeGenOpt::None 149 // For good debugging, but speed and small size preserved 150 OptimizationGoal = 5; 151 152 // Combine a new optimization goal with existing ones. 153 if (OptimizationGoals == -1) // uninitialized goals 154 OptimizationGoals = OptimizationGoal; 155 else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals 156 OptimizationGoals = 0; 157 158 if (Subtarget->isTargetCOFF()) { 159 bool Internal = F.hasInternalLinkage(); 160 COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC 161 : COFF::IMAGE_SYM_CLASS_EXTERNAL; 162 int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT; 163 164 OutStreamer->BeginCOFFSymbolDef(CurrentFnSym); 165 OutStreamer->EmitCOFFSymbolStorageClass(Scl); 166 OutStreamer->EmitCOFFSymbolType(Type); 167 OutStreamer->EndCOFFSymbolDef(); 168 } 169 170 // Emit the rest of the function body. 171 emitFunctionBody(); 172 173 // Emit the XRay table for this function. 174 emitXRayTable(); 175 176 // If we need V4T thumb mode Register Indirect Jump pads, emit them. 177 // These are created per function, rather than per TU, since it's 178 // relatively easy to exceed the thumb branch range within a TU. 179 if (! ThumbIndirectPads.empty()) { 180 OutStreamer->emitAssemblerFlag(MCAF_Code16); 181 emitAlignment(Align(2)); 182 for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { 183 OutStreamer->emitLabel(TIP.second); 184 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 185 .addReg(TIP.first) 186 // Add predicate operands. 187 .addImm(ARMCC::AL) 188 .addReg(0)); 189 } 190 ThumbIndirectPads.clear(); 191 } 192 193 // We didn't modify anything. 194 return false; 195 } 196 197 void ARMAsmPrinter::PrintSymbolOperand(const MachineOperand &MO, 198 raw_ostream &O) { 199 assert(MO.isGlobal() && "caller should check MO.isGlobal"); 200 unsigned TF = MO.getTargetFlags(); 201 if (TF & ARMII::MO_LO16) 202 O << ":lower16:"; 203 else if (TF & ARMII::MO_HI16) 204 O << ":upper16:"; 205 GetARMGVSymbol(MO.getGlobal(), TF)->print(O, MAI); 206 printOffset(MO.getOffset(), O); 207 } 208 209 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, 210 raw_ostream &O) { 211 const MachineOperand &MO = MI->getOperand(OpNum); 212 213 switch (MO.getType()) { 214 default: llvm_unreachable("<unknown operand type>"); 215 case MachineOperand::MO_Register: { 216 Register Reg = MO.getReg(); 217 assert(Register::isPhysicalRegister(Reg)); 218 assert(!MO.getSubReg() && "Subregs should be eliminated!"); 219 if(ARM::GPRPairRegClass.contains(Reg)) { 220 const MachineFunction &MF = *MI->getParent()->getParent(); 221 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 222 Reg = TRI->getSubReg(Reg, ARM::gsub_0); 223 } 224 O << ARMInstPrinter::getRegisterName(Reg); 225 break; 226 } 227 case MachineOperand::MO_Immediate: { 228 O << '#'; 229 unsigned TF = MO.getTargetFlags(); 230 if (TF == ARMII::MO_LO16) 231 O << ":lower16:"; 232 else if (TF == ARMII::MO_HI16) 233 O << ":upper16:"; 234 O << MO.getImm(); 235 break; 236 } 237 case MachineOperand::MO_MachineBasicBlock: 238 MO.getMBB()->getSymbol()->print(O, MAI); 239 return; 240 case MachineOperand::MO_GlobalAddress: { 241 PrintSymbolOperand(MO, O); 242 break; 243 } 244 case MachineOperand::MO_ConstantPoolIndex: 245 if (Subtarget->genExecuteOnly()) 246 llvm_unreachable("execute-only should not generate constant pools"); 247 GetCPISymbol(MO.getIndex())->print(O, MAI); 248 break; 249 } 250 } 251 252 MCSymbol *ARMAsmPrinter::GetCPISymbol(unsigned CPID) const { 253 // The AsmPrinter::GetCPISymbol superclass method tries to use CPID as 254 // indexes in MachineConstantPool, which isn't in sync with indexes used here. 255 const DataLayout &DL = getDataLayout(); 256 return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + 257 "CPI" + Twine(getFunctionNumber()) + "_" + 258 Twine(CPID)); 259 } 260 261 //===--------------------------------------------------------------------===// 262 263 MCSymbol *ARMAsmPrinter:: 264 GetARMJTIPICJumpTableLabel(unsigned uid) const { 265 const DataLayout &DL = getDataLayout(); 266 SmallString<60> Name; 267 raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI" 268 << getFunctionNumber() << '_' << uid; 269 return OutContext.getOrCreateSymbol(Name); 270 } 271 272 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 273 const char *ExtraCode, raw_ostream &O) { 274 // Does this asm operand have a single letter operand modifier? 275 if (ExtraCode && ExtraCode[0]) { 276 if (ExtraCode[1] != 0) return true; // Unknown modifier. 277 278 switch (ExtraCode[0]) { 279 default: 280 // See if this is a generic print operand 281 return AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O); 282 case 'P': // Print a VFP double precision register. 283 case 'q': // Print a NEON quad precision register. 284 printOperand(MI, OpNum, O); 285 return false; 286 case 'y': // Print a VFP single precision register as indexed double. 287 if (MI->getOperand(OpNum).isReg()) { 288 Register Reg = MI->getOperand(OpNum).getReg(); 289 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 290 // Find the 'd' register that has this 's' register as a sub-register, 291 // and determine the lane number. 292 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) { 293 if (!ARM::DPRRegClass.contains(*SR)) 294 continue; 295 bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg; 296 O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]"); 297 return false; 298 } 299 } 300 return true; 301 case 'B': // Bitwise inverse of integer or symbol without a preceding #. 302 if (!MI->getOperand(OpNum).isImm()) 303 return true; 304 O << ~(MI->getOperand(OpNum).getImm()); 305 return false; 306 case 'L': // The low 16 bits of an immediate constant. 307 if (!MI->getOperand(OpNum).isImm()) 308 return true; 309 O << (MI->getOperand(OpNum).getImm() & 0xffff); 310 return false; 311 case 'M': { // A register range suitable for LDM/STM. 312 if (!MI->getOperand(OpNum).isReg()) 313 return true; 314 const MachineOperand &MO = MI->getOperand(OpNum); 315 Register RegBegin = MO.getReg(); 316 // This takes advantage of the 2 operand-ness of ldm/stm and that we've 317 // already got the operands in registers that are operands to the 318 // inline asm statement. 319 O << "{"; 320 if (ARM::GPRPairRegClass.contains(RegBegin)) { 321 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 322 Register Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0); 323 O << ARMInstPrinter::getRegisterName(Reg0) << ", "; 324 RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1); 325 } 326 O << ARMInstPrinter::getRegisterName(RegBegin); 327 328 // FIXME: The register allocator not only may not have given us the 329 // registers in sequence, but may not be in ascending registers. This 330 // will require changes in the register allocator that'll need to be 331 // propagated down here if the operands change. 332 unsigned RegOps = OpNum + 1; 333 while (MI->getOperand(RegOps).isReg()) { 334 O << ", " 335 << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg()); 336 RegOps++; 337 } 338 339 O << "}"; 340 341 return false; 342 } 343 case 'R': // The most significant register of a pair. 344 case 'Q': { // The least significant register of a pair. 345 if (OpNum == 0) 346 return true; 347 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); 348 if (!FlagsOP.isImm()) 349 return true; 350 unsigned Flags = FlagsOP.getImm(); 351 352 // This operand may not be the one that actually provides the register. If 353 // it's tied to a previous one then we should refer instead to that one 354 // for registers and their classes. 355 unsigned TiedIdx; 356 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) { 357 for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { 358 unsigned OpFlags = MI->getOperand(OpNum).getImm(); 359 OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 360 } 361 Flags = MI->getOperand(OpNum).getImm(); 362 363 // Later code expects OpNum to be pointing at the register rather than 364 // the flags. 365 OpNum += 1; 366 } 367 368 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 369 unsigned RC; 370 bool FirstHalf; 371 const ARMBaseTargetMachine &ATM = 372 static_cast<const ARMBaseTargetMachine &>(TM); 373 374 // 'Q' should correspond to the low order register and 'R' to the high 375 // order register. Whether this corresponds to the upper or lower half 376 // depends on the endianess mode. 377 if (ExtraCode[0] == 'Q') 378 FirstHalf = ATM.isLittleEndian(); 379 else 380 // ExtraCode[0] == 'R'. 381 FirstHalf = !ATM.isLittleEndian(); 382 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 383 if (InlineAsm::hasRegClassConstraint(Flags, RC) && 384 ARM::GPRPairRegClass.hasSubClassEq(TRI->getRegClass(RC))) { 385 if (NumVals != 1) 386 return true; 387 const MachineOperand &MO = MI->getOperand(OpNum); 388 if (!MO.isReg()) 389 return true; 390 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 391 Register Reg = 392 TRI->getSubReg(MO.getReg(), FirstHalf ? ARM::gsub_0 : ARM::gsub_1); 393 O << ARMInstPrinter::getRegisterName(Reg); 394 return false; 395 } 396 if (NumVals != 2) 397 return true; 398 unsigned RegOp = FirstHalf ? OpNum : OpNum + 1; 399 if (RegOp >= MI->getNumOperands()) 400 return true; 401 const MachineOperand &MO = MI->getOperand(RegOp); 402 if (!MO.isReg()) 403 return true; 404 Register Reg = MO.getReg(); 405 O << ARMInstPrinter::getRegisterName(Reg); 406 return false; 407 } 408 409 case 'e': // The low doubleword register of a NEON quad register. 410 case 'f': { // The high doubleword register of a NEON quad register. 411 if (!MI->getOperand(OpNum).isReg()) 412 return true; 413 Register Reg = MI->getOperand(OpNum).getReg(); 414 if (!ARM::QPRRegClass.contains(Reg)) 415 return true; 416 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 417 Register SubReg = 418 TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? ARM::dsub_0 : ARM::dsub_1); 419 O << ARMInstPrinter::getRegisterName(SubReg); 420 return false; 421 } 422 423 // This modifier is not yet supported. 424 case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. 425 return true; 426 case 'H': { // The highest-numbered register of a pair. 427 const MachineOperand &MO = MI->getOperand(OpNum); 428 if (!MO.isReg()) 429 return true; 430 const MachineFunction &MF = *MI->getParent()->getParent(); 431 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 432 Register Reg = MO.getReg(); 433 if(!ARM::GPRPairRegClass.contains(Reg)) 434 return false; 435 Reg = TRI->getSubReg(Reg, ARM::gsub_1); 436 O << ARMInstPrinter::getRegisterName(Reg); 437 return false; 438 } 439 } 440 } 441 442 printOperand(MI, OpNum, O); 443 return false; 444 } 445 446 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 447 unsigned OpNum, const char *ExtraCode, 448 raw_ostream &O) { 449 // Does this asm operand have a single letter operand modifier? 450 if (ExtraCode && ExtraCode[0]) { 451 if (ExtraCode[1] != 0) return true; // Unknown modifier. 452 453 switch (ExtraCode[0]) { 454 case 'A': // A memory operand for a VLD1/VST1 instruction. 455 default: return true; // Unknown modifier. 456 case 'm': // The base register of a memory operand. 457 if (!MI->getOperand(OpNum).isReg()) 458 return true; 459 O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()); 460 return false; 461 } 462 } 463 464 const MachineOperand &MO = MI->getOperand(OpNum); 465 assert(MO.isReg() && "unexpected inline asm memory operand"); 466 O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]"; 467 return false; 468 } 469 470 static bool isThumb(const MCSubtargetInfo& STI) { 471 return STI.getFeatureBits()[ARM::ModeThumb]; 472 } 473 474 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, 475 const MCSubtargetInfo *EndInfo) const { 476 // If either end mode is unknown (EndInfo == NULL) or different than 477 // the start mode, then restore the start mode. 478 const bool WasThumb = isThumb(StartInfo); 479 if (!EndInfo || WasThumb != isThumb(*EndInfo)) { 480 OutStreamer->emitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32); 481 } 482 } 483 484 void ARMAsmPrinter::emitStartOfAsmFile(Module &M) { 485 const Triple &TT = TM.getTargetTriple(); 486 // Use unified assembler syntax. 487 OutStreamer->emitAssemblerFlag(MCAF_SyntaxUnified); 488 489 // Emit ARM Build Attributes 490 if (TT.isOSBinFormatELF()) 491 emitAttributes(); 492 493 // Use the triple's architecture and subarchitecture to determine 494 // if we're thumb for the purposes of the top level code16 assembler 495 // flag. 496 if (!M.getModuleInlineAsm().empty() && TT.isThumb()) 497 OutStreamer->emitAssemblerFlag(MCAF_Code16); 498 } 499 500 static void 501 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, 502 MachineModuleInfoImpl::StubValueTy &MCSym) { 503 // L_foo$stub: 504 OutStreamer.emitLabel(StubLabel); 505 // .indirect_symbol _foo 506 OutStreamer.emitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); 507 508 if (MCSym.getInt()) 509 // External to current translation unit. 510 OutStreamer.emitIntValue(0, 4/*size*/); 511 else 512 // Internal to current translation unit. 513 // 514 // When we place the LSDA into the TEXT section, the type info 515 // pointers need to be indirect and pc-rel. We accomplish this by 516 // using NLPs; however, sometimes the types are local to the file. 517 // We need to fill in the value for the NLP in those cases. 518 OutStreamer.emitValue( 519 MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()), 520 4 /*size*/); 521 } 522 523 524 void ARMAsmPrinter::emitEndOfAsmFile(Module &M) { 525 const Triple &TT = TM.getTargetTriple(); 526 if (TT.isOSBinFormatMachO()) { 527 // All darwin targets use mach-o. 528 const TargetLoweringObjectFileMachO &TLOFMacho = 529 static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); 530 MachineModuleInfoMachO &MMIMacho = 531 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 532 533 // Output non-lazy-pointers for external and common global variables. 534 MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); 535 536 if (!Stubs.empty()) { 537 // Switch with ".non_lazy_symbol_pointer" directive. 538 OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); 539 emitAlignment(Align(4)); 540 541 for (auto &Stub : Stubs) 542 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 543 544 Stubs.clear(); 545 OutStreamer->AddBlankLine(); 546 } 547 548 Stubs = MMIMacho.GetThreadLocalGVStubList(); 549 if (!Stubs.empty()) { 550 // Switch with ".non_lazy_symbol_pointer" directive. 551 OutStreamer->SwitchSection(TLOFMacho.getThreadLocalPointerSection()); 552 emitAlignment(Align(4)); 553 554 for (auto &Stub : Stubs) 555 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 556 557 Stubs.clear(); 558 OutStreamer->AddBlankLine(); 559 } 560 561 // Funny Darwin hack: This flag tells the linker that no global symbols 562 // contain code that falls through to other global symbols (e.g. the obvious 563 // implementation of multiple entry points). If this doesn't occur, the 564 // linker can safely perform dead code stripping. Since LLVM never 565 // generates code that does this, it is always safe to set. 566 OutStreamer->emitAssemblerFlag(MCAF_SubsectionsViaSymbols); 567 } 568 569 // The last attribute to be emitted is ABI_optimization_goals 570 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 571 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 572 573 if (OptimizationGoals > 0 && 574 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() || 575 Subtarget->isTargetMuslAEABI())) 576 ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals); 577 OptimizationGoals = -1; 578 579 ATS.finishAttributeSection(); 580 } 581 582 //===----------------------------------------------------------------------===// 583 // Helper routines for emitStartOfAsmFile() and emitEndOfAsmFile() 584 // FIXME: 585 // The following seem like one-off assembler flags, but they actually need 586 // to appear in the .ARM.attributes section in ELF. 587 // Instead of subclassing the MCELFStreamer, we do the work here. 588 589 // Returns true if all functions have the same function attribute value. 590 // It also returns true when the module has no functions. 591 static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr, 592 StringRef Value) { 593 return !any_of(M, [&](const Function &F) { 594 return F.getFnAttribute(Attr).getValueAsString() != Value; 595 }); 596 } 597 // Returns true if all functions have the same denormal mode. 598 // It also returns true when the module has no functions. 599 static bool checkDenormalAttributeConsistency(const Module &M, 600 StringRef Attr, 601 DenormalMode Value) { 602 return !any_of(M, [&](const Function &F) { 603 StringRef AttrVal = F.getFnAttribute(Attr).getValueAsString(); 604 return parseDenormalFPAttribute(AttrVal) != Value; 605 }); 606 } 607 608 void ARMAsmPrinter::emitAttributes() { 609 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 610 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 611 612 ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09"); 613 614 ATS.switchVendor("aeabi"); 615 616 // Compute ARM ELF Attributes based on the default subtarget that 617 // we'd have constructed. The existing ARM behavior isn't LTO clean 618 // anyhow. 619 // FIXME: For ifunc related functions we could iterate over and look 620 // for a feature string that doesn't match the default one. 621 const Triple &TT = TM.getTargetTriple(); 622 StringRef CPU = TM.getTargetCPU(); 623 StringRef FS = TM.getTargetFeatureString(); 624 std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU); 625 if (!FS.empty()) { 626 if (!ArchFS.empty()) 627 ArchFS = (Twine(ArchFS) + "," + FS).str(); 628 else 629 ArchFS = std::string(FS); 630 } 631 const ARMBaseTargetMachine &ATM = 632 static_cast<const ARMBaseTargetMachine &>(TM); 633 const ARMSubtarget STI(TT, std::string(CPU), ArchFS, ATM, 634 ATM.isLittleEndian()); 635 636 // Emit build attributes for the available hardware. 637 ATS.emitTargetAttributes(STI); 638 639 // RW data addressing. 640 if (isPositionIndependent()) { 641 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 642 ARMBuildAttrs::AddressRWPCRel); 643 } else if (STI.isRWPI()) { 644 // RWPI specific attributes. 645 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 646 ARMBuildAttrs::AddressRWSBRel); 647 } 648 649 // RO data addressing. 650 if (isPositionIndependent() || STI.isROPI()) { 651 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data, 652 ARMBuildAttrs::AddressROPCRel); 653 } 654 655 // GOT use. 656 if (isPositionIndependent()) { 657 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 658 ARMBuildAttrs::AddressGOT); 659 } else { 660 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 661 ARMBuildAttrs::AddressDirect); 662 } 663 664 // Set FP Denormals. 665 if (checkDenormalAttributeConsistency(*MMI->getModule(), "denormal-fp-math", 666 DenormalMode::getPreserveSign())) 667 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 668 ARMBuildAttrs::PreserveFPSign); 669 else if (checkDenormalAttributeConsistency(*MMI->getModule(), 670 "denormal-fp-math", 671 DenormalMode::getPositiveZero())) 672 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 673 ARMBuildAttrs::PositiveZero); 674 else if (!TM.Options.UnsafeFPMath) 675 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 676 ARMBuildAttrs::IEEEDenormals); 677 else { 678 if (!STI.hasVFP2Base()) { 679 // When the target doesn't have an FPU (by design or 680 // intention), the assumptions made on the software support 681 // mirror that of the equivalent hardware support *if it 682 // existed*. For v7 and better we indicate that denormals are 683 // flushed preserving sign, and for V6 we indicate that 684 // denormals are flushed to positive zero. 685 if (STI.hasV7Ops()) 686 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 687 ARMBuildAttrs::PreserveFPSign); 688 } else if (STI.hasVFP3Base()) { 689 // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is, 690 // the sign bit of the zero matches the sign bit of the input or 691 // result that is being flushed to zero. 692 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 693 ARMBuildAttrs::PreserveFPSign); 694 } 695 // For VFPv2 implementations it is implementation defined as 696 // to whether denormals are flushed to positive zero or to 697 // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically 698 // LLVM has chosen to flush this to positive zero (most likely for 699 // GCC compatibility), so that's the chosen value here (the 700 // absence of its emission implies zero). 701 } 702 703 // Set FP exceptions and rounding 704 if (checkFunctionsAttributeConsistency(*MMI->getModule(), 705 "no-trapping-math", "true") || 706 TM.Options.NoTrappingFPMath) 707 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, 708 ARMBuildAttrs::Not_Allowed); 709 else if (!TM.Options.UnsafeFPMath) { 710 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed); 711 712 // If the user has permitted this code to choose the IEEE 754 713 // rounding at run-time, emit the rounding attribute. 714 if (TM.Options.HonorSignDependentRoundingFPMathOption) 715 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed); 716 } 717 718 // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the 719 // equivalent of GCC's -ffinite-math-only flag. 720 if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) 721 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 722 ARMBuildAttrs::Allowed); 723 else 724 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 725 ARMBuildAttrs::AllowIEEE754); 726 727 // FIXME: add more flags to ARMBuildAttributes.h 728 // 8-bytes alignment stuff. 729 ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1); 730 ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1); 731 732 // Hard float. Use both S and D registers and conform to AAPCS-VFP. 733 if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) 734 ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS); 735 736 // FIXME: To support emitting this build attribute as GCC does, the 737 // -mfp16-format option and associated plumbing must be 738 // supported. For now the __fp16 type is exposed by default, so this 739 // attribute should be emitted with value 1. 740 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format, 741 ARMBuildAttrs::FP16FormatIEEE); 742 743 if (MMI) { 744 if (const Module *SourceModule = MMI->getModule()) { 745 // ABI_PCS_wchar_t to indicate wchar_t width 746 // FIXME: There is no way to emit value 0 (wchar_t prohibited). 747 if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>( 748 SourceModule->getModuleFlag("wchar_size"))) { 749 int WCharWidth = WCharWidthValue->getZExtValue(); 750 assert((WCharWidth == 2 || WCharWidth == 4) && 751 "wchar_t width must be 2 or 4 bytes"); 752 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth); 753 } 754 755 // ABI_enum_size to indicate enum width 756 // FIXME: There is no way to emit value 0 (enums prohibited) or value 3 757 // (all enums contain a value needing 32 bits to encode). 758 if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>( 759 SourceModule->getModuleFlag("min_enum_size"))) { 760 int EnumWidth = EnumWidthValue->getZExtValue(); 761 assert((EnumWidth == 1 || EnumWidth == 4) && 762 "Minimum enum width must be 1 or 4 bytes"); 763 int EnumBuildAttr = EnumWidth == 1 ? 1 : 2; 764 ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr); 765 } 766 } 767 } 768 769 // We currently do not support using R9 as the TLS pointer. 770 if (STI.isRWPI()) 771 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 772 ARMBuildAttrs::R9IsSB); 773 else if (STI.isR9Reserved()) 774 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 775 ARMBuildAttrs::R9Reserved); 776 else 777 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, 778 ARMBuildAttrs::R9IsGPR); 779 } 780 781 //===----------------------------------------------------------------------===// 782 783 static MCSymbol *getBFLabel(StringRef Prefix, unsigned FunctionNumber, 784 unsigned LabelId, MCContext &Ctx) { 785 786 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 787 + "BF" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 788 return Label; 789 } 790 791 static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber, 792 unsigned LabelId, MCContext &Ctx) { 793 794 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 795 + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 796 return Label; 797 } 798 799 static MCSymbolRefExpr::VariantKind 800 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { 801 switch (Modifier) { 802 case ARMCP::no_modifier: 803 return MCSymbolRefExpr::VK_None; 804 case ARMCP::TLSGD: 805 return MCSymbolRefExpr::VK_TLSGD; 806 case ARMCP::TPOFF: 807 return MCSymbolRefExpr::VK_TPOFF; 808 case ARMCP::GOTTPOFF: 809 return MCSymbolRefExpr::VK_GOTTPOFF; 810 case ARMCP::SBREL: 811 return MCSymbolRefExpr::VK_ARM_SBREL; 812 case ARMCP::GOT_PREL: 813 return MCSymbolRefExpr::VK_ARM_GOT_PREL; 814 case ARMCP::SECREL: 815 return MCSymbolRefExpr::VK_SECREL; 816 } 817 llvm_unreachable("Invalid ARMCPModifier!"); 818 } 819 820 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, 821 unsigned char TargetFlags) { 822 if (Subtarget->isTargetMachO()) { 823 bool IsIndirect = 824 (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV); 825 826 if (!IsIndirect) 827 return getSymbol(GV); 828 829 // FIXME: Remove this when Darwin transition to @GOT like syntax. 830 MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); 831 MachineModuleInfoMachO &MMIMachO = 832 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 833 MachineModuleInfoImpl::StubValueTy &StubSym = 834 GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym) 835 : MMIMachO.getGVStubEntry(MCSym); 836 837 if (!StubSym.getPointer()) 838 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), 839 !GV->hasInternalLinkage()); 840 return MCSym; 841 } else if (Subtarget->isTargetCOFF()) { 842 assert(Subtarget->isTargetWindows() && 843 "Windows is the only supported COFF target"); 844 845 bool IsIndirect = 846 (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB)); 847 if (!IsIndirect) 848 return getSymbol(GV); 849 850 SmallString<128> Name; 851 if (TargetFlags & ARMII::MO_DLLIMPORT) 852 Name = "__imp_"; 853 else if (TargetFlags & ARMII::MO_COFFSTUB) 854 Name = ".refptr."; 855 getNameWithPrefix(Name, GV); 856 857 MCSymbol *MCSym = OutContext.getOrCreateSymbol(Name); 858 859 if (TargetFlags & ARMII::MO_COFFSTUB) { 860 MachineModuleInfoCOFF &MMICOFF = 861 MMI->getObjFileInfo<MachineModuleInfoCOFF>(); 862 MachineModuleInfoImpl::StubValueTy &StubSym = 863 MMICOFF.getGVStubEntry(MCSym); 864 865 if (!StubSym.getPointer()) 866 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), true); 867 } 868 869 return MCSym; 870 } else if (Subtarget->isTargetELF()) { 871 return getSymbol(GV); 872 } 873 llvm_unreachable("unexpected target"); 874 } 875 876 void ARMAsmPrinter::emitMachineConstantPoolValue( 877 MachineConstantPoolValue *MCPV) { 878 const DataLayout &DL = getDataLayout(); 879 int Size = DL.getTypeAllocSize(MCPV->getType()); 880 881 ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV); 882 883 if (ACPV->isPromotedGlobal()) { 884 // This constant pool entry is actually a global whose storage has been 885 // promoted into the constant pool. This global may be referenced still 886 // by debug information, and due to the way AsmPrinter is set up, the debug 887 // info is immutable by the time we decide to promote globals to constant 888 // pools. Because of this, we need to ensure we emit a symbol for the global 889 // with private linkage (the default) so debug info can refer to it. 890 // 891 // However, if this global is promoted into several functions we must ensure 892 // we don't try and emit duplicate symbols! 893 auto *ACPC = cast<ARMConstantPoolConstant>(ACPV); 894 for (const auto *GV : ACPC->promotedGlobals()) { 895 if (!EmittedPromotedGlobalLabels.count(GV)) { 896 MCSymbol *GVSym = getSymbol(GV); 897 OutStreamer->emitLabel(GVSym); 898 EmittedPromotedGlobalLabels.insert(GV); 899 } 900 } 901 return emitGlobalConstant(DL, ACPC->getPromotedGlobalInit()); 902 } 903 904 MCSymbol *MCSym; 905 if (ACPV->isLSDA()) { 906 MCSym = getCurExceptionSym(); 907 } else if (ACPV->isBlockAddress()) { 908 const BlockAddress *BA = 909 cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(); 910 MCSym = GetBlockAddressSymbol(BA); 911 } else if (ACPV->isGlobalValue()) { 912 const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); 913 914 // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so 915 // flag the global as MO_NONLAZY. 916 unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; 917 MCSym = GetARMGVSymbol(GV, TF); 918 } else if (ACPV->isMachineBasicBlock()) { 919 const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB(); 920 MCSym = MBB->getSymbol(); 921 } else { 922 assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); 923 auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); 924 MCSym = GetExternalSymbolSymbol(Sym); 925 } 926 927 // Create an MCSymbol for the reference. 928 const MCExpr *Expr = 929 MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()), 930 OutContext); 931 932 if (ACPV->getPCAdjustment()) { 933 MCSymbol *PCLabel = 934 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 935 ACPV->getLabelId(), OutContext); 936 const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext); 937 PCRelExpr = 938 MCBinaryExpr::createAdd(PCRelExpr, 939 MCConstantExpr::create(ACPV->getPCAdjustment(), 940 OutContext), 941 OutContext); 942 if (ACPV->mustAddCurrentAddress()) { 943 // We want "(<expr> - .)", but MC doesn't have a concept of the '.' 944 // label, so just emit a local label end reference that instead. 945 MCSymbol *DotSym = OutContext.createTempSymbol(); 946 OutStreamer->emitLabel(DotSym); 947 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); 948 PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext); 949 } 950 Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext); 951 } 952 OutStreamer->emitValue(Expr, Size); 953 } 954 955 void ARMAsmPrinter::emitJumpTableAddrs(const MachineInstr *MI) { 956 const MachineOperand &MO1 = MI->getOperand(1); 957 unsigned JTI = MO1.getIndex(); 958 959 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 960 // ARM mode tables. 961 emitAlignment(Align(4)); 962 963 // Emit a label for the jump table. 964 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 965 OutStreamer->emitLabel(JTISymbol); 966 967 // Mark the jump table as data-in-code. 968 OutStreamer->emitDataRegion(MCDR_DataRegionJT32); 969 970 // Emit each entry of the table. 971 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 972 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 973 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 974 975 for (MachineBasicBlock *MBB : JTBBs) { 976 // Construct an MCExpr for the entry. We want a value of the form: 977 // (BasicBlockAddr - TableBeginAddr) 978 // 979 // For example, a table with entries jumping to basic blocks BB0 and BB1 980 // would look like: 981 // LJTI_0_0: 982 // .word (LBB0 - LJTI_0_0) 983 // .word (LBB1 - LJTI_0_0) 984 const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 985 986 if (isPositionIndependent() || Subtarget->isROPI()) 987 Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol, 988 OutContext), 989 OutContext); 990 // If we're generating a table of Thumb addresses in static relocation 991 // model, we need to add one to keep interworking correctly. 992 else if (AFI->isThumbFunction()) 993 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext), 994 OutContext); 995 OutStreamer->emitValue(Expr, 4); 996 } 997 // Mark the end of jump table data-in-code region. 998 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 999 } 1000 1001 void ARMAsmPrinter::emitJumpTableInsts(const MachineInstr *MI) { 1002 const MachineOperand &MO1 = MI->getOperand(1); 1003 unsigned JTI = MO1.getIndex(); 1004 1005 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 1006 // ARM mode tables. 1007 emitAlignment(Align(4)); 1008 1009 // Emit a label for the jump table. 1010 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1011 OutStreamer->emitLabel(JTISymbol); 1012 1013 // Emit each entry of the table. 1014 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1015 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1016 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1017 1018 for (MachineBasicBlock *MBB : JTBBs) { 1019 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1020 OutContext); 1021 // If this isn't a TBB or TBH, the entries are direct branch instructions. 1022 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B) 1023 .addExpr(MBBSymbolExpr) 1024 .addImm(ARMCC::AL) 1025 .addReg(0)); 1026 } 1027 } 1028 1029 void ARMAsmPrinter::emitJumpTableTBInst(const MachineInstr *MI, 1030 unsigned OffsetWidth) { 1031 assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width"); 1032 const MachineOperand &MO1 = MI->getOperand(1); 1033 unsigned JTI = MO1.getIndex(); 1034 1035 if (Subtarget->isThumb1Only()) 1036 emitAlignment(Align(4)); 1037 1038 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1039 OutStreamer->emitLabel(JTISymbol); 1040 1041 // Emit each entry of the table. 1042 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1043 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1044 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1045 1046 // Mark the jump table as data-in-code. 1047 OutStreamer->emitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8 1048 : MCDR_DataRegionJT16); 1049 1050 for (auto MBB : JTBBs) { 1051 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1052 OutContext); 1053 // Otherwise it's an offset from the dispatch instruction. Construct an 1054 // MCExpr for the entry. We want a value of the form: 1055 // (BasicBlockAddr - TBBInstAddr + 4) / 2 1056 // 1057 // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 1058 // would look like: 1059 // LJTI_0_0: 1060 // .byte (LBB0 - (LCPI0_0 + 4)) / 2 1061 // .byte (LBB1 - (LCPI0_0 + 4)) / 2 1062 // where LCPI0_0 is a label defined just before the TBB instruction using 1063 // this table. 1064 MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm()); 1065 const MCExpr *Expr = MCBinaryExpr::createAdd( 1066 MCSymbolRefExpr::create(TBInstPC, OutContext), 1067 MCConstantExpr::create(4, OutContext), OutContext); 1068 Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext); 1069 Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext), 1070 OutContext); 1071 OutStreamer->emitValue(Expr, OffsetWidth); 1072 } 1073 // Mark the end of jump table data-in-code region. 32-bit offsets use 1074 // actual branch instructions here, so we don't mark those as a data-region 1075 // at all. 1076 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 1077 1078 // Make sure the next instruction is 2-byte aligned. 1079 emitAlignment(Align(2)); 1080 } 1081 1082 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { 1083 assert(MI->getFlag(MachineInstr::FrameSetup) && 1084 "Only instruction which are involved into frame setup code are allowed"); 1085 1086 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1087 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1088 const MachineFunction &MF = *MI->getParent()->getParent(); 1089 const TargetRegisterInfo *TargetRegInfo = 1090 MF.getSubtarget().getRegisterInfo(); 1091 const MachineRegisterInfo &MachineRegInfo = MF.getRegInfo(); 1092 1093 Register FramePtr = TargetRegInfo->getFrameRegister(MF); 1094 unsigned Opc = MI->getOpcode(); 1095 unsigned SrcReg, DstReg; 1096 1097 switch (Opc) { 1098 case ARM::tPUSH: 1099 // special case: tPUSH does not have src/dst regs. 1100 SrcReg = DstReg = ARM::SP; 1101 break; 1102 case ARM::tLDRpci: 1103 case ARM::t2MOVi16: 1104 case ARM::t2MOVTi16: 1105 // special cases: 1106 // 1) for Thumb1 code we sometimes materialize the constant via constpool 1107 // load. 1108 // 2) for Thumb2 execute only code we materialize the constant via 1109 // immediate constants in 2 separate instructions (MOVW/MOVT). 1110 SrcReg = ~0U; 1111 DstReg = MI->getOperand(0).getReg(); 1112 break; 1113 default: 1114 SrcReg = MI->getOperand(1).getReg(); 1115 DstReg = MI->getOperand(0).getReg(); 1116 break; 1117 } 1118 1119 // Try to figure out the unwinding opcode out of src / dst regs. 1120 if (MI->mayStore()) { 1121 // Register saves. 1122 assert(DstReg == ARM::SP && 1123 "Only stack pointer as a destination reg is supported"); 1124 1125 SmallVector<unsigned, 4> RegList; 1126 // Skip src & dst reg, and pred ops. 1127 unsigned StartOp = 2 + 2; 1128 // Use all the operands. 1129 unsigned NumOffset = 0; 1130 // Amount of SP adjustment folded into a push. 1131 unsigned Pad = 0; 1132 1133 switch (Opc) { 1134 default: 1135 MI->print(errs()); 1136 llvm_unreachable("Unsupported opcode for unwinding information"); 1137 case ARM::tPUSH: 1138 // Special case here: no src & dst reg, but two extra imp ops. 1139 StartOp = 2; NumOffset = 2; 1140 LLVM_FALLTHROUGH; 1141 case ARM::STMDB_UPD: 1142 case ARM::t2STMDB_UPD: 1143 case ARM::VSTMDDB_UPD: 1144 assert(SrcReg == ARM::SP && 1145 "Only stack pointer as a source reg is supported"); 1146 for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; 1147 i != NumOps; ++i) { 1148 const MachineOperand &MO = MI->getOperand(i); 1149 // Actually, there should never be any impdef stuff here. Skip it 1150 // temporary to workaround PR11902. 1151 if (MO.isImplicit()) 1152 continue; 1153 // Registers, pushed as a part of folding an SP update into the 1154 // push instruction are marked as undef and should not be 1155 // restored when unwinding, because the function can modify the 1156 // corresponding stack slots. 1157 if (MO.isUndef()) { 1158 assert(RegList.empty() && 1159 "Pad registers must come before restored ones"); 1160 unsigned Width = 1161 TargetRegInfo->getRegSizeInBits(MO.getReg(), MachineRegInfo) / 8; 1162 Pad += Width; 1163 continue; 1164 } 1165 // Check for registers that are remapped (for a Thumb1 prologue that 1166 // saves high registers). 1167 Register Reg = MO.getReg(); 1168 if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(Reg)) 1169 Reg = RemappedReg; 1170 RegList.push_back(Reg); 1171 } 1172 break; 1173 case ARM::STR_PRE_IMM: 1174 case ARM::STR_PRE_REG: 1175 case ARM::t2STR_PRE: 1176 assert(MI->getOperand(2).getReg() == ARM::SP && 1177 "Only stack pointer as a source reg is supported"); 1178 RegList.push_back(SrcReg); 1179 break; 1180 } 1181 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1182 ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD); 1183 // Account for the SP adjustment, folded into the push. 1184 if (Pad) 1185 ATS.emitPad(Pad); 1186 } 1187 } else { 1188 // Changes of stack / frame pointer. 1189 if (SrcReg == ARM::SP) { 1190 int64_t Offset = 0; 1191 switch (Opc) { 1192 default: 1193 MI->print(errs()); 1194 llvm_unreachable("Unsupported opcode for unwinding information"); 1195 case ARM::MOVr: 1196 case ARM::tMOVr: 1197 Offset = 0; 1198 break; 1199 case ARM::ADDri: 1200 case ARM::t2ADDri: 1201 case ARM::t2ADDri12: 1202 case ARM::t2ADDspImm: 1203 case ARM::t2ADDspImm12: 1204 Offset = -MI->getOperand(2).getImm(); 1205 break; 1206 case ARM::SUBri: 1207 case ARM::t2SUBri: 1208 case ARM::t2SUBri12: 1209 case ARM::t2SUBspImm: 1210 case ARM::t2SUBspImm12: 1211 Offset = MI->getOperand(2).getImm(); 1212 break; 1213 case ARM::tSUBspi: 1214 Offset = MI->getOperand(2).getImm()*4; 1215 break; 1216 case ARM::tADDspi: 1217 case ARM::tADDrSPi: 1218 Offset = -MI->getOperand(2).getImm()*4; 1219 break; 1220 case ARM::tADDhirr: 1221 Offset = 1222 -AFI->EHPrologueOffsetInRegs.lookup(MI->getOperand(2).getReg()); 1223 break; 1224 } 1225 1226 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1227 if (DstReg == FramePtr && FramePtr != ARM::SP) 1228 // Set-up of the frame pointer. Positive values correspond to "add" 1229 // instruction. 1230 ATS.emitSetFP(FramePtr, ARM::SP, -Offset); 1231 else if (DstReg == ARM::SP) { 1232 // Change of SP by an offset. Positive values correspond to "sub" 1233 // instruction. 1234 ATS.emitPad(Offset); 1235 } else { 1236 // Move of SP to a register. Positive values correspond to an "add" 1237 // instruction. 1238 ATS.emitMovSP(DstReg, -Offset); 1239 } 1240 } 1241 } else if (DstReg == ARM::SP) { 1242 MI->print(errs()); 1243 llvm_unreachable("Unsupported opcode for unwinding information"); 1244 } else { 1245 int64_t Offset = 0; 1246 switch (Opc) { 1247 case ARM::tMOVr: 1248 // If a Thumb1 function spills r8-r11, we copy the values to low 1249 // registers before pushing them. Record the copy so we can emit the 1250 // correct ".save" later. 1251 AFI->EHPrologueRemappedRegs[DstReg] = SrcReg; 1252 break; 1253 case ARM::tLDRpci: { 1254 // Grab the constpool index and check, whether it corresponds to 1255 // original or cloned constpool entry. 1256 unsigned CPI = MI->getOperand(1).getIndex(); 1257 const MachineConstantPool *MCP = MF.getConstantPool(); 1258 if (CPI >= MCP->getConstants().size()) 1259 CPI = AFI->getOriginalCPIdx(CPI); 1260 assert(CPI != -1U && "Invalid constpool index"); 1261 1262 // Derive the actual offset. 1263 const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; 1264 assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry"); 1265 Offset = cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue(); 1266 AFI->EHPrologueOffsetInRegs[DstReg] = Offset; 1267 break; 1268 } 1269 case ARM::t2MOVi16: 1270 Offset = MI->getOperand(1).getImm(); 1271 AFI->EHPrologueOffsetInRegs[DstReg] = Offset; 1272 break; 1273 case ARM::t2MOVTi16: 1274 Offset = MI->getOperand(2).getImm(); 1275 AFI->EHPrologueOffsetInRegs[DstReg] |= (Offset << 16); 1276 break; 1277 default: 1278 MI->print(errs()); 1279 llvm_unreachable("Unsupported opcode for unwinding information"); 1280 } 1281 } 1282 } 1283 } 1284 1285 // Simple pseudo-instructions have their lowering (with expansion to real 1286 // instructions) auto-generated. 1287 #include "ARMGenMCPseudoLowering.inc" 1288 1289 void ARMAsmPrinter::emitInstruction(const MachineInstr *MI) { 1290 const DataLayout &DL = getDataLayout(); 1291 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1292 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1293 1294 const MachineFunction &MF = *MI->getParent()->getParent(); 1295 const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); 1296 unsigned FramePtr = STI.useR7AsFramePointer() ? ARM::R7 : ARM::R11; 1297 1298 // If we just ended a constant pool, mark it as such. 1299 if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { 1300 OutStreamer->emitDataRegion(MCDR_DataRegionEnd); 1301 InConstantPool = false; 1302 } 1303 1304 // Emit unwinding stuff for frame-related instructions 1305 if (Subtarget->isTargetEHABICompatible() && 1306 MI->getFlag(MachineInstr::FrameSetup)) 1307 EmitUnwindingInstruction(MI); 1308 1309 // Do any auto-generated pseudo lowerings. 1310 if (emitPseudoExpansionLowering(*OutStreamer, MI)) 1311 return; 1312 1313 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && 1314 "Pseudo flag setting opcode should be expanded early"); 1315 1316 // Check for manual lowerings. 1317 unsigned Opc = MI->getOpcode(); 1318 switch (Opc) { 1319 case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass"); 1320 case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing"); 1321 case ARM::LEApcrel: 1322 case ARM::tLEApcrel: 1323 case ARM::t2LEApcrel: { 1324 // FIXME: Need to also handle globals and externals 1325 MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex()); 1326 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1327 ARM::t2LEApcrel ? ARM::t2ADR 1328 : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR 1329 : ARM::ADR)) 1330 .addReg(MI->getOperand(0).getReg()) 1331 .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext)) 1332 // Add predicate operands. 1333 .addImm(MI->getOperand(2).getImm()) 1334 .addReg(MI->getOperand(3).getReg())); 1335 return; 1336 } 1337 case ARM::LEApcrelJT: 1338 case ARM::tLEApcrelJT: 1339 case ARM::t2LEApcrelJT: { 1340 MCSymbol *JTIPICSymbol = 1341 GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex()); 1342 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1343 ARM::t2LEApcrelJT ? ARM::t2ADR 1344 : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR 1345 : ARM::ADR)) 1346 .addReg(MI->getOperand(0).getReg()) 1347 .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext)) 1348 // Add predicate operands. 1349 .addImm(MI->getOperand(2).getImm()) 1350 .addReg(MI->getOperand(3).getReg())); 1351 return; 1352 } 1353 // Darwin call instructions are just normal call instructions with different 1354 // clobber semantics (they clobber R9). 1355 case ARM::BX_CALL: { 1356 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1357 .addReg(ARM::LR) 1358 .addReg(ARM::PC) 1359 // Add predicate operands. 1360 .addImm(ARMCC::AL) 1361 .addReg(0) 1362 // Add 's' bit operand (always reg0 for this) 1363 .addReg(0)); 1364 1365 assert(Subtarget->hasV4TOps()); 1366 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1367 .addReg(MI->getOperand(0).getReg())); 1368 return; 1369 } 1370 case ARM::tBX_CALL: { 1371 if (Subtarget->hasV5TOps()) 1372 llvm_unreachable("Expected BLX to be selected for v5t+"); 1373 1374 // On ARM v4t, when doing a call from thumb mode, we need to ensure 1375 // that the saved lr has its LSB set correctly (the arch doesn't 1376 // have blx). 1377 // So here we generate a bl to a small jump pad that does bx rN. 1378 // The jump pads are emitted after the function body. 1379 1380 Register TReg = MI->getOperand(0).getReg(); 1381 MCSymbol *TRegSym = nullptr; 1382 for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { 1383 if (TIP.first == TReg) { 1384 TRegSym = TIP.second; 1385 break; 1386 } 1387 } 1388 1389 if (!TRegSym) { 1390 TRegSym = OutContext.createTempSymbol(); 1391 ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym)); 1392 } 1393 1394 // Create a link-saving branch to the Reg Indirect Jump Pad. 1395 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL) 1396 // Predicate comes first here. 1397 .addImm(ARMCC::AL).addReg(0) 1398 .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext))); 1399 return; 1400 } 1401 case ARM::BMOVPCRX_CALL: { 1402 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1403 .addReg(ARM::LR) 1404 .addReg(ARM::PC) 1405 // Add predicate operands. 1406 .addImm(ARMCC::AL) 1407 .addReg(0) 1408 // Add 's' bit operand (always reg0 for this) 1409 .addReg(0)); 1410 1411 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1412 .addReg(ARM::PC) 1413 .addReg(MI->getOperand(0).getReg()) 1414 // Add predicate operands. 1415 .addImm(ARMCC::AL) 1416 .addReg(0) 1417 // Add 's' bit operand (always reg0 for this) 1418 .addReg(0)); 1419 return; 1420 } 1421 case ARM::BMOVPCB_CALL: { 1422 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1423 .addReg(ARM::LR) 1424 .addReg(ARM::PC) 1425 // Add predicate operands. 1426 .addImm(ARMCC::AL) 1427 .addReg(0) 1428 // Add 's' bit operand (always reg0 for this) 1429 .addReg(0)); 1430 1431 const MachineOperand &Op = MI->getOperand(0); 1432 const GlobalValue *GV = Op.getGlobal(); 1433 const unsigned TF = Op.getTargetFlags(); 1434 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1435 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1436 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc) 1437 .addExpr(GVSymExpr) 1438 // Add predicate operands. 1439 .addImm(ARMCC::AL) 1440 .addReg(0)); 1441 return; 1442 } 1443 case ARM::MOVi16_ga_pcrel: 1444 case ARM::t2MOVi16_ga_pcrel: { 1445 MCInst TmpInst; 1446 TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); 1447 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1448 1449 unsigned TF = MI->getOperand(1).getTargetFlags(); 1450 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1451 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1452 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1453 1454 MCSymbol *LabelSym = 1455 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1456 MI->getOperand(2).getImm(), OutContext); 1457 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1458 unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; 1459 const MCExpr *PCRelExpr = 1460 ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr, 1461 MCBinaryExpr::createAdd(LabelSymExpr, 1462 MCConstantExpr::create(PCAdj, OutContext), 1463 OutContext), OutContext), OutContext); 1464 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1465 1466 // Add predicate operands. 1467 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1468 TmpInst.addOperand(MCOperand::createReg(0)); 1469 // Add 's' bit operand (always reg0 for this) 1470 TmpInst.addOperand(MCOperand::createReg(0)); 1471 EmitToStreamer(*OutStreamer, TmpInst); 1472 return; 1473 } 1474 case ARM::MOVTi16_ga_pcrel: 1475 case ARM::t2MOVTi16_ga_pcrel: { 1476 MCInst TmpInst; 1477 TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel 1478 ? ARM::MOVTi16 : ARM::t2MOVTi16); 1479 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1480 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1481 1482 unsigned TF = MI->getOperand(2).getTargetFlags(); 1483 const GlobalValue *GV = MI->getOperand(2).getGlobal(); 1484 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1485 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1486 1487 MCSymbol *LabelSym = 1488 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1489 MI->getOperand(3).getImm(), OutContext); 1490 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1491 unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; 1492 const MCExpr *PCRelExpr = 1493 ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr, 1494 MCBinaryExpr::createAdd(LabelSymExpr, 1495 MCConstantExpr::create(PCAdj, OutContext), 1496 OutContext), OutContext), OutContext); 1497 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1498 // Add predicate operands. 1499 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1500 TmpInst.addOperand(MCOperand::createReg(0)); 1501 // Add 's' bit operand (always reg0 for this) 1502 TmpInst.addOperand(MCOperand::createReg(0)); 1503 EmitToStreamer(*OutStreamer, TmpInst); 1504 return; 1505 } 1506 case ARM::t2BFi: 1507 case ARM::t2BFic: 1508 case ARM::t2BFLi: 1509 case ARM::t2BFr: 1510 case ARM::t2BFLr: { 1511 // This is a Branch Future instruction. 1512 1513 const MCExpr *BranchLabel = MCSymbolRefExpr::create( 1514 getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1515 MI->getOperand(0).getIndex(), OutContext), 1516 OutContext); 1517 1518 auto MCInst = MCInstBuilder(Opc).addExpr(BranchLabel); 1519 if (MI->getOperand(1).isReg()) { 1520 // For BFr/BFLr 1521 MCInst.addReg(MI->getOperand(1).getReg()); 1522 } else { 1523 // For BFi/BFLi/BFic 1524 const MCExpr *BranchTarget; 1525 if (MI->getOperand(1).isMBB()) 1526 BranchTarget = MCSymbolRefExpr::create( 1527 MI->getOperand(1).getMBB()->getSymbol(), OutContext); 1528 else if (MI->getOperand(1).isGlobal()) { 1529 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1530 BranchTarget = MCSymbolRefExpr::create( 1531 GetARMGVSymbol(GV, MI->getOperand(1).getTargetFlags()), OutContext); 1532 } else if (MI->getOperand(1).isSymbol()) { 1533 BranchTarget = MCSymbolRefExpr::create( 1534 GetExternalSymbolSymbol(MI->getOperand(1).getSymbolName()), 1535 OutContext); 1536 } else 1537 llvm_unreachable("Unhandled operand kind in Branch Future instruction"); 1538 1539 MCInst.addExpr(BranchTarget); 1540 } 1541 1542 if (Opc == ARM::t2BFic) { 1543 const MCExpr *ElseLabel = MCSymbolRefExpr::create( 1544 getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1545 MI->getOperand(2).getIndex(), OutContext), 1546 OutContext); 1547 MCInst.addExpr(ElseLabel); 1548 MCInst.addImm(MI->getOperand(3).getImm()); 1549 } else { 1550 MCInst.addImm(MI->getOperand(2).getImm()) 1551 .addReg(MI->getOperand(3).getReg()); 1552 } 1553 1554 EmitToStreamer(*OutStreamer, MCInst); 1555 return; 1556 } 1557 case ARM::t2BF_LabelPseudo: { 1558 // This is a pseudo op for a label used by a branch future instruction 1559 1560 // Emit the label. 1561 OutStreamer->emitLabel(getBFLabel(DL.getPrivateGlobalPrefix(), 1562 getFunctionNumber(), 1563 MI->getOperand(0).getIndex(), OutContext)); 1564 return; 1565 } 1566 case ARM::tPICADD: { 1567 // This is a pseudo op for a label + instruction sequence, which looks like: 1568 // LPC0: 1569 // add r0, pc 1570 // This adds the address of LPC0 to r0. 1571 1572 // Emit the label. 1573 OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1574 getFunctionNumber(), 1575 MI->getOperand(2).getImm(), OutContext)); 1576 1577 // Form and emit the add. 1578 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1579 .addReg(MI->getOperand(0).getReg()) 1580 .addReg(MI->getOperand(0).getReg()) 1581 .addReg(ARM::PC) 1582 // Add predicate operands. 1583 .addImm(ARMCC::AL) 1584 .addReg(0)); 1585 return; 1586 } 1587 case ARM::PICADD: { 1588 // This is a pseudo op for a label + instruction sequence, which looks like: 1589 // LPC0: 1590 // add r0, pc, r0 1591 // This adds the address of LPC0 to r0. 1592 1593 // Emit the label. 1594 OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1595 getFunctionNumber(), 1596 MI->getOperand(2).getImm(), OutContext)); 1597 1598 // Form and emit the add. 1599 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1600 .addReg(MI->getOperand(0).getReg()) 1601 .addReg(ARM::PC) 1602 .addReg(MI->getOperand(1).getReg()) 1603 // Add predicate operands. 1604 .addImm(MI->getOperand(3).getImm()) 1605 .addReg(MI->getOperand(4).getReg()) 1606 // Add 's' bit operand (always reg0 for this) 1607 .addReg(0)); 1608 return; 1609 } 1610 case ARM::PICSTR: 1611 case ARM::PICSTRB: 1612 case ARM::PICSTRH: 1613 case ARM::PICLDR: 1614 case ARM::PICLDRB: 1615 case ARM::PICLDRH: 1616 case ARM::PICLDRSB: 1617 case ARM::PICLDRSH: { 1618 // This is a pseudo op for a label + instruction sequence, which looks like: 1619 // LPC0: 1620 // OP r0, [pc, r0] 1621 // The LCP0 label is referenced by a constant pool entry in order to get 1622 // a PC-relative address at the ldr instruction. 1623 1624 // Emit the label. 1625 OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1626 getFunctionNumber(), 1627 MI->getOperand(2).getImm(), OutContext)); 1628 1629 // Form and emit the load 1630 unsigned Opcode; 1631 switch (MI->getOpcode()) { 1632 default: 1633 llvm_unreachable("Unexpected opcode!"); 1634 case ARM::PICSTR: Opcode = ARM::STRrs; break; 1635 case ARM::PICSTRB: Opcode = ARM::STRBrs; break; 1636 case ARM::PICSTRH: Opcode = ARM::STRH; break; 1637 case ARM::PICLDR: Opcode = ARM::LDRrs; break; 1638 case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; 1639 case ARM::PICLDRH: Opcode = ARM::LDRH; break; 1640 case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; 1641 case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; 1642 } 1643 EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode) 1644 .addReg(MI->getOperand(0).getReg()) 1645 .addReg(ARM::PC) 1646 .addReg(MI->getOperand(1).getReg()) 1647 .addImm(0) 1648 // Add predicate operands. 1649 .addImm(MI->getOperand(3).getImm()) 1650 .addReg(MI->getOperand(4).getReg())); 1651 1652 return; 1653 } 1654 case ARM::CONSTPOOL_ENTRY: { 1655 if (Subtarget->genExecuteOnly()) 1656 llvm_unreachable("execute-only should not generate constant pools"); 1657 1658 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool 1659 /// in the function. The first operand is the ID# for this instruction, the 1660 /// second is the index into the MachineConstantPool that this is, the third 1661 /// is the size in bytes of this constant pool entry. 1662 /// The required alignment is specified on the basic block holding this MI. 1663 unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); 1664 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); 1665 1666 // If this is the first entry of the pool, mark it. 1667 if (!InConstantPool) { 1668 OutStreamer->emitDataRegion(MCDR_DataRegion); 1669 InConstantPool = true; 1670 } 1671 1672 OutStreamer->emitLabel(GetCPISymbol(LabelId)); 1673 1674 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; 1675 if (MCPE.isMachineConstantPoolEntry()) 1676 emitMachineConstantPoolValue(MCPE.Val.MachineCPVal); 1677 else 1678 emitGlobalConstant(DL, MCPE.Val.ConstVal); 1679 return; 1680 } 1681 case ARM::JUMPTABLE_ADDRS: 1682 emitJumpTableAddrs(MI); 1683 return; 1684 case ARM::JUMPTABLE_INSTS: 1685 emitJumpTableInsts(MI); 1686 return; 1687 case ARM::JUMPTABLE_TBB: 1688 case ARM::JUMPTABLE_TBH: 1689 emitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2); 1690 return; 1691 case ARM::t2BR_JT: { 1692 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1693 .addReg(ARM::PC) 1694 .addReg(MI->getOperand(0).getReg()) 1695 // Add predicate operands. 1696 .addImm(ARMCC::AL) 1697 .addReg(0)); 1698 return; 1699 } 1700 case ARM::t2TBB_JT: 1701 case ARM::t2TBH_JT: { 1702 unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH; 1703 // Lower and emit the PC label, then the instruction itself. 1704 OutStreamer->emitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1705 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1706 .addReg(MI->getOperand(0).getReg()) 1707 .addReg(MI->getOperand(1).getReg()) 1708 // Add predicate operands. 1709 .addImm(ARMCC::AL) 1710 .addReg(0)); 1711 return; 1712 } 1713 case ARM::tTBB_JT: 1714 case ARM::tTBH_JT: { 1715 1716 bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT; 1717 Register Base = MI->getOperand(0).getReg(); 1718 Register Idx = MI->getOperand(1).getReg(); 1719 assert(MI->getOperand(1).isKill() && "We need the index register as scratch!"); 1720 1721 // Multiply up idx if necessary. 1722 if (!Is8Bit) 1723 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1724 .addReg(Idx) 1725 .addReg(ARM::CPSR) 1726 .addReg(Idx) 1727 .addImm(1) 1728 // Add predicate operands. 1729 .addImm(ARMCC::AL) 1730 .addReg(0)); 1731 1732 if (Base == ARM::PC) { 1733 // TBB [base, idx] = 1734 // ADDS idx, idx, base 1735 // LDRB idx, [idx, #4] ; or LDRH if TBH 1736 // LSLS idx, #1 1737 // ADDS pc, pc, idx 1738 1739 // When using PC as the base, it's important that there is no padding 1740 // between the last ADDS and the start of the jump table. The jump table 1741 // is 4-byte aligned, so we ensure we're 4 byte aligned here too. 1742 // 1743 // FIXME: Ideally we could vary the LDRB index based on the padding 1744 // between the sequence and jump table, however that relies on MCExprs 1745 // for load indexes which are currently not supported. 1746 OutStreamer->emitCodeAlignment(4); 1747 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1748 .addReg(Idx) 1749 .addReg(Idx) 1750 .addReg(Base) 1751 // Add predicate operands. 1752 .addImm(ARMCC::AL) 1753 .addReg(0)); 1754 1755 unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi; 1756 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1757 .addReg(Idx) 1758 .addReg(Idx) 1759 .addImm(Is8Bit ? 4 : 2) 1760 // Add predicate operands. 1761 .addImm(ARMCC::AL) 1762 .addReg(0)); 1763 } else { 1764 // TBB [base, idx] = 1765 // LDRB idx, [base, idx] ; or LDRH if TBH 1766 // LSLS idx, #1 1767 // ADDS pc, pc, idx 1768 1769 unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr; 1770 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1771 .addReg(Idx) 1772 .addReg(Base) 1773 .addReg(Idx) 1774 // Add predicate operands. 1775 .addImm(ARMCC::AL) 1776 .addReg(0)); 1777 } 1778 1779 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) 1780 .addReg(Idx) 1781 .addReg(ARM::CPSR) 1782 .addReg(Idx) 1783 .addImm(1) 1784 // Add predicate operands. 1785 .addImm(ARMCC::AL) 1786 .addReg(0)); 1787 1788 OutStreamer->emitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1789 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1790 .addReg(ARM::PC) 1791 .addReg(ARM::PC) 1792 .addReg(Idx) 1793 // Add predicate operands. 1794 .addImm(ARMCC::AL) 1795 .addReg(0)); 1796 return; 1797 } 1798 case ARM::tBR_JTr: 1799 case ARM::BR_JTr: { 1800 // mov pc, target 1801 MCInst TmpInst; 1802 unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? 1803 ARM::MOVr : ARM::tMOVr; 1804 TmpInst.setOpcode(Opc); 1805 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1806 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1807 // Add predicate operands. 1808 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1809 TmpInst.addOperand(MCOperand::createReg(0)); 1810 // Add 's' bit operand (always reg0 for this) 1811 if (Opc == ARM::MOVr) 1812 TmpInst.addOperand(MCOperand::createReg(0)); 1813 EmitToStreamer(*OutStreamer, TmpInst); 1814 return; 1815 } 1816 case ARM::BR_JTm_i12: { 1817 // ldr pc, target 1818 MCInst TmpInst; 1819 TmpInst.setOpcode(ARM::LDRi12); 1820 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1821 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1822 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1823 // Add predicate operands. 1824 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1825 TmpInst.addOperand(MCOperand::createReg(0)); 1826 EmitToStreamer(*OutStreamer, TmpInst); 1827 return; 1828 } 1829 case ARM::BR_JTm_rs: { 1830 // ldr pc, target 1831 MCInst TmpInst; 1832 TmpInst.setOpcode(ARM::LDRrs); 1833 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1834 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1835 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1836 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1837 // Add predicate operands. 1838 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1839 TmpInst.addOperand(MCOperand::createReg(0)); 1840 EmitToStreamer(*OutStreamer, TmpInst); 1841 return; 1842 } 1843 case ARM::BR_JTadd: { 1844 // add pc, target, idx 1845 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1846 .addReg(ARM::PC) 1847 .addReg(MI->getOperand(0).getReg()) 1848 .addReg(MI->getOperand(1).getReg()) 1849 // Add predicate operands. 1850 .addImm(ARMCC::AL) 1851 .addReg(0) 1852 // Add 's' bit operand (always reg0 for this) 1853 .addReg(0)); 1854 return; 1855 } 1856 case ARM::SPACE: 1857 OutStreamer->emitZeros(MI->getOperand(1).getImm()); 1858 return; 1859 case ARM::TRAP: { 1860 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1861 // FIXME: Remove this special case when they do. 1862 if (!Subtarget->isTargetMachO()) { 1863 uint32_t Val = 0xe7ffdefeUL; 1864 OutStreamer->AddComment("trap"); 1865 ATS.emitInst(Val); 1866 return; 1867 } 1868 break; 1869 } 1870 case ARM::TRAPNaCl: { 1871 uint32_t Val = 0xe7fedef0UL; 1872 OutStreamer->AddComment("trap"); 1873 ATS.emitInst(Val); 1874 return; 1875 } 1876 case ARM::tTRAP: { 1877 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1878 // FIXME: Remove this special case when they do. 1879 if (!Subtarget->isTargetMachO()) { 1880 uint16_t Val = 0xdefe; 1881 OutStreamer->AddComment("trap"); 1882 ATS.emitInst(Val, 'n'); 1883 return; 1884 } 1885 break; 1886 } 1887 case ARM::t2Int_eh_sjlj_setjmp: 1888 case ARM::t2Int_eh_sjlj_setjmp_nofp: 1889 case ARM::tInt_eh_sjlj_setjmp: { 1890 // Two incoming args: GPR:$src, GPR:$val 1891 // mov $val, pc 1892 // adds $val, #7 1893 // str $val, [$src, #4] 1894 // movs r0, #0 1895 // b LSJLJEH 1896 // movs r0, #1 1897 // LSJLJEH: 1898 Register SrcReg = MI->getOperand(0).getReg(); 1899 Register ValReg = MI->getOperand(1).getReg(); 1900 MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true); 1901 OutStreamer->AddComment("eh_setjmp begin"); 1902 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1903 .addReg(ValReg) 1904 .addReg(ARM::PC) 1905 // Predicate. 1906 .addImm(ARMCC::AL) 1907 .addReg(0)); 1908 1909 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3) 1910 .addReg(ValReg) 1911 // 's' bit operand 1912 .addReg(ARM::CPSR) 1913 .addReg(ValReg) 1914 .addImm(7) 1915 // Predicate. 1916 .addImm(ARMCC::AL) 1917 .addReg(0)); 1918 1919 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi) 1920 .addReg(ValReg) 1921 .addReg(SrcReg) 1922 // The offset immediate is #4. The operand value is scaled by 4 for the 1923 // tSTR instruction. 1924 .addImm(1) 1925 // Predicate. 1926 .addImm(ARMCC::AL) 1927 .addReg(0)); 1928 1929 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1930 .addReg(ARM::R0) 1931 .addReg(ARM::CPSR) 1932 .addImm(0) 1933 // Predicate. 1934 .addImm(ARMCC::AL) 1935 .addReg(0)); 1936 1937 const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext); 1938 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB) 1939 .addExpr(SymbolExpr) 1940 .addImm(ARMCC::AL) 1941 .addReg(0)); 1942 1943 OutStreamer->AddComment("eh_setjmp end"); 1944 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1945 .addReg(ARM::R0) 1946 .addReg(ARM::CPSR) 1947 .addImm(1) 1948 // Predicate. 1949 .addImm(ARMCC::AL) 1950 .addReg(0)); 1951 1952 OutStreamer->emitLabel(Label); 1953 return; 1954 } 1955 1956 case ARM::Int_eh_sjlj_setjmp_nofp: 1957 case ARM::Int_eh_sjlj_setjmp: { 1958 // Two incoming args: GPR:$src, GPR:$val 1959 // add $val, pc, #8 1960 // str $val, [$src, #+4] 1961 // mov r0, #0 1962 // add pc, pc, #0 1963 // mov r0, #1 1964 Register SrcReg = MI->getOperand(0).getReg(); 1965 Register ValReg = MI->getOperand(1).getReg(); 1966 1967 OutStreamer->AddComment("eh_setjmp begin"); 1968 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1969 .addReg(ValReg) 1970 .addReg(ARM::PC) 1971 .addImm(8) 1972 // Predicate. 1973 .addImm(ARMCC::AL) 1974 .addReg(0) 1975 // 's' bit operand (always reg0 for this). 1976 .addReg(0)); 1977 1978 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12) 1979 .addReg(ValReg) 1980 .addReg(SrcReg) 1981 .addImm(4) 1982 // Predicate. 1983 .addImm(ARMCC::AL) 1984 .addReg(0)); 1985 1986 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1987 .addReg(ARM::R0) 1988 .addImm(0) 1989 // Predicate. 1990 .addImm(ARMCC::AL) 1991 .addReg(0) 1992 // 's' bit operand (always reg0 for this). 1993 .addReg(0)); 1994 1995 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1996 .addReg(ARM::PC) 1997 .addReg(ARM::PC) 1998 .addImm(0) 1999 // Predicate. 2000 .addImm(ARMCC::AL) 2001 .addReg(0) 2002 // 's' bit operand (always reg0 for this). 2003 .addReg(0)); 2004 2005 OutStreamer->AddComment("eh_setjmp end"); 2006 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 2007 .addReg(ARM::R0) 2008 .addImm(1) 2009 // Predicate. 2010 .addImm(ARMCC::AL) 2011 .addReg(0) 2012 // 's' bit operand (always reg0 for this). 2013 .addReg(0)); 2014 return; 2015 } 2016 case ARM::Int_eh_sjlj_longjmp: { 2017 // ldr sp, [$src, #8] 2018 // ldr $scratch, [$src, #4] 2019 // ldr r7, [$src] 2020 // bx $scratch 2021 Register SrcReg = MI->getOperand(0).getReg(); 2022 Register ScratchReg = MI->getOperand(1).getReg(); 2023 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2024 .addReg(ARM::SP) 2025 .addReg(SrcReg) 2026 .addImm(8) 2027 // Predicate. 2028 .addImm(ARMCC::AL) 2029 .addReg(0)); 2030 2031 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2032 .addReg(ScratchReg) 2033 .addReg(SrcReg) 2034 .addImm(4) 2035 // Predicate. 2036 .addImm(ARMCC::AL) 2037 .addReg(0)); 2038 2039 if (STI.isTargetDarwin() || STI.isTargetWindows()) { 2040 // These platforms always use the same frame register 2041 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2042 .addReg(FramePtr) 2043 .addReg(SrcReg) 2044 .addImm(0) 2045 // Predicate. 2046 .addImm(ARMCC::AL) 2047 .addReg(0)); 2048 } else { 2049 // If the calling code might use either R7 or R11 as 2050 // frame pointer register, restore it into both. 2051 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2052 .addReg(ARM::R7) 2053 .addReg(SrcReg) 2054 .addImm(0) 2055 // Predicate. 2056 .addImm(ARMCC::AL) 2057 .addReg(0)); 2058 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 2059 .addReg(ARM::R11) 2060 .addReg(SrcReg) 2061 .addImm(0) 2062 // Predicate. 2063 .addImm(ARMCC::AL) 2064 .addReg(0)); 2065 } 2066 2067 assert(Subtarget->hasV4TOps()); 2068 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 2069 .addReg(ScratchReg) 2070 // Predicate. 2071 .addImm(ARMCC::AL) 2072 .addReg(0)); 2073 return; 2074 } 2075 case ARM::tInt_eh_sjlj_longjmp: { 2076 // ldr $scratch, [$src, #8] 2077 // mov sp, $scratch 2078 // ldr $scratch, [$src, #4] 2079 // ldr r7, [$src] 2080 // bx $scratch 2081 Register SrcReg = MI->getOperand(0).getReg(); 2082 Register ScratchReg = MI->getOperand(1).getReg(); 2083 2084 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2085 .addReg(ScratchReg) 2086 .addReg(SrcReg) 2087 // The offset immediate is #8. The operand value is scaled by 4 for the 2088 // tLDR instruction. 2089 .addImm(2) 2090 // Predicate. 2091 .addImm(ARMCC::AL) 2092 .addReg(0)); 2093 2094 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 2095 .addReg(ARM::SP) 2096 .addReg(ScratchReg) 2097 // Predicate. 2098 .addImm(ARMCC::AL) 2099 .addReg(0)); 2100 2101 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2102 .addReg(ScratchReg) 2103 .addReg(SrcReg) 2104 .addImm(1) 2105 // Predicate. 2106 .addImm(ARMCC::AL) 2107 .addReg(0)); 2108 2109 if (STI.isTargetDarwin() || STI.isTargetWindows()) { 2110 // These platforms always use the same frame register 2111 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2112 .addReg(FramePtr) 2113 .addReg(SrcReg) 2114 .addImm(0) 2115 // Predicate. 2116 .addImm(ARMCC::AL) 2117 .addReg(0)); 2118 } else { 2119 // If the calling code might use either R7 or R11 as 2120 // frame pointer register, restore it into both. 2121 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2122 .addReg(ARM::R7) 2123 .addReg(SrcReg) 2124 .addImm(0) 2125 // Predicate. 2126 .addImm(ARMCC::AL) 2127 .addReg(0)); 2128 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 2129 .addReg(ARM::R11) 2130 .addReg(SrcReg) 2131 .addImm(0) 2132 // Predicate. 2133 .addImm(ARMCC::AL) 2134 .addReg(0)); 2135 } 2136 2137 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 2138 .addReg(ScratchReg) 2139 // Predicate. 2140 .addImm(ARMCC::AL) 2141 .addReg(0)); 2142 return; 2143 } 2144 case ARM::tInt_WIN_eh_sjlj_longjmp: { 2145 // ldr.w r11, [$src, #0] 2146 // ldr.w sp, [$src, #8] 2147 // ldr.w pc, [$src, #4] 2148 2149 Register SrcReg = MI->getOperand(0).getReg(); 2150 2151 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2152 .addReg(ARM::R11) 2153 .addReg(SrcReg) 2154 .addImm(0) 2155 // Predicate 2156 .addImm(ARMCC::AL) 2157 .addReg(0)); 2158 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2159 .addReg(ARM::SP) 2160 .addReg(SrcReg) 2161 .addImm(8) 2162 // Predicate 2163 .addImm(ARMCC::AL) 2164 .addReg(0)); 2165 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) 2166 .addReg(ARM::PC) 2167 .addReg(SrcReg) 2168 .addImm(4) 2169 // Predicate 2170 .addImm(ARMCC::AL) 2171 .addReg(0)); 2172 return; 2173 } 2174 case ARM::PATCHABLE_FUNCTION_ENTER: 2175 LowerPATCHABLE_FUNCTION_ENTER(*MI); 2176 return; 2177 case ARM::PATCHABLE_FUNCTION_EXIT: 2178 LowerPATCHABLE_FUNCTION_EXIT(*MI); 2179 return; 2180 case ARM::PATCHABLE_TAIL_CALL: 2181 LowerPATCHABLE_TAIL_CALL(*MI); 2182 return; 2183 } 2184 2185 MCInst TmpInst; 2186 LowerARMMachineInstrToMCInst(MI, TmpInst, *this); 2187 2188 EmitToStreamer(*OutStreamer, TmpInst); 2189 } 2190 2191 //===----------------------------------------------------------------------===// 2192 // Target Registry Stuff 2193 //===----------------------------------------------------------------------===// 2194 2195 // Force static initialization. 2196 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmPrinter() { 2197 RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget()); 2198 RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget()); 2199 RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget()); 2200 RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget()); 2201 } 2202